code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
# Official modules import numpy as np #from mnist import MNIST from sklearn.linear_model import RidgeClassifier # Pelenet modules from ._abstract import Experiment from ..network import ReservoirNetwork """ @desc: Train output on support neuron activity from assemblies """ class AssemblyOutputExperiment(Experiment): def defineParameters(self): """ Define parameters for this experiment """ return {} def build( self, supportMask=None, mask=None, weights=None, assemblyIndex=0, inputSpikeIndices=[], targetNeuronIndices=[] ): """ Overwrite build reservoir network with given mask, weights and input Parameters ---------- supportMask : The last support mask of the assembly organization mask : weights : assemblyIndex : The index of the assembly where 0: A, 1: B, etc. inputSpikeIndices : targetNeuronIndices : """ # Define variables for the experiment self.assemblyIndex = assemblyIndex self.supportMask = supportMask # Data self.dataTrain = None self.dataTest = None # Instanciate innate network self.net = ReservoirNetwork(self.p) # Define mask and weights if (mask is not None and weights is not None): # Set mask and weights self.net.initialMasks = mask self.net.initialWeights = weights else: # Throw an error if only one of mask/weights is defiend raise Exception("It is not possible to define only one of mask and weights, both must be defined.") # Connect ex-in reservoir self.net.connectReservoir() # Add input if len(targetNeuronIndices) == 0: targetNeuronIndices = np.arange(self.p.inputNumTargetNeurons) + assemblyIndex*self.p.inputNumTargetNeurons self.net.addInput(inputSpikeIndices=inputSpikeIndices, targetNeuronIndices=targetNeuronIndices) # Add background noise if self.p.isNoise: self.net.addNoiseGenerator() # Add Probes self.net.addProbes() # Call afterBuild self.afterBuild() def getInputIdcs(self, dataset): """ Get indices of spikes for input generators """ spikeIdcs = [] # Iterate over target neurons for i in range(dataset.shape[1]): spikeTimes = [] # Iterate over trials for k in range(dataset.shape[0]): off = self.p.inputOffset + self.p.stepsPerTrial*k + self.p.resetOffset*(k+1) spks = off + np.where(dataset[k,i,:])[0] spikeTimes.extend(spks.tolist()) spikeIdcs.append(spikeTimes) return spikeIdcs def getImagesOfClass(self, images, labels, label=0, threshold=64, size=1000): """ Get MNIST images of a specific class Images are postprocesses. The image is reshaped to a squared form from 784 to 28x28. Further, the grey values are thresholded to get binary values (black/white only). Parameters ---------- images : Images to be used from the MNIST dataset (train or test) labels : Labels to be used from the MNIST dataset (train or test) label : The class to filter images for. threshold: The threshold to tranform grey values to black/white (binary) values (0-255). """ # Transform images and labels to numpy arrays images = np.array(images) labels = np.array(labels) # Get indices where images match label idc = np.where(labels == label)[0] # Filter out 'size' images with specific label img = images[idc[:size]] # Reshape images from 1D to 2D s = img.shape xy = int(np.sqrt(s[1])) img = img.reshape((s[0], xy, xy)) # Threshold images to remove grey values and tranform to black/white (binary) values img[img <= threshold] = 0 img[img > threshold] = 1 # Return images of requested class return img def loadMnistAsInputs(self, nAssemblies=2, nTrain=500, nTest=100): # Define variables self.nAssemblies = nAssemblies self.nTrain = nTrain self.nTest = nTest # Load mnist data mndata = MNIST('data/mnist') train, trainLabels = mndata.load_training() test, testLabels = mndata.load_testing() # Throw error if number of classes exceeds limit if (nAssemblies != 2): raise Exception('Curently only two classes are supported') # Get training set train0 = self.getImagesOfClass(train, trainLabels, 0, size=nTrain) train1 = self.getImagesOfClass(train, trainLabels, 1, size=nTrain) # Get test set test0 = self.getImagesOfClass(test, testLabels, 0, size=nTest) test1 = self.getImagesOfClass(test, testLabels, 1, size=nTest) # Concatenate datasets inputs = np.concatenate(( train0, train1, test0, test1 ), axis=0) return self.getInputIdcs(inputs) def loadYinYangAsInputs(self, nAssemblies=2, nTrain=500, nTest=100): """ Loads the Yin Yang dataset and transforms it to an input for the reservoir network """ # Define variables self.nAssemblies = nAssemblies self.nTrain = nTrain self.nTest = nTest # Load raw data yinTrain = np.load('data/yinyang/inputs_yin_train.npy') # 1000 yangTrain = np.load('data/yinyang/inputs_yang_train.npy') # 1000 dotsTrain = np.load('data/yinyang/inputs_dots_train.npy') # 1000 yinTest = np.load('data/yinyang/inputs_yin_test.npy') # 200 yangTest = np.load('data/yinyang/inputs_yang_test.npy') # 200 dotsTest = np.load('data/yinyang/inputs_dots_test.npy') # 200 # Check if requested data is avialable if (nTrain > yinTrain.shape[0]) or (nTrain > yangTrain.shape[0]): raise Exception('The training dataset has fewer samples than requested.') if (nTest > yinTest.shape[0]) or (nTest > yangTest.shape[0]): raise Exception('The test dataset has fewer samples than requested.') # Check if number of classes is available if (nAssemblies > 3): raise Exception('This dataset has maximum 3 classes available') # Compute total length nTrials = nAssemblies * (nTrain + nTest) # Concatenate datasets inputs = np.concatenate(( yinTrain[:nTrain], yangTrain[:nTrain], #dotsTrain[:nTrain], yinTest[:nTest], yangTest[:nTest], #dotsTest[:nTest] ), axis=0) # Transform to input for reservoir and return return self.getInputIdcs(inputs) def getDatasetFromSpikes(self): """ Get Dataset from raw spiking data """ # Get data from spikes data = [] nIdx = self.p.inputNumTargetNeurons for i in range(self.p.trials): fr = i*self.p.totalTrialSteps + self.p.resetOffset + self.p.inputOffset to = (i+1)*self.p.totalTrialSteps # Get number of input neurons (all assemblies) nInput = self.p.inputNumTargetNeurons*len(self.p.inputVaryProbs) tmp = self.net.exSpikeTrains[nInput:,fr:to] data.append(tmp) # Convert to numpy array data = np.array(data) # Get support indices supportIndices = np.where(self.supportMask[self.assemblyIndex])[0] # Separate between train and test data dataTrain = data[:self.nAssemblies*self.nTrain,supportIndices,:] dataTest = data[self.nAssemblies*self.nTrain:,supportIndices,:] return dataTrain, dataTest def afterRun(self): """ A lifecycle function called after the simulation has successfully finished Prepares the dataset """ # Get dataset from spikes dataTrain, dataTest = self.getDatasetFromSpikes() self.dataTrain = dataTrain self.dataTest = dataTest # Store 2D spikes dataset sTra = self.dataTrain.shape self.spikesTrain = self.dataTrain.reshape((sTra[0], sTra[1]*sTra[2])) sTst = self.dataTest.shape self.spikesTest = self.dataTest.reshape((sTst[0], sTst[1]*sTst[2])) # Store rates dataset self.ratesTrain = np.sum(self.dataTrain, axis=1) self.ratesTest = np.sum(self.dataTest, axis=1) # Store frequencies dataset self.freqTrain = np.sum(self.dataTrain, axis=2) self.freqTest = np.sum(self.dataTest, axis=2) # Store labels self.labelsTrain = np.concatenate((-np.ones(self.nTrain), np.ones(self.nTrain))) self.labelsTest = np.concatenate((-np.ones(self.nTest), np.ones(self.nTest))) def fitRidgeClassifier(self): """ Fit ridge classifier and show scores """ self.clfSpikes = RidgeClassifier().fit(self.spikesTrain, self.labelsTrain) print('(spikes) score:', self.clfSpikes.score(self.spikesTest, self.labelsTest)) self.clfRates = RidgeClassifier().fit(self.ratesTrain, self.labelsTrain) print('(rates) score:', self.clfRates.score(self.ratesTest, self.labelsTest)) self.clfFreq = RidgeClassifier().fit(self.freqTrain, self.labelsTrain) print('(frequency) score:', self.clfFreq.score(self.freqTest, self.labelsTest))
[ "numpy.load", "numpy.sum", "numpy.ones", "numpy.where", "numpy.array", "numpy.arange", "sklearn.linear_model.RidgeClassifier", "numpy.concatenate", "numpy.sqrt" ]
[((3724, 3740), 'numpy.array', 'np.array', (['images'], {}), '(images)\n', (3732, 3740), True, 'import numpy as np\n'), ((3758, 3774), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (3766, 3774), True, 'import numpy as np\n'), ((5231, 5285), 'numpy.concatenate', 'np.concatenate', (['(train0, train1, test0, test1)'], {'axis': '(0)'}), '((train0, train1, test0, test1), axis=0)\n', (5245, 5285), True, 'import numpy as np\n'), ((5743, 5787), 'numpy.load', 'np.load', (['"""data/yinyang/inputs_yin_train.npy"""'], {}), "('data/yinyang/inputs_yin_train.npy')\n", (5750, 5787), True, 'import numpy as np\n'), ((5816, 5861), 'numpy.load', 'np.load', (['"""data/yinyang/inputs_yang_train.npy"""'], {}), "('data/yinyang/inputs_yang_train.npy')\n", (5823, 5861), True, 'import numpy as np\n'), ((5890, 5935), 'numpy.load', 'np.load', (['"""data/yinyang/inputs_dots_train.npy"""'], {}), "('data/yinyang/inputs_dots_train.npy')\n", (5897, 5935), True, 'import numpy as np\n'), ((5962, 6005), 'numpy.load', 'np.load', (['"""data/yinyang/inputs_yin_test.npy"""'], {}), "('data/yinyang/inputs_yin_test.npy')\n", (5969, 6005), True, 'import numpy as np\n'), ((6032, 6076), 'numpy.load', 'np.load', (['"""data/yinyang/inputs_yang_test.npy"""'], {}), "('data/yinyang/inputs_yang_test.npy')\n", (6039, 6076), True, 'import numpy as np\n'), ((6103, 6147), 'numpy.load', 'np.load', (['"""data/yinyang/inputs_dots_test.npy"""'], {}), "('data/yinyang/inputs_dots_test.npy')\n", (6110, 6147), True, 'import numpy as np\n'), ((6802, 6904), 'numpy.concatenate', 'np.concatenate', (['(yinTrain[:nTrain], yangTrain[:nTrain], yinTest[:nTest], yangTest[:nTest])'], {'axis': '(0)'}), '((yinTrain[:nTrain], yangTrain[:nTrain], yinTest[:nTest],\n yangTest[:nTest]), axis=0)\n', (6816, 6904), True, 'import numpy as np\n'), ((7772, 7786), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (7780, 7786), True, 'import numpy as np\n'), ((8762, 8792), 'numpy.sum', 'np.sum', (['self.dataTrain'], {'axis': '(1)'}), '(self.dataTrain, axis=1)\n', (8768, 8792), True, 'import numpy as np\n'), ((8818, 8847), 'numpy.sum', 'np.sum', (['self.dataTest'], {'axis': '(1)'}), '(self.dataTest, axis=1)\n', (8824, 8847), True, 'import numpy as np\n'), ((8910, 8940), 'numpy.sum', 'np.sum', (['self.dataTrain'], {'axis': '(2)'}), '(self.dataTrain, axis=2)\n', (8916, 8940), True, 'import numpy as np\n'), ((8965, 8994), 'numpy.sum', 'np.sum', (['self.dataTest'], {'axis': '(2)'}), '(self.dataTest, axis=2)\n', (8971, 8994), True, 'import numpy as np\n'), ((3836, 3861), 'numpy.where', 'np.where', (['(labels == label)'], {}), '(labels == label)\n', (3844, 3861), True, 'import numpy as np\n'), ((4031, 4044), 'numpy.sqrt', 'np.sqrt', (['s[1]'], {}), '(s[1])\n', (4038, 4044), True, 'import numpy as np\n'), ((7843, 7889), 'numpy.where', 'np.where', (['self.supportMask[self.assemblyIndex]'], {}), '(self.supportMask[self.assemblyIndex])\n', (7851, 7889), True, 'import numpy as np\n'), ((1937, 1976), 'numpy.arange', 'np.arange', (['self.p.inputNumTargetNeurons'], {}), '(self.p.inputNumTargetNeurons)\n', (1946, 1976), True, 'import numpy as np\n'), ((9085, 9105), 'numpy.ones', 'np.ones', (['self.nTrain'], {}), '(self.nTrain)\n', (9092, 9105), True, 'import numpy as np\n'), ((9172, 9191), 'numpy.ones', 'np.ones', (['self.nTest'], {}), '(self.nTest)\n', (9179, 9191), True, 'import numpy as np\n'), ((9323, 9340), 'sklearn.linear_model.RidgeClassifier', 'RidgeClassifier', ([], {}), '()\n', (9338, 9340), False, 'from sklearn.linear_model import RidgeClassifier\n'), ((9495, 9512), 'sklearn.linear_model.RidgeClassifier', 'RidgeClassifier', ([], {}), '()\n', (9510, 9512), False, 'from sklearn.linear_model import RidgeClassifier\n'), ((9662, 9679), 'sklearn.linear_model.RidgeClassifier', 'RidgeClassifier', ([], {}), '()\n', (9677, 9679), False, 'from sklearn.linear_model import RidgeClassifier\n'), ((9063, 9083), 'numpy.ones', 'np.ones', (['self.nTrain'], {}), '(self.nTrain)\n', (9070, 9083), True, 'import numpy as np\n'), ((9151, 9170), 'numpy.ones', 'np.ones', (['self.nTest'], {}), '(self.nTest)\n', (9158, 9170), True, 'import numpy as np\n'), ((2777, 2803), 'numpy.where', 'np.where', (['dataset[k, i, :]'], {}), '(dataset[k, i, :])\n', (2785, 2803), True, 'import numpy as np\n')]
import numpy as np from numba import njit import scipy.optimize as optim import torch from stew.utils import create_diff_matrix import itertools @njit def stew_reg(X, y, D, lam): return np.linalg.inv(X.T @ X + lam * D) @ X.T @ y def stew_loss(beta, X, y, D, lam): residuals = y - X @ beta l = residuals.T.dot(residuals) + lam * beta.T.dot(D).dot(beta) return l def stew_grad(beta, X, y, D, lam): return 2 * np.dot(beta, X.T).dot(X) - 2 * y.T.dot(X) + 2 * lam * beta.dot(D) def stew_hessian(beta, X, y, D, lam): return 2 * X.T.dot(X) + 2 * lam * D def stew_reg_iter(X, y, D, lam, method='Newton-CG'): op = optim.minimize(fun=stew_loss, x0=np.zeros(X.shape[1]), args=(X, y, D, lam), jac=stew_grad, hess=stew_hessian, method=method) return op.x class LinearRegressionTorch: def __init__(self, num_features, learning_rate=0.1, regularization="none", positivity_constraint=False, lam=0, verbose=False): self.num_features = num_features self.model = LinearRegressionModel(self.num_features) self.loss = torch.nn.MSELoss() self.learning_rate = learning_rate self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.learning_rate) self.regularization = regularization assert(self.regularization in ["none", "stem_opt", "ridge", "lasso", "stew1", "stew2", "stem1", "stem2", "stow", "stnw", "sted", "sthd", "peno", "penlex"]) self.positivity_constraint = positivity_constraint self.positivity_weight_clipper = PositivityClipper() self.lam = lam self.D = torch.from_numpy(create_diff_matrix(num_features=num_features)).float() self.verbose = verbose def fit(self, X, y, epochs=10): for epoch in range(epochs): # Clear gradient buffers because we don't want any gradient from previous epoch to carry forward, dont want to cummulate gradients self.optimizer.zero_grad() if self.lam > 0: for param_group in self.optimizer.param_groups: param_group['lr'] = np.minimum(self.learning_rate, 1 / (self.lam)) # get output from the model, given the inputs outputs = self.model(torch.from_numpy(X).float()) # get loss for the predicted output loss = self.loss(outputs, torch.from_numpy(y).float().reshape((-1, 1))) if self.regularization == "stew2": stew2_reg = torch.tensor(0.) for i in range(self.num_features-1): for j in range(i+1, self.num_features): stew2_reg += torch.pow(self.model.input_linear.weight[0][i] - self.model.input_linear.weight[0][j], 2) stew2_reg /= self.num_features * (self.num_features + 1) / 2 loss += self.lam * stew2_reg elif self.regularization == "stew1": stew1_reg = torch.tensor(0.) for i in range(self.num_features-1): for j in range(i+1, self.num_features): stew1_reg += torch.abs(self.model.input_linear.weight[0][i] - self.model.input_linear.weight[0][j]) stew1_reg /= self.num_features * (self.num_features + 1) / 2 loss += self.lam * stew1_reg elif self.regularization == "ridge": ridge_reg = torch.tensor(0.) for i in range(self.num_features): ridge_reg += torch.pow(self.model.input_linear.weight[0][i], 2) ridge_reg /= self.num_features loss += self.lam * ridge_reg elif self.regularization == "lasso": lasso_reg = torch.tensor(0.) for i in range(self.num_features): lasso_reg += torch.abs(self.model.input_linear.weight[0][i]) lasso_reg /= self.num_features loss += self.lam * lasso_reg elif self.regularization == "stem2": stem2_reg = torch.tensor(0.) for i in range(self.num_features - 1): for j in range(i + 1, self.num_features): stem2_reg += torch.pow(torch.abs(self.model.input_linear.weight[0][i]) - torch.abs(self.model.input_linear.weight[0][j]), 2) stem2_reg /= self.num_features * (self.num_features + 1) / 2 loss += self.lam * stem2_reg elif self.regularization == "stem1": stem1_reg = torch.tensor(0.) for i in range(self.num_features - 1): for j in range(i + 1, self.num_features): stem1_reg += torch.abs(torch.abs(self.model.input_linear.weight[0][i]) - torch.abs(self.model.input_linear.weight[0][j])) stem1_reg /= self.num_features * (self.num_features + 1) / 2 loss += self.lam * stem1_reg elif self.regularization == "stow": stow_reg = torch.tensor(0.) for i in range(1, self.num_features): stow_reg += torch.clamp(self.model.input_linear.weight[0][i] - self.model.input_linear.weight[0][i - 1], min=0) stow_reg /= (self.num_features - 1) loss += self.lam * stow_reg elif self.regularization == "peno": peno = torch.tensor(0.) for i in range(1, self.num_features): peno += self.model.input_linear.weight[0][i] < self.model.input_linear.weight[0][i - 1] # peno += torch.clamp(self.model.input_linear.weight[0][i] - self.model.input_linear.weight[0][i - 1], min=0) peno /= (self.num_features - 1) loss += self.lam * peno elif self.regularization == "stnw": stnw_reg = torch.tensor(0.) for i in range(self.num_features-1): stnw_reg += torch.clamp(self.model.input_linear.weight[0][(i+1):].sum() - self.model.input_linear.weight[0][i], min=0) stnw_reg /= (self.num_features - 1) loss += self.lam * stnw_reg elif self.regularization == "sted": sted_reg = torch.tensor(0.) for i in range(self.num_features - 1): sted_reg += torch.pow(self.model.input_linear.weight[0][i] - 2 * self.model.input_linear.weight[0][i+1], 2) sted_reg /= (self.num_features - 1) loss += self.lam * sted_reg elif self.regularization == "sthd": sthd_reg = torch.tensor(0.) for i in range(self.num_features - 1): sthd_reg += torch.pow(self.model.input_linear.weight[0][i] - (i + 2)/(i + 1) * self.model.input_linear.weight[0][i+1], 2) sthd_reg /= (self.num_features - 1) loss += self.lam * sthd_reg if self.verbose: print('epoch {}, loss {}'.format(epoch, loss.item())) # get gradients w.r.t to parameters loss.backward() # update parameters self.optimizer.step() if self.positivity_constraint: self.model.input_linear.apply(self.positivity_weight_clipper) return self.model.input_linear.weight[0].detach().numpy() # , loss.item() def predict(self, X): """ Predict on (new) data :param X: features matrix as numpy array (is converted to torch.tensor within this method. :return predictions: """ with torch.no_grad(): return self.model(torch.from_numpy(X).float()).numpy().flatten() class STEMopt: def __init__(self, train_fraction, num_features, learning_rate=0.1, regularization="none", positivity_constraint=False, lam=0, verbose=False ): self.train_fraction = train_fraction self.num_features = num_features self.learning_rate = learning_rate self.regularization = regularization self.positivity_constraint = positivity_constraint self.lam = lam self.verbose = verbose self.train_fraction = train_fraction if regularization == "stem_opt": self.regularization = "stew2" # self.model = LinearRegressionTorch(self.num_features, self.learning_rate, # self.regularization, self.positivity_constraint, # self.lam, self.verbose) self.D = create_diff_matrix(self.num_features) self.beta = None def fit(self, X, y, epochs): num_samples, num_features = X.shape # permuted_indices = np.random.permutation(np.arange(num_samples)) # train_set_size = int(np.floor(self.train_fraction * num_samples)) # train_indices = permuted_indices[:train_set_size] # test_indices = permuted_indices[train_set_size:] # X_train = X[train_indices, :] # X_test = X[test_indices, :] # y_train = y[train_indices] # y_test = y[test_indices] configurations = np.array(list(itertools.product([-1, 1], repeat=num_features))) num_configurations = len(configurations) betas = np.zeros((num_configurations, num_features)) losses = np.zeros(num_configurations) for configuration_ix, configuration in enumerate(configurations): # configuration_ix = 0; configuration = configurations[configuration_ix] # print(configuration_ix, configuration) confd_X = X * configuration[np.newaxis, :] # confd_X_test = X_test * configuration[np.newaxis, :] # self.model = LinearRegressionTorch(self.num_features, self.learning_rate, # self.regularization, self.positivity_constraint, # self.lam, self.verbose) # beta, loss = self.model.fit(confd_X, y, epochs) beta = stew_reg(confd_X, y, self.D, self.lam) loss = stew_loss(beta, confd_X, y, self.D, self.lam) betas[configuration_ix, :] = beta * configuration losses[configuration_ix] = loss argmin_loss = np.argmin(losses) argmin_beta = betas[argmin_loss, :] self.beta = argmin_beta return argmin_beta def predict(self, X): return X @ self.beta class LinearRegressionModel(torch.nn.Module): def __init__(self, num_features): super(LinearRegressionModel, self).__init__() self.num_features = num_features self.input_linear = torch.nn.Linear(in_features=self.num_features, out_features=1, bias=False) def forward(self, choice_sets): y_pred = self.input_linear(choice_sets) return y_pred class PositivityClipper: def __init__(self, frequency=5): self.frequency = frequency def __call__(self, module): # filter the variables to get the ones you want if hasattr(module, 'weight'): module.weight.data = torch.clamp(module.weight.data, min=0)
[ "torch.nn.MSELoss", "numpy.minimum", "numpy.dot", "numpy.zeros", "numpy.argmin", "torch.clamp", "numpy.linalg.inv", "torch.pow", "torch.nn.Linear", "stew.utils.create_diff_matrix", "itertools.product", "torch.no_grad", "torch.abs", "torch.tensor", "torch.from_numpy" ]
[((1195, 1213), 'torch.nn.MSELoss', 'torch.nn.MSELoss', ([], {}), '()\n', (1211, 1213), False, 'import torch\n'), ((9011, 9048), 'stew.utils.create_diff_matrix', 'create_diff_matrix', (['self.num_features'], {}), '(self.num_features)\n', (9029, 9048), False, 'from stew.utils import create_diff_matrix\n'), ((9726, 9770), 'numpy.zeros', 'np.zeros', (['(num_configurations, num_features)'], {}), '((num_configurations, num_features))\n', (9734, 9770), True, 'import numpy as np\n'), ((9788, 9816), 'numpy.zeros', 'np.zeros', (['num_configurations'], {}), '(num_configurations)\n', (9796, 9816), True, 'import numpy as np\n'), ((10713, 10730), 'numpy.argmin', 'np.argmin', (['losses'], {}), '(losses)\n', (10722, 10730), True, 'import numpy as np\n'), ((11099, 11173), 'torch.nn.Linear', 'torch.nn.Linear', ([], {'in_features': 'self.num_features', 'out_features': '(1)', 'bias': '(False)'}), '(in_features=self.num_features, out_features=1, bias=False)\n', (11114, 11173), False, 'import torch\n'), ((192, 224), 'numpy.linalg.inv', 'np.linalg.inv', (['(X.T @ X + lam * D)'], {}), '(X.T @ X + lam * D)\n', (205, 224), True, 'import numpy as np\n'), ((676, 696), 'numpy.zeros', 'np.zeros', (['X.shape[1]'], {}), '(X.shape[1])\n', (684, 696), True, 'import numpy as np\n'), ((7937, 7952), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7950, 7952), False, 'import torch\n'), ((11540, 11578), 'torch.clamp', 'torch.clamp', (['module.weight.data'], {'min': '(0)'}), '(module.weight.data, min=0)\n', (11551, 11578), False, 'import torch\n'), ((2856, 2873), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (2868, 2873), False, 'import torch\n'), ((9611, 9658), 'itertools.product', 'itertools.product', (['[-1, 1]'], {'repeat': 'num_features'}), '([-1, 1], repeat=num_features)\n', (9628, 9658), False, 'import itertools\n'), ((2005, 2050), 'stew.utils.create_diff_matrix', 'create_diff_matrix', ([], {'num_features': 'num_features'}), '(num_features=num_features)\n', (2023, 2050), False, 'from stew.utils import create_diff_matrix\n'), ((2480, 2524), 'numpy.minimum', 'np.minimum', (['self.learning_rate', '(1 / self.lam)'], {}), '(self.learning_rate, 1 / self.lam)\n', (2490, 2524), True, 'import numpy as np\n'), ((3312, 3329), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (3324, 3329), False, 'import torch\n'), ((433, 450), 'numpy.dot', 'np.dot', (['beta', 'X.T'], {}), '(beta, X.T)\n', (439, 450), True, 'import numpy as np\n'), ((2619, 2638), 'torch.from_numpy', 'torch.from_numpy', (['X'], {}), '(X)\n', (2635, 2638), False, 'import torch\n'), ((3023, 3117), 'torch.pow', 'torch.pow', (['(self.model.input_linear.weight[0][i] - self.model.input_linear.weight[0][j])', '(2)'], {}), '(self.model.input_linear.weight[0][i] - self.model.input_linear.\n weight[0][j], 2)\n', (3032, 3117), False, 'import torch\n'), ((3765, 3782), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (3777, 3782), False, 'import torch\n'), ((3479, 3570), 'torch.abs', 'torch.abs', (['(self.model.input_linear.weight[0][i] - self.model.input_linear.weight[0][j])'], {}), '(self.model.input_linear.weight[0][i] - self.model.input_linear.\n weight[0][j])\n', (3488, 3570), False, 'import torch\n'), ((3866, 3916), 'torch.pow', 'torch.pow', (['self.model.input_linear.weight[0][i]', '(2)'], {}), '(self.model.input_linear.weight[0][i], 2)\n', (3875, 3916), False, 'import torch\n'), ((4086, 4103), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (4098, 4103), False, 'import torch\n'), ((2735, 2754), 'torch.from_numpy', 'torch.from_numpy', (['y'], {}), '(y)\n', (2751, 2754), False, 'import torch\n'), ((4187, 4234), 'torch.abs', 'torch.abs', (['self.model.input_linear.weight[0][i]'], {}), '(self.model.input_linear.weight[0][i])\n', (4196, 4234), False, 'import torch\n'), ((4404, 4421), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (4416, 4421), False, 'import torch\n'), ((4886, 4903), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (4898, 4903), False, 'import torch\n'), ((5363, 5380), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (5375, 5380), False, 'import torch\n'), ((7984, 8003), 'torch.from_numpy', 'torch.from_numpy', (['X'], {}), '(X)\n', (8000, 8003), False, 'import torch\n'), ((5466, 5570), 'torch.clamp', 'torch.clamp', (['(self.model.input_linear.weight[0][i] - self.model.input_linear.weight[0][i -\n 1])'], {'min': '(0)'}), '(self.model.input_linear.weight[0][i] - self.model.input_linear.\n weight[0][i - 1], min=0)\n', (5477, 5570), False, 'import torch\n'), ((5733, 5750), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (5745, 5750), False, 'import torch\n'), ((4585, 4632), 'torch.abs', 'torch.abs', (['self.model.input_linear.weight[0][i]'], {}), '(self.model.input_linear.weight[0][i])\n', (4594, 4632), False, 'import torch\n'), ((4635, 4682), 'torch.abs', 'torch.abs', (['self.model.input_linear.weight[0][j]'], {}), '(self.model.input_linear.weight[0][j])\n', (4644, 4682), False, 'import torch\n'), ((6205, 6222), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (6217, 6222), False, 'import torch\n'), ((5067, 5114), 'torch.abs', 'torch.abs', (['self.model.input_linear.weight[0][i]'], {}), '(self.model.input_linear.weight[0][i])\n', (5076, 5114), False, 'import torch\n'), ((5117, 5164), 'torch.abs', 'torch.abs', (['self.model.input_linear.weight[0][j]'], {}), '(self.model.input_linear.weight[0][j])\n', (5126, 5164), False, 'import torch\n'), ((6585, 6602), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (6597, 6602), False, 'import torch\n'), ((6689, 6791), 'torch.pow', 'torch.pow', (['(self.model.input_linear.weight[0][i] - 2 * self.model.input_linear.weight[\n 0][i + 1])', '(2)'], {}), '(self.model.input_linear.weight[0][i] - 2 * self.model.\n input_linear.weight[0][i + 1], 2)\n', (6698, 6791), False, 'import torch\n'), ((6956, 6973), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (6968, 6973), False, 'import torch\n'), ((7060, 7178), 'torch.pow', 'torch.pow', (['(self.model.input_linear.weight[0][i] - (i + 2) / (i + 1) * self.model.\n input_linear.weight[0][i + 1])', '(2)'], {}), '(self.model.input_linear.weight[0][i] - (i + 2) / (i + 1) * self.\n model.input_linear.weight[0][i + 1], 2)\n', (7069, 7178), False, 'import torch\n')]
from config import model_name import pandas as pd import swifter import json import math from tqdm import tqdm from os import path from pathlib import Path import random from nltk.tokenize import word_tokenize import numpy as np import csv import importlib from transformers import RobertaTokenizer, RobertaModel import torch try: config = getattr(importlib.import_module('config'), f"{model_name}Config") except AttributeError: print(f"{model_name} not included!") exit() def parse_behaviors(source, target, user2int_path): """ Parse behaviors file in training set. Args: source: source behaviors file target: target behaviors file user2int_path: path for saving user2int file """ print(f"Parse {source}") behaviors = pd.read_table( source, header=None, names=['impression_id', 'user', 'time', 'clicked_news', 'impressions']) behaviors.clicked_news.fillna(' ', inplace=True) behaviors.impressions = behaviors.impressions.str.split() user2int = {} for row in behaviors.itertuples(index=False): if row.user not in user2int: user2int[row.user] = len(user2int) + 1 pd.DataFrame(user2int.items(), columns=['user', 'int']).to_csv(user2int_path, sep='\t', index=False) print( f'Please modify `num_users` in `src/config.py` into 1 + {len(user2int)}' ) for row in behaviors.itertuples(): behaviors.at[row.Index, 'user'] = user2int[row.user] for row in tqdm(behaviors.itertuples(), desc="Balancing data"): positive = iter([x for x in row.impressions if x.endswith('1')]) negative = [x for x in row.impressions if x.endswith('0')] random.shuffle(negative) negative = iter(negative) pairs = [] try: while True: pair = [next(positive)] for _ in range(config.negative_sampling_ratio): pair.append(next(negative)) pairs.append(pair) except StopIteration: pass behaviors.at[row.Index, 'impressions'] = pairs behaviors = behaviors.explode('impressions').dropna( subset=["impressions"]).reset_index(drop=True) behaviors[['candidate_news', 'clicked']] = pd.DataFrame( behaviors.impressions.map( lambda x: (' '.join([e.split('-')[0] for e in x]), ' '.join( [e.split('-')[1] for e in x]))).tolist()) behaviors.to_csv( target, sep='\t', index=False, columns=['user', 'clicked_news', 'candidate_news', 'clicked']) def parse_news(source, target, roberta_output_dir, category2int_path, word2int_path, entity2int_path, mode): """ Parse news for training set and test set Args: source: source news file target: target news file if mode == 'train': category2int_path, word2int_path, entity2int_path: Path to save elif mode == 'test': category2int_path, word2int_path, entity2int_path: Path to load from """ print(f"Parse {source}") news = pd.read_table(source, header=None, usecols=[0, 1, 2, 3, 4, 6, 7], quoting=csv.QUOTE_NONE, names=[ 'id', 'category', 'subcategory', 'title', 'abstract', 'title_entities', 'abstract_entities' ]) # TODO try to avoid csv.QUOTE_NONE news.title_entities.fillna('[]', inplace=True) news.abstract_entities.fillna('[]', inplace=True) news.fillna(' ', inplace=True) tokenizer = RobertaTokenizer.from_pretrained("roberta-base") title_roberta = tokenizer(news.title.tolist(), padding='max_length', truncation=True, max_length=config.num_words_title) abstract_roberta = tokenizer(news.abstract.tolist(), padding='max_length', truncation=True, max_length=config.num_words_abstract) roberta_df = pd.DataFrame(data=[ title_roberta['input_ids'], title_roberta['attention_mask'], abstract_roberta['input_ids'], abstract_roberta['attention_mask'] ]).T roberta_df.columns = [ 'title_roberta', 'title_mask_roberta', 'abstract_roberta', 'abstract_mask_roberta' ] device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") for x in [title_roberta, abstract_roberta]: for key in x.keys(): x[key] = torch.tensor(x[key]).to(device) Path(roberta_output_dir).mkdir(parents=True, exist_ok=True) roberta = RobertaModel.from_pretrained('roberta-base', return_dict=True).to(device) with torch.no_grad(): title_last_hidden_state = [] title_pooler_output = [] abstract_last_hidden_state = [] abstract_pooler_output = [] for count in tqdm(range(math.ceil(len(news) / config.batch_size)), desc="Calculating news embeddings with RoBERTa"): title_roberta_minibatch = { k: v[count * config.batch_size:(1 + count) * config.batch_size] for k, v in title_roberta.items() } title_outputs = roberta(**title_roberta_minibatch) title_last_hidden_state.append( title_outputs['last_hidden_state'].cpu().numpy()) title_pooler_output.append( title_outputs['pooler_output'].cpu().numpy()) abstract_roberta_minibatch = { k: v[count * config.batch_size:(1 + count) * config.batch_size] for k, v in abstract_roberta.items() } abstract_outputs = roberta(**abstract_roberta_minibatch) abstract_last_hidden_state.append( abstract_outputs['last_hidden_state'].cpu().numpy()) abstract_pooler_output.append( abstract_outputs['pooler_output'].cpu().numpy()) np.save(path.join(roberta_output_dir, 'title_last_hidden_state.npy'), np.concatenate(title_last_hidden_state, axis=0)) np.save(path.join(roberta_output_dir, 'title_pooler_output.npy'), np.concatenate(title_pooler_output, axis=0)) np.save( path.join(roberta_output_dir, 'abstract_last_hidden_state.npy'), np.concatenate(abstract_last_hidden_state, axis=0)) np.save(path.join(roberta_output_dir, 'abstract_pooler_output.npy'), np.concatenate(abstract_pooler_output, axis=0)) def parse_row(row): new_row = [ row.id, category2int[row.category] if row.category in category2int else 0, category2int[row.subcategory] if row.subcategory in category2int else 0, [0] * config.num_words_title, [0] * config.num_words_abstract, [0] * config.num_words_title, [0] * config.num_words_abstract ] # Calculate local entity map (map lower single word to entity) local_entity_map = {} for e in json.loads(row.title_entities): if e['Confidence'] > config.entity_confidence_threshold and e[ 'WikidataId'] in entity2int: for x in ' '.join(e['SurfaceForms']).lower().split(): local_entity_map[x] = entity2int[e['WikidataId']] for e in json.loads(row.abstract_entities): if e['Confidence'] > config.entity_confidence_threshold and e[ 'WikidataId'] in entity2int: for x in ' '.join(e['SurfaceForms']).lower().split(): local_entity_map[x] = entity2int[e['WikidataId']] try: for i, w in enumerate(word_tokenize(row.title.lower())): if w in word2int: new_row[3][i] = word2int[w] if w in local_entity_map: new_row[5][i] = local_entity_map[w] except IndexError: pass try: for i, w in enumerate(word_tokenize(row.abstract.lower())): if w in word2int: new_row[4][i] = word2int[w] if w in local_entity_map: new_row[6][i] = local_entity_map[w] except IndexError: pass return pd.Series(new_row, index=[ 'id', 'category', 'subcategory', 'title', 'abstract', 'title_entities', 'abstract_entities' ]) if mode == 'train': category2int = {} word2int = {} word2freq = {} entity2int = {} entity2freq = {} for row in news.itertuples(index=False): if row.category not in category2int: category2int[row.category] = len(category2int) + 1 if row.subcategory not in category2int: category2int[row.subcategory] = len(category2int) + 1 for w in word_tokenize(row.title.lower()): if w not in word2freq: word2freq[w] = 1 else: word2freq[w] += 1 for w in word_tokenize(row.abstract.lower()): if w not in word2freq: word2freq[w] = 1 else: word2freq[w] += 1 for e in json.loads(row.title_entities): times = len(e['OccurrenceOffsets']) * e['Confidence'] if times > 0: if e['WikidataId'] not in entity2freq: entity2freq[e['WikidataId']] = times else: entity2freq[e['WikidataId']] += times for e in json.loads(row.abstract_entities): times = len(e['OccurrenceOffsets']) * e['Confidence'] if times > 0: if e['WikidataId'] not in entity2freq: entity2freq[e['WikidataId']] = times else: entity2freq[e['WikidataId']] += times for k, v in word2freq.items(): if v >= config.word_freq_threshold: word2int[k] = len(word2int) + 1 for k, v in entity2freq.items(): if v >= config.entity_freq_threshold: entity2int[k] = len(entity2int) + 1 parsed_news = news.swifter.apply(parse_row, axis=1) parsed_news = pd.concat([parsed_news, roberta_df], axis=1) parsed_news.to_csv(target, sep='\t', index=False) pd.DataFrame(category2int.items(), columns=['category', 'int']).to_csv(category2int_path, sep='\t', index=False) print( f'Please modify `num_categories` in `src/config.py` into 1 + {len(category2int)}' ) pd.DataFrame(word2int.items(), columns=['word', 'int']).to_csv(word2int_path, sep='\t', index=False) print( f'Please modify `num_words` in `src/config.py` into 1 + {len(word2int)}' ) pd.DataFrame(entity2int.items(), columns=['entity', 'int']).to_csv(entity2int_path, sep='\t', index=False) print( f'Please modify `num_entities` in `src/config.py` into 1 + {len(entity2int)}' ) elif mode == 'test': category2int = dict(pd.read_table(category2int_path).values.tolist()) # na_filter=False is needed since nan is also a valid word word2int = dict( pd.read_table(word2int_path, na_filter=False).values.tolist()) entity2int = dict(pd.read_table(entity2int_path).values.tolist()) parsed_news = news.swifter.apply(parse_row, axis=1) parsed_news = pd.concat([parsed_news, roberta_df], axis=1) parsed_news.to_csv(target, sep='\t', index=False) else: print('Wrong mode!') def generate_word_embedding(source, target, word2int_path): """ Generate from pretrained word embedding file If a word not in embedding file, initial its embedding by N(0, 1) Args: source: path of pretrained word embedding file, e.g. glove.840B.300d.txt target: path for saving word embedding. Will be saved in numpy format word2int_path: vocabulary file when words in it will be searched in pretrained embedding file """ # na_filter=False is needed since nan is also a valid word # word, int word2int = pd.read_table(word2int_path, na_filter=False, index_col='word') source_embedding = pd.read_table(source, index_col=0, sep=' ', header=None, quoting=csv.QUOTE_NONE, names=range(config.word_embedding_dim)) # word, vector source_embedding.index.rename('word', inplace=True) # word, int, vector merged = word2int.merge(source_embedding, how='inner', left_index=True, right_index=True) merged.set_index('int', inplace=True) missed_index = np.setdiff1d(np.arange(len(word2int) + 1), merged.index.values) missed_embedding = pd.DataFrame(data=np.random.normal( size=(len(missed_index), config.word_embedding_dim))) missed_embedding['int'] = missed_index missed_embedding.set_index('int', inplace=True) final_embedding = pd.concat([merged, missed_embedding]).sort_index() np.save(target, final_embedding.values) print( f'Rate of word missed in pretrained embedding: {(len(missed_index)-1)/len(word2int):.4f}' ) def transform_entity_embedding(source, target, entity2int_path): """ Args: source: path of embedding file target: path of transformed embedding file in numpy format entity2int_path """ entity_embedding = pd.read_table(source, header=None) entity_embedding['vector'] = entity_embedding.iloc[:, 1:101].values.tolist() entity_embedding = entity_embedding[[0, 'vector' ]].rename(columns={0: "entity"}) entity2int = pd.read_table(entity2int_path) merged_df = pd.merge(entity_embedding, entity2int, on='entity').sort_values('int') entity_embedding_transformed = np.random.normal( size=(len(entity2int) + 1, config.entity_embedding_dim)) for row in merged_df.itertuples(index=False): entity_embedding_transformed[row.int] = row.vector np.save(target, entity_embedding_transformed) if __name__ == '__main__': train_dir = './data/train' val_dir = './data/val' test_dir = './data/test' print('Process data for training') print('Parse behaviors') parse_behaviors(path.join(train_dir, 'behaviors.tsv'), path.join(train_dir, 'behaviors_parsed.tsv'), path.join(train_dir, 'user2int.tsv')) print('Parse news') parse_news(path.join(train_dir, 'news.tsv'), path.join(train_dir, 'news_parsed.tsv'), path.join(train_dir, 'roberta'), path.join(train_dir, 'category2int.tsv'), path.join(train_dir, 'word2int.tsv'), path.join(train_dir, 'entity2int.tsv'), mode='train') print('Generate word embedding') generate_word_embedding( f'./data/glove/glove.840B.{config.word_embedding_dim}d.txt', path.join(train_dir, 'pretrained_word_embedding.npy'), path.join(train_dir, 'word2int.tsv')) print('Transform entity embeddings') transform_entity_embedding( path.join(train_dir, 'entity_embedding.vec'), path.join(train_dir, 'pretrained_entity_embedding.npy'), path.join(train_dir, 'entity2int.tsv')) print('\nProcess data for validation') print('Parse news') parse_news(path.join(val_dir, 'news.tsv'), path.join(val_dir, 'news_parsed.tsv'), path.join(val_dir, 'roberta'), path.join(train_dir, 'category2int.tsv'), path.join(train_dir, 'word2int.tsv'), path.join(train_dir, 'entity2int.tsv'), mode='test') print('\nProcess data for test') print('Parse news') parse_news(path.join(test_dir, 'news.tsv'), path.join(test_dir, 'news_parsed.tsv'), path.join(test_dir, 'roberta'), path.join(train_dir, 'category2int.tsv'), path.join(train_dir, 'word2int.tsv'), path.join(train_dir, 'entity2int.tsv'), mode='test')
[ "pandas.DataFrame", "numpy.save", "json.loads", "importlib.import_module", "transformers.RobertaTokenizer.from_pretrained", "random.shuffle", "pandas.merge", "transformers.RobertaModel.from_pretrained", "pathlib.Path", "torch.cuda.is_available", "pandas.Series", "pandas.read_table", "torch.tensor", "torch.no_grad", "os.path.join", "pandas.concat", "numpy.concatenate" ]
[((783, 893), 'pandas.read_table', 'pd.read_table', (['source'], {'header': 'None', 'names': "['impression_id', 'user', 'time', 'clicked_news', 'impressions']"}), "(source, header=None, names=['impression_id', 'user', 'time',\n 'clicked_news', 'impressions'])\n", (796, 893), True, 'import pandas as pd\n'), ((3280, 3479), 'pandas.read_table', 'pd.read_table', (['source'], {'header': 'None', 'usecols': '[0, 1, 2, 3, 4, 6, 7]', 'quoting': 'csv.QUOTE_NONE', 'names': "['id', 'category', 'subcategory', 'title', 'abstract', 'title_entities',\n 'abstract_entities']"}), "(source, header=None, usecols=[0, 1, 2, 3, 4, 6, 7], quoting=\n csv.QUOTE_NONE, names=['id', 'category', 'subcategory', 'title',\n 'abstract', 'title_entities', 'abstract_entities'])\n", (3293, 3479), True, 'import pandas as pd\n'), ((3849, 3897), 'transformers.RobertaTokenizer.from_pretrained', 'RobertaTokenizer.from_pretrained', (['"""roberta-base"""'], {}), "('roberta-base')\n", (3881, 3897), False, 'from transformers import RobertaTokenizer, RobertaModel\n'), ((13201, 13264), 'pandas.read_table', 'pd.read_table', (['word2int_path'], {'na_filter': '(False)', 'index_col': '"""word"""'}), "(word2int_path, na_filter=False, index_col='word')\n", (13214, 13264), True, 'import pandas as pd\n'), ((14323, 14362), 'numpy.save', 'np.save', (['target', 'final_embedding.values'], {}), '(target, final_embedding.values)\n', (14330, 14362), True, 'import numpy as np\n'), ((14725, 14759), 'pandas.read_table', 'pd.read_table', (['source'], {'header': 'None'}), '(source, header=None)\n', (14738, 14759), True, 'import pandas as pd\n'), ((15041, 15071), 'pandas.read_table', 'pd.read_table', (['entity2int_path'], {}), '(entity2int_path)\n', (15054, 15071), True, 'import pandas as pd\n'), ((15415, 15460), 'numpy.save', 'np.save', (['target', 'entity_embedding_transformed'], {}), '(target, entity_embedding_transformed)\n', (15422, 15460), True, 'import numpy as np\n'), ((353, 386), 'importlib.import_module', 'importlib.import_module', (['"""config"""'], {}), "('config')\n", (376, 386), False, 'import importlib\n'), ((1871, 1895), 'random.shuffle', 'random.shuffle', (['negative'], {}), '(negative)\n', (1885, 1895), False, 'import random\n'), ((4364, 4521), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': "[title_roberta['input_ids'], title_roberta['attention_mask'],\n abstract_roberta['input_ids'], abstract_roberta['attention_mask']]"}), "(data=[title_roberta['input_ids'], title_roberta[\n 'attention_mask'], abstract_roberta['input_ids'], abstract_roberta[\n 'attention_mask']])\n", (4376, 4521), True, 'import pandas as pd\n'), ((5079, 5094), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5092, 5094), False, 'import torch\n'), ((7433, 7463), 'json.loads', 'json.loads', (['row.title_entities'], {}), '(row.title_entities)\n', (7443, 7463), False, 'import json\n'), ((7746, 7779), 'json.loads', 'json.loads', (['row.abstract_entities'], {}), '(row.abstract_entities)\n', (7756, 7779), False, 'import json\n'), ((8694, 8817), 'pandas.Series', 'pd.Series', (['new_row'], {'index': "['id', 'category', 'subcategory', 'title', 'abstract', 'title_entities',\n 'abstract_entities']"}), "(new_row, index=['id', 'category', 'subcategory', 'title',\n 'abstract', 'title_entities', 'abstract_entities'])\n", (8703, 8817), True, 'import pandas as pd\n'), ((10833, 10877), 'pandas.concat', 'pd.concat', (['[parsed_news, roberta_df]'], {'axis': '(1)'}), '([parsed_news, roberta_df], axis=1)\n', (10842, 10877), True, 'import pandas as pd\n'), ((15667, 15704), 'os.path.join', 'path.join', (['train_dir', '"""behaviors.tsv"""'], {}), "(train_dir, 'behaviors.tsv')\n", (15676, 15704), False, 'from os import path\n'), ((15726, 15770), 'os.path.join', 'path.join', (['train_dir', '"""behaviors_parsed.tsv"""'], {}), "(train_dir, 'behaviors_parsed.tsv')\n", (15735, 15770), False, 'from os import path\n'), ((15792, 15828), 'os.path.join', 'path.join', (['train_dir', '"""user2int.tsv"""'], {}), "(train_dir, 'user2int.tsv')\n", (15801, 15828), False, 'from os import path\n'), ((15870, 15902), 'os.path.join', 'path.join', (['train_dir', '"""news.tsv"""'], {}), "(train_dir, 'news.tsv')\n", (15879, 15902), False, 'from os import path\n'), ((15919, 15958), 'os.path.join', 'path.join', (['train_dir', '"""news_parsed.tsv"""'], {}), "(train_dir, 'news_parsed.tsv')\n", (15928, 15958), False, 'from os import path\n'), ((15975, 16006), 'os.path.join', 'path.join', (['train_dir', '"""roberta"""'], {}), "(train_dir, 'roberta')\n", (15984, 16006), False, 'from os import path\n'), ((16023, 16063), 'os.path.join', 'path.join', (['train_dir', '"""category2int.tsv"""'], {}), "(train_dir, 'category2int.tsv')\n", (16032, 16063), False, 'from os import path\n'), ((16080, 16116), 'os.path.join', 'path.join', (['train_dir', '"""word2int.tsv"""'], {}), "(train_dir, 'word2int.tsv')\n", (16089, 16116), False, 'from os import path\n'), ((16133, 16171), 'os.path.join', 'path.join', (['train_dir', '"""entity2int.tsv"""'], {}), "(train_dir, 'entity2int.tsv')\n", (16142, 16171), False, 'from os import path\n'), ((16346, 16399), 'os.path.join', 'path.join', (['train_dir', '"""pretrained_word_embedding.npy"""'], {}), "(train_dir, 'pretrained_word_embedding.npy')\n", (16355, 16399), False, 'from os import path\n'), ((16409, 16445), 'os.path.join', 'path.join', (['train_dir', '"""word2int.tsv"""'], {}), "(train_dir, 'word2int.tsv')\n", (16418, 16445), False, 'from os import path\n'), ((16529, 16573), 'os.path.join', 'path.join', (['train_dir', '"""entity_embedding.vec"""'], {}), "(train_dir, 'entity_embedding.vec')\n", (16538, 16573), False, 'from os import path\n'), ((16583, 16638), 'os.path.join', 'path.join', (['train_dir', '"""pretrained_entity_embedding.npy"""'], {}), "(train_dir, 'pretrained_entity_embedding.npy')\n", (16592, 16638), False, 'from os import path\n'), ((16648, 16686), 'os.path.join', 'path.join', (['train_dir', '"""entity2int.tsv"""'], {}), "(train_dir, 'entity2int.tsv')\n", (16657, 16686), False, 'from os import path\n'), ((16772, 16802), 'os.path.join', 'path.join', (['val_dir', '"""news.tsv"""'], {}), "(val_dir, 'news.tsv')\n", (16781, 16802), False, 'from os import path\n'), ((16819, 16856), 'os.path.join', 'path.join', (['val_dir', '"""news_parsed.tsv"""'], {}), "(val_dir, 'news_parsed.tsv')\n", (16828, 16856), False, 'from os import path\n'), ((16873, 16902), 'os.path.join', 'path.join', (['val_dir', '"""roberta"""'], {}), "(val_dir, 'roberta')\n", (16882, 16902), False, 'from os import path\n'), ((16919, 16959), 'os.path.join', 'path.join', (['train_dir', '"""category2int.tsv"""'], {}), "(train_dir, 'category2int.tsv')\n", (16928, 16959), False, 'from os import path\n'), ((16976, 17012), 'os.path.join', 'path.join', (['train_dir', '"""word2int.tsv"""'], {}), "(train_dir, 'word2int.tsv')\n", (16985, 17012), False, 'from os import path\n'), ((17029, 17067), 'os.path.join', 'path.join', (['train_dir', '"""entity2int.tsv"""'], {}), "(train_dir, 'entity2int.tsv')\n", (17038, 17067), False, 'from os import path\n'), ((17175, 17206), 'os.path.join', 'path.join', (['test_dir', '"""news.tsv"""'], {}), "(test_dir, 'news.tsv')\n", (17184, 17206), False, 'from os import path\n'), ((17223, 17261), 'os.path.join', 'path.join', (['test_dir', '"""news_parsed.tsv"""'], {}), "(test_dir, 'news_parsed.tsv')\n", (17232, 17261), False, 'from os import path\n'), ((17278, 17308), 'os.path.join', 'path.join', (['test_dir', '"""roberta"""'], {}), "(test_dir, 'roberta')\n", (17287, 17308), False, 'from os import path\n'), ((17325, 17365), 'os.path.join', 'path.join', (['train_dir', '"""category2int.tsv"""'], {}), "(train_dir, 'category2int.tsv')\n", (17334, 17365), False, 'from os import path\n'), ((17382, 17418), 'os.path.join', 'path.join', (['train_dir', '"""word2int.tsv"""'], {}), "(train_dir, 'word2int.tsv')\n", (17391, 17418), False, 'from os import path\n'), ((17435, 17473), 'os.path.join', 'path.join', (['train_dir', '"""entity2int.tsv"""'], {}), "(train_dir, 'entity2int.tsv')\n", (17444, 17473), False, 'from os import path\n'), ((4707, 4732), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4730, 4732), False, 'import torch\n'), ((4879, 4903), 'pathlib.Path', 'Path', (['roberta_output_dir'], {}), '(roberta_output_dir)\n', (4883, 4903), False, 'from pathlib import Path\n'), ((4953, 5015), 'transformers.RobertaModel.from_pretrained', 'RobertaModel.from_pretrained', (['"""roberta-base"""'], {'return_dict': '(True)'}), "('roberta-base', return_dict=True)\n", (4981, 5015), False, 'from transformers import RobertaTokenizer, RobertaModel\n'), ((6353, 6413), 'os.path.join', 'path.join', (['roberta_output_dir', '"""title_last_hidden_state.npy"""'], {}), "(roberta_output_dir, 'title_last_hidden_state.npy')\n", (6362, 6413), False, 'from os import path\n'), ((6431, 6478), 'numpy.concatenate', 'np.concatenate', (['title_last_hidden_state'], {'axis': '(0)'}), '(title_last_hidden_state, axis=0)\n', (6445, 6478), True, 'import numpy as np\n'), ((6496, 6552), 'os.path.join', 'path.join', (['roberta_output_dir', '"""title_pooler_output.npy"""'], {}), "(roberta_output_dir, 'title_pooler_output.npy')\n", (6505, 6552), False, 'from os import path\n'), ((6570, 6613), 'numpy.concatenate', 'np.concatenate', (['title_pooler_output'], {'axis': '(0)'}), '(title_pooler_output, axis=0)\n', (6584, 6613), True, 'import numpy as np\n'), ((6644, 6707), 'os.path.join', 'path.join', (['roberta_output_dir', '"""abstract_last_hidden_state.npy"""'], {}), "(roberta_output_dir, 'abstract_last_hidden_state.npy')\n", (6653, 6707), False, 'from os import path\n'), ((6721, 6771), 'numpy.concatenate', 'np.concatenate', (['abstract_last_hidden_state'], {'axis': '(0)'}), '(abstract_last_hidden_state, axis=0)\n', (6735, 6771), True, 'import numpy as np\n'), ((6789, 6848), 'os.path.join', 'path.join', (['roberta_output_dir', '"""abstract_pooler_output.npy"""'], {}), "(roberta_output_dir, 'abstract_pooler_output.npy')\n", (6798, 6848), False, 'from os import path\n'), ((6866, 6912), 'numpy.concatenate', 'np.concatenate', (['abstract_pooler_output'], {'axis': '(0)'}), '(abstract_pooler_output, axis=0)\n', (6880, 6912), True, 'import numpy as np\n'), ((9765, 9795), 'json.loads', 'json.loads', (['row.title_entities'], {}), '(row.title_entities)\n', (9775, 9795), False, 'import json\n'), ((10127, 10160), 'json.loads', 'json.loads', (['row.abstract_entities'], {}), '(row.abstract_entities)\n', (10137, 10160), False, 'import json\n'), ((12496, 12540), 'pandas.concat', 'pd.concat', (['[parsed_news, roberta_df]'], {'axis': '(1)'}), '([parsed_news, roberta_df], axis=1)\n', (12505, 12540), True, 'import pandas as pd\n'), ((14268, 14305), 'pandas.concat', 'pd.concat', (['[merged, missed_embedding]'], {}), '([merged, missed_embedding])\n', (14277, 14305), True, 'import pandas as pd\n'), ((15088, 15139), 'pandas.merge', 'pd.merge', (['entity_embedding', 'entity2int'], {'on': '"""entity"""'}), "(entity_embedding, entity2int, on='entity')\n", (15096, 15139), True, 'import pandas as pd\n'), ((4843, 4863), 'torch.tensor', 'torch.tensor', (['x[key]'], {}), '(x[key])\n', (4855, 4863), False, 'import torch\n'), ((12122, 12154), 'pandas.read_table', 'pd.read_table', (['category2int_path'], {}), '(category2int_path)\n', (12135, 12154), True, 'import pandas as pd\n'), ((12276, 12321), 'pandas.read_table', 'pd.read_table', (['word2int_path'], {'na_filter': '(False)'}), '(word2int_path, na_filter=False)\n', (12289, 12321), True, 'import pandas as pd\n'), ((12365, 12395), 'pandas.read_table', 'pd.read_table', (['entity2int_path'], {}), '(entity2int_path)\n', (12378, 12395), True, 'import pandas as pd\n')]
import modules.utils as utils import numpy as np import cv2 import scipy import keras from modules.logging import logger import modules.utils as utils import random import tensorflow as tf import keras from keras import models from keras import layers from keras.layers import convolutional from keras.layers import core CLASS_LABELS = ['0-adult_male', '1-subadult_male', '2-adult_female', '3-juvenile', '4-pup', '5-non lion'] #each index is a min/max color for a class mark C_MIN = [ np.array([0, 0, 160]), np.array([200, 0, 200]), np.array([10, 40, 75]), np.array([150, 40, 0]), np.array([25, 140, 40]) ] C_MAX = [ np.array([50, 50, 255]), np.array([255, 55, 255]), np.array([20, 55, 130]), np.array([255, 80, 40]), np.array([50, 255, 65]) ] #adapted from alexnet def convnet_alexnet_lion_keras(image_dims): # model = Sequential() # model.add(Lambda(lambda x: (x / 255.0) - 0.5, input_shape=image_dims)) NR_CLASSES = 6 input = layers.Input(shape=image_dims, name="Input") conv_1 = convolutional.Convolution2D(96, 11, 11, border_mode='valid', name="conv_1", activation='relu', init='glorot_uniform')(input) pool_1 = convolutional.MaxPooling2D(pool_size=(3, 3), name="pool_1")(conv_1) zero_padding_1 = convolutional.ZeroPadding2D(padding=(1, 1), name="zero_padding_1")(pool_1) conv_2 = convolutional.Convolution2D(256, 3, 3, border_mode='valid', name="conv_2", activation='relu', init='glorot_uniform')(zero_padding_1) pool_2 = convolutional.MaxPooling2D(pool_size=(3, 3), name="pool_2")(conv_2) zero_padding_2 = keras.layers.convolutional.ZeroPadding2D(padding=(1, 1), name="zero_padding_2")(pool_2) conv_3 = convolutional.Convolution2D(384, 3, 3, border_mode='valid', name="conv_3", activation='relu', init='glorot_uniform')(zero_padding_2) conv_4 = convolutional.Convolution2D(384, 3, 3, border_mode='valid', name="conv_4", activation='relu', init='glorot_uniform')(conv_3) conv_5 = convolutional.Convolution2D(256, 3, 3, border_mode='valid', name="conv_5", activation='relu', init='glorot_uniform')(conv_4) pool_3 = convolutional.MaxPooling2D(pool_size=(3, 3), name="pool_3")(conv_5) flatten = core.Flatten(name="flatten")(pool_3) fc_1 = core.Dense(4096, name="fc_1", activation='relu', init='glorot_uniform')(flatten) fc_1 = core.Dropout(0.5, name="fc_1_dropout")(fc_1) output = core.Dense(4096, name="Output", activation='relu', init='glorot_uniform')(fc_1) output = core.Dropout(0.5, name="Output_dropout")(output) fc_2 = core.Dense(NR_CLASSES, name="fc_2", activation='softmax', init='glorot_uniform')(output) return models.Model([input], [fc_2]) def convnet_medium1_lion_keras(image_dims): model = keras.models.Sequential() model.add(core.Lambda(lambda x: (x / 255.0) - 0.5, input_shape=image_dims)) model.add(convolutional.Conv2D(64, (3, 3), activation='relu', padding='same', init='glorot_uniform')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(convolutional.Conv2D(128, (3, 3), activation='relu', padding='same', init='glorot_uniform')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(convolutional.Conv2D(256, (3, 3), activation='relu', padding='same', init='glorot_uniform')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(core.Flatten()) model.add(core.Dense(1024, activation='relu', init='glorot_uniform')) model.add(core.Dropout(0.5)) model.add(core.Dense(1024, activation='relu', init='glorot_uniform')) model.add(core.Dropout(0.5)) model.add(core.Dense(6, activation='softmax', init='glorot_uniform')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc']) return model def convnet_medium2_lion_keras(image_dims): model = keras.models.Sequential() model.add(core.Lambda(lambda x: (x / 255.0) - 0.5, input_shape=image_dims)) model.add(convolutional.Conv2D(128, (3, 3), activation='relu', padding='same', init='glorot_uniform')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(convolutional.Conv2D(256, (3, 3), activation='relu', padding='same', init='glorot_uniform')) model.add(convolutional.Conv2D(256, (3, 3), activation='relu', padding='same', init='glorot_uniform')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(core.Flatten()) model.add(core.Dense(1024, activation='relu', init='glorot_uniform')) model.add(core.Dropout(0.5)) model.add(core.Dense(2048, activation='relu', init='glorot_uniform')) model.add(core.Dropout(0.5)) model.add(core.Dense(6, activation='softmax', init='glorot_uniform')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc']) return model def convnet_medium3_lion_keras(image_dims): model = keras.models.Sequential() model.add(core.Lambda(lambda x: (x / 255.0) - 0.5, input_shape=image_dims)) model.add(convolutional.Conv2D(128, (3, 3), activation='relu', padding='same', init='glorot_uniform')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(convolutional.Conv2D(64, (3, 3), activation='relu', padding='same', init='glorot_uniform')) model.add(convolutional.Conv2D(256, (3, 3), activation='relu', padding='same', init='glorot_uniform')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(core.Flatten()) model.add(core.Dense(2048, activation='relu', init='glorot_uniform')) model.add(core.Dropout(0.5)) model.add(core.Dense(2048, activation='relu', init='glorot_uniform')) model.add(core.Dropout(0.5)) model.add(core.Dense(6, activation='softmax', init='glorot_uniform')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc']) return model #don't change. there are already good train for this net (72% acc) def convnet_simple_lion_keras(image_dims): model = keras.models.Sequential() model.add(core.Lambda(lambda x: (x / 255.0) - 0.5, input_shape=image_dims)) model.add(convolutional.Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(convolutional.Conv2D(64, (3, 3), activation='relu', padding='same')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(convolutional.Conv2D(128, (3, 3), activation='relu', padding='same')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(core.Flatten()) model.add(core.Dense(512, activation='relu')) model.add(core.Dropout(0.5)) model.add(core.Dense(1024, activation='relu')) model.add(core.Dropout(0.5)) model.add(core.Dense(6, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc']) return model def convnet_medium1_boolean(image_dims): model = keras.models.Sequential() model.add(core.Lambda(lambda x: (x / 255.0) - 0.5, input_shape=image_dims)) model.add(convolutional.Conv2D(64, (3, 3), activation='relu', padding='same', init='glorot_uniform')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(convolutional.Conv2D(128, (3, 3), activation='relu', padding='same', init='glorot_uniform')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(convolutional.Conv2D(256, (3, 3), activation='relu', padding='same', init='glorot_uniform')) model.add(convolutional.MaxPooling2D(pool_size=(2,2))) model.add(core.Flatten()) model.add(core.Dense(1024, activation='relu', init='glorot_uniform')) model.add(core.Dropout(0.5)) model.add(core.Dense(1024, activation='relu', init='glorot_uniform')) model.add(core.Dropout(0.5)) model.add(core.Dense(2, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc']) return model #adapted from alexnet def convnet_alexnet_lion_tflearn(image_dims): #image augmentation img_aug = ImageAugmentation() img_aug.add_random_flip_leftright() img_aug.add_random_flip_updown() img_aug.add_random_rotation(max_angle=360.) img_aug.add_random_blur(sigma_max=5.) #image pre-processing img_prep = ImagePreprocessing() img_prep.add_featurewise_zero_center() img_prep.add_featurewise_stdnorm() #AlexNet network = layers.core.input_data(shape=[None, image_dims[0], image_dims[1], image_dims[2]], dtype=tf.float32, data_preprocessing=img_prep, data_augmentation=img_aug) network = layers.conv.conv_2d(network, 96, 11, strides=4, activation='relu') network = layers.conv.max_pool_2d(network, 3, strides=2) network = layers.normalization.local_response_normalization(network) network = layers.conv.conv_2d(network, 256, 5, activation='relu') network = layers.conv.max_pool_2d(network, 3, strides=2) network = layers.normalization.local_response_normalization(network) network = layers.conv.conv_2d(network, 384, 3, activation='relu') network = layers.conv.conv_2d(network, 384, 3, activation='relu') network = layers.conv.conv_2d(network, 256, 3, activation='relu') network = layers.conv.max_pool_2d(network, 3, strides=2) network = layers.normalization.local_response_normalization(network) network = layers.core.fully_connected(network, 4096, activation='tanh') network = layers.core.dropout(network, 0.5) network = layers.core.fully_connected(network, 4096, activation='tanh') network = layers.core.dropout(network, 0.5) network = layers.core.fully_connected(network, 5, activation='softmax') network = layers.estimator.regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=0.001) return network def find_class(image, point): image = image[point[1]-3:point[1]+3,point[0]-3:point[0]+3] result = -1 max = 0 for col in range(5): cmsk = cv2.inRange(image, C_MIN[col], C_MAX[col]) sm = np.sum(cmsk) if(sm!=None and sm>max): max = sm result = col return result def export_lions(image_raw, image_dotted, target_x_ds, target_y_ds, image_dims, debug=False, min_distance_others=50, non_lion_distance=150, export_non_lion=True): NR_CLASSES = 6 #BLACKOUT PORTIONS OF IMAGE IN RAW PICTURE image_dotted_bw = cv2.cvtColor(image_dotted, cv2.COLOR_BGR2GRAY) #utils.show_image(image_dotted_bw, size=8) mask = cv2.threshold(image_dotted_bw, 5, 255, cv2.THRESH_BINARY)[1] #utils.show_image(mask, size=8) image_raw_bw = cv2.cvtColor(image_raw, cv2.COLOR_BGR2GRAY) image_raw = cv2.bitwise_and(image_raw, image_raw, mask=mask) #utils.show_image(image_raw, size=8, is_bgr=True) #ISOLATE HUMAN MARKS ON DOTTED PICTURE diff_color = cv2.absdiff(image_dotted, image_raw) diff = cv2.cvtColor(diff_color, cv2.COLOR_BGR2GRAY) kernel = np.ones((2,2),np.uint8) diff = cv2.morphologyEx(diff, cv2.MORPH_OPEN, kernel) ret,diff = cv2.threshold(diff,10,255,cv2.THRESH_TOZERO) ret,diff = cv2.threshold(diff,0,255,cv2.THRESH_BINARY) #debug data debug_image = image_dotted.copy() images = [] #find all dotted sea lions count1 = 0 count_class = np.zeros(NR_CLASSES) lion_positions = [] lion_classes = [] im2, contours, hierarchy = cv2.findContours(diff, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for c in contours: x,y,w,h = cv2.boundingRect(c) if(w>4 and h>4): count1 = count1 + 1 center = (x+round(w/3),y+round(h/3)) clazz = find_class(image_dotted, center) if(clazz==-1): logger.warning('could not detect sea lion class at ' + str(center)) continue lion_positions.append(center) count_class[clazz] = count_class[clazz] + 1 lion_classes.append(clazz) if(debug): cv2.circle(debug_image,center,round(w/2),(255,0,0),1) count_class_added = np.zeros(NR_CLASSES) #add found sea lions to training dataset #filter out lions that are too near each other to minimize noise on training set count2 = 0 for i, lion_pos in enumerate(lion_positions): lion_class = lion_classes[i] is_far = True if(min_distance_others>0): is_far = utils.is_far_from_others(lion_pos, lion_positions, min_distance_others) if(is_far): #export patch to train dataset count2 = count2 + 1 pw = round(image_dims[1]/2) ph = image_dims[1] - pw #trainX = image_raw[lion_pos[1]-pw:lion_pos[1]+ph,lion_pos[0]-pw:lion_pos[0]+ph] trainX = utils.crop_image_fill(image_raw, (lion_pos[1]-pw,lion_pos[0]-pw), (lion_pos[1]+ph,lion_pos[0]+ph)) m = np.mean(trainX) if(m>30 and m<225 and m!=127): if(debug): images.append(trainX) cv2.circle(debug_image,lion_pos,round(w/2),(0,0,255),2) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(debug_image,str(lion_class),lion_pos, font, 1.1,(255,255,255),2,cv2.LINE_AA) #normalize between 0-1 #trainX = trainX/255 trainY = keras.utils.np_utils.to_categorical([lion_class], NR_CLASSES)[0] if(target_x_ds!=None and target_y_ds!=None): utils.add_sample_to_dataset(target_x_ds, target_y_ds, trainX, trainY) count_class_added[lion_class] = count_class_added[lion_class] + 1 #identify non sea lion patches count3 = 0 if(export_non_lion): s = np.shape(image_raw) for i in range(int(count2*1.1)): patch_pos = (random.randint(image_dims[1]*2, s[1]-image_dims[1]*2), random.randint(image_dims[0]*2, s[0]-image_dims[0]*2)) is_far = utils.is_far_from_others(patch_pos, lion_positions, non_lion_distance) if(is_far): #export patch to train dataset pw = round(image_dims[1]/2) ph = image_dims[1] - pw #trainX = image_raw[lion_pos[1]-pw:lion_pos[1]+ph,lion_pos[0]-pw:lion_pos[0]+ph] trainX = utils.crop_image_fill(image_raw, (patch_pos[1]-pw,patch_pos[0]-pw), (patch_pos[1]+ph,patch_pos[0]+ph)) m = np.mean(trainX) if(m>50 and m<200): count3 = count3 + 1 if(debug): images.append(trainX) cv2.circle(debug_image,patch_pos,round(w/2),(0,255,0),3) #normalize between 0-1 #trainX = trainX/255 trainY = keras.utils.np_utils.to_categorical([5], NR_CLASSES)[0] if(target_x_ds!=None and target_y_ds!=None): utils.add_sample_to_dataset(target_x_ds, target_y_ds, trainX, trainY) count_class[5] = count_class[5] + 1 count_class_added[5] = count_class_added[5] + 1 logger.info('sea lions found: ' + str(count1)) logger.info('sea lions added to dataset: ' + str(count2)) logger.info('non sea lions added to dataset: ' + str(count3)) if(target_x_ds!=None and target_y_ds!=None): logger.info('dataset size: ' + str(len(target_x_ds))) if(debug): utils.show_image(debug_image, size=40, is_bgr=True) utils.show_images(images, cols=10, is_bgr=True, size=1.5) return count_class, count_class_added, lion_positions, lion_classes
[ "modules.utils.show_image", "numpy.sum", "cv2.bitwise_and", "numpy.ones", "keras.models.Model", "modules.utils.is_far_from_others", "numpy.shape", "modules.utils.crop_image_fill", "numpy.mean", "modules.utils.add_sample_to_dataset", "keras.layers.core.Flatten", "keras.layers.Input", "cv2.absdiff", "cv2.inRange", "random.randint", "cv2.cvtColor", "keras.layers.conv.conv_2d", "keras.utils.np_utils.to_categorical", "keras.layers.core.Dropout", "keras.layers.estimator.regression", "keras.layers.core.fully_connected", "cv2.boundingRect", "keras.layers.core.Lambda", "keras.layers.core.Dense", "keras.layers.conv.max_pool_2d", "cv2.morphologyEx", "keras.layers.convolutional.MaxPooling2D", "cv2.threshold", "numpy.zeros", "keras.layers.core.dropout", "modules.utils.show_images", "keras.layers.convolutional.Conv2D", "keras.layers.core.input_data", "numpy.array", "keras.layers.convolutional.Convolution2D", "keras.layers.normalization.local_response_normalization", "keras.layers.convolutional.ZeroPadding2D", "keras.models.Sequential", "cv2.findContours" ]
[((500, 521), 'numpy.array', 'np.array', (['[0, 0, 160]'], {}), '([0, 0, 160])\n', (508, 521), True, 'import numpy as np\n'), ((535, 558), 'numpy.array', 'np.array', (['[200, 0, 200]'], {}), '([200, 0, 200])\n', (543, 558), True, 'import numpy as np\n'), ((572, 594), 'numpy.array', 'np.array', (['[10, 40, 75]'], {}), '([10, 40, 75])\n', (580, 594), True, 'import numpy as np\n'), ((608, 630), 'numpy.array', 'np.array', (['[150, 40, 0]'], {}), '([150, 40, 0])\n', (616, 630), True, 'import numpy as np\n'), ((644, 667), 'numpy.array', 'np.array', (['[25, 140, 40]'], {}), '([25, 140, 40])\n', (652, 667), True, 'import numpy as np\n'), ((701, 724), 'numpy.array', 'np.array', (['[50, 50, 255]'], {}), '([50, 50, 255])\n', (709, 724), True, 'import numpy as np\n'), ((738, 762), 'numpy.array', 'np.array', (['[255, 55, 255]'], {}), '([255, 55, 255])\n', (746, 762), True, 'import numpy as np\n'), ((776, 799), 'numpy.array', 'np.array', (['[20, 55, 130]'], {}), '([20, 55, 130])\n', (784, 799), True, 'import numpy as np\n'), ((813, 836), 'numpy.array', 'np.array', (['[255, 80, 40]'], {}), '([255, 80, 40])\n', (821, 836), True, 'import numpy as np\n'), ((850, 873), 'numpy.array', 'np.array', (['[50, 255, 65]'], {}), '([50, 255, 65])\n', (858, 873), True, 'import numpy as np\n'), ((1087, 1131), 'keras.layers.Input', 'layers.Input', ([], {'shape': 'image_dims', 'name': '"""Input"""'}), "(shape=image_dims, name='Input')\n", (1099, 1131), False, 'from keras import layers\n'), ((2752, 2781), 'keras.models.Model', 'models.Model', (['[input]', '[fc_2]'], {}), '([input], [fc_2])\n', (2764, 2781), False, 'from keras import models\n'), ((2839, 2864), 'keras.models.Sequential', 'keras.models.Sequential', ([], {}), '()\n', (2862, 2864), False, 'import keras\n'), ((3934, 3959), 'keras.models.Sequential', 'keras.models.Sequential', ([], {}), '()\n', (3957, 3959), False, 'import keras\n'), ((4971, 4996), 'keras.models.Sequential', 'keras.models.Sequential', ([], {}), '()\n', (4994, 4996), False, 'import keras\n'), ((6073, 6098), 'keras.models.Sequential', 'keras.models.Sequential', ([], {}), '()\n', (6096, 6098), False, 'import keras\n'), ((7025, 7050), 'keras.models.Sequential', 'keras.models.Sequential', ([], {}), '()\n', (7048, 7050), False, 'import keras\n'), ((8516, 8679), 'keras.layers.core.input_data', 'layers.core.input_data', ([], {'shape': '[None, image_dims[0], image_dims[1], image_dims[2]]', 'dtype': 'tf.float32', 'data_preprocessing': 'img_prep', 'data_augmentation': 'img_aug'}), '(shape=[None, image_dims[0], image_dims[1],\n image_dims[2]], dtype=tf.float32, data_preprocessing=img_prep,\n data_augmentation=img_aug)\n', (8538, 8679), False, 'from keras import layers\n'), ((8686, 8752), 'keras.layers.conv.conv_2d', 'layers.conv.conv_2d', (['network', '(96)', '(11)'], {'strides': '(4)', 'activation': '"""relu"""'}), "(network, 96, 11, strides=4, activation='relu')\n", (8705, 8752), False, 'from keras import layers\n'), ((8767, 8813), 'keras.layers.conv.max_pool_2d', 'layers.conv.max_pool_2d', (['network', '(3)'], {'strides': '(2)'}), '(network, 3, strides=2)\n', (8790, 8813), False, 'from keras import layers\n'), ((8828, 8886), 'keras.layers.normalization.local_response_normalization', 'layers.normalization.local_response_normalization', (['network'], {}), '(network)\n', (8877, 8886), False, 'from keras import layers\n'), ((8901, 8956), 'keras.layers.conv.conv_2d', 'layers.conv.conv_2d', (['network', '(256)', '(5)'], {'activation': '"""relu"""'}), "(network, 256, 5, activation='relu')\n", (8920, 8956), False, 'from keras import layers\n'), ((8971, 9017), 'keras.layers.conv.max_pool_2d', 'layers.conv.max_pool_2d', (['network', '(3)'], {'strides': '(2)'}), '(network, 3, strides=2)\n', (8994, 9017), False, 'from keras import layers\n'), ((9032, 9090), 'keras.layers.normalization.local_response_normalization', 'layers.normalization.local_response_normalization', (['network'], {}), '(network)\n', (9081, 9090), False, 'from keras import layers\n'), ((9105, 9160), 'keras.layers.conv.conv_2d', 'layers.conv.conv_2d', (['network', '(384)', '(3)'], {'activation': '"""relu"""'}), "(network, 384, 3, activation='relu')\n", (9124, 9160), False, 'from keras import layers\n'), ((9175, 9230), 'keras.layers.conv.conv_2d', 'layers.conv.conv_2d', (['network', '(384)', '(3)'], {'activation': '"""relu"""'}), "(network, 384, 3, activation='relu')\n", (9194, 9230), False, 'from keras import layers\n'), ((9245, 9300), 'keras.layers.conv.conv_2d', 'layers.conv.conv_2d', (['network', '(256)', '(3)'], {'activation': '"""relu"""'}), "(network, 256, 3, activation='relu')\n", (9264, 9300), False, 'from keras import layers\n'), ((9315, 9361), 'keras.layers.conv.max_pool_2d', 'layers.conv.max_pool_2d', (['network', '(3)'], {'strides': '(2)'}), '(network, 3, strides=2)\n', (9338, 9361), False, 'from keras import layers\n'), ((9376, 9434), 'keras.layers.normalization.local_response_normalization', 'layers.normalization.local_response_normalization', (['network'], {}), '(network)\n', (9425, 9434), False, 'from keras import layers\n'), ((9449, 9510), 'keras.layers.core.fully_connected', 'layers.core.fully_connected', (['network', '(4096)'], {'activation': '"""tanh"""'}), "(network, 4096, activation='tanh')\n", (9476, 9510), False, 'from keras import layers\n'), ((9525, 9558), 'keras.layers.core.dropout', 'layers.core.dropout', (['network', '(0.5)'], {}), '(network, 0.5)\n', (9544, 9558), False, 'from keras import layers\n'), ((9573, 9634), 'keras.layers.core.fully_connected', 'layers.core.fully_connected', (['network', '(4096)'], {'activation': '"""tanh"""'}), "(network, 4096, activation='tanh')\n", (9600, 9634), False, 'from keras import layers\n'), ((9649, 9682), 'keras.layers.core.dropout', 'layers.core.dropout', (['network', '(0.5)'], {}), '(network, 0.5)\n', (9668, 9682), False, 'from keras import layers\n'), ((9697, 9758), 'keras.layers.core.fully_connected', 'layers.core.fully_connected', (['network', '(5)'], {'activation': '"""softmax"""'}), "(network, 5, activation='softmax')\n", (9724, 9758), False, 'from keras import layers\n'), ((9773, 9890), 'keras.layers.estimator.regression', 'layers.estimator.regression', (['network'], {'optimizer': '"""momentum"""', 'loss': '"""categorical_crossentropy"""', 'learning_rate': '(0.001)'}), "(network, optimizer='momentum', loss=\n 'categorical_crossentropy', learning_rate=0.001)\n", (9800, 9890), False, 'from keras import layers\n'), ((10544, 10590), 'cv2.cvtColor', 'cv2.cvtColor', (['image_dotted', 'cv2.COLOR_BGR2GRAY'], {}), '(image_dotted, cv2.COLOR_BGR2GRAY)\n', (10556, 10590), False, 'import cv2\n'), ((10767, 10810), 'cv2.cvtColor', 'cv2.cvtColor', (['image_raw', 'cv2.COLOR_BGR2GRAY'], {}), '(image_raw, cv2.COLOR_BGR2GRAY)\n', (10779, 10810), False, 'import cv2\n'), ((10827, 10875), 'cv2.bitwise_and', 'cv2.bitwise_and', (['image_raw', 'image_raw'], {'mask': 'mask'}), '(image_raw, image_raw, mask=mask)\n', (10842, 10875), False, 'import cv2\n'), ((10996, 11032), 'cv2.absdiff', 'cv2.absdiff', (['image_dotted', 'image_raw'], {}), '(image_dotted, image_raw)\n', (11007, 11032), False, 'import cv2\n'), ((11044, 11088), 'cv2.cvtColor', 'cv2.cvtColor', (['diff_color', 'cv2.COLOR_BGR2GRAY'], {}), '(diff_color, cv2.COLOR_BGR2GRAY)\n', (11056, 11088), False, 'import cv2\n'), ((11103, 11128), 'numpy.ones', 'np.ones', (['(2, 2)', 'np.uint8'], {}), '((2, 2), np.uint8)\n', (11110, 11128), True, 'import numpy as np\n'), ((11138, 11184), 'cv2.morphologyEx', 'cv2.morphologyEx', (['diff', 'cv2.MORPH_OPEN', 'kernel'], {}), '(diff, cv2.MORPH_OPEN, kernel)\n', (11154, 11184), False, 'import cv2\n'), ((11200, 11247), 'cv2.threshold', 'cv2.threshold', (['diff', '(10)', '(255)', 'cv2.THRESH_TOZERO'], {}), '(diff, 10, 255, cv2.THRESH_TOZERO)\n', (11213, 11247), False, 'import cv2\n'), ((11260, 11306), 'cv2.threshold', 'cv2.threshold', (['diff', '(0)', '(255)', 'cv2.THRESH_BINARY'], {}), '(diff, 0, 255, cv2.THRESH_BINARY)\n', (11273, 11306), False, 'import cv2\n'), ((11444, 11464), 'numpy.zeros', 'np.zeros', (['NR_CLASSES'], {}), '(NR_CLASSES)\n', (11452, 11464), True, 'import numpy as np\n'), ((11542, 11604), 'cv2.findContours', 'cv2.findContours', (['diff', 'cv2.RETR_LIST', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(diff, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)\n', (11558, 11604), False, 'import cv2\n'), ((12249, 12269), 'numpy.zeros', 'np.zeros', (['NR_CLASSES'], {}), '(NR_CLASSES)\n', (12257, 12269), True, 'import numpy as np\n'), ((1145, 1266), 'keras.layers.convolutional.Convolution2D', 'convolutional.Convolution2D', (['(96)', '(11)', '(11)'], {'border_mode': '"""valid"""', 'name': '"""conv_1"""', 'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(96, 11, 11, border_mode='valid', name='conv_1',\n activation='relu', init='glorot_uniform')\n", (1172, 1266), False, 'from keras.layers import convolutional\n'), ((1283, 1342), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(3, 3)', 'name': '"""pool_1"""'}), "(pool_size=(3, 3), name='pool_1')\n", (1309, 1342), False, 'from keras.layers import convolutional\n'), ((1372, 1438), 'keras.layers.convolutional.ZeroPadding2D', 'convolutional.ZeroPadding2D', ([], {'padding': '(1, 1)', 'name': '"""zero_padding_1"""'}), "(padding=(1, 1), name='zero_padding_1')\n", (1399, 1438), False, 'from keras.layers import convolutional\n'), ((1460, 1580), 'keras.layers.convolutional.Convolution2D', 'convolutional.Convolution2D', (['(256)', '(3)', '(3)'], {'border_mode': '"""valid"""', 'name': '"""conv_2"""', 'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(256, 3, 3, border_mode='valid', name='conv_2',\n activation='relu', init='glorot_uniform')\n", (1487, 1580), False, 'from keras.layers import convolutional\n'), ((1606, 1665), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(3, 3)', 'name': '"""pool_2"""'}), "(pool_size=(3, 3), name='pool_2')\n", (1632, 1665), False, 'from keras.layers import convolutional\n'), ((1695, 1774), 'keras.layers.convolutional.ZeroPadding2D', 'keras.layers.convolutional.ZeroPadding2D', ([], {'padding': '(1, 1)', 'name': '"""zero_padding_2"""'}), "(padding=(1, 1), name='zero_padding_2')\n", (1735, 1774), False, 'import keras\n'), ((1796, 1916), 'keras.layers.convolutional.Convolution2D', 'convolutional.Convolution2D', (['(384)', '(3)', '(3)'], {'border_mode': '"""valid"""', 'name': '"""conv_3"""', 'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(384, 3, 3, border_mode='valid', name='conv_3',\n activation='relu', init='glorot_uniform')\n", (1823, 1916), False, 'from keras.layers import convolutional\n'), ((1942, 2062), 'keras.layers.convolutional.Convolution2D', 'convolutional.Convolution2D', (['(384)', '(3)', '(3)'], {'border_mode': '"""valid"""', 'name': '"""conv_4"""', 'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(384, 3, 3, border_mode='valid', name='conv_4',\n activation='relu', init='glorot_uniform')\n", (1969, 2062), False, 'from keras.layers import convolutional\n'), ((2080, 2200), 'keras.layers.convolutional.Convolution2D', 'convolutional.Convolution2D', (['(256)', '(3)', '(3)'], {'border_mode': '"""valid"""', 'name': '"""conv_5"""', 'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(256, 3, 3, border_mode='valid', name='conv_5',\n activation='relu', init='glorot_uniform')\n", (2107, 2200), False, 'from keras.layers import convolutional\n'), ((2218, 2277), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(3, 3)', 'name': '"""pool_3"""'}), "(pool_size=(3, 3), name='pool_3')\n", (2244, 2277), False, 'from keras.layers import convolutional\n'), ((2300, 2328), 'keras.layers.core.Flatten', 'core.Flatten', ([], {'name': '"""flatten"""'}), "(name='flatten')\n", (2312, 2328), False, 'from keras.layers import core\n'), ((2348, 2419), 'keras.layers.core.Dense', 'core.Dense', (['(4096)'], {'name': '"""fc_1"""', 'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(4096, name='fc_1', activation='relu', init='glorot_uniform')\n", (2358, 2419), False, 'from keras.layers import core\n'), ((2440, 2478), 'keras.layers.core.Dropout', 'core.Dropout', (['(0.5)'], {'name': '"""fc_1_dropout"""'}), "(0.5, name='fc_1_dropout')\n", (2452, 2478), False, 'from keras.layers import core\n'), ((2498, 2571), 'keras.layers.core.Dense', 'core.Dense', (['(4096)'], {'name': '"""Output"""', 'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(4096, name='Output', activation='relu', init='glorot_uniform')\n", (2508, 2571), False, 'from keras.layers import core\n'), ((2591, 2631), 'keras.layers.core.Dropout', 'core.Dropout', (['(0.5)'], {'name': '"""Output_dropout"""'}), "(0.5, name='Output_dropout')\n", (2603, 2631), False, 'from keras.layers import core\n'), ((2651, 2736), 'keras.layers.core.Dense', 'core.Dense', (['NR_CLASSES'], {'name': '"""fc_2"""', 'activation': '"""softmax"""', 'init': '"""glorot_uniform"""'}), "(NR_CLASSES, name='fc_2', activation='softmax', init='glorot_uniform'\n )\n", (2661, 2736), False, 'from keras.layers import core\n'), ((2880, 2942), 'keras.layers.core.Lambda', 'core.Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': 'image_dims'}), '(lambda x: x / 255.0 - 0.5, input_shape=image_dims)\n', (2891, 2942), False, 'from keras.layers import core\n'), ((2961, 3056), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(64)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""', 'init': '"""glorot_uniform"""'}), "(64, (3, 3), activation='relu', padding='same', init=\n 'glorot_uniform')\n", (2981, 3056), False, 'from keras.layers import convolutional\n'), ((3067, 3111), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (3093, 3111), False, 'from keras.layers import convolutional\n'), ((3126, 3222), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(128)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""', 'init': '"""glorot_uniform"""'}), "(128, (3, 3), activation='relu', padding='same', init=\n 'glorot_uniform')\n", (3146, 3222), False, 'from keras.layers import convolutional\n'), ((3233, 3277), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (3259, 3277), False, 'from keras.layers import convolutional\n'), ((3292, 3388), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(256)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""', 'init': '"""glorot_uniform"""'}), "(256, (3, 3), activation='relu', padding='same', init=\n 'glorot_uniform')\n", (3312, 3388), False, 'from keras.layers import convolutional\n'), ((3399, 3443), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (3425, 3443), False, 'from keras.layers import convolutional\n'), ((3459, 3473), 'keras.layers.core.Flatten', 'core.Flatten', ([], {}), '()\n', (3471, 3473), False, 'from keras.layers import core\n'), ((3490, 3548), 'keras.layers.core.Dense', 'core.Dense', (['(1024)'], {'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(1024, activation='relu', init='glorot_uniform')\n", (3500, 3548), False, 'from keras.layers import core\n'), ((3564, 3581), 'keras.layers.core.Dropout', 'core.Dropout', (['(0.5)'], {}), '(0.5)\n', (3576, 3581), False, 'from keras.layers import core\n'), ((3597, 3655), 'keras.layers.core.Dense', 'core.Dense', (['(1024)'], {'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(1024, activation='relu', init='glorot_uniform')\n", (3607, 3655), False, 'from keras.layers import core\n'), ((3671, 3688), 'keras.layers.core.Dropout', 'core.Dropout', (['(0.5)'], {}), '(0.5)\n', (3683, 3688), False, 'from keras.layers import core\n'), ((3704, 3762), 'keras.layers.core.Dense', 'core.Dense', (['(6)'], {'activation': '"""softmax"""', 'init': '"""glorot_uniform"""'}), "(6, activation='softmax', init='glorot_uniform')\n", (3714, 3762), False, 'from keras.layers import core\n'), ((3975, 4037), 'keras.layers.core.Lambda', 'core.Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': 'image_dims'}), '(lambda x: x / 255.0 - 0.5, input_shape=image_dims)\n', (3986, 4037), False, 'from keras.layers import core\n'), ((4056, 4152), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(128)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""', 'init': '"""glorot_uniform"""'}), "(128, (3, 3), activation='relu', padding='same', init=\n 'glorot_uniform')\n", (4076, 4152), False, 'from keras.layers import convolutional\n'), ((4163, 4207), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (4189, 4207), False, 'from keras.layers import convolutional\n'), ((4222, 4318), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(256)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""', 'init': '"""glorot_uniform"""'}), "(256, (3, 3), activation='relu', padding='same', init=\n 'glorot_uniform')\n", (4242, 4318), False, 'from keras.layers import convolutional\n'), ((4329, 4425), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(256)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""', 'init': '"""glorot_uniform"""'}), "(256, (3, 3), activation='relu', padding='same', init=\n 'glorot_uniform')\n", (4349, 4425), False, 'from keras.layers import convolutional\n'), ((4436, 4480), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (4462, 4480), False, 'from keras.layers import convolutional\n'), ((4496, 4510), 'keras.layers.core.Flatten', 'core.Flatten', ([], {}), '()\n', (4508, 4510), False, 'from keras.layers import core\n'), ((4527, 4585), 'keras.layers.core.Dense', 'core.Dense', (['(1024)'], {'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(1024, activation='relu', init='glorot_uniform')\n", (4537, 4585), False, 'from keras.layers import core\n'), ((4601, 4618), 'keras.layers.core.Dropout', 'core.Dropout', (['(0.5)'], {}), '(0.5)\n', (4613, 4618), False, 'from keras.layers import core\n'), ((4634, 4692), 'keras.layers.core.Dense', 'core.Dense', (['(2048)'], {'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(2048, activation='relu', init='glorot_uniform')\n", (4644, 4692), False, 'from keras.layers import core\n'), ((4708, 4725), 'keras.layers.core.Dropout', 'core.Dropout', (['(0.5)'], {}), '(0.5)\n', (4720, 4725), False, 'from keras.layers import core\n'), ((4741, 4799), 'keras.layers.core.Dense', 'core.Dense', (['(6)'], {'activation': '"""softmax"""', 'init': '"""glorot_uniform"""'}), "(6, activation='softmax', init='glorot_uniform')\n", (4751, 4799), False, 'from keras.layers import core\n'), ((5012, 5074), 'keras.layers.core.Lambda', 'core.Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': 'image_dims'}), '(lambda x: x / 255.0 - 0.5, input_shape=image_dims)\n', (5023, 5074), False, 'from keras.layers import core\n'), ((5093, 5189), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(128)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""', 'init': '"""glorot_uniform"""'}), "(128, (3, 3), activation='relu', padding='same', init=\n 'glorot_uniform')\n", (5113, 5189), False, 'from keras.layers import convolutional\n'), ((5200, 5244), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (5226, 5244), False, 'from keras.layers import convolutional\n'), ((5259, 5354), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(64)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""', 'init': '"""glorot_uniform"""'}), "(64, (3, 3), activation='relu', padding='same', init=\n 'glorot_uniform')\n", (5279, 5354), False, 'from keras.layers import convolutional\n'), ((5365, 5461), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(256)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""', 'init': '"""glorot_uniform"""'}), "(256, (3, 3), activation='relu', padding='same', init=\n 'glorot_uniform')\n", (5385, 5461), False, 'from keras.layers import convolutional\n'), ((5472, 5516), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (5498, 5516), False, 'from keras.layers import convolutional\n'), ((5532, 5546), 'keras.layers.core.Flatten', 'core.Flatten', ([], {}), '()\n', (5544, 5546), False, 'from keras.layers import core\n'), ((5563, 5621), 'keras.layers.core.Dense', 'core.Dense', (['(2048)'], {'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(2048, activation='relu', init='glorot_uniform')\n", (5573, 5621), False, 'from keras.layers import core\n'), ((5637, 5654), 'keras.layers.core.Dropout', 'core.Dropout', (['(0.5)'], {}), '(0.5)\n', (5649, 5654), False, 'from keras.layers import core\n'), ((5670, 5728), 'keras.layers.core.Dense', 'core.Dense', (['(2048)'], {'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(2048, activation='relu', init='glorot_uniform')\n", (5680, 5728), False, 'from keras.layers import core\n'), ((5744, 5761), 'keras.layers.core.Dropout', 'core.Dropout', (['(0.5)'], {}), '(0.5)\n', (5756, 5761), False, 'from keras.layers import core\n'), ((5777, 5835), 'keras.layers.core.Dense', 'core.Dense', (['(6)'], {'activation': '"""softmax"""', 'init': '"""glorot_uniform"""'}), "(6, activation='softmax', init='glorot_uniform')\n", (5787, 5835), False, 'from keras.layers import core\n'), ((6114, 6176), 'keras.layers.core.Lambda', 'core.Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': 'image_dims'}), '(lambda x: x / 255.0 - 0.5, input_shape=image_dims)\n', (6125, 6176), False, 'from keras.layers import core\n'), ((6195, 6262), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(32)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(32, (3, 3), activation='relu', padding='same')\n", (6215, 6262), False, 'from keras.layers import convolutional\n'), ((6278, 6322), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (6304, 6322), False, 'from keras.layers import convolutional\n'), ((6337, 6404), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(64)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(64, (3, 3), activation='relu', padding='same')\n", (6357, 6404), False, 'from keras.layers import convolutional\n'), ((6420, 6464), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (6446, 6464), False, 'from keras.layers import convolutional\n'), ((6479, 6547), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(128)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(128, (3, 3), activation='relu', padding='same')\n", (6499, 6547), False, 'from keras.layers import convolutional\n'), ((6563, 6607), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (6589, 6607), False, 'from keras.layers import convolutional\n'), ((6623, 6637), 'keras.layers.core.Flatten', 'core.Flatten', ([], {}), '()\n', (6635, 6637), False, 'from keras.layers import core\n'), ((6654, 6688), 'keras.layers.core.Dense', 'core.Dense', (['(512)'], {'activation': '"""relu"""'}), "(512, activation='relu')\n", (6664, 6688), False, 'from keras.layers import core\n'), ((6704, 6721), 'keras.layers.core.Dropout', 'core.Dropout', (['(0.5)'], {}), '(0.5)\n', (6716, 6721), False, 'from keras.layers import core\n'), ((6737, 6772), 'keras.layers.core.Dense', 'core.Dense', (['(1024)'], {'activation': '"""relu"""'}), "(1024, activation='relu')\n", (6747, 6772), False, 'from keras.layers import core\n'), ((6788, 6805), 'keras.layers.core.Dropout', 'core.Dropout', (['(0.5)'], {}), '(0.5)\n', (6800, 6805), False, 'from keras.layers import core\n'), ((6821, 6856), 'keras.layers.core.Dense', 'core.Dense', (['(6)'], {'activation': '"""softmax"""'}), "(6, activation='softmax')\n", (6831, 6856), False, 'from keras.layers import core\n'), ((7066, 7128), 'keras.layers.core.Lambda', 'core.Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': 'image_dims'}), '(lambda x: x / 255.0 - 0.5, input_shape=image_dims)\n', (7077, 7128), False, 'from keras.layers import core\n'), ((7147, 7242), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(64)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""', 'init': '"""glorot_uniform"""'}), "(64, (3, 3), activation='relu', padding='same', init=\n 'glorot_uniform')\n", (7167, 7242), False, 'from keras.layers import convolutional\n'), ((7253, 7297), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (7279, 7297), False, 'from keras.layers import convolutional\n'), ((7312, 7408), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(128)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""', 'init': '"""glorot_uniform"""'}), "(128, (3, 3), activation='relu', padding='same', init=\n 'glorot_uniform')\n", (7332, 7408), False, 'from keras.layers import convolutional\n'), ((7419, 7463), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (7445, 7463), False, 'from keras.layers import convolutional\n'), ((7478, 7574), 'keras.layers.convolutional.Conv2D', 'convolutional.Conv2D', (['(256)', '(3, 3)'], {'activation': '"""relu"""', 'padding': '"""same"""', 'init': '"""glorot_uniform"""'}), "(256, (3, 3), activation='relu', padding='same', init=\n 'glorot_uniform')\n", (7498, 7574), False, 'from keras.layers import convolutional\n'), ((7585, 7629), 'keras.layers.convolutional.MaxPooling2D', 'convolutional.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (7611, 7629), False, 'from keras.layers import convolutional\n'), ((7645, 7659), 'keras.layers.core.Flatten', 'core.Flatten', ([], {}), '()\n', (7657, 7659), False, 'from keras.layers import core\n'), ((7676, 7734), 'keras.layers.core.Dense', 'core.Dense', (['(1024)'], {'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(1024, activation='relu', init='glorot_uniform')\n", (7686, 7734), False, 'from keras.layers import core\n'), ((7750, 7767), 'keras.layers.core.Dropout', 'core.Dropout', (['(0.5)'], {}), '(0.5)\n', (7762, 7767), False, 'from keras.layers import core\n'), ((7783, 7841), 'keras.layers.core.Dense', 'core.Dense', (['(1024)'], {'activation': '"""relu"""', 'init': '"""glorot_uniform"""'}), "(1024, activation='relu', init='glorot_uniform')\n", (7793, 7841), False, 'from keras.layers import core\n'), ((7857, 7874), 'keras.layers.core.Dropout', 'core.Dropout', (['(0.5)'], {}), '(0.5)\n', (7869, 7874), False, 'from keras.layers import core\n'), ((7890, 7925), 'keras.layers.core.Dense', 'core.Dense', (['(2)'], {'activation': '"""softmax"""'}), "(2, activation='softmax')\n", (7900, 7925), False, 'from keras.layers import core\n'), ((10116, 10158), 'cv2.inRange', 'cv2.inRange', (['image', 'C_MIN[col]', 'C_MAX[col]'], {}), '(image, C_MIN[col], C_MAX[col])\n', (10127, 10158), False, 'import cv2\n'), ((10172, 10184), 'numpy.sum', 'np.sum', (['cmsk'], {}), '(cmsk)\n', (10178, 10184), True, 'import numpy as np\n'), ((10650, 10707), 'cv2.threshold', 'cv2.threshold', (['image_dotted_bw', '(5)', '(255)', 'cv2.THRESH_BINARY'], {}), '(image_dotted_bw, 5, 255, cv2.THRESH_BINARY)\n', (10663, 10707), False, 'import cv2\n'), ((11646, 11665), 'cv2.boundingRect', 'cv2.boundingRect', (['c'], {}), '(c)\n', (11662, 11665), False, 'import cv2\n'), ((13932, 13951), 'numpy.shape', 'np.shape', (['image_raw'], {}), '(image_raw)\n', (13940, 13951), True, 'import numpy as np\n'), ((15657, 15708), 'modules.utils.show_image', 'utils.show_image', (['debug_image'], {'size': '(40)', 'is_bgr': '(True)'}), '(debug_image, size=40, is_bgr=True)\n', (15673, 15708), True, 'import modules.utils as utils\n'), ((15717, 15774), 'modules.utils.show_images', 'utils.show_images', (['images'], {'cols': '(10)', 'is_bgr': '(True)', 'size': '(1.5)'}), '(images, cols=10, is_bgr=True, size=1.5)\n', (15734, 15774), True, 'import modules.utils as utils\n'), ((12583, 12654), 'modules.utils.is_far_from_others', 'utils.is_far_from_others', (['lion_pos', 'lion_positions', 'min_distance_others'], {}), '(lion_pos, lion_positions, min_distance_others)\n', (12607, 12654), True, 'import modules.utils as utils\n'), ((12941, 13054), 'modules.utils.crop_image_fill', 'utils.crop_image_fill', (['image_raw', '(lion_pos[1] - pw, lion_pos[0] - pw)', '(lion_pos[1] + ph, lion_pos[0] + ph)'], {}), '(image_raw, (lion_pos[1] - pw, lion_pos[0] - pw), (\n lion_pos[1] + ph, lion_pos[0] + ph))\n', (12962, 13054), True, 'import modules.utils as utils\n'), ((13057, 13072), 'numpy.mean', 'np.mean', (['trainX'], {}), '(trainX)\n', (13064, 13072), True, 'import numpy as np\n'), ((14149, 14219), 'modules.utils.is_far_from_others', 'utils.is_far_from_others', (['patch_pos', 'lion_positions', 'non_lion_distance'], {}), '(patch_pos, lion_positions, non_lion_distance)\n', (14173, 14219), True, 'import modules.utils as utils\n'), ((14018, 14077), 'random.randint', 'random.randint', (['(image_dims[1] * 2)', '(s[1] - image_dims[1] * 2)'], {}), '(image_dims[1] * 2, s[1] - image_dims[1] * 2)\n', (14032, 14077), False, 'import random\n'), ((14073, 14132), 'random.randint', 'random.randint', (['(image_dims[0] * 2)', '(s[0] - image_dims[0] * 2)'], {}), '(image_dims[0] * 2, s[0] - image_dims[0] * 2)\n', (14087, 14132), False, 'import random\n'), ((14498, 14615), 'modules.utils.crop_image_fill', 'utils.crop_image_fill', (['image_raw', '(patch_pos[1] - pw, patch_pos[0] - pw)', '(patch_pos[1] + ph, patch_pos[0] + ph)'], {}), '(image_raw, (patch_pos[1] - pw, patch_pos[0] - pw), (\n patch_pos[1] + ph, patch_pos[0] + ph))\n', (14519, 14615), True, 'import modules.utils as utils\n'), ((14622, 14637), 'numpy.mean', 'np.mean', (['trainX'], {}), '(trainX)\n', (14629, 14637), True, 'import numpy as np\n'), ((13538, 13599), 'keras.utils.np_utils.to_categorical', 'keras.utils.np_utils.to_categorical', (['[lion_class]', 'NR_CLASSES'], {}), '([lion_class], NR_CLASSES)\n', (13573, 13599), False, 'import keras\n'), ((13684, 13753), 'modules.utils.add_sample_to_dataset', 'utils.add_sample_to_dataset', (['target_x_ds', 'target_y_ds', 'trainX', 'trainY'], {}), '(target_x_ds, target_y_ds, trainX, trainY)\n', (13711, 13753), True, 'import modules.utils as utils\n'), ((14987, 15039), 'keras.utils.np_utils.to_categorical', 'keras.utils.np_utils.to_categorical', (['[5]', 'NR_CLASSES'], {}), '([5], NR_CLASSES)\n', (15022, 15039), False, 'import keras\n'), ((15132, 15201), 'modules.utils.add_sample_to_dataset', 'utils.add_sample_to_dataset', (['target_x_ds', 'target_y_ds', 'trainX', 'trainY'], {}), '(target_x_ds, target_y_ds, trainX, trainY)\n', (15159, 15201), True, 'import modules.utils as utils\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ IEMOCAP Speech 2D Spectrograms Quadrant ->data.py Created on Sat May 9 15:32:48 2020 @author: <NAME> @email:<EMAIL> """ import torch from torch.utils import data from torch.utils.data import Dataset import os import numpy as np import pandas as pd from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from scipy.io.wavfile import read,write #read and write audios from sklearn.utils import class_weight from skimage.transform import resize from Spectrum import Spectrum_3D_Tensors import torchvision as tv import random from itertools import chain import librosa #%% class SpeechDataset(Dataset): def __init__(self, files, norm_c1, norm_c2,norm_c3): self.norm_c1=norm_c1 self.norm_c2=norm_c2 self.norm_c3=norm_c3 self.files=files def __getitem__(self, index): if torch.is_tensor(index): index = index.tolist() input_tensor = torch.Tensor(self.files[index]) #Min Max Normalization input_tensor=tensor_min_max(input_tensor,self.norm_c1,self.norm_c2,self.norm_c3) #spec=spec.unsqueeze(0) return (input_tensor) def __len__(self): return len(self.files) def tensor_min_max(input_tensor,norm_c1,norm_c2,norm_c3): tensor = input_tensor tensor[0,:,:] = (input_tensor[0,:,:]-np.float(norm_c1['min']))/(np.float(norm_c1['max'])-np.float(norm_c1['min'])) tensor[1,:,:] = (input_tensor[1,:,:]-np.float(norm_c2['min']))/(np.float(norm_c2['max'])-np.float(norm_c2['min'])) tensor[2,:,:] = (input_tensor[2,:,:]-np.float(norm_c3['min']))/(np.float(norm_c3['max'])-np.float(norm_c3['min'])) return tensor def get_dataset(sig, norm_c1,norm_c2,norm_c3): #print('%-----Test tensors-----%') spec=Spectrum_3D_Tensors(sig,16000) tensors=spec.get_spectrogram_tensors() speechData=SpeechDataset(tensors,norm_c1, norm_c2,norm_c3) return speechData
[ "torch.Tensor", "torch.is_tensor", "numpy.float", "Spectrum.Spectrum_3D_Tensors" ]
[((2026, 2057), 'Spectrum.Spectrum_3D_Tensors', 'Spectrum_3D_Tensors', (['sig', '(16000)'], {}), '(sig, 16000)\n', (2045, 2057), False, 'from Spectrum import Spectrum_3D_Tensors\n'), ((981, 1003), 'torch.is_tensor', 'torch.is_tensor', (['index'], {}), '(index)\n', (996, 1003), False, 'import torch\n'), ((1072, 1103), 'torch.Tensor', 'torch.Tensor', (['self.files[index]'], {}), '(self.files[index])\n', (1084, 1103), False, 'import torch\n'), ((1559, 1583), 'numpy.float', 'np.float', (["norm_c1['min']"], {}), "(norm_c1['min'])\n", (1567, 1583), True, 'import numpy as np\n'), ((1586, 1610), 'numpy.float', 'np.float', (["norm_c1['max']"], {}), "(norm_c1['max'])\n", (1594, 1610), True, 'import numpy as np\n'), ((1611, 1635), 'numpy.float', 'np.float', (["norm_c1['min']"], {}), "(norm_c1['min'])\n", (1619, 1635), True, 'import numpy as np\n'), ((1678, 1702), 'numpy.float', 'np.float', (["norm_c2['min']"], {}), "(norm_c2['min'])\n", (1686, 1702), True, 'import numpy as np\n'), ((1705, 1729), 'numpy.float', 'np.float', (["norm_c2['max']"], {}), "(norm_c2['max'])\n", (1713, 1729), True, 'import numpy as np\n'), ((1730, 1754), 'numpy.float', 'np.float', (["norm_c2['min']"], {}), "(norm_c2['min'])\n", (1738, 1754), True, 'import numpy as np\n'), ((1797, 1821), 'numpy.float', 'np.float', (["norm_c3['min']"], {}), "(norm_c3['min'])\n", (1805, 1821), True, 'import numpy as np\n'), ((1824, 1848), 'numpy.float', 'np.float', (["norm_c3['max']"], {}), "(norm_c3['max'])\n", (1832, 1848), True, 'import numpy as np\n'), ((1849, 1873), 'numpy.float', 'np.float', (["norm_c3['min']"], {}), "(norm_c3['min'])\n", (1857, 1873), True, 'import numpy as np\n')]
import numpy as np def get_matrix(): A = np.random.random((20, 3)) while np.linalg.matrix_rank(A) < 3: A = np.random.random((20, 3)) B = np.random.random((3, 5)) while np.linalg.matrix_rank(B) < 3: B = np.random.random((20, 3)) origin_matrix = np.dot(A, B) if np.linalg.matrix_rank(origin_matrix) == 3: return origin_matrix else: print("error") # test ''' origin_matrix = np.array([[1,0,0,0,2], [0,0,3,0,0], [0,0,0,0,0], [0,2,0,0,0]]) ''' return origin_matrix def svd_factor(M): # SVD U, S, Vh = np.linalg.svd(M) # print(U.shape, S.shape, Vh.shape) # print(U,"\n",S,"\n",Vh) # construct matrix sigma # sigma = np.zeros([U.shape[1], Vh.shape[0]]) sigma = np.zeros([U.shape[1], Vh.shape[0]]) for i in range(S.shape[0]): sigma[i, i] = S[i] A = np.dot(np.dot(U, sigma), Vh) return np.linalg.matrix_rank(A) def reconstruct_matrix(M, k): # SVD U, S, Vh = np.linalg.svd(M) # print(U.shape, S.shape, Vh.shape) # print(U,"\n",S,"\n",Vh) # construct matrix sigma # sigma = np.zeros([U.shape[1], Vh.shape[0]]) sigma = np.zeros([U.shape[1], Vh.shape[0]]) for i in range(S.shape[0]): sigma[i, i] = S[i] A = np.dot(np.dot(U[:, :k], sigma[:k, :k]), Vh[:k, :]) return A if __name__ == "__main__": x = np.random.randint(0, 20, size=5) y = np.random.randint(0, 5, size=5) print(x, y) max_rank = [0, 0, 0, 0, 0, 0] max_svd_rank = [0, 0, 0, 0, 0, 0] min_rank = [0, 0, 3, 3, 3, 3] min_svd_rank = [0, 0, 3, 3, 3, 3] dist_list = [0, 0, 0, 0, 0, 0] for _ in range(10000000): A = get_matrix() temp = np.array(A) temp[x[0], y[0]] = 0 for i in range(1, 5): temp[x[i], y[i]] = 0 rank = np.linalg.matrix_rank(temp) rank_svd = svd_factor(temp) if rank != rank_svd: print(_, i) if rank < 3: print("rank", _, i) if rank_svd < 3: print("rank_svd", _, i) max_rank[i+1] = max(rank, max_rank[i+1]) max_svd_rank[i+1] = max(rank_svd, max_svd_rank[i+1]) min_rank[i+1] = min(rank, min_rank[i+1]) min_svd_rank[i+1] = min(rank_svd, max_svd_rank[i+1]) # reconstruct recons = reconstruct_matrix(temp, 3) dist = np.linalg.norm(A - recons) dist_list[i+1] += dist print(max_rank) print(max_svd_rank) print(min_rank) print(min_svd_rank) print(np.array(dist_list) / 10000000) ''' A = np.zeros([20, 5]) A[0,0],A[0,1],A[1,2],A[1,3],A[2,4] = 1,1,1,1,1 print(np.linalg.matrix_rank(A)) A[1,2],A[1,3],A[2,4] = 0,0,0 print(np.linalg.matrix_rank(A)) '''
[ "numpy.zeros", "numpy.linalg.svd", "numpy.random.random", "numpy.linalg.matrix_rank", "numpy.random.randint", "numpy.array", "numpy.linalg.norm", "numpy.dot" ]
[((46, 71), 'numpy.random.random', 'np.random.random', (['(20, 3)'], {}), '((20, 3))\n', (62, 71), True, 'import numpy as np\n'), ((159, 183), 'numpy.random.random', 'np.random.random', (['(3, 5)'], {}), '((3, 5))\n', (175, 183), True, 'import numpy as np\n'), ((287, 299), 'numpy.dot', 'np.dot', (['A', 'B'], {}), '(A, B)\n', (293, 299), True, 'import numpy as np\n'), ((679, 695), 'numpy.linalg.svd', 'np.linalg.svd', (['M'], {}), '(M)\n', (692, 695), True, 'import numpy as np\n'), ((858, 893), 'numpy.zeros', 'np.zeros', (['[U.shape[1], Vh.shape[0]]'], {}), '([U.shape[1], Vh.shape[0]])\n', (866, 893), True, 'import numpy as np\n'), ((1003, 1027), 'numpy.linalg.matrix_rank', 'np.linalg.matrix_rank', (['A'], {}), '(A)\n', (1024, 1027), True, 'import numpy as np\n'), ((1085, 1101), 'numpy.linalg.svd', 'np.linalg.svd', (['M'], {}), '(M)\n', (1098, 1101), True, 'import numpy as np\n'), ((1264, 1299), 'numpy.zeros', 'np.zeros', (['[U.shape[1], Vh.shape[0]]'], {}), '([U.shape[1], Vh.shape[0]])\n', (1272, 1299), True, 'import numpy as np\n'), ((1470, 1502), 'numpy.random.randint', 'np.random.randint', (['(0)', '(20)'], {'size': '(5)'}), '(0, 20, size=5)\n', (1487, 1502), True, 'import numpy as np\n'), ((1511, 1542), 'numpy.random.randint', 'np.random.randint', (['(0)', '(5)'], {'size': '(5)'}), '(0, 5, size=5)\n', (1528, 1542), True, 'import numpy as np\n'), ((82, 106), 'numpy.linalg.matrix_rank', 'np.linalg.matrix_rank', (['A'], {}), '(A)\n', (103, 106), True, 'import numpy as np\n'), ((124, 149), 'numpy.random.random', 'np.random.random', (['(20, 3)'], {}), '((20, 3))\n', (140, 149), True, 'import numpy as np\n'), ((194, 218), 'numpy.linalg.matrix_rank', 'np.linalg.matrix_rank', (['B'], {}), '(B)\n', (215, 218), True, 'import numpy as np\n'), ((236, 261), 'numpy.random.random', 'np.random.random', (['(20, 3)'], {}), '((20, 3))\n', (252, 261), True, 'import numpy as np\n'), ((307, 343), 'numpy.linalg.matrix_rank', 'np.linalg.matrix_rank', (['origin_matrix'], {}), '(origin_matrix)\n', (328, 343), True, 'import numpy as np\n'), ((969, 985), 'numpy.dot', 'np.dot', (['U', 'sigma'], {}), '(U, sigma)\n', (975, 985), True, 'import numpy as np\n'), ((1375, 1406), 'numpy.dot', 'np.dot', (['U[:, :k]', 'sigma[:k, :k]'], {}), '(U[:, :k], sigma[:k, :k])\n', (1381, 1406), True, 'import numpy as np\n'), ((1812, 1823), 'numpy.array', 'np.array', (['A'], {}), '(A)\n', (1820, 1823), True, 'import numpy as np\n'), ((1937, 1964), 'numpy.linalg.matrix_rank', 'np.linalg.matrix_rank', (['temp'], {}), '(temp)\n', (1958, 1964), True, 'import numpy as np\n'), ((2529, 2555), 'numpy.linalg.norm', 'np.linalg.norm', (['(A - recons)'], {}), '(A - recons)\n', (2543, 2555), True, 'import numpy as np\n'), ((2691, 2710), 'numpy.array', 'np.array', (['dist_list'], {}), '(dist_list)\n', (2699, 2710), True, 'import numpy as np\n')]
import torch import torch.nn as nn import numpy as np from torch.nn import functional as F import math from utils.tools import make_positions def Embedding(num_embeddings, embedding_dim, padding_idx=None): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) if padding_idx is not None: nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.) return m def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None): """ Sinusoid position encoding table """ def cal_angle(position, hid_idx): return position / np.power(10000, 2 * (hid_idx // 2) / d_hid) def get_posi_angle_vec(position): return [cal_angle(position, hid_j) for hid_j in range(d_hid)] sinusoid_table = np.array( [get_posi_angle_vec(pos_i) for pos_i in range(n_position)] ) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 if padding_idx is not None: # zero vector for padding dimension sinusoid_table[padding_idx] = 0.0 return torch.FloatTensor(sinusoid_table) class SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length. Padding symbols are ignored. """ def __init__(self, embedding_dim, padding_idx, init_size=1024): super().__init__() self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.weights = SinusoidalPositionalEmbedding.get_embedding( init_size, embedding_dim, padding_idx, ) self.register_buffer("_float_tensor", torch.FloatTensor(1)) @staticmethod def get_embedding(num_embeddings, embedding_dim, padding_idx=None): """Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs): """Input is expected to be of size [bsz x seqlen].""" bsz, seq_len = input.shape[:2] max_pos = self.padding_idx + 1 + seq_len if self.weights is None or max_pos > self.weights.size(0): # recompute/expand embeddings if needed self.weights = SinusoidalPositionalEmbedding.get_embedding( max_pos, self.embedding_dim, self.padding_idx, ) self.weights = self.weights.to(self._float_tensor) if incremental_state is not None: # positions is the same for every token when decoding a single step pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) positions = make_positions(input, self.padding_idx) if positions is None else positions return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach() def max_positions(self): """Maximum number of supported positions.""" return int(1e5) # an arbitrary large number class Swish(nn.Module): """ Swish is a smooth, non-monotonic function that consistently matches or outperforms ReLU on deep networks applied to a variety of challenging domains such as Image classification and Machine translation. """ def __init__(self): super(Swish, self).__init__() def forward(self, inputs): return inputs * inputs.sigmoid() class GLU(nn.Module): """ The gating mechanism is called Gated Linear Units (GLU), which was first introduced for natural language processing in the paper “Language Modeling with Gated Convolutional Networks” """ def __init__(self, dim: int) -> None: super(GLU, self).__init__() self.dim = dim def forward(self, inputs): outputs, gate = inputs.chunk(2, dim=self.dim) return outputs * gate.sigmoid() class LayerNorm(torch.nn.LayerNorm): """Layer normalization module. :param int nout: output dim size :param int dim: dimension to be normalized """ def __init__(self, nout, dim=-1): """Construct an LayerNorm object.""" super(LayerNorm, self).__init__(nout, eps=1e-12) self.dim = dim def forward(self, x): """Apply layer normalization. :param torch.Tensor x: input tensor :return: layer normalized tensor :rtype torch.Tensor """ if self.dim == -1: return super(LayerNorm, self).forward(x) return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1) class LinearNorm(nn.Module): """ LinearNorm Projection """ def __init__(self, in_features, out_features, bias=False): super(LinearNorm, self).__init__() self.linear = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(self.linear.weight) if bias: nn.init.constant_(self.linear.bias, 0.0) def forward(self, x): x = self.linear(x) return x class ConvBlock(nn.Module): """ 1D Convolutional Block """ def __init__(self, in_channels, out_channels, kernel_size, dropout=None, normalization=nn.BatchNorm1d, activation=nn.ReLU, transpose=False): super(ConvBlock, self).__init__() self.conv_layer = nn.Sequential( ConvNorm( in_channels, out_channels, kernel_size=kernel_size, stride=1, padding=int((kernel_size - 1) / 2), dilation=1, w_init_gain="tanh", transpose=transpose ), normalization(out_channels), activation(), ) self.dropout = dropout if dropout is not None else None self.transpose = transpose def forward(self, enc_input, mask=None): if not self.transpose: enc_input = enc_input.contiguous().transpose(1, 2) enc_output = self.conv_layer(enc_input) if self.dropout is not None: enc_output = F.dropout(enc_output, self.dropout, training=True) # self.training) if not self.transpose: enc_output = enc_output.contiguous().transpose(1, 2) if mask is not None: enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0) return enc_output class ConvBlock2D(nn.Module): """ 2D Convolutional Block """ def __init__(self, in_channels, out_channels, kernel_size, dropout=None, normalization=nn.BatchNorm2d, activation=nn.ReLU, transpose=False): super(ConvBlock2D, self).__init__() self.conv_layer = nn.Sequential( ConvNorm2D( in_channels, out_channels, kernel_size=(1, kernel_size), stride=1, padding=(0, int((kernel_size - 1) / 2)), bias=False, w_init_gain="tanh", transpose=transpose, ), normalization(out_channels), activation(), ) self.dropout = dropout if dropout is not None else None self.transpose = transpose def forward(self, enc_input, mask=None): """ enc_input -- [B, H, W, C_in] mask -- [B, H] """ if not self.transpose: enc_input = enc_input.contiguous().permute(0, 3, 1, 2) # [B, C_in, H, W] enc_output = self.conv_layer(enc_input) if self.dropout is not None: enc_output = F.dropout(enc_output, self.dropout, self.training) if not self.transpose: enc_output = enc_output.contiguous().permute(0, 2, 3, 1) # [B, H, W, C_out] if mask is not None: enc_output = enc_output.masked_fill(mask.unsqueeze(-1).unsqueeze(-1), 0) return enc_output class ConvNorm(nn.Module): """ 1D Convolution """ def __init__( self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain="linear", transpose=False, ): super(ConvNorm, self).__init__() if padding is None: assert kernel_size % 2 == 1 padding = int(dilation * (kernel_size - 1) / 2) self.conv = nn.Conv1d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, ) torch.nn.init.xavier_uniform_( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain) ) self.transpose = transpose def forward(self, x): if self.transpose: x = x.contiguous().transpose(1, 2) x = self.conv(x) if self.transpose: x = x.contiguous().transpose(1, 2) return x class ConvNorm2D(nn.Module): """ 2D Convolution """ def __init__( self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain="linear", transpose=False, ): super(ConvNorm2D, self).__init__() if padding is None: assert kernel_size % 2 == 1 padding = int(dilation * (kernel_size - 1) / 2) self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, ) torch.nn.init.xavier_uniform_( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain) ) self.transpose = transpose def forward(self, x): """ x -- [B, H, W, C] or [B, C, H, W] """ if self.transpose: x = x.contiguous().permute(0, 3, 1, 2) # [B, C, H, W] x = self.conv(x) if self.transpose: x = x.contiguous().permute(0, 2, 3, 1) # [B, H, W, C] return x
[ "torch.nn.Embedding", "torch.nn.functional.dropout", "torch.cos", "numpy.sin", "torch.nn.init.constant_", "torch.arange", "torch.nn.init.calculate_gain", "numpy.power", "torch.nn.Conv1d", "torch.FloatTensor", "torch.nn.Linear", "torch.zeros", "math.log", "torch.nn.init.xavier_uniform_", "torch.nn.Conv2d", "utils.tools.make_positions", "numpy.cos", "torch.nn.init.normal_", "torch.sin" ]
[((217, 285), 'torch.nn.Embedding', 'nn.Embedding', (['num_embeddings', 'embedding_dim'], {'padding_idx': 'padding_idx'}), '(num_embeddings, embedding_dim, padding_idx=padding_idx)\n', (229, 285), True, 'import torch.nn as nn\n'), ((290, 350), 'torch.nn.init.normal_', 'nn.init.normal_', (['m.weight'], {'mean': '(0)', 'std': '(embedding_dim ** -0.5)'}), '(m.weight, mean=0, std=embedding_dim ** -0.5)\n', (305, 350), True, 'import torch.nn as nn\n'), ((508, 550), 'torch.nn.Linear', 'nn.Linear', (['in_features', 'out_features', 'bias'], {}), '(in_features, out_features, bias)\n', (517, 550), True, 'import torch.nn as nn\n'), ((555, 588), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['m.weight'], {}), '(m.weight)\n', (578, 588), True, 'import torch.nn as nn\n'), ((1124, 1155), 'numpy.sin', 'np.sin', (['sinusoid_table[:, 0::2]'], {}), '(sinusoid_table[:, 0::2])\n', (1130, 1155), True, 'import numpy as np\n'), ((1196, 1227), 'numpy.cos', 'np.cos', (['sinusoid_table[:, 1::2]'], {}), '(sinusoid_table[:, 1::2])\n', (1202, 1227), True, 'import numpy as np\n'), ((1371, 1404), 'torch.FloatTensor', 'torch.FloatTensor', (['sinusoid_table'], {}), '(sinusoid_table)\n', (1388, 1404), False, 'import torch\n'), ((391, 434), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.weight[padding_idx]', '(0)'], {}), '(m.weight[padding_idx], 0)\n', (408, 434), True, 'import torch.nn as nn\n'), ((610, 640), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0.0)'], {}), '(m.bias, 0.0)\n', (627, 640), True, 'import torch.nn as nn\n'), ((5779, 5821), 'torch.nn.Linear', 'nn.Linear', (['in_features', 'out_features', 'bias'], {}), '(in_features, out_features, bias)\n', (5788, 5821), True, 'import torch.nn as nn\n'), ((5831, 5874), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['self.linear.weight'], {}), '(self.linear.weight)\n', (5854, 5874), True, 'import torch.nn as nn\n'), ((9306, 9433), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_channels', 'out_channels'], {'kernel_size': 'kernel_size', 'stride': 'stride', 'padding': 'padding', 'dilation': 'dilation', 'bias': 'bias'}), '(in_channels, out_channels, kernel_size=kernel_size, stride=stride,\n padding=padding, dilation=dilation, bias=bias)\n', (9315, 9433), True, 'import torch.nn as nn\n'), ((10396, 10523), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_channels', 'out_channels'], {'kernel_size': 'kernel_size', 'stride': 'stride', 'padding': 'padding', 'dilation': 'dilation', 'bias': 'bias'}), '(in_channels, out_channels, kernel_size=kernel_size, stride=stride,\n padding=padding, dilation=dilation, bias=bias)\n', (10405, 10523), True, 'import torch.nn as nn\n'), ((835, 878), 'numpy.power', 'np.power', (['(10000)', '(2 * (hid_idx // 2) / d_hid)'], {}), '(10000, 2 * (hid_idx // 2) / d_hid)\n', (843, 878), True, 'import numpy as np\n'), ((1950, 1970), 'torch.FloatTensor', 'torch.FloatTensor', (['(1)'], {}), '(1)\n', (1967, 1970), False, 'import torch\n'), ((2323, 2338), 'math.log', 'math.log', (['(10000)'], {}), '(10000)\n', (2331, 2338), False, 'import math\n'), ((3744, 3783), 'utils.tools.make_positions', 'make_positions', (['input', 'self.padding_idx'], {}), '(input, self.padding_idx)\n', (3758, 3783), False, 'from utils.tools import make_positions\n'), ((5904, 5944), 'torch.nn.init.constant_', 'nn.init.constant_', (['self.linear.bias', '(0.0)'], {}), '(self.linear.bias, 0.0)\n', (5921, 5944), True, 'import torch.nn as nn\n'), ((7056, 7106), 'torch.nn.functional.dropout', 'F.dropout', (['enc_output', 'self.dropout'], {'training': '(True)'}), '(enc_output, self.dropout, training=True)\n', (7065, 7106), True, 'from torch.nn import functional as F\n'), ((8507, 8557), 'torch.nn.functional.dropout', 'F.dropout', (['enc_output', 'self.dropout', 'self.training'], {}), '(enc_output, self.dropout, self.training)\n', (8516, 8557), True, 'from torch.nn import functional as F\n'), ((2380, 2421), 'torch.arange', 'torch.arange', (['half_dim'], {'dtype': 'torch.float'}), '(half_dim, dtype=torch.float)\n', (2392, 2421), False, 'import torch\n'), ((9600, 9641), 'torch.nn.init.calculate_gain', 'torch.nn.init.calculate_gain', (['w_init_gain'], {}), '(w_init_gain)\n', (9628, 9641), False, 'import torch\n'), ((10690, 10731), 'torch.nn.init.calculate_gain', 'torch.nn.init.calculate_gain', (['w_init_gain'], {}), '(w_init_gain)\n', (10718, 10731), False, 'import torch\n'), ((2444, 2491), 'torch.arange', 'torch.arange', (['num_embeddings'], {'dtype': 'torch.float'}), '(num_embeddings, dtype=torch.float)\n', (2456, 2491), False, 'import torch\n'), ((2706, 2736), 'torch.zeros', 'torch.zeros', (['num_embeddings', '(1)'], {}), '(num_embeddings, 1)\n', (2717, 2736), False, 'import torch\n'), ((2549, 2563), 'torch.sin', 'torch.sin', (['emb'], {}), '(emb)\n', (2558, 2563), False, 'import torch\n'), ((2565, 2579), 'torch.cos', 'torch.cos', (['emb'], {}), '(emb)\n', (2574, 2579), False, 'import torch\n')]
import os.path import unittest import numpy from openquake.hazardlib import geo, imt from openquake.hazardlib.shakemap import ( get_shakemap_array, get_sitecol_shakemap, to_gmfs, amplify_ground_shaking, spatial_correlation_array, spatial_covariance_array, cross_correlation_matrix, cholesky) aae = numpy.testing.assert_almost_equal F64 = numpy.float64 imts = [imt.from_string(x) for x in ['PGA', 'SA(0.3)', 'SA(1.0)', 'SA(3.0)']] imt_dt = numpy.dtype([(str(imt), float) for imt in imts]) shakemap_dt = numpy.dtype([('lon', float), ('lat', float), ('val', imt_dt), ('std', imt_dt), ('vs30', float)]) CDIR = os.path.dirname(__file__) def mean_gmf(shakemap): gmfs = to_gmfs( shakemap, crosscorr='cross', site_effects=True, trunclevel=3, num_gmfs=10, seed=42) return [gmfs[..., i].mean() for i in range(len(imts))] class ShakemapTestCase(unittest.TestCase): def test_gmfs(self): f1 = os.path.join(CDIR, 'ghorka_grid.xml') f2 = os.path.join(CDIR, 'ghorka_uncertainty.xml') array = get_shakemap_array(f1, f2) sitecol, shakemap = get_sitecol_shakemap(array) n = 4 # number of sites self.assertEqual(len(sitecol), n) gmf_by_imt = mean_gmf(shakemap) aae(gmf_by_imt, [0.0047045, 0.0184625, 0.0346171, 0.0175625]) def test_amplify(self): res = amplify_ground_shaking(T=3.0, vs30=780, gmvs=[0.1, 0.2, 0.3]) aae(res, [0.09832577, 0.19690711, 0.2958982]) res = amplify_ground_shaking(T=0.3, vs30=780, gmvs=[0.1, 0.2, 0.3]) aae(res, [0.09909498, 0.19870543, 0.29922175]) def test_matrices(self): # distance matrix lons = numpy.array([84., 84., 84., 85.5, 85.5, 85.5, 87., 87., 87.]) lats = numpy.array([26., 27.5, 29., 26., 27.5, 29., 26., 27.5, 29.]) dmatrix = geo.geodetic.distance_matrix(lons, lats) aae(dmatrix.sum(), 18539.6131407) # spatial correlation sca = spatial_correlation_array(dmatrix, imts, 'spatial') aae(sca.sum(), 36.000370229) # spatial covariance std = numpy.array([(0.5, 0.52, 0.64, 0.73)] * 9, imt_dt) # 9 sites scov = spatial_covariance_array([std[n] for n in imt_dt.names], sca) aae(scov.sum(), 13.166200147) # cross correlation ccor = cross_correlation_matrix(imts, 'cross') aae(ccor.sum(), 10.49124788) # cholesky decomposition L = cholesky(scov, ccor) self.assertEqual(L.shape, (36, 36)) aae(L.sum(), 30.5121263) # intensity val = numpy.array( [(5.38409665, 3.9383686, 3.55435415, 4.37692394)] * 9, imt_dt) shakemap = numpy.zeros(9, shakemap_dt) # 9 sites shakemap['lon'] = lons shakemap['lat'] = lats shakemap['vs30'] = numpy.array([301.17] * 9) shakemap['val'] = val shakemap['std'] = std gmfs = to_gmfs( shakemap, crosscorr='corr', site_effects=False, trunclevel=3, num_gmfs=2, seed=42) # shape (R, N, E, M) aae(gmfs[..., 0].sum(axis=1), [[0.3708301, 0.5671011]]) # PGA gmfs = to_gmfs( shakemap, crosscorr='cross', site_effects=True, trunclevel=3, num_gmfs=2, seed=42) aae(gmfs[..., 0].sum(axis=1), [[0.4101717, 0.6240185]]) # PGA aae(gmfs[..., 2].sum(axis=1), [[0.3946015, 0.5385107]]) # SA(1.0)
[ "openquake.hazardlib.shakemap.cholesky", "openquake.hazardlib.shakemap.to_gmfs", "openquake.hazardlib.shakemap.cross_correlation_matrix", "openquake.hazardlib.shakemap.spatial_correlation_array", "openquake.hazardlib.imt.from_string", "numpy.dtype", "numpy.zeros", "openquake.hazardlib.geo.geodetic.distance_matrix", "openquake.hazardlib.shakemap.get_shakemap_array", "numpy.array", "openquake.hazardlib.shakemap.get_sitecol_shakemap", "openquake.hazardlib.shakemap.spatial_covariance_array", "openquake.hazardlib.shakemap.amplify_ground_shaking" ]
[((515, 615), 'numpy.dtype', 'numpy.dtype', (["[('lon', float), ('lat', float), ('val', imt_dt), ('std', imt_dt), ('vs30',\n float)]"], {}), "([('lon', float), ('lat', float), ('val', imt_dt), ('std',\n imt_dt), ('vs30', float)])\n", (526, 615), False, 'import numpy\n'), ((373, 391), 'openquake.hazardlib.imt.from_string', 'imt.from_string', (['x'], {}), '(x)\n', (388, 391), False, 'from openquake.hazardlib import geo, imt\n'), ((709, 804), 'openquake.hazardlib.shakemap.to_gmfs', 'to_gmfs', (['shakemap'], {'crosscorr': '"""cross"""', 'site_effects': '(True)', 'trunclevel': '(3)', 'num_gmfs': '(10)', 'seed': '(42)'}), "(shakemap, crosscorr='cross', site_effects=True, trunclevel=3,\n num_gmfs=10, seed=42)\n", (716, 804), False, 'from openquake.hazardlib.shakemap import get_shakemap_array, get_sitecol_shakemap, to_gmfs, amplify_ground_shaking, spatial_correlation_array, spatial_covariance_array, cross_correlation_matrix, cholesky\n'), ((1073, 1099), 'openquake.hazardlib.shakemap.get_shakemap_array', 'get_shakemap_array', (['f1', 'f2'], {}), '(f1, f2)\n', (1091, 1099), False, 'from openquake.hazardlib.shakemap import get_shakemap_array, get_sitecol_shakemap, to_gmfs, amplify_ground_shaking, spatial_correlation_array, spatial_covariance_array, cross_correlation_matrix, cholesky\n'), ((1128, 1155), 'openquake.hazardlib.shakemap.get_sitecol_shakemap', 'get_sitecol_shakemap', (['array'], {}), '(array)\n', (1148, 1155), False, 'from openquake.hazardlib.shakemap import get_shakemap_array, get_sitecol_shakemap, to_gmfs, amplify_ground_shaking, spatial_correlation_array, spatial_covariance_array, cross_correlation_matrix, cholesky\n'), ((1384, 1445), 'openquake.hazardlib.shakemap.amplify_ground_shaking', 'amplify_ground_shaking', ([], {'T': '(3.0)', 'vs30': '(780)', 'gmvs': '[0.1, 0.2, 0.3]'}), '(T=3.0, vs30=780, gmvs=[0.1, 0.2, 0.3])\n', (1406, 1445), False, 'from openquake.hazardlib.shakemap import get_shakemap_array, get_sitecol_shakemap, to_gmfs, amplify_ground_shaking, spatial_correlation_array, spatial_covariance_array, cross_correlation_matrix, cholesky\n'), ((1515, 1576), 'openquake.hazardlib.shakemap.amplify_ground_shaking', 'amplify_ground_shaking', ([], {'T': '(0.3)', 'vs30': '(780)', 'gmvs': '[0.1, 0.2, 0.3]'}), '(T=0.3, vs30=780, gmvs=[0.1, 0.2, 0.3])\n', (1537, 1576), False, 'from openquake.hazardlib.shakemap import get_shakemap_array, get_sitecol_shakemap, to_gmfs, amplify_ground_shaking, spatial_correlation_array, spatial_covariance_array, cross_correlation_matrix, cholesky\n'), ((1704, 1771), 'numpy.array', 'numpy.array', (['[84.0, 84.0, 84.0, 85.5, 85.5, 85.5, 87.0, 87.0, 87.0]'], {}), '([84.0, 84.0, 84.0, 85.5, 85.5, 85.5, 87.0, 87.0, 87.0])\n', (1715, 1771), False, 'import numpy\n'), ((1781, 1848), 'numpy.array', 'numpy.array', (['[26.0, 27.5, 29.0, 26.0, 27.5, 29.0, 26.0, 27.5, 29.0]'], {}), '([26.0, 27.5, 29.0, 26.0, 27.5, 29.0, 26.0, 27.5, 29.0])\n', (1792, 1848), False, 'import numpy\n'), ((1861, 1901), 'openquake.hazardlib.geo.geodetic.distance_matrix', 'geo.geodetic.distance_matrix', (['lons', 'lats'], {}), '(lons, lats)\n', (1889, 1901), False, 'from openquake.hazardlib import geo, imt\n'), ((1989, 2040), 'openquake.hazardlib.shakemap.spatial_correlation_array', 'spatial_correlation_array', (['dmatrix', 'imts', '"""spatial"""'], {}), "(dmatrix, imts, 'spatial')\n", (2014, 2040), False, 'from openquake.hazardlib.shakemap import get_shakemap_array, get_sitecol_shakemap, to_gmfs, amplify_ground_shaking, spatial_correlation_array, spatial_covariance_array, cross_correlation_matrix, cholesky\n'), ((2122, 2172), 'numpy.array', 'numpy.array', (['([(0.5, 0.52, 0.64, 0.73)] * 9)', 'imt_dt'], {}), '([(0.5, 0.52, 0.64, 0.73)] * 9, imt_dt)\n', (2133, 2172), False, 'import numpy\n'), ((2199, 2260), 'openquake.hazardlib.shakemap.spatial_covariance_array', 'spatial_covariance_array', (['[std[n] for n in imt_dt.names]', 'sca'], {}), '([std[n] for n in imt_dt.names], sca)\n', (2223, 2260), False, 'from openquake.hazardlib.shakemap import get_shakemap_array, get_sitecol_shakemap, to_gmfs, amplify_ground_shaking, spatial_correlation_array, spatial_covariance_array, cross_correlation_matrix, cholesky\n'), ((2343, 2382), 'openquake.hazardlib.shakemap.cross_correlation_matrix', 'cross_correlation_matrix', (['imts', '"""cross"""'], {}), "(imts, 'cross')\n", (2367, 2382), False, 'from openquake.hazardlib.shakemap import get_shakemap_array, get_sitecol_shakemap, to_gmfs, amplify_ground_shaking, spatial_correlation_array, spatial_covariance_array, cross_correlation_matrix, cholesky\n'), ((2466, 2486), 'openquake.hazardlib.shakemap.cholesky', 'cholesky', (['scov', 'ccor'], {}), '(scov, ccor)\n', (2474, 2486), False, 'from openquake.hazardlib.shakemap import get_shakemap_array, get_sitecol_shakemap, to_gmfs, amplify_ground_shaking, spatial_correlation_array, spatial_covariance_array, cross_correlation_matrix, cholesky\n'), ((2599, 2673), 'numpy.array', 'numpy.array', (['([(5.38409665, 3.9383686, 3.55435415, 4.37692394)] * 9)', 'imt_dt'], {}), '([(5.38409665, 3.9383686, 3.55435415, 4.37692394)] * 9, imt_dt)\n', (2610, 2673), False, 'import numpy\n'), ((2707, 2734), 'numpy.zeros', 'numpy.zeros', (['(9)', 'shakemap_dt'], {}), '(9, shakemap_dt)\n', (2718, 2734), False, 'import numpy\n'), ((2835, 2860), 'numpy.array', 'numpy.array', (['([301.17] * 9)'], {}), '([301.17] * 9)\n', (2846, 2860), False, 'import numpy\n'), ((2936, 3030), 'openquake.hazardlib.shakemap.to_gmfs', 'to_gmfs', (['shakemap'], {'crosscorr': '"""corr"""', 'site_effects': '(False)', 'trunclevel': '(3)', 'num_gmfs': '(2)', 'seed': '(42)'}), "(shakemap, crosscorr='corr', site_effects=False, trunclevel=3,\n num_gmfs=2, seed=42)\n", (2943, 3030), False, 'from openquake.hazardlib.shakemap import get_shakemap_array, get_sitecol_shakemap, to_gmfs, amplify_ground_shaking, spatial_correlation_array, spatial_covariance_array, cross_correlation_matrix, cholesky\n'), ((3168, 3262), 'openquake.hazardlib.shakemap.to_gmfs', 'to_gmfs', (['shakemap'], {'crosscorr': '"""cross"""', 'site_effects': '(True)', 'trunclevel': '(3)', 'num_gmfs': '(2)', 'seed': '(42)'}), "(shakemap, crosscorr='cross', site_effects=True, trunclevel=3,\n num_gmfs=2, seed=42)\n", (3175, 3262), False, 'from openquake.hazardlib.shakemap import get_shakemap_array, get_sitecol_shakemap, to_gmfs, amplify_ground_shaking, spatial_correlation_array, spatial_covariance_array, cross_correlation_matrix, cholesky\n')]
# importing numpy, pandas, and matplotlib import numpy as np import pandas as pd import matplotlib import multiprocessing matplotlib.use('agg') import matplotlib.pyplot as plt # importing sklearn from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedKFold from sklearn.decomposition import PCA from sklearn.random_projection import GaussianRandomProjection from sklearn import cluster from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score # importing keras import keras import keras.backend as K from keras.wrappers.scikit_learn import KerasClassifier from keras.callbacks import EarlyStopping, ModelCheckpoint, LambdaCallback from keras.models import Model, load_model # importing util libraries import datetime import time import math import os import importlib # importing custom library import DNN_models import exception_handle #fix np.random.seed for reproducibility in numpy processing np.random.seed(7) class DeepMicrobiome(object): def __init__(self, data, seed, data_dir): self.t_start = time.time() self.filename = str(data) self.data = self.filename.split('.')[0] self.seed = seed self.data_dir = data_dir self.prefix = '' self.representation_only = False def loadData(self, feature_string, label_string, label_dict, dtype=None): # read file filename = self.data_dir + "data/" + self.filename if os.path.isfile(filename): raw = pd.read_csv(filename, sep='\t', index_col=0, header=None) else: print("FileNotFoundError: File {} does not exist".format(filename)) exit() # select rows having feature index identifier string X = raw.loc[raw.index.str.contains(feature_string, regex=False)].T self.X = X # get class labels Y = raw.loc[label_string] #'disease' self.Y = Y.replace(label_dict) # indices self.sample_ids = raw.iloc[1] # train and test split self.X_train, self.X_test, self.y_train, self.y_test, self.train_indices, self.test_indices = train_test_split(self.X.values.astype(dtype), self.Y.values.astype('int'), self.sample_ids, test_size=0.2, random_state=self.seed, stratify=Y.values) self.printDataShapes() def setIndices(self, train_indices, test_indices): self.X_train = self.X.iloc[train_indices] self.X_test = self.X.iloc[test_indices] self.y_train = self.Y.iloc[train_indices] self.y_test = self.Y.iloc[test_indices] self.train_indices = self.sample_ids.iloc[train_indices] self.test_indices = self.sample_ids.iloc[test_indices] def loadCustomData(self, dtype=None): # read file filename = self.data_dir + "data/" + self.filename if os.path.isfile(filename): raw = pd.read_csv(filename, sep=',', index_col=False, header=None) else: print("FileNotFoundError: File {} does not exist".format(filename)) exit() # load data self.X_train = raw.values.astype(dtype) # put nothing or zeros for y_train, y_test, and X_test self.y_train = np.zeros(shape=(self.X_train.shape[0])).astype(dtype) self.X_test = np.zeros(shape=(1,self.X_train.shape[1])).astype(dtype) self.y_test = np.zeros(shape=(1,)).astype(dtype) self.printDataShapes(train_only=True) def loadCustomDataWithLabels(self, label_data, dtype=None): # read file filename = self.data_dir + "data/" + self.filename label_filename = self.data_dir + "data/" + label_data if os.path.isfile(filename) and os.path.isfile(label_filename): raw = pd.read_csv(filename, sep=',', index_col=0, header=None) label = pd.read_csv(label_filename, sep=',', index_col=0, header=None) assert (raw.index == label.index).all() else: if not os.path.isfile(filename): print("FileNotFoundError: File {} does not exist".format(filename)) if not os.path.isfile(label_filename): print("FileNotFoundError: File {} does not exist".format(label_filename)) exit() # label data validity check if not label.values.shape[1] > 1: pass #label = label.values.reshape((label.values.shape[0])) else: print('FileSpecificationError: The label file contains more than 1 column.') exit() # train and test split self.X = raw.astype(dtype) self.sample_ids = raw.index.to_series() self.Y = label.astype(int) self.X_train, self.X_test, self.y_train, self.y_test, self.train_indices, self.test_indices = train_test_split(raw.values.astype(dtype), label.astype('int'), self.sample_ids, test_size=0.2, random_state=self.seed, stratify=label) self.printDataShapes() #Principal Component Analysis def pca(self, ratio=0.99): # manipulating an experiment identifier in the output file self.prefix = self.prefix + 'PCA_' # PCA pca = PCA() pca.fit(self.X_train) n_comp = 0 ratio_sum = 0.0 for comp in pca.explained_variance_ratio_: ratio_sum += comp n_comp += 1 if ratio_sum >= ratio: # Selecting components explaining 99% of variance break pca = PCA(n_components=n_comp) pca.fit(self.X_train) X_train = pca.transform(self.X_train) X_test = pca.transform(self.X_test) # applying the eigenvectors to the whole training and the test set. self.X_train = X_train self.X_test = X_test self.printDataShapes() #Gausian Random Projection def rp(self): # manipulating an experiment identifier in the output file self.prefix = self.prefix + 'RandP_' # GRP rf = GaussianRandomProjection(eps=0.5) rf.fit(self.X_train) # applying GRP to the whole training and the test set. self.X_train = rf.transform(self.X_train) self.X_test = rf.transform(self.X_test) self.printDataShapes() #Shallow Autoencoder & Deep Autoencoder def ae(self, dims = [50], epochs= 2000, batch_size=100, verbose=2, loss='mean_squared_error', latent_act=False, output_act=False, act='relu', patience=20, val_rate=0.2, no_trn=False): # manipulating an experiment identifier in the output file if patience != 20: self.prefix += 'p' + str(patience) + '_' if len(dims) == 1: self.prefix += 'AE' else: self.prefix += 'DAE' if loss == 'binary_crossentropy': self.prefix += 'b' if latent_act: self.prefix += 't' if output_act: self.prefix += 'T' self.prefix += str(dims).replace(", ", "-") + '_' if act == 'sigmoid': self.prefix = self.prefix + 's' # filename for temporary model checkpoint modelName = self.prefix + self.data + '.h5' # clean up model checkpoint before use if os.path.isfile(modelName): os.remove(modelName) # callbacks for each epoch callbacks = [EarlyStopping(monitor='val_loss', patience=patience, mode='min', verbose=1), ModelCheckpoint(modelName, monitor='val_loss', mode='min', verbose=1, save_best_only=True)] # spliting the training set into the inner-train and the inner-test set (validation set) X_inner_train, X_inner_test, y_inner_train, y_inner_test = train_test_split(self.X_train, self.y_train, test_size=val_rate, random_state=self.seed, stratify=self.y_train) # insert input shape into dimension list dims.insert(0, X_inner_train.shape[1]) # create autoencoder model self.autoencoder, self.encoder = DNN_models.autoencoder(dims, act=act, latent_act=latent_act, output_act=output_act) self.autoencoder.summary() if no_trn: return # compile model self.autoencoder.compile(optimizer='adam', loss=loss) # fit model self.history = self.autoencoder.fit(X_inner_train, X_inner_train, epochs=epochs, batch_size=batch_size, callbacks=callbacks, verbose=verbose, validation_data=(X_inner_test, X_inner_test)) # save loss progress self.saveLossProgress() # load best model self.autoencoder = load_model(modelName) layer_idx = int((len(self.autoencoder.layers) - 1) / 2) self.encoder = Model(self.autoencoder.layers[0].input, self.autoencoder.layers[layer_idx].output) # applying the learned encoder into the whole training and the test set. self.X_train = self.encoder.predict(self.X_train) self.X_test = self.encoder.predict(self.X_test) # Variational Autoencoder def vae(self, dims = [10], epochs=2000, batch_size=100, verbose=2, loss='mse', output_act=False, act='relu', patience=25, beta=1.0, warmup=True, warmup_rate=0.01, val_rate=0.2, no_trn=False): # manipulating an experiment identifier in the output file if patience != 25: self.prefix += 'p' + str(patience) + '_' if warmup: self.prefix += 'w' + str(warmup_rate) + '_' self.prefix += 'VAE' if loss == 'binary_crossentropy': self.prefix += 'b' if output_act: self.prefix += 'T' if beta != 1: self.prefix += 'B' + str(beta) self.prefix += str(dims).replace(", ", "-") + '_' if act == 'sigmoid': self.prefix += 'sig_' # filename for temporary model checkpoint modelName = self.prefix + self.data + '.h5' # clean up model checkpoint before use if os.path.isfile(modelName): os.remove(modelName) # callbacks for each epoch callbacks = [EarlyStopping(monitor='val_loss', patience=patience, mode='min', verbose=1), ModelCheckpoint(modelName, monitor='val_loss', mode='min', verbose=1, save_best_only=True,save_weights_only=True)] # warm-up callback warm_up_cb = LambdaCallback(on_epoch_end=lambda epoch, logs: [warm_up(epoch)]) # , print(epoch), print(K.get_value(beta))]) # warm-up implementation def warm_up(epoch): val = epoch * warmup_rate if val <= 1.0: K.set_value(beta, val) # add warm-up callback if requested if warmup: beta = K.variable(value=0.0) callbacks.append(warm_up_cb) # spliting the training set into the inner-train and the inner-test set (validation set) X_inner_train, X_inner_test, y_inner_train, y_inner_test = train_test_split(self.X_train, self.y_train, test_size=val_rate, random_state=self.seed, stratify=self.y_train) # insert input shape into dimension list dims.insert(0, X_inner_train.shape[1]) # create vae model self.vae, self.encoder, self.decoder = DNN_models.variational_AE(dims, act=act, recon_loss=loss, output_act=output_act, beta=beta) self.vae.summary() if no_trn: return # fit self.history = self.vae.fit(X_inner_train, epochs=epochs, batch_size=batch_size, callbacks=callbacks, verbose=verbose, validation_data=(X_inner_test, None)) # save loss progress self.saveLossProgress() # load best model self.vae.load_weights(modelName) self.encoder = self.vae.layers[1] # applying the learned encoder into the whole training and the test set. _, _, self.X_train = self.encoder.predict(self.X_train) _, _, self.X_test = self.encoder.predict(self.X_test) # Convolutional Autoencoder def cae(self, dims = [32], epochs=2000, batch_size=100, verbose=2, loss='mse', output_act=False, act='relu', patience=25, val_rate=0.2, rf_rate = 0.1, st_rate = 0.25, no_trn=False): # manipulating an experiment identifier in the output file self.prefix += 'CAE' if loss == 'binary_crossentropy': self.prefix += 'b' if output_act: self.prefix += 'T' self.prefix += str(dims).replace(", ", "-") + '_' if act == 'sigmoid': self.prefix += 'sig_' # filename for temporary model checkpoint modelName = self.prefix + self.data + '.h5' # clean up model checkpoint before use if os.path.isfile(modelName): os.remove(modelName) # callbacks for each epoch callbacks = [EarlyStopping(monitor='val_loss', patience=patience, mode='min', verbose=1), ModelCheckpoint(modelName, monitor='val_loss', mode='min', verbose=1, save_best_only=True,save_weights_only=True)] # fill out blank onesideDim = int(math.sqrt(self.X_train.shape[1])) + 1 enlargedDim = onesideDim ** 2 self.X_train = np.column_stack((self.X_train, np.zeros((self.X_train.shape[0], enlargedDim - self.X_train.shape[1])))) self.X_test = np.column_stack((self.X_test, np.zeros((self.X_test.shape[0], enlargedDim - self.X_test.shape[1])))) # reshape self.X_train = np.reshape(self.X_train, (len(self.X_train), onesideDim, onesideDim, 1)) self.X_test = np.reshape(self.X_test, (len(self.X_test), onesideDim, onesideDim, 1)) self.printDataShapes() # spliting the training set into the inner-train and the inner-test set (validation set) X_inner_train, X_inner_test, y_inner_train, y_inner_test = train_test_split(self.X_train, self.y_train, test_size=val_rate, random_state=self.seed, stratify=self.y_train) # insert input shape into dimension list dims.insert(0, (onesideDim, onesideDim, 1)) # create cae model self.cae, self.encoder = DNN_models.conv_autoencoder(dims, act=act, output_act=output_act, rf_rate = rf_rate, st_rate = st_rate) self.cae.summary() if no_trn: return # compile self.cae.compile(optimizer='adam', loss=loss) # fit self.history = self.cae.fit(X_inner_train, X_inner_train, epochs=epochs, batch_size=batch_size, callbacks=callbacks, verbose=verbose, validation_data=(X_inner_test, X_inner_test, None)) # save loss progress self.saveLossProgress() # load best model self.cae.load_weights(modelName) if len(self.cae.layers) % 2 == 0: layer_idx = int((len(self.cae.layers) - 2) / 2) else: layer_idx = int((len(self.cae.layers) - 1) / 2) self.encoder = Model(self.cae.layers[0].input, self.cae.layers[layer_idx].output) # applying the learned encoder into the whole training and the test set. self.X_train = self.encoder.predict(self.X_train) self.X_test = self.encoder.predict(self.X_test) self.printDataShapes() # Classification def classification(self, hyper_parameters, method='svm', cv=5, scoring='roc_auc', n_jobs=1, cache_size=10000): clf_start_time = time.time() print("# Tuning hyper-parameters") print(self.X_train.shape, self.y_train.shape) # Support Vector Machine if method == 'svm': clf = GridSearchCV(SVC(probability=True, cache_size=cache_size), hyper_parameters, cv=StratifiedKFold(cv, shuffle=True), scoring=scoring, n_jobs=n_jobs, verbose=100, ) clf.fit(self.X_train, self.y_train) # Random Forest if method == 'rf': clf = GridSearchCV(RandomForestClassifier(n_jobs=-1, random_state=0), hyper_parameters, cv=StratifiedKFold(cv, shuffle=True), scoring=scoring, n_jobs=n_jobs, verbose=100) clf.fit(self.X_train, self.y_train) # Multi-layer Perceptron if method == 'mlp': model = KerasClassifier(build_fn=DNN_models.mlp_model, input_dim=self.X_train.shape[1], verbose=0, ) clf = GridSearchCV(estimator=model, param_grid=hyper_parameters, cv=StratifiedKFold(cv, shuffle=True), scoring=scoring, n_jobs=n_jobs, verbose=100) clf.fit(self.X_train, self.y_train, batch_size=32) print("Best parameters set found on development set:") print() print(clf.best_params_) # Evaluate performance of the best model on test set y_true, y_pred = self.y_test, clf.predict(self.X_test) y_prob = clf.predict_proba(self.X_test) # Performance Metrics: AUC, ACC, Recall, Precision, F1_score metrics = [round(roc_auc_score(y_true, y_prob[:, 1]), 4), round(accuracy_score(y_true, y_pred), 4), round(recall_score(y_true, y_pred), 4), round(precision_score(y_true, y_pred), 4), round(f1_score(y_true, y_pred), 4), ] # time stamp metrics.append(str(datetime.datetime.now())) # running time metrics.append(round( (time.time() - self.t_start), 2)) # classification time metrics.append(round( (time.time() - clf_start_time), 2)) # best hyper-parameter append metrics.append(str(clf.best_params_)) # Write performance metrics as a file res = pd.DataFrame([metrics], index=[self.prefix + method]) with open(self.data_dir + "results/" + self.data + "_result.txt", 'a') as f: res.to_csv(f, header=None) print('Accuracy metrics') print('AUC, ACC, Recall, Precision, F1_score, time-end, runtime(sec), classfication time(sec), best hyper-parameter') print(metrics) def printDataShapes(self, train_only=False): print("X_train.shape: ", self.X_train.shape) if not train_only: print("y_train.shape: ", self.y_train.shape) print("X_test.shape: ", self.X_test.shape) print("y_test.shape: ", self.y_test.shape) # ploting loss progress over epochs def saveLossProgress(self): #print(self.history.history.keys()) #print(type(self.history.history['loss'])) #print(min(self.history.history['loss'])) loss_collector, loss_max_atTheEnd = self.saveLossProgress_ylim() # save loss progress - train and val loss only figureName = self.prefix + self.data + '_' + str(self.seed) plt.ylim(min(loss_collector)*0.9, loss_max_atTheEnd * 2.0) plt.plot(self.history.history['loss']) plt.plot(self.history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train loss', 'val loss'], loc='upper right') plt.savefig(self.data_dir + "results/" + figureName + '.png') plt.close() if 'recon_loss' in self.history.history: figureName = self.prefix + self.data + '_' + str(self.seed) + '_detailed' plt.ylim(min(loss_collector) * 0.9, loss_max_atTheEnd * 2.0) plt.plot(self.history.history['loss']) plt.plot(self.history.history['val_loss']) plt.plot(self.history.history['recon_loss']) plt.plot(self.history.history['val_recon_loss']) plt.plot(self.history.history['kl_loss']) plt.plot(self.history.history['val_kl_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train loss', 'val loss', 'recon_loss', 'val recon_loss', 'kl_loss', 'val kl_loss'], loc='upper right') plt.savefig(self.data_dir + "results/" + figureName + '.png') plt.close() # supporting loss plot def saveLossProgress_ylim(self): loss_collector = [] loss_max_atTheEnd = 0.0 for hist in self.history.history: current = self.history.history[hist] loss_collector += current if current[-1] >= loss_max_atTheEnd: loss_max_atTheEnd = current[-1] return loss_collector, loss_max_atTheEnd if __name__ == '__main__': # argparse import argparse parser = argparse.ArgumentParser() parser._action_groups.pop() # load data load_data = parser.add_argument_group('Loading data') load_data.add_argument("-d", "--data", help="prefix of dataset to open (e.g. abundance_Cirrhosis)", type=str, choices=["abundance_Cirrhosis", "abundance_Colorectal", "abundance_IBD", "abundance_Obesity", "abundance_T2D", "abundance_WT2D", "marker_Cirrhosis", "marker_Colorectal", "marker_IBD", "marker_Obesity", "marker_T2D", "marker_WT2D", ]) load_data.add_argument("-cd", "--custom_data", help="filename for custom input data under the 'data' folder", type=str,) load_data.add_argument("-cl", "--custom_data_labels", help="filename for custom input labels under the 'data' folder", type=str,) load_data.add_argument("-p", "--data_dir", help="custom path for both '/data' and '/results' folders", default="") load_data.add_argument("-dt", "--dataType", help="Specify data type for numerical values (float16, float32, float64)", default="float64", type=str, choices=["float16", "float32", "float64"]) dtypeDict = {"float16": np.float16, "float32": np.float32, "float64": np.float64} # experiment design exp_design = parser.add_argument_group('Experiment design') exp_design.add_argument("-s", "--seed", help="random seed for train and test split", type=int, default=0) exp_design.add_argument("-k", "--kfold", help="Number of stratified folds to perform", type=int, default=5) exp_design.add_argument("-r", "--repeat", help="repeat experiment x times by changing random seed for splitting data", default=5, type=int) # classification classification = parser.add_argument_group('Classification') classification.add_argument("-f", "--numFolds", help="The number of folds for cross-validation in the tranining set", default=5, type=int) classification.add_argument("-m", "--method", help="classifier(s) to use", type=str, default="all", choices=["all", "svm", "rf", "mlp", "svm_rf"]) classification.add_argument("-sc", "--svm_cache", help="cache size for svm run", type=int, default=1000) classification.add_argument("-t", "--numJobs", help="The number of jobs used in parallel GridSearch. (-1: utilize all possible cores; -2: utilize all possible cores except one.)", default=-2, type=int) parser.add_argument("--scoring", help="Metrics used to optimize method", type=str, default='roc_auc', choices=['roc_auc', 'accuracy', 'f1', 'recall', 'precision']) # representation learning & dimensionality reduction algorithms rl = parser.add_argument_group('Representation learning') rl.add_argument("--pca", help="run PCA", action='store_true') rl.add_argument("--rp", help="run Random Projection", action='store_true') rl.add_argument("--ae", help="run Autoencoder or Deep Autoencoder", action='store_true') rl.add_argument("--vae", help="run Variational Autoencoder", action='store_true') rl.add_argument("--cae", help="run Convolutional Autoencoder", action='store_true') rl.add_argument("--save_rep", help="write the learned representation of the training set as a file", action='store_true') # detailed options for representation learning ## common options common = parser.add_argument_group('Common options for representation learning (SAE,DAE,VAE,CAE)') common.add_argument("--aeloss", help="set autoencoder reconstruction loss function", type=str, choices=['mse', 'binary_crossentropy'], default='mse') common.add_argument("--ae_oact", help="output layer sigmoid activation function on/off", action='store_true') common.add_argument("-a", "--act", help="activation function for hidden layers", type=str, default='relu', choices=['relu', 'sigmoid']) common.add_argument("-dm", "--dims", help="Comma-separated dimensions for deep representation learning e.g. (-dm 50,30,20)", type=str, default='50') common.add_argument("-e", "--max_epochs", help="Maximum epochs when training autoencoder", type=int, default=2000) common.add_argument("-pt", "--patience", help="The number of epochs which can be executed without the improvement in validation loss, right after the last improvement.", type=int, default=20) ## AE & DAE only AE = parser.add_argument_group('SAE & DAE-specific arguments') AE.add_argument("--ae_lact", help="latent layer activation function on/off", action='store_true') ## VAE only VAE = parser.add_argument_group('VAE-specific arguments') VAE.add_argument("--vae_beta", help="weight of KL term", type=float, default=1.0) VAE.add_argument("--vae_warmup", help="turn on warm up", action='store_true') VAE.add_argument("--vae_warmup_rate", help="warm-up rate which will be multiplied by current epoch to calculate current beta", default=0.01, type=float) ## CAE only CAE = parser.add_argument_group('CAE-specific arguments') CAE.add_argument("--rf_rate", help="What percentage of input size will be the receptive field (kernel) size? [0,1]", type=float, default=0.1) CAE.add_argument("--st_rate", help="What percentage of receptive field (kernel) size will be the stride size? [0,1]", type=float, default=0.25) # other options others = parser.add_argument_group('other optional arguments') others.add_argument("--no_trn", help="stop before learning representation to see specified autoencoder structure", action='store_true') others.add_argument("--no_clf", help="skip classification tasks", action='store_true') args = parser.parse_args() print(args) # set labels for diseases and controls label_dict = { # Controls 'n': 0, # Chirrhosis 'cirrhosis': 1, # Colorectal Cancer 'cancer': 1, 'small_adenoma': 0, # IBD 'ibd_ulcerative_colitis': 1, 'ibd_crohn_disease': 1, # T2D and WT2D 't2d': 1, # Obesity 'leaness': 0, 'obesity': 1, } # hyper-parameter grids for classifiers rf_hyper_parameters = [{'n_estimators': [s for s in range(100, 1001, 200)], 'max_features': ['sqrt', 'log2'], 'min_samples_leaf': [1, 2, 3, 4, 5], 'criterion': ['gini', 'entropy'] }, ] #svm_hyper_parameters_pasolli = [{'C': [2 ** s for s in range(-5, 16, 2)], 'kernel': ['linear']}, # {'C': [2 ** s for s in range(-5, 16, 2)], 'gamma': [2 ** s for s in range(3, -15, -2)], # 'kernel': ['rbf']}] svm_hyper_parameters = [{'C': [2 ** s for s in range(-5, 6, 2)], 'kernel': ['linear']}, {'C': [2 ** s for s in range(-5, 6, 2)], 'gamma': [2 ** s for s in range(3, -15, -2)],'kernel': ['rbf']}] mlp_hyper_parameters = [{'numHiddenLayers': [1, 2, 3], 'epochs': [30, 50, 100, 200, 300], 'numUnits': [10, 30, 50, 100], 'dropout_rate': [0.1, 0.3], },] def loadData(): dm = None if args.data == None and args.custom_data == None: print("[Error] Please specify an input file. (use -h option for help)") exit() ## provided data elif args.data != None: dm = DeepMicrobiome(data=args.data + '.txt', seed=args.seed, data_dir=args.data_dir) ## specify feature string feature_string = '' data_string = str(args.data) if data_string.split('_')[0] == 'abundance': feature_string = "k__" if data_string.split('_')[0] == 'marker': feature_string = "gi|" ## load data into the object dm.loadData(feature_string=feature_string, label_string='disease', label_dict=label_dict, dtype=dtypeDict[args.dataType]) ## user data elif args.custom_data != None: ### without labels - only conducting representation learning if args.custom_data_labels == None: dm = DeepMicrobiome(data=args.custom_data, seed=args.seed, data_dir=args.data_dir) dm.loadCustomData(dtype=dtypeDict[args.dataType]) ### with labels - conducting representation learning + classification else: dm = DeepMicrobiome(data=args.custom_data, seed=args.seed, data_dir=args.data_dir) dm.loadCustomDataWithLabels(label_data=args.custom_data_labels, dtype=dtypeDict[args.dataType]) else: exit() return dm # run exp function def run_exp(seed): # create an object and load data ## no argument founded def run_fold(train_indices, test_indices, k: int = 1): dm = loadData() numRLrequired = args.pca + args.ae + args.rp + args.vae + args.cae if numRLrequired > 1: raise ValueError('No multiple dimensionality Reduction') # time check after data has been loaded dm.t_start = time.time() # Representation learning (Dimensionality reduction) dm.setIndices(train_indices, test_indices) if args.pca: dm.pca() if args.ae: dm.ae(dims=[int(i) for i in args.dims.split(',')], act=args.act, epochs=args.max_epochs, loss=args.aeloss, latent_act=args.ae_lact, output_act=args.ae_oact, patience=args.patience, no_trn=args.no_trn) if args.vae: dm.vae(dims=[int(i) for i in args.dims.split(',')], act=args.act, epochs=args.max_epochs, loss=args.aeloss, output_act=args.ae_oact, patience=25 if args.patience == 20 else args.patience, beta=args.vae_beta, warmup=args.vae_warmup, warmup_rate=args.vae_warmup_rate, no_trn=args.no_trn) if args.cae: dm.cae(dims=[int(i) for i in args.dims.split(',')], act=args.act, epochs=args.max_epochs, loss=args.aeloss, output_act=args.ae_oact, patience=args.patience, rf_rate=args.rf_rate, st_rate=args.st_rate, no_trn=args.no_trn) if args.rp: dm.rp() # write the learned representation of the training set as a file if args.save_rep: if numRLrequired == 1: fold_dir = os.path.join(dm.data_dir, dm.data, "results", str(k)) if not os.path.isdir(fold_dir): os.makedirs(fold_dir) rep_file = os.path.join(fold_dir, dm.prefix + dm.data + f".train.csv") pd.DataFrame(dm.X_train, index=dm.train_indices).to_csv(rep_file, header=False, index=True) print("The learned representation of the training set has been saved in '{}'".format(rep_file)) rep_file = os.path.join(fold_dir, dm.prefix + dm.data + f".test.csv") pd.DataFrame(dm.X_test, index=dm.test_indices).to_csv(rep_file, header=False, index=True) print("The learned representation of the training set has been saved in '{}'".format(rep_file)) else: print( "Warning: Command option '--save_rep' is not applied as no representation learning or dimensionality reduction has been conducted.") # Classification if args.no_clf or (args.data == None and args.custom_data_labels == None): print("Classification task has been skipped.") else: # turn off GPU os.environ['CUDA_VISIBLE_DEVICES'] = '-1' importlib.reload(keras) # training classification models if args.method == "svm": dm.classification(hyper_parameters=svm_hyper_parameters, method='svm', cv=args.numFolds, n_jobs=args.numJobs, scoring=args.scoring, cache_size=args.svm_cache) elif args.method == "rf": dm.classification(hyper_parameters=rf_hyper_parameters, method='rf', cv=args.numFolds, n_jobs=args.numJobs, scoring=args.scoring) elif args.method == "mlp": dm.classification(hyper_parameters=mlp_hyper_parameters, method='mlp', cv=args.numFolds, n_jobs=args.numJobs, scoring=args.scoring) elif args.method == "svm_rf": dm.classification(hyper_parameters=svm_hyper_parameters, method='svm', cv=args.numFolds, n_jobs=args.numJobs, scoring=args.scoring, cache_size=args.svm_cache) dm.classification(hyper_parameters=rf_hyper_parameters, method='rf', cv=args.numFolds, n_jobs=args.numJobs, scoring=args.scoring) else: dm.classification(hyper_parameters=svm_hyper_parameters, method='svm', cv=args.numFolds, n_jobs=args.numJobs, scoring=args.scoring, cache_size=args.svm_cache) dm.classification(hyper_parameters=rf_hyper_parameters, method='rf', cv=args.numFolds, n_jobs=args.numJobs, scoring=args.scoring) dm.classification(hyper_parameters=mlp_hyper_parameters, method='mlp', cv=args.numFolds, n_jobs=args.numJobs, scoring=args.scoring) dm = loadData() if args.kfold: kf = StratifiedKFold(n_splits=args.kfold, random_state=seed) i = 0 for train_indices, test_indices in kf.split(dm.X.values, dm.Y.values.astype('int')): fold_process = multiprocessing.Process(target=run_fold, args=(train_indices, test_indices, i)) fold_process.start() fold_process.join() i += 1 else: run_fold(dm.train_indices, dm.test_indices) # run experiments try: if args.repeat > 1: for i in range(args.repeat): run_exp(i) else: run_exp(args.seed) except OSError as error: exception_handle.log_exception(error)
[ "keras.models.load_model", "matplotlib.pyplot.title", "os.remove", "numpy.random.seed", "argparse.ArgumentParser", "pandas.read_csv", "sklearn.model_selection.train_test_split", "keras.backend.set_value", "sklearn.metrics.accuracy_score", "keras.models.Model", "os.path.isfile", "sklearn.metrics.f1_score", "sklearn.svm.SVC", "os.path.join", "DNN_models.variational_AE", "pandas.DataFrame", "keras.wrappers.scikit_learn.KerasClassifier", "sklearn.random_projection.GaussianRandomProjection", "matplotlib.pyplot.close", "DNN_models.conv_autoencoder", "datetime.datetime.now", "sklearn.ensemble.RandomForestClassifier", "math.sqrt", "keras.callbacks.ModelCheckpoint", "matplotlib.pyplot.legend", "sklearn.metrics.recall_score", "sklearn.metrics.roc_auc_score", "matplotlib.use", "matplotlib.pyplot.ylabel", "os.makedirs", "matplotlib.pyplot.plot", "os.path.isdir", "numpy.zeros", "time.time", "importlib.reload", "keras.callbacks.EarlyStopping", "sklearn.decomposition.PCA", "sklearn.model_selection.StratifiedKFold", "DNN_models.autoencoder", "sklearn.metrics.precision_score", "multiprocessing.Process", "matplotlib.pyplot.xlabel", "keras.backend.variable", "matplotlib.pyplot.savefig", "exception_handle.log_exception" ]
[((122, 143), 'matplotlib.use', 'matplotlib.use', (['"""agg"""'], {}), "('agg')\n", (136, 143), False, 'import matplotlib\n'), ((1225, 1242), 'numpy.random.seed', 'np.random.seed', (['(7)'], {}), '(7)\n', (1239, 1242), True, 'import numpy as np\n'), ((21201, 21226), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (21224, 21226), False, 'import argparse\n'), ((1343, 1354), 'time.time', 'time.time', ([], {}), '()\n', (1352, 1354), False, 'import time\n'), ((1730, 1754), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (1744, 1754), False, 'import os\n'), ((3099, 3123), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (3113, 3123), False, 'import os\n'), ((5650, 5655), 'sklearn.decomposition.PCA', 'PCA', ([], {}), '()\n', (5653, 5655), False, 'from sklearn.decomposition import PCA\n'), ((5958, 5982), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'n_comp'}), '(n_components=n_comp)\n', (5961, 5982), False, 'from sklearn.decomposition import PCA\n'), ((6461, 6494), 'sklearn.random_projection.GaussianRandomProjection', 'GaussianRandomProjection', ([], {'eps': '(0.5)'}), '(eps=0.5)\n', (6485, 6494), False, 'from sklearn.random_projection import GaussianRandomProjection\n'), ((7678, 7703), 'os.path.isfile', 'os.path.isfile', (['modelName'], {}), '(modelName)\n', (7692, 7703), False, 'import os\n'), ((8150, 8265), 'sklearn.model_selection.train_test_split', 'train_test_split', (['self.X_train', 'self.y_train'], {'test_size': 'val_rate', 'random_state': 'self.seed', 'stratify': 'self.y_train'}), '(self.X_train, self.y_train, test_size=val_rate,\n random_state=self.seed, stratify=self.y_train)\n', (8166, 8265), False, 'from sklearn.model_selection import train_test_split\n'), ((8436, 8524), 'DNN_models.autoencoder', 'DNN_models.autoencoder', (['dims'], {'act': 'act', 'latent_act': 'latent_act', 'output_act': 'output_act'}), '(dims, act=act, latent_act=latent_act, output_act=\n output_act)\n', (8458, 8524), False, 'import DNN_models\n'), ((9042, 9063), 'keras.models.load_model', 'load_model', (['modelName'], {}), '(modelName)\n', (9052, 9063), False, 'from keras.models import Model, load_model\n'), ((9151, 9238), 'keras.models.Model', 'Model', (['self.autoencoder.layers[0].input', 'self.autoencoder.layers[layer_idx].output'], {}), '(self.autoencoder.layers[0].input, self.autoencoder.layers[layer_idx].\n output)\n', (9156, 9238), False, 'from keras.models import Model, load_model\n'), ((10384, 10409), 'os.path.isfile', 'os.path.isfile', (['modelName'], {}), '(modelName)\n', (10398, 10409), False, 'import os\n'), ((11351, 11466), 'sklearn.model_selection.train_test_split', 'train_test_split', (['self.X_train', 'self.y_train'], {'test_size': 'val_rate', 'random_state': 'self.seed', 'stratify': 'self.y_train'}), '(self.X_train, self.y_train, test_size=val_rate,\n random_state=self.seed, stratify=self.y_train)\n', (11367, 11466), False, 'from sklearn.model_selection import train_test_split\n'), ((11887, 11983), 'DNN_models.variational_AE', 'DNN_models.variational_AE', (['dims'], {'act': 'act', 'recon_loss': 'loss', 'output_act': 'output_act', 'beta': 'beta'}), '(dims, act=act, recon_loss=loss, output_act=\n output_act, beta=beta)\n', (11912, 11983), False, 'import DNN_models\n'), ((13331, 13356), 'os.path.isfile', 'os.path.isfile', (['modelName'], {}), '(modelName)\n', (13345, 13356), False, 'import os\n'), ((14443, 14558), 'sklearn.model_selection.train_test_split', 'train_test_split', (['self.X_train', 'self.y_train'], {'test_size': 'val_rate', 'random_state': 'self.seed', 'stratify': 'self.y_train'}), '(self.X_train, self.y_train, test_size=val_rate,\n random_state=self.seed, stratify=self.y_train)\n', (14459, 14558), False, 'from sklearn.model_selection import train_test_split\n'), ((14970, 15074), 'DNN_models.conv_autoencoder', 'DNN_models.conv_autoencoder', (['dims'], {'act': 'act', 'output_act': 'output_act', 'rf_rate': 'rf_rate', 'st_rate': 'st_rate'}), '(dims, act=act, output_act=output_act, rf_rate=\n rf_rate, st_rate=st_rate)\n', (14997, 15074), False, 'import DNN_models\n'), ((15750, 15816), 'keras.models.Model', 'Model', (['self.cae.layers[0].input', 'self.cae.layers[layer_idx].output'], {}), '(self.cae.layers[0].input, self.cae.layers[layer_idx].output)\n', (15755, 15816), False, 'from keras.models import Model, load_model\n'), ((16206, 16217), 'time.time', 'time.time', ([], {}), '()\n', (16215, 16217), False, 'import time\n'), ((18353, 18406), 'pandas.DataFrame', 'pd.DataFrame', (['[metrics]'], {'index': '[self.prefix + method]'}), '([metrics], index=[self.prefix + method])\n', (18365, 18406), True, 'import pandas as pd\n'), ((19503, 19541), 'matplotlib.pyplot.plot', 'plt.plot', (["self.history.history['loss']"], {}), "(self.history.history['loss'])\n", (19511, 19541), True, 'import matplotlib.pyplot as plt\n'), ((19550, 19592), 'matplotlib.pyplot.plot', 'plt.plot', (["self.history.history['val_loss']"], {}), "(self.history.history['val_loss'])\n", (19558, 19592), True, 'import matplotlib.pyplot as plt\n'), ((19601, 19624), 'matplotlib.pyplot.title', 'plt.title', (['"""model loss"""'], {}), "('model loss')\n", (19610, 19624), True, 'import matplotlib.pyplot as plt\n'), ((19633, 19651), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""loss"""'], {}), "('loss')\n", (19643, 19651), True, 'import matplotlib.pyplot as plt\n'), ((19660, 19679), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""epoch"""'], {}), "('epoch')\n", (19670, 19679), True, 'import matplotlib.pyplot as plt\n'), ((19688, 19745), 'matplotlib.pyplot.legend', 'plt.legend', (["['train loss', 'val loss']"], {'loc': '"""upper right"""'}), "(['train loss', 'val loss'], loc='upper right')\n", (19698, 19745), True, 'import matplotlib.pyplot as plt\n'), ((19773, 19834), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(self.data_dir + 'results/' + figureName + '.png')"], {}), "(self.data_dir + 'results/' + figureName + '.png')\n", (19784, 19834), True, 'import matplotlib.pyplot as plt\n'), ((19843, 19854), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (19852, 19854), True, 'import matplotlib.pyplot as plt\n'), ((1774, 1831), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '"""\t"""', 'index_col': '(0)', 'header': 'None'}), "(filename, sep='\\t', index_col=0, header=None)\n", (1785, 1831), True, 'import pandas as pd\n'), ((3143, 3203), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '""","""', 'index_col': '(False)', 'header': 'None'}), "(filename, sep=',', index_col=False, header=None)\n", (3154, 3203), True, 'import pandas as pd\n'), ((3925, 3949), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (3939, 3949), False, 'import os\n'), ((3954, 3984), 'os.path.isfile', 'os.path.isfile', (['label_filename'], {}), '(label_filename)\n', (3968, 3984), False, 'import os\n'), ((4004, 4060), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '""","""', 'index_col': '(0)', 'header': 'None'}), "(filename, sep=',', index_col=0, header=None)\n", (4015, 4060), True, 'import pandas as pd\n'), ((4081, 4143), 'pandas.read_csv', 'pd.read_csv', (['label_filename'], {'sep': '""","""', 'index_col': '(0)', 'header': 'None'}), "(label_filename, sep=',', index_col=0, header=None)\n", (4092, 4143), True, 'import pandas as pd\n'), ((7717, 7737), 'os.remove', 'os.remove', (['modelName'], {}), '(modelName)\n', (7726, 7737), False, 'import os\n'), ((7795, 7870), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'patience': 'patience', 'mode': '"""min"""', 'verbose': '(1)'}), "(monitor='val_loss', patience=patience, mode='min', verbose=1)\n", (7808, 7870), False, 'from keras.callbacks import EarlyStopping, ModelCheckpoint, LambdaCallback\n'), ((7893, 7987), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['modelName'], {'monitor': '"""val_loss"""', 'mode': '"""min"""', 'verbose': '(1)', 'save_best_only': '(True)'}), "(modelName, monitor='val_loss', mode='min', verbose=1,\n save_best_only=True)\n", (7908, 7987), False, 'from keras.callbacks import EarlyStopping, ModelCheckpoint, LambdaCallback\n'), ((10423, 10443), 'os.remove', 'os.remove', (['modelName'], {}), '(modelName)\n', (10432, 10443), False, 'import os\n'), ((10501, 10576), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'patience': 'patience', 'mode': '"""min"""', 'verbose': '(1)'}), "(monitor='val_loss', patience=patience, mode='min', verbose=1)\n", (10514, 10576), False, 'from keras.callbacks import EarlyStopping, ModelCheckpoint, LambdaCallback\n'), ((10599, 10717), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['modelName'], {'monitor': '"""val_loss"""', 'mode': '"""min"""', 'verbose': '(1)', 'save_best_only': '(True)', 'save_weights_only': '(True)'}), "(modelName, monitor='val_loss', mode='min', verbose=1,\n save_best_only=True, save_weights_only=True)\n", (10614, 10717), False, 'from keras.callbacks import EarlyStopping, ModelCheckpoint, LambdaCallback\n'), ((11123, 11144), 'keras.backend.variable', 'K.variable', ([], {'value': '(0.0)'}), '(value=0.0)\n', (11133, 11144), True, 'import keras.backend as K\n'), ((13370, 13390), 'os.remove', 'os.remove', (['modelName'], {}), '(modelName)\n', (13379, 13390), False, 'import os\n'), ((13448, 13523), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'patience': 'patience', 'mode': '"""min"""', 'verbose': '(1)'}), "(monitor='val_loss', patience=patience, mode='min', verbose=1)\n", (13461, 13523), False, 'from keras.callbacks import EarlyStopping, ModelCheckpoint, LambdaCallback\n'), ((13546, 13664), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['modelName'], {'monitor': '"""val_loss"""', 'mode': '"""min"""', 'verbose': '(1)', 'save_best_only': '(True)', 'save_weights_only': '(True)'}), "(modelName, monitor='val_loss', mode='min', verbose=1,\n save_best_only=True, save_weights_only=True)\n", (13561, 13664), False, 'from keras.callbacks import EarlyStopping, ModelCheckpoint, LambdaCallback\n'), ((16971, 17066), 'keras.wrappers.scikit_learn.KerasClassifier', 'KerasClassifier', ([], {'build_fn': 'DNN_models.mlp_model', 'input_dim': 'self.X_train.shape[1]', 'verbose': '(0)'}), '(build_fn=DNN_models.mlp_model, input_dim=self.X_train.shape\n [1], verbose=0)\n', (16986, 17066), False, 'from keras.wrappers.scikit_learn import KerasClassifier\n'), ((20076, 20114), 'matplotlib.pyplot.plot', 'plt.plot', (["self.history.history['loss']"], {}), "(self.history.history['loss'])\n", (20084, 20114), True, 'import matplotlib.pyplot as plt\n'), ((20127, 20169), 'matplotlib.pyplot.plot', 'plt.plot', (["self.history.history['val_loss']"], {}), "(self.history.history['val_loss'])\n", (20135, 20169), True, 'import matplotlib.pyplot as plt\n'), ((20182, 20226), 'matplotlib.pyplot.plot', 'plt.plot', (["self.history.history['recon_loss']"], {}), "(self.history.history['recon_loss'])\n", (20190, 20226), True, 'import matplotlib.pyplot as plt\n'), ((20239, 20287), 'matplotlib.pyplot.plot', 'plt.plot', (["self.history.history['val_recon_loss']"], {}), "(self.history.history['val_recon_loss'])\n", (20247, 20287), True, 'import matplotlib.pyplot as plt\n'), ((20300, 20341), 'matplotlib.pyplot.plot', 'plt.plot', (["self.history.history['kl_loss']"], {}), "(self.history.history['kl_loss'])\n", (20308, 20341), True, 'import matplotlib.pyplot as plt\n'), ((20354, 20399), 'matplotlib.pyplot.plot', 'plt.plot', (["self.history.history['val_kl_loss']"], {}), "(self.history.history['val_kl_loss'])\n", (20362, 20399), True, 'import matplotlib.pyplot as plt\n'), ((20412, 20435), 'matplotlib.pyplot.title', 'plt.title', (['"""model loss"""'], {}), "('model loss')\n", (20421, 20435), True, 'import matplotlib.pyplot as plt\n'), ((20448, 20466), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""loss"""'], {}), "('loss')\n", (20458, 20466), True, 'import matplotlib.pyplot as plt\n'), ((20479, 20498), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""epoch"""'], {}), "('epoch')\n", (20489, 20498), True, 'import matplotlib.pyplot as plt\n'), ((20511, 20630), 'matplotlib.pyplot.legend', 'plt.legend', (["['train loss', 'val loss', 'recon_loss', 'val recon_loss', 'kl_loss',\n 'val kl_loss']"], {'loc': '"""upper right"""'}), "(['train loss', 'val loss', 'recon_loss', 'val recon_loss',\n 'kl_loss', 'val kl_loss'], loc='upper right')\n", (20521, 20630), True, 'import matplotlib.pyplot as plt\n'), ((20639, 20700), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(self.data_dir + 'results/' + figureName + '.png')"], {}), "(self.data_dir + 'results/' + figureName + '.png')\n", (20650, 20700), True, 'import matplotlib.pyplot as plt\n'), ((20713, 20724), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (20722, 20724), True, 'import matplotlib.pyplot as plt\n'), ((30731, 30742), 'time.time', 'time.time', ([], {}), '()\n', (30740, 30742), False, 'import time\n'), ((35356, 35411), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', ([], {'n_splits': 'args.kfold', 'random_state': 'seed'}), '(n_splits=args.kfold, random_state=seed)\n', (35371, 35411), False, 'from sklearn.model_selection import StratifiedKFold\n'), ((36015, 36052), 'exception_handle.log_exception', 'exception_handle.log_exception', (['error'], {}), '(error)\n', (36045, 36052), False, 'import exception_handle\n'), ((3473, 3510), 'numpy.zeros', 'np.zeros', ([], {'shape': 'self.X_train.shape[0]'}), '(shape=self.X_train.shape[0])\n', (3481, 3510), True, 'import numpy as np\n'), ((3549, 3591), 'numpy.zeros', 'np.zeros', ([], {'shape': '(1, self.X_train.shape[1])'}), '(shape=(1, self.X_train.shape[1]))\n', (3557, 3591), True, 'import numpy as np\n'), ((3627, 3647), 'numpy.zeros', 'np.zeros', ([], {'shape': '(1,)'}), '(shape=(1,))\n', (3635, 3647), True, 'import numpy as np\n'), ((4229, 4253), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (4243, 4253), False, 'import os\n'), ((4358, 4388), 'os.path.isfile', 'os.path.isfile', (['label_filename'], {}), '(label_filename)\n', (4372, 4388), False, 'import os\n'), ((11018, 11040), 'keras.backend.set_value', 'K.set_value', (['beta', 'val'], {}), '(beta, val)\n', (11029, 11040), True, 'import keras.backend as K\n'), ((13713, 13745), 'math.sqrt', 'math.sqrt', (['self.X_train.shape[1]'], {}), '(self.X_train.shape[1])\n', (13722, 13745), False, 'import math\n'), ((13843, 13913), 'numpy.zeros', 'np.zeros', (['(self.X_train.shape[0], enlargedDim - self.X_train.shape[1])'], {}), '((self.X_train.shape[0], enlargedDim - self.X_train.shape[1]))\n', (13851, 13913), True, 'import numpy as np\n'), ((13968, 14036), 'numpy.zeros', 'np.zeros', (['(self.X_test.shape[0], enlargedDim - self.X_test.shape[1])'], {}), '((self.X_test.shape[0], enlargedDim - self.X_test.shape[1]))\n', (13976, 14036), True, 'import numpy as np\n'), ((16409, 16453), 'sklearn.svm.SVC', 'SVC', ([], {'probability': '(True)', 'cache_size': 'cache_size'}), '(probability=True, cache_size=cache_size)\n', (16412, 16453), False, 'from sklearn.svm import SVC\n'), ((16689, 16738), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'n_jobs': '(-1)', 'random_state': '(0)'}), '(n_jobs=-1, random_state=0)\n', (16711, 16738), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((17667, 17702), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['y_true', 'y_prob[:, 1]'], {}), '(y_true, y_prob[:, 1])\n', (17680, 17702), False, 'from sklearn.metrics import roc_auc_score\n'), ((17733, 17763), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (17747, 17763), False, 'from sklearn.metrics import accuracy_score\n'), ((17794, 17822), 'sklearn.metrics.recall_score', 'recall_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (17806, 17822), False, 'from sklearn.metrics import recall_score\n'), ((17853, 17884), 'sklearn.metrics.precision_score', 'precision_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (17868, 17884), False, 'from sklearn.metrics import precision_score\n'), ((17915, 17939), 'sklearn.metrics.f1_score', 'f1_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (17923, 17939), False, 'from sklearn.metrics import f1_score\n'), ((17996, 18019), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (18017, 18019), False, 'import datetime\n'), ((33428, 33451), 'importlib.reload', 'importlib.reload', (['keras'], {}), '(keras)\n', (33444, 33451), False, 'import importlib\n'), ((35558, 35637), 'multiprocessing.Process', 'multiprocessing.Process', ([], {'target': 'run_fold', 'args': '(train_indices, test_indices, i)'}), '(target=run_fold, args=(train_indices, test_indices, i))\n', (35581, 35637), False, 'import multiprocessing\n'), ((16476, 16509), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', (['cv'], {'shuffle': '(True)'}), '(cv, shuffle=True)\n', (16491, 16509), False, 'from sklearn.model_selection import StratifiedKFold\n'), ((16761, 16794), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', (['cv'], {'shuffle': '(True)'}), '(cv, shuffle=True)\n', (16776, 16794), False, 'from sklearn.model_selection import StratifiedKFold\n'), ((17144, 17177), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', (['cv'], {'shuffle': '(True)'}), '(cv, shuffle=True)\n', (17159, 17177), False, 'from sklearn.model_selection import StratifiedKFold\n'), ((18077, 18088), 'time.time', 'time.time', ([], {}), '()\n', (18086, 18088), False, 'import time\n'), ((18172, 18183), 'time.time', 'time.time', ([], {}), '()\n', (18181, 18183), False, 'import time\n'), ((32314, 32373), 'os.path.join', 'os.path.join', (['fold_dir', "(dm.prefix + dm.data + f'.train.csv')"], {}), "(fold_dir, dm.prefix + dm.data + f'.train.csv')\n", (32326, 32373), False, 'import os\n'), ((32634, 32692), 'os.path.join', 'os.path.join', (['fold_dir', "(dm.prefix + dm.data + f'.test.csv')"], {}), "(fold_dir, dm.prefix + dm.data + f'.test.csv')\n", (32646, 32692), False, 'import os\n'), ((32211, 32234), 'os.path.isdir', 'os.path.isdir', (['fold_dir'], {}), '(fold_dir)\n', (32224, 32234), False, 'import os\n'), ((32260, 32281), 'os.makedirs', 'os.makedirs', (['fold_dir'], {}), '(fold_dir)\n', (32271, 32281), False, 'import os\n'), ((32394, 32442), 'pandas.DataFrame', 'pd.DataFrame', (['dm.X_train'], {'index': 'dm.train_indices'}), '(dm.X_train, index=dm.train_indices)\n', (32406, 32442), True, 'import pandas as pd\n'), ((32713, 32759), 'pandas.DataFrame', 'pd.DataFrame', (['dm.X_test'], {'index': 'dm.test_indices'}), '(dm.X_test, index=dm.test_indices)\n', (32725, 32759), True, 'import pandas as pd\n')]
from utils import parse_args, create_experiment_dirs, calculate_flops from model import MobileNet from train import Train from data_loader import DataLoader from summarizer import Summarizer import tensorflow as tf from crop_face import FaceCropper import cv2 import numpy as np def main(): # Parse the JSON arguments try: config_args = parse_args() except: print("Add a config file using \'--config file_name.json\'") exit(1) # Create the experiment directories _, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(config_args.experiment_dir) # Reset the default Tensorflow graph tf.reset_default_graph() # Tensorflow specific configuration config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True sess = tf.Session(config=config) # Data loading data = DataLoader(config_args.batch_size, config_args.shuffle) print("Loading Data...") config_args.img_height, config_args.img_width, config_args.num_channels, \ config_args.train_data_size, config_args.test_data_size = data.load_data() print("Data loaded\n\n") # Model creation print("Building the model...") model = MobileNet(config_args) print("Model is built successfully\n\n") # Summarizer creation summarizer = Summarizer(sess, config_args.summary_dir) # Train class trainer = Train(sess, model, data, summarizer) # if config_args.to_train: # try: # print("Training...") # trainer.train() # print("Training Finished\n\n") # except KeyboardInterrupt: # trainer.save_model() # if config_args.to_test: # print("Final test!") # trainer.test('val') # print("Testing Finished\n\n") # trainer.dectect(FaceCropper().generate('fake.png')) if __name__ == '__main__': # main() config_args = parse_args() config_args.img_height, config_args.img_width, config_args.num_channels = (224, 224, 3) _, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(config_args.experiment_dir) config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True faces = FaceCropper().generate('maxresdefault.jpg') with tf.Session(config=config) as sess: config_args.batch_size = len(faces) model = MobileNet(config_args) sess.run(tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())) saver = tf.train.Saver(max_to_keep=config_args.max_to_keep, keep_checkpoint_every_n_hours=10, save_relative_paths=True) saver.restore(sess, tf.train.latest_checkpoint(config_args.checkpoint_dir)) # show camera face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cap = cv2.VideoCapture(0) while True: _, img = cap.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.1, 4) croppedFaces = [] for (x, y, w, h) in faces: r = max(w, h) / 2 centerx = x + w / 2 centery = y + h / 2 nx = int(centerx - r) ny = int(centery - r) nr = int(r * 2) faceimg = img[ny:ny+nr, nx:nx+nr] lastimg = cv2.resize(faceimg, (224, 224)) croppedFaces.append(lastimg) normalizedFaces = np.array(croppedFaces).reshape((len(croppedFaces), 224, 224, 3)) results = sess.run(model.y_out_argmax, feed_dict={model.X: normalizedFaces, model.is_training: False}) i = 0 for (x, y, w, h) in faces: if (results[i] == 0): cv2.rectangle(img, (x, y), (x+w, y+h), (255, 255, 0), 2) cv2.putText(img, 'Fake', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 0), 2) if (results[i] == 1): cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.putText(img, 'Real', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) i += 1 cv2.imshow('img', img) k = cv2.waitKey(30) & 0xff if k==27: break cap.release()
[ "tensorflow.reset_default_graph", "tensorflow.local_variables_initializer", "tensorflow.ConfigProto", "tensorflow.train.latest_checkpoint", "cv2.rectangle", "cv2.imshow", "train.Train", "utils.create_experiment_dirs", "crop_face.FaceCropper", "cv2.cvtColor", "summarizer.Summarizer", "data_loader.DataLoader", "cv2.resize", "tensorflow.train.Saver", "tensorflow.global_variables_initializer", "cv2.waitKey", "tensorflow.Session", "model.MobileNet", "cv2.putText", "cv2.VideoCapture", "numpy.array", "cv2.CascadeClassifier", "utils.parse_args" ]
[((566, 616), 'utils.create_experiment_dirs', 'create_experiment_dirs', (['config_args.experiment_dir'], {}), '(config_args.experiment_dir)\n', (588, 616), False, 'from utils import parse_args, create_experiment_dirs, calculate_flops\n'), ((663, 687), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (685, 687), True, 'import tensorflow as tf\n'), ((742, 783), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)'}), '(allow_soft_placement=True)\n', (756, 783), True, 'import tensorflow as tf\n'), ((838, 863), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (848, 863), True, 'import tensorflow as tf\n'), ((895, 950), 'data_loader.DataLoader', 'DataLoader', (['config_args.batch_size', 'config_args.shuffle'], {}), '(config_args.batch_size, config_args.shuffle)\n', (905, 950), False, 'from data_loader import DataLoader\n'), ((1236, 1258), 'model.MobileNet', 'MobileNet', (['config_args'], {}), '(config_args)\n', (1245, 1258), False, 'from model import MobileNet\n'), ((1348, 1389), 'summarizer.Summarizer', 'Summarizer', (['sess', 'config_args.summary_dir'], {}), '(sess, config_args.summary_dir)\n', (1358, 1389), False, 'from summarizer import Summarizer\n'), ((1422, 1458), 'train.Train', 'Train', (['sess', 'model', 'data', 'summarizer'], {}), '(sess, model, data, summarizer)\n', (1427, 1458), False, 'from train import Train\n'), ((1936, 1948), 'utils.parse_args', 'parse_args', ([], {}), '()\n', (1946, 1948), False, 'from utils import parse_args, create_experiment_dirs, calculate_flops\n'), ((2102, 2152), 'utils.create_experiment_dirs', 'create_experiment_dirs', (['config_args.experiment_dir'], {}), '(config_args.experiment_dir)\n', (2124, 2152), False, 'from utils import parse_args, create_experiment_dirs, calculate_flops\n'), ((2166, 2207), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)'}), '(allow_soft_placement=True)\n', (2180, 2207), True, 'import tensorflow as tf\n'), ((354, 366), 'utils.parse_args', 'parse_args', ([], {}), '()\n', (364, 366), False, 'from utils import parse_args, create_experiment_dirs, calculate_flops\n'), ((2316, 2341), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (2326, 2341), True, 'import tensorflow as tf\n'), ((2411, 2433), 'model.MobileNet', 'MobileNet', (['config_args'], {}), '(config_args)\n', (2420, 2433), False, 'from model import MobileNet\n'), ((2546, 2661), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'max_to_keep': 'config_args.max_to_keep', 'keep_checkpoint_every_n_hours': '(10)', 'save_relative_paths': '(True)'}), '(max_to_keep=config_args.max_to_keep,\n keep_checkpoint_every_n_hours=10, save_relative_paths=True)\n', (2560, 2661), True, 'import tensorflow as tf\n'), ((2860, 2920), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['"""haarcascade_frontalface_default.xml"""'], {}), "('haarcascade_frontalface_default.xml')\n", (2881, 2920), False, 'import cv2\n'), ((2935, 2954), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (2951, 2954), False, 'import cv2\n'), ((2263, 2276), 'crop_face.FaceCropper', 'FaceCropper', ([], {}), '()\n', (2274, 2276), False, 'from crop_face import FaceCropper\n'), ((2758, 2812), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['config_args.checkpoint_dir'], {}), '(config_args.checkpoint_dir)\n', (2784, 2812), True, 'import tensorflow as tf\n'), ((3026, 3063), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2GRAY'], {}), '(img, cv2.COLOR_BGR2GRAY)\n', (3038, 3063), False, 'import cv2\n'), ((4302, 4324), 'cv2.imshow', 'cv2.imshow', (['"""img"""', 'img'], {}), "('img', img)\n", (4312, 4324), False, 'import cv2\n'), ((2460, 2493), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2491, 2493), True, 'import tensorflow as tf\n'), ((2495, 2527), 'tensorflow.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (2525, 2527), True, 'import tensorflow as tf\n'), ((3488, 3519), 'cv2.resize', 'cv2.resize', (['faceimg', '(224, 224)'], {}), '(faceimg, (224, 224))\n', (3498, 3519), False, 'import cv2\n'), ((4341, 4356), 'cv2.waitKey', 'cv2.waitKey', (['(30)'], {}), '(30)\n', (4352, 4356), False, 'import cv2\n'), ((3604, 3626), 'numpy.array', 'np.array', (['croppedFaces'], {}), '(croppedFaces)\n', (3612, 3626), True, 'import numpy as np\n'), ((3899, 3959), 'cv2.rectangle', 'cv2.rectangle', (['img', '(x, y)', '(x + w, y + h)', '(255, 255, 0)', '(2)'], {}), '(img, (x, y), (x + w, y + h), (255, 255, 0), 2)\n', (3912, 3959), False, 'import cv2\n'), ((3976, 4055), 'cv2.putText', 'cv2.putText', (['img', '"""Fake"""', '(x, y)', 'cv2.FONT_HERSHEY_SIMPLEX', '(2)', '(255, 255, 0)', '(2)'], {}), "(img, 'Fake', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 0), 2)\n", (3987, 4055), False, 'import cv2\n'), ((4114, 4172), 'cv2.rectangle', 'cv2.rectangle', (['img', '(x, y)', '(x + w, y + h)', '(0, 255, 0)', '(2)'], {}), '(img, (x, y), (x + w, y + h), (0, 255, 0), 2)\n', (4127, 4172), False, 'import cv2\n'), ((4189, 4266), 'cv2.putText', 'cv2.putText', (['img', '"""Real"""', '(x, y)', 'cv2.FONT_HERSHEY_SIMPLEX', '(2)', '(0, 255, 0)', '(2)'], {}), "(img, 'Real', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2)\n", (4200, 4266), False, 'import cv2\n')]
import numpy as np import open3d as o3d import networkx as nx from scipy.spatial.distance import cdist def crack2graph(pcd, category): """ Create connected graph for cracks from point cloud. """ # compute all pairwise distances (upper triangle) points = np.array(pcd.points) normals = np.array(pcd.normals) dist = cdist(points, points) dist = np.triu(dist, k=0) dist[dist == 0] = np.inf # create nodes G = nx.Graph() for i, pt in enumerate(points): G.add_node(i, pos=points[i, ...], normal=normals[i, ...], category=category) # connect until graph is completely connected while not nx.is_connected(G): src, tar = np.unravel_index(dist.argmin(), dist.shape) dist[src, tar] = np.inf if not nx.has_path(G, src, tar): length = np.sqrt(np.sum(np.power(G.nodes[src]["pos"] - G.nodes[tar]["pos"], 2))) G.add_edge(src, tar, weight=length) return G def noncrack2graph(pcd, category): """ Create graph for noncracks from point cloud. """ # compute all pairwise distances (upper triangle) points = np.array(pcd.points) normals = np.array(pcd.normals) # create nodes G = nx.Graph() for i, pt in enumerate(points): G.add_node(i, pos=points[i, ...], normal=normals[i, ...], category=category) # create edges (to obtain fully-connected graph) for src in G.nodes: for tar in range(src, len(G.nodes)): length = np.sqrt(np.sum(np.power(G.nodes[src]["pos"] - G.nodes[tar]["pos"], 2))) G.add_edge(src, tar, weight=length) # solve traveling salesman tsp = nx.approximation.traveling_salesman_problem pts = tsp(G, cycle=False, method=nx.algorithms.approximation.traveling_salesman.greedy_tsp) # changes fully-connected to tsp edges G.remove_edges_from(list(G.edges)) for i in range(1, len(pts)): points = [G.nodes[pts[i - 1]]['pos'], G.nodes[pts[i]]['pos']] normals = [G.nodes[pts[i - 1]]['normal'], G.nodes[pts[i]]['normal']] G.add_edge(pts[i - 1], pts[i], points=points, normals=normals) return G def simplify_graph(G): """ Removes intermediate nodes with only two neighbors. """ deg = G.degree(G.nodes) end_nodes = np.array([elem for elem in deg if elem[1] == 1]) inter_nodes = np.array([elem for elem in deg if elem[1] > 2]) inter_and_end_nodes = np.array([elem for elem in deg if elem[1] != 2]) # cycle case if len(inter_and_end_nodes) <= 1: # get path of largest cycle and convert to graph edge cycles = nx.cycle_basis(G) path = sorted(cycles, key=lambda elem: G.subgraph(elem).size(weight="weight"), reverse=True)[0] points = [G.nodes[elem]['pos'] for elem in path] normals = [G.nodes[elem]['normal'] for elem in path] GG = nx.Graph(G.subgraph([path[0]])) GG.add_edge(path[0], path[0], points=points, normals=normals) return GG GG = nx.Graph(G.subgraph(inter_and_end_nodes[:, 0])) # furcations absent if len(inter_nodes) == 0: path = nx.shortest_path(G, end_nodes[0, 0], end_nodes[-1, 0]) points = [G.nodes[elem]['pos'] for elem in path] normals = [G.nodes[elem]['normal'] for elem in path] GG.add_edge(path[0], path[-1], points=points, normals=normals) # furcations present: loop over inter nodes for source in inter_nodes: source = source[0] # case: inter node to end node for target in end_nodes: target = target[0] path = nx.shortest_path(G, source, target) # if only exactly this inter node in path, add path if np.sum(np.isin(inter_nodes[:, 0], path)) == 1: points = [G.nodes[elem]['pos'] for elem in path] normals = [G.nodes[elem]['normal'] for elem in path] GG.add_edge(path[0], path[-1], points=points, normals=normals) # case: inter node to inter node for target in inter_nodes: target = target[0] path = nx.shortest_path(G, source, target) # if only exactly these two inter node in path, add path if np.sum(np.isin(inter_nodes[:, 0], path)) == 2: points = [G.nodes[elem]['pos'] for elem in path] normals = [G.nodes[elem]['normal'] for elem in path] GG.add_edge(path[0], path[-1], points=points, normals=normals) return GG def uniquify_graph_nodes(G): """ Converts node IDs into unique (position-based) IDs. """ name_mapping = dict() for node in G.nodes: name_mapping[node] = "_".join(G.nodes[node]["pos"].astype(str)) G = nx.relabel_nodes(G, name_mapping) return G def remove_duplicates(pcd): """ Removes identical points from point cloud. """ # rounding required pcd.points = o3d.utility.Vector3dVector(np.round(np.array(pcd.points), 4)) uni, idxs = np.unique(np.array(pcd.points), return_index=True, axis=0) # create reduced point cloud pcd_red = o3d.geometry.PointCloud() pcd_red.points = o3d.utility.Vector3dVector(np.array(pcd.points)[idxs, :]) pcd_red.colors = o3d.utility.Vector3dVector(np.array(pcd.colors)[idxs, :]) pcd_red.normals = o3d.utility.Vector3dVector(np.array(pcd.normals)[idxs, :]) return pcd_red
[ "scipy.spatial.distance.cdist", "numpy.isin", "numpy.triu", "networkx.is_connected", "numpy.power", "open3d.geometry.PointCloud", "networkx.relabel_nodes", "networkx.shortest_path", "networkx.Graph", "numpy.array", "networkx.has_path", "networkx.cycle_basis" ]
[((268, 288), 'numpy.array', 'np.array', (['pcd.points'], {}), '(pcd.points)\n', (276, 288), True, 'import numpy as np\n'), ((303, 324), 'numpy.array', 'np.array', (['pcd.normals'], {}), '(pcd.normals)\n', (311, 324), True, 'import numpy as np\n'), ((336, 357), 'scipy.spatial.distance.cdist', 'cdist', (['points', 'points'], {}), '(points, points)\n', (341, 357), False, 'from scipy.spatial.distance import cdist\n'), ((369, 387), 'numpy.triu', 'np.triu', (['dist'], {'k': '(0)'}), '(dist, k=0)\n', (376, 387), True, 'import numpy as np\n'), ((445, 455), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (453, 455), True, 'import networkx as nx\n'), ((1116, 1136), 'numpy.array', 'np.array', (['pcd.points'], {}), '(pcd.points)\n', (1124, 1136), True, 'import numpy as np\n'), ((1151, 1172), 'numpy.array', 'np.array', (['pcd.normals'], {}), '(pcd.normals)\n', (1159, 1172), True, 'import numpy as np\n'), ((1201, 1211), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (1209, 1211), True, 'import networkx as nx\n'), ((2260, 2308), 'numpy.array', 'np.array', (['[elem for elem in deg if elem[1] == 1]'], {}), '([elem for elem in deg if elem[1] == 1])\n', (2268, 2308), True, 'import numpy as np\n'), ((2327, 2374), 'numpy.array', 'np.array', (['[elem for elem in deg if elem[1] > 2]'], {}), '([elem for elem in deg if elem[1] > 2])\n', (2335, 2374), True, 'import numpy as np\n'), ((2401, 2449), 'numpy.array', 'np.array', (['[elem for elem in deg if elem[1] != 2]'], {}), '([elem for elem in deg if elem[1] != 2])\n', (2409, 2449), True, 'import numpy as np\n'), ((4687, 4720), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['G', 'name_mapping'], {}), '(G, name_mapping)\n', (4703, 4720), True, 'import networkx as nx\n'), ((5044, 5069), 'open3d.geometry.PointCloud', 'o3d.geometry.PointCloud', ([], {}), '()\n', (5067, 5069), True, 'import open3d as o3d\n'), ((643, 661), 'networkx.is_connected', 'nx.is_connected', (['G'], {}), '(G)\n', (658, 661), True, 'import networkx as nx\n'), ((2585, 2602), 'networkx.cycle_basis', 'nx.cycle_basis', (['G'], {}), '(G)\n', (2599, 2602), True, 'import networkx as nx\n'), ((3087, 3141), 'networkx.shortest_path', 'nx.shortest_path', (['G', 'end_nodes[0, 0]', 'end_nodes[-1, 0]'], {}), '(G, end_nodes[0, 0], end_nodes[-1, 0])\n', (3103, 3141), True, 'import networkx as nx\n'), ((4948, 4968), 'numpy.array', 'np.array', (['pcd.points'], {}), '(pcd.points)\n', (4956, 4968), True, 'import numpy as np\n'), ((774, 798), 'networkx.has_path', 'nx.has_path', (['G', 'src', 'tar'], {}), '(G, src, tar)\n', (785, 798), True, 'import networkx as nx\n'), ((3561, 3596), 'networkx.shortest_path', 'nx.shortest_path', (['G', 'source', 'target'], {}), '(G, source, target)\n', (3577, 3596), True, 'import networkx as nx\n'), ((4064, 4099), 'networkx.shortest_path', 'nx.shortest_path', (['G', 'source', 'target'], {}), '(G, source, target)\n', (4080, 4099), True, 'import networkx as nx\n'), ((4896, 4916), 'numpy.array', 'np.array', (['pcd.points'], {}), '(pcd.points)\n', (4904, 4916), True, 'import numpy as np\n'), ((5118, 5138), 'numpy.array', 'np.array', (['pcd.points'], {}), '(pcd.points)\n', (5126, 5138), True, 'import numpy as np\n'), ((5197, 5217), 'numpy.array', 'np.array', (['pcd.colors'], {}), '(pcd.colors)\n', (5205, 5217), True, 'import numpy as np\n'), ((5277, 5298), 'numpy.array', 'np.array', (['pcd.normals'], {}), '(pcd.normals)\n', (5285, 5298), True, 'import numpy as np\n'), ((836, 890), 'numpy.power', 'np.power', (["(G.nodes[src]['pos'] - G.nodes[tar]['pos'])", '(2)'], {}), "(G.nodes[src]['pos'] - G.nodes[tar]['pos'], 2)\n", (844, 890), True, 'import numpy as np\n'), ((1492, 1546), 'numpy.power', 'np.power', (["(G.nodes[src]['pos'] - G.nodes[tar]['pos'])", '(2)'], {}), "(G.nodes[src]['pos'] - G.nodes[tar]['pos'], 2)\n", (1500, 1546), True, 'import numpy as np\n'), ((3684, 3716), 'numpy.isin', 'np.isin', (['inter_nodes[:, 0]', 'path'], {}), '(inter_nodes[:, 0], path)\n', (3691, 3716), True, 'import numpy as np\n'), ((4192, 4224), 'numpy.isin', 'np.isin', (['inter_nodes[:, 0]', 'path'], {}), '(inter_nodes[:, 0], path)\n', (4199, 4224), True, 'import numpy as np\n')]
# Taken From http://stackoverflow.com/questions/32551610/overlapping-probability-of-two-normal-distribution-with-scipy from numpy import roots, log from scipy.stats import norm def solve_norm_intersect(m1, m2, std1, std2): a = 1 / (2 * std1 ** 2) - 1 / (2 * std2 ** 2) b = m2 / (std2 ** 2) - m1 / (std1 ** 2) c = m1 ** 2 / (2 * std1 ** 2) - m2 ** 2 / (2 * std2 ** 2) - log(std2 / std1) return roots([a, b, c]) def get_overlap(m1, m2, std1, std2): # Get point of intersect result = solve_norm_intersect(m1, m2, std1, std2) r = result[0] # integrate return norm.cdf(r, m2, std2)
[ "scipy.stats.norm.cdf", "numpy.roots", "numpy.log" ]
[((412, 428), 'numpy.roots', 'roots', (['[a, b, c]'], {}), '([a, b, c])\n', (417, 428), False, 'from numpy import roots, log\n'), ((598, 619), 'scipy.stats.norm.cdf', 'norm.cdf', (['r', 'm2', 'std2'], {}), '(r, m2, std2)\n', (606, 619), False, 'from scipy.stats import norm\n'), ((384, 400), 'numpy.log', 'log', (['(std2 / std1)'], {}), '(std2 / std1)\n', (387, 400), False, 'from numpy import roots, log\n')]
import os import numpy as np import torch from torch.utils.data import Dataset, DataLoader, ConcatDataset, Sampler from deepSM.smutils import SMFile from deepSM import utils import deepSM.beat_time_converter as BTC from deepSM import wavutils import h5py from importlib import reload reload(BTC) reload(wavutils) reload(utils) def get_dataset_from_file(song_names, base_path='.', data_folder='data'): smds = [] for song_name in song_names: smds.append(load(song_name, base_path, data_folder)) return ConcatDataset(smds) def get_dataset_from_raw(song_names, base_path='.'): smds = [] for song_name in song_names: smds.append(generate(song_name, base_path)) return ConcatDataset(smds) def save_generated_datasets(song_names, base_path='.'): for song_name in song_names: smd = generate(song_name, base_path) smd.save() def generate(song_name, base_path='.', chunk_size=100, context_size=7): """ Generate an SMDataset from SM/wav files. """ sm = SMFile(song_name, base_path) # May want to save the time mapping later. btc = BTC.BeatTimeConverter(sm.offset, sm.bpms, sm.stops) # Will want to mantain order. # List of strings, not ints. diffs = list(filter(lambda x: x != 'Edit', sm.note_charts.keys())) notes = {} # Contains only a list of notes for each difficulty. times = {} # List of times per diff. frames = {} # labels = {} # List of note aligned labels for note events. {0, 1} for now. # Track first and last notes for wav padding. first_frame = np.inf last_frame = -np.inf # Find note times and frames for alignment to features. for diff in diffs: times[diff], notes[diff] = \ btc.gen_time_notes(sm.note_charts[diff].notes) frames[diff] = btc.align_to_frame(times[diff]) if frames[diff][0] < first_frame: first_frame = frames[diff][0] if frames[diff][-1] > last_frame: last_frame = frames[diff][-1] # Test this! # Test by writing beeps again. front_pad_frames, padded_wav = wavutils.pad_wav(first_frame, last_frame, sm.wavdata) fft_features = wavutils.gen_fft_features(padded_wav) # N_channels = 3 (1024, 2048, 4096) # N_frames ~ song length * 44100 / 512 # N_freqs = 80 (Number of mel coefs per frame) N_channels, N_frames, N_freqs = fft_features.shape # Number of possible starting frames in the song. # Need to exclude ending lag and unusable frames at the very ends. sample_length = N_frames - chunk_size - context_size * 2 labels = np.zeros((len(diffs), N_frames)) for i, diff in enumerate(diffs): # Adjusting for the new frames added on to the front. frames[diff] += front_pad_frames # Generating final frame-aligned labels for note event: labels[i, frames[diff]] = 1 # Testing alignment of frames. # wavutils.test_alignment(padded_wav, frames[diff] * 512 / 44100) return SMDataset(song_name, fft_features, labels, diffs, chunk_size, context_size) class SMDataset(Dataset): """ Dataset loader for note placement network. Loads and feature engineers the songs and sm files for training. Note: Frame context size is currently hard coded! """ def __init__(self, song_name, fft_features, labels, diffs, chunk_size, context_size): # Dataset properties. self.song_name = song_name self.fft_features = fft_features self.labels = labels self.diffs = diffs self.chunk_size = chunk_size self.context_size = context_size # Genratable from dataset properties. self.N_frames = fft_features.shape[1] self.sample_length = self.N_frames - self.chunk_size - self.context_size * 2 def __len__(self): # Can start at any point in the song, as long as there is enough # room to unroll to chunk_size. return len(self.diffs) * self.sample_length def __getitem__(self, idx): # Since all difficulties have the same number of frames, divide to get # which diff, order determined by self.diffs. # Remainder to find the frame. # "Concatenated" representation. diff_idx = idx // self.sample_length frame_idx = idx % self.sample_length # First self.context_size frames are unusable. frame_idx += self.context_size diff = self.diffs[diff_idx] diff_code = utils.difficulties[diff] # chuck_slice = slice(frame_idx, frame_idx + self.chunk_size) chunk_slice = slice(frame_idx - self.context_size, frame_idx + self.context_size + 1) # Get the slice of the features/labels for the chunk. fft_features = self.fft_features[:,chunk_slice, :] # event_labels = self.labels[diff][chunk_slice] # CNN version. currently scalar. event_labels = self.labels[diff_idx, frame_idx].reshape((1)) diff_vec = np.zeros(5) diff_vec[diff_code] = 1 res = { 'fft_features': fft_features.astype(np.float32), 'diff': diff_vec.astype(np.float32), 'labels': event_labels.astype(np.float32) } return res def save(self, base_path='.', data_folder='data', fname=None): if fname is None: song_name = self.song_name fname = '%s/%s/%s/%s.h5' % (base_path, data_folder, song_name, song_name) print(fname) if not os.path.isdir('/'.join([base_path,data_folder])): os.mkdir('/'.join([base_path,data_folder])) if not os.path.isdir('/'.join([base_path,data_folder,song_name])): os.mkdir('/'.join([base_path,data_folder,song_name])) with h5py.File(fname, 'w') as hf: hf.attrs['song_name'] = self.song_name hf.attrs['diffs'] = np.array(self.diffs, dtype='S10') hf.attrs['chunk_size'] = self.chunk_size hf.attrs['context_size'] = self.context_size hf.create_dataset('fft_features', data=self.fft_features) hf.create_dataset('labels', data=self.labels) def load(fname, base_path='.', data_folder='data'): h5name = base_path + f'/{data_folder}/{fname}/{fname}.h5' with h5py.File(h5name, 'r') as hf: song_name = hf.attrs['song_name'] diffs = list(map(lambda x: x.decode('ascii'), hf.attrs['diffs'])) chunk_size = hf.attrs['chunk_size'] context_size = hf.attrs['context_size'] fft_features = hf['fft_features'].value labels = hf['labels'].value return SMDataset(song_name, fft_features, labels, diffs, chunk_size, context_size)
[ "h5py.File", "torch.utils.data.ConcatDataset", "numpy.zeros", "deepSM.wavutils.pad_wav", "deepSM.beat_time_converter.BeatTimeConverter", "deepSM.smutils.SMFile", "importlib.reload", "deepSM.wavutils.gen_fft_features", "numpy.array" ]
[((288, 299), 'importlib.reload', 'reload', (['BTC'], {}), '(BTC)\n', (294, 299), False, 'from importlib import reload\n'), ((300, 316), 'importlib.reload', 'reload', (['wavutils'], {}), '(wavutils)\n', (306, 316), False, 'from importlib import reload\n'), ((317, 330), 'importlib.reload', 'reload', (['utils'], {}), '(utils)\n', (323, 330), False, 'from importlib import reload\n'), ((527, 546), 'torch.utils.data.ConcatDataset', 'ConcatDataset', (['smds'], {}), '(smds)\n', (540, 546), False, 'from torch.utils.data import Dataset, DataLoader, ConcatDataset, Sampler\n'), ((716, 735), 'torch.utils.data.ConcatDataset', 'ConcatDataset', (['smds'], {}), '(smds)\n', (729, 735), False, 'from torch.utils.data import Dataset, DataLoader, ConcatDataset, Sampler\n'), ((1035, 1063), 'deepSM.smutils.SMFile', 'SMFile', (['song_name', 'base_path'], {}), '(song_name, base_path)\n', (1041, 1063), False, 'from deepSM.smutils import SMFile\n'), ((1122, 1173), 'deepSM.beat_time_converter.BeatTimeConverter', 'BTC.BeatTimeConverter', (['sm.offset', 'sm.bpms', 'sm.stops'], {}), '(sm.offset, sm.bpms, sm.stops)\n', (1143, 1173), True, 'import deepSM.beat_time_converter as BTC\n'), ((2114, 2167), 'deepSM.wavutils.pad_wav', 'wavutils.pad_wav', (['first_frame', 'last_frame', 'sm.wavdata'], {}), '(first_frame, last_frame, sm.wavdata)\n', (2130, 2167), False, 'from deepSM import wavutils\n'), ((2188, 2225), 'deepSM.wavutils.gen_fft_features', 'wavutils.gen_fft_features', (['padded_wav'], {}), '(padded_wav)\n', (2213, 2225), False, 'from deepSM import wavutils\n'), ((5029, 5040), 'numpy.zeros', 'np.zeros', (['(5)'], {}), '(5)\n', (5037, 5040), True, 'import numpy as np\n'), ((6364, 6386), 'h5py.File', 'h5py.File', (['h5name', '"""r"""'], {}), "(h5name, 'r')\n", (6373, 6386), False, 'import h5py\n'), ((5853, 5874), 'h5py.File', 'h5py.File', (['fname', '"""w"""'], {}), "(fname, 'w')\n", (5862, 5874), False, 'import h5py\n'), ((5966, 5999), 'numpy.array', 'np.array', (['self.diffs'], {'dtype': '"""S10"""'}), "(self.diffs, dtype='S10')\n", (5974, 5999), True, 'import numpy as np\n')]
from __future__ import absolute_import from celeryTasks.celery import app # The function takes as input: # 1) src_path: Input image, directory, or npy. # 2) socketid: The socket id of the connection. # 3) result_path: The folder path where the result image will be stored. # It should be full path in case of a single file, else the directory path. # It should be web accessible. # NOTE: # 1) Its job is to classify the images according to the pre-trained model. # 2) ignore_result=True signifies that celery won't pass any result to the backend. # 3) It is important to import all the modules only inside the function # 4) When running with new version of caffe do np.load(MEAN_FILE).mean(1).mean(1) @app.task(ignore_result=True) def classifyImages(src_path, socketid, result_path): # Establishing connection to send results and write messages import redis import json from cloudcv17 import config rs = redis.StrictRedis(host=config.REDIS_HOST, port=6379) try: import caffe import numpy as np import os import glob import time import operator import scipy.io as sio # Used to assign labels to the results matWNID = sio.loadmat(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'WNID.mat')) WNID_cells = matWNID['wordsortWNID'] # Caffe Initialisations CAFFE_DIR = os.path.normpath(os.path.join(os.path.dirname(caffe.__file__), "..", "..")) MODEL_FILE = os.path.join(CAFFE_DIR, 'models/bvlc_reference_caffenet/deploy.prototxt') PRETRAINED = os.path.join(CAFFE_DIR, 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel') MEAN_FILE = os.path.join(CAFFE_DIR, 'python/caffe/imagenet/ilsvrc_2012_mean.npy') RAW_SCALE = 255.0 IMAGE_DIMS = (256, 256) CHANNEL_SWAP = (2, 1, 0) # Set CPU mode caffe.set_mode_cpu() # Make classifier. classifier = caffe.Classifier(MODEL_FILE, PRETRAINED, image_dims=IMAGE_DIMS, mean=np.load(MEAN_FILE).mean(1).mean(1), raw_scale=RAW_SCALE, channel_swap=CHANNEL_SWAP) # Classify and Send Results if os.path.isdir(src_path): for input_file in glob.glob(os.path.join(src_path, '*')): if os.path.isfile(input_file): # Load file rs.publish('chat', json.dumps({'message': 'Processing ' + os.path.basename(input_file), 'socketid': str(socketid)})) inputs = [caffe.io.load_image(input_file)] # Classify. start = time.time() prediction = classifier.predict(inputs) timeMsg = "Completed in %.2f s." % (time.time() - start) rs.publish('chat', json.dumps({'message': timeMsg, 'socketid': str(socketid)})) dictionary = {} for i, j in enumerate(prediction[0]): dictionary[i] = j predsorted = sorted(dictionary.iteritems(), key=operator.itemgetter(1), reverse=True) top5 = predsorted[0:5] topresults = [] for item in top5: topresults.append([str(WNID_cells[item, 0][0][0]), str(item[1])]) web_result = {} web_result[os.path.join(result_path, os.path.basename(input_file))] = topresults rs.publish('chat', json.dumps({'web_result': json.dumps(web_result), 'socketid': str(socketid)})) else: input_file = src_path # Load file rs.publish('chat', json.dumps({'message': 'Processing ' + os.path.basename(input_file), 'socketid': str(socketid)})) inputs = [caffe.io.load_image(input_file)] # Classify. start = time.time() prediction = classifier.predict(inputs) timeMsg = "Completed in %.2f s." % (time.time() - start) rs.publish('chat', json.dumps({'message': timeMsg, 'socketid': str(socketid)})) dictionary = {} for i, j in enumerate(prediction[0]): dictionary[i] = j predsorted = sorted(dictionary.iteritems(), key=operator.itemgetter(1), reverse=True) top5 = predsorted[0:5] topresults = [] for item in top5: topresults.append([str(WNID_cells[item, 0][0][0]), str(item[1])]) web_result = {} web_result[result_path] = topresults rs.publish('chat', json.dumps({'web_result': json.dumps(web_result), 'socketid': str(socketid)})) rs.publish('chat', json.dumps({'message': 'Thank you for using CloudCV', 'socketid': str(socketid)})) except: import traceback rs.publish('chat', json.dumps({'message': str(traceback.format_exc()), 'socketid': str(socketid)}))
[ "os.path.abspath", "numpy.load", "caffe.io.load_image", "os.path.basename", "os.path.isdir", "os.path.dirname", "caffe.set_mode_cpu", "time.time", "json.dumps", "os.path.isfile", "traceback.format_exc", "redis.StrictRedis", "celeryTasks.celery.app.task", "os.path.join", "operator.itemgetter" ]
[((709, 737), 'celeryTasks.celery.app.task', 'app.task', ([], {'ignore_result': '(True)'}), '(ignore_result=True)\n', (717, 737), False, 'from celeryTasks.celery import app\n'), ((931, 983), 'redis.StrictRedis', 'redis.StrictRedis', ([], {'host': 'config.REDIS_HOST', 'port': '(6379)'}), '(host=config.REDIS_HOST, port=6379)\n', (948, 983), False, 'import redis\n'), ((1498, 1571), 'os.path.join', 'os.path.join', (['CAFFE_DIR', '"""models/bvlc_reference_caffenet/deploy.prototxt"""'], {}), "(CAFFE_DIR, 'models/bvlc_reference_caffenet/deploy.prototxt')\n", (1510, 1571), False, 'import os\n'), ((1593, 1689), 'os.path.join', 'os.path.join', (['CAFFE_DIR', '"""models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"""'], {}), "(CAFFE_DIR,\n 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel')\n", (1605, 1689), False, 'import os\n'), ((1706, 1775), 'os.path.join', 'os.path.join', (['CAFFE_DIR', '"""python/caffe/imagenet/ilsvrc_2012_mean.npy"""'], {}), "(CAFFE_DIR, 'python/caffe/imagenet/ilsvrc_2012_mean.npy')\n", (1718, 1775), False, 'import os\n'), ((1899, 1919), 'caffe.set_mode_cpu', 'caffe.set_mode_cpu', ([], {}), '()\n', (1917, 1919), False, 'import caffe\n'), ((2246, 2269), 'os.path.isdir', 'os.path.isdir', (['src_path'], {}), '(src_path)\n', (2259, 2269), False, 'import os\n'), ((4033, 4044), 'time.time', 'time.time', ([], {}), '()\n', (4042, 4044), False, 'import time\n'), ((1431, 1462), 'os.path.dirname', 'os.path.dirname', (['caffe.__file__'], {}), '(caffe.__file__)\n', (1446, 1462), False, 'import os\n'), ((2311, 2338), 'os.path.join', 'os.path.join', (['src_path', '"""*"""'], {}), "(src_path, '*')\n", (2323, 2338), False, 'import os\n'), ((2360, 2386), 'os.path.isfile', 'os.path.isfile', (['input_file'], {}), '(input_file)\n', (2374, 2386), False, 'import os\n'), ((3955, 3986), 'caffe.io.load_image', 'caffe.io.load_image', (['input_file'], {}), '(input_file)\n', (3974, 3986), False, 'import caffe\n'), ((1262, 1287), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1277, 1287), False, 'import os\n'), ((2732, 2743), 'time.time', 'time.time', ([], {}), '()\n', (2741, 2743), False, 'import time\n'), ((4145, 4156), 'time.time', 'time.time', ([], {}), '()\n', (4154, 4156), False, 'import time\n'), ((4431, 4453), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (4450, 4453), False, 'import operator\n'), ((2638, 2669), 'caffe.io.load_image', 'caffe.io.load_image', (['input_file'], {}), '(input_file)\n', (2657, 2669), False, 'import caffe\n'), ((4779, 4801), 'json.dumps', 'json.dumps', (['web_result'], {}), '(web_result)\n', (4789, 4801), False, 'import json\n'), ((2860, 2871), 'time.time', 'time.time', ([], {}), '()\n', (2869, 2871), False, 'import time\n'), ((3186, 3208), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (3205, 3208), False, 'import operator\n'), ((3525, 3553), 'os.path.basename', 'os.path.basename', (['input_file'], {}), '(input_file)\n', (3541, 3553), False, 'import os\n'), ((3874, 3902), 'os.path.basename', 'os.path.basename', (['input_file'], {}), '(input_file)\n', (3890, 3902), False, 'import os\n'), ((5035, 5057), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (5055, 5057), False, 'import traceback\n'), ((2076, 2094), 'numpy.load', 'np.load', (['MEAN_FILE'], {}), '(MEAN_FILE)\n', (2083, 2094), True, 'import numpy as np\n'), ((3634, 3656), 'json.dumps', 'json.dumps', (['web_result'], {}), '(web_result)\n', (3644, 3656), False, 'import json\n'), ((2549, 2577), 'os.path.basename', 'os.path.basename', (['input_file'], {}), '(input_file)\n', (2565, 2577), False, 'import os\n')]
import os import cv2 import pathlib import numpy as np class image_warper(): def __init__(self, image_path, save_folder="out", windows_size=(1200, 700)): self.image_path = image_path self.save_folder = save_folder self.windows_size = windows_size self.setup() def setup(self): """setup for opencv window""" self.window_name = "warp image" cv2.namedWindow(self.window_name, cv2.WINDOW_NORMAL) cv2.resizeWindow(self.window_name, self.windows_size[0], self.windows_size[1]) cv2.setMouseCallback(self.window_name, self.draw_circle) def warp_image(self): """warps image with opecv findHomography and warpPerspective functions""" image = cv2.imread(self.image_path) points = np.array(self.points) image_array = np.array([[0, 0],[image.shape[1], 0],[0, image.shape[0]],[image.shape[1], image.shape[0]]]) h, status = cv2.findHomography(points, image_array) new_image = cv2.warpPerspective(image, h, (image.shape[1],image.shape[0])) return new_image def refresh_image(self): self.image = cv2.imread(self.image_path) self.points = [] def draw_circle(self, event, x, y, flags, param): if(event == cv2.EVENT_LBUTTONDOWN): if(len(self.points) < 4): cv2.circle(self.image,(x,y),3,(255,0,0),-1) points_temp = [] points_temp.append(x) points_temp.append(y) self.points.append(points_temp) print("points: {0}".format(self.points)) else: print("can not select more than 4 points") def create_unique_file_name(self, file_path, before_number="(", after_number=")"): temp_file_path = file_path file_name_counter = 1 if(os.path.isfile(temp_file_path)): while(True): save_path, temp_file_name = os.path.split(temp_file_path) temp_file_name, temp_file_extension = os.path.splitext(temp_file_name) temp_file_name = "{0}{1}{2}{3}{4}".format(temp_file_name, before_number, file_name_counter, after_number, temp_file_extension) temp_file_path = os.path.join(save_path, temp_file_name) file_name_counter += 1 if(os.path.isfile(temp_file_path)): temp_file_path = file_path else: file_path = temp_file_path break return file_path def start_warper(self): """starts opencv window""" print("please select points with this order.\ntop left, top right, bottom left, bottom right") self.image = cv2.imread(self.image_path) self.points = [] while(True): cv2.imshow(self.window_name, self.image) key = cv2.waitKey(1) if(key == ord("s")): if(len(self.points) == 4): # warp image new_image = self.warp_image() # create new path pathlib.Path(self.save_folder).mkdir(parents=True, exist_ok=True) _, image_name = os.path.split(self.image_path) save_path = os.path.join(self.save_folder, image_name) save_path = self.create_unique_file_name(save_path) # save and show new image cv2.imwrite(save_path, new_image) cv2.imshow("warped image", new_image) print("image saved '{0}'".format(save_path)) # refresh image self.refresh_image() else: print(self.points) print("select more points or\nclear selected points with c") # options if(key == ord("c")): print("image reloaded") self.refresh_image() # exit if(cv2.getWindowProperty(self.window_name, 0) < 0): break if(key == 27): break cv2.destroyAllWindows() if __name__ == "__main__": warper = image_warper("example_images/1.jpeg") warper.start_warper()
[ "cv2.warpPerspective", "cv2.circle", "os.path.join", "cv2.waitKey", "cv2.imwrite", "cv2.imshow", "cv2.imread", "os.path.isfile", "cv2.setMouseCallback", "numpy.array", "os.path.splitext", "pathlib.Path", "cv2.resizeWindow", "cv2.destroyAllWindows", "cv2.findHomography", "cv2.getWindowProperty", "cv2.namedWindow", "os.path.split" ]
[((407, 459), 'cv2.namedWindow', 'cv2.namedWindow', (['self.window_name', 'cv2.WINDOW_NORMAL'], {}), '(self.window_name, cv2.WINDOW_NORMAL)\n', (422, 459), False, 'import cv2\n'), ((468, 546), 'cv2.resizeWindow', 'cv2.resizeWindow', (['self.window_name', 'self.windows_size[0]', 'self.windows_size[1]'], {}), '(self.window_name, self.windows_size[0], self.windows_size[1])\n', (484, 546), False, 'import cv2\n'), ((555, 611), 'cv2.setMouseCallback', 'cv2.setMouseCallback', (['self.window_name', 'self.draw_circle'], {}), '(self.window_name, self.draw_circle)\n', (575, 611), False, 'import cv2\n'), ((738, 765), 'cv2.imread', 'cv2.imread', (['self.image_path'], {}), '(self.image_path)\n', (748, 765), False, 'import cv2\n'), ((783, 804), 'numpy.array', 'np.array', (['self.points'], {}), '(self.points)\n', (791, 804), True, 'import numpy as np\n'), ((832, 930), 'numpy.array', 'np.array', (['[[0, 0], [image.shape[1], 0], [0, image.shape[0]], [image.shape[1], image.\n shape[0]]]'], {}), '([[0, 0], [image.shape[1], 0], [0, image.shape[0]], [image.shape[1],\n image.shape[0]]])\n', (840, 930), True, 'import numpy as np\n'), ((945, 984), 'cv2.findHomography', 'cv2.findHomography', (['points', 'image_array'], {}), '(points, image_array)\n', (963, 984), False, 'import cv2\n'), ((1006, 1069), 'cv2.warpPerspective', 'cv2.warpPerspective', (['image', 'h', '(image.shape[1], image.shape[0])'], {}), '(image, h, (image.shape[1], image.shape[0]))\n', (1025, 1069), False, 'import cv2\n'), ((1146, 1173), 'cv2.imread', 'cv2.imread', (['self.image_path'], {}), '(self.image_path)\n', (1156, 1173), False, 'import cv2\n'), ((1852, 1882), 'os.path.isfile', 'os.path.isfile', (['temp_file_path'], {}), '(temp_file_path)\n', (1866, 1882), False, 'import os\n'), ((2736, 2763), 'cv2.imread', 'cv2.imread', (['self.image_path'], {}), '(self.image_path)\n', (2746, 2763), False, 'import cv2\n'), ((4157, 4180), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (4178, 4180), False, 'import cv2\n'), ((2822, 2862), 'cv2.imshow', 'cv2.imshow', (['self.window_name', 'self.image'], {}), '(self.window_name, self.image)\n', (2832, 2862), False, 'import cv2\n'), ((2881, 2895), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (2892, 2895), False, 'import cv2\n'), ((1352, 1402), 'cv2.circle', 'cv2.circle', (['self.image', '(x, y)', '(3)', '(255, 0, 0)', '(-1)'], {}), '(self.image, (x, y), 3, (255, 0, 0), -1)\n', (1362, 1402), False, 'import cv2\n'), ((1954, 1983), 'os.path.split', 'os.path.split', (['temp_file_path'], {}), '(temp_file_path)\n', (1967, 1983), False, 'import os\n'), ((2038, 2070), 'os.path.splitext', 'os.path.splitext', (['temp_file_name'], {}), '(temp_file_name)\n', (2054, 2070), False, 'import os\n'), ((2247, 2286), 'os.path.join', 'os.path.join', (['save_path', 'temp_file_name'], {}), '(save_path, temp_file_name)\n', (2259, 2286), False, 'import os\n'), ((2345, 2375), 'os.path.isfile', 'os.path.isfile', (['temp_file_path'], {}), '(temp_file_path)\n', (2359, 2375), False, 'import os\n'), ((4027, 4069), 'cv2.getWindowProperty', 'cv2.getWindowProperty', (['self.window_name', '(0)'], {}), '(self.window_name, 0)\n', (4048, 4069), False, 'import cv2\n'), ((3217, 3247), 'os.path.split', 'os.path.split', (['self.image_path'], {}), '(self.image_path)\n', (3230, 3247), False, 'import os\n'), ((3280, 3322), 'os.path.join', 'os.path.join', (['self.save_folder', 'image_name'], {}), '(self.save_folder, image_name)\n', (3292, 3322), False, 'import os\n'), ((3482, 3515), 'cv2.imwrite', 'cv2.imwrite', (['save_path', 'new_image'], {}), '(save_path, new_image)\n', (3493, 3515), False, 'import cv2\n'), ((3536, 3573), 'cv2.imshow', 'cv2.imshow', (['"""warped image"""', 'new_image'], {}), "('warped image', new_image)\n", (3546, 3573), False, 'import cv2\n'), ((3115, 3145), 'pathlib.Path', 'pathlib.Path', (['self.save_folder'], {}), '(self.save_folder)\n', (3127, 3145), False, 'import pathlib\n')]
# -*- coding: utf-8 -*- import json import re import warnings import numpy as np from bs4 import BeautifulSoup from astropy.io import ascii from astropy.time import Time from astropy.table import Table, QTable, Column import astropy.units as u from astropy.coordinates import EarthLocation, Angle, SkyCoord from astropy._erfa.core import ErfaWarning from ..query import BaseQuery from . import conf from ..utils import async_to_sync, class_or_instance from ..exceptions import InvalidQueryError __all__ = ['MPCClass'] @async_to_sync class MPCClass(BaseQuery): MPC_URL = 'https://' + conf.web_service_server + '/web_service' # The authentication credentials for the MPC web service are publicly # available and can be openly viewed on the documentation page at # https://minorplanetcenter.net/web_service/ MPC_USERNAME = 'mpc_ws' MPC_PASSWORD = '<PASSWORD>' MPES_URL = 'https://' + conf.mpes_server + '/cgi-bin/mpeph2.cgi' OBSERVATORY_CODES_URL = ('https://' + conf.web_service_server + '/iau/lists/ObsCodes.html') MPCOBS_URL = conf.mpcdb_server TIMEOUT = conf.timeout _ephemeris_types = { 'equatorial': 'a', 'heliocentric': 's', 'geocentric': 'G' } _default_number_of_steps = { 'd': '21', 'h': '49', 'm': '121', 's': '301' } _proper_motions = { 'total': 't', 'coordinate': 'c', 'sky': 's' } def __init__(self): super(MPCClass, self).__init__() def query_object_async(self, target_type, get_query_payload=False, *args, **kwargs): """ Query around a specific object within a given mission catalog. When searching for a comet, it will return the entry with the latest epoch. The following are valid query parameters for the MPC API search. The params list and description are from https://minorplanetcenter.net/web_service/ and are accurate as of 3/6/2018. Parameters ---------- target_type : str Search for either a comet or an asteroid, with the two valid values being, naturally, "comet" and "asteroid" updated_at : str Date-time when the Orbits table was last updated (YYYY-MM-DDThh:mm:ssZ). Note: the documentation lists this field as "orbit-updated-at", but the service response contained "updated_at", which appears to correlate and can also be used as a query parameter. name : str The object's name; e.g., Eros. This can be queried as 'Eros' or 'eros'. If the object has not yet been named, this field will be 'null'. number : integer The object's number; e.g., 433. If the object has not yet been numbered, this field will be 'null'. designation : str The object's provisional designation (e.g., 2014 AA) if it has not been numbered yet. If the object has been numbered, this number is its permanent designation and is what the 'designation' parameter will return, padded with leading zeroes for a total of 7 digits; e.g., '0000433'. When querying for provisional designations, because white spaces aren't allowed in the query, escape the space with either a '+' or '%20'; e.g., '2014+AA' or '2014%20AA'. epoch : str The date/time of reference for the current orbital parameters. epoch_jd : str The Julian Date of the epoch. period (years) : str Time it takes for the object to complete one orbit around the Sun. semimajor_axis : str a, one half of the longest diameter of the orbital ellipse. (AU) aphelion_distance : str The distance when the object is furthest from the Sun in its orbit. (AU) perihelion_distance : str The distance when the object is nearest to the Sun in its orbit. (AU) perihelion_date : str Date when the object is at perihelion, i.e., reaches its closest point to the Sun. perihelion_date_jd : str The Julian Date of perihelion. argument_of_perihelion (°) : str ω, defines the orientation of the ellipse in the orbital plane and is the angle from the object's ascending node to its perihelion, measured in the direction of motion. Range: 0–360°. ascending_node (°) : str Ω, the longitude of the ascending node, it defines the horizontal orientation of the ellipse with respect to the ecliptic, and is the angle measured counterclockwise (as seen from North of the ecliptic) from the First Point of Aries to the ascending node. Range: 0–360°. inclination (°) : str i, the angle between the object's orbit and the ecliptic. Range: 0–180°. eccentricity : str e, a measure of how far the orbit shape departs from a circle. Range: 0–1, with e = 0 being a perfect circle, intermediate values being ellipses ever more elongated as e increases, and e = 1 describing a parabola. mean_anomaly (°) : str M, is related to the position of the object along its orbit at the given epoch. Range: 0–360°. mean_daily_motion (°/day) : str n, a measure of the average speed of the object along its orbit. absolute_magnitude : str H, apparent magnitude the object would have if it were observed from 1 AU away at zero phase, while it was 1 AU away from the Sun. Note this is geometrically impossible and is equivalent to observing the object from the center of the Sun. phase_slope : str G, slope parameter as calculated or assumed by the MPC. The slope parameter is a measure of how much brighter the object gets as its phase angle decreases. When not known, a value of G = 0.15 is assumed. orbit_type : integer Asteroids are classified from a dynamics perspective by the area of the Solar System in which they orbit. A number identifies each orbit type. 0: Unclassified (mostly Main Belters) 1: Atiras 2: Atens 3: Apollos 4: Amors 5: Mars Crossers 6: Hungarias 7: Phocaeas 8: Hildas 9: Jupiter Trojans 10: Distant Objects delta_v (km/sec) : float Δv, an estimate of the amount of energy necessary to jump from LEO (Low Earth Orbit) to the object's orbit. tisserand_jupiter : float TJ, Tisserand parameter with respect to Jupiter, which is a quasi-invariant value for each object and is frequently used to distinguish objects (typically TJ > 3) from Jupiter-family comets (typically 2 < TJ < 3). neo : bool value = 1 flags Near Earth Objects (NEOs). km_neo : bool value = 1 flags NEOs larger than ~1 km in diameter. pha : bool value = 1 flags Potentially Hazardous Asteroids (PHAs). mercury_moid : float Minimum Orbit Intersection Distance with respect to Mercury. (AU) venus_moid : float Minimum Orbit Intersection Distance with respect to Venus. (AU) earth_moid : float Minimum Orbit Intersection Distance with respect to Earth. (AU) mars_moid : float Minimum Orbit Intersection Distance with respect to Mars. (AU) jupiter_moid : float Minimum Orbit Intersection Distance with respect to Jupiter. (AU) saturn_moid : float Minimum Orbit Intersection Distance with respect to Saturn. (AU) uranus_moid : float Minimum Orbit Intersection Distance with respect to Uranus. (AU) neptune_moid : float Minimum Orbit Intersection Distance with respect to Neptune. (AU) """ mpc_endpoint = self.get_mpc_object_endpoint(target_type) kwargs['limit'] = 1 return self.query_objects_async(target_type, get_query_payload, *args, **kwargs) def query_objects_async(self, target_type, get_query_payload=False, *args, **kwargs): """ Query around a specific object within a given mission catalog The following are valid query parameters for the MPC API search. The params list and description are from https://minorplanetcenter.net/web_service/ and are accurate as of 3/6/2018: Parameters ---------- target_type : str Search for either a comet or an asteroid, with the two valid values being, naturally, "comet" and "asteroid" updated_at : str Date-time when the Orbits table was last updated (YYYY-MM-DDThh:mm:ssZ). Note: the documentation lists this field as "orbit-updated-at", but the service response contained "updated_at", which appears to correlate and can also be used as a query parameter. name : str The object's name; e.g., Eros. This can be queried as 'Eros' or 'eros'. If the object has not yet been named, this field will be 'null'. number : integer The object's number; e.g., 433. If the object has not yet been numbered, this field will be 'null'. designation : str The object's provisional designation (e.g., 2014 AA) if it has not been numbered yet. If the object has been numbered, this number is its permanent designation and is what the 'designation' parameter will return, padded with leading zeroes for a total of 7 digits; e.g., '0000433'. When querying for provisional designations, because white spaces aren't allowed in the query, escape the space with either a '+' or '%20'; e.g., '2014+AA' or '2014%20AA'. epoch : str The date/time of reference for the current orbital parameters. epoch_jd : str The Julian Date of the epoch. period (years) : str Time it takes for the object to complete one orbit around the Sun. semimajor_axis : str a, one half of the longest diameter of the orbital ellipse. (AU) aphelion_distance : str The distance when the object is furthest from the Sun in its orbit. (AU) perihelion_distance : str The distance when the object is nearest to the Sun in its orbit. (AU) perihelion_date : str Date when the object is at perihelion, i.e., reaches its closest point to the Sun. perihelion_date_jd : str The Julian Date of perihelion. argument_of_perihelion (°) : str ω, defines the orientation of the ellipse in the orbital plane and is the angle from the object's ascending node to its perihelion, measured in the direction of motion. Range: 0–360°. ascending_node (°) : str Ω, the longitude of the ascending node, it defines the horizontal orientation of the ellipse with respect to the ecliptic, and is the angle measured counterclockwise (as seen from North of the ecliptic) from the First Point of Aries to the ascending node. Range: 0–360°. inclination (°) : str i, the angle between the object's orbit and the ecliptic. Range: 0–180°. eccentricity : str e, a measure of how far the orbit shape departs from a circle. Range: 0–1, with e = 0 being a perfect circle, intermediate values being ellipses ever more elongated as e increases, and e = 1 describing a parabola. mean_anomaly (°) : str M, is related to the position of the object along its orbit at the given epoch. Range: 0–360°. mean_daily_motion (°/day) : str n, a measure of the average speed of the object along its orbit. absolute_magnitude : str H, apparent magnitude the object would have if it were observed from 1 AU away at zero phase, while it was 1 AU away from the Sun. Note this is geometrically impossible and is equivalent to observing the object from the center of the Sun. phase_slope : str G, slope parameter as calculated or assumed by the MPC. The slope parameter is a measure of how much brighter the object gets as its phase angle decreases. When not known, a value of G = 0.15 is assumed. orbit_type : integer Asteroids are classified from a dynamics perspective by the area of the Solar System in which they orbit. A number identifies each orbit type. 0: Unclassified (mostly Main Belters) 1: Atiras 2: Atens 3: Apollos 4: Amors 5: Mars Crossers 6: Hungarias 7: Phocaeas 8: Hildas 9: Jupiter Trojans 10: Distant Objects delta_v (km/sec) : float Δv, an estimate of the amount of energy necessary to jump from LEO (Low Earth Orbit) to the object's orbit. tisserand_jupiter : float TJ, Tisserand parameter with respect to Jupiter, which is a quasi-invariant value for each object and is frequently used to distinguish objects (typically TJ > 3) from Jupiter-family comets (typically 2 < TJ < 3). neo : bool value = 1 flags Near Earth Objects (NEOs). km_neo : bool value = 1 flags NEOs larger than ~1 km in diameter. pha : bool value = 1 flags Potentially Hazardous Asteroids (PHAs). mercury_moid : float Minimum Orbit Intersection Distance with respect to Mercury. (AU) venus_moid : float Minimum Orbit Intersection Distance with respect to Venus. (AU) earth_moid : float Minimum Orbit Intersection Distance with respect to Earth. (AU) mars_moid : float Minimum Orbit Intersection Distance with respect to Mars. (AU) jupiter_moid : float Minimum Orbit Intersection Distance with respect to Jupiter. (AU) saturn_moid : float Minimum Orbit Intersection Distance with respect to Saturn. (AU) uranus_moid : float Minimum Orbit Intersection Distance with respect to Uranus. (AU) neptune_moid : float Minimum Orbit Intersection Distance with respect to Neptune. (AU) limit : integer Limit the number of results to the given value """ mpc_endpoint = self.get_mpc_object_endpoint(target_type) if (target_type == 'comet'): kwargs['order_by_desc'] = "epoch" request_args = self._args_to_object_payload(**kwargs) # Return payload if requested if get_query_payload: return request_args self.query_type = 'object' auth = (self.MPC_USERNAME, self.MPC_PASSWORD) return self._request('GET', mpc_endpoint, params=request_args, auth=auth) def get_mpc_object_endpoint(self, target_type): mpc_endpoint = self.MPC_URL if target_type == 'asteroid': mpc_endpoint = mpc_endpoint + '/search_orbits' elif target_type == 'comet': mpc_endpoint = mpc_endpoint + '/search_comet_orbits' return mpc_endpoint @class_or_instance def get_ephemeris_async(self, target, location='500', start=None, step='1d', number=None, ut_offset=0, eph_type='equatorial', ra_format=None, dec_format=None, proper_motion='total', proper_motion_unit='arcsec/h', suppress_daytime=False, suppress_set=False, perturbed=True, unc_links=False, get_query_payload=False, get_raw_response=False, cache=False): r""" Object ephemerides from the Minor Planet Ephemeris Service. Parameters ---------- target : str Designation of the object of interest. See Notes for acceptable formats. location : str, array-like, or `~astropy.coordinates.EarthLocation`, optional Observer's location as an IAU observatory code, a 3-element array of Earth longitude, latitude, altitude, or a `~astropy.coordinates.EarthLocation`. Longitude and latitude should be anything that initializes an `~astropy.coordinates.Angle` object, and altitude should initialize an `~astropy.units.Quantity` object (with units of length). If ``None``, then the geocenter (code 500) is used. start : str or `~astropy.time.Time`, optional First epoch of the ephemeris as a string (UT), or astropy `~astropy.time.Time`. Strings are parsed by `~astropy.time.Time`. If ``None``, then today is used. Valid dates span the time period 1900 Jan 1 - 2099 Dec 31 [MPES]_. step : str or `~astropy.units.Quantity`, optional The ephemeris step size or interval in units of days, hours, minutes, or seconds. Strings are parsed by `~astropy.units.Quantity`. All inputs are rounded to the nearest integer. Default is 1 day. number : int, optional The number of ephemeris dates to compute. Must be ≤1441. If ``None``, the value depends on the units of ``step``: 21 for days, 49 for hours, 121 for minutes, or 301 for seconds. ut_offset : int, optional Number of hours to offset from 0 UT for daily ephemerides. eph_type : str, optional Specify the type of ephemeris:: equatorial: RA and Dec (default) heliocentric: heliocentric position and velocity vectors geocentric: geocentric position vector ra_format : dict, optional Format the RA column with `~astropy.coordinates.Angle.to_string` using these keyword arguments, e.g., ``{'sep': ':', 'unit': 'hourangle', 'precision': 1}``. dec_format : dict, optional Format the Dec column with `~astropy.coordinates.Angle.to_string` using these keyword arguments, e.g., ``{'sep': ':', 'precision': 0}``. proper_motion : str, optional total: total motion and direction (default) coordinate: separate RA and Dec coordinate motion sky: separate RA and Dec sky motion (i.e., includes a cos(Dec) term). proper_motion_unit : string or Unit, optional Convert proper motion to this unit. Must be an angular rate. Default is 'arcsec/h'. suppress_daytime : bool, optional Suppress output when the Sun is above the local horizon. (default ``False``) suppress_set : bool, optional Suppress output when the object is below the local horizon. (default ``False``) perturbed : bool, optional Generate perturbed ephemerides for unperturbed orbits (default ``True``). unc_links : bool, optional Return columns with uncertainty map and offset links, if available. get_query_payload : bool, optional Return the HTTP request parameters as a dictionary (default: ``False``). get_raw_response : bool, optional Return raw data without parsing into a table (default: ``False``). cache : bool, optional Cache results or use cached results (default: ``False``). Returns ------- response : `requests.Response` The HTTP response returned from the service. Notes ----- See the MPES user's guide [MPES]_ for details on options and implementation. MPES allows azimuths to be measured eastwards from the north meridian, or westwards from the south meridian. However, the `~astropy.coordinates.AltAz` coordinate frame assumes eastwards of north. To remain consistent with Astropy, eastwards of north is used. Acceptable target names [MPES]_ are listed in the tables below. .. attention:: Asteroid designations in the text version of the documentation may be prefixed with a backslash, which should be ignored. This is to force correct rendering of the designation in the rendered versions of the documentation (e.g., HTML). +------------+-----------------------------------+ | Target | Description | +============+===================================+ | \(3202) | Numbered minor planet (3202) | +------------+-----------------------------------+ | 14829 | Numbered minor planet (14829) | +------------+-----------------------------------+ | 1997 XF11 | Unnumbered minor planet 1997 XF11 | +------------+-----------------------------------+ | 1P | Comet 1P/Halley | +------------+-----------------------------------+ | C/2003 A2 | Comet C/2003 A2 (Gleason) | +------------+-----------------------------------+ | P/2003 CP7 | Comet P/2003 CP7 (LINEAR-NEAT) | +------------+-----------------------------------+ For comets, P/ and C/ are interchangable. The designation may also be in a packed format: +------------+-----------------------------------+ | Target | Description | +============+===================================+ | 00233 | Numbered minor planet (233) | +------------+-----------------------------------+ | K03A07A | Unnumbered minor planet 2003 AA7 | +------------+-----------------------------------+ | PK03C07P | Comet P/2003 CP7 (LINEAR-NEAT) | +------------+-----------------------------------+ | 0039P | Comet 39P/Oterma | +------------+-----------------------------------+ You may also search by name: +------------+-----------------------------------+ | Target | Description | +============+===================================+ | Encke | \(9134) Encke | +------------+-----------------------------------+ | Africa | \(1193) Africa | +------------+-----------------------------------+ | Africano | \(6391) Africano | +------------+-----------------------------------+ | P/Encke | 2P/Encke | +------------+-----------------------------------+ | C/Encke | 2P/Encke | +------------+-----------------------------------+ | C/Gleason | C/2003 A2 (Gleason) | +------------+-----------------------------------+ If a comet name is not unique, the first match will be returned. References ---------- .. [MPES] <NAME>. The Minor Planet Ephemeris Service. https://minorplanetcenter.net/iau/info/MPES.pdf (retrieved 2018 June 19). .. IAU Minor Planet Center. List of Observatory codes. https://minorplanetcenter.net/iau/lists/ObsCodesF.html (retrieved 2018 June 19). Examples -------- >>> from astroquery.mpc import MPC >>> tab = astroquery.mpc.MPC.get_ephemeris('(24)', location=568, ... start='2003-02-26', step='100d', number=3) # doctest: +SKIP >>> print(tab) # doctest: +SKIP """ # parameter checks if type(location) not in (str, int, EarthLocation): if hasattr(location, '__iter__'): if len(location) != 3: raise ValueError( "location arrays require three values:" " longitude, latitude, and altitude") else: raise TypeError( "location must be a string, integer, array-like," " or astropy EarthLocation") if start is not None: _start = Time(start) else: _start = None # step must be one of these units, and must be an integer (we # will convert to an integer later). MPES fails for large # integers, so we cannot just convert everything to seconds. _step = u.Quantity(step) if _step.unit not in [u.d, u.h, u.min, u.s]: raise ValueError( 'step must have units of days, hours, minutes, or seconds.') if number is not None: if number > 1441: raise ValueError('number must be <=1441') if eph_type not in self._ephemeris_types.keys(): raise ValueError("eph_type must be one of {}".format( self._ephemeris_types.keys())) if proper_motion not in self._proper_motions.keys(): raise ValueError("proper_motion must be one of {}".format( self._proper_motions.keys())) if not u.Unit(proper_motion_unit).is_equivalent('rad/s'): raise ValueError("proper_motion_unit must be an angular rate.") # setup payload request_args = self._args_to_ephemeris_payload( target=target, ut_offset=ut_offset, suppress_daytime=suppress_daytime, suppress_set=suppress_set, perturbed=perturbed, location=location, start=_start, step=_step, number=number, eph_type=eph_type, proper_motion=proper_motion) # store for retrieval in _parse_result self._ra_format = ra_format self._dec_format = dec_format self._proper_motion_unit = u.Unit(proper_motion_unit) self._unc_links = unc_links if get_query_payload: return request_args self.query_type = 'ephemeris' response = self._request('POST', self.MPES_URL, data=request_args) return response @class_or_instance def get_observatory_codes_async(self, get_raw_response=False, cache=True): """ Table of observatory codes from the IAU Minor Planet Center. Parameters ---------- get_raw_response : bool, optional Return raw data without parsing into a table (default: `False`). cache : bool, optional Cache results or use cached results (default: `True`). Returns ------- response : `requests.Response` The HTTP response returned from the service. References ---------- .. IAU Minor Planet Center. List of Observatory codes. https://minorplanetcenter.net/iau/lists/ObsCodesF.html (retrieved 2018 June 19). Examples -------- >>> from astroquery.mpc import MPC >>> obs = MPC.get_observatory_codes() # doctest: +SKIP >>> print(obs[295]) # doctest: +SKIP Code Longitude cos sin Name ---- --------- -------- --------- ------------- 309 289.59569 0.909943 -0.414336 Cerro Paranal """ self.query_type = 'observatory_code' response = self._request('GET', self.OBSERVATORY_CODES_URL, timeout=self.TIMEOUT, cache=cache) return response @class_or_instance def get_observatory_location(self, code, cache=True): """ IAU observatory location. Parameters ---------- code : string Three-character IAU observatory code. cache : bool, optional Cache observatory table or use cached results (default: `True`). Returns ------- longitude : Angle Observatory longitude (east of Greenwich). cos : float Parallax constant ``rho * cos(phi)`` where ``rho`` is the geocentric distance in earth radii, and ``phi`` is the geocentric latitude. sin : float Parallax constant ``rho * sin(phi)``. name : string The name of the observatory. Raises ------ LookupError If `code` is not found in the MPC table. Examples -------- >>> from astroquery.mpc import MPC >>> obs = MPC.get_observatory_location('000') >>> print(obs) # doctest: +SKIP (<Angle 0. deg>, 0.62411, 0.77873, 'Greenwich') """ if not isinstance(code, str): raise TypeError('code must be a string') if len(code) != 3: raise ValueError('code must be three charaters long') tab = self.get_observatory_codes(cache=cache) for row in tab: if row[0] == code: return Angle(row[1], 'deg'), row[2], row[3], row[4] raise LookupError('{} not found'.format(code)) def _args_to_object_payload(self, **kwargs): request_args = kwargs kwargs['json'] = 1 return_fields = kwargs.pop('return_fields', None) if return_fields: kwargs['return'] = return_fields return request_args def _args_to_ephemeris_payload(self, **kwargs): request_args = { 'ty': 'e', 'TextArea': str(kwargs['target']), 'uto': str(kwargs['ut_offset']), 'igd': 'y' if kwargs['suppress_daytime'] else 'n', 'ibh': 'y' if kwargs['suppress_set'] else 'n', 'fp': 'y' if kwargs['perturbed'] else 'n', 'adir': 'N', # always measure azimuth eastward from north 'tit': '', # dummy page title 'bu': '' # dummy base URL } location = kwargs['location'] if isinstance(location, str): request_args['c'] = location elif isinstance(location, int): request_args['c'] = '{:03d}'.format(location) elif isinstance(location, EarthLocation): loc = location.geodetic request_args['long'] = loc[0].deg request_args['lat'] = loc[1].deg request_args['alt'] = loc[2].to(u.m).value elif hasattr(location, '__iter__'): request_args['long'] = Angle(location[0]).deg request_args['lat'] = Angle(location[1]).deg request_args['alt'] = u.Quantity(location[2]).to('m').value if kwargs['start'] is None: _start = Time.now() _start.precision = 0 # integer seconds request_args['d'] = _start.iso.replace(':', '') else: _start = Time(kwargs['start'], precision=0, scale='utc') # integer seconds request_args['d'] = _start.iso.replace(':', '') request_args['i'] = str(int(round(kwargs['step'].value))) request_args['u'] = str(kwargs['step'].unit)[:1] if kwargs['number'] is None: request_args['l'] = self._default_number_of_steps[ request_args['u']] else: request_args['l'] = kwargs['number'] request_args['raty'] = self._ephemeris_types[kwargs['eph_type']] request_args['s'] = self._proper_motions[kwargs['proper_motion']] request_args['m'] = 'h' # always return proper_motion as arcsec/hr return request_args @class_or_instance def get_observations_async(self, targetid, id_type=None, comettype=None, get_mpcformat=False, get_raw_response=False, get_query_payload=False, cache=True): """ Obtain all reported observations for an asteroid or a comet from the `Minor Planet Center observations database <https://minorplanetcenter.net/db_search>`_. Parameters ---------- targetid : int or str Official target number or designation. If a number is provided (either as int or str), the input is interpreted as an asteroid number; asteroid designations are interpreted as such (note that a whitespace between the year and the remainder of the designation is required and no packed designations are allowed). To query a periodic comet number, you have to append ``'P'``, e.g., ``'234P'``. To query any comet designation, the designation has to start with a letter describing the comet type and a slash, e.g., ``'C/2018 E1'``. Comet or asteroid names, Palomar-Leiden Survey designations, and individual comet fragments cannot be queried. id_type : str, optional Manual override for identifier type. If ``None``, the identifier type is derived by parsing ``targetid``; if this automated classification fails, it can be set manually using this parameter. Possible values are ``'asteroid number'``, ``'asteroid designation'``, ``'comet number'``, and ``'comet designation'``. Default: ``None`` get_mpcformat : bool, optional If ``True``, this method will return an `~astropy.table.QTable` with only a single column holding the original MPC 80-column observation format. Default: ``False`` get_raw_response : bool, optional If ``True``, this method will return the raw output from the MPC servers (json). Default: ``False`` get_query_payload : bool, optional Return the HTTP request parameters as a dictionary (default: ``False``). cache : bool, optional If ``True``, queries will be cached. Default: ``True`` Raises ------ RuntimeError If query did not return any data. ValueError If target name could not be parsed properly and target type could not be identified. Notes ----- The following quantities are included in the output table +-------------------+--------------------------------------------+ | Column Name | Definition | +===================+============================================+ | ``number`` | official IAU target number (int) | +-------------------+--------------------------------------------+ | ``desig`` | provisional target designation (str) | +-------------------+--------------------------------------------+ | ``discovery`` (*) | target discovery flag (str) | +-------------------+--------------------------------------------+ | ``comettype`` (*) | orbital type of comet (str) | +-------------------+--------------------------------------------+ | ``note1`` (#) | Note1 (str) | +-------------------+--------------------------------------------+ | ``note2`` (#) | Note2 (str) | +-------------------+--------------------------------------------+ | ``epoch`` | epoch of observation (Julian Date, float) | +-------------------+--------------------------------------------+ | ``RA`` | RA reported (J2000, deg, float) | +-------------------+--------------------------------------------+ | ``DEC`` | declination reported (J2000, deg, float) | +-------------------+--------------------------------------------+ | ``mag`` | reported magnitude (mag, float) | +-------------------+--------------------------------------------+ | ``band`` (*) | photometric band for ``mag`` (str) | +-------------------+--------------------------------------------+ | ``phottype`` (*) | comet photometry type (nuclear/total, str) | +-------------------+--------------------------------------------+ | ``observatory`` | IAU observatory code (str) | +-------------------+--------------------------------------------+ (*): Column names are optional and depend on whether an asteroid or a comet has been queried. (#): Parameters ``Note1`` and ``Note2`` are defined `here <https://minorplanetcenter.net/iau/info/OpticalObs.html>`_. Examples -------- >>> from astroquery.mpc import MPC >>> MPC.get_observations(12893) # doctest: +SKIP <QTable masked=True length=1401> number desig discovery note1 ... mag band observatory ... mag int64 str9 str1 str1 ... float64 str1 str3 ------ --------- --------- ----- ... ------- ---- ----------- 12893 1998 QS55 -- -- ... 0.0 -- 413 12893 1998 QS55 -- -- ... 0.0 -- 413 12893 1998 QS55 * 4 ... 0.0 -- 809 12893 1998 QS55 -- 4 ... 0.0 -- 809 12893 1998 QS55 -- 4 ... 0.0 -- 809 12893 1998 QS55 -- 4 ... 18.4 -- 809 ... ... ... ... ... ... ... ... 12893 1998 QS55 -- -- ... 18.63 c T05 12893 1998 QS55 -- -- ... 18.55 c T05 12893 1998 QS55 -- -- ... 18.3 r I41 12893 1998 QS55 -- -- ... 18.3 r I41 12893 1998 QS55 -- -- ... 18.2 r I41 12893 1998 QS55 -- -- ... 18.3 r I41 """ request_payload = {'table': 'observations'} if id_type is None: pat = ('(^[0-9]*$)|' # [0] asteroid number '(^[0-9]{1,3}[PIA]$)' # [1] periodic comet number '(-[1-9A-Z]{0,2})?$|' # [2] fragment '(^[PDCXAI]/[- 0-9A-Za-z]*)' # [3] comet designation '(-[1-9A-Z]{0,2})?$|' # [4] fragment '(^([1A][8-9][0-9]{2}[ _][A-Z]{2}[0-9]{0,3}$|' '^20[0-9]{2}[ _][A-Z]{2}[0-9]{0,3}$)|' '(^[1-9][0-9]{3}[ _](P-L|T-[1-3]))$)' # asteroid designation [5] (old/new/Palomar-Leiden style) ) # comet fragments are extracted here, but the MPC server does # not allow for fragment-based queries m = re.findall(pat, str(targetid)) if len(m) == 0: raise ValueError(('Cannot interpret target ' 'identifier "{}".').format(targetid)) else: m = m[0] request_payload['object_type'] = 'M' if m[1] != '': request_payload['object_type'] = 'P' if m[3] != '': request_payload['object_type'] = m[3][0] if m[0] != '': request_payload['number'] = m[0] # asteroid number elif m[1] != '': request_payload['number'] = m[1][:-1] # per. comet number elif m[3] != '': request_payload['designation'] = m[3] # comet designation elif m[5] != '': request_payload['designation'] = m[5] # ast. designation else: if 'asteroid' in id_type: request_payload['object_type'] = 'M' if 'number' in id_type: request_payload['number'] = str(targetid) elif 'designation' in id_type: request_payload['designation'] = targetid if 'comet' in id_type: pat = ('(^[0-9]{1,3}[PIA])|' # [0] number '(^[PDCXAI]/[- 0-9A-Za-z]*)' # [1] designation ) m = re.findall(pat, str(targetid)) if len(m) == 0: raise ValueError(('Cannot parse comet type ' 'from "{}".').format(targetid)) else: m = m[0] if m[0] != '': request_payload['object_type'] = m[0][-1] elif m[1] != '': request_payload['object_type'] = m[1][0] if 'number' in id_type: request_payload['number'] = targetid[:-1] elif 'designation' in id_type: request_payload['designation'] = targetid self.query_type = 'observations' if get_query_payload: return request_payload response = self._request('GET', url=self.MPCOBS_URL, params=request_payload, auth=(self.MPC_USERNAME, self.MPC_PASSWORD), timeout=self.TIMEOUT, cache=cache) if get_mpcformat: self.obsformat = 'mpc' else: self.obsformat = 'table' if get_raw_response: self.get_raw_response = True else: self.get_raw_response = False return response def _parse_result(self, result, **kwargs): if self.query_type == 'object': try: data = result.json() except ValueError: raise InvalidQueryError(result.text) return data elif self.query_type == 'observatory_code': root = BeautifulSoup(result.content, 'html.parser') text_table = root.find('pre').text start = text_table.index('000') text_table = text_table[start:] # parse table ourselves to make sure the code column is a # string and that blank cells are masked rows = [] for line in text_table.splitlines(): lon = line[4:13] if len(lon.strip()) == 0: lon = np.nan else: lon = float(lon) c = line[13:21] if len(c.strip()) == 0: c = np.nan else: c = float(c) s = line[21:30] if len(s.strip()) == 0: s = np.nan else: s = float(s) rows.append((line[:3], lon, c, s, line[30:])) tab = Table(rows=rows, names=('Code', 'Longitude', 'cos', 'sin', 'Name'), dtype=(str, float, float, float, str), masked=True) tab['Longitude'].mask = ~np.isfinite(tab['Longitude']) tab['cos'].mask = ~np.isfinite(tab['cos']) tab['sin'].mask = ~np.isfinite(tab['sin']) return tab elif self.query_type == 'ephemeris': content = result.content.decode() table_start = content.find('<pre>') if table_start == -1: raise InvalidQueryError(content) table_end = content.find('</pre>') text_table = content[table_start + 5:table_end] SKY = 'raty=a' in result.request.body HELIOCENTRIC = 'raty=s' in result.request.body GEOCENTRIC = 'raty=G' in result.request.body # columns = '\n'.join(text_table.splitlines()[:2]) # find column headings if SKY: # slurp to newline after "h m s" i = text_table.index('\n', text_table.index('h m s')) + 1 columns = text_table[:i] data_start = columns.count('\n') - 1 else: # slurp to newline after "JD_TT" i = text_table.index('\n', text_table.index('JD_TT')) + 1 columns = text_table[:i] data_start = columns.count('\n') - 1 first_row = text_table.splitlines()[data_start + 1] if SKY: names = ('Date', 'RA', 'Dec', 'Delta', 'r', 'Elongation', 'Phase', 'V') col_starts = (0, 18, 29, 39, 47, 56, 62, 69) col_ends = (17, 28, 38, 46, 55, 61, 68, 72) units = (None, None, None, 'au', 'au', 'deg', 'deg', 'mag') if 's=t' in result.request.body: # total motion names += ('Proper motion', 'Direction') units += ('arcsec/h', 'deg') elif 's=c' in result.request.body: # coord Motion names += ('dRA', 'dDec') units += ('arcsec/h', 'arcsec/h') elif 's=s' in result.request.body: # sky Motion names += ('dRA cos(Dec)', 'dDec') units += ('arcsec/h', 'arcsec/h') col_starts += (73, 81) col_ends += (80, 89) if 'Moon' in columns: # table includes Alt, Az, Sun and Moon geometry names += ('Azimuth', 'Altitude', 'Sun altitude', 'Moon phase', 'Moon distance', 'Moon altitude') col_starts += tuple((col_ends[-1] + offset for offset in (2, 9, 14, 20, 27, 33))) col_ends += tuple((col_ends[-1] + offset for offset in (8, 13, 19, 26, 32, 37))) units += ('deg', 'deg', 'deg', None, 'deg', 'deg') if 'Uncertainty' in columns: names += ('Uncertainty 3sig', 'Unc. P.A.') col_starts += tuple((col_ends[-1] + offset for offset in (2, 11))) col_ends += tuple((col_ends[-1] + offset for offset in (10, 16))) units += ('arcsec', 'deg') if ">Map</a>" in first_row and self._unc_links: names += ('Unc. map', 'Unc. offsets') col_starts += (first_row.index(' / <a') + 3, ) col_starts += ( first_row.index(' / <a', col_starts[-1]) + 3, ) # Unc. offsets is always last col_ends += (col_starts[-1] - 3, first_row.rindex('</a>') + 4) units += (None, None) elif HELIOCENTRIC: names = ('Object', 'JD', 'X', 'Y', 'Z', "X'", "Y'", "Z'") col_starts = (0, 12, 28, 45, 61, 77, 92, 108) col_ends = None units = (None, None, 'au', 'au', 'au', 'au/d', 'au/d', 'au/d') elif GEOCENTRIC: names = ('Object', 'JD', 'X', 'Y', 'Z') col_starts = (0, 12, 28, 45, 61) col_ends = None units = (None, None, 'au', 'au', 'au') tab = ascii.read(text_table, format='fixed_width_no_header', names=names, col_starts=col_starts, col_ends=col_ends, data_start=data_start, fill_values=(('N/A', np.nan),)) for col, unit in zip(names, units): tab[col].unit = unit # Time for dates, Angle for RA and Dec; convert columns at user's request if SKY: # convert from MPES string to Time, MPES uses UT timescale tab['Date'] = Time(['{}-{}-{} {}:{}:{}'.format( d[:4], d[5:7], d[8:10], d[11:13], d[13:15], d[15:17]) for d in tab['Date']], scale='utc') # convert from MPES string: ra = Angle(tab['RA'], unit='hourangle').to('deg') dec = Angle(tab['Dec'], unit='deg') # optionally convert back to a string if self._ra_format is not None: ra_unit = self._ra_format.get('unit', ra.unit) ra = ra.to_string(**self._ra_format) else: ra_unit = ra.unit if self._dec_format is not None: dec_unit = self._dec_format.get('unit', dec.unit) dec = dec.to_string(**self._dec_format) else: dec_unit = dec.unit # replace columns tab.remove_columns(('RA', 'Dec')) tab.add_column(Column(ra, name='RA', unit=ra_unit), index=1) tab.add_column(Column(dec, name='Dec', unit=dec_unit), index=2) # convert proper motion columns for col in ('Proper motion', 'dRA', 'dRA cos(Dec)', 'dDec'): if col in tab.colnames: tab[col].convert_unit_to(self._proper_motion_unit) else: # convert from MPES string to Time tab['JD'] = Time(tab['JD'], format='jd', scale='tt') return tab elif self.query_type == 'observations': warnings.simplefilter("ignore", ErfaWarning) try: src = json.loads(result.text) except (ValueError, json.decoder.JSONDecodeError): raise RuntimeError( 'Server response not readable: "{}"'.format( result.text)) if len(src) == 0: raise RuntimeError(('No data queried. Are the target ' 'identifiers correct?')) # return raw response if requested if self.get_raw_response: return src # return raw 80-column observation format if requested if self.obsformat == 'mpc': tab = Table([[o['original_record'] for o in src]]) tab.rename_column('col0', 'obs') return tab if all([o['object_type'] == 'M' for o in src]): # minor planets (asteroids) data = ascii.read("\n".join([o['original_record'] for o in src]), format='fixed_width_no_header', names=('number', 'pdesig', 'discovery', 'note1', 'note2', 'epoch', 'RA', 'DEC', 'mag', 'band', 'observatory'), col_starts=(0, 5, 12, 13, 14, 15, 32, 44, 65, 70, 77), col_ends=(4, 11, 12, 13, 14, 31, 43, 55, 69, 70, 79)) # convert asteroid designations # old designation style, e.g.: 1989AB ident = data['pdesig'][0] if isinstance(ident, np.ma.masked_array) and ident.mask: ident = '' elif (len(ident) < 7 and ident[:4].isdigit() and ident[4:6].isalpha()): ident = ident[:4]+' '+ident[4:6] # Palomar Survey elif 'PLS' in ident: ident = ident[3:] + " P-L" # Trojan Surveys elif 'T1S' in ident: ident = ident[3:] + " T-1" elif 'T2S' in ident: ident = ident[3:] + " T-2" elif 'T3S' in ident: ident = ident[3:] + " T-3" # standard MPC packed 7-digit designation elif (ident[0].isalpha() and ident[1:3].isdigit() and ident[-1].isalpha() and ident[-2].isdigit()): yr = str(conf.pkd.find(ident[0]))+ident[1:3] let = ident[3]+ident[-1] num = str(conf.pkd.find(ident[4]))+ident[5] num = num.lstrip("0") ident = yr+' '+let+num data.add_column(Column([ident]*len(data), name='desig'), index=1) data.remove_column('pdesig') elif all([o['object_type'] != 'M' for o in src]): # comets data = ascii.read("\n".join([o['original_record'] for o in src]), format='fixed_width_no_header', names=('number', 'comettype', 'desig', 'note1', 'note2', 'epoch', 'RA', 'DEC', 'mag', 'phottype', 'observatory'), col_starts=(0, 4, 5, 13, 14, 15, 32, 44, 65, 70, 77), col_ends=(3, 4, 12, 13, 14, 31, 43, 55, 69, 70, 79)) # convert comet designations ident = data['desig'][0] if (not isinstance(ident, (np.ma.masked_array, np.ma.core.MaskedConstant)) or not ident.mask): yr = str(conf.pkd.find(ident[0]))+ident[1:3] let = ident[3] # patch to parse asteroid designations if len(ident) == 7 and str.isalpha(ident[6]): let += ident[6] ident = ident[:6] + ident[7:] num = str(conf.pkd.find(ident[4]))+ident[5] num = num.lstrip("0") if len(ident) >= 7: frag = ident[6] if ident[6] != '0' else '' else: frag = '' ident = yr+' '+let+num+frag # remove and add desig column to overcome length limit data.remove_column('desig') data.add_column(Column([ident]*len(data), name='desig'), index=3) else: raise ValueError(('Object type is ambiguous. "{}" ' 'are present.').format( set([o['object_type'] for o in src]))) # convert dates to Julian Dates dates = [d[:10].replace(' ', '-') for d in data['epoch']] times = np.array([float(d[10:]) for d in data['epoch']]) jds = Time(dates, format='iso').jd+times data['epoch'] = jds # convert ra and dec to degrees coo = SkyCoord(ra=data['RA'], dec=data['DEC'], unit=(u.hourangle, u.deg), frame='icrs') data['RA'] = coo.ra.deg data['DEC'] = coo.dec.deg # convert Table to QTable data = QTable(data) data['epoch'].unit = u.d data['RA'].unit = u.deg data['DEC'].unit = u.deg data['mag'].unit = u.mag return data MPC = MPCClass()
[ "astropy.units.Quantity", "astropy.table.Table", "astropy.io.ascii.read", "warnings.simplefilter", "json.loads", "astropy.time.Time", "astropy.table.QTable", "astropy.time.Time.now", "numpy.isfinite", "astropy.table.Column", "bs4.BeautifulSoup", "astropy.coordinates.Angle", "astropy.coordinates.SkyCoord", "astropy.units.Unit" ]
[((25249, 25265), 'astropy.units.Quantity', 'u.Quantity', (['step'], {}), '(step)\n', (25259, 25265), True, 'import astropy.units as u\n'), ((26552, 26578), 'astropy.units.Unit', 'u.Unit', (['proper_motion_unit'], {}), '(proper_motion_unit)\n', (26558, 26578), True, 'import astropy.units as u\n'), ((56084, 56096), 'astropy.table.QTable', 'QTable', (['data'], {}), '(data)\n', (56090, 56096), False, 'from astropy.table import Table, QTable, Column\n'), ((24974, 24985), 'astropy.time.Time', 'Time', (['start'], {}), '(start)\n', (24978, 24985), False, 'from astropy.time import Time\n'), ((31282, 31292), 'astropy.time.Time.now', 'Time.now', ([], {}), '()\n', (31290, 31292), False, 'from astropy.time import Time\n'), ((31440, 31487), 'astropy.time.Time', 'Time', (["kwargs['start']"], {'precision': '(0)', 'scale': '"""utc"""'}), "(kwargs['start'], precision=0, scale='utc')\n", (31444, 31487), False, 'from astropy.time import Time\n'), ((42649, 42693), 'bs4.BeautifulSoup', 'BeautifulSoup', (['result.content', '"""html.parser"""'], {}), "(result.content, 'html.parser')\n", (42662, 42693), False, 'from bs4 import BeautifulSoup\n'), ((43591, 43715), 'astropy.table.Table', 'Table', ([], {'rows': 'rows', 'names': "('Code', 'Longitude', 'cos', 'sin', 'Name')", 'dtype': '(str, float, float, float, str)', 'masked': '(True)'}), "(rows=rows, names=('Code', 'Longitude', 'cos', 'sin', 'Name'), dtype=(\n str, float, float, float, str), masked=True)\n", (43596, 43715), False, 'from astropy.table import Table, QTable, Column\n'), ((25912, 25938), 'astropy.units.Unit', 'u.Unit', (['proper_motion_unit'], {}), '(proper_motion_unit)\n', (25918, 25938), True, 'import astropy.units as u\n'), ((29647, 29667), 'astropy.coordinates.Angle', 'Angle', (['row[1]', '"""deg"""'], {}), "(row[1], 'deg')\n", (29652, 29667), False, 'from astropy.coordinates import EarthLocation, Angle, SkyCoord\n'), ((43820, 43849), 'numpy.isfinite', 'np.isfinite', (["tab['Longitude']"], {}), "(tab['Longitude'])\n", (43831, 43849), True, 'import numpy as np\n'), ((43881, 43904), 'numpy.isfinite', 'np.isfinite', (["tab['cos']"], {}), "(tab['cos'])\n", (43892, 43904), True, 'import numpy as np\n'), ((43936, 43959), 'numpy.isfinite', 'np.isfinite', (["tab['sin']"], {}), "(tab['sin'])\n", (43947, 43959), True, 'import numpy as np\n'), ((48078, 48250), 'astropy.io.ascii.read', 'ascii.read', (['text_table'], {'format': '"""fixed_width_no_header"""', 'names': 'names', 'col_starts': 'col_starts', 'col_ends': 'col_ends', 'data_start': 'data_start', 'fill_values': "(('N/A', np.nan),)"}), "(text_table, format='fixed_width_no_header', names=names,\n col_starts=col_starts, col_ends=col_ends, data_start=data_start,\n fill_values=(('N/A', np.nan),))\n", (48088, 48250), False, 'from astropy.io import ascii\n'), ((48925, 48954), 'astropy.coordinates.Angle', 'Angle', (["tab['Dec']"], {'unit': '"""deg"""'}), "(tab['Dec'], unit='deg')\n", (48930, 48954), False, 'from astropy.coordinates import EarthLocation, Angle, SkyCoord\n'), ((50068, 50108), 'astropy.time.Time', 'Time', (["tab['JD']"], {'format': '"""jd"""', 'scale': '"""tt"""'}), "(tab['JD'], format='jd', scale='tt')\n", (50072, 50108), False, 'from astropy.time import Time\n'), ((50195, 50239), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'ErfaWarning'], {}), "('ignore', ErfaWarning)\n", (50216, 50239), False, 'import warnings\n'), ((55824, 55910), 'astropy.coordinates.SkyCoord', 'SkyCoord', ([], {'ra': "data['RA']", 'dec': "data['DEC']", 'unit': '(u.hourangle, u.deg)', 'frame': '"""icrs"""'}), "(ra=data['RA'], dec=data['DEC'], unit=(u.hourangle, u.deg), frame=\n 'icrs')\n", (55832, 55910), False, 'from astropy.coordinates import EarthLocation, Angle, SkyCoord\n'), ((31072, 31090), 'astropy.coordinates.Angle', 'Angle', (['location[0]'], {}), '(location[0])\n', (31077, 31090), False, 'from astropy.coordinates import EarthLocation, Angle, SkyCoord\n'), ((31129, 31147), 'astropy.coordinates.Angle', 'Angle', (['location[1]'], {}), '(location[1])\n', (31134, 31147), False, 'from astropy.coordinates import EarthLocation, Angle, SkyCoord\n'), ((49600, 49635), 'astropy.table.Column', 'Column', (['ra'], {'name': '"""RA"""', 'unit': 'ra_unit'}), "(ra, name='RA', unit=ra_unit)\n", (49606, 49635), False, 'from astropy.table import Table, QTable, Column\n'), ((49677, 49715), 'astropy.table.Column', 'Column', (['dec'], {'name': '"""Dec"""', 'unit': 'dec_unit'}), "(dec, name='Dec', unit=dec_unit)\n", (49683, 49715), False, 'from astropy.table import Table, QTable, Column\n'), ((50280, 50303), 'json.loads', 'json.loads', (['result.text'], {}), '(result.text)\n', (50290, 50303), False, 'import json\n'), ((50912, 50956), 'astropy.table.Table', 'Table', (["[[o['original_record'] for o in src]]"], {}), "([[o['original_record'] for o in src]])\n", (50917, 50956), False, 'from astropy.table import Table, QTable, Column\n'), ((48858, 48892), 'astropy.coordinates.Angle', 'Angle', (["tab['RA']"], {'unit': '"""hourangle"""'}), "(tab['RA'], unit='hourangle')\n", (48863, 48892), False, 'from astropy.coordinates import EarthLocation, Angle, SkyCoord\n'), ((55694, 55719), 'astropy.time.Time', 'Time', (['dates'], {'format': '"""iso"""'}), "(dates, format='iso')\n", (55698, 55719), False, 'from astropy.time import Time\n'), ((31186, 31209), 'astropy.units.Quantity', 'u.Quantity', (['location[2]'], {}), '(location[2])\n', (31196, 31209), True, 'import astropy.units as u\n')]
""" Strategies that try to maximize the posterior mean function. """ from argparse import Namespace import numpy as np from OCBO.cstrats.cts_opt import ContinuousOpt from dragonfly.utils.option_handler import get_option_specs from OCBO.util.misc_util import sample_grid, uniform_draw, knowledge_gradient pm_args = [\ get_option_specs('judge_act_size', False, 50, 'Number of points to use to judge candidates.'), get_option_specs('judge_ctx_size', False, 50, 'Number of points to use to judge candidates.'), get_option_specs('judge_ctx_thresh', False, None, 'Threshold for how related judgement set should be in context.'), get_option_specs('judge_act_thresh', False, None, 'Threshold for how related judgement set should be in context.'), ] class PosteriorMaximization(ContinuousOpt): def _child_set_up(self, function, domain, ctx_dim, options): self.judge_act_size = options.judge_act_size self.judge_ctx_size = options.judge_ctx_size self.judge_ctx_thresh = options.judge_ctx_thresh if self.judge_ctx_thresh is not None: self.judge_ctx_thresh = float(self.judge_ctx_thresh) self.judge_act_thresh = options.judge_act_thresh if self.judge_act_thresh is not None: self.judge_act_thresh = float(self.judge_act_thresh) def _make_judgement_set(self, cand_pt): """Make judgement set. Restruct to have some delta threshold in the context and action space. Distance between points uses l-infty norm. Args: cand_pt: ndarray of specific candidate point to make the set for. Returns: ndarray of points. """ # Find context threshold. if self.judge_ctx_thresh is None: c_thresh = self.ctx_domain else: c_thresh = self._find_ctx_thresh(cand_pt) # Draw contexts based on context threshold constraint. ctxs = uniform_draw(c_thresh, self.judge_ctx_size) # Find Action threshold. if self.judge_act_thresh is None: a_thresh = self.act_domain else: a_thresh = self._find_act_thresh(cand_pt) ctxs = [list(cx) for cx in ctxs] return sample_grid(ctxs, a_thresh, self.judge_act_size) def _find_ctx_thresh(self, cand_pt): # Draw points at random with same action. cand_ctx, cand_act = np.split(cand_pt, [self.ctx_dim]) check_ctxs = uniform_draw(self.ctx_domain, self.judge_ctx_size) dist_pairs = [] for cc in check_ctxs: linf = np.max(np.abs(cc - cand_ctx)) dist_pairs.append((linf, cc)) dist_pairs.sort() dist_pairs = dist_pairs[::-1] check_ctxs = np.asarray([dp[1] for dp in dist_pairs]) check_ctxs = check_ctxs.reshape(self.judge_ctx_size, self.ctx_dim) repeated_act = np.tile(cand_act, self.judge_ctx_size) repeated_act = repeated_act.reshape(self.judge_ctx_size, self.act_dim) check_pts = np.hstack([check_ctxs, repeated_act]) check_pts = check_pts.reshape(self.judge_ctx_size, self.dim) # Find posterior covariances between cand_pt and drawn. all_pts = np.vstack([cand_pt, check_pts]) _, covmat = self.gp.eval(all_pts, include_covar=True) covs = covmat[0] # Find furthest point that satisfies threshold. dist_idx = 1 while dist_idx < self.judge_ctx_size \ and covs[dist_idx] > self.judge_ctx_thresh: dist_idx += 1 max_ldist = dist_pairs[dist_idx - 1][0] new_domain = [] for dim, dim_domain in enumerate(self.ctx_domain): lower = np.max([cand_ctx[dim] - max_ldist, dim_domain[0]]) upper = np.min([cand_ctx[dim] + max_ldist, dim_domain[1]]) new_domain.append([lower, upper]) return new_domain def _find_act_thresh(self, cand_pt): # Draw points at random with same action. cand_ctx, cand_act = np.split(cand_pt, [self.ctx_dim]) check_acts = uniform_draw(self.act_domain, self.judge_act_size) dist_pairs = [] for ca in check_acts: linf = np.max(np.abs(ca - cand_ctx)) dist_pairs.append((linf, ca)) dist_pairs.sort() dist_pairs = dist_pairs[::-1] check_acts = np.asarray([dp[1] for dp in dist_pairs]) check_acts = check_acts.reshape(self.judge_act_size, self.act_dim) repeated_ctx = np.tile(cand_ctx, self.judge_act_size) repeated_ctx = repeated_ctx.reshape(self.judge_act_size, self.ctx_dim) check_pts = np.hstack([repeated_ctx, check_acts]) check_pts = check_pts.reshape(self.judge_act_size, self.dim) # Find posterior covariances between cand_pt and drawn. all_pts = np.vstack([cand_pt, check_pts]) _, covmat = self.gp.eval(all_pts, uncert_form='covar') covs = covmat[0] # Find furthest point that satisfies threshold. dist_idx = 1 while dist_idx < self.judge_ctx_size \ and covs[dist_idx] > self.judge_ctx_thresh: dist_idx += 1 max_ldist = dist_pairs[dist_idx - 1][0] new_domain = [] for dim, dim_domain in enumerate(self.act_domain): lower = np.max([cand_act[dim] - max_ldist, dim_domain[0]]) upper = np.min([cand_act[dim] + max_ldist, dim_domain[1]]) new_domain.append([lower, upper]) return new_domain class REVI(PosteriorMaximization): @staticmethod def get_strat_name(): """Get the name of the strategies.""" return 'revi' def _determine_next_query(self): """Pick the next query uniformly at random.""" if self.judge_act_thresh is None and self.judge_ctx_thresh is None: return self._set_eval_next_query() return self._diff_eval_next_query() def _set_eval_next_query(self): # Form candidate and judgement sets. cands = self._make_candidate_set() noise = self.gp.get_estimated_noise() judge = self._make_judgement_set(cands[0]) conjoined = np.vstack([cands, judge]) means, _ = self.gp.eval(conjoined, include_covar=False) judge_means = means[self.cand_size:].reshape(self.judge_ctx_size, self.judge_act_size) interactions = self.gp.get_pt_relations(cands, judge) cand_vars = self.gp.eval(cands, include_covar=True)[1].diagonal() best_pt, best_val = None, float('-inf') for c_idx in range(self.cand_size): interaction = interactions[c_idx].reshape(self.judge_ctx_size, self.judge_act_size) var = cand_vars[c_idx] improvement = 0 # Judge the effect of the candidate point. for ctx_idx in range(self.judge_ctx_size): means = judge_means[ctx_idx] sigmas = interaction[ctx_idx] / np.sqrt(noise + var) improvement += knowledge_gradient(means, sigmas) if improvement > best_val: best_pt, best_val = cands[c_idx], improvement # Return the best candidate point. return best_pt def _diff_eval_next_query(self): # Form candidate and judgement sets. cands = self._make_candidate_set() noise = self.gp.get_estimated_noise() best_pt, best_val = None, float('-inf') for c_idx in range(self.cand_size): cand_pt = cands[c_idx] judge = self._make_judgement_set(cands[c_idx]) # Find mean and covar mat for combined cand-judgement set. conjoined = np.vstack([cand_pt, judge]) means, covar = self.gp.eval(conjoined, include_covar=False) judge_means = means[1:].reshape(self.judge_ctx_size, self.judge_act_size) interaction = self.gp.get_pt_relations([cand_pt], judge) interaction = interaction.reshape(self.judge_ctx_size, self.judge_act_size) var = float(self.gp.eval([cand_pt], include_covar=True)[1]) improvement = 0 # Judge the effect of the candidate point. for ctx_idx in range(self.judge_ctx_size): means = judge_means[ctx_idx] sigmas = interaction[ctx_idx] / np.sqrt(noise + var) improvement += knowledge_gradient(means, sigmas) if improvement > best_val: best_pt, best_val = cand_pt, improvement # Return the best candidate point. return best_pt pm_strats = [Namespace(impl=REVI, name=REVI.get_strat_name())]
[ "numpy.abs", "OCBO.util.misc_util.sample_grid", "numpy.asarray", "OCBO.util.misc_util.knowledge_gradient", "numpy.split", "numpy.hstack", "numpy.max", "numpy.min", "numpy.tile", "OCBO.util.misc_util.uniform_draw", "numpy.sqrt", "numpy.vstack", "dragonfly.utils.option_handler.get_option_specs" ]
[((328, 425), 'dragonfly.utils.option_handler.get_option_specs', 'get_option_specs', (['"""judge_act_size"""', '(False)', '(50)', '"""Number of points to use to judge candidates."""'], {}), "('judge_act_size', False, 50,\n 'Number of points to use to judge candidates.')\n", (344, 425), False, 'from dragonfly.utils.option_handler import get_option_specs\n'), ((443, 540), 'dragonfly.utils.option_handler.get_option_specs', 'get_option_specs', (['"""judge_ctx_size"""', '(False)', '(50)', '"""Number of points to use to judge candidates."""'], {}), "('judge_ctx_size', False, 50,\n 'Number of points to use to judge candidates.')\n", (459, 540), False, 'from dragonfly.utils.option_handler import get_option_specs\n'), ((558, 676), 'dragonfly.utils.option_handler.get_option_specs', 'get_option_specs', (['"""judge_ctx_thresh"""', '(False)', 'None', '"""Threshold for how related judgement set should be in context."""'], {}), "('judge_ctx_thresh', False, None,\n 'Threshold for how related judgement set should be in context.')\n", (574, 676), False, 'from dragonfly.utils.option_handler import get_option_specs\n'), ((694, 812), 'dragonfly.utils.option_handler.get_option_specs', 'get_option_specs', (['"""judge_act_thresh"""', '(False)', 'None', '"""Threshold for how related judgement set should be in context."""'], {}), "('judge_act_thresh', False, None,\n 'Threshold for how related judgement set should be in context.')\n", (710, 812), False, 'from dragonfly.utils.option_handler import get_option_specs\n'), ((1976, 2019), 'OCBO.util.misc_util.uniform_draw', 'uniform_draw', (['c_thresh', 'self.judge_ctx_size'], {}), '(c_thresh, self.judge_ctx_size)\n', (1988, 2019), False, 'from OCBO.util.misc_util import sample_grid, uniform_draw, knowledge_gradient\n'), ((2258, 2306), 'OCBO.util.misc_util.sample_grid', 'sample_grid', (['ctxs', 'a_thresh', 'self.judge_act_size'], {}), '(ctxs, a_thresh, self.judge_act_size)\n', (2269, 2306), False, 'from OCBO.util.misc_util import sample_grid, uniform_draw, knowledge_gradient\n'), ((2428, 2461), 'numpy.split', 'np.split', (['cand_pt', '[self.ctx_dim]'], {}), '(cand_pt, [self.ctx_dim])\n', (2436, 2461), True, 'import numpy as np\n'), ((2483, 2533), 'OCBO.util.misc_util.uniform_draw', 'uniform_draw', (['self.ctx_domain', 'self.judge_ctx_size'], {}), '(self.ctx_domain, self.judge_ctx_size)\n', (2495, 2533), False, 'from OCBO.util.misc_util import sample_grid, uniform_draw, knowledge_gradient\n'), ((2764, 2804), 'numpy.asarray', 'np.asarray', (['[dp[1] for dp in dist_pairs]'], {}), '([dp[1] for dp in dist_pairs])\n', (2774, 2804), True, 'import numpy as np\n'), ((2903, 2941), 'numpy.tile', 'np.tile', (['cand_act', 'self.judge_ctx_size'], {}), '(cand_act, self.judge_ctx_size)\n', (2910, 2941), True, 'import numpy as np\n'), ((3085, 3122), 'numpy.hstack', 'np.hstack', (['[check_ctxs, repeated_act]'], {}), '([check_ctxs, repeated_act])\n', (3094, 3122), True, 'import numpy as np\n'), ((3274, 3305), 'numpy.vstack', 'np.vstack', (['[cand_pt, check_pts]'], {}), '([cand_pt, check_pts])\n', (3283, 3305), True, 'import numpy as np\n'), ((4069, 4102), 'numpy.split', 'np.split', (['cand_pt', '[self.ctx_dim]'], {}), '(cand_pt, [self.ctx_dim])\n', (4077, 4102), True, 'import numpy as np\n'), ((4124, 4174), 'OCBO.util.misc_util.uniform_draw', 'uniform_draw', (['self.act_domain', 'self.judge_act_size'], {}), '(self.act_domain, self.judge_act_size)\n', (4136, 4174), False, 'from OCBO.util.misc_util import sample_grid, uniform_draw, knowledge_gradient\n'), ((4405, 4445), 'numpy.asarray', 'np.asarray', (['[dp[1] for dp in dist_pairs]'], {}), '([dp[1] for dp in dist_pairs])\n', (4415, 4445), True, 'import numpy as np\n'), ((4544, 4582), 'numpy.tile', 'np.tile', (['cand_ctx', 'self.judge_act_size'], {}), '(cand_ctx, self.judge_act_size)\n', (4551, 4582), True, 'import numpy as np\n'), ((4726, 4763), 'numpy.hstack', 'np.hstack', (['[repeated_ctx, check_acts]'], {}), '([repeated_ctx, check_acts])\n', (4735, 4763), True, 'import numpy as np\n'), ((4915, 4946), 'numpy.vstack', 'np.vstack', (['[cand_pt, check_pts]'], {}), '([cand_pt, check_pts])\n', (4924, 4946), True, 'import numpy as np\n'), ((6241, 6266), 'numpy.vstack', 'np.vstack', (['[cands, judge]'], {}), '([cands, judge])\n', (6250, 6266), True, 'import numpy as np\n'), ((3754, 3804), 'numpy.max', 'np.max', (['[cand_ctx[dim] - max_ldist, dim_domain[0]]'], {}), '([cand_ctx[dim] - max_ldist, dim_domain[0]])\n', (3760, 3804), True, 'import numpy as np\n'), ((3825, 3875), 'numpy.min', 'np.min', (['[cand_ctx[dim] + max_ldist, dim_domain[1]]'], {}), '([cand_ctx[dim] + max_ldist, dim_domain[1]])\n', (3831, 3875), True, 'import numpy as np\n'), ((5396, 5446), 'numpy.max', 'np.max', (['[cand_act[dim] - max_ldist, dim_domain[0]]'], {}), '([cand_act[dim] - max_ldist, dim_domain[0]])\n', (5402, 5446), True, 'import numpy as np\n'), ((5467, 5517), 'numpy.min', 'np.min', (['[cand_act[dim] + max_ldist, dim_domain[1]]'], {}), '([cand_act[dim] + max_ldist, dim_domain[1]])\n', (5473, 5517), True, 'import numpy as np\n'), ((7829, 7856), 'numpy.vstack', 'np.vstack', (['[cand_pt, judge]'], {}), '([cand_pt, judge])\n', (7838, 7856), True, 'import numpy as np\n'), ((2614, 2635), 'numpy.abs', 'np.abs', (['(cc - cand_ctx)'], {}), '(cc - cand_ctx)\n', (2620, 2635), True, 'import numpy as np\n'), ((4255, 4276), 'numpy.abs', 'np.abs', (['(ca - cand_ctx)'], {}), '(ca - cand_ctx)\n', (4261, 4276), True, 'import numpy as np\n'), ((7175, 7208), 'OCBO.util.misc_util.knowledge_gradient', 'knowledge_gradient', (['means', 'sigmas'], {}), '(means, sigmas)\n', (7193, 7208), False, 'from OCBO.util.misc_util import sample_grid, uniform_draw, knowledge_gradient\n'), ((8617, 8650), 'OCBO.util.misc_util.knowledge_gradient', 'knowledge_gradient', (['means', 'sigmas'], {}), '(means, sigmas)\n', (8635, 8650), False, 'from OCBO.util.misc_util import sample_grid, uniform_draw, knowledge_gradient\n'), ((7123, 7143), 'numpy.sqrt', 'np.sqrt', (['(noise + var)'], {}), '(noise + var)\n', (7130, 7143), True, 'import numpy as np\n'), ((8565, 8585), 'numpy.sqrt', 'np.sqrt', (['(noise + var)'], {}), '(noise + var)\n', (8572, 8585), True, 'import numpy as np\n')]
import numpy as np import pandas as pd import xarray as xr import Grid import pf_dynamic_sph import os import sys from timeit import default_timer as timer from copy import copy if __name__ == "__main__": start = timer() # ---- INITIALIZE GRIDS ---- higherCutoff = True; cutoffRat = 1.5 betterResolution = False; resRat = 0.5 (Lx, Ly, Lz) = (60, 60, 60) (dx, dy, dz) = (0.25, 0.25, 0.25) # (Lx, Ly, Lz) = (40, 40, 40) # (dx, dy, dz) = (0.25, 0.25, 0.25) # (Lx, Ly, Lz) = (21, 21, 21) # (dx, dy, dz) = (0.375, 0.375, 0.375) xgrid = Grid.Grid('CARTESIAN_3D') xgrid.initArray('x', -Lx, Lx, dx); xgrid.initArray('y', -Ly, Ly, dy); xgrid.initArray('z', -Lz, Lz, dz) NGridPoints_cart = (1 + 2 * Lx / dx) * (1 + 2 * Ly / dy) * (1 + 2 * Lz / dz) NGridPoints_desired = (1 + 2 * Lx / dx) * (1 + 2 * Lz / dz) Ntheta = 50 Nk = np.ceil(NGridPoints_desired / Ntheta) theta_max = np.pi thetaArray, dtheta = np.linspace(0, theta_max, Ntheta, retstep=True) # k_max = np.sqrt((np.pi / dx)**2 + (np.pi / dy)**2 + (np.pi / dz)**2) k_max = ((2 * np.pi / dx)**3 / (4 * np.pi / 3))**(1 / 3) k_min = 1e-5 kArray, dk = np.linspace(k_min, k_max, Nk, retstep=True) if dk < k_min: print('k ARRAY GENERATION ERROR') kgrid = Grid.Grid("SPHERICAL_2D") if higherCutoff is True and betterResolution is False: kgrid.initArray('k', k_min, cutoffRat * k_max, dk) k_max = kgrid.getArray('k')[-1] elif higherCutoff is False and betterResolution is True: kgrid.initArray('k', k_min, k_max, resRat * dk) dk = kgrid.getArray('k')[1] - kgrid.getArray('k')[0] else: kgrid.initArray_premade('k', kArray) kgrid.initArray_premade('th', thetaArray) # for realdyn evolution tMax = 100 dt = 0.2 CoarseGrainRate = 50 tgrid = np.arange(0, tMax + dt, dt) gParams = [xgrid, kgrid, tgrid] NGridPoints = kgrid.size() print('Total time steps: {0}'.format(tgrid.size)) print('UV cutoff: {0}'.format(k_max)) print('dk: {0}'.format(dk)) print('NGridPoints: {0}'.format(NGridPoints)) print(NGridPoints_cart, NGridPoints) # Toggle parameters toggleDict = {'Location': 'cluster', 'Dynamics': 'real', 'Coupling': 'twophonon', 'Grid': 'spherical', 'Longtime': 'false', 'CoarseGrainRate': CoarseGrainRate} # ---- SET PARAMS ---- mB = 1 n0 = 1 gBB = (4 * np.pi / mB) * 0.05 # Dresher uses aBB ~ 0.2 instead of 0.5 here # gBB = (4 * np.pi / mB) * 0.02 # Dresher uses aBB ~ 0.2 instead of 0.5 here nu = np.sqrt(n0 * gBB / mB) aBB = (mB / (4 * np.pi)) * gBB xi = (8 * np.pi * n0 * aBB)**(-1 / 2) print(k_max * xi) print(5 * mB * xi**2) print(-3.0 / xi) print((n0 * aBB * 3)**(-1 / 2) * mB * xi**2) Params_List = [] mI_Vals = np.array([0.5, 1.0, 2, 5.0]) aIBi_Vals = np.array([-10.0, -5.0, -2.0]) if higherCutoff is True or betterResolution is True: mI_Vals = np.array([1.0, 5.0]) aIBi_Vals = np.array([-2.0, -1.0]) P_Vals_norm = np.concatenate((np.linspace(0.1, 0.8, 5, endpoint=False), np.linspace(0.8, 1.2, 10, endpoint=False), np.linspace(1.2, 3.0, 12, endpoint=False), np.linspace(3.0, 5.0, 3))) for mI in mI_Vals: P_Vals = mI * nu * P_Vals_norm for aIBi in aIBi_Vals: for P in P_Vals: sParams = [mI, mB, n0, gBB] cParams = [P, aIBi] if toggleDict['Location'] == 'home': datapath = '/home/kis/Dropbox/VariationalResearch/HarvardOdyssey/genPol_data/NGridPoints_{:.2E}'.format(NGridPoints_cart) elif toggleDict['Location'] == 'work': datapath = '/media/kis/Storage/Dropbox/VariationalResearch/HarvardOdyssey/genPol_data/NGridPoints_{:.2E}'.format(NGridPoints_cart) elif toggleDict['Location'] == 'cluster': datapath = '/n/scratchlfs/demler_lab/kis/genPol_data/NGridPoints_{:.2E}'.format(NGridPoints_cart) if higherCutoff is True: datapath = datapath + '_cutoffRat_{:.2f}'.format(cutoffRat) if betterResolution is True: datapath = datapath + '_resRat_{:.2f}'.format(resRat) gridpath = copy(datapath) datapath = datapath + '/massRatio={:.1f}'.format(mI / mB) if toggleDict['Dynamics'] == 'real': innerdatapath = datapath + '/redyn' elif toggleDict['Dynamics'] == 'imaginary': innerdatapath = datapath + '/imdyn' if toggleDict['Grid'] == 'cartesian': innerdatapath = innerdatapath + '_cart' elif toggleDict['Grid'] == 'spherical': innerdatapath = innerdatapath + '_spherical' if toggleDict['Coupling'] == 'frohlich': innerdatapath = innerdatapath + '_froh' elif toggleDict['Coupling'] == 'twophonon': innerdatapath = innerdatapath Params_List.append([sParams, cParams, innerdatapath]) # if os.path.isdir(gridpath) is False: # os.mkdir(gridpath) # if os.path.isdir(datapath) is False: # os.mkdir(datapath) # if os.path.isdir(innerdatapath) is False: # os.mkdir(innerdatapath) print(len(Params_List)) # # ---- COMPUTE DATA ON COMPUTER ---- # runstart = timer() # for ind, Params in enumerate(Params_List): # loopstart = timer() # [sParams, cParams, innerdatapath] = Params_List[ind] # [mI, mB, n0, gBB] = sParams # [P, aIBi] = cParams # dyncart_ds = pf_dynamic_cart.quenchDynamics_DataGeneration(cParams, gParams, sParams, toggleDict) # dyncart_ds.to_netcdf(innerdatapath + '/P_{:.3f}_aIBi_{:.2f}.nc'.format(P, aIBi)) # loopend = timer() # print('Index: {:d}, P: {:.2f}, aIBi: {:.2f} Time: {:.2f}'.format(ind, P, aIBi, loopend - loopstart)) # end = timer() # print('Total Time: {:.2f}'.format(end - runstart)) # ---- COMPUTE DATA ON CLUSTER ---- runstart = timer() taskCount = int(os.getenv('SLURM_ARRAY_TASK_COUNT')) taskID = int(os.getenv('SLURM_ARRAY_TASK_ID')) # taskCount = len(Params_List) # taskID = 72 if(taskCount > len(Params_List)): print('ERROR: TASK COUNT MISMATCH') P = float('nan') aIBi = float('nan') sys.exit() else: [sParams, cParams, innerdatapath] = Params_List[taskID] [mI, mB, n0, gBB] = sParams [P, aIBi] = cParams dynsph_ds = pf_dynamic_sph.quenchDynamics_DataGeneration(cParams, gParams, sParams, toggleDict) dynsph_ds.to_netcdf(innerdatapath + '/P_{:.3f}_aIBi_{:.2f}.nc'.format(P, aIBi)) end = timer() print('Task ID: {:d}, P: {:.2f}, aIBi: {:.2f} Time: {:.2f}'.format(taskID, P, aIBi, end - runstart))
[ "pf_dynamic_sph.quenchDynamics_DataGeneration", "numpy.ceil", "timeit.default_timer", "copy.copy", "numpy.arange", "numpy.array", "numpy.linspace", "Grid.Grid", "os.getenv", "sys.exit", "numpy.sqrt" ]
[((220, 227), 'timeit.default_timer', 'timer', ([], {}), '()\n', (225, 227), True, 'from timeit import default_timer as timer\n'), ((584, 609), 'Grid.Grid', 'Grid.Grid', (['"""CARTESIAN_3D"""'], {}), "('CARTESIAN_3D')\n", (593, 609), False, 'import Grid\n'), ((889, 926), 'numpy.ceil', 'np.ceil', (['(NGridPoints_desired / Ntheta)'], {}), '(NGridPoints_desired / Ntheta)\n', (896, 926), True, 'import numpy as np\n'), ((975, 1022), 'numpy.linspace', 'np.linspace', (['(0)', 'theta_max', 'Ntheta'], {'retstep': '(True)'}), '(0, theta_max, Ntheta, retstep=True)\n', (986, 1022), True, 'import numpy as np\n'), ((1195, 1238), 'numpy.linspace', 'np.linspace', (['k_min', 'k_max', 'Nk'], {'retstep': '(True)'}), '(k_min, k_max, Nk, retstep=True)\n', (1206, 1238), True, 'import numpy as np\n'), ((1313, 1338), 'Grid.Grid', 'Grid.Grid', (['"""SPHERICAL_2D"""'], {}), "('SPHERICAL_2D')\n", (1322, 1338), False, 'import Grid\n'), ((1872, 1899), 'numpy.arange', 'np.arange', (['(0)', '(tMax + dt)', 'dt'], {}), '(0, tMax + dt, dt)\n', (1881, 1899), True, 'import numpy as np\n'), ((2600, 2622), 'numpy.sqrt', 'np.sqrt', (['(n0 * gBB / mB)'], {}), '(n0 * gBB / mB)\n', (2607, 2622), True, 'import numpy as np\n'), ((2855, 2883), 'numpy.array', 'np.array', (['[0.5, 1.0, 2, 5.0]'], {}), '([0.5, 1.0, 2, 5.0])\n', (2863, 2883), True, 'import numpy as np\n'), ((2900, 2929), 'numpy.array', 'np.array', (['[-10.0, -5.0, -2.0]'], {}), '([-10.0, -5.0, -2.0])\n', (2908, 2929), True, 'import numpy as np\n'), ((6234, 6241), 'timeit.default_timer', 'timer', ([], {}), '()\n', (6239, 6241), True, 'from timeit import default_timer as timer\n'), ((6715, 6802), 'pf_dynamic_sph.quenchDynamics_DataGeneration', 'pf_dynamic_sph.quenchDynamics_DataGeneration', (['cParams', 'gParams', 'sParams', 'toggleDict'], {}), '(cParams, gParams, sParams,\n toggleDict)\n', (6759, 6802), False, 'import pf_dynamic_sph\n'), ((6894, 6901), 'timeit.default_timer', 'timer', ([], {}), '()\n', (6899, 6901), True, 'from timeit import default_timer as timer\n'), ((3005, 3025), 'numpy.array', 'np.array', (['[1.0, 5.0]'], {}), '([1.0, 5.0])\n', (3013, 3025), True, 'import numpy as np\n'), ((3046, 3068), 'numpy.array', 'np.array', (['[-2.0, -1.0]'], {}), '([-2.0, -1.0])\n', (3054, 3068), True, 'import numpy as np\n'), ((6263, 6298), 'os.getenv', 'os.getenv', (['"""SLURM_ARRAY_TASK_COUNT"""'], {}), "('SLURM_ARRAY_TASK_COUNT')\n", (6272, 6298), False, 'import os\n'), ((6317, 6349), 'os.getenv', 'os.getenv', (['"""SLURM_ARRAY_TASK_ID"""'], {}), "('SLURM_ARRAY_TASK_ID')\n", (6326, 6349), False, 'import os\n'), ((6549, 6559), 'sys.exit', 'sys.exit', ([], {}), '()\n', (6557, 6559), False, 'import sys\n'), ((3104, 3144), 'numpy.linspace', 'np.linspace', (['(0.1)', '(0.8)', '(5)'], {'endpoint': '(False)'}), '(0.1, 0.8, 5, endpoint=False)\n', (3115, 3144), True, 'import numpy as np\n'), ((3146, 3187), 'numpy.linspace', 'np.linspace', (['(0.8)', '(1.2)', '(10)'], {'endpoint': '(False)'}), '(0.8, 1.2, 10, endpoint=False)\n', (3157, 3187), True, 'import numpy as np\n'), ((3189, 3230), 'numpy.linspace', 'np.linspace', (['(1.2)', '(3.0)', '(12)'], {'endpoint': '(False)'}), '(1.2, 3.0, 12, endpoint=False)\n', (3200, 3230), True, 'import numpy as np\n'), ((3232, 3256), 'numpy.linspace', 'np.linspace', (['(3.0)', '(5.0)', '(3)'], {}), '(3.0, 5.0, 3)\n', (3243, 3256), True, 'import numpy as np\n'), ((4306, 4320), 'copy.copy', 'copy', (['datapath'], {}), '(datapath)\n', (4310, 4320), False, 'from copy import copy\n')]
import os.path import numpy as np import matplotlib.pyplot as plt from .logger import log from .act_on_image import ActOnImage from .bpcs_steg import arr_bpcs_complexity, conjugate, max_bpcs_complexity from .array_message import get_n_message_grids from .array_grid import get_next_grid_dims def histogram_of_complexity(arr, grid_size, alpha, comp_fcn): log.critical('Creating histograms of image complexity...') max_complexity = max_bpcs_complexity(*grid_size) vals = [arr_bpcs_complexity(arr[dims]) for dims in get_next_grid_dims(arr, grid_size)] fig = plt.figure() ax = fig.add_subplot(111) ns, bins, patches = ax.hist(vals, 200, facecolor='red', alpha=0.75) navail = sum([n for n, bin in zip(ns, bins) if comp_fcn(bin, alpha)]) return fig, navail, sum(ns) def rand_image_complexity(arr, alpha, comp_fcn, grid_size): n = 0 for dims in get_next_grid_dims(arr, grid_size): grid = arr[dims] if comp_fcn(arr_bpcs_complexity(grid), alpha): # < or > n += 1 init_grid = np.copy(grid) np.random.shuffle(init_grid.reshape(-1)) arr[dims] = init_grid log.critical('Conjugated {0} grids'.format(n)) # histogram_of_complexity(arr, params) return arr, n def flip_image_complexity(arr, alpha, comp_fcn, grid_size): n = 0 for dims in get_next_grid_dims(arr, grid_size): grid = arr[dims] if comp_fcn(arr_bpcs_complexity(grid), alpha): # < or > n += 1 init_grid = np.copy(grid) arr[dims] = conjugate(grid) assert abs((1 - arr_bpcs_complexity(init_grid)) - arr_bpcs_complexity(grid)) < 0.01 assert not(arr[dims].tolist() == init_grid.tolist() and alpha != 0.5) log.critical('Conjugated {0} grids'.format(n)) # histogram_of_complexity(arr, params) return arr, n class HistogramComplexityImage(ActOnImage): def modify(self, alpha, comp_fcn, grid_size=(8,8)): hist, navail, ntotal = histogram_of_complexity(self.arr, grid_size, alpha, comp_fcn) log.critical('{0} of {1} grids available with alpha of {2}'.format(navail, ntotal, alpha)) nbits_per_grid = grid_size[0]*grid_size[1] nbytes = (get_n_message_grids([nbits_per_grid]*int(navail), int(navail))*nbits_per_grid)/8.0 percent = nbytes*1.0/os.path.getsize(self.infile) log.critical('Approximately {0} bytes of storage space can fit in this vessel image.'.format(nbytes)) log.critical('{0} byte message would utilize {1:.1%} of the vessel image.'.format(nbytes, percent)) return hist class ComplexifyImage(ActOnImage): def modify(self, alpha, grid_size=(8,8)): new_arr = np.array(self.arr, copy=True) return rand_image_complexity(new_arr, alpha, lambda x,thresh: x>=thresh, grid_size) # return flip_image_complexity(new_arr, alpha, lambda x,thresh: x>=thresh, grid_size) class SimplifyImage(ActOnImage): def modify(self, alpha, grid_size=(8,8)): new_arr = np.array(self.arr, copy=True) return rand_image_complexity(new_arr, alpha, lambda x,thresh: x<thresh, grid_size) # return flip_image_complexity(new_arr, alpha, lambda x,thresh: x<thresh, grid_size) def histogram(infile, outfile, alpha, comp_fcn): x = HistogramComplexityImage(infile, as_rgb=True, bitplane=True, gray=True, nbits_per_layer=8) hist = x.modify(alpha, comp_fcn) if outfile is not None: hist.savefig(outfile) log.critical('Wrote histogram of image complexity to {0}'.format(outfile)) # plt.show() def complexify(infile, outfile, alpha): x = ComplexifyImage(infile, as_rgb=True, bitplane=True, gray=True, nbits_per_layer=8) arr, stats = x.modify(alpha) x.write(outfile, arr) return stats def simplify(infile, outfile, alpha): x = SimplifyImage(infile, as_rgb=True, bitplane=True, gray=True, nbits_per_layer=8) arr, stats = x.modify(alpha) x.write(outfile, arr) return stats def capacity(infile, alpha=0.45, outfile=None): greater = lambda x,thresh: x>=thresh histogram(infile, outfile, alpha, greater)
[ "matplotlib.pyplot.figure", "numpy.array", "numpy.copy" ]
[((575, 587), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (585, 587), True, 'import matplotlib.pyplot as plt\n'), ((2705, 2734), 'numpy.array', 'np.array', (['self.arr'], {'copy': '(True)'}), '(self.arr, copy=True)\n', (2713, 2734), True, 'import numpy as np\n'), ((3019, 3048), 'numpy.array', 'np.array', (['self.arr'], {'copy': '(True)'}), '(self.arr, copy=True)\n', (3027, 3048), True, 'import numpy as np\n'), ((1052, 1065), 'numpy.copy', 'np.copy', (['grid'], {}), '(grid)\n', (1059, 1065), True, 'import numpy as np\n'), ((1520, 1533), 'numpy.copy', 'np.copy', (['grid'], {}), '(grid)\n', (1527, 1533), True, 'import numpy as np\n')]
from __future__ import print_function, division import sys import os sys.path.append(os.path.abspath(".")) sys.dont_write_bytecode = True __author__ = "bigfatnoob" import lib import argparse import numpy as np from joblib import Parallel, delayed import multiprocessing import pandas as pd CNT_PROBE_LIMITS = { 1: 178.2, 2: 826.2, 3: 3830.1, 4: 17756.5, 5: 82319.1, 6: 381631.3, 7: 1769243.0, 8: 8202208.0 } def get_file_args(): parser = argparse.ArgumentParser() parser.add_argument("-s", "--seedInit", type=int, default=None, help="Initial seed of experiment") parser.add_argument("-d", "--digits", type=int, default=3, help="Max significant digits") parser.add_argument("-p", "--samples", type=int, default=100, help="Number of samples in the experiment") return parser.parse_args() def main(): args = get_file_args() max_signif_digits = args.digits samples = args.samples seed_init = args.seedInit num_cores = multiprocessing.cpu_count() if seed_init is None: seed_init = np.random.randint(0, 2 ** 16) np.random.seed(seed_init) print("# Seed Init = %d" % seed_init) print("# Max Signif Digit = %d" % max_signif_digits) print("# Samples = %d" % samples) print("# Cores = %d" % num_cores) print("# Solver = Needles3") results = pd.DataFrame(columns=["seedInit", "solverName", "signifDigits", "piHat", "OFtol", "error", "isCensored", "numThrows", "runtime"]) counter = 1 for signif_digit in range(2, max_signif_digits + 1): print("### For %d significant digits" % signif_digit) seeds = np.random.randint(0, 2 ** 16, samples) signif_results = Parallel(n_jobs=num_cores)(delayed( lib.pi_needle_triple)(1, 1, cnt_probe_limit=CNT_PROBE_LIMITS[signif_digit], signif_digits=signif_digit, seed=seed, reject_censored=True) for seed in seeds) for i in range(len(signif_results)): results.loc[i + counter] = signif_results[i] counter += len(signif_results) results.index.name = 'sampleId' results.columns.name = results.index.name txt_file_name = 'results-python/fg_asym_pi_signif_needles3_%d_%d.txt' % (max_signif_digits, seed_init) html_file_name = 'results-python/fg_asym_pi_signif_needles3_%d_%d.html' % (max_signif_digits, seed_init) results.to_csv(txt_file_name, sep="\t") results.to_html(html_file_name) with open(html_file_name) as f: html_data = f.read() html_data += "\n" with open(html_file_name, "wb") as f: f.write(html_data) if __name__ == "__main__": main()
[ "pandas.DataFrame", "os.path.abspath", "numpy.random.seed", "argparse.ArgumentParser", "numpy.random.randint", "joblib.Parallel", "joblib.delayed", "multiprocessing.cpu_count" ]
[((85, 105), 'os.path.abspath', 'os.path.abspath', (['"""."""'], {}), "('.')\n", (100, 105), False, 'import os\n'), ((477, 502), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (500, 502), False, 'import argparse\n'), ((973, 1000), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (998, 1000), False, 'import multiprocessing\n'), ((1073, 1098), 'numpy.random.seed', 'np.random.seed', (['seed_init'], {}), '(seed_init)\n', (1087, 1098), True, 'import numpy as np\n'), ((1309, 1442), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['seedInit', 'solverName', 'signifDigits', 'piHat', 'OFtol', 'error',\n 'isCensored', 'numThrows', 'runtime']"}), "(columns=['seedInit', 'solverName', 'signifDigits', 'piHat',\n 'OFtol', 'error', 'isCensored', 'numThrows', 'runtime'])\n", (1321, 1442), True, 'import pandas as pd\n'), ((1041, 1070), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2 ** 16)'], {}), '(0, 2 ** 16)\n', (1058, 1070), True, 'import numpy as np\n'), ((1612, 1650), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2 ** 16)', 'samples'], {}), '(0, 2 ** 16, samples)\n', (1629, 1650), True, 'import numpy as np\n'), ((1672, 1698), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'num_cores'}), '(n_jobs=num_cores)\n', (1680, 1698), False, 'from joblib import Parallel, delayed\n'), ((1699, 1728), 'joblib.delayed', 'delayed', (['lib.pi_needle_triple'], {}), '(lib.pi_needle_triple)\n', (1706, 1728), False, 'from joblib import Parallel, delayed\n')]
#conding: utf-8 import cv2 import numpy as np classificador = cv2.CascadeClassifier("haarcascade-frontalface-default.xml") classificadorOlho = cv2.CascadeClassifier("haarcascade-eye.xml") camera = cv2.VideoCapture(0) amostra = 1 numeroAmostra = 25 id = input('Digite seu identificador: ') largura, altura = 220, 220 print("Capturando as faces....") while (True): conectado, imagem = camera.read() imagemCinza = cv2.cvtColor(imagem, cv2.COLOR_BGR2GRAY) #print(np.average(imagemCinza)) facesDetectadas = classificador.detectMultiScale(imagemCinza, scaleFactor=1.5, minSize=(150, 150)) for (x, y, l, a) in facesDetectadas: cv2.rectangle(imagem, (x, y), (x+l, y+a), (0, 0, 255), 2) regiao = imagem[y:y + a, x:x + l] regiaoCinzaOlho = cv2.cvtColor(regiao, cv2.COLOR_BGR2GRAY) olhosDetectados = classificadorOlho.detectMultiScale(regiaoCinzaOlho) for (ox, oy, ol, oa) in olhosDetectados: cv2.rectangle(regiao, (ox, oy), (ox + ol, oy + oa), (0, 255, 0), 2) if cv2.waitKey (l) & 0xff == ord('q'): if np.average(imagemCinza) > 110: imagemFace = cv2.resize(imagemCinza[y:y + a, x:x +l],(largura, altura)) cv2.imwrite("fotos/pessoa." + str (id) + "." + str(amostra) + ".jpg", imagemFace) print("[foto" + str (amostra) + " capturada com sucesso]") amostra += 1 cv2.imshow("Face", imagem) cv2.waitKey(1) if (amostra >= numeroAmostra +1): break camera.release() cv2.destroyAllWindows()
[ "numpy.average", "cv2.cvtColor", "cv2.waitKey", "cv2.imshow", "cv2.VideoCapture", "cv2.rectangle", "cv2.CascadeClassifier", "cv2.destroyAllWindows", "cv2.resize" ]
[((63, 123), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['"""haarcascade-frontalface-default.xml"""'], {}), "('haarcascade-frontalface-default.xml')\n", (84, 123), False, 'import cv2\n'), ((144, 188), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['"""haarcascade-eye.xml"""'], {}), "('haarcascade-eye.xml')\n", (165, 188), False, 'import cv2\n'), ((198, 217), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (214, 217), False, 'import cv2\n'), ((1558, 1581), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1579, 1581), False, 'import cv2\n'), ((423, 463), 'cv2.cvtColor', 'cv2.cvtColor', (['imagem', 'cv2.COLOR_BGR2GRAY'], {}), '(imagem, cv2.COLOR_BGR2GRAY)\n', (435, 463), False, 'import cv2\n'), ((1442, 1468), 'cv2.imshow', 'cv2.imshow', (['"""Face"""', 'imagem'], {}), "('Face', imagem)\n", (1452, 1468), False, 'import cv2\n'), ((1473, 1487), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1484, 1487), False, 'import cv2\n'), ((653, 714), 'cv2.rectangle', 'cv2.rectangle', (['imagem', '(x, y)', '(x + l, y + a)', '(0, 0, 255)', '(2)'], {}), '(imagem, (x, y), (x + l, y + a), (0, 0, 255), 2)\n', (666, 714), False, 'import cv2\n'), ((779, 819), 'cv2.cvtColor', 'cv2.cvtColor', (['regiao', 'cv2.COLOR_BGR2GRAY'], {}), '(regiao, cv2.COLOR_BGR2GRAY)\n', (791, 819), False, 'import cv2\n'), ((960, 1027), 'cv2.rectangle', 'cv2.rectangle', (['regiao', '(ox, oy)', '(ox + ol, oy + oa)', '(0, 255, 0)', '(2)'], {}), '(regiao, (ox, oy), (ox + ol, oy + oa), (0, 255, 0), 2)\n', (973, 1027), False, 'import cv2\n'), ((1044, 1058), 'cv2.waitKey', 'cv2.waitKey', (['l'], {}), '(l)\n', (1055, 1058), False, 'import cv2\n'), ((1099, 1122), 'numpy.average', 'np.average', (['imagemCinza'], {}), '(imagemCinza)\n', (1109, 1122), True, 'import numpy as np\n'), ((1163, 1223), 'cv2.resize', 'cv2.resize', (['imagemCinza[y:y + a, x:x + l]', '(largura, altura)'], {}), '(imagemCinza[y:y + a, x:x + l], (largura, altura))\n', (1173, 1223), False, 'import cv2\n')]
""" ttrvna Author: <NAME> Institution: University of Missouri Kansas City Created: 6/20/2019 Edited: 6/27/2019 Python 3.6.0 64-bit (Anaconda 4.3.0) This file contains the Ttrvna class which is initialized when someone wants to do an experiment with the Tektronix TTR506A VNA. See VNAandPowSup.py if you want to control the VNA in conjunction with a Power Supply. """ # IMPORTS =================================================================== import visa import numpy as np import matplotlib.pyplot as plt import time import csv import instrument as instr # Ttrvna =============================================================== class Ttrvna(instr.Instrument): """ The Ttrvna class is used for instances of experiments with the Tektronix TTR506A VNA where the user may set up an automated design of experiment. Attributes: _rm : ResourceManager : instance of visa's Resource Manager class _instr : Resource : instrument, TTR506A VNA in this case startFreqSweep : str as SI unit : determines start frequency for frequency sweep stopFreqSweep : str as SI unit : determines stop frequency for frequency sweep sweepDelay : str as SI unit : determines delay between each sweep sParam : str : determines which S Parameter is measured trials : int > 0 : determines the number of trials/sweeps format : str : determines format for the data to be outputted into _measuredRange : list of ints : y values for the eventual output, usually s parameter _freqDomain : list of ints : x values in frequency for the eventual output _trial : int : current trial number """ def __init__(self,start=None,stop=None,delay=None,sParam=None,trials=None,format='mlogarithmic'): """ Constructor that initializes attributes of Ttrvna instance. By default the data format is 'mlogarithmic'. Parameters: start : str as SI unit : determines start frequency for frequency sweep stop : str as SI unit : determines stop frequency for frequency sweep dekay : str as SI unit : determines delay between each sweep sParam : str : determines which S Parameter is measured trials : int > 0 : determines the number of trials/sweeps format : str : determines format for the data to be outputted into """ self._rm = visa.ResourceManager() self._instr = self._rm.open_resource('GPIB8::1::INSTR') if start is not None: self.setStartSweep(start) if stop is not None: self.setStopSweep(stop) if delay is not None: self.setSweepDelay(delay) if sParam is not None: self.setsParam(sParam) if trials is not None: self.setTrials(trials) self.setFormat(format) self._measuredRange = None self._freqDomain = None self._trial = 1 def setStartSweep(self,start): """ Setter for Start of Frequency Sweep Example start = '50 MHz' """ self.isSIUnit(start) self.startFreqSweep = start def setStopSweep(self,stop): """ Setter for Stop of Frequency Sweep Example stop = '6 GHz' """ self.isSIUnit(stop) self.stopFreqSweep = stop def setSweepDelay(self,delay): """ Setter for delay between each sweep Example: delay = '1s' """ self.isSIUnit(delay) self.sweepDelay = delay def setsParam(self,param): """ Setter for the S parameter you would like to measure sParam must be one of the following as a srting: S11, S12, S21, S22 Example: param = 'S21' """ assert param in ['S11','S12','S21','S22'] self.sParam = param def setTrials(self,trials): """ Setter for number of trials/sweeps you would like to run Example: trials = 40 """ assert type(trials) == int assert trials > 0 self.trials = trials def setFormat(self,format): """ Setter for format of outputted data: Format must be one of the following as a string: mlogarithmic, phase, gdelay, slinear, slogarithmic, scomplex, smith, sadmittance, plinear, plogarithmic, polar, mlinear, swr, real, imaginary, uphase, pphase Example: format = mlogarithmic """ assert type(format) == str assert format in ["mlogarithmic", "phase", "gdelay", "slinear", "slogarithmic", "scomplex", "smith", "sadmittance", "plinear", "plogarithmic", "polar", "mlinear", "swr", "real", "imaginary", "uphase", "pphase"] self.format = format def setMeasuredRange(self): """ Takes a measurement according to inputted parameter after initializing data acquisition. After the data is appropriately modified into a list, it is set as the value for the _measuredRange attribute. """ self._initDataAcquisition() self._instr.write('calculate1:parameter1:define {}'.format(self.sParam)) time.sleep(1) # delay sometimes needed to ensure commands are used in sequence self._instr.write('calculate1:selected:format %s' % self.format) measurement = self._instr.query('calculate1:selected:data:fdata?') if self.isTwoComponents(): # If two components, create list of containing both components self._measuredRange = self._listify(measurement) else: # Otherwise, get rid of zero components that the TTR VNA measurement = self._listify(measurement) # uses to fill the second/imaginary component of self._measuredRange = self._removeSecondComponent(measurement) # the measurement def setFreqDomain(self): """ Used to set the frequency domain based on the the start and stop of the frequency sweep. Uses this as the value for self._freqDomain """ start = self.unitConverter(self.startFreqSweep) stop = self.unitConverter(self.stopFreqSweep) if self.isTwoComponents(): # If two components, set the domain for half the range freqDomain = np.linspace(start,stop, num=((len(self._measuredRange))/2)) # because of 1:2 Domain:Range correspondence else: freqDomain = np.linspace(start,stop, num=len(self._measuredRange)) # Otherwise, set domain to be same length as self._freqDomain = freqDomain # the _measuredRange def makeSweep(self): """ Takes a sweep measurement for desired value with start and stop be the span of the sweep and delay being the time between each sweep. Logs data in three ways, text file, plot as png, and csv. The Conditionals with the trials is used because it usually takes the VNA a trial to adjust to it the commanded settings. So the first trial is not recorded until I find a better way to do this. """ self._configInst() self.setMeasuredRange() self.setFreqDomain() if self._trial > 1: # Ensures that the first trial is not recorded self._createPlot() # png self._logger() # txt self._csvWriter() # csv self._trial += 1 def makeSweepUnprocessed(self): """ Same as makeSweep, but it does not process the data. It merely returns the data as a list. """ self._configInst() self.setMeasuredRange() self.setFreqDomain() if self.isTwoComponents(): self._getMagnitudes() self._measuredRange = self._magnitudes self._trial += 1 return [self._freqDomain,self._measuredRange] def run(self): """ Function that you should call to run an experiment after the constructor has been called. Makes a sweep for each trial. """ for _ in range(self.trials): self.makeSweep() time.sleep(self.unitConverter(self.sweepDelay)) print("Done!") # HELPER FUNCTIONS ============================================== def _initDataAcquisition(self): """ Initializes data acquizition for the instrument. """ self._instr.write('initiate:immediate') self._instr.query('*opc?') def _configInst(self): """ Configures the instrument to the constants specified by the user. Precondition: startFreqSweep < stopFreqSweep """ assert self.startFreqSweep < self.stopFreqSweep self._instr.timeout = 10000 self._instr.encoding = 'latin_1' self._instr.write_termination = None self._instr.read_termination = '\n' if self.trials is None or self._trial == 1: print(self._instr.query('*idn?')) self._instr.write('*rst') # turns instrument settings to factory default self._instr.write('*cls') # Clears these analyzer status data structures: # Event Queue, Status Byte Register (except the MAV bit), Standard Event Status Register (SESR) self._instr.write('abort') # Aborts the current measurement and changes the trigger sequence to idle state for all channel self._instr.write('display:enable 1') self._instr.write('sense1:frequency:start {}'.format(self.unitConverter(self.startFreqSweep))) self._instr.write('sense1:frequency:stop {}'.format(self.unitConverter(self.stopFreqSweep))) self._instr.write('sense1:sweep:delay {}'.format(self.unitConverter(self.sweepDelay))) def _createPlot(self): """ Creates plot with from xAxis and yAxis and then saves the plot in Graphs/ with a file name corresponding to the date and time. """ fig = plt.figure(1, figsize=(20, 10)) ax = fig.add_subplot(111, facecolor='k') if self.isTwoComponents(): ax.plot(self._freqDomain,self._magnitudes,'y') lower = min(self._magnitudes) upper = max(self._magnitudes) else: ax.plot(self._freqDomain, self._measuredRange, 'y') # just plot _freqDomain lower = min(self._measuredRange) # against _measuredRange upper = max(self._measuredRange) ax.set_title('Amplitude vs Frequency') ax.set_ylabel('Amplitude (dBm)') ax.set_xlabel('Freq (Hz)') ax.set_xlim(self._freqDomain[0],self._freqDomain[-1]) ax.set_ylim(lower-(0.2*(upper-lower)),upper+(0.2*(upper-lower))) # Scaled to fit range # Save Plot filenameG = self.getDateFormatted() + ".png" filenameG = "Graphs/" + filenameG plt.savefig(filenameG) # Plot saved in directory named Graphs located in same directory as pyTekVNA plt.clf() def _logger(self): """ Takes xAxis and yAxis to make a plot. It then saves the plot with a filename corresponding to its timestamp. """ # Create filename for log filenameF = self.getDateFormatted() + ".txt" filenameF = "Logs/" + filenameF f = open(filenameF, "a+") # Log saved in directory named logs located in same directory as this file # Fill log with contents if self.isTwoComponents(): for i in range(len(self._freqDomain)): line = str(i) + ": " + str(self._freqDomain[i])+ "\t" + \ str(self._measuredRange[2*i]) + "\t" + str(self._measuredRange[(2*i)+1]) # If two components, log each f.write(line) # pair on same line against f.write('\n') # frequency else: for i in range(len(self._freqDomain)): # Otherwise, log 1:1 domain:range line = str(i) + ": " + str(self._freqDomain[i]) + "\t" + str(self._measuredRange[i]) f.write(line) f.write('\n') def _csvWriter(self): """ Writes dataX and dataY to a csv file by making data into table first Titled based on the date. The CSV is comma delimited. """ # Make data into table table = [] if self.isTwoComponents(): # Same as _logger() for i in range(len(self._freqDomain)): # If two components, log each table.append([self._freqDomain[i],self._measuredRange[2*i],self._measuredRange[(2*i)+1]]) # pair on same line against else: # frequency for i in range(len(self._freqDomain)): table.append([self._freqDomain[i],self._measuredRange[i]]) # Otherwise, log 1:1 domain:range # Write to CSV filename = 'CSVs/' + self.getDateFormatted() + '.csv' with open(filename, 'w', newline='') as csvfile: dataWriter = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL) for i in range(len(table)): dataWriter.writerow(table[i]) def isTwoComponents(self): """ Determines if the measured output is one or two components based on format Return: True if is two component """ if self.format in ["slinear","slogarithmic","scomplex", "smith","sadmittance","plinear", "plogarithmic","polar"]: return True else: return False def _inverseFFT(self): """ Calculates the inverse fourier transform of the measured range. Precondition: self.isTwoComponents() == True Return: invFFT as list of complex values """ assert self.isTwoComponents() == True return(np.fft.ifft(self._measuredRange)) @staticmethod def _listify(initial): """ Takes a string separated by commas, and breaks each component separated by commas into its own element in a list. Then, it returns the list as float elements. Return: listified version of initial Precondition: initial is a string with commas and numbers between commas Parameters: initial : str : this is what is listified """ assert type(initial) == str assert ',' in initial listified = [] while ',' in initial: pos = initial.find(',') listified.append(initial[0:pos]) initial = initial[pos+1:] if ',' not in initial: listified.append(initial) final = [] for item in listified: final.append(float(item)) return final @staticmethod def _removeSecondComponent(values): """ Removes the second component in a list of complex values assuming that every other value starting from index one ought to be removed. Return: list with second component / imaginary values removed Parameters: values : list : the complex values are removed from this list """ assert type(values) == list newList = [] for i in range(len(values)): if (i%2) == 0: newList.append(values[i]) return newList def _getMagnitudes(self): """ Gets magnitude of measured range if measured range is complex and stores it in self._magnitudes as a list """ assert self.isTwoComponents() self._magnitudes = [] realPart = [] complexPartTemp = [] complexPart = [] for i in range(len(self._measuredRange)): if (i%2) == 1: complexPartTemp.append(self._measuredRange[i]) else: realPart.append(self._measuredRange[i]) for i in range(len(complexPartTemp)): complexPart.append(complex(str(complexPartTemp[i])+'j')) for i in range(len(realPart)): self._magnitudes.append(abs(realPart[i]+complexPart[i])) # EXECUTION ============================================ if __name__ == "__main__": test = Ttrvna(start='50 MHz', stop='6 GHz', delay='8s', sParam='S21',trials=1,format='smith') test.run() test._inverseFFT()
[ "numpy.fft.ifft", "csv.writer", "matplotlib.pyplot.clf", "time.sleep", "matplotlib.pyplot.figure", "visa.ResourceManager", "matplotlib.pyplot.savefig" ]
[((2778, 2800), 'visa.ResourceManager', 'visa.ResourceManager', ([], {}), '()\n', (2798, 2800), False, 'import visa\n'), ((5718, 5731), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (5728, 5731), False, 'import time\n'), ((10873, 10904), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': '(20, 10)'}), '(1, figsize=(20, 10))\n', (10883, 10904), True, 'import matplotlib.pyplot as plt\n'), ((12099, 12121), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filenameG'], {}), '(filenameG)\n', (12110, 12121), True, 'import matplotlib.pyplot as plt\n'), ((12226, 12235), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (12233, 12235), True, 'import matplotlib.pyplot as plt\n'), ((15676, 15708), 'numpy.fft.ifft', 'np.fft.ifft', (['self._measuredRange'], {}), '(self._measuredRange)\n', (15687, 15708), True, 'import numpy as np\n'), ((14754, 14815), 'csv.writer', 'csv.writer', (['csvfile'], {'delimiter': '""","""', 'quoting': 'csv.QUOTE_MINIMAL'}), "(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)\n", (14764, 14815), False, 'import csv\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of the # Apode Project (https://github.com/mchalela/apode). # Copyright (c) 2020, <NAME> and <NAME> # License: MIT # Full Text: https://github.com/ngrion/apode/blob/master/LICENSE.txt from apode import ApodeData from apode import datasets from apode.concentration import ConcentrationMeasures from apode.inequality import InequalityMeasures from apode.polarization import PolarizationMeasures from apode.poverty import PovertyMeasures import numpy as np import pandas as pd import pytest def test_df_converter(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) assert isinstance(ad.data, pd.DataFrame) def test_invalid(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(AttributeError): ad.poverty("foo") def test_empty_data(): df = pd.DataFrame({"x" ", []"}) with pytest.raises(ValueError): ApodeData(df, "x") def test_income_column_validator(): random = np.random.RandomState(seed=42) x = random.uniform(size=300) df1 = pd.DataFrame({"x": x}) with pytest.raises(ValueError): ApodeData(df1, income_column="y") def test_call_poverty(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.3 pov = PovertyMeasures(ad) assert pov.idf.data.equals(ad.data) assert pov.headcount(pline) == ad.poverty.headcount(pline) def test_call_inequality(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) ineq = InequalityMeasures(ad) assert ineq.idf.data.equals(ad.data) assert ineq.gini() == ad.inequality.gini() def test_call_polarization(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pol = PolarizationMeasures(ad) assert pol.idf.data.equals(ad.data) assert pol.wolfson() == ad.polarization.wolfson() def test_call_concentration(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) conc = ConcentrationMeasures(ad) assert conc.idf.data.equals(ad.data) assert conc.rosenbluth() == ad.concentration.rosenbluth() def test_getitem_numeric_slices(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) expected1 = ad.data[2:5] result1 = ad[2:5].data expected2 = ad.data[:-1] result2 = ad[:-1].data expected3 = ad.data[:] result3 = ad[:].data assert expected1.equals(result1) assert expected2.equals(result2) assert expected3.equals(result3) def test_getitem_column_slice(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(AttributeError): ad["x"] with pytest.raises(KeyError): ad["y"] with pytest.raises(KeyError): ad["income_column"] def test_getattr(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) assert ad.shape == ad.data.shape np.testing.assert_array_equal(ad.sum(), ad.data.sum()) def test_repr(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pd.option_context("display.show_dimensions", False): df_body = repr(ad.data).splitlines() footer = ad._get_footer() expected = "\n".join(df_body + [footer]) assert repr(ad) == expected def test_repr_html(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pd.option_context("display.show_dimensions", False): df_html = ad.data._repr_html_() ad_id = id(ad) footer = ad._get_footer(html=True) parts = [ f'<div class="apode-data-container" id={ad_id}>', df_html, footer, "</div>", ] expected = "".join(parts) assert ad._repr_html_() == expected def test_dir(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) for a in dir(ad): assert hasattr(ad, a)
[ "pandas.DataFrame", "pandas.option_context", "apode.datasets.make_uniform", "apode.inequality.InequalityMeasures", "apode.ApodeData", "numpy.random.RandomState", "pytest.raises", "apode.polarization.PolarizationMeasures", "apode.concentration.ConcentrationMeasures", "apode.poverty.PovertyMeasures" ]
[((599, 656), 'apode.datasets.make_uniform', 'datasets.make_uniform', ([], {'seed': '(42)', 'size': '(300)', 'mu': '(1)', 'nbin': 'None'}), '(seed=42, size=300, mu=1, nbin=None)\n', (620, 656), False, 'from apode import datasets\n'), ((733, 790), 'apode.datasets.make_uniform', 'datasets.make_uniform', ([], {'seed': '(42)', 'size': '(300)', 'mu': '(1)', 'nbin': 'None'}), '(seed=42, size=300, mu=1, nbin=None)\n', (754, 790), False, 'from apode import datasets\n'), ((891, 914), 'pandas.DataFrame', 'pd.DataFrame', (["{'x, []'}"], {}), "({'x, []'})\n", (903, 914), True, 'import pandas as pd\n'), ((1032, 1062), 'numpy.random.RandomState', 'np.random.RandomState', ([], {'seed': '(42)'}), '(seed=42)\n', (1053, 1062), True, 'import numpy as np\n'), ((1106, 1128), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': x}"], {}), "({'x': x})\n", (1118, 1128), True, 'import pandas as pd\n'), ((1243, 1300), 'apode.datasets.make_uniform', 'datasets.make_uniform', ([], {'seed': '(42)', 'size': '(300)', 'mu': '(1)', 'nbin': 'None'}), '(seed=42, size=300, mu=1, nbin=None)\n', (1264, 1300), False, 'from apode import datasets\n'), ((1327, 1346), 'apode.poverty.PovertyMeasures', 'PovertyMeasures', (['ad'], {}), '(ad)\n', (1342, 1346), False, 'from apode.poverty import PovertyMeasures\n'), ((1489, 1546), 'apode.datasets.make_uniform', 'datasets.make_uniform', ([], {'seed': '(42)', 'size': '(300)', 'mu': '(1)', 'nbin': 'None'}), '(seed=42, size=300, mu=1, nbin=None)\n', (1510, 1546), False, 'from apode import datasets\n'), ((1558, 1580), 'apode.inequality.InequalityMeasures', 'InequalityMeasures', (['ad'], {}), '(ad)\n', (1576, 1580), False, 'from apode.inequality import InequalityMeasures\n'), ((1710, 1767), 'apode.datasets.make_uniform', 'datasets.make_uniform', ([], {'seed': '(42)', 'size': '(300)', 'mu': '(1)', 'nbin': 'None'}), '(seed=42, size=300, mu=1, nbin=None)\n', (1731, 1767), False, 'from apode import datasets\n'), ((1778, 1802), 'apode.polarization.PolarizationMeasures', 'PolarizationMeasures', (['ad'], {}), '(ad)\n', (1798, 1802), False, 'from apode.polarization import PolarizationMeasures\n'), ((1939, 1996), 'apode.datasets.make_uniform', 'datasets.make_uniform', ([], {'seed': '(42)', 'size': '(300)', 'mu': '(1)', 'nbin': 'None'}), '(seed=42, size=300, mu=1, nbin=None)\n', (1960, 1996), False, 'from apode import datasets\n'), ((2008, 2033), 'apode.concentration.ConcentrationMeasures', 'ConcentrationMeasures', (['ad'], {}), '(ad)\n', (2029, 2033), False, 'from apode.concentration import ConcentrationMeasures\n'), ((2183, 2240), 'apode.datasets.make_uniform', 'datasets.make_uniform', ([], {'seed': '(42)', 'size': '(300)', 'mu': '(1)', 'nbin': 'None'}), '(seed=42, size=300, mu=1, nbin=None)\n', (2204, 2240), False, 'from apode import datasets\n'), ((2560, 2617), 'apode.datasets.make_uniform', 'datasets.make_uniform', ([], {'seed': '(42)', 'size': '(300)', 'mu': '(1)', 'nbin': 'None'}), '(seed=42, size=300, mu=1, nbin=None)\n', (2581, 2617), False, 'from apode import datasets\n'), ((2817, 2874), 'apode.datasets.make_uniform', 'datasets.make_uniform', ([], {'seed': '(42)', 'size': '(300)', 'mu': '(1)', 'nbin': 'None'}), '(seed=42, size=300, mu=1, nbin=None)\n', (2838, 2874), False, 'from apode import datasets\n'), ((2999, 3056), 'apode.datasets.make_uniform', 'datasets.make_uniform', ([], {'seed': '(42)', 'size': '(300)', 'mu': '(1)', 'nbin': 'None'}), '(seed=42, size=300, mu=1, nbin=None)\n', (3020, 3056), False, 'from apode import datasets\n'), ((3304, 3361), 'apode.datasets.make_uniform', 'datasets.make_uniform', ([], {'seed': '(42)', 'size': '(300)', 'mu': '(1)', 'nbin': 'None'}), '(seed=42, size=300, mu=1, nbin=None)\n', (3325, 3361), False, 'from apode import datasets\n'), ((3748, 3805), 'apode.datasets.make_uniform', 'datasets.make_uniform', ([], {'seed': '(42)', 'size': '(300)', 'mu': '(1)', 'nbin': 'None'}), '(seed=42, size=300, mu=1, nbin=None)\n', (3769, 3805), False, 'from apode import datasets\n'), ((800, 829), 'pytest.raises', 'pytest.raises', (['AttributeError'], {}), '(AttributeError)\n', (813, 829), False, 'import pytest\n'), ((927, 952), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (940, 952), False, 'import pytest\n'), ((962, 980), 'apode.ApodeData', 'ApodeData', (['df', '"""x"""'], {}), "(df, 'x')\n", (971, 980), False, 'from apode import ApodeData\n'), ((1138, 1163), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1151, 1163), False, 'import pytest\n'), ((1173, 1206), 'apode.ApodeData', 'ApodeData', (['df1'], {'income_column': '"""y"""'}), "(df1, income_column='y')\n", (1182, 1206), False, 'from apode import ApodeData\n'), ((2627, 2656), 'pytest.raises', 'pytest.raises', (['AttributeError'], {}), '(AttributeError)\n', (2640, 2656), False, 'import pytest\n'), ((2683, 2706), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (2696, 2706), False, 'import pytest\n'), ((2733, 2756), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (2746, 2756), False, 'import pytest\n'), ((3066, 3117), 'pandas.option_context', 'pd.option_context', (['"""display.show_dimensions"""', '(False)'], {}), "('display.show_dimensions', False)\n", (3083, 3117), True, 'import pandas as pd\n'), ((3371, 3422), 'pandas.option_context', 'pd.option_context', (['"""display.show_dimensions"""', '(False)'], {}), "('display.show_dimensions', False)\n", (3388, 3422), True, 'import pandas as pd\n')]
import numpy as np from nltk import wordpunct_tokenize import nltk import itertools import operator import sklearn import re, string import math SENTENCE_START_TOKEN = "sentence_<PASSWORD>" SENTENCE_END_TOKEN = "sentence_<PASSWORD>" UNKNOWN_TOKEN = "<PASSWORD>" def load_data(loc='./data/'): trainloc = loc + '20_news_group_sentences.txt' sentences = [] with open(trainloc, 'r', encoding='utf8') as f: for line in f: sentences.append("%s %s %s" % (SENTENCE_START_TOKEN, line, SENTENCE_END_TOKEN)) return sentences def build_dictionary(loc='./data/', vocabulary_size=-1): trainloc = loc + '20_news_group_sentences.txt' document_frequency = {} total_document = 0 with open(trainloc, 'r', encoding='utf8') as f: for line in f: sentence = my_tokenizer(line) for token in set(sentence): if token in document_frequency: document_frequency[token] += 1 else: document_frequency[token] = 1 total_document += 1 for key, value in document_frequency.items(): document_frequency[key] = math.log(total_document / document_frequency[key]) vocab = sorted(document_frequency.items(), key=operator.itemgetter(1), reverse=True) word_to_index = {} index_to_word = {} word_to_index[SENTENCE_START_TOKEN] = 0 word_to_index[SENTENCE_END_TOKEN] = 1 word_to_index[UNKNOWN_TOKEN] = 2 index_to_word[0] = SENTENCE_START_TOKEN index_to_word[1] = SENTENCE_END_TOKEN index_to_word[2] = UNKNOWN_TOKEN counter = 3 for key, value in vocab: if len(key) < 4: continue elif counter == vocabulary_size: break word_to_index[key] = counter index_to_word[counter] = key counter += 1 return word_to_index, index_to_word def my_tokenizer(input): token_list = [] tokens = wordpunct_tokenize(input.lower()) token_list.extend([x for x in tokens if not re.fullmatch('[' + string.punctuation + ']+', x)]) return token_list def get_train_data(vocabulary_size): word_to_index, index_to_word = build_dictionary(vocabulary_size=vocabulary_size) sentences = load_data() sentences_tokenized = [my_tokenizer(sent) for sent in sentences] for i, sent in enumerate(sentences_tokenized): sentences_tokenized[i] = [w if w in word_to_index else UNKNOWN_TOKEN for w in sent] sentences_indices = [] for sentence in sentences_tokenized: sentences_indices.append([word_to_index[word] for word in sentence]) return sentences_indices, word_to_index, index_to_word def get_train_data_reversed(vocabulary_size): sentences_indices, word_to_index, index_to_word = get_train_data(vocabulary_size) sentences_indices_reversed = [] for index_list in sentences_indices: temp = [] temp.extend(index_list) temp.reverse() sentences_indices_reversed.append(temp) return sentences_indices_reversed, word_to_index, index_to_word def get_train_sentences(vocabulary_size): sentences_indices, word_to_index, index_to_word = get_train_data(vocabulary_size) all_sentences = [] all_sentences.extend(sentences_indices) x_train = np.asarray([[w for w in sentence[:-1]] for sentence in all_sentences]) y_train = np.asarray([[w for w in sentence[1:]] for sentence in all_sentences]) return x_train, y_train, word_to_index, index_to_word def get_train_sentences_reversed(vocabulary_size): sentences_indices_reversed, word_to_index, index_to_word = get_train_data_reversed(vocabulary_size) all_sentences = [] all_sentences.extend(sentences_indices_reversed) x_train = np.asarray([[w for w in sentence[:-1]] for sentence in all_sentences]) y_train = np.asarray([[w for w in sentence[1:]] for sentence in all_sentences]) return x_train, y_train, word_to_index, index_to_word
[ "math.log", "numpy.asarray", "operator.itemgetter", "re.fullmatch" ]
[((3283, 3353), 'numpy.asarray', 'np.asarray', (['[[w for w in sentence[:-1]] for sentence in all_sentences]'], {}), '([[w for w in sentence[:-1]] for sentence in all_sentences])\n', (3293, 3353), True, 'import numpy as np\n'), ((3368, 3437), 'numpy.asarray', 'np.asarray', (['[[w for w in sentence[1:]] for sentence in all_sentences]'], {}), '([[w for w in sentence[1:]] for sentence in all_sentences])\n', (3378, 3437), True, 'import numpy as np\n'), ((3745, 3815), 'numpy.asarray', 'np.asarray', (['[[w for w in sentence[:-1]] for sentence in all_sentences]'], {}), '([[w for w in sentence[:-1]] for sentence in all_sentences])\n', (3755, 3815), True, 'import numpy as np\n'), ((3830, 3899), 'numpy.asarray', 'np.asarray', (['[[w for w in sentence[1:]] for sentence in all_sentences]'], {}), '([[w for w in sentence[1:]] for sentence in all_sentences])\n', (3840, 3899), True, 'import numpy as np\n'), ((1162, 1212), 'math.log', 'math.log', (['(total_document / document_frequency[key])'], {}), '(total_document / document_frequency[key])\n', (1170, 1212), False, 'import math\n'), ((1265, 1287), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (1284, 1287), False, 'import operator\n'), ((2025, 2073), 're.fullmatch', 're.fullmatch', (["('[' + string.punctuation + ']+')", 'x'], {}), "('[' + string.punctuation + ']+', x)\n", (2037, 2073), False, 'import re, string\n')]
import numpy as np import matplotlib.pyplot as plt plt.xlabel("time") plt.ylabel("Rms") plt.yscale("log") directory = './pyplot/' colors = ['r', 'g', 'b'] N = ['256', '512', '1024'] for n, col in zip(N, colors): time, rms = np.loadtxt(directory + 'pde_' + n + '.txt', unpack = True) plt.plot(time, rms, marker = ".",linestyle = "none", c = col) plt.legend([r'$2^8$', r'$2^9$', r'$2^{10}$']) plt.savefig('./output/pde_rms.pdf');
[ "matplotlib.pyplot.yscale", "matplotlib.pyplot.plot", "matplotlib.pyplot.legend", "numpy.loadtxt", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((55, 73), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""time"""'], {}), "('time')\n", (65, 73), True, 'import matplotlib.pyplot as plt\n'), ((74, 91), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Rms"""'], {}), "('Rms')\n", (84, 91), True, 'import matplotlib.pyplot as plt\n'), ((92, 109), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (102, 109), True, 'import matplotlib.pyplot as plt\n'), ((355, 397), 'matplotlib.pyplot.legend', 'plt.legend', (["['$2^8$', '$2^9$', '$2^{10}$']"], {}), "(['$2^8$', '$2^9$', '$2^{10}$'])\n", (365, 397), True, 'import matplotlib.pyplot as plt\n'), ((401, 436), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""./output/pde_rms.pdf"""'], {}), "('./output/pde_rms.pdf')\n", (412, 436), True, 'import matplotlib.pyplot as plt\n'), ((231, 287), 'numpy.loadtxt', 'np.loadtxt', (["(directory + 'pde_' + n + '.txt')"], {'unpack': '(True)'}), "(directory + 'pde_' + n + '.txt', unpack=True)\n", (241, 287), True, 'import numpy as np\n'), ((291, 347), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'rms'], {'marker': '"""."""', 'linestyle': '"""none"""', 'c': 'col'}), "(time, rms, marker='.', linestyle='none', c=col)\n", (299, 347), True, 'import matplotlib.pyplot as plt\n')]
import numpy as np import imagezmq import imutils import cv2 import time import threading # initialize the ImageHub object imageHub = imagezmq.ImageHub() thread_imageHub = imagezmq.ImageHub(open_port='tcp://*:5556') thread_frame = None def thread_recv(): global rpiName, thread_frame (rpiName, thread_frame) = thread_imageHub.recv_image() thread_imageHub.send_reply(b'OK') print('here') # start looping over all the frames time.sleep(10) start = time.time() num_of_frames = 0 while True: # receive RPi name and frame from the RPi and acknowledge # the receipt th = threading.Thread(target=thread_recv) th.start() (rpiName, frame) = imageHub.recv_image() # print(time.time() - start) # print(frame.shape) imageHub.send_reply(b'OK') th.join() # frame = imutils.resize(frame, width=400) num_of_frames += 1 cv2.imshow('frame', np.vstack((thread_frame, frame))) key = cv2.waitKey(1) & 0xFF if key == ord("q"): break # do a bit of cleanup fps = num_of_frames / (time.time() - start) print("fps is: ") print(fps) cv2.destroyAllWindows()
[ "threading.Thread", "cv2.waitKey", "imagezmq.ImageHub", "time.time", "time.sleep", "cv2.destroyAllWindows", "numpy.vstack" ]
[((136, 155), 'imagezmq.ImageHub', 'imagezmq.ImageHub', ([], {}), '()\n', (153, 155), False, 'import imagezmq\n'), ((174, 217), 'imagezmq.ImageHub', 'imagezmq.ImageHub', ([], {'open_port': '"""tcp://*:5556"""'}), "(open_port='tcp://*:5556')\n", (191, 217), False, 'import imagezmq\n'), ((443, 457), 'time.sleep', 'time.sleep', (['(10)'], {}), '(10)\n', (453, 457), False, 'import time\n'), ((466, 477), 'time.time', 'time.time', ([], {}), '()\n', (475, 477), False, 'import time\n'), ((1097, 1120), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1118, 1120), False, 'import cv2\n'), ((598, 634), 'threading.Thread', 'threading.Thread', ([], {'target': 'thread_recv'}), '(target=thread_recv)\n', (614, 634), False, 'import threading\n'), ((895, 927), 'numpy.vstack', 'np.vstack', (['(thread_frame, frame)'], {}), '((thread_frame, frame))\n', (904, 927), True, 'import numpy as np\n'), ((939, 953), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (950, 953), False, 'import cv2\n'), ((1047, 1058), 'time.time', 'time.time', ([], {}), '()\n', (1056, 1058), False, 'import time\n')]
import sys sys.path.append('../') sys.path.append('../apex') import torch import numpy as np from nltk.tokenize import word_tokenize from sklearn.metrics import precision_recall_fscore_support from tqdm import tqdm import argparse from bert_nli import BertNLIModel from utils.nli_data_reader import NLIDataReader def evaluate(model, test_data, checkpoint, mute=False, test_bs=10): model.eval() sent_pairs = [test_data[i].get_texts() for i in range(len(test_data))] all_labels = [test_data[i].get_label() for i in range(len(test_data))] with torch.no_grad(): _, probs = model(sent_pairs,checkpoint,bs=test_bs) all_predict = [np.argmax(pp) for pp in probs] assert len(all_predict) == len(all_labels) acc = len([i for i in range(len(all_labels)) if all_predict[i]==all_labels[i]])*1./len(all_labels) prf = precision_recall_fscore_support(all_labels, all_predict, average=None, labels=[0,1,2]) if not mute: print('==>acc<==', acc) print('label meanings: 0: contradiction, 1: entail, 2: neutral') print('==>precision-recall-f1<==\n', prf) return acc def parse_args(): ap = argparse.ArgumentParser("arguments for bert-nli evaluation") ap.add_argument('-b','--batch_size',type=int,default=100,help='batch size') ap.add_argument('-g','--gpu',type=int,default=1,help='run the model on gpu (1) or not (0)') ap.add_argument('-cp','--checkpoint',type=int,default=0,help='run the model with checkpointing (1) or not (0)') ap.add_argument('-tm','--trained_model',type=str,default='default',help='path to the trained model you want to test; if set as "default", it will find in output xx.state_dict, where xx is the bert-type you specified') ap.add_argument('-bt','--bert_type',type=str,default='bert-large',help='model you want to test; make sure this is consistent with your trained model') ap.add_argument('--hans',type=int,default=0,help='use hans dataset (1) or not (0)') args = ap.parse_args() return args.batch_size, args.gpu, args.trained_model, args.checkpoint, args.bert_type, args.hans if __name__ == '__main__': batch_size, gpu, mpath, checkpoint, bert_type, hans = parse_args() if mpath == 'default': mpath = 'output/{}.state_dict'.format(bert_type) gpu = bool(gpu) hans = bool(hans) checkpoint = bool(checkpoint) print('=====Arguments=====') print('bert type:\t{}'.format(bert_type)) print('trained model path:\t{}'.format(mpath)) print('gpu:\t{}'.format(gpu)) print('checkpoint:\t{}'.format(checkpoint)) print('batch size:\t{}'.format(batch_size)) print('hans data:\t{}'.format(hans)) # Read the dataset nli_reader = NLIDataReader('./datasets/AllNLI') test_data = nli_reader.get_examples('dev.gz') #,max_examples=50) if hans: nli_reader = NLIDataReader('./datasets/Hans') test_data += nli_reader.get_hans_examples('heuristics_evaluation_set.txt') model = BertNLIModel(model_path=mpath,batch_size=batch_size,bert_type=bert_type) print('test data size: {}'.format(len(test_data))) evaluate(model,test_data,checkpoint,test_bs=batch_size)
[ "sys.path.append", "argparse.ArgumentParser", "numpy.argmax", "utils.nli_data_reader.NLIDataReader", "bert_nli.BertNLIModel", "torch.no_grad", "sklearn.metrics.precision_recall_fscore_support" ]
[((11, 33), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (26, 33), False, 'import sys\n'), ((34, 60), 'sys.path.append', 'sys.path.append', (['"""../apex"""'], {}), "('../apex')\n", (49, 60), False, 'import sys\n'), ((848, 940), 'sklearn.metrics.precision_recall_fscore_support', 'precision_recall_fscore_support', (['all_labels', 'all_predict'], {'average': 'None', 'labels': '[0, 1, 2]'}), '(all_labels, all_predict, average=None,\n labels=[0, 1, 2])\n', (879, 940), False, 'from sklearn.metrics import precision_recall_fscore_support\n'), ((1153, 1213), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""arguments for bert-nli evaluation"""'], {}), "('arguments for bert-nli evaluation')\n", (1176, 1213), False, 'import argparse\n'), ((2695, 2729), 'utils.nli_data_reader.NLIDataReader', 'NLIDataReader', (['"""./datasets/AllNLI"""'], {}), "('./datasets/AllNLI')\n", (2708, 2729), False, 'from utils.nli_data_reader import NLIDataReader\n'), ((2963, 3037), 'bert_nli.BertNLIModel', 'BertNLIModel', ([], {'model_path': 'mpath', 'batch_size': 'batch_size', 'bert_type': 'bert_type'}), '(model_path=mpath, batch_size=batch_size, bert_type=bert_type)\n', (2975, 3037), False, 'from bert_nli import BertNLIModel\n'), ((561, 576), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (574, 576), False, 'import torch\n'), ((656, 669), 'numpy.argmax', 'np.argmax', (['pp'], {}), '(pp)\n', (665, 669), True, 'import numpy as np\n'), ((2834, 2866), 'utils.nli_data_reader.NLIDataReader', 'NLIDataReader', (['"""./datasets/Hans"""'], {}), "('./datasets/Hans')\n", (2847, 2866), False, 'from utils.nli_data_reader import NLIDataReader\n')]
import numpy as np def step_function(x): return np.array(x > 0, dtype=np.int) def sigmoid(x): return 1 / (1 + np.exp(-x)) def relu(x): return np.maximum(0, x) def cross_entropy_error(y, t): delta = 1e-7 return -np.sum(t * np.log(y + delta)) def softmax(a): c = np.max(a) exp_a = np.exp(a - c) sum_exp_a = np.sum(exp_a) y = exp_a / sum_exp_a return y def numerical_gradient(f, x): delta = 1e-4 return (f(x + delta) - f(x - delta)) / (delta * 2)
[ "numpy.sum", "numpy.maximum", "numpy.log", "numpy.max", "numpy.array", "numpy.exp" ]
[((53, 82), 'numpy.array', 'np.array', (['(x > 0)'], {'dtype': 'np.int'}), '(x > 0, dtype=np.int)\n', (61, 82), True, 'import numpy as np\n'), ((159, 175), 'numpy.maximum', 'np.maximum', (['(0)', 'x'], {}), '(0, x)\n', (169, 175), True, 'import numpy as np\n'), ((293, 302), 'numpy.max', 'np.max', (['a'], {}), '(a)\n', (299, 302), True, 'import numpy as np\n'), ((315, 328), 'numpy.exp', 'np.exp', (['(a - c)'], {}), '(a - c)\n', (321, 328), True, 'import numpy as np\n'), ((345, 358), 'numpy.sum', 'np.sum', (['exp_a'], {}), '(exp_a)\n', (351, 358), True, 'import numpy as np\n'), ((121, 131), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (127, 131), True, 'import numpy as np\n'), ((249, 266), 'numpy.log', 'np.log', (['(y + delta)'], {}), '(y + delta)\n', (255, 266), True, 'import numpy as np\n')]
# !/usr/bin/python """Bayesian model-based change detection for input-output sequence data The Bayesian change-point detection model (BCDM) class implements a recursive algorithm for partitioning a sequence of real-valued input-output data into non-overlapping segments. The segment boundaries are chosen under the assumption that, within each segment, the data follow a multi-variate linear model. Segmentation is carried out in an online fashion by recursively updating a set of hypotheses. The hypotheses capture the belief about the current segment, e.g. its duration and the linear relationship between inputs and outputs, given all the data so far. Each time a new pair of data is received, the hypotheses are propagated and re-weighted to reflect this new knowledge. .. codeauthor:: <NAME> <<EMAIL>> .. codeauthor:: <NAME> <<EMAIL>> """ import numpy as np from numpy import linalg from numpy import random from scipy import special class MatrixVariateNormalInvGamma(object): """Matrix-variate normal, matrix-variate inverse gamma distribution The matrix-variate normal, inverse-gamma distribution is the conjugate prior for a matrix-variate normal distribution. As a result the distribution can be used in Bayesian estimation of the location and scale parameters of the matrix-variate normal distribution. """ def __init__(self, mu, omega, sigma, eta): # Get size of data. m, n = np.shape(mu) self.__m, self.__n = m, n # Check that the location parameter is a matrix of finite numbers. if not (np.ndim(mu) == 2 and np.shape(mu) == (m, n) and not np.isnan(mu).any() and np.isfinite(mu).all()): msg = 'The location parameter must be a matrix of finite numbers.' raise Exception(msg) # Check that the scale parameter is a symmetric, positive-definite # matrix. if not (np.ndim(omega) == 2 and np.shape(omega) == (m, m) and not np.isnan(omega).any() and np.isfinite(omega).all() and np.allclose(np.transpose(omega), omega) and linalg.det(omega) > 0.0): msg = 'The scale parameter must be a symmetric, positive-definite' msg += ' matrix.' raise Exception(msg) # Check that the dispersion parameter is a symmetric, positive-definite # matrix. if not (np.ndim(sigma) == 2 and np.shape(sigma) == (n, n) and not np.isnan(sigma).any() and np.isfinite(sigma).all() and np.allclose(np.transpose(sigma), sigma) and linalg.det(sigma) > 0.0): msg = 'The noise parameter must be a symmetric, positive-definite' msg += ' matrix.' raise Exception(msg) # Check that the shape parameter is a number greater than one minus the # number of degrees of freedom. if not (np.isscalar(eta) and not np.isnan(eta) and np.isfinite(eta) and eta > n - 1.0): msg = 'The shape parameter must be greater than one minus the' msg += ' degrees of freedom.' raise Exception(msg) # Allocate space for storing the matrix of product statistics. self.__prod = np.zeros([m + n, m + n]) # Initialize the statistics with the parameters of the prior # distribution. x = np.dot(omega, mu) self.__prod[:m, :m] = omega self.__prod[:m, m:] = x self.__prod[m:, :m] = x.T self.__prod[m:, m:] = np.dot(mu.T, x) + eta * sigma self.__weight = eta def update(self, X, Y): """Update the sufficient statistics given observed data. The sufficient statistics are the only parameters required to describe the shape of the distribution. Initially, the sufficient statistics contain no information apart from that implied by the prior distribution. As data arrive, the statistics are updated incrementally in order to reflect this new knowledge. Performing updates allows the sufficient statistics to summarise all information contained in the data observed so far. """ # (Equation 5a, b) # # | XX XY | # | YX YY | # if np.ndim(X) > 1: k, m = np.shape(X) x = np.dot(X.T, Y) # Update the statistics given a block of data (in the following # order: XX, XY, YX, YY) self.__prod[:m, :m] += np.dot(X.T, X) self.__prod[:m, m:] += x self.__prod[m:, :m] += x.T self.__prod[m:, m:] += np.dot(Y.T, Y) self.__weight += k else: m = np.size(X) x = np.outer(X, Y) # Update the statistics given a single datum. self.__prod[:m, :m] += np.outer(X, X) self.__prod[:m, m:] += x self.__prod[m:, :m] += x.T self.__prod[m:, m:] += np.outer(Y, Y) self.__weight += 1 def log_constant(self): m, n = self.__m, self.__n # Note usage of the log-determinant 'trick': # # log(det(A)) = 2*sum(log(diag(chol(A)))) # d = np.diag(linalg.cholesky(self.__prod)) w = self.__weight # Evaluate the log-normalization constant. # (Equation 8) return special.gammaln(0.5*(w - np.arange(n))).sum() - \ n * np.log(d[:m]).sum() - \ w * np.log(d[m:] / np.sqrt(w)).sum() - \ n * (0.5 * w) * np.log(0.5 * w) def parameters(self): """Return the posterior parameters. All the information content of the data is summarized by the sufficient statistics. As a result the posterior parameters are a function of the sufficient statistics. This is a consequence of the conjugacy of the matrix-variate Gaussian-inverse-Gamma distribution. """ m = self.__m s = linalg.cholesky(self.__prod).transpose() w = self.__weight # Compute the parameters of the posterior distribution. return linalg.solve(s[:m, :m], s[:m, m:]), \ np.dot(s[:m, :m].transpose(), s[:m, :m]), \ np.dot(s[m:, m:].transpose(), s[m:, m:]) / w, \ w def rand(self): m, n = self.__m, self.__n s = linalg.cholesky(self.__prod).transpose() w = self.__weight # Compute the parameters of the posterior distribution. mu = linalg.solve(s[:m, :m], s[:m, m:]) omega = np.dot(s[:m, :m].transpose(), s[:m, :m]) sigma = np.dot(s[m:, m:].transpose(), s[m:, m:]) / w eta = w # Simulate the marginal Wishart distribution. f = linalg.solve(np.diag(np.sqrt(2.0*random.gamma( (eta - np.arange(n))/2.0))) + np.tril(random.randn(n, n), -1), np.sqrt(eta)*linalg.cholesky(sigma).transpose()) b = np.dot(f.transpose(), f) # Simulate the conditional Gauss distribution. a = mu + linalg.solve(linalg.cholesky(omega).transpose(), np.dot(random.randn(m, n), linalg.cholesky(b).transpose())) return a, b class Bcdm(object): """Bayesian change detection model. Args: mu (numpy.array): (M x N) location parameters of the prior distribution. omega (numpy.array): (M x M) scale parameters of the prior distribution. sigma (numpy.array): (N x N) dispersion parameters of the prior distribution. eta (float): shape parameter of the prior distribution. alg (string): Specifies the algorithm to use. Choose either 'sumprod' for the sum-product algorithm or 'maxprod' for the max-product algorithm. If the sum-product algorithm is selected, the posterior probabilities of the segmentation hypotheses will be calculated. If the max-product algorithm is selected, the most likely sequence segmentation will be calculated. ratefun (float): Relative chance of a new segments being generated. ``ratefun`` is a value between 0 and 1. Segments are MORE likely to be created with values closer to zero. Segments are LESS likely to form with values closer to 1. Alternatively, ratefun can be set to an executable hazard function. The hazard function must accept non-negative integers and return non-negative floating-point numbers. basisfunc (callable): Feature functions for basis function expansion. Feature functions provide additional flexibility by mapping the predictor variables to an intermmediate feature space, thus allowing the user to model non-linear relationships. minprob (float): Minimum probability required for a hypothesis. Hypotheses with insignificant support (probabilities below this value) will be pruned. maxhypot (int): Maximum number of segmentation hypotheses to consider. After each update, pruning will take place to limit the number of hypotheses. If set to ``None``, no pruning will NOT take place after updates, however, pruning can be initiated manually by calling :py:meth:`.trim`. Raises: Exception: If the any of the inputs are an incorrect type. """ def __init__(self, mu=None, omega=None, sigma=None, eta=None, alg='sumprod', ratefun=0.1, basisfunc=None, minprob=1.0e-6, maxhypot=20): # The inference algorithm must be either sum-product or sum-product. if alg.lower() not in ['sumprod', 'maxprod']: msg = "The input 'alg' must be either 'sumprod' or 'maxprod'." raise Exception(msg) else: self.__alg__ = alg.lower() # Store number of dimensions in the predictor (independent/input # variable) and response (dependent/output variable) variables. self.__m = None self.__n = None # Allocate variables for matrix variate, normal inverse gamma # distributions. self.__mu = None self.__omega = None self.__sigma = None self.__eta = None # Set prior for the location parameter. if mu is not None: self.__mu = mu # Set prior for the scale parameter. if omega is not None: self.__omega = omega # Set prior for the dispersion/noise parameter. if sigma is not None: self.__sigma = sigma # Set prior for the shape parameter. if eta is not None: self.__eta = eta # Ensure algorithm initialises on first call to update. self.__initialised = False # If 'maxhypot' is set to none, no hypotheses will be trimmed. if maxhypot > 0 or not None: self.__maximum_hypotheses = maxhypot else: msg = "The input 'maxhypot' must be an integer greater than zero." raise Exception(msg) if minprob > 0: self.__minimum_probability = minprob else: msg = "The input 'minprob' must be a float greater than zero." raise Exception(msg) # Allocate variables for tracking segments. self.__hypotheses = list() self.__counts = list() self.__probabilities = list() # Store basis and hazard function. self.__basisfunc = basisfunc if callable(basisfunc) else lambda x: x self.__ratefun = ratefun if callable(ratefun) else lambda x: ratefun def __initialise_algorithm(self, m, n): """Initialise the Bcdm algorithm.""" # Ensure input dimensions are consistent. if self.__m is None: self.__m = m elif self.__m != m: msg = 'Expected {} dimensions in the predictor variable.'.format(m) raise Exception(msg) # Ensure output dimensions are consistent. if self.__n is None: self.__n = n elif self.__n != n: msg = 'Expected {} dimensions in the response variable.'.format(n) raise Exception(msg) # Set uninformative prior for the location parameter. if self.__mu is None: self.__mu = np.zeros([m, n]) # Set uninformative prior for the scale parameter. if self.__omega is None: self.__omega = np.eye(m) # Set uninformative prior for the dispersion/noise parameter. if self.__sigma is None: self.__sigma = np.eye(n) # Set uninformative prior for the shape parameter. if self.__eta is None: self.__eta = n # Create the initial hypothesis, which states that the first segment is # about to begin. self.__add_new_hypothesis(0.0) def __soft_max(self, x, y): return max(x, y) + np.log1p(np.exp(-abs(x - y))) def __add_new_hypothesis(self, log_likelihood, basisfunc=None): """Function for spawning new hypothesis""" # Set basis function. if basisfunc is None: basisfunc = self.__basisfunc # Create new Bayesian linear model (using supplied priors). stat = MatrixVariateNormalInvGamma(self.__mu, self.__omega, self.__sigma, self.__eta) # Add a new hypothesis, which states that a new segment is about to # begin. self.__hypotheses.append({'count': 0, 'log_probability': log_likelihood, 'distribution': stat, 'log_constant': stat.log_constant(), 'basisfunc': basisfunc}) def update(self, X, Y, basisfunc=None): """Update model with a single observation. When new input-output data is available, the model can be updated using this method. As more and more data are collected, the number of hypotheses grows, increasing the computational complexity. By default hypotheses are pruned at the end of each update (see :py:meth:`.trim`.). To disable hypotheses trimming, initialise the class with ``maxhypot`` set to ``None``. Args: X (numpy.array): Observed (1 x M) input data (predictor variable). Y (numpy.array): Observed (1 x N) output data (response variable). """ # Initialise algorithm on first call to update. This allows the # algorithm to configure itself to the size of the first input/output # data if no hyper-parameters have been specified. if not self.__initialised: init_basis = self.__basisfunc if basisfunc is None else basisfunc x = init_basis(X) m = x.shape[1] if np.ndim(x) > 1 else X.size n = Y.shape[1] if np.ndim(Y) > 1 else Y.size self.__initialise_algorithm(m, n) self.__initialised = True # Get size of data. k = X.shape[0] if np.ndim(X) > 1 else X.size m, n = self.__m, self.__n # Allocate variables for the dynamic programming pass. loglik = -np.inf logmax = -np.inf logsum = -np.inf ind = np.nan # Update hypotheses by updating each matrix variate, normal inverse # gamma distribution over the linear models. for hypothesis in self.__hypotheses: # Update the sufficient statistics. hypothesis['distribution'].update(hypothesis['basisfunc'](X), Y) # Compute the log-normalization constant after the update # (posterior parameter distribution). # (Equation 8) n_o = hypothesis['log_constant'] n_k = hypothesis['log_constant'] = hypothesis['distribution'].log_constant() # Evaluate the log-density of the predictive distribution. # (Equation 16) log_density = n_k - n_o - k * (0.5 * m * n) * np.log(2.0 * np.pi) # Increment the counter. hypothesis['count'] += 1 # Accumulate the log-likelihood of the data. # (Equation 17) hazard = self.__ratefun(hypothesis['count']) aux = np.log(hazard) + log_density + hypothesis['log_probability'] loglik = self.__soft_max(loglik, aux) # Keep track of the highest, log-likelihood. if aux > logmax: logmax, ind = aux, hypothesis['count'] # Update and accumulate the log-probabilities. hypothesis['log_probability'] += np.log1p(-hazard) + log_density logsum = self.__soft_max(logsum, hypothesis['log_probability']) # In the max-product algorithm, keep track of the most likely # hypotheses. if self.__alg__ == 'maxprod': loglik = logmax self.__counts.append(ind) # Add a new hypothesis, which states that the next segment is about to # begin. self.__add_new_hypothesis(loglik, basisfunc) # Normalize the hypotheses so that their probabilities sum to one. logsum = self.__soft_max(logsum, loglik) for hypothesis in self.__hypotheses: hypothesis['log_probability'] -= logsum # Automatically trim hypothesis on each update if requested. if self.__maximum_hypotheses is not None: self.trim_hypotheses(minprob=self.__minimum_probability, maxhypot=self.__maximum_hypotheses) # In the sum-product algorithm, keep track of the probabilities. if self.__alg__ == 'sumprod': iteration = list() for hypothesis in self.__hypotheses: iteration.append((hypothesis['count'], hypothesis['log_probability'])) self.__probabilities.append(iteration) def trim_hypotheses(self, minprob=1.0e-6, maxhypot=20): """Prune hypotheses to limit computational complexity. The computational complexity of the algorithm can be managed by limiting the number of hypotheses maintained. This method limits the number of hypotheses maintained by the model by: 1) Removing any hypotheses with a support (probability) less than ``minprob``. 2) Preserving the first ``maxhypot`` likely hypotheses and discarding the rest. """ # Skip pruning if less hypotheses exist than the maximum allowed. if len(self.__hypotheses) <= maxhypot: return # Sort the hypotheses in decreasing log probability order. self.__hypotheses.sort(key=lambda dct: -dct['log_probability']) # Store the indices of likely hypotheses. minprob = np.log(minprob) index = [i for i, hypot in enumerate(self.__hypotheses) if hypot['log_probability'] > minprob] # Trim the hypotheses. index = index[:maxhypot] if len(index) >= maxhypot else index self.__hypotheses = [self.__hypotheses[i] for i in index] # NOTE: This final ordering can preserve the original order of the # hypotheses. Interestingly, the algorithm specified in update # does not require that the hypotheses be ordered! This sort can # safely be ignored. # self.__hypotheses.sort(key=lambda dct: dct['index']) # Normalize the hypotheses so that their probabilities sum to one. logsum = -np.inf for hypot in self.__hypotheses: logsum = self.__soft_max(logsum, hypot['log_probability']) for hypot in self.__hypotheses: hypot['log_probability'] -= logsum def infer(self): """Return posterior probabilities OR sequence segmentation. If the MAX-PRODUCT algorithm is selected, this method returns the most likely sequence segmentation as a list of integers. Each integer in the list marks where a segment begins. If the SUM-PRODUCT algorithm is selected, this method returns the posterior probabilities of the segmentation hypotheses as a numpy array. Rows in the array represent hypotheses and columns in the array represent data points in the time-series. Returns: object: This method returns the inference results. In the case of the MAX-PRODUCT algorithm, the method returns the most likely segmentation. In the case of the SUM-PRODUCT algorithm, this method returns the posterior probabilities of the segmentation hypotheses. """ # In the max-product algorithm, the most likely hypotheses are # tracked. Recover the most likely segment boundaries by performing a # back-trace. if self.__alg__ == 'maxprod': # Find the most likely hypothesis. max_hypothesis = max(self.__hypotheses, key=lambda dct: dct['log_probability']) # Find the best sequence segmentation given all the data so far. segment_boundaries = [len(self.__counts) - 1, ] index = segment_boundaries[0] - 1 count = max_hypothesis['count'] - 1 while index > 0: index -= count segment_boundaries.insert(0, index) count = self.__counts[index - 1] return segment_boundaries # In the sum-product algorithm, the segment probabilities are # tracked. Recover the segment probabilities by formatting the stored # history. else: k = len(self.__probabilities) segment_probabilities = np.zeros((k + 1, k + 1)) segment_probabilities[0, 0] = 1.0 # Update hypotheses probabilities. for i in range(len(self.__probabilities)): for (j, probability) in self.__probabilities[i]: segment_probabilities[j, i + 1] = np.exp(probability) # A segment always occurs at the beginning of the dataset. segment_probabilities[0, 0] = 1.0 return segment_probabilities
[ "numpy.isnan", "numpy.shape", "numpy.arange", "numpy.exp", "numpy.linalg.solve", "numpy.random.randn", "numpy.ndim", "numpy.isfinite", "numpy.transpose", "numpy.linalg.det", "numpy.log1p", "numpy.linalg.cholesky", "numpy.size", "numpy.dot", "numpy.outer", "numpy.log", "numpy.isscalar", "numpy.zeros", "numpy.eye", "numpy.sqrt" ]
[((1442, 1454), 'numpy.shape', 'np.shape', (['mu'], {}), '(mu)\n', (1450, 1454), True, 'import numpy as np\n'), ((3368, 3392), 'numpy.zeros', 'np.zeros', (['[m + n, m + n]'], {}), '([m + n, m + n])\n', (3376, 3392), True, 'import numpy as np\n'), ((3499, 3516), 'numpy.dot', 'np.dot', (['omega', 'mu'], {}), '(omega, mu)\n', (3505, 3516), True, 'import numpy as np\n'), ((6659, 6693), 'numpy.linalg.solve', 'linalg.solve', (['s[:m, :m]', 's[:m, m:]'], {}), '(s[:m, :m], s[:m, m:])\n', (6671, 6693), False, 'from numpy import linalg\n'), ((19536, 19551), 'numpy.log', 'np.log', (['minprob'], {}), '(minprob)\n', (19542, 19551), True, 'import numpy as np\n'), ((3649, 3664), 'numpy.dot', 'np.dot', (['mu.T', 'x'], {}), '(mu.T, x)\n', (3655, 3664), True, 'import numpy as np\n'), ((4414, 4424), 'numpy.ndim', 'np.ndim', (['X'], {}), '(X)\n', (4421, 4424), True, 'import numpy as np\n'), ((4449, 4460), 'numpy.shape', 'np.shape', (['X'], {}), '(X)\n', (4457, 4460), True, 'import numpy as np\n'), ((4477, 4491), 'numpy.dot', 'np.dot', (['X.T', 'Y'], {}), '(X.T, Y)\n', (4483, 4491), True, 'import numpy as np\n'), ((4641, 4655), 'numpy.dot', 'np.dot', (['X.T', 'X'], {}), '(X.T, X)\n', (4647, 4655), True, 'import numpy as np\n'), ((4767, 4781), 'numpy.dot', 'np.dot', (['Y.T', 'Y'], {}), '(Y.T, Y)\n', (4773, 4781), True, 'import numpy as np\n'), ((4844, 4854), 'numpy.size', 'np.size', (['X'], {}), '(X)\n', (4851, 4854), True, 'import numpy as np\n'), ((4871, 4885), 'numpy.outer', 'np.outer', (['X', 'Y'], {}), '(X, Y)\n', (4879, 4885), True, 'import numpy as np\n'), ((4980, 4994), 'numpy.outer', 'np.outer', (['X', 'X'], {}), '(X, X)\n', (4988, 4994), True, 'import numpy as np\n'), ((5106, 5120), 'numpy.outer', 'np.outer', (['Y', 'Y'], {}), '(Y, Y)\n', (5114, 5120), True, 'import numpy as np\n'), ((5364, 5392), 'numpy.linalg.cholesky', 'linalg.cholesky', (['self.__prod'], {}), '(self.__prod)\n', (5379, 5392), False, 'from numpy import linalg\n'), ((6268, 6302), 'numpy.linalg.solve', 'linalg.solve', (['s[:m, :m]', 's[:m, m:]'], {}), '(s[:m, :m], s[:m, m:])\n', (6280, 6302), False, 'from numpy import linalg\n'), ((12896, 12912), 'numpy.zeros', 'np.zeros', (['[m, n]'], {}), '([m, n])\n', (12904, 12912), True, 'import numpy as np\n'), ((13033, 13042), 'numpy.eye', 'np.eye', (['m'], {}), '(m)\n', (13039, 13042), True, 'import numpy as np\n'), ((13174, 13183), 'numpy.eye', 'np.eye', (['n'], {}), '(n)\n', (13180, 13183), True, 'import numpy as np\n'), ((22502, 22526), 'numpy.zeros', 'np.zeros', (['(k + 1, k + 1)'], {}), '((k + 1, k + 1))\n', (22510, 22526), True, 'import numpy as np\n'), ((3012, 3028), 'numpy.isscalar', 'np.isscalar', (['eta'], {}), '(eta)\n', (3023, 3028), True, 'import numpy as np\n'), ((3087, 3103), 'numpy.isfinite', 'np.isfinite', (['eta'], {}), '(eta)\n', (3098, 3103), True, 'import numpy as np\n'), ((5690, 5705), 'numpy.log', 'np.log', (['(0.5 * w)'], {}), '(0.5 * w)\n', (5696, 5705), True, 'import numpy as np\n'), ((6121, 6149), 'numpy.linalg.cholesky', 'linalg.cholesky', (['self.__prod'], {}), '(self.__prod)\n', (6136, 6149), False, 'from numpy import linalg\n'), ((6514, 6542), 'numpy.linalg.cholesky', 'linalg.cholesky', (['self.__prod'], {}), '(self.__prod)\n', (6529, 6542), False, 'from numpy import linalg\n'), ((7042, 7054), 'numpy.sqrt', 'np.sqrt', (['eta'], {}), '(eta)\n', (7049, 7054), True, 'import numpy as np\n'), ((15751, 15761), 'numpy.ndim', 'np.ndim', (['X'], {}), '(X)\n', (15758, 15761), True, 'import numpy as np\n'), ((17327, 17344), 'numpy.log1p', 'np.log1p', (['(-hazard)'], {}), '(-hazard)\n', (17335, 17344), True, 'import numpy as np\n'), ((1581, 1592), 'numpy.ndim', 'np.ndim', (['mu'], {}), '(mu)\n', (1588, 1592), True, 'import numpy as np\n'), ((1618, 1630), 'numpy.shape', 'np.shape', (['mu'], {}), '(mu)\n', (1626, 1630), True, 'import numpy as np\n'), ((1950, 1964), 'numpy.ndim', 'np.ndim', (['omega'], {}), '(omega)\n', (1957, 1964), True, 'import numpy as np\n'), ((1990, 2005), 'numpy.shape', 'np.shape', (['omega'], {}), '(omega)\n', (1998, 2005), True, 'import numpy as np\n'), ((2139, 2158), 'numpy.transpose', 'np.transpose', (['omega'], {}), '(omega)\n', (2151, 2158), True, 'import numpy as np\n'), ((2187, 2204), 'numpy.linalg.det', 'linalg.det', (['omega'], {}), '(omega)\n', (2197, 2204), False, 'from numpy import linalg\n'), ((2470, 2484), 'numpy.ndim', 'np.ndim', (['sigma'], {}), '(sigma)\n', (2477, 2484), True, 'import numpy as np\n'), ((2510, 2525), 'numpy.shape', 'np.shape', (['sigma'], {}), '(sigma)\n', (2518, 2525), True, 'import numpy as np\n'), ((2659, 2678), 'numpy.transpose', 'np.transpose', (['sigma'], {}), '(sigma)\n', (2671, 2678), True, 'import numpy as np\n'), ((2707, 2724), 'numpy.linalg.det', 'linalg.det', (['sigma'], {}), '(sigma)\n', (2717, 2724), False, 'from numpy import linalg\n'), ((3053, 3066), 'numpy.isnan', 'np.isnan', (['eta'], {}), '(eta)\n', (3061, 3066), True, 'import numpy as np\n'), ((6992, 7010), 'numpy.random.randn', 'random.randn', (['n', 'n'], {}), '(n, n)\n', (7004, 7010), False, 'from numpy import random\n'), ((7287, 7305), 'numpy.random.randn', 'random.randn', (['m', 'n'], {}), '(m, n)\n', (7299, 7305), False, 'from numpy import random\n'), ((15528, 15538), 'numpy.ndim', 'np.ndim', (['x'], {}), '(x)\n', (15535, 15538), True, 'import numpy as np\n'), ((15585, 15595), 'numpy.ndim', 'np.ndim', (['Y'], {}), '(Y)\n', (15592, 15595), True, 'import numpy as np\n'), ((16713, 16732), 'numpy.log', 'np.log', (['(2.0 * np.pi)'], {}), '(2.0 * np.pi)\n', (16719, 16732), True, 'import numpy as np\n'), ((16969, 16983), 'numpy.log', 'np.log', (['hazard'], {}), '(hazard)\n', (16975, 16983), True, 'import numpy as np\n'), ((22795, 22814), 'numpy.exp', 'np.exp', (['probability'], {}), '(probability)\n', (22801, 22814), True, 'import numpy as np\n'), ((1704, 1719), 'numpy.isfinite', 'np.isfinite', (['mu'], {}), '(mu)\n', (1715, 1719), True, 'import numpy as np\n'), ((2082, 2100), 'numpy.isfinite', 'np.isfinite', (['omega'], {}), '(omega)\n', (2093, 2100), True, 'import numpy as np\n'), ((2602, 2620), 'numpy.isfinite', 'np.isfinite', (['sigma'], {}), '(sigma)\n', (2613, 2620), True, 'import numpy as np\n'), ((7055, 7077), 'numpy.linalg.cholesky', 'linalg.cholesky', (['sigma'], {}), '(sigma)\n', (7070, 7077), False, 'from numpy import linalg\n'), ((7214, 7236), 'numpy.linalg.cholesky', 'linalg.cholesky', (['omega'], {}), '(omega)\n', (7229, 7236), False, 'from numpy import linalg\n'), ((1665, 1677), 'numpy.isnan', 'np.isnan', (['mu'], {}), '(mu)\n', (1673, 1677), True, 'import numpy as np\n'), ((2040, 2055), 'numpy.isnan', 'np.isnan', (['omega'], {}), '(omega)\n', (2048, 2055), True, 'import numpy as np\n'), ((2560, 2575), 'numpy.isnan', 'np.isnan', (['sigma'], {}), '(sigma)\n', (2568, 2575), True, 'import numpy as np\n'), ((7344, 7362), 'numpy.linalg.cholesky', 'linalg.cholesky', (['b'], {}), '(b)\n', (7359, 7362), False, 'from numpy import linalg\n'), ((5579, 5592), 'numpy.log', 'np.log', (['d[:m]'], {}), '(d[:m])\n', (5585, 5592), True, 'import numpy as np\n'), ((5637, 5647), 'numpy.sqrt', 'np.sqrt', (['w'], {}), '(w)\n', (5644, 5647), True, 'import numpy as np\n'), ((5535, 5547), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (5544, 5547), True, 'import numpy as np\n'), ((6961, 6973), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (6970, 6973), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import matplotlib.figure from typing import List, Sequence, Dict, Tuple, Union from biplane_kine.graphing import plot_utils from .common_graph_utils import make_interactive from .smoothing_graph_utils import marker_graph_init, marker_graph_add from .kine_graph_utils import kine_graph_init, kine_graph_add, plot_marker_cluster_avail class RawSmoothedKineTorsoPlotter: """Plotter for torso kinematics derived from labeled, filled, and smoothed skin marker data. Attributes ---------- torso_pos_labeled: numpy.ndarray (N, 3) Torso position trajectory derived from labeled (raw) skin marker data torso_eul_labeled: numpy.ndarray (N, 3) Torso orientation trajectory (expressed as an Euler angle sequence) derived from labeled (raw) skin marker data torso_pos_filled: numpy.ndarray (N, 3) Torso position trajectory derived from filled (raw) skin marker data torso_eul_filled: numpy.ndarray (N, 3) Torso orientation trajectory (expressed as an Euler angle sequence) derived from filled (raw) skin marker data torso_pos_smoothed: numpy.ndarray (N, 3) Torso position trajectory derived from smoothed (raw) skin marker data torso_eul_smoothed: numpy.ndarray (N, 3) Torso orientation trajectory (expressed as an Euler angle sequence) derived from smoothed (raw) skin marker data frame_nums: numpy.ndarray (N,) Vicon frame numbers associated with torso trajectory trial_name: str Name of trial being plotted """ def __init__(self, trial_name: str, torso_pos_labeled: np.ndarray, torso_eul_labeled: np.ndarray, torso_pos_filled: np.ndarray, torso_eul_filled: np.ndarray, torso_pos_smoothed: np.ndarray, torso_eul_smoothed: np.ndarray, frame_nums: np.ndarray): self.torso_pos_labeled = torso_pos_labeled self.torso_eul_labeled = torso_eul_labeled self.torso_pos_filled = torso_pos_filled self.torso_eul_filled = torso_eul_filled self.torso_pos_smoothed = torso_pos_smoothed self.torso_eul_smoothed = torso_eul_smoothed self.frame_nums = frame_nums self.trial_name = trial_name def plot(self) -> List[matplotlib.figure.Figure]: """Plot torso position and orientation trajectory as derived from labeled (raw), filled, and smoothed skin marker data. Figures: 1. Torso position broken out into 3 separate subplots for each spatial dimension 2. Torso orientation broken out into 3 separate subplots for each spatial dimension 3. Torso position plotted on one axes with different colors for each spatial dimension 4. Torso orientation plotted on one axes with different colors for each spatial dimension """ figs = [] # Figure 1, position in 3 subplots pos_fig_sub = self.plot_subplots(0, self.trial_name + ' Torso Intrinsic Position', 'Position (mm)', self.torso_pos_labeled, self.torso_pos_filled, self.torso_pos_smoothed) figs.append(pos_fig_sub) # Figure 2, orientation in 3 subplots eul_fig_sub = self.plot_subplots(1, self.trial_name + ' Torso Intrinsic Euler Angles', 'Angle (deg)', self.torso_eul_labeled, self.torso_eul_filled, self.torso_eul_smoothed) figs.append(eul_fig_sub) # Figure 3, position in one axes pos_fig_one = self.plot_one_axes(2, self.trial_name + ' Torso Intrinsic Position', 'Position (mm)', self.torso_pos_labeled, self.torso_pos_filled, self.torso_pos_smoothed, {'labeled': 'Labeled (X)', 'filled': 'Filled (Y)', 'smoothed': 'Smoothed (Z)'}) figs.append(pos_fig_one) # Figure 3, position in one axes eul_fig_one = self.plot_one_axes(3, self.trial_name + ' Torso Intrinsic Euler Angles', 'Angle (deg)', self.torso_eul_labeled, self.torso_eul_filled, self.torso_eul_smoothed, {'labeled': 'Labeled (Flex/Ext)', 'filled': 'Filled (Lat Flex)', 'smoothed': 'Smoothed (Axial)'}) figs.append(eul_fig_one) return figs def plot_subplots(self, fig_num: int, title: str, y_label: str, labeled: np.ndarray, filled: np.ndarray, smoothed: np.ndarray) -> matplotlib.figure.Figure: """Plot torso position or orientation into 3 separate subplots for each spatial dimension.""" fig = plt.figure(fig_num) axs = fig.subplots(3, 1, sharex=True) labeled_lines = marker_graph_init(axs, labeled, y_label, self.frame_nums, color='blue') filled_lines = marker_graph_add(axs, filled, self.frame_nums, color='red') smoothed_lines = marker_graph_add(axs, smoothed, self.frame_nums, color='green') plt.tight_layout() fig.suptitle(title) fig.legend((labeled_lines[0], filled_lines[0], smoothed_lines[0]), ('Labeled', 'Filled', 'Smoothed'), ncol=3, handlelength=0.75, handletextpad=0.25, columnspacing=0.5, loc='upper left') make_interactive() return fig def plot_one_axes(self, fig_num: int, title: str, y_label: str, labeled: np.ndarray, filled: np.ndarray, smoothed: np.ndarray, legend_entries: Dict[str, str]) -> matplotlib.figure.Figure: """Plot torso position or orientation on one axes with different colors for each spatial dimension.""" fig = plt.figure(fig_num) ax = fig.subplots(1, 1) labeled_lines = kine_graph_init(ax, labeled, y_label, self.frame_nums, [{'ls': '', 'marker': 'o', 'ms': 2, 'fillstyle': 'none', 'mew': 0.5}] * 3) ax.set_prop_cycle(None) filled_lines = kine_graph_add(ax, filled, self.frame_nums, [{'ls': '-', 'lw': 0.75}] * 3) ax.set_prop_cycle(None) smoothed_lines = kine_graph_add(ax, smoothed, self.frame_nums, [{'ls': '-'}] * 3) plt.tight_layout() fig.suptitle(title, x=0.7) fig.legend((labeled_lines[0], smoothed_lines[2], filled_lines[1]), (legend_entries['labeled'], legend_entries['smoothed'], legend_entries['filled']), ncol=2, handlelength=0.75, handletextpad=0.25, columnspacing=0.5, loc='upper left') make_interactive() return fig class MarkerClusterAvailPlotter: """Plotter for visually determining when markers in a marker clustser are present in a trial. Attributes ---------- marker_data: numpy.ndarray (M, N, 3) marker position data for all M markers and N frames in a trial marker_names: List of str list of marker names in marker cluster vicon_endpts: array_like (2,) The frame indices (endpoints) of the Vicon trial that correspond to the endpoints of the reciprocal biplane fluoroscopy trial. """ def __init__(self, marker_data: np.ndarray, marker_names: Sequence[str], vicon_endpts: np.ndarray, trial_name: str): self.marker_data = marker_data self.marker_names = marker_names self.vicon_endpts = vicon_endpts self.trial_name = trial_name self.frame_nums = np.arange(self.marker_data.shape[1]) + 1 def plot(self) -> List[matplotlib.figure.Figure]: fig = plt.figure() ax = fig.subplots(1, 1) present_lines, absent_lines = plot_marker_cluster_avail(ax, self.marker_data, self.frame_nums, self.marker_names, self.vicon_endpts) plt.tight_layout() fig.suptitle(self.trial_name) plt.subplots_adjust(top=0.95) fig.legend((present_lines[0], absent_lines[0]), ('Present', 'Absent'), ncol=2, handlelength=0.75, handletextpad=0.5, columnspacing=1.0, loc='upper right') make_interactive() return [fig] class MarkerClusterFillPlotter(MarkerClusterAvailPlotter): """Plotter for visually demonstrating filled gaps and the markers utilized to fill them. Attributes ---------- gaps_filled: dict of marker names to gaps Dictionary containing the gaps that were filled for each marker source_markers: dict of marker names to source markers Dictionary containing the source markers that were utilized to fill gaps for each marker filled_data: dict of marker names to filled marker trajectories Dictionary containing the filled marker trajectory for each marker sfs_data: dict of marker names to smoothed/filled/smoothed marker trajectories Dictionary containing the smoothed/filled/smoothed marker trajectory for each marker """ def __init__(self, trial_name: str, marker_data: np.ndarray, marker_names: Sequence[str], gaps_filled: Dict[str, Sequence[Tuple[int, int]]], source_markers: Dict[str, Sequence[str]], filled_data: Dict[str, np.ndarray], sfs_data: Dict[str, np.ndarray], vicon_endpts: np.ndarray): super().__init__(marker_data, marker_names, vicon_endpts, trial_name) self.gaps_filled = gaps_filled self.source_markers = source_markers self.filled_data = filled_data self.sfs_data = sfs_data def plot(self) -> List[matplotlib.figure.Figure]: fig = super().plot()[0] ax_fig = fig.axes[0] # add gap demarcation lines and source marker names for marker that was filled for (idx, marker_name) in enumerate(self.marker_names): if marker_name in self.gaps_filled: gaps = self.gaps_filled[marker_name] for gap in gaps: ax_fig.vlines([gap[0] + 1, gap[1]], ymin=(idx + 1) - 0.2, ymax=(idx + 1) + 0.2, linewidths=6, colors=(1, 0.5, 0)) max_gap_idx = np.argmax([gap[1] - gap[0] for gap in gaps]) ax_fig.text((gaps[max_gap_idx][0] + gaps[max_gap_idx][1])/2, idx + 1 + 0.25, ','.join(self.source_markers[marker_name]), horizontalalignment='center', verticalalignment='bottom', fontweight='bold') # create a figure for each marker that was filled figs = self.plot_filled_trajectory(2) return [fig] + figs def plot_filled_trajectory(self, fig_start) -> List[matplotlib.figure.Figure]: figs = [] for (idx, (marker_name, filled_marker_data)) in enumerate(self.filled_data.items()): fig = plt.figure(fig_start + idx) ax = fig.subplots(3, 1) filled_lines = marker_graph_init(ax, filled_marker_data, 'Position (mm)', self.frame_nums, color='red') smoothed_lines = marker_graph_add(ax, self.marker_data[self.marker_names.index(marker_name)], self.frame_nums, color='blue') sfs_lines = marker_graph_add(ax, self.sfs_data[marker_name], self.frame_nums, color='green') highlight_sfs = np.full_like(self.sfs_data[marker_name], np.nan) gaps = self.gaps_filled[marker_name] for gap in gaps: highlight_sfs[gap[0]:gap[1], :] = self.sfs_data[marker_name][gap[0]:gap[1], :] high_sfs_lines = marker_graph_add(ax, highlight_sfs, self.frame_nums, color='orange') for sub_ax in ax: sub_ax.set_xlim(left=1) plt.tight_layout() fig.suptitle(self.trial_name + ' ' + marker_name, x=0.75) fig.legend((filled_lines[0], smoothed_lines[0], sfs_lines[0], high_sfs_lines[0]), ('Filled Raw', 'Smoothed', 'SFS', 'Filled Smoothed'), ncol=4, handlelength=0.75, handletextpad=0.25, columnspacing=0.5, loc='lower left') make_interactive() figs.append(fig) return figs class TorsoTrajComparisonPlotter: """Torso trajectory plotter comparing previously filled, smoothed, smoothed/filled, and smoothed/filled/smoothed torso kinematics. Attributes ---------- trial_name: str Name of trial prev_filled: tuple of numpy.ndarray (N, 3) Torso position and Euler angles derived from marker position data that had been filled in Vicon smoothed: tuple of numpy.ndarray (N, 3) Torso position and Euler angles derived from smoothed marker position data filled: tuple of numpy.ndarray (N, 3) Torso position and Euler angles dervied from smoothed then filled marker position data sfs: tuple of numpy.ndarray (N, 3) Torso position and Euler angles dervied from smoothed, filled, then smoothed again (lightly) marker position data frame_nums: numpy.ndarray (N,) Frame numbers for the trial vicon_endpts: array_like (2,) The frame indices (endpoints) of the Vicon trial that correspond to the endpoints of the reciprocal biplane fluoroscopy trial. """ def __init__(self, trial_name, prev_filled, smoothed, filled, sfs, vicon_endpts): self.trial_name = trial_name self.prev_filled = prev_filled self.smoothed = smoothed self.filled = filled self.sfs = sfs self.frame_nums = np.arange(self.sfs[0].shape[0]) + 1 self.vicon_endpts = vicon_endpts def plot(self) -> List[matplotlib.figure.Figure]: """Plot torso position and orientation trajectory as derived from previously filled, smoothed, smoothed then filled, and smoothed/filled/smoothed skin marker position. Figures: 1. Torso position broken out into 3 separate subplots for each spatial dimension 2. Torso orientation broken out into 3 separate subplots for each spatial dimension """ figs = [] # Figure 1: Position fig = self.plot_kine_var(1, self.trial_name, ('X (mm)', 'Y (mm)', 'Z (mm)'), self.prev_filled[0], self.smoothed[0], self.filled[0], self.sfs[0]) figs.append(fig) # Figure 2: Orientation fig = self.plot_kine_var(2, self.trial_name, ('Flex/Ext (deg)', 'Lat Flex (deg)', 'Axial (deg)'), self.prev_filled[1], self.smoothed[1], self.filled[1], self.sfs[1]) figs.append(fig) return figs def plot_kine_var(self, fig_num: int, title: str, y_labels: Sequence[str], prev_filled: np.ndarray, smoothed: np.ndarray, filled: np.ndarray, sfs: np.ndarray) -> matplotlib.figure.Figure: """Plot torso position or orientation on one axes with different colors for each spatial dimension.""" fig = plt.figure(fig_num) ax = fig.subplots(3, 1) prev_filled_lines = marker_graph_init(ax, prev_filled, '', self.frame_nums, color='red') smoothed_lines = marker_graph_add(ax, smoothed, self.frame_nums, color='blue') smoothed_filled_lines = marker_graph_add(ax, filled, self.frame_nums, ls=':', lw=2, color='green') sfs_lines = marker_graph_add(ax, sfs, self.frame_nums, color='green') for idx, sub_ax in enumerate(ax): plot_utils.update_ylabel(sub_ax, y_labels[idx], font_size=10) sub_ax.axvline(self.vicon_endpts[0]) sub_ax.axvline(self.vicon_endpts[1]) sub_ax.set_xlim(left=1) plt.tight_layout() fig.suptitle(title) fig.legend((prev_filled_lines[0], smoothed_lines[0], smoothed_filled_lines[0], sfs_lines[0]), ('Prev Filled', 'Smoothed', 'Smoothed/Filled', 'SFS'), ncol=4, handlelength=0.75, handletextpad=0.25, columnspacing=0.5, loc='lower left') make_interactive() return fig class RawSmoothSegmentPlotter: """Plotter for torso kinematics derived from labeled, filled, and smoothed skin marker data. Attributes ---------- pos_raw: numpy.ndarray (N, 3) Raw position trajectory eul_raw: numpy.ndarray (N, 3) Raw orientation trajectory (expressed as an Euler angle sequence) pos_smooth: numpy.ndarray (N, 3) Smoothed position trajectory eul_smooth: numpy.ndarray (N, 3) Smoothed orientation trajectory (expressed as an Euler angle sequence) vel: numpy.ndarray (N, 3) Smoothed linear velocity ang_vel: numpy.ndarray (N, 3) Smoothed angular velocity frame_nums: numpy.ndarray (N,) Biplane fluoroscopy frame numbers trial_name: str Name of trial being plotted segment_name: str Name of segment being plotted euler_legend: List of str Legend specifying the sequence of Euler rotation names fig_num_start: int Starting figure number """ def __init__(self, trial_name: str, segment_name: str, pos_raw: np.ndarray, eul_raw: np.ndarray, pos_smooth: np.ndarray, eul_smooth: np.ndarray, vel: np.ndarray, ang_vel: np.ndarray, frame_nums: np.ndarray, euler_legend: Sequence[str], pos_legend: Union[Sequence[str], None] = None, fig_num_start: int = 0): self.pos_raw = pos_raw self.eul_raw = eul_raw self.pos_smooth = pos_smooth self.eul_smooth = eul_smooth self.vel = vel self.ang_vel = ang_vel self.frame_nums = frame_nums self.trial_name = trial_name self.segment_name = segment_name self.euler_legend = euler_legend self.pos_legend = ['X', 'Y', 'Z'] if pos_legend is None else pos_legend self.fig_num_start = fig_num_start def plot(self) -> List[matplotlib.figure.Figure]: """Plot raw and smoothed position and orientation. Figures: 1. Position broken out into 3 separate subplots for each spatial dimension 2. Orientation broken out into 3 separate subplots for each spatial dimension 3. Velocity broken out into 3 separate subplots for each spatial dimension 4. Angular velocity broken out into 3 separate subplots for each spatial dimension 5. Position plotted on one axes with different colors for each spatial dimension 6. Orientation plotted on one axes with different colors for each spatial dimension 7. Velocity plotted on one axes with different colors for each spatial dimension 8. Angular velocity plotted on one axes with different colors for each spatial dimension """ figs = [] title_prefix = self.trial_name + ' ' + self.segment_name + ' ' # Figure 1, position in 3 subplots pos_fig_sub = self.plot_subplots(self.fig_num_start, title_prefix + 'Position (mm)', self.pos_raw, self.pos_smooth, self.pos_legend) figs.append(pos_fig_sub) # Figure 2, orientation in 3 subplots eul_fig_sub = self.plot_subplots(self.fig_num_start + 1, title_prefix + 'Euler Angles (deg)', self.eul_raw, self.eul_smooth, self.euler_legend) figs.append(eul_fig_sub) # Figure 3, velocity in 3 subplots vel_fig_sub = self.plot_subplots_vel(self.fig_num_start + 2, title_prefix + 'Velocity', 'Velocity (mm/s)', self.vel) figs.append(vel_fig_sub) # Figure 4, angular velocity in 3 subplots ang_vel_fig_sub = self.plot_subplots_vel(self.fig_num_start + 3, title_prefix + 'Angular Velocity', 'Angular Velocity (deg/s)', self.ang_vel) figs.append(ang_vel_fig_sub) # Figure 5, position in one axes pos_fig_one = self.plot_one_axes(self.fig_num_start + 4, title_prefix + 'Position', 'Position (mm)', self.pos_raw, self.pos_smooth, self.pos_legend) figs.append(pos_fig_one) # Figure 6, orientation in one axes eul_fig_one = self.plot_one_axes(self.fig_num_start + 5, title_prefix + 'Euler Angles', 'Angle (deg)', self.eul_raw, self.eul_smooth, self.euler_legend) figs.append(eul_fig_one) # Figure 7, velocity in one axes vel_fig_one = self.plot_one_axes_vel(self.fig_num_start + 6, title_prefix + 'Velocity', 'Velocity (mm/s)', self.vel, self.pos_legend) figs.append(vel_fig_one) # Figure 8, angular velocity in one axes ang_vel_fig_one = self.plot_one_axes_vel(self.fig_num_start + 7, title_prefix + 'Angular Velocity', 'Angular Velocity (deg/s)', self.ang_vel, self.pos_legend) figs.append(ang_vel_fig_one) return figs def plot_subplots(self, fig_num: int, title: str, raw: np.ndarray, smoothed: np.ndarray, axes_lbl_entries: Sequence[str]) -> matplotlib.figure.Figure: """Plot position or orientation into 3 separate subplots for each spatial dimension.""" fig = plt.figure(fig_num) axs = fig.subplots(3, 1, sharex=True) raw_lines = marker_graph_init(axs, raw, '', self.frame_nums, color='red') for idx, ax in enumerate(axs): plot_utils.update_ylabel(ax, axes_lbl_entries[idx], font_size=10) smoothed_lines = marker_graph_add(axs, smoothed, self.frame_nums, color='green') plt.tight_layout() plt.subplots_adjust(top=0.94) fig.suptitle(title) fig.legend((raw_lines[0], smoothed_lines[0]), ('Raw', 'Smoothed'), ncol=2, handlelength=0.75, handletextpad=0.25, columnspacing=0.5, loc='lower left') make_interactive() return fig def plot_one_axes(self, fig_num: int, title: str, y_label: str, raw: np.ndarray, smoothed: np.ndarray, legend_entries: Sequence[str]) -> matplotlib.figure.Figure: """Plot position or orientation on one axes with different colors for each spatial dimension.""" fig = plt.figure(fig_num) ax = fig.subplots(1, 1) raw_lines = kine_graph_init(ax, raw, y_label, self.frame_nums, [{'ls': ':', 'lw': 2}] * 3) ax.set_prop_cycle(None) smoothed_lines = kine_graph_add(ax, smoothed, self.frame_nums, [{'ls': '-'}] * 3) plt.tight_layout() fig.suptitle(title, x=0.7) legend_text = ('Raw (' + legend_entries[0] + ')', 'Smoothed (' + legend_entries[1] + ')', 'Smoothed (' + legend_entries[2] + ')') fig.legend((raw_lines[0], smoothed_lines[1], smoothed_lines[2]), legend_text, ncol=3, handlelength=0.75, handletextpad=0.25, columnspacing=0.5, loc='lower left') make_interactive() return fig def plot_subplots_vel(self, fig_num: int, title: str, y_label: str, vel: np.ndarray) -> matplotlib.figure.Figure: """Plot velocity into 3 separate subplots for each spatial dimension.""" fig = plt.figure(fig_num) axs = fig.subplots(3, 1, sharex=True) marker_graph_init(axs, vel, y_label, self.frame_nums, color='blue') plt.tight_layout() fig.suptitle(title) make_interactive() return fig def plot_one_axes_vel(self, fig_num: int, title: str, y_label: str, vel: np.ndarray, legend_entries: Sequence[str]) -> matplotlib.figure.Figure: """Plot velocity on one axes with different colors for each spatial dimension.""" fig = plt.figure(fig_num) ax = fig.subplots(1, 1) kine_graph_init(ax, vel, y_label, self.frame_nums, [{}] * 3) plt.tight_layout() fig.suptitle(title, x=0.7) fig.legend(legend_entries, ncol=3, handlelength=0.75, handletextpad=0.25, columnspacing=0.5, loc='lower left') make_interactive() return fig
[ "numpy.full_like", "numpy.argmax", "biplane_kine.graphing.plot_utils.update_ylabel", "matplotlib.pyplot.figure", "numpy.arange", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.tight_layout" ]
[((4662, 4681), 'matplotlib.pyplot.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (4672, 4681), True, 'import matplotlib.pyplot as plt\n'), ((5004, 5022), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5020, 5022), True, 'import matplotlib.pyplot as plt\n'), ((5650, 5669), 'matplotlib.pyplot.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (5660, 5669), True, 'import matplotlib.pyplot as plt\n'), ((6197, 6215), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (6213, 6215), True, 'import matplotlib.pyplot as plt\n'), ((7531, 7543), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7541, 7543), True, 'import matplotlib.pyplot as plt\n'), ((7789, 7807), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (7805, 7807), True, 'import matplotlib.pyplot as plt\n'), ((7854, 7883), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'top': '(0.95)'}), '(top=0.95)\n', (7873, 7883), True, 'import matplotlib.pyplot as plt\n'), ((14830, 14849), 'matplotlib.pyplot.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (14840, 14849), True, 'import matplotlib.pyplot as plt\n'), ((15509, 15527), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (15525, 15527), True, 'import matplotlib.pyplot as plt\n'), ((21155, 21174), 'matplotlib.pyplot.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (21165, 21174), True, 'import matplotlib.pyplot as plt\n'), ((21517, 21535), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (21533, 21535), True, 'import matplotlib.pyplot as plt\n'), ((21544, 21573), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'top': '(0.94)'}), '(top=0.94)\n', (21563, 21573), True, 'import matplotlib.pyplot as plt\n'), ((22135, 22154), 'matplotlib.pyplot.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (22145, 22154), True, 'import matplotlib.pyplot as plt\n'), ((22416, 22434), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (22432, 22434), True, 'import matplotlib.pyplot as plt\n'), ((23080, 23099), 'matplotlib.pyplot.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (23090, 23099), True, 'import matplotlib.pyplot as plt\n'), ((23230, 23248), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (23246, 23248), True, 'import matplotlib.pyplot as plt\n'), ((23603, 23622), 'matplotlib.pyplot.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (23613, 23622), True, 'import matplotlib.pyplot as plt\n'), ((23732, 23750), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (23748, 23750), True, 'import matplotlib.pyplot as plt\n'), ((7421, 7457), 'numpy.arange', 'np.arange', (['self.marker_data.shape[1]'], {}), '(self.marker_data.shape[1])\n', (7430, 7457), True, 'import numpy as np\n'), ((10713, 10740), 'matplotlib.pyplot.figure', 'plt.figure', (['(fig_start + idx)'], {}), '(fig_start + idx)\n', (10723, 10740), True, 'import matplotlib.pyplot as plt\n'), ((11209, 11257), 'numpy.full_like', 'np.full_like', (['self.sfs_data[marker_name]', 'np.nan'], {}), '(self.sfs_data[marker_name], np.nan)\n', (11221, 11257), True, 'import numpy as np\n'), ((11611, 11629), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (11627, 11629), True, 'import matplotlib.pyplot as plt\n'), ((13419, 13450), 'numpy.arange', 'np.arange', (['self.sfs[0].shape[0]'], {}), '(self.sfs[0].shape[0])\n', (13428, 13450), True, 'import numpy as np\n'), ((15305, 15366), 'biplane_kine.graphing.plot_utils.update_ylabel', 'plot_utils.update_ylabel', (['sub_ax', 'y_labels[idx]'], {'font_size': '(10)'}), '(sub_ax, y_labels[idx], font_size=10)\n', (15329, 15366), False, 'from biplane_kine.graphing import plot_utils\n'), ((21354, 21419), 'biplane_kine.graphing.plot_utils.update_ylabel', 'plot_utils.update_ylabel', (['ax', 'axes_lbl_entries[idx]'], {'font_size': '(10)'}), '(ax, axes_lbl_entries[idx], font_size=10)\n', (21378, 21419), False, 'from biplane_kine.graphing import plot_utils\n'), ((10051, 10097), 'numpy.argmax', 'np.argmax', (['[(gap[1] - gap[0]) for gap in gaps]'], {}), '([(gap[1] - gap[0]) for gap in gaps])\n', (10060, 10097), True, 'import numpy as np\n')]
from numpy import exp, array, random, dot class NeuralNetworkIA(): def __init__(self): # self.input = x # Seed the random number generator, so it generates the same numbers # every time the program runs. # random.seed(1) # We model a single neuron, with 3 input connections and 1 output connection. # We assign random weights to a 3 x 1 matrix, with values in the range -1 to 1 # and mean 0. self.synaptic_weights = 2 * random.random((3, 1)) - 1 # The Sigmoid function, which describes an S shaped curve. # We pass the weighted sum of the inputs through this function to # normalise them between 0 and 1. def __sigmoid(self, x): return 1 / (1 + exp(-x)) # The derivative of the Sigmoid function. # This is the gradient of the Sigmoid curve. # It indicates how confident we are about the existing weight. def __sigmoid_derivative(self, x): return x * (1 - x) # We train the neural network through a process of trial and error. # Adjusting the synaptic weights each time. def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations): for iteration in range(number_of_training_iterations): # Pass the training set through our neural network (a single neuron). output = self.think(training_set_inputs) # Calculate the error (The difference between the desired output # and the predicted output). error = training_set_outputs - output # Multiply the error by the input and again by the gradient of the Sigmoid curve. # This means less confident weights are adjusted more. # This means inputs, which are zero, do not cause changes to the weights. adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output)) # Adjust the weights. self.synaptic_weights += adjustment # The neural network thinks. def think(self, inputs): # Pass inputs through our neural network (our single neuron). return self.__sigmoid(dot(inputs, self.synaptic_weights)) def trainingInputData(self): trainInput = [] for training in range(1000): arr = [] for i in range(3): arr.append(random.randint(0, 2)) trainInput.append(arr) return trainInput def trainingOutputData(self, input): trainOutput = [] for i in input: mp = ((i[0] * 1) + (i[1] * 2) + (i[2] * 3)) / 3 fixed = float((int(i[0]) * 0.33333333333) + (int(i[1]) * 0.33333333333) + (int(i[2]) * 0.33333333333)) print(fixed) if fixed < 0.34: trainOutput.append(0) elif fixed < 0.67: trainOutput.append(1) else: trainOutput.append(1) return trainOutput if __name__ == "__main__": #Intialise a single neuron neural network. neural_network = NeuralNetworkIA() print("Random starting synaptic weights: ") print(neural_network.synaptic_weights) # The training set. We have 4 examples, each consisting of 3 input values # and 1 output value. # training_set_inputs = array([[0, 0, 0], [3, 3, 3], [2, 0, 2], [0, 3, 2]]) train = neural_network.trainingInputData() test = neural_network.trainingOutputData(train) print("train: ") print(train) print("test: ") print(test) training_set_inputs = array([train]) training_set_outputs = test # training_set_outputs = array([[0, 0, 1, 1]]).T # Train the neural network using a training set. # Do it 10,000 times and make small adjustments each time. neural_network.train(training_set_inputs, training_set_outputs, 1000) print("New synaptic weights after training: ") print(neural_network.synaptic_weights) # Test the neural network with a new situation. print("Considering new situation [1, 0, 0] -> ?: ") print(neural_network.think(array([1, 0, 0])))
[ "numpy.random.randint", "numpy.random.random", "numpy.array", "numpy.exp", "numpy.dot" ]
[((3573, 3587), 'numpy.array', 'array', (['[train]'], {}), '([train])\n', (3578, 3587), False, 'from numpy import exp, array, random, dot\n'), ((2151, 2185), 'numpy.dot', 'dot', (['inputs', 'self.synaptic_weights'], {}), '(inputs, self.synaptic_weights)\n', (2154, 2185), False, 'from numpy import exp, array, random, dot\n'), ((4099, 4115), 'numpy.array', 'array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (4104, 4115), False, 'from numpy import exp, array, random, dot\n'), ((491, 512), 'numpy.random.random', 'random.random', (['(3, 1)'], {}), '((3, 1))\n', (504, 512), False, 'from numpy import exp, array, random, dot\n'), ((741, 748), 'numpy.exp', 'exp', (['(-x)'], {}), '(-x)\n', (744, 748), False, 'from numpy import exp, array, random, dot\n'), ((2364, 2384), 'numpy.random.randint', 'random.randint', (['(0)', '(2)'], {}), '(0, 2)\n', (2378, 2384), False, 'from numpy import exp, array, random, dot\n')]
import os import nltk import spacy import gensim import numpy as np from nltk.stem import WordNetLemmatizer from nltk.stem.porter import PorterStemmer from gensim.test.utils import datapath class TopicModeling: """ Topic Modeling Class with a coherence score of 0.52. As an unsupervised learning approach is used, no accuracy tests were performed, but those that were performed manually obtained good results. It allows from a text to be able to describe which topic that text belongs to with a good probability. """ def __init__(self): """ Class constructor. Starts the main objects/attributes for its operation. """ self.stemmer = PorterStemmer() self.nlp = spacy.load("pt_core_news_sm") self.nlp.Defaults.stop_words |= { "tudo", "coisa", "toda", "tava", "pessoal", "dessa", "resolvido", "aqui", "gente", "tá", "né", "calendário", "jpb", "agora", "voltar", "lá", "hoje", "aí", "ainda", "então", "vai", "porque", "moradores", "fazer", "rua", "bairro", "prefeitura", "todo", "vamos", "problema", "fica", "ver", "tô", } self.stop_words_spacy = self.nlp.Defaults.stop_words np.random.seed(2018) nltk.download("wordnet") self.allowed_postags = ["NOUN", "ADJ", "PRON"] # Carrega o modelo. ROOT = os.path.abspath(os.path.dirname(__file__)) fname = datapath(ROOT + "/modelo/meu_lda_model") self.model = gensim.models.LdaMulticore.load(fname=fname) self.topics = {} self.represent_topics( [0, 1, 2, 3], ["Sanitation", "Traffic", "Construction", "Several"] ) def pre_processing(self, text): """ Method that performs the pre-processing of a text: - Remove stop words. - Remove words that are of location entities. - Put all text in lower case. - Performs the lemmatization of the words. - Removes words that are not: substantivos, adjetivos e pronomes. Params: ---------- text : String - Text that will undergo pre-processing. Return: ---------- doc_out : List - List of words that have gone through pre-processing. """ doc_out = [] doc = self.nlp(text) location_entities = [entity for entity in doc.ents if entity.label_ == "LOC"] for token in doc: if ( token.text not in self.stop_words_spacy and len(token.text) > 3 and token.pos_ in self.allowed_postags and not self.is_entities_loc(token.text, location_entities) ): doc_out.append(self.lemmatization(token.text)) return doc_out def lemmatization(self, word): """ Method that performs the lemmatization of a word. Paramso: ---------- word : String - Word that will surffer from stemming. Return: ---------- word : String - Word lemmatization. """ return self.stemmer.stem(WordNetLemmatizer().lemmatize(word, pos="v")) def is_entities_loc(self, word, location_entities): """ Method that check if the word is entity of location. Params: ---------- word : String - Word. location_entities : List - List of location entities recognized by spacy. Return: ---------- True: If the word is a location entity.\n False: Othwerwise.. """ for entity in location_entities: if entity.text.lower() == word.lower(): return True return False def print_keywords(self, max_number_words=None): """ Method that will print the keywords for each of topics in the model. Params: ---------- max_number_words: Int - Maximum number of words that representing a topic to be returned Return: ---------- topics : List - List of keywords for topics in the model. """ if max_number_words is None: max_number_words = 5 topics = [] for topic in self.model.print_topics(-1, max_number_words): topics.append(topic) return topics def print_topics(self): """ Method that will print each of topics in the model. Return: ---------- topics : List - List of topics in the model. """ return self.topics def represent_topics(self, ids_topics, names_topics): """ Method that will set the values to the topics. NOTE: The two must come in the same order, name in position 0 is from id in position 0. Params: ---------- ids_topics: List - List of ids in the topics. names_topics: List - List of names of topics. """ for id_topic, name in zip(ids_topics, names_topics): self.topics[id_topic] = name def get_topic(self, id_topic): """ Method that returns the representation of the topic. Params: ---------- id_topic: Int - Integer that represent the topic. Return: ---------- topics: String - The name that represent the topic with the `id_topic`. """ return self.topics[id_topic] def rate_text(self, text): """ Method that will return from which topic the text is more likely to belong to. Params: ---------- text : String - Text that will to be evaluate. Return: ---------- result : List - List of tuples with id of topic that the text belongs and probability. """ bow_vector = self.model.id2word.doc2bow(self.pre_processing(text)) result = self.model.get_document_topics(bow_vector) result = sorted(result, reverse=True, key=lambda t: t[1]) return result
[ "numpy.random.seed", "nltk.stem.WordNetLemmatizer", "gensim.models.LdaMulticore.load", "os.path.dirname", "nltk.download", "spacy.load", "nltk.stem.porter.PorterStemmer", "gensim.test.utils.datapath" ]
[((713, 728), 'nltk.stem.porter.PorterStemmer', 'PorterStemmer', ([], {}), '()\n', (726, 728), False, 'from nltk.stem.porter import PorterStemmer\n'), ((748, 777), 'spacy.load', 'spacy.load', (['"""pt_core_news_sm"""'], {}), "('pt_core_news_sm')\n", (758, 777), False, 'import spacy\n'), ((1588, 1608), 'numpy.random.seed', 'np.random.seed', (['(2018)'], {}), '(2018)\n', (1602, 1608), True, 'import numpy as np\n'), ((1617, 1641), 'nltk.download', 'nltk.download', (['"""wordnet"""'], {}), "('wordnet')\n", (1630, 1641), False, 'import nltk\n'), ((1799, 1839), 'gensim.test.utils.datapath', 'datapath', (["(ROOT + '/modelo/meu_lda_model')"], {}), "(ROOT + '/modelo/meu_lda_model')\n", (1807, 1839), False, 'from gensim.test.utils import datapath\n'), ((1861, 1905), 'gensim.models.LdaMulticore.load', 'gensim.models.LdaMulticore.load', ([], {'fname': 'fname'}), '(fname=fname)\n', (1892, 1905), False, 'import gensim\n'), ((1756, 1781), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1771, 1781), False, 'import os\n'), ((3549, 3568), 'nltk.stem.WordNetLemmatizer', 'WordNetLemmatizer', ([], {}), '()\n', (3566, 3568), False, 'from nltk.stem import WordNetLemmatizer\n')]
### Adapt from ### from _util import * import numpy as np import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) except RuntimeError as e: print(e) import collections import os os.environ["OMP_NUM_THREADS"] = "1" os.environ["MKL_NUM_THREADS"] = "1" os.environ["OPENBLAS_NUM_THREADS"] = "1" os.environ["VECLIB_MAXIMUM_THREADS"] = "1" os.environ["NUMEXPR_NUM_THREADS"] = "1" import _cartpole as cartpole reload(cartpole) env = cartpole.CartPoleEnv(e_max = 1000) class softmax_policy(): def __init__(self, pi, tau): self.pi = pi self.tau = tau def sample_A(self, S): probs = self.get_A_prob(S) c = probs.cumsum(axis=1) u = np.random.rand(len(c), 1) As = (u < c).argmax(axis=1) As = np.squeeze(As) return As def get_A(self, S): return self.sample_A(S) def get_A_prob(self, S): S = np.atleast_2d(S) Qs = self.pi.model(S).numpy() probs = softmax(Qs / self.tau, axis = 1) return probs class GymEval(): def __init__(self, random_pi = False): self.random_pi = random_pi self.seed = 42 def eval_policy(self, pi, gamma, init_states = None, rep = 1000): rewards = self.simu_trajs_para(pi, rep = rep, T = 500 , burn_in = None, init_states = init_states , return_rewards = True) Vs = [] for i in range(rep): V = sum(r * gamma ** t for t, r in enumerate(rewards[i])) Vs.append(V) V_true = np.mean(Vs) std_true_value = np.std(Vs) / np.sqrt(len(Vs)) printR("value = {:.4f} with std {:.4f}".format(V_true, std_true_value)) return V_true def simu_trajs(self, pi, rep = 100, T = 1000 , burn_in = None, init_states = None, return_rewards = False): ######## envs = [cartpole.CartPoleEnv(e_max = 1000) for i in range(rep)] Ss = randn(rep, 4) for i in range(rep): S = envs[i].reset() if init_states is not None: init_S = init_states[i] envs[i].state = init_S Ss[i] = init_S else: Ss[i] = S trajs = [[] for i in range(rep)] rewards = [[] for i in range(rep)] ############ for t in range(T): np.random.seed(self.seed) self.seed += 1 if t * 2 % T == 0: print("simu {}% DONE!".format(str(t / T * 100))) if self.random_pi: As = pi.sample_A(Ss) else: As = pi.get_A(Ss) for i in range(rep): SS, reward, done, _ = envs[i].step(As[i]) SARS = [Ss[i].copy(), As[i], reward, SS.copy()] Ss[i] = SS trajs[i].append(SARS) rewards[i].append(reward) ############ if return_rewards: return rewards if burn_in is not None: trajs = [traj[burn_in:] for traj in trajs] return trajs def simu_trajs_para(self, pi, rep = 100, T = 1000 , burn_in = None, init_states = None, return_rewards = False): ######## env = cartpole.CartPoleEnv(e_max = 1000) Ss = env.reset_multiple(rep) Ss = Ss.T if init_states is not None: env.states = init_states.T Ss = init_states trajs = [[] for i in range(rep)] rewards = [[] for i in range(rep)] ############ for t in range(T): np.random.seed(self.seed) self.seed += 1 if t * 2 % T == 0: print("simu {}% DONE!".format(str(t / T * 100))) if self.random_pi: As = pi.sample_A(Ss) else: As = pi.get_A(Ss) SSs, Rs, _, _ = env.step_multiple(As) for i in range(rep): SARS = [Ss[i].copy(), As[i], Rs[i], SSs.T[i].copy()] trajs[i].append(SARS) rewards[i].append(Rs[i]) Ss = SSs.T ############ if return_rewards: return rewards if burn_in is not None: trajs = [traj[burn_in:] for traj in trajs] return trajs def get_init_S_from_trajs(self, trajs, n_init = 1000): np.random.seed(42) states = np.array([item[0] for traj in trajs for item in traj]) return states[np.random.choice(len(states), n_init)] ############################################################################################################################################################################################################################################################################################################################################################
[ "numpy.random.seed", "_cartpole.CartPoleEnv", "numpy.std", "tensorflow.config.experimental.set_memory_growth", "numpy.mean", "numpy.array", "numpy.squeeze", "tensorflow.config.experimental.list_physical_devices", "numpy.atleast_2d" ]
[((89, 140), 'tensorflow.config.experimental.list_physical_devices', 'tf.config.experimental.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (133, 140), True, 'import tensorflow as tf\n'), ((580, 612), '_cartpole.CartPoleEnv', 'cartpole.CartPoleEnv', ([], {'e_max': '(1000)'}), '(e_max=1000)\n', (600, 612), True, 'import _cartpole as cartpole\n'), ((919, 933), 'numpy.squeeze', 'np.squeeze', (['As'], {}), '(As)\n', (929, 933), True, 'import numpy as np\n'), ((1050, 1066), 'numpy.atleast_2d', 'np.atleast_2d', (['S'], {}), '(S)\n', (1063, 1066), True, 'import numpy as np\n'), ((1704, 1715), 'numpy.mean', 'np.mean', (['Vs'], {}), '(Vs)\n', (1711, 1715), True, 'import numpy as np\n'), ((3412, 3444), '_cartpole.CartPoleEnv', 'cartpole.CartPoleEnv', ([], {'e_max': '(1000)'}), '(e_max=1000)\n', (3432, 3444), True, 'import _cartpole as cartpole\n'), ((4529, 4547), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (4543, 4547), True, 'import numpy as np\n'), ((4565, 4619), 'numpy.array', 'np.array', (['[item[0] for traj in trajs for item in traj]'], {}), '([item[0] for traj in trajs for item in traj])\n', (4573, 4619), True, 'import numpy as np\n'), ((196, 247), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['gpu', '(True)'], {}), '(gpu, True)\n', (236, 247), True, 'import tensorflow as tf\n'), ((1741, 1751), 'numpy.std', 'np.std', (['Vs'], {}), '(Vs)\n', (1747, 1751), True, 'import numpy as np\n'), ((2043, 2075), '_cartpole.CartPoleEnv', 'cartpole.CartPoleEnv', ([], {'e_max': '(1000)'}), '(e_max=1000)\n', (2063, 2075), True, 'import _cartpole as cartpole\n'), ((2525, 2550), 'numpy.random.seed', 'np.random.seed', (['self.seed'], {}), '(self.seed)\n', (2539, 2550), True, 'import numpy as np\n'), ((3750, 3775), 'numpy.random.seed', 'np.random.seed', (['self.seed'], {}), '(self.seed)\n', (3764, 3775), True, 'import numpy as np\n')]
# MIT License # # Copyright (c) 2016 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from numpy import empty import numpy as np from fdistance import fmanhattan_distance from fdistance import fl2_distance from fdistance import fp_distance_integer, fp_distance_double from farad import atomic_arad_l2_distance_all PTP = {\ 1 :[1,1] ,2: [1,8]#Row1 ,3 :[2,1] ,4: [2,2]#Row2\ ,5 :[2,3] ,6: [2,4] ,7 :[2,5] ,8 :[2,6] ,9 :[2,7] ,10 :[2,8]\ ,11 :[3,1] ,12: [3,2]#Row3\ ,13 :[3,3] ,14: [3,4] ,15 :[3,5] ,16 :[3,6] ,17 :[3,7] ,18 :[3,8]\ ,19 :[4,1] ,20: [4,2]#Row4\ ,31 :[4,3] ,32: [4,4] ,33 :[4,5] ,34 :[4,6] ,35 :[4,7] ,36 :[4,8]\ ,21 :[4,9] ,22: [4,10],23 :[4,11],24 :[4,12],25 :[4,13],26 :[4,14],27 :[4,15],28 :[4,16],29 :[4,17],30 :[4,18]\ ,37 :[5,1] ,38: [5,2]#Row5\ ,49 :[5,3] ,50: [5,4] ,51 :[5,5] ,52 :[5,6] ,53 :[5,7] ,54 :[5,8]\ ,39 :[5,9] ,40: [5,10],41 :[5,11],42 :[5,12],43 :[5,13],44 :[5,14],45 :[5,15],46 :[5,16],47 :[5,17],48 :[5,18]\ ,55 :[6,1] ,56: [6,2]#Row6\ ,81 :[6,3] ,82: [6,4] ,83 :[6,5] ,84 :[6,6] ,85 :[6,7] ,86 :[6,8] ,72: [6,10],73 :[6,11],74 :[6,12],75 :[6,13],76 :[6,14],77 :[6,15],78 :[6,16],79 :[6,17],80 :[6,18]\ ,57 :[6,19],58: [6,20],59 :[6,21],60 :[6,22],61 :[6,23],62 :[6,24],63 :[6,25],64 :[6,26],65 :[6,27],66 :[6,28],67 :[6,29],68 :[6,30],69 :[6,31],70 :[6,32],71 :[6,33]\ ,87 :[7,1] ,88: [7,2]#Row7\ ,113:[7,3] ,114:[7,4] ,115:[7,5] ,116:[7,6] ,117:[7,7] ,118:[7,8]\ ,104:[7,10],105:[7,11],106:[7,12],107:[7,13],108:[7,14],109:[7,15],110:[7,16],111:[7,17],112:[7,18]\ ,89 :[7,19],90: [7,20],91 :[7,21],92 :[7,22],93 :[7,23],94 :[7,24],95 :[7,25],96 :[7,26],97 :[7,27],98 :[7,28],99 :[7,29],100:[7,30],101:[7,31],101:[7,32],102:[7,14],103:[7,33]} def manhattan_distance(A, B): if len(A.shape) != 2 or len(B.shape) != 2: raise ValueError('expected matrices of dimension=2') if B.shape[0] != A.shape[0]: raise ValueError('expected matrices containing vectors of same size') na = A.shape[1] nb = B.shape[1] D = empty((na, nb), order='F') fmanhattan_distance(A, B, D) return D def l2_distance(A, B): if len(A.shape) != 2 or len(B.shape) != 2: raise ValueError('expected matrices of dimension=2') if B.shape[0] != A.shape[0]: raise ValueError('expected matrices containing vectors of same size') na = A.shape[1] nb = B.shape[1] D = empty((na, nb), order='F') fl2_distance(A, B, D) return D def p_distance(A, B, p=2): if len(A.shape) != 2 or len(B.shape) != 2: raise ValueError('expected matrices of dimension=2') if B.shape[0] != A.shape[0]: raise ValueError('expected matrices containing vectors of same size') na = A.shape[1] nb = B.shape[1] D = empty((na, nb), order='F') if (type(p) == type(1)): if (p == 2): fl2_distance(A, B, D) else: fp_distance_integer(A, B, D, p) elif (type(p) == type(1.0)): fp_distance_double(A, B, D, p) else: raise ValueError('expected exponent of integer or float type') return D def get_l2_distance_arad(X1, X2, Z1, Z2, \ width=0.2, cut_distance=6.0, r_width=1.0, c_width=0.5): """ Calculates the Gaussian distance matrix D for atomic ARAD for two sets of molecules K is calculated using an OpenMP parallel Fortran routine. Arguments: ============== X1 -- np.array of ARAD descriptors for molecules in set 1. X2 -- np.array of ARAD descriptors for molecules in set 2. Z1 -- List of lists of nuclear charges for molecules in set 1. Z2 -- List of lists of nuclear charges for molecules in set 2. Keyword arguments: width -- cut_distance -- r_width -- c_width -- Returns: ============== D -- The distance matrices for each sigma (4D-array, Nmol1 x Nmol2 x Natom1 x Natoms2) """ amax = X1.shape[1] assert X1.shape[3] == amax, "ERROR: Check ARAD decriptor sizes! code = 1" assert X2.shape[1] == amax, "ERROR: Check ARAD decriptor sizes! code = 2" assert X2.shape[3] == amax, "ERROR: Check ARAD decriptor sizes! code = 3" nm1 = len(Z1) nm2 = len(Z2) assert X1.shape[0] == nm1, "ERROR: Check ARAD decriptor sizes! code = 4" assert X2.shape[0] == nm2, "ERROR: Check ARAD decriptor sizes! code = 5" N1 = [] for Z in Z1: N1.append(len(Z)) N2 = [] for Z in Z2: N2.append(len(Z)) N1 = np.array(N1,dtype=np.int32) N2 = np.array(N2,dtype=np.int32) c1 = [] for charges in Z1: c1.append(np.array([PTP[int(q)] for q in charges], dtype=np.int32)) Z1_arad = np.zeros((nm1,amax,2)) for i in range(nm1): for j, z in enumerate(c1[i]): Z1_arad[i,j] = z c2 = [] for charges in Z2: c2.append(np.array([PTP[int(q)] for q in charges], dtype=np.int32)) Z2_arad = np.zeros((nm2,amax,2)) for i in range(nm2): for j, z in enumerate(c2[i]): Z2_arad[i,j] = z return atomic_arad_l2_distance_all(X1, X2, Z1_arad, Z2_arad, N1, N2, \ nm1, nm2, width, cut_distance, r_width, c_width, amax)
[ "fdistance.fl2_distance", "fdistance.fp_distance_double", "numpy.empty", "numpy.zeros", "fdistance.fmanhattan_distance", "fdistance.fp_distance_integer", "numpy.array", "farad.atomic_arad_l2_distance_all" ]
[((3186, 3212), 'numpy.empty', 'empty', (['(na, nb)'], {'order': '"""F"""'}), "((na, nb), order='F')\n", (3191, 3212), False, 'from numpy import empty\n'), ((3218, 3246), 'fdistance.fmanhattan_distance', 'fmanhattan_distance', (['A', 'B', 'D'], {}), '(A, B, D)\n', (3237, 3246), False, 'from fdistance import fmanhattan_distance\n'), ((3556, 3582), 'numpy.empty', 'empty', (['(na, nb)'], {'order': '"""F"""'}), "((na, nb), order='F')\n", (3561, 3582), False, 'from numpy import empty\n'), ((3588, 3609), 'fdistance.fl2_distance', 'fl2_distance', (['A', 'B', 'D'], {}), '(A, B, D)\n', (3600, 3609), False, 'from fdistance import fl2_distance\n'), ((3923, 3949), 'numpy.empty', 'empty', (['(na, nb)'], {'order': '"""F"""'}), "((na, nb), order='F')\n", (3928, 3949), False, 'from numpy import empty\n'), ((5683, 5711), 'numpy.array', 'np.array', (['N1'], {'dtype': 'np.int32'}), '(N1, dtype=np.int32)\n', (5691, 5711), True, 'import numpy as np\n'), ((5720, 5748), 'numpy.array', 'np.array', (['N2'], {'dtype': 'np.int32'}), '(N2, dtype=np.int32)\n', (5728, 5748), True, 'import numpy as np\n'), ((5875, 5899), 'numpy.zeros', 'np.zeros', (['(nm1, amax, 2)'], {}), '((nm1, amax, 2))\n', (5883, 5899), True, 'import numpy as np\n'), ((6118, 6142), 'numpy.zeros', 'np.zeros', (['(nm2, amax, 2)'], {}), '((nm2, amax, 2))\n', (6126, 6142), True, 'import numpy as np\n'), ((6246, 6366), 'farad.atomic_arad_l2_distance_all', 'atomic_arad_l2_distance_all', (['X1', 'X2', 'Z1_arad', 'Z2_arad', 'N1', 'N2', 'nm1', 'nm2', 'width', 'cut_distance', 'r_width', 'c_width', 'amax'], {}), '(X1, X2, Z1_arad, Z2_arad, N1, N2, nm1, nm2,\n width, cut_distance, r_width, c_width, amax)\n', (6273, 6366), False, 'from farad import atomic_arad_l2_distance_all\n'), ((4014, 4035), 'fdistance.fl2_distance', 'fl2_distance', (['A', 'B', 'D'], {}), '(A, B, D)\n', (4026, 4035), False, 'from fdistance import fl2_distance\n'), ((4062, 4093), 'fdistance.fp_distance_integer', 'fp_distance_integer', (['A', 'B', 'D', 'p'], {}), '(A, B, D, p)\n', (4081, 4093), False, 'from fdistance import fp_distance_integer, fp_distance_double\n'), ((4136, 4166), 'fdistance.fp_distance_double', 'fp_distance_double', (['A', 'B', 'D', 'p'], {}), '(A, B, D, p)\n', (4154, 4166), False, 'from fdistance import fp_distance_integer, fp_distance_double\n')]
#!/usr/bin/env python3 from numpy import array, append, iinfo, sin, cos, linspace, int16, pi, zeros_like, ones_like, max as npmax from scipy.io.wavfile import write from scipy.signal import square, chirp # import matplotlib.pyplot as plt max_amplitude = iinfo(int16).max A5 = 880. A4 = 440. A3 = 220. A2 = 110. samplerate = 44100; duration_s = 10 t = linspace(0., duration_s, num=duration_s * samplerate) # def cos_waveform(f_hz, duration_s=1, amplitude=max_amplitude): # return amplitude * cos(2 * pi * f_hz * t[:duration_s * samplerate]) # def sweep_amplitude(f_hz, from_A, to_A, duration_s=1): # amplitude = linspace(from_A, to_A, num=duration_s * samplerate) # return amplitude * cos(2 * pi * f_hz * t[:duration_s * samplerate]) # def sweep_hz(from_hz, to_hz, duration_s=1, method='linear'): # return max_amplitude * chirp( # t[:duration_s*samplerate], # f0=from_hz, # f1=to_hz, # t1=t[:duration_s*samplerate][-1], # method=method, # ‘linear’ | ‘quadratic’ | ‘logarithmic’ | ‘hyperbolic’ # ) def waveform(f_hz, A=max_amplitude, duration_s=1, to_A=None, to_hz=None, method='linear'): to_hz = to_hz if to_hz is not None else f_hz amplitude = linspace(A, to_A, num=int(duration_s * samplerate)) if to_A is not None else A return amplitude * chirp( t[:int(duration_s*samplerate)], f0=f_hz, f1=to_hz, t1=t[:int(duration_s*samplerate)][-1], method=method, # ‘linear’ | ‘quadratic’ | ‘logarithmic’ | ‘hyperbolic’ ) def append_all(*signals): waveform = array([]) for signal in signals: waveform = append(waveform, signal) return waveform signal = append_all( waveform(A2, A=0, to_A=max_amplitude, duration_s=0.1), waveform(A2, duration_s=2), waveform(A2, to_hz=A3, duration_s=5), waveform(A3, duration_s=2), waveform(A3, to_A=0, duration_s=0.1), ) # signal = append_all( # waveform(A3, A=0, to_A=max_amplitude, duration_s=0.05), # waveform(A3, to_hz=A2, to_A=0, duration_s=5), # waveform(A2, to_hz=A3, A=0, to_A=max_amplitude, duration_s=5), # waveform(A3, to_A=0, duration_s=0.05), # ) # center = 2 * samplerate # plt.plot(t[center-1000:center+1000], signal[center-1000:center+1000]) # plt.savefig('waveform.png') # plt.show() write("example.wav", samplerate, signal.astype(int16))
[ "numpy.append", "numpy.array", "numpy.iinfo", "numpy.linspace" ]
[((357, 411), 'numpy.linspace', 'linspace', (['(0.0)', 'duration_s'], {'num': '(duration_s * samplerate)'}), '(0.0, duration_s, num=duration_s * samplerate)\n', (365, 411), False, 'from numpy import array, append, iinfo, sin, cos, linspace, int16, pi, zeros_like, ones_like, max as npmax\n'), ((257, 269), 'numpy.iinfo', 'iinfo', (['int16'], {}), '(int16)\n', (262, 269), False, 'from numpy import array, append, iinfo, sin, cos, linspace, int16, pi, zeros_like, ones_like, max as npmax\n'), ((1580, 1589), 'numpy.array', 'array', (['[]'], {}), '([])\n', (1585, 1589), False, 'from numpy import array, append, iinfo, sin, cos, linspace, int16, pi, zeros_like, ones_like, max as npmax\n'), ((1636, 1660), 'numpy.append', 'append', (['waveform', 'signal'], {}), '(waveform, signal)\n', (1642, 1660), False, 'from numpy import array, append, iinfo, sin, cos, linspace, int16, pi, zeros_like, ones_like, max as npmax\n')]
"""Analyze the trained models.""" import sys import os import pickle import warnings from collections import defaultdict import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import cm import torch from torch.utils.tensorboard import SummaryWriter rootpath = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(rootpath) import tools from tools import nicename, save_fig from datasets.dataset_utils import get_dataset from models.model_utils import get_model mpl.rcParams['font.size'] = 7 mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['ps.fonttype'] = 42 mpl.rcParams['font.family'] = 'arial' mpl.rcParams['figure.facecolor'] = 'None' figpath = os.path.join(rootpath, 'figures') def _get_ax_args(xkey, ykey): rect = (0.3, 0.35, 0.5, 0.55) ax_args = {} return rect, ax_args def plot_progress(save_path, select=None, exclude=None, legend_key=None, x_range=None, ykeys=None, ax_args=None): """Plot progress through training.""" def _plot_progress(xkey, ykey, modeldirs): """Plot progress for one xkey and ykey pair.""" if ax_args is None: rect, ax_args_ = _get_ax_args(xkey, ykey) else: rect = [0.25, 0.3, 0.6, 0.5] ax_args_ = ax_args n_model = len(modeldirs) logs = [tools.load_log(d) for d in modeldirs] cfgs = [tools.load_config(d) for d in modeldirs] figsize = (3.5, 2) fig = plt.figure(figsize=figsize) ax = fig.add_axes(rect, **ax_args_) colors = [cm.cool(x) for x in np.linspace(0, 1, n_model)] for i in range(n_model): x, y, c = logs[i][xkey], logs[i][ykey], colors[i] if x_range: x, y = x[x_range[0]: x_range[1]], y[x_range[0]: x_range[1]] ax.plot(x, y, color=c, linewidth=1) ax.text(x[-1]*1.05, y[-1], nicename(y[-1], mode=ykey), color=c) if legend_key is not None: # Check if legend_key is string or tuple legend_key_ = [legend_key] if isinstance(legend_key, str) else legend_key legends = [] # Loop over curves/mdoels for i in range(n_model): cfg = tools.flatten_nested_dict(cfgs[i]) l_list = [] # Loop over possible tuple of legend keys for lk in legend_key_: # TODO: make more general if lk in cfg: nn = nicename(cfg[lk], mode=lk) elif lk == 'plasticnet': #this is a hack lk = 'plasticnet.network' nn = nicename(cfg[i], mode=lk) elif any([k.startswith(lk) for k in cfg]): nn = ' '.join([nicename(cfg[i], mode=k) for k in cfg if k.startswith(lk)]) else: #should not execute, but won't break if it does, just makes ugly figure warnings.warn('Key {} not found in log from {}'.format(lk, save_path)) nn = 'Unknown key: {}'.format(lk) l_list.append(nn) legends.append(', '.join(l_list)) title = ', '.join([nicename(lk) for lk in legend_key_]) ax.legend(legends, fontsize=7, frameon=False, ncol=2, loc='best') plt.title(title, fontsize=7) ax.set_xlabel(nicename(xkey)) ax.set_ylabel(nicename(ykey)) ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') if x_range: ax.set_xlim([x_range[0], x_range[1]]) else: ax.set_xlim([-1, logs[0][xkey][-1]]) figname = '_' + ykey if select: for k, v in select.items(): figname += k + '_' + str(v) + '_' if x_range: figname += '_x_range_' + str(x_range[1]) save_fig(save_path, figname) modeldirs = tools.get_modeldirs(save_path, select_dict=select, exclude_dict=exclude) if not modeldirs: print('No model to plot progress') return if ykeys is None: ykeys = [] if ykeys == 'all': log = tools.load_log(modeldirs[0]) ykeys = [k for k, v in log.items() if v.shape == log['steps'].shape] if isinstance(ykeys, str): ykeys = [ykeys] for plot_var in ykeys: _plot_progress('steps', plot_var, modeldirs) def get_errorbar(x): """Get errorbar. Args: x: list of lists. Returns: x_mean: list of mean values x_err: array (2, N) lower error and upper error for 95% conf interval """ x_mean = [np.mean(x0) for x0 in x] x_err = np.zeros((2, len(x_mean))) for i, a in enumerate(x): bootstrap = [np.mean(np.random.choice(a, size=len(a))) for _ in range(100)] x_err[0, i] = x_mean[i] - np.percentile(bootstrap, 2.5) x_err[1, i] = np.percentile(bootstrap, 97.5) - x_mean[i] return x_mean, x_err def plot_results(path, xkey, ykey, loop_key=None, select=None, logx=None, logy=False, figsize=None, ax_args=None, plot_args=None, ax_box=None, res=None, string='', plot_actual_value=True): """Plot results for varying parameters experiments. Args: path: str, model save path xkey: str, key for the x-axis variable ykey: str, key for the y-axis variable loop_key: str, key for the value to loop around select: dict, dict of parameters to select logx: bool, if True, use log x-axis logy: bool, if True, use log x-axis """ if isinstance(ykey, str): ykeys = [ykey] else: ykeys = ykey if res is None: res = tools.load_results(path, select=select) tmp = res[xkey][0] xkey_is_string = isinstance(tmp, str) or tmp is None if plot_args is None: plot_args = {} # Unique sorted xkey values xvals = sorted(set(res[xkey])) if logx is None: logx = False if figsize is None: if xkey == 'lr': figsize = (4.5, 1.5) else: figsize = (1.5, 1.2) def _plot_results(ykey): # Default ax_args and other values, based on x and y keys rect, ax_args_ = _get_ax_args(xkey, ykey) if ax_args: ax_args_.update(ax_args) if ax_box is not None: rect = ax_box fig = plt.figure(figsize=figsize) ax = fig.add_axes(rect, **ax_args_) if loop_key: loop_vals = np.unique(res[loop_key]) colors = [cm.cool(x) for x in np.linspace(0, 1, len(loop_vals))] for loop_val, color in zip(loop_vals, colors): ind = res[loop_key] == loop_val x_plot = res[xkey][ind] y_plot = res[ykey][ind] if logx: x_plot = np.log(x_plot) if logy: y_plot = np.log(y_plot) # x_plot = [str(x).rsplit('/', 1)[-1] for x in x_plot] ax.plot(x_plot, y_plot, 'o-', markersize=3, color=color, label=nicename(loop_val, mode=loop_key), **plot_args) else: # Organize yvals = list() yvals_all = list() for xval in xvals: yval_tmp = [res[ykey][i] for i, r in enumerate(res[xkey]) if r == xval] yval_tmp = np.array(yval_tmp) yval_tmp = yval_tmp.flatten() if logy: yval_tmp = np.log(yval_tmp) yvals.append(np.mean(yval_tmp)) yvals_all.append(yval_tmp) y_mean, y_error = get_errorbar(yvals_all) if xkey_is_string: x_plot = np.arange(len(xvals)) else: if logx: x_plot = np.log(np.array(xvals)) else: x_plot = xvals # ax.plot(x_plot, y_mean, fmt='o-', markersize=3, **plot_args) ax.errorbar(x_plot, y_mean, yerr=y_error, fmt='o-', markersize=3, **plot_args) if plot_actual_value: for x, y in zip(x_plot, y_mean): if y > ax.get_ylim()[-1]: continue ytext = '{:0.2f}'.format(y) ax.text(x, y, ytext, fontsize=6, horizontalalignment='center', verticalalignment='bottom') if 'xticks' in ax_args_.keys(): xticks = ax_args_['xticks'] ax.set_xticks(xticks) else: xticks = x_plot xticklabels = [nicename(x, mode=xkey) for x in xvals] ax.set_xticks(xticks) ax.set_xticklabels(xticklabels) # ax.set_xticks(xticks) # if not xkey_is_string: # x_span = xticks[-1] - xticks[0] # ax.set_xlim([xticks[0]-x_span*0.05, xticks[-1]+x_span*0.05]) # ax.set_xticklabels(xticklabels) if 'yticks' in ax_args_.keys(): yticks = ax_args_['yticks'] if logy: ax.set_yticks(np.log(yticks)) ax.set_yticklabels(yticks) else: ax.set_yticks(yticks) else: plt.locator_params(axis='y', nbins=3) ax.set_xlabel(nicename(xkey)) ax.set_ylabel(nicename(ykey)) if loop_key: l = ax.legend(loc=1, bbox_to_anchor=(1.0, 0.5), fontsize= 7, frameon=False, ncol=2) l.set_title(nicename(loop_key)) figname = '_' + ykey + '_vs_' + xkey if loop_key: figname += '_vary' + loop_key if select: for k, v in select.items(): if isinstance(v, list): v = [x.rsplit('/',1)[-1] for x in v] v = str('__'.join(v)) else: v = str(v) figname += k + '_' + v + '__' figname += string ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') tools.save_fig(path, figname) for ykey in ykeys: _plot_results(ykey) def plot_value_in_time(X, name, save_path=None): """Plot X with imshow.""" fig = plt.figure(figsize=(3, 2.5)) plt.imshow(X.T, aspect='auto') plt.title(name) plt.xlabel('Position') plt.ylabel(name) plt.colorbar() if save_path is not None: save_fig(save_path, 'analyze_'+name) def plot_matrix_in_time(X, name, save_path=None, n_plot=5): """Plot X at each time point args: X: (n_time, .., ..) """ n_time = X.shape[0] n_time_plot = np.linspace(0, n_time - 1, n_plot, dtype=int) vlim = np.max(np.abs(X)) fig, axes = plt.subplots(1, n_plot, sharey=True, figsize=(7, 1.5)) for i, ind in enumerate(n_time_plot): ax = axes[i] im = ax.imshow(X[ind], aspect='auto', vmin=-vlim, vmax=vlim) ax.set_title('Time {:d}'.format(ind)) # f.colorbar(im, ax=ax) fig.subplots_adjust(right=0.93) cbar_ax = fig.add_axes([0.95, 0.15, 0.015, 0.7]) fig.colorbar(im, cax=cbar_ax) fig.suptitle(name, y=1.08) if save_path is not None: save_fig(save_path, 'analyze_' + name) def evaluate_run(modeldir=None, update_config=None, model=None, custom_data=None, n_batch=1, analyze=False, load=True, load_hebb=True, reset_hebb=True, fname=None, save_pickle=False, save_path=None): """Evaluate the network for batches of data post training. Args: modeldir: if None, then do not load models update_config: optional update of config loaded from save_path model: if not None, use this model and disregard modeldir and update_config custom_data: optional. Output of dataset.generate(), for evaluating net on a particular instance of the dataset (must have n_batch=1) n_batch: number of dataset batch to run analyze: if True, network in analyze mode load_hebb: if True, load Hebbian weights reset_hebb: if True, reset Hebbian weights for each batch fname: str, filename to store save_pickle: if True, save results to pickle file save_path: path to save results """ if modeldir is None: config = dict() else: config = tools.load_config(modeldir) if update_config is not None: config = tools.nested_update(config, update_config) # Training networks device = 'cuda' if torch.cuda.is_available() else 'cpu' if custom_data is None: dataset = get_dataset(config['dataset'], verbose=False) output_size = dataset.output_dim else: assert n_batch==1, "Only one batch of custom_data can be passed in" seq_len, output_size = custom_data['target'].shape if model is None: net = get_model(config) if load and 'save_path' in config: model_path = os.path.join(config['save_path'], 'model.pt') net.load(model_path, map_location=device, load_hebb=load_hebb) else: net = model if analyze: net.analyze() torch.no_grad() # TODO: Consider a different way to store results = defaultdict(list) for batch in range(n_batch): if reset_hebb: for m in net.modules(): if 'reset_hebb' in dir(m): m.reset_hebb() if custom_data is None: data = dataset.generate() else: data = custom_data results['data'].append(data) for key, val in data.items(): data[key] = torch.from_numpy(val).float().to(device) # Add batch dimension data['input'] = data['input'].unsqueeze(1) if 'modu_input' in data.keys(): data['modu_input'] = data['modu_input'].unsqueeze(1) if 'modu_input' in data.keys(): # TODO: This forces all networks to accept modu_input, fix? if 'input_heteroassociative' in data.keys(): target = data['input_heteroassociative'] else: target = None outputs, rnn_out = net(input=data['input'], modu_input=data['modu_input'], target=target) else: outputs, rnn_out = net(input=data['input']) outputs = outputs.view(-1, output_size) outputs = torch.sign(outputs) results['outputs'].append(outputs) # Get acc at recall times match = (outputs == data['target']).float() acc = match.mean(dim=1) results['acc'].append(acc) if analyze: results.update(net.writer_dict()) results['config'] = config if save_pickle: if fname is None: fname = 'evaluate_run.pkl' elif fname[-4:] != '.pkl': fname = fname + '.pkl' if save_path is None: if modeldir is not None: save_path = modeldir else: raise ValueError('No save_path or modeldir provided') with open(os.path.join(save_path, fname), 'wb') as f: pickle.dump(results, f) return dict(results) #don't want defaultdict, may hide bugs downstream if __name__ == '__main__': pass
[ "matplotlib.pyplot.title", "pickle.dump", "numpy.abs", "tools.nicename", "collections.defaultdict", "matplotlib.pyplot.figure", "tools.save_fig", "numpy.mean", "tools.get_modeldirs", "torch.no_grad", "os.path.join", "numpy.unique", "sys.path.append", "os.path.abspath", "matplotlib.pyplot.locator_params", "matplotlib.pyplot.imshow", "tools.load_results", "matplotlib.cm.cool", "matplotlib.pyplot.colorbar", "torch.sign", "numpy.linspace", "matplotlib.pyplot.subplots", "models.model_utils.get_model", "tools.load_config", "tools.load_log", "numpy.percentile", "torch.cuda.is_available", "datasets.dataset_utils.get_dataset", "matplotlib.pyplot.ylabel", "torch.from_numpy", "numpy.log", "tools.nested_update", "numpy.array", "tools.flatten_nested_dict", "matplotlib.pyplot.xlabel" ]
[((360, 385), 'sys.path.append', 'sys.path.append', (['rootpath'], {}), '(rootpath)\n', (375, 385), False, 'import sys\n'), ((715, 748), 'os.path.join', 'os.path.join', (['rootpath', '"""figures"""'], {}), "(rootpath, 'figures')\n", (727, 748), False, 'import os\n'), ((4097, 4169), 'tools.get_modeldirs', 'tools.get_modeldirs', (['save_path'], {'select_dict': 'select', 'exclude_dict': 'exclude'}), '(save_path, select_dict=select, exclude_dict=exclude)\n', (4116, 4169), False, 'import tools\n'), ((10660, 10688), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(3, 2.5)'}), '(figsize=(3, 2.5))\n', (10670, 10688), True, 'import matplotlib.pyplot as plt\n'), ((10693, 10723), 'matplotlib.pyplot.imshow', 'plt.imshow', (['X.T'], {'aspect': '"""auto"""'}), "(X.T, aspect='auto')\n", (10703, 10723), True, 'import matplotlib.pyplot as plt\n'), ((10728, 10743), 'matplotlib.pyplot.title', 'plt.title', (['name'], {}), '(name)\n', (10737, 10743), True, 'import matplotlib.pyplot as plt\n'), ((10748, 10770), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Position"""'], {}), "('Position')\n", (10758, 10770), True, 'import matplotlib.pyplot as plt\n'), ((10775, 10791), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['name'], {}), '(name)\n', (10785, 10791), True, 'import matplotlib.pyplot as plt\n'), ((10796, 10810), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (10808, 10810), True, 'import matplotlib.pyplot as plt\n'), ((11070, 11115), 'numpy.linspace', 'np.linspace', (['(0)', '(n_time - 1)', 'n_plot'], {'dtype': 'int'}), '(0, n_time - 1, n_plot, dtype=int)\n', (11081, 11115), True, 'import numpy as np\n'), ((11161, 11215), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', 'n_plot'], {'sharey': '(True)', 'figsize': '(7, 1.5)'}), '(1, n_plot, sharey=True, figsize=(7, 1.5))\n', (11173, 11215), True, 'import matplotlib.pyplot as plt\n'), ((13571, 13586), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (13584, 13586), False, 'import torch\n'), ((13648, 13665), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (13659, 13665), False, 'from collections import defaultdict\n'), ((332, 357), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (347, 357), False, 'import os\n'), ((1493, 1520), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (1503, 1520), True, 'import matplotlib.pyplot as plt\n'), ((4051, 4079), 'tools.save_fig', 'save_fig', (['save_path', 'figname'], {}), '(save_path, figname)\n', (4059, 4079), False, 'from tools import nicename, save_fig\n'), ((4366, 4394), 'tools.load_log', 'tools.load_log', (['modeldirs[0]'], {}), '(modeldirs[0])\n', (4380, 4394), False, 'import tools\n'), ((4840, 4851), 'numpy.mean', 'np.mean', (['x0'], {}), '(x0)\n', (4847, 4851), True, 'import numpy as np\n'), ((5953, 5992), 'tools.load_results', 'tools.load_results', (['path'], {'select': 'select'}), '(path, select=select)\n', (5971, 5992), False, 'import tools\n'), ((6640, 6667), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (6650, 6667), True, 'import matplotlib.pyplot as plt\n'), ((10487, 10516), 'tools.save_fig', 'tools.save_fig', (['path', 'figname'], {}), '(path, figname)\n', (10501, 10516), False, 'import tools\n'), ((10849, 10887), 'tools.save_fig', 'save_fig', (['save_path', "('analyze_' + name)"], {}), "(save_path, 'analyze_' + name)\n", (10857, 10887), False, 'from tools import nicename, save_fig\n'), ((11134, 11143), 'numpy.abs', 'np.abs', (['X'], {}), '(X)\n', (11140, 11143), True, 'import numpy as np\n'), ((11614, 11652), 'tools.save_fig', 'save_fig', (['save_path', "('analyze_' + name)"], {}), "(save_path, 'analyze_' + name)\n", (11622, 11652), False, 'from tools import nicename, save_fig\n'), ((12768, 12795), 'tools.load_config', 'tools.load_config', (['modeldir'], {}), '(modeldir)\n', (12785, 12795), False, 'import tools\n'), ((12847, 12889), 'tools.nested_update', 'tools.nested_update', (['config', 'update_config'], {}), '(config, update_config)\n', (12866, 12889), False, 'import tools\n'), ((12938, 12963), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (12961, 12963), False, 'import torch\n'), ((13021, 13066), 'datasets.dataset_utils.get_dataset', 'get_dataset', (["config['dataset']"], {'verbose': '(False)'}), "(config['dataset'], verbose=False)\n", (13032, 13066), False, 'from datasets.dataset_utils import get_dataset\n'), ((13290, 13307), 'models.model_utils.get_model', 'get_model', (['config'], {}), '(config)\n', (13299, 13307), False, 'from models.model_utils import get_model\n'), ((14863, 14882), 'torch.sign', 'torch.sign', (['outputs'], {}), '(outputs)\n', (14873, 14882), False, 'import torch\n'), ((1356, 1373), 'tools.load_log', 'tools.load_log', (['d'], {}), '(d)\n', (1370, 1373), False, 'import tools\n'), ((1410, 1430), 'tools.load_config', 'tools.load_config', (['d'], {}), '(d)\n', (1427, 1430), False, 'import tools\n'), ((1584, 1594), 'matplotlib.cm.cool', 'cm.cool', (['x'], {}), '(x)\n', (1591, 1594), False, 'from matplotlib import cm\n'), ((3410, 3438), 'matplotlib.pyplot.title', 'plt.title', (['title'], {'fontsize': '(7)'}), '(title, fontsize=7)\n', (3419, 3438), True, 'import matplotlib.pyplot as plt\n'), ((3462, 3476), 'tools.nicename', 'nicename', (['xkey'], {}), '(xkey)\n', (3470, 3476), False, 'from tools import nicename, save_fig\n'), ((3500, 3514), 'tools.nicename', 'nicename', (['ykey'], {}), '(ykey)\n', (3508, 3514), False, 'from tools import nicename, save_fig\n'), ((5073, 5102), 'numpy.percentile', 'np.percentile', (['bootstrap', '(2.5)'], {}), '(bootstrap, 2.5)\n', (5086, 5102), True, 'import numpy as np\n'), ((5125, 5155), 'numpy.percentile', 'np.percentile', (['bootstrap', '(97.5)'], {}), '(bootstrap, 97.5)\n', (5138, 5155), True, 'import numpy as np\n'), ((6757, 6781), 'numpy.unique', 'np.unique', (['res[loop_key]'], {}), '(res[loop_key])\n', (6766, 6781), True, 'import numpy as np\n'), ((9563, 9600), 'matplotlib.pyplot.locator_params', 'plt.locator_params', ([], {'axis': '"""y"""', 'nbins': '(3)'}), "(axis='y', nbins=3)\n", (9581, 9600), True, 'import matplotlib.pyplot as plt\n'), ((9624, 9638), 'tools.nicename', 'nicename', (['xkey'], {}), '(xkey)\n', (9632, 9638), False, 'from tools import nicename, save_fig\n'), ((9662, 9676), 'tools.nicename', 'nicename', (['ykey'], {}), '(ykey)\n', (9670, 9676), False, 'from tools import nicename, save_fig\n'), ((13376, 13421), 'os.path.join', 'os.path.join', (["config['save_path']", '"""model.pt"""'], {}), "(config['save_path'], 'model.pt')\n", (13388, 13421), False, 'import os\n'), ((15595, 15618), 'pickle.dump', 'pickle.dump', (['results', 'f'], {}), '(results, f)\n', (15606, 15618), False, 'import pickle\n'), ((1604, 1630), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'n_model'], {}), '(0, 1, n_model)\n', (1615, 1630), True, 'import numpy as np\n'), ((1915, 1941), 'tools.nicename', 'nicename', (['y[-1]'], {'mode': 'ykey'}), '(y[-1], mode=ykey)\n', (1923, 1941), False, 'from tools import nicename, save_fig\n'), ((2249, 2283), 'tools.flatten_nested_dict', 'tools.flatten_nested_dict', (['cfgs[i]'], {}), '(cfgs[i])\n', (2274, 2283), False, 'import tools\n'), ((6804, 6814), 'matplotlib.cm.cool', 'cm.cool', (['x'], {}), '(x)\n', (6811, 6814), False, 'from matplotlib import cm\n'), ((7675, 7693), 'numpy.array', 'np.array', (['yval_tmp'], {}), '(yval_tmp)\n', (7683, 7693), True, 'import numpy as np\n'), ((8944, 8966), 'tools.nicename', 'nicename', (['x'], {'mode': 'xkey'}), '(x, mode=xkey)\n', (8952, 8966), False, 'from tools import nicename, save_fig\n'), ((9846, 9864), 'tools.nicename', 'nicename', (['loop_key'], {}), '(loop_key)\n', (9854, 9864), False, 'from tools import nicename, save_fig\n'), ((15539, 15569), 'os.path.join', 'os.path.join', (['save_path', 'fname'], {}), '(save_path, fname)\n', (15551, 15569), False, 'import os\n'), ((3282, 3294), 'tools.nicename', 'nicename', (['lk'], {}), '(lk)\n', (3290, 3294), False, 'from tools import nicename, save_fig\n'), ((7100, 7114), 'numpy.log', 'np.log', (['x_plot'], {}), '(x_plot)\n', (7106, 7114), True, 'import numpy as np\n'), ((7169, 7183), 'numpy.log', 'np.log', (['y_plot'], {}), '(y_plot)\n', (7175, 7183), True, 'import numpy as np\n'), ((7796, 7812), 'numpy.log', 'np.log', (['yval_tmp'], {}), '(yval_tmp)\n', (7802, 7812), True, 'import numpy as np\n'), ((7843, 7860), 'numpy.mean', 'np.mean', (['yval_tmp'], {}), '(yval_tmp)\n', (7850, 7860), True, 'import numpy as np\n'), ((9422, 9436), 'numpy.log', 'np.log', (['yticks'], {}), '(yticks)\n', (9428, 9436), True, 'import numpy as np\n'), ((2518, 2544), 'tools.nicename', 'nicename', (['cfg[lk]'], {'mode': 'lk'}), '(cfg[lk], mode=lk)\n', (2526, 2544), False, 'from tools import nicename, save_fig\n'), ((7358, 7391), 'tools.nicename', 'nicename', (['loop_val'], {'mode': 'loop_key'}), '(loop_val, mode=loop_key)\n', (7366, 7391), False, 'from tools import nicename, save_fig\n'), ((8117, 8132), 'numpy.array', 'np.array', (['xvals'], {}), '(xvals)\n', (8125, 8132), True, 'import numpy as np\n'), ((2685, 2710), 'tools.nicename', 'nicename', (['cfg[i]'], {'mode': 'lk'}), '(cfg[i], mode=lk)\n', (2693, 2710), False, 'from tools import nicename, save_fig\n'), ((14052, 14073), 'torch.from_numpy', 'torch.from_numpy', (['val'], {}), '(val)\n', (14068, 14073), False, 'import torch\n'), ((2813, 2837), 'tools.nicename', 'nicename', (['cfg[i]'], {'mode': 'k'}), '(cfg[i], mode=k)\n', (2821, 2837), False, 'from tools import nicename, save_fig\n')]
# # UNIVERSIDADE FEDERAL DE PERNAMBUCO -- UFPE (http://www.ufpe.br) # CENTRO DE INFORMÁTICA -- CIn (http://www.cin.ufpe.br) # Av. Jornalista <NAME>, s/n - Cidade Universitária (Campus Recife) # 50.740-560 - Recife - PE - BRAZIL # # Copyright (C) 2018 <NAME> (<EMAIL>) # # Created on: 2018-05-26 # @author: <NAME> # @contact: <EMAIL> # @license: MIT from functools import reduce import numpy as np from feature import Feature class Rule: def __init__(self, ft=set(), target=None): ''' Constructor ''' self.__feat = ft self.__target = target self.__objs = None def __call__(self, data): self.__objs = reduce(lambda x,y: np.logical_and(x,y), map(lambda x: x(data),self.__feat)) return self.__objs def __add__(self, elem): r = Rule(self.feat.copy(),self.target) if isinstance(elem, Feature): r.feat.update([elem]) elif isinstance(elem, Rule): assert(self.target==elem.target) r.feat.update(elem.feat) else: raise ValueError("Invalid type of param elem: {}\n Should either be Feature or Rule.".format(type(elem))) return r def __iadd__(self, elem): if isinstance(elem, Feature): self.feat.update([elem]) elif isinstance(elem, Rule): assert(self.target==elem.target) self.feat.update(elem.feat) else: raise ValueError("Invalid type of param elem: {}\n Should either be Feature or Rule.".format(type(elem))) return self def __str__(self): return " \u2227 ".join(map(str,self.feat)) + " \u2192 " + str(self.target) def __repr__(self): return str(self) def _get_feat(self): return self.__feat def _get_target(self): return self.__target def _get_objs(self): return self.__objs def _set_feat(self, value): self.__feat = set(value) def _set_target(self, value): self.__target = value feat = property(_get_feat, _set_feat, None, "The antecedent of this rule.") target = property(_get_target, _set_target, None, "The consequent of this rule.") objs = property(_get_objs, None, None, "The set of examples that satisfy the rule") if __name__ == '__main__': import pandas as pd from textwrap import fill from reader import construct_features df = pd.read_csv("../test/data/abalone.data",header=None) names = ["sex", "length", "diameter", "height", "whole", "shucked", "viscera", "shell", "rings"] df.columns = names ft = list(construct_features(df, 'rings', 10)) r = Rule() r.feat = [ft[0],ft[10]] r.target = 10 print(r(df)) print(r) r2 = Rule() r2.feat = [ft[1],ft[9],ft[11]] r2.target = 10 print(r2) print(r + r2) r+=r2 print(r)
[ "pandas.read_csv", "numpy.logical_and", "reader.construct_features" ]
[((2475, 2528), 'pandas.read_csv', 'pd.read_csv', (['"""../test/data/abalone.data"""'], {'header': 'None'}), "('../test/data/abalone.data', header=None)\n", (2486, 2528), True, 'import pandas as pd\n'), ((2671, 2706), 'reader.construct_features', 'construct_features', (['df', '"""rings"""', '(10)'], {}), "(df, 'rings', 10)\n", (2689, 2706), False, 'from reader import construct_features\n'), ((718, 738), 'numpy.logical_and', 'np.logical_and', (['x', 'y'], {}), '(x, y)\n', (732, 738), True, 'import numpy as np\n')]
# Logistic Regression from matplotlib import use use('TkAgg') import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize import pandas as pd from ml import mapFeature, plotData, plotDecisionBoundary from matplotlib.pyplot import show from costFunctionReg import costFunctionReg from gradientFunctionReg import gradientFunctionReg from sigmoid import sigmoid from predict import predict def optimize(Lambda): result = minimize(costFunctionReg, initial_theta, method='L-BFGS-B', jac=gradientFunctionReg, args=(X, y, Lambda), options={'gtol': 1e-4, 'disp': False, 'maxiter': 1000}) return result # Plot Boundary def plotBoundary(theta, X, y): plotDecisionBoundary(theta, X, y) plt.title(r'$\lambda$ = ' + str(Lambda)) # Labels and Legend plt.xlabel('Microchip Test 1') plt.ylabel('Microchip Test 2') show() # Initialization # Load Data # The first two columns contains the X values and the third column # contains the label (y). plt.figure(figsize=(15, 10)) data = np.loadtxt('ex2data2.txt', delimiter=',') X = data[:, 0:2] y = data[:, 2] plotData(X, y) # Labels and Legend plt.xlabel('Microchip Test 1') plt.ylabel('Microchip Test 2') show() input('Program paused. Press Enter to continue...') # =========== Part 1: Regularized Logistic Regression ============ # Add Polynomial Features # Note that mapFeature also adds a column of ones for us, so the intercept # term is handled X = pd.DataFrame(X) X = X.apply(mapFeature, axis=1) # convert back to numpy ndarray X = X.values # Initialize fitting parameters initial_theta = np.zeros(X.shape[1]) # Set regularization parameter lambda to 1 Lambda = 0.0 # Compute and display initial cost and gradient for regularized logistic # regression cost = costFunctionReg(initial_theta, X, y, Lambda) print('Cost at initial theta (zeros): %f' % cost) # ============= Part 2: Regularization and Accuracies ============= # Optimize and plot boundary Lambda = 1.0 result = optimize(Lambda) theta = result.x cost = result.fun # Print to screen print('lambda = ' + str(Lambda)) print('Cost at theta found by scipy: %f' % cost) print('theta:', ["%0.4f" % i for i in theta]) input('Program paused. Press Enter to continue...') plotBoundary(theta, X, y) # Compute accuracy on our training set p = predict(theta, X) acc = np.mean(np.where(p == y, 1, 0)) * 100 print('Train Accuracy: %f' % acc) input('Program paused. Press Enter to continue...') # ============= Part 3: Different values of lambda ============= for Lambda in np.linspace(0.0, 100.1, 8): result = optimize(Lambda) theta = result.x print('lambda = ' + str(Lambda)) print('theta:', ["%0.4f" % i for i in theta]) plotBoundary(theta, X, y) input('Program paused. Press Enter to continue...')
[ "ml.plotData", "pandas.DataFrame", "costFunctionReg.costFunctionReg", "scipy.optimize.minimize", "matplotlib.pyplot.show", "ml.plotDecisionBoundary", "numpy.zeros", "matplotlib.pyplot.figure", "matplotlib.use", "predict.predict", "numpy.loadtxt", "numpy.linspace", "numpy.where", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((50, 62), 'matplotlib.use', 'use', (['"""TkAgg"""'], {}), "('TkAgg')\n", (53, 62), False, 'from matplotlib import use\n'), ((1045, 1073), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 10)'}), '(figsize=(15, 10))\n', (1055, 1073), True, 'import matplotlib.pyplot as plt\n'), ((1081, 1122), 'numpy.loadtxt', 'np.loadtxt', (['"""ex2data2.txt"""'], {'delimiter': '""","""'}), "('ex2data2.txt', delimiter=',')\n", (1091, 1122), True, 'import numpy as np\n'), ((1156, 1170), 'ml.plotData', 'plotData', (['X', 'y'], {}), '(X, y)\n', (1164, 1170), False, 'from ml import mapFeature, plotData, plotDecisionBoundary\n'), ((1192, 1222), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Microchip Test 1"""'], {}), "('Microchip Test 1')\n", (1202, 1222), True, 'import matplotlib.pyplot as plt\n'), ((1223, 1253), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Microchip Test 2"""'], {}), "('Microchip Test 2')\n", (1233, 1253), True, 'import matplotlib.pyplot as plt\n'), ((1254, 1260), 'matplotlib.pyplot.show', 'show', ([], {}), '()\n', (1258, 1260), False, 'from matplotlib.pyplot import show\n'), ((1507, 1522), 'pandas.DataFrame', 'pd.DataFrame', (['X'], {}), '(X)\n', (1519, 1522), True, 'import pandas as pd\n'), ((1649, 1669), 'numpy.zeros', 'np.zeros', (['X.shape[1]'], {}), '(X.shape[1])\n', (1657, 1669), True, 'import numpy as np\n'), ((1821, 1865), 'costFunctionReg.costFunctionReg', 'costFunctionReg', (['initial_theta', 'X', 'y', 'Lambda'], {}), '(initial_theta, X, y, Lambda)\n', (1836, 1865), False, 'from costFunctionReg import costFunctionReg\n'), ((2362, 2379), 'predict.predict', 'predict', (['theta', 'X'], {}), '(theta, X)\n', (2369, 2379), False, 'from predict import predict\n'), ((2593, 2619), 'numpy.linspace', 'np.linspace', (['(0.0)', '(100.1)', '(8)'], {}), '(0.0, 100.1, 8)\n', (2604, 2619), True, 'import numpy as np\n'), ((455, 627), 'scipy.optimize.minimize', 'minimize', (['costFunctionReg', 'initial_theta'], {'method': '"""L-BFGS-B"""', 'jac': 'gradientFunctionReg', 'args': '(X, y, Lambda)', 'options': "{'gtol': 0.0001, 'disp': False, 'maxiter': 1000}"}), "(costFunctionReg, initial_theta, method='L-BFGS-B', jac=\n gradientFunctionReg, args=(X, y, Lambda), options={'gtol': 0.0001,\n 'disp': False, 'maxiter': 1000})\n", (463, 627), False, 'from scipy.optimize import minimize\n'), ((733, 766), 'ml.plotDecisionBoundary', 'plotDecisionBoundary', (['theta', 'X', 'y'], {}), '(theta, X, y)\n', (753, 766), False, 'from ml import mapFeature, plotData, plotDecisionBoundary\n'), ((841, 871), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Microchip Test 1"""'], {}), "('Microchip Test 1')\n", (851, 871), True, 'import matplotlib.pyplot as plt\n'), ((876, 906), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Microchip Test 2"""'], {}), "('Microchip Test 2')\n", (886, 906), True, 'import matplotlib.pyplot as plt\n'), ((911, 917), 'matplotlib.pyplot.show', 'show', ([], {}), '()\n', (915, 917), False, 'from matplotlib.pyplot import show\n'), ((2394, 2416), 'numpy.where', 'np.where', (['(p == y)', '(1)', '(0)'], {}), '(p == y, 1, 0)\n', (2402, 2416), True, 'import numpy as np\n')]
import logging logger = logging.getLogger('SBFC') from math import floor import numpy as np from joblib import Parallel, delayed from utils.parproc import split_for_parallelism class SimHashBloomFilter: def __init__(self, **kwargs): self.expansion_factor = kwargs['expansion_factor'] self.bloom_filters = None self.kwargs = kwargs self.classes_ = None self.n_classes_ = None self.rnd_proj_mat = None self.batch_size = ( kwargs['batch_size'] if 'batch_size' in kwargs else 128 ) self.kwargs['batch_size'] = self.batch_size self.nthreads = kwargs['nthreads'] if 'nthreads' in kwargs else 1 self.kwargs['nthreads'] = self.nthreads def set_params(self, **kwargs): self.bloom_filters = None for k in kwargs: self.kwargs[k] = kwargs[k] self.classes_ = None self.n_classes_ = None self.rnd_proj_mat = None def fit(self, X, y): # Generate simhash nrows, ncols_in = X.shape self.ncols_in = ncols_in # Set up the SimHash # Get the output dimensionality ncols_out = max(int(ncols_in * self.expansion_factor), 2) assert self.rnd_proj_mat is None, ( 'projection matrix should be None, method might be already fit' ) self.rnd_proj_mat = np.random.normal(0., 1., size=(ncols_in, ncols_out)) # Get number of classes self.classes_ = np.unique(y) self.n_classes_ = len(self.classes_) l2i = {l: i for i, l in enumerate(self.classes_)} # Split data for parallel processing th_idxs = np.insert( np.cumsum(split_for_parallelism(nrows, self.nthreads)), 0, 0 ) # process each thread batch in parallel feval = lambda sidx, eidx: per_thread_job( bf_nrows=self.n_classes_, bf_ncols=ncols_out, th_start_idx=sidx, th_end_idx=eidx, batch_size=self.batch_size, X=X, y=y, rp_mat=self.rnd_proj_mat, l2i=l2i ) all_th_bfs = Parallel(n_jobs=self.nthreads)( delayed(feval)(th_idxs[i], th_idxs[i+1]) for i in range(self.nthreads) ) # consolidate results from all threads bloom_filters = np.zeros((self.n_classes_, ncols_out), dtype=np.bool) for bf in all_th_bfs: bloom_filters += bf # invert bloom filter & transpose self.bloom_filters = np.invert(bloom_filters) self.tbf = np.transpose(self.bloom_filters) return self def partial_fit(X, y): pass def _bf_scores(self, X): nrows, ncols = X.shape assert self.ncols_in == ncols, ( 'NBF trained with %i columns, trying prediction with %i columns' % (self.ncols_in, ncols) ) assert not self.bloom_filters is None, ('Method not fit yet') assert not self.rnd_proj_mat is None, ('Method not fit yet') # Process points in batches nbatches = ( floor(nrows / self.batch_size) + int((nrows % self.batch_size) > 0) ) start_idx = 0 fX = [] for j in range(nbatches): end_idx = min(start_idx + self.batch_size, nrows) # Generate simhash batch_shX = simhash(self.rnd_proj_mat, X[start_idx : end_idx, :]) # For bloom filters from each class, compute # - ((W . X)^\top 1) / self.k batch_fX = batch_shX.astype(np.int) @ self.tbf fX.extend(batch_fX.tolist()) start_idx = end_idx assert len(fX) == nrows, ('Expected %i, obtained %i' % (nrows, len(fX))) return np.array(fX) def predict(self, X): nrows, ncols = X.shape th_idxs = np.insert( np.cumsum(split_for_parallelism(nrows, self.nthreads)), 0, 0 ) fX = np.vstack( Parallel(n_jobs=self.nthreads)( delayed(self._bf_scores)(X[th_idxs[i] : th_idxs[i + 1], :]) for i in range(self.nthreads) ) ) # Return the class with minimum value # Break ties randomly, currently it choses minimum index with min value min_bf_scores = np.min(fX, axis=1) y = [] nties = 0 for min_bf_score, fx in zip(min_bf_scores, fX): y_set = self.classes_[fx == min_bf_score] l = None if len(y_set) > 1: nties += 1 l = y_set[np.random.randint(0, len(y_set))] else: l = y_set[0] y.append(l) logging.debug('%i / %i points have ties' % (nties, nrows)) return np.array(y) def predict_proba(self, X): nrows, ncols = X.shape th_idxs = np.insert(np.cumsum(split_for_parallelism(nrows, self.nthreads)), 0, 0) fX = np.vstack( Parallel(n_jobs=self.nthreads)( delayed(self._bf_scores)(X[th_idxs[i] : th_idxs[i + 1], :]) for i in range(self.nthreads) ) ).astype(float) exp_neg_fX = np.exp(-fX) probs = exp_neg_fX / np.sum(exp_neg_fX, axis=1)[:, None] return probs def get_params(self, deep=False): return self.kwargs def simhash(rnd_proj_mat, X): ncols_in, ncols_out = rnd_proj_mat.shape assert ncols_in == X.shape[1] projX = X @ rnd_proj_mat assert ncols_out == projX.shape[1] assert projX.shape[0] == X.shape[0] retX = np.zeros_like(projX, dtype=np.bool) retX[projX > 0.] = True return retX def per_thread_job( bf_nrows, bf_ncols, th_start_idx, th_end_idx, batch_size, X, y, rp_mat, l2i ): bloom_filters = np.zeros((bf_nrows, bf_ncols), dtype=np.bool) nrows = th_end_idx - th_start_idx assert bf_ncols == rp_mat.shape[1] # Process points in batches nbatches = floor(nrows / batch_size) + int((nrows % batch_size) > 0) start_idx = th_start_idx for j in range(nbatches): end_idx = min(start_idx + batch_size, th_end_idx) shX = simhash(rp_mat, X[start_idx : end_idx, :]) nrows_batch, ncols_out_batch = shX.shape assert nrows_batch == (end_idx - start_idx), ( 'The number of rows batch do not match: %i vs. %i' % (end_idx - start_idx, nrows_batch) ) assert ncols_out_batch == bf_ncols, ( 'Hashed X %i != BF %i' % (ncols_out_batch, bf_ncols) ) # For each class, compute W = Complement(X_1 V X_2 V ....) for features, label in zip(shX, y[ start_idx : end_idx ]) : bloom_filters[l2i[label]] += features # Update batch start idx start_idx = end_idx assert start_idx == th_end_idx return bloom_filters if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) from sklearn.datasets import load_iris X, y = load_iris(return_X_y=True) rnd_proj_mat = np.random.normal(0., 1., size=(X.shape[1], 10)) batch = 5 hashed_X = simhash(rnd_proj_mat, X[:batch, :]) print(hashed_X) kwargs = { 'expansion_factor': 20. } sbf = SimHashBloomFilter(**kwargs) sbf.fit(X, y) print('RP matrix:', sbf.rnd_proj_mat.shape) print('BF matrix:', sbf.tbf.shape) print('Preds: ', sbf.predict(X[:batch, :])) print('Probs: ', sbf.predict_proba(X[:batch, :]))
[ "sklearn.datasets.load_iris", "numpy.zeros_like", "logging.debug", "numpy.sum", "logging.basicConfig", "numpy.invert", "numpy.unique", "numpy.zeros", "numpy.transpose", "math.floor", "numpy.min", "numpy.array", "numpy.exp", "numpy.random.normal", "joblib.Parallel", "joblib.delayed", "logging.getLogger", "utils.parproc.split_for_parallelism" ]
[((24, 49), 'logging.getLogger', 'logging.getLogger', (['"""SBFC"""'], {}), "('SBFC')\n", (41, 49), False, 'import logging\n'), ((5590, 5625), 'numpy.zeros_like', 'np.zeros_like', (['projX'], {'dtype': 'np.bool'}), '(projX, dtype=np.bool)\n', (5603, 5625), True, 'import numpy as np\n'), ((5807, 5852), 'numpy.zeros', 'np.zeros', (['(bf_nrows, bf_ncols)'], {'dtype': 'np.bool'}), '((bf_nrows, bf_ncols), dtype=np.bool)\n', (5815, 5852), True, 'import numpy as np\n'), ((6895, 6935), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (6914, 6935), False, 'import logging\n'), ((6990, 7016), 'sklearn.datasets.load_iris', 'load_iris', ([], {'return_X_y': '(True)'}), '(return_X_y=True)\n', (6999, 7016), False, 'from sklearn.datasets import load_iris\n'), ((7036, 7085), 'numpy.random.normal', 'np.random.normal', (['(0.0)', '(1.0)'], {'size': '(X.shape[1], 10)'}), '(0.0, 1.0, size=(X.shape[1], 10))\n', (7052, 7085), True, 'import numpy as np\n'), ((1377, 1431), 'numpy.random.normal', 'np.random.normal', (['(0.0)', '(1.0)'], {'size': '(ncols_in, ncols_out)'}), '(0.0, 1.0, size=(ncols_in, ncols_out))\n', (1393, 1431), True, 'import numpy as np\n'), ((1486, 1498), 'numpy.unique', 'np.unique', (['y'], {}), '(y)\n', (1495, 1498), True, 'import numpy as np\n'), ((2359, 2412), 'numpy.zeros', 'np.zeros', (['(self.n_classes_, ncols_out)'], {'dtype': 'np.bool'}), '((self.n_classes_, ncols_out), dtype=np.bool)\n', (2367, 2412), True, 'import numpy as np\n'), ((2546, 2570), 'numpy.invert', 'np.invert', (['bloom_filters'], {}), '(bloom_filters)\n', (2555, 2570), True, 'import numpy as np\n'), ((2590, 2622), 'numpy.transpose', 'np.transpose', (['self.bloom_filters'], {}), '(self.bloom_filters)\n', (2602, 2622), True, 'import numpy as np\n'), ((3780, 3792), 'numpy.array', 'np.array', (['fX'], {}), '(fX)\n', (3788, 3792), True, 'import numpy as np\n'), ((4327, 4345), 'numpy.min', 'np.min', (['fX'], {'axis': '(1)'}), '(fX, axis=1)\n', (4333, 4345), True, 'import numpy as np\n'), ((4707, 4765), 'logging.debug', 'logging.debug', (["('%i / %i points have ties' % (nties, nrows))"], {}), "('%i / %i points have ties' % (nties, nrows))\n", (4720, 4765), False, 'import logging\n'), ((4781, 4792), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (4789, 4792), True, 'import numpy as np\n'), ((5196, 5207), 'numpy.exp', 'np.exp', (['(-fX)'], {}), '(-fX)\n', (5202, 5207), True, 'import numpy as np\n'), ((5977, 6002), 'math.floor', 'floor', (['(nrows / batch_size)'], {}), '(nrows / batch_size)\n', (5982, 6002), False, 'from math import floor\n'), ((2151, 2181), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'self.nthreads'}), '(n_jobs=self.nthreads)\n', (2159, 2181), False, 'from joblib import Parallel, delayed\n'), ((3118, 3148), 'math.floor', 'floor', (['(nrows / self.batch_size)'], {}), '(nrows / self.batch_size)\n', (3123, 3148), False, 'from math import floor\n'), ((1698, 1741), 'utils.parproc.split_for_parallelism', 'split_for_parallelism', (['nrows', 'self.nthreads'], {}), '(nrows, self.nthreads)\n', (1719, 1741), False, 'from utils.parproc import split_for_parallelism\n'), ((3902, 3945), 'utils.parproc.split_for_parallelism', 'split_for_parallelism', (['nrows', 'self.nthreads'], {}), '(nrows, self.nthreads)\n', (3923, 3945), False, 'from utils.parproc import split_for_parallelism\n'), ((3999, 4029), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'self.nthreads'}), '(n_jobs=self.nthreads)\n', (4007, 4029), False, 'from joblib import Parallel, delayed\n'), ((4895, 4938), 'utils.parproc.split_for_parallelism', 'split_for_parallelism', (['nrows', 'self.nthreads'], {}), '(nrows, self.nthreads)\n', (4916, 4938), False, 'from utils.parproc import split_for_parallelism\n'), ((5237, 5263), 'numpy.sum', 'np.sum', (['exp_neg_fX'], {'axis': '(1)'}), '(exp_neg_fX, axis=1)\n', (5243, 5263), True, 'import numpy as np\n'), ((2195, 2209), 'joblib.delayed', 'delayed', (['feval'], {}), '(feval)\n', (2202, 2209), False, 'from joblib import Parallel, delayed\n'), ((4047, 4071), 'joblib.delayed', 'delayed', (['self._bf_scores'], {}), '(self._bf_scores)\n', (4054, 4071), False, 'from joblib import Parallel, delayed\n'), ((4983, 5013), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'self.nthreads'}), '(n_jobs=self.nthreads)\n', (4991, 5013), False, 'from joblib import Parallel, delayed\n'), ((5031, 5055), 'joblib.delayed', 'delayed', (['self._bf_scores'], {}), '(self._bf_scores)\n', (5038, 5055), False, 'from joblib import Parallel, delayed\n')]
import numpy as np from recourse.action_set import _BoundElement as BoundElement v = np.random.rand(1000) a = np.sort(v) lb = np.percentile(v, 40) # bounds def test_absolute_bound(): l = -1.0 u = 10.0 b = BoundElement(bound_type = 'absolute', lb = l, ub = u, variable_type=int) assert b.lb == l assert b.ub == u assert b.bound_type == 'absolute' def test_absolute_bound_with_values(): l = 1.0 u = 10.0 values = l + np.multiply(u - l, np.random.rand(1000)) b = BoundElement(bound_type = 'absolute', lb = l, ub = u, values = values) assert b.lb == l assert b.ub == u assert b.bound_type == 'absolute' def test_absolute_bound_with_values(): values = np.random.randn(1000) b = BoundElement(bound_type = 'absolute', values = values) assert b.lb == np.min(values) assert b.ub == np.max(values) assert b.bound_type == 'absolute' def test_percentile_bound(): l = 5.0 u = 95.0 values = np.random.rand(1000) b = BoundElement(bound_type = 'percentile', lb = l, ub = u, values = values) assert np.isclose(b.lb, np.percentile(values, l)) assert np.isclose(b.ub, np.percentile(values, u)) assert b.bound_type == 'percentile'
[ "numpy.random.randn", "numpy.percentile", "numpy.sort", "numpy.min", "recourse.action_set._BoundElement", "numpy.max", "numpy.random.rand" ]
[((89, 109), 'numpy.random.rand', 'np.random.rand', (['(1000)'], {}), '(1000)\n', (103, 109), True, 'import numpy as np\n'), ((115, 125), 'numpy.sort', 'np.sort', (['v'], {}), '(v)\n', (122, 125), True, 'import numpy as np\n'), ((132, 152), 'numpy.percentile', 'np.percentile', (['v', '(40)'], {}), '(v, 40)\n', (145, 152), True, 'import numpy as np\n'), ((232, 298), 'recourse.action_set._BoundElement', 'BoundElement', ([], {'bound_type': '"""absolute"""', 'lb': 'l', 'ub': 'u', 'variable_type': 'int'}), "(bound_type='absolute', lb=l, ub=u, variable_type=int)\n", (244, 298), True, 'from recourse.action_set import _BoundElement as BoundElement\n'), ((527, 589), 'recourse.action_set._BoundElement', 'BoundElement', ([], {'bound_type': '"""absolute"""', 'lb': 'l', 'ub': 'u', 'values': 'values'}), "(bound_type='absolute', lb=l, ub=u, values=values)\n", (539, 589), True, 'from recourse.action_set import _BoundElement as BoundElement\n'), ((739, 760), 'numpy.random.randn', 'np.random.randn', (['(1000)'], {}), '(1000)\n', (754, 760), True, 'import numpy as np\n'), ((770, 820), 'recourse.action_set._BoundElement', 'BoundElement', ([], {'bound_type': '"""absolute"""', 'values': 'values'}), "(bound_type='absolute', values=values)\n", (782, 820), True, 'from recourse.action_set import _BoundElement as BoundElement\n'), ((1009, 1029), 'numpy.random.rand', 'np.random.rand', (['(1000)'], {}), '(1000)\n', (1023, 1029), True, 'import numpy as np\n'), ((1039, 1103), 'recourse.action_set._BoundElement', 'BoundElement', ([], {'bound_type': '"""percentile"""', 'lb': 'l', 'ub': 'u', 'values': 'values'}), "(bound_type='percentile', lb=l, ub=u, values=values)\n", (1051, 1103), True, 'from recourse.action_set import _BoundElement as BoundElement\n'), ((845, 859), 'numpy.min', 'np.min', (['values'], {}), '(values)\n', (851, 859), True, 'import numpy as np\n'), ((880, 894), 'numpy.max', 'np.max', (['values'], {}), '(values)\n', (886, 894), True, 'import numpy as np\n'), ((1141, 1165), 'numpy.percentile', 'np.percentile', (['values', 'l'], {}), '(values, l)\n', (1154, 1165), True, 'import numpy as np\n'), ((1196, 1220), 'numpy.percentile', 'np.percentile', (['values', 'u'], {}), '(values, u)\n', (1209, 1220), True, 'import numpy as np\n'), ((496, 516), 'numpy.random.rand', 'np.random.rand', (['(1000)'], {}), '(1000)\n', (510, 516), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Created on Tue Jun 30 00:26:48 2015 @author: willy """ import os import argparse import numpy as np import glob def read_haplotypes(msmc_input): """ Returns a tuple (value1, value2, value3) value1 : The chromossome name value 2 : a list of tuples, each containing the positions of the SNPS (the column 2 and 3) of the msmc input value3: a list of tuples: Each tuple is a diploid individual. Ex: if the input of msmc has 4 haplotypes, returns [(hap1, hap2), (hap3, hap4)] """ a = open(msmc_input, 'r') lines = a.readlines() l1 = lines[-1].split('\t') value_1 = l1[0] hap = l1[-1].strip('\n') value_2 = [] haplotypes_list = [[] for i in list(hap)] for l in lines: values = l.split('\t') value_2.append((values[1], values[2])) hap = values[3].strip('\n') ignore_output = [haplotypes_list[i].append(hap[i]) for i in range(len(hap))] value_3 = [(''.join(haplotypes_list[2*i]), ''.join(haplotypes_list[2*i+1])) for i in range(len(haplotypes_list)/2)] return (value_1, value_2, value_3) def write_msmc_input(filename, value_1, value_2, value_3): """ Given the type of values returned by the 'read_haplotypes' method, write to filename the values in the msmc input format """ f = open(filename, 'w') for i in range(len(value_2)): temp_line = "{}\t{}\t".format(value_1, '\t'.join(value_2[i])) hap_line = ''.join([value_3[j][0][i]+value_3[j][1][i] for j in range(len(value_3))]) f.write("{}{}\n".format(temp_line, hap_line)) f.close() def add_phasing_err(chrA, chrB, snp_pos, errors_positions): """ Given two haplotypes with the snp positions (as in the msmc input format) as well as the positions of some phasing errors, this method will output two new chromosomes switched at positions where phasing errors happen. """ snp_pos = [int(p) for p in snp_pos] if errors_positions == []: return (chrA, chrB) newA = [] newB = [] A = chrA B = chrB start_pos = 0 curr_pos = 0 err_index = 0 while curr_pos < len(snp_pos): if (snp_pos[curr_pos] >= errors_positions[err_index]): # if phasing error newA.append(A[start_pos:curr_pos]) newB.append(B[start_pos:curr_pos]) start_pos = curr_pos # Invert the chromosomes as many times as there are phasing errors while (snp_pos[curr_pos] >= errors_positions[err_index]): (A, B) = (B, A) err_index += 1 if err_index == len(errors_positions): curr_pos = len(snp_pos) # make sure that it will not enter # the first while next time break # quit current while curr_pos +=1 # Copy the rest of the haplotypes to the new chromosomes newA.append(A[start_pos:]) newB.append(B[start_pos:]) return(''.join(newA), ''.join(newB)) def generate_phasing_err_positions(seq_len, mean): """ Generates the positions where phasing errors occur. It assumes phasing errors are a geometrical random variable with some rate """ positions = [] curr_position = 0 while curr_position <= seq_len: err_position = np.random.exponential(mean) err_position = np.trunc(err_position) + 1 curr_position += err_position positions.append(curr_position) return [int(p) for p in positions[:-1]] def add_phasing_err_folder(input_folder, output_folder, seq_len, err_mean): """ Assuming input_folder contains some .msmcin files (the input of msmc) and that these files are haplotypes of size seq_len, for each msmcin file in the input folder we will create a new msmcin file in the output_folder containing some phasing errors. We assume that phasing errors are distributed following a Poison process over the annalyzed genome. For introducing phasing errors, we simulate values with an exponential distribution. """ input_filenames = [] # We take all the msmcin files in the input_folder for filename in glob.glob(os.path.join(input_folder, '*.txt')): input_filenames.append(filename) for f in input_filenames: (v1, v2, v3) = read_haplotypes(f) snp_pos = [p[0] for p in v2] new_v3 = [] for v in v3: err_positions = generate_phasing_err_positions(seq_len, err_mean) new_v3.append(add_phasing_err(v[0], v[1], snp_pos, err_positions)) output_name = f.split('/')[-1] f_output = os.path.join(output_folder, output_name) write_msmc_input(f_output, v1, v2, new_v3) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Add phasing errors to haplotypes") parser.add_argument("input_folder", help = "The input folder ") parser.add_argument("output_folder", help="The output folder") parser.add_argument("-l", "--sequence_length", help="Length of the \ sequence where pahsing errors will be added", type=int, default = 2000000) parser.add_argument("-e", "--error_rate", help = "The rate of the phasing\ errors", type=float, default=1e6) args = parser.parse_args() l = args.sequence_length err_mean = args.error_rate add_phasing_err_folder(args.input_folder, args.output_folder, l, err_mean) print("Done")
[ "numpy.random.exponential", "os.path.join", "argparse.ArgumentParser", "numpy.trunc" ]
[((4916, 4987), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Add phasing errors to haplotypes"""'}), "(description='Add phasing errors to haplotypes')\n", (4939, 4987), False, 'import argparse\n'), ((3441, 3468), 'numpy.random.exponential', 'np.random.exponential', (['mean'], {}), '(mean)\n', (3462, 3468), True, 'import numpy as np\n'), ((4334, 4369), 'os.path.join', 'os.path.join', (['input_folder', '"""*.txt"""'], {}), "(input_folder, '*.txt')\n", (4346, 4369), False, 'import os\n'), ((4783, 4823), 'os.path.join', 'os.path.join', (['output_folder', 'output_name'], {}), '(output_folder, output_name)\n', (4795, 4823), False, 'import os\n'), ((3492, 3514), 'numpy.trunc', 'np.trunc', (['err_position'], {}), '(err_position)\n', (3500, 3514), True, 'import numpy as np\n')]
"""Test for .prep.excel module """ # ======= # PRIVATE # ======= import numpy as np import pandas as pd from numpy.testing import assert_equal from pandas.testing import assert_index_equal, assert_frame_equal from hidrokit.prep import excel def test__file_year(): filepath = 'tests/data/excel/2006 HUJAN DISNEY LAND.xls' year = excel._file_year(filepath) assert year == 2006 def test__file_single_pivot(): filepath = 'tests/data/excel/2006 HUJAN DISNEY LAND.xls' pivot = excel._file_single_pivot(filepath) pivot = pivot.replace('-', np.nan) nan = np.nan row_3 = np.array( [66.3, nan, 11.3, nan, nan, 13.2, nan, nan, nan, nan, nan, 12.3] ) assert_equal( row_3, pivot.iloc[3, :].values ) def test__dataframe_year(): data = pd.read_csv('tests/data/one_year_one_column.csv', index_col=0, parse_dates=True) data_test = excel._dataframe_year(2000) assert_index_equal( data.index, data_test.index ) def test__dataframe_data(): filepath = 'tests/data/excel/2013 DUGAAIR.xls' pivot = excel._file_single_pivot(filepath, template='pdderi') pivot = pivot.replace('-', np.nan) pivot_list = excel._dataframe_data(pivot, 2013) assert pivot_list[0] == 1.33 assert pivot_list[-1] == 1.20 def test__dataframe_table(): filepath = 'tests/data/excel/2013 DUGAAIR.xls' pivot = excel._file_single_pivot(filepath, template='pdderi') dataframe = excel._dataframe_table(pivot, 2013, name='dugaair') result = pd.read_csv('tests/data/2013 DUGAAIR.csv', index_col=0, parse_dates=True) assert_frame_equal( result, dataframe )
[ "hidrokit.prep.excel._file_single_pivot", "pandas.testing.assert_frame_equal", "hidrokit.prep.excel._dataframe_data", "pandas.read_csv", "hidrokit.prep.excel._dataframe_table", "numpy.array", "numpy.testing.assert_equal", "hidrokit.prep.excel._file_year", "pandas.testing.assert_index_equal", "hidrokit.prep.excel._dataframe_year" ]
[((340, 366), 'hidrokit.prep.excel._file_year', 'excel._file_year', (['filepath'], {}), '(filepath)\n', (356, 366), False, 'from hidrokit.prep import excel\n'), ((498, 532), 'hidrokit.prep.excel._file_single_pivot', 'excel._file_single_pivot', (['filepath'], {}), '(filepath)\n', (522, 532), False, 'from hidrokit.prep import excel\n'), ((602, 676), 'numpy.array', 'np.array', (['[66.3, nan, 11.3, nan, nan, 13.2, nan, nan, nan, nan, nan, 12.3]'], {}), '([66.3, nan, 11.3, nan, nan, 13.2, nan, nan, nan, nan, nan, 12.3])\n', (610, 676), True, 'import numpy as np\n'), ((705, 749), 'numpy.testing.assert_equal', 'assert_equal', (['row_3', 'pivot.iloc[3, :].values'], {}), '(row_3, pivot.iloc[3, :].values)\n', (717, 749), False, 'from numpy.testing import assert_equal\n'), ((805, 890), 'pandas.read_csv', 'pd.read_csv', (['"""tests/data/one_year_one_column.csv"""'], {'index_col': '(0)', 'parse_dates': '(True)'}), "('tests/data/one_year_one_column.csv', index_col=0, parse_dates=True\n )\n", (816, 890), True, 'import pandas as pd\n'), ((926, 953), 'hidrokit.prep.excel._dataframe_year', 'excel._dataframe_year', (['(2000)'], {}), '(2000)\n', (947, 953), False, 'from hidrokit.prep import excel\n'), ((959, 1006), 'pandas.testing.assert_index_equal', 'assert_index_equal', (['data.index', 'data_test.index'], {}), '(data.index, data_test.index)\n', (977, 1006), False, 'from pandas.testing import assert_index_equal, assert_frame_equal\n'), ((1114, 1167), 'hidrokit.prep.excel._file_single_pivot', 'excel._file_single_pivot', (['filepath'], {'template': '"""pdderi"""'}), "(filepath, template='pdderi')\n", (1138, 1167), False, 'from hidrokit.prep import excel\n'), ((1225, 1259), 'hidrokit.prep.excel._dataframe_data', 'excel._dataframe_data', (['pivot', '(2013)'], {}), '(pivot, 2013)\n', (1246, 1259), False, 'from hidrokit.prep import excel\n'), ((1421, 1474), 'hidrokit.prep.excel._file_single_pivot', 'excel._file_single_pivot', (['filepath'], {'template': '"""pdderi"""'}), "(filepath, template='pdderi')\n", (1445, 1474), False, 'from hidrokit.prep import excel\n'), ((1491, 1542), 'hidrokit.prep.excel._dataframe_table', 'excel._dataframe_table', (['pivot', '(2013)'], {'name': '"""dugaair"""'}), "(pivot, 2013, name='dugaair')\n", (1513, 1542), False, 'from hidrokit.prep import excel\n'), ((1557, 1630), 'pandas.read_csv', 'pd.read_csv', (['"""tests/data/2013 DUGAAIR.csv"""'], {'index_col': '(0)', 'parse_dates': '(True)'}), "('tests/data/2013 DUGAAIR.csv', index_col=0, parse_dates=True)\n", (1568, 1630), True, 'import pandas as pd\n'), ((1660, 1697), 'pandas.testing.assert_frame_equal', 'assert_frame_equal', (['result', 'dataframe'], {}), '(result, dataframe)\n', (1678, 1697), False, 'from pandas.testing import assert_index_equal, assert_frame_equal\n')]
import pandas as pd import numpy as np input_file_path = "datasets/Accelerometer-2011-06-02-17-21-57-liedown_bed-m1.txt" fields = ['15', '16', '17'] if __name__ == '__main__': # data = pd.read_csv(input_file_path, skipinitialspace=True, usecols=fields, delim_whitespace=True) # data.to_csv('uic_dataset.csv', index=False) # CONVERT THE ACCELEROMETER DATA INTO REAL ACCELERATION VALUES # mapping from [0. .63] to[-14.709.. + 14.709] # real_val = -1.5 g + (coded_val / 63) * 3 g data = np.loadtxt("datasets/Accelerometer-2011-05-30-10-38-41-liedown_bed-m1.txt") real_data = list(map(lambda v: -14.709 + (v / 63) * (2 * 14.709), data)) np.savetxt("datasets/hmp_dataset1.csv", real_data, delimiter=",")
[ "numpy.savetxt", "numpy.loadtxt" ]
[((497, 572), 'numpy.loadtxt', 'np.loadtxt', (['"""datasets/Accelerometer-2011-05-30-10-38-41-liedown_bed-m1.txt"""'], {}), "('datasets/Accelerometer-2011-05-30-10-38-41-liedown_bed-m1.txt')\n", (507, 572), True, 'import numpy as np\n'), ((650, 715), 'numpy.savetxt', 'np.savetxt', (['"""datasets/hmp_dataset1.csv"""', 'real_data'], {'delimiter': '""","""'}), "('datasets/hmp_dataset1.csv', real_data, delimiter=',')\n", (660, 715), True, 'import numpy as np\n')]
# coding: utf-8 import numpy as np import pysptk from nose.tools import raises from warnings import warn from scipy.io import wavfile from os.path import join, dirname def test_swipe(): def __test(x, fs, hopsize, otype): f0 = pysptk.swipe(x, fs, hopsize, otype=otype) assert np.all(np.isfinite(f0)) if otype == 1: assert np.all(f0 >= 0) np.random.seed(98765) fs = 16000 x = np.random.rand(16000) for hopsize in [40, 80, 160, 320]: for otype in [0, 1, 2]: yield __test, x, fs, hopsize, otype for otype in ["pitch", "f0", "logf0"]: yield __test, x, fs, 80, otype # unsupported otype yield raises(ValueError)(__test), x, fs, 80, -1 yield raises(ValueError)(__test), x, fs, 80, 3 yield raises(ValueError)(__test), x, fs, 80, "ff0" def test_rapt(): def __test(x, fs, hopsize, min, max, otype): f0 = pysptk.rapt(x, fs, hopsize, min=min, max=max, otype=otype) assert np.all(np.isfinite(f0)) if otype == 1: assert np.all(f0 >= 0) np.random.seed(98765) fs = 16000 x = np.random.rand(16000).astype(np.float32) for otype in [0, 1, 2]: for hopsize in [40, 80, 160, 320]: yield __test, x, fs, hopsize, 60, 240, otype for otype in ["pitch", "f0", "logf0"]: yield __test, x, fs, 80, 60, 240, otype # unsupported otype yield raises(ValueError)(__test), x, fs, 80, 60, 240, -1 yield raises(ValueError)(__test), x, fs, 80, 60, 240, 3 yield raises(ValueError)(__test), x, fs, 80, 60, 240, "f00" # valid min freq yield __test, x, fs, 80, 10, 240, 0 warn("TODO: fix RAPT bug to pass this minfreq lower bound test") # yield __test, x, fs, 80, fs / 10000. + 1, 240, 0 # valid max freq yield __test, x, fs, 80, 60, fs // 2 - 1, 0 # invalid min/max freq yield raises(ValueError)(__test), x, fs, 80, 60, 60, 0 yield raises(ValueError)(__test), x, fs, 80, 60, fs // 2, 0 yield raises(ValueError)(__test), x, fs, 80, fs / 10000., 240, 0 # valid frame_period (corner case) yield __test, x, fs, 1600, 60, 240, 0 yield __test, x, fs, 2, 60, 240, 0 warn("TODO: pass this corner case test") # yield __test, x, fs, 1, 60, 240, 0 # invalid frame_period yield raises(ValueError)(__test), x, fs, 1601, 60, 240, 0 # valid input length yield __test, x[:1000], fs, 80, 60, 240, 0 # invalid input length (too small) yield raises(ValueError)(__test), x[:100], fs, 80, 60, 240, 0 def test_rapt_regression(): # Grund truth data is generated by: # # $ wav2raw pysptk/example_audio_data/arctic_a0007.wav # # $ x2x +sf ./pysptk/example_audio_data/arctic_a0007.raw | \ # pitch -a 0 -s 16 -p 80 -L 60 -H 240 -o 0 > \ # arctic_a007_p16_L60_H240_o0_rapt.pitch # # $ dmp +f arctic_a007_p16_L60_H240_o0_rapt.pitch | awk '{print $2}' >\ # arctic_a007_p16_L60_H240_o0_rapt.txt # # $ pitch -h # ... # # SPTK: version 3.8 # CVS Info: $Id: pitch.c,v 1.46 2014/12/11 08:30:43 uratec Exp $ ground_truth_path = join(dirname(__file__), "data", "arctic_a007_p16_L60_H240_o0_rapt.txt") with open(ground_truth_path) as f: ground_truth = np.asarray([float(s) for s in [l for l in f.readlines()]]) ground_truth = ground_truth.astype(np.float32) fs, x = wavfile.read(pysptk.util.example_audio_file()) assert fs == 16000 # Since SPTK might have memory corruption bug and the result might be # non-deterministic, test it with multiple time... for i in range(5): f0 = pysptk.rapt(x.astype(np.float32), fs=fs, hopsize=80, min=60, max=240, voice_bias=0.0, otype=0) assert np.allclose(ground_truth, f0)
[ "numpy.random.seed", "nose.tools.raises", "os.path.dirname", "numpy.allclose", "numpy.isfinite", "pysptk.rapt", "numpy.all", "numpy.random.rand", "warnings.warn", "pysptk.swipe", "pysptk.util.example_audio_file" ]
[((387, 408), 'numpy.random.seed', 'np.random.seed', (['(98765)'], {}), '(98765)\n', (401, 408), True, 'import numpy as np\n'), ((432, 453), 'numpy.random.rand', 'np.random.rand', (['(16000)'], {}), '(16000)\n', (446, 453), True, 'import numpy as np\n'), ((1083, 1104), 'numpy.random.seed', 'np.random.seed', (['(98765)'], {}), '(98765)\n', (1097, 1104), True, 'import numpy as np\n'), ((1666, 1730), 'warnings.warn', 'warn', (['"""TODO: fix RAPT bug to pass this minfreq lower bound test"""'], {}), "('TODO: fix RAPT bug to pass this minfreq lower bound test')\n", (1670, 1730), False, 'from warnings import warn\n'), ((2202, 2242), 'warnings.warn', 'warn', (['"""TODO: pass this corner case test"""'], {}), "('TODO: pass this corner case test')\n", (2206, 2242), False, 'from warnings import warn\n'), ((243, 284), 'pysptk.swipe', 'pysptk.swipe', (['x', 'fs', 'hopsize'], {'otype': 'otype'}), '(x, fs, hopsize, otype=otype)\n', (255, 284), False, 'import pysptk\n'), ((922, 980), 'pysptk.rapt', 'pysptk.rapt', (['x', 'fs', 'hopsize'], {'min': 'min', 'max': 'max', 'otype': 'otype'}), '(x, fs, hopsize, min=min, max=max, otype=otype)\n', (933, 980), False, 'import pysptk\n'), ((3154, 3171), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (3161, 3171), False, 'from os.path import join, dirname\n'), ((3483, 3515), 'pysptk.util.example_audio_file', 'pysptk.util.example_audio_file', ([], {}), '()\n', (3513, 3515), False, 'import pysptk\n'), ((3841, 3870), 'numpy.allclose', 'np.allclose', (['ground_truth', 'f0'], {}), '(ground_truth, f0)\n', (3852, 3870), True, 'import numpy as np\n'), ((307, 322), 'numpy.isfinite', 'np.isfinite', (['f0'], {}), '(f0)\n', (318, 322), True, 'import numpy as np\n'), ((366, 381), 'numpy.all', 'np.all', (['(f0 >= 0)'], {}), '(f0 >= 0)\n', (372, 381), True, 'import numpy as np\n'), ((1003, 1018), 'numpy.isfinite', 'np.isfinite', (['f0'], {}), '(f0)\n', (1014, 1018), True, 'import numpy as np\n'), ((1062, 1077), 'numpy.all', 'np.all', (['(f0 >= 0)'], {}), '(f0 >= 0)\n', (1068, 1077), True, 'import numpy as np\n'), ((1128, 1149), 'numpy.random.rand', 'np.random.rand', (['(16000)'], {}), '(16000)\n', (1142, 1149), True, 'import numpy as np\n'), ((692, 710), 'nose.tools.raises', 'raises', (['ValueError'], {}), '(ValueError)\n', (698, 710), False, 'from nose.tools import raises\n'), ((744, 762), 'nose.tools.raises', 'raises', (['ValueError'], {}), '(ValueError)\n', (750, 762), False, 'from nose.tools import raises\n'), ((795, 813), 'nose.tools.raises', 'raises', (['ValueError'], {}), '(ValueError)\n', (801, 813), False, 'from nose.tools import raises\n'), ((1425, 1443), 'nose.tools.raises', 'raises', (['ValueError'], {}), '(ValueError)\n', (1431, 1443), False, 'from nose.tools import raises\n'), ((1486, 1504), 'nose.tools.raises', 'raises', (['ValueError'], {}), '(ValueError)\n', (1492, 1504), False, 'from nose.tools import raises\n'), ((1546, 1564), 'nose.tools.raises', 'raises', (['ValueError'], {}), '(ValueError)\n', (1552, 1564), False, 'from nose.tools import raises\n'), ((1894, 1912), 'nose.tools.raises', 'raises', (['ValueError'], {}), '(ValueError)\n', (1900, 1912), False, 'from nose.tools import raises\n'), ((1953, 1971), 'nose.tools.raises', 'raises', (['ValueError'], {}), '(ValueError)\n', (1959, 1971), False, 'from nose.tools import raises\n'), ((2017, 2035), 'nose.tools.raises', 'raises', (['ValueError'], {}), '(ValueError)\n', (2023, 2035), False, 'from nose.tools import raises\n'), ((2322, 2340), 'nose.tools.raises', 'raises', (['ValueError'], {}), '(ValueError)\n', (2328, 2340), False, 'from nose.tools import raises\n'), ((2497, 2515), 'nose.tools.raises', 'raises', (['ValueError'], {}), '(ValueError)\n', (2503, 2515), False, 'from nose.tools import raises\n')]
import sys, os, re, time, platform import json, csv import numpy as np import matplotlib.pyplot as plt from scipy import linalg as LA import matplotlib import matplotlib.cm from mpl_toolkits.mplot3d import Axes3D DATA_DIR = os.path.join('output', 'cheetah-multi-task', '2021_04_30_parametrized', '2021_04_30_cheetah_8_task_true_gmm', 'tensorboard') FIG_DIR = os.path.join('log', 'latent') PLOT_LIST = [] MARKERS = ['.', '^', 's', 'p', '*', 'X', 'h', 'd', '+', 'P'] COLORS = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'] def main(run_name=None, save=True, show_='last'): global DATA_DIR if run_name is not None: head, tail = os.path.split(run_name) if len(head) > 0: DATA_DIR = os.path.join(run_name, 'tensorboard') else: DATA_DIR = os.path.join('output', 'cheetah-multi-task', run_name, 'tensorboard') fig_folder = os.path.join(FIG_DIR, f'{time.strftime("%Y-%m-%d-%H_%M_%S")}_{os.path.split(DATA_DIR)[-1]}') if not os.path.isdir(fig_folder) and save: os.mkdir(fig_folder) epoch_dict = {} folders_ = [d for d in os.listdir(DATA_DIR) if os.path.isdir(os.path.join(DATA_DIR, d))] maxlen = max([len(f) for f in folders_]) folders_ = sorted([f.zfill(maxlen) for f in folders_]) for folder in (folders_ if show_ == 'all' else [folders_[-1]]): if re.match('[0-9]+', folder): step_ = re.findall('([0-9]+)', folder)[0] with open(os.path.join(DATA_DIR, folder, 'default', 'metadata.tsv'), newline='') as f: r = csv.reader(f, delimiter='\t') metadata = [row_ for row_ in r] with open(os.path.join(DATA_DIR, folder, 'default', 'tensors.tsv'), newline='') as f: r = csv.reader(f, delimiter='\t') data = [row_ for row_ in r] # Convert to np metadata = np.array(metadata) true_tasks = np.array([s[0].split('[')[0].strip() for s in metadata]) unique_tasks = np.sort(np.unique(true_tasks)) specs = np.array([float(re.findall('[-]*[0-9]+[.]*[0-9]*', s[0])[0]) for s in metadata]) data = np.array(data, dtype=np.float) d_list, t_list, s_list = [], [], [] for true_task in unique_tasks: # Bring data to 3D pcad = '' if data.shape[1] < 3: d = data[true_tasks == true_task] temp = np.zeros([d.shape[0], 3]) temp[:, 0:d.shape[1]] = d d = temp elif data.shape[1] > 3: d = data[true_tasks == true_task] print(f'Performing PCA from {d.shape[1]} DIM to 3') pcad = f' (Using PCA From {d.shape[1]} To 3 Dimensions)' d = perform_pca(d) d_list.append(d) t_list.append(true_task) s_list.append(specs[true_tasks == true_task]) epoch_dict[step_] = [metadata, data, pcad, d_list, t_list, s_list] m_l = max([len(k) for k in epoch_dict.keys()]) # Plotting # Use Latex text matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' plt.style.use('seaborn') size_ = 12# 20 veldir, 36 8 task plt.rc('font', size=size_) # controls default text sizes plt.rc('axes', labelsize=size_) # fontsize of the x and y labels plt.rc('axes', titlesize=size_) # fontsize of the axes title plt.rc('xtick', labelsize=size_) # fontsize of the tick labels plt.rc('ytick', labelsize=size_) # fontsize of the tick labels plt.rc('legend', fontsize=size_) # legend fontsize plt.rc('figure', titlesize=size_) # fontsize of the figure title CMAP_NAME = 'viridis' for step_ in sorted(epoch_dict.keys()): metadata, values, pcad, d_list, t_list, s_list = epoch_dict[step_] fig = plt.figure() for i, d in enumerate(d_list): axs = fig.add_subplot(int(np.ceil(len(d_list) / 4)), min([len(d_list), 4]), i + 1, projection='3d') axs.set_aspect('auto') axs.set_title(f'{" ".join([el.capitalize() for el in t_list[i].split("_")])}', y=1.08) el = axs.scatter(d[:, 0], d[:, 1], d[:, 2], c=(s_list[i] - s_list[i].min()) / (s_list[i].max() - s_list[i].min()), cmap=plt.get_cmap(CMAP_NAME)) axs.tick_params(labelsize=0) # axs.set_xlabel('Latent Dim 1') # axs.set_ylabel('Latent Dim 2') # axs.set_zlabel('Latent Dim 3') cbar = fig.colorbar(matplotlib.cm.ScalarMappable(cmap=plt.get_cmap(CMAP_NAME)), ax=fig.axes, orientation='vertical', anchor=(1., 0.5), shrink=0.5, ticks=[0, 0.5, 1]) cbar.ax.set_yticklabels(['Low', 'Medium', 'High']) fig.set_size_inches(3. * min([len(d_list), 4]), 2.8 * int(np.ceil(len(d_list) / 4))) if save: plt.savefig(os.path.join(fig_folder, f'encodings_step_{str(step_).zfill(m_l)}.png'), format='png', dpi=100, bbox_inches='tight') else: plt.show() plt.close() print(f'Created plot for {DATA_DIR}') def perform_pca(values, dims=3): # sample points equally for all gaussians x = np.copy(values) # centering the data x -= np.mean(x, axis=0) cov = np.cov(x, rowvar=False) evals, evecs = LA.eigh(cov) idx = np.argsort(evals)[::-1] evecs = evecs[:, idx[:dims]] return np.dot(x, evecs) if __name__ == '__main__': main(*sys.argv[1:])
[ "os.mkdir", "csv.reader", "time.strftime", "numpy.argsort", "matplotlib.pyplot.style.use", "numpy.mean", "matplotlib.pyplot.figure", "os.path.join", "numpy.unique", "numpy.copy", "matplotlib.pyplot.close", "re.findall", "matplotlib.pyplot.rc", "scipy.linalg.eigh", "numpy.cov", "matplotlib.pyplot.show", "matplotlib.pyplot.get_cmap", "re.match", "numpy.dot", "os.listdir", "os.path.isdir", "numpy.zeros", "numpy.array", "os.path.split" ]
[((236, 364), 'os.path.join', 'os.path.join', (['"""output"""', '"""cheetah-multi-task"""', '"""2021_04_30_parametrized"""', '"""2021_04_30_cheetah_8_task_true_gmm"""', '"""tensorboard"""'], {}), "('output', 'cheetah-multi-task', '2021_04_30_parametrized',\n '2021_04_30_cheetah_8_task_true_gmm', 'tensorboard')\n", (248, 364), False, 'import sys, os, re, time, platform\n'), ((372, 401), 'os.path.join', 'os.path.join', (['"""log"""', '"""latent"""'], {}), "('log', 'latent')\n", (384, 401), False, 'import sys, os, re, time, platform\n'), ((2974, 2998), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn"""'], {}), "('seaborn')\n", (2987, 2998), True, 'import matplotlib.pyplot as plt\n'), ((3038, 3064), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'size': 'size_'}), "('font', size=size_)\n", (3044, 3064), True, 'import matplotlib.pyplot as plt\n'), ((3098, 3129), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'labelsize': 'size_'}), "('axes', labelsize=size_)\n", (3104, 3129), True, 'import matplotlib.pyplot as plt\n'), ((3166, 3197), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'titlesize': 'size_'}), "('axes', titlesize=size_)\n", (3172, 3197), True, 'import matplotlib.pyplot as plt\n'), ((3230, 3262), 'matplotlib.pyplot.rc', 'plt.rc', (['"""xtick"""'], {'labelsize': 'size_'}), "('xtick', labelsize=size_)\n", (3236, 3262), True, 'import matplotlib.pyplot as plt\n'), ((3296, 3328), 'matplotlib.pyplot.rc', 'plt.rc', (['"""ytick"""'], {'labelsize': 'size_'}), "('ytick', labelsize=size_)\n", (3302, 3328), True, 'import matplotlib.pyplot as plt\n'), ((3362, 3394), 'matplotlib.pyplot.rc', 'plt.rc', (['"""legend"""'], {'fontsize': 'size_'}), "('legend', fontsize=size_)\n", (3368, 3394), True, 'import matplotlib.pyplot as plt\n'), ((3416, 3449), 'matplotlib.pyplot.rc', 'plt.rc', (['"""figure"""'], {'titlesize': 'size_'}), "('figure', titlesize=size_)\n", (3422, 3449), True, 'import matplotlib.pyplot as plt\n'), ((4887, 4902), 'numpy.copy', 'np.copy', (['values'], {}), '(values)\n', (4894, 4902), True, 'import numpy as np\n'), ((4935, 4953), 'numpy.mean', 'np.mean', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (4942, 4953), True, 'import numpy as np\n'), ((4964, 4987), 'numpy.cov', 'np.cov', (['x'], {'rowvar': '(False)'}), '(x, rowvar=False)\n', (4970, 4987), True, 'import numpy as np\n'), ((5007, 5019), 'scipy.linalg.eigh', 'LA.eigh', (['cov'], {}), '(cov)\n', (5014, 5019), True, 'from scipy import linalg as LA\n'), ((5096, 5112), 'numpy.dot', 'np.dot', (['x', 'evecs'], {}), '(x, evecs)\n', (5102, 5112), True, 'import numpy as np\n'), ((735, 758), 'os.path.split', 'os.path.split', (['run_name'], {}), '(run_name)\n', (748, 758), False, 'import sys, os, re, time, platform\n'), ((1085, 1105), 'os.mkdir', 'os.mkdir', (['fig_folder'], {}), '(fig_folder)\n', (1093, 1105), False, 'import sys, os, re, time, platform\n'), ((1391, 1417), 're.match', 're.match', (['"""[0-9]+"""', 'folder'], {}), "('[0-9]+', folder)\n", (1399, 1417), False, 'import sys, os, re, time, platform\n'), ((3635, 3647), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3645, 3647), True, 'import matplotlib.pyplot as plt\n'), ((4742, 4753), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4751, 4753), True, 'import matplotlib.pyplot as plt\n'), ((5030, 5047), 'numpy.argsort', 'np.argsort', (['evals'], {}), '(evals)\n', (5040, 5047), True, 'import numpy as np\n'), ((795, 832), 'os.path.join', 'os.path.join', (['run_name', '"""tensorboard"""'], {}), "(run_name, 'tensorboard')\n", (807, 832), False, 'import sys, os, re, time, platform\n'), ((857, 926), 'os.path.join', 'os.path.join', (['"""output"""', '"""cheetah-multi-task"""', 'run_name', '"""tensorboard"""'], {}), "('output', 'cheetah-multi-task', run_name, 'tensorboard')\n", (869, 926), False, 'import sys, os, re, time, platform\n'), ((1046, 1071), 'os.path.isdir', 'os.path.isdir', (['fig_folder'], {}), '(fig_folder)\n', (1059, 1071), False, 'import sys, os, re, time, platform\n'), ((1153, 1173), 'os.listdir', 'os.listdir', (['DATA_DIR'], {}), '(DATA_DIR)\n', (1163, 1173), False, 'import sys, os, re, time, platform\n'), ((1835, 1853), 'numpy.array', 'np.array', (['metadata'], {}), '(metadata)\n', (1843, 1853), True, 'import numpy as np\n'), ((2086, 2116), 'numpy.array', 'np.array', (['data'], {'dtype': 'np.float'}), '(data, dtype=np.float)\n', (2094, 2116), True, 'import numpy as np\n'), ((4726, 4736), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4734, 4736), True, 'import matplotlib.pyplot as plt\n'), ((969, 1003), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d-%H_%M_%S"""'], {}), "('%Y-%m-%d-%H_%M_%S')\n", (982, 1003), False, 'import sys, os, re, time, platform\n'), ((1191, 1216), 'os.path.join', 'os.path.join', (['DATA_DIR', 'd'], {}), '(DATA_DIR, d)\n', (1203, 1216), False, 'import sys, os, re, time, platform\n'), ((1433, 1463), 're.findall', 're.findall', (['"""([0-9]+)"""', 'folder'], {}), "('([0-9]+)', folder)\n", (1443, 1463), False, 'import sys, os, re, time, platform\n'), ((1569, 1598), 'csv.reader', 'csv.reader', (['f'], {'delimiter': '"""\t"""'}), "(f, delimiter='\\t')\n", (1579, 1598), False, 'import json, csv\n'), ((1735, 1764), 'csv.reader', 'csv.reader', (['f'], {'delimiter': '"""\t"""'}), "(f, delimiter='\\t')\n", (1745, 1764), False, 'import json, csv\n'), ((1957, 1978), 'numpy.unique', 'np.unique', (['true_tasks'], {}), '(true_tasks)\n', (1966, 1978), True, 'import numpy as np\n'), ((1006, 1029), 'os.path.split', 'os.path.split', (['DATA_DIR'], {}), '(DATA_DIR)\n', (1019, 1029), False, 'import sys, os, re, time, platform\n'), ((1483, 1540), 'os.path.join', 'os.path.join', (['DATA_DIR', 'folder', '"""default"""', '"""metadata.tsv"""'], {}), "(DATA_DIR, folder, 'default', 'metadata.tsv')\n", (1495, 1540), False, 'import sys, os, re, time, platform\n'), ((1650, 1706), 'os.path.join', 'os.path.join', (['DATA_DIR', 'folder', '"""default"""', '"""tensors.tsv"""'], {}), "(DATA_DIR, folder, 'default', 'tensors.tsv')\n", (1662, 1706), False, 'import sys, os, re, time, platform\n'), ((2315, 2340), 'numpy.zeros', 'np.zeros', (['[d.shape[0], 3]'], {}), '([d.shape[0], 3])\n', (2323, 2340), True, 'import numpy as np\n'), ((4052, 4075), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['CMAP_NAME'], {}), '(CMAP_NAME)\n', (4064, 4075), True, 'import matplotlib.pyplot as plt\n'), ((4282, 4305), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['CMAP_NAME'], {}), '(CMAP_NAME)\n', (4294, 4305), True, 'import matplotlib.pyplot as plt\n'), ((2008, 2048), 're.findall', 're.findall', (['"""[-]*[0-9]+[.]*[0-9]*"""', 's[0]'], {}), "('[-]*[0-9]+[.]*[0-9]*', s[0])\n", (2018, 2048), False, 'import sys, os, re, time, platform\n')]
import numpy as np def get_estimator(scorer_type, save_folder=None): if scorer_type == 'esim': # submitted model, glove + fasttext, with attention from os import path from athene.rte.deep_models.ESIM_for_ensemble import ESIM from athene.utils.config import Config pos_weight = np.asarray(Config.esim_hyper_param['pos_weight'], np.float32) clf = ESIM(random_state=Config.seed, tensorboard_logdir="logdir/", learning_rate=Config.esim_hyper_param['lr'], max_check_without_progress=Config.esim_hyper_param['max_checks_no_progress'], activation=Config.esim_hyper_param['activation'], initializer=Config.esim_hyper_param['initializer'], lstm_layers=Config.esim_hyper_param['lstm_layers'], optimizer=Config.esim_hyper_param['optimizer'], trainable=Config.esim_hyper_param['trainable'], batch_size=Config.esim_hyper_param['batch_size'], dropout_rate=Config.esim_hyper_param['dropout'], num_neurons=Config.esim_hyper_param['num_neurons'], pos_weight=pos_weight, ckpt_path=path.join(save_folder, Config.name + '.ckpt'), name=Config.name) if scorer_type == 'esim_glove_no_attention': # glove, no attention from os import path from athene.rte.deep_models.ESIM_for_ensemble_glove_only_no_attention import ESIM from athene.utils.config import Config pos_weight = np.asarray(Config.esim_hyper_param['pos_weight'], np.float32) clf = ESIM(random_state=Config.seed, tensorboard_logdir="logdir/", learning_rate=Config.esim_hyper_param['lr'], max_check_without_progress=Config.esim_hyper_param['max_checks_no_progress'], activation=Config.esim_hyper_param['activation'], initializer=Config.esim_hyper_param['initializer'], lstm_layers=Config.esim_hyper_param['lstm_layers'], optimizer=Config.esim_hyper_param['optimizer'], trainable=Config.esim_hyper_param['trainable'], batch_size=Config.esim_hyper_param['batch_size'], dropout_rate=Config.esim_hyper_param['dropout'], num_neurons=Config.esim_hyper_param['num_neurons'], pos_weight=pos_weight, ckpt_path=path.join(save_folder, Config.name + '.ckpt'), name=Config.name) return clf
[ "numpy.asarray", "os.path.join" ]
[((323, 384), 'numpy.asarray', 'np.asarray', (["Config.esim_hyper_param['pos_weight']", 'np.float32'], {}), "(Config.esim_hyper_param['pos_weight'], np.float32)\n", (333, 384), True, 'import numpy as np\n'), ((1538, 1599), 'numpy.asarray', 'np.asarray', (["Config.esim_hyper_param['pos_weight']", 'np.float32'], {}), "(Config.esim_hyper_param['pos_weight'], np.float32)\n", (1548, 1599), True, 'import numpy as np\n'), ((1207, 1252), 'os.path.join', 'path.join', (['save_folder', "(Config.name + '.ckpt')"], {}), "(save_folder, Config.name + '.ckpt')\n", (1216, 1252), False, 'from os import path\n'), ((2422, 2467), 'os.path.join', 'path.join', (['save_folder', "(Config.name + '.ckpt')"], {}), "(save_folder, Config.name + '.ckpt')\n", (2431, 2467), False, 'from os import path\n')]
# -*- encoding: utf-8 -*- import codecs import json import random import shutil from onmt.translate.translator import build_translator from onmt.utils.parse import ArgumentParser import os import datetime import time import numpy as np import kp_evaluate from onmt.utils import split_corpus from onmt.utils.logging import init_logger import onmt.opts as opts def scan_new_checkpoints(ckpt_dir): ckpts = {} for subdir, dirs, files in os.walk(ckpt_dir): for file in files: if file.endswith('.pt'): ckpt_name = file[: file.find('.pt')] ckpts[ckpt_name] = os.path.join(subdir, file) return ckpts def _get_parser(): parser = ArgumentParser(description='run_kp_eval.py') opts.config_opts(parser) opts.translate_opts(parser) return parser if __name__ == "__main__": parser = _get_parser() parser.add_argument('--tasks', '-tasks', nargs='+', type=str, required=True, choices=['pred', 'eval', 'report'], help='Specify process to run, generation or evaluation') parser.add_argument('-ckpt_dir', type=str, required=True, help='Directory to all checkpoints') parser.add_argument('--step_base', '-step_base', type=int, default=1, help='the base of step to be evaluated, only if ckpt_step % step_base==0 we evaluate it, ' '1 means evaluate everything.') parser.add_argument('-output_dir', type=str, required=True, help='Directory to output results') parser.add_argument('-data_dir', type=str, required=True, help='Directory to datasets (ground-truth)') parser.add_argument('-test_interval', type=int, default=600, help='Minimum time interval the job should wait if a .pred file is not updated by another job (imply another job failed).') parser.add_argument('-testsets', nargs='+', type=str, default=["nus", "semeval"], help='Specify datasets to test on') # parser.add_argument('-testsets', nargs='+', type=str, default=["kp20k", "duc", "inspec", "krapivin", "nus", "semeval"], help='Specify datasets to test on') parser.add_argument('--onepass', '-onepass', action='store_true', help='If true, it only scans and generates once, otherwise an infinite loop scanning new available ckpts.') parser.add_argument('--wait_patience', '-wait_patience', type=int, default=1, help='Terminates evaluation after scan this number of times.') parser.add_argument('--wait_time', '-wait_time', type=int, default=120, help='.') parser.add_argument('--sleep_time', '-sleep_time', type=int, default=600, help='.') parser.add_argument('--ignore_existing', '-ignore_existing', action='store_true', help='If true, it ignores previous generated results.') parser.add_argument('--eval_topbeam', '-eval_topbeam',action="store_true", help='Evaluate with top beam only (self-terminating) or all beams (full search)') parser.add_argument('--kp_concat_type', '-kp_concat_type', default='one2seq', help='one2one or one2seq') opt = parser.parse_args() # np.random.seed() wait_time = np.random.randint(opt.wait_time) current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # "%Y-%m-%d_%H:%M:%S" logger = init_logger(opt.output_dir + '/autoeval_%s_%s.log' % ('-'.join(opt.testsets), current_time)) if not opt.onepass: logger.info('Sleep for %d sec to avoid conflicting with other threads' % wait_time) time.sleep(wait_time) if not os.path.exists(opt.output_dir): os.makedirs(opt.output_dir) if not os.path.exists(os.path.join(opt.output_dir, 'eval')): os.makedirs(os.path.join(opt.output_dir, 'eval')) if not os.path.exists(os.path.join(opt.output_dir, 'pred')): os.makedirs(os.path.join(opt.output_dir, 'pred')) # shutil.copy2(opt.config, opt.output_dir) logger.info(opt) testset_path_dict = {} for testset in opt.testsets: src_shard = split_corpus(opt.data_dir + '/%s/%s_test.src' % (testset, testset), shard_size=-1) tgt_shard = split_corpus(opt.data_dir + '/%s/%s_test.tgt' % (testset, testset), shard_size=-1) src_shard, tgt_shard = list(zip(src_shard, tgt_shard))[0] logger.info("Loaded data from %s: #src=%d, #tgt=%d" % (testset, len(src_shard), len(tgt_shard))) testset_path_dict[testset] = (opt.data_dir + '/%s/%s_test.src' % (testset, testset), opt.data_dir + '/%s/%s_test.tgt' % (testset, testset), src_shard, tgt_shard) current_patience = opt.wait_patience pred_linecount_dict = {} eval_linecount_dict = {} while True: new_ckpts = scan_new_checkpoints(opt.ckpt_dir) new_ckpts_items = sorted(new_ckpts.items(), key=lambda x:int(x[0][x[0].rfind('step_')+5:])) random.shuffle(new_ckpts_items) logger.info('Found %d checkpoints from %s!' % (len(new_ckpts), opt.ckpt_dir)) if opt.step_base is not None and opt.step_base > 1: logger.warn('-step_base is set, filtering some ckpts') new_ckpts_items = [(ckpt_name, ckpt_path) for ckpt_name, ckpt_path in new_ckpts_items if int(ckpt_name[ckpt_name.rfind('step_')+5:]) % opt.step_base == 0 and int(ckpt_name[ckpt_name.rfind('step_')+5:]) // opt.step_base > 0] logger.info('After filtering non opt.step_base ckpts, found %d checkpoints!' % (len(new_ckpts_items))) job_done = False # a flag indicating if any real pred/eval job is done for ckpt_id, (ckpt_name, ckpt_path) in enumerate(new_ckpts_items): logger.info("[%d/%d] Checking checkpoint: %s" % (ckpt_id, len(new_ckpts_items), ckpt_path)) setattr(opt, 'models', [ckpt_path]) translator = None score_dicts = {} for dataname, dataset in testset_path_dict.items(): src_path, tgt_path, src_shard, tgt_shard = dataset pred_path = os.path.join(opt.output_dir, 'pred', ckpt_name, '%s.pred' % dataname) printout_path = os.path.join(opt.output_dir, 'pred', ckpt_name, '%s.report.txt' % dataname) eval_dir = os.path.join(opt.output_dir, 'eval') eval_path = os.path.join(eval_dir, ckpt_name + '-%s-%s.json' % (dataname, 'selfterminating' if opt.eval_topbeam else 'exhaustive')) report_path = os.path.join(eval_dir, '%s_summary_%s.csv' % (current_time, '%s')) # create dirs if not os.path.exists(os.path.join(opt.output_dir, 'pred', ckpt_name)): os.makedirs(os.path.join(opt.output_dir, 'pred', ckpt_name)) if not os.path.exists(eval_dir): os.makedirs(eval_dir) # do translation # skip translation for this dataset if previous pred exists do_trans_flag = True if os.path.exists(pred_path): elapsed_time = time.time() - os.stat(pred_path).st_mtime if pred_path in pred_linecount_dict and pred_linecount_dict[pred_path] == len(src_shard): # if it's already in pred_linecount_dict, means it's done and counted do_trans_flag = False elif elapsed_time < opt.test_interval: do_trans_flag = False logger.info("Skip translating because previous PRED file was generated only %d sec ago (<%d sec)." % (elapsed_time, opt.test_interval)) else: # count line numbers of long-done files to check if this is a done pred try: pred_linecount_dict[pred_path] = len([1 for i in open(pred_path, 'r').readlines()]) # count is same means it's done if pred_linecount_dict[pred_path] == len(src_shard): do_trans_flag = False logger.info("Skip translating because previous PRED is complete.") else: # if file is modified less than opt.test_interval min, it might be being processed by another job. Otherwise it's a bad result and delete it if elapsed_time < opt.test_interval: do_trans_flag = False else: os.remove(pred_path) logger.info('Removed a bad PRED file, #(line)=%d, #(elapsed_time)=%ds: %s' % (pred_linecount_dict[pred_path], int(elapsed_time), pred_path)) except Exception as e: logger.exception('Error while validating or deleting PRED file: %s' % pred_path) if 'pred' in opt.tasks: try: if do_trans_flag or opt.ignore_existing: if translator is None: translator = build_translator(opt, report_score=opt.verbose, logger=logger) # create an empty file to indicate that the translator is working on it codecs.open(pred_path, 'w+', 'utf-8').close() # set output_file for each dataset (instead of outputting to opt.output) translator.out_file = codecs.open(pred_path, 'w+', 'utf-8') logger.info("Start translating [%s] for %s." % (dataname, ckpt_name)) logger.info("\t exporting PRED result to %s." % (pred_path)) _, _ = translator.translate( src=src_shard, tgt=tgt_shard, # src_dir=opt.src_dir, batch_size=opt.batch_size, attn_debug=opt.attn_debug, opt=opt ) job_done = True else: logger.info("Skip translating [%s] for %s." % (dataname, ckpt_name)) except Exception as e: logger.exception('Error while translating') # do evaluation do_eval_flag = True if not os.path.exists(pred_path): do_eval_flag = False logger.info("Skip evaluating because no available pred file.") else: try: if not pred_path in pred_linecount_dict: pred_linecount_dict[pred_path] = len([1 for i in open(pred_path, 'r').readlines()]) num_pred = pred_linecount_dict[pred_path] if num_pred != len(src_shard): do_eval_flag = False logger.info("Skip evaluating because current PRED file is not complete, #(line)=%d." % (num_pred)) elapsed_time = time.time() - os.stat(pred_path).st_mtime if elapsed_time > opt.test_interval: os.remove(pred_path) logger.warn('Removed a bad PRED file, #(line)=%d, #(elapsed_time)=%ds: %s' % (num_pred, int(elapsed_time), pred_path)) else: # if pred is good, check if re-eval is necessary if os.path.exists(eval_path): elapsed_time = time.time() - os.stat(eval_path).st_mtime if eval_path in eval_linecount_dict and eval_linecount_dict[eval_path] == len(src_shard): do_eval_flag = False logger.info("Skip evaluating because eval_path in eval_linecount_dict and count matches src_shard") elif elapsed_time < opt.test_interval: # if file is modified less than opt.test_interval min, it might be being processed by another job. do_eval_flag = False logger.info("Skip evaluating because previous EVAL file was generated only %d sec ago (<%d sec)." % (elapsed_time, opt.test_interval)) else: score_dict = json.load(open(eval_path, 'r')) if 'present_exact_correct@5' in score_dict: num_eval = len(score_dict['present_exact_correct@5']) else: num_eval = 0 eval_linecount_dict[eval_path] = num_eval if num_eval == len(src_shard): do_eval_flag = False logger.info("Skip evaluating because existing eval file is complete.") else: # it's a bad result and delete it os.remove(eval_path) logger.info('Removed a bad eval file, #(pred)=%d, #(eval)=%d, #(elapsed_time)=%ds: %s' % (num_pred, num_eval, int(elapsed_time), eval_path)) except Exception as e: logger.exception('Error while validating or deleting EVAL file: %s' % eval_path) if 'eval' in opt.tasks: try: if do_eval_flag or opt.ignore_existing: logger.info("Start evaluating [%s] for %s" % (dataname, ckpt_name)) logger.info("\t will export eval result to %s." % (eval_path)) score_dict = kp_evaluate.keyphrase_eval(opt.data_dir, src_path, tgt_path, pred_path=pred_path, logger=logger, verbose=opt.verbose, report_path=printout_path ) if score_dict is not None: score_dicts[dataname] = score_dict with open(eval_path, 'w') as output_json: output_json.write(json.dumps(score_dict)+'\n') job_done = True else: logger.info("Skip evaluating [%s] for %s." % (dataname, ckpt_name)) except Exception as e: logger.exception('Error while evaluating') # do generate summarized report if 'report' in opt.tasks: kp_evaluate.gather_eval_results(eval_root_dir=eval_dir, report_csv_dir=report_path) if job_done: # reset current_patience if no real job is done in the current iteration current_patience = opt.wait_patience else: current_patience -= 1 if opt.onepass: break if current_patience <= 0: break else: # scan again for every 10min sleep_time = opt.sleep_time logger.info('Sleep for %d sec, current_patience=%d' % (sleep_time, current_patience)) logger.info('*' * 50) time.sleep(sleep_time)
[ "onmt.opts.translate_opts", "os.remove", "onmt.utils.split_corpus", "random.shuffle", "os.walk", "json.dumps", "kp_evaluate.gather_eval_results", "numpy.random.randint", "os.path.join", "codecs.open", "onmt.opts.config_opts", "os.path.exists", "datetime.datetime.now", "os.stat", "time.sleep", "kp_evaluate.keyphrase_eval", "onmt.translate.translator.build_translator", "onmt.utils.parse.ArgumentParser", "os.makedirs", "time.time" ]
[((447, 464), 'os.walk', 'os.walk', (['ckpt_dir'], {}), '(ckpt_dir)\n', (454, 464), False, 'import os\n'), ((697, 741), 'onmt.utils.parse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""run_kp_eval.py"""'}), "(description='run_kp_eval.py')\n", (711, 741), False, 'from onmt.utils.parse import ArgumentParser\n'), ((747, 771), 'onmt.opts.config_opts', 'opts.config_opts', (['parser'], {}), '(parser)\n', (763, 771), True, 'import onmt.opts as opts\n'), ((776, 803), 'onmt.opts.translate_opts', 'opts.translate_opts', (['parser'], {}), '(parser)\n', (795, 803), True, 'import onmt.opts as opts\n'), ((3136, 3168), 'numpy.random.randint', 'np.random.randint', (['opt.wait_time'], {}), '(opt.wait_time)\n', (3153, 3168), True, 'import numpy as np\n'), ((3515, 3536), 'time.sleep', 'time.sleep', (['wait_time'], {}), '(wait_time)\n', (3525, 3536), False, 'import time\n'), ((3549, 3579), 'os.path.exists', 'os.path.exists', (['opt.output_dir'], {}), '(opt.output_dir)\n', (3563, 3579), False, 'import os\n'), ((3589, 3616), 'os.makedirs', 'os.makedirs', (['opt.output_dir'], {}), '(opt.output_dir)\n', (3600, 3616), False, 'import os\n'), ((4013, 4099), 'onmt.utils.split_corpus', 'split_corpus', (["(opt.data_dir + '/%s/%s_test.src' % (testset, testset))"], {'shard_size': '(-1)'}), "(opt.data_dir + '/%s/%s_test.src' % (testset, testset),\n shard_size=-1)\n", (4025, 4099), False, 'from onmt.utils import split_corpus\n'), ((4116, 4202), 'onmt.utils.split_corpus', 'split_corpus', (["(opt.data_dir + '/%s/%s_test.tgt' % (testset, testset))"], {'shard_size': '(-1)'}), "(opt.data_dir + '/%s/%s_test.tgt' % (testset, testset),\n shard_size=-1)\n", (4128, 4202), False, 'from onmt.utils import split_corpus\n'), ((4895, 4926), 'random.shuffle', 'random.shuffle', (['new_ckpts_items'], {}), '(new_ckpts_items)\n', (4909, 4926), False, 'import random\n'), ((3188, 3211), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3209, 3211), False, 'import datetime\n'), ((3643, 3679), 'os.path.join', 'os.path.join', (['opt.output_dir', '"""eval"""'], {}), "(opt.output_dir, 'eval')\n", (3655, 3679), False, 'import os\n'), ((3702, 3738), 'os.path.join', 'os.path.join', (['opt.output_dir', '"""eval"""'], {}), "(opt.output_dir, 'eval')\n", (3714, 3738), False, 'import os\n'), ((3766, 3802), 'os.path.join', 'os.path.join', (['opt.output_dir', '"""pred"""'], {}), "(opt.output_dir, 'pred')\n", (3778, 3802), False, 'import os\n'), ((3825, 3861), 'os.path.join', 'os.path.join', (['opt.output_dir', '"""pred"""'], {}), "(opt.output_dir, 'pred')\n", (3837, 3861), False, 'import os\n'), ((15897, 15919), 'time.sleep', 'time.sleep', (['sleep_time'], {}), '(sleep_time)\n', (15907, 15919), False, 'import time\n'), ((618, 644), 'os.path.join', 'os.path.join', (['subdir', 'file'], {}), '(subdir, file)\n', (630, 644), False, 'import os\n'), ((6021, 6090), 'os.path.join', 'os.path.join', (['opt.output_dir', '"""pred"""', 'ckpt_name', "('%s.pred' % dataname)"], {}), "(opt.output_dir, 'pred', ckpt_name, '%s.pred' % dataname)\n", (6033, 6090), False, 'import os\n'), ((6123, 6198), 'os.path.join', 'os.path.join', (['opt.output_dir', '"""pred"""', 'ckpt_name', "('%s.report.txt' % dataname)"], {}), "(opt.output_dir, 'pred', ckpt_name, '%s.report.txt' % dataname)\n", (6135, 6198), False, 'import os\n'), ((6226, 6262), 'os.path.join', 'os.path.join', (['opt.output_dir', '"""eval"""'], {}), "(opt.output_dir, 'eval')\n", (6238, 6262), False, 'import os\n'), ((6291, 6415), 'os.path.join', 'os.path.join', (['eval_dir', "(ckpt_name + '-%s-%s.json' % (dataname, 'selfterminating' if opt.\n eval_topbeam else 'exhaustive'))"], {}), "(eval_dir, ckpt_name + '-%s-%s.json' % (dataname, \n 'selfterminating' if opt.eval_topbeam else 'exhaustive'))\n", (6303, 6415), False, 'import os\n'), ((6482, 6548), 'os.path.join', 'os.path.join', (['eval_dir', "('%s_summary_%s.csv' % (current_time, '%s'))"], {}), "(eval_dir, '%s_summary_%s.csv' % (current_time, '%s'))\n", (6494, 6548), False, 'import os\n'), ((7006, 7031), 'os.path.exists', 'os.path.exists', (['pred_path'], {}), '(pred_path)\n', (7020, 7031), False, 'import os\n'), ((6772, 6796), 'os.path.exists', 'os.path.exists', (['eval_dir'], {}), '(eval_dir)\n', (6786, 6796), False, 'import os\n'), ((6818, 6839), 'os.makedirs', 'os.makedirs', (['eval_dir'], {}), '(eval_dir)\n', (6829, 6839), False, 'import os\n'), ((10600, 10625), 'os.path.exists', 'os.path.exists', (['pred_path'], {}), '(pred_path)\n', (10614, 10625), False, 'import os\n'), ((15286, 15374), 'kp_evaluate.gather_eval_results', 'kp_evaluate.gather_eval_results', ([], {'eval_root_dir': 'eval_dir', 'report_csv_dir': 'report_path'}), '(eval_root_dir=eval_dir, report_csv_dir=\n report_path)\n', (15317, 15374), False, 'import kp_evaluate\n'), ((6618, 6665), 'os.path.join', 'os.path.join', (['opt.output_dir', '"""pred"""', 'ckpt_name'], {}), "(opt.output_dir, 'pred', ckpt_name)\n", (6630, 6665), False, 'import os\n'), ((6700, 6747), 'os.path.join', 'os.path.join', (['opt.output_dir', '"""pred"""', 'ckpt_name'], {}), "(opt.output_dir, 'pred', ckpt_name)\n", (6712, 6747), False, 'import os\n'), ((7068, 7079), 'time.time', 'time.time', ([], {}), '()\n', (7077, 7079), False, 'import time\n'), ((7082, 7100), 'os.stat', 'os.stat', (['pred_path'], {}), '(pred_path)\n', (7089, 7100), False, 'import os\n'), ((9607, 9644), 'codecs.open', 'codecs.open', (['pred_path', '"""w+"""', '"""utf-8"""'], {}), "(pred_path, 'w+', 'utf-8')\n", (9618, 9644), False, 'import codecs\n'), ((11764, 11789), 'os.path.exists', 'os.path.exists', (['eval_path'], {}), '(eval_path)\n', (11778, 11789), False, 'import os\n'), ((14198, 14347), 'kp_evaluate.keyphrase_eval', 'kp_evaluate.keyphrase_eval', (['opt.data_dir', 'src_path', 'tgt_path'], {'pred_path': 'pred_path', 'logger': 'logger', 'verbose': 'opt.verbose', 'report_path': 'printout_path'}), '(opt.data_dir, src_path, tgt_path, pred_path=\n pred_path, logger=logger, verbose=opt.verbose, report_path=printout_path)\n', (14224, 14347), False, 'import kp_evaluate\n'), ((9219, 9281), 'onmt.translate.translator.build_translator', 'build_translator', (['opt'], {'report_score': 'opt.verbose', 'logger': 'logger'}), '(opt, report_score=opt.verbose, logger=logger)\n', (9235, 9281), False, 'from onmt.translate.translator import build_translator\n'), ((11315, 11326), 'time.time', 'time.time', ([], {}), '()\n', (11324, 11326), False, 'import time\n'), ((11454, 11474), 'os.remove', 'os.remove', (['pred_path'], {}), '(pred_path)\n', (11463, 11474), False, 'import os\n'), ((9410, 9447), 'codecs.open', 'codecs.open', (['pred_path', '"""w+"""', '"""utf-8"""'], {}), "(pred_path, 'w+', 'utf-8')\n", (9421, 9447), False, 'import codecs\n'), ((11329, 11347), 'os.stat', 'os.stat', (['pred_path'], {}), '(pred_path)\n', (11336, 11347), False, 'import os\n'), ((11838, 11849), 'time.time', 'time.time', ([], {}), '()\n', (11847, 11849), False, 'import time\n'), ((8590, 8610), 'os.remove', 'os.remove', (['pred_path'], {}), '(pred_path)\n', (8599, 8610), False, 'import os\n'), ((11852, 11870), 'os.stat', 'os.stat', (['eval_path'], {}), '(eval_path)\n', (11859, 11870), False, 'import os\n'), ((13490, 13510), 'os.remove', 'os.remove', (['eval_path'], {}), '(eval_path)\n', (13499, 13510), False, 'import os\n'), ((14866, 14888), 'json.dumps', 'json.dumps', (['score_dict'], {}), '(score_dict)\n', (14876, 14888), False, 'import json\n')]
import os import cv2 import json import time import numpy as np from h5_logger import H5Logger from .config import Config from .camera import Camera from .utility import get_user_monitor from .utility import get_angle_and_body_vector from .utility import get_max_area_blob from .blob_finder import BlobFinder from .homography import Homography from .calibration import Calibration from .display import DisplayMode from .display import DisplayController class Trials: POS_NOT_FOUND = (-1.0, -1.0) def __init__(self, param_file, data_file): self.param = None self.logger = None self.bg_image = None self.t_start = 0.0 self.files = {'param': param_file, 'data': data_file} self.load_param_file() self.config = Config() self.camera = Camera(self.config, 'fly') self.calibration = Calibration(self.config) self.user_monitor = get_user_monitor(self.config) self.display = DisplayController(self.config, images=self.param['images']) self.create_camera_window() self.blob_finder = BlobFinder(**self.config['fly']['blob_finder']) self.blob_finder.mask = self.arena_mask() self.zero_bg_image() self.show_threshold_image = False def load_param_file(self): if not os.path.exists(self.files['param']): raise FileNotFoundError(f"param file not found: {self.files['param']}") with open(self.files['param'], 'r') as f: self.param = json.load(f) def check_data_file(self): if os.path.exists(self.files['data']): print() print(' data file already exists overwrite (y/n): ', end='') ans = input() print() if not ans == 'y': print(' ok ... aborting run') print() exit(0) def create_camera_window(self): self.window_name = "studio50 file trials" cv2.namedWindow(self.window_name) cv2.resizeWindow( self.window_name, self.config['camera']['width'], self.config['camera']['height'] ) window_pos_x = self.user_monitor.width - self.config['camera']['width'] window_pos_y = 0 cv2.moveWindow(self.window_name, window_pos_x, window_pos_y) def create_threshold_image(self): cv2.namedWindow('threshold') cv2.resizeWindow( 'threshold', self.config['camera']['width'], self.config['camera']['height'] ) window_pos_x = self.user_monitor.width - self.config['camera']['width'] window_pos_y = 0 cv2.moveWindow('threshold', window_pos_x, window_pos_y) def run_attributes(self): attributes = { 'param' : self.param, 'config' : self.config.data, 'cal_data' : self.calibration.data(jsonable=True) } return attributes def run(self): print() print(f" running studio50 fly") print(f" ====================") print() print(f" param: {self.files['param']}") print(f" output: {self.files['data']}") print() self.check_data_file() self.logger = H5Logger(self.files['data'],jsonparam=self.run_attributes()) state = {'mode': DisplayMode.BLACK, 'kwargs': {}} self.display.update_image(state) cv2.waitKey(self.config['projector']['start_dt_ms']) self.find_bg_image() if self.show_threshold_image: self.create_threshold_image() self.run_trial_schedule() def run_trial_schedule(self): print(f' running trials (press q to quit)') print() self.t_start = time.time() for cycle_num in range(self.param['cycles']): print(f" cycle: {cycle_num+1}/{self.param['cycles']}") print() for trial_num, trial_name in enumerate(self.param['schedule']): self.run_trial(trial_num, trial_name) print() def run_trial(self, trial_num, trial_name): t_trial = time.time() trial_param = self.param['trials'][trial_name] len_schedule = len(self.param['schedule']) print(f' trial {trial_num+1}/{len_schedule}: {trial_name}') t_now = t_trial pos = self.POS_NOT_FOUND body_angle = 0.0 body_vector = np.array([0.0, 0.0]) exit_ok_flag = False while (t_now - t_trial < trial_param['duration']) or not exit_ok_flag: t_now = time.time() t_elapsed_trial = t_now - t_trial t_elapsed_total = t_now - self.t_start found = False ok, image = self.camera.read() if ok: gray_image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) diff_image = cv2.absdiff(gray_image, self.bg_image) blob_list, blob_image, thresh_image = self.blob_finder.find(diff_image) if self.show_threshold_image: cv2.imshow('threshold', thresh_image) if blob_list: found = True fly = get_max_area_blob(blob_list) pos = (fly['centroid_x'], fly['centroid_y']) body_angle, body_vector = get_angle_and_body_vector(fly['moments']) self.draw_indicators_on_image(image, (fly['centroid_x'],fly['centroid_y']), body_vector) cv2.imshow(self.window_name, image) log_image = self.get_log_image(pos, gray_image) display_mode, exit_ok_flag = self.update_display(t_elapsed_trial, pos, trial_param) data = { 'found' : found, 't_total' : t_elapsed_total, 't_trial' : t_elapsed_trial, 'position' : pos, 'body_angle' : body_angle, 'body_vector' : body_vector, 'display_mode' : display_mode, 'trial_num' : trial_num, 'image' : log_image, } self.logger.add(data) def update_display(self, t, pos, trial_param): display_mode = DisplayMode[trial_param['display_mode'].upper()] cx_arena = self.calibration.arena['centroid_x'] cy_arena = self.calibration.arena['centroid_y'] fly_radial_pos = np.sqrt((pos[0] - cx_arena)**2 + (pos[1] - cy_arena)**2) if display_mode == DisplayMode.BLACK: kwargs = {} elif display_mode == DisplayMode.SOLID: kwargs = {'color': trial_param['color']} elif display_mode == DisplayMode.STATIC_IMAGE: kwargs = {'name': trial_param['name']} elif display_mode == DisplayMode.ROTATING_RAYS: if (trial_param['center'] == 'arena') or (pos == self.POS_NOT_FOUND): pos_tmp = (cx_arena, cy_arena) else: pos_tmp = pos pos_proj = self.calibration.homography.camera_to_projector(pos_tmp) kwargs = { 't' : t, 'pos' : tuple(pos_proj), 'rate' : trial_param['rate'], 'num_rays' : trial_param['num_rays'], 'color' : trial_param['color'], } elif display_mode == DisplayMode.FILLED_CIRCLE: if (trial_param['center'] == 'arena') or (pos == self.POS_NOT_FOUND): pos_tmp = (cx_arena, cy_arena) else: pos_tmp = pos pos_proj = self.calibration.homography.camera_to_projector(pos_tmp) # Get circle radius. If >= 1 then it size in pixels. If < 1 then it is # fraction of arena radius. radius = trial_param['radius'] if radius <= 1: radius = radius*self.get_arena_radius() kwargs = { 'pos' : tuple(pos_proj), 'radius' : int(radius), 'color' : trial_param['color'], } elif display_mode == DisplayMode.SOLID_BLINKING: kwargs = { 't' : t, 'period' : trial_param['period'], 'duty_cycle' : trial_param['duty_cycle'], 'on_color' : trial_param['on_color'], 'off_color' : trial_param['off_color'], } elif display_mode == DisplayMode.GRAYSCALE_GRADIENT: if (trial_param['center'] == 'arena') or (pos == self.POS_NOT_FOUND): pos_tmp = (cx_arena, cy_arena) else: pos_tmp = pos pos_proj = tuple(self.calibration.homography.camera_to_projector(pos_tmp)) radius = trial_param['radius'] if radius <= 1: radius = radius*self.get_arena_radius() kwargs = {'pos': tuple(pos_proj), 'radius' : radius} else: raise ValueError(f"unknown display mode {trial_param['display_mode']}") # Check for inhibition condition try: inhibit_cond = trial_param['inhibit_cond'] except KeyError: inhibit_cond = {} inhibit_flag = False if inhibit_cond: # We have inhibition cond. if 'inside_radius' in inhibit_cond: radius = inhibit_cond['inside_radius'] if radius <= 1: radius = radius*self.get_arena_radius() inhibit_flag = True if fly_radial_pos <= radius else False if 'outside_radius' in inhibit_cond: radius = inhibit_cond['outside_radius'] if radius <= 1: radius = radius*self.get_arena_radius() inhibit_flag = True if fly_radial_pos >= radius else False kwargs['inhibit'] = inhibit_flag # Update the projector display self.display.update_image({'mode': display_mode, 'kwargs': kwargs}) key = cv2.waitKey(1) & 0xff if key == ord('q'): print() print(' run aborted!') print() exit(0) # Check for exit condition try: exit_cond = trial_param['exit_cond'] except KeyError: exit_cond = {} exit_ok_flag = True if exit_cond: # We have an exit condition, check it and set the exit_ok_flag accordinly if 'inside_radius' in exit_cond: radius = exit_cond['inside_radius'] if radius <= 1: radius = radius*self.get_arena_radius() exit_ok_flag = True if fly_radial_pos <= radius else False if 'outside_radius' in exit_cond: radius = exit_cond['outside_radius'] if radius <= 1: radius = radius*self.get_arena_radius() exit_ok_flag = True if fly_radial_pos >= radius else False return display_mode, exit_ok_flag def get_log_image(self, pos, image): log_image_type = self.config['fly']['log']['image']['type'] if log_image_type == 'full': log_image = image elif log_image_type == 'arena': bbx, bby, bbw, bbh = self.calibration.arena['bounding_box'] log_image = image[bby:bby+bbh,bbx:bbx+bbw] elif log_image_type == 'fly': image_h, image_w = image.shape log_image_shape = self.config['fly']['log']['image']['fly_image_shape'] log_image_h, log_image_w = log_image_shape fly_x, fly_y = int(pos[0]), int(pos[1]) # Get lower left (x0,y0) and upper right (x1,y1) corners for sub_image x0 = fly_x - log_image_w//2 y0 = fly_y - log_image_h//2 x1 = x0 + log_image_w y1 = y0 + log_image_h # Get adjustments for when part ofsub_image if outside of image m0 = 0 if x0 > -1 else -x0 n0 = 0 if y0 > -1 else -y0 m1 = log_image_w if x1 < (image_w + 1) else -(x1 - image_w) n1 = log_image_h if y1 < (image_h + 1) else -(y1 - image_h) # Make sure actual x0 and y0 used are >= 0 x0 = 0 if x0 < 0 else x0 y0 = 0 if y0 < 0 else y0 # Create log image and assign subregion log_image = np.zeros(log_image_shape, dtype=np.uint8) log_image[n0:n1,m0:m1] = image[y0:y1, x0:x1] else: raise ValueError(f'unknown log image type {log_image_type}') return log_image def draw_indicators_on_image(self, image, pos, vector): # Body orientation line s0 = self.config['fly']['circle']['radius'] s1 = s0 + self.config['fly']['line']['length'] cx, cy = int(pos[0]), int(pos[1]) for sign in (1,-1): pt0 = int(cx + sign*s0*vector[0]), int(cy + sign*s0*vector[1]) pt1 = int(cx + sign*s1*vector[0]), int(cy + sign*s1*vector[1]) cv2.line( image, pt0, pt1, self.config['fly']['line']['color'], self.config['fly']['line']['thickness'] ) # Circle around fly position cv2.circle( image, (cx, cy), self.config['fly']['circle']['radius'], self.config['fly']['circle']['color'], self.config['fly']['circle']['thickness'] ) def find_bg_image(self): print(f' finding background image (press q when done)') self.zero_bg_image() cv2.imshow(self.window_name, self.bg_image) cv2.waitKey(1) cnt = 0 done = False while not done: ok, image = self.camera.read() if ok: if cnt > self.config['fly']['background']['min_count']: gray_image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) self.bg_image = np.maximum(self.bg_image, gray_image) cv2.imshow(self.window_name, self.bg_image) key = cv2.waitKey(1) & 0xff if key == ord('q'): done = True cnt += 1 print() def zero_bg_image(self): shape = self.config['camera']['height'], self.config['camera']['width'] self.bg_image = np.zeros(shape, dtype=np.uint8) def arena_mask(self): shape = self.config['camera']['height'], self.config['camera']['width'] arena_mask = np.zeros(shape, dtype=np.uint8) cv2.fillPoly(arena_mask, pts=[self.calibration.arena['contour']], color=(255,)) kernel_size = self.config['fly']['arena_mask']['kernel_size'] kernel = np.ones((kernel_size, kernel_size)) arena_mask = cv2.erode(arena_mask,kernel,iterations=1) return arena_mask def get_arena_radius(self): bb_x,bb_y, bb_w,bb_h = self.calibration.arena['bounding_box'] p0 = (bb_x, bb_y) p1 = (bb_x + bb_w, bb_y + bb_h) p0_proj = tuple(self.calibration.homography.camera_to_projector(p0)) p1_proj = tuple(self.calibration.homography.camera_to_projector(p1)) radius = 0.5*max([abs(p1_proj[0] - p0_proj[0]), abs(p1_proj[1] - p0_proj[1])]) return radius
[ "numpy.maximum", "numpy.ones", "cv2.fillPoly", "cv2.absdiff", "cv2.erode", "cv2.imshow", "cv2.line", "cv2.cvtColor", "os.path.exists", "cv2.circle", "cv2.waitKey", "cv2.resizeWindow", "json.load", "numpy.zeros", "time.time", "numpy.array", "cv2.moveWindow", "cv2.namedWindow", "numpy.sqrt" ]
[((1558, 1592), 'os.path.exists', 'os.path.exists', (["self.files['data']"], {}), "(self.files['data'])\n", (1572, 1592), False, 'import os\n'), ((1954, 1987), 'cv2.namedWindow', 'cv2.namedWindow', (['self.window_name'], {}), '(self.window_name)\n', (1969, 1987), False, 'import cv2\n'), ((1996, 2100), 'cv2.resizeWindow', 'cv2.resizeWindow', (['self.window_name', "self.config['camera']['width']", "self.config['camera']['height']"], {}), "(self.window_name, self.config['camera']['width'], self.\n config['camera']['height'])\n", (2012, 2100), False, 'import cv2\n'), ((2277, 2337), 'cv2.moveWindow', 'cv2.moveWindow', (['self.window_name', 'window_pos_x', 'window_pos_y'], {}), '(self.window_name, window_pos_x, window_pos_y)\n', (2291, 2337), False, 'import cv2\n'), ((2386, 2414), 'cv2.namedWindow', 'cv2.namedWindow', (['"""threshold"""'], {}), "('threshold')\n", (2401, 2414), False, 'import cv2\n'), ((2423, 2522), 'cv2.resizeWindow', 'cv2.resizeWindow', (['"""threshold"""', "self.config['camera']['width']", "self.config['camera']['height']"], {}), "('threshold', self.config['camera']['width'], self.config[\n 'camera']['height'])\n", (2439, 2522), False, 'import cv2\n'), ((2699, 2754), 'cv2.moveWindow', 'cv2.moveWindow', (['"""threshold"""', 'window_pos_x', 'window_pos_y'], {}), "('threshold', window_pos_x, window_pos_y)\n", (2713, 2754), False, 'import cv2\n'), ((3486, 3538), 'cv2.waitKey', 'cv2.waitKey', (["self.config['projector']['start_dt_ms']"], {}), "(self.config['projector']['start_dt_ms'])\n", (3497, 3538), False, 'import cv2\n'), ((3811, 3822), 'time.time', 'time.time', ([], {}), '()\n', (3820, 3822), False, 'import time\n'), ((4183, 4194), 'time.time', 'time.time', ([], {}), '()\n', (4192, 4194), False, 'import time\n'), ((4478, 4498), 'numpy.array', 'np.array', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (4486, 4498), True, 'import numpy as np\n'), ((6587, 6647), 'numpy.sqrt', 'np.sqrt', (['((pos[0] - cx_arena) ** 2 + (pos[1] - cy_arena) ** 2)'], {}), '((pos[0] - cx_arena) ** 2 + (pos[1] - cy_arena) ** 2)\n', (6594, 6647), True, 'import numpy as np\n'), ((13566, 13725), 'cv2.circle', 'cv2.circle', (['image', '(cx, cy)', "self.config['fly']['circle']['radius']", "self.config['fly']['circle']['color']", "self.config['fly']['circle']['thickness']"], {}), "(image, (cx, cy), self.config['fly']['circle']['radius'], self.\n config['fly']['circle']['color'], self.config['fly']['circle']['thickness']\n )\n", (13576, 13725), False, 'import cv2\n'), ((13945, 13988), 'cv2.imshow', 'cv2.imshow', (['self.window_name', 'self.bg_image'], {}), '(self.window_name, self.bg_image)\n', (13955, 13988), False, 'import cv2\n'), ((13997, 14011), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (14008, 14011), False, 'import cv2\n'), ((14717, 14748), 'numpy.zeros', 'np.zeros', (['shape'], {'dtype': 'np.uint8'}), '(shape, dtype=np.uint8)\n', (14725, 14748), True, 'import numpy as np\n'), ((14877, 14908), 'numpy.zeros', 'np.zeros', (['shape'], {'dtype': 'np.uint8'}), '(shape, dtype=np.uint8)\n', (14885, 14908), True, 'import numpy as np\n'), ((14917, 14996), 'cv2.fillPoly', 'cv2.fillPoly', (['arena_mask'], {'pts': "[self.calibration.arena['contour']]", 'color': '(255,)'}), "(arena_mask, pts=[self.calibration.arena['contour']], color=(255,))\n", (14929, 14996), False, 'import cv2\n'), ((15084, 15119), 'numpy.ones', 'np.ones', (['(kernel_size, kernel_size)'], {}), '((kernel_size, kernel_size))\n', (15091, 15119), True, 'import numpy as np\n'), ((15141, 15184), 'cv2.erode', 'cv2.erode', (['arena_mask', 'kernel'], {'iterations': '(1)'}), '(arena_mask, kernel, iterations=1)\n', (15150, 15184), False, 'import cv2\n'), ((1306, 1341), 'os.path.exists', 'os.path.exists', (["self.files['param']"], {}), "(self.files['param'])\n", (1320, 1341), False, 'import os\n'), ((1502, 1514), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1511, 1514), False, 'import json\n'), ((4630, 4641), 'time.time', 'time.time', ([], {}), '()\n', (4639, 4641), False, 'import time\n'), ((10280, 10294), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (10291, 10294), False, 'import cv2\n'), ((13290, 13398), 'cv2.line', 'cv2.line', (['image', 'pt0', 'pt1', "self.config['fly']['line']['color']", "self.config['fly']['line']['thickness']"], {}), "(image, pt0, pt1, self.config['fly']['line']['color'], self.config[\n 'fly']['line']['thickness'])\n", (13298, 13398), False, 'import cv2\n'), ((4858, 4897), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (4870, 4897), False, 'import cv2\n'), ((4926, 4964), 'cv2.absdiff', 'cv2.absdiff', (['gray_image', 'self.bg_image'], {}), '(gray_image, self.bg_image)\n', (4937, 4964), False, 'import cv2\n'), ((5558, 5593), 'cv2.imshow', 'cv2.imshow', (['self.window_name', 'image'], {}), '(self.window_name, image)\n', (5568, 5593), False, 'import cv2\n'), ((5121, 5158), 'cv2.imshow', 'cv2.imshow', (['"""threshold"""', 'thresh_image'], {}), "('threshold', thresh_image)\n", (5131, 5158), False, 'import cv2\n'), ((12646, 12687), 'numpy.zeros', 'np.zeros', (['log_image_shape'], {'dtype': 'np.uint8'}), '(log_image_shape, dtype=np.uint8)\n', (12654, 12687), True, 'import numpy as np\n'), ((14241, 14280), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (14253, 14280), False, 'import cv2\n'), ((14316, 14353), 'numpy.maximum', 'np.maximum', (['self.bg_image', 'gray_image'], {}), '(self.bg_image, gray_image)\n', (14326, 14353), True, 'import numpy as np\n'), ((14374, 14417), 'cv2.imshow', 'cv2.imshow', (['self.window_name', 'self.bg_image'], {}), '(self.window_name, self.bg_image)\n', (14384, 14417), False, 'import cv2\n'), ((14444, 14458), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (14455, 14458), False, 'import cv2\n')]
import json import numpy as np class SegmentStandardScaler: def __init__(self, segments=None): self.feat_mean = np.zeros((1, 1)) self.feat_std = np.ones((1, 1)) self.segments = segments self._encountered_y_shape = None def fit(self, y=None, segments=None): if segments is not None: self.segments = segments if self.segments is None: raise ValueError("Please define segments to scale features for shape", self.feat_mean.shape) feat_std = [] feat_mean = [] splits = np.concatenate([np.array([0]), np.cumsum(self.segments)]) print(splits) for i in range(len(self.segments)): sub_array = y[:, splits[i]:splits[i + 1]] feat_std.append(np.std(sub_array)) feat_mean.append(np.mean(sub_array)) feat_mean = np.repeat(np.array(feat_mean), np.array(self.segments)) feat_std = np.repeat(np.array(feat_std), np.array(self.segments)) self.feat_std = np.expand_dims(feat_std, axis=0) self.feat_mean = np.expand_dims(feat_mean, axis=0) self._encountered_y_shape = np.array(y.shape) # print(feat_mean,feat_std) def transform(self, y=None): y_res = None if y is not None: y_res = (y - self.feat_mean) / self.feat_std return y_res def inverse_transform(self, y=None): y_res = y if y is not None: y_res = y * self.feat_std + self.feat_mean return y_res def fit_transform(self, y=None, segments=None): self.fit(y=y,segments=segments) return self.transform(y=y) def save(self, filepath): outdict = {'feat_mean': self.feat_mean.tolist(), 'feat_std': self.feat_std.tolist(), } with open(filepath, 'w') as f: json.dump(outdict, f) def load(self, filepath): with open(filepath, 'r') as f: indict = json.load(f) self.feat_mean = np.array(indict['feat_mean']) self.feat_std = np.array(indict['feat_std']) def get_params(self): outdict = {'feat_mean': self.feat_mean.tolist(), 'feat_std': self.feat_std.tolist(), } return outdict def set_params(self, indict): self.feat_mean = np.array(indict['feat_mean']) self.feat_std = np.array(indict['feat_std']) def print_params_info(self): print("Info: Data feature shape", self._encountered_y_shape) print("Info: Using feature-scale", self.feat_std.shape, ":", self.feat_std) print("Info: Using feature-offset", self.feat_mean.shape, ":", self.feat_mean)
[ "json.dump", "json.load", "numpy.std", "numpy.zeros", "numpy.expand_dims", "numpy.ones", "numpy.cumsum", "numpy.mean", "numpy.array" ]
[((127, 143), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (135, 143), True, 'import numpy as np\n'), ((168, 183), 'numpy.ones', 'np.ones', (['(1, 1)'], {}), '((1, 1))\n', (175, 183), True, 'import numpy as np\n'), ((1024, 1056), 'numpy.expand_dims', 'np.expand_dims', (['feat_std'], {'axis': '(0)'}), '(feat_std, axis=0)\n', (1038, 1056), True, 'import numpy as np\n'), ((1082, 1115), 'numpy.expand_dims', 'np.expand_dims', (['feat_mean'], {'axis': '(0)'}), '(feat_mean, axis=0)\n', (1096, 1115), True, 'import numpy as np\n'), ((1153, 1170), 'numpy.array', 'np.array', (['y.shape'], {}), '(y.shape)\n', (1161, 1170), True, 'import numpy as np\n'), ((2023, 2052), 'numpy.array', 'np.array', (["indict['feat_mean']"], {}), "(indict['feat_mean'])\n", (2031, 2052), True, 'import numpy as np\n'), ((2077, 2105), 'numpy.array', 'np.array', (["indict['feat_std']"], {}), "(indict['feat_std'])\n", (2085, 2105), True, 'import numpy as np\n'), ((2349, 2378), 'numpy.array', 'np.array', (["indict['feat_mean']"], {}), "(indict['feat_mean'])\n", (2357, 2378), True, 'import numpy as np\n'), ((2403, 2431), 'numpy.array', 'np.array', (["indict['feat_std']"], {}), "(indict['feat_std'])\n", (2411, 2431), True, 'import numpy as np\n'), ((880, 899), 'numpy.array', 'np.array', (['feat_mean'], {}), '(feat_mean)\n', (888, 899), True, 'import numpy as np\n'), ((901, 924), 'numpy.array', 'np.array', (['self.segments'], {}), '(self.segments)\n', (909, 924), True, 'import numpy as np\n'), ((955, 973), 'numpy.array', 'np.array', (['feat_std'], {}), '(feat_std)\n', (963, 973), True, 'import numpy as np\n'), ((975, 998), 'numpy.array', 'np.array', (['self.segments'], {}), '(self.segments)\n', (983, 998), True, 'import numpy as np\n'), ((1871, 1892), 'json.dump', 'json.dump', (['outdict', 'f'], {}), '(outdict, f)\n', (1880, 1892), False, 'import json\n'), ((1984, 1996), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1993, 1996), False, 'import json\n'), ((591, 604), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (599, 604), True, 'import numpy as np\n'), ((606, 630), 'numpy.cumsum', 'np.cumsum', (['self.segments'], {}), '(self.segments)\n', (615, 630), True, 'import numpy as np\n'), ((781, 798), 'numpy.std', 'np.std', (['sub_array'], {}), '(sub_array)\n', (787, 798), True, 'import numpy as np\n'), ((829, 847), 'numpy.mean', 'np.mean', (['sub_array'], {}), '(sub_array)\n', (836, 847), True, 'import numpy as np\n')]
from MLlib.models import BernoulliNB import numpy as np with open('datasets/bernoulli_naive_bayes_dataset.txt', 'r') as f: words = [[string.strip('\n') for string in line.split(',')] for line in f] for i in range(len(words)): words[i] = list(map(int, words[i])) x = np.array([words[i] for i in range(len(words)-1)]) y_class = np.array(words[-1]) test = np.array([[1, 0, 0, 0, 1, 1], [1, 1, 1, 0, 0, 1]]) nb = BernoulliNB(alpha=1).fit(np.where(x > 0, 1, 0), y_class) print(nb.predict(test))
[ "MLlib.models.BernoulliNB", "numpy.where", "numpy.array" ]
[((350, 369), 'numpy.array', 'np.array', (['words[-1]'], {}), '(words[-1])\n', (358, 369), True, 'import numpy as np\n'), ((378, 428), 'numpy.array', 'np.array', (['[[1, 0, 0, 0, 1, 1], [1, 1, 1, 0, 0, 1]]'], {}), '([[1, 0, 0, 0, 1, 1], [1, 1, 1, 0, 0, 1]])\n', (386, 428), True, 'import numpy as np\n'), ((459, 480), 'numpy.where', 'np.where', (['(x > 0)', '(1)', '(0)'], {}), '(x > 0, 1, 0)\n', (467, 480), True, 'import numpy as np\n'), ((434, 454), 'MLlib.models.BernoulliNB', 'BernoulliNB', ([], {'alpha': '(1)'}), '(alpha=1)\n', (445, 454), False, 'from MLlib.models import BernoulliNB\n')]
import os import uuid import pandas as pd import numpy as np import concurrent.futures as cf from arize.api import Client from arize.utils.types import ModelTypes ITERATIONS = 1 NUM_RECORDS = 2 arize = Client( organization_key=os.environ.get("ARIZE_ORG_KEY"), api_key=os.environ.get("ARIZE_API_KEY"), ) features = pd.DataFrame( np.random.randint(0, 100000000, size=(NUM_RECORDS, 12)), columns=list("ABCDEFGHIJKL"), ) pred_labels = pd.DataFrame(np.random.randint(0, 100000000, size=(NUM_RECORDS, 1))) ids = pd.DataFrame([str(uuid.uuid4()) for _ in range(NUM_RECORDS)]) column_overwrite = list("abcdefghijkl") shap_values = pd.DataFrame( np.random.random(size=(NUM_RECORDS, 12)), columns=list("abcdefghijkl"), ) print(shap_values) preds = arize.bulk_log( model_id="example_model_id", model_type=ModelTypes.NUMERIC, model_version="v0.1", prediction_ids=ids, prediction_labels=pred_labels, features=features, feature_names_overwrite=column_overwrite, shap_values=shap_values, ) for future in cf.as_completed(preds): res = future.result() print(f"future completed with response code {res.status_code}") if res.status_code != 200: print(f"future failed with response code {res.status_code}, {res.text}")
[ "uuid.uuid4", "os.environ.get", "numpy.random.randint", "numpy.random.random", "concurrent.futures.as_completed" ]
[((1049, 1071), 'concurrent.futures.as_completed', 'cf.as_completed', (['preds'], {}), '(preds)\n', (1064, 1071), True, 'import concurrent.futures as cf\n'), ((344, 399), 'numpy.random.randint', 'np.random.randint', (['(0)', '(100000000)'], {'size': '(NUM_RECORDS, 12)'}), '(0, 100000000, size=(NUM_RECORDS, 12))\n', (361, 399), True, 'import numpy as np\n'), ((464, 518), 'numpy.random.randint', 'np.random.randint', (['(0)', '(100000000)'], {'size': '(NUM_RECORDS, 1)'}), '(0, 100000000, size=(NUM_RECORDS, 1))\n', (481, 518), True, 'import numpy as np\n'), ((660, 700), 'numpy.random.random', 'np.random.random', ([], {'size': '(NUM_RECORDS, 12)'}), '(size=(NUM_RECORDS, 12))\n', (676, 700), True, 'import numpy as np\n'), ((234, 265), 'os.environ.get', 'os.environ.get', (['"""ARIZE_ORG_KEY"""'], {}), "('ARIZE_ORG_KEY')\n", (248, 265), False, 'import os\n'), ((279, 310), 'os.environ.get', 'os.environ.get', (['"""ARIZE_API_KEY"""'], {}), "('ARIZE_API_KEY')\n", (293, 310), False, 'import os\n'), ((544, 556), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (554, 556), False, 'import uuid\n')]
import math import torch import torch.nn as nn from torch.distributions import Normal from torch.distributions import VonMises from torch.distributions import Independent from torch.distributions import Uniform from survae.distributions.conditional import ConditionalDistribution from survae.utils import sum_except_batch import numpy as np class Loba_dist(ConditionalDistribution): """See https://github.com/SB-27182/loba_NN""" def __init__(self, radii_net, osci_spread_net, n_var_net, o_mean_net, shift=torch.tensor([[0.0, 0.0]])): super(dOscicond_Ovarmean_Nvar_radi_dist, self).__init__() self.radii_net = radii_net self.osci_spread_net = osci_spread_net self.n_var_net = n_var_net self.o_mean_net = o_mean_net self.shift = shift def cond_dist(self, context): radii = self.radii_net(context) osci_spread = torch.abs(self.osci_spread_net(context)) n_var = torch.abs(self.n_var_net(context)) o_mean = self.o_mean_net(context) vm = Independent(VonMises(o_mean, osci_spread), 1) sample_inds_n = torch.squeeze(vm.sample([1])) x = self.shift[:, 0:1] + radii[:, 0:1]*torch.cos(sample_inds_n[:, 0:1]) y = self.shift[:, 1:2] + radii[:, 1:2]*torch.cos(sample_inds_n[:, 1:2])*torch.sin(sample_inds_n[:, 0:1]) n_mean = torch.cat((x, y), dim=1) return Normal(loc=n_mean, scale=n_var) def log_prob(self, x, context): dist = self.cond_dist(context) return sum_except_batch(dist.log_prob(x)) def sample(self, context): #assert False, "Not Implemented" dist = self.cond_dist(context) return dist.rsample() def latent_sample_nVars(self, context, dims, myVarDim=0, scaleMyVarBy=1.0, scaleOthrVarsBy=0.01, myOsciVarDim=0, scaleMyOsciVarBy=1.0, scaleOthrOsciVarsBy=1.0): radii = self.radii_net(context) osciVar = torch.abs(self.osci_spread_net(context)) n_var = torch.abs(self.n_var_net(context)) o_mean = self.o_mean_net(context) # <editor-fold desc="Oscil Variance Scaleing"> scaleOsciVarDims = np.full([1, dims], scaleOthrOsciVarsBy) np.put(scaleOsciVarDims, [myOsciVarDim], scaleMyOsciVarBy) scaleOsciVarDims = torch.tensor(scaleOsciVarDims, dtype=torch.float32) osciVar = torch.mul(osciVar, scaleOsciVarDims) # </editor-fold> vm = VonMises(o_mean, osciVar) sample_inds = torch.squeeze(vm.sample([1])) x = self.shift[:, 0:1] + radii[:, 0:1] * torch.cos(sample_inds[:, 0:1]) y = self.shift[:, 1:2] + radii[:, 1:2] * torch.cos(sample_inds[:, 1:2]) * torch.sin(sample_inds[:, 0:1]) n_mean = torch.cat((x, y), dim=1) print(n_var) # <editor-fold desc="n Variance Scaleing"> scaleVarDims = np.full([1, dims], scaleOthrVarsBy) np.put(scaleVarDims, [myVarDim], scaleMyVarBy) scaleVarDims = torch.tensor(scaleVarDims, dtype=torch.float32) n_var = torch.mul(n_var, scaleVarDims) # </editor-fold> dist = Normal(loc=n_mean, scale=n_var) z = dist.sample([1]) return z def latent_sample_1DimOscil(self, context, dims, myDim, scaleMyVarBy=1.0, scaleOthrVarsBy=1.0, myOsciVarDim=0, scaleMyOsciVarBy=1.0, scaleOthrOsciVarsBy=1.0): """Generates the latent corresponding to the found 1-dim oscilator in the data.""" radii = self.radii_net(context) osciVar = torch.abs(self.osci_spread_net(context)) n_var = torch.abs(self.n_var_net(context)) o_mean = self.o_mean_net(context) # <editor-fold desc="Oscil Variance Scaleing"> scaleOsciVarDims = np.full([1, dims], scaleOthrOsciVarsBy) np.put(scaleOsciVarDims, [myOsciVarDim], scaleMyOsciVarBy) scaleOsciVarDims = torch.tensor(scaleOsciVarDims, dtype=torch.float32) osciVar = torch.mul(osciVar, scaleOsciVarDims) # </editor-fold> vm = VonMises(o_mean, osciVar) sample_inds = torch.squeeze(vm.sample([1])) my_dim_variable = sample_inds[:, myDim:myDim+1] x = self.shift[:, 0:1] + radii[:, 0:1]*torch.cos(my_dim_variable) y = self.shift[:, 1:2] + radii[:, 1:2]*torch.sin(my_dim_variable) n_mean = torch.cat((x, y), dim=1) # <editor-fold desc="n Variance Scaleing"> scaleVarDims = np.full([1, dims], scaleOthrVarsBy) np.put(scaleVarDims, [myDim], scaleMyVarBy) scaleVarDims = torch.tensor(scaleVarDims, dtype=torch.float32) n_var = torch.mul(n_var, scaleVarDims) # </editor-fold> dist = Normal(loc=n_mean, scale=n_var) z = dist.sample([1]) return z def conditional_variance_avg(self, context): """Returns average variance of latent density givent context.""" n_var = torch.abs(self.n_var_net(context)) return(torch.mean(n_var, dim=0)) def sample_with_log_prob(self, context): assert False, "Not Implemented" def mean(self, context): assert False, "Not Implemented"
[ "numpy.full", "torch.mean", "numpy.put", "torch.cat", "torch.mul", "torch.cos", "torch.distributions.VonMises", "torch.distributions.Normal", "torch.sin", "torch.tensor" ]
[((533, 559), 'torch.tensor', 'torch.tensor', (['[[0.0, 0.0]]'], {}), '([[0.0, 0.0]])\n', (545, 559), False, 'import torch\n'), ((1367, 1391), 'torch.cat', 'torch.cat', (['(x, y)'], {'dim': '(1)'}), '((x, y), dim=1)\n', (1376, 1391), False, 'import torch\n'), ((1408, 1439), 'torch.distributions.Normal', 'Normal', ([], {'loc': 'n_mean', 'scale': 'n_var'}), '(loc=n_mean, scale=n_var)\n', (1414, 1439), False, 'from torch.distributions import Normal\n'), ((2174, 2213), 'numpy.full', 'np.full', (['[1, dims]', 'scaleOthrOsciVarsBy'], {}), '([1, dims], scaleOthrOsciVarsBy)\n', (2181, 2213), True, 'import numpy as np\n'), ((2222, 2280), 'numpy.put', 'np.put', (['scaleOsciVarDims', '[myOsciVarDim]', 'scaleMyOsciVarBy'], {}), '(scaleOsciVarDims, [myOsciVarDim], scaleMyOsciVarBy)\n', (2228, 2280), True, 'import numpy as np\n'), ((2308, 2359), 'torch.tensor', 'torch.tensor', (['scaleOsciVarDims'], {'dtype': 'torch.float32'}), '(scaleOsciVarDims, dtype=torch.float32)\n', (2320, 2359), False, 'import torch\n'), ((2378, 2414), 'torch.mul', 'torch.mul', (['osciVar', 'scaleOsciVarDims'], {}), '(osciVar, scaleOsciVarDims)\n', (2387, 2414), False, 'import torch\n'), ((2454, 2479), 'torch.distributions.VonMises', 'VonMises', (['o_mean', 'osciVar'], {}), '(o_mean, osciVar)\n', (2462, 2479), False, 'from torch.distributions import VonMises\n'), ((2743, 2767), 'torch.cat', 'torch.cat', (['(x, y)'], {'dim': '(1)'}), '((x, y), dim=1)\n', (2752, 2767), False, 'import torch\n'), ((2863, 2898), 'numpy.full', 'np.full', (['[1, dims]', 'scaleOthrVarsBy'], {}), '([1, dims], scaleOthrVarsBy)\n', (2870, 2898), True, 'import numpy as np\n'), ((2907, 2953), 'numpy.put', 'np.put', (['scaleVarDims', '[myVarDim]', 'scaleMyVarBy'], {}), '(scaleVarDims, [myVarDim], scaleMyVarBy)\n', (2913, 2953), True, 'import numpy as np\n'), ((2977, 3024), 'torch.tensor', 'torch.tensor', (['scaleVarDims'], {'dtype': 'torch.float32'}), '(scaleVarDims, dtype=torch.float32)\n', (2989, 3024), False, 'import torch\n'), ((3041, 3071), 'torch.mul', 'torch.mul', (['n_var', 'scaleVarDims'], {}), '(n_var, scaleVarDims)\n', (3050, 3071), False, 'import torch\n'), ((3113, 3144), 'torch.distributions.Normal', 'Normal', ([], {'loc': 'n_mean', 'scale': 'n_var'}), '(loc=n_mean, scale=n_var)\n', (3119, 3144), False, 'from torch.distributions import Normal\n'), ((3750, 3789), 'numpy.full', 'np.full', (['[1, dims]', 'scaleOthrOsciVarsBy'], {}), '([1, dims], scaleOthrOsciVarsBy)\n', (3757, 3789), True, 'import numpy as np\n'), ((3798, 3856), 'numpy.put', 'np.put', (['scaleOsciVarDims', '[myOsciVarDim]', 'scaleMyOsciVarBy'], {}), '(scaleOsciVarDims, [myOsciVarDim], scaleMyOsciVarBy)\n', (3804, 3856), True, 'import numpy as np\n'), ((3884, 3935), 'torch.tensor', 'torch.tensor', (['scaleOsciVarDims'], {'dtype': 'torch.float32'}), '(scaleOsciVarDims, dtype=torch.float32)\n', (3896, 3935), False, 'import torch\n'), ((3954, 3990), 'torch.mul', 'torch.mul', (['osciVar', 'scaleOsciVarDims'], {}), '(osciVar, scaleOsciVarDims)\n', (3963, 3990), False, 'import torch\n'), ((4030, 4055), 'torch.distributions.VonMises', 'VonMises', (['o_mean', 'osciVar'], {}), '(o_mean, osciVar)\n', (4038, 4055), False, 'from torch.distributions import VonMises\n'), ((4331, 4355), 'torch.cat', 'torch.cat', (['(x, y)'], {'dim': '(1)'}), '((x, y), dim=1)\n', (4340, 4355), False, 'import torch\n'), ((4431, 4466), 'numpy.full', 'np.full', (['[1, dims]', 'scaleOthrVarsBy'], {}), '([1, dims], scaleOthrVarsBy)\n', (4438, 4466), True, 'import numpy as np\n'), ((4475, 4518), 'numpy.put', 'np.put', (['scaleVarDims', '[myDim]', 'scaleMyVarBy'], {}), '(scaleVarDims, [myDim], scaleMyVarBy)\n', (4481, 4518), True, 'import numpy as np\n'), ((4542, 4589), 'torch.tensor', 'torch.tensor', (['scaleVarDims'], {'dtype': 'torch.float32'}), '(scaleVarDims, dtype=torch.float32)\n', (4554, 4589), False, 'import torch\n'), ((4606, 4636), 'torch.mul', 'torch.mul', (['n_var', 'scaleVarDims'], {}), '(n_var, scaleVarDims)\n', (4615, 4636), False, 'import torch\n'), ((4678, 4709), 'torch.distributions.Normal', 'Normal', ([], {'loc': 'n_mean', 'scale': 'n_var'}), '(loc=n_mean, scale=n_var)\n', (4684, 4709), False, 'from torch.distributions import Normal\n'), ((4946, 4970), 'torch.mean', 'torch.mean', (['n_var'], {'dim': '(0)'}), '(n_var, dim=0)\n', (4956, 4970), False, 'import torch\n'), ((1068, 1097), 'torch.distributions.VonMises', 'VonMises', (['o_mean', 'osci_spread'], {}), '(o_mean, osci_spread)\n', (1076, 1097), False, 'from torch.distributions import VonMises\n'), ((1204, 1236), 'torch.cos', 'torch.cos', (['sample_inds_n[:, 0:1]'], {}), '(sample_inds_n[:, 0:1])\n', (1213, 1236), False, 'import torch\n'), ((1317, 1349), 'torch.sin', 'torch.sin', (['sample_inds_n[:, 0:1]'], {}), '(sample_inds_n[:, 0:1])\n', (1326, 1349), False, 'import torch\n'), ((2582, 2612), 'torch.cos', 'torch.cos', (['sample_inds[:, 0:1]'], {}), '(sample_inds[:, 0:1])\n', (2591, 2612), False, 'import torch\n'), ((2695, 2725), 'torch.sin', 'torch.sin', (['sample_inds[:, 0:1]'], {}), '(sample_inds[:, 0:1])\n', (2704, 2725), False, 'import torch\n'), ((4213, 4239), 'torch.cos', 'torch.cos', (['my_dim_variable'], {}), '(my_dim_variable)\n', (4222, 4239), False, 'import torch\n'), ((4287, 4313), 'torch.sin', 'torch.sin', (['my_dim_variable'], {}), '(my_dim_variable)\n', (4296, 4313), False, 'import torch\n'), ((1284, 1316), 'torch.cos', 'torch.cos', (['sample_inds_n[:, 1:2]'], {}), '(sample_inds_n[:, 1:2])\n', (1293, 1316), False, 'import torch\n'), ((2662, 2692), 'torch.cos', 'torch.cos', (['sample_inds[:, 1:2]'], {}), '(sample_inds[:, 1:2])\n', (2671, 2692), False, 'import torch\n')]
from __future__ import absolute_import from __future__ import print_function from __future__ import division import sys import os import os.path as osp import glob import re import warnings from torchreid.data.datasets import ImageDataset from torchreid.utils import read_image import cv2 import numpy as np class Occluded_REID(ImageDataset): dataset_dir = 'occluded-reid' def __init__(self, root='', **kwargs): self.root = osp.abspath(osp.expanduser(root)) self.dataset_dir = osp.join(self.root, self.dataset_dir) # if osp.isdir(data_dir): # self.data_dir = data_dir # else: # warnings.warn('The current data structure is deprecated.') self.train_dir = osp.join(self.dataset_dir, 'Occluded_REID/train') self.query_dir = osp.join(self.dataset_dir, 'Occluded_REID/query') self.gallery_dir = osp.join(self.dataset_dir, 'Occluded_REID/test') train = self.process_dir(self.train_dir, relabel=True) query = self.process_dir(self.query_dir, relabel=False) gallery = self.process_dir(self.gallery_dir, relabel=False, is_query=False) super(Occluded_REID, self).__init__(train, query, gallery, **kwargs) self.load_pose = isinstance(self.transform, tuple) if self.load_pose: if self.mode == 'query': self.pose_dir = osp.join(self.data_dir, 'occluded_body_pose') elif self.mode == 'gallery': self.pose_dir = osp.join(self.data_dir, 'whole_body_pose') else: self.pose_dir = '' def process_dir(self, dir_path, relabel=False, is_query=True): img_paths = glob.glob(osp.join(dir_path, '*.tif')) if is_query: camid = 0 else: camid = 1 pid_container = set() for img_path in img_paths: img_name = img_path.split('/')[-1] pid = int(img_name.split('_')[0]) pid_container.add(pid) pid2label = {pid: label for label, pid in enumerate(pid_container)} data = [] for img_path in img_paths: img_name = img_path.split('/')[-1] pid = int(img_name.split('_')[0]) if relabel: pid = pid2label[pid] data.append((img_path, pid, camid)) return data def __getitem__(self, index): img_path, pid, camid = self.data[index] img = read_image(img_path) if self.load_pose: img_name = '.'.join(img_path.split('/')[-1].split('.')[:-1]) pose_pic_name = img_name + '_pose_heatmaps.png' pose_pic_path = os.path.join(self.pose_dir, pose_pic_name) pose = cv2.imread(pose_pic_path, cv2.IMREAD_GRAYSCALE) pose = pose.reshape((pose.shape[0], 56, -1)).transpose((0,2,1)).astype('float32') pose[:,:,18:] = np.abs(pose[:,:,18:]-128) img, pose = self.transform[1](img, pose) img = self.transform[0](img) return img, pid, camid, img_path, pose else: if self.transform is not None: img = self.transform(img) return img, pid, camid, img_path
[ "numpy.abs", "os.path.join", "torchreid.utils.read_image", "cv2.imread", "os.path.expanduser" ]
[((506, 543), 'os.path.join', 'osp.join', (['self.root', 'self.dataset_dir'], {}), '(self.root, self.dataset_dir)\n', (514, 543), True, 'import os.path as osp\n'), ((731, 780), 'os.path.join', 'osp.join', (['self.dataset_dir', '"""Occluded_REID/train"""'], {}), "(self.dataset_dir, 'Occluded_REID/train')\n", (739, 780), True, 'import os.path as osp\n'), ((806, 855), 'os.path.join', 'osp.join', (['self.dataset_dir', '"""Occluded_REID/query"""'], {}), "(self.dataset_dir, 'Occluded_REID/query')\n", (814, 855), True, 'import os.path as osp\n'), ((883, 931), 'os.path.join', 'osp.join', (['self.dataset_dir', '"""Occluded_REID/test"""'], {}), "(self.dataset_dir, 'Occluded_REID/test')\n", (891, 931), True, 'import os.path as osp\n'), ((2439, 2459), 'torchreid.utils.read_image', 'read_image', (['img_path'], {}), '(img_path)\n', (2449, 2459), False, 'from torchreid.utils import read_image\n'), ((457, 477), 'os.path.expanduser', 'osp.expanduser', (['root'], {}), '(root)\n', (471, 477), True, 'import os.path as osp\n'), ((1689, 1716), 'os.path.join', 'osp.join', (['dir_path', '"""*.tif"""'], {}), "(dir_path, '*.tif')\n", (1697, 1716), True, 'import os.path as osp\n'), ((2649, 2691), 'os.path.join', 'os.path.join', (['self.pose_dir', 'pose_pic_name'], {}), '(self.pose_dir, pose_pic_name)\n', (2661, 2691), False, 'import os\n'), ((2711, 2758), 'cv2.imread', 'cv2.imread', (['pose_pic_path', 'cv2.IMREAD_GRAYSCALE'], {}), '(pose_pic_path, cv2.IMREAD_GRAYSCALE)\n', (2721, 2758), False, 'import cv2\n'), ((2881, 2910), 'numpy.abs', 'np.abs', (['(pose[:, :, 18:] - 128)'], {}), '(pose[:, :, 18:] - 128)\n', (2887, 2910), True, 'import numpy as np\n'), ((1376, 1421), 'os.path.join', 'osp.join', (['self.data_dir', '"""occluded_body_pose"""'], {}), "(self.data_dir, 'occluded_body_pose')\n", (1384, 1421), True, 'import os.path as osp\n'), ((1495, 1537), 'os.path.join', 'osp.join', (['self.data_dir', '"""whole_body_pose"""'], {}), "(self.data_dir, 'whole_body_pose')\n", (1503, 1537), True, 'import os.path as osp\n')]
import numpy as np import tensorly as tl import tensorflow as tf from tensorflow.keras import models import torch def output_channel_decomposition_conv_layer( layers, rank=None, ): tl.set_backend("tensorflow") layer = layers[0] weights = np.asarray(layer.get_weights()[0]) bias = layer.get_weights()[1] if layer.use_bias else None layer_data = tl.tensor(weights) # print(f"Original output channels is : {layer_data.shape[-1]},\ # Estimate output channels is : {rank[0]}") rank = rank[0] dim = layer_data.shape layer_data = np.asarray(layer_data) layer_data = layer_data.reshape(dim[0]*dim[1]*dim[2], -1) layer_data = torch.tensor(layer_data) N, sigmaVH, C = torch.svd(layer_data) rank = rank if rank < N.shape[1] else N.shape[1] N = N[:, :rank] C = np.transpose(C) C = C[:rank, :] sigmaVH = sigmaVH[:rank] sigmaVH = torch.sqrt(sigmaVH) N = np.asarray(N).dot(np.diag(sigmaVH)) C = np.diag(sigmaVH).dot(C) N = N.reshape(dim[0], dim[1], dim[2], rank) C = C.reshape(1, 1, rank, dim[3]) print(f"N has shape {N.shape}, C has shape {C.shape}") new_layers = from_tensor_to_layers([C, N], layer, bias) return new_layers def from_tensor_to_layers( tensors, layers, bias, ): ''' transform tensors to layers Key arguments: tensors -- contains data of decomposed layer layers -- original layers bias -- bias of layer Return: new_layers ''' layer = layers [V, H] = tensors bias = layer.get_weights()[1] if layer.use_bias else None first_layer = tf.keras.layers.Conv2D( name=layer.name+"first", filters=H.shape[3], kernel_size=[H.shape[0], H.shape[1]], strides=layer.strides, padding=(layer.padding), dilation_rate=layer.dilation_rate, use_bias=False, input_shape=layer.input_shape[1:]) last_layer = tf.keras.layers.Conv2D( name=layer.name+"last", filters=V.shape[3], kernel_size=[V.shape[0], V.shape[1]], padding=(layer.padding), dilation_rate=layer.dilation_rate, use_bias=layer.use_bias, activation=layer.activation) new_weight = [H, V] if layer.use_bias: new_weight.append(bias) new_layer = [first_layer, last_layer] return new_layer, new_weight
[ "tensorflow.keras.layers.Conv2D", "torch.svd", "torch.sqrt", "numpy.asarray", "numpy.transpose", "tensorly.set_backend", "tensorly.tensor", "numpy.diag", "torch.tensor" ]
[((211, 239), 'tensorly.set_backend', 'tl.set_backend', (['"""tensorflow"""'], {}), "('tensorflow')\n", (225, 239), True, 'import tensorly as tl\n'), ((391, 409), 'tensorly.tensor', 'tl.tensor', (['weights'], {}), '(weights)\n', (400, 409), True, 'import tensorly as tl\n'), ((596, 618), 'numpy.asarray', 'np.asarray', (['layer_data'], {}), '(layer_data)\n', (606, 618), True, 'import numpy as np\n'), ((698, 722), 'torch.tensor', 'torch.tensor', (['layer_data'], {}), '(layer_data)\n', (710, 722), False, 'import torch\n'), ((743, 764), 'torch.svd', 'torch.svd', (['layer_data'], {}), '(layer_data)\n', (752, 764), False, 'import torch\n'), ((846, 861), 'numpy.transpose', 'np.transpose', (['C'], {}), '(C)\n', (858, 861), True, 'import numpy as np\n'), ((925, 944), 'torch.sqrt', 'torch.sqrt', (['sigmaVH'], {}), '(sigmaVH)\n', (935, 944), False, 'import torch\n'), ((1657, 1909), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'name': "(layer.name + 'first')", 'filters': 'H.shape[3]', 'kernel_size': '[H.shape[0], H.shape[1]]', 'strides': 'layer.strides', 'padding': 'layer.padding', 'dilation_rate': 'layer.dilation_rate', 'use_bias': '(False)', 'input_shape': 'layer.input_shape[1:]'}), "(name=layer.name + 'first', filters=H.shape[3],\n kernel_size=[H.shape[0], H.shape[1]], strides=layer.strides, padding=\n layer.padding, dilation_rate=layer.dilation_rate, use_bias=False,\n input_shape=layer.input_shape[1:])\n", (1679, 1909), True, 'import tensorflow as tf\n'), ((2015, 2246), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'name': "(layer.name + 'last')", 'filters': 'V.shape[3]', 'kernel_size': '[V.shape[0], V.shape[1]]', 'padding': 'layer.padding', 'dilation_rate': 'layer.dilation_rate', 'use_bias': 'layer.use_bias', 'activation': 'layer.activation'}), "(name=layer.name + 'last', filters=V.shape[3],\n kernel_size=[V.shape[0], V.shape[1]], padding=layer.padding,\n dilation_rate=layer.dilation_rate, use_bias=layer.use_bias, activation=\n layer.activation)\n", (2037, 2246), True, 'import tensorflow as tf\n'), ((971, 987), 'numpy.diag', 'np.diag', (['sigmaVH'], {}), '(sigmaVH)\n', (978, 987), True, 'import numpy as np\n'), ((953, 966), 'numpy.asarray', 'np.asarray', (['N'], {}), '(N)\n', (963, 966), True, 'import numpy as np\n'), ((997, 1013), 'numpy.diag', 'np.diag', (['sigmaVH'], {}), '(sigmaVH)\n', (1004, 1013), True, 'import numpy as np\n')]
""" Main sims module to read and parse Cameca (nano)SIMS data files. """ import bz2 import collections import copy import datetime import gzip import io import lzma import numpy as np import os import re import tarfile import warnings import xarray from struct import unpack # py7zlib is needed for 7z try: import py7zlib except ImportError: py7zlib = None from sims.utils import format_species from sims.transparent import TransparentOpen __all__ = ['SIMSReader', 'SIMS'] _stage_scan_types = { 0: 'stage scan', 1: 'beam scan', 2: 'image scan', } _file_types = { 21: 'depth profile', 22: 'line scan, stage control', 25: 'E0S/E0W scan', 26: 'spot', 27: 'image', 29: 'grain mode image', 31: 'HMR/SIBC/trolley step scan', 32: 'PHD scan', 34: 'tools scan', 35: 'beam stability/leak current', 39: 'line scan image', 40: 'line scan, beam control', 41: 'stage scan image' } _supported_file_types = {21, 22, 26, 27, 29, 31, 35, 39, 40, 41} _peakcenter_sides = { 0: 'left', 1: 'right', 2: 'both' } _exit_slit_labels = { 0: 'slit 1', 1: 'slit 2', 2: 'slit 3' } _exit_slit_size_labels = { 0: 'normal', 1: 'large', 2: 'extra large' } _detectors = { 0: 'EM', 1: 'FC' } class SIMSReader(object): """ Base class for reading a SIMS file. """ def __init__(self, fileobject, filename=''): """ This class object does not open or close files, and nothing will be read by default. An empty header and data array are created. Provides all methods needed for reading a SIMS file. """ self.fh = fileobject self.filename = filename self.header = {} self.data = None self._data_corr = None self._bo = '' def __deepcopy__(self, memo): """ Assist deep-copying of this class. Everything except the filehandle is copied. """ new = type(self)(None) for k in self.__dict__: if k in ('fh', 'fh_archive'): new.__dict__[k] = None else: new.__dict__[k] = copy.deepcopy(self.__dict__[k], memo) return new def peek(self): """ Peek into image file and determine basic file information. Usage: s.peek() Reads first 12 bytes of file opened as s.fh, determines byte order (endianess), file type, file version, and header size. Information is stored in s.header. """ self.fh.seek(0) snip = self.fh.read(12) if unpack('<i', snip[4:8])[0] <= max(_supported_file_types): self.header['byte order'] = '<' self._bo = '<' elif unpack('>i', snip[4:8])[0] <= max(_supported_file_types): self.header['byte order'] = '>' self._bo = '>' else: raise TypeError("Cannot determine file endianess.") self.header['file version'], self.header['file type'], \ self.header['header size'] = \ unpack(self._bo + '3i', snip) if self.header['file type'] not in _supported_file_types: msg = "File of type {} is not supported at the moment." msg = msg.format(self.header['file type']) raise NotImplementedError(msg) def read_header(self): """ Read the image header. Usage: s.read_header() Reads the header from the file object stored in s.fh. Extracts as much information as possible and stores it in a Python dictionary in s.header. At least byte order, header size, file type, and file version need to be known before the header can be read: use s.peek() before s.read_header(). """ # Read entire header into memory in one read to minimize Disk I/O. self.fh.seek(0) hdr = self.fh.read(self.header['header size']) # Find several markers in the byte-string # Each of these may occur more than once, find last. polylist_pos = hdr.rfind(b'Poly_list\x00') champslist_pos = hdr.rfind(b'Champs_list\x00') offsetlist_pos = hdr.rfind(b'Offset_list\x00') # Find first occurance for these. # analparam_pos = hdr.find(b'Anal_param\x00') analparamnano_pos = hdr.find(b'Anal_param_nano\x00') analparamnanobis_pos = hdr.find(b'Anal_param_nano_bis\x00') # Turn byte-string into BytesIO file-like object; reading and # keeping track of where we are is easier that way than trying to # slice byte-string as an array and keeping track of indices. hdr = io.BytesIO(hdr) # Main header hdr.seek(12) self.header.update(self._main_header(hdr)) # NanoSIMS header, starts with PolyList/ChampsList/OffsetList # The following configurations have been found in the wild, so far: # 1. NS header # 2. PL, NS header # 3. PL, CL, OL, NS header # 4. PL, CL, OL, partial NS header, PL, NS header, PL, CL, OL, # partial NS header, PL, NS header # Note: I have not seen any *lists with contents (only length 0). # From OpenMIMS documentation I know that PolyList is as list of # Species dicts, but don't know how to read ChampsList or OffsetList. if polylist_pos < 0: # Case 1: No PL marker, so far only found for Real Time Images, # beam stability, or secondary ion beam centering files. if (self.header['analysis type'].endswith('rti') or self.header['file type'] == 35): hdr.seek(216, 1) elif self.header['file type'] == 31: if (self.header['analysis type'].endswith('hmr') or self.header['analysis type'].endswith('trolley step scan')): hdr.seek(120, 1) else: # secondary ion beam hdr.seek(600, 1) else: raise NotImplementedError('No PolyList marker found in header ' 'and not and RTI image. Don\'t know ' 'how to continue.') elif (champslist_pos < 0 and offsetlist_pos < 0): # Case 2: PL, NS header self.header['PolyList'] = self._pco_list(hdr, 'poly', polylist_pos) elif (polylist_pos < champslist_pos < offsetlist_pos): # Case 3: PL, CL, OL, NS header self.header['PolyList'] = self._pco_list(hdr, 'poly', polylist_pos) self.header['ChampsList'] = self._pco_list(hdr, 'champs', champslist_pos) self.header['OffsetList'] = self._pco_list(hdr, 'offset', offsetlist_pos) elif (champslist_pos < offsetlist_pos < polylist_pos): # Case 4: PL, CL, OL, partial NS header, PL, NS header # with possible repeat self.header['ChampsList'] = self._pco_list(hdr, 'champs', champslist_pos) self.header['OffsetList'] = self._pco_list(hdr, 'offset', offsetlist_pos) self.header['PolyList'] = self._pco_list(hdr, 'poly', polylist_pos) else: raise NotImplementedError( 'An unknown order of the Poly/Champs/Offset Lists occured.\n' 'Positions: PL = {}, CL = {}, OL = {}' ''.format(polylist_pos, champslist_pos, offsetlist_pos)) self.header['NanoSIMSHeader'] = self._nanosims_header(hdr) # How much to skip? Chomping does not work; what if first value is 0? # This is correct so far, for nsheader v8 and 9 hdr.seek(948, 1) self.header['BFields'] = [] for b in range(self.header['NanoSIMSHeader']['b fields']): bf = self._bfield(hdr) bf['counting frame time'] = bf['time per pixel'] * \ self.header['NanoSIMSHeader']['counting frame height'] * \ self.header['NanoSIMSHeader']['counting frame width'] bf['scanning frame time'] = bf['time per pixel'] * \ self.header['NanoSIMSHeader']['scanning frame height'] * \ self.header['NanoSIMSHeader']['scanning frame width'] bf['working frame time'] = bf['time per pixel'] * \ self.header['NanoSIMSHeader']['working frame height'] * \ self.header['NanoSIMSHeader']['working frame width'] self.header['BFields'].append(bf) # End nanosims_header/bfield based on Poly_list position # Analytical parameters # anal_param is not in OpenMIMS at all, represents file # Cameca NanoSIMS Data/raw_spec/cur_anal_par # However, only few useful things in this section, all of # which are also in other sections. Skip. # if analparam_pos < 0: # msg = 'Anal_param not found in header, skipping.' # warnings.warn(msg) # else: # hdr.seek(analparam_pos + 24) # print(analparam_pos) # d = {} # d['primary ion'], d['primary current begin'], \ # d['primary current end'], d['raster'], \ # d['X 00 always 1.0'], \ # d['X 01 always 1'], d['X 02 always 0'], \ # d['X 03 always 1'], d['X 04 always 0'], \ # d['X 05 always 0'], d['X 06 (not0 always 0'], \ # d['X 07 (not) always 0'], d['X 08 always 0'], \ # d['pressure 1'], d['e0w'], d['X 09 always 35 or #'], \ # d['X 10 junk'], \ # d['X 11 always 1'], d['X 12 always 0'], \ # d['X 13 always 1'], d['X 14 always 0'], \ # d['X 15 always 0'], d['X 16 always 0'], \ # d['X 17 always 0'], d['X 18 always 0'], \ # d['X 19 always 0'], d['X 20 always 300'], \ # d['X 21'], d['X 22'], d['X 23'], d['X 24'], \ # d['pressure 2'], d['X 25 junk'] = \ # unpack(self._bo + '24s 4d 8i 48s d i 28s 14i 8s 176s', hdr.read(416)) # # d['pressure 1'] = self._cleanup_string(d['pressure 1']) # d['pressure 2'] = self._cleanup_string(d['pressure 2']) # d['primary ion'] = self._cleanup_string(d['primary ion']) # # self.header['AnalParam'] = d # Called AnalyticalParamNano AND AnalysisParamNano in OpenMIMS. # Here, split out Primary and Secondary beam. # Represents the file Cameca NanoSIMS Data/raw_spec/cur_anal_par_nano if analparamnano_pos < 0: msg = 'Anal_param_nano not found in header, ' msg += 'don\'t know where PrimaryBeam section starts.' warnings.warn(msg) else: hdr.seek(analparamnano_pos + 16) self.header['analysis version'], self.header['n50large'], \ self.header['comment'] = \ unpack(self._bo + '2i 8x 256s', hdr.read(272)) self.header['n50large'] = bool(self.header['n50large']) self.header['comment'] = self._cleanup_string(self.header['comment']) self.header['PrimaryBeam'] = self._primary_beam(hdr) self.header['SecondaryBeam'] = self._secondary_beam(hdr) self.header['Detectors'] = self._detectors1(hdr) self.header['SecondaryBeam']['E0S'] = self.header['Detectors'].pop('E0S') self.header['SecondaryBeam']['pressure multicollection chamber'] = \ self.header['Detectors'].pop('pressure multicollection chamber') # Add overall mode of machine, based on E0W if self.header['SecondaryBeam']['E0W'] < 0: self.header['polarity'] = '+' else: self.header['polarity'] = '-' # Combine pixel size from NanoSIMSHeader and raster from PrimaryBeam # Prevent ZeroDivisionError if undefined wfw = self.header['NanoSIMSHeader']['working frame width'] if not wfw: wfw = 1 self.header['NanoSIMSHeader']['working frame raster'] = \ self.header['PrimaryBeam']['raster'] self.header['NanoSIMSHeader']['scanning frame raster'] = \ self.header['NanoSIMSHeader']['working frame raster'] * \ self.header['NanoSIMSHeader']['scanning frame width'] / wfw self.header['NanoSIMSHeader']['counting frame raster'] = \ self.header['NanoSIMSHeader']['working frame raster'] * \ self.header['NanoSIMSHeader']['counting frame width'] / wfw # Header for non-nano SIMS magic = unpack(self._bo + 'i', hdr.read(4))[0] if magic != 2306: msg = 'SIMSHeader magic number not found here at byte {}.' msg = msg.format(hdr.tell()-4) raise ValueError(msg) self.header['SIMSHeader'] = self._sims_header(hdr) if self.header['analysis version'] >= 5: if analparamnanobis_pos < 0: msg = 'Anal_param_nano_bis not found in header, ' msg += 'don\'t know where second Detectors section starts.' warnings.warn(msg) else: hdr.seek(analparamnanobis_pos + 24) self.header['Detectors'].update(self._detectors2(hdr)) xl = self.header['Detectors'].pop('exit slit xl') for n in range(7): det = self.header['Detectors']['Detector {}'.format(n+1)] w = list(det['exit slit widths']) w[2] = xl[5*n:5*(n+1)] det['exit slit widths'] = tuple(w) h = list(det['exit slit heights']) h[2] = xl[5*(n+1):5*(n+2)] det['exit slit heights'] = tuple(h) # Presets self.header['Presets'] = self._presets(hdr) # End Detectors pt 2 based on anal_param_nano_bis position # Last part of detectors if self.header['analysis version'] >= 6: d3 = self._detectors3(hdr) self.header['Detectors']['TIC'] = d3.pop('TIC') for k, v in d3.items(): self.header['Detectors'][k].update(v) # End PrimaryBeam/SecondaryBeam/Presets/Detectors based on anal_param_nano position # Image header, at end of overall header if self.header['file type'] == 26: hdr.seek(-176, 2) self.header['Isotopes'] = self._isotopes_hdr(hdr) elif self.header['file type'] in (21, 22, 31, 35): # no image header for line scan or beam stability pass else: hdr.seek(-84, 2) self.header['Image'] = self._image_hdr(hdr) # Done reading header. Check for and read external files for extra info. if os.path.exists(os.path.splitext(self.filename)[0] + '.chk_is'): self._read_chk_is() def read_data(self): """ Read the image data. Usage: s.read_data() Reads all the data from the file object in s.fh. The data is stored in s.data. The file header must be read before data can be read. Data are stored as a xarray DataArray. Image data have coordinates: species, frames, y, and x. s.data.attrs['unit'] holds the unit of the data, which is either 'counts' or 'counts/s'. Isotope data contain the uncorrected, raw data, read from the .is_txt file (if available). The corrected data (corrections done during measurement), are read from the .is file and stored under s._data_corr. """ if not self.header['data included']: pass elif self.header['file type'] in (21, 26): self._isotope_data() if os.path.exists(self.filename + '_txt'): self._isotope_txt_data() elif self.header['file type'] == 22: # line scan types, no ImageHeader warnings.warn('No data read for line scan, fix') pass elif self.header['file type'] in (31, 35): self._beamstability_data() else: self._image_data() def copy(self): """ Return a copy of the SIMS object. Usage: s2 = s.copy() The copy is always a deepcopy, meaning that all data and the full header are copied, there are no references to the original. This way the data of the copy can be altered without the data of the original being changed as well. The only exception is the filehandle(s) fh (and fh_archive): they cannot be copied. File operations such as read_header and read_data is therefore not possible after copy. """ return copy.deepcopy(self) def _main_header(self, hdr): """ Internal function; reads variable number of bytes; returns main header dict """ d = {} # Called readDefAnalysis in OpenMIMS d['sample type'], d['data included'], d['sample x'], d['sample y'], \ d['analysis type'], d['user name'], d['sample z'], date, time = \ unpack(self._bo + '4i 32s 16s i 12x 16s 16s', hdr.read(112)) d['data included'] = bool(d['data included']) d['user name'] = self._cleanup_string(d['user name']) d['analysis type'] = self._cleanup_string(d['analysis type']).lower() date = self._cleanup_string(date) time = self._cleanup_string(time) d['date'] = self._cleanup_date(date + ' ' + time) if self.header['file type'] in (27, 29, 39): # Called MaskImage/readMaskIm in OpenMIMS d['original filename'], d['analysis duration'], d['frames'], \ d['scan type'], d['magnification'], d['size type'], \ d['size detector'], d['beam blanking'], d['presputtering'], \ d['presputtering duration'] = \ unpack(self._bo + '16s 3i 3h 2x 3i', hdr.read(48)) d['AutoCal'] = self._autocal(hdr) d['HVControl'] = {} d['HVControl']['hvcontrol enabled'] = False elif self.header['file type'] in (22, 41): # Called MaskSampleStageImage/readMaskIss in OpenMIMS d['original filename'], d['analysis duration'], d['scan type'], \ d['steps'], d['step size x'], d['step size y'], d['step size?'], \ d['step waittime'], d['frames'], d['beam blanking'], \ d['presputtering'], d['presputtering duration'] = \ unpack(self._bo + '16s 6i d 4i', hdr.read(64)) d['scan type'] = _stage_scan_types.get(d['scan type'], str(d['scan type'])) d['AutoCal'] = self._autocal(hdr) d['HVControl'] = self._hvcontrol(hdr) # Don't know if this unused byte needs to go after HVControl or after SigRef. hdr.seek(4, 1) elif self.header['file type'] in (21, 26): # Not in OpenMIMS # this bit same as image, 1 extra unused/unknown d['original filename'], d['analysis duration'], d['frames'], \ d['scan type'], d['magnification'], d['size type'], \ d['size detector'], d['beam blanking'], d['presputtering'], \ d['presputtering duration'] = \ unpack(self._bo + '16s 4x 3i 3h 2x 3i', hdr.read(52)) # this bit same as stage scan d['AutoCal'] = self._autocal(hdr) d['HVControl'] = self._hvcontrol(hdr) # 24 bytes unknown, not sure if they go here or before AutoCal hdr.seek(24, 1) elif self.header['file type'] == 31: # Don't know if this is correct, all 0s anyway d['original filename'], d['scan type'], \ d['beam blanking'], d['presputtering'] = \ unpack(self._bo + '16s 3i 4x', hdr.read(32)) elif self.header['file type'] == 35: d['original filename'], d['scan type'], d['analysis duration'], \ d['frames'], d['beam blanking'], d['presputtering'] = \ unpack(self._bo + '16s 5i 40x', hdr.read(76)) d['AutoCal'] = self._autocal(hdr) d['HVControl'] = self._hvcontrol(hdr) else: raise TypeError('What type of image are you? {}'.format(self.header['file type'])) # Continue main header for all types d['SigRef'] = self._sigref(hdr) d['masses'] = unpack(self._bo + 'i', hdr.read(4))[0] # scan type is set for stage scan analysis, set others if isinstance(d['scan type'], int): if d['scan type'] == 0: d['scan type'] = '' else: d['scan type'] = str(d['scan type']) d['beam blanking'] = bool(d['beam blanking']) d['presputtering'] = bool(d['presputtering']) d['original filename'] = self._cleanup_string(d['original filename']) if self.header['file type'] in (21, 26, 27, 29, 35, 39): if self.header['file version'] >= 4108: n = 60 else: n = 10 elif self.header['file type'] in (22, 31, 40, 41): n = 20 else: n = 0 # Not sure what this is, memory pointers? Not needed. # d['mass table ptr'] = unpack(self._bo + 2*n*'h', hdr.read(n*4)) hdr.seek(n*4, 1) if self.header['file type'] in (21, 22, 26, 40, 41, 35): hdr.seek(4, 1) # 4 bytes unused # Mass table, dict by species label. d['MassTable'] = collections.OrderedDict() for m in range(d['masses']): mi = {} mi['trolley index'], unknown, mi['mass'], mi['matrix or trace'], \ mi['detector'], mi['wait time'], mi['frame count time'] = \ unpack(self._bo + '2i d 2i 2d', hdr.read(40)) if self.header['file type'] == 31: if d['analysis type'].endswith('trolley step scan'): # start and end are in mm, step is in μm; convert to mm mi['radius start'], mi['radius end'], \ mi['radius step'], mi['b field bits'] = \ unpack(self._bo + '3d i', hdr.read(28)) mi['radius step'] /= 1000 else: mi['voltage start'], mi['voltage end'], \ mi['voltage step'], mi['b field bits'] = \ unpack(self._bo + '3d i', hdr.read(28)) else: mi['offset'], mi['b field bits'] = unpack(self._bo + '2i', hdr.read(8)) mi.update(self._species(hdr)) if self.header['file type'] == 31: hdr.seek(4, 1) # Add correction controls, my own addition. mi['background corrected'] = False mi['deadtime corrected'] = False mi['yield corrected'] = False label = mi.pop('label') # This is true for NS50L and file version 4108. # Anywhere else different? # Maybe confirm this with the Trolleys dict, # there is an Esi trolley. if mi['trolley index'] == 8: label = 'SE' d['MassTable'][label] = mi # Create a few convenient lists d['label list'] = tuple(d['MassTable'].keys()) d['label list fmt'] = tuple(format_species(m) for m in d['label list']) d['mass list'] = tuple(d['MassTable'][m]['mass'] for m in d['label list']) return d def _autocal(self, hdr): """ Internal function; reads 76 bytes; returns AutoCal dict """ # Called AutoCal in OpenMIMS source # OpenMIMS says extra unused byte after autocal enabled # for stage scan image; not true d = {} d['autocal enabled'], d['label'], d['begin'], d['duration'] = \ unpack(self._bo + 'i 64s 2i', hdr.read(76)) d['autocal enabled'] = bool(d['autocal enabled']) d['label'] = self._cleanup_string(d['label']) return d def _hvcontrol(self, hdr): """ Internal function; reads 112 bytes, returns HVControl dict. """ # Called readHvControl by OpenMIMS d = {} d['hvcontrol enabled'], d['label'], d['begin'], \ d['duration'], d['limit low'], d['limit high'], d['step'], \ d['bandpass width'], d['count time'] = \ unpack(self._bo + 'i 64s 2i 3d i d', hdr.read(112)) d['hvcontrol enabled'] = bool(d['hvcontrol enabled']) d['label'] = self._cleanup_string(d['label']) return d def _sigref(self, hdr): """ Internal function; reads 160 bytes; returns SigRef dict """ # Called SigRef in OpenMIMS d = {} d['sigref enabled'] = bool(unpack(self._bo + 'i', hdr.read(4))[0]) d['Species'] = self._species(hdr) d['detector'], d['offset'], d['quantity'] = \ unpack(self._bo + '3i', hdr.read(12)) return d def _species(self, hdr): """ Internal function; reads 144 bytes, return Species dict. """ # Called PolyAtomic in OpenMIMS source d = {} d['numeric flag'], d['numeric value'], d['elements'], \ d['charges'], d['charge label'], d['label'] = \ unpack(self._bo + '4i c 64s', hdr.read(81)) d['label'] = self._cleanup_string(d['label']) d['charge label'] = self._cleanup_string(d['charge label']) # OpenMIMS says 3 bytes AFTER el.table are unused; this is wrong, # 3 bytes BEFORE el.table (b 81-84) are unused. n_elements (here: # atomic number) is element number in periodic table rather than # number of elements. n_isotopes (here: isotope number) is offset from # main atomic Z number. Also: collapse ElementTable (Tabelts) into # main dict, too many layers. hdr.seek(3, 1) atoms = unpack(self._bo + '15i', hdr.read(60)) d['atomic number'] = tuple(n for n in atoms[::3]) d['isotope number'] = tuple(n for n in atoms[1::3]) d['stoich number'] = tuple(n for n in atoms[2::3]) return d def _pco_list(self, hdr, name, pos): """ Internal function; reads 'name'list, returns 'Name'List list. Name is one of "poly", "champs", or "offset". pos is the byte- position where the maker 'Name'List starts. """ if name not in ('poly', 'champs', 'offset'): raise TypeError('Name must be one of "poly", "champs", or "offset".') hdr.seek(pos + 16) length = unpack(self._bo + 'i', hdr.read(4))[0] d = [] for p in range(length): if name == 'poly': d.append(self._species(hdr)) else: raise NotImplementedError( '{}List is non-null, don\'t know how to read.' ''.format(name.capitalize())) hdr.seek(4, 1) return d def _nanosims_header(self, hdr): """ Internal function; reads 604 bytes; returns NanoSIMSHeader dict """ # Called MaskNano in OpenMIMS; BFieldTab separated out; create extra sub-dict PeakCenter d = {} d['PeakCenter'] = {} d['nanosimsheader version'], d['regulation mode'], d['mode'], \ d['grain mode'], d['semigraphic mode'], d['stage delta x'], \ d['stage delta y'], d['working frame width'], \ d['working frame height'], d['scanning frame x'], \ d['scanning frame width'], d['scanning frame y'], \ d['scanning frame height'], d['counting frame x start'], \ d['counting frame x end'], d['counting frame y start'], \ d['counting frame y end'], d['detector type'], d['electron scan'], \ d['scanning mode'], d['beam blanking'], \ d['PeakCenter']['peakcenter enabled'], d['PeakCenter']['start'], \ d['PeakCenter']['frequency'], d['b fields'] = \ unpack(self._bo + '25i', hdr.read(100)) d['PeakCenter']['peakcenter enabled'] = bool(d['PeakCenter']['peakcenter enabled']) d['regulation mode'] = bool(d['regulation mode']) d['grain mode'] = bool(d['grain mode']) d['semigraphic mode'] = bool(d['semigraphic mode']) d['scanning mode'] = bool(d['scanning mode']) # Set a few extra variables. d['counting frame width'] = d['counting frame x end'] - d['counting frame x start'] + 1 d['counting frame height'] = d['counting frame y end'] - d['counting frame y start'] + 1 # Found in at least one version (file v11, nsHeader v8) a repeat of # Poly_list and this first part of nanoSIMSHeader. Total of repeat # adds up to 288. After last Poly_list, 288 byte padding zone, not all # null-bytes. hdr.seek(288, 1) # Is this the nPrintRed from OpenMIMS? d['print results'] = bool(unpack(self._bo + 'i', hdr.read(4))[0]) d['SibCenterHor'] = self._sib_center(hdr) d['SibCenterVert'] = self._sib_center(hdr) # Duplicate and store these two in sub dicts b_field_index, has_sib_center = \ unpack(self._bo + '2i', hdr.read(8)) if b_field_index < 0: b_field_index = None has_sib_center = bool(has_sib_center) d['SibCenterHor']['b field index'] = b_field_index d['SibCenterVert']['b field index'] = b_field_index d['SibCenterHor']['sib center enabled'] = has_sib_center d['SibCenterVert']['sib center enabled'] = has_sib_center d['EnergyCenter'] = self._energy_center(hdr) d['E0SCenter'] = self._e0s_center(hdr) d['EnergyCenter']['wait time'], d['presputtering raster'], \ d['PeakCenter']['E0P offset'], d['E0SCenter']['steps'], \ d['baseline measurement'], d['baseline offset'], \ d['baseline frequency'] = \ unpack(self._bo + '5i d i', hdr.read(32)) return d def _sib_center(self, hdr): """ Internal function; reads 40 bytes; returns SibCenter dict """ # Called SecIonBeamNano in OpenMIMS d = {} d['detector'], d['start'], d['step size'], d['center'], \ d['50% width'], d['count time'] = \ unpack(self._bo + '3i 4x 2d i 4x', hdr.read(40)) if d['detector'] < 0: d['detector'] = None d['count time'] /= 100 # 10 ms increments to seconds return d def _energy_center(self, hdr): """ Internal function; reads 52 bytes; returns EnergyCenter dict """ # Called EnergyNano in OpenMIMS # Added b field index, energy center enabled, and frequency from MaskNano d = {} d['detector'], d['start'], d['step size'], d['center'], \ d['delta'], d['count time'], d['b field index'], \ d['energy center enabled'], d['frequency'] = \ unpack(self._bo + '3i 4x 2d i 4x 3i', hdr.read(52)) d['energy center enabled'] = bool(d['energy center enabled']) d['count time'] /= 100 # 10 ms increments to seconds if d['detector'] < 0: d['detector'] = None if d['b field index'] < 0: d['b field index'] = None return d def _e0s_center(self, hdr): """ Internal function; reads 40 bytes; returns E0sCenter dict """ # Called E0SNano in OpenMIMS # b field index and e0s center enabled added to sub dict from main nano header d = {} d['b field index'], d['detector'], d['start'], \ d['step size'], d['count time'], d['center'], \ d['80% width'], d['E0S center enabled'] = \ unpack(self._bo + '5i 2d i', hdr.read(40)) d['E0S center enabled'] = bool(d['E0S center enabled']) d['count time'] /= 100 # 10 ms increments to seconds if d['detector'] < 0: d['detector'] = None if d['b field index'] < 0: d['b field index'] = None return d def _bfield(self, hdr): """ Internal function; reads 2840 bytes; returns BField dict """ # Called TabBFieldNano in OpenMIMS d = {} d['b field enabled'], d['b field bits'], d['wait time'], \ d['time per pixel'], d['time per step'], \ d['wait time computed'], d['E0W offset'], d['Q'], \ d['LF4'], d['hex val'], d['frames per bfield'] = \ unpack(self._bo + '4i d 6i', hdr.read(48)) d['b field enabled'] = bool(d['b field enabled']) d['wait time computed'] = bool(d['wait time computed']) d['wait time'] = d['wait time']/1e6 d['time per pixel'] = d['time per pixel']/1e6 # 8 bytes unused hdr.seek(8, 1) # There appear to be 12 trolleys stored. # The following labels are true for NS50L and file version 4108. # Anywhere else different? What are labels for missing? # idx trolley idx in header (if all enabled) # 0 FCs? -2 # 1 T1 0 # 2 T2 1 # 3 T3 2 # 4 T4 3 # 5 T5 4 # 6 ? -3 # 7 ? -2 # 8 SE -1 # 9 ? -3 # 10 T6 5 # 11 T7 6 trolleys = [] for t in range(12): trolleys.append(self._trolley(hdr)) for t in range(12): trolleys[t].update(self._phd(hdr)) # Add detector index that links trolley to detector and # trolley names. Don't know how to do this for EMBig, LD etc. for t in range(12): if t in (1, 2, 3, 4, 5): trolleys[t]['trolley label'] = 'Trolley {}'.format(t) trolleys[t]['detector label'] = 'Detector {}'.format(t) elif t in (10, 11): trolleys[t]['trolley label'] = 'Trolley {}'.format(t - 4) trolleys[t]['detector label'] = 'Detector {}'.format(t - 4) elif t == 8: trolleys[t]['trolley label'] = 'SE' trolleys[t]['detector label'] = 'SE' else: trolleys[t]['trolley label'] = 'non-trolley {}'.format(t) trolleys[t]['detector label'] = '' d['Trolleys'] = trolleys return d def _trolley(self, hdr): """ Internal function; reads 192 or 208 bytes; returns Trolley dict """ # Called TabTrolleyNano in OpenMIMS d = {} # exit slit seems to be incorrect d['label'], d['mass'], d['radius'], d['deflection plate 1'], \ d['deflection plate 2'], d['detector'], d['exit slit'], \ d['real trolley'], d['cameca trolley index'], \ d['peakcenter index'], d['peakcenter follow'], d['focus'], \ d['hmr start'], d['start dac plate 1'], d['start dac plate 2'], \ d['hmr step'], d['hmr points'], d['hmr count time'], \ d['used for baseline'], d['50% width'], d['peakcenter side'], \ d['peakcenter count time'], d['used for sib center'], \ d['unit correction'], d['deflection'], \ d['used for energy center'], d['used for E0S center'] = \ unpack(self._bo + '64s 2d 8i 2d 6i d 4i d 2i', hdr.read(192)) # 16 extra bytes per trolley entry, not in OpenMIMS # Only certain versions? if self.header['file version'] >= 4108: hdr.seek(16, 1) # Cleanup d['label'] = self._cleanup_string(d['label']) d['used for baseline'] = bool(d['used for baseline']) d['used for sib center'] = bool(d['used for sib center']) d['used for energy center'] = bool(d['used for energy center']) d['used for E0S center'] = bool(d['used for E0S center']) d['real trolley'] = bool(d['real trolley']) d['peakcenter side'] = _peakcenter_sides.get(d['peakcenter side'], str(d['peakcenter side'])) d['detector'] = _detectors.get(d['detector'], str(d['detector'])) d['hmr count time'] /= 100 d['peakcenter count time'] /= 100 # If trolley is real and index is >= 0, then it is enabled. If it is real and # index is -1, it is not enabled. If index is < -1, it should also be not real. d['trolley enabled'] = bool(d['real trolley'] and d['cameca trolley index'] >= 0) return d def _phd(self, hdr): """ Internal function; reads 24 bytes; returns Phd dict """ # Called PHDTrolleyNano in OpenMIMS d = {} d['used for phd scan'], d['phd start'], d['phd step size'], \ d['phd points'], d['phd count time'], d['phd scan repeat'] = \ unpack(self._bo + '6i', hdr.read(24)) d['used for phd scan'] = bool(d['used for phd scan']) d['phd count time'] /= 100 # 24 extra bytes per phd entry, not in OpenMIMS # Only certain versions? if self.header['file version'] >= 4108: hdr.seek(24, 1) return d def _primary_beam(self, hdr): """ Internal function; reads 552 bytes; returns PrimaryBeam dict """ # Called ApPrimaryNano in OpenMIMS d = {} start_position = hdr.tell() d['source'], d['current start'], d['current end'], d['Lduo'], d['L1'] = \ unpack(self._bo + '8s 4i', hdr.read(24)) # Each widths list is 10 ints long d['Dduo'] = unpack(self._bo + 'i', hdr.read(4))[0] d['Dduo widths'] = tuple(unpack(self._bo + '10i', hdr.read(40))) d['D0'] = unpack(self._bo + 'i', hdr.read(4))[0] d['D0 widths'] = tuple(unpack(self._bo + '10i', hdr.read(40))) d['D1'] = unpack(self._bo + 'i', hdr.read(4))[0] d['D1 widths'] = tuple(unpack(self._bo + '10i', hdr.read(40))) # 4 bytes unused hdr.seek(4, 1) d['raster'], d['oct45'], d['oct90'], d['E0P'], \ d['pressure analysis chamber'] = \ unpack(self._bo + '4d 32s', hdr.read(64)) d['source'] = self._cleanup_string(d['source']) d['pressure analysis chamber'] = self._cleanup_string(d['pressure analysis chamber']) if self.header['analysis version'] >= 3: d['L0'] = unpack(self._bo + 'i', hdr.read(4))[0] if self.header['analysis version'] >= 4: d['hv cesium'], d['hv duo'] = unpack(self._bo + '2i', hdr.read(8)) # DCs not in OpenMIMS; only in certain release/version? d['Dcs'] = unpack(self._bo + 'i', hdr.read(4))[0] d['Dcs widths'] = tuple(unpack(self._bo + '10i', hdr.read(40))) # skip bytes until total read in this function is 552 # OpenMIMS: size_Ap_primary_nano = 552 # Newer versions have rest filled with \xCC continuation bytes, but # older versions have null-bytes, but not all bytes are null!! # The numbers do not seem to represent anything, though, so can be skipped. hdr.seek(start_position + 552) return d def _secondary_beam(self, hdr): """ Internal function; reads 192 bytes; returns SecondaryBeam dict. """ # Called ApSecondaryNano in OpenMIMS d = {} tmp = unpack(self._bo + 'd 42i 2d', hdr.read(192)) d['E0W'], d['ES'] = tmp[:2] d['ES widths'] = tmp[2:12] d['ES heights'] = tuple(tmp[12:22]) d['AS'] = tmp[22] d['AS widths'] = tuple(tmp[23:33]) d['AS heights'] = tuple(tmp[33:43]) d['EnS'], d['EnS width'] = tmp[43:] return d def _detectors1(self, hdr): """ Internal function; reads 808 bytes, returns Detectors dict, part 1. """ d = {} d['FCs'] = self._exit_slits(hdr) for n in range(1, 6): det = 'Detector {}'.format(n) d[det] = self._exit_slits(hdr) d['LD'] = {} d['LD']['exit slit width'], d['LD']['exit slit coeff a'], \ d['LD']['exit slit coeff b'], d['E0S'], \ d['pressure multicollection chamber'], \ d['FCs']['fc background setup positive'], \ d['FCs']['fc background setup negative'] = \ unpack(self._bo + '4d 32s 2i', hdr.read(72)) d['pressure multicollection chamber'] = \ self._cleanup_string(d['pressure multicollection chamber']) for n in range(1, 6): det = 'Detector {}'.format(n) d[det].update(self._electron_multiplier(hdr)) d['LD'].update(self._electron_multiplier(hdr)) d['EMBig'] = self._exit_slits(hdr) d['EMBig'].update(self._electron_multiplier(hdr)) # 8 bytes unused hdr.seek(8, 1) return d def _detectors2(self, hdr): """ Internal function; reads 488 bytes, returns Detectors dict, part 2. """ # Called AnalysisParam in OpenMIMS, first part only # presets separate, last part in _detectors3 d = {} d['Detector 6'] = self._exit_slits(hdr) d['Detector 6'].update(self._electron_multiplier(hdr)) d['Detector 7'] = self._exit_slits(hdr) d['Detector 7'].update(self._electron_multiplier(hdr)) d['exit slit xl'] = unpack(self._bo + '70i', hdr.read(280)) return d def _detectors3(self, hdr): """ Internal function; reads 100 bytes, returns Detectors dict, part 3. """ # Called AnalysisParam in OpenMIMS, only last part d = {} d['TIC'] = self._electron_multiplier(hdr) for n in range(1, 8): det = 'Detector {}'.format(n) d[det] = {} d[det]['fc background setup positive'], \ d[det]['fc background setup negative'] = \ unpack(self._bo + '2i', hdr.read(8)) for n in range(1, 8): det = 'Detector {}'.format(n) det_type = unpack(self._bo + 'i', hdr.read(4))[0] d[det]['detector'] = _detectors.get(det_type, str(det_type)) return d def _exit_slits(self, hdr): """ Internal function; reads 88 bytes, returns exit slit dict. """ # Does not exist separately in OpenMIMS, part of ApSecondaryNano and AnalysisParam d = {} # Each detector exit slit has: # - a position (0, 1, 2) # - a size (normal, large, xl) # The exit slits widths (and heights) are a 3x5 matrix where # coordinate (size, pos) returns actual width (height). positions 4 # and 5 are 0 (for future expansion?) Size XL not stored in same part # of header, and only in analysis version >= 5, so we return a list of # length 5 with 0s here. Slits 0, 1, 2 are called slit 1, slit 2, # slit 3, so add labels to avoid confusion. d['exit slit'], d['exit slit size'] = \ unpack(self._bo + '2i', hdr.read(8)) d['exit slit label'] = _exit_slit_labels.get(d['exit slit'], str(d['exit slit'])) d['exit slit size label'] = _exit_slit_size_labels.get(d['exit slit size'], str(d['exit slit size'])) w0 = tuple(unpack(self._bo + '5i', hdr.read(20))) w1 = tuple(unpack(self._bo + '5i', hdr.read(20))) w2 = (0, 0, 0, 0, 0) d['exit slit widths'] = (w0, w1, w2) h0 = tuple(unpack(self._bo + '5i', hdr.read(20))) h1 = tuple(unpack(self._bo + '5i', hdr.read(20))) h2 = (0, 0, 0, 0, 0) d['exit slit heights'] = (h0, h1, h2) return d def _electron_multiplier(self, hdr): """ Internal function; reads 16 bytes, returns EM dict. """ d = {} d['em yield'], d['em background'], d['em deadtime'] = \ unpack(self._bo + 'd 2i', hdr.read(16)) return d def _sims_header(self, hdr): """Internal function, reads 1240 bytes, returns SIMSHeader dict. """ # Called DefAnalysisBis and DefEps in OpenMIMS d = {} d['simsheader version'], d['original filename'], d['matrix'], \ d['sigref auto'], d['sigref points'], d['sigref delta'], \ d['sigref scan time'], d['sigref measure time'], \ d['sigref beam on time'], d['eps centering enabled'], \ d['eps enabled'], d['eps central energy'], d['eps b field'] = \ unpack(self._bo + 'i 256s 256s 10i', hdr.read(556)) d['EPSCentralSpecies'] = self._species(hdr) d['EPSReferenceSpecies'] = self._species(hdr) # Don't know how long method name is, runs into null-padded zone. d['eps ref mass tube hv'], d['eps ref mass tube hv max var'], \ d['sample rotation'], d['sample rotation speed'], \ d['sample rotation synced'], d['sample name'], \ d['user name'], d['method name'] = \ unpack(self._bo + '2d 3i 80s 32s 256s', hdr.read(396)) d['original filename'] = self._cleanup_string(d['original filename']) d['matrix'] = self._cleanup_string(d['matrix']) d['sample name'] = self._cleanup_string(d['sample name']) d['user name'] = self._cleanup_string(d['user name']) d['method name'] = self._cleanup_string(d['method name']) d['sigref auto'] = bool(d['sigref auto']) d['eps centering enabled'] = bool(d['eps centering enabled']) d['eps enabled'] = bool(d['eps enabled']) d['sample rotation'] = bool(d['sample rotation']) d['sample rotation synced'] = bool(d['sample rotation synced']) d['sigref scan time'] /= 10 # 0.1 sec increments return d def _preset_start(self, hdr): """ Internal function; read 0 bytes (8 and back up), returns True or False detecting start of preset. """ test = hdr.read(8) hdr.seek(-8, 1) try: test = self._cleanup_string(test) except UnicodeDecodeError: # Some non-null filler bytes return False # First entry in preset is .isf filename with full path # If preset is used at all, first entry is non-null. # Paths start with / (older Sun systems), or drive letter # (D: newer Windows systems) if re.match('[A-Z]:', test) or re.match('/.', test): return True else: return False def _preset(self, hdr, group=None): """ Internal function; reads 1080 (slits) or 3640 (lenses) bytes, returns a Preset dict. """ # Called ApPresetSlit/ApPresetLens in OpenMIMS # ApPresetDef and ApParamPreset combined here. if not group: raise ValueError("Group not set, select either 'slit' or 'lens'.") d = {} start_position = hdr.tell() d['isf filename'], d['preset name'], d['calibration date'], \ d['enabled'], d['parameters'] = \ unpack(self._bo + '256s 224s 32s 2i', hdr.read(520)) d['enabled'] = bool(d['enabled']) d['isf filename'] = self._cleanup_string(d['isf filename']) d['preset name'] = self._cleanup_string(d['preset name']) d['calibration date'] = self._cleanup_string(d['calibration date']) d['calibration date'] = self._cleanup_date(d['calibration date']) # Presets have a fixed length: 1080 for slits, 3640 for lenses. # Padded with null- or CC bytes (but there may be other stuff in # there). There are more than d['parameters'] parameters in here, but # they seem to be "left-overs" from previous presets. Much the # same as strings which have more text after the terminating null-byte. # Only read first d['parameters'] parameters. for p in range(d['parameters']): param_id, value, param_name = \ unpack(self._bo + '2i 20s', hdr.read(28)) param_name = self._cleanup_string(param_name) if not param_name: param_name = str(param_id) d[param_name] = value current_position = hdr.tell() if group == 'slit': skip = 1080 - (current_position - start_position) else: skip = 3640 - (current_position - start_position) hdr.seek(skip, 1) return d def _presets(self, hdr): """ Internal function; reads 11,600 bytes, returns Presets dict. """ # presput/slit = 1080 # presput/lens = 3640 # measure/slit = 1080 # measure/lens = 3640 # 2 x 1080 padding # padding can be before presput, inbetween presput and measure, # and after measure. d = {} d['Presputter'] = {} padding = 0 if not self._preset_start(hdr): hdr.seek(1080, 1) padding += 1 d['Presputter']['Slits'] = self._preset(hdr, group='slit') d['Presputter']['Lenses'] = self._preset(hdr, group='lens') d['Measure'] = {} if not self._preset_start(hdr): hdr.seek(1080, 1) padding += 1 d['Measure']['Slits'] = self._preset(hdr, group='slit') d['Measure']['Lenses'] = self._preset(hdr, group='lens') hdr.seek(1080 * (2 - padding), 1) return d def _image_hdr(self, hdr): """ Internal function; reads 84 bytes, returns Image dict. """ # Called ... in OpenMIMS d = {} d['header size'], d['type'], d['width'], d['height'], \ d['bytes per pixel'], d['masses'], d['planes'], \ d['raster'], d['original filename'] = \ unpack(self._bo + 'i 6h i 64s', hdr.read(84)) # Called nickname in OpenMIMS d['original filename'] = self._cleanup_string(d['original filename']) if d['header size'] != 84: raise ValueError("Image header size is {}, not 84.".format(d['header size'])) return d def _isotopes_hdr(self, hdr): """ Internal function; reads 176 bytes, returns Isotopes dict. """ # Not in OpenMIMS d = {} d['blocks'], d['frames per block'], d['rejection sigma'], ratios = \ unpack(self._bo + '4i', hdr.read(16)) # ratios is the number of ratios to follow. Each ratio is a set of two # ints. Each int is the index (0-index) of the species in the mass # list. First int is numerator, second is denomenator of ratio. r = unpack(self._bo + '{}i'.format(2*ratios), hdr.read(2*4*ratios)) rtxt = tuple(self.header['label list'][n] for n in r) rfmt = tuple(self.header['label list fmt'][n] for n in r) d['ratios index'] = tuple((r[n], r[n+1]) for n in range(0, 2*ratios, 2)) d['ratios'] = tuple((rtxt[n], rtxt[n+1]) for n in range(0, 2*ratios, 2)) d['ratios fmt'] = tuple('{}\\slash {}'.format(rfmt[n], rfmt[n+1]) for n in range(0, 2*ratios, 2)) # rest is filler with \xFF hdr.seek(176 - 16 - 2*4*ratios, 1) return d def _image_data(self): """ internal function; read data for image type. """ if self.header['Image']['bytes per pixel'] == 2: # 16-bit unsigned integers, short dt = np.dtype(self._bo + 'H') elif self.header['Image']['bytes per pixel'] == 4: # 32-bit unsigned integers, int dt = np.dtype(self._bo + 'I') shape = [self.header['Image']['planes'], self.header['Image']['masses'], self.header['Image']['height'], self.header['Image']['width']] self.fh.seek(self.header['header size']) compressedfiles = ( gzip.GzipFile, bz2.BZ2File, tarfile.ExFileObject, lzma.LZMAFile, io.BytesIO ) # fromfile is about 2x faster than frombuffer(fh.read()) if isinstance(self.fh, compressedfiles): data = np.frombuffer(self.fh.read(), dtype=dt).reshape(shape) else: data = np.fromfile(self.fh, dtype=dt).reshape(shape) # We want to have a cube of contiguous data (stacked images) for each # mass. Swap axes 0 and 1. Returns a view, so make full copy to make # data access faster. data = data.swapaxes(0, 1).copy() self.data = xarray.DataArray(data, dims=('species', 'frame', 'y', 'x'), coords={'species': ('species', list(self.header['label list']))}, attrs={'unit': 'counts'}) def _isotope_data(self): """ Internal function; read data from .is or .dp file. """ # Data structure: # header # 1 int (M): no. blocks (i.e. masses) # M blocks: # (each block) # 1 int (N): no. points (i.e. frames) # N doubles: cumulative count time in s # N doubles: data self.fh.seek(self.header['header size']) blocks = unpack(self._bo + 'i', self.fh.read(4))[0] data = [] for block in range(blocks): points = unpack(self._bo + 'i', self.fh.read(4))[0] d = np.fromfile(self.fh, dtype=self._bo+'f8', count=2*points).reshape(2, points) data.append(d[1]) self._data_corr = xarray.DataArray(data, dims=('species', 'frame'), coords={'species': ('species', list(self.header['label list']))}, attrs={'unit': 'counts/s'}) def _isotope_txt_data(self): """ Internal function; read data from .is_txt or .dp_txt file. """ with open(self.filename + '_txt', mode='rt') as fh: txt = fh.readlines() data = [] frames = self.header['frames'] line = 0 while line < len(txt): if txt[line].startswith('B ='): Tc = txt[line].split('=')[-1].strip().strip(' ms') Tc = float(Tc)/1000 d = np.loadtxt(txt[line + 2 : line + 2 + frames]) data.append(d[:, 1]/Tc) line += 2 + frames line += 1 self.data = xarray.DataArray(data, dims=('species', 'frame'), coords={'species': ('species', list(self.header['label list']))}, attrs={'unit': 'counts/s'}) def _read_chk_is(self): """ Internal function, reads .chk_is file, extracts background calibration. """ fname = os.path.splitext(self.filename)[0] + '.chk_is' table = [] bg_before = [] bg_after = [] with open(fname, mode='rt') as fh: for line in fh: if line.startswith('FC Background before acq'): bg_before = line.split(':')[1].strip().split() elif line.startswith('FC Background after acq'): bg_after = line.split(':')[1].strip().split() elif line.startswith('|'): table.append(line) # Parse analysis background det = '' for part in bg_before: if 'Det' in part: det = part.replace('Det', 'Detector ').strip('= ') continue try: bg = float(part.strip()) except ValueError: bg = 0 self.header['Detectors'][det]['fc background before analysis'] = bg for part in bg_after: if 'Det' in part: det = part.replace('Det', 'Detector ').strip('= ') continue try: bg = float(part.strip()) except ValueError: bg = 0 self.header['Detectors'][det]['fc background after analysis'] = bg # Parse baseline background if found if table: background = table[0].strip().strip('|').split('|') background = [float(b.strip()) for b in background[1:]] detectors = table[2].strip().strip('|').split('|') detectors = [i.strip().replace('Mass#', 'Detector ') for i in detectors[2:]] for det, bg in zip(detectors, background): detdict = self.header['Detectors'][det] key = '{} background baseline'.format(detdict['detector'].lower()) detdict[key] = bg def _beamstability_data(self): """ Internal function; read data in .bs beam stability file.""" traces = unpack(self._bo + 'i', self.fh.read(4))[0] x = [] data = [] maxpoints = 0 for _ in range(traces): points = unpack(self._bo + 'i', self.fh.read(4))[0] d = np.fromfile(self.fh, dtype=self._bo+'f8', count=2*points).reshape(2, points) data.append(d[1]) if points > maxpoints: x = d[0] maxpoints = points for d in range(len(data)): pad_width = maxpoints - data[d].shape[0] data[d] = np.pad(data[d], (0, pad_width), 'constant') if self.header['file type'] == 31: if self.header['analysis type'].endswith('trolley step scan'): xprop = 'radius' xunit = 'mm' else: xprop = 'deflection' xunit = 'V' elif self.header['file type'] == 35: xprop = 'time' xunit = 's' self.data = xarray.DataArray(data, dims=('species', xprop), coords={ 'species': ('species', list(self.header['label list'])), xprop: (xprop, x, {'unit': xunit}) }, attrs={ 'unit': 'counts/s' }) def _cleanup_string(self, bytes): """ Internal function; cuts off bytes at first null-byte, decodes bytes as latin-1 string, returns string """ try: b = bytes.index(b'\x00') except ValueError: return bytes.decode('latin-1').strip() else: return bytes[:b].decode('latin-1').strip() def _cleanup_date(self, date): """ Internal function; reads date-string, returns Python datetime object. Assumes date-part and time-part are space separated, date is dot-separated, and time is colon-separated. Returns None if date is empty, contains 'N/A', or is not a string. """ if (not date or not isinstance(date, str) or 'N/A' in date): return None date, time = date.split() day, month, year = date.split('.') hour, minute = time.split(':') year, month, day, hour, minute = [int(x) for x in (year, month, day, hour, minute)] # For 2-digit years, 1969/2068 is the wrap-around (POSIX standard) if (69 <= year < 100): year += 1900 elif (0 <= year < 69): year += 2000 return datetime.datetime(year, month, day, hour, minute) def _chomp(self, hdr, filler=(b'\x00\x00\x00\x00', b'\xCC\xCC\xCC\xCC'), chunk=4): """ Internal function. Reads and discards filler bytes, by default null (\\x00) and continue (\\xCC) bytes. Stops at start of first non-filler byte. Reads chunk bytes at the time. """ filler = tuple(filler) bytes = hdr.read(chunk) while(bytes and bytes in filler): bytes = hdr.read(chunk) hdr.seek(-1 * chunk, 1) class SIMS(SIMSReader, TransparentOpen): """ Read a (nano)SIMS file and load the full header and image data. """ def __init__(self, filename, file_in_archive=0, password=None): """ Create a SIMS object that will hold all the header information and image data. Usage: s = sims.SIMS('filename.im' | 'filename.im.bz2' | fileobject) Header information is stored as a nested Python dict in SIMS.header, while data is stored in SIMS.data as a xarray DataArray. This class can open Cameca (nano)SIMS files and transparently supports compressed files (gzip, bzip2, xz, lzma, zip, 7zip) and opening from multifile archives (tar, compressed tar, zip, 7zip). Set file_in_archive to the filename to extract, or the sequence number of the file in the archive (0 is the first file). For encrypted archives (zip, 7z) set password to access the data. For zip format, password must be a byte-string. It's also possible to supply a file object to an already opened file. In fact, SIMS can read from anything that provides a read() function, although reading from a buffered object (with seek() and tell() support) is much more efficient. SIMS supports the 'with' statement. """ if not filename: return TransparentOpen.__init__(self, filename, file_in_archive=file_in_archive, password=password) self.fh.seek(0) SIMSReader.__init__(self, self.fh, filename=filename) self.peek() self.read_header() self.read_data() self.close() ############################################################################### # Not implemented yet in read_header # # class CalCond # int n_delta; # int np_delta; # int tps_comptage; # int nb_cycles; # double no_used2; # double cal_ref_mass; # String symbol;
[ "sims.transparent.TransparentOpen.__init__", "numpy.pad", "copy.deepcopy", "io.BytesIO", "sims.utils.format_species", "numpy.fromfile", "struct.unpack", "numpy.dtype", "re.match", "os.path.exists", "datetime.datetime", "numpy.loadtxt", "os.path.splitext", "collections.OrderedDict", "warnings.warn" ]
[((3070, 3099), 'struct.unpack', 'unpack', (["(self._bo + '3i')", 'snip'], {}), "(self._bo + '3i', snip)\n", (3076, 3099), False, 'from struct import unpack\n'), ((4679, 4694), 'io.BytesIO', 'io.BytesIO', (['hdr'], {}), '(hdr)\n', (4689, 4694), False, 'import io\n'), ((17035, 17054), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (17048, 17054), False, 'import copy\n'), ((21884, 21909), 'collections.OrderedDict', 'collections.OrderedDict', ([], {}), '()\n', (21907, 21909), False, 'import collections\n'), ((59059, 59108), 'datetime.datetime', 'datetime.datetime', (['year', 'month', 'day', 'hour', 'minute'], {}), '(year, month, day, hour, minute)\n', (59076, 59108), False, 'import datetime\n'), ((61043, 61139), 'sims.transparent.TransparentOpen.__init__', 'TransparentOpen.__init__', (['self', 'filename'], {'file_in_archive': 'file_in_archive', 'password': 'password'}), '(self, filename, file_in_archive=file_in_archive,\n password=password)\n', (61067, 61139), False, 'from sims.transparent import TransparentOpen\n'), ((10766, 10784), 'warnings.warn', 'warnings.warn', (['msg'], {}), '(msg)\n', (10779, 10784), False, 'import warnings\n'), ((46501, 46525), 're.match', 're.match', (['"""[A-Z]:"""', 'test'], {}), "('[A-Z]:', test)\n", (46509, 46525), False, 'import re\n'), ((46529, 46549), 're.match', 're.match', (['"""/."""', 'test'], {}), "('/.', test)\n", (46537, 46549), False, 'import re\n'), ((51420, 51444), 'numpy.dtype', 'np.dtype', (["(self._bo + 'H')"], {}), "(self._bo + 'H')\n", (51428, 51444), True, 'import numpy as np\n'), ((57110, 57153), 'numpy.pad', 'np.pad', (['data[d]', '(0, pad_width)', '"""constant"""'], {}), "(data[d], (0, pad_width), 'constant')\n", (57116, 57153), True, 'import numpy as np\n'), ((2149, 2186), 'copy.deepcopy', 'copy.deepcopy', (['self.__dict__[k]', 'memo'], {}), '(self.__dict__[k], memo)\n', (2162, 2186), False, 'import copy\n'), ((2600, 2623), 'struct.unpack', 'unpack', (['"""<i"""', 'snip[4:8]'], {}), "('<i', snip[4:8])\n", (2606, 2623), False, 'from struct import unpack\n'), ((16037, 16075), 'os.path.exists', 'os.path.exists', (["(self.filename + '_txt')"], {}), "(self.filename + '_txt')\n", (16051, 16075), False, 'import os\n'), ((23721, 23738), 'sims.utils.format_species', 'format_species', (['m'], {}), '(m)\n', (23735, 23738), False, 'from sims.utils import format_species\n'), ((51565, 51589), 'numpy.dtype', 'np.dtype', (["(self._bo + 'I')"], {}), "(self._bo + 'I')\n", (51573, 51589), True, 'import numpy as np\n'), ((54120, 54163), 'numpy.loadtxt', 'np.loadtxt', (['txt[line + 2:line + 2 + frames]'], {}), '(txt[line + 2:line + 2 + frames])\n', (54130, 54163), True, 'import numpy as np\n'), ((54617, 54648), 'os.path.splitext', 'os.path.splitext', (['self.filename'], {}), '(self.filename)\n', (54633, 54648), False, 'import os\n'), ((2742, 2765), 'struct.unpack', 'unpack', (['""">i"""', 'snip[4:8]'], {}), "('>i', snip[4:8])\n", (2748, 2765), False, 'from struct import unpack\n'), ((13281, 13299), 'warnings.warn', 'warnings.warn', (['msg'], {}), '(msg)\n', (13294, 13299), False, 'import warnings\n'), ((15055, 15086), 'os.path.splitext', 'os.path.splitext', (['self.filename'], {}), '(self.filename)\n', (15071, 15086), False, 'import os\n'), ((16221, 16269), 'warnings.warn', 'warnings.warn', (['"""No data read for line scan, fix"""'], {}), "('No data read for line scan, fix')\n", (16234, 16269), False, 'import warnings\n'), ((52233, 52263), 'numpy.fromfile', 'np.fromfile', (['self.fh'], {'dtype': 'dt'}), '(self.fh, dtype=dt)\n', (52244, 52263), True, 'import numpy as np\n'), ((53331, 53392), 'numpy.fromfile', 'np.fromfile', (['self.fh'], {'dtype': "(self._bo + 'f8')", 'count': '(2 * points)'}), "(self.fh, dtype=self._bo + 'f8', count=2 * points)\n", (53342, 53392), True, 'import numpy as np\n'), ((56797, 56858), 'numpy.fromfile', 'np.fromfile', (['self.fh'], {'dtype': "(self._bo + 'f8')", 'count': '(2 * points)'}), "(self.fh, dtype=self._bo + 'f8', count=2 * points)\n", (56808, 56858), True, 'import numpy as np\n')]
""" File: xAndes.py Author: <NAME> Description: Run dadi 5x on fs from GBS data. Usage: python xAndes_GBS.py """ import os, sys import numpy from numpy import array import dadi import matplotlib import matplotlib.pyplot as plt import demographic_models for i in range(5): dir = ("/scratch/mgharvey/SysBio/dadi/GBS") os.chdir(dir) outfile = open("./optimized_output_GBS_{0}.txt".format(i+1), 'wb') data = dadi.Spectrum.from_file('GBS.fs') ns = data.sample_sizes pts_l = [30,40,50] func = demographic_models.twopop_model params = array([1, 1, 1, 1, 1, 1, 1]) upper_bound = [20, 20, 20, 10, 10, 20, 20] lower_bound = [0.01, 0.01, 0.01, 0, 0, 0, 0] func_ex = dadi.Numerics.make_extrap_log_func(func) model = func_ex(params, ns, pts_l) ll_model = dadi.Inference.ll_multinom(model, data) theta = dadi.Inference.optimal_sfs_scaling(model, data) p0 = dadi.Misc.perturb_params(params, fold=1, upper_bound=upper_bound) popt = dadi.Inference.optimize_log_lbfgsb(p0, data, func_ex, pts_l, lower_bound=lower_bound, upper_bound=upper_bound, verbose=len(params), maxiter=20) model = func_ex(popt, ns, pts_l) ll_opt = dadi.Inference.ll_multinom(model, data) optpar = repr(popt) outfile.write("Likelihood: {0}\nOptimized Parameters: {1}\nTheta (Scaling Factor): {2}\nConverted thetas: {3} {4} {5} {6} {7}".format(ll_opt, optpar, theta, (popt[0]*theta), (popt[1]*theta), (popt[2]*theta), (popt[3]*theta), (popt[4]*theta))) outfile.close()
[ "dadi.Inference.optimal_sfs_scaling", "dadi.Inference.ll_multinom", "dadi.Numerics.make_extrap_log_func", "numpy.array", "dadi.Misc.perturb_params", "dadi.Spectrum.from_file", "os.chdir" ]
[((331, 344), 'os.chdir', 'os.chdir', (['dir'], {}), '(dir)\n', (339, 344), False, 'import os, sys\n'), ((422, 455), 'dadi.Spectrum.from_file', 'dadi.Spectrum.from_file', (['"""GBS.fs"""'], {}), "('GBS.fs')\n", (445, 455), False, 'import dadi\n'), ((552, 580), 'numpy.array', 'array', (['[1, 1, 1, 1, 1, 1, 1]'], {}), '([1, 1, 1, 1, 1, 1, 1])\n', (557, 580), False, 'from numpy import array\n'), ((684, 724), 'dadi.Numerics.make_extrap_log_func', 'dadi.Numerics.make_extrap_log_func', (['func'], {}), '(func)\n', (718, 724), False, 'import dadi\n'), ((773, 812), 'dadi.Inference.ll_multinom', 'dadi.Inference.ll_multinom', (['model', 'data'], {}), '(model, data)\n', (799, 812), False, 'import dadi\n'), ((822, 869), 'dadi.Inference.optimal_sfs_scaling', 'dadi.Inference.optimal_sfs_scaling', (['model', 'data'], {}), '(model, data)\n', (856, 869), False, 'import dadi\n'), ((878, 943), 'dadi.Misc.perturb_params', 'dadi.Misc.perturb_params', (['params'], {'fold': '(1)', 'upper_bound': 'upper_bound'}), '(params, fold=1, upper_bound=upper_bound)\n', (902, 943), False, 'import dadi\n'), ((1153, 1192), 'dadi.Inference.ll_multinom', 'dadi.Inference.ll_multinom', (['model', 'data'], {}), '(model, data)\n', (1179, 1192), False, 'import dadi\n')]
''' Data handler that relies on INI logs and `fusi.io`. <NAME> (Jan, 2019) ''' import os import pathlib from glob import glob from pprint import pprint from collections import OrderedDict import numpy as np from fusilib import misc, utils as futils from fusilib.io import righw, spikeglx, phy, logs, sync from fusilib.extras import readers import fusilib.config def hdf_load(flname, *args, **kwargs): ''' ''' local_path = misc.uri_convert_uri2local(str(flname)) return readers.hdf_load(local_path, *args, **kwargs) def mk_hash_call(func_kwargs): ''' ''' import hashlib _ = func_kwargs.pop('self') _ = func_kwargs.pop('recache') call_signature = str(func_kwargs).encode() print(call_signature) call_hash = hashlib.sha512(call_signature).hexdigest() return call_hash def params2cache(kwargs): ''' ''' thash = mk_hash_call(kwargs) outfl = os.path.join('/store/fast/scratch', str(thash)) return pathlib.Path(outfl) EXPERIMENTS = [('CR017', (2019, 11, 13)), ('CR017', (2019, 11, 14)), ('CR019', (2019, 11, 26)), ('CR019', (2019, 11, 27)), ('CR020', (2019, 11, 20)), ('CR020', (2019, 11, 21)), ('CR020', (2019, 11, 22)), ('CR022', (2020, 10, 7)), ('CR022', (2020, 10, 11)), ('CR024', (2020, 10, 29)), ] ############################## # helper functions ############################## class MetaSession(object): ''' ''' def __init__(self, subject_name, session_name, root=None, verbose=False): ''' ''' if root is None: root = fusilib.config.DATA_ROOT root = pathlib.Path(str(root)).joinpath(subject_name) session_path = root.joinpath(session_name) self.root = root self.subject_name = subject_name self.session_name = session_name self.session_path = session_path self.verbose = verbose if not root.exists(): raise IOError('Invalid path: %s' % root) if not session_path.exists(): raise IOError('Invalid path: %s' % session_path) self.log = None self.load_session_log(verbose=verbose) def ls(self, pattern): ''' ''' results = sorted(list(self.session_path.glob(pattern))) return results @property def experiment_mapper_slices2blocks(self): '''A dict mapping slices to session blocks ''' session_info = self.log_load_section('experiment') slice_blocks = self.log_load_section('fusi', 'mapping_block2slices') fusi_blocks = session_info['matched_fusi_blocks'] assert len(fusi_blocks) == len(slice_blocks) # Get the blocks corresponding for each slice all_slice_indeces = np.unique(slice_blocks) # remove nans all_slice_indeces = all_slice_indeces[np.logical_not( np.isnan(all_slice_indeces))] # check they are indeces assert np.allclose(np.asarray(all_slice_indeces, dtype=np.int), all_slice_indeces) all_slice_indeces = np.asarray(all_slice_indeces, dtype=np.int) slice_blocks_dict = {slice_num: fusi_blocks[slice_blocks == slice_num] for slice_num in all_slice_indeces} return slice_blocks_dict @property def experiment_mapper_blocks2slices(self): slice_blocks = self.experiment_mapper_slices2blocks blocks2slice = {} for sl, blocks in slice_blocks.items(): for block in blocks: blocks2slice[block] = sl return blocks2slice @property def experiment_blocks(self): '''Get all blocks ''' session_info = self.log_load_section('experiment') blocks = session_info['block_numbers'] blocks = blocks[np.logical_not(np.isnan(blocks))] if 'valid_blocks' in session_info: blocks = session_info['valid_blocks'] if 'invalid_blocks' in session_info: bad_blocks = session_info['invalid_blocks'] blocks = np.asarray([t for t in blocks if t not in bad_blocks]) return blocks.astype(np.int) @property def experiment_fusi_blocks(self): ''' ''' session_info = self.log_load_section('experiment') blocks = self.log_load_section('experiment', 'matched_fusi_blocks') blocks = blocks[np.logical_not(np.isnan(blocks))] if 'valid_blocks' in session_info: blocks = session_info['valid_blocks'] if 'invalid_blocks' in session_info: bad_blocks = session_info['invalid_blocks'] blocks = np.asarray([t for t in blocks if t not in bad_blocks]) return blocks.astype(np.int) def fusi_blocks_iterator(self, blocks=None): ''' ''' if blocks is None: blocks = self.experiment_fusi_blocks for block in blocks: yield MetaBlock(self.subject_name, self.session_name, block) @property def fusi_nslices(self): return len(self.experiment_mapper_slices2blocks) def fusi_slice_position(self, slice_number): '''Get position of slice in [mm] ''' info = self.log_load_section('fusi') slices_mm = info['slice_positions'] return slices_mm[slice_number] def experiment_slice2blocks(self, slice_number): '''Get the fUSi blocks corresponding to the slice of interest ''' mapper = self.experiment_mapper_slices2blocks return mapper[slice_number] @property def experiment_tasks(self): return self.log_load_section('experiment', 'tasks') def experiment_get_task_blocks(self, task_name): ''' ''' info = self.log_load_section('experiment') assert task_name in info['tasks'] return np.asarray(info['blocks_%s' % task_name]) def fusi_get_slice_data(self, slice_number, fusi_mask=None, fusi_preproc=dict(dt_ms=50, window_ms=150, svddrop=5, freq_cutoffhz=15, roi_name=None, mirrored=False), trim_raw=dict(trim_beg=5, trim_end=5), trim_post_detrend=dict(trim_beg=10, trim_end=10), outbrain_nuisance=None, temporal_detrend=dict(ftype='sg', window_size_sec=120, polyorder=3), spatial_smoothing=None, normalization='pctchg'): ''' ''' fusi_slice_blocks = self.experiment_slice2blocks(slice_number) print('Working on slice %i' % slice_number, fusi_slice_blocks) slice_data = [] slice_times = [] for bdx, block_number in enumerate(fusi_slice_blocks): fusi_times, fusi_data = self.fusi_get_block_data( block_number, fusi_mask=fusi_mask, fusi_preproc=fusi_preproc, trim_raw=trim_raw, trim_post_detrend=trim_post_detrend, outbrain_nuisance=outbrain_nuisance, temporal_detrend=temporal_detrend, spatial_smoothing=spatial_smoothing, normalization=normalization) # store slice_data.append(fusi_data) slice_times.append(fusi_times) slice_data = np.vstack(slice_data) return slice_times, slice_data def fusi_get_multiblock_data(self, block_numbers, fusi_mask=None, fusi_preproc=dict(dt_ms=50, window_ms=150, svddrop=5, freq_cutoffhz=15, roi_name=None, mirrored=False), trim_raw=dict(trim_beg=5, trim_end=5), trim_post_detrend=dict( trim_beg=10, trim_end=10), outbrain_nuisance=None, temporal_detrend=dict(ftype='sg', window_size_sec=120, polyorder=3), spatial_smoothing=None, normalization='pctchg'): ''' fusi_mask : A mask to apply to the voxels of the fUSi slice ''' blocks_data = [] blocks_times = [] for bdx, block_number in enumerate(block_numbers): fusi_times, fusi_data = self.fusi_get_block_data( block_number, fusi_mask=fusi_mask, fusi_preproc=fusi_preproc, trim_raw=trim_raw, trim_post_detrend=trim_post_detrend, outbrain_nuisance=outbrain_nuisance, temporal_detrend=temporal_detrend, spatial_smoothing=spatial_smoothing, normalization=normalization) # store blocks_data.append(fusi_data) blocks_times.append(fusi_times) blocks_data = np.vstack(blocks_data) return blocks_times, blocks_data def fusi_get_block_data(self, block_number, fusi_mask=None, fusi_preproc=dict(dt_ms=50, window_ms=150, svddrop=5, freq_cutoffhz=15, roi_name=None, mirrored=False), trim_raw=dict(trim_beg=5, trim_end=5), trim_post_detrend=dict(trim_beg=10, trim_end=10), outbrain_nuisance=None, temporal_detrend=dict(ftype='sg', window_size_sec=120, polyorder=3), spatial_smoothing=None, normalization='pctchg', ): ''' fusi_mask : A mask to apply to the voxels of the fUSi slice outbrain_nuisance = dict(npcs=3,r2thresh=0.1), spatial_smoothing=dict(sigma_um=20), ''' fusi_dt_sec = fusi_preproc['dt_ms']/1000.0 subject_block = MetaBlock(self.subject_name, self.session_name, int(block_number)) fusi_times, fusi_data = subject_block.fusi_get_data(**fusi_preproc) # trim before detrending ############################## if trim_raw is not None: times_valid = np.logical_and(fusi_times > (fusi_times.min() + trim_raw['trim_beg']), fusi_times < (fusi_times.max() - trim_raw['trim_end'])) fusi_times = fusi_times[times_valid] fusi_data = fusi_data[times_valid] fusi_shape = fusi_data.shape[:] # outbrain_nuisance ############################## if outbrain_nuisance is not None: from scipy import linalg as LA from tikreg import models, utils as tikutils outbrain_npcs = outbrain_nuisance['npcs'] r2thresh = outbrain_nuisance['r2thresh'] # get temporal PCs from outside brain mask outsidebrain_mask = subject_block.fusi_get_outsidebrain_mask() nuisance_xdata = LA.svd(fusi_data[:, outsidebrain_mask], full_matrices=False)[0][:, :outbrain_npcs] # fit OLS model and obtain predictions nuisance_ypreds = models.olspred( nuisance_xdata, fusi_data.reshape(fusi_data.shape[0], -1)) # compute prediction accuracy nuisance_r2 = tikutils.columnwise_rsquared( nuisance_ypreds, fusi_data.reshape(fusi_data.shape[0], -1)) # voxels to clean nuisance_mask = (nuisance_r2 > r2thresh).reshape( fusi_shape[1:]) # > 1% # remove variance explained from outside brain fusi_data[:, nuisance_mask] = np.nan_to_num( (fusi_data[:, nuisance_mask] - nuisance_ypreds.reshape(fusi_data.shape)[:, nuisance_mask])) # flatten and mask data ############################## if fusi_mask is not None: assert isinstance(fusi_mask, np.ndarray) fusi_data = fusi_data[:, fusi_mask] else: fusi_data = fusi_data.reshape(fusi_data.shape[0], -1) # temporal detrend ############################## if temporal_detrend is not None: window_size = int(temporal_detrend['window_size_sec']/fusi_dt_sec) window_size += (window_size - 1) % 2 # make odd number yfull = futils.temporal_filter(fusi_data - fusi_data.mean(0), # zero mean ftype=temporal_detrend['ftype'], window_size=window_size, polyorder=temporal_detrend['polyorder']) # need mean for % signal change yfull += fusi_data.mean(0) # trim after detrending ############################## if trim_raw is not None: times_valid = np.logical_and(fusi_times > (fusi_times.min() + trim_post_detrend['trim_beg']), fusi_times < (fusi_times.max() - trim_post_detrend['trim_end'])) fusi_times = fusi_times[times_valid] fusi_data = fusi_data[times_valid] fusi_shape = fusi_data.shape[:] # smoothing ############################## if spatial_smoothing is not None: from scipy import ndimage sigma_um = spatial_smoothing['sigma_um'] um_hsize, um_vsize = np.asarray( subject_block.fusi_image_pixel_mm)*1000 sigma_hpix = sigma_um/um_hsize hsigma, vsigma = (sigma_hpix, sigma_hpix / subject_block.fusi_aspect_ratio) sigmas = (vsigma, hsigma) print( 'Smoothing: %0.02d[um]. pixels (vert, horiz): ' % sigma_um, sigmas) smooth_data = np.zeros_like(fusi_data) for image_index in range(fusi_data.shape[0]): img = fusi_data[image_index] sim = ndimage.gaussian_filter(img, sigma=sigmas) smooth_data[image_index] = sim fusi_data = smooth_data # normalize signals ############################## if normalization == 'pctchg': fusi_data = futils.pixelwise_pctsignalchange(fusi_data) elif normalization == 'zscore': fusi_data = zscore(fusi_data) return fusi_times, fusi_data def mk_filename_for_localdb(self, filename, subfolder=None, mkdir=False): date_txt = misc.date_tuple2isoformat(self.date_tuple) flname = '{date}_{subject}_{fl}'.format(date=date_txt, subject=self.subject_name, fl=filename) if subfolder is None: outpath = self.session_path else: outpath = self.session_path.joinpath(subfolder) if mkdir: outpath.mkdir(exist_ok=True) return outpath.joinpath(flname) def __str__(self): return '%s %s' % (self.subject_name, self.session_name) def __repr__(self): info = (__name__, type(self).__name__, self.subject_name, self.session_name) return '<%s.%s [%s: session=%s]>' % info @property def date_tuple(self): date = misc.date_isoformat2tuple(self.session_name) return date @property def subject_sessions(self): return list(self.root.glob('20??-??-??')) @property def session_blocks(self): blocks = [] maxdigits = 2 for num in range(1, maxdigits+1): blocks += list(self.session_path.glob('[0-9]'*num)) # sort by block number blocks = sorted(blocks, key=lambda x: int(x.stem)) return blocks def load_session_log(self, verbose=False): ''' ''' pattern = '{session_path}/{year}-{month}-{day}_{subject}.ini' yyyy, mm, dd = misc.date_tuple2yyyymmdd(self.date_tuple) flname = pattern.format(session_path=self.session_path, subject=self.subject_name, year=yyyy, month=mm, day=dd) try: log = logs.read_experiment_log(flname, verbose=verbose) except IOError: print('Log file not available: %s' % flname) log = None self.log = log def log_load_section(self, section_name, field=None): contents = self.log[section_name] # Convert the contents into correct datatypes parsed_contents = {} for key in contents.keys(): if (field is not None) and (key != field): continue value = contents[key] value = misc.convert_string2data(value) if isinstance(value, list): # convert numerical lists to arrays isnumeric = [not isinstance(val, str) for val in value] if np.alltrue(isnumeric): value = np.asarray(value) if isinstance(value, str): # Dynamic root path if '{dataset_full_path}' in value: value = value.format( dataset_full_path=fusilib.config.DATA_ROOT) # store parsed result parsed_contents[key] = value # Only return what is requested if field is not None: if field not in parsed_contents: print('Not found: %s/%s' % (section_name, field)) else: parsed_contents = parsed_contents[field] return parsed_contents def get_block_paths(self, blocknum): ''' ''' block_paths = self.log_load_section('block') for key, value in block_paths.items(): try: block_paths[key] = value.format(blocknum) except IndexError: # pattern `{}` appears more than once ninstances = len(value.split('{}'))-1 block_paths[key] = value.format(*[blocknum]*ninstances) except KeyError: # leave named place holders alone continue return block_paths def ephys_get_probe_hemisphere(self, hemisphere): ''' ''' probe_names = self.log_load_section('ephys', 'probes') for probe_name in probe_names: hemi = self.log_load_section(probe_name, 'nickname') if hemi == hemisphere: return probe_name def ephys_get_probe_object(self, probe_name=None, path=None): ''' ''' # log file contains a section # [probe_name] # phy_path = full/path/to/thing if path is None: probe_paths = self.log_load_section(probe_name) path = misc.uri_convert_uri2local(probe_paths['path_phy']) return phy.ProbeHandler(path) def ephys_get_probe_nclusters(self, probe_name): ''' ''' probe_object = self.ephys_get_probe_object(probe_name) probe_object.npy_template_feature_ind() nclusters = probe_object.npy_template_feature_ind.data.shape[0] return nclusters def ephys_get_recording_object(self, path=None): ''' ''' if path is None: # log file contains a section # [probe_name] # phy_path = full/path/to/thing ephys_info = self.log_load_section('ephys') ephys_path = ephys_info['path'] spikeglx_prefix = self.log_load_section( 'spikeglx')['recording_prefix'] recording_path = os.path.join(ephys_path, spikeglx_prefix) path = misc.uri_convert_uri2local(recording_path) return phy.RecordingHandler(path) def ephys_get_pxinidaq_data(self, path=None, index_npsync=0, index_acqlive=1, index_flipper=2): '''Load the PXI NI DAQ data as saved by SpikeGLX. ''' # log file contains a section # [pxinidaq] # path = full/path/to/thing if path is None: paths = self.log_load_section('pxinidaq') path = misc.uri_convert_uri2local(paths['path']) pxinidaq_flname = path print('Loading: %s' % pxinidaq_flname) pxinidaq_metadata = spikeglx.read_metadata(pxinidaq_flname) pxinidaq_sample_ratehz = pxinidaq_metadata['niSampRate'] pxinidaq_data = spikeglx.load_data_chunk( pxinidaq_flname, sample_duration=-1).T pxinidaq_time = np.arange( pxinidaq_data.shape[0])/pxinidaq_sample_ratehz pxinidaq = misc.DotDict(npsync=sync.analog2digital(pxinidaq_data[:, index_npsync]), # NP digital signal # acquisition live timeline signal) acqlive=sync.analog2digital( pxinidaq_data[:, index_acqlive]), flipper=sync.analog2digital( pxinidaq_data[:, index_flipper]), # arduino flipper signal times=pxinidaq_time, sample_ratehz=pxinidaq_sample_ratehz) return pxinidaq def fusi_get_probe_localizer(self, probe_name, slice_name='slice00', is_ystack=False): ''' ''' section_header = 'location_%s_%s' % (slice_name, probe_name) paths = self.log_load_section(section_header) pprint(paths) from fusilib import handler path = misc.uri_convert_uri2local(paths['fusi_data']) data = handler.matlab_data(path) if is_ystack is False: # Make sure log data matches MATLAB content assert np.allclose(data['yCoords'], paths['ycoord']) moving_probe = data['Doppler'].yStack.copy() del(data) else: # It's a ystack 4D image: (z,x,t,y) # default to using the first slice moving_probe = data['Doppler'].yStack[..., 0] return moving_probe def fusi_get_probe_slice_mask(self, probe_name, slice_name='slice00', roi_file_name='fusi_probe_roi.hdf', verbose=False): ''' ''' section_header = 'location_%s_%s' % (slice_name, probe_name) localizer_info = self.log_load_section(section_header) if verbose > 1: pprint(localizer_info) localizer_subfolder = str(localizer_info['folder_name']) flname = self.mk_filename_for_localdb(roi_file_name, subfolder=localizer_subfolder) mask = hdf_load(str(flname), 'mask', verbose=verbose > 1) if verbose: print('fUSi probe ROI voxels: %i' % mask.sum()) return mask def fusi_get_probe_master_mask(self, probe_name, roi_file_name='fusi_probe_roi.hdf'): ''' probe2Dprojection : 'fusi_probe_roi.hdf' V1 chunk : 'fusi_V1_section_in_probe_roi.hdf' HPC chunk : fusi_hippo_section_in_probe_roi.hdf' ''' blocks = self.log_load_section('experiment', 'block_numbers') fusi_slices = self.log_load_section('fusi', 'mapping_block2slices') slices2blocks = {k: v for k, v in zip(fusi_slices, blocks)} fusi_slices = [t for t in np.unique(fusi_slices) if not np.isnan(t)] masks = np.asarray([self.fusi_get_probe_slice_mask( probe_name, 'slice%02i' % sdx, roi_file_name=roi_file_name).astype(np.int) for sdx in fusi_slices]) master_mask = masks.sum(0) > 0 return master_mask def fusi_get_probe_mask_extreme_coords(self, probe_name, slice_number=0, in_xyz_mm=False): '''Get top and bottom voxel positions (0,0,0) is left,back,top. Returns ------- top_xyz, bottom_xyz x:ML: from the left y:AP: from the back z:DV: from the top ''' mask = self.fusi_get_probe_slice_mask( probe_name, slice_name='slice%02i' % slice_number) # exclude outside of brain voxels slice_blocks = self.fusi_get_slice_blocks(slice_number) block = MetaBlock(self.subject_name, self.session_name, slice_blocks[0], verbose=False) outside_brain = block.fusi_get_outsidebrain_mask() mask[outside_brain] = False dv_voxels = mask.sum(-1).nonzero()[0] ml_voxels = mask.sum(0).nonzero()[0] dv_top, dv_bottom = dv_voxels[0], dv_voxels[-1] ml_top = round(np.mean(mask[dv_top].nonzero()[0])) ml_bottom = round(np.mean(mask[dv_bottom].nonzero()[0])) if in_xyz_mm: ml_mm, dv_mm = self.fusi_image_pixel_mm ap_mm = self.fusi_get_slices_mm(slice_number) xyz = np.asarray([[ml_top, ml_bottom], [ap_mm, ap_mm], [dv_top, dv_bottom], ]) xyz[0, :] *= ml_mm xyz[2, :] *= dv_mm return xyz[:, 0], xyz[:, 1] # get position of slice in AP info = self.log_load_section('fusi') slices_mm = info['slice_positions'] ystack_mm = info['ystack_positions'] ap_pos = np.asarray([idx for idx, t in enumerate( ystack_mm) if t in slices_mm])[slice_number] return (ml_top, ap_pos, dv_top), (ml_bottom, ap_pos, dv_bottom) @property def fusi_shape(self): horizontal, vertical = self.fusi_get_coords_inplane_mm() return len(vertical), len(horizontal) def fusi_get_ystack(self): '''y-stack for session Raw data is stored as a 4D array: (nz, nx, nt, ny). This computes the mean across time Returns ------- ystack : np.ndarray, (nz, nx, ny) ''' from fusilib import handler paths = self.log_load_section('fusi') path = misc.uri_convert_uri2local(paths['ystack_volume']) data = handler.matlab_data(path) out = data['Doppler'].yStack.mean(2) del(data) return out def fusi_get_ystack_nifti(self, nonlinearity=lambda x: x): '''Convert ystack to RAS-oriented nifti Applies sqrt non-linearity to data Returns ------- image : Nifti1Image ''' from fusilib import align, handler # get volume arr = self.fusi_get_ystack() arr = nonlinearity(arr) # get dimensions xmm, zmm = self.fusi_image_pixel_mm paths = self.log_load_section('fusi') path = misc.uri_convert_uri2local(paths['ystack_volume']) data = handler.matlab_data(path) ymm = np.median(np.diff(data['yCoords'])) xyzmm = np.asarray([xmm, ymm, zmm]) print(arr.shape, xyzmm) im = align.fusiarr2nii(arr, xyzmm=xyzmm, flips=(1, 1, -1)) return im def fusi_get_allenccf_byindex(self, scale_factor=1): ''' ''' import nibabel as nib fl_resampled_atlas = self.mk_filename_for_localdb('alleccf_atlas_resampled_fusi_scaled%02ix_byindex.nii.gz' % scale_factor, 'allenccf_align') im = nib.load(fl_resampled_atlas) return np.asarray(im.get_fdata()) def fusi_get_slices_mm(self, slice_number=None): ''' ''' info = self.log_load_section('fusi') slices_mm = info['slice_positions'] if slice_number is not None: slices_mm = slices_mm[slice_number] return slices_mm def fusi_get_mean_slices(self, slice_number=None, scale_factor=1, remove_outside=True): ''' ''' nii = self.fusi_get_ystack_nifti() arr = np.asarray(nii.get_fdata()) info = self.log_load_section('fusi') slices_mm = info['slice_positions'] ystack_mm = info['ystack_positions'] ystack_idx = np.asarray( [idx for idx, t in enumerate(ystack_mm) if t in slices_mm]) ystack_nslices = len(ystack_mm) axis = np.asarray([idx == ystack_nslices for idx in arr.shape]) assert axis.sum() == 1 axis = int(axis.nonzero()[0]) slicer = [slice(None)]*arr.ndim slicer[axis] = ystack_idx # Get relevant coronal slices and put them in the first dimension dat = arr[tuple(slicer)].transpose((1, 2, 0)).astype(np.int) if remove_outside: for slicenum in range(self.fusi_nslices): slice_blocks = self.fusi_get_slice_blocks(slicenum) blockob = MetaBlock( self.subject_name, self.session_name, slice_blocks[0], verbose=False) outside_brain = blockob.fusi_get_outsidebrain_mask() dat[:, outside_brain] = 0 if slice_number is not None: dat = dat[slice_number] return dat def fusi_get_allenccf_slices(self, slice_number, scale_factor=1, remove_outside=True): ''' ''' arr = self.fusi_get_allenccf_byindex(scale_factor) info = self.log_load_section('fusi') slices_mm = info['slice_positions'] ystack_mm = info['ystack_positions'] ystack_idx = np.asarray( [idx for idx, t in enumerate(ystack_mm) if t in slices_mm]) ystack_nslices = len(ystack_mm) axis = np.asarray([idx == ystack_nslices for idx in arr.shape]) assert axis.sum() == 1 axis = int(axis.nonzero()[0]) slicer = [slice(None)]*arr.ndim slicer[axis] = ystack_idx # Get relevant coronal slices and put them in the first dimension dat = arr[tuple(slicer)].transpose((1, 2, 0)).astype(np.int) if remove_outside: for slicenum in range(self.fusi_nslices): slice_blocks = self.fusi_get_slice_blocks(slicenum) blockob = MetaBlock( self.subject_name, self.session_name, slice_blocks[0], verbose=False) outside_brain = blockob.fusi_get_outsidebrain_mask() dat[:, outside_brain] = 0 if slice_number is not None: dat = dat[slice_number] return dat def fusi_show_allenccf_slices(self, slice_number=None, scale_factor=1, remove_outside=True, ax=None, alpha=0.5): ''' ''' dat = self.fusi_get_allenccf_slices(slice_number=slice_number, scale_factor=scale_factor, remove_outside=remove_outside) if ax is None: from matplotlib import pyplot as plt fig, ax = plt.subplots() from fusilib.align import allenccf_cmap cmap, norm = allenccf_cmap() im = ax.matshow(dat, cmap=cmap, norm=norm, aspect=self.fusi_aspect_ratio, alpha=alpha) return ax, im def fusi_show(self, array_data, slice_number=0, ax=None, allenccf_background=True, allenccf=True, allenccf_alpha=0.5, **kwargs): ''' ''' if array_data.ndim == 1: array_data = array_data.reshape(self.fusi_shape) if ax is None: from matplotlib import pyplot as plt fig, ax = plt.subplots() if allenccf_background: im_allenccf = self.fusi_show_allenccf_slices( slice_number, ax=ax, alpha=allenccf_alpha) im = ax.matshow( array_data, aspect=self.fusi_aspect_ratio, **kwargs) else: im = ax.matshow( array_data, aspect=self.fusi_aspect_ratio, **kwargs) im_allenccf = self.fusi_show_allenccf_slices( slice_number, ax=ax, alpha=allenccf_alpha) return ax, (im, im_allenccf) def fusi_get_allenccf_contours(self, slice_number=0, area_indexes=None, minlen=50, ax=None, color=None): ''' ''' from skimage import measure allenccf_slice = self.fusi_get_allenccf_slices(slice_number) if area_indexes is None: from fusilib import align area_indexes = align.allenccf_main_areas() contours = {areaidx: measure.find_contours( allenccf_slice, areaidx) for areaidx, color in area_indexes.items()} contours = {areaidx: [tt for tt in t if len( tt) > minlen] for areaidx, t in contours.items()} if ax is not None: for areaidx, area_contours in sorted(contours.items())[::-1]: for contour in area_contours: ax.plot(contour[:, 1].astype(np.int), contour[:, 0].astype(np.int), linewidth=1, color='#%s' % area_indexes[areaidx] if color is None else color) return contours def fusi_get_probedepth_volume(self, probe_name, estimate_type='manual'): ''' ''' import nibabel as nib # load volume volfl = self.mk_filename_for_localdb('estimated_%s_3Dtrack_%s.nii.gz' % (probe_name, estimate_type), 'allenccf_align') assert pathlib.Path(volfl).exists() vol = nib.load(volfl) return vol def fusi_get_probedepth_from_volume(self, probe_name, estimate_type='manual'): ''' ''' fl = self.mk_filename_for_localdb('estimated_%s_3Dtrack_%s.hdf' % (probe_name, estimate_type), 'allenccf_align') xyzmm = readers.hdf_load(fl, 'probe_tip_mm', verbose=self.verbose) probe_depth = np.sqrt(np.sum(xyzmm**2)) return probe_depth def fusi_get_slice_probedepth_and_voxels(self, slice_number, probe_name, widthmm=0.5, estimate_type='manual', remove_outside=True): ''' ''' probe_mask = self.fusi_get_probe_master_mask(probe_name) vol = self.fusi_get_probedepth_volume( probe_name, estimate_type=estimate_type) arr = np.asarray(vol.get_fdata()) volxyzmm = vol.affine[np.diag_indices_from(np.eye(3))] del(vol) info = self.log_load_section('fusi') slices_mm = np.asarray(info['slice_positions']) ystack_mm = np.asarray(info['ystack_positions']) ystack_idx = np.asarray( [idx for idx, t in enumerate(ystack_mm) if t in slices_mm]) ystack_nslices = len(ystack_mm) # determine volume axis for slices axis = np.asarray([idx == ystack_nslices for idx in arr.shape]) assert axis.sum() == 1 axis = int(axis.nonzero()[0]) axis_nvox = arr.shape[axis] axis_mm = axis_nvox*volxyzmm[axis] slice_position = slices_mm[slice_number] slice_window_marker = np.logical_and(ystack_mm <= slice_position + widthmm/2.0, ystack_mm >= slice_position - widthmm/2.0) slicer = [slice(None)]*arr.ndim slicer[axis] = slice_window_marker.nonzero()[0] # Get relevant slices and put them in the first dimension dat = arr[tuple(slicer)] # remove probe section outside of penetration (marked with negative values) dat = np.where(dat < 0, np.nan, dat) # min so that we're biased towards the back of brain dat = np.nanmin(dat, axis=axis).T # also, force minimum value to be 0. it's not 0 b/c of voxelization assert np.nanmin(dat) >= 0 if np.nanmin(dat) < 0.1: # [mm] # if it's less than 100[um] set to zero dat[np.unravel_index(np.nanargmin(dat), dat.shape)] = 0 # DV min/max probe_location = np.abs(np.nanmax(dat, axis=1)) > 0 probe_mask[np.logical_not(probe_location), :] = 0 if remove_outside: slice_blocks = self.fusi_get_slice_blocks(slice_number) blockob = MetaBlock( self.subject_name, self.session_name, slice_blocks[0], verbose=False) outside_brain = blockob.fusi_get_outsidebrain_mask() dat[outside_brain] = np.nan probe_mask[outside_brain] = 0 npx_depth = self.fusi_get_probedepth_from_volume(probe_name) probe_depth = dat[~np.isnan(dat)] probe_bottom, probe_top = probe_depth.max(), probe_depth.min() # 0:top of brain phy_limits = np.asarray( [npx_depth - probe_bottom, npx_depth - probe_top]) if self.verbose: print('slicepos=%0.02f[mm] and slices:' % slice_position, ystack_mm[slice_window_marker]) print('probe depth:', phy_limits) return dat, probe_mask, phy_limits def fusi_get_coords_inplane_mm(self): '''Read image coordinates from fUSi acquistion Uses the size of a y-stack slice for all images. Returns ------- horiz_mm_coords, vert_mm_coords ''' from fusilib import handler paths = self.log_load_section('fusi') path = misc.uri_convert_uri2local(paths['ystack_volume']) data = handler.matlab_data(path) hcoords = data['Doppler'].xAxis.copy() vcoords = data['Doppler'].zAxis.copy() del(data) return hcoords, vcoords @property def fusi_aspect_ratio(self): '''Assumes all images in this session have the same pixel resolution. Returns ------- aspect_ratio = vert_mm/horiz_mm ''' hsize, vsize = self.fusi_image_pixel_mm return vsize/hsize @property def fusi_image_pixel_mm(self): ''' Returns ------- horiz_size_mm, vert_size_mm ''' hcoords, vcoords = self.fusi_get_coords_inplane_mm() hsize = np.median(np.unique(np.diff(hcoords))) vsize = np.median(np.unique(np.diff(vcoords))) return hsize, vsize @property def analysis_blocks(self): '''Blocks for analysis from the session LOG. ''' return self.log_load_section('experiment', 'analysis_blocks') def ephys_get_cluster_depths(self, probe_name): ''' ''' nclusters = self.ephys_get_probe_nclusters(probe_name) depths = np.zeros(nclusters)*np.nan probe_object = self.ephys_get_probe_object(probe_name) # load cluster depths probe_object.tsv_cluster_info() # depth_um = probe_object.tsv_cluster_info.depth.astype(np.float32) if hasattr(probe_object.tsv_cluster_info, 'cluster_id'): # Latest PHY changed the heade depths[probe_object.tsv_cluster_info.cluster_id] = probe_object.tsv_cluster_info.depth.copy() else: depths[probe_object.tsv_cluster_info.id] = probe_object.tsv_cluster_info.depth.copy() return depths def ephys_get_mua_masks(self, probe_name, mua_window_um=500, neuropix_size_um=3840): ''' ''' mua_depths = np.arange(0, neuropix_size_um, mua_window_um) print(mua_depths) mua_nchunks = len(mua_depths) nclusters = self.ephys_get_probe_nclusters(probe_name) mask = np.zeros((mua_nchunks, nclusters)).astype(np.bool) probe_object = self.ephys_get_probe_object(probe_name) # load cluster depths probe_object.tsv_cluster_info() depth_um = probe_object.tsv_cluster_info.depth.astype(np.float32) mua_masks = futils.fast_find_between( depth_um, mua_depths, mua_window_um) for muaidx, mua_mask in enumerate(mua_masks): mask[muaidx, mua_mask] = True return mask def ephys_get_clusters_group(self, probe_name): ''' ''' nclusters = self.ephys_get_probe_nclusters(probe_name) probe_object = self.ephys_get_probe_object(probe_name) goods = np.zeros(nclusters).astype(np.bool) # get good clusters try: probe_object.tsv_cluster_group() # load grp = probe_object.tsv_cluster_group.group cid = probe_object.tsv_cluster_group.cluster_id except: print('SPIKE SORTING NOT READY. USING AUTOMATED LABELS') probe_object.tsv_cluster_info() grp = probe_object.tsv_cluster_info.group cid = probe_object.tsv_cluster_info.id return cid, grp def ephys_get_putative_class(self, probe_name, neuron_class): ''' ''' assert neuron_class in ['excitatory', 'inhibitory'] from fusilib.io import phy probe_object = self.ephys_get_probe_object(probe_name) fl = probe_object.__pathobj__/'cluster_putative_neuronclass.csv' data = {k: v for k, v in phy.yield_table_columns(fl, delimiter=',')} nclusters = self.ephys_get_probe_nclusters(probe_name) goods = np.zeros(nclusters).astype(np.bool) class_marker = data['putative_class'] == neuron_class goods[data['cluster_id']] = class_marker return goods def ephys_get_good_clusters(self, probe_name): ''' ''' nclusters = self.ephys_get_probe_nclusters(probe_name) probe_object = self.ephys_get_probe_object(probe_name) goods = np.zeros(nclusters).astype(np.bool) # get good clusters try: probe_object.tsv_cluster_group() # load mask = probe_object.tsv_cluster_group.group != 'noise' good_clusters = probe_object.tsv_cluster_group.cluster_id[mask] except: print('SPIKE SORTING NOT READY. USING AUTOMATED LABELS') probe_object.tsv_cluster_info() mask = probe_object.tsv_cluster_info.group != 'noise' good_clusters = probe_object.tsv_cluster_info.id[mask] goods[good_clusters] = True return goods def get_block(self, block_number=2): ''' ''' assert block_number in self.experiment_blocks return MetaBlock(self.subject_name, self.session_name, block_number) def generate_fusi_task_blocks(self, task_name): ''' ''' assert task_name in self.experiment_tasks task_blocks = self.experiment_get_task_blocks(task_name) for block in task_blocks: yield self.get_block(block_number=block) def generate_analysis_blocks(self): ''' ''' for block_number in self.analysis_blocks: block = MetaBlock(self.subject_name, self.session_name, block_number, verbose=self.verbose) if block.task_name in ('spontaneous', 'checkerboard'): yield block def generate_fusi_slice_blocks(self, slice_number=0): ''' ''' slice_blocks = self.fusi_get_slice_blocks(slice_number) print('Found %i blocks for slice=%i' % (len(slice_blocks), slice_number), slice_blocks) for block in slice_blocks: yield MetaBlock(self.subject_name, self.session_name, block) def generate_fusi_slice_blocks_method(self, slice_number, method_name, *args, **kwargs): ''' Example ------- >>> # Get all the data from the slices >>> fusi_iterator = subject.generate_fusi_slice_blocks_method(0, 'fusi_get_data') >>> times, data = next(method_iterator) >>> ephys_iterator = sub.generate_fusi_slice_blocks_method(0, 'ephys_get_probe_spikes_object', 'probe00') >>> probe = next(ephys_iterator) >>> nmua, mua_matrix = probe.time_locked_mua_matrix(times, dt=0.3) ''' slice_blocks = self.generate_fusi_slice_blocks(slice_number) for block in slice_blocks: method = getattr(block, method_name) yield method(*args, **kwargs) def generate_slice_fusi_and_ephys_data(self, slice_number, probe_name, **fusi_kwargs): ''' Example ------- >>> iterator = sub.generate_slice_fusi_and_ephys_data(0, 'probe00') >>> times, fusi_data, nmua, mua_matrix = next(iterator) Yields ------ fusi_times : 1D np.ndarray, (t,) fusi_data : 3D np.ndarray, (t, nz, nx) nmua : 1D np.ndarray, (m,) mua_matrix : 2D np.ndarray, (t, m) ''' fusi_iterator = self.generate_fusi_slice_blocks_method( slice_number, 'fusi_get_data', **fusi_kwargs) ephys_iterator = self.generate_fusi_slice_blocks_method( slice_number, 'ephys_get_probe_spikes_object', probe_name) fusi_dt = fusi_kwargs.get('dt_ms', 300)/1000. for (times, fusi_data), probe_object in zip(fusi_iterator, ephys_iterator): nmua, mua_matrix = probe_object.time_locked_mua_matrix( times, dt=fusi_dt) yield times, fusi_data, nmua, mua_matrix def fusi_get_slice_blocks(self, slice_number=0): ''' ''' fusi_block_slices = self.log_load_section( 'fusi', 'mapping_block2slices') blocks = self.log_load_section('experiment', 'block_numbers') slice_blocks = blocks[fusi_block_slices == slice_number] return slice_blocks def fusi_load_all_slice_data(self, slice_number, dt_ms=300, window_ms=400, svddrop=15, roi_name=None, concatenate=True): ''' Parameters ---------- slice_number (int): Index of the slice we want ''' fusi_block_slices = self.log_load_section( 'fusi', 'mapping_block2slices') blocks = self.log_load_section('experiment', 'block_numbers') slice_blocks = blocks[fusi_block_slices == slice_number] print(slice_blocks, slice_number, fusi_block_slices) slice_times = [] slice_data = [] for bdx, block_number in enumerate(slice_blocks): assert np.allclose(block_number, int(block_number)) block_number = int(block_number) subject_block = MetaBlock(self.subject_name, self.session_name, block_number, root=self.root.parent) print(subject_block) # Load fUSi data times, data = subject_block.fusi_get_data(dt_ms=dt_ms, window_ms=window_ms, svddrop=svddrop) if bdx > 0 and concatenate: # changes times to be continuous with last block last_times = slice_times[bdx-1][-2:] times += last_times[-1] + np.diff(last_times) - times.min() if roi_name is not None: if 'probe' in roi_name: mask = subject_block.fusi_get_probe_slice_mask(roi_name) data = data[..., mask.astype(np.bool)] else: raise ValueError('Unknown fUSi mask: %s' % roi_name) slice_times.append(times) slice_data.append(data) if concatenate: slice_times = np.hstack(slice_times) slice_data = np.vstack(slice_data) return slice_times, slice_data def load_physio_data(self, slice_number, dt_ms=300, window_ms=400, svddrop=15, trim_beg=None, trim_end=None, concatenate=True): ''' Parameters ---------- slice_number (scalar) : slice code dt_ms (scalar) : new sampling rate in [milliseconds] ''' from fusilib import resampling fusi_block_slices = self.log_load_section( 'fusi', 'mapping_block2slices') blocks = self.log_load_section('experiment', 'block_numbers') slice_blocks = blocks[fusi_block_slices == slice_number] print(slice_blocks, slice_number, fusi_block_slices) timestamps = [] slice_physio_data = [] for bdx, block_number in enumerate(slice_blocks): assert np.allclose(block_number, int(block_number)) block_number = int(block_number) subject_block = MetaBlock(self.subject_name, self.session_name, block_number, root=self.root.parent) print(subject_block) # Load fUSi data fusi_times, _ = subject_block.fusi_get_data(dt_ms=dt_ms, window_ms=window_ms, svddrop=svddrop) physio_times, physio_data = subject_block.fusi_get_heartbeat_estimate() # resample physio data to fUSi frequency physio_data = resampling.lanczos_resample(dt_ms/1000., physio_data[..., None], physio_times, fusi_times).squeeze() if bdx > 0 and concatenate: # changes times to be continuous with last block last_times = timestamps[bdx-1][-2:] fusi_times += last_times[-1] + \ np.diff(last_times) - fusi_times.min() # trim individual blocks if trim_beg: fusi_times = fusi_times[trim_beg:] physio_data = physio_data[trim_beg:] if trim_end: fusi_times = fusi_times[:trim_end] physio_data = physio_data[:trim_end] timestamps.append(fusi_times) slice_physio_data.append(physio_data) if concatenate: timestamps = np.hstack(timestamps) slice_physio_data = np.hstack(slice_physio_data) return timestamps, slice_physio_data def load_joint_data(self, slice_number, probe_name, dt_ms=300, window_ms=400, svddrop=15, freq_cutoffhz=15, roi_name=None, trim_beg=None, trim_end=None, recache=False, mirrored=False, concatenate=True): ''' Parameters ---------- slice_number (int): Index of the slice we want probe_name (str) trim_beg: data[beg:] trim_end: data[:end] Returns ------- times fusi_data spike_data ''' params = OrderedDict(locals()) params['path'] = self.session_path params['name'] = 'joint_data' cache_file = params2cache(params) print(cache_file) if cache_file.exists() and recache is False: timestamps = readers.hdf_load(cache_file, 'timestamps') slice_fusi_data = readers.hdf_load(cache_file, 'slice_fusi_data') spike_data = readers.hdf_load(cache_file, 'spike_data') return timestamps, slice_fusi_data, spike_data fusi_block_slices = self.log_load_section( 'fusi', 'mapping_block2slices') blocks = self.log_load_section('experiment', 'block_numbers') slice_blocks = blocks[fusi_block_slices == slice_number] nclusters = self.ephys_get_probe_nclusters(probe_name) print(slice_blocks, slice_number, fusi_block_slices) timestamps = [] slice_fusi_data = [] spike_data = [] for bdx, block_number in enumerate(slice_blocks): assert np.allclose(block_number, int(block_number)) block_number = int(block_number) subject_block = MetaBlock(self.subject_name, self.session_name, block_number, root=self.root.parent) print(subject_block) # Load fUSi data if not np.isscalar(freq_cutoffhz) and roi_name is not None: assert len(freq_cutoffhz) == 2 # Bandpassed data is stored for ROIs times, fusi_data = subject_block.fusi_get_data(dt_ms=dt_ms, window_ms=window_ms, svddrop=svddrop, freq_cutoffhz=freq_cutoffhz, roi_name=roi_name, mirrored=mirrored) else: # WHOLE BRAIN times, fusi_data = subject_block.fusi_get_data(dt_ms=dt_ms, window_ms=window_ms, svddrop=svddrop, freq_cutoffhz=freq_cutoffhz) spike_times, spike_clusters = subject_block.ephys_get_probe_data( probe_name) spike_matrix = futils.bin_spikes(times, dt_ms/1000., spike_times, spike_clusters, nclusters=nclusters) if bdx > 0 and concatenate: # changes times to be continuous with last block last_times = timestamps[bdx-1][-2:] times += last_times[-1] + np.diff(last_times) - times.min() if roi_name is not None: if ('probe' in roi_name) and np.isscalar(freq_cutoffhz): # only computed for these # mask = subject_block.fusi_get_probe_slice_mask(roi_name) # mask = subject_block.fusi_get_probe_master_mask(roi_name) if mirrored: # CONTROL: mirror and flip mask mask = mask[::-1, ::-1] fusi_data = fusi_data[..., mask.astype(np.bool)] elif (('probe' in roi_name) or ('outcenter' in roi_name)) and isinstance(freq_cutoffhz, (tuple, list)): # data is already masked pass else: raise ValueError('Unknown fUSi mask: %s' % roi_name) # trim individual blocks if trim_beg: times = times[trim_beg:] fusi_data = fusi_data[trim_beg:] spike_matrix = spike_matrix[trim_beg:] if trim_end: times = times[:trim_end] fusi_data = fusi_data[:trim_end] spike_matrix = spike_matrix[:trim_end] timestamps.append(times) slice_fusi_data.append(fusi_data) spike_data.append(spike_matrix) if concatenate: timestamps = np.hstack(timestamps) spike_data = np.vstack(spike_data) slice_fusi_data = np.vstack(slice_fusi_data) readers.hdf_dump(cache_file, {'timestamps': timestamps, 'slice_fusi_data': slice_fusi_data, 'spike_data': spike_data}) return timestamps, slice_fusi_data, spike_data def load_joint_spectrogram_data(self, slice_number, probe_name, dt_ms=300, window_ms=400, roi_name='probe00', trim_beg=None, trim_end=None, rawfft=False, rawpsd=False, concatenate=True, recache=False): ''' Parameters ---------- slice_number (int): Index of the slice we want probe_name (str) trim_beg: data[beg:] trim_end: data[:end] Returns ------- times fusi_data spike_data ''' params = OrderedDict(locals()) params['path'] = self.session_path cache_file = params2cache(params) print(cache_file) if cache_file.exists() and recache is False: timestamps = readers.hdf_load(cache_file, 'timestamps') slice_fusi_data = readers.hdf_load(cache_file, 'slice_fusi_data') spike_data = readers.hdf_load(cache_file, 'spike_data') return timestamps, slice_fusi_data, spike_data fusi_block_slices = self.log_load_section( 'fusi', 'mapping_block2slices') blocks = self.log_load_section('experiment', 'block_numbers') slice_blocks = blocks[fusi_block_slices == slice_number] nclusters = self.ephys_get_probe_nclusters(probe_name) print(slice_blocks, slice_number, fusi_block_slices) timestamps = [] slice_fusi_data = [] spike_data = [] for bdx, block_number in enumerate(slice_blocks): assert np.allclose(block_number, int(block_number)) block_number = int(block_number) subject_block = MetaBlock(self.subject_name, self.session_name, block_number, root=self.root.parent) print(subject_block) # Load fUSi data times, fusi_data = subject_block.fusi_get_roi_spectrogram(dt_ms=dt_ms, window_ms=window_ms, roi_name=roi_name, rawfft=rawfft, rawpsd=rawpsd, ) spike_times, spike_clusters = subject_block.ephys_get_probe_data( probe_name) spike_matrix = futils.bin_spikes(times, dt_ms/1000., spike_times, spike_clusters, nclusters=nclusters) if bdx > 0 and concatenate: # changes times to be continuous with last block last_times = timestamps[bdx-1][-2:] times += last_times[-1] + np.diff(last_times) - times.min() # trim individual blocks if trim_beg: times = times[trim_beg:] fusi_data = fusi_data[trim_beg:] spike_matrix = spike_matrix[trim_beg:] if trim_end: times = times[:trim_end] fusi_data = fusi_data[:trim_end] spike_matrix = spike_matrix[:trim_end] timestamps.append(times) slice_fusi_data.append(fusi_data) spike_data.append(spike_matrix) if concatenate: timestamps = np.hstack(timestamps) spike_data = np.vstack(spike_data) slice_fusi_data = np.vstack(slice_fusi_data) readers.hdf_dump(cache_file, {'timestamps': timestamps, 'slice_fusi_data': slice_fusi_data, 'spike_data': spike_data}) return timestamps, slice_fusi_data, spike_data class MetaBlock(MetaSession): ''' ''' def __init__(self, subject_name, session_name, block_name, root=None, verbose=False): ''' ''' super(type(self), self).__init__(subject_name, session_name, root=root, verbose=verbose) block_name = str(block_name) block_number = int(block_name) block_path = self.session_path.joinpath(block_name) self.verbose = verbose self.block_name = block_name self.block_number = block_number self.block_path = block_path assert block_path.exists() def get_meta_session(self): return MetaSession(self.subject_name, self.session_name, verbose=False) @property def meta_session(self): return MetaSession(self.subject_name, self.session_name, verbose=False) @property def task_name(self): ''' ''' session_info = self.log_load_section('experiment') experiment_names = session_info['block_names'] for expname in experiment_names: if int(self.block_number) in session_info[expname]: experiment_name = expname break return experiment_name.split('_')[1] @property def slice_number(self): ''' ''' slice_number = self.experiment_mapper_blocks2slices[self.block_number] return slice_number @property def analysis_slicewidth_search(self): search_widths = self.log_load_section('experiment', 'analysis_widthmm') return float(search_widths[self.analysis_blocks == self.block_number]) def stimulus_load_times(self): timeline_aligned = self.timeline_get_aligned_times() # load timeline self.localdb_timeline_load_block() # get stimulus times self.timeline.load_photod_stimuli(timeline_aligned) stimulus_frame_times = self.timeline.phd_frame_times.copy() stimulus_start_times = self.timeline.phd_stim_start.copy() stimulus_end_times = self.timeline.phd_stim_end.copy() return stimulus_start_times, stimulus_end_times def stimulus_checkerboard_times(self): ''' ''' stimulus_start_times, stimulus_end_times = self.stimulus_load_times() nstimuli, nreps = stimulus_start_times.shape ordered_times = np.sort(stimulus_start_times.T.reshape( int(nreps/2), int(nstimuli*2)), 1).T self.timeline.load_protocol() print(self.timeline.protocol.pardefs) stimulus_parameters = self.timeline.protocol.pars xypos = stimulus_parameters[1:5].T # (xleft, right, bottom, top) contrast = stimulus_parameters[[-1]].T # contrast stimulus_params = np.hstack([xypos, contrast]) checkerboard_params, trial_ids = np.unique( stimulus_params, axis=0, return_inverse=True) checkerboard_ids = np.unique(trial_ids) trial_names = {trialid: str( checkerboard_params[trialid]) for trialid in np.unique(trial_ids)} stimulus_matrix = np.asarray([trial_ids]*nreps).T stimulus_onsets = np.asarray([stimulus_start_times[stimulus_matrix == cid] for cid in checkerboard_ids]).T return stimulus_start_times, stimulus_matrix def stimulus_checkerboard_repeats(self): ''' ''' stimulus_start_times, stimulus_matrix = self.stimulus_checkerboard_times() repeat_ids = np.asarray([np.hstack([forward, backward]) for forward, backward in zip(stimulus_matrix[:, ::2].T, stimulus_matrix[:, 1::2][::-1].T)]).T # second half is repeated backwards assert np.allclose(repeat_ids[:20, 0], repeat_ids[20:, 0][::-1]) repeat_times = np.asarray([np.hstack([forward, backward]) for forward, backward in zip(stimulus_start_times[:, ::2].T, stimulus_start_times[:, 1::2][::-1].T)]).T return repeat_times, repeat_ids def mk_filename_for_localdb(self, filename, subfolder=None, mkdir=False): date_txt = misc.date_tuple2isoformat(self.date_tuple) flname = '{date}_{block}_{subject}_{fl}'.format(date=date_txt, block=self.block_name, subject=self.subject_name, fl=filename) if subfolder is None: outpath = self.block_path else: outpath = self.block_path.joinpath(subfolder) if mkdir: outpath.mkdir(exist_ok=True) return outpath.joinpath(flname) def __str__(self): info = (self.subject_name, self.session_name, self.block_name) return 'subject=%s, session=%s, block=%s' % info def __repr__(self): info = (__name__, type(self).__name__, self.subject_name, self.session_name, self.block_name) return '<%s.%s [%s: session=%s, block=%s]>' % info @property def block_paths(self): return self.get_block_paths(self.block_name) def _get_hdf_field(self, filename, field): ''' ''' return readers.hdf_load(filename, field) def ephys_get_probe_spikes_object(self, probe_name, good_clusters=None): ''' ''' spike_times, spike_clusters = self.ephys_get_probe_data(probe_name) nclusters = self.ephys_get_probe_nclusters(probe_name) if good_clusters is None: good_clusters = self.ephys_get_good_clusters(probe_name) cluster_depths = self.ephys_get_cluster_depths(probe_name) from fusilib.io import spikes return spikes.ProbeSpikes(spike_times, spike_clusters, nclusters=nclusters, good_clusters=good_clusters, cluster_depths=cluster_depths) def ephys_get_mua(self, probe_name, times, dt, **kwargs): ''' ''' probe_object = self.ephys_get_probe_spikes_object(probe_name) return probe_object.time_locked_mua_matrix(times, dt, **kwargs) def ephys_load_spikes(self, probe_name): ''' ''' filename = self.block_paths['%s_spikes' % probe_name] clusters = hdf_load(filename, 'spike_clusters') sample_ratehz = hdf_load(filename, 'phy_sample_ratehz') # spike times are stored in units of sample rate times = hdf_load(filename, 'spike_times')/sample_ratehz dotdict = misc.DotDict(clusters=clusters, times=times, sample_ratehz=sample_ratehz) setattr(self, probe_name, dotdict) def ephys_load_digital(self, probe_name): ''' ''' filename = self.block_paths['%s_' % probe_name] clusters = hdf_load(filename, 'spike_digital') sample_ratehz = hdf_load(filename, 'phy_sample_ratehz') # spike times are stored in units of sample rate times = hdf_load(filename, 'spike_times')/sample_ratehz dotdict = misc.DotDict(clusters=clusters, times=times, sample_ratehz=sample_ratehz) setattr(self, probe_name, dotdict) def localdb_timeline_load_block(self): ''' ''' timeline = righw.ExperimentData(self.subject_name, expnum=int(self.block_name), date=self.date_tuple, root=self.root.parent) setattr(self, 'timeline', timeline) def fusi_get_slice_probedepth_and_voxels(self, probe_name, widthmm=None, estimate_type='manual', remove_outside=True): ''' ''' if widthmm is None: widthmm = self.analysis_slicewidth_search slice_number = self.slice_number out = self.meta_session.fusi_get_slice_probedepth_and_voxels(slice_number, probe_name, widthmm=widthmm, estimate_type=estimate_type, remove_outside=remove_outside) return out def fusi_get_probe_allen_mask(self, probe_name, allen_area_name=None, fusi_mirror=False, criterion=1): ''' ''' from fusilib import allen # OLD:'fusi_%s_section_in_probe_roi.hdf'%FUSI_PROBE_MASK_NAME) probe_mask = self.meta_session.fusi_get_probe_master_mask(probe_name) brain_mask = np.logical_not(self.fusi_get_outsidebrain_mask()) pmask = np.logical_and(brain_mask, probe_mask) # ROI voxels in Allen Atlas allenccf_areas = self.meta_session.fusi_get_allenccf_slices( self.slice_number) area_mask = allen.mk_area_mask_from_aligned( allenccf_areas, allen_area_name, verbose=False) # Neuropix fUSI track within allen area ROI pmask = np.logical_and(area_mask, pmask) if fusi_mirror is True: # Mirror 2D projection for bilateral analysis # (This way b/c the probe track might not hit the area if mirrored first) pmask = pmask[:, ::-1] # 3D projection of NPx probe in fUSI # slice_position_mm = subject_block.meta_session.fusi_slice_position(subject_block.slice_number) slice_search_widthmm = self.analysis_slicewidth_search fusi_probe_depth, fusi_probe_mask, probe_limits_mm = self.meta_session.fusi_get_slice_probedepth_and_voxels( self.slice_number, probe_name, widthmm=slice_search_widthmm) # Percentage of 3D NPx probe mask inside the Allen Mask pct_probe_in_roi = (np.logical_and( fusi_probe_mask, pmask).sum()/fusi_probe_mask.sum())*100 return None if pct_probe_in_roi < criterion else pmask def fusi_get_allen_area_mask(self, allen_area_name=None, fusi_mirror=False, hemisphere=None, exclude_probe=None): ''' exclude_probe : str The probe name ROI to exclude (e.g. 'probe00') If given, the probe ROI is removed from the area ROI. ''' from fusilib import allen # OLD:'fusi_%s_section_in_probe_roi.hdf'%FUSI_PROBE_MASK_NAME) brain_mask = np.logical_not(self.fusi_get_outsidebrain_mask()) # ROI voxels in Allen Atlas allenccf_areas = self.meta_session.fusi_get_allenccf_slices( self.slice_number) area_mask = allen.mk_area_mask_from_aligned( allenccf_areas, allen_area_name, verbose=False) # Neuropix fUSI track within allen area ROI allen_roi_mask = np.logical_and(area_mask, brain_mask) if fusi_mirror is True: # Mirror 2D projection for bilateral analysis # (This way b/c the probe track might not hit the area if mirrored first) allen_roi_mask = allen_roi_mask[:, ::-1] if hemisphere is not None: hemi_mask = self.fusi_get_hemisphere_mask(hemisphere) allen_roi_mask = np.logical_and(allen_roi_mask, hemi_mask) if exclude_probe is not None: probe_mask = self.fusi_get_probe_allen_mask(exclude_probe, allen_area_name=allen_area_name, fusi_mirror=fusi_mirror) allen_roi_mask = np.logical_and( allen_roi_mask, np.logical_not(probe_mask)) return allen_roi_mask def fusi_get_outsidebrain_mask(self, verbose=False): ''' ''' fl = self.mk_filename_for_localdb( 'fusi_outsidebrain_roi.hdf', subfolder='fusi') mask = hdf_load(str(fl), 'outsidebrain_mask', verbose=verbose) return mask.astype(np.bool) def fusi_get_hemisphere_mask(self, hemisphere, mask_inside_brain=True): '''Get a mask of the left or right hemisphere: hemisphere : str, One of 'LH' or 'RH' ''' brain_mask = np.logical_not(self.fusi_get_outsidebrain_mask()) midline_mask = self.fusi_get_midline_mask() horiz_midpoint = int(np.median(midline_mask.nonzero()[1])) hemisphere_mask = np.zeros_like(brain_mask) if hemisphere == 'RH': hemisphere_mask[:, horiz_midpoint:] = True else: hemisphere_mask[:, :horiz_midpoint] = True if mask_inside_brain: hemisphere_mask = np.logical_and(brain_mask, hemisphere_mask) return hemisphere_mask def fusi_get_midline_mask(self): ''' ''' fl = self.mk_filename_for_localdb( 'fusi_midline_roi.hdf', subfolder='fusi') # name was saved incorrectly =S mask = hdf_load(str(fl), 'outsidebrain_mask') return mask.astype(np.bool) def fusi_get_raw_data_object(self, dataroot='.', nmax=1): ''' Parameters ---------- dataroot (str) : Path for DAT files nmax (int) : Number of images to load ''' from fusilib.io import contacq dataroot = pathlib.Path(dataroot) data_path = dataroot.joinpath(self.subject_name, misc.date_tuple2isoformat( self.date_tuple), self.block_name) fusi_loader = contacq.MetaLoader( data_path, verbose=True, nmaximum=nmax) return fusi_loader def fusi_get_heartbeat_estimate(self, key='filtered_vascular_timecourse_raw', clip=True): ''' ''' fl = self.block_path.joinpath('fusi', 'physio_hearbeat_estimate.hdf') physio = hdf_load(fl, key) fusi_loader = self.fusi_get_raw_data_object() START_DROPPED_FRAMES = 5 # the first 5 "frames" (i.e. data bursts) have no TTL dropped_samples = START_DROPPED_FRAMES*fusi_loader.images_per_frame physio = physio[dropped_samples:] physio_dtms = 2 # 500[Hz] ttl_dtms = 100 # 10[Hz] # these are at a fixed 100ms fusi_ttl_onsets = self.fusi_get_ttl_times() from scipy import interpolate ttl_samples = np.arange(len(fusi_ttl_onsets)) interpolator = interpolate.interp1d( ttl_samples, fusi_ttl_onsets, fill_value='extrapolate') # factor = dt_ms/ttl_dt factor = physio_dtms/ttl_dtms new_samples = np.arange(physio.shape[0])*factor physio_times = interpolator(new_samples) physio /= np.std(physio) if clip: physio = np.clip(physio, -5, 5) return physio_times, physio def fusi_get_probe_slice_mask(self, probe_name, slice_name=None, roi_file_name='fusi_probe_roi.hdf', verbose=False): ''' ''' fusi_block_slices = self.log_load_section( 'fusi', 'mapping_block2slices') block_index = self.block_number - 1 fusi_slice_number = fusi_block_slices[block_index] if slice_name is None: slice_name = 'slice%02i' % fusi_slice_number if verbose: print(slice_name, block_index) section_header = 'location_%s_%s' % (slice_name, probe_name) localizer_info = self.log_load_section(section_header) if verbose: pprint(localizer_info) localizer_subfolder = str(localizer_info['folder_name']) mask_flname = super(type(self), self).mk_filename_for_localdb(roi_file_name, subfolder=localizer_subfolder) # return mask_flname mask = hdf_load(str(mask_flname), 'mask', verbose=verbose) if verbose: print('fUSi probe ROI voxels: %i' % mask.sum()) return mask def ephys_get_probe_data(self, probe_name, verbose=True): ''' ''' flname = self.mk_filename_for_localdb( '%s_spikes.hdf' % probe_name, subfolder='aligned2pxi') assert flname.exists() if verbose: print(f'Loading spike data: {pathlib.Path(flname).name}...') clusters = hdf_load(flname, 'clusters') times = hdf_load(flname, 'times') return times, clusters def timeline_get_aligned_times(self, key='times'): timeline_flname = self.mk_filename_for_localdb('timeline_aligned2pxi.hdf', subfolder='aligned2pxi') timeline_newtimes = readers.hdf_load(timeline_flname, key) return timeline_newtimes def fusi_get_ttl_times(self): ''' ''' self.localdb_timeline_load_block() fusi_ttl_signal = self.timeline.get_timeline_data('neuralFrames')[1] fusi_ttl_signal = sync.remove_single_datapoint_onsets(fusi_ttl_signal) # load new timeline times (aligned to PXI NI DAQ) timeline_newtimes = self.timeline_get_aligned_times() # compute the onsets from the TTL using the new times ttl_dt = 100 # TTL is updated every 100[ms] fusi_ttl_onsets = sync.digital2times( timeline_newtimes, fusi_ttl_signal)[0] return fusi_ttl_onsets def fusi_get_times(self, **kwargs): '''Call to fusi_get_data that only returns the times ''' return self.fusi_get_data(**kwargs)[0] def fusi_get_data(self, dt_ms=300, window_ms=400, svddrop=15, freq_cutoffhz=15, roi_name=None, mirrored=False, verbose=True): '''Specify the parameters of the preprocessed fUSi data to load Parameters ---------- dt_ms : sample interval [in millisecond] window_ms : window over which filtering and svd drop is applied svddrop : number of SVD components that are thrown on roi_name : name of ROI mirrored : control region Returns ------- fusi_times : 1D np.ndarray (n,) data time-stamps aligned to PXI fusi_data : 3D np.ndarray (n, vdim, hdim): fUSi data preprocessed with the speicified parameters ''' # get time stamps ############################## # load the neural frames TTL signal from timeline self.localdb_timeline_load_block() fusi_ttl_signal = self.timeline.get_timeline_data('neuralFrames')[1] fusi_ttl_signal = sync.remove_single_datapoint_onsets(fusi_ttl_signal) # load new timeline times (aligned to PXI NI DAQ) timeline_newtimes = self.timeline_get_aligned_times() # compute the onsets from the TTL using the new times ttl_dt = 100 # TTL is updated every 100[ms] fusi_ttl_onsets = sync.digital2times( timeline_newtimes, fusi_ttl_signal)[0] # load the preprocessed fusi data ######################################## if np.isscalar(freq_cutoffhz): assert freq_cutoffhz == 15 # UNDEFINED STORAGE FOR OTHERS if (svddrop != 5 and dt_ms == 50) or (svddrop != 15 and dt_ms == 300): pattern = '{yyyymmdd}_sess{blocknum}_{dt}ms_window{window}ms_svddrop{ndropped}_highpasscutoff%0.02fHz.hdf' % freq_cutoffhz flname = pattern.format(yyyymmdd=misc.date_tuple2number(self.date_tuple), blocknum='%02i' % self.block_number, dt='%03i' % dt_ms, window='%04i' % window_ms, ndropped=svddrop if svddrop is None else '%03i' % svddrop) else: pattern = '{yyyymmdd}_sess{blocknum}_{dt}ms_window{window}ms_svddrop{ndropped}.hdf' flname = pattern.format(yyyymmdd=misc.date_tuple2number(self.date_tuple), blocknum='%02i' % self.block_number, dt='%03i' % dt_ms, window='%04i' % window_ms, ndropped='%03i' % svddrop) elif isinstance(freq_cutoffhz, (tuple, list)): assert len(freq_cutoffhz) == 2 low_cutoff, high_cutoff = freq_cutoffhz # # OLD # pattern = '{yyyymmdd}_sess{blocknum}_{dt}ms_window{window}ms_svddrop{ndropped}_bandpassL{low}hzH{high}hz.hdf' if roi_name is None: pattern = '{yyyymmdd}_sess{blocknum}_{dt}ms_window{window}ms_svddrop{ndropped}_bandpassed.hdf' flname = pattern.format(yyyymmdd=misc.date_tuple2number(self.date_tuple), blocknum='%02i' % self.block_number, dt='%03i' % dt_ms, window='%04i' % window_ms, ndropped=('%03i' % svddrop if isinstance( svddrop, int) else svddrop), # low='%03i'%low_cutoff, # high='%03i'%high_cutoff ) else: # for probe00 and probe01 if mirrored: # control data: mirrored and flipped pattern = '{yyyymmdd}_sess{blocknum}_{dt}ms_window{window}ms_svddrop{ndropped}_bandpassed_{roi_name}_mirrored.hdf' else: # standard data pattern = '{yyyymmdd}_sess{blocknum}_{dt}ms_window{window}ms_svddrop{ndropped}_bandpassed_{roi_name}.hdf' flname = pattern.format(yyyymmdd=misc.date_tuple2number(self.date_tuple), blocknum='%02i' % self.block_number, dt='%03i' % dt_ms, window='%04i' % window_ms, ndropped=('%03i' % svddrop if isinstance( svddrop, int) else svddrop), roi_name=roi_name) fusi_preproc_fl = self.block_path.joinpath('fusi', flname) if not fusi_preproc_fl.exists(): raise IOError('Does not exist: %s' % fusi_preproc_fl) if verbose: print( f'Loading fUSI data: {pathlib.Path(fusi_preproc_fl).name}...') if np.isscalar(freq_cutoffhz): fusi_data = readers.hdf_load(fusi_preproc_fl, 'data') else: name = 'data_bandpass_%i_%i' % freq_cutoffhz fusi_data = readers.hdf_load(fusi_preproc_fl, name) if fusi_data.ndim == 4: fusi_data = fusi_data.mean(1) # get upsampled time stamps from the TTL from scipy import interpolate ttl_samples = np.arange(len(fusi_ttl_onsets)) interpolator = interpolate.interp1d( ttl_samples, fusi_ttl_onsets, fill_value='extrapolate') factor = dt_ms/ttl_dt new_samples = np.arange(fusi_data.shape[0])*factor fusi_times = interpolator(new_samples) return fusi_times, fusi_data def fusi_get_roi_spectrogram(self, dt_ms=300, window_ms=400, roi_name='probe00', rawfft=False, rawpsd=False): '''Specify the parameters of the preprocessed fUSi data to load Parameters ---------- dt_ms : sample interval [in millisecond] window_ms : window over which filtering and svd drop is applied Returns ------- fusi_times : 1D np.ndarray (n,) data time-stamps aligned to PXI fusi_data : 3D np.ndarray (n, vdim, hdim): fUSi data preprocessed with the speicified parameters ''' # get time stamps ############################## # load the neural frames TTL signal from timeline self.localdb_timeline_load_block() fusi_ttl_signal = self.timeline.get_timeline_data('neuralFrames')[1] fusi_ttl_signal = sync.remove_single_datapoint_onsets(fusi_ttl_signal) # load new timeline times (aligned to PXI NI DAQ) timeline_newtimes = self.timeline_get_aligned_times() # compute the onsets from the TTL using the new times ttl_dt = 100 # TTL is updated every 100[ms] fusi_ttl_onsets = sync.digital2times( timeline_newtimes, fusi_ttl_signal)[0] # load the preprocessed fusi data ######################################## if rawfft: pattern = '{yyyymmdd}_sess{blocknum}_{dt}ms_window{window}ms_fUSiROI{roi_name}_rawfft.hdf' elif rawpsd: pattern = '{yyyymmdd}_sess{blocknum}_{dt}ms_window{window}ms_fUSiROI{roi_name}_rawpsd.hdf' else: pattern = '{yyyymmdd}_sess{blocknum}_{dt}ms_window{window}ms_fUSiROI{roi_name}_psd.hdf' flname = pattern.format(yyyymmdd=misc.date_tuple2number(self.date_tuple), blocknum='%02i' % self.block_number, dt='%03i' % dt_ms, window='%04i' % window_ms, roi_name=roi_name) fusi_preproc_fl = self.block_path.joinpath('fusi', flname) if not fusi_preproc_fl.exists(): raise IOError('Does not exist: %s' % fusi_preproc_fl) print(fusi_preproc_fl) fusi_data = readers.hdf_load(fusi_preproc_fl, 'data') # get upsampled time stamps from the TTL from scipy import interpolate ttl_samples = np.arange(len(fusi_ttl_onsets)) interpolator = interpolate.interp1d( ttl_samples, fusi_ttl_onsets, fill_value='extrapolate') factor = dt_ms/ttl_dt new_samples = np.arange(fusi_data.shape[0])*factor fusi_times = interpolator(new_samples) return fusi_times, fusi_data def fusi_get_outbrainroi_mask(self): ''' ''' probe_mask = self.fusi_get_probe_master_mask('probe00').astype(np.bool) zdim, xdim = probe_mask.nonzero() length = np.sqrt((zdim.max() - zdim.min())**2 + (xdim.max() - xdim.min())**2) nvox = probe_mask.sum() depth = int(nvox/length) length = int(length) leftmost_side = int((probe_mask.shape[1] - length)/2.) outbrain_mask = self.fusi_get_outsidebrain_mask() outbrain_top = np.logical_not(outbrain_mask).nonzero()[0].min() outbrain_roi = np.zeros_like(outbrain_mask) outbrain_roi[outbrain_top - depth: outbrain_top, leftmost_side:leftmost_side + length] = True return outbrain_roi def ephys_get_lfp(self, band, probe_name): ''' ''' flname = self.mk_filename_for_localdb( '%s_lfp_bands_v01.hdf' % probe_name, 'lfp') assert flname.exists() available_bands = ['alpha', 'beta', 'gamma', 'hgamma'] assert band in available_bands lfp_band = readers.hdf_load(flname, band).T times = self.fusi_get_times() assert len(times) == lfp_band.shape[0] return times, lfp_band[:, :384]
[ "fusilib.handler.matlab_data", "numpy.sum", "fusilib.misc.DotDict", "numpy.allclose", "fusilib.misc.date_tuple2isoformat", "fusilib.align.fusiarr2nii", "fusilib.align.allenccf_main_areas", "fusilib.io.sync.remove_single_datapoint_onsets", "numpy.clip", "numpy.isnan", "pathlib.Path", "fusilib.misc.date_tuple2yyyymmdd", "numpy.arange", "pprint.pprint", "skimage.measure.find_contours", "scipy.linalg.svd", "fusilib.io.phy.ProbeHandler", "scipy.interpolate.interp1d", "hashlib.sha512", "os.path.join", "numpy.unique", "fusilib.extras.readers.hdf_dump", "numpy.zeros_like", "numpy.eye", "fusilib.io.phy.RecordingHandler", "numpy.std", "scipy.ndimage.gaussian_filter", "numpy.logical_not", "fusilib.misc.convert_string2data", "fusilib.allen.mk_area_mask_from_aligned", "fusilib.extras.readers.hdf_load", "fusilib.misc.date_isoformat2tuple", "fusilib.io.spikeglx.load_data_chunk", "matplotlib.pyplot.subplots", "fusilib.utils.pixelwise_pctsignalchange", "fusilib.io.phy.yield_table_columns", "numpy.nanargmin", "fusilib.utils.fast_find_between", "numpy.asarray", "numpy.hstack", "fusilib.align.allenccf_cmap", "fusilib.io.sync.analog2digital", "numpy.alltrue", "fusilib.misc.date_tuple2number", "fusilib.resampling.lanczos_resample", "numpy.vstack", "fusilib.io.contacq.MetaLoader", "numpy.nanmax", "fusilib.io.sync.digital2times", "nibabel.load", "numpy.logical_and", "numpy.isscalar", "fusilib.io.logs.read_experiment_log", "fusilib.utils.bin_spikes", "numpy.zeros", "numpy.nanmin", "numpy.where", "numpy.diff", "fusilib.io.spikeglx.read_metadata", "fusilib.misc.uri_convert_uri2local", "fusilib.io.spikes.ProbeSpikes" ]
[((490, 535), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['local_path', '*args'], {}), '(local_path, *args, **kwargs)\n', (506, 535), False, 'from fusilib.extras import readers\n'), ((972, 991), 'pathlib.Path', 'pathlib.Path', (['outfl'], {}), '(outfl)\n', (984, 991), False, 'import pathlib\n'), ((2938, 2961), 'numpy.unique', 'np.unique', (['slice_blocks'], {}), '(slice_blocks)\n', (2947, 2961), True, 'import numpy as np\n'), ((3267, 3310), 'numpy.asarray', 'np.asarray', (['all_slice_indeces'], {'dtype': 'np.int'}), '(all_slice_indeces, dtype=np.int)\n', (3277, 3310), True, 'import numpy as np\n'), ((6023, 6064), 'numpy.asarray', 'np.asarray', (["info['blocks_%s' % task_name]"], {}), "(info['blocks_%s' % task_name])\n", (6033, 6064), True, 'import numpy as np\n'), ((7887, 7908), 'numpy.vstack', 'np.vstack', (['slice_data'], {}), '(slice_data)\n', (7896, 7908), True, 'import numpy as np\n'), ((9815, 9837), 'numpy.vstack', 'np.vstack', (['blocks_data'], {}), '(blocks_data)\n', (9824, 9837), True, 'import numpy as np\n'), ((16005, 16047), 'fusilib.misc.date_tuple2isoformat', 'misc.date_tuple2isoformat', (['self.date_tuple'], {}), '(self.date_tuple)\n', (16030, 16047), False, 'from fusilib import misc, utils as futils\n'), ((16818, 16862), 'fusilib.misc.date_isoformat2tuple', 'misc.date_isoformat2tuple', (['self.session_name'], {}), '(self.session_name)\n', (16843, 16862), False, 'from fusilib import misc, utils as futils\n'), ((17450, 17491), 'fusilib.misc.date_tuple2yyyymmdd', 'misc.date_tuple2yyyymmdd', (['self.date_tuple'], {}), '(self.date_tuple)\n', (17474, 17491), False, 'from fusilib import misc, utils as futils\n'), ((20450, 20472), 'fusilib.io.phy.ProbeHandler', 'phy.ProbeHandler', (['path'], {}), '(path)\n', (20466, 20472), False, 'from fusilib.io import phy\n'), ((21324, 21350), 'fusilib.io.phy.RecordingHandler', 'phy.RecordingHandler', (['path'], {}), '(path)\n', (21344, 21350), False, 'from fusilib.io import phy\n'), ((21960, 21999), 'fusilib.io.spikeglx.read_metadata', 'spikeglx.read_metadata', (['pxinidaq_flname'], {}), '(pxinidaq_flname)\n', (21982, 21999), False, 'from fusilib.io import righw, spikeglx, phy, logs, sync\n'), ((23125, 23138), 'pprint.pprint', 'pprint', (['paths'], {}), '(paths)\n', (23131, 23138), False, 'from pprint import pprint\n'), ((23190, 23236), 'fusilib.misc.uri_convert_uri2local', 'misc.uri_convert_uri2local', (["paths['fusi_data']"], {}), "(paths['fusi_data'])\n", (23216, 23236), False, 'from fusilib import misc, utils as futils\n'), ((23252, 23277), 'fusilib.handler.matlab_data', 'handler.matlab_data', (['path'], {}), '(path)\n', (23271, 23277), False, 'from fusilib import handler\n'), ((27753, 27803), 'fusilib.misc.uri_convert_uri2local', 'misc.uri_convert_uri2local', (["paths['ystack_volume']"], {}), "(paths['ystack_volume'])\n", (27779, 27803), False, 'from fusilib import misc, utils as futils\n'), ((27819, 27844), 'fusilib.handler.matlab_data', 'handler.matlab_data', (['path'], {}), '(path)\n', (27838, 27844), False, 'from fusilib import handler\n'), ((28422, 28472), 'fusilib.misc.uri_convert_uri2local', 'misc.uri_convert_uri2local', (["paths['ystack_volume']"], {}), "(paths['ystack_volume'])\n", (28448, 28472), False, 'from fusilib import misc, utils as futils\n'), ((28488, 28513), 'fusilib.handler.matlab_data', 'handler.matlab_data', (['path'], {}), '(path)\n', (28507, 28513), False, 'from fusilib import handler\n'), ((28580, 28607), 'numpy.asarray', 'np.asarray', (['[xmm, ymm, zmm]'], {}), '([xmm, ymm, zmm])\n', (28590, 28607), True, 'import numpy as np\n'), ((28654, 28707), 'fusilib.align.fusiarr2nii', 'align.fusiarr2nii', (['arr'], {'xyzmm': 'xyzmm', 'flips': '(1, 1, -1)'}), '(arr, xyzmm=xyzmm, flips=(1, 1, -1))\n', (28671, 28707), False, 'from fusilib import align\n'), ((29091, 29119), 'nibabel.load', 'nib.load', (['fl_resampled_atlas'], {}), '(fl_resampled_atlas)\n', (29099, 29119), True, 'import nibabel as nib\n'), ((29937, 29995), 'numpy.asarray', 'np.asarray', (['[(idx == ystack_nslices) for idx in arr.shape]'], {}), '([(idx == ystack_nslices) for idx in arr.shape])\n', (29947, 29995), True, 'import numpy as np\n'), ((31235, 31293), 'numpy.asarray', 'np.asarray', (['[(idx == ystack_nslices) for idx in arr.shape]'], {}), '([(idx == ystack_nslices) for idx in arr.shape])\n', (31245, 31293), True, 'import numpy as np\n'), ((32771, 32786), 'fusilib.align.allenccf_cmap', 'allenccf_cmap', ([], {}), '()\n', (32784, 32786), False, 'from fusilib.align import allenccf_cmap\n'), ((35252, 35267), 'nibabel.load', 'nib.load', (['volfl'], {}), '(volfl)\n', (35260, 35267), True, 'import nibabel as nib\n'), ((35574, 35632), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['fl', '"""probe_tip_mm"""'], {'verbose': 'self.verbose'}), "(fl, 'probe_tip_mm', verbose=self.verbose)\n", (35590, 35632), False, 'from fusilib.extras import readers\n'), ((36448, 36483), 'numpy.asarray', 'np.asarray', (["info['slice_positions']"], {}), "(info['slice_positions'])\n", (36458, 36483), True, 'import numpy as np\n'), ((36504, 36540), 'numpy.asarray', 'np.asarray', (["info['ystack_positions']"], {}), "(info['ystack_positions'])\n", (36514, 36540), True, 'import numpy as np\n'), ((36745, 36803), 'numpy.asarray', 'np.asarray', (['[(idx == ystack_nslices) for idx in arr.shape]'], {}), '([(idx == ystack_nslices) for idx in arr.shape])\n', (36755, 36803), True, 'import numpy as np\n'), ((37031, 37140), 'numpy.logical_and', 'np.logical_and', (['(ystack_mm <= slice_position + widthmm / 2.0)', '(ystack_mm >= slice_position - widthmm / 2.0)'], {}), '(ystack_mm <= slice_position + widthmm / 2.0, ystack_mm >= \n slice_position - widthmm / 2.0)\n', (37045, 37140), True, 'import numpy as np\n'), ((37472, 37502), 'numpy.where', 'np.where', (['(dat < 0)', 'np.nan', 'dat'], {}), '(dat < 0, np.nan, dat)\n', (37480, 37502), True, 'import numpy as np\n'), ((38602, 38663), 'numpy.asarray', 'np.asarray', (['[npx_depth - probe_bottom, npx_depth - probe_top]'], {}), '([npx_depth - probe_bottom, npx_depth - probe_top])\n', (38612, 38663), True, 'import numpy as np\n'), ((39249, 39299), 'fusilib.misc.uri_convert_uri2local', 'misc.uri_convert_uri2local', (["paths['ystack_volume']"], {}), "(paths['ystack_volume'])\n", (39275, 39299), False, 'from fusilib import misc, utils as futils\n'), ((39315, 39340), 'fusilib.handler.matlab_data', 'handler.matlab_data', (['path'], {}), '(path)\n', (39334, 39340), False, 'from fusilib import handler\n'), ((41172, 41217), 'numpy.arange', 'np.arange', (['(0)', 'neuropix_size_um', 'mua_window_um'], {}), '(0, neuropix_size_um, mua_window_um)\n', (41181, 41217), True, 'import numpy as np\n'), ((41640, 41701), 'fusilib.utils.fast_find_between', 'futils.fast_find_between', (['depth_um', 'mua_depths', 'mua_window_um'], {}), '(depth_um, mua_depths, mua_window_um)\n', (41664, 41701), True, 'from fusilib import misc, utils as futils\n'), ((57834, 57956), 'fusilib.extras.readers.hdf_dump', 'readers.hdf_dump', (['cache_file', "{'timestamps': timestamps, 'slice_fusi_data': slice_fusi_data, 'spike_data':\n spike_data}"], {}), "(cache_file, {'timestamps': timestamps, 'slice_fusi_data':\n slice_fusi_data, 'spike_data': spike_data})\n", (57850, 57956), False, 'from fusilib.extras import readers\n'), ((62171, 62293), 'fusilib.extras.readers.hdf_dump', 'readers.hdf_dump', (['cache_file', "{'timestamps': timestamps, 'slice_fusi_data': slice_fusi_data, 'spike_data':\n spike_data}"], {}), "(cache_file, {'timestamps': timestamps, 'slice_fusi_data':\n slice_fusi_data, 'spike_data': spike_data})\n", (62187, 62293), False, 'from fusilib.extras import readers\n'), ((65351, 65379), 'numpy.hstack', 'np.hstack', (['[xypos, contrast]'], {}), '([xypos, contrast])\n', (65360, 65379), True, 'import numpy as np\n'), ((65421, 65476), 'numpy.unique', 'np.unique', (['stimulus_params'], {'axis': '(0)', 'return_inverse': '(True)'}), '(stimulus_params, axis=0, return_inverse=True)\n', (65430, 65476), True, 'import numpy as np\n'), ((65517, 65537), 'numpy.unique', 'np.unique', (['trial_ids'], {}), '(trial_ids)\n', (65526, 65537), True, 'import numpy as np\n'), ((66321, 66378), 'numpy.allclose', 'np.allclose', (['repeat_ids[:20, 0]', 'repeat_ids[20:, 0][::-1]'], {}), '(repeat_ids[:20, 0], repeat_ids[20:, 0][::-1])\n', (66332, 66378), True, 'import numpy as np\n'), ((66722, 66764), 'fusilib.misc.date_tuple2isoformat', 'misc.date_tuple2isoformat', (['self.date_tuple'], {}), '(self.date_tuple)\n', (66747, 66764), False, 'from fusilib import misc, utils as futils\n'), ((67851, 67884), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['filename', 'field'], {}), '(filename, field)\n', (67867, 67884), False, 'from fusilib.extras import readers\n'), ((68349, 68481), 'fusilib.io.spikes.ProbeSpikes', 'spikes.ProbeSpikes', (['spike_times', 'spike_clusters'], {'nclusters': 'nclusters', 'good_clusters': 'good_clusters', 'cluster_depths': 'cluster_depths'}), '(spike_times, spike_clusters, nclusters=nclusters,\n good_clusters=good_clusters, cluster_depths=cluster_depths)\n', (68367, 68481), False, 'from fusilib.io import spikes\n'), ((69201, 69274), 'fusilib.misc.DotDict', 'misc.DotDict', ([], {'clusters': 'clusters', 'times': 'times', 'sample_ratehz': 'sample_ratehz'}), '(clusters=clusters, times=times, sample_ratehz=sample_ratehz)\n', (69213, 69274), False, 'from fusilib import misc, utils as futils\n'), ((69767, 69840), 'fusilib.misc.DotDict', 'misc.DotDict', ([], {'clusters': 'clusters', 'times': 'times', 'sample_ratehz': 'sample_ratehz'}), '(clusters=clusters, times=times, sample_ratehz=sample_ratehz)\n', (69779, 69840), False, 'from fusilib import misc, utils as futils\n'), ((71632, 71670), 'numpy.logical_and', 'np.logical_and', (['brain_mask', 'probe_mask'], {}), '(brain_mask, probe_mask)\n', (71646, 71670), True, 'import numpy as np\n'), ((71828, 71907), 'fusilib.allen.mk_area_mask_from_aligned', 'allen.mk_area_mask_from_aligned', (['allenccf_areas', 'allen_area_name'], {'verbose': '(False)'}), '(allenccf_areas, allen_area_name, verbose=False)\n', (71859, 71907), False, 'from fusilib import allen\n'), ((71989, 72021), 'numpy.logical_and', 'np.logical_and', (['area_mask', 'pmask'], {}), '(area_mask, pmask)\n', (72003, 72021), True, 'import numpy as np\n'), ((73641, 73720), 'fusilib.allen.mk_area_mask_from_aligned', 'allen.mk_area_mask_from_aligned', (['allenccf_areas', 'allen_area_name'], {'verbose': '(False)'}), '(allenccf_areas, allen_area_name, verbose=False)\n', (73672, 73720), False, 'from fusilib import allen\n'), ((73811, 73848), 'numpy.logical_and', 'np.logical_and', (['area_mask', 'brain_mask'], {}), '(area_mask, brain_mask)\n', (73825, 73848), True, 'import numpy as np\n'), ((75378, 75403), 'numpy.zeros_like', 'np.zeros_like', (['brain_mask'], {}), '(brain_mask)\n', (75391, 75403), True, 'import numpy as np\n'), ((76261, 76283), 'pathlib.Path', 'pathlib.Path', (['dataroot'], {}), '(dataroot)\n', (76273, 76283), False, 'import pathlib\n'), ((76543, 76601), 'fusilib.io.contacq.MetaLoader', 'contacq.MetaLoader', (['data_path'], {'verbose': '(True)', 'nmaximum': 'nmax'}), '(data_path, verbose=True, nmaximum=nmax)\n', (76561, 76601), False, 'from fusilib.io import contacq\n'), ((77417, 77493), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['ttl_samples', 'fusi_ttl_onsets'], {'fill_value': '"""extrapolate"""'}), "(ttl_samples, fusi_ttl_onsets, fill_value='extrapolate')\n", (77437, 77493), False, 'from scipy import interpolate\n'), ((77701, 77715), 'numpy.std', 'np.std', (['physio'], {}), '(physio)\n', (77707, 77715), True, 'import numpy as np\n'), ((79741, 79779), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['timeline_flname', 'key'], {}), '(timeline_flname, key)\n', (79757, 79779), False, 'from fusilib.extras import readers\n'), ((80018, 80070), 'fusilib.io.sync.remove_single_datapoint_onsets', 'sync.remove_single_datapoint_onsets', (['fusi_ttl_signal'], {}), '(fusi_ttl_signal)\n', (80053, 80070), False, 'from fusilib.io import righw, spikeglx, phy, logs, sync\n'), ((81633, 81685), 'fusilib.io.sync.remove_single_datapoint_onsets', 'sync.remove_single_datapoint_onsets', (['fusi_ttl_signal'], {}), '(fusi_ttl_signal)\n', (81668, 81685), False, 'from fusilib.io import righw, spikeglx, phy, logs, sync\n'), ((82121, 82147), 'numpy.isscalar', 'np.isscalar', (['freq_cutoffhz'], {}), '(freq_cutoffhz)\n', (82132, 82147), True, 'import numpy as np\n'), ((85650, 85676), 'numpy.isscalar', 'np.isscalar', (['freq_cutoffhz'], {}), '(freq_cutoffhz)\n', (85661, 85676), True, 'import numpy as np\n'), ((86118, 86194), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['ttl_samples', 'fusi_ttl_onsets'], {'fill_value': '"""extrapolate"""'}), "(ttl_samples, fusi_ttl_onsets, fill_value='extrapolate')\n", (86138, 86194), False, 'from scipy import interpolate\n'), ((87285, 87337), 'fusilib.io.sync.remove_single_datapoint_onsets', 'sync.remove_single_datapoint_onsets', (['fusi_ttl_signal'], {}), '(fusi_ttl_signal)\n', (87320, 87337), False, 'from fusilib.io import righw, spikeglx, phy, logs, sync\n'), ((88661, 88702), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['fusi_preproc_fl', '"""data"""'], {}), "(fusi_preproc_fl, 'data')\n", (88677, 88702), False, 'from fusilib.extras import readers\n'), ((88868, 88944), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['ttl_samples', 'fusi_ttl_onsets'], {'fill_value': '"""extrapolate"""'}), "(ttl_samples, fusi_ttl_onsets, fill_value='extrapolate')\n", (88888, 88944), False, 'from scipy import interpolate\n'), ((89741, 89769), 'numpy.zeros_like', 'np.zeros_like', (['outbrain_mask'], {}), '(outbrain_mask)\n', (89754, 89769), True, 'import numpy as np\n'), ((760, 790), 'hashlib.sha512', 'hashlib.sha512', (['call_signature'], {}), '(call_signature)\n', (774, 790), False, 'import hashlib\n'), ((3148, 3191), 'numpy.asarray', 'np.asarray', (['all_slice_indeces'], {'dtype': 'np.int'}), '(all_slice_indeces, dtype=np.int)\n', (3158, 3191), True, 'import numpy as np\n'), ((4251, 4305), 'numpy.asarray', 'np.asarray', (['[t for t in blocks if t not in bad_blocks]'], {}), '([t for t in blocks if t not in bad_blocks])\n', (4261, 4305), True, 'import numpy as np\n'), ((4828, 4882), 'numpy.asarray', 'np.asarray', (['[t for t in blocks if t not in bad_blocks]'], {}), '([t for t in blocks if t not in bad_blocks])\n', (4838, 4882), True, 'import numpy as np\n'), ((15337, 15361), 'numpy.zeros_like', 'np.zeros_like', (['fusi_data'], {}), '(fusi_data)\n', (15350, 15361), True, 'import numpy as np\n'), ((15743, 15786), 'fusilib.utils.pixelwise_pctsignalchange', 'futils.pixelwise_pctsignalchange', (['fusi_data'], {}), '(fusi_data)\n', (15775, 15786), True, 'from fusilib import misc, utils as futils\n'), ((17771, 17820), 'fusilib.io.logs.read_experiment_log', 'logs.read_experiment_log', (['flname'], {'verbose': 'verbose'}), '(flname, verbose=verbose)\n', (17795, 17820), False, 'from fusilib.io import righw, spikeglx, phy, logs, sync\n'), ((18303, 18334), 'fusilib.misc.convert_string2data', 'misc.convert_string2data', (['value'], {}), '(value)\n', (18327, 18334), False, 'from fusilib import misc, utils as futils\n'), ((20383, 20434), 'fusilib.misc.uri_convert_uri2local', 'misc.uri_convert_uri2local', (["probe_paths['path_phy']"], {}), "(probe_paths['path_phy'])\n", (20409, 20434), False, 'from fusilib import misc, utils as futils\n'), ((21205, 21246), 'os.path.join', 'os.path.join', (['ephys_path', 'spikeglx_prefix'], {}), '(ephys_path, spikeglx_prefix)\n', (21217, 21246), False, 'import os\n'), ((21266, 21308), 'fusilib.misc.uri_convert_uri2local', 'misc.uri_convert_uri2local', (['recording_path'], {}), '(recording_path)\n', (21292, 21308), False, 'from fusilib import misc, utils as futils\n'), ((21811, 21852), 'fusilib.misc.uri_convert_uri2local', 'misc.uri_convert_uri2local', (["paths['path']"], {}), "(paths['path'])\n", (21837, 21852), False, 'from fusilib import misc, utils as futils\n'), ((22089, 22150), 'fusilib.io.spikeglx.load_data_chunk', 'spikeglx.load_data_chunk', (['pxinidaq_flname'], {'sample_duration': '(-1)'}), '(pxinidaq_flname, sample_duration=-1)\n', (22113, 22150), False, 'from fusilib.io import righw, spikeglx, phy, logs, sync\n'), ((22190, 22223), 'numpy.arange', 'np.arange', (['pxinidaq_data.shape[0]'], {}), '(pxinidaq_data.shape[0])\n', (22199, 22223), True, 'import numpy as np\n'), ((23384, 23429), 'numpy.allclose', 'np.allclose', (["data['yCoords']", "paths['ycoord']"], {}), "(data['yCoords'], paths['ycoord'])\n", (23395, 23429), True, 'import numpy as np\n'), ((24159, 24181), 'pprint.pprint', 'pprint', (['localizer_info'], {}), '(localizer_info)\n', (24165, 24181), False, 'from pprint import pprint\n'), ((26625, 26695), 'numpy.asarray', 'np.asarray', (['[[ml_top, ml_bottom], [ap_mm, ap_mm], [dv_top, dv_bottom]]'], {}), '([[ml_top, ml_bottom], [ap_mm, ap_mm], [dv_top, dv_bottom]])\n', (26635, 26695), True, 'import numpy as np\n'), ((28538, 28562), 'numpy.diff', 'np.diff', (["data['yCoords']"], {}), "(data['yCoords'])\n", (28545, 28562), True, 'import numpy as np\n'), ((32686, 32700), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (32698, 32700), True, 'from matplotlib import pyplot as plt\n'), ((33293, 33307), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (33305, 33307), True, 'from matplotlib import pyplot as plt\n'), ((34196, 34223), 'fusilib.align.allenccf_main_areas', 'align.allenccf_main_areas', ([], {}), '()\n', (34221, 34223), False, 'from fusilib import align\n'), ((34254, 34300), 'skimage.measure.find_contours', 'measure.find_contours', (['allenccf_slice', 'areaidx'], {}), '(allenccf_slice, areaidx)\n', (34275, 34300), False, 'from skimage import measure\n'), ((35663, 35681), 'numpy.sum', 'np.sum', (['(xyzmm ** 2)'], {}), '(xyzmm ** 2)\n', (35669, 35681), True, 'import numpy as np\n'), ((37578, 37603), 'numpy.nanmin', 'np.nanmin', (['dat'], {'axis': 'axis'}), '(dat, axis=axis)\n', (37587, 37603), True, 'import numpy as np\n'), ((37697, 37711), 'numpy.nanmin', 'np.nanmin', (['dat'], {}), '(dat)\n', (37706, 37711), True, 'import numpy as np\n'), ((37728, 37742), 'numpy.nanmin', 'np.nanmin', (['dat'], {}), '(dat)\n', (37737, 37742), True, 'import numpy as np\n'), ((40451, 40470), 'numpy.zeros', 'np.zeros', (['nclusters'], {}), '(nclusters)\n', (40459, 40470), True, 'import numpy as np\n'), ((49552, 49574), 'numpy.hstack', 'np.hstack', (['slice_times'], {}), '(slice_times)\n', (49561, 49574), True, 'import numpy as np\n'), ((49600, 49621), 'numpy.vstack', 'np.vstack', (['slice_data'], {}), '(slice_data)\n', (49609, 49621), True, 'import numpy as np\n'), ((52339, 52360), 'numpy.hstack', 'np.hstack', (['timestamps'], {}), '(timestamps)\n', (52348, 52360), True, 'import numpy as np\n'), ((52393, 52421), 'numpy.hstack', 'np.hstack', (['slice_physio_data'], {}), '(slice_physio_data)\n', (52402, 52421), True, 'import numpy as np\n'), ((53514, 53556), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['cache_file', '"""timestamps"""'], {}), "(cache_file, 'timestamps')\n", (53530, 53556), False, 'from fusilib.extras import readers\n'), ((53587, 53634), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['cache_file', '"""slice_fusi_data"""'], {}), "(cache_file, 'slice_fusi_data')\n", (53603, 53634), False, 'from fusilib.extras import readers\n'), ((53660, 53702), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['cache_file', '"""spike_data"""'], {}), "(cache_file, 'spike_data')\n", (53676, 53702), False, 'from fusilib.extras import readers\n'), ((55834, 55928), 'fusilib.utils.bin_spikes', 'futils.bin_spikes', (['times', '(dt_ms / 1000.0)', 'spike_times', 'spike_clusters'], {'nclusters': 'nclusters'}), '(times, dt_ms / 1000.0, spike_times, spike_clusters,\n nclusters=nclusters)\n', (55851, 55928), True, 'from fusilib import misc, utils as futils\n'), ((57699, 57720), 'numpy.hstack', 'np.hstack', (['timestamps'], {}), '(timestamps)\n', (57708, 57720), True, 'import numpy as np\n'), ((57746, 57767), 'numpy.vstack', 'np.vstack', (['spike_data'], {}), '(spike_data)\n', (57755, 57767), True, 'import numpy as np\n'), ((57798, 57824), 'numpy.vstack', 'np.vstack', (['slice_fusi_data'], {}), '(slice_fusi_data)\n', (57807, 57824), True, 'import numpy as np\n'), ((59201, 59243), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['cache_file', '"""timestamps"""'], {}), "(cache_file, 'timestamps')\n", (59217, 59243), False, 'from fusilib.extras import readers\n'), ((59274, 59321), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['cache_file', '"""slice_fusi_data"""'], {}), "(cache_file, 'slice_fusi_data')\n", (59290, 59321), False, 'from fusilib.extras import readers\n'), ((59347, 59389), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['cache_file', '"""spike_data"""'], {}), "(cache_file, 'spike_data')\n", (59363, 59389), False, 'from fusilib.extras import readers\n'), ((60978, 61072), 'fusilib.utils.bin_spikes', 'futils.bin_spikes', (['times', '(dt_ms / 1000.0)', 'spike_times', 'spike_clusters'], {'nclusters': 'nclusters'}), '(times, dt_ms / 1000.0, spike_times, spike_clusters,\n nclusters=nclusters)\n', (60995, 61072), True, 'from fusilib import misc, utils as futils\n'), ((62036, 62057), 'numpy.hstack', 'np.hstack', (['timestamps'], {}), '(timestamps)\n', (62045, 62057), True, 'import numpy as np\n'), ((62083, 62104), 'numpy.vstack', 'np.vstack', (['spike_data'], {}), '(spike_data)\n', (62092, 62104), True, 'import numpy as np\n'), ((62135, 62161), 'numpy.vstack', 'np.vstack', (['slice_fusi_data'], {}), '(slice_fusi_data)\n', (62144, 62161), True, 'import numpy as np\n'), ((65680, 65711), 'numpy.asarray', 'np.asarray', (['([trial_ids] * nreps)'], {}), '([trial_ids] * nreps)\n', (65690, 65711), True, 'import numpy as np\n'), ((65738, 65828), 'numpy.asarray', 'np.asarray', (['[stimulus_start_times[stimulus_matrix == cid] for cid in checkerboard_ids]'], {}), '([stimulus_start_times[stimulus_matrix == cid] for cid in\n checkerboard_ids])\n', (65748, 65828), True, 'import numpy as np\n'), ((74210, 74251), 'numpy.logical_and', 'np.logical_and', (['allen_roi_mask', 'hemi_mask'], {}), '(allen_roi_mask, hemi_mask)\n', (74224, 74251), True, 'import numpy as np\n'), ((75620, 75663), 'numpy.logical_and', 'np.logical_and', (['brain_mask', 'hemisphere_mask'], {}), '(brain_mask, hemisphere_mask)\n', (75634, 75663), True, 'import numpy as np\n'), ((76379, 76421), 'fusilib.misc.date_tuple2isoformat', 'misc.date_tuple2isoformat', (['self.date_tuple'], {}), '(self.date_tuple)\n', (76404, 76421), False, 'from fusilib import misc, utils as futils\n'), ((77599, 77625), 'numpy.arange', 'np.arange', (['physio.shape[0]'], {}), '(physio.shape[0])\n', (77608, 77625), True, 'import numpy as np\n'), ((77754, 77776), 'numpy.clip', 'np.clip', (['physio', '(-5)', '(5)'], {}), '(physio, -5, 5)\n', (77761, 77776), True, 'import numpy as np\n'), ((78574, 78596), 'pprint.pprint', 'pprint', (['localizer_info'], {}), '(localizer_info)\n', (78580, 78596), False, 'from pprint import pprint\n'), ((80332, 80386), 'fusilib.io.sync.digital2times', 'sync.digital2times', (['timeline_newtimes', 'fusi_ttl_signal'], {}), '(timeline_newtimes, fusi_ttl_signal)\n', (80350, 80386), False, 'from fusilib.io import righw, spikeglx, phy, logs, sync\n'), ((81947, 82001), 'fusilib.io.sync.digital2times', 'sync.digital2times', (['timeline_newtimes', 'fusi_ttl_signal'], {}), '(timeline_newtimes, fusi_ttl_signal)\n', (81965, 82001), False, 'from fusilib.io import righw, spikeglx, phy, logs, sync\n'), ((85702, 85743), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['fusi_preproc_fl', '"""data"""'], {}), "(fusi_preproc_fl, 'data')\n", (85718, 85743), False, 'from fusilib.extras import readers\n'), ((85839, 85878), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['fusi_preproc_fl', 'name'], {}), '(fusi_preproc_fl, name)\n', (85855, 85878), False, 'from fusilib.extras import readers\n'), ((86260, 86289), 'numpy.arange', 'np.arange', (['fusi_data.shape[0]'], {}), '(fusi_data.shape[0])\n', (86269, 86289), True, 'import numpy as np\n'), ((87599, 87653), 'fusilib.io.sync.digital2times', 'sync.digital2times', (['timeline_newtimes', 'fusi_ttl_signal'], {}), '(timeline_newtimes, fusi_ttl_signal)\n', (87617, 87653), False, 'from fusilib.io import righw, spikeglx, phy, logs, sync\n'), ((89010, 89039), 'numpy.arange', 'np.arange', (['fusi_data.shape[0]'], {}), '(fusi_data.shape[0])\n', (89019, 89039), True, 'import numpy as np\n'), ((90250, 90280), 'fusilib.extras.readers.hdf_load', 'readers.hdf_load', (['flname', 'band'], {}), '(flname, band)\n', (90266, 90280), False, 'from fusilib.extras import readers\n'), ((3058, 3085), 'numpy.isnan', 'np.isnan', (['all_slice_indeces'], {}), '(all_slice_indeces)\n', (3066, 3085), True, 'import numpy as np\n'), ((4017, 4033), 'numpy.isnan', 'np.isnan', (['blocks'], {}), '(blocks)\n', (4025, 4033), True, 'import numpy as np\n'), ((4594, 4610), 'numpy.isnan', 'np.isnan', (['blocks'], {}), '(blocks)\n', (4602, 4610), True, 'import numpy as np\n'), ((14940, 14985), 'numpy.asarray', 'np.asarray', (['subject_block.fusi_image_pixel_mm'], {}), '(subject_block.fusi_image_pixel_mm)\n', (14950, 14985), True, 'import numpy as np\n'), ((15487, 15529), 'scipy.ndimage.gaussian_filter', 'ndimage.gaussian_filter', (['img'], {'sigma': 'sigmas'}), '(img, sigma=sigmas)\n', (15510, 15529), False, 'from scipy import ndimage\n'), ((18519, 18540), 'numpy.alltrue', 'np.alltrue', (['isnumeric'], {}), '(isnumeric)\n', (18529, 18540), True, 'import numpy as np\n'), ((22300, 22351), 'fusilib.io.sync.analog2digital', 'sync.analog2digital', (['pxinidaq_data[:, index_npsync]'], {}), '(pxinidaq_data[:, index_npsync])\n', (22319, 22351), False, 'from fusilib.io import righw, spikeglx, phy, logs, sync\n'), ((22483, 22535), 'fusilib.io.sync.analog2digital', 'sync.analog2digital', (['pxinidaq_data[:, index_acqlive]'], {}), '(pxinidaq_data[:, index_acqlive])\n', (22502, 22535), False, 'from fusilib.io import righw, spikeglx, phy, logs, sync\n'), ((22614, 22666), 'fusilib.io.sync.analog2digital', 'sync.analog2digital', (['pxinidaq_data[:, index_flipper]'], {}), '(pxinidaq_data[:, index_flipper])\n', (22633, 22666), False, 'from fusilib.io import righw, spikeglx, phy, logs, sync\n'), ((25144, 25166), 'numpy.unique', 'np.unique', (['fusi_slices'], {}), '(fusi_slices)\n', (25153, 25166), True, 'import numpy as np\n'), ((35209, 35228), 'pathlib.Path', 'pathlib.Path', (['volfl'], {}), '(volfl)\n', (35221, 35228), False, 'import pathlib\n'), ((36353, 36362), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (36359, 36362), True, 'import numpy as np\n'), ((37932, 37954), 'numpy.nanmax', 'np.nanmax', (['dat'], {'axis': '(1)'}), '(dat, axis=1)\n', (37941, 37954), True, 'import numpy as np\n'), ((37979, 38009), 'numpy.logical_not', 'np.logical_not', (['probe_location'], {}), '(probe_location)\n', (37993, 38009), True, 'import numpy as np\n'), ((38477, 38490), 'numpy.isnan', 'np.isnan', (['dat'], {}), '(dat)\n', (38485, 38490), True, 'import numpy as np\n'), ((40011, 40027), 'numpy.diff', 'np.diff', (['hcoords'], {}), '(hcoords)\n', (40018, 40027), True, 'import numpy as np\n'), ((40066, 40082), 'numpy.diff', 'np.diff', (['vcoords'], {}), '(vcoords)\n', (40073, 40082), True, 'import numpy as np\n'), ((41361, 41395), 'numpy.zeros', 'np.zeros', (['(mua_nchunks, nclusters)'], {}), '((mua_nchunks, nclusters))\n', (41369, 41395), True, 'import numpy as np\n'), ((42051, 42070), 'numpy.zeros', 'np.zeros', (['nclusters'], {}), '(nclusters)\n', (42059, 42070), True, 'import numpy as np\n'), ((42912, 42954), 'fusilib.io.phy.yield_table_columns', 'phy.yield_table_columns', (['fl'], {'delimiter': '""","""'}), "(fl, delimiter=',')\n", (42935, 42954), False, 'from fusilib.io import phy\n'), ((43036, 43055), 'numpy.zeros', 'np.zeros', (['nclusters'], {}), '(nclusters)\n', (43044, 43055), True, 'import numpy as np\n'), ((43425, 43444), 'numpy.zeros', 'np.zeros', (['nclusters'], {}), '(nclusters)\n', (43433, 43444), True, 'import numpy as np\n'), ((65632, 65652), 'numpy.unique', 'np.unique', (['trial_ids'], {}), '(trial_ids)\n', (65641, 65652), True, 'import numpy as np\n'), ((74609, 74635), 'numpy.logical_not', 'np.logical_not', (['probe_mask'], {}), '(probe_mask)\n', (74623, 74635), True, 'import numpy as np\n'), ((88164, 88203), 'fusilib.misc.date_tuple2number', 'misc.date_tuple2number', (['self.date_tuple'], {}), '(self.date_tuple)\n', (88186, 88203), False, 'from fusilib import misc, utils as futils\n'), ((12369, 12429), 'scipy.linalg.svd', 'LA.svd', (['fusi_data[:, outsidebrain_mask]'], {'full_matrices': '(False)'}), '(fusi_data[:, outsidebrain_mask], full_matrices=False)\n', (12375, 12429), True, 'from scipy import linalg as LA\n'), ((18570, 18587), 'numpy.asarray', 'np.asarray', (['value'], {}), '(value)\n', (18580, 18587), True, 'import numpy as np\n'), ((25174, 25185), 'numpy.isnan', 'np.isnan', (['t'], {}), '(t)\n', (25182, 25185), True, 'import numpy as np\n'), ((37843, 37860), 'numpy.nanargmin', 'np.nanargmin', (['dat'], {}), '(dat)\n', (37855, 37860), True, 'import numpy as np\n'), ((51371, 51468), 'fusilib.resampling.lanczos_resample', 'resampling.lanczos_resample', (['(dt_ms / 1000.0)', 'physio_data[..., None]', 'physio_times', 'fusi_times'], {}), '(dt_ms / 1000.0, physio_data[..., None],\n physio_times, fusi_times)\n', (51398, 51468), False, 'from fusilib import resampling\n'), ((54671, 54697), 'numpy.isscalar', 'np.isscalar', (['freq_cutoffhz'], {}), '(freq_cutoffhz)\n', (54682, 54697), True, 'import numpy as np\n'), ((56419, 56445), 'numpy.isscalar', 'np.isscalar', (['freq_cutoffhz'], {}), '(freq_cutoffhz)\n', (56430, 56445), True, 'import numpy as np\n'), ((66104, 66134), 'numpy.hstack', 'np.hstack', (['[forward, backward]'], {}), '([forward, backward])\n', (66113, 66134), True, 'import numpy as np\n'), ((66414, 66444), 'numpy.hstack', 'np.hstack', (['[forward, backward]'], {}), '([forward, backward])\n', (66423, 66444), True, 'import numpy as np\n'), ((49085, 49104), 'numpy.diff', 'np.diff', (['last_times'], {}), '(last_times)\n', (49092, 49104), True, 'import numpy as np\n'), ((51861, 51880), 'numpy.diff', 'np.diff', (['last_times'], {}), '(last_times)\n', (51868, 51880), True, 'import numpy as np\n'), ((56302, 56321), 'numpy.diff', 'np.diff', (['last_times'], {}), '(last_times)\n', (56309, 56321), True, 'import numpy as np\n'), ((61446, 61465), 'numpy.diff', 'np.diff', (['last_times'], {}), '(last_times)\n', (61453, 61465), True, 'import numpy as np\n'), ((72732, 72770), 'numpy.logical_and', 'np.logical_and', (['fusi_probe_mask', 'pmask'], {}), '(fusi_probe_mask, pmask)\n', (72746, 72770), True, 'import numpy as np\n'), ((82492, 82531), 'fusilib.misc.date_tuple2number', 'misc.date_tuple2number', (['self.date_tuple'], {}), '(self.date_tuple)\n', (82514, 82531), False, 'from fusilib import misc, utils as futils\n'), ((83002, 83041), 'fusilib.misc.date_tuple2number', 'misc.date_tuple2number', (['self.date_tuple'], {}), '(self.date_tuple)\n', (83024, 83041), False, 'from fusilib import misc, utils as futils\n'), ((79340, 79360), 'pathlib.Path', 'pathlib.Path', (['flname'], {}), '(flname)\n', (79352, 79360), False, 'import pathlib\n'), ((83801, 83840), 'fusilib.misc.date_tuple2number', 'misc.date_tuple2number', (['self.date_tuple'], {}), '(self.date_tuple)\n', (83823, 83840), False, 'from fusilib import misc, utils as futils\n'), ((84888, 84927), 'fusilib.misc.date_tuple2number', 'misc.date_tuple2number', (['self.date_tuple'], {}), '(self.date_tuple)\n', (84910, 84927), False, 'from fusilib import misc, utils as futils\n'), ((85598, 85627), 'pathlib.Path', 'pathlib.Path', (['fusi_preproc_fl'], {}), '(fusi_preproc_fl)\n', (85610, 85627), False, 'import pathlib\n'), ((89669, 89698), 'numpy.logical_not', 'np.logical_not', (['outbrain_mask'], {}), '(outbrain_mask)\n', (89683, 89698), True, 'import numpy as np\n')]
# coding: utf-8 # # simplified Confident Learning Tutorial # *Author: <NAME>, <EMAIL>* # # In this tutorial, we show how to implement confident learning without using cleanlab (for the most part). # This tutorial is to confident learning what this tutorial https://pytorch.org/tutorials/beginner/examples_tensor/two_layer_net_numpy.html # is to deep learning. # # The actual implementations in cleanlab are complex because they support parallel processing, numerous type and input checks, lots of hyper-parameter settings, lots of utilities to make things work smoothly for all types of inputs, and ancillary functions. # # I ignore all of that here and provide you a bare-bones implementation using mostly for-loops and some numpy. # Here we'll do two simple things: # 1. Compute the confident joint which fully characterizes all label noise. # 2. Find the indices of all label errors, ordered by likelihood of being an error. # # ## INPUT (stuff we need beforehand): # 1. s - These are the noisy labels. This is an np.array of noisy labels, shape (n,1) # 2. psx - These are the out-of-sample holdout predicted probabilities for every example in your dataset. This is an np.array (2d) of probabilities, shape (n, m) # # ## OUTPUT (what this returns): # 1. confident_joint - an (m, m) np.array matrix characterizing all the label error counts for every pair of labels. # 2. label_errors_idx - a numpy array comprised of indices of every label error, ordered by likelihood of being a label error. # # In this tutorial we use the handwritten digits dataset as an example. # In[1]: from __future__ import print_function, absolute_import, division, with_statement import cleanlab import numpy as np from sklearn.datasets import load_digits from sklearn.linear_model import LogisticRegression # To silence convergence warnings caused by using a weak # logistic regression classifier on image data import warnings warnings.simplefilter("ignore") np.random.seed(477) # In[2]: # STEP 0 - Get some real digits data. Add a bunch of label errors. Get probs. # Get handwritten digits data X = load_digits()['data'] y = load_digits()['target'] print('Handwritten digits datasets number of classes:', len(np.unique(y))) print('Handwritten digits datasets number of examples:', len(y)) # Add lots of errors to labels NUM_ERRORS = 100 s = np.array(y) error_indices = np.random.choice(len(s), NUM_ERRORS, replace=False) for i in error_indices: # Switch to some wrong label thats a different class wrong_label = np.random.choice(np.delete(range(10), s[i])) s[i] = wrong_label # Confirm that we indeed added NUM_ERRORS label errors assert (len(s) - sum(s == y) == NUM_ERRORS) actual_label_errors = np.arange(len(y))[s != y] print('\nIndices of actual label errors:\n', actual_label_errors) # To keep the tutorial short, we use cleanlab to get the # out-of-sample predicted probabilities using cross-validation # with a very simple, non-optimized logistic regression classifier psx = cleanlab.latent_estimation.estimate_cv_predicted_probabilities( X, s, clf=LogisticRegression(max_iter=1000, multi_class='auto', solver='lbfgs')) # Now we have our noisy labels s and predicted probabilities psx. # That's all we need for confident learning. # In[3]: # STEP 1 - Compute confident joint # Verify inputs s = np.asarray(s) psx = np.asarray(psx) # Find the number of unique classes if K is not given K = len(np.unique(s)) # Estimate the probability thresholds for confident counting # You can specify these thresholds yourself if you want # as you may want to optimize them using a validation set. # By default (and provably so) they are set to the average class prob. thresholds = [np.mean(psx[:,k][s == k]) for k in range(K)] # P(s^=k|s=k) thresholds = np.asarray(thresholds) # Compute confident joint confident_joint = np.zeros((K, K), dtype = int) for i, row in enumerate(psx): s_label = s[i] # Find out how many classes each example is confidently labeled as confident_bins = row >= thresholds - 1e-6 num_confident_bins = sum(confident_bins) # If more than one conf class, inc the count of the max prob class if num_confident_bins == 1: confident_joint[s_label][np.argmax(confident_bins)] += 1 elif num_confident_bins > 1: confident_joint[s_label][np.argmax(row)] += 1 # Normalize confident joint (use cleanlab, trust me on this) confident_joint = cleanlab.latent_estimation.calibrate_confident_joint( confident_joint, s) cleanlab.util.print_joint_matrix(confident_joint) # In[4]: # STEP 2 - Find label errors # We arbitrarily choose at least 5 examples left in every class. # Regardless of whether some of them might be label errors. MIN_NUM_PER_CLASS = 5 # Leave at least MIN_NUM_PER_CLASS examples per class. # NOTE prune_count_matrix is transposed (relative to confident_joint) prune_count_matrix = cleanlab.pruning.keep_at_least_n_per_class( prune_count_matrix=confident_joint.T, n=MIN_NUM_PER_CLASS, ) s_counts = np.bincount(s) noise_masks_per_class = [] # For each row in the transposed confident joint for k in range(K): noise_mask = np.zeros(len(psx), dtype=bool) psx_k = psx[:, k] if s_counts[k] > MIN_NUM_PER_CLASS: # Don't prune if not MIN_NUM_PER_CLASS for j in range(K): # noisy label index (k is the true label index) if k != j: # Only prune for noise rates, not diagonal entries num2prune = prune_count_matrix[k][j] if num2prune > 0: # num2prune'th largest p(classk) - p(class j) # for x with noisy label j margin = psx_k - psx[:, j] s_filter = s == j threshold = -np.partition( -margin[s_filter], num2prune - 1 )[num2prune - 1] noise_mask = noise_mask | (s_filter & (margin >= threshold)) noise_masks_per_class.append(noise_mask) else: noise_masks_per_class.append(np.zeros(len(s), dtype=bool)) # Boolean label error mask label_errors_bool = np.stack(noise_masks_per_class).any(axis=0) # Remove label errors if given label == model prediction for i, pred_label in enumerate(psx.argmax(axis=1)): # np.all let's this work for multi_label and single label if label_errors_bool[i] and np.all(pred_label == s[i]): label_errors_bool[i] = False # Convert boolean mask to an ordered list of indices for label errors label_errors_idx = np.arange(len(s))[label_errors_bool] # self confidence is the holdout probability that an example # belongs to its given class label self_confidence = np.array( [np.mean(psx[i][s[i]]) for i in label_errors_idx] ) margin = self_confidence - psx[label_errors_bool].max(axis=1) label_errors_idx = label_errors_idx[np.argsort(margin)] print('Indices of label errors found by confident learning:') print('Note label errors are sorted by likelihood of being an error') print('but here we just sort them by index for comparison with above.') print(np.array(sorted(label_errors_idx))) # In[5]: score = sum([e in label_errors_idx for e in actual_label_errors]) / NUM_ERRORS print('% actual errors that confident learning found: {:.0%}'.format(score)) score = sum([e in actual_label_errors for e in label_errors_idx]) / len(label_errors_idx) print('% confident learning errors that are actual errors: {:.0%}'.format(score))
[ "numpy.stack", "sklearn.datasets.load_digits", "numpy.partition", "cleanlab.util.print_joint_matrix", "numpy.random.seed", "warnings.simplefilter", "numpy.argmax", "cleanlab.pruning.keep_at_least_n_per_class", "numpy.asarray", "numpy.zeros", "numpy.all", "numpy.argsort", "sklearn.linear_model.LogisticRegression", "numpy.mean", "numpy.array", "numpy.bincount", "cleanlab.latent_estimation.calibrate_confident_joint", "numpy.unique" ]
[((1920, 1951), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (1941, 1951), False, 'import warnings\n'), ((1952, 1971), 'numpy.random.seed', 'np.random.seed', (['(477)'], {}), '(477)\n', (1966, 1971), True, 'import numpy as np\n'), ((2341, 2352), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (2349, 2352), True, 'import numpy as np\n'), ((3327, 3340), 'numpy.asarray', 'np.asarray', (['s'], {}), '(s)\n', (3337, 3340), True, 'import numpy as np\n'), ((3347, 3362), 'numpy.asarray', 'np.asarray', (['psx'], {}), '(psx)\n', (3357, 3362), True, 'import numpy as np\n'), ((3774, 3796), 'numpy.asarray', 'np.asarray', (['thresholds'], {}), '(thresholds)\n', (3784, 3796), True, 'import numpy as np\n'), ((3842, 3869), 'numpy.zeros', 'np.zeros', (['(K, K)'], {'dtype': 'int'}), '((K, K), dtype=int)\n', (3850, 3869), True, 'import numpy as np\n'), ((4418, 4490), 'cleanlab.latent_estimation.calibrate_confident_joint', 'cleanlab.latent_estimation.calibrate_confident_joint', (['confident_joint', 's'], {}), '(confident_joint, s)\n', (4470, 4490), False, 'import cleanlab\n'), ((4497, 4546), 'cleanlab.util.print_joint_matrix', 'cleanlab.util.print_joint_matrix', (['confident_joint'], {}), '(confident_joint)\n', (4529, 4546), False, 'import cleanlab\n'), ((4883, 4989), 'cleanlab.pruning.keep_at_least_n_per_class', 'cleanlab.pruning.keep_at_least_n_per_class', ([], {'prune_count_matrix': 'confident_joint.T', 'n': 'MIN_NUM_PER_CLASS'}), '(prune_count_matrix=\n confident_joint.T, n=MIN_NUM_PER_CLASS)\n', (4925, 4989), False, 'import cleanlab\n'), ((5008, 5022), 'numpy.bincount', 'np.bincount', (['s'], {}), '(s)\n', (5019, 5022), True, 'import numpy as np\n'), ((2098, 2111), 'sklearn.datasets.load_digits', 'load_digits', ([], {}), '()\n', (2109, 2111), False, 'from sklearn.datasets import load_digits\n'), ((2124, 2137), 'sklearn.datasets.load_digits', 'load_digits', ([], {}), '()\n', (2135, 2137), False, 'from sklearn.datasets import load_digits\n'), ((3426, 3438), 'numpy.unique', 'np.unique', (['s'], {}), '(s)\n', (3435, 3438), True, 'import numpy as np\n'), ((3702, 3728), 'numpy.mean', 'np.mean', (['psx[:, k][s == k]'], {}), '(psx[:, k][s == k])\n', (3709, 3728), True, 'import numpy as np\n'), ((6819, 6837), 'numpy.argsort', 'np.argsort', (['margin'], {}), '(margin)\n', (6829, 6837), True, 'import numpy as np\n'), ((2208, 2220), 'numpy.unique', 'np.unique', (['y'], {}), '(y)\n', (2217, 2220), True, 'import numpy as np\n'), ((3075, 3144), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'max_iter': '(1000)', 'multi_class': '"""auto"""', 'solver': '"""lbfgs"""'}), "(max_iter=1000, multi_class='auto', solver='lbfgs')\n", (3093, 3144), False, 'from sklearn.linear_model import LogisticRegression\n'), ((6100, 6131), 'numpy.stack', 'np.stack', (['noise_masks_per_class'], {}), '(noise_masks_per_class)\n', (6108, 6131), True, 'import numpy as np\n'), ((6349, 6375), 'numpy.all', 'np.all', (['(pred_label == s[i])'], {}), '(pred_label == s[i])\n', (6355, 6375), True, 'import numpy as np\n'), ((6670, 6691), 'numpy.mean', 'np.mean', (['psx[i][s[i]]'], {}), '(psx[i][s[i]])\n', (6677, 6691), True, 'import numpy as np\n'), ((4219, 4244), 'numpy.argmax', 'np.argmax', (['confident_bins'], {}), '(confident_bins)\n', (4228, 4244), True, 'import numpy as np\n'), ((4317, 4331), 'numpy.argmax', 'np.argmax', (['row'], {}), '(row)\n', (4326, 4331), True, 'import numpy as np\n'), ((5737, 5783), 'numpy.partition', 'np.partition', (['(-margin[s_filter])', '(num2prune - 1)'], {}), '(-margin[s_filter], num2prune - 1)\n', (5749, 5783), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Sat Mar 20 11:54:56 2021 @author: dof """ import math from colorspacious import cspace_convert import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import ListedColormap from scipy.ndimage import filters from scipy.signal import savgol_filter ''' J = lightness C = chroma h = hue ''' # Resolution of colorspace J_RES = 256 C_RES = 256 # NAME = 'So normal' # ANGLE = np.pi * 2 * 0.7 # OFFSET = np.pi * 2 * 0.64 # CCW = False # SMOOTH = 1/3 # NAME = 'Wow unique' # ANGLE = np.pi * 2 * 1.0 # OFFSET = np.pi * 2 * 0.275 # CCW = True # SMOOTH = 1/2 # NAME = 'Viridis-like (red bg)' # ANGLE = np.pi * 2 * 1.0 # OFFSET = np.pi * 2 * 0.1 # CCW = True # SMOOTH = 1/4 # NAME = 'Viridis-like (purple bg)' # ANGLE = np.pi * 2 * 0.9 # OFFSET = np.pi * 2 * 0.1 # CCW = True # SMOOTH = 1/5 NAME = 'Audacity proposal' ANGLE = np.pi * 2 * 0.875 OFFSET = np.pi * 2 * 0.5 CCW = False SMOOTH = 1/3 DESATURATE = 0.9 # Generate CAM02-UCS(Jp, ap, bp) colorspace j_space = np.linspace(0.1, 99, J_RES) c_space = np.linspace(0, 50, C_RES) if CCW: h_ = np.linspace(ANGLE+OFFSET, OFFSET, J_RES) else: h_ = np.linspace(OFFSET, ANGLE+OFFSET, J_RES) jpapbp = np.zeros([C_RES, J_RES, 3]) for jdx, jp in enumerate(j_space): for cdx, chroma in enumerate(c_space): ap = np.cos(h_[jdx]) * chroma bp = np.sin(h_[jdx]) * chroma jpapbp[cdx, jdx] = (jp, ap, bp) # Convert to sRGB rgb = cspace_convert(jpapbp, "CAM02-UCS", "sRGB1") # Get chroma limit of sRGB c_limit = np.zeros_like(j_space) for jdx in range(J_RES): max_cdx = 0 for cdx in range(1, C_RES): if np.any(rgb[cdx, jdx] <= 0) or np.any(1 < rgb[cdx, jdx]): max_cdx = cdx - 1 break c_limit[jdx] = max_cdx # Smooth chroma limit contour c_smoothed = np.concatenate([-c_limit[::-1][:-1], c_limit, -c_limit[::-1][1:]]) c_smoothed = savgol_filter(c_smoothed, math.ceil(J_RES*SMOOTH*1.5/2)*2 - 1, 3) c_smoothed = filters.uniform_filter1d(c_smoothed, int(J_RES*SMOOTH*1.5/2)) * DESATURATE c_smoothed = c_smoothed[J_RES:2*J_RES] c_selected = c_smoothed.clip(min=0).astype(int) # Generate and plot gaumt gamut_image = np.copy(rgb) gamut_image[gamut_image<=0] = 1 gamut_image[1<gamut_image] = 0 # Mark smoothed contour on image for jdx, max_c in enumerate(c_selected): if 0 == jdx % 2: gamut_image[max_c, jdx] = 1 else: gamut_image[max_c, jdx] = 0 plt.figure(figsize=[5, 5]) plt.imshow(gamut_image) # Get colors on contour cm_jpapbp = [] for jdx, cdx in enumerate(c_smoothed): chroma = cdx * 50 / C_RES jp = j_space[jdx] ap = np.cos(h_[jdx]) * chroma bp = np.sin(h_[jdx]) * chroma cm_jpapbp.append([jp, ap, bp]) cm_rgb = cspace_convert(cm_jpapbp, "CAM02-UCS", "sRGB1") cm_data = np.clip(cm_rgb, 0, 1) # Display viscm test_cm = ListedColormap(cm_data, name=NAME) try: from viscm import viscm viscm(test_cm) except ImportError: print("viscm not found, falling back on simple display") plt.imshow(np.linspace(0, 100, 256)[None, :], aspect='auto', cmap=test_cm) # Plot RGB value graph cm255 = np.asarray(cm_data) * 255 seg_simple = 8 fix, ax = plt.subplots() plt.plot(cm255[:,0], 'r') plt.plot(cm255[:,1], 'g') plt.plot(cm255[:,2], 'b') plt.plot(np.mean(cm255, axis=1)) ax.set_xticks(np.linspace(0, J_RES, seg_simple+1, endpoint=True)) ax.set_yticks(np.arange(0, 257, 16)) ax.grid(which='both') plt.show() # Generate uint8 format colormaps cm_data_u8 = (cm_data*255 + 0.5).astype('uint8') cm_selected = cm_rgb*0.8 + 0.3 cm_selected_u8 = (np.clip(cm_selected, 0, 1)*255 + 0.5).astype('uint8') cm_data_JCh = cspace_convert(cm_rgb, "sRGB1", "JCh") cm_data_JCh[..., 0] += 20 # Boost lightness cm_data_JCh[..., 1] += 20 # Boost chroma cm_data_JCh[..., 2] += 90 # Change hue cm_sel_freq = cspace_convert(cm_data_JCh, "JCh", "sRGB1") cm_sel_freq_u8 = (np.clip(cm_sel_freq, 0, 1)*255 + 0.5).astype('uint8') # Save colormaps to C format with open('AColorResources.h', 'wt') as ofile: ofile.write('const unsigned char specColormap[%d][3] = {\n' % J_RES) for r, g, b in cm_data_u8: ofile.write(' {%3d, %3d, %3d},\n' % (r, g, b)) ofile.write('};\n\n') ofile.write('const unsigned char selColormap[%d][3] = {\n' % J_RES) for r, g, b in cm_selected_u8: ofile.write(' {%3d, %3d, %3d},\n' % (r, g, b)) ofile.write('};\n\n') ofile.write('const unsigned char freqSelColormap[%d][3] = {\n' % J_RES) for r, g, b in cm_sel_freq_u8: ofile.write(' {%3d, %3d, %3d},\n' % (r, g, b)) ofile.write('};\n\n')
[ "numpy.clip", "matplotlib.pyplot.figure", "numpy.mean", "numpy.arange", "numpy.sin", "matplotlib.colors.ListedColormap", "numpy.zeros_like", "numpy.copy", "matplotlib.pyplot.imshow", "numpy.linspace", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show", "math.ceil", "numpy.asarray", "colorspacious.cspace_convert", "numpy.cos", "numpy.concatenate", "matplotlib.pyplot.plot", "numpy.zeros", "viscm.viscm", "numpy.any" ]
[((1024, 1051), 'numpy.linspace', 'np.linspace', (['(0.1)', '(99)', 'J_RES'], {}), '(0.1, 99, J_RES)\n', (1035, 1051), True, 'import numpy as np\n'), ((1062, 1087), 'numpy.linspace', 'np.linspace', (['(0)', '(50)', 'C_RES'], {}), '(0, 50, C_RES)\n', (1073, 1087), True, 'import numpy as np\n'), ((1213, 1240), 'numpy.zeros', 'np.zeros', (['[C_RES, J_RES, 3]'], {}), '([C_RES, J_RES, 3])\n', (1221, 1240), True, 'import numpy as np\n'), ((1460, 1504), 'colorspacious.cspace_convert', 'cspace_convert', (['jpapbp', '"""CAM02-UCS"""', '"""sRGB1"""'], {}), "(jpapbp, 'CAM02-UCS', 'sRGB1')\n", (1474, 1504), False, 'from colorspacious import cspace_convert\n'), ((1544, 1566), 'numpy.zeros_like', 'np.zeros_like', (['j_space'], {}), '(j_space)\n', (1557, 1566), True, 'import numpy as np\n'), ((1837, 1903), 'numpy.concatenate', 'np.concatenate', (['[-c_limit[::-1][:-1], c_limit, -c_limit[::-1][1:]]'], {}), '([-c_limit[::-1][:-1], c_limit, -c_limit[::-1][1:]])\n', (1851, 1903), True, 'import numpy as np\n'), ((2203, 2215), 'numpy.copy', 'np.copy', (['rgb'], {}), '(rgb)\n', (2210, 2215), True, 'import numpy as np\n'), ((2458, 2484), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '[5, 5]'}), '(figsize=[5, 5])\n', (2468, 2484), True, 'import matplotlib.pyplot as plt\n'), ((2485, 2508), 'matplotlib.pyplot.imshow', 'plt.imshow', (['gamut_image'], {}), '(gamut_image)\n', (2495, 2508), True, 'import matplotlib.pyplot as plt\n'), ((2755, 2802), 'colorspacious.cspace_convert', 'cspace_convert', (['cm_jpapbp', '"""CAM02-UCS"""', '"""sRGB1"""'], {}), "(cm_jpapbp, 'CAM02-UCS', 'sRGB1')\n", (2769, 2802), False, 'from colorspacious import cspace_convert\n'), ((2813, 2834), 'numpy.clip', 'np.clip', (['cm_rgb', '(0)', '(1)'], {}), '(cm_rgb, 0, 1)\n', (2820, 2834), True, 'import numpy as np\n'), ((2863, 2897), 'matplotlib.colors.ListedColormap', 'ListedColormap', (['cm_data'], {'name': 'NAME'}), '(cm_data, name=NAME)\n', (2877, 2897), False, 'from matplotlib.colors import ListedColormap\n'), ((3196, 3210), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3208, 3210), True, 'import matplotlib.pyplot as plt\n'), ((3211, 3237), 'matplotlib.pyplot.plot', 'plt.plot', (['cm255[:, 0]', '"""r"""'], {}), "(cm255[:, 0], 'r')\n", (3219, 3237), True, 'import matplotlib.pyplot as plt\n'), ((3237, 3263), 'matplotlib.pyplot.plot', 'plt.plot', (['cm255[:, 1]', '"""g"""'], {}), "(cm255[:, 1], 'g')\n", (3245, 3263), True, 'import matplotlib.pyplot as plt\n'), ((3263, 3289), 'matplotlib.pyplot.plot', 'plt.plot', (['cm255[:, 2]', '"""b"""'], {}), "(cm255[:, 2], 'b')\n", (3271, 3289), True, 'import matplotlib.pyplot as plt\n'), ((3449, 3459), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3457, 3459), True, 'import matplotlib.pyplot as plt\n'), ((3664, 3702), 'colorspacious.cspace_convert', 'cspace_convert', (['cm_rgb', '"""sRGB1"""', '"""JCh"""'], {}), "(cm_rgb, 'sRGB1', 'JCh')\n", (3678, 3702), False, 'from colorspacious import cspace_convert\n'), ((3847, 3890), 'colorspacious.cspace_convert', 'cspace_convert', (['cm_data_JCh', '"""JCh"""', '"""sRGB1"""'], {}), "(cm_data_JCh, 'JCh', 'sRGB1')\n", (3861, 3890), False, 'from colorspacious import cspace_convert\n'), ((1106, 1148), 'numpy.linspace', 'np.linspace', (['(ANGLE + OFFSET)', 'OFFSET', 'J_RES'], {}), '(ANGLE + OFFSET, OFFSET, J_RES)\n', (1117, 1148), True, 'import numpy as np\n'), ((1162, 1204), 'numpy.linspace', 'np.linspace', (['OFFSET', '(ANGLE + OFFSET)', 'J_RES'], {}), '(OFFSET, ANGLE + OFFSET, J_RES)\n', (1173, 1204), True, 'import numpy as np\n'), ((2936, 2950), 'viscm.viscm', 'viscm', (['test_cm'], {}), '(test_cm)\n', (2941, 2950), False, 'from viscm import viscm\n'), ((3144, 3163), 'numpy.asarray', 'np.asarray', (['cm_data'], {}), '(cm_data)\n', (3154, 3163), True, 'import numpy as np\n'), ((3298, 3320), 'numpy.mean', 'np.mean', (['cm255'], {'axis': '(1)'}), '(cm255, axis=1)\n', (3305, 3320), True, 'import numpy as np\n'), ((3337, 3389), 'numpy.linspace', 'np.linspace', (['(0)', 'J_RES', '(seg_simple + 1)'], {'endpoint': '(True)'}), '(0, J_RES, seg_simple + 1, endpoint=True)\n', (3348, 3389), True, 'import numpy as np\n'), ((3403, 3424), 'numpy.arange', 'np.arange', (['(0)', '(257)', '(16)'], {}), '(0, 257, 16)\n', (3412, 3424), True, 'import numpy as np\n'), ((2650, 2665), 'numpy.cos', 'np.cos', (['h_[jdx]'], {}), '(h_[jdx])\n', (2656, 2665), True, 'import numpy as np\n'), ((2684, 2699), 'numpy.sin', 'np.sin', (['h_[jdx]'], {}), '(h_[jdx])\n', (2690, 2699), True, 'import numpy as np\n'), ((1332, 1347), 'numpy.cos', 'np.cos', (['h_[jdx]'], {}), '(h_[jdx])\n', (1338, 1347), True, 'import numpy as np\n'), ((1370, 1385), 'numpy.sin', 'np.sin', (['h_[jdx]'], {}), '(h_[jdx])\n', (1376, 1385), True, 'import numpy as np\n'), ((1651, 1677), 'numpy.any', 'np.any', (['(rgb[cdx, jdx] <= 0)'], {}), '(rgb[cdx, jdx] <= 0)\n', (1657, 1677), True, 'import numpy as np\n'), ((1681, 1706), 'numpy.any', 'np.any', (['(1 < rgb[cdx, jdx])'], {}), '(1 < rgb[cdx, jdx])\n', (1687, 1706), True, 'import numpy as np\n'), ((1944, 1979), 'math.ceil', 'math.ceil', (['(J_RES * SMOOTH * 1.5 / 2)'], {}), '(J_RES * SMOOTH * 1.5 / 2)\n', (1953, 1979), False, 'import math\n'), ((3047, 3071), 'numpy.linspace', 'np.linspace', (['(0)', '(100)', '(256)'], {}), '(0, 100, 256)\n', (3058, 3071), True, 'import numpy as np\n'), ((3595, 3621), 'numpy.clip', 'np.clip', (['cm_selected', '(0)', '(1)'], {}), '(cm_selected, 0, 1)\n', (3602, 3621), True, 'import numpy as np\n'), ((3909, 3935), 'numpy.clip', 'np.clip', (['cm_sel_freq', '(0)', '(1)'], {}), '(cm_sel_freq, 0, 1)\n', (3916, 3935), True, 'import numpy as np\n')]
from exptools2.core import Session import numpy as np import pandas as pd from psychopy import tools, logging import scipy.stats as ss from stimuli import FixationCross, MotorStim, MotorMovie from trial import MotorTrial, InstructionTrial, DummyWaiterTrial, OutroTrial import os opj = os.path.join opd = os.path.dirname class MotorSession(Session): def __init__(self, output_str, output_dir, settings_file): """ Initializes StroopSession object. Parameters ---------- output_str : str Basename for all output-files (like logs), e.g., "sub-01_task-stroop_run-1" output_dir : str Path to desired output-directory (default: None, which results in $pwd/logs) settings_file : str Path to yaml-file with settings (default: None, which results in the package's default settings file (in data/default_settings.yml) eyetracker_on: bool, optional Make link with eyetracker during experiment, default is True params_file: str, optional File containing the pRF-parameters used as target site for the stimuli size_file: str, optional Path to a numpy array containing the stimulus sizes to be used as per the output of `call_sizeresponse` """ super().__init__(output_str, output_dir=output_dir, settings_file=settings_file) # initialize parent class! self.duration = self.settings['design'].get('stim_duration') self.n_trials = self.settings['design'].get('n_trials') self.outro_trial_time = self.settings['design'].get('end_duration') self.unilateral_hand = self.settings['design'].get('unilateral_hand') self.stim_height = self.settings['stimuli'].get('text_height') self.stim_width = self.settings['stimuli'].get('text_width') self.fixation_width = self.settings['various'].get('fixation_width') self.fixation_color = self.settings['various'].get('fixation_color') self.unilateral_movie = "1hand.mp4" self.bilateral_movie = "2hands.mp4" self.movie_files = [self.bilateral_movie, self.unilateral_movie] # Make sure that we have an even number of nr_stim_sizes*repetitions so we can balance constrasts properly if (self.n_trials % 2) != 0: raise ValueError(f"{self.n_trials} is not an even number") # define crossing fixation lines self.fixation = FixationCross(win=self.win, lineWidth=self.fixation_width, color=self.fixation_color) # define button options self.button_options = self.settings['various'].get('buttons') # define stim: self.motorstim = MotorStim(session=self) self.motormovie = MotorMovie(session=self) for movie in self.motormovie.movie1, self.motormovie.movie2: movie.draw() def create_trials(self): """ Creates trials (ideally before running your session!) """ # ITI stuff total_iti_duration = self.n_trials * self.settings['design'].get('mean_iti_duration') min_iti_duration = total_iti_duration - self.settings['design'].get('total_iti_duration_leeway'), max_iti_duration = total_iti_duration + self.settings['design'].get('total_iti_duration_leeway') def return_itis(mean_duration, minimal_duration, maximal_duration, n_trials): itis = np.random.exponential(scale=mean_duration-minimal_duration, size=n_trials) itis += minimal_duration itis[itis>maximal_duration] = maximal_duration return itis nits = 0 itis = return_itis(mean_duration=self.settings['design'].get('mean_iti_duration'), minimal_duration=self.settings['design'].get('minimal_iti_duration'), maximal_duration=self.settings['design'].get('maximal_iti_duration'), n_trials=self.n_trials) while (itis.sum() < min_iti_duration) | (itis.sum() > max_iti_duration): itis = return_itis(mean_duration=self.settings['design'].get('mean_iti_duration'), minimal_duration=self.settings['design'].get('minimal_iti_duration'), maximal_duration=self.settings['design'].get('maximal_iti_duration'), n_trials=self.n_trials) nits += 1 print(f'ITIs created with total ITI duration of {itis.sum()} after {nits} iterations') self.total_experiment_time = itis.sum() + self.settings['design'].get('start_duration') + self.settings['design'].get('end_duration') + (self.n_trials*self.duration) print(f"Total experiment time: {round(self.total_experiment_time,2)}s") instruction_trial = InstructionTrial(session=self, trial_nr=0, phase_durations=[np.inf], txt='Please keep fixating at the center.', keys=['space']) dummy_trial = DummyWaiterTrial(session=self, trial_nr=1, phase_durations=[np.inf, self.settings['design'].get('start_duration')], txt='Waiting for experiment to start') outro_trial = OutroTrial(session=self, trial_nr=self.n_trials+2, phase_durations=[self.outro_trial_time], txt='') # parameters self.movement = np.r_[np.ones(self.n_trials//2, dtype=int), np.zeros(self.n_trials//2, dtype=int)] np.random.shuffle(self.movement) self.trials = [instruction_trial, dummy_trial] for i in range(self.n_trials): # append trial self.trials.append(MotorTrial(session=self, trial_nr=2+i, phase_durations=[itis[i], self.settings['design'].get('stim_duration')], phase_names=['iti', 'stim'], parameters={'condition': ['bilateral', 'unilateral'][self.movement[i]], 'fix_color_changetime': np.random.rand()*self.settings['design'].get('mean_iti_duration')}, timing='seconds', verbose=True)) self.trials.append(outro_trial) def run(self): """ Runs experiment. """ self.create_trials() # create them *before* running! self.start_experiment() for trial in self.trials: trial.run() self.close()
[ "trial.OutroTrial", "stimuli.MotorStim", "stimuli.MotorMovie", "numpy.random.exponential", "stimuli.FixationCross", "numpy.ones", "numpy.zeros", "numpy.random.rand", "numpy.random.shuffle", "trial.InstructionTrial" ]
[((2510, 2600), 'stimuli.FixationCross', 'FixationCross', ([], {'win': 'self.win', 'lineWidth': 'self.fixation_width', 'color': 'self.fixation_color'}), '(win=self.win, lineWidth=self.fixation_width, color=self.\n fixation_color)\n', (2523, 2600), False, 'from stimuli import FixationCross, MotorStim, MotorMovie\n'), ((2749, 2772), 'stimuli.MotorStim', 'MotorStim', ([], {'session': 'self'}), '(session=self)\n', (2758, 2772), False, 'from stimuli import FixationCross, MotorStim, MotorMovie\n'), ((2799, 2823), 'stimuli.MotorMovie', 'MotorMovie', ([], {'session': 'self'}), '(session=self)\n', (2809, 2823), False, 'from stimuli import FixationCross, MotorStim, MotorMovie\n'), ((4865, 4997), 'trial.InstructionTrial', 'InstructionTrial', ([], {'session': 'self', 'trial_nr': '(0)', 'phase_durations': '[np.inf]', 'txt': '"""Please keep fixating at the center."""', 'keys': "['space']"}), "(session=self, trial_nr=0, phase_durations=[np.inf], txt=\n 'Please keep fixating at the center.', keys=['space'])\n", (4881, 4997), False, 'from trial import MotorTrial, InstructionTrial, DummyWaiterTrial, OutroTrial\n'), ((5491, 5597), 'trial.OutroTrial', 'OutroTrial', ([], {'session': 'self', 'trial_nr': '(self.n_trials + 2)', 'phase_durations': '[self.outro_trial_time]', 'txt': '""""""'}), "(session=self, trial_nr=self.n_trials + 2, phase_durations=[self.\n outro_trial_time], txt='')\n", (5501, 5597), False, 'from trial import MotorTrial, InstructionTrial, DummyWaiterTrial, OutroTrial\n'), ((5826, 5858), 'numpy.random.shuffle', 'np.random.shuffle', (['self.movement'], {}), '(self.movement)\n', (5843, 5858), True, 'import numpy as np\n'), ((3482, 3558), 'numpy.random.exponential', 'np.random.exponential', ([], {'scale': '(mean_duration - minimal_duration)', 'size': 'n_trials'}), '(scale=mean_duration - minimal_duration, size=n_trials)\n', (3503, 3558), True, 'import numpy as np\n'), ((5741, 5779), 'numpy.ones', 'np.ones', (['(self.n_trials // 2)'], {'dtype': 'int'}), '(self.n_trials // 2, dtype=int)\n', (5748, 5779), True, 'import numpy as np\n'), ((5779, 5818), 'numpy.zeros', 'np.zeros', (['(self.n_trials // 2)'], {'dtype': 'int'}), '(self.n_trials // 2, dtype=int)\n', (5787, 5818), True, 'import numpy as np\n'), ((6479, 6495), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (6493, 6495), True, 'import numpy as np\n')]
import csv from random import sample from math import sqrt from numpy import zeros, linspace, zeros_like from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics import confusion_matrix from scipy.stats import mode def assign_closest_centroid(data, centroids): clusters = [] count = 0 for item in data: d_min = 1e9 closest = 0 c=0 for centroid in centroids: d = 0 for i in range(len(centroid)): d += (item[i] - centroid[i])**2 d = sqrt(d) if d_min > d: d_min = d closest = c c+=1 clusters.append([closest, d_min, count]) count+=1 return clusters def compute_d_avg(clusters, k, gamma): c = 0 d = 0 for item in clusters: if item[0] != k: d = (d / (c+1)) * c + item[1]/(c+1) c+=1 return d*gamma def sort_by_second(item): return item[1] def sort_by_third(item): return item[2] def update_clusters_kmor(data, centroids, n_zero, k, gamma): clusters = assign_closest_centroid(data, centroids) d_avg = compute_d_avg(clusters, k, gamma) clusters.sort(key=sort_by_second, reverse=True) for i in range(n_zero): if clusters[i][1] > d_avg: clusters[i][0] = k clusters[i][1] = -1 clusters.sort(key=sort_by_third) return clusters def update_clusters_odc(data, centroids, k, gamma, old_clusters): clusters = assign_closest_centroid(data, centroids) d_avg = compute_d_avg(clusters, k, gamma) for i in range(len(clusters)): if clusters[i][1] > d_avg or old_clusters[i][0] == k: clusters[i][0] = k clusters[i][1] = -1 return clusters # update centroids given data and their assigned cluster def update_centroids(data, clusters, k): centroids = [] for i in range(k): centroid = [] for w in range(len(data[0])): centroid.append(0) c = 0 for j in range(len(clusters)): if clusters[j][0] == i: for f in range(len(data[0])): centroid[f]= ((centroid[f] /(c+1))*c + data[j][f]/(c+1)) c+=1 centroids.append(centroid) return centroids def update_distance(data, clusters, centroids): for item in range(len(data)): d = 0 if clusters[item][0] == len(centroids): continue for i in range(len(data[0])): d += (data[item][i] - centroids[clusters[item][0]][i])**2 d = sqrt(d) clusters[item][1] = d return clusters def compute_p(clusters, d_avg, k): P = 0 for item in clusters: if item[0] != k: P += item[1] else: P += d_avg return P def get_outliers(clusters, k): outliers = [] for item in clusters: if item[0] == k: outliers.append(item) return outliers def permutation(lst): if len(lst) == 0: return [] if len(lst) == 1: return [lst] l = [] for i in range(len(lst)): m = lst[i] remLst = lst[:i] + lst[i+1:] for p in permutation(remLst): l.append([m] + p) return l def best_ME(predicted, labels): dummy = [] for i in range(1,k+1): dummy.append(i) permutations = permutation(dummy) new_clusters = zeros_like(predicted) M_best =2 for perm in permutations: M_total = 0 classes = [] for item in predicted: f = 1 for i in range(k): if item == i: classes.append(perm[i]) f = 0 if f == 1: classes.append(k+1) mat = confusion_matrix(labels, classes) for a in range(k+1): M = 0 tp = 0 tn = 0 fp = 0 fn = 0 count = 0 for b in range(k+1): for c in range(k+1): if a == c: count += mat[b][c] if a == b and a == c: tp += mat[b][c] elif c == a: fn += mat[b][c] elif b == a: fp += mat[b][c] else: tn += mat[b][c] #print(tp,fp,tn,fn) M = sqrt((1-(tp/(tp+fp)))**2+(fp/(tn+fp))**2) M_total += M*count/len(labels) if M_total < M_best: M_best= M_total return M_best def KMOR(dataset, gamma, k, max_outlier_ratio, number_of_executions): data = [] labels = [] # Split data and labels with open(dataset, 'r', newline='') as csvfile: csvreader = csv.reader(csvfile) for item in csvreader: dummylist = [float(i) for i in item] data.append(dummylist[1:-1]) labels.append(dummylist[-1]) labels = [int(i) for i in labels] # Set Model variables n_zero = int(len(data)/max_outlier_ratio) max_iteration = 100 theta = 1e-6 T = number_of_executions R_avg = 0 M_avg = 0 O_avg = 0 for s in range(T): # Inintiate centroids randomly centroids = sample(data,k) P = 0 t = 0 clusters = assign_closest_centroid(data, centroids) for i in range(max_iteration): clusters = update_clusters_kmor(data, centroids, n_zero, k, gamma) centroids = update_centroids(data, clusters, k) clusters = update_distance(data, clusters, centroids) d_avg = compute_d_avg(clusters, k, gamma) P_new = compute_p(clusters, d_avg, k) if abs(P_new-P) < theta: break P = P_new t+=1 O = len(get_outliers(clusters, k)) O_avg += O predicted = [] for i in clusters: predicted.append(i[0]) R = adjusted_rand_score(predicted, labels) R_avg += R M_best = best_ME(predicted,labels) M_avg += M_best print(R_avg/T, M_avg/T, O_avg/T) def kmeansmm(dataset, k, max_outlier_ratio, number_of_executions): KMOR(dataset, 0, k, max_outlier_ratio, number_of_executions) def ODC(dataset, gamma, k, number_of_executions): data = [] labels = [] # Split data and labels with open(dataset, 'r', newline='') as csvfile: csvreader = csv.reader(csvfile) for item in csvreader: dummylist = [float(i) for i in item] data.append(dummylist[1:-1]) labels.append(dummylist[-1]) labels = [int(i) for i in labels] # Set Model variables max_iteration = 100 theta = 1e-6 T = number_of_executions R_avg = 0 M_avg = 0 O_avg = 0 for s in range(T): # Inintiate centroids randomly centroids = sample(data,k) P = 0 t = 0 clusters = assign_closest_centroid(data, centroids) for i in range(max_iteration): clusters = update_clusters_odc(data, centroids, k, gamma, clusters) centroids = update_centroids(data, clusters, k) clusters = update_distance(data, clusters, centroids) d_avg = compute_d_avg(clusters, k, gamma) P_new = compute_p(clusters, d_avg, k) if abs(P_new-P) < theta: break P = P_new t+=1 O = len(get_outliers(clusters, k)) O_avg += O predicted = [] for i in clusters: predicted.append(i[0]) R = adjusted_rand_score(predicted, labels) R_avg += R M_best = best_ME(predicted,labels) M_avg += M_best print(R_avg/T, M_avg/T, O_avg/T) if __name__ == '__main__': dataset = 0 gamma = 0 k = 0 while True: inp = input("Enter 1 for BCW and 2 for shuttle: ") if inp == '1': dataset = 'datasets/breast-cancer-wisconsin-no-miss.csv' gamma = 1 k = 1 max_outlier_ratio = 2 number_of_executions = 10 break elif inp == '2': dataset = "datasets/shuttle_normal.csv" gamma = 4.1 k = 3 max_outlier_ratio = 10 number_of_executions = 10 break while True: inp = input("Enter 1 for KMOR and 2 for k-means-- and 3 for ODC: ") if inp == '1': KMOR(dataset, gamma, k, max_outlier_ratio, number_of_executions) break elif inp == '2': kmeansmm(dataset, k, max_outlier_ratio, number_of_executions) break elif inp == '3': ODC(dataset, gamma, k, number_of_executions) break
[ "numpy.zeros_like", "csv.reader", "math.sqrt", "random.sample", "sklearn.metrics.cluster.adjusted_rand_score", "sklearn.metrics.confusion_matrix" ]
[((3405, 3426), 'numpy.zeros_like', 'zeros_like', (['predicted'], {}), '(predicted)\n', (3415, 3426), False, 'from numpy import zeros, linspace, zeros_like\n'), ((2580, 2587), 'math.sqrt', 'sqrt', (['d'], {}), '(d)\n', (2584, 2587), False, 'from math import sqrt\n'), ((3765, 3798), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['labels', 'classes'], {}), '(labels, classes)\n', (3781, 3798), False, 'from sklearn.metrics import confusion_matrix\n'), ((4791, 4810), 'csv.reader', 'csv.reader', (['csvfile'], {}), '(csvfile)\n', (4801, 4810), False, 'import csv\n'), ((5279, 5294), 'random.sample', 'sample', (['data', 'k'], {}), '(data, k)\n', (5285, 5294), False, 'from random import sample\n'), ((5989, 6027), 'sklearn.metrics.cluster.adjusted_rand_score', 'adjusted_rand_score', (['predicted', 'labels'], {}), '(predicted, labels)\n', (6008, 6027), False, 'from sklearn.metrics.cluster import adjusted_rand_score\n'), ((6465, 6484), 'csv.reader', 'csv.reader', (['csvfile'], {}), '(csvfile)\n', (6475, 6484), False, 'import csv\n'), ((6907, 6922), 'random.sample', 'sample', (['data', 'k'], {}), '(data, k)\n', (6913, 6922), False, 'from random import sample\n'), ((7618, 7656), 'sklearn.metrics.cluster.adjusted_rand_score', 'adjusted_rand_score', (['predicted', 'labels'], {}), '(predicted, labels)\n', (7637, 7656), False, 'from sklearn.metrics.cluster import adjusted_rand_score\n'), ((548, 555), 'math.sqrt', 'sqrt', (['d'], {}), '(d)\n', (552, 555), False, 'from math import sqrt\n'), ((4430, 4485), 'math.sqrt', 'sqrt', (['((1 - tp / (tp + fp)) ** 2 + (fp / (tn + fp)) ** 2)'], {}), '((1 - tp / (tp + fp)) ** 2 + (fp / (tn + fp)) ** 2)\n', (4434, 4485), False, 'from math import sqrt\n')]
# -*- coding:utf-8 -*- # @project: GPT2-NewsTitle # @filename: train.py # @author: 刘聪NLP # @contact: <EMAIL> # @time: 2020/12/16 16:28 """ 文件说明: 通过新闻正文生成新闻标题的GPT2模型的训练文件 """ import torch import os import random import numpy as np import argparse import logging from transformers.modeling_gpt2 import GPT2Config from model import GPT2LMHeadModel from transformers import BertTokenizer from data_set import GPT2NewsTitleDataSet, collate_func from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from transformers import AdamW, get_linear_schedule_with_warmup from tqdm import tqdm, trange try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) def train(model, device, train_data, test_data, args): """ 训练模型 Args: model: 模型 device: 设备信息 train_data: 训练数据类 test_data: 测试数据类 args: 训练参数配置信息 Returns: """ tb_write = SummaryWriter() if args.gradient_accumulation_steps < 1: raise ValueError("gradient_accumulation_steps参数无效,必须大于等于1") # 计算真实的训练batch_size大小 train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) train_sampler = RandomSampler(train_data) train_data_loader = DataLoader(train_data, sampler=train_sampler, batch_size=train_batch_size, collate_fn=collate_func) total_steps = int(len(train_data_loader) * args.num_train_epochs / args.gradient_accumulation_steps) logger.info("总训练步数为:{}".format(total_steps)) model.to(device) # 获取模型所有参数 param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any( nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any( nd in n for nd in no_decay)], 'weight_decay': 0.0} ] # 设置优化器 optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(args.warmup_proportion * total_steps), num_training_steps=total_steps) # 清空cuda缓存 torch.cuda.empty_cache() # 将模型调至训练状态 model.train() title_id = train_data.title_id tr_loss, logging_loss, min_loss = 0.0, 0.0, 0.0 global_step = 0 # 开始训练模型 for iepoch in trange(0, int(args.num_train_epochs), desc="Epoch", disable=False): iter_bar = tqdm(train_data_loader, desc="Iter (loss=X.XXX)", disable=False) for step, batch in enumerate(iter_bar): input_ids = batch["input_ids"].to(device) token_type_ids = batch["token_type_ids"].to(device) # 获取训练结果 outputs = model.forward(input_ids=input_ids, token_type_ids=token_type_ids, labels=input_ids, title_id=title_id) loss = outputs[0] tr_loss += loss.item() # 将损失值放到Iter中,方便观察 iter_bar.set_description("Iter (loss=%5.3f)" % loss.item()) # 判断是否进行梯度累积,如果进行,则将损失值除以累积步数 if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps # 损失进行回传 loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) # 当训练步数整除累积步数时,进行参数优化 if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() optimizer.zero_grad() global_step += 1 # 如果步数整除logging_steps,则记录学习率和训练集损失值 if args.logging_steps > 0 and global_step % args.logging_steps == 0: tb_write.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_write.add_scalar("train_loss", (tr_loss-logging_loss) / (args.logging_steps*args.gradient_accumulation_steps), global_step) logging_loss = tr_loss # 如果步数整除eval_steps,则进行模型测试,记录测试集的损失 if args.eval_steps > 0 and global_step % args.eval_steps == 0: eval_loss = evaluate(model, device, test_data, args) tb_write.add_scalar("test_loss", eval_loss, global_step) model.train() # 每个epoch进行完,则保存模型 output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(output_dir) # 清空cuda缓存 torch.cuda.empty_cache() def evaluate(model, device, test_data, args): """ 对测试数据集进行模型测试 Args: model: 模型 device: 设备信息 test_data: 测试数据类 args: 训练参数配置信息 Returns: """ # 构造测试集的DataLoader test_sampler = SequentialSampler(test_data) test_data_loader = DataLoader(test_data, sampler=test_sampler, batch_size=args.test_batch_size, collate_fn=collate_func) iter_bar = tqdm(test_data_loader, desc="iter", disable=False) title_id = test_data.title_id total_loss, total = 0.0, 0.0 # 进行测试 for step, batch in enumerate(iter_bar): # 模型设为eval model.eval() with torch.no_grad(): input_ids = batch["input_ids"].to(device) token_type_ids = batch["token_type_ids"].to(device) # 获取预测结果 outputs = model.forward(input_ids=input_ids, token_type_ids=token_type_ids, labels=input_ids, title_id=title_id) loss = outputs[0] loss = loss.item() # 对loss进行累加 total_loss += loss*len(batch["input_ids"]) total += len(batch["input_ids"]) # 计算最终测试集的loss结果 test_loss = total_loss / total return test_loss def set_args(): """设置训练模型所需参数""" parser = argparse.ArgumentParser() parser.add_argument('--device', default='0', type=str, help='设置训练或测试时使用的显卡') parser.add_argument('--config_path', default='./config/config.json', type=str, help='模型参数配置信息') parser.add_argument('--vocab_path', default='./vocab/vocab.txt', type=str, help='词表,该词表为小词表,并增加了一些新的标记') parser.add_argument('--train_file_path', default='./data_dir/train_data.json', type=str, help='新闻标题生成的训练数据') parser.add_argument('--test_file_path', default='./data_dir/test_data.json', type=str, help='新闻标题生成的测试数据') parser.add_argument('--pretrained_model_path', default=None, type=str, help='预训练的GPT2模型的路径') parser.add_argument('--data_dir', default='./data_dir', type=str, help='生成缓存数据的存放路径') parser.add_argument('--num_train_epochs', default=5, type=int, help='模型训练的轮数') parser.add_argument('--train_batch_size', default=16, type=int, help='训练时每个batch的大小') parser.add_argument('--test_batch_size', default=8, type=int, help='测试时每个batch的大小') parser.add_argument('--learning_rate', default=1e-4, type=float, help='模型训练时的学习率') parser.add_argument('--warmup_proportion', default=0.1, type=float, help='warm up概率,即训练总步长的百分之多少,进行warm up') parser.add_argument('--adam_epsilon', default=1e-8, type=float, help='Adam优化器的epsilon值') parser.add_argument('--logging_steps', default=20, type=int, help='保存训练日志的步数') parser.add_argument('--eval_steps', default=4000, type=int, help='训练时,多少步进行一次测试') parser.add_argument('--gradient_accumulation_steps', default=4, type=int, help='梯度积累') parser.add_argument('--max_grad_norm', default=1.0, type=float, help='') parser.add_argument('--output_dir', default='output_dir/', type=str, help='模型输出路径') parser.add_argument('--seed', type=int, default=2020, help='随机种子') parser.add_argument('--max_len', type=int, default=512, help='输入模型的最大长度,要比config中n_ctx小') parser.add_argument('--title_max_len', type=int, default=32, help='生成标题的最大长度,要比max_len小') return parser.parse_args() def main(): # 设置模型训练参数 args = set_args() # 设置显卡信息 os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICE"] = args.device # 获取device信息,用于模型训练 device = torch.device("cuda" if torch.cuda.is_available() and int(args.device) >= 0 else "cpu") # 设置随机种子,方便模型复现 if args.seed: torch.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) # 加载模型的config model_config = GPT2Config.from_json_file(args.config_path) # 实例化GPT2LMHeadModel模型,这里我们没有加载预训练好的模型,而是直接从头开始训练。 # 为什么从头开始训练?我们采用的是小模型,只有6层,并且词表也做了修改,没有找到合适的预训练模型。(其实是,穷人,卡不行。) # 判断是否使用预训练好的GPT2模型 if args.pretrained_model_path: model = GPT2LMHeadModel.from_pretrained(args.pretrained_model_path) else: # 如果没有指定的预训练模型,则初始化模型 model = GPT2LMHeadModel(config=model_config) # model = GPT2LMHeadModel(config=model_config) # 实例化tokenizer tokenizer = BertTokenizer.from_pretrained(args.vocab_path, do_lower_case=True) # 将[space]作为一个分割整体,例如:"我爱[Space]中国。",使用原始tokenizer分词结果为"['我', '爱', '[', 'Space', ']', '中', '国', '。']"; # 增加分割符号后的结果为"['我', '爱', '[Space]', '中', '国', '。']" tokenizer.add_tokens("[Space]", special_tokens=True) # 创建模型的输出目录 if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) # 加载训练数据和测试数据 train_data = GPT2NewsTitleDataSet(tokenizer, args.max_len, args.title_max_len, args.data_dir, "train", args.train_file_path) test_data = GPT2NewsTitleDataSet(tokenizer, args.max_len, args.title_max_len, args.data_dir, "test", args.test_file_path) # 开始训练 train(model, device, train_data, test_data, args) if __name__ == '__main__': main()
[ "os.mkdir", "numpy.random.seed", "argparse.ArgumentParser", "torch.utils.data.RandomSampler", "data_set.GPT2NewsTitleDataSet", "torch.no_grad", "torch.utils.data.DataLoader", "os.path.exists", "torch.utils.data.SequentialSampler", "random.seed", "tqdm.tqdm", "torch.manual_seed", "transformers.BertTokenizer.from_pretrained", "transformers.AdamW", "torch.cuda.is_available", "model.GPT2LMHeadModel.from_pretrained", "model.GPT2LMHeadModel", "tensorboardX.SummaryWriter", "logging.basicConfig", "transformers.modeling_gpt2.GPT2Config.from_json_file", "torch.cuda.empty_cache", "logging.getLogger" ]
[((741, 884), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s - %(levelname)s - %(name)s - %(message)s"""', 'datefmt': '"""%m/%d/%Y %H:%M:%S"""', 'level': 'logging.INFO'}), "(format=\n '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt=\n '%m/%d/%Y %H:%M:%S', level=logging.INFO)\n", (760, 884), False, 'import logging\n'), ((924, 951), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (941, 951), False, 'import logging\n'), ((1187, 1202), 'tensorboardX.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (1200, 1202), False, 'from tensorboardX import SummaryWriter\n'), ((1447, 1472), 'torch.utils.data.RandomSampler', 'RandomSampler', (['train_data'], {}), '(train_data)\n', (1460, 1472), False, 'from torch.utils.data import DataLoader, RandomSampler, SequentialSampler\n'), ((1497, 1600), 'torch.utils.data.DataLoader', 'DataLoader', (['train_data'], {'sampler': 'train_sampler', 'batch_size': 'train_batch_size', 'collate_fn': 'collate_func'}), '(train_data, sampler=train_sampler, batch_size=train_batch_size,\n collate_fn=collate_func)\n', (1507, 1600), False, 'from torch.utils.data import DataLoader, RandomSampler, SequentialSampler\n'), ((2256, 2342), 'transformers.AdamW', 'AdamW', (['optimizer_grouped_parameters'], {'lr': 'args.learning_rate', 'eps': 'args.adam_epsilon'}), '(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.\n adam_epsilon)\n', (2261, 2342), False, 'from transformers import AdamW, get_linear_schedule_with_warmup\n'), ((2578, 2602), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (2600, 2602), False, 'import torch\n'), ((5227, 5255), 'torch.utils.data.SequentialSampler', 'SequentialSampler', (['test_data'], {}), '(test_data)\n', (5244, 5255), False, 'from torch.utils.data import DataLoader, RandomSampler, SequentialSampler\n'), ((5279, 5384), 'torch.utils.data.DataLoader', 'DataLoader', (['test_data'], {'sampler': 'test_sampler', 'batch_size': 'args.test_batch_size', 'collate_fn': 'collate_func'}), '(test_data, sampler=test_sampler, batch_size=args.test_batch_size,\n collate_fn=collate_func)\n', (5289, 5384), False, 'from torch.utils.data import DataLoader, RandomSampler, SequentialSampler\n'), ((5430, 5480), 'tqdm.tqdm', 'tqdm', (['test_data_loader'], {'desc': '"""iter"""', 'disable': '(False)'}), "(test_data_loader, desc='iter', disable=False)\n", (5434, 5480), False, 'from tqdm import tqdm, trange\n'), ((6251, 6276), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (6274, 6276), False, 'import argparse\n'), ((8715, 8758), 'transformers.modeling_gpt2.GPT2Config.from_json_file', 'GPT2Config.from_json_file', (['args.config_path'], {}), '(args.config_path)\n', (8740, 8758), False, 'from transformers.modeling_gpt2 import GPT2Config\n'), ((9196, 9262), 'transformers.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['args.vocab_path'], {'do_lower_case': '(True)'}), '(args.vocab_path, do_lower_case=True)\n', (9225, 9262), False, 'from transformers import BertTokenizer\n'), ((9612, 9728), 'data_set.GPT2NewsTitleDataSet', 'GPT2NewsTitleDataSet', (['tokenizer', 'args.max_len', 'args.title_max_len', 'args.data_dir', '"""train"""', 'args.train_file_path'], {}), "(tokenizer, args.max_len, args.title_max_len, args.\n data_dir, 'train', args.train_file_path)\n", (9632, 9728), False, 'from data_set import GPT2NewsTitleDataSet, collate_func\n'), ((9740, 9854), 'data_set.GPT2NewsTitleDataSet', 'GPT2NewsTitleDataSet', (['tokenizer', 'args.max_len', 'args.title_max_len', 'args.data_dir', '"""test"""', 'args.test_file_path'], {}), "(tokenizer, args.max_len, args.title_max_len, args.\n data_dir, 'test', args.test_file_path)\n", (9760, 9854), False, 'from data_set import GPT2NewsTitleDataSet, collate_func\n'), ((2862, 2926), 'tqdm.tqdm', 'tqdm', (['train_data_loader'], {'desc': '"""Iter (loss=X.XXX)"""', 'disable': '(False)'}), "(train_data_loader, desc='Iter (loss=X.XXX)', disable=False)\n", (2866, 2926), False, 'from tqdm import tqdm, trange\n'), ((4967, 4991), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (4989, 4991), False, 'import torch\n'), ((8584, 8612), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (8601, 8612), False, 'import torch\n'), ((8621, 8643), 'random.seed', 'random.seed', (['args.seed'], {}), '(args.seed)\n', (8632, 8643), False, 'import random\n'), ((8652, 8677), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (8666, 8677), True, 'import numpy as np\n'), ((8957, 9016), 'model.GPT2LMHeadModel.from_pretrained', 'GPT2LMHeadModel.from_pretrained', (['args.pretrained_model_path'], {}), '(args.pretrained_model_path)\n', (8988, 9016), False, 'from model import GPT2LMHeadModel\n'), ((9073, 9109), 'model.GPT2LMHeadModel', 'GPT2LMHeadModel', ([], {'config': 'model_config'}), '(config=model_config)\n', (9088, 9109), False, 'from model import GPT2LMHeadModel\n'), ((9510, 9541), 'os.path.exists', 'os.path.exists', (['args.output_dir'], {}), '(args.output_dir)\n', (9524, 9541), False, 'import os\n'), ((9551, 9576), 'os.mkdir', 'os.mkdir', (['args.output_dir'], {}), '(args.output_dir)\n', (9559, 9576), False, 'import os\n'), ((5656, 5671), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5669, 5671), False, 'import torch\n'), ((8474, 8499), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (8497, 8499), False, 'import torch\n')]
import importlib import copy import io, time from io import BytesIO import chardet import os import collections from itertools import combinations, cycle, product import math import numpy as np import pandas as pd import pickle import tarfile import random import re import requests from nltk.corpus import stopwords from scipy.sparse import hstack, lil_matrix from sklearn.metrics.pairwise import cosine_similarity from sklearn.decomposition import PCA from sklearn.cluster import AgglomerativeClustering from sklearn.linear_model import LogisticRegression, LinearRegression, Ridge import torch.nn.functional as F from tqdm import tqdm pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', 1000) pd.set_option('display.expand_frame_repr', False) pd.set_option('max_colwidth', -1) # change None to -1 from collections import Counter, defaultdict import numpy as np import re import sys import sklearn from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.metrics import roc_auc_score from sklearn.metrics.pairwise import cosine_similarity from sklearn.linear_model import LogisticRegression, LinearRegression, Ridge from sklearn.model_selection import KFold, cross_val_score, train_test_split from sklearn.metrics import classification_report, accuracy_score import torch from torchvision import datasets, transforms from torch import nn, optim, autograd import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from transformers import * # here import bert import warnings warnings.filterwarnings("ignore") # from data_structure import Dataset #, get_IMDB, get_kindle import argparse import utils importlib.reload(utils) from utils import * from vae import VAE, vae_loss_function, train_vae, test_vae # randseed = 52744889 randseed = int(time.time()*1e7%1e8) print("random seed: ", randseed) sys.stdout.flush() random.seed(randseed) np.random.seed(randseed) torch.manual_seed(randseed) parser = argparse.ArgumentParser(description='Text Reviews') parser.add_argument('-d', '--dataset', type=str, default='amazon',choices=['yelp', 'amazon', 'tripadvisor']) parser.add_argument('--datsubsample', type=int, default=10000) parser.add_argument('--n_restarts', type=int, default=1) parser.add_argument('--steps', type=int, default=2001) parser.add_argument('--hidden_dim', type=int, default=128) parser.add_argument('--l2_reg', type=float, default=1e-3) parser.add_argument('--lr', type=float, default=1e-2) parser.add_argument('--mode', type=str, default="linear", choices=["linear", "logistic"]) parser.add_argument('--z_dim', type=int, default=1000) parser.add_argument('--batch_size', type=int, default=200) parser.add_argument('--num_features', type=int, default=5) parser.add_argument('--input_dim', type=int, default=0) parser.add_argument('--vae_epochs', type=int, default=101) parser.add_argument('--spurious_corr', type=float, default=0.9) parser.add_argument('--alter_freq', type=int, default=50) parser.add_argument('--mode_latent', type=str, default="pcaz", choices=["vaez", "bertz", "bertz_cl", "pcaz"]) parser.add_argument('--mode_train_data', type=str, default="text", choices=["text", "bertz"]) flags, unk = parser.parse_known_args() res = pd.DataFrame(vars(flags), index=[0]) res['randseed'] = randseed print(flags) sys.stdout.flush() moniker = flags.dataset out_dir = moniker + '_out' if not os.path.exists(out_dir): os.makedirs(out_dir) dat_file = 'dat/'+ moniker + '/' + moniker + '_meta.csv' # detect encoding # rawdata=open(dat_file,'rb').read() # result = chardet.detect(rawdata) # charenc = result['encoding'] # print(charenc) if moniker == 'amazon': full_dat = pd.read_csv(dat_file) elif moniker == 'tripadvisor': full_dat = pd.read_csv(dat_file, encoding='Windows-1252') elif moniker == 'yelp': full_dat = pd.read_csv(dat_file, lineterminator='\n') full_dat = full_dat.rename(columns={'stars_x':'y', 'text':'review_text'}) data = full_dat[full_dat['y']!=3].sample(n=flags.datsubsample) texts = list(data['review_text']) labels = (np.array(data['y']) > 3) split1, split2 = int(0.6*len(texts)), (int(0.6*len(texts)) + int(0.2*len(texts))) train_text, train_label = texts[:split1], torch.from_numpy(labels[:split1]).float().cuda() testobs_text, testobs_label = texts[split1:split2], torch.from_numpy(labels[split1:split2]).float().cuda() testct_text, testct_label = texts[split2:], torch.from_numpy(labels[split2:]).float().cuda() stop_words = set(stopwords.words('english')) # vec = CountVectorizer(min_df=5, binary=True, max_df=0.8, ngram_range=(1,3)) vec = TfidfVectorizer(min_df=10, binary=True, max_df=0.8, ngram_range=(1,3)) X_full = vec.fit_transform(train_text) X_train_full = vec.transform(train_text) X_testobs_full = vec.transform(testobs_text) X_testct_full = vec.transform(testct_text) feats = np.array(vec.get_feature_names()) top_feature_idx, placebo_feature_idx, coef = get_top_terms(vec.transform(train_text), train_label.cpu().numpy(), coef_thresh=0.0, placebo_thresh=0.1) # use coef_threshold=0.0 to take all features, no thresholding happening here. # top_feature_idx = np.arange(500) X_train_np = vec.transform(train_text).toarray() X_testobs_np = vec.transform(testobs_text).toarray() X_testct_np = vec.transform(testct_text).toarray() fea_corrcoef = np.corrcoef(X_train_np[:,top_feature_idx].T) - np.eye(X_train_np[:,top_feature_idx].shape[1]) colinear_fea = np.where(fea_corrcoef>0.96)[0] feature_idx = np.array(list(set(top_feature_idx) - set(colinear_fea))) # only consider words in feature_idx id2term = collections.OrderedDict({i:v for i,v in enumerate(feats[feature_idx])}) term2id = collections.OrderedDict({v:i for i,v in enumerate(feats[feature_idx])}) spurious_words = np.array([term2id['as'], term2id['also'], term2id['am'], term2id['an']]) final_train_accs = [] final_test_accs = [] final_train_baselineaccs = [] final_test_baselineaccs = [] final_train_baselinevaeaccs = [] final_test_baselinevaeaccs = [] for restart in range(flags.n_restarts): print("Restart", restart) def make_environment(texts, labels, e): def torch_bernoulli(p, size): return (torch.rand(size) < p).float() def torch_xor(a, b): return (a-b).abs() # Assumes both inputs are either 0 or 1 # Assign a binary label based on the digit; flip label with probability 0.25 labels = (labels == 1).float() labels = torch_xor(labels, torch_bernoulli(0.35, len(labels)).cuda()) # Assign a color based on the label; flip the color with probability e spurious_counts = torch.stack([torch_xor(labels, torch_bernoulli(e, len(labels)).cuda()) for i in range(len(spurious_words))], axis=1) # Apply the color to the image by zeroing out the other color channel texts[:,spurious_words] = spurious_counts.cpu().numpy() return { 'texts': torch.from_numpy(texts).float().cuda(), 'labels': labels[:, None].cuda(), 'colors': spurious_counts.cuda() } train_data = make_environment(X_train_np[:,feature_idx], train_label, 1-flags.spurious_corr) X_train, train_label = train_data['texts'], train_data['labels'] testobs_data = make_environment(X_testobs_np[:,feature_idx], testobs_label, 1-flags.spurious_corr) X_testobs, testobs_label = testobs_data['texts'], testobs_data['labels'] testct_data = make_environment(X_testct_np[:,feature_idx], testct_label, 0.9) X_testct, testct_label = testct_data['texts'], testct_data['labels'] vocabsize = X_train.shape[1] flags.input_dim = vocabsize # calculate pca embedding pca = PCA(n_components=flags.z_dim) # pca.fit(np.row_stack([X_train_np, X_testobs_np, X_testct_np])) pca.fit(np.row_stack([X_train_np[:,feature_idx]])) train_pca_embedding = torch.from_numpy(pca.transform(X_train_np[:,feature_idx])).float().cuda() testobs_pca_embedding = torch.from_numpy(pca.transform(X_testobs_np[:,feature_idx])).float().cuda() testct_pca_embedding = torch.from_numpy(pca.transform(X_testct_np[:,feature_idx])).float().cuda() print(np.cumsum(pca.explained_variance_ratio_)) print(pca.explained_variance_ratio_ * flags.input_dim) # take only the top pc dimensions with effective sample size > 100 # flags.z_dim = np.sum(pca.explained_variance_ratio_ * flags.input_dim > 30) # print(flags.z_dim) # # calculate pca embedding # pca = PCA(n_components=flags.z_dim) # # pca.fit(np.row_stack([X_train_np, X_testobs_np, X_testct_np])) # pca.fit(np.row_stack([X_train_np[:,feature_idx]])) # train_pca_embedding = torch.from_numpy(pca.transform(X_train_np[:,feature_idx])).float().cuda() # testobs_pca_embedding = torch.from_numpy(pca.transform(X_testobs_np[:,feature_idx])).float().cuda() # testct_pca_embedding = torch.from_numpy(pca.transform(X_testct_np[:,feature_idx])).float().cuda() # flags.num_features = flags.input_dim - flags.z_dim subset_nonsing=False if flags.mode_latent == "vaez": z_dim = flags.z_dim elif flags.mode_latent == "bertz": z_dim = train_embedding.shape[1] elif flags.mode_latent == "bertz_cl": z_dim = X_train_cl_embedding.shape[1] subset_nonsing=True elif flags.mode_latent == "pcaz": z_dim = flags.z_dim # z_dim = flags.z_dim print(vocabsize, z_dim) sys.stdout.flush() def compute_prob(logits, mode="logistic"): if mode == "linear": probs = torch.max(torch.stack([logits,torch.zeros_like(logits)],dim=2),dim=2)[0] probs = torch.min(torch.stack([probs,torch.ones_like(probs)],dim=2),dim=2)[0] elif mode == "logistic": probs = nn.Sigmoid()(logits) return probs class MLP(nn.Module): def __init__(self): super(MLP, self).__init__() self.input_dim = flags.input_dim self.z_dim = z_dim self.num_features = flags.num_features lin1 = nn.Linear(self.input_dim, self.num_features) lin4 = nn.Linear(self.z_dim, 1) for lin in [lin1, lin4]: nn.init.xavier_uniform_(lin.weight) nn.init.zeros_(lin.bias) self._main = nn.Sequential(lin1) self._tvaez = nn.Sequential(lin4) self.finallayer = nn.Linear(self.num_features + 1, 1) def forward(self, inputbow, vaez): features = torch.matmul(inputbow, F.softmax(self._main[0].weight,dim=1).T) logits = self.finallayer(torch.cat([features, self._tvaez(vaez)],dim=1)) probs = compute_prob(logits, mode=flags.mode) features_ctr = features - features.mean(dim=0) beta_hat = 0. feature_hats = 0. logit_hats = logits prob_hats = probs return features, logits, probs, beta_hat, logit_hats, prob_hats def mean_nll(probs, y, mode="logistic"): if mode == "linear": mean_nll = nn.MSELoss()(probs, y) elif mode == "logistic": mean_nll = nn.BCELoss()(probs, y) return mean_nll def mean_accuracy(probs, y): preds = (probs > 0.5).float() return ((preds - y).abs() < 1e-2).float().mean() # the Net component is not used class Net(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(flags.num_features, 1) def forward(self, x): x = self.fc(x) return x def initNet(layer): nn.init.xavier_uniform_(layer.weight) nn.init.zeros_(layer.bias) envs = [ {'text': X_train, 'pcaz': train_pca_embedding, 'labels': train_label}, \ {'text': X_testct, 'pcaz': testct_pca_embedding, 'labels': testct_label}, \ {'text': X_testobs, 'pcaz': testobs_pca_embedding, 'labels': testobs_label}] if subset_nonsing == True: envs[0]['text'] = envs[0]['text'][nonsing_sents] envs[0]['labels'] = envs[0]['labels'][nonsing_sents] if flags.mode_train_data == 'text': flags.input_dim = vocabsize train_loader = torch.utils.data.DataLoader(dataset=envs[0]['text'].view(-1, flags.input_dim), batch_size=flags.batch_size, shuffle=False) testct_loader = torch.utils.data.DataLoader(dataset=envs[1]['text'].view(-1, flags.input_dim), batch_size=flags.batch_size, shuffle=False) testobs_loader = torch.utils.data.DataLoader(dataset=envs[2]['text'].view(-1, flags.input_dim), batch_size=flags.batch_size, shuffle=False) elif flags.mode_train_data == 'bertz': flags.input_dim = train_embedding.shape[1] train_loader = torch.utils.data.DataLoader(dataset=envs[0]['bertz'].view(-1, flags.input_dim), batch_size=flags.batch_size, shuffle=False) testct_loader = torch.utils.data.DataLoader(dataset=envs[1]['bertz'].view(-1, flags.input_dim), batch_size=flags.batch_size, shuffle=False) testobs_loader = torch.utils.data.DataLoader(dataset=envs[2]['bertz'].view(-1, flags.input_dim), batch_size=flags.batch_size, shuffle=False) if flags.mode_latent == 'vae': trainvaez_name = flags.dataset + 'k' + str(flags.z_dim) + 'trainvae.pt' testctvaez_name = flags.dataset + 'k' + str(flags.z_dim) + 'testctvae.pt' testobsvaez_name = flags.dataset + 'k' + str(flags.z_dim) + 'testobsvae.pt' envs[0]['vaeimage'] = torch.load(trainvaez_name)[0].detach() envs[1]['vaeimage'] = torch.load(testctvaez_name)[0].detach() envs[2]['vaeimage'] = torch.load(testobsvaez_name)[0].detach() envs[0]['vaez'] = torch.load(trainvaez_name)[1].detach() envs[1]['vaez'] = torch.load(testctvaez_name)[1].detach() envs[2]['vaez'] = torch.load(testobsvaez_name)[1].detach() mlp = MLP().cuda() optimizer_causalrep = optim.Adam(mlp._main.parameters(), lr=flags.lr, weight_decay=1e-8) for step in range(flags.steps): for i in range(len(envs)): env = envs[i] features, logits, probs, beta_hat, logit_hats, prob_hats = mlp(env[flags.mode_train_data], env[flags.mode_latent]) labels = env['labels'] env['nll'] = mean_nll(probs, env['labels'], mode=flags.mode) env['nllhat'] = mean_nll(prob_hats, env['labels'], mode=flags.mode) env['acc'] = mean_accuracy(probs, env['labels']) env['acchat'] = mean_accuracy(prob_hats, env['labels']) y = labels - labels.mean() X = torch.cat([features, env[flags.mode_latent]], dim=1) X = X - X.mean(dim=0) X = torch.cat([torch.ones(X.shape[0],1).cuda(), X], dim=1) beta = [torch.matmul( torch.matmul( torch.inverse(flags.l2_reg*torch.eye(X.shape[1]).cuda()+ torch.matmul( torch.transpose(X, 0, 1), X)), torch.transpose(X, 0, 1)), y[:,j]) for j in range(y.shape[1])] env['covs'] = cov(torch.cat([beta[0][1:flags.num_features+1] *features, torch.unsqueeze((beta[0][-flags.z_dim:] * env[flags.mode_latent]).sum(dim=1),1)], dim=1))[-1][:-1] # extract the last row to have cov(Features, C) env['causalrep'] = ((features.std(dim=0) * beta[0][1:flags.num_features+1])**2).sum() # + 2 * env['covs']).sum() weight_norm = torch.tensor(0.).cuda() for w in mlp.finallayer.parameters(): weight_norm += w.norm().pow(2) env['l2penalty'] = flags.l2_reg * weight_norm if step % 500 == 0: print("\nnll", env['nll'], "\nl2", env['l2penalty'], "\ncausalrep", env['causalrep']) # "\nfeatureZr2", env['featureZr2']) sys.stdout.flush() train_l2penalty = torch.stack([envs[0]['l2penalty']]) train_causalrep = torch.stack([envs[0]['causalrep']]) train_nll = torch.stack([envs[0]['nll']]).mean() train_acc = torch.stack([envs[0]['acc']]).mean() testct_nll = torch.stack([envs[1]['nll']]).mean() testct_acc = torch.stack([envs[1]['acc']]).mean() testobs_nll = torch.stack([envs[2]['nll']]).mean() testobs_acc = torch.stack([envs[2]['acc']]).mean() nll_loss = train_nll.clone() # + train_l2penalty.clone() if step % 1 == 0: l1_penalty = F.softmax(mlp._main[0].weight,dim=1).abs().sum() train_causalrep_loss = -train_causalrep.clone() # + 1e-3 * l1_penalty - 1e-2 * torch.log(1 - train_featureZr2) optimizer_causalrep.zero_grad() train_causalrep_loss.backward(retain_graph=True) optimizer_causalrep.step() if step % 100 == 0: train_features, train_y = mlp(envs[0][flags.mode_train_data], envs[0][flags.mode_latent])[0].clone().cpu().detach().numpy(), envs[0]['labels'].clone().cpu().detach().numpy() testct_features, testct_y = mlp(envs[1][flags.mode_train_data], envs[1][flags.mode_latent])[0].clone().cpu().detach().numpy(), envs[1]['labels'].clone().cpu().detach().numpy() testobs_features, testobs_y = mlp(envs[2][flags.mode_train_data], envs[2][flags.mode_latent])[0].clone().cpu().detach().numpy(), envs[2]['labels'].clone().cpu().detach().numpy() C_vals = [1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3] causalrep_alphas, causalrep_trainaccs, causalrep_testobsaccs, causalrep_testctaccs = [], [], [], [] for C in C_vals: alpha = 1./C print('\ncausal-pred-w-features', 'C', C) # clf = LinearRegression() # clf = Ridge(alpha=alpha) clf = LogisticRegression(C=C, class_weight='auto', solver='lbfgs') clf.fit(train_features, train_y) resulttrain = classification_report((train_y > 0), (clf.predict(train_features) > 0), output_dict=True) resultct = classification_report((testct_y > 0), (clf.predict(testct_features) > 0), output_dict=True) resultobs = classification_report((testobs_y > 0), (clf.predict(testobs_features)> 0), output_dict=True) print('train',resulttrain['accuracy']) print('testobs',resultobs['accuracy']) print('testct',resultct['accuracy']) sys.stdout.flush() causalrep_trainaccs.append(resulttrain['accuracy']) causalrep_testobsaccs.append(resultobs['accuracy']) causalrep_testctaccs.append(resultct['accuracy']) causalrep_alphas.append(alpha) print("\n\n##### causal rep top words") feature_weights = torch.topk(F.softmax(mlp._main[0].weight,dim=1),20, axis=1) top_causal_words = feature_weights[1].detach().cpu().numpy() top_causal_weights = feature_weights[0].detach().cpu().numpy() for j in np.argsort(-np.abs(beta[0][1:(1+flags.num_features)].detach().cpu().numpy())): # for j in range(top_causal_words.shape[0]): print("feature", j) print("coefficient", beta[0][j+1]) sort_causal_words = np.argsort(-top_causal_weights[j])[:20] print("top causal words", [id2term[i] for i in top_causal_words[j][sort_causal_words]], top_causal_weights[j][sort_causal_words] ) causalrep_res = {} assert len(causalrep_alphas) == len(causalrep_trainaccs) assert len(causalrep_alphas) == len(causalrep_testobsaccs) assert len(causalrep_alphas) == len(causalrep_testctaccs) for item in ['causalrep_trainaccs', 'causalrep_testobsaccs', 'causalrep_testctaccs']: for i, alpha in enumerate(causalrep_alphas): curname = item + '_' + str(alpha) if item == 'causalrep_trainaccs': causalrep_res[curname] = causalrep_trainaccs[i] elif item == 'causalrep_testobsaccs': causalrep_res[curname] = causalrep_testobsaccs[i] elif item == 'causalrep_testctaccs': causalrep_res[curname] = causalrep_testctaccs[i] res = pd.concat([pd.DataFrame(causalrep_res, index=[0]), res], axis=1) if step % 10 == 0: print("itr", np.int32(step), # "train_causalrephat_loss", train_causalrep_loss.detach().cpu().numpy(), "train_causalrep", train_causalrep.detach().cpu().numpy(), # "train_causalrephat", train_causalrephat.detach().cpu().numpy(), "train_nll", train_nll.detach().cpu().numpy(), "train_acc", train_acc.detach().cpu().numpy(), "testct_acc", testct_acc.detach().cpu().numpy(), "testobs_acc", testobs_acc.detach().cpu().numpy()) sys.stdout.flush() print("step", step, "add causalrep_res") res = pd.concat([pd.DataFrame(causalrep_res, index=[0]), res], axis=1) # compare with naive naive_alphas, naive_trainaccs, naive_testobsaccs, naive_testctaccs = [], [], [], [] for C in [1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3]: alpha = 1./C print('\nnaive-pred', 'C', C) # clf = LinearRegression() # clf = Ridge(alpha=alpha) clf = LogisticRegression(C=C, class_weight='auto', solver='lbfgs') clf.fit(envs[0][flags.mode_train_data].cpu().detach().numpy(), train_y) resulttrain = classification_report((train_y > 0), (clf.predict(envs[0][flags.mode_train_data].cpu().detach().numpy()) > 0), output_dict=True) resultct = classification_report((testct_y > 0), (clf.predict(envs[1][flags.mode_train_data].cpu().detach().numpy()) > 0), output_dict=True) resultobs = classification_report((testobs_y > 0), (clf.predict(envs[2][flags.mode_train_data].cpu().detach().numpy())> 0), output_dict=True) print('train',resulttrain['accuracy']) print('testobs',resultobs['accuracy']) print('testct',resultct['accuracy']) sys.stdout.flush() naive_weights = clf.coef_ top_naive_words = np.argsort(-np.abs(naive_weights))[0,:20] top_coef = naive_weights[0,top_naive_words] print("top naive words", [id2term[i] for i in top_naive_words], top_coef) naive_trainaccs.append(resulttrain['accuracy']) naive_testobsaccs.append(resultobs['accuracy']) naive_testctaccs.append(resultct['accuracy']) naive_alphas.append(alpha) naive_res = {} assert len(naive_alphas) == len(naive_trainaccs) assert len(naive_alphas) == len(naive_testobsaccs) assert len(naive_alphas) == len(naive_testctaccs) for item in ['naive_trainaccs', 'naive_testobsaccs', 'naive_testctaccs']: for i, alpha in enumerate(naive_alphas): curname = item + '_' + str(alpha) if item == 'naive_trainaccs': naive_res[curname] = naive_trainaccs[i] elif item == 'naive_testobsaccs': naive_res[curname] = naive_testobsaccs[i] elif item == 'naive_testctaccs': naive_res[curname] = naive_testctaccs[i] res = pd.concat([pd.DataFrame(naive_res, index=[0]), res], axis=1) res.to_csv(out_dir + '/reviews_text' + str(int(time.time()*1e6)) + '.csv')
[ "numpy.random.seed", "argparse.ArgumentParser", "numpy.abs", "torch.eye", "sklearn.feature_extraction.text.TfidfVectorizer", "pandas.read_csv", "torch.cat", "numpy.argsort", "sys.stdout.flush", "pandas.set_option", "pandas.DataFrame", "torch.ones", "torch.nn.MSELoss", "torch.nn.BCELoss", "torch.load", "os.path.exists", "numpy.cumsum", "random.seed", "numpy.int32", "torch.nn.Linear", "torch.zeros_like", "torch.manual_seed", "numpy.corrcoef", "torch.nn.init.xavier_uniform_", "torch.nn.init.zeros_", "sklearn.linear_model.LogisticRegression", "nltk.corpus.stopwords.words", "torch.rand", "torch.nn.Sigmoid", "torch.from_numpy", "torch.ones_like", "os.makedirs", "torch.stack", "warnings.filterwarnings", "torch.nn.Sequential", "time.time", "torch.nn.functional.softmax", "importlib.reload", "numpy.where", "numpy.array", "sklearn.decomposition.PCA", "numpy.row_stack", "numpy.eye", "torch.tensor", "torch.transpose" ]
[((638, 680), 'pandas.set_option', 'pd.set_option', (['"""display.max_columns"""', 'None'], {}), "('display.max_columns', None)\n", (651, 680), True, 'import pandas as pd\n'), ((683, 722), 'pandas.set_option', 'pd.set_option', (['"""display.max_rows"""', '(1000)'], {}), "('display.max_rows', 1000)\n", (696, 722), True, 'import pandas as pd\n'), ((723, 772), 'pandas.set_option', 'pd.set_option', (['"""display.expand_frame_repr"""', '(False)'], {}), "('display.expand_frame_repr', False)\n", (736, 772), True, 'import pandas as pd\n'), ((773, 806), 'pandas.set_option', 'pd.set_option', (['"""max_colwidth"""', '(-1)'], {}), "('max_colwidth', -1)\n", (786, 806), True, 'import pandas as pd\n'), ((1581, 1614), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1604, 1614), False, 'import warnings\n'), ((1708, 1731), 'importlib.reload', 'importlib.reload', (['utils'], {}), '(utils)\n', (1724, 1731), False, 'import importlib\n'), ((1904, 1922), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1920, 1922), False, 'import sys\n'), ((1923, 1944), 'random.seed', 'random.seed', (['randseed'], {}), '(randseed)\n', (1934, 1944), False, 'import random\n'), ((1945, 1969), 'numpy.random.seed', 'np.random.seed', (['randseed'], {}), '(randseed)\n', (1959, 1969), True, 'import numpy as np\n'), ((1970, 1997), 'torch.manual_seed', 'torch.manual_seed', (['randseed'], {}), '(randseed)\n', (1987, 1997), False, 'import torch\n'), ((2008, 2059), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Text Reviews"""'}), "(description='Text Reviews')\n", (2031, 2059), False, 'import argparse\n'), ((3343, 3361), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (3359, 3361), False, 'import sys\n'), ((4627, 4698), 'sklearn.feature_extraction.text.TfidfVectorizer', 'TfidfVectorizer', ([], {'min_df': '(10)', 'binary': '(True)', 'max_df': '(0.8)', 'ngram_range': '(1, 3)'}), '(min_df=10, binary=True, max_df=0.8, ngram_range=(1, 3))\n', (4642, 4698), False, 'from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer\n'), ((5779, 5851), 'numpy.array', 'np.array', (["[term2id['as'], term2id['also'], term2id['am'], term2id['an']]"], {}), "([term2id['as'], term2id['also'], term2id['am'], term2id['an']])\n", (5787, 5851), True, 'import numpy as np\n'), ((7644, 7673), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'flags.z_dim'}), '(n_components=flags.z_dim)\n', (7647, 7673), False, 'from sklearn.decomposition import PCA\n'), ((9269, 9287), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (9285, 9287), False, 'import sys\n'), ((3422, 3445), 'os.path.exists', 'os.path.exists', (['out_dir'], {}), '(out_dir)\n', (3436, 3445), False, 'import os\n'), ((3451, 3471), 'os.makedirs', 'os.makedirs', (['out_dir'], {}), '(out_dir)\n', (3462, 3471), False, 'import os\n'), ((3710, 3731), 'pandas.read_csv', 'pd.read_csv', (['dat_file'], {}), '(dat_file)\n', (3721, 3731), True, 'import pandas as pd\n'), ((4095, 4114), 'numpy.array', 'np.array', (["data['y']"], {}), "(data['y'])\n", (4103, 4114), True, 'import numpy as np\n'), ((4513, 4539), 'nltk.corpus.stopwords.words', 'stopwords.words', (['"""english"""'], {}), "('english')\n", (4528, 4539), False, 'from nltk.corpus import stopwords\n'), ((5347, 5392), 'numpy.corrcoef', 'np.corrcoef', (['X_train_np[:, top_feature_idx].T'], {}), '(X_train_np[:, top_feature_idx].T)\n', (5358, 5392), True, 'import numpy as np\n'), ((5394, 5441), 'numpy.eye', 'np.eye', (['X_train_np[:, top_feature_idx].shape[1]'], {}), '(X_train_np[:, top_feature_idx].shape[1])\n', (5400, 5441), True, 'import numpy as np\n'), ((5456, 5485), 'numpy.where', 'np.where', (['(fea_corrcoef > 0.96)'], {}), '(fea_corrcoef > 0.96)\n', (5464, 5485), True, 'import numpy as np\n'), ((7748, 7790), 'numpy.row_stack', 'np.row_stack', (['[X_train_np[:, feature_idx]]'], {}), '([X_train_np[:, feature_idx]])\n', (7760, 7790), True, 'import numpy as np\n'), ((8093, 8133), 'numpy.cumsum', 'np.cumsum', (['pca.explained_variance_ratio_'], {}), '(pca.explained_variance_ratio_)\n', (8102, 8133), True, 'import numpy as np\n'), ((11231, 11268), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['layer.weight'], {}), '(layer.weight)\n', (11254, 11268), False, 'from torch import nn, optim, autograd\n'), ((11273, 11299), 'torch.nn.init.zeros_', 'nn.init.zeros_', (['layer.bias'], {}), '(layer.bias)\n', (11287, 11299), False, 'from torch import nn, optim, autograd\n'), ((15330, 15365), 'torch.stack', 'torch.stack', (["[envs[0]['l2penalty']]"], {}), "([envs[0]['l2penalty']])\n", (15341, 15365), False, 'import torch\n'), ((15388, 15423), 'torch.stack', 'torch.stack', (["[envs[0]['causalrep']]"], {}), "([envs[0]['causalrep']])\n", (15399, 15423), False, 'import torch\n'), ((20473, 20533), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'C': 'C', 'class_weight': '"""auto"""', 'solver': '"""lbfgs"""'}), "(C=C, class_weight='auto', solver='lbfgs')\n", (20491, 20533), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Ridge\n'), ((21179, 21197), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (21195, 21197), False, 'import sys\n'), ((3778, 3824), 'pandas.read_csv', 'pd.read_csv', (['dat_file'], {'encoding': '"""Windows-1252"""'}), "(dat_file, encoding='Windows-1252')\n", (3789, 3824), True, 'import pandas as pd\n'), ((9829, 9873), 'torch.nn.Linear', 'nn.Linear', (['self.input_dim', 'self.num_features'], {}), '(self.input_dim, self.num_features)\n', (9838, 9873), False, 'from torch import nn, optim, autograd\n'), ((9889, 9913), 'torch.nn.Linear', 'nn.Linear', (['self.z_dim', '(1)'], {}), '(self.z_dim, 1)\n', (9898, 9913), False, 'from torch import nn, optim, autograd\n'), ((10053, 10072), 'torch.nn.Sequential', 'nn.Sequential', (['lin1'], {}), '(lin1)\n', (10066, 10072), False, 'from torch import nn, optim, autograd\n'), ((10095, 10114), 'torch.nn.Sequential', 'nn.Sequential', (['lin4'], {}), '(lin4)\n', (10108, 10114), False, 'from torch import nn, optim, autograd\n'), ((10142, 10177), 'torch.nn.Linear', 'nn.Linear', (['(self.num_features + 1)', '(1)'], {}), '(self.num_features + 1, 1)\n', (10151, 10177), False, 'from torch import nn, optim, autograd\n'), ((11107, 11139), 'torch.nn.Linear', 'nn.Linear', (['flags.num_features', '(1)'], {}), '(flags.num_features, 1)\n', (11116, 11139), False, 'from torch import nn, optim, autograd\n'), ((14026, 14078), 'torch.cat', 'torch.cat', (['[features, env[flags.mode_latent]]'], {'dim': '(1)'}), '([features, env[flags.mode_latent]], dim=1)\n', (14035, 14078), False, 'import torch\n'), ((20061, 20079), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (20077, 20079), False, 'import sys\n'), ((20139, 20177), 'pandas.DataFrame', 'pd.DataFrame', (['causalrep_res'], {'index': '[0]'}), '(causalrep_res, index=[0])\n', (20151, 20177), True, 'import pandas as pd\n'), ((22232, 22266), 'pandas.DataFrame', 'pd.DataFrame', (['naive_res'], {'index': '[0]'}), '(naive_res, index=[0])\n', (22244, 22266), True, 'import pandas as pd\n'), ((1850, 1861), 'time.time', 'time.time', ([], {}), '()\n', (1859, 1861), False, 'import io, time\n'), ((3864, 3906), 'pandas.read_csv', 'pd.read_csv', (['dat_file'], {'lineterminator': '"""\n"""'}), "(dat_file, lineterminator='\\n')\n", (3875, 3906), True, 'import pandas as pd\n'), ((9959, 9994), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['lin.weight'], {}), '(lin.weight)\n', (9982, 9994), False, 'from torch import nn, optim, autograd\n'), ((10007, 10031), 'torch.nn.init.zeros_', 'nn.init.zeros_', (['lin.bias'], {}), '(lin.bias)\n', (10021, 10031), False, 'from torch import nn, optim, autograd\n'), ((10752, 10764), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (10762, 10764), False, 'from torch import nn, optim, autograd\n'), ((15288, 15306), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (15304, 15306), False, 'import sys\n'), ((15440, 15469), 'torch.stack', 'torch.stack', (["[envs[0]['nll']]"], {}), "([envs[0]['nll']])\n", (15451, 15469), False, 'import torch\n'), ((15494, 15523), 'torch.stack', 'torch.stack', (["[envs[0]['acc']]"], {}), "([envs[0]['acc']])\n", (15505, 15523), False, 'import torch\n'), ((15548, 15577), 'torch.stack', 'torch.stack', (["[envs[1]['nll']]"], {}), "([envs[1]['nll']])\n", (15559, 15577), False, 'import torch\n'), ((15602, 15631), 'torch.stack', 'torch.stack', (["[envs[1]['acc']]"], {}), "([envs[1]['acc']])\n", (15613, 15631), False, 'import torch\n'), ((15657, 15686), 'torch.stack', 'torch.stack', (["[envs[2]['nll']]"], {}), "([envs[2]['nll']])\n", (15668, 15686), False, 'import torch\n'), ((15712, 15741), 'torch.stack', 'torch.stack', (["[envs[2]['acc']]"], {}), "([envs[2]['acc']])\n", (15723, 15741), False, 'import torch\n'), ((17123, 17183), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'C': 'C', 'class_weight': '"""auto"""', 'solver': '"""lbfgs"""'}), "(C=C, class_weight='auto', solver='lbfgs')\n", (17141, 17183), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Ridge\n'), ((17740, 17758), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (17756, 17758), False, 'import sys\n'), ((18078, 18115), 'torch.nn.functional.softmax', 'F.softmax', (['mlp._main[0].weight'], {'dim': '(1)'}), '(mlp._main[0].weight, dim=1)\n', (18087, 18115), True, 'import torch.nn.functional as F\n'), ((19485, 19523), 'pandas.DataFrame', 'pd.DataFrame', (['causalrep_res'], {'index': '[0]'}), '(causalrep_res, index=[0])\n', (19497, 19523), True, 'import pandas as pd\n'), ((19585, 19599), 'numpy.int32', 'np.int32', (['step'], {}), '(step)\n', (19593, 19599), True, 'import numpy as np\n'), ((9578, 9590), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (9588, 9590), False, 'from torch import nn, optim, autograd\n'), ((10260, 10298), 'torch.nn.functional.softmax', 'F.softmax', (['self._main[0].weight'], {'dim': '(1)'}), '(self._main[0].weight, dim=1)\n', (10269, 10298), True, 'import torch.nn.functional as F\n'), ((10823, 10835), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (10833, 10835), False, 'from torch import nn, optim, autograd\n'), ((12998, 13024), 'torch.load', 'torch.load', (['trainvaez_name'], {}), '(trainvaez_name)\n', (13008, 13024), False, 'import torch\n'), ((13063, 13090), 'torch.load', 'torch.load', (['testctvaez_name'], {}), '(testctvaez_name)\n', (13073, 13090), False, 'import torch\n'), ((13129, 13157), 'torch.load', 'torch.load', (['testobsvaez_name'], {}), '(testobsvaez_name)\n', (13139, 13157), False, 'import torch\n'), ((13193, 13219), 'torch.load', 'torch.load', (['trainvaez_name'], {}), '(trainvaez_name)\n', (13203, 13219), False, 'import torch\n'), ((13254, 13281), 'torch.load', 'torch.load', (['testctvaez_name'], {}), '(testctvaez_name)\n', (13264, 13281), False, 'import torch\n'), ((13316, 13344), 'torch.load', 'torch.load', (['testobsvaez_name'], {}), '(testobsvaez_name)\n', (13326, 13344), False, 'import torch\n'), ((14894, 14911), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (14906, 14911), False, 'import torch\n'), ((18527, 18561), 'numpy.argsort', 'np.argsort', (['(-top_causal_weights[j])'], {}), '(-top_causal_weights[j])\n', (18537, 18561), True, 'import numpy as np\n'), ((21263, 21284), 'numpy.abs', 'np.abs', (['naive_weights'], {}), '(naive_weights)\n', (21269, 21284), True, 'import numpy as np\n'), ((4246, 4279), 'torch.from_numpy', 'torch.from_numpy', (['labels[:split1]'], {}), '(labels[:split1])\n', (4262, 4279), False, 'import torch\n'), ((4347, 4386), 'torch.from_numpy', 'torch.from_numpy', (['labels[split1:split2]'], {}), '(labels[split1:split2])\n', (4363, 4386), False, 'import torch\n'), ((4446, 4479), 'torch.from_numpy', 'torch.from_numpy', (['labels[split2:]'], {}), '(labels[split2:])\n', (4462, 4479), False, 'import torch\n'), ((14435, 14459), 'torch.transpose', 'torch.transpose', (['X', '(0)', '(1)'], {}), '(X, 0, 1)\n', (14450, 14459), False, 'import torch\n'), ((6195, 6211), 'torch.rand', 'torch.rand', (['size'], {}), '(size)\n', (6205, 6211), False, 'import torch\n'), ((9404, 9428), 'torch.zeros_like', 'torch.zeros_like', (['logits'], {}), '(logits)\n', (9420, 9428), False, 'import torch\n'), ((9492, 9514), 'torch.ones_like', 'torch.ones_like', (['probs'], {}), '(probs)\n', (9507, 9514), False, 'import torch\n'), ((14132, 14157), 'torch.ones', 'torch.ones', (['X.shape[0]', '(1)'], {}), '(X.shape[0], 1)\n', (14142, 14157), False, 'import torch\n'), ((15861, 15898), 'torch.nn.functional.softmax', 'F.softmax', (['mlp._main[0].weight'], {'dim': '(1)'}), '(mlp._main[0].weight, dim=1)\n', (15870, 15898), True, 'import torch.nn.functional as F\n'), ((22332, 22343), 'time.time', 'time.time', ([], {}), '()\n', (22341, 22343), False, 'import io, time\n'), ((6930, 6953), 'torch.from_numpy', 'torch.from_numpy', (['texts'], {}), '(texts)\n', (6946, 6953), False, 'import torch\n'), ((14364, 14388), 'torch.transpose', 'torch.transpose', (['X', '(0)', '(1)'], {}), '(X, 0, 1)\n', (14379, 14388), False, 'import torch\n'), ((14276, 14297), 'torch.eye', 'torch.eye', (['X.shape[1]'], {}), '(X.shape[1])\n', (14285, 14297), False, 'import torch\n')]
# -*- coding: utf-8 -*- """ """ import tensorflow as tf import numpy as np import tflearn from ddpg.ddpg import build_summaries, ActorNetwork, CriticNetwork, OrnsteinUhlenbeckActionNoise, ReplayBuffer, \ getReward from src.BallTracker import ballTracker from src.Pepper import Pepper from src.Pepper.Pepper import readAngle from src.Settings import * # =========================== # Agent Training # =========================== def train(sess, session, thread, args, actor, critic, actor_noise, update_model, saver): # Set up summary Ops summary_ops, summary_vars = build_summaries() if update_model == False: sess.run(tf.global_variables_initializer()) # Initialize target network weights actor.update_target_network() critic.update_target_network() writer = tf.summary.FileWriter(args['summary_dir'], sess.graph) # Initialize replay memory replay_buffer = ReplayBuffer(int(args['buffer_size']), int(args['random_seed'])) # Needed to enable BatchNorm. # This hurts the performance on Pendulum but could be useful # in other environments. tflearn.is_training(True) for i in range(int(args['max_episodes'])): # s = env.reset() ep_reward = 0 ep_ave_max_q = 0 for j in range(int(args['max_episode_len'])): service = session.service("ALMotion") params = dict() # Hole Anfangszustand delta1 = thread.delta[0] winkel1 = readAngle(session) s = [winkel1, delta1] # Hole action a = actor.predict(np.reshape(s, (1, 2))) + (1. / (1. + i)) # ITERATE THORUGH SAMPLED DATA AND ADD TO REPLAY BUFFER a = actor.predict(np.reshape(s, (1, actor.s_dim))) + actor_noise() # a[0] = ((a[0] - (1 - action_bound)) / (action_bound - (1 - action_bound))) * ( # OBERE_GRENZE - UNTERE_GRENZE) + UNTERE_GRENZE # a[0] = a[0] rewardTMP = 0 if a[0] < UNTERE_GRENZE: # print("Winkel zu klein :" + str(a[0])) a[0] = UNTERE_GRENZE rewardTMP = -1000 if a[0] > OBERE_GRENZE: # print("Winkel zu gross :" + str(a[0])) a[0] = OBERE_GRENZE rewardTMP = -1000 # Fuehre Action aus params[args['motor']] = [a[0], TIME_TO_MOVE] Pepper.move(params, service) # Hole Folgezustand delta2 = thread.delta[0] winkel2 = readAngle(session) s2 = [winkel2, delta2] # Hole Reward r = getReward(delta2) + rewardTMP terminal = False print(str(a[0]) + "\t" + str( r)) replay_buffer.add(np.reshape(s, (actor.s_dim,)), np.reshape(a, (actor.a_dim,)), r, terminal, np.reshape(s2, (actor.s_dim,))) # export actor Model somewhere # Keep adding experience to the memory until # there are at least minibatch size samples if replay_buffer.size() > int(args['minibatch_size']): s_batch, a_batch, r_batch, t_batch, s2_batch = \ replay_buffer.sample_batch(int(args['minibatch_size'])) # Calculate targets target_q = critic.predict_target( s2_batch, actor.predict_target(s2_batch)) y_i = [] for k in range(int(args['minibatch_size'])): if t_batch[k]: y_i.append(r_batch[k]) else: y_i.append(r_batch[k] + critic.gamma * target_q[k]) # Update the critic given the targets predicted_q_value, _ = critic.train( s_batch, a_batch, np.reshape(y_i, (int(args['minibatch_size']), 1))) ep_ave_max_q += np.amax(predicted_q_value) # Update the actor policy using the sampled gradient a_outs = actor.predict(s_batch) grads = critic.action_gradients(s_batch, a_outs) actor.train(s_batch, grads[0]) # Update target networks actor.update_target_network() critic.update_target_network() s = s2 ep_reward += r if terminal: summary_str = sess.run(summary_ops, feed_dict={ summary_vars[0]: ep_reward, summary_vars[1]: ep_ave_max_q / float(j) }) writer.add_summary(summary_str, i) writer.flush() print('| Reward: {:d} | Episode: {:d} | Qmax: {:.4f}'.format(int(ep_reward), \ i, (ep_ave_max_q / float(j)))) break def main(): with tf.Session() as sess: print("Starte BallTrackerThread") global delta thread1 = ballTracker.BallTrackerThread() thread1.start() print("Main running...") session = Pepper.init(ip, port) Pepper.roboInit(session) # Ensure action bound is symmetric # assert (env.action_space.high == -env.action_space.low) actor = ActorNetwork(sess, state_dim, action_dim, action_bound, float(args['actor_lr']), float(args['tau']), int(args['minibatch_size'])) critic = CriticNetwork(sess, state_dim, action_dim, float(args['critic_lr']), float(args['tau']), float(args['gamma']), actor.get_num_trainable_vars()) actor_noise = OrnsteinUhlenbeckActionNoise(mu=np.zeros(action_dim)) if args['mode'] == 'INIT': saver = tf.train.Saver() train(sess, args, actor, critic, actor_noise, False, saver) elif args['mode'] == 'TRAIN': saver = tf.train.Saver() saver.restore(sess, args['model'] + "/model") train(sess, args, actor, critic, actor_noise, True, saver) elif args['mode'] == 'TEST': saver = tf.train.Saver() saver.restore(sess, args['model'] + "/model") testDDPG(sess, args, actor, critic, actor_noise) else: print('No mode defined!') #train(sess, session, thread1, args, actor, critic, actor_noise) print('Terminated') if __name__ == '__main__': main()
[ "src.Pepper.Pepper.init", "src.BallTracker.ballTracker.BallTrackerThread", "tensorflow.train.Saver", "tensorflow.global_variables_initializer", "src.Pepper.Pepper.move", "src.Pepper.Pepper.readAngle", "tensorflow.Session", "numpy.zeros", "numpy.amax", "tensorflow.summary.FileWriter", "src.Pepper.Pepper.roboInit", "numpy.reshape", "tflearn.is_training", "ddpg.ddpg.build_summaries", "ddpg.ddpg.getReward" ]
[((586, 603), 'ddpg.ddpg.build_summaries', 'build_summaries', ([], {}), '()\n', (601, 603), False, 'from ddpg.ddpg import build_summaries, ActorNetwork, CriticNetwork, OrnsteinUhlenbeckActionNoise, ReplayBuffer, getReward\n'), ((823, 877), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["args['summary_dir']", 'sess.graph'], {}), "(args['summary_dir'], sess.graph)\n", (844, 877), True, 'import tensorflow as tf\n'), ((1128, 1153), 'tflearn.is_training', 'tflearn.is_training', (['(True)'], {}), '(True)\n', (1147, 1153), False, 'import tflearn\n'), ((4960, 4972), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (4970, 4972), True, 'import tensorflow as tf\n'), ((5064, 5095), 'src.BallTracker.ballTracker.BallTrackerThread', 'ballTracker.BallTrackerThread', ([], {}), '()\n', (5093, 5095), False, 'from src.BallTracker import ballTracker\n'), ((5172, 5193), 'src.Pepper.Pepper.init', 'Pepper.init', (['ip', 'port'], {}), '(ip, port)\n', (5183, 5193), False, 'from src.Pepper import Pepper\n'), ((5202, 5226), 'src.Pepper.Pepper.roboInit', 'Pepper.roboInit', (['session'], {}), '(session)\n', (5217, 5226), False, 'from src.Pepper import Pepper\n'), ((652, 685), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (683, 685), True, 'import tensorflow as tf\n'), ((1502, 1520), 'src.Pepper.Pepper.readAngle', 'readAngle', (['session'], {}), '(session)\n', (1511, 1520), False, 'from src.Pepper.Pepper import readAngle\n'), ((2449, 2477), 'src.Pepper.Pepper.move', 'Pepper.move', (['params', 'service'], {}), '(params, service)\n', (2460, 2477), False, 'from src.Pepper import Pepper\n'), ((2570, 2588), 'src.Pepper.Pepper.readAngle', 'readAngle', (['session'], {}), '(session)\n', (2579, 2588), False, 'from src.Pepper.Pepper import readAngle\n'), ((5929, 5945), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (5943, 5945), True, 'import tensorflow as tf\n'), ((2667, 2684), 'ddpg.ddpg.getReward', 'getReward', (['delta2'], {}), '(delta2)\n', (2676, 2684), False, 'from ddpg.ddpg import build_summaries, ActorNetwork, CriticNetwork, OrnsteinUhlenbeckActionNoise, ReplayBuffer, getReward\n'), ((2819, 2848), 'numpy.reshape', 'np.reshape', (['s', '(actor.s_dim,)'], {}), '(s, (actor.s_dim,))\n', (2829, 2848), True, 'import numpy as np\n'), ((2850, 2879), 'numpy.reshape', 'np.reshape', (['a', '(actor.a_dim,)'], {}), '(a, (actor.a_dim,))\n', (2860, 2879), True, 'import numpy as np\n'), ((2924, 2954), 'numpy.reshape', 'np.reshape', (['s2', '(actor.s_dim,)'], {}), '(s2, (actor.s_dim,))\n', (2934, 2954), True, 'import numpy as np\n'), ((3971, 3997), 'numpy.amax', 'np.amax', (['predicted_q_value'], {}), '(predicted_q_value)\n', (3978, 3997), True, 'import numpy as np\n'), ((5851, 5871), 'numpy.zeros', 'np.zeros', (['action_dim'], {}), '(action_dim)\n', (5859, 5871), True, 'import numpy as np\n'), ((6076, 6092), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (6090, 6092), True, 'import tensorflow as tf\n'), ((1612, 1633), 'numpy.reshape', 'np.reshape', (['s', '(1, 2)'], {}), '(s, (1, 2))\n', (1622, 1633), True, 'import numpy as np\n'), ((1752, 1783), 'numpy.reshape', 'np.reshape', (['s', '(1, actor.s_dim)'], {}), '(s, (1, actor.s_dim))\n', (1762, 1783), True, 'import numpy as np\n'), ((6279, 6295), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (6293, 6295), True, 'import tensorflow as tf\n')]
# Author: <NAME> # Created: 2021-019-01 # Copyright (C) 2018, <NAME> # License: MIT import moderngl import numpy as np from PIL import Image from generativepy.color import Color def make_3dimage(outfile, draw, width, height, background=Color(0), channels=3): ''' Create a PNG file using moderngl :param outfile: Name of output file :param draw: the draw function :param width: width in pixels, int :param height: height in pixels, int :param background: background colour :param channels: 3 for rgb, 4 for rgba :return: ''' if outfile.lower().endswith('.png'): outfile = outfile[:-4] frame = make_3dimage_frame(draw, width, height, background, channels) image = Image.fromarray(frame) image.save(outfile + '.png') def make_3dimage_frame(draw, width, height, background=Color(0), channels=3): ''' Create a numpy frame file using moderngl :param draw: the draw function :param width: width in pixels, int :param height: height in pixels, int :param background: background colour :param channels: 3 for rgb, 4 for rgba :return: ''' ctx = moderngl.create_standalone_context() fbo = ctx.simple_framebuffer((width, height)) fbo.use() fbo.clear(*background) draw(ctx, width, height, 0, 1) data = fbo.read() frame = np.frombuffer(data, dtype=np.uint8) frame = frame.reshape((height, width, 3)) frame = frame[::-1] ctx.release() return frame def make_3dimage_frames(draw, width, height, count, background=Color(0), channels=3): ''' Create a sequence of numpy frame file using moderngl :param draw: the draw function :param width: width in pixels, int :param height: height in pixels, int :param count: number of frames to create :param background: background colour :param channels: 3 for rgb, 4 for rgba :return: ''' for i in range(count): ctx = moderngl.create_standalone_context() fbo = ctx.simple_framebuffer((width, height)) fbo.use() fbo.clear(*background) draw(ctx, width, height, i, count) data = fbo.read() frame = np.frombuffer(data, dtype=np.uint8) frame = frame.reshape((height, width, 3)) frame = frame[::-1] ctx.release() yield frame def make_3dimages(outfile, draw, width, height, background=Color(0), channels=3): ''' Create a sequence of PNG files using moderngl :param outfile: Name of output file :param draw: the draw function :param width: width in pixels, int :param height: height in pixels, int :param count: number of frames to create :param background: background colour :param channels: 3 for rgb, 4 for rgba :return: ''' if outfile.lower().endswith('.png'): outfile = outfile[:-4] frames = make_3dimage_frames(draw, width, height, background, channels) for i, frame in enumerate(frames): image = Image.fromarray(frame) image.save(outfile + str(i).zfill(8) + '.png')
[ "PIL.Image.fromarray", "numpy.frombuffer", "generativepy.color.Color", "moderngl.create_standalone_context" ]
[((240, 248), 'generativepy.color.Color', 'Color', (['(0)'], {}), '(0)\n', (245, 248), False, 'from generativepy.color import Color\n'), ((726, 748), 'PIL.Image.fromarray', 'Image.fromarray', (['frame'], {}), '(frame)\n', (741, 748), False, 'from PIL import Image\n'), ((838, 846), 'generativepy.color.Color', 'Color', (['(0)'], {}), '(0)\n', (843, 846), False, 'from generativepy.color import Color\n'), ((1144, 1180), 'moderngl.create_standalone_context', 'moderngl.create_standalone_context', ([], {}), '()\n', (1178, 1180), False, 'import moderngl\n'), ((1343, 1378), 'numpy.frombuffer', 'np.frombuffer', (['data'], {'dtype': 'np.uint8'}), '(data, dtype=np.uint8)\n', (1356, 1378), True, 'import numpy as np\n'), ((1549, 1557), 'generativepy.color.Color', 'Color', (['(0)'], {}), '(0)\n', (1554, 1557), False, 'from generativepy.color import Color\n'), ((2387, 2395), 'generativepy.color.Color', 'Color', (['(0)'], {}), '(0)\n', (2392, 2395), False, 'from generativepy.color import Color\n'), ((1943, 1979), 'moderngl.create_standalone_context', 'moderngl.create_standalone_context', ([], {}), '()\n', (1977, 1979), False, 'import moderngl\n'), ((2170, 2205), 'numpy.frombuffer', 'np.frombuffer', (['data'], {'dtype': 'np.uint8'}), '(data, dtype=np.uint8)\n', (2183, 2205), True, 'import numpy as np\n'), ((2976, 2998), 'PIL.Image.fromarray', 'Image.fromarray', (['frame'], {}), '(frame)\n', (2991, 2998), False, 'from PIL import Image\n')]
#!/usr/bin/env python import argparse import numpy as np import mdtraj as md from LLC_Membranes.llclib import physical, topology, transform, file_rw import sys import tqdm from scipy.sparse import lil_matrix import pickle import matplotlib.pyplot as plt def initialize(): parser = argparse.ArgumentParser(description='Calculate coordination number') # Trajectory Control parser.add_argument('-t', '--traj', default='traj_whole.xtc', type=str, help='Trajectory file. Make sure ' 'molecules are whole') parser.add_argument('-g', '--gro', default='wiggle.gro', type=str, help='Name of coordinate file') parser.add_argument('-b', '--begin', default=0, type=int, help='Start frame') parser.add_argument('-e', '--end', default=-1, type=int, help='Last frame') parser.add_argument('-skip', default=1, type=int, help='Include every skip frames in calculation') # atom selection parser.add_argument('-r', '--residue', default=None, help='Residue to calculate coordination number with respect ' 'to') parser.add_argument('-rc', '--coordinated_residue', default=None, help='Name of residue coordinated to residue_') parser.add_argument('-ac', '--coordinated_atoms', default=None, nargs='+', help='Name of residue coordinate to ' 'residue') parser.add_argument('-a', '--atoms', default=None, nargs='+', help='Name of atoms to calculate correlation ' 'function with respect to. The center of mass will be used') parser.add_argument('-ta', '--atype', default=None, help='Element name of atoms of which you want coordination ' 'number') parser.add_argument('-tc', '--coordinated_type', default=None, help='Element name of coordinated atoms') # coordination calculation parameters parser.add_argument('-cut', default=0.25, type=float, help='Maximum distance between pairs where they are considered' 'coordinated (nm)') # saving options parser.add_argument('-s', '--savename', default='coordination.pl', help='Name under which to save distance ' 'array') parser.add_argument('-l', '--load', action="store_true", help='Load distance array saved with name ' 'passed to save_distances option.') parser.add_argument('-bins', nargs='+', default=100, type=int, help='Integer or array of bin values. If more than' 'one value is used, order the inputs according to the order given in args.axis') parser.add_argument('-nocom', action='store_true', help='Calculate coordination based on pairwise distance between' 'all atoms, even those that are a part of the same residue.') return parser class System(object): def __init__(self, traj, gro, residue=None, coordinated_residue=None, atoms=None, coordinated_atoms=None, type=None, ctype=None, begin=0, end=-1, skip=1, com=True, t=None): """ Narrow system down to groups of interest :param traj: Name of GROMACS trajectory (.xtc or .trr), can be None if t is specified :param gro: Name of GROMACS coordinate file (.gro) :param residue: Name of residue to include in calculation :param coordinated_residue: Name of residue whose coordination we are interested in :param atoms: Specify names of atoms to include. All else will be excluded :param coordinated_atoms: Specify names of coordinated atoms to include. All else will be excluded :param type: Atom types to include :param ctype: Coordinated atom types to include :param begin: first frame to analyze :param end: last frame to analyze :param skip: number of frames to skip between analysis steps :param com: Calculate coordination based on the center of mass position of the selected atom group :param t: mdtraj trajectory object. If this is passed, traj and gro will not be loaded :type traj: str or NoneType :type gro: str :type residue: str :type coordinated_residue: str :type atoms: list of str :type coordinated_atoms: list of str :type type: list of str :type ctype: list of str :type begin: int :type end: int :type skip: int :type com: bool :type t: object """ if t is None: print("Loading trajectory...", end='', flush=True) self.t = md.load(traj, top=gro)[begin:end:skip] print("Done!") else: self.t = t names = topology.fix_names(gro) # rename atoms because mdtraj screws it up in some cases. for i, a in enumerate(self.t.topology.atoms): a.name = names[i] self.time = self.t.time / 1000 # time in nanoseconds # get locations of atoms of interest and coordinating atoms # calculate centers of mass for certain groups. Decision-making in this regard is made in self.narrow_atoms() if atoms is not None: if atoms[0] == 'all': atoms = self.all_atoms(res=residue) if coordinated_atoms is not None: if coordinated_atoms[0] == 'all': coordinated_atoms = self.all_atoms(res=coordinated_residue) self.com, self.com_map = self.narrow_atoms(atoms, residue, type, com=com) self.com_coordinated, self.com_coordinated_map = self.narrow_atoms(coordinated_atoms, coordinated_residue, ctype, coordination=True, com=com) # relate indices to self.names = [a.name for a in self.t.topology.atoms] self.residues = [a.residue.name for a in self.t.topology.atoms] self.distances = None self.ncoord = None def all_atoms(self, res=None): if res is not None: r = topology.Residue(res) return [x for x in r.names.values()] def narrow_atoms(self, atoms, residue, type, coordination=False, com=True): if atoms is not None or type is not None: if residue is not None: if type is not None: # get names of all atoms with the appropriate type atoms = set([a.name for a in self.t.topology.atoms if a.element.symbol == type]) # get indices of all atoms in the system that make up the atoms list atom_indices = [a.index for a in self.t.topology.atoms if a.residue.name == residue and a.name in atoms] if type is not None: # if a residue is specified with an atom type, assume you want the locations of each atom of that # type within each residue. return self.t.xyz[:, atom_indices, :], topology.map_atoms(atom_indices) else: # If a residue is specified with atoms, assume that the user wants to isolate calculations to the # center of mass of a group of atoms within a particular residue if com: residue = topology.Residue(residue) atom_mass = [residue.mass[v] for v in residue.mass.keys() if v in atoms] # mass of atoms of interest if len(atom_mass) > 1: return physical.center_of_mass(self.t.xyz[:, atom_indices, :], atom_mass), \ topology.map_atoms(atom_indices, len(atom_mass)) else: self.t.xyz[:, atom_indices, :], topology.map_atoms(atom_indices) else: return self.t.xyz[:, atom_indices, :], topology.map_atoms(atom_indices) else: if type is not None: # get indices of any atoms whose element = type atom_indices = [a.index for a in self.t.topology.atoms if a.element.symbol == type] else: # get indices of any atoms in the "atoms" list atom_indices = [a.index for a in self.t.topology.atoms if a.name in atoms] return self.t.xyz[:, atom_indices, :], topology.map_atoms(atom_indices) else: if residue is not None: # calculate the center of mass of the residue based on all atoms # First get indices of all atoms in the residue atom_indices = [a.index for a in self.t.topology.atoms if a.residue.name == residue] res = topology.Residue(residue) atom_mass = [v for v in res.mass.values()] # mass of each atom in an individual residue return physical.center_of_mass(self.t.xyz[:, atom_indices, :], atom_mass), \ topology.map_atoms(atom_indices, len(atom_mass)) else: # if you forget a flag, exit the program with a descriptive error if coordination: sys.exit('You must supply at least a residue (-cr / --coordinated_residue) or an atom ' '(-ca / --coordinated_atoms)') else: sys.exit('You must supply at least a residue (-r / --residue) or an atom name (-a / --atoms)') def distance_search(self, cut=0.31): """ Find all minimum image pairwise distances :param cut: maximum distance :type cut: float :return: """ # initialize array to hold all pairwise distances self.distances = np.zeros([self.t.n_frames], dtype=object) print('Calculating minimum image distances!') for t in tqdm.tqdm(range(self.distances.shape[0])): self.distances[t] = lil_matrix((self.com.shape[1], self.com_coordinated.shape[1])) # sparse matrices are 2D for i in range(self.com.shape[1]): xyz_distances = self.com_coordinated[t, ...] - self.com[t, i, :] min_distances = physical.minimum_image_distance(xyz_distances, self.t.unitcell_vectors[t, ...]) euclidean_dist = np.linalg.norm(min_distances, axis=1) under_cut = np.where(euclidean_dist < cut)[0] self.distances[t][i, under_cut] = euclidean_dist[under_cut] def n_coordinated(self, res=None, atom_groups=None, plot=True): """ Plot number of atoms coordinated to residue vs. time :param res: a list of residue names. This function will plot coordinated atoms belonging to specific residues separately. :param atom_groups: a list of lists of atom names. Can be used to distinguish between coordination with different groups of atoms within the same residue. If atom names are the same between residues, also pass the appropriate residue name for each group of atoms to res :type res: list :type atom_groups: list :return: """ if atom_groups is not None: self.ncoord = np.zeros([len(atom_groups), self.t.n_frames, self.com.shape[1]]) if res is not None: print('Organizing atoms based on atom type and residue name...') for t in tqdm.tqdm(range(self.t.n_frames)): for i in range(self.ncoord.shape[2]): atom_types = [self.names[self.com_coordinated_map[j][0]] for j in np.nonzero(self.distances[t][i, :])[1]] # residue name residues = [self.residues[self.com_coordinated_map[j][0]] for j in np.nonzero(self.distances[t][i, :])[1]] grp = [] for ndx, k in enumerate(atom_types): atoms = np.array([a.count(k) for a in atom_groups]) resi = np.array([a.count(residues[ndx]) for a in res]) try: grp.append(np.where(atoms + resi == 2)[0][0]) except IndexError: pass for g in grp: self.ncoord[g, t, i] += 1 else: print('Organizing atoms based on atom type...') for t in tqdm.tqdm(range(self.t.n_frames)): for i in range(self.ncoord.shape[2]): atom_types = [self.names[self.com_coordinated_map[j][0]] for j in np.nonzero(self.distances[t][i, :])[1]] # residue name grp = [] for ndx, k in enumerate(atom_types): atoms = [a.count(k) for a in atom_groups] try: grp.append(atoms.index(1)) except IndexError: pass for g in grp: self.ncoord[g, t, i] += 1 # for i in range(ncoord.shape[0]): # # plt.plot(self.time, ncoord[i, ...].mean(axis=1), label='%s of %s' % (atom_groups[i], res[i]), # linewidth=2) colors = ['blue', 'green', 'orange'] for j in np.random.randint(self.ncoord.shape[2], size=1): for i in range(self.ncoord.shape[0]): plt.plot(self.time, self.ncoord[i, :, j], label='%s of %s' % (atom_groups[i], res[i]), linewidth=2, color=colors[i]) #plt.legend() else: self.ncoord = np.zeros([self.t.n_frames, self.com.shape[1]]) for i in tqdm.tqdm(range(self.ncoord.shape[1])): self.ncoord[:, i] = [len(np.nonzero(self.distances[t][i, :])[1]) for t in range(self.t.n_frames)] # print('Average coordinated molecules per frame: %.2f +/- %.2f' % (self.ncoord.mean(), self.ncoord.std())) if plot: plt.plot(self.time, self.ncoord.sum(axis=1)) if plot: plt.xlabel('Time (ns)', fontsize=14) plt.ylabel('Number of coordinated molecules', fontsize=14) plt.gcf().get_axes()[0].tick_params(labelsize=14) plt.tight_layout() plt.show() if __name__ == "__main__": args = initialize().parse_args() if not args.load: if args.nocom: com = False else: com = True system = System(args.traj, args.gro, atoms=args.atoms, coordinated_atoms=args.coordinated_atoms, residue=args.residue, coordinated_residue=args.coordinated_residue, type=args.atype, ctype=args.coordinated_type, begin=args.begin, end=args.end, skip=args.skip, com=com) system.distance_search(cut=args.cut) # calculate pairwise distance between all points in self.com and self.com_coordinated system.n_coordinated(plot=True) file_rw.save_object(system, args.savename) else: print('Loading pickled object!...', end='', flush=True) system = pickle.load(open(args.savename, "rb")) print('Done!') plt.plot(system.time, system.ncoord.sum(axis=1)) plt.show() exit() print((system.ncoord.flatten() > 0).sum() / (system.ncoord.shape[0] * system.ncoord.shape[1])) # system.n_coordinated(plot=True) #system.plot(res=['HII', 'HII', 'HOH'], atom_groups=[['O3', 'O4'], ['O', 'O1', 'O2'], ['O']]) # system.n_coordinated(plot=True) # # for i in np.nonzero(system.distances[-1][0, :])[1]: # print('%s -- %s' % (system.com_map[0], system.com_coordinated_map[i]))
[ "argparse.ArgumentParser", "LLC_Membranes.llclib.file_rw.save_object", "mdtraj.load", "scipy.sparse.lil_matrix", "numpy.random.randint", "numpy.linalg.norm", "matplotlib.pyplot.tight_layout", "LLC_Membranes.llclib.topology.map_atoms", "LLC_Membranes.llclib.topology.Residue", "matplotlib.pyplot.show", "LLC_Membranes.llclib.physical.center_of_mass", "LLC_Membranes.llclib.topology.fix_names", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.gcf", "sys.exit", "matplotlib.pyplot.plot", "numpy.zeros", "numpy.nonzero", "numpy.where", "LLC_Membranes.llclib.physical.minimum_image_distance", "matplotlib.pyplot.xlabel" ]
[((289, 357), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Calculate coordination number"""'}), "(description='Calculate coordination number')\n", (312, 357), False, 'import argparse\n'), ((4920, 4943), 'LLC_Membranes.llclib.topology.fix_names', 'topology.fix_names', (['gro'], {}), '(gro)\n', (4938, 4943), False, 'from LLC_Membranes.llclib import physical, topology, transform, file_rw\n'), ((10011, 10052), 'numpy.zeros', 'np.zeros', (['[self.t.n_frames]'], {'dtype': 'object'}), '([self.t.n_frames], dtype=object)\n', (10019, 10052), True, 'import numpy as np\n'), ((15460, 15502), 'LLC_Membranes.llclib.file_rw.save_object', 'file_rw.save_object', (['system', 'args.savename'], {}), '(system, args.savename)\n', (15479, 15502), False, 'from LLC_Membranes.llclib import physical, topology, transform, file_rw\n'), ((15723, 15733), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (15731, 15733), True, 'import matplotlib.pyplot as plt\n'), ((6229, 6250), 'LLC_Membranes.llclib.topology.Residue', 'topology.Residue', (['res'], {}), '(res)\n', (6245, 6250), False, 'from LLC_Membranes.llclib import physical, topology, transform, file_rw\n'), ((10200, 10262), 'scipy.sparse.lil_matrix', 'lil_matrix', (['(self.com.shape[1], self.com_coordinated.shape[1])'], {}), '((self.com.shape[1], self.com_coordinated.shape[1]))\n', (10210, 10262), False, 'from scipy.sparse import lil_matrix\n'), ((13756, 13803), 'numpy.random.randint', 'np.random.randint', (['self.ncoord.shape[2]'], {'size': '(1)'}), '(self.ncoord.shape[2], size=1)\n', (13773, 13803), True, 'import numpy as np\n'), ((14094, 14140), 'numpy.zeros', 'np.zeros', (['[self.t.n_frames, self.com.shape[1]]'], {}), '([self.t.n_frames, self.com.shape[1]])\n', (14102, 14140), True, 'import numpy as np\n'), ((14552, 14588), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (ns)"""'], {'fontsize': '(14)'}), "('Time (ns)', fontsize=14)\n", (14562, 14588), True, 'import matplotlib.pyplot as plt\n'), ((14601, 14659), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of coordinated molecules"""'], {'fontsize': '(14)'}), "('Number of coordinated molecules', fontsize=14)\n", (14611, 14659), True, 'import matplotlib.pyplot as plt\n'), ((14734, 14752), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (14750, 14752), True, 'import matplotlib.pyplot as plt\n'), ((14766, 14776), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (14774, 14776), True, 'import matplotlib.pyplot as plt\n'), ((4800, 4822), 'mdtraj.load', 'md.load', (['traj'], {'top': 'gro'}), '(traj, top=gro)\n', (4807, 4822), True, 'import mdtraj as md\n'), ((8648, 8680), 'LLC_Membranes.llclib.topology.map_atoms', 'topology.map_atoms', (['atom_indices'], {}), '(atom_indices)\n', (8666, 8680), False, 'from LLC_Membranes.llclib import physical, topology, transform, file_rw\n'), ((9001, 9026), 'LLC_Membranes.llclib.topology.Residue', 'topology.Residue', (['residue'], {}), '(residue)\n', (9017, 9026), False, 'from LLC_Membranes.llclib import physical, topology, transform, file_rw\n'), ((10449, 10528), 'LLC_Membranes.llclib.physical.minimum_image_distance', 'physical.minimum_image_distance', (['xyz_distances', 'self.t.unitcell_vectors[t, ...]'], {}), '(xyz_distances, self.t.unitcell_vectors[t, ...])\n', (10480, 10528), False, 'from LLC_Membranes.llclib import physical, topology, transform, file_rw\n'), ((10562, 10599), 'numpy.linalg.norm', 'np.linalg.norm', (['min_distances'], {'axis': '(1)'}), '(min_distances, axis=1)\n', (10576, 10599), True, 'import numpy as np\n'), ((9156, 9222), 'LLC_Membranes.llclib.physical.center_of_mass', 'physical.center_of_mass', (['self.t.xyz[:, atom_indices, :]', 'atom_mass'], {}), '(self.t.xyz[:, atom_indices, :], atom_mass)\n', (9179, 9222), False, 'from LLC_Membranes.llclib import physical, topology, transform, file_rw\n'), ((9452, 9577), 'sys.exit', 'sys.exit', (['"""You must supply at least a residue (-cr / --coordinated_residue) or an atom (-ca / --coordinated_atoms)"""'], {}), "(\n 'You must supply at least a residue (-cr / --coordinated_residue) or an atom (-ca / --coordinated_atoms)'\n )\n", (9460, 9577), False, 'import sys\n'), ((9642, 9746), 'sys.exit', 'sys.exit', (['"""You must supply at least a residue (-r / --residue) or an atom name (-a / --atoms)"""'], {}), "(\n 'You must supply at least a residue (-r / --residue) or an atom name (-a / --atoms)'\n )\n", (9650, 9746), False, 'import sys\n'), ((10628, 10658), 'numpy.where', 'np.where', (['(euclidean_dist < cut)'], {}), '(euclidean_dist < cut)\n', (10636, 10658), True, 'import numpy as np\n'), ((13880, 14001), 'matplotlib.pyplot.plot', 'plt.plot', (['self.time', 'self.ncoord[i, :, j]'], {'label': "('%s of %s' % (atom_groups[i], res[i]))", 'linewidth': '(2)', 'color': 'colors[i]'}), "(self.time, self.ncoord[i, :, j], label='%s of %s' % (atom_groups[i\n ], res[i]), linewidth=2, color=colors[i])\n", (13888, 14001), True, 'import matplotlib.pyplot as plt\n'), ((7183, 7215), 'LLC_Membranes.llclib.topology.map_atoms', 'topology.map_atoms', (['atom_indices'], {}), '(atom_indices)\n', (7201, 7215), False, 'from LLC_Membranes.llclib import physical, topology, transform, file_rw\n'), ((7506, 7531), 'LLC_Membranes.llclib.topology.Residue', 'topology.Residue', (['residue'], {}), '(residue)\n', (7522, 7531), False, 'from LLC_Membranes.llclib import physical, topology, transform, file_rw\n'), ((8149, 8181), 'LLC_Membranes.llclib.topology.map_atoms', 'topology.map_atoms', (['atom_indices'], {}), '(atom_indices)\n', (8167, 8181), False, 'from LLC_Membranes.llclib import physical, topology, transform, file_rw\n'), ((14244, 14279), 'numpy.nonzero', 'np.nonzero', (['self.distances[t][i, :]'], {}), '(self.distances[t][i, :])\n', (14254, 14279), True, 'import numpy as np\n'), ((7779, 7845), 'LLC_Membranes.llclib.physical.center_of_mass', 'physical.center_of_mass', (['self.t.xyz[:, atom_indices, :]', 'atom_mass'], {}), '(self.t.xyz[:, atom_indices, :], atom_mass)\n', (7802, 7845), False, 'from LLC_Membranes.llclib import physical, topology, transform, file_rw\n'), ((8025, 8057), 'LLC_Membranes.llclib.topology.map_atoms', 'topology.map_atoms', (['atom_indices'], {}), '(atom_indices)\n', (8043, 8057), False, 'from LLC_Membranes.llclib import physical, topology, transform, file_rw\n'), ((14672, 14681), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (14679, 14681), True, 'import matplotlib.pyplot as plt\n'), ((11882, 11917), 'numpy.nonzero', 'np.nonzero', (['self.distances[t][i, :]'], {}), '(self.distances[t][i, :])\n', (11892, 11917), True, 'import numpy as np\n'), ((12065, 12100), 'numpy.nonzero', 'np.nonzero', (['self.distances[t][i, :]'], {}), '(self.distances[t][i, :])\n', (12075, 12100), True, 'import numpy as np\n'), ((12981, 13016), 'numpy.nonzero', 'np.nonzero', (['self.distances[t][i, :]'], {}), '(self.distances[t][i, :])\n', (12991, 13016), True, 'import numpy as np\n'), ((12439, 12466), 'numpy.where', 'np.where', (['(atoms + resi == 2)'], {}), '(atoms + resi == 2)\n', (12447, 12466), True, 'import numpy as np\n')]
""" Utilities for labelling 3D objects from a mask """ import os import xarray as xr import numpy as np import cloud_identification OUT_FILENAME_FORMAT = "{base_name}.objects.{objects_name}.nc" def make_objects_name(mask_name, splitting_var): return "{mask_name}.split_on.{splitting_var}".format(**locals()) def _label_objects_wrapper(mask, splitting_scalar, remove_at_edge=False): if remove_at_edge: raise NotImplementedError def _remove_at_edge(object_labels): mask_edge = np.zeros_like(mask) mask_edge[ :, :, 1 ] = True # has to be k==1 because object identification codes treats actual edges as ghost cells mask_edge[:, :, -2] = True cloud_identification.remove_intersecting(object_labels, mask_edge) if mask.shape != splitting_scalar.shape: raise Exception( "Incompatible shapes of splitting scalar ({}) and " "mask ({})".format(splitting_scalar.shape, mask.shape) ) assert mask.dims == splitting_scalar.dims for d in mask.dims: assert np.all(mask[d].values == splitting_scalar[d].values) object_labels = cloud_identification.number_objects( splitting_scalar.values, mask=mask.values ) # if remove_at_edge: # _remove_at_edge(object_labels) return object_labels def label_objects(mask, splitting_scalar): if splitting_scalar is not None: mask = mask.sel(zt=splitting_scalar.zt).squeeze() object_labels = _label_objects_wrapper(mask=mask, splitting_scalar=splitting_scalar) da = xr.DataArray( data=object_labels, coords=mask.coords, dims=mask.dims, name="object_labels" ) da.name = make_objects_name( mask_name=mask.name, splitting_var=splitting_scalar.name ) da.attrs["mask_name"] = mask.name da.attrs["splitting_scalar"] = splitting_scalar.name return da if __name__ == "__main__": import argparse argparser = argparse.ArgumentParser(__doc__) argparser.add_argument("base_name", type=str) argparser.add_argument("mask_name", type=str) argparser.add_argument("splitting_scalar") argparser.add_argument("--z_max", type=float, default=np.inf) argparser.add_argument("--remove-edge-objects", default=False, action="store_true") args = argparser.parse_args() input_name = args.base_name fn_mask = "{}.mask_3d.{}.nc".format(input_name, args.mask_name) fn_mask_2d = "{}.mask.{}.nc".format(input_name, args.mask_name) if os.path.exists(fn_mask): pass elif os.path.exists(fn_mask_2d): fn_mask = fn_mask_2d print("Using 2D xy mask") else: raise Exception( "Couldn't find mask file `{}` or `{}`" "".format(fn_mask, fn_mask_2d) ) mask = xr.open_dataarray(fn_mask, decode_times=False) if args.splitting_scalar is not None: fn_ss = "{}.{}.nc".format(input_name, args.splitting_scalar) if not os.path.exists(fn_ss): raise Exception("Couldn't find splitting scalar file `{}`" "".format(fn_ss)) splitting_scalar = xr.open_dataarray(fn_ss, decode_times=False).squeeze() else: splitting_scalar = None if args.z_max is not np.inf: mask = mask.sel(zt=slice(0.0, args.z_max)).squeeze() if splitting_scalar is not None: splitting_scalar = splitting_scalar.sel(zt=slice(0.0, args.z_max)).squeeze() ds = label_objects( mask=mask, splitting_scalar=splitting_scalar, remove_at_edge=args.remove_edge_objects, ) ds.attrs["input_name"] = input_name ds.attrs["mask_name"] = args.mask_name ds.attrs["z_max"] = args.z_max ds.attrs["splitting_scalar"] = args.splitting_scalar out_filename = OUT_FILENAME_FORMAT.format( base_name=input_name.replace("/", "__"), objects_name=make_objects_name( mask_name=args.mask_name, splitting_var=args.splitting_scalar ), ).replace("__masks", "") ds.to_netcdf(out_filename) print("Wrote output to `{}`".format(out_filename))
[ "numpy.zeros_like", "argparse.ArgumentParser", "os.path.exists", "cloud_identification.number_objects", "xarray.DataArray", "cloud_identification.remove_intersecting", "xarray.open_dataarray", "numpy.all" ]
[((1185, 1263), 'cloud_identification.number_objects', 'cloud_identification.number_objects', (['splitting_scalar.values'], {'mask': 'mask.values'}), '(splitting_scalar.values, mask=mask.values)\n', (1220, 1263), False, 'import cloud_identification\n'), ((1607, 1702), 'xarray.DataArray', 'xr.DataArray', ([], {'data': 'object_labels', 'coords': 'mask.coords', 'dims': 'mask.dims', 'name': '"""object_labels"""'}), "(data=object_labels, coords=mask.coords, dims=mask.dims, name=\n 'object_labels')\n", (1619, 1702), True, 'import xarray as xr\n'), ((1993, 2025), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['__doc__'], {}), '(__doc__)\n', (2016, 2025), False, 'import argparse\n'), ((2540, 2563), 'os.path.exists', 'os.path.exists', (['fn_mask'], {}), '(fn_mask)\n', (2554, 2563), False, 'import os\n'), ((2816, 2862), 'xarray.open_dataarray', 'xr.open_dataarray', (['fn_mask'], {'decode_times': '(False)'}), '(fn_mask, decode_times=False)\n', (2833, 2862), True, 'import xarray as xr\n'), ((1111, 1163), 'numpy.all', 'np.all', (['(mask[d].values == splitting_scalar[d].values)'], {}), '(mask[d].values == splitting_scalar[d].values)\n', (1117, 1163), True, 'import numpy as np\n'), ((2587, 2613), 'os.path.exists', 'os.path.exists', (['fn_mask_2d'], {}), '(fn_mask_2d)\n', (2601, 2613), False, 'import os\n'), ((519, 538), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (532, 538), True, 'import numpy as np\n'), ((747, 813), 'cloud_identification.remove_intersecting', 'cloud_identification.remove_intersecting', (['object_labels', 'mask_edge'], {}), '(object_labels, mask_edge)\n', (787, 813), False, 'import cloud_identification\n'), ((2990, 3011), 'os.path.exists', 'os.path.exists', (['fn_ss'], {}), '(fn_ss)\n', (3004, 3011), False, 'import os\n'), ((3129, 3173), 'xarray.open_dataarray', 'xr.open_dataarray', (['fn_ss'], {'decode_times': '(False)'}), '(fn_ss, decode_times=False)\n', (3146, 3173), True, 'import xarray as xr\n')]
import numpy as np import pytest import unittest from desc.equilibrium import Equilibrium, EquilibriaFamily from desc.profiles import PowerSeriesProfile, SplineProfile from desc.geometry import ( FourierRZCurve, FourierRZToroidalSurface, ZernikeRZToroidalSection, ) class TestConstructor(unittest.TestCase): def test_defaults(self): eq = Equilibrium() self.assertEqual(eq.spectral_indexing, "ansi") self.assertEqual(eq.NFP, 1) self.assertEqual(eq.L, 1) self.assertEqual(eq.M, 1) self.assertEqual(eq.N, 0) self.assertEqual(eq.sym, False) self.assertTrue(eq.surface.eq(FourierRZToroidalSurface())) self.assertIsInstance(eq.pressure, PowerSeriesProfile) np.testing.assert_allclose(eq.p_l, [0]) self.assertIsInstance(eq.iota, PowerSeriesProfile) np.testing.assert_allclose(eq.i_l, [0]) def test_supplied_objects(self): pressure = SplineProfile([1, 2, 3]) iota = SplineProfile([2, 3, 4]) surface = ZernikeRZToroidalSection(spectral_indexing="ansi") axis = FourierRZCurve([-1, 10, 1], [1, 0, -1], NFP=2) eq = Equilibrium(pressure=pressure, iota=iota, surface=surface, axis=axis) self.assertTrue(eq.pressure.eq(pressure)) self.assertTrue(eq.iota.eq(iota)) self.assertTrue(eq.surface.eq(surface)) self.assertTrue(eq.axis.eq(axis)) self.assertEqual(eq.spectral_indexing, "ansi") self.assertEqual(eq.NFP, 2) surface2 = FourierRZToroidalSurface(NFP=3) eq2 = Equilibrium(surface=surface2) self.assertEqual(eq2.NFP, 3) self.assertEqual(eq2.axis.NFP, 3) eq3 = Equilibrium(surface=surface, axis=None) np.testing.assert_allclose(eq3.axis.R_n, [10]) def test_dict(self): inputs = { "L": 4, "M": 2, "N": 2, "NFP": 3, "sym": False, "spectral_indexing": "ansi", "surface": np.array( [[0, 0, 0, 10, 0], [0, 1, 0, 1, 1], [0, -1, 1, 0.1, 0.1]] ), "axis": np.array([[0, 10, 0]]), "pressure": np.array([[0, 10], [2, 5]]), "iota": np.array([[0, 1], [2, 3]]), } eq = Equilibrium(**inputs) self.assertEqual(eq.L, 4) self.assertEqual(eq.M, 2) self.assertEqual(eq.N, 2) self.assertEqual(eq.NFP, 3) self.assertEqual(eq.spectral_indexing, "ansi") np.testing.assert_allclose(eq.p_l, [10, 0, 5]) np.testing.assert_allclose(eq.i_l, [1, 0, 3]) self.assertIsInstance(eq.surface, FourierRZToroidalSurface) np.testing.assert_allclose(eq.Rb_lmn, [0, 0, 0, 0, 10, 1, 0.1, 0, 0]) np.testing.assert_allclose(eq.Zb_lmn, [0, 0, 0, 0, 0, 1, 0.1, 0, 0]) inputs["surface"] = np.array([[0, 0, 0, 10, 0], [1, 1, 0, 1, 1]]) eq = Equilibrium(**inputs) self.assertEqual(eq.bdry_mode, "poincare") np.testing.assert_allclose(eq.Rb_lmn, [10, 0, 1]) def test_asserts(self): with pytest.raises(AssertionError): eq = Equilibrium(L=3.4) with pytest.raises(AssertionError): eq = Equilibrium(M=3.4) with pytest.raises(AssertionError): eq = Equilibrium(N=3.4) with pytest.raises(AssertionError): eq = Equilibrium(NFP=3.4j) with pytest.raises(ValueError): eq = Equilibrium(surface=np.array([[1, 1, 1, 10, 2]])) with pytest.raises(TypeError): eq = Equilibrium(surface=FourierRZCurve()) with pytest.raises(TypeError): eq = Equilibrium(axis=2) with pytest.raises(ValueError): eq = Equilibrium(surface=FourierRZToroidalSurface(NFP=1), NFP=2) with pytest.raises(TypeError): eq = Equilibrium(pressure="abc") with pytest.raises(TypeError): eq = Equilibrium(iota="def") def test_supplied_coeffs(self): R_lmn = np.random.random(3) Z_lmn = np.random.random(3) L_lmn = np.random.random(3) eq = Equilibrium(R_lmn=R_lmn, Z_lmn=Z_lmn, L_lmn=L_lmn) np.testing.assert_allclose(R_lmn, eq.R_lmn) np.testing.assert_allclose(Z_lmn, eq.Z_lmn) np.testing.assert_allclose(L_lmn, eq.L_lmn) with pytest.raises(ValueError): eq = Equilibrium(L=4, R_lmn=R_lmn) class TestInitialGuess(unittest.TestCase): def test_errors(self): eq = Equilibrium() with pytest.raises(ValueError): eq.set_initial_guess(1, "a", 4) with pytest.raises(ValueError): eq.set_initial_guess(1, 2) with pytest.raises(ValueError): eq.set_initial_guess(eq, eq.surface) del eq._surface with pytest.raises(ValueError): eq.set_initial_guess() with pytest.raises(ValueError): eq.set_initial_guess("path", 3) with pytest.raises(ValueError): eq.set_initial_guess("path", "hdf5") def test_guess_from_other(self): eq1 = Equilibrium(L=4, M=2) eq2 = Equilibrium(L=2, M=1) eq2.set_initial_guess(eq1) eq2.change_resolution(L=4, M=2) np.testing.assert_allclose(eq1.R_lmn, eq2.R_lmn) np.testing.assert_allclose(eq1.Z_lmn, eq2.Z_lmn) def test_guess_from_file(self): eq1 = Equilibrium(L=24, M=12, sym=True, spectral_indexing="fringe") path = "./tests/inputs/SOLOVEV_output.h5" eq1.set_initial_guess(path) eq2 = EquilibriaFamily.load(path) np.testing.assert_allclose(eq1.R_lmn, eq2[-1].R_lmn) np.testing.assert_allclose(eq1.Z_lmn, eq2[-1].Z_lmn) def test_guess_from_surface(self): eq = Equilibrium() surface = FourierRZToroidalSurface() # turn the circular cross section into an elipse w AR=2 surface.set_coeffs(m=-1, n=0, R=None, Z=2) # move z axis up to 0.5 for no good reason axis = FourierRZCurve([0, 10, 0], [0, 0.5, 0]) eq.set_initial_guess(surface, axis) np.testing.assert_allclose(eq.compute_volume(), 2 * 10 * np.pi * np.pi * 2 * 1)
[ "desc.geometry.FourierRZToroidalSurface", "desc.equilibrium.Equilibrium", "desc.profiles.SplineProfile", "numpy.array", "numpy.random.random", "pytest.raises", "desc.geometry.ZernikeRZToroidalSection", "numpy.testing.assert_allclose", "desc.equilibrium.EquilibriaFamily.load", "desc.geometry.FourierRZCurve" ]
[((365, 378), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {}), '()\n', (376, 378), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((751, 790), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['eq.p_l', '[0]'], {}), '(eq.p_l, [0])\n', (777, 790), True, 'import numpy as np\n'), ((858, 897), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['eq.i_l', '[0]'], {}), '(eq.i_l, [0])\n', (884, 897), True, 'import numpy as np\n'), ((956, 980), 'desc.profiles.SplineProfile', 'SplineProfile', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (969, 980), False, 'from desc.profiles import PowerSeriesProfile, SplineProfile\n'), ((996, 1020), 'desc.profiles.SplineProfile', 'SplineProfile', (['[2, 3, 4]'], {}), '([2, 3, 4])\n', (1009, 1020), False, 'from desc.profiles import PowerSeriesProfile, SplineProfile\n'), ((1039, 1089), 'desc.geometry.ZernikeRZToroidalSection', 'ZernikeRZToroidalSection', ([], {'spectral_indexing': '"""ansi"""'}), "(spectral_indexing='ansi')\n", (1063, 1089), False, 'from desc.geometry import FourierRZCurve, FourierRZToroidalSurface, ZernikeRZToroidalSection\n'), ((1105, 1151), 'desc.geometry.FourierRZCurve', 'FourierRZCurve', (['[-1, 10, 1]', '[1, 0, -1]'], {'NFP': '(2)'}), '([-1, 10, 1], [1, 0, -1], NFP=2)\n', (1119, 1151), False, 'from desc.geometry import FourierRZCurve, FourierRZToroidalSurface, ZernikeRZToroidalSection\n'), ((1166, 1235), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'pressure': 'pressure', 'iota': 'iota', 'surface': 'surface', 'axis': 'axis'}), '(pressure=pressure, iota=iota, surface=surface, axis=axis)\n', (1177, 1235), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((1530, 1561), 'desc.geometry.FourierRZToroidalSurface', 'FourierRZToroidalSurface', ([], {'NFP': '(3)'}), '(NFP=3)\n', (1554, 1561), False, 'from desc.geometry import FourierRZCurve, FourierRZToroidalSurface, ZernikeRZToroidalSection\n'), ((1576, 1605), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'surface': 'surface2'}), '(surface=surface2)\n', (1587, 1605), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((1700, 1739), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'surface': 'surface', 'axis': 'None'}), '(surface=surface, axis=None)\n', (1711, 1739), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((1748, 1794), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['eq3.axis.R_n', '[10]'], {}), '(eq3.axis.R_n, [10])\n', (1774, 1794), True, 'import numpy as np\n'), ((2280, 2301), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {}), '(**inputs)\n', (2291, 2301), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((2504, 2550), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['eq.p_l', '[10, 0, 5]'], {}), '(eq.p_l, [10, 0, 5])\n', (2530, 2550), True, 'import numpy as np\n'), ((2559, 2604), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['eq.i_l', '[1, 0, 3]'], {}), '(eq.i_l, [1, 0, 3])\n', (2585, 2604), True, 'import numpy as np\n'), ((2681, 2750), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['eq.Rb_lmn', '[0, 0, 0, 0, 10, 1, 0.1, 0, 0]'], {}), '(eq.Rb_lmn, [0, 0, 0, 0, 10, 1, 0.1, 0, 0])\n', (2707, 2750), True, 'import numpy as np\n'), ((2759, 2827), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['eq.Zb_lmn', '[0, 0, 0, 0, 0, 1, 0.1, 0, 0]'], {}), '(eq.Zb_lmn, [0, 0, 0, 0, 0, 1, 0.1, 0, 0])\n', (2785, 2827), True, 'import numpy as np\n'), ((2857, 2902), 'numpy.array', 'np.array', (['[[0, 0, 0, 10, 0], [1, 1, 0, 1, 1]]'], {}), '([[0, 0, 0, 10, 0], [1, 1, 0, 1, 1]])\n', (2865, 2902), True, 'import numpy as np\n'), ((2916, 2937), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {}), '(**inputs)\n', (2927, 2937), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((2997, 3046), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['eq.Rb_lmn', '[10, 0, 1]'], {}), '(eq.Rb_lmn, [10, 0, 1])\n', (3023, 3046), True, 'import numpy as np\n'), ((4012, 4031), 'numpy.random.random', 'np.random.random', (['(3)'], {}), '(3)\n', (4028, 4031), True, 'import numpy as np\n'), ((4048, 4067), 'numpy.random.random', 'np.random.random', (['(3)'], {}), '(3)\n', (4064, 4067), True, 'import numpy as np\n'), ((4084, 4103), 'numpy.random.random', 'np.random.random', (['(3)'], {}), '(3)\n', (4100, 4103), True, 'import numpy as np\n'), ((4117, 4167), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'R_lmn': 'R_lmn', 'Z_lmn': 'Z_lmn', 'L_lmn': 'L_lmn'}), '(R_lmn=R_lmn, Z_lmn=Z_lmn, L_lmn=L_lmn)\n', (4128, 4167), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((4176, 4219), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['R_lmn', 'eq.R_lmn'], {}), '(R_lmn, eq.R_lmn)\n', (4202, 4219), True, 'import numpy as np\n'), ((4228, 4271), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['Z_lmn', 'eq.Z_lmn'], {}), '(Z_lmn, eq.Z_lmn)\n', (4254, 4271), True, 'import numpy as np\n'), ((4280, 4323), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['L_lmn', 'eq.L_lmn'], {}), '(L_lmn, eq.L_lmn)\n', (4306, 4323), True, 'import numpy as np\n'), ((4498, 4511), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {}), '()\n', (4509, 4511), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((5090, 5111), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'L': '(4)', 'M': '(2)'}), '(L=4, M=2)\n', (5101, 5111), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((5126, 5147), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'L': '(2)', 'M': '(1)'}), '(L=2, M=1)\n', (5137, 5147), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((5232, 5280), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['eq1.R_lmn', 'eq2.R_lmn'], {}), '(eq1.R_lmn, eq2.R_lmn)\n', (5258, 5280), True, 'import numpy as np\n'), ((5289, 5337), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['eq1.Z_lmn', 'eq2.Z_lmn'], {}), '(eq1.Z_lmn, eq2.Z_lmn)\n', (5315, 5337), True, 'import numpy as np\n'), ((5390, 5451), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'L': '(24)', 'M': '(12)', 'sym': '(True)', 'spectral_indexing': '"""fringe"""'}), "(L=24, M=12, sym=True, spectral_indexing='fringe')\n", (5401, 5451), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((5552, 5579), 'desc.equilibrium.EquilibriaFamily.load', 'EquilibriaFamily.load', (['path'], {}), '(path)\n', (5573, 5579), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((5589, 5641), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['eq1.R_lmn', 'eq2[-1].R_lmn'], {}), '(eq1.R_lmn, eq2[-1].R_lmn)\n', (5615, 5641), True, 'import numpy as np\n'), ((5650, 5702), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['eq1.Z_lmn', 'eq2[-1].Z_lmn'], {}), '(eq1.Z_lmn, eq2[-1].Z_lmn)\n', (5676, 5702), True, 'import numpy as np\n'), ((5757, 5770), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {}), '()\n', (5768, 5770), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((5789, 5815), 'desc.geometry.FourierRZToroidalSurface', 'FourierRZToroidalSurface', ([], {}), '()\n', (5813, 5815), False, 'from desc.geometry import FourierRZCurve, FourierRZToroidalSurface, ZernikeRZToroidalSection\n'), ((5997, 6036), 'desc.geometry.FourierRZCurve', 'FourierRZCurve', (['[0, 10, 0]', '[0, 0.5, 0]'], {}), '([0, 10, 0], [0, 0.5, 0])\n', (6011, 6036), False, 'from desc.geometry import FourierRZCurve, FourierRZToroidalSurface, ZernikeRZToroidalSection\n'), ((2013, 2080), 'numpy.array', 'np.array', (['[[0, 0, 0, 10, 0], [0, 1, 0, 1, 1], [0, -1, 1, 0.1, 0.1]]'], {}), '([[0, 0, 0, 10, 0], [0, 1, 0, 1, 1], [0, -1, 1, 0.1, 0.1]])\n', (2021, 2080), True, 'import numpy as np\n'), ((2132, 2154), 'numpy.array', 'np.array', (['[[0, 10, 0]]'], {}), '([[0, 10, 0]])\n', (2140, 2154), True, 'import numpy as np\n'), ((2180, 2207), 'numpy.array', 'np.array', (['[[0, 10], [2, 5]]'], {}), '([[0, 10], [2, 5]])\n', (2188, 2207), True, 'import numpy as np\n'), ((2229, 2255), 'numpy.array', 'np.array', (['[[0, 1], [2, 3]]'], {}), '([[0, 1], [2, 3]])\n', (2237, 2255), True, 'import numpy as np\n'), ((3090, 3119), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (3103, 3119), False, 'import pytest\n'), ((3138, 3156), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'L': '(3.4)'}), '(L=3.4)\n', (3149, 3156), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((3170, 3199), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (3183, 3199), False, 'import pytest\n'), ((3218, 3236), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'M': '(3.4)'}), '(M=3.4)\n', (3229, 3236), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((3250, 3279), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (3263, 3279), False, 'import pytest\n'), ((3298, 3316), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'N': '(3.4)'}), '(N=3.4)\n', (3309, 3316), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((3330, 3359), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (3343, 3359), False, 'import pytest\n'), ((3378, 3399), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'NFP': '(3.4j)'}), '(NFP=3.4j)\n', (3389, 3399), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((3413, 3438), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (3426, 3438), False, 'import pytest\n'), ((3520, 3544), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (3533, 3544), False, 'import pytest\n'), ((3614, 3638), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (3627, 3638), False, 'import pytest\n'), ((3657, 3676), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'axis': '(2)'}), '(axis=2)\n', (3668, 3676), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((3690, 3715), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (3703, 3715), False, 'import pytest\n'), ((3807, 3831), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (3820, 3831), False, 'import pytest\n'), ((3850, 3877), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'pressure': '"""abc"""'}), "(pressure='abc')\n", (3861, 3877), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((3891, 3915), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (3904, 3915), False, 'import pytest\n'), ((3934, 3957), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'iota': '"""def"""'}), "(iota='def')\n", (3945, 3957), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((4338, 4363), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4351, 4363), False, 'import pytest\n'), ((4382, 4411), 'desc.equilibrium.Equilibrium', 'Equilibrium', ([], {'L': '(4)', 'R_lmn': 'R_lmn'}), '(L=4, R_lmn=R_lmn)\n', (4393, 4411), False, 'from desc.equilibrium import Equilibrium, EquilibriaFamily\n'), ((4525, 4550), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4538, 4550), False, 'import pytest\n'), ((4609, 4634), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4622, 4634), False, 'import pytest\n'), ((4688, 4713), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4701, 4713), False, 'import pytest\n'), ((4801, 4826), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4814, 4826), False, 'import pytest\n'), ((4877, 4902), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4890, 4902), False, 'import pytest\n'), ((4961, 4986), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4974, 4986), False, 'import pytest\n'), ((651, 677), 'desc.geometry.FourierRZToroidalSurface', 'FourierRZToroidalSurface', ([], {}), '()\n', (675, 677), False, 'from desc.geometry import FourierRZCurve, FourierRZToroidalSurface, ZernikeRZToroidalSection\n'), ((3477, 3505), 'numpy.array', 'np.array', (['[[1, 1, 1, 10, 2]]'], {}), '([[1, 1, 1, 10, 2]])\n', (3485, 3505), True, 'import numpy as np\n'), ((3583, 3599), 'desc.geometry.FourierRZCurve', 'FourierRZCurve', ([], {}), '()\n', (3597, 3599), False, 'from desc.geometry import FourierRZCurve, FourierRZToroidalSurface, ZernikeRZToroidalSection\n'), ((3754, 3785), 'desc.geometry.FourierRZToroidalSurface', 'FourierRZToroidalSurface', ([], {'NFP': '(1)'}), '(NFP=1)\n', (3778, 3785), False, 'from desc.geometry import FourierRZCurve, FourierRZToroidalSurface, ZernikeRZToroidalSection\n')]
from sklearn.datasets import make_moons import sys sys.path.append('./Data_Process') path_result = "./Latent_representation/" from Models import * from Metrics import * import scipy.io as scio from Data_Process import * from sklearn.cluster import KMeans import numpy as np import torch import time import warnings warnings.filterwarnings('ignore') # Features: X (n × d); adjacency: similarity matrix; labels: Y # Parameters that need to be entered manually ######################################################### Setting ##################################################### Dataset = 'cora' Classification = False Clustering = False Link_Prediction = True t_SNE = False scale = 0 ########################################## hyper-parameters############################################################## Epoch_Num = 200 Learning_Rate = 1e-4 Hidden_Layer_1 = 1024 Hidden_Layer_2 = 128 ################################### Load dataset ###################################################################### if (Dataset is "cora") or (Dataset is "citeseer"): load_data = Load_Data(Dataset) Features, Labels, Adjacency_Matrix_raw = load_data.Graph() Features = torch.Tensor(Features) else: load_data = Load_Data(Dataset) Features, Labels = load_data.CPU() ################################### Calculate the adjacency matrix ######################################################### if('Adjacency_Matrix_raw' in vars()): print('Adjacency matrix is raw') pass else: print('Adjacency matrix_raw is caculated by KNN') graph = Graph_Construction(Features) Adjacency_Matrix_raw = graph.KNN() ################################### Link Prediction ################################################################## if Link_Prediction: adj_train, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(sp.coo_matrix(Adjacency_Matrix_raw)) Adjacency_Matrix = adj_train.todense() Adjacency_Matrix = torch.Tensor(Adjacency_Matrix) Features = torch.Tensor(Features) else: Features = torch.Tensor(Features) Adjacency_Matrix = torch.Tensor(Adjacency_Matrix_raw) ################################################ adjacency convolution ################################################## convolution_kernel = Convolution_Kernel(Adjacency_Matrix) Adjacency_Convolution = convolution_kernel.Adjacency_Convolution() ############################################ Results Initialization ################################################### ACC_GAE_total = [] NMI_GAE_total = [] PUR_GAE_total = [] ACC_GAE_total_STD = [] NMI_GAE_total_STD = [] PUR_GAE_total_STD = [] F1_score = [] roc_score = [] ap_score = [] ####################################### Model ######################################################################### mse_loss = torch.nn.MSELoss(size_average=False) bce_loss = torch.nn.BCELoss(size_average=False) model_GAE = myGAE(Features.shape[1], Hidden_Layer_1, Hidden_Layer_2) optimzer = torch.optim.Adam(model_GAE.parameters(), lr=Learning_Rate) start_time = time.time() ####################################### Train and result ################################################################ for epoch in range(Epoch_Num): Graph_Reconstruction, Latent_Representation = model_GAE(Adjacency_Convolution, Features) loss = bce_loss(Graph_Reconstruction.view(-1), Adjacency_Matrix.view(-1)) optimzer.zero_grad() loss.backward() optimzer.step() Latent_Representation = Latent_Representation.cpu().detach().numpy() ##################################################### Results #################################################### if Classification and (epoch + 1) % 5 == 0: print("Epoch:{},Loss:{:.4f}".format(epoch + 1, loss.item())) score = mySVM(Latent_Representation, Labels, scale=0.3) print("Epoch[{}/{}], F1-score = {}".format(epoch + 1, Epoch_Num, score)) np.save(path_result + "{}.npy".format(epoch + 1), Latent_Representation) F1_score.append(score) elif Clustering and (epoch + 1) % 5 == 0: print("Epoch:{},Loss:{:.4f}".format(epoch + 1, loss.item())) ACC_H2 = [] NMI_H2 = [] PUR_H2 = [] kmeans = KMeans(n_clusters=max(np.int_(Labels).flatten())) for i in range(10): Y_pred_OK = kmeans.fit_predict(Latent_Representation) Labels_K = np.array(Labels).flatten() AM = clustering_metrics(Y_pred_OK, Labels_K) ACC, NMI, PUR = AM.evaluationClusterModelFromLabel(print_msg=False) ACC_H2.append(ACC) NMI_H2.append(NMI) PUR_H2.append(PUR) ACC_GAE_total.append(100 * np.mean(ACC_H2)) NMI_GAE_total.append(100 * np.mean(NMI_H2)) PUR_GAE_total.append(100 * np.mean(PUR_H2)) ACC_GAE_total_STD.append(100 * np.std(ACC_H2)) NMI_GAE_total_STD.append(100 * np.std(NMI_H2)) PUR_GAE_total_STD.append(100 * np.std(PUR_H2)) print('ACC_H2=', 100 * np.mean(ACC_H2), '\n', 'NMI_H2=', 100 * np.mean(NMI_H2), '\n', 'PUR_H2=', 100 * np.mean(PUR_H2)) np.save(path_result + "{}.npy".format(epoch + 1), Latent_Representation) elif Link_Prediction and (epoch + 1) % 5 == 0: roc_score_temp, ap_score_temp = get_roc_score(test_edges, test_edges_false, Latent_Representation) roc_score.append(roc_score_temp) ap_score.append(ap_score_temp) print("Epoch: [{}]/[{}]".format(epoch + 1, Epoch_Num)) print("AUC = {}".format(roc_score_temp)) print("AP = {}".format(ap_score_temp)) ###############################################################Clustering Result ############################## if Clustering: Index_MAX = np.argmax(ACC_GAE_total) ACC_GAE_max = np.float(ACC_GAE_total[Index_MAX]) NMI_GAE_max = np.float(NMI_GAE_total[Index_MAX]) PUR_GAE_max = np.float(PUR_GAE_total[Index_MAX]) ACC_STD = np.float(ACC_GAE_total_STD[Index_MAX]) NMI_STD = np.float(NMI_GAE_total_STD[Index_MAX]) PUR_STD = np.float(PUR_GAE_total_STD[Index_MAX]) print('ACC_GAE_max={:.2f} +- {:.2f}'.format(ACC_GAE_max, ACC_STD)) print('NMI_GAE_max={:.2f} +- {:.2f}'.format(NMI_GAE_max, NMI_STD)) print('PUR_GAE_max={:.2f} +- {:.2f}'.format(PUR_GAE_max, PUR_STD)) print("The incompleteness of the adjacency matrix is {}%".format(scale * 100)) elif Classification: print("GAE: F1-score_max is {:.2f}".format(100*np.max(F1_score))) elif Link_Prediction: print("VGAE: AUC_max is {:.2f}".format(100 * np.max(roc_score))) print("VGAE: AP_max is {:.2f}".format(100 * np.max(ap_score))) ########################################################### t- SNE ################################################# if t_SNE: print("dataset is {}".format(Dataset)) print("Index_Max = {}".format(Index_MAX)) Latent_Representation_max = np.load(path_result + "{}.npy".format((Index_MAX+1) * 5)) Features = np.array(Features) plot_embeddings(Latent_Representation_max, Features, Labels) ######################################################################################################################## end_time = time.time() print("Running time is {}".format(end_time - start_time))
[ "sys.path.append", "torch.nn.MSELoss", "numpy.int_", "torch.nn.BCELoss", "warnings.filterwarnings", "numpy.argmax", "numpy.std", "numpy.float", "time.time", "numpy.max", "torch.Tensor", "numpy.array", "numpy.mean" ]
[((53, 86), 'sys.path.append', 'sys.path.append', (['"""./Data_Process"""'], {}), "('./Data_Process')\n", (68, 86), False, 'import sys\n'), ((330, 363), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (353, 363), False, 'import warnings\n'), ((2885, 2921), 'torch.nn.MSELoss', 'torch.nn.MSELoss', ([], {'size_average': '(False)'}), '(size_average=False)\n', (2901, 2921), False, 'import torch\n'), ((2934, 2970), 'torch.nn.BCELoss', 'torch.nn.BCELoss', ([], {'size_average': '(False)'}), '(size_average=False)\n', (2950, 2970), False, 'import torch\n'), ((3126, 3137), 'time.time', 'time.time', ([], {}), '()\n', (3135, 3137), False, 'import time\n'), ((7325, 7336), 'time.time', 'time.time', ([], {}), '()\n', (7334, 7336), False, 'import time\n'), ((1212, 1234), 'torch.Tensor', 'torch.Tensor', (['Features'], {}), '(Features)\n', (1224, 1234), False, 'import torch\n'), ((2018, 2048), 'torch.Tensor', 'torch.Tensor', (['Adjacency_Matrix'], {}), '(Adjacency_Matrix)\n', (2030, 2048), False, 'import torch\n'), ((2065, 2087), 'torch.Tensor', 'torch.Tensor', (['Features'], {}), '(Features)\n', (2077, 2087), False, 'import torch\n'), ((2111, 2133), 'torch.Tensor', 'torch.Tensor', (['Features'], {}), '(Features)\n', (2123, 2133), False, 'import torch\n'), ((2158, 2192), 'torch.Tensor', 'torch.Tensor', (['Adjacency_Matrix_raw'], {}), '(Adjacency_Matrix_raw)\n', (2170, 2192), False, 'import torch\n'), ((5866, 5890), 'numpy.argmax', 'np.argmax', (['ACC_GAE_total'], {}), '(ACC_GAE_total)\n', (5875, 5890), True, 'import numpy as np\n'), ((5910, 5944), 'numpy.float', 'np.float', (['ACC_GAE_total[Index_MAX]'], {}), '(ACC_GAE_total[Index_MAX])\n', (5918, 5944), True, 'import numpy as np\n'), ((5964, 5998), 'numpy.float', 'np.float', (['NMI_GAE_total[Index_MAX]'], {}), '(NMI_GAE_total[Index_MAX])\n', (5972, 5998), True, 'import numpy as np\n'), ((6018, 6052), 'numpy.float', 'np.float', (['PUR_GAE_total[Index_MAX]'], {}), '(PUR_GAE_total[Index_MAX])\n', (6026, 6052), True, 'import numpy as np\n'), ((6070, 6108), 'numpy.float', 'np.float', (['ACC_GAE_total_STD[Index_MAX]'], {}), '(ACC_GAE_total_STD[Index_MAX])\n', (6078, 6108), True, 'import numpy as np\n'), ((6124, 6162), 'numpy.float', 'np.float', (['NMI_GAE_total_STD[Index_MAX]'], {}), '(NMI_GAE_total_STD[Index_MAX])\n', (6132, 6162), True, 'import numpy as np\n'), ((6178, 6216), 'numpy.float', 'np.float', (['PUR_GAE_total_STD[Index_MAX]'], {}), '(PUR_GAE_total_STD[Index_MAX])\n', (6186, 6216), True, 'import numpy as np\n'), ((7104, 7122), 'numpy.array', 'np.array', (['Features'], {}), '(Features)\n', (7112, 7122), True, 'import numpy as np\n'), ((4786, 4801), 'numpy.mean', 'np.mean', (['ACC_H2'], {}), '(ACC_H2)\n', (4793, 4801), True, 'import numpy as np\n'), ((4839, 4854), 'numpy.mean', 'np.mean', (['NMI_H2'], {}), '(NMI_H2)\n', (4846, 4854), True, 'import numpy as np\n'), ((4892, 4907), 'numpy.mean', 'np.mean', (['PUR_H2'], {}), '(PUR_H2)\n', (4899, 4907), True, 'import numpy as np\n'), ((4949, 4963), 'numpy.std', 'np.std', (['ACC_H2'], {}), '(ACC_H2)\n', (4955, 4963), True, 'import numpy as np\n'), ((5005, 5019), 'numpy.std', 'np.std', (['NMI_H2'], {}), '(NMI_H2)\n', (5011, 5019), True, 'import numpy as np\n'), ((5061, 5075), 'numpy.std', 'np.std', (['PUR_H2'], {}), '(PUR_H2)\n', (5067, 5075), True, 'import numpy as np\n'), ((5111, 5126), 'numpy.mean', 'np.mean', (['ACC_H2'], {}), '(ACC_H2)\n', (5118, 5126), True, 'import numpy as np\n'), ((5151, 5166), 'numpy.mean', 'np.mean', (['NMI_H2'], {}), '(NMI_H2)\n', (5158, 5166), True, 'import numpy as np\n'), ((5206, 5221), 'numpy.mean', 'np.mean', (['PUR_H2'], {}), '(PUR_H2)\n', (5213, 5221), True, 'import numpy as np\n'), ((6595, 6611), 'numpy.max', 'np.max', (['F1_score'], {}), '(F1_score)\n', (6601, 6611), True, 'import numpy as np\n'), ((4486, 4502), 'numpy.array', 'np.array', (['Labels'], {}), '(Labels)\n', (4494, 4502), True, 'import numpy as np\n'), ((6689, 6706), 'numpy.max', 'np.max', (['roc_score'], {}), '(roc_score)\n', (6695, 6706), True, 'import numpy as np\n'), ((6758, 6774), 'numpy.max', 'np.max', (['ap_score'], {}), '(ap_score)\n', (6764, 6774), True, 'import numpy as np\n'), ((4338, 4353), 'numpy.int_', 'np.int_', (['Labels'], {}), '(Labels)\n', (4345, 4353), True, 'import numpy as np\n')]
import random import numpy as np from collections import deque from keras.models import Sequential from keras.layers import Dense, Activation,Dropout from keras.optimizers import Adam from keras import backend as K import matplotlib.pyplot as plt import pygame import random #setup/initialize the environment black = (20,20,20) white = (230,230,230) red = (230,0,0) green = (0,230,0) blue = (0,0,230) display_width = 320 display_height = 320 clock = pygame.time.Clock() fps = 30 EPISODES = 20 class DQNAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.memory = deque(maxlen=2000) self.gamma = 0.95 # discount rate self.epsilon = 1.0 # exploration rate self.epsilon_min = 0.01 self.epsilon_decay = 0.999539589 self.learning_rate = 0.001 self.model = self._build_model() #self.target_model = self._build_model() #self.update_target_model() def _build_model(self): # Neural Net for Deep-Q learning Model model = Sequential() model.add(Dense(128, input_dim=self.state_size)) model.add(Activation('relu')) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dense(self.action_size, activation='linear')) model.compile(loss="mean_squared_error", optimizer=Adam(lr=self.learning_rate)) return model #def update_target_model(self): # copy weights from model to target_model # self.target_model.set_weights(self.model.get_weights()) def remember(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def act(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) act_values = self.model.predict(state) return np.argmax(act_values[0]) # returns action def replay(self, batch_size): minibatch = random.sample(self.memory, batch_size) for state, action, reward, next_state, done in minibatch: target = self.model.predict(state) if done: target[0][action] = reward else: Q_future = self.model.predict(next_state)[0] target[0][action] = reward + self.gamma * np.amax(Q_future) self.model.fit(state, target, epochs=1, verbose=0) if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay def load(self,name): self.model.load_weights(name) def save(self,name): self.model.save_weights(name) pygame.init() font = pygame.font.SysFont("Arial.ttf",30) pygame.display.set_caption("snake environment for data fetch") gameDisplay = pygame.display.set_mode((display_width,display_height)) #define snake class class Snake(): def __init__(self): self.length_counter = 1 self.body_list = [] self.body_thickness = 20 self.head_x = round(display_width / 2 / self.body_thickness) * self.body_thickness self.head_y = round(display_height / 2 / self.body_thickness) * self.body_thickness self.head_x_change = 0 self.head_y_change = 0 def draw(self,act): if act == 0 and self.head_x_change == 0: self.head_x_change = -self.body_thickness self.head_y_change = 0 if act == 1 and self.head_x_change == 0: self.head_x_change = self.body_thickness self.head_y_change = 0 if act == 2 and self.head_y_change == 0: self.head_y_change = -self.body_thickness self.head_x_change = 0 if act == 3 and self.head_y_change == 0: self.head_y_change = self.body_thickness self.head_x_change = 0 self.head_x += self.head_x_change self.head_y += self.head_y_change self.body_list.append([self.head_x,self.head_y]) if len(self.body_list) > self.length_counter: del self.body_list[0] for XnY in self.body_list[:-1]: pygame.draw.rect(gameDisplay,white,[XnY[0],XnY[1],self.body_thickness,self.body_thickness]) pygame.draw.rect(gameDisplay,red,[self.body_list[-1][0],self.body_list[-1][1],self.body_thickness,self.body_thickness]) pygame.display.update() #define apple class class Apple(): def __init__(self): self.thickness = 20 self.x_pos = round(random.randrange(0,display_width-self.thickness)/self.thickness)*self.thickness self.y_pos = round(random.randrange(0,display_height-self.thickness)/self.thickness)*self.thickness def draw(self): pygame.draw.rect(gameDisplay,blue,[self.x_pos,self.y_pos,self.thickness,self.thickness]) pygame.display.update() #define apple eaten function def apple_eaten(snake_obj,apple_obj): x = False if apple_obj.x_pos == snake_obj.head_x and apple_obj.y_pos == snake_obj.head_y: x = True snake_obj.length_counter += 1 apple_obj.x_pos = round(random.randrange(0,display_width-apple_obj.thickness)/apple_obj.thickness)*apple_obj.thickness apple_obj.y_pos = round(random.randrange(0,display_height-apple_obj.thickness)/apple_obj.thickness)*apple_obj.thickness while True: if (apple_obj.x_pos,apple_obj.y_pos) in snake_obj.body_list: apple_obj.x_pos = round(random.randrange(0,display_width-apple_obj.thickness)/apple_obj.thickness)*apple_obj.thickness apple_obj.y_pos = round(random.randrange(0,display_height-apple_obj.thickness)/apple_obj.thickness)*apple_obj.thickness else: break return x #define game over function def show_game_over_screen(): gameOver = True gameExit = False text = "game over press p to play again or q to quit" text_to_screen = font.render(text,True,blue) text_rect = text_to_screen.get_rect() text_rect.center = display_width/2 , display_height/2 while gameOver: gameDisplay.blit(text_to_screen,text_rect) pygame.display.update() for event in pygame.event.get(): if event.type == pygame.QUIT: gameOver = False gameExit = True elif event.type == pygame.KEYDOWN: if event.key == pygame.K_p: GameLoop() gameOver = False gameExit = True elif event.key == pygame.K_q: gameOver = False gameExit = True return gameOver,gameExit #define collision function def collision(snake_obj): gameOver = False if snake_obj.head_x >= display_width or snake_obj.head_x < 0 or snake_obj.head_y >= display_height or snake_obj.head_y < 0: gameOver = True else: for XnY in snake_obj.body_list[:-1]: if XnY == snake_obj.body_list[-1]: gameOver = True break return gameOver #define show score function def show_score(snake_obj): text = str(snake_obj.length_counter-1) text_to_screen = font.render(text,True,green) gameDisplay.blit(text_to_screen,[0,0]) pygame.display.update() def mod(x): if x>=0: return x return -x #defining get_state function def get_state(snake_obj,apple_obj): data_u = snake_obj.head_y / snake_obj.body_thickness data_l = snake_obj.head_x / snake_obj.body_thickness data_r = (display_width - snake_obj.head_x - snake_obj.body_thickness)/snake_obj.body_thickness data_d = (display_height - snake_obj.head_y - snake_obj.body_thickness)/snake_obj.body_thickness data_ul = 0 data_ur = 0 data_dl = 0 data_dr = 0 if data_u > data_l: data_ul = data_l * 2 ** .5 else: data_ul = data_u * 2 ** .5 if data_u > data_r: data_ur = data_r * 2 ** .5 else: data_ur = data_u * 2 ** .5 if data_d > data_l: data_dl = data_l * 2 ** .5 else: data_dl = data_d * 2 ** .5 if data_d > data_r: data_dr = data_r * 2 ** .5 - (apple_obj.thickness/snake_obj.body_thickness) * 2 ** .5 else: data_dr = data_d * 2 ** .5 - (apple_obj.thickness/snake_obj.body_thickness) * 2 ** .5 data_ul = round(data_ul,2) data_ur = round(data_ur,2) data_dl = round(data_dl,2) data_dr = round(data_dr,2) bin_app_u = 0 bin_app_d = 0 bin_app_r = 0 bin_app_l = 0 bin_app_ul = 0 bin_app_ur = 0 bin_app_dl = 0 bin_app_dr = 0 if mod(apple_obj.x_pos - snake_obj.head_x) == mod(apple_obj.y_pos - snake_obj.head_y): if apple_obj.x_pos > snake_obj.head_x and apple_obj.y_pos > snake_obj.head_y: bin_app_dr = 1 elif apple_obj.x_pos < snake_obj.head_x and apple_obj.y_pos < snake_obj.head_y: bin_app_ul = 1 elif apple_obj.x_pos > snake_obj.head_x and apple_obj.y_pos < snake_obj.head_y: bin_app_ur = 1 elif apple_obj.x_pos < snake_obj.head_x and apple_obj.y_pos > snake_obj.head_y: bin_app_dl = 1 elif apple_obj.x_pos == snake_obj.head_x: if apple_obj.y_pos > snake_obj.head_y: bin_app_d = 1 else: bin_app_u = 1 elif apple_obj.y_pos == snake_obj.head_y: if apple_obj.x_pos > snake_obj.head_x: bin_app_r = 1 else: bin_app_l = 1 bin_bod_u = 0 bin_bod_d = 0 bin_bod_r = 0 bin_bod_l = 0 bin_bod_ul = 0 bin_bod_ur = 0 bin_bod_dl = 0 bin_bod_dr = 0 for XnY in snake_obj.body_list[:-1]: if mod(XnY[0] - snake_obj.head_x) == mod(XnY[1] - snake_obj.head_y): if XnY[0] > snake_obj.head_x and XnY[1] > snake_obj.head_y: bin_bod_dr = 1 elif XnY[0] < snake_obj.head_x and XnY[1] < snake_obj.head_y: bin_bod_ul = 1 elif XnY[0] > snake_obj.head_x and XnY[1] < snake_obj.head_y: bin_bod_ur = 1 elif XnY[0] < snake_obj.head_x and XnY[1] > snake_obj.head_y: bin_bod_dl = 1 elif XnY[0] == snake_obj.head_x: if XnY[1] > snake_obj.head_y: bin_bod_d = 1 else: bin_bod_u = 1 elif XnY[1] == snake_obj.head_y: if XnY[0] > snake_obj.head_x: bin_bod_r = 1 else: bin_bod_l = 1 state = [data_l,bin_app_l,bin_bod_l,data_ul,bin_app_ul,bin_bod_ul,data_u,bin_app_u,bin_bod_u,data_ur,bin_app_ur,bin_bod_ur,data_r,bin_app_r,bin_bod_r,data_dr,bin_app_dr,bin_bod_dr,data_d,bin_app_d,bin_bod_d,data_dl,bin_app_dl,bin_bod_dl] #state = [data_u,data_l,data_r,data_d,data_ul,data_ur,data_dl,data_dr,bin_app_u,bin_app_l,bin_app_r,bin_app_d,bin_app_ul,bin_app_ur,bin_app_dl,bin_app_dr,bin_bod_u,bin_bod_l,bin_bod_r,bin_bod_d,bin_bod_ul,bin_bod_ur,bin_bod_dl,bin_bod_dr] return state def GameLoop(): state_size = 24 action_size = 4 count = 0 agent = DQNAgent(state_size, action_size) agent.load("C:/Users/subha/Desktop/python_codes/project4/9000.hdf5") for e in range(EPISODES): count = 0 gameOver = False action_performed = 0 snake_obj = Snake() apple_obj = Apple() C_state = get_state(snake_obj,apple_obj) C_state = np.array(C_state) C_state = np.reshape(C_state,[1,state_size]) while not gameOver: count += 1 gameDisplay.fill(black) pygame.display.update() action_performed = np.argmax(agent.model.predict(C_state)[0]) apple_obj.draw() snake_obj.draw(action_performed) temp = apple_eaten(snake_obj,apple_obj) gameOver = collision(snake_obj) show_score(snake_obj) N_state = get_state(snake_obj,apple_obj) N_state = np.array(N_state) N_state = np.reshape(N_state,[1,state_size]) C_state = N_state if temp == True: count = 0 elif count == 400: break clock.tick(fps) pygame.quit() GameLoop() quit()
[ "numpy.argmax", "random.sample", "pygame.event.get", "pygame.display.update", "collections.deque", "pygame.font.SysFont", "pygame.display.set_mode", "numpy.reshape", "pygame.display.set_caption", "pygame.quit", "pygame.draw.rect", "keras.optimizers.Adam", "pygame.init", "pygame.time.Clock", "keras.layers.Activation", "numpy.amax", "keras.layers.Dense", "numpy.array", "random.randrange", "numpy.random.rand", "keras.models.Sequential" ]
[((470, 489), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (487, 489), False, 'import pygame\n'), ((2788, 2801), 'pygame.init', 'pygame.init', ([], {}), '()\n', (2799, 2801), False, 'import pygame\n'), ((2812, 2848), 'pygame.font.SysFont', 'pygame.font.SysFont', (['"""Arial.ttf"""', '(30)'], {}), "('Arial.ttf', 30)\n", (2831, 2848), False, 'import pygame\n'), ((2851, 2913), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""snake environment for data fetch"""'], {}), "('snake environment for data fetch')\n", (2877, 2913), False, 'import pygame\n'), ((2931, 2987), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(display_width, display_height)'], {}), '((display_width, display_height))\n', (2954, 2987), False, 'import pygame\n'), ((7458, 7481), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (7479, 7481), False, 'import pygame\n'), ((12538, 12551), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (12549, 12551), False, 'import pygame\n'), ((689, 707), 'collections.deque', 'deque', ([], {'maxlen': '(2000)'}), '(maxlen=2000)\n', (694, 707), False, 'from collections import deque\n'), ((1138, 1150), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1148, 1150), False, 'from keras.models import Sequential\n'), ((2010, 2034), 'numpy.argmax', 'np.argmax', (['act_values[0]'], {}), '(act_values[0])\n', (2019, 2034), True, 'import numpy as np\n'), ((2111, 2149), 'random.sample', 'random.sample', (['self.memory', 'batch_size'], {}), '(self.memory, batch_size)\n', (2124, 2149), False, 'import random\n'), ((4378, 4507), 'pygame.draw.rect', 'pygame.draw.rect', (['gameDisplay', 'red', '[self.body_list[-1][0], self.body_list[-1][1], self.body_thickness, self.\n body_thickness]'], {}), '(gameDisplay, red, [self.body_list[-1][0], self.body_list[-\n 1][1], self.body_thickness, self.body_thickness])\n', (4394, 4507), False, 'import pygame\n'), ((4507, 4530), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (4528, 4530), False, 'import pygame\n'), ((4871, 4968), 'pygame.draw.rect', 'pygame.draw.rect', (['gameDisplay', 'blue', '[self.x_pos, self.y_pos, self.thickness, self.thickness]'], {}), '(gameDisplay, blue, [self.x_pos, self.y_pos, self.thickness,\n self.thickness])\n', (4887, 4968), False, 'import pygame\n'), ((4969, 4992), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (4990, 4992), False, 'import pygame\n'), ((6304, 6327), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (6325, 6327), False, 'import pygame\n'), ((6350, 6368), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (6366, 6368), False, 'import pygame\n'), ((11721, 11738), 'numpy.array', 'np.array', (['C_state'], {}), '(C_state)\n', (11729, 11738), True, 'import numpy as np\n'), ((11758, 11794), 'numpy.reshape', 'np.reshape', (['C_state', '[1, state_size]'], {}), '(C_state, [1, state_size])\n', (11768, 11794), True, 'import numpy as np\n'), ((1170, 1207), 'keras.layers.Dense', 'Dense', (['(128)'], {'input_dim': 'self.state_size'}), '(128, input_dim=self.state_size)\n', (1175, 1207), False, 'from keras.layers import Dense, Activation, Dropout\n'), ((1228, 1246), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (1238, 1246), False, 'from keras.layers import Dense, Activation, Dropout\n'), ((1269, 1279), 'keras.layers.Dense', 'Dense', (['(128)'], {}), '(128)\n', (1274, 1279), False, 'from keras.layers import Dense, Activation, Dropout\n'), ((1300, 1318), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (1310, 1318), False, 'from keras.layers import Dense, Activation, Dropout\n'), ((1341, 1385), 'keras.layers.Dense', 'Dense', (['self.action_size'], {'activation': '"""linear"""'}), "(self.action_size, activation='linear')\n", (1346, 1385), False, 'from keras.layers import Dense, Activation, Dropout\n'), ((1857, 1873), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1871, 1873), True, 'import numpy as np\n'), ((1911, 1945), 'random.randrange', 'random.randrange', (['self.action_size'], {}), '(self.action_size)\n', (1927, 1945), False, 'import random\n'), ((4277, 4377), 'pygame.draw.rect', 'pygame.draw.rect', (['gameDisplay', 'white', '[XnY[0], XnY[1], self.body_thickness, self.body_thickness]'], {}), '(gameDisplay, white, [XnY[0], XnY[1], self.body_thickness,\n self.body_thickness])\n', (4293, 4377), False, 'import pygame\n'), ((11896, 11919), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (11917, 11919), False, 'import pygame\n'), ((12281, 12298), 'numpy.array', 'np.array', (['N_state'], {}), '(N_state)\n', (12289, 12298), True, 'import numpy as np\n'), ((12322, 12358), 'numpy.reshape', 'np.reshape', (['N_state', '[1, state_size]'], {}), '(N_state, [1, state_size])\n', (12332, 12358), True, 'import numpy as np\n'), ((1470, 1497), 'keras.optimizers.Adam', 'Adam', ([], {'lr': 'self.learning_rate'}), '(lr=self.learning_rate)\n', (1474, 1497), False, 'from keras.optimizers import Adam\n'), ((4652, 4703), 'random.randrange', 'random.randrange', (['(0)', '(display_width - self.thickness)'], {}), '(0, display_width - self.thickness)\n', (4668, 4703), False, 'import random\n'), ((4760, 4812), 'random.randrange', 'random.randrange', (['(0)', '(display_height - self.thickness)'], {}), '(0, display_height - self.thickness)\n', (4776, 4812), False, 'import random\n'), ((5256, 5312), 'random.randrange', 'random.randrange', (['(0)', '(display_width - apple_obj.thickness)'], {}), '(0, display_width - apple_obj.thickness)\n', (5272, 5312), False, 'import random\n'), ((5384, 5441), 'random.randrange', 'random.randrange', (['(0)', '(display_height - apple_obj.thickness)'], {}), '(0, display_height - apple_obj.thickness)\n', (5400, 5441), False, 'import random\n'), ((2472, 2489), 'numpy.amax', 'np.amax', (['Q_future'], {}), '(Q_future)\n', (2479, 2489), True, 'import numpy as np\n'), ((5616, 5672), 'random.randrange', 'random.randrange', (['(0)', '(display_width - apple_obj.thickness)'], {}), '(0, display_width - apple_obj.thickness)\n', (5632, 5672), False, 'import random\n'), ((5752, 5809), 'random.randrange', 'random.randrange', (['(0)', '(display_height - apple_obj.thickness)'], {}), '(0, display_height - apple_obj.thickness)\n', (5768, 5809), False, 'import random\n')]
""" desi_specs.py Author: <NAME> References: - https://github.com/desihub/desitarget/blob/master/py/desitarget/sv3/data/sv3_targetmask.yaml - https://desidatamodel.readthedocs.io/en/latest/DESI_SPECTRO_REDUX/SPECPROD/tiles/TILEID/NIGHT/coadd-SPECTRO-TILEID-NIGHT.html """ import os import numpy as np from astropy.io import fits from astropy.table import Table, join, vstack, unique from easyquery import Query, QueryMaker from SAGA.utils import join_str_arr __all__ = ["load_fits", "get_all_tiles_and_nights", "find_redshifts_and_specs", "pack_for_marz", "is_bright_time", "is_bgs_target", "is_lowz_target"] __author__ = "<NAME>" BASE_DIR = "/global/cfs/cdirs/desi/spectro/redux/daily/tiles" def load_fits(filename, hdu=1): """ Usage: t = load_fits("/path/to/fits", hdu=1) t1, t2 = load_fits("/path/to/fits", hdu=[1, 2]) """ if isinstance(hdu, int): needed_hdu = [hdu] return_tuple = False else: needed_hdu = hdu return_tuple = True if not all((isinstance(h, int) for h in needed_hdu)): raise ValueError hdu_list = fits.open(filename, cache=False, memmap=True) try: t = [hdu_list[hdu].data if hdu_list[hdu].is_image else Table(hdu_list[hdu].data, masked=False) for hdu in needed_hdu] finally: try: for hdu in needed_hdu: del hdu_list[hdu].data hdu_list.close() del hdu_list except: # pylint: disable=bare-except # noqa: E722 pass if return_tuple: return tuple(t) return t.pop() def _get_redshifts(filepath, target_ids=None): z1, z2 = load_fits(filepath, [1, 2]) if "SV3_DESI_TARGET" not in z2.colnames: return z2.sort(["TARGETID", "NUM_ITER"]) z2 = unique(z2, "TARGETID", keep="last") q = Query() if target_ids is None else QueryMaker.isin("TARGETID", target_ids) z1 = q.filter(z1, ["TARGETID", "Z", "ZERR", "ZWARN", "CHI2", "SPECTYPE", "DELTACHI2"]) z2 = q.filter(z2, ["TARGETID", "TARGET_RA", "TARGET_DEC", "FLUX_R", "FLUX_G", "SHAPE_R", "OBSCONDITIONS", "NIGHT", "TILEID", "SV3_DESI_TARGET", "SV3_BGS_TARGET", "SV3_SCND_TARGET"]) if len(z1) and len(z2): z = join(z1, z2, "TARGETID") if len(z): return z def _get_specs(filepath, sorted_target_ids): target_ids_here = load_fits(filepath)["TARGETID"] idx = np.searchsorted(sorted_target_ids, target_ids_here) idx[idx >= len(sorted_target_ids)] = -1 matched = target_ids_here == sorted_target_ids[idx] if not matched.any(): return return ( np.asarray(target_ids_here[matched]), np.concatenate(load_fits(filepath, [2, 7, 12])), # B_WAVELENGTH, R_WAVELENGTH, Z_WAVELENGTH np.hstack([d[matched] for d in load_fits(filepath, [3, 8, 13])]), # B_FLUX, R_FLUX, Z_FLUX np.hstack([d[matched] for d in load_fits(filepath, [4, 9, 14])]), # B_IVAR, R_IVAR, Z_IVAR ) def get_all_tiles_and_nights(nights_since=20210405): """ Returns a table of TILEID and NIGHT for all nights since `nights_since` """ out = {"TILEID":[], "NIGHT":[]} for tileid in os.listdir(BASE_DIR): try: tileid = int(tileid) except ValueError: continue dirpath = "{}/{}".format(BASE_DIR, tileid) try: nights = os.listdir(dirpath) except (OSError, IOError): continue for night in nights: try: night = int(night) except ValueError: continue if night >= nights_since: out["TILEID"].append(tileid) out["NIGHT"].append(night) return Table(out) def _loop_over_files(tileid, night): dirpath = "{}/{}/{}".format(BASE_DIR, tileid, night) for filename in os.listdir(dirpath): if filename.endswith(".fits"): yield filename.partition("-")[0], os.path.join(dirpath, filename) def _filename_to_path(filename): tileid, night = map(int, filename.partition('.')[0].split('-')[2:4]) return "{}/{}/{}/{}".format(BASE_DIR, tileid, night, filename) is_bright_time = Query("(OBSCONDITIONS >> 9) % 2 > 0") is_bgs_target = Query("SV3_BGS_TARGET > 0") is_lowz_target = Query("(SV3_SCND_TARGET >> 15) % 8 > 0") is_lowz = Query("Z < 0.05") is_galaxy = QueryMaker.equals("SPECTYPE", "GALAXY") def find_redshifts_and_specs(t=None, retrieve_specs=False, skip_redshifts=False, selection=is_lowz_target, exclude_bgs=False, all_lowz=False, **kwargs): """ Takes a table `t` with columns "TILEID" and "NIGHT", and all redshifts for LOWZ targets. Set `exclude_bgs` to True to exclude targets that overlap with BGS. Alternatively, the input table can have a "TARGETID" column, in which case the function will find corresponding redshifts. Set `retrieve_specs` to True to also obtain the spectra. If this case, the returned variables are: redshifts, specs_flux, specs_ivar, specs_wl, specs_targetid Note that the function will not verify if all requested targets are found. It will also not verify if the redshifts table is consistent with specs. """ if t is None: t = Table(kwargs) filenames_known = "FILENAME" in t.colnames targets_known = "TARGETID" in t.colnames group_keys = ["FILENAME"] if filenames_known else ["TILEID", "NIGHT"] assert all(c in t.colnames for c in group_keys) if targets_known: t.sort(group_keys + ["TARGETID"]) redshifts = [] specs = [] if skip_redshifts: if not (filenames_known and targets_known): raise ValueError("Must have FILENAME and TARGETID in the input table to skip redshift collection.") if not retrieve_specs: raise ValueError("Nothing to do!!") redshifts = t else: q = Query(selection) if all_lowz: q = q | (is_lowz & is_galaxy) if exclude_bgs: q = q & (~is_bgs_target) for t1 in t.group_by(group_keys).groups: if filenames_known: file_iter = [("zbest", _filename_to_path(t1["FILENAME"][0]))] else: file_iter = _loop_over_files(t1["TILEID"][0], t1["NIGHT"][0]) for filetype, filepath in file_iter: if filetype == "zbest": data_this = _get_redshifts(filepath, t1["TARGETID"] if targets_known else None) if data_this is not None and not targets_known: data_this = q.filter(data_this) if data_this is not None and len(data_this): data_this["FILENAME"] = os.path.basename(filepath) redshifts.append(data_this) redshifts = vstack(redshifts) print("Found {} redshifts".format(len(redshifts))) redshifts.sort(["FILENAME", "TARGETID"]) if not retrieve_specs: return redshifts for redshifts_this in redshifts.group_by(["FILENAME"]).groups: filepath = _filename_to_path(redshifts_this["FILENAME"][0].replace("zbest-", "coadd-")) data_this = _get_specs(filepath, redshifts_this["TARGETID"]) if data_this is not None: specs.append(data_this) specs_id = np.concatenate([t[0] for t in specs]) specs_flux = np.vstack([t[2] for t in specs]) specs_ivar = np.vstack([t[3] for t in specs]) sorter = specs_id.argsort() assert len(specs_id) == len(specs_flux) assert len(specs_id) == len(specs_ivar) specs_wl = specs[0][1] assert all((t[1] == specs_wl).all() for t in specs) print("Found {} specs".format(len(specs_id))) if len(redshifts) == len(specs_id) and not (redshifts["TARGETID"] == specs_id).all(): print("WARNING: TARGETID in redshifts does not match those in specs") return redshifts, specs_flux, specs_ivar, specs_wl, specs_id def pack_for_marz(output_path, redshifts, specs_flux, specs_ivar, specs_wl, *args): """ Pack redshift table and specs into marz format. Example usage: data = find_redshifts_and_specs(t, retrieve_specs=True) pack_for_marz("/path/to/output.fits", *data) """ if len(redshifts) != len(specs_flux): raise ValueError with np.errstate(divide="ignore"): mag = 22.5 - 2.5*np.log10(redshifts["FLUX_R"]) t = Table( { "TYPE": np.where(specs_flux.any(axis=1), "P", ""), "COMMENT": redshifts["TARGETID"].astype(str), "RA": np.deg2rad(redshifts["TARGET_RA"]), "DEC": np.deg2rad(redshifts["TARGET_DEC"]), "MAGNITUDE": mag, } ) t["NAME"] = join_str_arr( "Z=", redshifts["Z"].astype(np.float32).astype(str), ",ZW=", redshifts["ZWARN"].astype(str), ",T=", (np.log2(redshifts["SV3_SCND_TARGET"])-14).astype(np.int16).astype(str), ) # VACUME WAVELEGNTH TO AIR WAVELEGNTH dwave = specs_wl / (1.0 + 2.735182e-4 + 131.4182 / specs_wl**2 + 2.76249e8 / specs_wl**4) with np.errstate(divide="ignore"): specs_var = 1.0 / specs_ivar fits.HDUList([ fits.PrimaryHDU(specs_flux, do_not_scale_image_data=True), fits.ImageHDU(specs_var, name="variance", do_not_scale_image_data=True), fits.ImageHDU(dwave, name="wavelength", do_not_scale_image_data=True), fits.BinTableHDU(t, name="fibres"), ]).writeto(output_path, overwrite=True)
[ "astropy.io.fits.PrimaryHDU", "os.path.join", "astropy.io.fits.ImageHDU", "astropy.io.fits.BinTableHDU", "numpy.log10", "astropy.table.unique", "os.path.basename", "easyquery.Query", "numpy.log2", "numpy.asarray", "astropy.table.join", "easyquery.QueryMaker.equals", "astropy.io.fits.open", "easyquery.QueryMaker.isin", "os.listdir", "numpy.vstack", "numpy.concatenate", "astropy.table.Table", "numpy.deg2rad", "numpy.searchsorted", "numpy.errstate", "astropy.table.vstack" ]
[((4192, 4229), 'easyquery.Query', 'Query', (['"""(OBSCONDITIONS >> 9) % 2 > 0"""'], {}), "('(OBSCONDITIONS >> 9) % 2 > 0')\n", (4197, 4229), False, 'from easyquery import Query, QueryMaker\n'), ((4246, 4273), 'easyquery.Query', 'Query', (['"""SV3_BGS_TARGET > 0"""'], {}), "('SV3_BGS_TARGET > 0')\n", (4251, 4273), False, 'from easyquery import Query, QueryMaker\n'), ((4291, 4331), 'easyquery.Query', 'Query', (['"""(SV3_SCND_TARGET >> 15) % 8 > 0"""'], {}), "('(SV3_SCND_TARGET >> 15) % 8 > 0')\n", (4296, 4331), False, 'from easyquery import Query, QueryMaker\n'), ((4342, 4359), 'easyquery.Query', 'Query', (['"""Z < 0.05"""'], {}), "('Z < 0.05')\n", (4347, 4359), False, 'from easyquery import Query, QueryMaker\n'), ((4372, 4411), 'easyquery.QueryMaker.equals', 'QueryMaker.equals', (['"""SPECTYPE"""', '"""GALAXY"""'], {}), "('SPECTYPE', 'GALAXY')\n", (4389, 4411), False, 'from easyquery import Query, QueryMaker\n'), ((1113, 1158), 'astropy.io.fits.open', 'fits.open', (['filename'], {'cache': '(False)', 'memmap': '(True)'}), '(filename, cache=False, memmap=True)\n', (1122, 1158), False, 'from astropy.io import fits\n'), ((1792, 1827), 'astropy.table.unique', 'unique', (['z2', '"""TARGETID"""'], {'keep': '"""last"""'}), "(z2, 'TARGETID', keep='last')\n", (1798, 1827), False, 'from astropy.table import Table, join, vstack, unique\n'), ((2404, 2455), 'numpy.searchsorted', 'np.searchsorted', (['sorted_target_ids', 'target_ids_here'], {}), '(sorted_target_ids, target_ids_here)\n', (2419, 2455), True, 'import numpy as np\n'), ((3166, 3186), 'os.listdir', 'os.listdir', (['BASE_DIR'], {}), '(BASE_DIR)\n', (3176, 3186), False, 'import os\n'), ((3717, 3727), 'astropy.table.Table', 'Table', (['out'], {}), '(out)\n', (3722, 3727), False, 'from astropy.table import Table, join, vstack, unique\n'), ((3844, 3863), 'os.listdir', 'os.listdir', (['dirpath'], {}), '(dirpath)\n', (3854, 3863), False, 'import os\n'), ((7325, 7362), 'numpy.concatenate', 'np.concatenate', (['[t[0] for t in specs]'], {}), '([t[0] for t in specs])\n', (7339, 7362), True, 'import numpy as np\n'), ((7380, 7412), 'numpy.vstack', 'np.vstack', (['[t[2] for t in specs]'], {}), '([t[2] for t in specs])\n', (7389, 7412), True, 'import numpy as np\n'), ((7430, 7462), 'numpy.vstack', 'np.vstack', (['[t[3] for t in specs]'], {}), '([t[3] for t in specs])\n', (7439, 7462), True, 'import numpy as np\n'), ((1836, 1843), 'easyquery.Query', 'Query', ([], {}), '()\n', (1841, 1843), False, 'from easyquery import Query, QueryMaker\n'), ((1871, 1910), 'easyquery.QueryMaker.isin', 'QueryMaker.isin', (['"""TARGETID"""', 'target_ids'], {}), "('TARGETID', target_ids)\n", (1886, 1910), False, 'from easyquery import Query, QueryMaker\n'), ((2228, 2252), 'astropy.table.join', 'join', (['z1', 'z2', '"""TARGETID"""'], {}), "(z1, z2, 'TARGETID')\n", (2232, 2252), False, 'from astropy.table import Table, join, vstack, unique\n'), ((2619, 2655), 'numpy.asarray', 'np.asarray', (['target_ids_here[matched]'], {}), '(target_ids_here[matched])\n', (2629, 2655), True, 'import numpy as np\n'), ((5258, 5271), 'astropy.table.Table', 'Table', (['kwargs'], {}), '(kwargs)\n', (5263, 5271), False, 'from astropy.table import Table, join, vstack, unique\n'), ((5906, 5922), 'easyquery.Query', 'Query', (['selection'], {}), '(selection)\n', (5911, 5922), False, 'from easyquery import Query, QueryMaker\n'), ((6830, 6847), 'astropy.table.vstack', 'vstack', (['redshifts'], {}), '(redshifts)\n', (6836, 6847), False, 'from astropy.table import Table, join, vstack, unique\n'), ((8324, 8352), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""'}), "(divide='ignore')\n", (8335, 8352), True, 'import numpy as np\n'), ((9106, 9134), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""'}), "(divide='ignore')\n", (9117, 9134), True, 'import numpy as np\n'), ((3367, 3386), 'os.listdir', 'os.listdir', (['dirpath'], {}), '(dirpath)\n', (3377, 3386), False, 'import os\n'), ((8582, 8616), 'numpy.deg2rad', 'np.deg2rad', (["redshifts['TARGET_RA']"], {}), "(redshifts['TARGET_RA'])\n", (8592, 8616), True, 'import numpy as np\n'), ((8637, 8672), 'numpy.deg2rad', 'np.deg2rad', (["redshifts['TARGET_DEC']"], {}), "(redshifts['TARGET_DEC'])\n", (8647, 8672), True, 'import numpy as np\n'), ((1236, 1275), 'astropy.table.Table', 'Table', (['hdu_list[hdu].data'], {'masked': '(False)'}), '(hdu_list[hdu].data, masked=False)\n', (1241, 1275), False, 'from astropy.table import Table, join, vstack, unique\n'), ((8379, 8408), 'numpy.log10', 'np.log10', (["redshifts['FLUX_R']"], {}), "(redshifts['FLUX_R'])\n", (8387, 8408), True, 'import numpy as np\n'), ((3950, 3981), 'os.path.join', 'os.path.join', (['dirpath', 'filename'], {}), '(dirpath, filename)\n', (3962, 3981), False, 'import os\n'), ((9205, 9262), 'astropy.io.fits.PrimaryHDU', 'fits.PrimaryHDU', (['specs_flux'], {'do_not_scale_image_data': '(True)'}), '(specs_flux, do_not_scale_image_data=True)\n', (9220, 9262), False, 'from astropy.io import fits\n'), ((9272, 9343), 'astropy.io.fits.ImageHDU', 'fits.ImageHDU', (['specs_var'], {'name': '"""variance"""', 'do_not_scale_image_data': '(True)'}), "(specs_var, name='variance', do_not_scale_image_data=True)\n", (9285, 9343), False, 'from astropy.io import fits\n'), ((9353, 9422), 'astropy.io.fits.ImageHDU', 'fits.ImageHDU', (['dwave'], {'name': '"""wavelength"""', 'do_not_scale_image_data': '(True)'}), "(dwave, name='wavelength', do_not_scale_image_data=True)\n", (9366, 9422), False, 'from astropy.io import fits\n'), ((9432, 9466), 'astropy.io.fits.BinTableHDU', 'fits.BinTableHDU', (['t'], {'name': '"""fibres"""'}), "(t, name='fibres')\n", (9448, 9466), False, 'from astropy.io import fits\n'), ((6730, 6756), 'os.path.basename', 'os.path.basename', (['filepath'], {}), '(filepath)\n', (6746, 6756), False, 'import os\n'), ((8877, 8914), 'numpy.log2', 'np.log2', (["redshifts['SV3_SCND_TARGET']"], {}), "(redshifts['SV3_SCND_TARGET'])\n", (8884, 8914), True, 'import numpy as np\n')]
import logging import typing import numpy import torch import torch.nn as nn import torch.nn.functional as functional LOGGER = logging.getLogger(__name__) class ModelAverage(nn.Module): """ This class works by averaging the outputs of existing models. The models are expected to have linear outputs (i.e., *before* converting to probabilities via softmax) of two dimensions, where the first dimension is the batch index and the second dimension is the class index. The output of this model is the log of the average of the softmax of each model's output. """ def __init__(self, *modules: nn.Module): super().__init__() self.base_modules = nn.ModuleList(modules=modules) def forward(self, x): linear_outputs: typing.List[torch.Tensor] = [] for module in self.base_modules: linear_outputs.append(functional.softmax(module(x), dim=1)) # Make a len(self.modules)-by-(batch size)-by-(num classes) Tensor from the set of outputs. concatenated_outputs = torch.cat([torch.unsqueeze(linear_output, dim=0) for linear_output in linear_outputs]) return torch.log(torch.mean(concatenated_outputs, 0)) class TestNet(nn.Module): """ This class is a class used for testing the ModelAverage class. It is a linear network with fixed outputs that are set to `torch.log(probabilities)`, via setting the weights to 0 and the biases to the log probabilities. The number of classes in the output of this network is 2, and the input to the network is a 3-dimensional vector. """ def __init__(self, *probabilities: float): super().__init__() self.fixed_linear = nn.Linear(3, 2) self.fixed_linear.weight.data.fill_(0) self.fixed_linear.bias.data = torch.log(torch.tensor(probabilities)) def forward(self, x): return self.fixed_linear(x) def test_model_average(): model1 = TestNet(0.25, 0.75) model2 = TestNet(0.75, 0.25) model_average = ModelAverage(model1, model2) model_average.eval() tensor_input = torch.randn(2, 3) expected_output = torch.log(torch.tensor([[0.5, 0.5], [0.5, 0.5]])) actual_output = model_average(tensor_input).detach() assert ( numpy.nextafter(1.0, 2.0, dtype=numpy.float32) - 1.0 >= torch.abs(1.0 - actual_output / expected_output) ).all() if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) test_model_average()
[ "torch.mean", "logging.basicConfig", "torch.nn.ModuleList", "torch.randn", "torch.nn.Linear", "torch.unsqueeze", "numpy.nextafter", "torch.tensor", "torch.abs", "logging.getLogger" ]
[((131, 158), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (148, 158), False, 'import logging\n'), ((2078, 2095), 'torch.randn', 'torch.randn', (['(2)', '(3)'], {}), '(2, 3)\n', (2089, 2095), False, 'import torch\n'), ((2412, 2452), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (2431, 2452), False, 'import logging\n'), ((690, 720), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {'modules': 'modules'}), '(modules=modules)\n', (703, 720), True, 'import torch.nn as nn\n'), ((1688, 1703), 'torch.nn.Linear', 'nn.Linear', (['(3)', '(2)'], {}), '(3, 2)\n', (1697, 1703), True, 'import torch.nn as nn\n'), ((2128, 2166), 'torch.tensor', 'torch.tensor', (['[[0.5, 0.5], [0.5, 0.5]]'], {}), '([[0.5, 0.5], [0.5, 0.5]])\n', (2140, 2166), False, 'import torch\n'), ((1159, 1194), 'torch.mean', 'torch.mean', (['concatenated_outputs', '(0)'], {}), '(concatenated_outputs, 0)\n', (1169, 1194), False, 'import torch\n'), ((1799, 1826), 'torch.tensor', 'torch.tensor', (['probabilities'], {}), '(probabilities)\n', (1811, 1826), False, 'import torch\n'), ((1058, 1095), 'torch.unsqueeze', 'torch.unsqueeze', (['linear_output'], {'dim': '(0)'}), '(linear_output, dim=0)\n', (1073, 1095), False, 'import torch\n'), ((2318, 2366), 'torch.abs', 'torch.abs', (['(1.0 - actual_output / expected_output)'], {}), '(1.0 - actual_output / expected_output)\n', (2327, 2366), False, 'import torch\n'), ((2246, 2292), 'numpy.nextafter', 'numpy.nextafter', (['(1.0)', '(2.0)'], {'dtype': 'numpy.float32'}), '(1.0, 2.0, dtype=numpy.float32)\n', (2261, 2292), False, 'import numpy\n')]
import numpy as np def softmax(arr): expL = np.exp(arr) # Broadcasting sumExpL = sum(expL) result = [] for i in expL: result.append(i * 1.0/sumExpL) return result
[ "numpy.exp" ]
[((49, 60), 'numpy.exp', 'np.exp', (['arr'], {}), '(arr)\n', (55, 60), True, 'import numpy as np\n')]
import numpy as np import scipy.sparse as sp import pickle as pkl import os import h5py import pandas as pd import pdb def map_data(data): """ Map data to proper indices in case they are not in a continues [0, N) range Parameters ---------- data : np.int32 arrays Returns ------- mapped_data : np.int32 arrays n : length of mapped_data """ uniq = list(set(data)) id_dict = {old: new for new, old in enumerate(sorted(uniq))} data = np.array([id_dict[x] for x in data]) n = len(uniq) return data, id_dict, n def load_matlab_file(path_file, name_field): """ load '.mat' files inputs: path_file, string containing the file path name_field, string containig the field name (default='shape') warning: '.mat' files should be saved in the '-v7.3' format """ db = h5py.File(path_file, 'r') ds = db[name_field] try: if 'ir' in ds.keys(): data = np.asarray(ds['data']) ir = np.asarray(ds['ir']) jc = np.asarray(ds['jc']) out = sp.csc_matrix((data, ir, jc)).astype(np.float32) except AttributeError: # Transpose in case is a dense matrix because of the row- vs column- major ordering between python and matlab out = np.asarray(ds).astype(np.float32).T db.close() return out def load_data_from_database(dataset, mode='transductive', testing=False, rating_map=None, post_rating_map=None, ratio=1.0): """ Loads official train/test split and uses 10% of training samples for validaiton For each split computes 1-of-num_classes labels. Also computes training adjacency matrix. Assumes flattening happens everywhere in row-major fashion. """ dtypes = { 'u_nodes': np.str, 'v_nodes': np.int32, 'ratings': np.float32} filename_train = 'data/' + dataset + '/' + mode + '/train.csv' filename_test = 'data/' + dataset + '/' + mode + '/test.csv' data_train = pd.read_csv( filename_train, header=None, names=['u_nodes', 'v_nodes', 'ratings'], dtype=dtypes) data_test = pd.read_csv( filename_test, header=None, names=['u_nodes', 'v_nodes', 'ratings'], dtype=dtypes) if mode == 'inductive': filename_test_init = 'data/' + dataset + '/' + mode + '/test_init.csv' data_test_init = pd.read_csv( filename_test_init, header=None, names=['u_nodes', 'v_nodes', 'ratings'], dtype=dtypes) data_array_train = data_train.values.tolist() data_array_train = np.array(data_array_train) data_array_test = data_test.values.tolist() data_array_test = np.array(data_array_test) if mode == 'inductive': data_array_test_init = data_test_init.values.tolist() data_array_test_init = np.array(data_array_test_init) if ratio < 1.0: data_array_train = data_array_train[data_array_train[:, -1].argsort()[:int(ratio*len(data_array_train))]] if mode == 'inductive': data_array = np.concatenate([data_array_train, data_array_test, data_array_test_init], axis=0) else: data_array = np.concatenate([data_array_train, data_array_test], axis=0) u_nodes_ratings = data_array[:, 0].astype(dtypes['u_nodes']) v_nodes_ratings = data_array[:, 1].astype(dtypes['v_nodes']) ratings = data_array[:, 2].astype(dtypes['ratings']) if rating_map is not None: for i, x in enumerate(ratings): ratings[i] = rating_map[x] u_nodes_ratings, u_dict, num_users = map_data(u_nodes_ratings) v_nodes_ratings, v_dict, num_items = map_data(v_nodes_ratings) u_nodes_ratings, v_nodes_ratings = u_nodes_ratings.astype(np.int64), v_nodes_ratings.astype(np.int32) ratings = ratings.astype(np.float64) u_nodes = u_nodes_ratings v_nodes = v_nodes_ratings neutral_rating = -1 # int(np.ceil(np.float(num_classes)/2.)) - 1 # assumes that ratings_train contains at least one example of every rating type rating_dict = {r: i for i, r in enumerate(np.sort(np.unique(ratings)).tolist())} labels = np.full((num_users, num_items), neutral_rating, dtype=np.int32) labels[u_nodes, v_nodes] = np.array([rating_dict[r] for r in ratings]) for i in range(len(u_nodes)): assert(labels[u_nodes[i], v_nodes[i]] == rating_dict[ratings[i]]) labels = labels.reshape([-1]) # number of test and validation edges, see cf-nade code num_train = data_array_train.shape[0] num_test = data_array_test.shape[0] num_val = int(np.ceil(num_train * 0.2)) num_train = num_train - num_val if mode == 'inductive': num_test_init = data_array_test_init.shape[0] pairs_nonzero = np.array([[u, v] for u, v in zip(u_nodes, v_nodes)]) idx_nonzero = np.array([u * num_items + v for u, v in pairs_nonzero]) for i in range(len(ratings)): assert(labels[idx_nonzero[i]] == rating_dict[ratings[i]]) if mode == 'inductive': idx_nonzero_train = idx_nonzero[0:num_train+num_val] idx_nonzero_test = idx_nonzero[num_train+num_val:num_train+num_val+num_test] idx_nonzero_test_init = idx_nonzero[num_train+num_val+num_test:] pairs_nonzero_train = pairs_nonzero[0:num_train+num_val] pairs_nonzero_test = pairs_nonzero[num_train+num_val:num_train+num_val+num_test] pairs_nonzero_test_init = pairs_nonzero[num_train+num_val+num_test:] else: idx_nonzero_train = idx_nonzero[0:num_train+num_val] idx_nonzero_test = idx_nonzero[num_train+num_val:] pairs_nonzero_train = pairs_nonzero[0:num_train+num_val] pairs_nonzero_test = pairs_nonzero[num_train+num_val:] # Internally shuffle training set (before splitting off validation set) rand_idx = list(range(len(idx_nonzero_train))) np.random.seed(42) np.random.shuffle(rand_idx) idx_nonzero_train = idx_nonzero_train[rand_idx] pairs_nonzero_train = pairs_nonzero_train[rand_idx] if mode == 'inductive': idx_nonzero = np.concatenate([idx_nonzero_train, idx_nonzero_test, idx_nonzero_test_init], axis=0) pairs_nonzero = np.concatenate([pairs_nonzero_train, pairs_nonzero_test, pairs_nonzero_test_init], axis=0) val_idx = idx_nonzero[0:num_val] train_idx = idx_nonzero[num_val:num_train + num_val] test_idx = idx_nonzero[num_train + num_val:num_train + num_val + num_test] test_init_idx = idx_nonzero[num_train + num_val + num_test:] else: idx_nonzero = np.concatenate([idx_nonzero_train, idx_nonzero_test], axis=0) pairs_nonzero = np.concatenate([pairs_nonzero_train, pairs_nonzero_test], axis=0) val_idx = idx_nonzero[0:num_val] train_idx = idx_nonzero[num_val:num_train + num_val] test_idx = idx_nonzero[num_train + num_val:] assert(len(test_idx) == num_test) val_pairs_idx = pairs_nonzero[0:num_val] train_pairs_idx = pairs_nonzero[num_val:num_train + num_val] test_pairs_idx = pairs_nonzero[num_train + num_val:num_train + num_val + num_test] u_test_idx, v_test_idx = test_pairs_idx.transpose() u_val_idx, v_val_idx = val_pairs_idx.transpose() u_train_idx, v_train_idx = train_pairs_idx.transpose() # create labels train_labels = labels[train_idx] val_labels = labels[val_idx] test_labels = labels[test_idx] if testing: u_train_idx = np.hstack([u_train_idx, u_val_idx]) v_train_idx = np.hstack([v_train_idx, v_val_idx]) train_labels = np.hstack([train_labels, val_labels]) # for adjacency matrix construction if mode == 'inductive': train_idx = np.hstack([train_idx, val_idx, test_init_idx]) else: train_idx = np.hstack([train_idx, val_idx]) class_values = np.sort(np.unique(ratings)) # make training adjacency matrix rating_mx_train = np.zeros(num_users * num_items, dtype=np.float32) if post_rating_map is None: rating_mx_train[train_idx] = labels[train_idx].astype(np.float32) + 1. else: rating_mx_train[train_idx] = np.array([post_rating_map[r] for r in class_values[labels[train_idx]]]) + 1. rating_mx_train = sp.csr_matrix(rating_mx_train.reshape(num_users, num_items)) # Features # drug features drugs_file = 'data/' + dataset + '/drugs_features.csv' genes_file = 'data/' + dataset + '/genes_features.csv' if os.path.exists(drugs_file) and os.path.exists(genes_file): drugs_df = pd.read_csv(drugs_file) drugs_headers = drugs_df.columns.values[:-1] num_drug_features = drugs_headers.shape[0] u_features = np.zeros((num_users, num_drug_features), dtype=np.float32) for drugbank_id, d_vec in zip(drugs_df['drugbank_id'].values.tolist(), drugs_df[drugs_headers].values.tolist()): # check if drugbank_id was listed in ratings file and therefore in mapping dictionary if drugbank_id in u_dict.keys(): u_features[u_dict[drugbank_id], :] = d_vec # gene features genes_df = pd.read_csv(genes_file) genes_headers = genes_df.columns.values[:-1] num_gene_features = genes_headers.shape[0] v_features = np.zeros((num_items, num_gene_features), dtype=np.float32) for gene_id, g_vec in zip(genes_df['gene_id'].values.tolist(), genes_df[genes_headers].values.tolist()): # check if gene_id was listed in ratings file and therefore in mapping dictionary if gene_id in v_dict.keys(): v_features[v_dict[gene_id], :] = g_vec u_features = sp.csr_matrix(u_features) v_features = sp.csr_matrix(v_features) print("Drug features shape: "+str(u_features.shape)) print("Gene features shape: "+str(v_features.shape)) else: u_features = None v_features = None drug_dict = {v: k for k, v in u_dict.items()} gene_dict = {val: key for key,val in v_dict.items()} return u_features, v_features, rating_mx_train, train_labels, u_train_idx, v_train_idx, \ val_labels, u_val_idx, v_val_idx, test_labels, u_test_idx, v_test_idx, class_values, drug_dict, gene_dict
[ "numpy.full", "h5py.File", "numpy.random.seed", "numpy.concatenate", "numpy.ceil", "pandas.read_csv", "numpy.asarray", "numpy.unique", "numpy.zeros", "os.path.exists", "numpy.hstack", "scipy.sparse.csc_matrix", "scipy.sparse.csr_matrix", "numpy.array", "numpy.random.shuffle" ]
[((486, 522), 'numpy.array', 'np.array', (['[id_dict[x] for x in data]'], {}), '([id_dict[x] for x in data])\n', (494, 522), True, 'import numpy as np\n'), ((868, 893), 'h5py.File', 'h5py.File', (['path_file', '"""r"""'], {}), "(path_file, 'r')\n", (877, 893), False, 'import h5py\n'), ((1998, 2097), 'pandas.read_csv', 'pd.read_csv', (['filename_train'], {'header': 'None', 'names': "['u_nodes', 'v_nodes', 'ratings']", 'dtype': 'dtypes'}), "(filename_train, header=None, names=['u_nodes', 'v_nodes',\n 'ratings'], dtype=dtypes)\n", (2009, 2097), True, 'import pandas as pd\n'), ((2128, 2226), 'pandas.read_csv', 'pd.read_csv', (['filename_test'], {'header': 'None', 'names': "['u_nodes', 'v_nodes', 'ratings']", 'dtype': 'dtypes'}), "(filename_test, header=None, names=['u_nodes', 'v_nodes',\n 'ratings'], dtype=dtypes)\n", (2139, 2226), True, 'import pandas as pd\n'), ((2573, 2599), 'numpy.array', 'np.array', (['data_array_train'], {}), '(data_array_train)\n', (2581, 2599), True, 'import numpy as np\n'), ((2670, 2695), 'numpy.array', 'np.array', (['data_array_test'], {}), '(data_array_test)\n', (2678, 2695), True, 'import numpy as np\n'), ((4104, 4167), 'numpy.full', 'np.full', (['(num_users, num_items)', 'neutral_rating'], {'dtype': 'np.int32'}), '((num_users, num_items), neutral_rating, dtype=np.int32)\n', (4111, 4167), True, 'import numpy as np\n'), ((4199, 4242), 'numpy.array', 'np.array', (['[rating_dict[r] for r in ratings]'], {}), '([rating_dict[r] for r in ratings])\n', (4207, 4242), True, 'import numpy as np\n'), ((4789, 4846), 'numpy.array', 'np.array', (['[(u * num_items + v) for u, v in pairs_nonzero]'], {}), '([(u * num_items + v) for u, v in pairs_nonzero])\n', (4797, 4846), True, 'import numpy as np\n'), ((5822, 5840), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (5836, 5840), True, 'import numpy as np\n'), ((5845, 5872), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_idx'], {}), '(rand_idx)\n', (5862, 5872), True, 'import numpy as np\n'), ((7883, 7932), 'numpy.zeros', 'np.zeros', (['(num_users * num_items)'], {'dtype': 'np.float32'}), '(num_users * num_items, dtype=np.float32)\n', (7891, 7932), True, 'import numpy as np\n'), ((2374, 2477), 'pandas.read_csv', 'pd.read_csv', (['filename_test_init'], {'header': 'None', 'names': "['u_nodes', 'v_nodes', 'ratings']", 'dtype': 'dtypes'}), "(filename_test_init, header=None, names=['u_nodes', 'v_nodes',\n 'ratings'], dtype=dtypes)\n", (2385, 2477), True, 'import pandas as pd\n'), ((2818, 2848), 'numpy.array', 'np.array', (['data_array_test_init'], {}), '(data_array_test_init)\n', (2826, 2848), True, 'import numpy as np\n'), ((3034, 3119), 'numpy.concatenate', 'np.concatenate', (['[data_array_train, data_array_test, data_array_test_init]'], {'axis': '(0)'}), '([data_array_train, data_array_test, data_array_test_init],\n axis=0)\n', (3048, 3119), True, 'import numpy as np\n'), ((3147, 3206), 'numpy.concatenate', 'np.concatenate', (['[data_array_train, data_array_test]'], {'axis': '(0)'}), '([data_array_train, data_array_test], axis=0)\n', (3161, 3206), True, 'import numpy as np\n'), ((4552, 4576), 'numpy.ceil', 'np.ceil', (['(num_train * 0.2)'], {}), '(num_train * 0.2)\n', (4559, 4576), True, 'import numpy as np\n'), ((6032, 6120), 'numpy.concatenate', 'np.concatenate', (['[idx_nonzero_train, idx_nonzero_test, idx_nonzero_test_init]'], {'axis': '(0)'}), '([idx_nonzero_train, idx_nonzero_test, idx_nonzero_test_init],\n axis=0)\n', (6046, 6120), True, 'import numpy as np\n'), ((6141, 6235), 'numpy.concatenate', 'np.concatenate', (['[pairs_nonzero_train, pairs_nonzero_test, pairs_nonzero_test_init]'], {'axis': '(0)'}), '([pairs_nonzero_train, pairs_nonzero_test,\n pairs_nonzero_test_init], axis=0)\n', (6155, 6235), True, 'import numpy as np\n'), ((6520, 6581), 'numpy.concatenate', 'np.concatenate', (['[idx_nonzero_train, idx_nonzero_test]'], {'axis': '(0)'}), '([idx_nonzero_train, idx_nonzero_test], axis=0)\n', (6534, 6581), True, 'import numpy as np\n'), ((6606, 6671), 'numpy.concatenate', 'np.concatenate', (['[pairs_nonzero_train, pairs_nonzero_test]'], {'axis': '(0)'}), '([pairs_nonzero_train, pairs_nonzero_test], axis=0)\n', (6620, 6671), True, 'import numpy as np\n'), ((7399, 7434), 'numpy.hstack', 'np.hstack', (['[u_train_idx, u_val_idx]'], {}), '([u_train_idx, u_val_idx])\n', (7408, 7434), True, 'import numpy as np\n'), ((7457, 7492), 'numpy.hstack', 'np.hstack', (['[v_train_idx, v_val_idx]'], {}), '([v_train_idx, v_val_idx])\n', (7466, 7492), True, 'import numpy as np\n'), ((7516, 7553), 'numpy.hstack', 'np.hstack', (['[train_labels, val_labels]'], {}), '([train_labels, val_labels])\n', (7525, 7553), True, 'import numpy as np\n'), ((7803, 7821), 'numpy.unique', 'np.unique', (['ratings'], {}), '(ratings)\n', (7812, 7821), True, 'import numpy as np\n'), ((8413, 8439), 'os.path.exists', 'os.path.exists', (['drugs_file'], {}), '(drugs_file)\n', (8427, 8439), False, 'import os\n'), ((8444, 8470), 'os.path.exists', 'os.path.exists', (['genes_file'], {}), '(genes_file)\n', (8458, 8470), False, 'import os\n'), ((8491, 8514), 'pandas.read_csv', 'pd.read_csv', (['drugs_file'], {}), '(drugs_file)\n', (8502, 8514), True, 'import pandas as pd\n'), ((8642, 8700), 'numpy.zeros', 'np.zeros', (['(num_users, num_drug_features)'], {'dtype': 'np.float32'}), '((num_users, num_drug_features), dtype=np.float32)\n', (8650, 8700), True, 'import numpy as np\n'), ((9068, 9091), 'pandas.read_csv', 'pd.read_csv', (['genes_file'], {}), '(genes_file)\n', (9079, 9091), True, 'import pandas as pd\n'), ((9219, 9277), 'numpy.zeros', 'np.zeros', (['(num_items, num_gene_features)'], {'dtype': 'np.float32'}), '((num_items, num_gene_features), dtype=np.float32)\n', (9227, 9277), True, 'import numpy as np\n'), ((9603, 9628), 'scipy.sparse.csr_matrix', 'sp.csr_matrix', (['u_features'], {}), '(u_features)\n', (9616, 9628), True, 'import scipy.sparse as sp\n'), ((9650, 9675), 'scipy.sparse.csr_matrix', 'sp.csr_matrix', (['v_features'], {}), '(v_features)\n', (9663, 9675), True, 'import scipy.sparse as sp\n'), ((976, 998), 'numpy.asarray', 'np.asarray', (["ds['data']"], {}), "(ds['data'])\n", (986, 998), True, 'import numpy as np\n'), ((1016, 1036), 'numpy.asarray', 'np.asarray', (["ds['ir']"], {}), "(ds['ir'])\n", (1026, 1036), True, 'import numpy as np\n'), ((1054, 1074), 'numpy.asarray', 'np.asarray', (["ds['jc']"], {}), "(ds['jc'])\n", (1064, 1074), True, 'import numpy as np\n'), ((7654, 7700), 'numpy.hstack', 'np.hstack', (['[train_idx, val_idx, test_init_idx]'], {}), '([train_idx, val_idx, test_init_idx])\n', (7663, 7700), True, 'import numpy as np\n'), ((7739, 7770), 'numpy.hstack', 'np.hstack', (['[train_idx, val_idx]'], {}), '([train_idx, val_idx])\n', (7748, 7770), True, 'import numpy as np\n'), ((8091, 8162), 'numpy.array', 'np.array', (['[post_rating_map[r] for r in class_values[labels[train_idx]]]'], {}), '([post_rating_map[r] for r in class_values[labels[train_idx]]])\n', (8099, 8162), True, 'import numpy as np\n'), ((1093, 1122), 'scipy.sparse.csc_matrix', 'sp.csc_matrix', (['(data, ir, jc)'], {}), '((data, ir, jc))\n', (1106, 1122), True, 'import scipy.sparse as sp\n'), ((1301, 1315), 'numpy.asarray', 'np.asarray', (['ds'], {}), '(ds)\n', (1311, 1315), True, 'import numpy as np\n'), ((4059, 4077), 'numpy.unique', 'np.unique', (['ratings'], {}), '(ratings)\n', (4068, 4077), True, 'import numpy as np\n')]
import numpy as np def perform_thresholding(f,M,type): """ Only 3 types of thresholding currently implemented """ if type == "largest": a = np.sort(np.ravel(abs(f)))[::-1] #sort a 1D copy of F in descending order T = a[M] y = f*(abs(f) > T) elif type == "soft": s = abs(f) - M s = (s + abs(s))/2 y = np.sign(f)*s elif type == "hard": y = f*(abs(f) > M) return y
[ "numpy.sign" ]
[((373, 383), 'numpy.sign', 'np.sign', (['f'], {}), '(f)\n', (380, 383), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # File : test.py # Author : <NAME> # Email : <EMAIL> # Date : 25/01/2018 # # This file is part of Semantic-Graph-PyTorch. import json import os.path as osp from os.path import join as pjoin import time import numpy as np import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.cuda as cuda import jacinle.io as io from jacinle.cli.argument import JacArgumentParser from jacinle.logging import get_logger from jacinle.utils.meter import GroupMeters from jacinle.utils.tqdm import tqdm_pbar from jaclearn.embedding.word_embedding import load as load_word_embedding from jactorch.cuda.copy import async_copy_to from jactorch.io import load_weights from jactorch.utils.meta import as_numpy, mark_volatile from evaluation.completion.cli import ensure_path, format_meters, dump_metainfo from evaluation.completion.dataset import CompletionDataset, make_dataloader from evaluation.completion.model import CompletionModel from vocab import Vocabulary logger = get_logger(__file__) parser = JacArgumentParser(description='Semantic graph testing') parser.add_argument('--load', required=True, type='checked_dir', metavar='DIR', help='path to checkpoint directory') parser.add_argument('--mode', default='all', choices=['all', 'noun', 'prep'], metavar='M') parser.add_argument('--use-gpu', default=True, type='bool', metavar='B', help='use GPU or not') parser.add_argument('--vse', required=True, type='checked_file', metavar='FILE', help='vse file') parser.add_argument('--glove-only', action='store_true') parser.add_argument('--data-dir', required=True, type='checked_dir', help='data directory') parser.add_argument('--dev-img', default='dev_ims.npy', metavar='FILE', help='dev data json file') parser.add_argument('--dev-cap', default='dev_caps_replace.json', metavar='FILE', help='dev data json file') parser.add_argument('--test-img', default='test_ims.npy', metavar='FILE', help='testing data json file') parser.add_argument('--test-cap', default='test_caps_replace.json', metavar='FILE', help='testing data json file') parser.add_argument('--data-workers', type=int, default=4, metavar='N', help='the num of workers that input testing data') args = parser.parse_args() if args.use_gpu: nr_devs = cuda.device_count() assert nr_devs > 0, 'No GPU device available' class Vocab(object): def __init__(self, idx2word=None, options=None, sync=None): assert options is None if sync is not None: self.idx2word = sync.idx2word self.word2idx = sync.word2idx else: self.idx2word = idx2word self.word2idx = dict([(w, i) for i, w in enumerate(self.idx2word)]) self.sent_trunc_length = None @classmethod def from_pickle(cls, path): vocab = io.load(path) return cls(sync=vocab) def project(self, sentence, is_sent=True): sentence = sentence.strip().lower().split() if is_sent: sentence = ['<start>'] + sentence + ['<end>'] if self.sent_trunc_length is not None: if len(sentence) > self.sent_trunc_length: sentence = sentence[:self.sent_trunc_length] return list(map(lambda word: self.word2idx.get(word, 3), sentence)) def __len__(self): return len(self.idx2word) def __call__(self, sent, is_sent=True): return self.project(sent, is_sent=is_sent) def load_word_embedding(vse): checkpoint = torch.load(vse) opt = checkpoint['opt'] vocab = Vocab.from_pickle(pjoin(opt.vocab_path, '%s_vocab.pkl' % opt.data_name)) if not args.glove_only: embed_weights = checkpoint['model'][1]['embed.weight'].cpu().numpy() _, glove_weights = io.load('data/snli/glove.pkl') embed_weights = np.concatenate((glove_weights, embed_weights), axis=1) else: _, embed_weights = io.load('data/snli/glove.pkl') embedding = nn.Embedding(embed_weights.shape[0], embed_weights.shape[1], padding_idx=0) embedding.weight.data.copy_(torch.from_numpy(embed_weights)) return vocab, embedding def main(): logger.critical('Loading the word embedding.') vocab, word_embeddings = load_word_embedding(args.vse) logger.critical('Building up the model.') model = CompletionModel(word_embeddings) if args.use_gpu: model.cuda() # Disable the cudnn benchmark. model.eval() cudnn.benchmark = False logger.critical('Loading the dataset.') dev_dataset = CompletionDataset(vocab, pjoin(args.data_dir, args.dev_img), pjoin(args.data_dir, args.dev_cap), mode=args.mode) test_dataset = CompletionDataset(vocab, pjoin(args.data_dir, args.test_img), pjoin(args.data_dir, args.test_cap), mode=args.mode) logger.critical('Building up the data loader.') dev_dataloader = make_dataloader(dev_dataset, num_workers=args.data_workers, batch_size=64, shuffle=False, drop_last=False, pin_memory=True) test_dataloader = make_dataloader(test_dataset, num_workers=args.data_workers, batch_size=64, shuffle=False, drop_last=False, pin_memory=True) for epoch_id in range(1, 11): load_weights(model, pjoin(args.load, 'epoch_{}.pth'.format(epoch_id))) for loader in [dev_dataloader, test_dataloader]: meters = GroupMeters() end = time.time() with tqdm_pbar(total=len(loader), leave=False) as pbar: for i, data in enumerate(loader): feed_dict = data feed_dict = mark_volatile(feed_dict) if args.use_gpu: feed_dict = async_copy_to(feed_dict, 0) data_time = time.time() - end; end = time.time() output_dict = model(feed_dict) output_dict = as_numpy(output_dict) gpu_time = time.time() - end; end = time.time() meters.update({k: float(v) for k, v in output_dict.items() if k.startswith('top')}, n=len(feed_dict['image'])) meters.update({'time/data': data_time, 'time/gpu': gpu_time}) pbar.set_description(format_meters('sentid={}'.format(i), meters.val, '{}={:.4f}', ', ')) pbar.update() end = time.time() print(epoch_id, sorted(meters.avg.items())) if __name__ == '__main__': main()
[ "jacinle.cli.argument.JacArgumentParser", "jacinle.utils.meter.GroupMeters", "jacinle.io.load", "evaluation.completion.dataset.make_dataloader", "torch.nn.Embedding", "torch.load", "jactorch.utils.meta.as_numpy", "evaluation.completion.model.CompletionModel", "torch.cuda.device_count", "jaclearn.embedding.word_embedding.load", "time.time", "jactorch.utils.meta.mark_volatile", "jacinle.logging.get_logger", "jactorch.cuda.copy.async_copy_to", "os.path.join", "numpy.concatenate", "torch.from_numpy" ]
[((1015, 1035), 'jacinle.logging.get_logger', 'get_logger', (['__file__'], {}), '(__file__)\n', (1025, 1035), False, 'from jacinle.logging import get_logger\n'), ((1046, 1101), 'jacinle.cli.argument.JacArgumentParser', 'JacArgumentParser', ([], {'description': '"""Semantic graph testing"""'}), "(description='Semantic graph testing')\n", (1063, 1101), False, 'from jacinle.cli.argument import JacArgumentParser\n'), ((2267, 2286), 'torch.cuda.device_count', 'cuda.device_count', ([], {}), '()\n', (2284, 2286), True, 'import torch.cuda as cuda\n'), ((3472, 3487), 'torch.load', 'torch.load', (['vse'], {}), '(vse)\n', (3482, 3487), False, 'import torch\n'), ((3928, 4003), 'torch.nn.Embedding', 'nn.Embedding', (['embed_weights.shape[0]', 'embed_weights.shape[1]'], {'padding_idx': '(0)'}), '(embed_weights.shape[0], embed_weights.shape[1], padding_idx=0)\n', (3940, 4003), True, 'import torch.nn as nn\n'), ((4191, 4220), 'jaclearn.embedding.word_embedding.load', 'load_word_embedding', (['args.vse'], {}), '(args.vse)\n', (4210, 4220), True, 'from jaclearn.embedding.word_embedding import load as load_word_embedding\n'), ((4280, 4312), 'evaluation.completion.model.CompletionModel', 'CompletionModel', (['word_embeddings'], {}), '(word_embeddings)\n', (4295, 4312), False, 'from evaluation.completion.model import CompletionModel\n'), ((4820, 4947), 'evaluation.completion.dataset.make_dataloader', 'make_dataloader', (['dev_dataset'], {'num_workers': 'args.data_workers', 'batch_size': '(64)', 'shuffle': '(False)', 'drop_last': '(False)', 'pin_memory': '(True)'}), '(dev_dataset, num_workers=args.data_workers, batch_size=64,\n shuffle=False, drop_last=False, pin_memory=True)\n', (4835, 4947), False, 'from evaluation.completion.dataset import CompletionDataset, make_dataloader\n'), ((4966, 5094), 'evaluation.completion.dataset.make_dataloader', 'make_dataloader', (['test_dataset'], {'num_workers': 'args.data_workers', 'batch_size': '(64)', 'shuffle': '(False)', 'drop_last': '(False)', 'pin_memory': '(True)'}), '(test_dataset, num_workers=args.data_workers, batch_size=64,\n shuffle=False, drop_last=False, pin_memory=True)\n', (4981, 5094), False, 'from evaluation.completion.dataset import CompletionDataset, make_dataloader\n'), ((2803, 2816), 'jacinle.io.load', 'io.load', (['path'], {}), '(path)\n', (2810, 2816), True, 'import jacinle.io as io\n'), ((3546, 3599), 'os.path.join', 'pjoin', (['opt.vocab_path', "('%s_vocab.pkl' % opt.data_name)"], {}), "(opt.vocab_path, '%s_vocab.pkl' % opt.data_name)\n", (3551, 3599), True, 'from os.path import join as pjoin\n'), ((3734, 3764), 'jacinle.io.load', 'io.load', (['"""data/snli/glove.pkl"""'], {}), "('data/snli/glove.pkl')\n", (3741, 3764), True, 'import jacinle.io as io\n'), ((3789, 3843), 'numpy.concatenate', 'np.concatenate', (['(glove_weights, embed_weights)'], {'axis': '(1)'}), '((glove_weights, embed_weights), axis=1)\n', (3803, 3843), True, 'import numpy as np\n'), ((3881, 3911), 'jacinle.io.load', 'io.load', (['"""data/snli/glove.pkl"""'], {}), "('data/snli/glove.pkl')\n", (3888, 3911), True, 'import jacinle.io as io\n'), ((4036, 4067), 'torch.from_numpy', 'torch.from_numpy', (['embed_weights'], {}), '(embed_weights)\n', (4052, 4067), False, 'import torch\n'), ((4524, 4558), 'os.path.join', 'pjoin', (['args.data_dir', 'args.dev_img'], {}), '(args.data_dir, args.dev_img)\n', (4529, 4558), True, 'from os.path import join as pjoin\n'), ((4560, 4594), 'os.path.join', 'pjoin', (['args.data_dir', 'args.dev_cap'], {}), '(args.data_dir, args.dev_cap)\n', (4565, 4594), True, 'from os.path import join as pjoin\n'), ((4656, 4691), 'os.path.join', 'pjoin', (['args.data_dir', 'args.test_img'], {}), '(args.data_dir, args.test_img)\n', (4661, 4691), True, 'from os.path import join as pjoin\n'), ((4693, 4728), 'os.path.join', 'pjoin', (['args.data_dir', 'args.test_cap'], {}), '(args.data_dir, args.test_cap)\n', (4698, 4728), True, 'from os.path import join as pjoin\n'), ((5284, 5297), 'jacinle.utils.meter.GroupMeters', 'GroupMeters', ([], {}), '()\n', (5295, 5297), False, 'from jacinle.utils.meter import GroupMeters\n'), ((5317, 5328), 'time.time', 'time.time', ([], {}), '()\n', (5326, 5328), False, 'import time\n'), ((5516, 5540), 'jactorch.utils.meta.mark_volatile', 'mark_volatile', (['feed_dict'], {}), '(feed_dict)\n', (5529, 5540), False, 'from jactorch.utils.meta import as_numpy, mark_volatile\n'), ((5701, 5712), 'time.time', 'time.time', ([], {}), '()\n', (5710, 5712), False, 'import time\n'), ((5799, 5820), 'jactorch.utils.meta.as_numpy', 'as_numpy', (['output_dict'], {}), '(output_dict)\n', (5807, 5820), False, 'from jactorch.utils.meta import as_numpy, mark_volatile\n'), ((5879, 5890), 'time.time', 'time.time', ([], {}), '()\n', (5888, 5890), False, 'import time\n'), ((6277, 6288), 'time.time', 'time.time', ([], {}), '()\n', (6286, 6288), False, 'import time\n'), ((5615, 5642), 'jactorch.cuda.copy.async_copy_to', 'async_copy_to', (['feed_dict', '(0)'], {}), '(feed_dict, 0)\n', (5628, 5642), False, 'from jactorch.cuda.copy import async_copy_to\n'), ((5676, 5687), 'time.time', 'time.time', ([], {}), '()\n', (5685, 5687), False, 'import time\n'), ((5853, 5864), 'time.time', 'time.time', ([], {}), '()\n', (5862, 5864), False, 'import time\n')]
import numpy as np from bokeh.io import curdoc from bokeh.plotting import figure N = 4000 x = np.random.random(size=N) * 100 y = np.random.random(size=N) * 100 radii = np.random.random(size=N) * 1.5 colors = [ "#%02x%02x%02x" % (int(r), int(g), 150) for r, g in zip(50+2*x, 30+2*y) ] p = figure(tools="", toolbar_location=None) p.circle(x, y, radius=radii, fill_color=colors, fill_alpha=0.6, line_color=None) curdoc().add_root(p)
[ "bokeh.io.curdoc", "bokeh.plotting.figure", "numpy.random.random" ]
[((295, 334), 'bokeh.plotting.figure', 'figure', ([], {'tools': '""""""', 'toolbar_location': 'None'}), "(tools='', toolbar_location=None)\n", (301, 334), False, 'from bokeh.plotting import figure\n'), ((96, 120), 'numpy.random.random', 'np.random.random', ([], {'size': 'N'}), '(size=N)\n', (112, 120), True, 'import numpy as np\n'), ((131, 155), 'numpy.random.random', 'np.random.random', ([], {'size': 'N'}), '(size=N)\n', (147, 155), True, 'import numpy as np\n'), ((170, 194), 'numpy.random.random', 'np.random.random', ([], {'size': 'N'}), '(size=N)\n', (186, 194), True, 'import numpy as np\n'), ((436, 444), 'bokeh.io.curdoc', 'curdoc', ([], {}), '()\n', (442, 444), False, 'from bokeh.io import curdoc\n')]
from visibilitygraphs.dubinspath.dubinsCar import DubinsCar from visibilitygraphs.dubinspath.vanaAirplane import VanaAirplane from visibilitygraphs.models import AStarVertex from visibilitygraphs.dubinspath.helpers import dubinsCurve2d, vanaAirplaneCurve import numpy as np import matplotlib.pyplot as plt from mpl_toolkits import mplot3d def testDubinsCurve2dLSL(): dubins = DubinsCar() path = dubins.calculatePath( AStarVertex(x=0, y=0, psi=0), AStarVertex(x=1, y=1, psi=np.pi / 2), .25 ) f = dubinsCurve2d([path.start.x, path.start.y, path.start.psi], path.a, path.b, path.c, path.r, path.type) t = np.linspace(0, 1, 100) xy = np.array([f(s) for s in t]) plt.plot(xy[:, 0], xy[:, 1]) plt.title('LSL') plt.show() def testDubinsCurve2dLSR(): dubins = DubinsCar() path = dubins.calculatePath( AStarVertex(x=0, y=0, psi=0), AStarVertex(x=1, y=1, psi=0), .25 ) f = dubinsCurve2d([path.start.x, path.start.y, path.start.psi], path.a, path.b, path.c, path.r, path.type) t = np.linspace(0, 1, 100) xy = np.array([f(s) for s in t]) plt.plot(xy[:, 0], xy[:, 1]) plt.title('LSR') plt.show() def testDubinsCurve2dRSL(): dubins = DubinsCar() path = dubins.calculatePath( AStarVertex(x=0, y=0, psi=0), AStarVertex(x=1, y=-1, psi=0), .25 ) f = dubinsCurve2d([path.start.x, path.start.y, path.start.psi], path.a, path.b, path.c, path.r, path.type) t = np.linspace(0, 1, 100) xy = np.array([f(s) for s in t]) plt.plot(xy[:, 0], xy[:, 1]) plt.title('RSL') plt.show() def testDubinsCurve2dRSR(): dubins = DubinsCar() path = dubins.calculatePath( AStarVertex(x=0, y=0, psi=0), AStarVertex(x=1, y=-1, psi=-np.pi/2), .25 ) f = dubinsCurve2d([path.start.x, path.start.y, path.start.psi], path.a, path.b, path.c, path.r, path.type) t = np.linspace(0, 1, 100) xy = np.array([f(s) for s in t]) plt.plot(xy[:, 0], xy[:, 1]) plt.title('RSR') plt.show() def testDubinsCurve2dLRL(): dubins = DubinsCar() path = dubins.calculatePath( AStarVertex(x=0, y=0, psi=0), AStarVertex(x=0, y=-.125, psi=np.pi), .25 ) f = dubinsCurve2d([path.start.x, path.start.y, path.start.psi], path.a, path.b, path.c, path.r, path.type) t = np.linspace(0, 1, 100) xy = np.array([f(s) for s in t]) plt.plot(xy[:, 0], xy[:, 1]) plt.title('RSL') plt.show() def testDubinsCurve2dRLR(): dubins = DubinsCar() path = dubins.calculatePath( AStarVertex(x=0, y=0, psi=0), AStarVertex(x=0, y=.125, psi=np.pi), .25 ) f = dubinsCurve2d([path.start.x, path.start.y, path.start.psi], path.a, path.b, path.c, path.r, path.type) t = np.linspace(0, 1, 100) xy = np.array([f(s) for s in t]) plt.plot(xy[:, 0], xy[:, 1]) plt.title('RSL') plt.show() def testVanaAirplaneCurve(): dubins = VanaAirplane() path = dubins.calculatePath( AStarVertex(x=0, y=0, z=0, psi=0, gamma=0), AStarVertex(x=1, y=1, z=1, psi=0, gamma=0), .25, 2 * np.pi / 9 ) f = vanaAirplaneCurve(path) t = np.linspace(0, 1, 100) x = np.array([f(s) for s in t]) ax = plt.axes(projection='3d') ax.plot(x[:, 0], x[:, 1], x[:, 2]) plt.title('3d curve') plt.show()
[ "matplotlib.pyplot.title", "visibilitygraphs.dubinspath.dubinsCar.DubinsCar", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.axes", "visibilitygraphs.dubinspath.helpers.dubinsCurve2d", "visibilitygraphs.dubinspath.helpers.vanaAirplaneCurve", "numpy.linspace", "visibilitygraphs.dubinspath.vanaAirplane.VanaAirplane", "visibilitygraphs.models.AStarVertex" ]
[((383, 394), 'visibilitygraphs.dubinspath.dubinsCar.DubinsCar', 'DubinsCar', ([], {}), '()\n', (392, 394), False, 'from visibilitygraphs.dubinspath.dubinsCar import DubinsCar\n'), ((538, 644), 'visibilitygraphs.dubinspath.helpers.dubinsCurve2d', 'dubinsCurve2d', (['[path.start.x, path.start.y, path.start.psi]', 'path.a', 'path.b', 'path.c', 'path.r', 'path.type'], {}), '([path.start.x, path.start.y, path.start.psi], path.a, path.b,\n path.c, path.r, path.type)\n', (551, 644), False, 'from visibilitygraphs.dubinspath.helpers import dubinsCurve2d, vanaAirplaneCurve\n'), ((649, 671), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (660, 671), True, 'import numpy as np\n'), ((713, 741), 'matplotlib.pyplot.plot', 'plt.plot', (['xy[:, 0]', 'xy[:, 1]'], {}), '(xy[:, 0], xy[:, 1])\n', (721, 741), True, 'import matplotlib.pyplot as plt\n'), ((746, 762), 'matplotlib.pyplot.title', 'plt.title', (['"""LSL"""'], {}), "('LSL')\n", (755, 762), True, 'import matplotlib.pyplot as plt\n'), ((767, 777), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (775, 777), True, 'import matplotlib.pyplot as plt\n'), ((820, 831), 'visibilitygraphs.dubinspath.dubinsCar.DubinsCar', 'DubinsCar', ([], {}), '()\n', (829, 831), False, 'from visibilitygraphs.dubinspath.dubinsCar import DubinsCar\n'), ((967, 1073), 'visibilitygraphs.dubinspath.helpers.dubinsCurve2d', 'dubinsCurve2d', (['[path.start.x, path.start.y, path.start.psi]', 'path.a', 'path.b', 'path.c', 'path.r', 'path.type'], {}), '([path.start.x, path.start.y, path.start.psi], path.a, path.b,\n path.c, path.r, path.type)\n', (980, 1073), False, 'from visibilitygraphs.dubinspath.helpers import dubinsCurve2d, vanaAirplaneCurve\n'), ((1078, 1100), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (1089, 1100), True, 'import numpy as np\n'), ((1142, 1170), 'matplotlib.pyplot.plot', 'plt.plot', (['xy[:, 0]', 'xy[:, 1]'], {}), '(xy[:, 0], xy[:, 1])\n', (1150, 1170), True, 'import matplotlib.pyplot as plt\n'), ((1175, 1191), 'matplotlib.pyplot.title', 'plt.title', (['"""LSR"""'], {}), "('LSR')\n", (1184, 1191), True, 'import matplotlib.pyplot as plt\n'), ((1196, 1206), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1204, 1206), True, 'import matplotlib.pyplot as plt\n'), ((1249, 1260), 'visibilitygraphs.dubinspath.dubinsCar.DubinsCar', 'DubinsCar', ([], {}), '()\n', (1258, 1260), False, 'from visibilitygraphs.dubinspath.dubinsCar import DubinsCar\n'), ((1397, 1503), 'visibilitygraphs.dubinspath.helpers.dubinsCurve2d', 'dubinsCurve2d', (['[path.start.x, path.start.y, path.start.psi]', 'path.a', 'path.b', 'path.c', 'path.r', 'path.type'], {}), '([path.start.x, path.start.y, path.start.psi], path.a, path.b,\n path.c, path.r, path.type)\n', (1410, 1503), False, 'from visibilitygraphs.dubinspath.helpers import dubinsCurve2d, vanaAirplaneCurve\n'), ((1508, 1530), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (1519, 1530), True, 'import numpy as np\n'), ((1572, 1600), 'matplotlib.pyplot.plot', 'plt.plot', (['xy[:, 0]', 'xy[:, 1]'], {}), '(xy[:, 0], xy[:, 1])\n', (1580, 1600), True, 'import matplotlib.pyplot as plt\n'), ((1605, 1621), 'matplotlib.pyplot.title', 'plt.title', (['"""RSL"""'], {}), "('RSL')\n", (1614, 1621), True, 'import matplotlib.pyplot as plt\n'), ((1626, 1636), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1634, 1636), True, 'import matplotlib.pyplot as plt\n'), ((1679, 1690), 'visibilitygraphs.dubinspath.dubinsCar.DubinsCar', 'DubinsCar', ([], {}), '()\n', (1688, 1690), False, 'from visibilitygraphs.dubinspath.dubinsCar import DubinsCar\n'), ((1834, 1940), 'visibilitygraphs.dubinspath.helpers.dubinsCurve2d', 'dubinsCurve2d', (['[path.start.x, path.start.y, path.start.psi]', 'path.a', 'path.b', 'path.c', 'path.r', 'path.type'], {}), '([path.start.x, path.start.y, path.start.psi], path.a, path.b,\n path.c, path.r, path.type)\n', (1847, 1940), False, 'from visibilitygraphs.dubinspath.helpers import dubinsCurve2d, vanaAirplaneCurve\n'), ((1945, 1967), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (1956, 1967), True, 'import numpy as np\n'), ((2009, 2037), 'matplotlib.pyplot.plot', 'plt.plot', (['xy[:, 0]', 'xy[:, 1]'], {}), '(xy[:, 0], xy[:, 1])\n', (2017, 2037), True, 'import matplotlib.pyplot as plt\n'), ((2042, 2058), 'matplotlib.pyplot.title', 'plt.title', (['"""RSR"""'], {}), "('RSR')\n", (2051, 2058), True, 'import matplotlib.pyplot as plt\n'), ((2063, 2073), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2071, 2073), True, 'import matplotlib.pyplot as plt\n'), ((2116, 2127), 'visibilitygraphs.dubinspath.dubinsCar.DubinsCar', 'DubinsCar', ([], {}), '()\n', (2125, 2127), False, 'from visibilitygraphs.dubinspath.dubinsCar import DubinsCar\n'), ((2271, 2377), 'visibilitygraphs.dubinspath.helpers.dubinsCurve2d', 'dubinsCurve2d', (['[path.start.x, path.start.y, path.start.psi]', 'path.a', 'path.b', 'path.c', 'path.r', 'path.type'], {}), '([path.start.x, path.start.y, path.start.psi], path.a, path.b,\n path.c, path.r, path.type)\n', (2284, 2377), False, 'from visibilitygraphs.dubinspath.helpers import dubinsCurve2d, vanaAirplaneCurve\n'), ((2382, 2404), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (2393, 2404), True, 'import numpy as np\n'), ((2446, 2474), 'matplotlib.pyplot.plot', 'plt.plot', (['xy[:, 0]', 'xy[:, 1]'], {}), '(xy[:, 0], xy[:, 1])\n', (2454, 2474), True, 'import matplotlib.pyplot as plt\n'), ((2479, 2495), 'matplotlib.pyplot.title', 'plt.title', (['"""RSL"""'], {}), "('RSL')\n", (2488, 2495), True, 'import matplotlib.pyplot as plt\n'), ((2500, 2510), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2508, 2510), True, 'import matplotlib.pyplot as plt\n'), ((2553, 2564), 'visibilitygraphs.dubinspath.dubinsCar.DubinsCar', 'DubinsCar', ([], {}), '()\n', (2562, 2564), False, 'from visibilitygraphs.dubinspath.dubinsCar import DubinsCar\n'), ((2707, 2813), 'visibilitygraphs.dubinspath.helpers.dubinsCurve2d', 'dubinsCurve2d', (['[path.start.x, path.start.y, path.start.psi]', 'path.a', 'path.b', 'path.c', 'path.r', 'path.type'], {}), '([path.start.x, path.start.y, path.start.psi], path.a, path.b,\n path.c, path.r, path.type)\n', (2720, 2813), False, 'from visibilitygraphs.dubinspath.helpers import dubinsCurve2d, vanaAirplaneCurve\n'), ((2818, 2840), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (2829, 2840), True, 'import numpy as np\n'), ((2882, 2910), 'matplotlib.pyplot.plot', 'plt.plot', (['xy[:, 0]', 'xy[:, 1]'], {}), '(xy[:, 0], xy[:, 1])\n', (2890, 2910), True, 'import matplotlib.pyplot as plt\n'), ((2915, 2931), 'matplotlib.pyplot.title', 'plt.title', (['"""RSL"""'], {}), "('RSL')\n", (2924, 2931), True, 'import matplotlib.pyplot as plt\n'), ((2936, 2946), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2944, 2946), True, 'import matplotlib.pyplot as plt\n'), ((2990, 3004), 'visibilitygraphs.dubinspath.vanaAirplane.VanaAirplane', 'VanaAirplane', ([], {}), '()\n', (3002, 3004), False, 'from visibilitygraphs.dubinspath.vanaAirplane import VanaAirplane\n'), ((3191, 3214), 'visibilitygraphs.dubinspath.helpers.vanaAirplaneCurve', 'vanaAirplaneCurve', (['path'], {}), '(path)\n', (3208, 3214), False, 'from visibilitygraphs.dubinspath.helpers import dubinsCurve2d, vanaAirplaneCurve\n'), ((3223, 3245), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (3234, 3245), True, 'import numpy as np\n'), ((3291, 3316), 'matplotlib.pyplot.axes', 'plt.axes', ([], {'projection': '"""3d"""'}), "(projection='3d')\n", (3299, 3316), True, 'import matplotlib.pyplot as plt\n'), ((3360, 3381), 'matplotlib.pyplot.title', 'plt.title', (['"""3d curve"""'], {}), "('3d curve')\n", (3369, 3381), True, 'import matplotlib.pyplot as plt\n'), ((3386, 3396), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3394, 3396), True, 'import matplotlib.pyplot as plt\n'), ((436, 464), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(0)', 'y': '(0)', 'psi': '(0)'}), '(x=0, y=0, psi=0)\n', (447, 464), False, 'from visibilitygraphs.models import AStarVertex\n'), ((474, 510), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(1)', 'y': '(1)', 'psi': '(np.pi / 2)'}), '(x=1, y=1, psi=np.pi / 2)\n', (485, 510), False, 'from visibilitygraphs.models import AStarVertex\n'), ((873, 901), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(0)', 'y': '(0)', 'psi': '(0)'}), '(x=0, y=0, psi=0)\n', (884, 901), False, 'from visibilitygraphs.models import AStarVertex\n'), ((911, 939), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(1)', 'y': '(1)', 'psi': '(0)'}), '(x=1, y=1, psi=0)\n', (922, 939), False, 'from visibilitygraphs.models import AStarVertex\n'), ((1302, 1330), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(0)', 'y': '(0)', 'psi': '(0)'}), '(x=0, y=0, psi=0)\n', (1313, 1330), False, 'from visibilitygraphs.models import AStarVertex\n'), ((1340, 1369), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(1)', 'y': '(-1)', 'psi': '(0)'}), '(x=1, y=-1, psi=0)\n', (1351, 1369), False, 'from visibilitygraphs.models import AStarVertex\n'), ((1732, 1760), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(0)', 'y': '(0)', 'psi': '(0)'}), '(x=0, y=0, psi=0)\n', (1743, 1760), False, 'from visibilitygraphs.models import AStarVertex\n'), ((1770, 1808), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(1)', 'y': '(-1)', 'psi': '(-np.pi / 2)'}), '(x=1, y=-1, psi=-np.pi / 2)\n', (1781, 1808), False, 'from visibilitygraphs.models import AStarVertex\n'), ((2169, 2197), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(0)', 'y': '(0)', 'psi': '(0)'}), '(x=0, y=0, psi=0)\n', (2180, 2197), False, 'from visibilitygraphs.models import AStarVertex\n'), ((2207, 2244), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(0)', 'y': '(-0.125)', 'psi': 'np.pi'}), '(x=0, y=-0.125, psi=np.pi)\n', (2218, 2244), False, 'from visibilitygraphs.models import AStarVertex\n'), ((2606, 2634), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(0)', 'y': '(0)', 'psi': '(0)'}), '(x=0, y=0, psi=0)\n', (2617, 2634), False, 'from visibilitygraphs.models import AStarVertex\n'), ((2644, 2680), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(0)', 'y': '(0.125)', 'psi': 'np.pi'}), '(x=0, y=0.125, psi=np.pi)\n', (2655, 2680), False, 'from visibilitygraphs.models import AStarVertex\n'), ((3046, 3088), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(0)', 'y': '(0)', 'z': '(0)', 'psi': '(0)', 'gamma': '(0)'}), '(x=0, y=0, z=0, psi=0, gamma=0)\n', (3057, 3088), False, 'from visibilitygraphs.models import AStarVertex\n'), ((3098, 3140), 'visibilitygraphs.models.AStarVertex', 'AStarVertex', ([], {'x': '(1)', 'y': '(1)', 'z': '(1)', 'psi': '(0)', 'gamma': '(0)'}), '(x=1, y=1, z=1, psi=0, gamma=0)\n', (3109, 3140), False, 'from visibilitygraphs.models import AStarVertex\n')]
## Automatically adapted for scipy Oct 07, 2005 by convertcode.py from scipy.optimize import minpack2 import numpy import __builtin__ pymin = __builtin__.min def line_search(f, myfprime, xk, pk, gfk, old_fval, old_old_fval, args=(), c1=1e-4, c2=0.9, amax=50): fc = 0 gc = 0 phi0 = old_fval derphi0 = numpy.dot(gfk,pk) alpha1 = pymin(1.0,1.01*2*(phi0-old_old_fval)/derphi0) # trevor: added this test alpha1 = pymin(alpha1,amax) if isinstance(myfprime,type(())): eps = myfprime[1] fprime = myfprime[0] newargs = (f,eps) + args gradient = False else: fprime = myfprime newargs = args gradient = True xtol = 1e-14 amin = 1e-8 isave = numpy.zeros((2,), numpy.intc) dsave = numpy.zeros((13,), float) task = 'START' fval = old_fval gval = gfk while 1: stp,fval,derphi,task = minpack2.dcsrch(alpha1, phi0, derphi0, c1, c2, xtol, task, amin, amax,isave,dsave) #print 'minpack2.dcsrch', alpha1, phi0, derphi0, c1, c2, xtol, task, amin, amax,isave,dsave #print 'returns', stp,fval,derphi,task if task[:2] == 'FG': alpha1 = stp fval = f(xk+stp*pk,*args) fc += 1 gval = fprime(xk+stp*pk,*newargs) if gradient: gc += 1 else: fc += len(xk) + 1 phi0 = fval derphi0 = numpy.dot(gval,pk) else: break if task[:5] == 'ERROR' or task[1:4] == 'WARN': stp = None # failed return stp, fc, gc, fval, old_fval, gval
[ "scipy.optimize.minpack2.dcsrch", "numpy.dot", "numpy.zeros" ]
[((336, 354), 'numpy.dot', 'numpy.dot', (['gfk', 'pk'], {}), '(gfk, pk)\n', (345, 354), False, 'import numpy\n'), ((756, 785), 'numpy.zeros', 'numpy.zeros', (['(2,)', 'numpy.intc'], {}), '((2,), numpy.intc)\n', (767, 785), False, 'import numpy\n'), ((798, 823), 'numpy.zeros', 'numpy.zeros', (['(13,)', 'float'], {}), '((13,), float)\n', (809, 823), False, 'import numpy\n'), ((923, 1011), 'scipy.optimize.minpack2.dcsrch', 'minpack2.dcsrch', (['alpha1', 'phi0', 'derphi0', 'c1', 'c2', 'xtol', 'task', 'amin', 'amax', 'isave', 'dsave'], {}), '(alpha1, phi0, derphi0, c1, c2, xtol, task, amin, amax,\n isave, dsave)\n', (938, 1011), False, 'from scipy.optimize import minpack2\n'), ((1474, 1493), 'numpy.dot', 'numpy.dot', (['gval', 'pk'], {}), '(gval, pk)\n', (1483, 1493), False, 'import numpy\n')]
import cv2 import numpy as np import SimpleITK as sitk def auto_region_growing(img): clicks=[] image=img.copy() image=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) imgInput = sitk.GetImageFromArray(image) ret, thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) kernel = np.ones((5, 5), np.uint8) kernel2 = np.ones((3, 3), np.uint8) thresh = cv2.erode(thresh, kernel) thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel2, iterations=3) contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_TC89_L1) for c in contours: M = cv2.moments(c) if M["m00"] != 0: cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) clicks.append((cY, cX)) c = clicks[0] e = image[c[0], c[1]] seg = sitk.ConnectedThreshold(imgInput, seedList=clicks, lower=int(e - 50), upper=int(e + 50)) img_arr = sitk.GetArrayFromImage(seg) outimg = np.array(255 * img_arr, dtype='uint8') edges = cv2.Canny(outimg, 100, 200) return outimg,edges if __name__ == '__main__': image = cv2.imread('bird.jpg', 1) outimg,edges=auto_region_growing(image) cv2.imshow('Region Growing', outimg) cv2.waitKey() cv2.imshow('edges',edges) cv2.waitKey() cv2.destroyAllWindows()
[ "cv2.Canny", "cv2.cvtColor", "cv2.morphologyEx", "cv2.threshold", "cv2.waitKey", "cv2.destroyAllWindows", "numpy.ones", "SimpleITK.GetArrayFromImage", "cv2.moments", "cv2.imread", "numpy.array", "SimpleITK.GetImageFromArray", "cv2.erode", "cv2.imshow" ]
[((133, 172), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (145, 172), False, 'import cv2\n'), ((190, 219), 'SimpleITK.GetImageFromArray', 'sitk.GetImageFromArray', (['image'], {}), '(image)\n', (212, 219), True, 'import SimpleITK as sitk\n'), ((239, 308), 'cv2.threshold', 'cv2.threshold', (['image', '(0)', '(255)', '(cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)'], {}), '(image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)\n', (252, 308), False, 'import cv2\n'), ((322, 347), 'numpy.ones', 'np.ones', (['(5, 5)', 'np.uint8'], {}), '((5, 5), np.uint8)\n', (329, 347), True, 'import numpy as np\n'), ((362, 387), 'numpy.ones', 'np.ones', (['(3, 3)', 'np.uint8'], {}), '((3, 3), np.uint8)\n', (369, 387), True, 'import numpy as np\n'), ((401, 426), 'cv2.erode', 'cv2.erode', (['thresh', 'kernel'], {}), '(thresh, kernel)\n', (410, 426), False, 'import cv2\n'), ((440, 503), 'cv2.morphologyEx', 'cv2.morphologyEx', (['thresh', 'cv2.MORPH_OPEN', 'kernel2'], {'iterations': '(3)'}), '(thresh, cv2.MORPH_OPEN, kernel2, iterations=3)\n', (456, 503), False, 'import cv2\n'), ((961, 988), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (['seg'], {}), '(seg)\n', (983, 988), True, 'import SimpleITK as sitk\n'), ((1002, 1040), 'numpy.array', 'np.array', (['(255 * img_arr)'], {'dtype': '"""uint8"""'}), "(255 * img_arr, dtype='uint8')\n", (1010, 1040), True, 'import numpy as np\n'), ((1053, 1080), 'cv2.Canny', 'cv2.Canny', (['outimg', '(100)', '(200)'], {}), '(outimg, 100, 200)\n', (1062, 1080), False, 'import cv2\n'), ((1145, 1170), 'cv2.imread', 'cv2.imread', (['"""bird.jpg"""', '(1)'], {}), "('bird.jpg', 1)\n", (1155, 1170), False, 'import cv2\n'), ((1219, 1255), 'cv2.imshow', 'cv2.imshow', (['"""Region Growing"""', 'outimg'], {}), "('Region Growing', outimg)\n", (1229, 1255), False, 'import cv2\n'), ((1260, 1273), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (1271, 1273), False, 'import cv2\n'), ((1278, 1304), 'cv2.imshow', 'cv2.imshow', (['"""edges"""', 'edges'], {}), "('edges', edges)\n", (1288, 1304), False, 'import cv2\n'), ((1308, 1321), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (1319, 1321), False, 'import cv2\n'), ((1326, 1349), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1347, 1349), False, 'import cv2\n'), ((641, 655), 'cv2.moments', 'cv2.moments', (['c'], {}), '(c)\n', (652, 655), False, 'import cv2\n')]
import torch as th import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np class STFT(nn.Module): def __init__(self, fftsize, window_size, stride, win_type="default", trainable=False, online=False): super(STFT, self).__init__() self.fftsize = fftsize self.window_size = window_size self.stride = stride if win_type=="default": # sin window self.window_func = np.sqrt(np.hanning(self.window_size)) elif win_type=="hanning": self.window_func = np.hanning(self.window_size) fcoef_r = np.zeros((self.fftsize//2 + 1, 1, self.window_size)) fcoef_i = np.zeros((self.fftsize//2 + 1, 1, self.window_size)) for w in range(self.fftsize//2+1): for t in range(self.window_size): fcoef_r[w, 0, t] = np.cos(2. * np.pi * w * t / self.fftsize) fcoef_i[w, 0, t] = -np.sin(2. * np.pi * w * t / self.fftsize) fcoef_r = fcoef_r * self.window_func fcoef_i = fcoef_i * self.window_func self.fcoef_r = th.tensor(fcoef_r, dtype=th.float) self.fcoef_i = th.tensor(fcoef_i, dtype=th.float) self.encoder_r = nn.Conv1d(1, self.fftsize//2+1, self.window_size, bias=False, stride=self.stride) self.encoder_i = nn.Conv1d(1, self.fftsize//2+1, self.window_size, bias=False, stride=self.stride) self.encoder_r.weight = th.nn.Parameter(self.fcoef_r) self.encoder_i.weight = th.nn.Parameter(self.fcoef_i) if trainable: self.encoder_r.weight.requires_grad = True self.encoder_i.weight.requires_grad = True else: self.encoder_r.weight.requires_grad = False self.encoder_i.weight.requires_grad = False # for online if online: #self.input_buffer = th.tensor(np.zeros([1,1,self.window_size]),dtype=th.float,device=th.device('cpu')) self.input_buffer = th.tensor(np.zeros([1,1,self.window_size]),dtype=th.float) #import pdb; pdb.set_trace() def set_buffer_device(self, device): self.input_buffer = self.input_buffer.to(device) #import pdb; pdb.set_trace() return def forward(self, input): stft_stride = self.stride stft_window_size = self.window_size stft_fftsize = self.fftsize spec_r = self.encoder_r(input) spec_i = self.encoder_i(input) x_spec_real = spec_r[:,1:,:] # remove DC x_spec_imag = spec_i[:,1:,:] # remove DC output = th.cat([x_spec_real,x_spec_imag],dim=1) return output def forward_online(self, input): self.input_buffer[:,:,self.window_size-self.stride:] = input spec_r = self.encoder_r(self.input_buffer) spec_i = self.encoder_i(self.input_buffer) output = th.cat([spec_r[:,1:,:],spec_i[:,1:,:]],dim=1) self.input_buffer[:,:,:self.window_size-self.stride] = self.input_buffer[:,:,self.stride:] return output class ISTFT(nn.Module): def __init__(self, fftsize, window_size, stride, win_type="default", trainable=False, online=False): super(ISTFT, self).__init__() self.fftsize = fftsize self.window_size = window_size self.stride = stride gain_ifft = (2.0*self.stride) / self.window_size if win_type=="default": self.window_func = gain_ifft * np.sqrt(np.hanning(self.window_size) ) elif win_type=="hanning": self.window_func = gain_ifft * np.hanning(self.window_size) coef_cos = np.zeros((self.fftsize//2 + 1, 1, self.window_size)) coef_sin = np.zeros((self.fftsize//2 + 1, 1, self.window_size)) for w in range(self.fftsize//2+1): alpha = 1.0 if w==0 or w==fftsize//2 else 2.0 alpha /= fftsize #print alpha for t in range(self.window_size): coef_cos[w, 0, t] = alpha * np.cos(2. * np.pi * w * t / self.fftsize) coef_sin[w, 0, t] = alpha * np.sin(2. * np.pi * w * t / self.fftsize) self.coef_cos = th.tensor(coef_cos * self.window_func, dtype=th.float) self.coef_sin = th.tensor(coef_sin * self.window_func, dtype=th.float) self.decoder_re = nn.ConvTranspose1d(self.fftsize//2+1, 1, self.window_size, bias=False, stride=self.stride) self.decoder_im = nn.ConvTranspose1d(self.fftsize//2+1, 1, self.window_size, bias=False, stride=self.stride) self.decoder_re.weight = th.nn.Parameter(self.coef_cos) self.decoder_im.weight = th.nn.Parameter(self.coef_sin) if trainable: self.decoder_re.weight.requires_grad = True self.decoder_im.weight.requires_grad = True else: self.decoder_re.weight.requires_grad = False self.decoder_im.weight.requires_grad = False # for online if online: self.output_buffer = th.tensor(np.zeros([1,1,self.window_size]),dtype=th.float,device=th.device('cpu')) self.pad_dc = th.tensor(np.zeros([1,1,1]),dtype=th.float,device=th.device('cpu')) def set_buffer_device(self, device): self.output_buffer = self.output_buffer.to(device) self.pad_dc = self.pad_dc.to(device) return def forward(self, input): batch_size = input.shape[0] frame_size = input.shape[2] stft_stride = self.stride stft_window_size = self.window_size stft_fft_size = self.fftsize pad_real_dc = th.tensor(np.zeros([batch_size, 1, frame_size]),dtype=th.float,device=th.device(input.device)) pad_imag_dc = th.tensor(np.zeros([batch_size, 1, frame_size]),dtype=th.float,device=th.device(input.device)) real_part = th.cat([pad_real_dc,input[:,:self.fftsize//2,:]],dim=1) imag_part = th.cat([pad_imag_dc,input[:,self.fftsize//2:,:]],dim=1) time_cos = self.decoder_re(real_part) time_sin = self.decoder_im(imag_part) output = time_cos - time_sin return output def forward_online(self, input): real_part = th.cat([self.pad_dc,input[:,:self.fftsize//2,:]],dim=1) imag_part = th.cat([self.pad_dc,input[:,self.fftsize//2:,:]],dim=1) time_cos = self.decoder_re(real_part) time_sin = self.decoder_im(imag_part) self.output_buffer[:,:,:self.window_size-self.stride] = self.output_buffer[:,:,self.stride:] self.output_buffer[:,:,self.window_size-self.stride:] = 0.0 self.output_buffer = self.output_buffer + time_cos - time_sin output = self.output_buffer[:,:,:self.stride] return output
[ "torch.nn.Parameter", "torch.nn.Conv1d", "numpy.zeros", "torch.cat", "torch.nn.ConvTranspose1d", "numpy.sin", "numpy.cos", "torch.device", "numpy.hanning", "torch.tensor" ]
[((623, 677), 'numpy.zeros', 'np.zeros', (['(self.fftsize // 2 + 1, 1, self.window_size)'], {}), '((self.fftsize // 2 + 1, 1, self.window_size))\n', (631, 677), True, 'import numpy as np\n'), ((694, 748), 'numpy.zeros', 'np.zeros', (['(self.fftsize // 2 + 1, 1, self.window_size)'], {}), '((self.fftsize // 2 + 1, 1, self.window_size))\n', (702, 748), True, 'import numpy as np\n'), ((1108, 1142), 'torch.tensor', 'th.tensor', (['fcoef_r'], {'dtype': 'th.float'}), '(fcoef_r, dtype=th.float)\n', (1117, 1142), True, 'import torch as th\n'), ((1166, 1200), 'torch.tensor', 'th.tensor', (['fcoef_i'], {'dtype': 'th.float'}), '(fcoef_i, dtype=th.float)\n', (1175, 1200), True, 'import torch as th\n'), ((1227, 1317), 'torch.nn.Conv1d', 'nn.Conv1d', (['(1)', '(self.fftsize // 2 + 1)', 'self.window_size'], {'bias': '(False)', 'stride': 'self.stride'}), '(1, self.fftsize // 2 + 1, self.window_size, bias=False, stride=\n self.stride)\n', (1236, 1317), True, 'import torch.nn as nn\n'), ((1334, 1424), 'torch.nn.Conv1d', 'nn.Conv1d', (['(1)', '(self.fftsize // 2 + 1)', 'self.window_size'], {'bias': '(False)', 'stride': 'self.stride'}), '(1, self.fftsize // 2 + 1, self.window_size, bias=False, stride=\n self.stride)\n', (1343, 1424), True, 'import torch.nn as nn\n'), ((1450, 1479), 'torch.nn.Parameter', 'th.nn.Parameter', (['self.fcoef_r'], {}), '(self.fcoef_r)\n', (1465, 1479), True, 'import torch as th\n'), ((1512, 1541), 'torch.nn.Parameter', 'th.nn.Parameter', (['self.fcoef_i'], {}), '(self.fcoef_i)\n', (1527, 1541), True, 'import torch as th\n'), ((2584, 2625), 'torch.cat', 'th.cat', (['[x_spec_real, x_spec_imag]'], {'dim': '(1)'}), '([x_spec_real, x_spec_imag], dim=1)\n', (2590, 2625), True, 'import torch as th\n'), ((2873, 2924), 'torch.cat', 'th.cat', (['[spec_r[:, 1:, :], spec_i[:, 1:, :]]'], {'dim': '(1)'}), '([spec_r[:, 1:, :], spec_i[:, 1:, :]], dim=1)\n', (2879, 2924), True, 'import torch as th\n'), ((3617, 3671), 'numpy.zeros', 'np.zeros', (['(self.fftsize // 2 + 1, 1, self.window_size)'], {}), '((self.fftsize // 2 + 1, 1, self.window_size))\n', (3625, 3671), True, 'import numpy as np\n'), ((3689, 3743), 'numpy.zeros', 'np.zeros', (['(self.fftsize // 2 + 1, 1, self.window_size)'], {}), '((self.fftsize // 2 + 1, 1, self.window_size))\n', (3697, 3743), True, 'import numpy as np\n'), ((4141, 4195), 'torch.tensor', 'th.tensor', (['(coef_cos * self.window_func)'], {'dtype': 'th.float'}), '(coef_cos * self.window_func, dtype=th.float)\n', (4150, 4195), True, 'import torch as th\n'), ((4220, 4274), 'torch.tensor', 'th.tensor', (['(coef_sin * self.window_func)'], {'dtype': 'th.float'}), '(coef_sin * self.window_func, dtype=th.float)\n', (4229, 4274), True, 'import torch as th\n'), ((4302, 4400), 'torch.nn.ConvTranspose1d', 'nn.ConvTranspose1d', (['(self.fftsize // 2 + 1)', '(1)', 'self.window_size'], {'bias': '(False)', 'stride': 'self.stride'}), '(self.fftsize // 2 + 1, 1, self.window_size, bias=False,\n stride=self.stride)\n', (4320, 4400), True, 'import torch.nn as nn\n'), ((4419, 4517), 'torch.nn.ConvTranspose1d', 'nn.ConvTranspose1d', (['(self.fftsize // 2 + 1)', '(1)', 'self.window_size'], {'bias': '(False)', 'stride': 'self.stride'}), '(self.fftsize // 2 + 1, 1, self.window_size, bias=False,\n stride=self.stride)\n', (4437, 4517), True, 'import torch.nn as nn\n'), ((4544, 4574), 'torch.nn.Parameter', 'th.nn.Parameter', (['self.coef_cos'], {}), '(self.coef_cos)\n', (4559, 4574), True, 'import torch as th\n'), ((4608, 4638), 'torch.nn.Parameter', 'th.nn.Parameter', (['self.coef_sin'], {}), '(self.coef_sin)\n', (4623, 4638), True, 'import torch as th\n'), ((5792, 5853), 'torch.cat', 'th.cat', (['[pad_real_dc, input[:, :self.fftsize // 2, :]]'], {'dim': '(1)'}), '([pad_real_dc, input[:, :self.fftsize // 2, :]], dim=1)\n', (5798, 5853), True, 'import torch as th\n'), ((5868, 5929), 'torch.cat', 'th.cat', (['[pad_imag_dc, input[:, self.fftsize // 2:, :]]'], {'dim': '(1)'}), '([pad_imag_dc, input[:, self.fftsize // 2:, :]], dim=1)\n', (5874, 5929), True, 'import torch as th\n'), ((6138, 6199), 'torch.cat', 'th.cat', (['[self.pad_dc, input[:, :self.fftsize // 2, :]]'], {'dim': '(1)'}), '([self.pad_dc, input[:, :self.fftsize // 2, :]], dim=1)\n', (6144, 6199), True, 'import torch as th\n'), ((6214, 6275), 'torch.cat', 'th.cat', (['[self.pad_dc, input[:, self.fftsize // 2:, :]]'], {'dim': '(1)'}), '([self.pad_dc, input[:, self.fftsize // 2:, :]], dim=1)\n', (6220, 6275), True, 'import torch as th\n'), ((5568, 5605), 'numpy.zeros', 'np.zeros', (['[batch_size, 1, frame_size]'], {}), '([batch_size, 1, frame_size])\n', (5576, 5605), True, 'import numpy as np\n'), ((5685, 5722), 'numpy.zeros', 'np.zeros', (['[batch_size, 1, frame_size]'], {}), '([batch_size, 1, frame_size])\n', (5693, 5722), True, 'import numpy as np\n'), ((479, 507), 'numpy.hanning', 'np.hanning', (['self.window_size'], {}), '(self.window_size)\n', (489, 507), True, 'import numpy as np\n'), ((574, 602), 'numpy.hanning', 'np.hanning', (['self.window_size'], {}), '(self.window_size)\n', (584, 602), True, 'import numpy as np\n'), ((872, 914), 'numpy.cos', 'np.cos', (['(2.0 * np.pi * w * t / self.fftsize)'], {}), '(2.0 * np.pi * w * t / self.fftsize)\n', (878, 914), True, 'import numpy as np\n'), ((2001, 2035), 'numpy.zeros', 'np.zeros', (['[1, 1, self.window_size]'], {}), '([1, 1, self.window_size])\n', (2009, 2035), True, 'import numpy as np\n'), ((4986, 5020), 'numpy.zeros', 'np.zeros', (['[1, 1, self.window_size]'], {}), '([1, 1, self.window_size])\n', (4994, 5020), True, 'import numpy as np\n'), ((5095, 5114), 'numpy.zeros', 'np.zeros', (['[1, 1, 1]'], {}), '([1, 1, 1])\n', (5103, 5114), True, 'import numpy as np\n'), ((5628, 5651), 'torch.device', 'th.device', (['input.device'], {}), '(input.device)\n', (5637, 5651), True, 'import torch as th\n'), ((5745, 5768), 'torch.device', 'th.device', (['input.device'], {}), '(input.device)\n', (5754, 5768), True, 'import torch as th\n'), ((950, 992), 'numpy.sin', 'np.sin', (['(2.0 * np.pi * w * t / self.fftsize)'], {}), '(2.0 * np.pi * w * t / self.fftsize)\n', (956, 992), True, 'import numpy as np\n'), ((3459, 3487), 'numpy.hanning', 'np.hanning', (['self.window_size'], {}), '(self.window_size)\n', (3469, 3487), True, 'import numpy as np\n'), ((3567, 3595), 'numpy.hanning', 'np.hanning', (['self.window_size'], {}), '(self.window_size)\n', (3577, 3595), True, 'import numpy as np\n'), ((3988, 4030), 'numpy.cos', 'np.cos', (['(2.0 * np.pi * w * t / self.fftsize)'], {}), '(2.0 * np.pi * w * t / self.fftsize)\n', (3994, 4030), True, 'import numpy as np\n'), ((4074, 4116), 'numpy.sin', 'np.sin', (['(2.0 * np.pi * w * t / self.fftsize)'], {}), '(2.0 * np.pi * w * t / self.fftsize)\n', (4080, 4116), True, 'import numpy as np\n'), ((5041, 5057), 'torch.device', 'th.device', (['"""cpu"""'], {}), "('cpu')\n", (5050, 5057), True, 'import torch as th\n'), ((5135, 5151), 'torch.device', 'th.device', (['"""cpu"""'], {}), "('cpu')\n", (5144, 5151), True, 'import torch as th\n')]
import cv2 import numpy as np import params METERS_PER_ENCODER_TICK = params.WHEEL_TICK_LENGTH def draw_steering(bgr, steering, servo, center=(320, 420)): # make steering wheel, lower center #servo = 128*(servo - 125)/70.0 servo = steering # sdeg = steering # just 1:1 i guess? sdeg = params.STEER_DIRECTION*servo # just 1:1 i guess? srad = sdeg * np.pi / 180.0 S, C = 16*30*np.sin(srad), 16*30*np.cos(srad) cv2.circle(bgr, center, 30, (255, 255, 255), 1, cv2.LINE_AA) scenter = (center[0]*16, center[1]*16) cv2.line(bgr, (int(scenter[0] - C), int(scenter[1] + S)), (int(scenter[0] + C), int(scenter[1] - S)), (255, 255, 255), 1, cv2.LINE_AA, 4) cv2.ellipse(bgr, center, (30, 30), 0, -90, -90 + steering, (255, 180, 180), 5, cv2.LINE_AA) cv2.ellipse(bgr, center, (30, 30), 0, -90, -90 + servo, (0, 180, 255), 2, cv2.LINE_AA) last_ts = None last_wheels = None def draw_speed(bgr, tstamp, wheels, periods, center=(40, 420), radius=30): # draw a little spedometer in the lower left # just draw the needle for each period now global last_ts, last_wheels av = np.mean(periods[:params.NUM_ENCODERS]) if av != 0: av = METERS_PER_ENCODER_TICK * 1e6 / av # cv2.putText(bgr, "%0.1f %0.1f %0.1f %0.1f m/s" % tuple(v), (10, 470), # cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, # cv2.LINE_AA) if last_ts is None: last_ts = tstamp last_wheels = wheels return dw = wheels - last_wheels if np.all(dw == 0): last_ts = tstamp last_wheels = wheels return # vv = METERS_PER_ENCODER_TICK * np.float32(dw) / (tstamp - last_ts) # av = 0.5 * np.mean(v[dw != 0] + vv[dw != 0]) mph = 2.23694 * av # draw ticks for i in range(13): phi = (i - 6) * 0.4 C, S = radius * np.cos(phi), radius * np.sin(phi) cv2.line(bgr, (int(center[0] + S), int(center[1] - C)), (int(center[0] + 0.8*S), int(center[1] - 0.8*C)), (255, 255, 255), 1, cv2.LINE_AA) phi = (mph - 6) * 0.4 C, S = radius * np.cos(phi), radius * np.sin(phi) cv2.line(bgr, (int(center[0] + S), int(center[1] - C)), (int(center[0]), int(center[1])), (180, 255, 180), 2, cv2.LINE_AA) cv2.putText(bgr, "%0.1f mph" % (mph), (center[0] - 10, center[1] + 40), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA) last_ts = tstamp last_wheels = wheels def draw_throttle(img, throttle, center=(320, 470)): cv2.line(img, center, (center[0] + throttle, center[1]), throttle > 0 and (0, 255, 0) or (0, 95, 255), 5) def draw_accelerometer(bgr, accel, gyro, center=(470, 470)): cv2.circle(bgr, center, 30, (255, 255, 255), 1, cv2.LINE_AA) cv2.ellipse(bgr, center, (30, 30), 0, -90, -90 - 180*gyro[2] / np.pi, (100, 255, 180), 3, cv2.LINE_AA) cv2.line(bgr, center, (int(center[0] - accel[1]*30), int(center[1] + accel[0]*30)), (100, 255, 100), 2, cv2.LINE_AA)
[ "cv2.line", "cv2.circle", "cv2.putText", "numpy.mean", "cv2.ellipse", "numpy.sin", "numpy.cos", "numpy.all" ]
[((446, 506), 'cv2.circle', 'cv2.circle', (['bgr', 'center', '(30)', '(255, 255, 255)', '(1)', 'cv2.LINE_AA'], {}), '(bgr, center, 30, (255, 255, 255), 1, cv2.LINE_AA)\n', (456, 506), False, 'import cv2\n'), ((722, 817), 'cv2.ellipse', 'cv2.ellipse', (['bgr', 'center', '(30, 30)', '(0)', '(-90)', '(-90 + steering)', '(255, 180, 180)', '(5)', 'cv2.LINE_AA'], {}), '(bgr, center, (30, 30), 0, -90, -90 + steering, (255, 180, 180),\n 5, cv2.LINE_AA)\n', (733, 817), False, 'import cv2\n'), ((834, 924), 'cv2.ellipse', 'cv2.ellipse', (['bgr', 'center', '(30, 30)', '(0)', '(-90)', '(-90 + servo)', '(0, 180, 255)', '(2)', 'cv2.LINE_AA'], {}), '(bgr, center, (30, 30), 0, -90, -90 + servo, (0, 180, 255), 2,\n cv2.LINE_AA)\n', (845, 924), False, 'import cv2\n'), ((1188, 1226), 'numpy.mean', 'np.mean', (['periods[:params.NUM_ENCODERS]'], {}), '(periods[:params.NUM_ENCODERS])\n', (1195, 1226), True, 'import numpy as np\n'), ((1595, 1610), 'numpy.all', 'np.all', (['(dw == 0)'], {}), '(dw == 0)\n', (1601, 1610), True, 'import numpy as np\n'), ((2377, 2511), 'cv2.putText', 'cv2.putText', (['bgr', "('%0.1f mph' % mph)", '(center[0] - 10, center[1] + 40)', 'cv2.FONT_HERSHEY_PLAIN', '(1)', '(255, 255, 255)', '(1)', 'cv2.LINE_AA'], {}), "(bgr, '%0.1f mph' % mph, (center[0] - 10, center[1] + 40), cv2.\n FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA)\n", (2388, 2511), False, 'import cv2\n'), ((2646, 2756), 'cv2.line', 'cv2.line', (['img', 'center', '(center[0] + throttle, center[1])', '(throttle > 0 and (0, 255, 0) or (0, 95, 255))', '(5)'], {}), '(img, center, (center[0] + throttle, center[1]), throttle > 0 and (\n 0, 255, 0) or (0, 95, 255), 5)\n', (2654, 2756), False, 'import cv2\n'), ((2832, 2892), 'cv2.circle', 'cv2.circle', (['bgr', 'center', '(30)', '(255, 255, 255)', '(1)', 'cv2.LINE_AA'], {}), '(bgr, center, 30, (255, 255, 255), 1, cv2.LINE_AA)\n', (2842, 2892), False, 'import cv2\n'), ((2897, 3006), 'cv2.ellipse', 'cv2.ellipse', (['bgr', 'center', '(30, 30)', '(0)', '(-90)', '(-90 - 180 * gyro[2] / np.pi)', '(100, 255, 180)', '(3)', 'cv2.LINE_AA'], {}), '(bgr, center, (30, 30), 0, -90, -90 - 180 * gyro[2] / np.pi, (\n 100, 255, 180), 3, cv2.LINE_AA)\n', (2908, 3006), False, 'import cv2\n'), ((409, 421), 'numpy.sin', 'np.sin', (['srad'], {}), '(srad)\n', (415, 421), True, 'import numpy as np\n'), ((429, 441), 'numpy.cos', 'np.cos', (['srad'], {}), '(srad)\n', (435, 441), True, 'import numpy as np\n'), ((2185, 2196), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (2191, 2196), True, 'import numpy as np\n'), ((2207, 2218), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (2213, 2218), True, 'import numpy as np\n'), ((1923, 1934), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (1929, 1934), True, 'import numpy as np\n'), ((1945, 1956), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (1951, 1956), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import matplotlib import numpy as np matplotlib.use('Agg') def threshold_otsu(hist): """Return threshold value based on Otsu's method. hist : array, or 2-tuple of arrays, optional Histogram from which to determine the threshold, and optionally a corresponding array of bin center intensities. An alternative use of this function is to pass it only hist. Returns ------- threshold : float Upper threshold value. All pixels with an intensity higher than this value are assumed to be foreground. References ---------- .. [1] Wikipedia, https://en.wikipedia.org/wiki/Otsu's_Method """ counts, bin_centers = hist bin_centers = bin_centers[:-1] # class probabilities for all possible thresholds weight1 = np.cumsum(counts) weight2 = np.cumsum(counts[::-1])[::-1] # class means for all possible thresholds mean1 = np.cumsum(counts * bin_centers) / weight1 mean2 = (np.cumsum((counts * bin_centers)[::-1]) / weight2[::-1])[::-1] # Clip ends to align class 1 and class 2 variables: # The last value of ``weight1``/``mean1`` should pair with zero values in # ``weight2``/``mean2``, which do not exist. variance12 = weight1[:-1] * weight2[1:] * (mean1[:-1] - mean2[1:]) ** 2 if len(variance12) == 0: return 0 idx = np.nanargmax(variance12) threshold = bin_centers[idx] return threshold def array2hist(array, binWidth=0.2): counts, bins = np.histogram(array, bins=np.arange(0, max(array)+binWidth, binWidth)) return counts, bins def makePlot(hist, thresh, fname): counts, bins = hist plt.hist(bins[:-1], bins, weights=counts) plt.axvline(thresh, color='r') plt.savefig(fname) plt.close()
[ "matplotlib.pyplot.axvline", "matplotlib.pyplot.hist", "matplotlib.pyplot.close", "numpy.cumsum", "matplotlib.use", "numpy.nanargmax", "matplotlib.pyplot.savefig" ]
[((70, 91), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (84, 91), False, 'import matplotlib\n'), ((828, 845), 'numpy.cumsum', 'np.cumsum', (['counts'], {}), '(counts)\n', (837, 845), True, 'import numpy as np\n'), ((1382, 1406), 'numpy.nanargmax', 'np.nanargmax', (['variance12'], {}), '(variance12)\n', (1394, 1406), True, 'import numpy as np\n'), ((1679, 1720), 'matplotlib.pyplot.hist', 'plt.hist', (['bins[:-1]', 'bins'], {'weights': 'counts'}), '(bins[:-1], bins, weights=counts)\n', (1687, 1720), True, 'import matplotlib.pyplot as plt\n'), ((1725, 1755), 'matplotlib.pyplot.axvline', 'plt.axvline', (['thresh'], {'color': '"""r"""'}), "(thresh, color='r')\n", (1736, 1755), True, 'import matplotlib.pyplot as plt\n'), ((1760, 1778), 'matplotlib.pyplot.savefig', 'plt.savefig', (['fname'], {}), '(fname)\n', (1771, 1778), True, 'import matplotlib.pyplot as plt\n'), ((1783, 1794), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1792, 1794), True, 'import matplotlib.pyplot as plt\n'), ((860, 883), 'numpy.cumsum', 'np.cumsum', (['counts[::-1]'], {}), '(counts[::-1])\n', (869, 883), True, 'import numpy as np\n'), ((948, 979), 'numpy.cumsum', 'np.cumsum', (['(counts * bin_centers)'], {}), '(counts * bin_centers)\n', (957, 979), True, 'import numpy as np\n'), ((1003, 1042), 'numpy.cumsum', 'np.cumsum', (['(counts * bin_centers)[::-1]'], {}), '((counts * bin_centers)[::-1])\n', (1012, 1042), True, 'import numpy as np\n')]
import pysam import os import re import numpy as np import pandas as pd import time from pysam import VariantFile from sklearn.cluster import KMeans import sklearn.cluster pd.options.mode.chained_assignment = None def CallVCF(CandidateDf, VCFFile, refFile, bamFile, CellName): # transfer candidate format to vcf format ## Select Proper SNVs # Exact 0/0 position will not appeared in the vcf Condition1 = CandidateDf['Genotype'].isin(['0/1', '1/1']) Condition2 = CandidateDf['Decision'].isin(['PCRError', 'PCRErrorLow']) Condition2_1 = CandidateDf['Decision'].isin(['PCRError']) Condition2_2 = CandidateDf['Decision'].isin(['PCRErrorLow']) Condition3 = CandidateDf['AlleleDropOut'].isin([1]) Condition4 = CandidateDf['Vague'].isin(['Yes']) Condition5 = CandidateDf['DataRange'].isin(['HomoHeteroSNV']) Condition6 = CandidateDf['PassCode'].isin(['ClusterSNV']) ## make a VCF head # Info items include: NS, DP, AF, AA # Filter Items include: AB (Amplicon Bias), PCRError (PCR Error), ADO (Allele drop out) # Format Items include: GT (0/1, 1/1, 0/0) , L0 (Homozygous Likelihood), L1 (Amplicon Bias Likelihood), L2 (Heterozygous Likelihood), L3 (PCR error Likelihood), DP, AF with open(VCFFile, 'w') as vcf: vcf.write("##fileformat=VCFv4.2\n##fileDate=%s\n##source=NBJUDGE\n") vcf.write("##INFO=<ID=NS,Number=1,Type=Integer,Description=\"Number of Samples With Data\">\n") vcf.write("##INFO=<ID=DP,Number=1,Type=Integer,Description=\"Total Depth\">\n") vcf.write("##INFO=<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">\n") vcf.write("##INFO=<ID=AA,Number=1,Type=String,Description=\"Ancestral Allele\">\n") vcf.write("##FILTER=<ID=IMSNV,Description=\"Intermediate SNV error\">\n") vcf.write("##FILTER=<ID=LASNV,Description=\"Low Allele Frequency SNV error\">\n") vcf.write("##FILTER=<ID=ADO,Description=\"Suspected Allele Drop-out Error\">\n") vcf.write("##FILTER=<ID=NE,Description=\"Not enough homozygous or heterozygous SNVs in the neighborhood\">\n") vcf.write("##FILTER=<ID=CC,Description=\"SNV located in SNV cluster\">\n") vcf.write("##FORMAT=<ID=GT,Number=1,Type=String,Description=\"Genotype\">\n") vcf.write("##FORMAT=<ID=L0,Number=1,Type=Float,Description=\"Homozygous likelihood\">\n") vcf.write("##FORMAT=<ID=L1,Number=1,Type=Float,Description=\"Intermediate SNV likelihood\">\n") vcf.write("##FORMAT=<ID=L2,Number=1,Type=Float,Description=\"Heterozygous likelihood\">\n") vcf.write("##FORMAT=<ID=L3,Number=1,Type=Float,Description=\"Low Allele Frequency likelihood\">\n") vcf.write("##FORMAT=<ID=DP,Number=1,Type=Integer,Description=\"Read Depth\">\n") vcf.write("##FORMAT=<ID=AF,Number=4,Type=Integer,Description=\"Top 4 Base count\"\n") for chrom in set(CandidateDf['Chrom']): vcf.write('##contig=<ID=%s>\n' % chrom) vcf.write("##reference=file://%s\n" % refFile) vcf.write("##bamFile=file://%s\n" % bamFile) vcf.write("#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t%s\n" % CellName) vcf.flush() # AddLabel For each SNV in the CandidateDf_VCF CandidateDf['AF'] = CandidateDf['AltCount'] / CandidateDf['DP'] CandidateDf['INFO'] = 'NS=1;DP=' + CandidateDf['DP'].astype(str) + ";AF=" + CandidateDf['AF'].astype(str) + ";AA=" + CandidateDf['Alt'] CandidateDf['FILTER'] = "" CandidateDf.loc[Condition2_1, 'FILTER'] += 'AB' CandidateDf.loc[Condition2_2, 'FILTER'] += 'PCRError' Condition_TMP = CandidateDf['FILTER'].isin([""]) CandidateDf.loc[Condition3&Condition4&Condition_TMP, 'FILTER'] += 'ADO' CandidateDf.loc[Condition3&Condition4&(~Condition_TMP), 'FILTER'] += ',ADO' Condition_TMP = CandidateDf['FILTER'].isin([""]) CandidateDf.loc[(~Condition5)&Condition_TMP, 'FILTER'] += 'NE' CandidateDf.loc[(~Condition5)&(~Condition_TMP), 'FILTER'] += ',NE' Condition_TMP = CandidateDf['FILTER'].isin([""]) CandidateDf.loc[(Condition6)&Condition_TMP, 'FILTER'] += 'CC' CandidateDf.loc[(Condition6)&(~Condition_TMP), 'FILTER'] += ',CC' Condition_TMP = CandidateDf['FILTER'].isin([""]) CandidateDf.loc[Condition_TMP, 'FILTER'] = 'PASS' CandidateDf['FORMAT_Label'] = 'GT:L0:L1:L2:L3:DP:AF' CandidateDf['FORMAT'] = CandidateDf['Genotype'] + ":" + CandidateDf['HomoZygous'].astype(str) + ":" + CandidateDf['HeteroZygous'].astype(str) + ":" + CandidateDf['PCRError'].astype(str) + ":" + CandidateDf['PCRErrorLow'].astype(str) + ":" + CandidateDf['DP'].astype(str) + ":" + CandidateDf['Base1'].astype(str) + "," + CandidateDf['Base2'].astype(str) + "," + CandidateDf['Base3'].astype(str) + "," + CandidateDf['Base4'].astype(str) CandidateDf_VCF = CandidateDf[Condition1 | Condition2 | Condition3 | Condition4] CandidateDf_VCF['VCFInfo'] = CandidateDf_VCF['Chrom'] + "\t" + CandidateDf_VCF['Pos'].astype(str) + "\t.\t" + CandidateDf_VCF['Ref'] + "\t" + CandidateDf_VCF['Alt'] + "\t.\t" + CandidateDf_VCF['FILTER'] + '\t' + CandidateDf_VCF['INFO'] + "\t" + CandidateDf_VCF['FORMAT_Label'] + "\t" + CandidateDf_VCF['FORMAT'] for I in CandidateDf_VCF.index: Record = CandidateDf_VCF.loc[I, 'VCFInfo'] vcf.write(Record + "\n") vcf.flush() def WeightKernel(Distance, mu=np.log(3)/10): # return weight vector fx = 2 * np.exp(-mu * Distance) / (1 + np.exp(-mu * Distance)) return(fx) def CalculateP_A(SubDf, Position, mu=np.log(3)/10): # set kernal SubDf['Distance'] = np.abs(np.array(SubDf['Pos'])-Position) / 1000.0 WorkDf = SubDf.loc[SubDf['Distance']!=0] if WorkDf.shape[0] > 0: Weight = WeightKernel(np.array(WorkDf['Distance'], dtype=float), mu) if np.sum(Weight) == 0: # All adjacent SNVs located in too far distance Weight = np.array([1.0] * len(Weight)) ProbDict = {} for Base_Index in range(1,5): BaseName = 'Base%s' % Base_Index RateName = 'BRate%s' % Base_Index WorkDf[RateName] = WorkDf[BaseName] / WorkDf['DP'] Ex = np.sum(np.array(WorkDf[RateName], dtype=float) * Weight) / np.sum(Weight) Varx = np.sqrt(np.sum(Weight * (np.array(WorkDf[RateName], dtype=float) - Ex)**2) / np.sum(Weight)) ProbDict[BaseName] = [Ex, Varx] else: # No data provided ProbDict = {} for Base_Index in range(1,5): BaseName = 'Base%s' % Base_Index RateName = 'BRate%s' % Base_Index ProbDict[BaseName] = [0.0000001, 0.0000001] return(ProbDict) def DfTailor(SubDf1, SubDf2, I): # gain Sub dataframe with tha same dim (decided by the smaller Dataframe) # Tail the larger dataframe around the candidate Point # I is the position value of candidate SNV point # discard the current position SubDf1 = SubDf1.loc[SubDf1['Pos']!=I] SubDf2 = SubDf2.loc[SubDf2['Pos']!=I] L1 = SubDf1.shape[0] L2 = SubDf2.shape[0] SubDf1['Distance'] = np.abs(np.array(SubDf1['Pos'], dtype=int) - I) SubDf2['Distance'] = np.abs(np.array(SubDf2['Pos'], dtype=int) - I) S_DF = SubDf1 L_DF = SubDf2 if L2 < L1: S_DF = SubDf2 L_DF = SubDf1 # large Df should have Position that is similar to small Df LocList = [] S_DF.sort_values("Distance", inplace=True) for Site in S_DF.index: tmpPos = S_DF.loc[Site, 'Pos'] L_DF['tmpDistance'] = np.abs(np.array(L_DF['Pos'], dtype=int)-tmpPos) L_DF.sort_values("tmpDistance", inplace=True) LocAdd = 0 for i in range(0,L_DF.shape[0]): if L_DF.index[i] not in LocList: LocList.append(L_DF.index[i]) LocAdd += 1 break if LocAdd == 0: S_DF = S_DF.drop(index=[Site]) L_DF = L_DF.loc[LocList] ResultDF = pd.concat([S_DF, L_DF], sort=True) return(ResultDF) def GetNeighbor(SubDf2, I): SubDf2['Distance'] = [abs(x) for x in list(SubDf2['Pos']-I)] SubDf2 = SubDf2.loc[SubDf2['Distance']!=0] SubDf2.sort_values("Distance", inplace=True) ResultDf = SubDf2.loc[SubDf2.index[0:10]] return(ResultDf) def GetNeighbor_Normal(CountDf, I, WindowSize): ''' Input CountDf & Pos data Return SNVs within 30000bp ''' start = I - WindowSize end = I + WindowSize return(CountDf.loc[(CountDf['Pos']>=start)&(CountDf['Pos']<=end)]) def highlight(data, Index,color='darkorange'): ''' Highligh the specific row ''' ColorDf = pd.DataFrame('', columns=data.columns, index=data.index) ColorDf.loc[Index] = 'background-color: {}'.format(color) return(ColorDf) def MakeShowData(InputDf, PCRDf, InterestedColumn1): HomoDf = InputDf.loc[InputDf['RawGT']=='Homozygous'] HeterDf = InputDf.loc[InputDf['RawGT']=='Heterozygous'] PCR_eg = {} for I in PCRDf.index: currentSite = int(PCRDf.loc[I, 'Pos']) if PCRDf.loc[I, 'DataRange'] == 'HomoHeter': WorkDf = GetNeighbor_Normal(InputDf, currentSite, WindowSize) else: WorkDf = pd.concat([GetNeighbor(HomoDf, currentSite), GetNeighbor(HeterDf, currentSite)], sort=True) WorkDf.sort_values("Pos", inplace=True) df = WorkDf[InterestedColumn1] PCR_eg[I] = df.style.apply(highlight, Index=I, axis=None) return(PCR_eg) ## Finish Common Functions class EstModel(): def __init__(self, bamFile, ref, CellName=None, WindowSize=30000, mu=np.log(3)/10): ''' Load requriement File Names and File Path ''' try: M = pysam.FastaFile(ref) except: print("Please identify proper reference file path") sys.exit(1) try: L = pysam.AlignmentFile(bamFile) except: print("Please identify proper bam file path") sys.exit(1) self.bam = pysam.AlignmentFile(bamFile) self.ref = pysam.FastaFile(ref) self.WindowSize = WindowSize self.mu = mu self.Candidate = pd.DataFrame() self.Shadow = None self.Result = None self.MergeResult = None self.ABdf = pd.DataFrame() self.GapList = [] # record genome region which have depth lower than 10X self.JUDGEMENT = None self.Name = os.path.basename(bamFile).split(".bam")[0] if not CellName: self.Name = CellName def MakeCandidateDf(self, chrom, Start, End, AutoCutoff=True): ''' Convert sorted bam into candidate dataframe input: refFile: pysam.FastarFile object for reference genome samfile: pysam.AlignmentFile object for sorted bam file chrom: aim chromosome required for dataframe extraction Start: start position for dataframe End: end position for dataframe ''' self.Start = Start self.End = End if self.Start >= self.End: print('Too Small data range, exit!') sys.exit(1) refFile = self.ref samfile = self.bam WindowSize=self.WindowSize CountDf = pd.DataFrame(columns=['Chrom', 'Pos', 'Ref', 'RefCount', 'Alt', 'AltCount', 'Base1', 'Base2', 'Base3', 'Base4', 'RawRate']) str_ref = refFile.fetch(chrom, Start - 1, End + 1) my_arg = {"fastafile": refFile, "stepper": "samtools", "adjust_capq_threshold": 50, "contig": chrom, "start": Start, "stop": End, "min_mapping_quality": 40, "truncate":True, "min_base_quality":17} CandidateDf = pd.DataFrame(columns=['Chrom', 'Pos', 'Ref', 'RefCount', 'Alt', 'AltCount', 'DP', 'Base1', 'Base2', 'Base3', 'Base4', 'RawRate']) partner = 0 # means no need for 0/0 partner in the Raw genotype decision partnerDf = pd.DataFrame(columns=['Chrom', 'Pos', 'DP', 'Base1', 'Base2', 'Base3', 'Base4', 'RawRate']) for pileup_column in samfile.pileup(**my_arg): pos = pileup_column.reference_pos + 1 # 1-based location if pos > my_arg['stop'] + self.WindowSize: break if pos < my_arg['start']-self.WindowSize: continue read_bases_list = pileup_column.get_query_sequences(mark_matches=False, mark_ends=False, add_indels=True) DP = 0 RefCount = 0 AltCount = 0 BasePool = {'A':0, 'T':0, 'C':0, 'G':0 } if len(read_bases_list) >=10: refSeq = str_ref[pos-my_arg['start']].upper() if refSeq not in ['A', 'T', 'C', 'G']: continue for B in read_bases_list: base_str = B.upper() if base_str in BasePool.keys(): BasePool[base_str] += 1 else: BasePool[base_str] = 1 RefCount = BasePool[refSeq] NonRefList = sorted([BasePool[K] for K in BasePool.keys() if K!=refSeq], reverse=True) AltCount = NonRefList[0] if AltCount >= 2: # less than max allele might come from noise AltBase = sorted([(K, BasePool[K]) for K in BasePool.keys() if K!=refSeq], reverse=True, key=lambda item:item[1])[0][0] DP = float(sum(NonRefList[0:3]) + RefCount) BaseCountList = sorted(NonRefList[0:3] + [RefCount], reverse=True) Info = [my_arg['contig'], pos, refSeq, float(RefCount), AltBase, float(AltCount), DP] + BaseCountList + [BaseCountList[1] / DP] CandidateDf.loc['%s:%s' % (my_arg['contig'], pos)] = Info partner += 2 # Now we need a 0/0 genotype partner elif AltCount > 0: # proper point with Alt Allele if partner >=1: # Now we need a 0/0 genotype partner DP = float(sum(NonRefList[0:3]) + RefCount) BaseCountList = sorted(NonRefList[0:3] + [RefCount], reverse=True) Info = [my_arg['contig'], pos, DP] + BaseCountList + [BaseCountList[1] / DP] partnerDf.loc['%s:%s' % (my_arg['contig'], pos)] = Info partner += -1 else: continue else: continue else: continue # return the total SNV point print('%s: %s candidate SNVs have been loaded !' % (time.ctime(), CandidateDf.shape[0])) print('%s: %s shadow base points have been loaded !' % (time.ctime(), partnerDf.shape[0])) self.Candidate = CandidateDf self.Shadow = partnerDf # Identify homozygous and heterozygous Roughly if self.Candidate.shape[0] > 0 and AutoCutoff: self.GetCutoffSimple() def GetCutoffSimple(self): # decrease the complex of method GetCutoff() try: self.Candidate.shape except: print("No CandidateDf exist. Run MakeCandidateDf method first") self.Candidate['RawGT'] = None CutOFFDf = self.Candidate[['Pos', 'RawRate']] CutOFFShadow = self.Shadow[['Pos', 'RawRate']] CutOFFDf.index = self.Candidate.index CutOFFShadow.index = self.Shadow.index CutOFFDf['Label'] = 'UnSet' MixDf = pd.concat([CutOFFDf, CutOFFShadow], axis=0, sort=True).sort_values(by=['RawRate']) # Make cutoff every 1 MB # PosMax = list(MixDf['Pos'])[-1] Orig = list(CutOFFDf['Pos'])[0]-1 estimator = sklearn.cluster.AgglomerativeClustering(2) # get total center Mean estimator.fit(pd.DataFrame(MixDf['RawRate'])) MixDf['Label'] = estimator.labels_ MixDf.loc[MixDf['Label']==estimator.labels_[0], 'Label'] = 'Homozygous' MixDf.loc[MixDf['Label']==estimator.labels_[-1], 'Label'] = 'Heterozygous' CutOFFDf.loc[CutOFFDf.index, ['Label']] = MixDf.loc[CutOFFDf.index, ['Label']] # while CutOFFDf.loc[(CutOFFDf['Pos']>Orig)&(CutOFFDf['Pos']<=Orig+self.WindowSize)].shape[0] >=3: SubDf = CutOFFDf.loc[(CutOFFDf['Pos']>Orig)&(CutOFFDf['Pos']<=Orig+self.WindowSize)] SubShadow = CutOFFShadow.loc[(CutOFFShadow['Pos']>Orig)&(CutOFFShadow['Pos']<=Orig+self.WindowSize)] SubMix = pd.concat([SubDf, SubShadow], axis=0, sort=True).sort_values(by=['RawRate']) estimator.fit(pd.DataFrame(SubMix['RawRate'])) SubMix['Label'] = estimator.labels_ SubMix.loc[SubMix['Label']==estimator.labels_[0], 'Label'] = 'Homozygous' SubMix.loc[SubMix['Label']==estimator.labels_[-1], 'Label'] = 'Heterozygous' CutOFFDf.loc[SubDf.index, ['Label']] = SubMix.loc[SubDf.index, ['Label']] Orig = list(SubDf['Pos'])[-1] # check Null cutoffs self.Candidate['RawGT'] = CutOFFDf['Label'] def AnnotateCountDf1(self): # The first annotation of candidate SNV Dataframe self.ABdf = pd.DataFrame(columns=['HeteroBase1', 'HeteroSE', 'HomoBase1', 'HomoSE', 'PCRBase1', 'PCRSE', 'PCRLowBase1'], index=self.Candidate.index) CountDf = self.Candidate WindowSize = self.WindowSize mu = self.mu CountDf['HomoZygous'] = 1 CountDf['HomoZygous_P'] = 0 CountDf['HomoZygous_P_std'] = 0 CountDf['HeteroZygous'] = 1 CountDf['HeteroZygous_P'] = 0 CountDf['HeteroZygous_P_std'] = 0 CountDf['PCRError'] = 1 CountDf['PCRError_P'] = 0 CountDf['PCRError_P_std'] = 0 CountDf['PCRErrorLow'] = 1 CountDf['PCRErrorLow_P'] = 0 CountDf['DataRange'] = 'AllData' CountDf['Decision'] = 'Unknown' CountDf['DecisionGT'] = 'Unknown' TotalHomoDf = pd.concat([CountDf.loc[CountDf['RawGT']=='Homozygous'], self.Shadow], axis=0, sort=True) TotalHeterDf = CountDf.loc[CountDf['RawGT']=='Heterozygous'] for I in CountDf.index: currentPos = CountDf.loc[I, 'Pos'] start = currentPos - WindowSize end = currentPos + WindowSize SubDf = CountDf.loc[(CountDf['Pos']>=start)&(CountDf['Pos']<=end)&(CountDf['Pos']!=currentPos)] SubShadowDf = self.Shadow.loc[(self.Shadow['Pos']>=start)&(self.Shadow['Pos']<=end)&(self.Shadow['Pos']!=currentPos)] SubDf_Homo = pd.concat([SubDf.loc[SubDf['RawGT']=='Homozygous'], SubShadowDf],axis=0, sort=True) SubDf_Heter = SubDf.loc[SubDf['RawGT']=='Heterozygous'] DataRange = '' if (SubDf_Homo.shape[0] < 3) and (SubDf_Heter.shape[0] < 3): DataRange = 'LonelySNV' HomoProb = CalculateP_A(TotalHomoDf, currentPos, mu) HeteroProb = CalculateP_A(TotalHeterDf, currentPos, mu) PCRProb = CalculateP_A(DfTailor(TotalHomoDf, TotalHeterDf, currentPos), currentPos, mu) elif (SubDf_Homo.shape[0] < 3) and (SubDf_Heter.shape[0]>=3): DataRange = 'HeteroEnrichSNV' HomoProb = CalculateP_A(TotalHomoDf, currentPos, mu) HeteroProb = CalculateP_A(SubDf_Heter, currentPos, mu) PCRProb = CalculateP_A(DfTailor(TotalHomoDf, SubDf_Heter, currentPos), currentPos, mu) elif (SubDf_Homo.shape[0] >= 3) and (SubDf_Heter.shape[0]<3): DataRange = 'HomoEnrichSNV' HomoProb = CalculateP_A(SubDf_Homo, currentPos, mu) HeteroProb = CalculateP_A(TotalHeterDf, currentPos, mu) PCRProb = CalculateP_A(DfTailor(SubDf_Homo, TotalHeterDf, currentPos), currentPos, mu) else: DataRange = 'HomoHeteroSNV' HomoProb = CalculateP_A(SubDf_Homo, currentPos, mu) HeteroProb = CalculateP_A(SubDf_Heter, currentPos, mu) PCRProb = CalculateP_A(DfTailor(SubDf_Homo, SubDf_Heter, currentPos), currentPos, mu) CountDf.loc[I, 'DataRange'] = DataRange # fill in the success probability and std value CountDf.loc[I, 'HomoZygous_P'] = HomoProb['Base2'][0] CountDf.loc[I, 'HomoZygous_P_std'] = HomoProb['Base2'][1] CountDf.loc[I, 'HeteroZygous_P'] = HeteroProb['Base2'][0] CountDf.loc[I, 'HeteroZygous_P_std'] = HeteroProb['Base2'][1] CountDf.loc[I, 'PCRError_P'] = PCRProb['Base2'][0] CountDf.loc[I, 'PCRError_P_std'] = PCRProb['Base2'][1] self.ABdf.loc[I] = [HeteroProb['Base1'][0], HeteroProb['Base1'][1], HomoProb['Base1'][0], HomoProb['Base1'][1], PCRProb['Base1'][0], PCRProb['Base1'][1], HeteroProb['Base1'][0]-3*HeteroProb['Base1'][1]] for Base in ['Base1', 'Base2', 'Base3', 'Base4']: CountDf.loc[I, 'HomoZygous'] = CountDf.loc[I, 'HomoZygous'] + (np.log10(HomoProb[Base][0]+0.0000001)*CountDf.loc[I, Base]) CountDf.loc[I, 'HeteroZygous'] = CountDf.loc[I, 'HeteroZygous'] + (np.log10(HeteroProb[Base][0] + 0.0000001)*CountDf.loc[I, Base]) CountDf.loc[I, 'PCRError'] = CountDf.loc[I, 'PCRError'] + (np.log10(PCRProb[Base][0]+0.0000001)*CountDf.loc[I, Base]) PCRLow_P1 = np.max([0.0000001, (HeteroProb["Base1"][0] - 3 * HeteroProb["Base1"][1])]) # avoid the negative value CountDf.loc[I, 'PCRErrorLow_P'] = PCRLow_P1 CountDf.loc[I, 'PCRErrorLow'] = (np.log10(PCRLow_P1+0.0000001)*CountDf.loc[I, "Base1"]) + (np.log10(1-PCRLow_P1+0.0000001)*CountDf.loc[I, "Base2"]) # Normalize the percentage data ProbUnit = np.array(CountDf.loc[I, ['HomoZygous', 'HeteroZygous', 'PCRError', 'PCRErrorLow']]) ProbUnit = list(ProbUnit) # ProbUnit = ProbUnit / np.sum(ProbUnit) CountDf.loc[I, ['HomoZygous', 'HeteroZygous', 'PCRError', 'PCRErrorLow']] = ProbUnit DecisionList = ['Homozygous', 'Heterozygous', 'PCRError', 'PCRErrorLow'] Decision = DecisionList[ProbUnit.index(max(ProbUnit))] CountDf.loc[I, 'Decision'] = Decision if Decision == 'PCRError': # we should make a decision which GT to choose if CountDf.loc[I, 'HomoZygous'] < CountDf.loc[I, 'HeteroZygous']: # HeteroZygous have larger base2 rate than HomoZygous point CountDf.loc[I, 'DecisionGT'] = 'Heterozygous' # candidate position are more likely to HomoZygous else: CountDf.loc[I, 'DecisionGT'] = 'Homozygous' # else candidate position are more likely to HeteroZygous else: CountDf.loc[I, 'DecisionGT'] = CountDf.loc[I, 'Decision'] if Decision == 'PCRErrorLow': CountDf.loc[I, 'DecisionGT'] = 'Heterozygous' self.Candidate = CountDf self.ABdf['Pos'] = CountDf['Pos'] self.ABdf.index = CountDf.index self.ABdf['RawGT'] = CountDf['RawGT'] self.ABdf['RawRate'] = CountDf['RawRate'] self.ABdf['Decision'] = CountDf['Decision'] self.ABdf['DecisionGT'] = CountDf['DecisionGT'] def AnnotateCountDf2(self): InputDf2 = self.Candidate WindowSize = self.WindowSize # Input dataframe after the first annotation InputDf2['AlleleDropOut'] = 0 for I in InputDf2.index: currentPos = InputDf2.loc[I, 'Pos'] start = currentPos - WindowSize end = currentPos + WindowSize SubDf = InputDf2.loc[(InputDf2['Pos']>=start)&(InputDf2['Pos']<=end)] SubDf_Heter = SubDf.loc[SubDf['DecisionGT']=='Heterozygous'] if SubDf_Heter.shape[0] == 0: # No hetero SNV around an ADO InputDf2.loc[I, 'AlleleDropOut'] = 1 self.Candidate = InputDf2 def EstimateError(self): ''' Estimate 4 types of error Homozygous: Heterozygous: PCR error: Allele drop out: ''' print('%s: Start to Calculate!' % time.ctime()) # The first Annotation CountDf = self.Candidate WindowSize = self.WindowSize self.AnnotateCountDf1() print('%s: The first Annotation finished!' % time.ctime()) # Now add ADO score for each point self.AnnotateCountDf2() print('%s: The second Annotation finished!' % time.ctime()) self.Result = self.Candidate def FillError(self): self.Candidate['Vague'] = 'No' for I in self.Candidate.index: currentPos = self.Candidate.loc[I, 'Pos'] SubDf = self.Candidate.loc[(self.Candidate['Pos']>currentPos-self.WindowSize/3.0)&(self.Candidate['Pos']<currentPos+self.WindowSize/3.0)] if (SubDf.shape[0] > 10) and (100.0 * SubDf.loc[SubDf['Decision']=='PCRError'].shape[0] / SubDf.shape[0] >= 40): self.Candidate.loc[SubDf.index, 'Vague'] = 'Yes' def PassCode(self): self.Candidate['PassCode'] = 'NormalSNV' SubCandidate = self.Candidate.loc[self.Candidate['Genotype'].isin(['0/1', '1/1'])] for I in SubCandidate.index: currentPos = SubCandidate.loc[I, 'Pos'] Start = currentPos - 10 End = currentPos + 10 SubDf = SubCandidate.loc[(SubCandidate['Pos']>=Start)&(SubCandidate['Pos']<=End)] altBase = SubCandidate.loc[I, 'Alt'] if altBase not in ['A', 'T', 'C', 'G']: SubCandidate.loc[I, 'PassCode'] = 'Indel' if SubDf.shape[0] > 1: if self.Candidate.loc[I, 'PassCode'] == 'NormalSNV': self.Candidate.loc[I, 'PassCode'] = 'ClusterSNV' def BaseCaller(self): ''' genotyping for each point ''' # Label SNV candidate with too many Error self.FillError() # Cut the result dataframe to ensure all Candidate have neighborhood information self.Candidate = self.Candidate.loc[(self.Candidate['Pos']>=self.Start)&(self.Candidate['Pos']<=self.End)] self.ABdf = self.ABdf.loc[(self.ABdf['Pos']>=self.Start)&(self.ABdf['Pos']<=self.End)] JudgeDf = self.Candidate[['Ref','RefCount','Alt','AltCount', 'Decision','DecisionGT','AlleleDropOut']] JudgeDf['Genotype'] = '0/0' JudgeDf['BaseCall'] = '' # Basecalling JudgeDf.loc[JudgeDf['DecisionGT']=='Heterozygous', 'Genotype'] = '0/1' JudgeDf.loc[JudgeDf['DecisionGT']=='Heterozygous', 'BaseCall'] = JudgeDf.loc[JudgeDf['DecisionGT']=='Heterozygous', 'Ref'] + "/" + JudgeDf.loc[JudgeDf['DecisionGT']=='Heterozygous', 'Alt'] # Homozygous SNP 0/0 or 1/1 JudgeDf.loc[(JudgeDf['DecisionGT']=='Homozygous') & (JudgeDf['AltCount']>JudgeDf['RefCount']), 'Genotype'] = '1/1' JudgeDf.loc[(JudgeDf['DecisionGT']=='Homozygous') & (JudgeDf['AltCount']>JudgeDf['RefCount']), 'BaseCall'] = JudgeDf.loc[(JudgeDf['DecisionGT']=='Homozygous') & (JudgeDf['AltCount']>JudgeDf['RefCount']), 'Alt'] + "/" + JudgeDf.loc[(JudgeDf['DecisionGT']=='Homozygous') & (JudgeDf['AltCount']>JudgeDf['RefCount']), 'Alt'] JudgeDf.loc[(JudgeDf['DecisionGT']=='Homozygous') & (JudgeDf['AltCount']<JudgeDf['RefCount']), 'BaseCall'] = JudgeDf.loc[(JudgeDf['DecisionGT']=='Homozygous') & (JudgeDf['AltCount']<JudgeDf['RefCount']), 'Ref'] + "/" + JudgeDf.loc[(JudgeDf['DecisionGT']=='Homozygous') & (JudgeDf['AltCount']<JudgeDf['RefCount']), 'Ref'] # Select SNV position to loose the demention JudgeDf_NonSNV = JudgeDf.loc[(JudgeDf['Genotype']=='0/0')] # ref/ref base JudgeDf_SNVs = JudgeDf.loc[(JudgeDf['Genotype']!='0/0')] # alt is SNV ConfuseIndex = list(JudgeDf.loc[(JudgeDf['Decision']!='Homozygous')&(JudgeDf['Decision']!='Heterozygous')&(JudgeDf['Genotype']!='0/0')].index) # alt is SNV but high pcr risk self.JUDGEMENT = {"Non_SNV":JudgeDf_NonSNV, "SCSNV":JudgeDf_SNVs, "RawJudgeDf": JudgeDf.loc[(JudgeDf['Genotype']!="0/0") | ((JudgeDf['Decision']!='Homozygous')&(JudgeDf['Decision']!='Heterozygous'))], "ConfuseIndex": ConfuseIndex} self.Candidate['Genotype'] = JudgeDf['Genotype'] self.Candidate['BaseCall'] = JudgeDf['BaseCall'] # label Indel and 10bp continuous SNVs self.PassCode() # Cut the output data (make sure all point at the center of data)
[ "pandas.DataFrame", "numpy.sum", "pysam.FastaFile", "numpy.log", "os.path.basename", "pysam.AlignmentFile", "time.ctime", "numpy.max", "numpy.array", "numpy.exp", "numpy.log10", "pandas.concat" ]
[((7990, 8024), 'pandas.concat', 'pd.concat', (['[S_DF, L_DF]'], {'sort': '(True)'}), '([S_DF, L_DF], sort=True)\n', (7999, 8024), True, 'import pandas as pd\n'), ((8659, 8715), 'pandas.DataFrame', 'pd.DataFrame', (['""""""'], {'columns': 'data.columns', 'index': 'data.index'}), "('', columns=data.columns, index=data.index)\n", (8671, 8715), True, 'import pandas as pd\n'), ((5447, 5456), 'numpy.log', 'np.log', (['(3)'], {}), '(3)\n', (5453, 5456), True, 'import numpy as np\n'), ((5610, 5619), 'numpy.log', 'np.log', (['(3)'], {}), '(3)\n', (5616, 5619), True, 'import numpy as np\n'), ((10027, 10055), 'pysam.AlignmentFile', 'pysam.AlignmentFile', (['bamFile'], {}), '(bamFile)\n', (10046, 10055), False, 'import pysam\n'), ((10075, 10095), 'pysam.FastaFile', 'pysam.FastaFile', (['ref'], {}), '(ref)\n', (10090, 10095), False, 'import pysam\n'), ((10179, 10193), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (10191, 10193), True, 'import pandas as pd\n'), ((10300, 10314), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (10312, 10314), True, 'import pandas as pd\n'), ((11269, 11396), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['Chrom', 'Pos', 'Ref', 'RefCount', 'Alt', 'AltCount', 'Base1', 'Base2',\n 'Base3', 'Base4', 'RawRate']"}), "(columns=['Chrom', 'Pos', 'Ref', 'RefCount', 'Alt', 'AltCount',\n 'Base1', 'Base2', 'Base3', 'Base4', 'RawRate'])\n", (11281, 11396), True, 'import pandas as pd\n'), ((11697, 11830), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['Chrom', 'Pos', 'Ref', 'RefCount', 'Alt', 'AltCount', 'DP', 'Base1',\n 'Base2', 'Base3', 'Base4', 'RawRate']"}), "(columns=['Chrom', 'Pos', 'Ref', 'RefCount', 'Alt', 'AltCount',\n 'DP', 'Base1', 'Base2', 'Base3', 'Base4', 'RawRate'])\n", (11709, 11830), True, 'import pandas as pd\n'), ((11962, 12057), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['Chrom', 'Pos', 'DP', 'Base1', 'Base2', 'Base3', 'Base4', 'RawRate']"}), "(columns=['Chrom', 'Pos', 'DP', 'Base1', 'Base2', 'Base3',\n 'Base4', 'RawRate'])\n", (11974, 12057), True, 'import pandas as pd\n'), ((17274, 17414), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['HeteroBase1', 'HeteroSE', 'HomoBase1', 'HomoSE', 'PCRBase1', 'PCRSE',\n 'PCRLowBase1']", 'index': 'self.Candidate.index'}), "(columns=['HeteroBase1', 'HeteroSE', 'HomoBase1', 'HomoSE',\n 'PCRBase1', 'PCRSE', 'PCRLowBase1'], index=self.Candidate.index)\n", (17286, 17414), True, 'import pandas as pd\n'), ((18049, 18143), 'pandas.concat', 'pd.concat', (["[CountDf.loc[CountDf['RawGT'] == 'Homozygous'], self.Shadow]"], {'axis': '(0)', 'sort': '(True)'}), "([CountDf.loc[CountDf['RawGT'] == 'Homozygous'], self.Shadow],\n axis=0, sort=True)\n", (18058, 18143), True, 'import pandas as pd\n'), ((5502, 5524), 'numpy.exp', 'np.exp', (['(-mu * Distance)'], {}), '(-mu * Distance)\n', (5508, 5524), True, 'import numpy as np\n'), ((5532, 5554), 'numpy.exp', 'np.exp', (['(-mu * Distance)'], {}), '(-mu * Distance)\n', (5538, 5554), True, 'import numpy as np\n'), ((5818, 5859), 'numpy.array', 'np.array', (["WorkDf['Distance']"], {'dtype': 'float'}), "(WorkDf['Distance'], dtype=float)\n", (5826, 5859), True, 'import numpy as np\n'), ((5876, 5890), 'numpy.sum', 'np.sum', (['Weight'], {}), '(Weight)\n', (5882, 5890), True, 'import numpy as np\n'), ((7143, 7177), 'numpy.array', 'np.array', (["SubDf1['Pos']"], {'dtype': 'int'}), "(SubDf1['Pos'], dtype=int)\n", (7151, 7177), True, 'import numpy as np\n'), ((7215, 7249), 'numpy.array', 'np.array', (["SubDf2['Pos']"], {'dtype': 'int'}), "(SubDf2['Pos'], dtype=int)\n", (7223, 7249), True, 'import numpy as np\n'), ((9609, 9618), 'numpy.log', 'np.log', (['(3)'], {}), '(3)\n', (9615, 9618), True, 'import numpy as np\n'), ((9727, 9747), 'pysam.FastaFile', 'pysam.FastaFile', (['ref'], {}), '(ref)\n', (9742, 9747), False, 'import pysam\n'), ((9881, 9909), 'pysam.AlignmentFile', 'pysam.AlignmentFile', (['bamFile'], {}), '(bamFile)\n', (9900, 9909), False, 'import pysam\n'), ((15924, 15954), 'pandas.DataFrame', 'pd.DataFrame', (["MixDf['RawRate']"], {}), "(MixDf['RawRate'])\n", (15936, 15954), True, 'import pandas as pd\n'), ((18635, 18725), 'pandas.concat', 'pd.concat', (["[SubDf.loc[SubDf['RawGT'] == 'Homozygous'], SubShadowDf]"], {'axis': '(0)', 'sort': '(True)'}), "([SubDf.loc[SubDf['RawGT'] == 'Homozygous'], SubShadowDf], axis=0,\n sort=True)\n", (18644, 18725), True, 'import pandas as pd\n'), ((21443, 21511), 'numpy.max', 'np.max', (["[1e-07, HeteroProb['Base1'][0] - 3 * HeteroProb['Base1'][1]]"], {}), "([1e-07, HeteroProb['Base1'][0] - 3 * HeteroProb['Base1'][1]])\n", (21449, 21511), True, 'import numpy as np\n'), ((21828, 21915), 'numpy.array', 'np.array', (["CountDf.loc[I, ['HomoZygous', 'HeteroZygous', 'PCRError', 'PCRErrorLow']]"], {}), "(CountDf.loc[I, ['HomoZygous', 'HeteroZygous', 'PCRError',\n 'PCRErrorLow']])\n", (21836, 21915), True, 'import numpy as np\n'), ((5673, 5695), 'numpy.array', 'np.array', (["SubDf['Pos']"], {}), "(SubDf['Pos'])\n", (5681, 5695), True, 'import numpy as np\n'), ((6289, 6303), 'numpy.sum', 'np.sum', (['Weight'], {}), '(Weight)\n', (6295, 6303), True, 'import numpy as np\n'), ((7583, 7615), 'numpy.array', 'np.array', (["L_DF['Pos']"], {'dtype': 'int'}), "(L_DF['Pos'], dtype=int)\n", (7591, 7615), True, 'import numpy as np\n'), ((15607, 15661), 'pandas.concat', 'pd.concat', (['[CutOFFDf, CutOFFShadow]'], {'axis': '(0)', 'sort': '(True)'}), '([CutOFFDf, CutOFFShadow], axis=0, sort=True)\n', (15616, 15661), True, 'import pandas as pd\n'), ((16698, 16729), 'pandas.DataFrame', 'pd.DataFrame', (["SubMix['RawRate']"], {}), "(SubMix['RawRate'])\n", (16710, 16729), True, 'import pandas as pd\n'), ((24237, 24249), 'time.ctime', 'time.ctime', ([], {}), '()\n', (24247, 24249), False, 'import time\n'), ((24437, 24449), 'time.ctime', 'time.ctime', ([], {}), '()\n', (24447, 24449), False, 'import time\n'), ((24580, 24592), 'time.ctime', 'time.ctime', ([], {}), '()\n', (24590, 24592), False, 'import time\n'), ((6400, 6414), 'numpy.sum', 'np.sum', (['Weight'], {}), '(Weight)\n', (6406, 6414), True, 'import numpy as np\n'), ((10450, 10475), 'os.path.basename', 'os.path.basename', (['bamFile'], {}), '(bamFile)\n', (10466, 10475), False, 'import os\n'), ((14741, 14753), 'time.ctime', 'time.ctime', ([], {}), '()\n', (14751, 14753), False, 'import time\n'), ((14842, 14854), 'time.ctime', 'time.ctime', ([], {}), '()\n', (14852, 14854), False, 'import time\n'), ((16595, 16643), 'pandas.concat', 'pd.concat', (['[SubDf, SubShadow]'], {'axis': '(0)', 'sort': '(True)'}), '([SubDf, SubShadow], axis=0, sort=True)\n', (16604, 16643), True, 'import pandas as pd\n'), ((21646, 21673), 'numpy.log10', 'np.log10', (['(PCRLow_P1 + 1e-07)'], {}), '(PCRLow_P1 + 1e-07)\n', (21654, 21673), True, 'import numpy as np\n'), ((21704, 21735), 'numpy.log10', 'np.log10', (['(1 - PCRLow_P1 + 1e-07)'], {}), '(1 - PCRLow_P1 + 1e-07)\n', (21712, 21735), True, 'import numpy as np\n'), ((6237, 6276), 'numpy.array', 'np.array', (['WorkDf[RateName]'], {'dtype': 'float'}), '(WorkDf[RateName], dtype=float)\n', (6245, 6276), True, 'import numpy as np\n'), ((21078, 21113), 'numpy.log10', 'np.log10', (['(HomoProb[Base][0] + 1e-07)'], {}), '(HomoProb[Base][0] + 1e-07)\n', (21086, 21113), True, 'import numpy as np\n'), ((21221, 21258), 'numpy.log10', 'np.log10', (['(HeteroProb[Base][0] + 1e-07)'], {}), '(HeteroProb[Base][0] + 1e-07)\n', (21229, 21258), True, 'import numpy as np\n'), ((21360, 21394), 'numpy.log10', 'np.log10', (['(PCRProb[Base][0] + 1e-07)'], {}), '(PCRProb[Base][0] + 1e-07)\n', (21368, 21394), True, 'import numpy as np\n'), ((6348, 6387), 'numpy.array', 'np.array', (['WorkDf[RateName]'], {'dtype': 'float'}), '(WorkDf[RateName], dtype=float)\n', (6356, 6387), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # # Author: <NAME> # URL: http://kazuto1011.github.io # Created: 2017-05-26 from __future__ import print_function from collections import OrderedDict import cv2 import numpy as np import torch import torch.nn as nn from torch.autograd import Variable from torch.nn import functional as F class PropagationBase(object): def __init__(self, model, cuda=False): self.model = model self.model.eval() if cuda: self.model.cuda() self.cuda = cuda self.all_fmaps = OrderedDict() self.all_grads = OrderedDict() self._set_hook_func() self.image = None def _set_hook_func(self): raise NotImplementedError def _encode_one_hot(self, idx): one_hot = torch.FloatTensor(1, self.preds.size()[-1]).zero_() one_hot[0][idx] = 1.0 return one_hot.cuda() if self.cuda else one_hot def forward(self, image): self.image = image self.preds = self.model.forward(self.image) self.probs = F.softmax(self.preds, dim=0)[0] self.prob, self.idx = self.probs.data.sort(0, True) return self.prob, self.idx def backward(self, idx): self.model.zero_grad() one_hot = self._encode_one_hot(idx) self.preds.backward(gradient=one_hot, retain_graph=True) class GradCAM(PropagationBase): def _set_hook_func(self): def func_f(module, input, output): self.all_fmaps[id(module)] = output.data.cpu() def func_b(module, grad_in, grad_out): self.all_grads[id(module)] = grad_out[0].cpu() for module in self.model.named_modules(): module[1].register_forward_hook(func_f) module[1].register_backward_hook(func_b) def _find(self, outputs, target_layer): for key, value in outputs.items(): for module in self.model.named_modules(): if id(module[1]) == key: if module[0] == target_layer: return value raise ValueError('Invalid layer name: {}'.format(target_layer)) def _normalize(self, grads): l2_norm = torch.sqrt(torch.mean(torch.pow(grads, 2))) + 1e-5 return grads / l2_norm.data[0] def _compute_grad_weights(self, grads): grads = self._normalize(grads) self.map_size = grads.size()[2:] return nn.AvgPool2d(self.map_size)(grads) def generate(self, target_layer): fmaps = self._find(self.all_fmaps, target_layer) grads = self._find(self.all_grads, target_layer) weights = self._compute_grad_weights(grads) gcam = torch.FloatTensor(self.map_size).zero_() for fmap, weight in zip(fmaps[0], weights[0]): res = fmap * weight.data.expand_as(fmap) gcam += fmap * weight.data.expand_as(fmap) gcam = F.relu(Variable(gcam)) gcam = gcam.data.cpu().numpy() gcam -= gcam.min() if(gcam.max() != 0): gcam /= gcam.max() gcam = cv2.resize(gcam, (self.image.size(3), self.image.size(2))) return gcam def save(self, filename, gcam, raw_image): gcam = cv2.applyColorMap(np.uint8(gcam * 255.0), cv2.COLORMAP_JET) gcam = gcam.astype(np.float) + raw_image.astype(np.float) if(gcam.max() != 0): gcam = gcam / gcam.max() * 255.0 cv2.imwrite(filename, np.uint8(gcam)) class BackPropagation(PropagationBase): def _find(self, outputs, target_layer): for key, value in outputs.items(): for module in self.model.named_modules(): if id(module[1]) == key: if module[0] == target_layer: return value raise ValueError('Invalid layer name: {}'.format(target_layer)) def _set_hook_func(self): def func_b(module, grad_in, grad_out): self.all_grads[id(module)] = grad_in[0].cpu() for module in self.model.named_modules(): module[1].register_backward_hook(func_b) def generate(self, target_layer): grads = self._find(self.all_grads, target_layer) gradients_as_arr = grads.data[0].numpy()[0] return gradients_as_arr def save(self, filename, data): abs_max = np.maximum(-1 * data.min(), data.max()) data = data / abs_max * 127.0 + 127.0 cv2.imwrite(filename, np.uint8(data)) class GuidedBackPropagation(BackPropagation): def _set_hook_func(self): def func_b(module, grad_in, grad_out): self.all_grads[id(module)] = grad_in[0].cpu() # Cut off negative gradients if isinstance(module, nn.ReLU): return (torch.clamp(grad_in[0], min=0.0),) for module in self.model.named_modules(): module[1].register_backward_hook(func_b)
[ "numpy.uint8", "torch.autograd.Variable", "torch.FloatTensor", "torch.nn.functional.softmax", "torch.clamp", "torch.pow", "collections.OrderedDict", "torch.nn.AvgPool2d" ]
[((563, 576), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (574, 576), False, 'from collections import OrderedDict\n'), ((602, 615), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (613, 615), False, 'from collections import OrderedDict\n'), ((1061, 1089), 'torch.nn.functional.softmax', 'F.softmax', (['self.preds'], {'dim': '(0)'}), '(self.preds, dim=0)\n', (1070, 1089), True, 'from torch.nn import functional as F\n'), ((2413, 2440), 'torch.nn.AvgPool2d', 'nn.AvgPool2d', (['self.map_size'], {}), '(self.map_size)\n', (2425, 2440), True, 'import torch.nn as nn\n'), ((2895, 2909), 'torch.autograd.Variable', 'Variable', (['gcam'], {}), '(gcam)\n', (2903, 2909), False, 'from torch.autograd import Variable\n'), ((3214, 3236), 'numpy.uint8', 'np.uint8', (['(gcam * 255.0)'], {}), '(gcam * 255.0)\n', (3222, 3236), True, 'import numpy as np\n'), ((3426, 3440), 'numpy.uint8', 'np.uint8', (['gcam'], {}), '(gcam)\n', (3434, 3440), True, 'import numpy as np\n'), ((4417, 4431), 'numpy.uint8', 'np.uint8', (['data'], {}), '(data)\n', (4425, 4431), True, 'import numpy as np\n'), ((2669, 2701), 'torch.FloatTensor', 'torch.FloatTensor', (['self.map_size'], {}), '(self.map_size)\n', (2686, 2701), False, 'import torch\n'), ((2205, 2224), 'torch.pow', 'torch.pow', (['grads', '(2)'], {}), '(grads, 2)\n', (2214, 2224), False, 'import torch\n'), ((4728, 4760), 'torch.clamp', 'torch.clamp', (['grad_in[0]'], {'min': '(0.0)'}), '(grad_in[0], min=0.0)\n', (4739, 4760), False, 'import torch\n')]
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error as MSE from sklearn import preprocessing import math import re import warnings warnings.filterwarnings(action="ignore", module="scipy", message="^internal gelsd") acquired_dict = { 'tr':'tr', 'fa':'fa', 'dr':'dr', "Traded": "tr", "Free Agency": "fa", "Amateur Draft": "dr", "Amateur Free Agent": "fa", "Waivers": "tr", "Purchased":"tr", "Rule 5 Draft": "dr", "Expansion Draft": "dr", "Conditional Deal": "tr", "Amateur Draft--no sign": "dr", "MinorLg Draft": "dr", "Rune 5 returned": "tr" } def inflation_calc(row): inf_dict = { 2017: 1.0, 2016: 1.021299290023666, 2015: 1.0341874211554445, 2014: 1.0354149770208165, 2013: 1.0522113523096537, 2012: 1.0676237183898534, 2011: 1.089717656786951, 2010: 1.1241149062626115, 2009: 1.1425534989302544, 2008: 1.1384885486964882, 2007: 1.1822013870802828, 2006: 1.215873015873016, 2005: 1.2550947260624679, 2004: 1.297617787188989, 2003: 1.3324635790389214, 2002: 1.3626862352679565, 2001: 1.3843112893206078, 2000: 1.4234610917537749 } return int(row['salary']*inf_dict[row['year']]) def fixtm(t): if t == '2TM' or t == '3TM' or t == '4TM': return 'multiple' elif t == 'TBD': return 'TBR' elif t == 'MON': return "WSN" elif t == 'ANA': return 'LAA' elif t == 'FLA': return 'MIA' else: return t def fix_name(n): n1 = (' ').join(n.split('\xa0')) n2 = re.sub(r'[^\w\s]','',n1) return n2 def train_and_test(cutoff = 1000000): train_X,train_y,test_X,test_y = load_and_split_data(cutoff) lr = LinearRegression() lr.fit(train_X, train_y) preds = lr.predict(test_X) error = np.sqrt(MSE(test_y,preds)) return round(10**error,2) def train_and_test(cutoff = 1000000): train_X,train_y,test_X,test_y = load_and_split_data(cutoff) lr = LinearRegression() lr.fit(train_X, train_y) preds = lr.predict(test_X) error = np.sqrt(MSE(test_y,preds)) return round(10**error,2) def cutoff_df(df,cutoff): log_10_cut = math.log10(cutoff) df = df[df['log10_adj'] >= log_10_cut] return df def test_cutoffs(): test_cutoffs = [(i+1)*100000 for i in range(20)] error_list = [] for i in test_cutoffs: error = train_and_test(i) error_list.append(error) return test_cutoffs,error_list def test_elastic_cutoffs(): test_cutoffs = [(i+1)*100000 for i in range(20)] error_list = [] for i in test_cutoffs: error = elastic(i) error_list.append(error) return test_cutoffs,error_list def load_data(): train = pd.read_pickle('batting_00_16.pkl') test = pd.read_pickle('batting_17.pkl') return pd.concat([train,test]) def ordered(row): if row['name'] == row['np']: return row['next_sal'] else: return np.nan def get_salary_for_next_year(): df = load_data() df = engineer_features(df) df = df.sort_values(by = ['name','year']) df['next_sal'] = df['log10_adj'].shift(-1) df['np'] = df['name'].shift(-1) df['next_sal'] = df.apply(ordered,axis=1) df = df.dropna() df['log10_adj'] = df['next_sal'] df = df.drop(['next_sal','np'],axis=1) train = df[df['year']<2016] test = df[df['year']==2016] return train,test def engineer_features(df): df = df[df.pa>200] df = df.reset_index() df['pa/g'] = df['pa']/df['g'] df['name'] = df['name'].apply(fix_name) #adjust team names df['tm'] = df['tm'].apply(fixtm) #drop position summary (too many classes), log_sal (unscaled by inflation), rk (same as index) df.drop(['pos\xa0summary','log_sal','rk','index'],axis=1,inplace=True) #map values in acquired to 3 classes df['acquired'] = df['acquired'].map(acquired_dict) #adjust salary for inflation and take the log-10 for target column df['adj_salary'] = df.apply(inflation_calc,axis=1) df['log10_adj'] = np.log10(df['adj_salary']) #get dummy variables for team, hand, and acquired columns df = pd.get_dummies(df,columns = ['acquired','bat_hand','tm']).drop(['tm_multiple','bat_hand_rhb','acquired_tr'],axis=1) #filter datasets for only batters with more than 200 plate appearances in season return df def new_features(df): df['ba'] = df['h']/df['ab'] df['obp'] = (df['h']+df['bb']+df['hbp'])/(df['ab']+df['bb']+df['hbp']+df['sh']) df['slg'] = (df['h']+df['2b']+2*df['3b']+3*df['hr'])/df['ab'] return df def scaleColumns(df, cols_to_scale): min_max_scaler = preprocessing.MinMaxScaler() for col in cols_to_scale: df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col]) return df def rescale_numeric(df): df = df.reset_index().drop(['index'],axis=1) cols = ['g','pa','rbat','rbaser','rdp', 'rfield', 'rpos', 'raa', 'waa', 'rrep', 'rar', 'war', 'waawl%', '162wl%', 'owar', 'dwar', 'orar', 'year', 'ab', 'r', 'h', '2b', '3b', 'hr', 'rbi', 'sb', 'cs', 'bb', 'so', 'ibb', 'hbp', 'sh', 'sf', 'gidp', 'years_in_mlb','pa/g','ba','obp','slg'] df = scaleColumns(df,cols) return df def combine_with_lehman_data(df): players = pd.read_csv('baseballdatabank-master/core/People.csv') #players = players.set_index('playerID') drop_cols = ['deathYear','deathMonth','deathDay','deathCountry','deathState','deathCity', 'birthYear','birthMonth','birthDay','birthCountry','birthState','birthCity', 'nameGiven','weight','height','bats','throws','finalGame','retroID','bbrefID'] players = players.drop(drop_cols,axis=1) players['fullname'] = players['nameFirst'] + ' ' + players['nameLast'] players = players.dropna() players['fullname'] = players['fullname'].apply(lambda x: ''.join(re.sub(r'[^\w\s]','',x).split(' ')).lower()) batting = pd.read_csv('baseballdatabank-master/core/Batting.csv') bats = batting[batting['yearID'] >= 2000] bat_join = bats.merge(players,how='left',on='playerID') keep_cols = ['yearID', 'G', 'AB', 'R', 'H', '2B', '3B', 'HR', 'RBI', 'SB', 'CS', 'BB', 'SO', 'IBB', 'HBP', 'SH', 'SF', 'GIDP', 'debut', 'fullname'] bat_join = bat_join[keep_cols] bat_join.columns = [x.lower() for x in bat_join.columns] bat_join = bat_join.groupby(['fullname','yearid','debut'],axis=0)['g','ab','r','h','2b','3b','hr','rbi','sb','cs','bb','so','ibb','hbp','sh','sf','gidp'].sum().reset_index() bat_join['str_g'] = bat_join['g'].apply(str) bat_join['str_year'] = bat_join['yearid'].apply(str) bat_join['name_g_y'] = bat_join['fullname'] + ' ' + bat_join['str_g'] + ' ' + bat_join['str_year'] df['str_g'] = df['g'].apply(str) df['str_year'] = df['year'].apply(str) df['name'] = df['name'].apply(fix_aoki_and_castell) df['name_g_y'] = df['name'].apply(lambda x: ''.join(x.split(' ')).lower()) + ' ' + df['str_g'] + ' ' + df['str_year'] df = df.merge(bat_join,how='left',on='name_g_y') df = df.dropna() df['debut_year'] = df['debut'].apply(lambda x: int(x.split('-')[0])) df['years_in_mlb'] = df['year'] - df['debut_year'] df['g'] = df['g_x'] df = df.drop(['g_x','g_y','str_g_x','str_g_y','str_year_x','str_year_y','debut','debut_year','yearid','name_g_y','fullname'],axis=1) return df def fix_aoki_and_castell(name): if name == '<NAME>': return 'Nori Aoki' elif name == '<NAME>': return '<NAME>' else: return name def load_and_split_data(cutoff = 1): #Load dataframes from pickle train,test = get_salary_for_next_year() #Combine calculated statistics scraped from baseball-reference with raw stats from Lehman database train = combine_with_lehman_data(train) test = combine_with_lehman_data(test) train,test = new_features(train),new_features(test) #Rescale numeric features to be (0,1) train = rescale_numeric(train) test = rescale_numeric(test) #Cut dataframe by minimum salary train = cutoff_df(train,cutoff) test = cutoff_df(test,cutoff) #Split into features and response matrices train_y = train['log10_adj'] test_y = test['log10_adj'] train_X = train.drop(['name','age','log10_adj','salary','adj_salary'],axis=1) test_X = test.drop(['name','age','log10_adj','salary','adj_salary'],axis=1) return train_X, train_y, test_X, test_y def plot_with_cutoff(cut,err): fig,ax = plt.subplots(figsize=(4,4)) ax.scatter([i/1000 for i in cut],err) ax.set_title("Error Factor vs Cutoff Salary") ax.set_ylabel("Error Factor") ax.set_xlabel("Minimum Salary (Thousands)") ax.set_yticks([1,1.5,2,2.5,3]); ax.set_xticks([0,500,1000,1500,2000]); plt.tight_layout() def plot_with_cutoff_and_cols(cut,err,cols): fig,ax = plt.subplots(figsize=(4,4)) ax.scatter([i/1000 for i in cut],err) ax.scatter([i/1000 for i in cut],[i/10 for i in cols]) ax.set_title("Error Factor vs Cutoff Salary") ax.set_ylabel("Error Factor") ax.set_xlabel("Minimum Salary (Thousands)") ax.set_yticks([1,1.5,2,2.5,3]); ax.set_xticks([0,500,1000,1500,2000]); plt.tight_layout()
[ "pandas.DataFrame", "matplotlib.pyplot.tight_layout", "warnings.filterwarnings", "pandas.read_csv", "pandas.get_dummies", "sklearn.preprocessing.MinMaxScaler", "matplotlib.pyplot.subplots", "sklearn.linear_model.LinearRegression", "math.log10", "pandas.read_pickle", "numpy.log10", "re.sub", "pandas.concat", "sklearn.metrics.mean_squared_error" ]
[((248, 336), 'warnings.filterwarnings', 'warnings.filterwarnings', ([], {'action': '"""ignore"""', 'module': '"""scipy"""', 'message': '"""^internal gelsd"""'}), "(action='ignore', module='scipy', message=\n '^internal gelsd')\n", (271, 336), False, 'import warnings\n'), ((1700, 1727), 're.sub', 're.sub', (['"""[^\\\\w\\\\s]"""', '""""""', 'n1'], {}), "('[^\\\\w\\\\s]', '', n1)\n", (1706, 1727), False, 'import re\n'), ((1857, 1875), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (1873, 1875), False, 'from sklearn.linear_model import LinearRegression\n'), ((2131, 2149), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (2147, 2149), False, 'from sklearn.linear_model import LinearRegression\n'), ((2332, 2350), 'math.log10', 'math.log10', (['cutoff'], {}), '(cutoff)\n', (2342, 2350), False, 'import math\n'), ((2890, 2925), 'pandas.read_pickle', 'pd.read_pickle', (['"""batting_00_16.pkl"""'], {}), "('batting_00_16.pkl')\n", (2904, 2925), True, 'import pandas as pd\n'), ((2937, 2969), 'pandas.read_pickle', 'pd.read_pickle', (['"""batting_17.pkl"""'], {}), "('batting_17.pkl')\n", (2951, 2969), True, 'import pandas as pd\n'), ((2981, 3005), 'pandas.concat', 'pd.concat', (['[train, test]'], {}), '([train, test])\n', (2990, 3005), True, 'import pandas as pd\n'), ((4218, 4244), 'numpy.log10', 'np.log10', (["df['adj_salary']"], {}), "(df['adj_salary'])\n", (4226, 4244), True, 'import numpy as np\n'), ((4817, 4845), 'sklearn.preprocessing.MinMaxScaler', 'preprocessing.MinMaxScaler', ([], {}), '()\n', (4843, 4845), False, 'from sklearn import preprocessing\n'), ((5586, 5640), 'pandas.read_csv', 'pd.read_csv', (['"""baseballdatabank-master/core/People.csv"""'], {}), "('baseballdatabank-master/core/People.csv')\n", (5597, 5640), True, 'import pandas as pd\n'), ((6255, 6310), 'pandas.read_csv', 'pd.read_csv', (['"""baseballdatabank-master/core/Batting.csv"""'], {}), "('baseballdatabank-master/core/Batting.csv')\n", (6266, 6310), True, 'import pandas as pd\n'), ((8935, 8963), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(4, 4)'}), '(figsize=(4, 4))\n', (8947, 8963), True, 'import matplotlib.pyplot as plt\n'), ((9221, 9239), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (9237, 9239), True, 'import matplotlib.pyplot as plt\n'), ((9299, 9327), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(4, 4)'}), '(figsize=(4, 4))\n', (9311, 9327), True, 'import matplotlib.pyplot as plt\n'), ((9644, 9662), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (9660, 9662), True, 'import matplotlib.pyplot as plt\n'), ((1959, 1977), 'sklearn.metrics.mean_squared_error', 'MSE', (['test_y', 'preds'], {}), '(test_y, preds)\n', (1962, 1977), True, 'from sklearn.metrics import mean_squared_error as MSE\n'), ((2233, 2251), 'sklearn.metrics.mean_squared_error', 'MSE', (['test_y', 'preds'], {}), '(test_y, preds)\n', (2236, 2251), True, 'from sklearn.metrics import mean_squared_error as MSE\n'), ((4321, 4379), 'pandas.get_dummies', 'pd.get_dummies', (['df'], {'columns': "['acquired', 'bat_hand', 'tm']"}), "(df, columns=['acquired', 'bat_hand', 'tm'])\n", (4335, 4379), True, 'import pandas as pd\n'), ((4936, 4957), 'pandas.DataFrame', 'pd.DataFrame', (['df[col]'], {}), '(df[col])\n', (4948, 4957), True, 'import pandas as pd\n'), ((6191, 6217), 're.sub', 're.sub', (['"""[^\\\\w\\\\s]"""', '""""""', 'x'], {}), "('[^\\\\w\\\\s]', '', x)\n", (6197, 6217), False, 'import re\n')]
import random from pathlib import Path from functools import lru_cache import cv2 import numpy as np from imutils import paths import matplotlib.pyplot as plt from utils import * def resize_to_fit_downscale(image, down_scale=16): img_h, img_w = image.shape[:2] img_h = round_up_dividend(img_h, down_scale) img_w = round_up_dividend(img_w, down_scale) image = cv2.resize(image, (img_w, img_h)) return image def image_to_text_masks(image, annotations, down_scale): original_img_h, original_img_w = image.shape[:2] image = resize_to_fit_downscale(image, down_scale) img_h, img_w = image.shape[:2] ratio_h = img_h / original_img_h ratio_w = img_w / original_img_w image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) image = 1.0 - image / 255 all_text_mask = np.zeros((img_h, img_w, 1), dtype=np.uint8) key_mask = np.zeros((img_h, img_w, 1), dtype=np.uint8) value_mask = np.zeros((img_h, img_w, 1), dtype=np.uint8) other_mask = np.zeros((img_h, img_w, 1), dtype=np.uint8) for field in annotations: for word in field['words']: x1, y1, x2, y2 = (np.array(word['box']) * [ratio_w, ratio_h, ratio_w, ratio_h]).astype(int) all_text_mask[y1:y2, x1:x2] = 1.0 if field['label'] == 'question': key_mask[y1:y2, x1:x2] = 1.0 elif field['label'] == 'answer': value_mask[y1:y2, x1:x2] = 1.0 else: other_mask[y1:y2, x1:x2] = 1.0 background = (1 - key_mask) * (1 - value_mask) * (1 - other_mask) # background = (1 - key_mask) * (1 - value_mask) # plt.subplot('231') # plt.imshow(image) # plt.subplot('232') # plt.imshow(all_text_mask[..., 0]) # plt.subplot('233') # plt.imshow(key_mask[..., 0]) # plt.subplot('234') # plt.imshow(value_mask[..., 0]) # plt.subplot('235') # plt.imshow(other_mask[..., 0]) # plt.subplot('236') # plt.imshow(background[..., 0]) # plt.show() return (image, all_text_mask, key_mask, value_mask, other_mask, background) def image_to_relation_masks(image, annotations, down_scale): original_img_h, original_img_w = image.shape[:2] image = resize_to_fit_downscale(image, down_scale) img_h, img_w = image.shape[:2] ratio_h = img_h / original_img_h ratio_w = img_w / original_img_w image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) image = 1.0 - image / 255 all_text_mask = np.zeros((img_h, img_w, 1), dtype=np.uint8) key_mask = np.zeros((img_h, img_w, 1), dtype=np.uint8) value_mask = np.zeros((img_h, img_w, 1), dtype=np.uint8) other_mask = np.zeros((img_h, img_w, 1), dtype=np.uint8) annotations_map = {str(x['id']): x for x in annotations} for field in annotations: for word in field['words']: x1, y1, x2, y2 = (np.array(word['box']) * [ratio_w, ratio_h, ratio_w, ratio_h]).astype(int) all_text_mask[y1:y2, x1:x2] = 1.0 horizontal_relation_mask, vertical_relation_mask = \ draw_relation(all_text_mask.shape, annotations_map, colour=1) # plt.subplot('231') # plt.imshow(image) # # plt.subplot('232') # blended = (1 - image) * 0.6 + (1 - all_text_mask[..., 0]) * 0.4 # plt.imshow(blended) # # blended = (1 - image) * 0.6 + (1 - horizontal_relation_mask[..., 0]) * 0.4 # plt.subplot('234') # plt.imshow(blended) # # blended = (1 - image) * 0.6 + (1 - vertical_relation_mask[..., 0]) * 0.4 # plt.subplot('235') # plt.imshow(blended) # # relation_mask = np.maximum.reduce([all_text_mask, # horizontal_relation_mask, # vertical_relation_mask]) # blended = (1 - image) * 0.6 + (1 - relation_mask[..., 0]) * 0.4 # plt.subplot('236') # plt.imshow(blended) # # plt.show() return (image, all_text_mask, horizontal_relation_mask, vertical_relation_mask) @lru_cache(None) def read_img(img_path): return cv2.imread(img_path, cv2.IMREAD_COLOR) mask_cache = {} def data_generator(data_dir, mask_type, portion=1.0, down_scale=16, shuffle=False): image_path = Path(data_dir) / 'images' image_map = {get_file_name(p): p for p in paths.list_images(image_path)} annotation_path = Path(data_dir) / 'adjusted_annotations' if not annotation_path.exists(): annotation_path = Path(data_dir) / 'annotations' label_map = {get_file_name(p): p for p in paths.list_files(annotation_path, validExts=('.json'))} chosen_keys = sorted(list(image_map.keys())) amount = round(len(chosen_keys) * portion) if amount > 0: chosen_keys = chosen_keys[:amount] else: chosen_keys = chosen_keys[amount:] while True: if shuffle: random.shuffle(chosen_keys) for k in chosen_keys: # print(k) # image = cv2.imread(image_map[k], cv2.IMREAD_GRAYSCALE) / 255 # image = 1.0 - image image = read_img(image_map[k]) annotations = read_json(label_map[k])['form'] if mask_type == 'text_detection': if k not in mask_cache: mask_cache[k] = image_to_text_masks(image, annotations, down_scale) resized_grey_image, all_text_mask, *output_masks = mask_cache[k] input = resized_grey_image[None, ..., None] output = all_text_mask[None, ...] # plt.subplot('121') # plt.imshow(output_masks[..., 0] * 255) # plt.subplot('122') # plt.imshow(output_masks[..., 1]) # plt.show() yield (input, output) elif mask_type == 'text_classification': if k not in mask_cache: mask_cache[k] = image_to_text_masks(image, annotations, down_scale) resized_grey_image, all_text_mask, *output_masks = mask_cache[k] input = np.dstack([resized_grey_image, all_text_mask]) output_masks = np.dstack(output_masks) # plt.subplot('121') # plt.imshow(output_masks[..., 0] * 255) # plt.subplot('122') # plt.imshow(output_masks[..., 1]) # plt.show() yield (input[None, ...], output_masks[None, ...]) elif mask_type == 'relation': if k not in mask_cache: mask_cache[k] = image_to_relation_masks(image, annotations, down_scale) ( resized_grey_image, all_text_mask, horizontal_relation_mask, vertical_relation_mask ) = mask_cache[k] input = np.dstack([resized_grey_image, all_text_mask]) yield (input[None, ...], {'horizontal_relation_mask': horizontal_relation_mask[None,...], 'vertical_relation_mask': vertical_relation_mask[None, ...]}) if __name__ == '__main__': data_generator('dataset//training_data', mask_type='text') # sizes = [] # max_w, max_h = 0, 0 # for p in paths.list_images('dataset//training_data//images'): # img = cv2.imread(p) # h, w = img.shape[:2] # sizes.append((w, h)) # if h > max_h: # max_h = h # if w > max_w: # max_w = w # # img = np.zeros((max_h, max_w)) # for w, h in sizes: # img[:h, :w] += 1 # # img /= np.max(img) # # plt.imshow(img) # plt.show() # # plt.subplot('121') # plt.hist([x[0] for x in sizes]) # plt.subplot('122') # plt.hist([x[1] for x in sizes]) # plt.show()
[ "numpy.dstack", "imutils.paths.list_images", "imutils.paths.list_files", "cv2.cvtColor", "random.shuffle", "numpy.zeros", "cv2.imread", "pathlib.Path", "numpy.array", "functools.lru_cache", "cv2.resize" ]
[((4127, 4142), 'functools.lru_cache', 'lru_cache', (['None'], {}), '(None)\n', (4136, 4142), False, 'from functools import lru_cache\n'), ((378, 411), 'cv2.resize', 'cv2.resize', (['image', '(img_w, img_h)'], {}), '(image, (img_w, img_h))\n', (388, 411), False, 'import cv2\n'), ((721, 760), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_RGB2GRAY'], {}), '(image, cv2.COLOR_RGB2GRAY)\n', (733, 760), False, 'import cv2\n'), ((816, 859), 'numpy.zeros', 'np.zeros', (['(img_h, img_w, 1)'], {'dtype': 'np.uint8'}), '((img_h, img_w, 1), dtype=np.uint8)\n', (824, 859), True, 'import numpy as np\n'), ((875, 918), 'numpy.zeros', 'np.zeros', (['(img_h, img_w, 1)'], {'dtype': 'np.uint8'}), '((img_h, img_w, 1), dtype=np.uint8)\n', (883, 918), True, 'import numpy as np\n'), ((936, 979), 'numpy.zeros', 'np.zeros', (['(img_h, img_w, 1)'], {'dtype': 'np.uint8'}), '((img_h, img_w, 1), dtype=np.uint8)\n', (944, 979), True, 'import numpy as np\n'), ((997, 1040), 'numpy.zeros', 'np.zeros', (['(img_h, img_w, 1)'], {'dtype': 'np.uint8'}), '((img_h, img_w, 1), dtype=np.uint8)\n', (1005, 1040), True, 'import numpy as np\n'), ((2459, 2498), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_RGB2GRAY'], {}), '(image, cv2.COLOR_RGB2GRAY)\n', (2471, 2498), False, 'import cv2\n'), ((2554, 2597), 'numpy.zeros', 'np.zeros', (['(img_h, img_w, 1)'], {'dtype': 'np.uint8'}), '((img_h, img_w, 1), dtype=np.uint8)\n', (2562, 2597), True, 'import numpy as np\n'), ((2613, 2656), 'numpy.zeros', 'np.zeros', (['(img_h, img_w, 1)'], {'dtype': 'np.uint8'}), '((img_h, img_w, 1), dtype=np.uint8)\n', (2621, 2656), True, 'import numpy as np\n'), ((2674, 2717), 'numpy.zeros', 'np.zeros', (['(img_h, img_w, 1)'], {'dtype': 'np.uint8'}), '((img_h, img_w, 1), dtype=np.uint8)\n', (2682, 2717), True, 'import numpy as np\n'), ((2735, 2778), 'numpy.zeros', 'np.zeros', (['(img_h, img_w, 1)'], {'dtype': 'np.uint8'}), '((img_h, img_w, 1), dtype=np.uint8)\n', (2743, 2778), True, 'import numpy as np\n'), ((4178, 4216), 'cv2.imread', 'cv2.imread', (['img_path', 'cv2.IMREAD_COLOR'], {}), '(img_path, cv2.IMREAD_COLOR)\n', (4188, 4216), False, 'import cv2\n'), ((4335, 4349), 'pathlib.Path', 'Path', (['data_dir'], {}), '(data_dir)\n', (4339, 4349), False, 'from pathlib import Path\n'), ((4483, 4497), 'pathlib.Path', 'Path', (['data_dir'], {}), '(data_dir)\n', (4487, 4497), False, 'from pathlib import Path\n'), ((4425, 4454), 'imutils.paths.list_images', 'paths.list_images', (['image_path'], {}), '(image_path)\n', (4442, 4454), False, 'from imutils import paths\n'), ((4586, 4600), 'pathlib.Path', 'Path', (['data_dir'], {}), '(data_dir)\n', (4590, 4600), False, 'from pathlib import Path\n'), ((4681, 4733), 'imutils.paths.list_files', 'paths.list_files', (['annotation_path'], {'validExts': '""".json"""'}), "(annotation_path, validExts='.json')\n", (4697, 4733), False, 'from imutils import paths\n'), ((5002, 5029), 'random.shuffle', 'random.shuffle', (['chosen_keys'], {}), '(chosen_keys)\n', (5016, 5029), False, 'import random\n'), ((6444, 6490), 'numpy.dstack', 'np.dstack', (['[resized_grey_image, all_text_mask]'], {}), '([resized_grey_image, all_text_mask])\n', (6453, 6490), True, 'import numpy as np\n'), ((6522, 6545), 'numpy.dstack', 'np.dstack', (['output_masks'], {}), '(output_masks)\n', (6531, 6545), True, 'import numpy as np\n'), ((1142, 1163), 'numpy.array', 'np.array', (["word['box']"], {}), "(word['box'])\n", (1150, 1163), True, 'import numpy as np\n'), ((2941, 2962), 'numpy.array', 'np.array', (["word['box']"], {}), "(word['box'])\n", (2949, 2962), True, 'import numpy as np\n'), ((7369, 7415), 'numpy.dstack', 'np.dstack', (['[resized_grey_image, all_text_mask]'], {}), '([resized_grey_image, all_text_mask])\n', (7378, 7415), True, 'import numpy as np\n')]
import unittest from src.point_location import * from src.structures import * from src.graph import * import numpy as np from numpy import array from tqdm import tqdm class TestTrapezoidRep(unittest.TestCase): def test_three_init(self): vertices = np.array([[10, 150], [200, 20], [200, 100]]) trap = Trapezoid(vertices, originator_vertices=[]) np.testing.assert_equal(trap.top_line, np.array([[10, 150], [200, 100]])) np.testing.assert_equal(trap.bottom_line, np.array([[10, 150], [200, 20]])) self.assertEqual(trap.left_p[0], 10) self.assertEqual(trap.right_p[0], 200) def test_four_init(self): vertices = np.array([[10, 10], [200, 20], [200, 100], [10, 300]]) trap = Trapezoid(vertices, originator_vertices=[]) np.testing.assert_equal(trap.top_line, np.array([[10, 300], [200, 100]])) np.testing.assert_equal(trap.bottom_line, np.array([[10, 10], [200, 20]])) self.assertEqual(trap.left_p[0], 10) self.assertEqual(trap.right_p[0], 200) def test_specific_1(self): vertices = np.array([[240., 300.], [240., 253.33333333], [100., 300.]]) trap = Trapezoid(vertices, originator_vertices=[]) self.assertTrue(np.allclose(trap.bottom_line, np.array([[100, 300], [240, 253.33333333333]]))) np.testing.assert_equal(trap.top_line, np.array([[100, 300], [240, 300]])) self.assertEqual(trap.left_p[0], 100) self.assertEqual(trap.right_p[0], 240) def test_specific_2(self): vertices = np.array([[353., 123.98305085], [275., 122.], [275., 790.], [353., 790.]]) trap = Trapezoid(vertices, originator_vertices=[]) np.testing.assert_equal(trap.top_line, np.array([[275., 790.], [353., 790.]])) self.assertTrue(np.allclose(trap.bottom_line, np.array([[275., 122.], [353., 123.98305085]]))) self.assertEqual(trap.left_p[0], 275) self.assertEqual(trap.right_p[0], 353) def test_is_left_pointed(self): vertices = np.array([[309., 169.], [471., 170.71247357], [471., 69.]]) trap = Trapezoid(vertices, originator_vertices=[]) self.assertTrue(trap.is_left_pointed()) class TestTrapezoidIntersection(unittest.TestCase): def test_left_corner(self): vertices = np.array([[10, 150], [200, 60], [200, 10]]) trap = Trapezoid(vertices, originator_vertices=[]) edge = np.array([[10, 150], [205, 50]]) self.assertTrue(trap.is_intersected(edge)) def test_right_corner(self): vertices = np.array([[10, 10], [10, 300], [400, 150]]) trap = Trapezoid(vertices, originator_vertices=[]) edge = np.array([[0, 100], [400, 150]]) self.assertTrue(trap.is_intersected(edge)) def test_left_of_trapezoid(self): vertices = np.array([[10, 10], [200, 20], [200, 100], [10, 300]]) trap = Trapezoid(vertices, originator_vertices=[]) edge = np.array([[0, 100], [100, 25]]) self.assertTrue(trap.is_intersected(edge)) def test_right_of_trapezoid(self): pass def test_no_intersect(self): vertices = np.array([[10, 10], [200, 20], [200, 100], [10, 300]]) trap = Trapezoid(vertices, originator_vertices=[]) edge = np.array([[0, 20], [10, 40]]) self.assertFalse(trap.is_intersected(edge)) def test_top_tangent(self): vertices = np.array([[491., 186.], [237., 179.], [237., 790.], [491., 790.]]) trap = Trapezoid(vertices, originator_vertices=[]) edge = np.array([[237, 179], [353, 114]]) self.assertFalse(trap.is_intersected(edge)) def test_same_upper_right(self): vertices = np.array([[295., 138.51724138], [252., 147.4137931 ], [252., 50.], [295. , 60.]]) trap = Trapezoid(vertices, originator_vertices=[]) edge = np.array([[242, 60], [295, 60]]) self.assertTrue(trap.is_intersected(edge)) class TestTrapezoidsRightAdjacent(unittest.TestCase): def test_trapezoids_above(self): pass def test_trapezoids_below(self): pass def test_trapezoids_next_to(self): pass def test_failure_case(self): triangles = [np.array([[249, 111], [184, 172], [311, 170]]), np.array([[261, 213], [386, 198], [283, 268]])] top_triangle_edges = np.array([[[184, 172], [371, 170]], [[184, 172], [249, 111]], [[249, 111], [371, 170]]]) bottom_triangle_edges = np.array([[[386, 198], [283, 268]], [[261, 213], [283, 268]], [[261, 213], [386, 198]]]) polygons = Polygons(triangles) bounds = [10, 10, 790, 790] point_locator = PointLocator(bounds) """ for edge in np.concatenate([top_triangle_edges, bottom_triangle_edges]): point_locator.add_line(edge) """ point_locator.add_line(top_triangle_edges[0]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(184)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(371)), 1) self.assertEqual(point_locator.trapezoids.trap_count(), 4) point_locator.add_line(top_triangle_edges[1]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(184)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(249)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(371)), 1) self.assertEqual(point_locator.trapezoids.trap_count(), 6) point_locator.add_line(top_triangle_edges[2]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(184)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(249)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(371)), 1) self.assertEqual(point_locator.trapezoids.trap_count(), 7) point_locator.add_line(bottom_triangle_edges[0]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(184)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(249)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(283)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(371)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(386)), 1) self.assertEqual(point_locator.trapezoids.trap_count(), 10) point_locator.add_line(bottom_triangle_edges[1]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(184)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(249)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(261)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(283)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(371)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(386)), 1) self.assertEqual(point_locator.trapezoids.trap_count(), 12) point_locator.add_line(bottom_triangle_edges[2]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(184)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(249)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(261)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(283)), 2) print(point_locator.trapezoids.right_adjacent_to(371)) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(371)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(386)), 1) self.assertEqual(point_locator.trapezoids.trap_count(), 13) point_locator.remove_traps_within_polygons(polygons) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(184)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(249)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(261)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(371)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(283)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(386)), 1) class TestGraphBuilding(unittest.TestCase): def test_random(self): bounds = [10, 10, 790, 790] for _ in tqdm(range(100)): random_polygons = Polygons(Polygons.make_random(bounds, 50)) point_locator = PointLocator(bounds) for edge in random_polygons.random_edge_sampler(): point_locator.add_line(edge) graph = Graph(point_locator, 10) class TestIntegration(unittest.TestCase): def test_twotriangles(self): bounds = [10, 10, 790, 790] point_locator = PointLocator(bounds) # self.assertEqual(len(point_locator.trapezoids.trapezoids), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) top_triangle_edges = [np.array([[200, 100], [240, 30]]), np.array([[200, 100], [280, 100]]), np.array([[280, 100], [240, 30]])] bottom_triangle_edges = [np.array([[100, 300], [400, 300]]), np.array([[100, 300], [400, 200]]), np.array([[400, 300], [400, 200]])] point_locator.add_line(top_triangle_edges[0]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) sorted_traps = point_locator.trapezoids.right_adjacent_to(10) trap_idx = sorted_traps[sorted_traps.keys()[0]].index self.assertEqual(len(point_locator.trapezoids.right_adjacent(trap_idx)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(200)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(240)), 1) self.assertEqual(point_locator.trapezoids.trap_count(), 4) point_locator.add_line(bottom_triangle_edges[0]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(200)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(100)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(240)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(400)), 1) self.assertEqual(point_locator.trapezoids.trap_count(), 7) point_locator.add_line(bottom_triangle_edges[1]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(200)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(100)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(240)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(400)), 1) self.assertEqual(point_locator.trapezoids.trap_count(), 8) point_locator.add_line(top_triangle_edges[1]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(200)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(100)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(240)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(280)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(400)), 1) self.assertEqual(point_locator.trapezoids.trap_count(), 10) point_locator.add_line(top_triangle_edges[2]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) sorted_traps = point_locator.trapezoids.right_adjacent_to(10) trap_idx = sorted_traps[sorted_traps.keys()[0]].index self.assertEqual(len(point_locator.trapezoids.right_adjacent(trap_idx)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(200)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(100)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(240)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(280)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(400)), 1) def test_specific_3(self): bounds = [10, 10, 790, 790] point_locator = PointLocator(bounds) edges = [np.array([[100.41771139, 497.65833091], [193.75398968, 339.39024785]]), np.array([[100.41771139, 497.65833091], [168.82113323, 479.70436783]]), np.array([[168.82113323, 479.70436783], [193.75398968, 339.39024785]])] point_locator.add_line(edges[0]) point_locator.add_line(edges[1]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(168.82113323)), 1) point_locator.trapezoids.trap_count() # self.assertEqual(len(point_locator.trapezoids.right_adjacent(7)), 1) point_locator.add_line(edges[2]) def test_specific_4(self): bounds = [10, 10, 79.0, 79.0] point_locator = PointLocator(bounds) edges = [np.array([[27.54014023, 50.39508477], [33.87852725, 21.53020476]]), np.array([[16.20062533, 38.51858695], [27.54014023, 50.39508477]]), np.array([[16.20062533, 38.51858695], [33.87852725, 21.53020476]])] point_locator.add_line(edges[0]) point_locator.add_line(edges[1]) point_locator.trapezoids.trap_count() point_locator.add_line(edges[2]) def test_specific_5(self): bounds = [10, 10, 790, 790] edges = [array([[443, 737], [550, 780]]), array([[309, 169], [471, 69]]), array([[309, 169], [782, 174]]), array([[156, 719], [550, 780]])] point_locator = PointLocator(bounds) point_locator.add_line(edges[0]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(443)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(550)), 1) point_locator.add_line(edges[1]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(309)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(443)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(471)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(550)), 1) self.assertEqual(point_locator.trapezoids.trap_count(), 7) point_locator.add_line(edges[2]) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(10)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(309)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(443)), 2) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(471)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(550)), 1) self.assertEqual(len(point_locator.trapezoids.right_adjacent_to(782)), 1) self.assertEqual(point_locator.trapezoids.trap_count(), 9) point_locator.add_line(edges[3]) def test_random(self): bounds = [10, 10, 790, 790] for _ in tqdm(range(100)): random_polygons = Polygons(Polygons.make_random(bounds, 40)) point_locator = PointLocator(bounds) for edge in random_polygons.random_edge_sampler(): point_locator.add_line(edge)
[ "numpy.array" ]
[((263, 307), 'numpy.array', 'np.array', (['[[10, 150], [200, 20], [200, 100]]'], {}), '([[10, 150], [200, 20], [200, 100]])\n', (271, 307), True, 'import numpy as np\n'), ((675, 729), 'numpy.array', 'np.array', (['[[10, 10], [200, 20], [200, 100], [10, 300]]'], {}), '([[10, 10], [200, 20], [200, 100], [10, 300]])\n', (683, 729), True, 'import numpy as np\n'), ((1101, 1166), 'numpy.array', 'np.array', (['[[240.0, 300.0], [240.0, 253.33333333], [100.0, 300.0]]'], {}), '([[240.0, 300.0], [240.0, 253.33333333], [100.0, 300.0]])\n', (1109, 1166), True, 'import numpy as np\n'), ((1614, 1700), 'numpy.array', 'np.array', (['[[353.0, 123.98305085], [275.0, 122.0], [275.0, 790.0], [353.0, 790.0]]'], {}), '([[353.0, 123.98305085], [275.0, 122.0], [275.0, 790.0], [353.0, \n 790.0]])\n', (1622, 1700), True, 'import numpy as np\n'), ((2178, 2242), 'numpy.array', 'np.array', (['[[309.0, 169.0], [471.0, 170.71247357], [471.0, 69.0]]'], {}), '([[309.0, 169.0], [471.0, 170.71247357], [471.0, 69.0]])\n', (2186, 2242), True, 'import numpy as np\n'), ((2507, 2550), 'numpy.array', 'np.array', (['[[10, 150], [200, 60], [200, 10]]'], {}), '([[10, 150], [200, 60], [200, 10]])\n', (2515, 2550), True, 'import numpy as np\n'), ((2625, 2657), 'numpy.array', 'np.array', (['[[10, 150], [205, 50]]'], {}), '([[10, 150], [205, 50]])\n', (2633, 2657), True, 'import numpy as np\n'), ((2762, 2805), 'numpy.array', 'np.array', (['[[10, 10], [10, 300], [400, 150]]'], {}), '([[10, 10], [10, 300], [400, 150]])\n', (2770, 2805), True, 'import numpy as np\n'), ((2880, 2912), 'numpy.array', 'np.array', (['[[0, 100], [400, 150]]'], {}), '([[0, 100], [400, 150]])\n', (2888, 2912), True, 'import numpy as np\n'), ((3022, 3076), 'numpy.array', 'np.array', (['[[10, 10], [200, 20], [200, 100], [10, 300]]'], {}), '([[10, 10], [200, 20], [200, 100], [10, 300]])\n', (3030, 3076), True, 'import numpy as np\n'), ((3151, 3182), 'numpy.array', 'np.array', (['[[0, 100], [100, 25]]'], {}), '([[0, 100], [100, 25]])\n', (3159, 3182), True, 'import numpy as np\n'), ((3340, 3394), 'numpy.array', 'np.array', (['[[10, 10], [200, 20], [200, 100], [10, 300]]'], {}), '([[10, 10], [200, 20], [200, 100], [10, 300]])\n', (3348, 3394), True, 'import numpy as np\n'), ((3469, 3498), 'numpy.array', 'np.array', (['[[0, 20], [10, 40]]'], {}), '([[0, 20], [10, 40]])\n', (3477, 3498), True, 'import numpy as np\n'), ((3607, 3681), 'numpy.array', 'np.array', (['[[491.0, 186.0], [237.0, 179.0], [237.0, 790.0], [491.0, 790.0]]'], {}), '([[491.0, 186.0], [237.0, 179.0], [237.0, 790.0], [491.0, 790.0]])\n', (3615, 3681), True, 'import numpy as np\n'), ((3832, 3866), 'numpy.array', 'np.array', (['[[237, 179], [353, 114]]'], {}), '([[237, 179], [353, 114]])\n', (3840, 3866), True, 'import numpy as np\n'), ((4001, 4091), 'numpy.array', 'np.array', (['[[295.0, 138.51724138], [252.0, 147.4137931], [252.0, 50.0], [295.0, 60.0]]'], {}), '([[295.0, 138.51724138], [252.0, 147.4137931], [252.0, 50.0], [\n 295.0, 60.0]])\n', (4009, 4091), True, 'import numpy as np\n'), ((4242, 4274), 'numpy.array', 'np.array', (['[[242, 60], [295, 60]]'], {}), '([[242, 60], [295, 60]])\n', (4250, 4274), True, 'import numpy as np\n'), ((4821, 4913), 'numpy.array', 'np.array', (['[[[184, 172], [371, 170]], [[184, 172], [249, 111]], [[249, 111], [371, 170]]]'], {}), '([[[184, 172], [371, 170]], [[184, 172], [249, 111]], [[249, 111],\n [371, 170]]])\n', (4829, 4913), True, 'import numpy as np\n'), ((5020, 5112), 'numpy.array', 'np.array', (['[[[386, 198], [283, 268]], [[261, 213], [283, 268]], [[261, 213], [386, 198]]]'], {}), '([[[386, 198], [283, 268]], [[261, 213], [283, 268]], [[261, 213],\n [386, 198]]])\n', (5028, 5112), True, 'import numpy as np\n'), ((414, 447), 'numpy.array', 'np.array', (['[[10, 150], [200, 100]]'], {}), '([[10, 150], [200, 100]])\n', (422, 447), True, 'import numpy as np\n'), ((499, 531), 'numpy.array', 'np.array', (['[[10, 150], [200, 20]]'], {}), '([[10, 150], [200, 20]])\n', (507, 531), True, 'import numpy as np\n'), ((836, 869), 'numpy.array', 'np.array', (['[[10, 300], [200, 100]]'], {}), '([[10, 300], [200, 100]])\n', (844, 869), True, 'import numpy as np\n'), ((921, 952), 'numpy.array', 'np.array', (['[[10, 10], [200, 20]]'], {}), '([[10, 10], [200, 20]])\n', (929, 952), True, 'import numpy as np\n'), ((1430, 1464), 'numpy.array', 'np.array', (['[[100, 300], [240, 300]]'], {}), '([[100, 300], [240, 300]])\n', (1438, 1464), True, 'import numpy as np\n'), ((1882, 1924), 'numpy.array', 'np.array', (['[[275.0, 790.0], [353.0, 790.0]]'], {}), '([[275.0, 790.0], [353.0, 790.0]])\n', (1890, 1924), True, 'import numpy as np\n'), ((4616, 4662), 'numpy.array', 'np.array', (['[[249, 111], [184, 172], [311, 170]]'], {}), '([[249, 111], [184, 172], [311, 170]])\n', (4624, 4662), True, 'import numpy as np\n'), ((4704, 4750), 'numpy.array', 'np.array', (['[[261, 213], [386, 198], [283, 268]]'], {}), '([[261, 213], [386, 198], [283, 268]])\n', (4712, 4750), True, 'import numpy as np\n'), ((10217, 10250), 'numpy.array', 'np.array', (['[[200, 100], [240, 30]]'], {}), '([[200, 100], [240, 30]])\n', (10225, 10250), True, 'import numpy as np\n'), ((10282, 10316), 'numpy.array', 'np.array', (['[[200, 100], [280, 100]]'], {}), '([[200, 100], [280, 100]])\n', (10290, 10316), True, 'import numpy as np\n'), ((10348, 10381), 'numpy.array', 'np.array', (['[[280, 100], [240, 30]]'], {}), '([[280, 100], [240, 30]])\n', (10356, 10381), True, 'import numpy as np\n'), ((10417, 10451), 'numpy.array', 'np.array', (['[[100, 300], [400, 300]]'], {}), '([[100, 300], [400, 300]])\n', (10425, 10451), True, 'import numpy as np\n'), ((10485, 10519), 'numpy.array', 'np.array', (['[[100, 300], [400, 200]]'], {}), '([[100, 300], [400, 200]])\n', (10493, 10519), True, 'import numpy as np\n'), ((10553, 10587), 'numpy.array', 'np.array', (['[[400, 300], [400, 200]]'], {}), '([[400, 300], [400, 200]])\n', (10561, 10587), True, 'import numpy as np\n'), ((13750, 13820), 'numpy.array', 'np.array', (['[[100.41771139, 497.65833091], [193.75398968, 339.39024785]]'], {}), '([[100.41771139, 497.65833091], [193.75398968, 339.39024785]])\n', (13758, 13820), True, 'import numpy as np\n'), ((13866, 13936), 'numpy.array', 'np.array', (['[[100.41771139, 497.65833091], [168.82113323, 479.70436783]]'], {}), '([[100.41771139, 497.65833091], [168.82113323, 479.70436783]])\n', (13874, 13936), True, 'import numpy as np\n'), ((13982, 14052), 'numpy.array', 'np.array', (['[[168.82113323, 479.70436783], [193.75398968, 339.39024785]]'], {}), '([[168.82113323, 479.70436783], [193.75398968, 339.39024785]])\n', (13990, 14052), True, 'import numpy as np\n'), ((14561, 14627), 'numpy.array', 'np.array', (['[[27.54014023, 50.39508477], [33.87852725, 21.53020476]]'], {}), '([[27.54014023, 50.39508477], [33.87852725, 21.53020476]])\n', (14569, 14627), True, 'import numpy as np\n'), ((14636, 14702), 'numpy.array', 'np.array', (['[[16.20062533, 38.51858695], [27.54014023, 50.39508477]]'], {}), '([[16.20062533, 38.51858695], [27.54014023, 50.39508477]])\n', (14644, 14702), True, 'import numpy as np\n'), ((14711, 14777), 'numpy.array', 'np.array', (['[[16.20062533, 38.51858695], [33.87852725, 21.53020476]]'], {}), '([[16.20062533, 38.51858695], [33.87852725, 21.53020476]])\n', (14719, 14777), True, 'import numpy as np\n'), ((15050, 15081), 'numpy.array', 'array', (['[[443, 737], [550, 780]]'], {}), '([[443, 737], [550, 780]])\n', (15055, 15081), False, 'from numpy import array\n'), ((15103, 15133), 'numpy.array', 'array', (['[[309, 169], [471, 69]]'], {}), '([[309, 169], [471, 69]])\n', (15108, 15133), False, 'from numpy import array\n'), ((15156, 15187), 'numpy.array', 'array', (['[[309, 169], [782, 174]]'], {}), '([[309, 169], [782, 174]])\n', (15161, 15187), False, 'from numpy import array\n'), ((15209, 15240), 'numpy.array', 'array', (['[[156, 719], [550, 780]]'], {}), '([[156, 719], [550, 780]])\n', (15214, 15240), False, 'from numpy import array\n'), ((1334, 1380), 'numpy.array', 'np.array', (['[[100, 300], [240, 253.33333333333]]'], {}), '([[100, 300], [240, 253.33333333333]])\n', (1342, 1380), True, 'import numpy as np\n'), ((1976, 2025), 'numpy.array', 'np.array', (['[[275.0, 122.0], [353.0, 123.98305085]]'], {}), '([[275.0, 122.0], [353.0, 123.98305085]])\n', (1984, 2025), True, 'import numpy as np\n')]
import numpy as np from PIL import Image, ImageColor from pathlib import Path import torch import torch.nn.functional as F from random import shuffle from torch import tensor from torchvision import transforms from torchvision import datasets from torch.utils.data import Dataset, DataLoader, TensorDataset, Subset class ColoredMNIST(Dataset): def __init__(self, train, color_var=0.02): # get the colored mnist self.data_path = 'mnists/data/colored_mnist/mnist_10color_jitter_var_%.03f.npy' % color_var data_dic = np.load(self.data_path, encoding='latin1', allow_pickle=True).item() if train: self.ims = data_dic['train_image'] self.labels = tensor(data_dic['train_label'], dtype=torch.long) else: self.ims = data_dic['test_image'] self.labels = tensor(data_dic['test_label'], dtype=torch.long) self.T = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((32, 32), Image.NEAREST), transforms.ToTensor(), transforms.Normalize( (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), ), ]) def __getitem__(self, idx): ims, labels = self.T(self.ims[idx]), self.labels[idx] ret = { 'ims': ims, 'labels': labels, } return ret def __len__(self): return self.ims.shape[0] class DoubleColoredMNIST(Dataset): def __init__(self, train=True): self.train = train self.mnist_sz = 32 # get mnist mnist = datasets.MNIST('mnists/data', train=True, download=True) if train: ims, labels = mnist.data[:50000], mnist.targets[:50000] else: ims, labels = mnist.data[50000:], mnist.targets[50000:] self.ims_digit = torch.stack([ims, ims, ims], dim=1) self.labels = labels # colors generated by https://mokole.com/palette.html colors1 = [ 'darkgreen', 'darkblue', '#b03060', 'orangered', 'yellow', 'burlywood', 'lime', 'aqua', 'fuchsia', '#6495ed', ] # shift colors by X colors2 = [colors1[i - 6] for i in range(len(colors1))] def get_rgb(x): t = torch.tensor(ImageColor.getcolor(x, "RGB")) / 255. return t.view(-1, 1, 1) self.background_colors = list(map(get_rgb, colors1)) self.object_colors = list(map(get_rgb, colors2)) self.T = transforms.Compose([ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) def __getitem__(self, idx): i = self.labels[idx] if self.train else np.random.randint(10) back_color = self.background_colors[i].clone() back_color += torch.normal(0, 0.01, (3, 1, 1)) i = self.labels[idx] if self.train else np.random.randint(10) obj_color = self.object_colors[i].clone() obj_color += torch.normal(0, 0.01, (3, 1, 1)) # get digit im_digit = (self.ims_digit[idx] / 255.).to(torch.float32) im_digit = F.interpolate(im_digit[None, :], (self.mnist_sz, self.mnist_sz)).squeeze() im_digit = (im_digit > 0.1).to(int) # binarize # plot digit onto the texture ims = im_digit * (obj_color) + (1 - im_digit) * back_color ret = { 'ims': self.T(ims), 'labels': self.labels[idx], } return ret def __len__(self): return self.labels.shape[0] class WildlifeMNIST(Dataset): def __init__(self, train=True): self.train = train self.mnist_sz = 32 inter_sz = 150 # get mnist mnist = datasets.MNIST('mnists/data', train=True, download=True) if train: ims, labels = mnist.data[:50000], mnist.targets[:50000] else: ims, labels = mnist.data[50000:], mnist.targets[50000:] self.ims_digit = torch.stack([ims, ims, ims], dim=1) self.labels = labels # texture paths background_dir = Path('.') / 'mnists' / 'data' / 'textures' / 'background' self.background_textures = sorted([im for im in background_dir.glob('*.jpg')]) object_dir = Path('.') / 'mnists' / 'data' / 'textures' / 'object' self.object_textures = sorted([im for im in object_dir.glob('*.jpg')]) self.T_texture = transforms.Compose([ transforms.Resize((inter_sz, inter_sz), Image.NEAREST), transforms.RandomCrop(self.mnist_sz, padding=3, padding_mode='reflect'), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) def __getitem__(self, idx): # get textures i = self.labels[idx] if self.train else np.random.randint(10) back_text = Image.open(self.background_textures[i]) back_text = self.T_texture(back_text) i = self.labels[idx] if self.train else np.random.randint(10) obj_text = Image.open(self.object_textures[i]) obj_text = self.T_texture(obj_text) # get digit im_digit = (self.ims_digit[idx] / 255.).to(torch.float32) im_digit = F.interpolate(im_digit[None, :], (self.mnist_sz, self.mnist_sz)).squeeze() im_digit = (im_digit > 0.1).to(int) # binarize # plot digit onto the texture ims = im_digit * (obj_text) + (1 - im_digit) * back_text ret = { 'ims': ims, 'labels': self.labels[idx], } return ret def __len__(self): return self.labels.shape[0] def get_dataloaders(dataset, batch_size, workers): if dataset == 'colored_MNIST': MNIST = ColoredMNIST elif dataset == 'double_colored_MNIST': MNIST = DoubleColoredMNIST elif dataset == 'wildlife_MNIST': MNIST = WildlifeMNIST else: raise TypeError(f"Unknown dataset: {dataset}") ds_train = MNIST(train=True) ds_test = MNIST(train=False) dl_train = DataLoader(ds_train, batch_size=batch_size, shuffle=True, num_workers=workers) dl_test = DataLoader(ds_test, batch_size=batch_size * 2, shuffle=False, num_workers=workers) return dl_train, dl_test TENSOR_DATASETS = ['colored_MNIST', 'colored_MNIST_counterfactual', 'double_colored_MNIST', 'double_colored_MNIST_counterfactual', 'wildlife_MNIST', 'wildlife_MNIST_counterfactual'] def get_tensor_dataloaders(dataset, batch_size=64, ablation=False, cf=None): # assert dataset in TENSOR_DATASETS, f"Unknown datasets {dataset}" ds_train = [] if 'counterfactual' in dataset: tensor = torch.load(f'mnists/data/{dataset}.pth') dataset = dataset.replace('_counterfactual' + (f'_{cf}' if cf is not None else ''), '') real_tensor = torch.load(f'mnists/data/{dataset}_train.pth') ds_r = TensorDataset(*real_tensor[:2]) ds_r = Subset(ds_r, np.arange(50000)) for i in [1e4, 1e5, 1e6] if ablation else [len(tensor[0])]: ds = TensorDataset(*tensor[:2]) # ds = Subset(ds, np.arange(int(1e5))) if ablation: ds = Subset(ds, np.arange(int(i))) # ds = torch.utils.data.ConcatDataset([ds_r, ds]) ds_train.append(ds) else: ds_train.append(TensorDataset(*torch.load(f'mnists/data/{dataset}_train.pth'))) ds_test = TensorDataset(*torch.load(f'mnists/data/{dataset}_test.pth')) dl_train = [] for i in range(3 if ablation else 1): dl_train.append(DataLoader(ds_train[i], batch_size=batch_size, num_workers=4, shuffle=True, pin_memory=True)) dl_test = DataLoader(ds_test, batch_size=batch_size * 10, num_workers=4, shuffle=False, pin_memory=True) return dl_train, dl_test
[ "numpy.load", "pathlib.Path", "numpy.random.randint", "numpy.arange", "torch.utils.data.TensorDataset", "torchvision.transforms.Normalize", "torch.utils.data.DataLoader", "torch.load", "torchvision.transforms.ToPILImage", "torch.normal", "torchvision.datasets.MNIST", "torchvision.transforms.RandomCrop", "torchvision.transforms.Resize", "torch.stack", "PIL.Image.open", "PIL.ImageColor.getcolor", "torch.nn.functional.interpolate", "torch.tensor", "torchvision.transforms.ToTensor" ]
[((6007, 6085), 'torch.utils.data.DataLoader', 'DataLoader', (['ds_train'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': 'workers'}), '(ds_train, batch_size=batch_size, shuffle=True, num_workers=workers)\n', (6017, 6085), False, 'from torch.utils.data import Dataset, DataLoader, TensorDataset, Subset\n'), ((6126, 6213), 'torch.utils.data.DataLoader', 'DataLoader', (['ds_test'], {'batch_size': '(batch_size * 2)', 'shuffle': '(False)', 'num_workers': 'workers'}), '(ds_test, batch_size=batch_size * 2, shuffle=False, num_workers=\n workers)\n', (6136, 6213), False, 'from torch.utils.data import Dataset, DataLoader, TensorDataset, Subset\n'), ((7746, 7845), 'torch.utils.data.DataLoader', 'DataLoader', (['ds_test'], {'batch_size': '(batch_size * 10)', 'num_workers': '(4)', 'shuffle': '(False)', 'pin_memory': '(True)'}), '(ds_test, batch_size=batch_size * 10, num_workers=4, shuffle=\n False, pin_memory=True)\n', (7756, 7845), False, 'from torch.utils.data import Dataset, DataLoader, TensorDataset, Subset\n'), ((1602, 1658), 'torchvision.datasets.MNIST', 'datasets.MNIST', (['"""mnists/data"""'], {'train': '(True)', 'download': '(True)'}), "('mnists/data', train=True, download=True)\n", (1616, 1658), False, 'from torchvision import datasets\n'), ((1853, 1888), 'torch.stack', 'torch.stack', (['[ims, ims, ims]'], {'dim': '(1)'}), '([ims, ims, ims], dim=1)\n', (1864, 1888), False, 'import torch\n'), ((2793, 2825), 'torch.normal', 'torch.normal', (['(0)', '(0.01)', '(3, 1, 1)'], {}), '(0, 0.01, (3, 1, 1))\n', (2805, 2825), False, 'import torch\n'), ((2968, 3000), 'torch.normal', 'torch.normal', (['(0)', '(0.01)', '(3, 1, 1)'], {}), '(0, 0.01, (3, 1, 1))\n', (2980, 3000), False, 'import torch\n'), ((3704, 3760), 'torchvision.datasets.MNIST', 'datasets.MNIST', (['"""mnists/data"""'], {'train': '(True)', 'download': '(True)'}), "('mnists/data', train=True, download=True)\n", (3718, 3760), False, 'from torchvision import datasets\n'), ((3955, 3990), 'torch.stack', 'torch.stack', (['[ims, ims, ims]'], {'dim': '(1)'}), '([ims, ims, ims], dim=1)\n', (3966, 3990), False, 'import torch\n'), ((4828, 4867), 'PIL.Image.open', 'Image.open', (['self.background_textures[i]'], {}), '(self.background_textures[i])\n', (4838, 4867), False, 'from PIL import Image, ImageColor\n'), ((5004, 5039), 'PIL.Image.open', 'Image.open', (['self.object_textures[i]'], {}), '(self.object_textures[i])\n', (5014, 5039), False, 'from PIL import Image, ImageColor\n'), ((6707, 6747), 'torch.load', 'torch.load', (['f"""mnists/data/{dataset}.pth"""'], {}), "(f'mnists/data/{dataset}.pth')\n", (6717, 6747), False, 'import torch\n'), ((6866, 6912), 'torch.load', 'torch.load', (['f"""mnists/data/{dataset}_train.pth"""'], {}), "(f'mnists/data/{dataset}_train.pth')\n", (6876, 6912), False, 'import torch\n'), ((6928, 6959), 'torch.utils.data.TensorDataset', 'TensorDataset', (['*real_tensor[:2]'], {}), '(*real_tensor[:2])\n', (6941, 6959), False, 'from torch.utils.data import Dataset, DataLoader, TensorDataset, Subset\n'), ((706, 755), 'torch.tensor', 'tensor', (["data_dic['train_label']"], {'dtype': 'torch.long'}), "(data_dic['train_label'], dtype=torch.long)\n", (712, 755), False, 'from torch import tensor\n'), ((842, 890), 'torch.tensor', 'tensor', (["data_dic['test_label']"], {'dtype': 'torch.long'}), "(data_dic['test_label'], dtype=torch.long)\n", (848, 890), False, 'from torch import tensor\n'), ((2694, 2715), 'numpy.random.randint', 'np.random.randint', (['(10)'], {}), '(10)\n', (2711, 2715), True, 'import numpy as np\n'), ((2875, 2896), 'numpy.random.randint', 'np.random.randint', (['(10)'], {}), '(10)\n', (2892, 2896), True, 'import numpy as np\n'), ((4786, 4807), 'numpy.random.randint', 'np.random.randint', (['(10)'], {}), '(10)\n', (4803, 4807), True, 'import numpy as np\n'), ((4963, 4984), 'numpy.random.randint', 'np.random.randint', (['(10)'], {}), '(10)\n', (4980, 4984), True, 'import numpy as np\n'), ((6988, 7004), 'numpy.arange', 'np.arange', (['(50000)'], {}), '(50000)\n', (6997, 7004), True, 'import numpy as np\n'), ((7091, 7117), 'torch.utils.data.TensorDataset', 'TensorDataset', (['*tensor[:2]'], {}), '(*tensor[:2])\n', (7104, 7117), False, 'from torch.utils.data import Dataset, DataLoader, TensorDataset, Subset\n'), ((7470, 7515), 'torch.load', 'torch.load', (['f"""mnists/data/{dataset}_test.pth"""'], {}), "(f'mnists/data/{dataset}_test.pth')\n", (7480, 7515), False, 'import torch\n'), ((7602, 7698), 'torch.utils.data.DataLoader', 'DataLoader', (['ds_train[i]'], {'batch_size': 'batch_size', 'num_workers': '(4)', 'shuffle': '(True)', 'pin_memory': '(True)'}), '(ds_train[i], batch_size=batch_size, num_workers=4, shuffle=True,\n pin_memory=True)\n', (7612, 7698), False, 'from torch.utils.data import Dataset, DataLoader, TensorDataset, Subset\n'), ((545, 606), 'numpy.load', 'np.load', (['self.data_path'], {'encoding': '"""latin1"""', 'allow_pickle': '(True)'}), "(self.data_path, encoding='latin1', allow_pickle=True)\n", (552, 606), True, 'import numpy as np\n'), ((942, 965), 'torchvision.transforms.ToPILImage', 'transforms.ToPILImage', ([], {}), '()\n', (963, 965), False, 'from torchvision import transforms\n'), ((979, 1021), 'torchvision.transforms.Resize', 'transforms.Resize', (['(32, 32)', 'Image.NEAREST'], {}), '((32, 32), Image.NEAREST)\n', (996, 1021), False, 'from torchvision import transforms\n'), ((1035, 1056), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1054, 1056), False, 'from torchvision import transforms\n'), ((1070, 1124), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.5, 0.5, 0.5)', '(0.5, 0.5, 0.5)'], {}), '((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n', (1090, 1124), False, 'from torchvision import transforms\n'), ((2547, 2601), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.5, 0.5, 0.5)', '(0.5, 0.5, 0.5)'], {}), '((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n', (2567, 2601), False, 'from torchvision import transforms\n'), ((3107, 3171), 'torch.nn.functional.interpolate', 'F.interpolate', (['im_digit[None, :]', '(self.mnist_sz, self.mnist_sz)'], {}), '(im_digit[None, :], (self.mnist_sz, self.mnist_sz))\n', (3120, 3171), True, 'import torch.nn.functional as F\n'), ((4428, 4482), 'torchvision.transforms.Resize', 'transforms.Resize', (['(inter_sz, inter_sz)', 'Image.NEAREST'], {}), '((inter_sz, inter_sz), Image.NEAREST)\n', (4445, 4482), False, 'from torchvision import transforms\n'), ((4496, 4567), 'torchvision.transforms.RandomCrop', 'transforms.RandomCrop', (['self.mnist_sz'], {'padding': '(3)', 'padding_mode': '"""reflect"""'}), "(self.mnist_sz, padding=3, padding_mode='reflect')\n", (4517, 4567), False, 'from torchvision import transforms\n'), ((4581, 4602), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (4600, 4602), False, 'from torchvision import transforms\n'), ((4616, 4670), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.5, 0.5, 0.5)', '(0.5, 0.5, 0.5)'], {}), '((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n', (4636, 4670), False, 'from torchvision import transforms\n'), ((5190, 5254), 'torch.nn.functional.interpolate', 'F.interpolate', (['im_digit[None, :]', '(self.mnist_sz, self.mnist_sz)'], {}), '(im_digit[None, :], (self.mnist_sz, self.mnist_sz))\n', (5203, 5254), True, 'import torch.nn.functional as F\n'), ((2303, 2332), 'PIL.ImageColor.getcolor', 'ImageColor.getcolor', (['x', '"""RGB"""'], {}), "(x, 'RGB')\n", (2322, 2332), False, 'from PIL import Image, ImageColor\n'), ((7392, 7438), 'torch.load', 'torch.load', (['f"""mnists/data/{dataset}_train.pth"""'], {}), "(f'mnists/data/{dataset}_train.pth')\n", (7402, 7438), False, 'import torch\n'), ((4070, 4079), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (4074, 4079), False, 'from pathlib import Path\n'), ((4236, 4245), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (4240, 4245), False, 'from pathlib import Path\n')]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ @s-gupta Code for estimating unknown transforms by setting up a least square pixel reprojection error problem using pytorch. See README.md for details. """ from __future__ import print_function import cv2 import os import pickle import numpy as np import json import sys import torch import torch.optim as optim from absl import app, flags FLAGS = flags.FLAGS flags.DEFINE_string('data_dir', None, 'Directory with images and pkl files') flags.DEFINE_string('calibration_output_file', None, 'File where to write calibration parameters') flags.DEFINE_boolean('overwrite', False, 'Whether to overwrite output file or not') flags.DEFINE_float('inlier_pixel_threshold', 20., 'Max. reprojection error to consider an inlier') flags.DEFINE_float('min_inlier_fraction', 0.2, 'Fraction of pts to atleast consider as inliers') flags.DEFINE_integer('n_iters', 10001, 'Number of iterations') flags.DEFINE_string('typ', 'camera_arm', 'Calibration to run: camera_only | [camera_arm]') flags.DEFINE_list('to_optimize', ['camera_link'], 'Static transforms to optimize') AR_SZ = 0.03 / 2. def mkdir_if_missing(output_dir): if not os.path.exists(output_dir): try: os.makedirs(output_dir) return True except Exception: return False def load_data(dir_name): """ Load data from the pkl file, and load corresponding images. :params dir_name: name of directory :type dir_name: string :return: data from states.pkl file in directory, images from directory :rtype: dict, list of cv2 images (numpy arrays) """ tt = pickle.load(open(os.path.join(dir_name, 'states.pkl'))) imgs = [] for i in range(tt['states'].shape[0]): img = cv2.imread(os.path.join( dir_name, 'images', 'img_{:04d}.png'.format(i))) imgs.append(img) return tt, imgs def filter_data(imgs, dt, inds): """ Picks out ind rows from various fields in dt. :params imgs: list of cv2 images (numpy arrays) :params dt: dictionary with data captured during calibration :params ind: numpy array of indices to sample from imgs and dt :type imgs: list of cv2 images (numy arrays) :type dt: dictionary of transforms :type inds: numpy array of indices :return: list of images referred by inds, dictionary dt with data sampled using indices. :rtype: list, dict """ imgs = [imgs[i] for i in inds] kk = ['rgb_tf_tree_quat', 'rgb_tf_tree_matrix', 'states', 'ar_quat', 'rgb_tf_tree_trans', 'ar_trans', 'arm_pose_ids', 'ar_tf_tree_quat', 'ar_tf_tree_trans', 'ar_img_loc'] for k in kk: dt[k] = dt[k][inds, ...] return imgs, dt def get_tag_corners(imgs, ar_img_loc, dir_name=None): """ Converts ar_img_loc into useable format, by removing entires that are empty. Also, returns good indices and writes out good images into dir_name directroy if not None. """ pts = [] good_imgs = [] for i, img in enumerate(imgs): if not np.any(np.isnan(ar_img_loc[i, ...])): pt = ar_img_loc[i, [1, 0, 3, 2], :] pts.append(pt) good_imgs.append(i) if dir_name is not None: _img = img * 1 pt_int = pt.astype(np.int32) for j in range(3): cv2.line(_img, (pt_int[j, 0], pt_int[j, 1]), (pt_int[j + 1, 0], pt_int[j + 1, 1]), (255, 0, 0), j + 1) cv2.imwrite(os.path.join( dir_name, 'img_{:04d}.jpg'.format(i)), _img) pts = np.array(pts) good_imgs = np.array(good_imgs) return pts, good_imgs def hamilton_product(qa, qb): """ Multiply qa by qb. :params qa: B X N X 4 quaternions :params qb: B X N X 4 quaternions :type qa: torch.Tensor :type qb: torch.Tensor :return: B X N X 4 :rtype: torch.Tensor """ qa_0 = qa[:, :, 0] qa_1 = qa[:, :, 1] qa_2 = qa[:, :, 2] qa_3 = qa[:, :, 3] qb_0 = qb[:, :, 0] qb_1 = qb[:, :, 1] qb_2 = qb[:, :, 2] qb_3 = qb[:, :, 3] # See https://en.wikipedia.org/wiki/Quaternion#Hamilton_product q_mult_0 = qa_0 * qb_0 - qa_1 * qb_1 - qa_2 * qb_2 - qa_3 * qb_3 q_mult_1 = qa_0 * qb_1 + qa_1 * qb_0 + qa_2 * qb_3 - qa_3 * qb_2 q_mult_2 = qa_0 * qb_2 - qa_1 * qb_3 + qa_2 * qb_0 + qa_3 * qb_1 q_mult_3 = qa_0 * qb_3 + qa_1 * qb_2 - qa_2 * qb_1 + qa_3 * qb_0 return torch.stack([q_mult_0, q_mult_1, q_mult_2, q_mult_3], dim=-1) def quat_rotate(X, q, inverse=False): """ Rotate points by quaternions. :params X: B X N X 3 points :params q: B X 4 quaternions :type X: torch.Tensor :type q: torch.Tensor :return: B X N X 3 (rotated points) :rtype: torch.Tensor """ # repeat q along 2nd dim ones_x = X[[0], :, :][:, :, [0]] * 0 + 1 q = torch.unsqueeze(q, 1) * ones_x q_conj = torch.cat([q[:, :, [0]], -1 * q[:, :, 1:4]], dim=-1) X = torch.cat([X[:, :, [0]] * 0, X], dim=-1) if inverse: X_rot = hamilton_product(q_conj, hamilton_product(X, q)) else: X_rot = hamilton_product(q, hamilton_product(X, q_conj)) return X_rot[:, :, 1:4] def get_transforms_to_optimize(chain, to_optimize_quat, to_optimize_trans, device): """Returns pytorch tensors to optimize along the chain as per to_optimize_trans and to_optimize_quat.""" opt_pyt_trans, opt_pyt_quat = [], [] for i in range(len(chain) - 1): t = None q = None if chain[i + 1] in to_optimize_trans: t = torch.zeros(1, 3, device=device, dtype=torch.double, requires_grad=True) if chain[i + 1] in to_optimize_quat: qxyz = torch.zeros(1, 3, device=device, dtype=torch.double, requires_grad=True) qw = torch.ones(1, 1, device=device, dtype=torch.double, requires_grad=True) q = [qw, qxyz] opt_pyt_trans.append(t) opt_pyt_quat.append(q) return opt_pyt_quat, opt_pyt_trans def project_pts(pts, quat, trans, opt_pyt_quat, opt_pyt_trans, intrinsics): """Projects pts to the camera using the transformation and the camera intrinsics.""" pts_3d = pts t_pts_3d = transform_points_from_base(pts_3d, quat, trans, opt_pyt_quat, opt_pyt_trans) t_pts_3d = torch.matmul( intrinsics, t_pts_3d.permute(0, 2, 1)).permute(0, 2, 1) t_pts_2d = t_pts_3d[:, :, :2] / t_pts_3d[:, :, 2:] return t_pts_2d def reprojection_error(t_pts_2d, pts_2d_observed, min_inlier_fraction, inlier_pixel_threshold, mask=None): """Computes re-projection error for observed and projected points.""" n_pts = t_pts_2d.shape[0] err_all = t_pts_2d - pts_2d_observed err_all = err_all**2 err_all = err_all.sum(2) topk_k = int(4 * n_pts * min_inlier_fraction) topk, _ = torch.topk(err_all.view(-1), k=topk_k, largest=False) in_px_thresh_pyt = torch.from_numpy(np.array([inlier_pixel_threshold**2])) in_px_thresh_pyt = in_px_thresh_pyt.double() topk = torch.max(topk[-1], in_px_thresh_pyt) err_all_robust = torch.min(topk, err_all) if mask is not None: err_all_robust = err_all_robust * mask err = err_all_robust.sum() / mask.sum() else: err = err_all_robust.mean() err_all = torch.sqrt(err_all) return err, err_all, topk def optimize(vars_to_optimize, ar_tag_points, rgb_quat, rgb_trans, ar_quat, ar_trans, rgb_opt_pyt_quat, rgb_opt_pyt_trans, ar_opt_pyt_quat, ar_opt_pyt_trans, intrinsics, pts_2d_observed, optimizer_opts, mask=None): """Optimizes for vars_to_optimize by going through the kinematic chain from ar tag points to camera frame, projecting points using the camera matrices.""" optimizer = optim.Adam(vars_to_optimize, lr=0.01) print('Beginning optimization.') # optimizer = optim.SGD(vars_to_optimize, lr=0.01, momentum=0.9) for i in range(optimizer_opts['n_iters']): # zero the parameter gradients optimizer.zero_grad() t_pts = transform_points_to_base(ar_tag_points, ar_quat, ar_trans, ar_opt_pyt_quat, ar_opt_pyt_trans) t_pts_2d = project_pts(t_pts, rgb_quat, rgb_trans, rgb_opt_pyt_quat, rgb_opt_pyt_trans, intrinsics) min_inlier_fraction = optimizer_opts['min_inlier_fraction'] inlier_pixel_threshold = optimizer_opts['inlier_pixel_threshold'] err, err_all, robust_err_threshold = \ reprojection_error(t_pts_2d, pts_2d_observed, min_inlier_fraction, inlier_pixel_threshold, mask) robust_err_threshold = np.sqrt(robust_err_threshold.detach().numpy()[0]) err.backward() optimizer.step() if np.mod(i, 1000) == 0 or i == optimizer_opts['n_iters'] - 1: np_err_all = err_all.detach().numpy() n_inliers = int(np.sum(np_err_all <= robust_err_threshold)) total_pts = np_err_all.size np_err_all = np_err_all[np_err_all <= robust_err_threshold] str_ = 'Iteration: {:8d}, ' + \ 'N Inliers: {:d} / {:d}, ' + \ 'loss: {:0.3f}, ' + \ 'reprojection error: {:0.3f}, ' + \ 'inlier px threshold: {:0.3f}, ' str_ = str_.format(i, n_inliers, total_pts, err.detach().numpy(), np.mean(np_err_all), robust_err_threshold) print(str_) for v in vars_to_optimize: print(' ' + str(v.detach().numpy())) str_ = 'Optimization Finished. Final Loss: {:0.3f}.' print(str_.format(err.detach().numpy())) print('') def setup_camera_arm_solver(dt, imgs, mask, pts_2d, to_optimize_trans, to_optimize_quat, optimizer_opts, calibration_output_file=None): """This version sets up variables for where the base of the arm is with respect to the robot base. AR tag corners can then be recovered in terms of these variables, and a direct optimization problem can be set up in these terms.""" # Set up variables that need to be optimized. device = torch.device('cpu') torch.set_num_threads = 4 torch.manual_seed(4) rgb_chain = dt['rgb_chain'] ar_chain = dt['ar_chain'] rgb_quat = torch.from_numpy( dt['rgb_tf_tree_quat'][:, :, [3, 0, 1, 2]].astype(np.float64)) rgb_trans = torch.from_numpy(dt['rgb_tf_tree_trans'].astype(np.float64)) ar_quat = torch.from_numpy( dt['ar_tf_tree_quat'][:, :, [3, 0, 1, 2]].astype(np.float64)) ar_trans = torch.from_numpy(dt['ar_tf_tree_trans'].astype(np.float64)) intrinsics = torch.from_numpy( dt['intrinsics'][:, :3]).double().reshape([1, 3, 3]) pts_2d_observed = torch.from_numpy(pts_2d).double() rgb_opt_pyt_quat, rgb_opt_pyt_trans = \ get_transforms_to_optimize(rgb_chain, to_optimize_quat, to_optimize_trans, device) ar_opt_pyt_quat, ar_opt_pyt_trans = \ get_transforms_to_optimize(ar_chain, to_optimize_quat, to_optimize_trans, device) ar_tag_points = np.array( [[AR_SZ, AR_SZ, 0], [AR_SZ, -AR_SZ, 0], [-AR_SZ, -AR_SZ, 0], [-AR_SZ, AR_SZ, 0]], dtype=np.float64) ar_tag_points = ar_tag_points[np.newaxis, :, :] ar_tag_points = np.tile(ar_tag_points, [ar_quat.shape[0], 1, 1]) ar_tag_points = torch.from_numpy(ar_tag_points).double() # Use gradient descent from pytorch to solve this problem. vars_pts = [] vars_trans = [t for t in rgb_opt_pyt_trans + ar_opt_pyt_trans if t is not None] vars_rotate = [] for q in rgb_opt_pyt_quat + ar_opt_pyt_quat: if q is not None: vars_rotate.append(q[0]) vars_rotate.append(q[1]) if len(vars_pts) > 0: optimize(vars_pts, ar_tag_points, rgb_quat, rgb_trans, ar_quat, ar_trans, rgb_opt_pyt_quat, rgb_opt_pyt_trans, ar_opt_pyt_quat, ar_opt_pyt_trans, intrinsics, pts_2d_observed, optimizer_opts, None) if len(vars_pts + vars_trans) > 0: optimize(vars_pts + vars_trans, ar_tag_points, rgb_quat, rgb_trans, ar_quat, ar_trans, rgb_opt_pyt_quat, rgb_opt_pyt_trans, ar_opt_pyt_quat, ar_opt_pyt_trans, intrinsics, pts_2d_observed, optimizer_opts, None) if len(vars_pts + vars_trans + vars_rotate) > 0: optimize(vars_pts + vars_trans + vars_rotate, ar_tag_points, rgb_quat, rgb_trans, ar_quat, ar_trans, rgb_opt_pyt_quat, rgb_opt_pyt_trans, ar_opt_pyt_quat, ar_opt_pyt_trans, intrinsics, pts_2d_observed, optimizer_opts, None) if calibration_output_file is not None: # Prepare a json with the camera calibration parameters, and write them # out. to_write = to_optimize_trans + to_optimize_quat out = {} def_trans = np.zeros((3,), dtype=np.float64) def_quat = np.zeros((4,), dtype=np.float64) def_quat[3] = 1.0 for t in to_write: out[t] = {'trans': def_trans.tolist(), 'quat': def_quat.tolist()} if t in to_optimize_trans: if t in rgb_chain: id_ = rgb_chain.index(t) base_trans = torch.mean( rgb_trans[:, id_ - 1, :], 0, keepdim=True) trans = rgb_opt_pyt_trans[id_ - 1] _from = rgb_chain[id_ - 1] _to = rgb_chain[id_] else: id_ = ar_chain.index(t) base_trans = torch.mean( ar_trans[:, id_ - 1, :], 0, keepdim=True) trans = ar_opt_pyt_trans[id_ - 1] _from = ar_chain[id_ - 1] _to = ar_chain[id_] out[t]['trans'] = (-trans - base_trans).detach().cpu() out[t]['trans'] = out[t]['trans'].numpy()[0, :].tolist() if t in to_optimize_quat: if t in rgb_chain: id_ = rgb_chain.index(t) base_quat = rgb_quat[:1, id_ - 1, :] quat = rgb_opt_pyt_quat[id_ - 1] _from = rgb_chain[id_ - 1] _to = rgb_chain[id_] else: id_ = ar_chain.index(t) base_quat = ar_quat[:1, id_ - 1, :] quat = ar_opt_pyt_quat[id_ - 1] _from = ar_chain[id_ - 1] _to = ar_chain[id_] q = torch.cat(quat, 1) norm = q.norm(p=2, dim=1, keepdim=True) q_normalized = q.div(norm) full_quat = hamilton_product( q_normalized.view(1, 1, 4), base_quat.view(1, 1, 4)) quat = full_quat.detach().cpu().numpy() quat = quat[0, 0, [1, 2, 3, 0]] # Inverting the quat quat[:3] = -quat[:3] quat = quat.tolist() out[t]['quat'] = quat out[t]['from'] = _from out[t]['to'] = _to print('Writing calibration parameters to {:s}.'.format( calibration_output_file)) with open(calibration_output_file, 'w') as f: json.dump(out, f, sort_keys=True, indent=4, separators=(',', ': ')) def setup_camera_solver(dt, imgs, mask, pts_2d, to_optimize_trans=[], to_optimize_quat=[]): # TODO(s-gupta): Clean up this function, so that it uses the common # functions that we have defined above. n_measures = pts_2d.shape[0] quat = dt['rgb_tf_tree_quat'] * 1. quat = quat[:, :, [3, 0, 1, 2]] trans = dt['rgb_tf_tree_trans'] * 1. intrinsics = dt['intrinsics'] chain = dt['rgb_chain'] init_pts = get_ar_tag_loc( dt['ar_tf_tree_quat'], dt['ar_tf_tree_trans'], dt['arm_pose_ids']) init = init_pts.T init = init[np.newaxis, :, :].astype(np.float64) init = np.repeat(init, 4, 2) torch.manual_seed(4) # Set up variables that will be optimized. device = torch.device('cpu') # 3D Points _pts_3d = torch.from_numpy(init) _pts_3d.requires_grad = True # Translation and rotations as needed. opt_pyt_trans, opt_pyt_quat = [], [] for i in range(trans.shape[1]): t = None q = None if chain[i + 1] in to_optimize_trans: t = torch.zeros(1, 3, device=device, dtype=torch.double, requires_grad=True) if chain[i + 1] in to_optimize_quat: qxyz = torch.zeros(1, 3, device=device, dtype=torch.double, requires_grad=True) qw = torch.ones(1, 1, device=device, dtype=torch.double, requires_grad=True) q = [qw, qxyz] opt_pyt_trans.append(t) opt_pyt_quat.append(q) # Load data into pytorch pyt_quat = torch.from_numpy(quat) pyt_trans = torch.from_numpy(trans) pts_2d_observed = torch.from_numpy( np.transpose(pts_2d, [0, 2, 1])).double() pyt_mask = torch.from_numpy(mask.astype(np.float64)) intrinsics_pyt = torch.from_numpy( intrinsics[:, :3]).double().reshape([1, 3, 3]) def project_pts(_pts, pyt_quat, pyt_trans, opt_pyt_quat, opt_pyt_trans, intrinsics_pyt): pts_3d = _pts_3d pts_3d = pts_3d.permute(0, 2, 1) t_pts_3d = pts_3d.view(1, -1, 3).repeat(n_measures, 1, 1) t_pts_3d = transform_points_from_base(pts_3d, pyt_quat, pyt_trans, opt_pyt_quat, opt_pyt_trans) t_pts_3d = t_pts_3d.permute(0, 2, 1) t_pts_3d = torch.matmul(intrinsics_pyt, t_pts_3d) t_pts_2d = t_pts_3d[:, :2, :] / t_pts_3d[:, 2:, :] return t_pts_2d def criterion(pyt_mask, t_pts_2d, pts_2d_observed): err = t_pts_2d - pts_2d_observed err = err**2 err = err.sum(1) err_all = err * pyt_mask # n_pts = t_pts_2d.shape[0] # topk, _ = torch.topk(err_all.view(-1), k=int(4*n_pts*0.8), # largest=False) # mask_robust = torch.le(err_all, topk[-1]).double(); # err_all = err_all * mask_robust # pyt_mask = pyt_mask * mask_robust err = err_all.sum() / pyt_mask.sum() return err, err_all def optimize(n_iters, vars_to_optimize, _pts, pyt_quat, pyt_trans, opt_pyt_quat, opt_pyt_trans, intrinsics_pyt, mask, pts_2d_observed): optimizer = optim.Adam(vars_to_optimize, lr=0.01) for i in range(n_iters): # zero the parameter gradients optimizer.zero_grad() t_pts_2d = project_pts(_pts, pyt_quat, pyt_trans, opt_pyt_quat, opt_pyt_trans, intrinsics_pyt) err, err_all = criterion(pyt_mask, t_pts_2d, pts_2d_observed) err.backward() optimizer.step() if np.mod(i, 1000) == 0: print(err.detach().numpy()) print(err_all.detach().numpy()) for v in vars_to_optimize: print(v.detach().numpy()) print(err.detach().numpy()) # Use gradient descent from pytorch to solve this problem. vars_pts = [_pts_3d] vars_trans = [_ for _ in opt_pyt_trans if _ is not None] vars_rotate = [] for q in opt_pyt_quat: if q is not None: vars_rotate.append(q[0]) vars_rotate.append(q[1]) n_iters = 10001 optimize(n_iters, vars_pts, _pts_3d, pyt_quat, pyt_trans, opt_pyt_quat, opt_pyt_trans, intrinsics_pyt, mask, pts_2d_observed) optimize(n_iters, vars_trans + vars_pts, _pts_3d, pyt_quat, pyt_trans, opt_pyt_quat, opt_pyt_trans, intrinsics_pyt, mask, pts_2d_observed) optimize(n_iters, vars_rotate + vars_trans + vars_pts, _pts_3d, pyt_quat, pyt_trans, opt_pyt_quat, opt_pyt_trans, intrinsics_pyt, mask, pts_2d_observed) def transform_points_to_base(pts, quat, trans, opt_quat, opt_trans): """Transform pts from target frame to base frame. pts is B x N x 3 """ n_measures = pts.shape[0] for i in range(trans.shape[1] - 1, -1, -1): if opt_trans[i] is not None: pts = pts - opt_trans[i].unsqueeze(1) pts = pts - trans[:, i, :].unsqueeze(1) if opt_quat[i] is not None: q = torch.cat(opt_quat[i], 1) norm = q.norm(p=2, dim=1, keepdim=True) q_normalized = q.div(norm).repeat(n_measures, 1) pts = quat_rotate(pts, q_normalized, inverse=True) pts = quat_rotate(pts, quat[:, i, :], inverse=True) return pts def transform_points_from_base(pts, quat, trans, opt_quat, opt_trans): """Transform pts from base frame to target frame. pts is B x N x 3 """ t_pts_3d = pts n_measures = pts.shape[0] for j in range(quat.shape[1]): t_pts_3d = quat_rotate(t_pts_3d, quat[:, j, :]) if opt_quat[j] is not None: q = torch.cat(opt_quat[j], 1) norm = q.norm(p=2, dim=1, keepdim=True) q_normalized = q.div(norm).repeat(n_measures, 1) t_pts_3d = quat_rotate(t_pts_3d, q_normalized) t_pts_3d = t_pts_3d + trans[:, j, :].unsqueeze(1) if opt_trans[j] is not None: t_pts_3d = t_pts_3d + opt_trans[j].unsqueeze(1) return t_pts_3d def get_ar_tag_loc(ar_tf_tree_quat, ar_tf_tree_trans, arm_pose_ids): """Returns the 3D coordinate of the center of the AR tag based on the kinematic chain. Returns one center per unique arm_pose_ids.""" quat = ar_tf_tree_quat.astype(np.float64) trans = ar_tf_tree_trans.astype(np.float64) u_pts, ids = np.unique(arm_pose_ids, return_inverse=True) pyt_quat = torch.from_numpy(quat[:, :, [3, 0, 1, 2]]) pyt_trans = torch.from_numpy(trans) pts = np.zeros((quat.shape[0], 1, 3), dtype=np.float64) opt_pyt_quat = [None for i in range(pyt_trans.shape[1])] opt_pyt_trans = [None for i in range(pyt_trans.shape[1])] t_pts = transform_points_to_base(pts, pyt_quat, pyt_trans, opt_pyt_quat, opt_pyt_trans) t_pts = t_pts.detach().numpy() pts_out = [] for i in range(u_pts.size): pts_out.append(np.mean(t_pts[ids == i, 0, :], 0)) pts_out = np.array(pts_out) return pts_out def get_correspondence(arm_pose_ids, pts): """Use the arm_pose_ids to determine which corners actually corresspond to one another. Returns an expanded matrix, and a mask that determines which points should be used for computing the loss.""" u_pts, ids = np.unique(arm_pose_ids, return_inverse=True) n_pts = u_pts.size * 4 mask = np.zeros((pts.shape[0], n_pts), dtype=np.bool) pts_full = np.zeros((pts.shape[0], n_pts, 2), dtype=np.float32) for i in range(u_pts.size): pts_full[ids == i, i * 4:i * 4 + 4, :] = pts[ids == i, :, :] if np.sum(ids == i) >= 3: mask[ids == i, i * 4:i * 4 + 4] = True return mask, pts_full def main(_): if FLAGS.calibration_output_file is None: FLAGS.calibration_output_file = os.path.join(FLAGS.data_dir, 'calibrated.json') if os.path.exists(FLAGS.calibration_output_file) and not FLAGS.overwrite: print("""Calibration file already exists, please specify --overwrite to overwrite it with new calibration parameters""") sys.exit() optimizer_opts = {'min_inlier_fraction': FLAGS.min_inlier_fraction, 'inlier_pixel_threshold': FLAGS.inlier_pixel_threshold, 'n_iters': FLAGS.n_iters} print('optimizer_opts: ', optimizer_opts) print('') print('transforms to otpimize: ', FLAGS.to_optimize) print('') dir_name = FLAGS.data_dir tag_detect_dir_name = os.path.join(dir_name, 'tag_detect') mkdir_if_missing(tag_detect_dir_name) dt, imgs = load_data(dir_name) dt['ar_img_loc'] = np.array(dt['ar_img_loc']) ar_img_loc = dt['ar_img_loc'] pts, inds = get_tag_corners(imgs, ar_img_loc, tag_detect_dir_name) # Remove ones that did not get detected. imgs, dt = filter_data(imgs, dt, inds) if FLAGS.typ == 'camera_only': # Set up correspondence between them based on the pose id for the arm. mask, pts = get_correspondence(dt['arm_pose_ids'], pts) to_optimize_trans = FLAGS.to_optimize to_optimize_quat = FLAGS.to_optimize calibration_output_file = FLAGS.calibration_output_file setup_camera_solver(dt, imgs, mask, pts, to_optimize_trans, to_optimize_quat, calibration_output_file=calibration_output_file) else: mask = [] to_optimize = FLAGS.to_optimize to_optimize_trans = to_optimize to_optimize_quat = to_optimize calibration_output_file = FLAGS.calibration_output_file setup_camera_arm_solver(dt, imgs, mask, pts, to_optimize_trans, to_optimize_quat, optimizer_opts, calibration_output_file) if __name__ == '__main__': app.run(main)
[ "numpy.sum", "torch.sqrt", "torch.cat", "numpy.isnan", "numpy.mean", "absl.flags.DEFINE_boolean", "numpy.tile", "torch.device", "absl.flags.DEFINE_list", "os.path.join", "numpy.unique", "cv2.line", "torch.ones", "os.path.exists", "numpy.transpose", "absl.flags.DEFINE_integer", "absl.flags.DEFINE_float", "torch.zeros", "torch.matmul", "numpy.repeat", "torch.mean", "json.dump", "torch.manual_seed", "numpy.mod", "torch.optim.Adam", "torch.max", "torch.unsqueeze", "torch.min", "sys.exit", "torch.from_numpy", "torch.stack", "os.makedirs", "numpy.zeros", "absl.flags.DEFINE_string", "absl.app.run", "numpy.array" ]
[((544, 620), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""data_dir"""', 'None', '"""Directory with images and pkl files"""'], {}), "('data_dir', None, 'Directory with images and pkl files')\n", (563, 620), False, 'from absl import app, flags\n'), ((641, 743), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""calibration_output_file"""', 'None', '"""File where to write calibration parameters"""'], {}), "('calibration_output_file', None,\n 'File where to write calibration parameters')\n", (660, 743), False, 'from absl import app, flags\n'), ((760, 847), 'absl.flags.DEFINE_boolean', 'flags.DEFINE_boolean', (['"""overwrite"""', '(False)', '"""Whether to overwrite output file or not"""'], {}), "('overwrite', False,\n 'Whether to overwrite output file or not')\n", (780, 847), False, 'from absl import app, flags\n'), ((865, 968), 'absl.flags.DEFINE_float', 'flags.DEFINE_float', (['"""inlier_pixel_threshold"""', '(20.0)', '"""Max. reprojection error to consider an inlier"""'], {}), "('inlier_pixel_threshold', 20.0,\n 'Max. reprojection error to consider an inlier')\n", (883, 968), False, 'from absl import app, flags\n'), ((983, 1083), 'absl.flags.DEFINE_float', 'flags.DEFINE_float', (['"""min_inlier_fraction"""', '(0.2)', '"""Fraction of pts to atleast consider as inliers"""'], {}), "('min_inlier_fraction', 0.2,\n 'Fraction of pts to atleast consider as inliers')\n", (1001, 1083), False, 'from absl import app, flags\n'), ((1099, 1161), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""n_iters"""', '(10001)', '"""Number of iterations"""'], {}), "('n_iters', 10001, 'Number of iterations')\n", (1119, 1161), False, 'from absl import app, flags\n'), ((1183, 1277), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""typ"""', '"""camera_arm"""', '"""Calibration to run: camera_only | [camera_arm]"""'], {}), "('typ', 'camera_arm',\n 'Calibration to run: camera_only | [camera_arm]')\n", (1202, 1277), False, 'from absl import app, flags\n'), ((1294, 1380), 'absl.flags.DEFINE_list', 'flags.DEFINE_list', (['"""to_optimize"""', "['camera_link']", '"""Static transforms to optimize"""'], {}), "('to_optimize', ['camera_link'],\n 'Static transforms to optimize')\n", (1311, 1380), False, 'from absl import app, flags\n'), ((3996, 4009), 'numpy.array', 'np.array', (['pts'], {}), '(pts)\n', (4004, 4009), True, 'import numpy as np\n'), ((4026, 4045), 'numpy.array', 'np.array', (['good_imgs'], {}), '(good_imgs)\n', (4034, 4045), True, 'import numpy as np\n'), ((4863, 4924), 'torch.stack', 'torch.stack', (['[q_mult_0, q_mult_1, q_mult_2, q_mult_3]'], {'dim': '(-1)'}), '([q_mult_0, q_mult_1, q_mult_2, q_mult_3], dim=-1)\n', (4874, 4924), False, 'import torch\n'), ((5324, 5376), 'torch.cat', 'torch.cat', (['[q[:, :, [0]], -1 * q[:, :, 1:4]]'], {'dim': '(-1)'}), '([q[:, :, [0]], -1 * q[:, :, 1:4]], dim=-1)\n', (5333, 5376), False, 'import torch\n'), ((5385, 5425), 'torch.cat', 'torch.cat', (['[X[:, :, [0]] * 0, X]'], {'dim': '(-1)'}), '([X[:, :, [0]] * 0, X], dim=-1)\n', (5394, 5425), False, 'import torch\n'), ((7607, 7644), 'torch.max', 'torch.max', (['topk[-1]', 'in_px_thresh_pyt'], {}), '(topk[-1], in_px_thresh_pyt)\n', (7616, 7644), False, 'import torch\n'), ((7666, 7690), 'torch.min', 'torch.min', (['topk', 'err_all'], {}), '(topk, err_all)\n', (7675, 7690), False, 'import torch\n'), ((7872, 7891), 'torch.sqrt', 'torch.sqrt', (['err_all'], {}), '(err_all)\n', (7882, 7891), False, 'import torch\n'), ((8362, 8399), 'torch.optim.Adam', 'optim.Adam', (['vars_to_optimize'], {'lr': '(0.01)'}), '(vars_to_optimize, lr=0.01)\n', (8372, 8399), True, 'import torch.optim as optim\n'), ((10808, 10827), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (10820, 10827), False, 'import torch\n'), ((10862, 10882), 'torch.manual_seed', 'torch.manual_seed', (['(4)'], {}), '(4)\n', (10879, 10882), False, 'import torch\n'), ((11815, 11928), 'numpy.array', 'np.array', (['[[AR_SZ, AR_SZ, 0], [AR_SZ, -AR_SZ, 0], [-AR_SZ, -AR_SZ, 0], [-AR_SZ, AR_SZ, 0]\n ]'], {'dtype': 'np.float64'}), '([[AR_SZ, AR_SZ, 0], [AR_SZ, -AR_SZ, 0], [-AR_SZ, -AR_SZ, 0], [-\n AR_SZ, AR_SZ, 0]], dtype=np.float64)\n', (11823, 11928), True, 'import numpy as np\n'), ((12014, 12062), 'numpy.tile', 'np.tile', (['ar_tag_points', '[ar_quat.shape[0], 1, 1]'], {}), '(ar_tag_points, [ar_quat.shape[0], 1, 1])\n', (12021, 12062), True, 'import numpy as np\n'), ((16717, 16738), 'numpy.repeat', 'np.repeat', (['init', '(4)', '(2)'], {}), '(init, 4, 2)\n', (16726, 16738), True, 'import numpy as np\n'), ((16744, 16764), 'torch.manual_seed', 'torch.manual_seed', (['(4)'], {}), '(4)\n', (16761, 16764), False, 'import torch\n'), ((16825, 16844), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (16837, 16844), False, 'import torch\n'), ((16875, 16897), 'torch.from_numpy', 'torch.from_numpy', (['init'], {}), '(init)\n', (16891, 16897), False, 'import torch\n'), ((17669, 17691), 'torch.from_numpy', 'torch.from_numpy', (['quat'], {}), '(quat)\n', (17685, 17691), False, 'import torch\n'), ((17708, 17731), 'torch.from_numpy', 'torch.from_numpy', (['trans'], {}), '(trans)\n', (17724, 17731), False, 'import torch\n'), ((22502, 22546), 'numpy.unique', 'np.unique', (['arm_pose_ids'], {'return_inverse': '(True)'}), '(arm_pose_ids, return_inverse=True)\n', (22511, 22546), True, 'import numpy as np\n'), ((22562, 22604), 'torch.from_numpy', 'torch.from_numpy', (['quat[:, :, [3, 0, 1, 2]]'], {}), '(quat[:, :, [3, 0, 1, 2]])\n', (22578, 22604), False, 'import torch\n'), ((22621, 22644), 'torch.from_numpy', 'torch.from_numpy', (['trans'], {}), '(trans)\n', (22637, 22644), False, 'import torch\n'), ((22655, 22704), 'numpy.zeros', 'np.zeros', (['(quat.shape[0], 1, 3)'], {'dtype': 'np.float64'}), '((quat.shape[0], 1, 3), dtype=np.float64)\n', (22663, 22704), True, 'import numpy as np\n'), ((23113, 23130), 'numpy.array', 'np.array', (['pts_out'], {}), '(pts_out)\n', (23121, 23130), True, 'import numpy as np\n'), ((23422, 23466), 'numpy.unique', 'np.unique', (['arm_pose_ids'], {'return_inverse': '(True)'}), '(arm_pose_ids, return_inverse=True)\n', (23431, 23466), True, 'import numpy as np\n'), ((23505, 23551), 'numpy.zeros', 'np.zeros', (['(pts.shape[0], n_pts)'], {'dtype': 'np.bool'}), '((pts.shape[0], n_pts), dtype=np.bool)\n', (23513, 23551), True, 'import numpy as np\n'), ((23567, 23619), 'numpy.zeros', 'np.zeros', (['(pts.shape[0], n_pts, 2)'], {'dtype': 'np.float32'}), '((pts.shape[0], n_pts, 2), dtype=np.float32)\n', (23575, 23619), True, 'import numpy as np\n'), ((24660, 24696), 'os.path.join', 'os.path.join', (['dir_name', '"""tag_detect"""'], {}), "(dir_name, 'tag_detect')\n", (24672, 24696), False, 'import os\n'), ((24797, 24823), 'numpy.array', 'np.array', (["dt['ar_img_loc']"], {}), "(dt['ar_img_loc'])\n", (24805, 24823), True, 'import numpy as np\n'), ((25980, 25993), 'absl.app.run', 'app.run', (['main'], {}), '(main)\n', (25987, 25993), False, 'from absl import app, flags\n'), ((1460, 1486), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (1474, 1486), False, 'import os\n'), ((5279, 5300), 'torch.unsqueeze', 'torch.unsqueeze', (['q', '(1)'], {}), '(q, 1)\n', (5294, 5300), False, 'import torch\n'), ((7508, 7547), 'numpy.array', 'np.array', (['[inlier_pixel_threshold ** 2]'], {}), '([inlier_pixel_threshold ** 2])\n', (7516, 7547), True, 'import numpy as np\n'), ((13637, 13669), 'numpy.zeros', 'np.zeros', (['(3,)'], {'dtype': 'np.float64'}), '((3,), dtype=np.float64)\n', (13645, 13669), True, 'import numpy as np\n'), ((13689, 13721), 'numpy.zeros', 'np.zeros', (['(4,)'], {'dtype': 'np.float64'}), '((4,), dtype=np.float64)\n', (13697, 13721), True, 'import numpy as np\n'), ((18435, 18473), 'torch.matmul', 'torch.matmul', (['intrinsics_pyt', 't_pts_3d'], {}), '(intrinsics_pyt, t_pts_3d)\n', (18447, 18473), False, 'import torch\n'), ((19280, 19317), 'torch.optim.Adam', 'optim.Adam', (['vars_to_optimize'], {'lr': '(0.01)'}), '(vars_to_optimize, lr=0.01)\n', (19290, 19317), True, 'import torch.optim as optim\n'), ((23933, 23980), 'os.path.join', 'os.path.join', (['FLAGS.data_dir', '"""calibrated.json"""'], {}), "(FLAGS.data_dir, 'calibrated.json')\n", (23945, 23980), False, 'import os\n'), ((24042, 24087), 'os.path.exists', 'os.path.exists', (['FLAGS.calibration_output_file'], {}), '(FLAGS.calibration_output_file)\n', (24056, 24087), False, 'import os\n'), ((24262, 24272), 'sys.exit', 'sys.exit', ([], {}), '()\n', (24270, 24272), False, 'import sys\n'), ((1513, 1536), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (1524, 1536), False, 'import os\n'), ((1939, 1975), 'os.path.join', 'os.path.join', (['dir_name', '"""states.pkl"""'], {}), "(dir_name, 'states.pkl')\n", (1951, 1975), False, 'import os\n'), ((6014, 6086), 'torch.zeros', 'torch.zeros', (['(1)', '(3)'], {'device': 'device', 'dtype': 'torch.double', 'requires_grad': '(True)'}), '(1, 3, device=device, dtype=torch.double, requires_grad=True)\n', (6025, 6086), False, 'import torch\n'), ((6179, 6251), 'torch.zeros', 'torch.zeros', (['(1)', '(3)'], {'device': 'device', 'dtype': 'torch.double', 'requires_grad': '(True)'}), '(1, 3, device=device, dtype=torch.double, requires_grad=True)\n', (6190, 6251), False, 'import torch\n'), ((6300, 6371), 'torch.ones', 'torch.ones', (['(1)', '(1)'], {'device': 'device', 'dtype': 'torch.double', 'requires_grad': '(True)'}), '(1, 1, device=device, dtype=torch.double, requires_grad=True)\n', (6310, 6371), False, 'import torch\n'), ((11422, 11446), 'torch.from_numpy', 'torch.from_numpy', (['pts_2d'], {}), '(pts_2d)\n', (11438, 11446), False, 'import torch\n'), ((12083, 12114), 'torch.from_numpy', 'torch.from_numpy', (['ar_tag_points'], {}), '(ar_tag_points)\n', (12099, 12114), False, 'import torch\n'), ((16011, 16078), 'json.dump', 'json.dump', (['out', 'f'], {'sort_keys': '(True)', 'indent': '(4)', 'separators': "(',', ': ')"}), "(out, f, sort_keys=True, indent=4, separators=(',', ': '))\n", (16020, 16078), False, 'import json\n'), ((17148, 17220), 'torch.zeros', 'torch.zeros', (['(1)', '(3)'], {'device': 'device', 'dtype': 'torch.double', 'requires_grad': '(True)'}), '(1, 3, device=device, dtype=torch.double, requires_grad=True)\n', (17159, 17220), False, 'import torch\n'), ((17313, 17385), 'torch.zeros', 'torch.zeros', (['(1)', '(3)'], {'device': 'device', 'dtype': 'torch.double', 'requires_grad': '(True)'}), '(1, 3, device=device, dtype=torch.double, requires_grad=True)\n', (17324, 17385), False, 'import torch\n'), ((17434, 17505), 'torch.ones', 'torch.ones', (['(1)', '(1)'], {'device': 'device', 'dtype': 'torch.double', 'requires_grad': '(True)'}), '(1, 1, device=device, dtype=torch.double, requires_grad=True)\n', (17444, 17505), False, 'import torch\n'), ((21183, 21208), 'torch.cat', 'torch.cat', (['opt_quat[i]', '(1)'], {}), '(opt_quat[i], 1)\n', (21192, 21208), False, 'import torch\n'), ((21804, 21829), 'torch.cat', 'torch.cat', (['opt_quat[j]', '(1)'], {}), '(opt_quat[j], 1)\n', (21813, 21829), False, 'import torch\n'), ((23064, 23097), 'numpy.mean', 'np.mean', (['t_pts[ids == i, 0, :]', '(0)'], {}), '(t_pts[ids == i, 0, :], 0)\n', (23071, 23097), True, 'import numpy as np\n'), ((23732, 23748), 'numpy.sum', 'np.sum', (['(ids == i)'], {}), '(ids == i)\n', (23738, 23748), True, 'import numpy as np\n'), ((3353, 3381), 'numpy.isnan', 'np.isnan', (['ar_img_loc[i, ...]'], {}), '(ar_img_loc[i, ...])\n', (3361, 3381), True, 'import numpy as np\n'), ((9382, 9397), 'numpy.mod', 'np.mod', (['i', '(1000)'], {}), '(i, 1000)\n', (9388, 9397), True, 'import numpy as np\n'), ((9520, 9562), 'numpy.sum', 'np.sum', (['(np_err_all <= robust_err_threshold)'], {}), '(np_err_all <= robust_err_threshold)\n', (9526, 9562), True, 'import numpy as np\n'), ((10027, 10046), 'numpy.mean', 'np.mean', (['np_err_all'], {}), '(np_err_all)\n', (10034, 10046), True, 'import numpy as np\n'), ((15285, 15303), 'torch.cat', 'torch.cat', (['quat', '(1)'], {}), '(quat, 1)\n', (15294, 15303), False, 'import torch\n'), ((17780, 17811), 'numpy.transpose', 'np.transpose', (['pts_2d', '[0, 2, 1]'], {}), '(pts_2d, [0, 2, 1])\n', (17792, 17811), True, 'import numpy as np\n'), ((19715, 19730), 'numpy.mod', 'np.mod', (['i', '(1000)'], {}), '(i, 1000)\n', (19721, 19730), True, 'import numpy as np\n'), ((3659, 3766), 'cv2.line', 'cv2.line', (['_img', '(pt_int[j, 0], pt_int[j, 1])', '(pt_int[j + 1, 0], pt_int[j + 1, 1])', '(255, 0, 0)', '(j + 1)'], {}), '(_img, (pt_int[j, 0], pt_int[j, 1]), (pt_int[j + 1, 0], pt_int[j + \n 1, 1]), (255, 0, 0), j + 1)\n', (3667, 3766), False, 'import cv2\n'), ((11321, 11362), 'torch.from_numpy', 'torch.from_numpy', (["dt['intrinsics'][:, :3]"], {}), "(dt['intrinsics'][:, :3])\n", (11337, 11362), False, 'import torch\n'), ((14005, 14058), 'torch.mean', 'torch.mean', (['rgb_trans[:, id_ - 1, :]', '(0)'], {'keepdim': '(True)'}), '(rgb_trans[:, id_ - 1, :], 0, keepdim=True)\n', (14015, 14058), False, 'import torch\n'), ((14326, 14378), 'torch.mean', 'torch.mean', (['ar_trans[:, id_ - 1, :]', '(0)'], {'keepdim': '(True)'}), '(ar_trans[:, id_ - 1, :], 0, keepdim=True)\n', (14336, 14378), False, 'import torch\n'), ((17900, 17935), 'torch.from_numpy', 'torch.from_numpy', (['intrinsics[:, :3]'], {}), '(intrinsics[:, :3])\n', (17916, 17935), False, 'import torch\n')]
from __future__ import print_function import cv2 as cv import numpy as np import argparse from math import sqrt parser = argparse.ArgumentParser(description='Code from AKAZE local features matching tutorial.') parser.add_argument('--input1', help='Path to input image 1.', default='graf1.png') parser.add_argument('--input2', help='Path to input image 2.', default='graf3.png') parser.add_argument('--homography', help='Path to the homography matrix.', default='H1to3p.xml') args = parser.parse_args() img1 = cv.imread(args.input1, cv.IMREAD_GRAYSCALE) img2 = cv.imread(args.input2, cv.IMREAD_GRAYSCALE) if img1 is None or img2 is None: print('Could not open or find the images!') exit(0) fs = cv.FileStorage(args.homography, cv.FILE_STORAGE_READ) homography = fs.getFirstTopLevelNode().mat() detector = cv.ORB_create(10000) # descriptor = cv.ORB_create() descriptor = cv.xfeatures2d.BEBLID_create(0.75) kpts1 = detector.detect(img1, None) kpts2 = detector.detect(img2, None) kpts1, desc1 = descriptor.compute(img1, kpts1) kpts2, desc2 = descriptor.compute(img2, kpts2) matcher = cv.DescriptorMatcher_create(cv.DescriptorMatcher_BRUTEFORCE_HAMMING) nn_matches = matcher.knnMatch(desc1, desc2, 2) matched1 = [] matched2 = [] nn_match_ratio = 0.8 # Nearest neighbor matching ratio for m, n in nn_matches: if m.distance < nn_match_ratio * n.distance: matched1.append(kpts1[m.queryIdx]) matched2.append(kpts2[m.trainIdx]) inliers1 = [] inliers2 = [] good_matches = [] inlier_threshold = 2.5 # Distance threshold to identify inliers with homography check for i, m in enumerate(matched1): # Create the homogeneous point col = np.ones((3, 1), dtype=np.float64) col[0:2, 0] = m.pt # Project from image 1 to image 2 col = np.dot(homography, col) col /= col[2, 0] # Calculate euclidean distance dist = sqrt(pow(col[0, 0] - matched2[i].pt[0], 2) + \ pow(col[1, 0] - matched2[i].pt[1], 2)) if dist < inlier_threshold: good_matches.append(cv.DMatch(len(inliers1), len(inliers2), 0)) inliers1.append(matched1[i]) inliers2.append(matched2[i]) res = np.empty((max(img1.shape[0], img2.shape[0]), img1.shape[1] + img2.shape[1], 3), dtype=np.uint8) cv.drawMatches(img1, inliers1, img2, inliers2, good_matches, res) cv.imwrite("matching_result.png", res) inlier_ratio = len(inliers1) / float(len(matched1)) print('Matching Results') print('*******************************') print('# Keypoints 1: \t', len(kpts1)) print('# Keypoints 2: \t', len(kpts2)) print('# Matches: \t', len(matched1)) print('# Inliers: \t', len(inliers1)) print('# Inliers Ratio: \t', inlier_ratio) cv.imshow('result', res) cv.waitKey()
[ "argparse.ArgumentParser", "cv2.xfeatures2d.BEBLID_create", "cv2.drawMatches", "cv2.waitKey", "cv2.imwrite", "numpy.ones", "cv2.imread", "cv2.FileStorage", "cv2.ORB_create", "cv2.DescriptorMatcher_create", "numpy.dot", "cv2.imshow" ]
[((122, 215), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Code from AKAZE local features matching tutorial."""'}), "(description=\n 'Code from AKAZE local features matching tutorial.')\n", (145, 215), False, 'import argparse\n'), ((511, 554), 'cv2.imread', 'cv.imread', (['args.input1', 'cv.IMREAD_GRAYSCALE'], {}), '(args.input1, cv.IMREAD_GRAYSCALE)\n', (520, 554), True, 'import cv2 as cv\n'), ((562, 605), 'cv2.imread', 'cv.imread', (['args.input2', 'cv.IMREAD_GRAYSCALE'], {}), '(args.input2, cv.IMREAD_GRAYSCALE)\n', (571, 605), True, 'import cv2 as cv\n'), ((706, 759), 'cv2.FileStorage', 'cv.FileStorage', (['args.homography', 'cv.FILE_STORAGE_READ'], {}), '(args.homography, cv.FILE_STORAGE_READ)\n', (720, 759), True, 'import cv2 as cv\n'), ((817, 837), 'cv2.ORB_create', 'cv.ORB_create', (['(10000)'], {}), '(10000)\n', (830, 837), True, 'import cv2 as cv\n'), ((882, 916), 'cv2.xfeatures2d.BEBLID_create', 'cv.xfeatures2d.BEBLID_create', (['(0.75)'], {}), '(0.75)\n', (910, 916), True, 'import cv2 as cv\n'), ((1094, 1162), 'cv2.DescriptorMatcher_create', 'cv.DescriptorMatcher_create', (['cv.DescriptorMatcher_BRUTEFORCE_HAMMING'], {}), '(cv.DescriptorMatcher_BRUTEFORCE_HAMMING)\n', (1121, 1162), True, 'import cv2 as cv\n'), ((2243, 2308), 'cv2.drawMatches', 'cv.drawMatches', (['img1', 'inliers1', 'img2', 'inliers2', 'good_matches', 'res'], {}), '(img1, inliers1, img2, inliers2, good_matches, res)\n', (2257, 2308), True, 'import cv2 as cv\n'), ((2309, 2347), 'cv2.imwrite', 'cv.imwrite', (['"""matching_result.png"""', 'res'], {}), "('matching_result.png', res)\n", (2319, 2347), True, 'import cv2 as cv\n'), ((2785, 2809), 'cv2.imshow', 'cv.imshow', (['"""result"""', 'res'], {}), "('result', res)\n", (2794, 2809), True, 'import cv2 as cv\n'), ((2810, 2822), 'cv2.waitKey', 'cv.waitKey', ([], {}), '()\n', (2820, 2822), True, 'import cv2 as cv\n'), ((1664, 1697), 'numpy.ones', 'np.ones', (['(3, 1)'], {'dtype': 'np.float64'}), '((3, 1), dtype=np.float64)\n', (1671, 1697), True, 'import numpy as np\n'), ((1769, 1792), 'numpy.dot', 'np.dot', (['homography', 'col'], {}), '(homography, col)\n', (1775, 1792), True, 'import numpy as np\n')]
from fdfdpy.derivatives import createDws from fdfdpy.constants import DEFAULT_MATRIX_FORMAT import scipy.sparse as sp import numpy as np import scipy.sparse.linalg as la from scipy.sparse.linalg import spsolve as bslash matrix_format=DEFAULT_MATRIX_FORMAT matrix_format = 'csc' def grid_average(center_array, w): # computes values at cell edges xy = {'x': 0, 'y': 1} center_shifted = np.roll(center_array, 1, axis=xy[w]) avg_array = (center_shifted+center_array)/2 return avg_array def eigenTE_Kx_Ky(wvlen, eps_r, dL, Ky, num_modes = 10): ''' the eigenvalues should be bounded due to periodicity, i.e. the system should have some degeneracy with respect to the bloch wavevectors... :param wvlen: :param eps_r: :param a: :param dx: :return: ''' L0 = 1e-6; eps0 = 8.854e-12 * L0; mu0 = np.pi * 4e-7 * L0; c0 = 1 / np.sqrt(eps0 * mu0); #print(c0, mu0, eps0) omega = 2*np.pi*c0/wvlen; N = eps_r.shape; M = np.prod(N); Dxf = createDws('x', 'f', dL, N, matrix_format=matrix_format); Dxb = createDws('x', 'b', dL, N, matrix_format=matrix_format); Dyf = createDws('y', 'f', dL, N, matrix_format=matrix_format); Dyb = createDws('y', 'b', dL, N, matrix_format=matrix_format); # Epxx = grid_average(eps_r, 'x'); # Epyy = grid_average(eps_r, 'y'); #Tez = sp.spdiags(np.diag(eps0*eps_r), 0, M,M, format = matrix_format) invTepzz = sp.spdiags(1 / eps_r.flatten(), 0, M,M, format=matrix_format) I = sp.identity(M, format = matrix_format); K = invTepzz@(-Dxf @ Dxb - Dyf @ Dyb - 1j*((Dyf + Dyb))*Ky + Ky**2*I) - omega ** 2*eps0 *mu0*I ; M = invTepzz; C = -invTepzz@(1j * (Dxf + Dxb)); #% lambda A = sp.bmat([[M, None], [None, I]], format = matrix_format); #A should just be the identity B = sp.bmat([[C, K], [-I, None]], format = matrix_format); D= bslash(A,B); neff = np.sqrt(np.max(np.real(eps_r))); beta_est = abs(2*np.pi*neff / wvlen); sigma = beta_est; sigma = 0; #get eigenvalues k, modes = sp.linalg.eigs(D, k=num_modes, sigma = sigma) return k, modes, A,B;
[ "fdfdpy.derivatives.createDws", "numpy.roll", "scipy.sparse.bmat", "scipy.sparse.identity", "scipy.sparse.linalg.spsolve", "numpy.real", "scipy.sparse.linalg.eigs", "numpy.prod", "numpy.sqrt" ]
[((399, 435), 'numpy.roll', 'np.roll', (['center_array', '(1)'], {'axis': 'xy[w]'}), '(center_array, 1, axis=xy[w])\n', (406, 435), True, 'import numpy as np\n'), ((996, 1006), 'numpy.prod', 'np.prod', (['N'], {}), '(N)\n', (1003, 1006), True, 'import numpy as np\n'), ((1018, 1073), 'fdfdpy.derivatives.createDws', 'createDws', (['"""x"""', '"""f"""', 'dL', 'N'], {'matrix_format': 'matrix_format'}), "('x', 'f', dL, N, matrix_format=matrix_format)\n", (1027, 1073), False, 'from fdfdpy.derivatives import createDws\n'), ((1085, 1140), 'fdfdpy.derivatives.createDws', 'createDws', (['"""x"""', '"""b"""', 'dL', 'N'], {'matrix_format': 'matrix_format'}), "('x', 'b', dL, N, matrix_format=matrix_format)\n", (1094, 1140), False, 'from fdfdpy.derivatives import createDws\n'), ((1152, 1207), 'fdfdpy.derivatives.createDws', 'createDws', (['"""y"""', '"""f"""', 'dL', 'N'], {'matrix_format': 'matrix_format'}), "('y', 'f', dL, N, matrix_format=matrix_format)\n", (1161, 1207), False, 'from fdfdpy.derivatives import createDws\n'), ((1219, 1274), 'fdfdpy.derivatives.createDws', 'createDws', (['"""y"""', '"""b"""', 'dL', 'N'], {'matrix_format': 'matrix_format'}), "('y', 'b', dL, N, matrix_format=matrix_format)\n", (1228, 1274), False, 'from fdfdpy.derivatives import createDws\n'), ((1516, 1552), 'scipy.sparse.identity', 'sp.identity', (['M'], {'format': 'matrix_format'}), '(M, format=matrix_format)\n', (1527, 1552), True, 'import scipy.sparse as sp\n'), ((1733, 1786), 'scipy.sparse.bmat', 'sp.bmat', (['[[M, None], [None, I]]'], {'format': 'matrix_format'}), '([[M, None], [None, I]], format=matrix_format)\n', (1740, 1786), True, 'import scipy.sparse as sp\n'), ((1829, 1880), 'scipy.sparse.bmat', 'sp.bmat', (['[[C, K], [-I, None]]'], {'format': 'matrix_format'}), '([[C, K], [-I, None]], format=matrix_format)\n', (1836, 1880), True, 'import scipy.sparse as sp\n'), ((1892, 1904), 'scipy.sparse.linalg.spsolve', 'bslash', (['A', 'B'], {}), '(A, B)\n', (1898, 1904), True, 'from scipy.sparse.linalg import spsolve as bslash\n'), ((2064, 2107), 'scipy.sparse.linalg.eigs', 'sp.linalg.eigs', (['D'], {'k': 'num_modes', 'sigma': 'sigma'}), '(D, k=num_modes, sigma=sigma)\n', (2078, 2107), True, 'import scipy.sparse as sp\n'), ((889, 908), 'numpy.sqrt', 'np.sqrt', (['(eps0 * mu0)'], {}), '(eps0 * mu0)\n', (896, 908), True, 'import numpy as np\n'), ((1931, 1945), 'numpy.real', 'np.real', (['eps_r'], {}), '(eps_r)\n', (1938, 1945), True, 'import numpy as np\n')]
import graph_tool.all as gt import json import numpy as np from collections import Counter from subprocess import Popen, PIPE from HierarchicalPartitioningTree import PartitionTree, PartitionNode """Helpers This module provides helper functions. """ def statistics(G): """Provides general graph statistics. Args: G (graph_tool.Graph): The graph instance. Returns: An object with describing many statistical properties of the graph. """ if not G: return 'No Graph Loaded' float_formatter = lambda x: '{:.2f}'.format(x) if G.get_vertex_filter()[0] is not None: vfilt = G.get_vertex_filter()[0] v_idx = np.where(vfilt.a == 1)[0] else: v_idx = np.arange(G.num_vertices()) deg_counts, deg_bins = gt.vertex_hist(G, 'out', float_count=False) incl_idx = np.where(deg_counts != 0)[0] deg_bins = list(deg_bins[incl_idx]) deg_counts = list(deg_counts[incl_idx]) comp, cc_hist = gt.label_components(G) cc_size_counts = sorted(Counter(cc_hist).items()) cc_sizes = [csc[0] for csc in cc_size_counts] cc_counts = [csc[1] for csc in cc_size_counts] num_cc = len(np.unique(comp.a)) if deg_bins[0] == 0: num_singletons = deg_counts[0] else: num_singletons = 0 if G.get_vertex_filter()[0] or G.get_edge_filter()[0]: # Always correct, but much slower peel_partition = kcore_decomposition(G) peel_bins = sorted(peel_partition.keys()) peel_counts = [len(peel_partition[k]) for k in peel_bins] else: # NOTE: # Very fast, but unstable (not always accurate) for graphs with filters kcore = gt.kcore_decomposition(G) C = Counter(kcore.a[v_idx]) peel_bins, peel_counts = [list(t) for t in zip(*C.items())] vlogv = G.num_vertices() * np.log2(G.num_vertices()) return { 'num_vertices': G.num_vertices(), 'num_edges': G.num_edges(), 'num_cc': num_cc, 'num_singletons': num_singletons, 'vlogv': float_formatter(vlogv), 'deg_bins': deg_bins, 'deg_counts': deg_counts, 'cc_sizes': cc_sizes, 'cc_counts': cc_counts, 'peel_bins': peel_bins, 'peel_counts': peel_counts, } def kcore_decomposition(G, vlist=[], elist=[]): """Peform kcore decomposition (aka graph vertex peeling) on subgraph of G induced by input vertex and edge indices. Args: G (graph_tool.Graph): The graph instance. vlist (list): List of vertex indices to induce upon. elist (list): List of edge indices to induce upon. Returns: Dict with keys as kcore values and values as vertex IDs. """ # initiate filters, if necessary if vlist or elist: vp = G.new_vp('bool', vals=False) ep = G.new_ep('bool', vals=False) if vlist is []: vlist = np.ones_like(vp.a) elif elist is []: elist = np.ones_like(ep.a) vp.a[vlist] = True ep.a[elist] = True G.set_vertex_filter(vp) G.set_edge_filter(ep) cmd = './app/bin/graph_peeling.bin -t core -o core' p = Popen([cmd], shell=True, stdout=PIPE, stdin=PIPE) for e in G.edges(): p.stdin.write('{} {}\n'.format(e.source(), e.target())) p.stdin.flush() p.stdin.close() peel_partition = {} while True: line = p.stdout.readline() if line == '': break if not line.startswith('Core'): continue peel, vertices = line.split(' = ') peel = int(peel.split('_')[-1]) vertices = vertices.strip().split() peel_partition[peel] = vertices return peel_partition def traverse_tree(T, fully_qualified_label): """Traverse hierarchy to find PartitionNode with given label. Args: T (PartitionTree): The hierarchy tree instance. fully_qualified_label (str): Full name of the PartitionNode. Returns: PartitionNode with given label. """ if fully_qualified_label.lower() == 'root': return T.root sub_ids = fully_qualified_label.split('|') if sub_ids[0].lower() == 'root': sub_ids = sub_ids[1:] node = T.root for s in xrange(len(sub_ids)): idx = int(sub_ids[s].split('_')[-1]) node = node.children[idx] return node def get_indices(T, fully_qualified_label): """Traverse hierarchy to find PartitionNode with given label and return its vertex and edge indices. Args: T (PartitionTree): The hierarchy tree instance. fully_qualified_label (str): Full name of the PartitionNode. Returns: vlist, elist: vertex and edge lists, respectively. """ node = traverse_tree(T, fully_qualified_label) if len(node.vertex_indices) != 0: vlist = node.vertex_indices elist = node.edge_indices else: vlist, elist = PartitionTree.collect_indices(node) return vlist, elist def save_adjacency(G, vlist, elist, filename): """Induce subgraph of G using input vertex and edge lists and save the resulting adjacency list to a file. Args: G (graph_tool.Graph): The graph instance. vlist (list): List of vertex indices to induce upon. elist (list): List of edge indices to induce upon. filename (str): Filepath to write adjacency. Returns: Confirmation or error message. """ # get proper indices vp = G.new_vp('bool', vals=False) ep = G.new_ep('bool', vals=False) vp.a[vlist] = True ep.a[elist] = True G.set_vertex_filter(vp) G.set_edge_filter(ep) with open(filename, 'w') as f: for v in G.vertices(): neighbors = [u for u in v.out_neighbours()] # First column for v; following columns are neighbors. # NOTE: Adjacency list is redundant for undirected graphs out_str = ('{} ' + ('{} ' * len(neighbors))[:-1] + '\n').format(v, *neighbors) f.write(out_str) return {'msg': 'Adjacency saved as {}'.format(filename)} def to_vis_json(G, filename=None): """Produce Vis.js formatted network data (general). Args: G (graph_tool.Graph): The graph instance. Returns: Vis.js formatted network data. """ nodes = [] for v in G.vertices(): # v_id = G.vp['id'][v] # label = v_id v_id = G.vertex_index[v] label = G.vp['id'][v] group = 1 title = label value = v.out_degree() nodes.append({ 'id': v_id, 'label': label, 'title': title, 'value': value, 'group': group, }) edges = [] for e in G.edges(): # src = G.vp['id'][e.source()] # tar = G.vp['id'][e.target()] src = G.vertex_index[e.source()] tar = G.vertex_index[e.target()] edges.append({ 'id': G.edge_index[e], 'from': src, 'to': tar, # 'value': 1, }) return {'nodes': nodes, 'edges': edges} def to_vis_json_bcc_tree(G, filename=None): """Produce Vis.js formatted network data (for BCC trees). Args: G (graph_tool.Graph): The graph instance. Returns: Vis.js formatted network data. """ AP_GROUP = 0 BCC_METANODE_GROUP = 1 nodes = [] for v in G.vertices(): v_id = G.vertex_index[v] count = G.vp['count'][v] is_art = G.vp['is_articulation'][v] if is_art: label = G.vp['id'][v] title = 'AP: {}'.format(label) group = AP_GROUP else: title = 'BCC: {} | Count: {}'.format(v_id, count) label = title group = BCC_METANODE_GROUP value = count nodes.append({ 'id': v_id, 'label': label, 'title': title, 'value': value, 'group': group, }) edges = [] for e in G.edges(): src = G.vertex_index[e.source()] tar = G.vertex_index[e.target()] edges.append({ 'id': G.edge_index[e], 'from': src, 'to': tar, 'value': G.ep['count'][e], }) return {'nodes': nodes, 'edges': edges} def to_vis_json_cluster_map(G, cluster_assignment, landmark_map, spine, branches): """Produce Vis.js formatted network data (for clusters). Args: G (graph_tool.Graph): The graph instance. cluster_assignment (dict): Mapping of vertices to clusters. landmark_map (set): Set containing landmark vertices. spine (set): Set containing edges on spine. branches (set): Set containing edges on spinal branches. Returns: Vis.js formatted network data. """ nodes = [] for v in G.vertices(): v_id = G.vertex_index[v] label = G.vp['id'][v] title = label value = v.out_degree() group = cluster_assignment[v_id] if v_id in landmark_map: shape = 'star' border_width = 2 else: shape = 'dot' border_width = 1 nodes.append({ 'id': v_id, 'label': label, 'title': title, 'value': value, 'group': group, 'shape': shape, 'borderWidth': border_width, }) edges = [] for e in G.edges(): src = G.vertex_index[e.source()] tar = G.vertex_index[e.target()] if e in spine: category = 'spine' elif e in branches: category = 'branch' else: category = 'none' edges.append({ 'id': G.edge_index[e], 'from': src, 'to': tar, 'category': category, # 'value': 1, }) return {'nodes': nodes, 'edges': edges} def to_vis_json_metagraph(metanodes, cross_edges): """Produce Vis.js formatted network data (for children metagraphs). Args: metanodes (dict): Metanodes of the metagraph. cross_edges (dict): Edges running between metanodes. Returns: Vis.js formatted network data. """ nodes = [] for mn_id, node_info in metanodes.iteritems(): long_label = node_info['fully_qualified_label'] title_html = \ '<p>{}<br>|V|: {}<br>|E|: {}'.format(long_label, node_info['num_vertices'], node_info['num_edges']) nodes.append({ 'id': mn_id, 'label': node_info['short_label'], 'title': title_html, 'value': node_info['num_vertices'], }) edges = [] for idx, (e, edge_indices) in enumerate(cross_edges.iteritems()): value = len(edge_indices) edges.append({ 'id': idx, 'from': e[0], 'to': e[1], 'value': value, 'title': 'meta-edge size: {}'.format(value), }) return {'nodes': nodes, 'edges': edges}
[ "graph_tool.all.kcore_decomposition", "subprocess.Popen", "numpy.ones_like", "graph_tool.all.label_components", "HierarchicalPartitioningTree.PartitionTree.collect_indices", "graph_tool.all.vertex_hist", "numpy.where", "collections.Counter", "numpy.unique" ]
[((783, 826), 'graph_tool.all.vertex_hist', 'gt.vertex_hist', (['G', '"""out"""'], {'float_count': '(False)'}), "(G, 'out', float_count=False)\n", (797, 826), True, 'import graph_tool.all as gt\n'), ((976, 998), 'graph_tool.all.label_components', 'gt.label_components', (['G'], {}), '(G)\n', (995, 998), True, 'import graph_tool.all as gt\n'), ((3165, 3214), 'subprocess.Popen', 'Popen', (['[cmd]'], {'shell': '(True)', 'stdout': 'PIPE', 'stdin': 'PIPE'}), '([cmd], shell=True, stdout=PIPE, stdin=PIPE)\n', (3170, 3214), False, 'from subprocess import Popen, PIPE\n'), ((842, 867), 'numpy.where', 'np.where', (['(deg_counts != 0)'], {}), '(deg_counts != 0)\n', (850, 867), True, 'import numpy as np\n'), ((1172, 1189), 'numpy.unique', 'np.unique', (['comp.a'], {}), '(comp.a)\n', (1181, 1189), True, 'import numpy as np\n'), ((1680, 1705), 'graph_tool.all.kcore_decomposition', 'gt.kcore_decomposition', (['G'], {}), '(G)\n', (1702, 1705), True, 'import graph_tool.all as gt\n'), ((1718, 1741), 'collections.Counter', 'Counter', (['kcore.a[v_idx]'], {}), '(kcore.a[v_idx])\n', (1725, 1741), False, 'from collections import Counter\n'), ((4927, 4962), 'HierarchicalPartitioningTree.PartitionTree.collect_indices', 'PartitionTree.collect_indices', (['node'], {}), '(node)\n', (4956, 4962), False, 'from HierarchicalPartitioningTree import PartitionTree, PartitionNode\n'), ((675, 697), 'numpy.where', 'np.where', (['(vfilt.a == 1)'], {}), '(vfilt.a == 1)\n', (683, 697), True, 'import numpy as np\n'), ((2900, 2918), 'numpy.ones_like', 'np.ones_like', (['vp.a'], {}), '(vp.a)\n', (2912, 2918), True, 'import numpy as np\n'), ((1027, 1043), 'collections.Counter', 'Counter', (['cc_hist'], {}), '(cc_hist)\n', (1034, 1043), False, 'from collections import Counter\n'), ((2965, 2983), 'numpy.ones_like', 'np.ones_like', (['ep.a'], {}), '(ep.a)\n', (2977, 2983), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 28 17:30:59 2019 @author: vasgaoweithu """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths import os import sys import numpy as np import argparse import pprint import pdb import time import cv2 import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import pickle from roi_data_layer.roidb import combined_roidb from roi_data_layer.roibatchLoader import roibatchLoader from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir from model.rpn.bbox_transform import clip_boxes from model.nms.nms_wrapper import nms # from model.utils.cython_nms import nms from model.rpn.bbox_transform import bbox_transform_inv from model.utils.net_utils import save_net, load_net, vis_detections from model.faster_rcnn.vgg16 import vgg16 from model.faster_rcnn.resnet import resnet from model.utils.blob import im_list_to_blob import nn as mynn from xml.etree import ElementTree as ET from xml.dom import minidom from torch.nn import functional as F import pdb try: xrange # Python 2 except NameError: xrange = range # Python 3 def _get_image_blob(im): """Converts an image into a network input. Arguments: im (ndarray): a color image in BGR order Returns: blob (ndarray): a data blob holding an image pyramid im_scale_factors (list): list of image scales (relative to im) used in the image pyramid im_shapes: the list of image shapes """ im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS im_shape = im_orig.shape im_size_max = np.max(im_shape[0:2]) processed_ims = [] im_scale_factors = [] for target_size in cfg.TEST.SCALES: im_scale = float(target_size) / float(im_size_max) im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) im_scale_factors.append(im_scale) processed_ims.append(im_list_to_blob([im])) blob = processed_ims return blob, np.array(im_scale_factors) def _get_rois_blob(im_rois, im_scale_factors): """Converts RoIs into network inputs. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates im_scale_factors (list): scale factors as returned by _get_image_blob Returns: blob (ndarray): R x 5 matrix of RoIs in the image pyramid """ rois_blob_real = [] for i in xrange(len(im_scale_factors)): rois, levels = _project_im_rois(im_rois, np.array([im_scale_factors[i]])) rois_blob = np.hstack((levels, rois)) rois_blob_real.append(rois_blob.astype(np.float32, copy=False)) return rois_blob_real def _project_im_rois(im_rois, scales): """Project image RoIs into the image pyramid built by _get_image_blob. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates scales (list): scale factors as returned by _get_image_blob Returns: rois (ndarray): R x 4 matrix of projected RoI coordinates levels (list): image pyramid levels used by each projected RoI """ im_rois = im_rois.astype(np.float, copy=False) if len(scales) > 1: widths = im_rois[:, 2] - im_rois[:, 0] + 1 heights = im_rois[:, 3] - im_rois[:, 1] + 1 areas = widths * heights scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2) diff_areas = np.abs(scaled_areas - 224 * 224) levels = diff_areas.argmin(axis=1)[:, np.newaxis] else: levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) rois = im_rois * scales[levels] return rois, levels def _get_blobs(im, rois): """Convert an image and RoIs within that image into network inputs.""" blobs = {'data' : None, 'rois' : None} blobs['data'], im_scale_factors = _get_image_blob(im) blobs['rois'] = _get_rois_blob(rois, im_scale_factors) return blobs, im_scale_factors def iou_other_self_mutual(bb, bbgt): bb = bb.astype(np.float32) bbgt = bbgt.astype(np.float32) bi = np.concatenate([np.maximum(bb[:,0:1], bbgt[0:1]), np.maximum(bb[:,1:2], bbgt[1:2]), np.minimum(bb[:,2:3], bbgt[2:3]), np.minimum(bb[:,3:4], bbgt[3:4])], axis=1) iw = bi[:,2] - bi[:,0] + 1 ih = bi[:,3] - bi[:,1] + 1 other_area = (bb[:,2] - bb[:,0] + 1) * (bb[:,3] - bb[:,1] + 1) self_area = (bbgt[2] - bbgt[0] + 1) * (bbgt[3] - bbgt[1] + 1) mask = (np.greater(iw,0)*np.greater(ih,0)).astype(np.float32) cross_area = iw * ih * mask return cross_area/other_area, cross_area/self_area, cross_area/(other_area+self_area-cross_area) def im_detect(data, rois, labels, model): inputs = {'data': [Variable(torch.from_numpy(data))], 'rois': [Variable(torch.from_numpy(rois))], 'labels': [Variable(torch.from_numpy(labels))], 'seg_map': [Variable(torch.from_numpy(np.zeros((1,1))))]} pcl_prob0, pcl_prob1, pcl_prob2 = model(**inputs) scores = pcl_prob2 scores = scores.data.cpu().numpy() return scores[:, 1:].copy() def im_detect_cls(data, rois, labels, net): data_tensor = Variable(torch.from_numpy(data)).cuda() rois_tensor = Variable(torch.from_numpy(rois)).cuda() base_feat = fasterRCNN.RCNN_base(data_tensor) pooled_feat = fasterRCNN.RCNN_roi_pool(base_feat, rois_tensor.view(-1,5).type(base_feat.dtype)) fc_feat = fasterRCNN._head_to_tail(pooled_feat) cls0_score0 = fasterRCNN.RCNN_cls0_score0(fc_feat) cls0_score1 = fasterRCNN.RCNN_cls0_score1(fc_feat) cls0_prob = F.softmax(cls0_score0,1)*F.softmax(cls0_score1,0) cls1_score0 = fasterRCNN.RCNN_cls1_score0(fc_feat) cls1_score1 = fasterRCNN.RCNN_cls1_score1(fc_feat) cls1_prob = F.softmax(cls1_score0,1)*F.softmax(cls1_score1,0) return cls0_prob.data.cpu().numpy(), cls1_prob.data.cpu().numpy() def parse_xml_12(xml_file, re_xml_file, gt_truth, image_name): tree = ET.parse(xml_file) root = ET.Element('annotation') ET.SubElement(root, 'folder').text = tree.find('folder').text ET.SubElement(root, 'filename').text = tree.find('filename').text source = ET.SubElement(root, 'source') ET.SubElement(source, 'database').text = tree.find('source').find('database').text ET.SubElement(source, 'annotation').text = tree.find('source').find('annotation').text ET.SubElement(source, 'image').text = tree.find('source').find('image').text size = ET.SubElement(root, 'size') ET.SubElement(size, 'width').text = tree.find('size').find('width').text ET.SubElement(size, 'height').text = tree.find('size').find('height').text ET.SubElement(size, 'depth').text = tree.find('size').find('depth').text ET.SubElement(root, 'segmented').text = tree.find('segmented').text for obj in gt_truth: obj_struct = ET.SubElement(root, 'object') ET.SubElement(obj_struct, 'name').text = obj[0] bndbox = ET.SubElement(obj_struct, 'bndbox') ET.SubElement(bndbox, 'xmin').text = str(obj[1]) ET.SubElement(bndbox, 'ymin').text = str(obj[2]) ET.SubElement(bndbox, 'xmax').text = str(obj[3]) ET.SubElement(bndbox, 'ymax').text = str(obj[4]) xmltsr = minidom.parseString(ET.tostring(root)).toprettyxml(indent=6*' ') open(re_xml_file, 'w').close() with open(re_xml_file, 'w') as f: f.write(xmltsr) def parse_xml_07(xml_file, re_xml_file, gt_truth, image_name): tree = ET.parse(xml_file) root = ET.Element('annotation') ET.SubElement(root, 'folder').text = tree.find('folder').text ET.SubElement(root, 'filename').text = tree.find('filename').text source = ET.SubElement(root, 'source') ET.SubElement(source, 'database').text = tree.find('source').find('database').text ET.SubElement(source, 'annotation').text = tree.find('source').find('annotation').text ET.SubElement(source, 'image').text = tree.find('source').find('image').text ET.SubElement(source, 'flickrid').text = tree.find('source').find('flickrid').text owner = ET.SubElement(root, 'owner') ET.SubElement(owner, 'flickrid').text = tree.find('owner').find('flickrid').text ET.SubElement(owner, 'name').text = tree.find('owner').find('name').text size = ET.SubElement(root, 'size') ET.SubElement(size, 'width').text = tree.find('size').find('width').text ET.SubElement(size, 'height').text = tree.find('size').find('height').text ET.SubElement(size, 'depth').text = tree.find('size').find('depth').text ET.SubElement(root, 'segmented').text = tree.find('segmented').text for obj in gt_truth: obj_struct = ET.SubElement(root, 'object') ET.SubElement(obj_struct, 'name').text = obj[0] bndbox = ET.SubElement(obj_struct, 'bndbox') ET.SubElement(bndbox, 'xmin').text = str(obj[1]) ET.SubElement(bndbox, 'ymin').text = str(obj[2]) ET.SubElement(bndbox, 'xmax').text = str(obj[3]) ET.SubElement(bndbox, 'ymax').text = str(obj[4]) xmltsr = minidom.parseString(ET.tostring(root)).toprettyxml(indent=6*' ') open(re_xml_file, 'w').close() with open(re_xml_file, 'w') as f: f.write(xmltsr) def _get_seg_map(seg_map_path, im_scale_factors): seg_map_path = seg_map_path.replace('JPEGImages','SEG_MAP') seg_map_path = seg_map_path.replace('jpg','png') seg_map = cv2.imread(seg_map_path) seg_map = seg_map[:,:,0] if(roidb[0]['flipped']): seg_map = np.flip(seg_map, axis=1) seg_maps = [] for im_scale in im_scale_factors: seg_map = cv2.resize(seg_map, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_NEAREST) seg_maps.append(seg_map.astype('float32')) return seg_maps def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train a Fast R-CNN network') parser.add_argument('--dataset', dest='dataset', help='training dataset', default='pascal_voc', type=str) parser.add_argument('--imdb', dest='imdbval_name', help='tesing imdb', default='voc_2007_test', type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default='cfgs/vgg16.yml', type=str) parser.add_argument('--net', dest='net', help='vgg16, res50, res101, res152', default='res101', type=str) parser.add_argument('--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER) parser.add_argument('--load_dir', dest='load_dir', help='directory to load models', default="models", type=str) parser.add_argument('--cuda', dest='cuda', help='whether use CUDA', action='store_true') parser.add_argument('--gcn', dest='gcn', help='whether use large imag scale', action='store_true') parser.add_argument('--mGPUs', dest='mGPUs', help='whether use multiple GPUs', action='store_true') parser.add_argument('--cag', dest='class_agnostic', help='whether perform class_agnostic bbox regression', action='store_true') parser.add_argument('--parallel_type', dest='parallel_type', help='which part of model to parallel, 0: all, 1: model before roi pooling', default=0, type=int) parser.add_argument('--checksession', dest='checksession', help='checksession to load model', default=1, type=int) parser.add_argument('--checkepoch', dest='checkepoch', help='checkepoch to load network', default=1, type=int) parser.add_argument('--checkpoint', dest='checkpoint', help='checkpoint to load network', default=10021, type=int) parser.add_argument('--vis', dest='vis', help='visualization mode', action='store_true') args = parser.parse_args() return args lr = cfg.TRAIN.LEARNING_RATE momentum = cfg.TRAIN.MOMENTUM weight_decay = cfg.TRAIN.WEIGHT_DECAY if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if torch.cuda.is_available() and not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") np.random.seed(cfg.RNG_SEED) args.cfg_file = "cfgs/{}_gcn.yml".format(args.net) if args.gcn else "cfgs/{}_scale.yml".format(args.net) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) print('Using config:') pprint.pprint(cfg) cfg.TRAIN.USE_FLIPPED = False imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdbval_name, False) imdb.competition_mode(on=True) print('{:d} roidb entries'.format(len(roidb))) input_dir = os.path.join(args.load_dir, args.net, args.dataset) if not os.path.exists(input_dir): raise Exception('There is no input directory for loading network from ' + input_dir) load_name = os.path.join(input_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint)) # initilize the network here. if args.net == 'vgg16': fasterRCNN = vgg16(imdb.classes, pretrained=False) elif args.net == 'res101': fasterRCNN = resnet(imdb.classes, 101, pretrained=False) elif args.net == 'res50': fasterRCNN = resnet(imdb.classes, 50, pretrained=False) elif args.net == 'res152': fasterRCNN = resnet(imdb.classes, 152, pretrained=False) else: print("network is not defined") pdb.set_trace() fasterRCNN.create_architecture() print("load checkpoint %s" % (load_name)) checkpoint = torch.load(load_name) tmp_state_dict = checkpoint['model'] correct_state_dict = {k:tmp_state_dict['module.'+k] for k in fasterRCNN.state_dict()} fasterRCNN.load_state_dict(correct_state_dict) # fasterRCNN.load_state_dict(checkpoint['model']) if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode'] print('load model successfully!') if args.cuda: cfg.CUDA = True if args.cuda: fasterRCNN.cuda() #fasterRCNN = mynn.DataParallel(fasterRCNN, minibatch=True) start = time.time() max_per_image = 100 vis = args.vis if vis: thresh = 0.05 else: thresh = 0.0 num_images = len(imdb.image_index) _t = {'im_detect': time.time(), 'misc': time.time()} fasterRCNN.eval() empty_array = np.transpose(np.array([[],[],[],[],[]]), (1,0)) all_proposal_num = 0. consistent_proposal_num_1 = 0. consistent_proposal_num_2 = 0. num_1 = 0. num_2 = 0. for i in range(num_images): image_name = imdb.image_path_at(i) image_name = os.path.basename(image_name).split('.')[0] im = cv2.imread(imdb.image_path_at(i)) boxes = roidb[i]['boxes'] labels = roidb[i]['labels'] det_tic = time.time() blobs, unused_im_scale_factors = _get_blobs(im, boxes) for j in range(len(blobs['data'])): scores_tmp_1, scores_tmp_2 = im_detect_cls(blobs['data'][j], blobs['rois'][j], roidb[i]['labels'], fasterRCNN) scores_tmp = im_detect(blobs['data'][j], blobs['rois'][j], roidb[i]['labels'], fasterRCNN) if j == 0: scores_1 = scores_tmp_1.copy() scores_2 = scores_tmp_2.copy() scores = scores_tmp.copy() else: scores_1 += scores_tmp_1 scores_2 += scores_tmp_2 scores += scores pred_boxes = boxes.copy() for j in range(imdb.num_classes): if labels[0,j] > 0: all_proposal_num += 1 cls_name = imdb._classes[j] ind_1 = np.argmax(scores_1[:, j]) ind_2 = np.argmax(scores_2[:, j]) ind = np.argmax(scores[:, j]) gt_box_1 = boxes[ind_1, :].copy() gt_box_2 = boxes[ind_2, :].copy() gt_box = boxes[ind, :].copy() _, _, mutual_iou_1 = iou_other_self_mutual(np.expand_dims(gt_box_1,0), gt_box) _, _, mutual_iou_2 = iou_other_self_mutual(np.expand_dims(gt_box_2,0), gt_box) if mutual_iou_1[0] > 0.8: consistent_proposal_num_1 += 1 if mutual_iou_2[0] > 0.8: consistent_proposal_num_2 += 1 if ind_1 ==ind: num_1 += 1 if ind_2 == ind: num_2 += 1 det_toc = time.time() detect_time = det_toc - det_tic misc_tic = time.time() misc_toc = time.time() nms_time = misc_toc - misc_tic sys.stdout.write('im_detect: {:d}/{:d} {:.3f}s {:.3f}s \r' \ .format(i + 1, num_images, detect_time, nms_time)) sys.stdout.flush() end = time.time() rate_1 = consistent_proposal_num_1 / all_proposal_num rate_2 = consistent_proposal_num_2 / all_proposal_num if not os.path.exists('consistent_rate_0.8.txt'): open('consistent_rate_0.8.txt', 'w').close() with open('consistent_rate_0.8.txt', 'a+') as f: f.write(str(rate_1)+'\t') f.write(str(rate_2)+'\n') if not os.path.exists('consistent_rate_1.txt'): open('consistent_rate_1.txt', 'w').close() with open('consistent_rate_1.txt', 'a+') as f: f.write(str(num_1 / all_proposal_num)+'\t') f.write(str(num_2 / all_proposal_num)+'\n') print("test time: %0.4fs" % (end - start)) print('all proposal:{:.1f}, inconsistent proposal:{:.1f}, rate is {:.6f}'\ .format(all_proposal_num, consistent_proposal_num_1, rate_1)) print('all proposal:{:.1f}, inconsistent proposal:{:.1f}, rate is {:.6f}'\ .format(all_proposal_num, consistent_proposal_num_2, rate_2))
[ "numpy.random.seed", "argparse.ArgumentParser", "numpy.abs", "numpy.maximum", "numpy.argmax", "numpy.greater", "model.utils.config.cfg_from_file", "sys.stdout.flush", "pprint.pprint", "xml.etree.ElementTree.SubElement", "os.path.join", "torch.load", "xml.etree.ElementTree.Element", "os.path.exists", "numpy.max", "roi_data_layer.roidb.combined_roidb", "xml.etree.ElementTree.tostring", "model.utils.blob.im_list_to_blob", "cv2.resize", "xml.etree.ElementTree.parse", "numpy.minimum", "os.path.basename", "model.faster_rcnn.resnet.resnet", "numpy.hstack", "torch.cuda.is_available", "model.utils.config.cfg_from_list", "torch.from_numpy", "numpy.flip", "numpy.zeros", "numpy.expand_dims", "time.time", "torch.nn.functional.softmax", "cv2.imread", "numpy.array", "pdb.set_trace", "model.faster_rcnn.vgg16.vgg16" ]
[((1748, 1769), 'numpy.max', 'np.max', (['im_shape[0:2]'], {}), '(im_shape[0:2])\n', (1754, 1769), True, 'import numpy as np\n'), ((6126, 6144), 'xml.etree.ElementTree.parse', 'ET.parse', (['xml_file'], {}), '(xml_file)\n', (6134, 6144), True, 'from xml.etree import ElementTree as ET\n'), ((6156, 6180), 'xml.etree.ElementTree.Element', 'ET.Element', (['"""annotation"""'], {}), "('annotation')\n", (6166, 6180), True, 'from xml.etree import ElementTree as ET\n'), ((6335, 6364), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""source"""'], {}), "(root, 'source')\n", (6348, 6364), True, 'from xml.etree import ElementTree as ET\n'), ((6640, 6667), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""size"""'], {}), "(root, 'size')\n", (6653, 6667), True, 'from xml.etree import ElementTree as ET\n'), ((7656, 7674), 'xml.etree.ElementTree.parse', 'ET.parse', (['xml_file'], {}), '(xml_file)\n', (7664, 7674), True, 'from xml.etree import ElementTree as ET\n'), ((7686, 7710), 'xml.etree.ElementTree.Element', 'ET.Element', (['"""annotation"""'], {}), "('annotation')\n", (7696, 7710), True, 'from xml.etree import ElementTree as ET\n'), ((7865, 7894), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""source"""'], {}), "(root, 'source')\n", (7878, 7894), True, 'from xml.etree import ElementTree as ET\n'), ((8258, 8286), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""owner"""'], {}), "(root, 'owner')\n", (8271, 8286), True, 'from xml.etree import ElementTree as ET\n'), ((8465, 8492), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""size"""'], {}), "(root, 'size')\n", (8478, 8492), True, 'from xml.etree import ElementTree as ET\n'), ((9599, 9623), 'cv2.imread', 'cv2.imread', (['seg_map_path'], {}), '(seg_map_path)\n', (9609, 9623), False, 'import cv2\n'), ((10058, 10123), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Train a Fast R-CNN network"""'}), "(description='Train a Fast R-CNN network')\n", (10081, 10123), False, 'import argparse\n'), ((12845, 12873), 'numpy.random.seed', 'np.random.seed', (['cfg.RNG_SEED'], {}), '(cfg.RNG_SEED)\n', (12859, 12873), True, 'import numpy as np\n'), ((13141, 13159), 'pprint.pprint', 'pprint.pprint', (['cfg'], {}), '(cfg)\n', (13154, 13159), False, 'import pprint\n'), ((13234, 13274), 'roi_data_layer.roidb.combined_roidb', 'combined_roidb', (['args.imdbval_name', '(False)'], {}), '(args.imdbval_name, False)\n', (13248, 13274), False, 'from roi_data_layer.roidb import combined_roidb\n'), ((13373, 13424), 'os.path.join', 'os.path.join', (['args.load_dir', 'args.net', 'args.dataset'], {}), '(args.load_dir, args.net, args.dataset)\n', (13385, 13424), False, 'import os\n'), ((14222, 14243), 'torch.load', 'torch.load', (['load_name'], {}), '(load_name)\n', (14232, 14243), False, 'import torch\n'), ((14752, 14763), 'time.time', 'time.time', ([], {}), '()\n', (14761, 14763), False, 'import time\n'), ((17283, 17294), 'time.time', 'time.time', ([], {}), '()\n', (17292, 17294), False, 'import time\n'), ((1932, 2026), 'cv2.resize', 'cv2.resize', (['im_orig', 'None', 'None'], {'fx': 'im_scale', 'fy': 'im_scale', 'interpolation': 'cv2.INTER_LINEAR'}), '(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2\n .INTER_LINEAR)\n', (1942, 2026), False, 'import cv2\n'), ((2183, 2209), 'numpy.array', 'np.array', (['im_scale_factors'], {}), '(im_scale_factors)\n', (2191, 2209), True, 'import numpy as np\n'), ((2729, 2754), 'numpy.hstack', 'np.hstack', (['(levels, rois)'], {}), '((levels, rois))\n', (2738, 2754), True, 'import numpy as np\n'), ((3596, 3628), 'numpy.abs', 'np.abs', (['(scaled_areas - 224 * 224)'], {}), '(scaled_areas - 224 * 224)\n', (3602, 3628), True, 'import numpy as np\n'), ((3714, 3759), 'numpy.zeros', 'np.zeros', (['(im_rois.shape[0], 1)'], {'dtype': 'np.int'}), '((im_rois.shape[0], 1), dtype=np.int)\n', (3722, 3759), True, 'import numpy as np\n'), ((5745, 5770), 'torch.nn.functional.softmax', 'F.softmax', (['cls0_score0', '(1)'], {}), '(cls0_score0, 1)\n', (5754, 5770), True, 'from torch.nn import functional as F\n'), ((5770, 5795), 'torch.nn.functional.softmax', 'F.softmax', (['cls0_score1', '(0)'], {}), '(cls0_score1, 0)\n', (5779, 5795), True, 'from torch.nn import functional as F\n'), ((5926, 5951), 'torch.nn.functional.softmax', 'F.softmax', (['cls1_score0', '(1)'], {}), '(cls1_score0, 1)\n', (5935, 5951), True, 'from torch.nn import functional as F\n'), ((5951, 5976), 'torch.nn.functional.softmax', 'F.softmax', (['cls1_score1', '(0)'], {}), '(cls1_score1, 0)\n', (5960, 5976), True, 'from torch.nn import functional as F\n'), ((6185, 6214), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""folder"""'], {}), "(root, 'folder')\n", (6198, 6214), True, 'from xml.etree import ElementTree as ET\n'), ((6251, 6282), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""filename"""'], {}), "(root, 'filename')\n", (6264, 6282), True, 'from xml.etree import ElementTree as ET\n'), ((6369, 6402), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['source', '"""database"""'], {}), "(source, 'database')\n", (6382, 6402), True, 'from xml.etree import ElementTree as ET\n'), ((6456, 6491), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['source', '"""annotation"""'], {}), "(source, 'annotation')\n", (6469, 6491), True, 'from xml.etree import ElementTree as ET\n'), ((6547, 6577), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['source', '"""image"""'], {}), "(source, 'image')\n", (6560, 6577), True, 'from xml.etree import ElementTree as ET\n'), ((6672, 6700), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['size', '"""width"""'], {}), "(size, 'width')\n", (6685, 6700), True, 'from xml.etree import ElementTree as ET\n'), ((6749, 6778), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['size', '"""height"""'], {}), "(size, 'height')\n", (6762, 6778), True, 'from xml.etree import ElementTree as ET\n'), ((6828, 6856), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['size', '"""depth"""'], {}), "(size, 'depth')\n", (6841, 6856), True, 'from xml.etree import ElementTree as ET\n'), ((6910, 6942), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""segmented"""'], {}), "(root, 'segmented')\n", (6923, 6942), True, 'from xml.etree import ElementTree as ET\n'), ((7029, 7058), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""object"""'], {}), "(root, 'object')\n", (7042, 7058), True, 'from xml.etree import ElementTree as ET\n'), ((7132, 7167), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['obj_struct', '"""bndbox"""'], {}), "(obj_struct, 'bndbox')\n", (7145, 7167), True, 'from xml.etree import ElementTree as ET\n'), ((7715, 7744), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""folder"""'], {}), "(root, 'folder')\n", (7728, 7744), True, 'from xml.etree import ElementTree as ET\n'), ((7781, 7812), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""filename"""'], {}), "(root, 'filename')\n", (7794, 7812), True, 'from xml.etree import ElementTree as ET\n'), ((7899, 7932), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['source', '"""database"""'], {}), "(source, 'database')\n", (7912, 7932), True, 'from xml.etree import ElementTree as ET\n'), ((7986, 8021), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['source', '"""annotation"""'], {}), "(source, 'annotation')\n", (7999, 8021), True, 'from xml.etree import ElementTree as ET\n'), ((8077, 8107), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['source', '"""image"""'], {}), "(source, 'image')\n", (8090, 8107), True, 'from xml.etree import ElementTree as ET\n'), ((8158, 8191), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['source', '"""flickrid"""'], {}), "(source, 'flickrid')\n", (8171, 8191), True, 'from xml.etree import ElementTree as ET\n'), ((8291, 8323), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['owner', '"""flickrid"""'], {}), "(owner, 'flickrid')\n", (8304, 8323), True, 'from xml.etree import ElementTree as ET\n'), ((8376, 8404), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['owner', '"""name"""'], {}), "(owner, 'name')\n", (8389, 8404), True, 'from xml.etree import ElementTree as ET\n'), ((8497, 8525), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['size', '"""width"""'], {}), "(size, 'width')\n", (8510, 8525), True, 'from xml.etree import ElementTree as ET\n'), ((8574, 8603), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['size', '"""height"""'], {}), "(size, 'height')\n", (8587, 8603), True, 'from xml.etree import ElementTree as ET\n'), ((8653, 8681), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['size', '"""depth"""'], {}), "(size, 'depth')\n", (8666, 8681), True, 'from xml.etree import ElementTree as ET\n'), ((8735, 8767), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""segmented"""'], {}), "(root, 'segmented')\n", (8748, 8767), True, 'from xml.etree import ElementTree as ET\n'), ((8854, 8883), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['root', '"""object"""'], {}), "(root, 'object')\n", (8867, 8883), True, 'from xml.etree import ElementTree as ET\n'), ((8957, 8992), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['obj_struct', '"""bndbox"""'], {}), "(obj_struct, 'bndbox')\n", (8970, 8992), True, 'from xml.etree import ElementTree as ET\n'), ((9700, 9724), 'numpy.flip', 'np.flip', (['seg_map'], {'axis': '(1)'}), '(seg_map, axis=1)\n', (9707, 9724), True, 'import numpy as np\n'), ((9800, 9895), 'cv2.resize', 'cv2.resize', (['seg_map', 'None', 'None'], {'fx': 'im_scale', 'fy': 'im_scale', 'interpolation': 'cv2.INTER_NEAREST'}), '(seg_map, None, None, fx=im_scale, fy=im_scale, interpolation=cv2\n .INTER_NEAREST)\n', (9810, 9895), False, 'import cv2\n'), ((12712, 12737), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (12735, 12737), False, 'import torch\n'), ((13019, 13047), 'model.utils.config.cfg_from_file', 'cfg_from_file', (['args.cfg_file'], {}), '(args.cfg_file)\n', (13032, 13047), False, 'from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir\n'), ((13084, 13112), 'model.utils.config.cfg_from_list', 'cfg_from_list', (['args.set_cfgs'], {}), '(args.set_cfgs)\n', (13097, 13112), False, 'from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir\n'), ((13434, 13459), 'os.path.exists', 'os.path.exists', (['input_dir'], {}), '(input_dir)\n', (13448, 13459), False, 'import os\n'), ((13756, 13793), 'model.faster_rcnn.vgg16.vgg16', 'vgg16', (['imdb.classes'], {'pretrained': '(False)'}), '(imdb.classes, pretrained=False)\n', (13761, 13793), False, 'from model.faster_rcnn.vgg16 import vgg16\n'), ((14918, 14929), 'time.time', 'time.time', ([], {}), '()\n', (14927, 14929), False, 'import time\n'), ((14939, 14950), 'time.time', 'time.time', ([], {}), '()\n', (14948, 14950), False, 'import time\n'), ((15002, 15032), 'numpy.array', 'np.array', (['[[], [], [], [], []]'], {}), '([[], [], [], [], []])\n', (15010, 15032), True, 'import numpy as np\n'), ((15416, 15427), 'time.time', 'time.time', ([], {}), '()\n', (15425, 15427), False, 'import time\n'), ((16973, 16984), 'time.time', 'time.time', ([], {}), '()\n', (16982, 16984), False, 'import time\n'), ((17040, 17051), 'time.time', 'time.time', ([], {}), '()\n', (17049, 17051), False, 'import time\n'), ((17069, 17080), 'time.time', 'time.time', ([], {}), '()\n', (17078, 17080), False, 'import time\n'), ((17255, 17273), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (17271, 17273), False, 'import sys\n'), ((17416, 17457), 'os.path.exists', 'os.path.exists', (['"""consistent_rate_0.8.txt"""'], {}), "('consistent_rate_0.8.txt')\n", (17430, 17457), False, 'import os\n'), ((17634, 17673), 'os.path.exists', 'os.path.exists', (['"""consistent_rate_1.txt"""'], {}), "('consistent_rate_1.txt')\n", (17648, 17673), False, 'import os\n'), ((2117, 2138), 'model.utils.blob.im_list_to_blob', 'im_list_to_blob', (['[im]'], {}), '([im])\n', (2132, 2138), False, 'from model.utils.blob import im_list_to_blob\n'), ((2676, 2707), 'numpy.array', 'np.array', (['[im_scale_factors[i]]'], {}), '([im_scale_factors[i]])\n', (2684, 2707), True, 'import numpy as np\n'), ((4253, 4286), 'numpy.maximum', 'np.maximum', (['bb[:, 0:1]', 'bbgt[0:1]'], {}), '(bb[:, 0:1], bbgt[0:1])\n', (4263, 4286), True, 'import numpy as np\n'), ((4287, 4320), 'numpy.maximum', 'np.maximum', (['bb[:, 1:2]', 'bbgt[1:2]'], {}), '(bb[:, 1:2], bbgt[1:2])\n', (4297, 4320), True, 'import numpy as np\n'), ((4346, 4379), 'numpy.minimum', 'np.minimum', (['bb[:, 2:3]', 'bbgt[2:3]'], {}), '(bb[:, 2:3], bbgt[2:3])\n', (4356, 4379), True, 'import numpy as np\n'), ((4380, 4413), 'numpy.minimum', 'np.minimum', (['bb[:, 3:4]', 'bbgt[3:4]'], {}), '(bb[:, 3:4], bbgt[3:4])\n', (4390, 4413), True, 'import numpy as np\n'), ((7067, 7100), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['obj_struct', '"""name"""'], {}), "(obj_struct, 'name')\n", (7080, 7100), True, 'from xml.etree import ElementTree as ET\n'), ((7176, 7205), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['bndbox', '"""xmin"""'], {}), "(bndbox, 'xmin')\n", (7189, 7205), True, 'from xml.etree import ElementTree as ET\n'), ((7233, 7262), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['bndbox', '"""ymin"""'], {}), "(bndbox, 'ymin')\n", (7246, 7262), True, 'from xml.etree import ElementTree as ET\n'), ((7290, 7319), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['bndbox', '"""xmax"""'], {}), "(bndbox, 'xmax')\n", (7303, 7319), True, 'from xml.etree import ElementTree as ET\n'), ((7347, 7376), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['bndbox', '"""ymax"""'], {}), "(bndbox, 'ymax')\n", (7360, 7376), True, 'from xml.etree import ElementTree as ET\n'), ((8892, 8925), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['obj_struct', '"""name"""'], {}), "(obj_struct, 'name')\n", (8905, 8925), True, 'from xml.etree import ElementTree as ET\n'), ((9001, 9030), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['bndbox', '"""xmin"""'], {}), "(bndbox, 'xmin')\n", (9014, 9030), True, 'from xml.etree import ElementTree as ET\n'), ((9058, 9087), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['bndbox', '"""ymin"""'], {}), "(bndbox, 'ymin')\n", (9071, 9087), True, 'from xml.etree import ElementTree as ET\n'), ((9115, 9144), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['bndbox', '"""xmax"""'], {}), "(bndbox, 'xmax')\n", (9128, 9144), True, 'from xml.etree import ElementTree as ET\n'), ((9172, 9201), 'xml.etree.ElementTree.SubElement', 'ET.SubElement', (['bndbox', '"""ymax"""'], {}), "(bndbox, 'ymax')\n", (9185, 9201), True, 'from xml.etree import ElementTree as ET\n'), ((13840, 13883), 'model.faster_rcnn.resnet.resnet', 'resnet', (['imdb.classes', '(101)'], {'pretrained': '(False)'}), '(imdb.classes, 101, pretrained=False)\n', (13846, 13883), False, 'from model.faster_rcnn.resnet import resnet\n'), ((4630, 4647), 'numpy.greater', 'np.greater', (['iw', '(0)'], {}), '(iw, 0)\n', (4640, 4647), True, 'import numpy as np\n'), ((4647, 4664), 'numpy.greater', 'np.greater', (['ih', '(0)'], {}), '(ih, 0)\n', (4657, 4664), True, 'import numpy as np\n'), ((4890, 4912), 'torch.from_numpy', 'torch.from_numpy', (['data'], {}), '(data)\n', (4906, 4912), False, 'import torch\n'), ((4946, 4968), 'torch.from_numpy', 'torch.from_numpy', (['rois'], {}), '(rois)\n', (4962, 4968), False, 'import torch\n'), ((5004, 5028), 'torch.from_numpy', 'torch.from_numpy', (['labels'], {}), '(labels)\n', (5020, 5028), False, 'import torch\n'), ((5318, 5340), 'torch.from_numpy', 'torch.from_numpy', (['data'], {}), '(data)\n', (5334, 5340), False, 'import torch\n'), ((5376, 5398), 'torch.from_numpy', 'torch.from_numpy', (['rois'], {}), '(rois)\n', (5392, 5398), False, 'import torch\n'), ((7429, 7446), 'xml.etree.ElementTree.tostring', 'ET.tostring', (['root'], {}), '(root)\n', (7440, 7446), True, 'from xml.etree import ElementTree as ET\n'), ((9254, 9271), 'xml.etree.ElementTree.tostring', 'ET.tostring', (['root'], {}), '(root)\n', (9265, 9271), True, 'from xml.etree import ElementTree as ET\n'), ((13929, 13971), 'model.faster_rcnn.resnet.resnet', 'resnet', (['imdb.classes', '(50)'], {'pretrained': '(False)'}), '(imdb.classes, 50, pretrained=False)\n', (13935, 13971), False, 'from model.faster_rcnn.resnet import resnet\n'), ((16200, 16225), 'numpy.argmax', 'np.argmax', (['scores_1[:, j]'], {}), '(scores_1[:, j])\n', (16209, 16225), True, 'import numpy as np\n'), ((16248, 16273), 'numpy.argmax', 'np.argmax', (['scores_2[:, j]'], {}), '(scores_2[:, j])\n', (16257, 16273), True, 'import numpy as np\n'), ((16294, 16317), 'numpy.argmax', 'np.argmax', (['scores[:, j]'], {}), '(scores[:, j])\n', (16303, 16317), True, 'import numpy as np\n'), ((5082, 5098), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (5090, 5098), True, 'import numpy as np\n'), ((14018, 14061), 'model.faster_rcnn.resnet.resnet', 'resnet', (['imdb.classes', '(152)'], {'pretrained': '(False)'}), '(imdb.classes, 152, pretrained=False)\n', (14024, 14061), False, 'from model.faster_rcnn.resnet import resnet\n'), ((14110, 14125), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (14123, 14125), False, 'import pdb\n'), ((15246, 15274), 'os.path.basename', 'os.path.basename', (['image_name'], {}), '(image_name)\n', (15262, 15274), False, 'import os\n'), ((16530, 16557), 'numpy.expand_dims', 'np.expand_dims', (['gt_box_1', '(0)'], {}), '(gt_box_1, 0)\n', (16544, 16557), True, 'import numpy as np\n'), ((16623, 16650), 'numpy.expand_dims', 'np.expand_dims', (['gt_box_2', '(0)'], {}), '(gt_box_2, 0)\n', (16637, 16650), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np from tensorflow import keras # GRADED FUNCTION: house_model def house_model(y_new): xs = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], dtype=float) ys = np.array([1.0, 1.5, 2.0, 2.5, 3.0, 3.5], dtype=float) # alternate solution # xs = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], dtype=float) # ys = 0.5 * (xs + 1) model = tf.keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])]) model.compile(optimizer='sgd', loss='mean_squared_error') model.fit(xs, ys, epochs=1000) return model.predict(y_new)[0] if __name__ == "__main__": prediction = house_model([7.0]) print(prediction)
[ "numpy.array", "tensorflow.keras.layers.Dense" ]
[((138, 191), 'numpy.array', 'np.array', (['[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]'], {'dtype': 'float'}), '([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], dtype=float)\n', (146, 191), True, 'import numpy as np\n'), ((201, 254), 'numpy.array', 'np.array', (['[1.0, 1.5, 2.0, 2.5, 3.0, 3.5]'], {'dtype': 'float'}), '([1.0, 1.5, 2.0, 2.5, 3.0, 3.5], dtype=float)\n', (209, 254), True, 'import numpy as np\n'), ((406, 450), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', ([], {'units': '(1)', 'input_shape': '[1]'}), '(units=1, input_shape=[1])\n', (424, 450), False, 'from tensorflow import keras\n')]
#! /usr/bin/env python # coding=utf-8 # Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np from scipy.signal import lfilter from scipy.signal.windows import get_window def _pre_emphasize_data(data, emphasize_value=0.97): filter_window = np.asarray([1, -emphasize_value]) pre_emphasized_data = lfilter(filter_window, 1, data) return pre_emphasized_data def get_length_in_samp(sampling_rate_in_hz, length_in_s): return int(sampling_rate_in_hz * length_in_s) def get_group_delay(raw_data, sampling_rate_in_hz, window_length_in_s, window_shift_in_s, num_fft_points, window_type): X_stft_transform = _get_stft(raw_data, sampling_rate_in_hz, window_length_in_s, window_shift_in_s, num_fft_points, window_type=window_type) Y_stft_transform = _get_stft(raw_data, sampling_rate_in_hz, window_length_in_s, window_shift_in_s, num_fft_points, window_type=window_type, data_transformation='group_delay') X_stft_transform_real = np.real(X_stft_transform) X_stft_transform_imag = np.imag(X_stft_transform) Y_stft_transform_real = np.real(Y_stft_transform) Y_stft_transform_imag = np.imag(Y_stft_transform) nominator = np.multiply(X_stft_transform_real, Y_stft_transform_real) + np.multiply( X_stft_transform_imag, Y_stft_transform_imag) denominator = np.square(np.abs(X_stft_transform)) group_delay = np.divide(nominator, denominator + 1e-10) assert not np.isnan( group_delay).any(), 'There are NaN values in group delay' return np.transpose(group_delay) def get_phase_stft_magnitude(raw_data, sampling_rate_in_hz, window_length_in_s, window_shift_in_s, num_fft_points, window_type): stft = _get_stft(raw_data, sampling_rate_in_hz, window_length_in_s, window_shift_in_s, num_fft_points, window_type=window_type) abs_stft = np.abs(stft) phase = np.angle(stft) stft_phase = np.concatenate((phase, abs_stft), axis=1) return np.transpose(stft_phase) def get_stft_magnitude(raw_data, sampling_rate_in_hz, window_length_in_s, window_shift_in_s, num_fft_points, window_type): stft = _get_stft(raw_data, sampling_rate_in_hz, window_length_in_s, window_shift_in_s, num_fft_points, window_type=window_type) stft_magnitude = np.abs(stft) return np.transpose(stft_magnitude) def _get_stft(raw_data, sampling_rate_in_hz, window_length_in_s, window_shift_in_s, num_fft_points, window_type, data_transformation=None): pre_emphasized_data = _pre_emphasize_data(raw_data) stft = _short_time_fourier_transform(pre_emphasized_data, sampling_rate_in_hz, window_length_in_s, window_shift_in_s, num_fft_points, window_type, data_transformation) non_symmetric_stft = get_non_symmetric_data(stft) return non_symmetric_stft def _short_time_fourier_transform(data, sampling_rate_in_hz, window_length_in_s, window_shift_in_s, num_fft_points, window_type, data_transformation=None): window_length_in_samp = get_length_in_samp(window_length_in_s, sampling_rate_in_hz) window_shift_in_samp = get_length_in_samp(window_shift_in_s, sampling_rate_in_hz) if (num_fft_points < window_length_in_samp): num_fft_points = window_length_in_samp preprocessed_data_matrix = _preprocess_to_padded_matrix(data, window_length_in_samp, window_shift_in_samp) weighted_data_matrix = _weight_data_matrix( preprocessed_data_matrix, window_type, data_transformation=data_transformation ) fft = np.fft.fft(weighted_data_matrix, n=num_fft_points) return fft def _preprocess_to_padded_matrix(data, window_length_in_samp, window_shift_in_samp): num_input = data.shape[0] num_output = get_num_output_padded_to_fit_input(num_input, window_length_in_samp, window_shift_in_samp) zero_padded_matrix = np.zeros((num_output, window_length_in_samp), dtype=np.float) for num_output_idx in range(num_output): start_idx = window_shift_in_samp * num_output_idx is_last_output = num_output_idx == num_output - 1 end_idx = start_idx + window_length_in_samp if not is_last_output else num_input end_padded_idx = window_length_in_samp if not is_last_output else end_idx - start_idx zero_padded_matrix[num_output_idx, :end_padded_idx] = data[ start_idx:end_idx] return zero_padded_matrix def get_num_output_padded_to_fit_input(num_input, window_length_in_samp, window_shift_in_samp): num_output_valid = (num_input - window_length_in_samp) / float( window_shift_in_samp) + 1 return int(np.ceil(num_output_valid)) def _weight_data_matrix(data_matrix, window_type, data_transformation=None): window_length_in_samp = data_matrix[0].shape[0] window = get_window(window_type, window_length_in_samp, fftbins=False) if (data_transformation == 'group_delay'): window *= np.arange(window_length_in_samp) return data_matrix * window def get_non_symmetric_length(symmetric_length): return int(symmetric_length / 2) + 1 def get_non_symmetric_data(data): num_fft_points = data.shape[-1] num_ess_fft_points = get_non_symmetric_length(num_fft_points) return data[:, :num_ess_fft_points] def get_max_length_stft_based(length_in_samp, window_length_in_s, window_shift_in_s, sampling_rate_in_hz): window_length_in_samp = get_length_in_samp(window_length_in_s, sampling_rate_in_hz) window_shift_in_samp = get_length_in_samp(window_shift_in_s, sampling_rate_in_hz) return get_num_output_padded_to_fit_input(length_in_samp, window_length_in_samp, window_shift_in_samp) def calculate_incr_var(var_prev, mean_prev, mean, length): return var_prev + (length - mean_prev) * (length - mean) def calculate_incr_mean(count, mean, length): return mean + (length - mean) / float(count)
[ "numpy.divide", "numpy.abs", "scipy.signal.windows.get_window", "numpy.multiply", "numpy.ceil", "scipy.signal.lfilter", "numpy.angle", "numpy.asarray", "numpy.fft.fft", "numpy.transpose", "numpy.zeros", "numpy.isnan", "numpy.imag", "numpy.arange", "numpy.real", "numpy.concatenate" ]
[((881, 914), 'numpy.asarray', 'np.asarray', (['[1, -emphasize_value]'], {}), '([1, -emphasize_value])\n', (891, 914), True, 'import numpy as np\n'), ((941, 972), 'scipy.signal.lfilter', 'lfilter', (['filter_window', '(1)', 'data'], {}), '(filter_window, 1, data)\n', (948, 972), False, 'from scipy.signal import lfilter\n'), ((1772, 1797), 'numpy.real', 'np.real', (['X_stft_transform'], {}), '(X_stft_transform)\n', (1779, 1797), True, 'import numpy as np\n'), ((1826, 1851), 'numpy.imag', 'np.imag', (['X_stft_transform'], {}), '(X_stft_transform)\n', (1833, 1851), True, 'import numpy as np\n'), ((1880, 1905), 'numpy.real', 'np.real', (['Y_stft_transform'], {}), '(Y_stft_transform)\n', (1887, 1905), True, 'import numpy as np\n'), ((1934, 1959), 'numpy.imag', 'np.imag', (['Y_stft_transform'], {}), '(Y_stft_transform)\n', (1941, 1959), True, 'import numpy as np\n'), ((2203, 2244), 'numpy.divide', 'np.divide', (['nominator', '(denominator + 1e-10)'], {}), '(nominator, denominator + 1e-10)\n', (2212, 2244), True, 'import numpy as np\n'), ((2347, 2372), 'numpy.transpose', 'np.transpose', (['group_delay'], {}), '(group_delay)\n', (2359, 2372), True, 'import numpy as np\n'), ((2701, 2713), 'numpy.abs', 'np.abs', (['stft'], {}), '(stft)\n', (2707, 2713), True, 'import numpy as np\n'), ((2726, 2740), 'numpy.angle', 'np.angle', (['stft'], {}), '(stft)\n', (2734, 2740), True, 'import numpy as np\n'), ((2758, 2799), 'numpy.concatenate', 'np.concatenate', (['(phase, abs_stft)'], {'axis': '(1)'}), '((phase, abs_stft), axis=1)\n', (2772, 2799), True, 'import numpy as np\n'), ((2811, 2835), 'numpy.transpose', 'np.transpose', (['stft_phase'], {}), '(stft_phase)\n', (2823, 2835), True, 'import numpy as np\n'), ((3158, 3170), 'numpy.abs', 'np.abs', (['stft'], {}), '(stft)\n', (3164, 3170), True, 'import numpy as np\n'), ((3182, 3210), 'numpy.transpose', 'np.transpose', (['stft_magnitude'], {}), '(stft_magnitude)\n', (3194, 3210), True, 'import numpy as np\n'), ((4844, 4894), 'numpy.fft.fft', 'np.fft.fft', (['weighted_data_matrix'], {'n': 'num_fft_points'}), '(weighted_data_matrix, n=num_fft_points)\n', (4854, 4894), True, 'import numpy as np\n'), ((5297, 5358), 'numpy.zeros', 'np.zeros', (['(num_output, window_length_in_samp)'], {'dtype': 'np.float'}), '((num_output, window_length_in_samp), dtype=np.float)\n', (5305, 5358), True, 'import numpy as np\n'), ((6341, 6402), 'scipy.signal.windows.get_window', 'get_window', (['window_type', 'window_length_in_samp'], {'fftbins': '(False)'}), '(window_type, window_length_in_samp, fftbins=False)\n', (6351, 6402), False, 'from scipy.signal.windows import get_window\n'), ((1976, 2033), 'numpy.multiply', 'np.multiply', (['X_stft_transform_real', 'Y_stft_transform_real'], {}), '(X_stft_transform_real, Y_stft_transform_real)\n', (1987, 2033), True, 'import numpy as np\n'), ((2064, 2121), 'numpy.multiply', 'np.multiply', (['X_stft_transform_imag', 'Y_stft_transform_imag'], {}), '(X_stft_transform_imag, Y_stft_transform_imag)\n', (2075, 2121), True, 'import numpy as np\n'), ((2159, 2183), 'numpy.abs', 'np.abs', (['X_stft_transform'], {}), '(X_stft_transform)\n', (2165, 2183), True, 'import numpy as np\n'), ((6170, 6195), 'numpy.ceil', 'np.ceil', (['num_output_valid'], {}), '(num_output_valid)\n', (6177, 6195), True, 'import numpy as np\n'), ((6468, 6500), 'numpy.arange', 'np.arange', (['window_length_in_samp'], {}), '(window_length_in_samp)\n', (6477, 6500), True, 'import numpy as np\n'), ((2260, 2281), 'numpy.isnan', 'np.isnan', (['group_delay'], {}), '(group_delay)\n', (2268, 2281), True, 'import numpy as np\n')]
""" Module for managing the face_recognition recognition method. To install this method follow instructions at https://github.com/ageitgey/face_recognition#installation """ import face_recognition import numpy as np import dlib class FaceRecognition: def __init__(self): pass def predict(self, image, normalize=True): """ Get encoding of the face. :param np.array image: Face image :param bool normalize: Return normalized vector :return: Face encoding """ bb = (0, image.shape[1], image.shape[0], 0) encoding = face_recognition.face_encodings( image, known_face_locations=[bb]) if normalize: return encoding[0].astype(np.float64) / np.linalg.norm(encoding[0]) else: return encoding[0].astype(np.float64)
[ "face_recognition.face_encodings", "numpy.linalg.norm" ]
[((598, 663), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['image'], {'known_face_locations': '[bb]'}), '(image, known_face_locations=[bb])\n', (629, 663), False, 'import face_recognition\n'), ((752, 779), 'numpy.linalg.norm', 'np.linalg.norm', (['encoding[0]'], {}), '(encoding[0])\n', (766, 779), True, 'import numpy as np\n')]
"""Human3.6M dataset.""" import copy import json import os import pickle as pk import numpy as np import scipy.misc import torch.utils.data as data from hybrik.utils.bbox import bbox_clip_xyxy, bbox_xywh_to_xyxy from hybrik.utils.pose_utils import cam2pixel, pixel2cam, reconstruction_error from hybrik.utils.presets import SimpleTransform3DSMPL class H36mSMPL(data.Dataset): """ Human3.6M smpl dataset. 17 Human3.6M joints + 29 SMPL joints Parameters ---------- ann_file: str, Path to the annotation json file. root: str, default './data/h36m' Path to the h36m dataset. train: bool, default is True If true, will set as training mode. skip_empty: bool, default is False Whether skip entire image if no valid label is found. """ CLASSES = ['person'] EVAL_JOINTS = [6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10] num_joints = 17 + 29 num_thetas = 24 bbox_3d_shape = (2000, 2000, 2000) joints_name_17 = ( 'Pelvis', # 0 'L_Hip', 'L_Knee', 'L_Ankle', # 3 'R_Hip', 'R_Knee', 'R_Ankle', # 6 'Torso', 'Neck', # 8 'Nose', 'Head', # 10 'L_Shoulder', 'L_Elbow', 'L_Wrist', # 13 'R_Shoulder', 'R_Elbow', 'R_Wrist', # 16 ) joints_name_29 = ( 'pelvis', 'left_hip', 'right_hip', # 2 'spine1', 'left_knee', 'right_knee', # 5 'spine2', 'left_ankle', 'right_ankle', # 8 'spine3', 'left_foot', 'right_foot', # 11 'neck', 'left_collar', 'right_collar', # 14 'jaw', # 15 'left_shoulder', 'right_shoulder', # 17 'left_elbow', 'right_elbow', # 19 'left_wrist', 'right_wrist', # 21 'left_thumb', 'right_thumb', # 23 'head', 'left_middle', 'right_middle', # 26 'left_bigtoe', 'right_bigtoe' # 28 ) joints_name_14 = ( 'R_Ankle', 'R_Knee', 'R_Hip', # 2 'L_Hip', 'L_Knee', 'L_Ankle', # 5 'R_Wrist', 'R_Elbow', 'R_Shoulder', # 8 'L_Shoulder', 'L_Elbow', 'L_Wrist', # 11 'Neck', 'Head' ) action_name = ['Directions', 'Discussion', 'Eating', 'Greeting', 'Phoning', 'Posing', 'Purchases', 'Sitting', 'SittingDown', 'Smoking', 'Photo', 'Waiting', 'Walking', 'WalkDog', 'WalkTogether'] block_list = ['s_09_act_05_subact_02_ca', 's_09_act_10_subact_02_ca', 's_09_act_13_subact_01_ca'] def __init__(self, cfg, ann_file, root='./data/h36m', train=True, skip_empty=True, dpg=False, lazy_import=False): self._cfg = cfg self.protocol = cfg.DATASET.PROTOCOL self._ann_file = os.path.join( root, 'annotations', ann_file + f'_protocol_{self.protocol}.json') self._lazy_import = lazy_import self._root = root self._skip_empty = skip_empty self._train = train self._dpg = dpg self._det_bbox_file = getattr(cfg.DATASET.SET_LIST[0], 'DET_BOX', None) self._scale_factor = cfg.DATASET.SCALE_FACTOR self._color_factor = cfg.DATASET.COLOR_FACTOR self._rot = cfg.DATASET.ROT_FACTOR self._input_size = cfg.MODEL.IMAGE_SIZE self._output_size = cfg.MODEL.HEATMAP_SIZE self._occlusion = cfg.DATASET.OCCLUSION self._crop = cfg.MODEL.EXTRA.CROP self._sigma = cfg.MODEL.EXTRA.SIGMA self._depth_dim = getattr(cfg.MODEL.EXTRA, 'DEPTH_DIM', None) self._check_centers = False self.num_class = len(self.CLASSES) self.num_joints = cfg.MODEL.NUM_JOINTS self.num_joints_half_body = cfg.DATASET.NUM_JOINTS_HALF_BODY self.prob_half_body = cfg.DATASET.PROB_HALF_BODY self.augment = cfg.MODEL.EXTRA.AUGMENT self.dz_factor = cfg.MODEL.EXTRA.get('FACTOR', None) self._loss_type = cfg.LOSS['TYPE'] self.upper_body_ids = (7, 8, 9, 10, 11, 12, 13, 14, 15, 16) self.lower_body_ids = (0, 1, 2, 3, 4, 5, 6) self.kinematic = cfg.MODEL.EXTRA.get('KINEMATIC', False) self.classfier = cfg.MODEL.EXTRA.get('WITHCLASSFIER', False) self.root_idx_17 = self.joints_name_17.index('Pelvis') self.lshoulder_idx_17 = self.joints_name_17.index('L_Shoulder') self.rshoulder_idx_17 = self.joints_name_17.index('R_Shoulder') self.root_idx_smpl = self.joints_name_29.index('pelvis') self.lshoulder_idx_29 = self.joints_name_29.index('left_shoulder') self.rshoulder_idx_29 = self.joints_name_29.index('right_shoulder') self._items, self._labels = self._lazy_load_json() if cfg.MODEL.EXTRA.PRESET == 'simple_smpl_3d': self.transformation = SimpleTransform3DSMPL( self, scale_factor=self._scale_factor, color_factor=self._color_factor, occlusion=self._occlusion, input_size=self._input_size, output_size=self._output_size, depth_dim=self._depth_dim, bbox_3d_shape=self.bbox_3d_shape, rot=self._rot, sigma=self._sigma, train=self._train, add_dpg=self._dpg, loss_type=self._loss_type, scale_mult=1) def __getitem__(self, idx): # get image id img_path = self._items[idx] img_id = int(self._labels[idx]['img_id']) # load ground truth, including bbox, keypoints, image size label = copy.deepcopy(self._labels[idx]) img = scipy.misc.imread(img_path, mode='RGB') # img = load_image(img_path) # img = cv2.imread(img_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) # transform ground truth into training label and apply data augmentation target = self.transformation(img, label) img = target.pop('image') bbox = target.pop('bbox') return img, target, img_id, bbox def __len__(self): return len(self._items) def _lazy_load_json(self): if os.path.exists(self._ann_file + '_smpl_annot_keypoint.pkl') and self._lazy_import: print('Lazy load annot...') with open(self._ann_file + '_smpl_annot_keypoint.pkl', 'rb') as fid: items, labels = pk.load(fid) else: items, labels = self._load_jsons() try: with open(self._ann_file + '_smpl_annot_keypoint.pkl', 'wb') as fid: pk.dump((items, labels), fid, pk.HIGHEST_PROTOCOL) except Exception as e: print(e) print('Skip writing to .pkl file.') return items, labels def _load_jsons(self): """Load all image paths and labels from JSON annotation files into buffer.""" items = [] labels = [] with open(self._ann_file, 'r') as fid: database = json.load(fid) # iterate through the annotations bbox_scale_list = [] det_bbox_set = {} if self._det_bbox_file is not None: bbox_list = json.load(open(os.path.join( self._root, 'annotations', self._det_bbox_file + f'_protocol_{self.protocol}.json'), 'r')) for item in bbox_list: image_id = item['image_id'] det_bbox_set[image_id] = item['bbox'] for ann_image, ann_annotations in zip(database['images'], database['annotations']): ann = dict() for k, v in ann_image.items(): assert k not in ann.keys() ann[k] = v for k, v in ann_annotations.items(): ann[k] = v skip = False for name in self.block_list: if name in ann['file_name']: skip = True if skip: continue image_id = ann['image_id'] width, height = ann['width'], ann['height'] if self._det_bbox_file is not None: xmin, ymin, xmax, ymax = bbox_clip_xyxy( bbox_xywh_to_xyxy(det_bbox_set[ann['file_name']]), width, height) else: xmin, ymin, xmax, ymax = bbox_clip_xyxy( bbox_xywh_to_xyxy(ann['bbox']), width, height) f, c = np.array(ann['cam_param']['f'], dtype=np.float32), np.array( ann['cam_param']['c'], dtype=np.float32) joint_cam_17 = np.array(ann['h36m_joints']).reshape(17, 3) joint_cam = np.array(ann['smpl_joints']) if joint_cam.size == 24 * 3: joint_cam_29 = np.zeros((29, 3)) joint_cam_29[:24, :] = joint_cam.reshape(24, 3) else: joint_cam_29 = joint_cam.reshape(29, 3) beta = np.array(ann['betas']) theta = np.array(ann['thetas']).reshape(self.num_thetas, 3) joint_img_17 = cam2pixel(joint_cam_17, f, c) joint_img_17[:, 2] = joint_img_17[:, 2] - joint_cam_17[self.root_idx_17, 2] joint_relative_17 = joint_cam_17 - joint_cam_17[self.root_idx_17, :] joint_img_29 = cam2pixel(joint_cam_29, f, c) joint_img_29[:, 2] = joint_img_29[:, 2] - joint_cam_29[self.root_idx_smpl, 2] joint_vis_17 = np.ones((17, 3)) joint_vis_29 = np.ones((29, 3)) root_cam = np.array(ann['root_coord']) abs_path = os.path.join(self._root, 'images', ann['file_name']) if 'angle_twist' in ann.keys(): twist = ann['angle_twist'] angle = np.array(twist['angle']) cos = np.array(twist['cos']) sin = np.array(twist['sin']) assert (np.cos(angle) - cos < 1e-6).all(), np.cos(angle) - cos assert (np.sin(angle) - sin < 1e-6).all(), np.sin(angle) - sin phi = np.stack((cos, sin), axis=1) # phi_weight = np.ones_like(phi) phi_weight = (angle > -10) * 1.0 # invalid angles are set to be -999 phi_weight = np.stack([phi_weight, phi_weight], axis=1) else: phi = np.zeros((23, 2)) phi_weight = np.zeros_like(phi) items.append(abs_path) labels.append({ 'bbox': (xmin, ymin, xmax, ymax), 'img_id': image_id, 'img_path': abs_path, 'width': width, 'height': height, 'joint_img_17': joint_img_17, 'joint_vis_17': joint_vis_17, 'joint_cam_17': joint_cam_17, 'joint_relative_17': joint_relative_17, 'joint_img_29': joint_img_29, 'joint_vis_29': joint_vis_29, 'joint_cam_29': joint_cam_29, 'twist_phi': phi, 'twist_weight': phi_weight, 'beta': beta, 'theta': theta, 'root_cam': root_cam, 'f': f, 'c': c }) bbox_scale_list.append(max(xmax - xmin, ymax - ymin)) return items, labels @property def joint_pairs_17(self): """Joint pairs which defines the pairs of joint to be swapped when the image is flipped horizontally.""" return ((1, 4), (2, 5), (3, 6), (11, 14), (12, 15), (13, 16)) @property def joint_pairs_24(self): """Joint pairs which defines the pairs of joint to be swapped when the image is flipped horizontally.""" return ((1, 2), (4, 5), (7, 8), (10, 11), (13, 14), (16, 17), (18, 19), (20, 21), (22, 23)) @property def joint_pairs_29(self): """Joint pairs which defines the pairs of joint to be swapped when the image is flipped horizontally.""" return ((1, 2), (4, 5), (7, 8), (10, 11), (13, 14), (16, 17), (18, 19), (20, 21), (22, 23), (25, 26), (27, 28)) @property def bone_pairs(self): """Bone pairs which defines the pairs of bone to be swapped when the image is flipped horizontally.""" return ((0, 3), (1, 4), (2, 5), (10, 13), (11, 14), (12, 15)) def _get_box_center_area(self, bbox): """Get bbox center""" c = np.array([(bbox[0] + bbox[2]) / 2.0, (bbox[1] + bbox[3]) / 2.0]) area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0]) return c, area def _get_keypoints_center_count(self, keypoints): """Get geometric center of all keypoints""" keypoint_x = np.sum(keypoints[:, 0, 0] * (keypoints[:, 0, 1] > 0)) keypoint_y = np.sum(keypoints[:, 1, 0] * (keypoints[:, 1, 1] > 0)) num = float(np.sum(keypoints[:, 0, 1])) return np.array([keypoint_x / num, keypoint_y / num]), num def evaluate_uvd_24(self, preds, result_dir): print('Evaluation start...') gts = self._labels assert len(gts) == len(preds) sample_num = len(gts) pred_save = [] error = np.zeros((sample_num, 24)) # joint error error_x = np.zeros((sample_num, 24)) # joint error error_y = np.zeros((sample_num, 24)) # joint error error_z = np.zeros((sample_num, 24)) # joint error # error for each sequence error_action = [[] for _ in range(len(self.action_name))] for n in range(sample_num): gt = gts[n] image_id = gt['img_id'] f = gt['f'] c = gt['c'] bbox = gt['bbox'] gt_3d_root = gt['root_cam'].copy() gt_3d_kpt = gt['joint_cam_29'][:24].copy() # restore coordinates to original space pred_2d_kpt = preds[image_id]['uvd_jts'][:24].copy() # pred_2d_kpt[:, 0] = pred_2d_kpt[:, 0] / self._output_size[1] * bbox[2] + bbox[0] # pred_2d_kpt[:, 1] = pred_2d_kpt[:, 1] / self._output_size[0] * bbox[3] + bbox[1] pred_2d_kpt[:, 2] = pred_2d_kpt[:, 2] * self.bbox_3d_shape[2] + gt_3d_root[2] # back project to camera coordinate system pred_3d_kpt = pixel2cam(pred_2d_kpt, f, c) # root joint alignment pred_3d_kpt = pred_3d_kpt - pred_3d_kpt[self.root_idx_smpl] gt_3d_kpt = gt_3d_kpt - gt_3d_kpt[self.root_idx_smpl] if self.protocol == 1: # rigid alignment for PA MPJPE (protocol #1) pred_3d_kpt = reconstruction_error(pred_3d_kpt, gt_3d_kpt) # error calculate error[n] = np.sqrt(np.sum((pred_3d_kpt - gt_3d_kpt)**2, 1)) error_x[n] = np.abs(pred_3d_kpt[:, 0] - gt_3d_kpt[:, 0]) error_y[n] = np.abs(pred_3d_kpt[:, 1] - gt_3d_kpt[:, 1]) error_z[n] = np.abs(pred_3d_kpt[:, 2] - gt_3d_kpt[:, 2]) img_name = gt['img_path'] action_idx = int(img_name[img_name.find( 'act') + 4:img_name.find('act') + 6]) - 2 error_action[action_idx].append(error[n].copy()) # prediction save pred_save.append({'image_id': image_id, 'joint_cam': pred_3d_kpt.tolist( ), 'bbox': bbox, 'root_cam': gt_3d_root.tolist()}) # joint_cam is root-relative coordinate # total error tot_err = np.mean(error) tot_err_x = np.mean(error_x) tot_err_y = np.mean(error_y) tot_err_z = np.mean(error_z) metric = 'PA MPJPE' if self.protocol == 1 else 'MPJPE' eval_summary = f'UVD_24 Protocol {self.protocol} error ({metric}) >> tot: {tot_err:2f}, x: {tot_err_x:2f}, y: {tot_err_y:.2f}, z: {tot_err_z:2f}\n' # error for each action for i in range(len(error_action)): err = np.mean(np.array(error_action[i])) eval_summary += (self.action_name[i] + ': %.2f ' % err) print(eval_summary) # prediction save with open(result_dir, 'w') as f: json.dump(pred_save, f) print("Test result is saved at " + result_dir) return tot_err def evaluate_xyz_24(self, preds, result_dir): print('Evaluation start...') gts = self._labels assert len(gts) == len(preds) sample_num = len(gts) pred_save = [] error = np.zeros((sample_num, 24)) # joint error error_align = np.zeros((sample_num, 24)) # joint error error_x = np.zeros((sample_num, 24)) # joint error error_y = np.zeros((sample_num, 24)) # joint error error_z = np.zeros((sample_num, 24)) # joint error # error for each sequence error_action = [[] for _ in range(len(self.action_name))] for n in range(sample_num): gt = gts[n] image_id = gt['img_id'] bbox = gt['bbox'] gt_3d_root = gt['root_cam'].copy() gt_3d_kpt = gt['joint_cam_29'][:24].copy() # gt_vis = gt['joint_vis'] # restore coordinates to original space pred_3d_kpt = preds[image_id]['xyz_24'].copy() * self.bbox_3d_shape[2] # root joint alignment pred_3d_kpt = pred_3d_kpt - pred_3d_kpt[self.root_idx_smpl] gt_3d_kpt = gt_3d_kpt - gt_3d_kpt[self.root_idx_smpl] # rigid alignment for PA MPJPE pred_3d_kpt_align = reconstruction_error(pred_3d_kpt.copy(), gt_3d_kpt.copy()) # error calculate error[n] = np.sqrt(np.sum((pred_3d_kpt - gt_3d_kpt)**2, 1)) error_align[n] = np.sqrt(np.sum((pred_3d_kpt_align - gt_3d_kpt)**2, 1)) error_x[n] = np.abs(pred_3d_kpt[:, 0] - gt_3d_kpt[:, 0]) error_y[n] = np.abs(pred_3d_kpt[:, 1] - gt_3d_kpt[:, 1]) error_z[n] = np.abs(pred_3d_kpt[:, 2] - gt_3d_kpt[:, 2]) img_name = gt['img_path'] action_idx = int(img_name[img_name.find( 'act') + 4:img_name.find('act') + 6]) - 2 error_action[action_idx].append(error[n].copy()) # prediction save pred_save.append({'image_id': image_id, 'joint_cam': pred_3d_kpt.tolist( ), 'bbox': bbox, 'root_cam': gt_3d_root.tolist()}) # joint_cam is root-relative coordinate # total error tot_err = np.mean(error) tot_err_align = np.mean(error_align) tot_err_x = np.mean(error_x) tot_err_y = np.mean(error_y) tot_err_z = np.mean(error_z) metric = 'PA MPJPE' if self.protocol == 1 else 'MPJPE' eval_summary = f'XYZ_24 Protocol {self.protocol} error ({metric}) >> tot: {tot_err:2f}, tot_pa: {tot_err_align:2f}, x: {tot_err_x:2f}, y: {tot_err_y:.2f}, z: {tot_err_z:2f}\n' # error for each action for i in range(len(error_action)): err = np.mean(np.array(error_action[i])) eval_summary += (self.action_name[i] + ': %.2f ' % err) print(eval_summary) # prediction save with open(result_dir, 'w') as f: json.dump(pred_save, f) print("Test result is saved at " + result_dir) return tot_err def evaluate_xyz_17(self, preds, result_dir): print('Evaluation start...') gts = self._labels assert len(gts) == len(preds), (len(gts), len(preds)) sample_num = len(gts) pred_save = [] error = np.zeros((sample_num, len(self.EVAL_JOINTS))) # joint error error_align = np.zeros((sample_num, len(self.EVAL_JOINTS))) # joint error error_x = np.zeros((sample_num, len(self.EVAL_JOINTS))) # joint error error_y = np.zeros((sample_num, len(self.EVAL_JOINTS))) # joint error error_z = np.zeros((sample_num, len(self.EVAL_JOINTS))) # joint error # error for each sequence error_action = [[] for _ in range(len(self.action_name))] for n in range(sample_num): gt = gts[n] image_id = gt['img_id'] bbox = gt['bbox'] gt_3d_root = gt['root_cam'].copy() gt_3d_kpt = gt['joint_relative_17'].copy() # gt_vis = gt['joint_vis'] # restore coordinates to original space pred_3d_kpt = preds[image_id]['xyz_17'].copy() * self.bbox_3d_shape[2] # root joint alignment pred_3d_kpt = pred_3d_kpt - pred_3d_kpt[self.root_idx_17] gt_3d_kpt = gt_3d_kpt - gt_3d_kpt[self.root_idx_17] # rigid alignment for PA MPJPE # pred_3d_kpt_align = rigid_align(pred_3d_kpt.copy(), gt_3d_kpt.copy()) pred_3d_kpt_align = reconstruction_error(pred_3d_kpt.copy(), gt_3d_kpt.copy()) # pred_3d_kpt_align = pred_3d_kpt_align - pred_3d_kpt_align[self.root_idx_17] # select eval 14 joints pred_3d_kpt = np.take(pred_3d_kpt, self.EVAL_JOINTS, axis=0) gt_3d_kpt = np.take(gt_3d_kpt, self.EVAL_JOINTS, axis=0) pred_3d_kpt_align = np.take(pred_3d_kpt_align, self.EVAL_JOINTS, axis=0) # error calculate error[n] = np.sqrt(np.sum((pred_3d_kpt - gt_3d_kpt)**2, 1)) error_align[n] = np.sqrt(np.sum((pred_3d_kpt_align - gt_3d_kpt)**2, 1)) error_x[n] = np.abs(pred_3d_kpt[:, 0] - gt_3d_kpt[:, 0]) error_y[n] = np.abs(pred_3d_kpt[:, 1] - gt_3d_kpt[:, 1]) error_z[n] = np.abs(pred_3d_kpt[:, 2] - gt_3d_kpt[:, 2]) img_name = gt['img_path'] action_idx = int(img_name[img_name.find( 'act') + 4:img_name.find('act') + 6]) - 2 error_action[action_idx].append(error[n].copy()) # prediction save pred_save.append({'image_id': image_id, 'joint_cam': pred_3d_kpt.tolist( ), 'bbox': bbox, 'root_cam': gt_3d_root.tolist()}) # joint_cam is root-relative coordinate # total error tot_err = np.mean(error) tot_err_align = np.mean(error_align) tot_err_x = np.mean(error_x) tot_err_y = np.mean(error_y) tot_err_z = np.mean(error_z) metric = 'PA MPJPE' if self.protocol == 1 else 'MPJPE' eval_summary = f'XYZ_17 Protocol {self.protocol} error ({metric}) >> tot: {tot_err:2f}, tot_pa: {tot_err_align:2f}, x: {tot_err_x:2f}, y: {tot_err_y:.2f}, z: {tot_err_z:2f}\n' # error for each action for i in range(len(error_action)): err = np.mean(np.array(error_action[i])) eval_summary += (self.action_name[i] + ': %.2f ' % err) print(eval_summary) # prediction save with open(result_dir, 'w') as f: json.dump(pred_save, f) print("Test result is saved at " + result_dir) return tot_err_align
[ "pickle.dump", "numpy.sum", "numpy.abs", "hybrik.utils.bbox.bbox_xywh_to_xyxy", "numpy.ones", "numpy.mean", "pickle.load", "numpy.sin", "os.path.join", "numpy.zeros_like", "os.path.exists", "hybrik.utils.pose_utils.pixel2cam", "json.dump", "copy.deepcopy", "numpy.stack", "hybrik.utils.pose_utils.reconstruction_error", "hybrik.utils.presets.SimpleTransform3DSMPL", "hybrik.utils.pose_utils.cam2pixel", "numpy.cos", "json.load", "numpy.zeros", "numpy.array", "numpy.take" ]
[((2948, 3027), 'os.path.join', 'os.path.join', (['root', '"""annotations"""', "(ann_file + f'_protocol_{self.protocol}.json')"], {}), "(root, 'annotations', ann_file + f'_protocol_{self.protocol}.json')\n", (2960, 3027), False, 'import os\n'), ((5715, 5747), 'copy.deepcopy', 'copy.deepcopy', (['self._labels[idx]'], {}), '(self._labels[idx])\n', (5728, 5747), False, 'import copy\n'), ((12461, 12525), 'numpy.array', 'np.array', (['[(bbox[0] + bbox[2]) / 2.0, (bbox[1] + bbox[3]) / 2.0]'], {}), '([(bbox[0] + bbox[2]) / 2.0, (bbox[1] + bbox[3]) / 2.0])\n', (12469, 12525), True, 'import numpy as np\n'), ((12734, 12787), 'numpy.sum', 'np.sum', (['(keypoints[:, 0, 0] * (keypoints[:, 0, 1] > 0))'], {}), '(keypoints[:, 0, 0] * (keypoints[:, 0, 1] > 0))\n', (12740, 12787), True, 'import numpy as np\n'), ((12809, 12862), 'numpy.sum', 'np.sum', (['(keypoints[:, 1, 0] * (keypoints[:, 1, 1] > 0))'], {}), '(keypoints[:, 1, 0] * (keypoints[:, 1, 1] > 0))\n', (12815, 12862), True, 'import numpy as np\n'), ((13201, 13227), 'numpy.zeros', 'np.zeros', (['(sample_num, 24)'], {}), '((sample_num, 24))\n', (13209, 13227), True, 'import numpy as np\n'), ((13265, 13291), 'numpy.zeros', 'np.zeros', (['(sample_num, 24)'], {}), '((sample_num, 24))\n', (13273, 13291), True, 'import numpy as np\n'), ((13327, 13353), 'numpy.zeros', 'np.zeros', (['(sample_num, 24)'], {}), '((sample_num, 24))\n', (13335, 13353), True, 'import numpy as np\n'), ((13389, 13415), 'numpy.zeros', 'np.zeros', (['(sample_num, 24)'], {}), '((sample_num, 24))\n', (13397, 13415), True, 'import numpy as np\n'), ((15445, 15459), 'numpy.mean', 'np.mean', (['error'], {}), '(error)\n', (15452, 15459), True, 'import numpy as np\n'), ((15480, 15496), 'numpy.mean', 'np.mean', (['error_x'], {}), '(error_x)\n', (15487, 15496), True, 'import numpy as np\n'), ((15517, 15533), 'numpy.mean', 'np.mean', (['error_y'], {}), '(error_y)\n', (15524, 15533), True, 'import numpy as np\n'), ((15554, 15570), 'numpy.mean', 'np.mean', (['error_z'], {}), '(error_z)\n', (15561, 15570), True, 'import numpy as np\n'), ((16422, 16448), 'numpy.zeros', 'np.zeros', (['(sample_num, 24)'], {}), '((sample_num, 24))\n', (16430, 16448), True, 'import numpy as np\n'), ((16486, 16512), 'numpy.zeros', 'np.zeros', (['(sample_num, 24)'], {}), '((sample_num, 24))\n', (16494, 16512), True, 'import numpy as np\n'), ((16546, 16572), 'numpy.zeros', 'np.zeros', (['(sample_num, 24)'], {}), '((sample_num, 24))\n', (16554, 16572), True, 'import numpy as np\n'), ((16606, 16632), 'numpy.zeros', 'np.zeros', (['(sample_num, 24)'], {}), '((sample_num, 24))\n', (16614, 16632), True, 'import numpy as np\n'), ((16666, 16692), 'numpy.zeros', 'np.zeros', (['(sample_num, 24)'], {}), '((sample_num, 24))\n', (16674, 16692), True, 'import numpy as np\n'), ((18386, 18400), 'numpy.mean', 'np.mean', (['error'], {}), '(error)\n', (18393, 18400), True, 'import numpy as np\n'), ((18425, 18445), 'numpy.mean', 'np.mean', (['error_align'], {}), '(error_align)\n', (18432, 18445), True, 'import numpy as np\n'), ((18466, 18482), 'numpy.mean', 'np.mean', (['error_x'], {}), '(error_x)\n', (18473, 18482), True, 'import numpy as np\n'), ((18503, 18519), 'numpy.mean', 'np.mean', (['error_y'], {}), '(error_y)\n', (18510, 18519), True, 'import numpy as np\n'), ((18540, 18556), 'numpy.mean', 'np.mean', (['error_z'], {}), '(error_z)\n', (18547, 18556), True, 'import numpy as np\n'), ((21953, 21967), 'numpy.mean', 'np.mean', (['error'], {}), '(error)\n', (21960, 21967), True, 'import numpy as np\n'), ((21992, 22012), 'numpy.mean', 'np.mean', (['error_align'], {}), '(error_align)\n', (21999, 22012), True, 'import numpy as np\n'), ((22033, 22049), 'numpy.mean', 'np.mean', (['error_x'], {}), '(error_x)\n', (22040, 22049), True, 'import numpy as np\n'), ((22070, 22086), 'numpy.mean', 'np.mean', (['error_y'], {}), '(error_y)\n', (22077, 22086), True, 'import numpy as np\n'), ((22107, 22123), 'numpy.mean', 'np.mean', (['error_z'], {}), '(error_z)\n', (22114, 22123), True, 'import numpy as np\n'), ((4973, 5349), 'hybrik.utils.presets.SimpleTransform3DSMPL', 'SimpleTransform3DSMPL', (['self'], {'scale_factor': 'self._scale_factor', 'color_factor': 'self._color_factor', 'occlusion': 'self._occlusion', 'input_size': 'self._input_size', 'output_size': 'self._output_size', 'depth_dim': 'self._depth_dim', 'bbox_3d_shape': 'self.bbox_3d_shape', 'rot': 'self._rot', 'sigma': 'self._sigma', 'train': 'self._train', 'add_dpg': 'self._dpg', 'loss_type': 'self._loss_type', 'scale_mult': '(1)'}), '(self, scale_factor=self._scale_factor, color_factor=\n self._color_factor, occlusion=self._occlusion, input_size=self.\n _input_size, output_size=self._output_size, depth_dim=self._depth_dim,\n bbox_3d_shape=self.bbox_3d_shape, rot=self._rot, sigma=self._sigma,\n train=self._train, add_dpg=self._dpg, loss_type=self._loss_type,\n scale_mult=1)\n', (4994, 5349), False, 'from hybrik.utils.presets import SimpleTransform3DSMPL\n'), ((6267, 6326), 'os.path.exists', 'os.path.exists', (["(self._ann_file + '_smpl_annot_keypoint.pkl')"], {}), "(self._ann_file + '_smpl_annot_keypoint.pkl')\n", (6281, 6326), False, 'import os\n'), ((7116, 7130), 'json.load', 'json.load', (['fid'], {}), '(fid)\n', (7125, 7130), False, 'import json\n'), ((8725, 8753), 'numpy.array', 'np.array', (["ann['smpl_joints']"], {}), "(ann['smpl_joints'])\n", (8733, 8753), True, 'import numpy as np\n'), ((9001, 9023), 'numpy.array', 'np.array', (["ann['betas']"], {}), "(ann['betas'])\n", (9009, 9023), True, 'import numpy as np\n'), ((9124, 9153), 'hybrik.utils.pose_utils.cam2pixel', 'cam2pixel', (['joint_cam_17', 'f', 'c'], {}), '(joint_cam_17, f, c)\n', (9133, 9153), False, 'from hybrik.utils.pose_utils import cam2pixel, pixel2cam, reconstruction_error\n'), ((9351, 9380), 'hybrik.utils.pose_utils.cam2pixel', 'cam2pixel', (['joint_cam_29', 'f', 'c'], {}), '(joint_cam_29, f, c)\n', (9360, 9380), False, 'from hybrik.utils.pose_utils import cam2pixel, pixel2cam, reconstruction_error\n'), ((9498, 9514), 'numpy.ones', 'np.ones', (['(17, 3)'], {}), '((17, 3))\n', (9505, 9514), True, 'import numpy as np\n'), ((9542, 9558), 'numpy.ones', 'np.ones', (['(29, 3)'], {}), '((29, 3))\n', (9549, 9558), True, 'import numpy as np\n'), ((9583, 9610), 'numpy.array', 'np.array', (["ann['root_coord']"], {}), "(ann['root_coord'])\n", (9591, 9610), True, 'import numpy as np\n'), ((9635, 9687), 'os.path.join', 'os.path.join', (['self._root', '"""images"""', "ann['file_name']"], {}), "(self._root, 'images', ann['file_name'])\n", (9647, 9687), False, 'import os\n'), ((12883, 12909), 'numpy.sum', 'np.sum', (['keypoints[:, 0, 1]'], {}), '(keypoints[:, 0, 1])\n', (12889, 12909), True, 'import numpy as np\n'), ((12926, 12972), 'numpy.array', 'np.array', (['[keypoint_x / num, keypoint_y / num]'], {}), '([keypoint_x / num, keypoint_y / num])\n', (12934, 12972), True, 'import numpy as np\n'), ((14289, 14317), 'hybrik.utils.pose_utils.pixel2cam', 'pixel2cam', (['pred_2d_kpt', 'f', 'c'], {}), '(pred_2d_kpt, f, c)\n', (14298, 14317), False, 'from hybrik.utils.pose_utils import cam2pixel, pixel2cam, reconstruction_error\n'), ((14792, 14835), 'numpy.abs', 'np.abs', (['(pred_3d_kpt[:, 0] - gt_3d_kpt[:, 0])'], {}), '(pred_3d_kpt[:, 0] - gt_3d_kpt[:, 0])\n', (14798, 14835), True, 'import numpy as np\n'), ((14861, 14904), 'numpy.abs', 'np.abs', (['(pred_3d_kpt[:, 1] - gt_3d_kpt[:, 1])'], {}), '(pred_3d_kpt[:, 1] - gt_3d_kpt[:, 1])\n', (14867, 14904), True, 'import numpy as np\n'), ((14930, 14973), 'numpy.abs', 'np.abs', (['(pred_3d_kpt[:, 2] - gt_3d_kpt[:, 2])'], {}), '(pred_3d_kpt[:, 2] - gt_3d_kpt[:, 2])\n', (14936, 14973), True, 'import numpy as np\n'), ((16097, 16120), 'json.dump', 'json.dump', (['pred_save', 'f'], {}), '(pred_save, f)\n', (16106, 16120), False, 'import json\n'), ((17733, 17776), 'numpy.abs', 'np.abs', (['(pred_3d_kpt[:, 0] - gt_3d_kpt[:, 0])'], {}), '(pred_3d_kpt[:, 0] - gt_3d_kpt[:, 0])\n', (17739, 17776), True, 'import numpy as np\n'), ((17802, 17845), 'numpy.abs', 'np.abs', (['(pred_3d_kpt[:, 1] - gt_3d_kpt[:, 1])'], {}), '(pred_3d_kpt[:, 1] - gt_3d_kpt[:, 1])\n', (17808, 17845), True, 'import numpy as np\n'), ((17871, 17914), 'numpy.abs', 'np.abs', (['(pred_3d_kpt[:, 2] - gt_3d_kpt[:, 2])'], {}), '(pred_3d_kpt[:, 2] - gt_3d_kpt[:, 2])\n', (17877, 17914), True, 'import numpy as np\n'), ((19111, 19134), 'json.dump', 'json.dump', (['pred_save', 'f'], {}), '(pred_save, f)\n', (19120, 19134), False, 'import json\n'), ((20887, 20933), 'numpy.take', 'np.take', (['pred_3d_kpt', 'self.EVAL_JOINTS'], {'axis': '(0)'}), '(pred_3d_kpt, self.EVAL_JOINTS, axis=0)\n', (20894, 20933), True, 'import numpy as np\n'), ((20958, 21002), 'numpy.take', 'np.take', (['gt_3d_kpt', 'self.EVAL_JOINTS'], {'axis': '(0)'}), '(gt_3d_kpt, self.EVAL_JOINTS, axis=0)\n', (20965, 21002), True, 'import numpy as np\n'), ((21035, 21087), 'numpy.take', 'np.take', (['pred_3d_kpt_align', 'self.EVAL_JOINTS'], {'axis': '(0)'}), '(pred_3d_kpt_align, self.EVAL_JOINTS, axis=0)\n', (21042, 21087), True, 'import numpy as np\n'), ((21300, 21343), 'numpy.abs', 'np.abs', (['(pred_3d_kpt[:, 0] - gt_3d_kpt[:, 0])'], {}), '(pred_3d_kpt[:, 0] - gt_3d_kpt[:, 0])\n', (21306, 21343), True, 'import numpy as np\n'), ((21369, 21412), 'numpy.abs', 'np.abs', (['(pred_3d_kpt[:, 1] - gt_3d_kpt[:, 1])'], {}), '(pred_3d_kpt[:, 1] - gt_3d_kpt[:, 1])\n', (21375, 21412), True, 'import numpy as np\n'), ((21438, 21481), 'numpy.abs', 'np.abs', (['(pred_3d_kpt[:, 2] - gt_3d_kpt[:, 2])'], {}), '(pred_3d_kpt[:, 2] - gt_3d_kpt[:, 2])\n', (21444, 21481), True, 'import numpy as np\n'), ((22678, 22701), 'json.dump', 'json.dump', (['pred_save', 'f'], {}), '(pred_save, f)\n', (22687, 22701), False, 'import json\n'), ((6503, 6515), 'pickle.load', 'pk.load', (['fid'], {}), '(fid)\n', (6510, 6515), True, 'import pickle as pk\n'), ((8511, 8560), 'numpy.array', 'np.array', (["ann['cam_param']['f']"], {'dtype': 'np.float32'}), "(ann['cam_param']['f'], dtype=np.float32)\n", (8519, 8560), True, 'import numpy as np\n'), ((8562, 8611), 'numpy.array', 'np.array', (["ann['cam_param']['c']"], {'dtype': 'np.float32'}), "(ann['cam_param']['c'], dtype=np.float32)\n", (8570, 8611), True, 'import numpy as np\n'), ((8826, 8843), 'numpy.zeros', 'np.zeros', (['(29, 3)'], {}), '((29, 3))\n', (8834, 8843), True, 'import numpy as np\n'), ((9800, 9824), 'numpy.array', 'np.array', (["twist['angle']"], {}), "(twist['angle'])\n", (9808, 9824), True, 'import numpy as np\n'), ((9847, 9869), 'numpy.array', 'np.array', (["twist['cos']"], {}), "(twist['cos'])\n", (9855, 9869), True, 'import numpy as np\n'), ((9892, 9914), 'numpy.array', 'np.array', (["twist['sin']"], {}), "(twist['sin'])\n", (9900, 9914), True, 'import numpy as np\n'), ((10095, 10123), 'numpy.stack', 'np.stack', (['(cos, sin)'], {'axis': '(1)'}), '((cos, sin), axis=1)\n', (10103, 10123), True, 'import numpy as np\n'), ((10287, 10329), 'numpy.stack', 'np.stack', (['[phi_weight, phi_weight]'], {'axis': '(1)'}), '([phi_weight, phi_weight], axis=1)\n', (10295, 10329), True, 'import numpy as np\n'), ((10370, 10387), 'numpy.zeros', 'np.zeros', (['(23, 2)'], {}), '((23, 2))\n', (10378, 10387), True, 'import numpy as np\n'), ((10417, 10435), 'numpy.zeros_like', 'np.zeros_like', (['phi'], {}), '(phi)\n', (10430, 10435), True, 'import numpy as np\n'), ((14619, 14663), 'hybrik.utils.pose_utils.reconstruction_error', 'reconstruction_error', (['pred_3d_kpt', 'gt_3d_kpt'], {}), '(pred_3d_kpt, gt_3d_kpt)\n', (14639, 14663), False, 'from hybrik.utils.pose_utils import cam2pixel, pixel2cam, reconstruction_error\n'), ((14726, 14767), 'numpy.sum', 'np.sum', (['((pred_3d_kpt - gt_3d_kpt) ** 2)', '(1)'], {}), '((pred_3d_kpt - gt_3d_kpt) ** 2, 1)\n', (14732, 14767), True, 'import numpy as np\n'), ((15893, 15918), 'numpy.array', 'np.array', (['error_action[i]'], {}), '(error_action[i])\n', (15901, 15918), True, 'import numpy as np\n'), ((17583, 17624), 'numpy.sum', 'np.sum', (['((pred_3d_kpt - gt_3d_kpt) ** 2)', '(1)'], {}), '((pred_3d_kpt - gt_3d_kpt) ** 2, 1)\n', (17589, 17624), True, 'import numpy as np\n'), ((17661, 17708), 'numpy.sum', 'np.sum', (['((pred_3d_kpt_align - gt_3d_kpt) ** 2)', '(1)'], {}), '((pred_3d_kpt_align - gt_3d_kpt) ** 2, 1)\n', (17667, 17708), True, 'import numpy as np\n'), ((18907, 18932), 'numpy.array', 'np.array', (['error_action[i]'], {}), '(error_action[i])\n', (18915, 18932), True, 'import numpy as np\n'), ((21150, 21191), 'numpy.sum', 'np.sum', (['((pred_3d_kpt - gt_3d_kpt) ** 2)', '(1)'], {}), '((pred_3d_kpt - gt_3d_kpt) ** 2, 1)\n', (21156, 21191), True, 'import numpy as np\n'), ((21228, 21275), 'numpy.sum', 'np.sum', (['((pred_3d_kpt_align - gt_3d_kpt) ** 2)', '(1)'], {}), '((pred_3d_kpt_align - gt_3d_kpt) ** 2, 1)\n', (21234, 21275), True, 'import numpy as np\n'), ((22474, 22499), 'numpy.array', 'np.array', (['error_action[i]'], {}), '(error_action[i])\n', (22482, 22499), True, 'import numpy as np\n'), ((6699, 6749), 'pickle.dump', 'pk.dump', (['(items, labels)', 'fid', 'pk.HIGHEST_PROTOCOL'], {}), '((items, labels), fid, pk.HIGHEST_PROTOCOL)\n', (6706, 6749), True, 'import pickle as pk\n'), ((7311, 7411), 'os.path.join', 'os.path.join', (['self._root', '"""annotations"""', "(self._det_bbox_file + f'_protocol_{self.protocol}.json')"], {}), "(self._root, 'annotations', self._det_bbox_file +\n f'_protocol_{self.protocol}.json')\n", (7323, 7411), False, 'import os\n'), ((8283, 8332), 'hybrik.utils.bbox.bbox_xywh_to_xyxy', 'bbox_xywh_to_xyxy', (["det_bbox_set[ann['file_name']]"], {}), "(det_bbox_set[ann['file_name']])\n", (8300, 8332), False, 'from hybrik.utils.bbox import bbox_clip_xyxy, bbox_xywh_to_xyxy\n'), ((8444, 8474), 'hybrik.utils.bbox.bbox_xywh_to_xyxy', 'bbox_xywh_to_xyxy', (["ann['bbox']"], {}), "(ann['bbox'])\n", (8461, 8474), False, 'from hybrik.utils.bbox import bbox_clip_xyxy, bbox_xywh_to_xyxy\n'), ((8657, 8685), 'numpy.array', 'np.array', (["ann['h36m_joints']"], {}), "(ann['h36m_joints'])\n", (8665, 8685), True, 'import numpy as np\n'), ((9044, 9067), 'numpy.array', 'np.array', (["ann['thetas']"], {}), "(ann['thetas'])\n", (9052, 9067), True, 'import numpy as np\n'), ((9974, 9987), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (9980, 9987), True, 'import numpy as np\n'), ((10053, 10066), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (10059, 10066), True, 'import numpy as np\n'), ((9939, 9952), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (9945, 9952), True, 'import numpy as np\n'), ((10018, 10031), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (10024, 10031), True, 'import numpy as np\n')]
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- import numpy as np from ._cutils import is_symmetric_and_hollow_cy from ._cutils import distmat_reorder_cy, distmat_reorder_condensed_cy def is_symmetric_and_hollow(mat): """ Check if a Distance Matrix is symmetric and hollow. Equivalent to [not (mat.T != mat).any(), np.trace(mat) == 0] Parameters ---------- mat : 2D array_like Distance matrix. Result: ------- is_symmetric: Boolean not (mat.T != mat).any() is_hollow: Boolean np.trace(mat) == 0 """ # is_symmetric_and_hollow_cy is optimized # for the common cas of c_contiguous. # For all other cases, make a copy. if not mat.flags.c_contiguous: mat = np.asarray(mat, order='C') return is_symmetric_and_hollow_cy(mat) def is_symmetric(mat): """ Check if a Distance Matrix is symmetric. Equivalent to not (mat.T != mat).any() Parameters ---------- mat : 2D array_like Distance matrix. Result: ------- is_symmetric: Boolean not (mat.T != mat).any() """ # the is_hollow check is really cheap, # so can reuse is_symmetric_and_hollow return is_symmetric_and_hollow(mat)[0] def is_hollow(mat): """ Check if a Distance Matrix is hollow. Equivalent to np.trace(mat) == 0 Parameters ---------- mat : 2D array_like Distance matrix. Result: ------- is_hollow: Boolean np.trace(mat) == 0 """ # is_symmetric_and_hollow_cy spends most # of its time in symetry check, just use numpy return (np.trace(mat) == 0) def distmat_reorder_buf(in_mat, reorder_vec, out_mat, validate=False): """ Reorder the rows and columns of a distance matrix given a reorder vector. Not all of the columns need to be used. For example: [ [0, 1, 2, 3] , [1, 0, 4, 5] , [2, 4, 0, 6] , [3, 5, 6, 0] ] with [1,0,3,2] will result in [ [0, 1, 5, 4] , [1, 0, 3, 2] , [5, 3, 0, 6] , [4, 2, 6, 0] ] Parameters ---------- in_mat : 2D array_like Distance matrix reorder_vec : 1D_array_like List of permutation indexes out_mat : 2D array_like Output, Distance matrix, must be in c_order and same size as reorder_vec validate: boolean Optional, if True, validate reorder_vec content, detaults to False """ np_reorder = np.asarray(reorder_vec, dtype=np.long) if validate: maxsize = in_mat.shape[0] bad_cnt = np.where((np_reorder < 0) or (np_reorder >= maxsize))[0].size if bad_cnt > 0: raise ValueError("Invalid reorder_vec") if not in_mat.flags.c_contiguous: in_mat = np.asarray(in_mat, order='C') distmat_reorder_cy(in_mat, np_reorder, out_mat) def distmat_reorder(in_mat, reorder_vec, validate=False): """ Reorder the rows and columns of a distance matrix given a reorder vector. Not all of the columns need to be used. For example: [ [0, 1, 2, 3] , [1, 0, 4, 5] , [2, 4, 0, 6] , [3, 5, 6, 0] ] with [1,0,3,2] will result in [ [0, 1, 5, 4] , [1, 0, 3, 2] , [5, 3, 0, 6] , [4, 2, 6, 0] ] Parameters ---------- in_mat : 2D array_like Distance matrix, must be in c_order reorder_vec : 1D_array_like List of permutation indexes validate: boolean Optional, if True, validate reorder_vec content, detaults to False Returns ------- out_mat : 2D array_like Distance matrix """ np_reorder = np.asarray(reorder_vec, dtype=np.long) if validate: maxsize = in_mat.shape[0] bad_cnt = np.where((np_reorder < 0) or (np_reorder >= maxsize))[0].size if bad_cnt > 0: raise ValueError("Invalid reorder_vec") if not in_mat.flags.c_contiguous: in_mat = np.asarray(in_mat, order='C') out_mat = np.empty([np_reorder.size, np_reorder.size], in_mat.dtype) distmat_reorder_cy(in_mat, np_reorder, out_mat) return out_mat def distmat_reorder_condensed(in_mat, reorder_vec, validate=False): """ Reorder the rows and columns of a distance matrix given a reorder vector. Not all of the columns need to be used. For example: [ [0, 1, 2, 3] , [1, 0, 4, 5] , [2, 4, 0, 6] , [3, 5, 6, 0] ] with [1,0,3,2] will result in [ 1, 5, 4 , 3, 2, 6 ] Parameters ---------- in_mat : 2D array_like Distance matrix, must be in c_order reorder_vec : 1D_array_like List of permutation indexes validate: boolean Optional, if True, validate reorder_vec content, detaults to False Returns ------- out_mat_condensed : 1D array_like Condensed distance matrix """ np_reorder = np.asarray(reorder_vec, dtype=np.long) if validate: maxsize = in_mat.shape[0] bad_cnt = np.where((np_reorder < 0) or (np_reorder >= maxsize))[0].size if bad_cnt > 0: raise ValueError("Invalid reorder_vec") if not in_mat.flags.c_contiguous: in_mat = np.asarray(in_mat, order='C') csize = np.long(((np_reorder.size-1)*np_reorder.size)/2) out_mat_condensed = np.empty([csize], in_mat.dtype) distmat_reorder_condensed_cy(in_mat, np_reorder, out_mat_condensed) return out_mat_condensed
[ "numpy.trace", "numpy.empty", "numpy.asarray", "numpy.where", "numpy.long" ]
[((2784, 2822), 'numpy.asarray', 'np.asarray', (['reorder_vec'], {'dtype': 'np.long'}), '(reorder_vec, dtype=np.long)\n', (2794, 2822), True, 'import numpy as np\n'), ((3971, 4009), 'numpy.asarray', 'np.asarray', (['reorder_vec'], {'dtype': 'np.long'}), '(reorder_vec, dtype=np.long)\n', (3981, 4009), True, 'import numpy as np\n'), ((4318, 4376), 'numpy.empty', 'np.empty', (['[np_reorder.size, np_reorder.size]', 'in_mat.dtype'], {}), '([np_reorder.size, np_reorder.size], in_mat.dtype)\n', (4326, 4376), True, 'import numpy as np\n'), ((5219, 5257), 'numpy.asarray', 'np.asarray', (['reorder_vec'], {'dtype': 'np.long'}), '(reorder_vec, dtype=np.long)\n', (5229, 5257), True, 'import numpy as np\n'), ((5564, 5616), 'numpy.long', 'np.long', (['((np_reorder.size - 1) * np_reorder.size / 2)'], {}), '((np_reorder.size - 1) * np_reorder.size / 2)\n', (5571, 5616), True, 'import numpy as np\n'), ((5637, 5668), 'numpy.empty', 'np.empty', (['[csize]', 'in_mat.dtype'], {}), '([csize], in_mat.dtype)\n', (5645, 5668), True, 'import numpy as np\n'), ((1056, 1082), 'numpy.asarray', 'np.asarray', (['mat'], {'order': '"""C"""'}), "(mat, order='C')\n", (1066, 1082), True, 'import numpy as np\n'), ((1929, 1942), 'numpy.trace', 'np.trace', (['mat'], {}), '(mat)\n', (1937, 1942), True, 'import numpy as np\n'), ((3086, 3115), 'numpy.asarray', 'np.asarray', (['in_mat'], {'order': '"""C"""'}), "(in_mat, order='C')\n", (3096, 3115), True, 'import numpy as np\n'), ((4273, 4302), 'numpy.asarray', 'np.asarray', (['in_mat'], {'order': '"""C"""'}), "(in_mat, order='C')\n", (4283, 4302), True, 'import numpy as np\n'), ((5521, 5550), 'numpy.asarray', 'np.asarray', (['in_mat'], {'order': '"""C"""'}), "(in_mat, order='C')\n", (5531, 5550), True, 'import numpy as np\n'), ((2892, 2941), 'numpy.where', 'np.where', (['(np_reorder < 0 or np_reorder >= maxsize)'], {}), '(np_reorder < 0 or np_reorder >= maxsize)\n', (2900, 2941), True, 'import numpy as np\n'), ((4079, 4128), 'numpy.where', 'np.where', (['(np_reorder < 0 or np_reorder >= maxsize)'], {}), '(np_reorder < 0 or np_reorder >= maxsize)\n', (4087, 4128), True, 'import numpy as np\n'), ((5327, 5376), 'numpy.where', 'np.where', (['(np_reorder < 0 or np_reorder >= maxsize)'], {}), '(np_reorder < 0 or np_reorder >= maxsize)\n', (5335, 5376), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np import matplotlib.dates as mdates from datetime import datetime import matplotlib.patches as patches from matplotlib.backends.backend_pdf import PdfPages import math import operator def plot(ctx): "Delegation status over time" switches = [opts['_switch'] for _, opts in ctx.topo.graph.nodes(data=True) if opts.get('_switch')] fig, ax = plt.subplots(figsize=(16, 6)) tvalues = [] for switch in switches: if switch.label == 'DS': for t, report in enumerate(switch.reports): #print(t, report.cnt_port_delegation_status) for p, status in enumerate(report.cnt_port_delegation_status): if status == 1: tvalues.append(t) p = patches.Rectangle((t-1,p-0.5), 1,1, color='orange', alpha=0.3) ax.add_patch(p) #else: # p = patches.Rectangle((t-1,p-0.5), 1,1, color='grey', alpha=0.1) # ax.add_patch(p) for p in range(1,21): ax.hlines(p-0.5, 0, len(tvalues), color='grey', linestyle='-', linewidth=1, alpha=0.3) x1 = (int(math.ceil(min(tvalues) / 25.0)) * 25) - 25 x2 = int(math.ceil(max(tvalues) / 25.0)) * 25 ax.set_xlim(x1,x2) ax.set_ylim(-0.5,20.5) ax.set_yticks(np.arange(21)) ax.set_xlabel('time (s)') ax.set_ylabel('port number') plt.gca().xaxis.grid(True, color='grey', linestyle='--', linewidth=1, alpha=0.3) plt.show()
[ "matplotlib.pyplot.show", "matplotlib.patches.Rectangle", "numpy.arange", "matplotlib.pyplot.gca", "matplotlib.pyplot.subplots" ]
[((403, 432), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(16, 6)'}), '(figsize=(16, 6))\n', (415, 432), True, 'import matplotlib.pyplot as plt\n'), ((1572, 1582), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1580, 1582), True, 'import matplotlib.pyplot as plt\n'), ((1402, 1415), 'numpy.arange', 'np.arange', (['(21)'], {}), '(21)\n', (1411, 1415), True, 'import numpy as np\n'), ((1487, 1496), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1494, 1496), True, 'import matplotlib.pyplot as plt\n'), ((813, 881), 'matplotlib.patches.Rectangle', 'patches.Rectangle', (['(t - 1, p - 0.5)', '(1)', '(1)'], {'color': '"""orange"""', 'alpha': '(0.3)'}), "((t - 1, p - 0.5), 1, 1, color='orange', alpha=0.3)\n", (830, 881), True, 'import matplotlib.patches as patches\n')]