code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
""" ============================================================================= Eindhoven University of Technology ============================================================================== Source Name : inferenceToyCase.py This file load weights of a pretrained model and runs inference Author : <NAME> Date : 09/08/2019 Reference : <NAME>, <NAME>, and <NAME>, "Deep probabilistic subsampling for task-adaptive compressed sensing", 2019 ============================================================================== """ import sys, os.path as path, os import numpy as np from keras import backend as K from keras.callbacks import ReduceLROnPlateau, TensorBoard import keras from keras.datasets import cifar10 from keras.preprocessing.image import ImageDataGenerator from matplotlib import pyplot as plt import tensorflow as tf from keras.utils import to_categorical from keras.models import Model from sklearn.model_selection import train_test_split import myModel #============================================================================= versionName = "Toy_loupe_recon_fact32_lr0.0001_lrMult10_EM_0.0001-0.0005-0-50" weightFile = "weights-833-0.03" savedir = os.path.join(os.path.dirname(__file__),versionName) indComp = versionName.find('fact') try: comp = int(versionName[indComp+4:indComp+6]) except: comp = int(versionName[indComp+4:indComp+5]) circle = False DPSsamp = False Bahadir = False uniform = False if versionName.find("GumbelTopK") > -1: gumbelTopK = True DPSsamp = True else: gumbelTopK = False if versionName.find("DPS") > -1: DPSsamp = True # If true, sub-sampling is learned by LASSY. If false, we use a fixed sub-sampling pattern (uniform or random) elif versionName.find("loupe") > -1: Bahadir = True elif versionName.find("uniform") > -1: uniform = True # In case DPSsamp is False, we use a non-trainable (fixed) sampling pattern which is either uniform, circular or random elif versionName.find("lpf") > -1: circle = True # In case DPSsamp is False, we use a non-trainable (fixed) sampling pattern which is either uniform, circular or random #============================================================================= #%% """ ============================================================================= Load testset ============================================================================= """ input_size = (32,32) nr_examples = 1000 test_x = np.load('testSet.npy') test_y = np.load('testSetY.npy') #disp_example = 11 #plt.imshow(test_y[disp_example,:,:,0]) # #%% """ ============================================================================= Parameter definitions ============================================================================= """ input_dim = [input_size[0],input_size[1],2] # Dimensions of the inputs to the network: [fourier bins, IQ components] target_dim = [input_size[0],input_size[1],2] # Dimension of the targets for the network: [time steps] mux_out = np.prod(input_dim[0:2])//comp # Multiplexer output dims: the amount of samples to be sampled from the input """ ============================================================================= Model definition ============================================================================= """ def SSIM(y_true, y_pred): return tf.image.ssim(y_true, y_pred, max_val=1) def PSNR(y_true, y_pred): return tf.image.psnr(y_true, y_pred, max_val=1) loss = 'mean_squared_error' metrics = [SSIM, PSNR,'mean_squared_error'] if not Bahadir: model = myModel.full_model( input_dim, target_dim, comp, mux_out, 2, [], DPSsamp, Bahadir, uniform, circle, 1000, 32, gumbelTopK) ## Print model summary: model.load_weights(os.path.join(savedir,weightFile+".h5")) model.compile(optimizer='adam',loss=loss, metrics=metrics) else: import ThresholdingLOUPE model = ThresholdingLOUPE.LoadModelLOUPE(comp,input_dim,savedir,weightFile) sgd = keras.optimizers.SGD(lr=1e-4, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd,loss=loss, metrics=metrics) model.summary() #%% """ ============================================================================= Inference ============================================================================= """ pred = model.predict(test_x) #%% """ ============================================================================= Evaluate ============================================================================= """ def SSIM(y_true, y_pred): return tf.image.ssim(y_true, y_pred, max_val=10) def PSNR(y_true, y_pred): return tf.image.psnr(y_true, y_pred, max_val=10) loss = 'mean_squared_error' metrics = [SSIM, PSNR,'mean_squared_error'] model.compile('adam',loss,metrics) loss,SSIM,PSNR,MSE = model.evaluate(test_x,test_y) print("MSE across {} examples: {}".format(nr_examples,MSE)) print("PSNR across {} examples: {}".format(nr_examples,PSNR)) print("SSIM across {} examples: {}".format(nr_examples,SSIM)) with open(savedir+"\\results.txt", "w") as text_file: print("MSE across {} examples: {} \n".format(nr_examples,MSE),file=text_file) print("PSNR across {} examples: {} \n".format(nr_examples,PSNR),file=text_file) print("SSIM across {} examples: {}".format(nr_examples,SSIM),file=text_file) #%% """ ============================================================================= Display ============================================================================= """ savefigs = True #%% """ ============================================================================= Display ============================================================================= """ savefigs = True disp_examples = [18, 60] for i in range(len(disp_examples)): disp_example = disp_examples[i] plt.figure() spect =np.sqrt(test_x[disp_example,:,:,0]**2+test_x[disp_example,:,:,1]**2) plt.imshow(20*np.log10(0.001+spect/np.max(spect)), cmap='jet',vmin=-40,vmax=0) plt.axis('off') if savefigs: plt.savefig(savedir+'\\example_{}_input_40dB.png'.format(disp_example),bbox_inches='tight') plt.savefig(savedir+'\\example_{}_input_40dB.svg'.format(disp_example),bbox_inches='tight') plt.pause(.1) plt.figure() plt.imshow(test_y[disp_example,:,:,0], cmap='gray',vmin=0,vmax=np.max(test_y[disp_example])) plt.axis('off') plt.pause(.5) if savefigs: plt.savefig(savedir+'\\example_{}_target.png'.format(disp_example),bbox_inches='tight') plt.savefig(savedir+'\\example_{}_target.svg'.format(disp_example),bbox_inches='tight') plt.pause(.1) plt.figure() plt.imshow(pred[disp_example,:,:,0], cmap='gray',vmin=0,vmax=np.max(test_y[disp_example])) plt.axis('off') if savefigs: plt.savefig(savedir+'\\example_{}_prediction.png'.format(disp_example),bbox_inches='tight') plt.savefig(savedir+'\\example_{}_prediction.svg'.format(disp_example),bbox_inches='tight') plt.pause(.1) #%% #% Display samples n_MC = 1000 if DPSsamp: model_sampling = Model(inputs = model.input, outputs = model.get_layer("AtranA_0").output) patterns = model_sampling.predict_on_batch(tf.zeros((n_MC,32,32,2)))[:,:,:,0] pattern = patterns[0] model_distribution = Model(inputs = model.input, outputs = model.get_layer("CreateSampleMatrix").output) logits = model_distribution.predict_on_batch(tf.zeros((1,32,32,2))) unnormDist = np.exp(logits) distribution = np.transpose(np.transpose(unnormDist) / np.sum(unnormDist,1)) distribution = np.reshape(np.sum(distribution,axis=0),(input_dim[0],input_dim[1])) elif Bahadir: model_sampling = Model(inputs = model.input, outputs = model.get_layer("HardSampleMask").output) patterns = [] Mask = model_sampling.predict_on_batch(tf.zeros((1,input_dim[0],input_dim[1],input_dim[2]))) #Note order of distribution and pattern in Mask variable is switches due to the fftshift function pattern = Mask[0] renormMask = Mask[1] thresh = np.random.uniform(0.0,1.0,(input_dim[0],input_dim[1])) sampleMask = ThresholdingLOUPE.sigmoid(12 * (renormMask-thresh)) plt.figure() plt.imshow(sampleMask, cmap="hot_r") plt.xticks([]) plt.yticks([]) plt.savefig(os.path.join(savedir,'NonHardSamplesTraining.svg'), bbox_inches="tight") #plt.colorbar(shrink=0.5) plt.pause(.1) def MCsamplingLOUPE(renormMask): MCsamples = [] #We explicitly have to run the thresholding code here again, as otherwise we do not use different uniform noise every MC sampling for i in range(n_MC): thresh = np.random.uniform(0.0,1.0,(input_dim[0],input_dim[1])) sampleMask = ThresholdingLOUPE.sigmoid(12 * (renormMask-thresh)) # Make sure to only select M hard samples sampleCoord = ThresholdingLOUPE.largest_indices(sampleMask,mux_out) hardSamples = np.zeros_like(sampleMask) hardSamples[sampleCoord[0],sampleCoord[1]] = 1 MCsamples.append(hardSamples) return np.stack(MCsamples,axis=0) patterns = MCsamplingLOUPE(renormMask) else: model_sampling = Model(inputs = model.input, outputs = model.get_layer("CreateSampleMatrix").output) pattern = np.expand_dims(model_sampling.predict_on_batch(tf.zeros((n_MC,32,32,2))),0)[0,:,:,0] #%% # Plot one realization print('One realization') plt.imshow(pattern,cmap='gray_r', vmin=0, vmax=1) plt.axis('off') if savefigs: plt.savefig(savedir+'\hardSamples.png',bbox_inches='tight') plt.savefig(savedir+'\hardSamples.svg',bbox_inches='tight') plt.pause(.1) # Plot MC plots if DPSsamp or Bahadir: print(str(n_MC)+'times MC sampling') plt.figure() plt.imshow(-np.mean(patterns,0),cmap='gray') plt.axis('off') if savefigs: plt.savefig(savedir+'\hardSamples_MCdist.svg',bbox_inches='tight') plt.pause(.1) # Plot trained distribution if DPSsamp or Bahadir: print('Trained distribution') plt.figure() plt.imshow(distribution,cmap='gray_r') plt.axis('off') if savefigs: plt.savefig(savedir+'\hardSamples_dist.svg',bbox_inches='tight') plt.pause(.1)
[ "numpy.load", "numpy.sum", "tensorflow.image.ssim", "tensorflow.image.psnr", "matplotlib.pyplot.figure", "numpy.mean", "numpy.exp", "os.path.join", "numpy.prod", "numpy.zeros_like", "keras.optimizers.SGD", "matplotlib.pyplot.imshow", "os.path.dirname", "matplotlib.pyplot.yticks", "numpy.transpose", "ThresholdingLOUPE.largest_indices", "numpy.max", "ThresholdingLOUPE.sigmoid", "matplotlib.pyplot.pause", "matplotlib.pyplot.xticks", "numpy.stack", "ThresholdingLOUPE.LoadModelLOUPE", "numpy.random.uniform", "myModel.full_model", "matplotlib.pyplot.axis", "tensorflow.zeros", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((2587, 2609), 'numpy.load', 'np.load', (['"""testSet.npy"""'], {}), "('testSet.npy')\n", (2594, 2609), True, 'import numpy as np\n'), ((2619, 2642), 'numpy.load', 'np.load', (['"""testSetY.npy"""'], {}), "('testSetY.npy')\n", (2626, 2642), True, 'import numpy as np\n'), ((10057, 10107), 'matplotlib.pyplot.imshow', 'plt.imshow', (['pattern'], {'cmap': '"""gray_r"""', 'vmin': '(0)', 'vmax': '(1)'}), "(pattern, cmap='gray_r', vmin=0, vmax=1)\n", (10067, 10107), True, 'from matplotlib import pyplot as plt\n'), ((10107, 10122), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (10115, 10122), True, 'from matplotlib import pyplot as plt\n'), ((1294, 1319), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1309, 1319), False, 'import sys, os.path as path, os\n'), ((3152, 3175), 'numpy.prod', 'np.prod', (['input_dim[0:2]'], {}), '(input_dim[0:2])\n', (3159, 3175), True, 'import numpy as np\n'), ((3489, 3529), 'tensorflow.image.ssim', 'tf.image.ssim', (['y_true', 'y_pred'], {'max_val': '(1)'}), '(y_true, y_pred, max_val=1)\n', (3502, 3529), True, 'import tensorflow as tf\n'), ((3568, 3608), 'tensorflow.image.psnr', 'tf.image.psnr', (['y_true', 'y_pred'], {'max_val': '(1)'}), '(y_true, y_pred, max_val=1)\n', (3581, 3608), True, 'import tensorflow as tf\n'), ((3712, 3836), 'myModel.full_model', 'myModel.full_model', (['input_dim', 'target_dim', 'comp', 'mux_out', '(2)', '[]', 'DPSsamp', 'Bahadir', 'uniform', 'circle', '(1000)', '(32)', 'gumbelTopK'], {}), '(input_dim, target_dim, comp, mux_out, 2, [], DPSsamp,\n Bahadir, uniform, circle, 1000, 32, gumbelTopK)\n', (3730, 3836), False, 'import myModel\n'), ((4364, 4434), 'ThresholdingLOUPE.LoadModelLOUPE', 'ThresholdingLOUPE.LoadModelLOUPE', (['comp', 'input_dim', 'savedir', 'weightFile'], {}), '(comp, input_dim, savedir, weightFile)\n', (4396, 4434), False, 'import ThresholdingLOUPE\n'), ((4447, 4520), 'keras.optimizers.SGD', 'keras.optimizers.SGD', ([], {'lr': '(0.0001)', 'decay': '(1e-06)', 'momentum': '(0.9)', 'nesterov': '(True)'}), '(lr=0.0001, decay=1e-06, momentum=0.9, nesterov=True)\n', (4467, 4520), False, 'import keras\n'), ((5029, 5070), 'tensorflow.image.ssim', 'tf.image.ssim', (['y_true', 'y_pred'], {'max_val': '(10)'}), '(y_true, y_pred, max_val=10)\n', (5042, 5070), True, 'import tensorflow as tf\n'), ((5109, 5150), 'tensorflow.image.psnr', 'tf.image.psnr', (['y_true', 'y_pred'], {'max_val': '(10)'}), '(y_true, y_pred, max_val=10)\n', (5122, 5150), True, 'import tensorflow as tf\n'), ((6297, 6309), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6307, 6309), True, 'from matplotlib import pyplot as plt\n'), ((6321, 6406), 'numpy.sqrt', 'np.sqrt', (['(test_x[disp_example, :, :, 0] ** 2 + test_x[disp_example, :, :, 1] ** 2)'], {}), '(test_x[disp_example, :, :, 0] ** 2 + test_x[disp_example, :, :, 1] ** 2\n )\n', (6328, 6406), True, 'import numpy as np\n'), ((6477, 6492), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (6485, 6492), True, 'from matplotlib import pyplot as plt\n'), ((6719, 6733), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.1)'], {}), '(0.1)\n', (6728, 6733), True, 'from matplotlib import pyplot as plt\n'), ((6747, 6759), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6757, 6759), True, 'from matplotlib import pyplot as plt\n'), ((6861, 6876), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (6869, 6876), True, 'from matplotlib import pyplot as plt\n'), ((6881, 6895), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.5)'], {}), '(0.5)\n', (6890, 6895), True, 'from matplotlib import pyplot as plt\n'), ((7113, 7127), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.1)'], {}), '(0.1)\n', (7122, 7127), True, 'from matplotlib import pyplot as plt\n'), ((7136, 7148), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7146, 7148), True, 'from matplotlib import pyplot as plt\n'), ((7248, 7263), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (7256, 7263), True, 'from matplotlib import pyplot as plt\n'), ((7490, 7504), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.1)'], {}), '(0.1)\n', (7499, 7504), True, 'from matplotlib import pyplot as plt\n'), ((7966, 7980), 'numpy.exp', 'np.exp', (['logits'], {}), '(logits)\n', (7972, 7980), True, 'import numpy as np\n'), ((10140, 10203), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(savedir + '\\\\hardSamples.png')"], {'bbox_inches': '"""tight"""'}), "(savedir + '\\\\hardSamples.png', bbox_inches='tight')\n", (10151, 10203), True, 'from matplotlib import pyplot as plt\n'), ((10204, 10267), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(savedir + '\\\\hardSamples.svg')"], {'bbox_inches': '"""tight"""'}), "(savedir + '\\\\hardSamples.svg', bbox_inches='tight')\n", (10215, 10267), True, 'from matplotlib import pyplot as plt\n'), ((10268, 10282), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.1)'], {}), '(0.1)\n', (10277, 10282), True, 'from matplotlib import pyplot as plt\n'), ((10370, 10382), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (10380, 10382), True, 'from matplotlib import pyplot as plt\n'), ((10436, 10451), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (10444, 10451), True, 'from matplotlib import pyplot as plt\n'), ((10661, 10673), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (10671, 10673), True, 'from matplotlib import pyplot as plt\n'), ((10678, 10717), 'matplotlib.pyplot.imshow', 'plt.imshow', (['distribution'], {'cmap': '"""gray_r"""'}), "(distribution, cmap='gray_r')\n", (10688, 10717), True, 'from matplotlib import pyplot as plt\n'), ((10721, 10736), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (10729, 10736), True, 'from matplotlib import pyplot as plt\n'), ((4212, 4253), 'os.path.join', 'os.path.join', (['savedir', "(weightFile + '.h5')"], {}), "(savedir, weightFile + '.h5')\n", (4224, 4253), False, 'import sys, os.path as path, os\n'), ((7921, 7945), 'tensorflow.zeros', 'tf.zeros', (['(1, 32, 32, 2)'], {}), '((1, 32, 32, 2))\n', (7929, 7945), True, 'import tensorflow as tf\n'), ((8092, 8120), 'numpy.sum', 'np.sum', (['distribution'], {'axis': '(0)'}), '(distribution, axis=0)\n', (8098, 8120), True, 'import numpy as np\n'), ((8571, 8628), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(1.0)', '(input_dim[0], input_dim[1])'], {}), '(0.0, 1.0, (input_dim[0], input_dim[1]))\n', (8588, 8628), True, 'import numpy as np\n'), ((8644, 8697), 'ThresholdingLOUPE.sigmoid', 'ThresholdingLOUPE.sigmoid', (['(12 * (renormMask - thresh))'], {}), '(12 * (renormMask - thresh))\n', (8669, 8697), False, 'import ThresholdingLOUPE\n'), ((8707, 8719), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8717, 8719), True, 'from matplotlib import pyplot as plt\n'), ((8725, 8761), 'matplotlib.pyplot.imshow', 'plt.imshow', (['sampleMask'], {'cmap': '"""hot_r"""'}), "(sampleMask, cmap='hot_r')\n", (8735, 8761), True, 'from matplotlib import pyplot as plt\n'), ((8767, 8781), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (8777, 8781), True, 'from matplotlib import pyplot as plt\n'), ((8787, 8801), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (8797, 8801), True, 'from matplotlib import pyplot as plt\n'), ((8928, 8942), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.1)'], {}), '(0.1)\n', (8937, 8942), True, 'from matplotlib import pyplot as plt\n'), ((10482, 10552), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(savedir + '\\\\hardSamples_MCdist.svg')"], {'bbox_inches': '"""tight"""'}), "(savedir + '\\\\hardSamples_MCdist.svg', bbox_inches='tight')\n", (10493, 10552), True, 'from matplotlib import pyplot as plt\n'), ((10557, 10571), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.1)'], {}), '(0.1)\n', (10566, 10571), True, 'from matplotlib import pyplot as plt\n'), ((10762, 10830), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(savedir + '\\\\hardSamples_dist.svg')"], {'bbox_inches': '"""tight"""'}), "(savedir + '\\\\hardSamples_dist.svg', bbox_inches='tight')\n", (10773, 10830), True, 'from matplotlib import pyplot as plt\n'), ((10835, 10849), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.1)'], {}), '(0.1)\n', (10844, 10849), True, 'from matplotlib import pyplot as plt\n'), ((6827, 6855), 'numpy.max', 'np.max', (['test_y[disp_example]'], {}), '(test_y[disp_example])\n', (6833, 6855), True, 'import numpy as np\n'), ((7214, 7242), 'numpy.max', 'np.max', (['test_y[disp_example]'], {}), '(test_y[disp_example])\n', (7220, 7242), True, 'import numpy as np\n'), ((7699, 7726), 'tensorflow.zeros', 'tf.zeros', (['(n_MC, 32, 32, 2)'], {}), '((n_MC, 32, 32, 2))\n', (7707, 7726), True, 'import tensorflow as tf\n'), ((8013, 8037), 'numpy.transpose', 'np.transpose', (['unnormDist'], {}), '(unnormDist)\n', (8025, 8037), True, 'import numpy as np\n'), ((8040, 8061), 'numpy.sum', 'np.sum', (['unnormDist', '(1)'], {}), '(unnormDist, 1)\n', (8046, 8061), True, 'import numpy as np\n'), ((8345, 8400), 'tensorflow.zeros', 'tf.zeros', (['(1, input_dim[0], input_dim[1], input_dim[2])'], {}), '((1, input_dim[0], input_dim[1], input_dim[2]))\n', (8353, 8400), True, 'import tensorflow as tf\n'), ((8819, 8870), 'os.path.join', 'os.path.join', (['savedir', '"""NonHardSamplesTraining.svg"""'], {}), "(savedir, 'NonHardSamplesTraining.svg')\n", (8831, 8870), False, 'import sys, os.path as path, os\n'), ((9687, 9714), 'numpy.stack', 'np.stack', (['MCsamples'], {'axis': '(0)'}), '(MCsamples, axis=0)\n', (9695, 9714), True, 'import numpy as np\n'), ((10399, 10419), 'numpy.mean', 'np.mean', (['patterns', '(0)'], {}), '(patterns, 0)\n', (10406, 10419), True, 'import numpy as np\n'), ((9225, 9282), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(1.0)', '(input_dim[0], input_dim[1])'], {}), '(0.0, 1.0, (input_dim[0], input_dim[1]))\n', (9242, 9282), True, 'import numpy as np\n'), ((9305, 9358), 'ThresholdingLOUPE.sigmoid', 'ThresholdingLOUPE.sigmoid', (['(12 * (renormMask - thresh))'], {}), '(12 * (renormMask - thresh))\n', (9330, 9358), False, 'import ThresholdingLOUPE\n'), ((9450, 9504), 'ThresholdingLOUPE.largest_indices', 'ThresholdingLOUPE.largest_indices', (['sampleMask', 'mux_out'], {}), '(sampleMask, mux_out)\n', (9483, 9504), False, 'import ThresholdingLOUPE\n'), ((9530, 9555), 'numpy.zeros_like', 'np.zeros_like', (['sampleMask'], {}), '(sampleMask)\n', (9543, 9555), True, 'import numpy as np\n'), ((9962, 9989), 'tensorflow.zeros', 'tf.zeros', (['(n_MC, 32, 32, 2)'], {}), '((n_MC, 32, 32, 2))\n', (9970, 9989), True, 'import tensorflow as tf\n'), ((6429, 6442), 'numpy.max', 'np.max', (['spect'], {}), '(spect)\n', (6435, 6442), True, 'import numpy as np\n')]
#!/usr/bin/env python # # SPECCLIENT -- Client methods for the Spectroscopic Data Service # __authors__ = '<NAME> <<EMAIL>>' __version__ = 'v1.2.0' ''' Client methods for the Spectroscopic Data Service. Spectro Client Interface ------------------------ client = getClient (context='<context>', profile='<profile>') status = isAlive (svc_url=DEF_SERVICE_URL, timeout=2) set_svc_url (svc_url) svc_url = get_svc_url () set_context (context) ctx = get_context () ctxs = list_contexts (context, fmt='text') ctxs = list_contexts (context=None, fmt='text') set_profile (profile) prof = get_profile () profs = list_profiles (profile, fmt='text') profs = list_profiles (profile=None, fmt='text') catalogs = catalogs (context='default', profile='default') QUERY INTERFACE: id_list = query (<region> | <coord, size> | <ra, dec, size>, constraint=<sql_where_clause>, context=None, profile=None, **kw) ACCESS INTERFACE: list = getSpec (id_list, fmt='numpy', out=None, align=False, cutout=None, context=None, profile=None, **kw) PLOT INTERFACE: plot (spec, context=None, profile=None, out=None, **kw) status = prospect (spec, context=context, profile=profile, **kw) image = preview (id, context=context, profile=profile, **kw) image = plotGrid (id_list, nx, ny, page=<N>, context=context, profile=profile, **kw) image = stackedImage (id_list, fmt='png|numpy', align=False, yflip=False, context=context, profile=profile, **kw) UTILITY METHODS: df = to_pandas (npy_data) spec1d = to_Spectrum1D (npy_data) tab = to_Table (npy_data) Import via .. code-block:: python from dl import specClient ''' import os import sys import socket import json import numpy as np import pandas as pd from io import BytesIO from PIL import Image # Turn off some annoying astropy warnings import warnings from astropy.utils.exceptions import AstropyWarning warnings.simplefilter('ignore', AstropyWarning) import logging logging.disable(logging.WARNING) logging.getLogger("specutils").setLevel(logging.CRITICAL) from specutils import Spectrum1D from specutils import SpectrumCollection from astropy import units as u #from astropy.nddata import StdDevUncertainty from astropy.nddata import InverseVariance from astropy.table import Table from matplotlib import pyplot as plt # visualization libs try: import pycurl_requests as requests # faster 'requests' lib except ImportError: import requests import pycurl # low-level interface from urllib.parse import quote_plus # URL encoding # Data Lab imports. #from dl import queryClient from dl import storeClient from dl.Util import def_token from dl.Util import multimethod from dl.helpers.utils import convert # Python version check. is_py3 = sys.version_info.major == 3 # The URL of the service to access. This may be changed by passing a new # URL into the set_svc_url() method before beginning. DEF_SERVICE_ROOT = "https://datalab.noao.edu" # Allow the service URL for dev/test systems to override the default. THIS_HOST = socket.gethostname() if THIS_HOST[:5] == 'dldev': DEF_SERVICE_ROOT = "http://dldev.datalab.noao.edu" elif THIS_HOST[:6] == 'dltest': DEF_SERVICE_ROOT = "http://dltest.datalab.noao.edu" elif THIS_HOST[:5] == 'gp12': DEF_SERVICE_ROOT = "http://gp06.datalab.noao.edu:6998" # Allow the service URL for dev/test systems to override the default. sock = socket.socket(type=socket.SOCK_DGRAM) # host IP address sock.connect(('8.8.8.8', 1)) # Example IP address, see RFC 5737 THIS_IP, _ = sock.getsockname() DEF_SERVICE_URL = DEF_SERVICE_ROOT + "/spec" SM_SERVICE_URL = DEF_SERVICE_ROOT + "/storage" QM_SERVICE_URL = DEF_SERVICE_ROOT + "/query" # Use cURL for requests when possible. USE_CURL = True # The requested service "profile". A profile refers to the specific # machines and services used by the service. DEF_SERVICE_PROFILE = "default" # The requested dataset "context". A context refers to the specific dataset # being served. This determines what is allowed within certain methods. DEF_SERVICE_CONTEXT = "default" # Use a /tmp/AM_DEBUG file as a way to turn on debugging in the client code. DEBUG = os.path.isfile('/tmp/SPEC_DEBUG') VERBOSE = os.path.isfile('/tmp/SPEC_VERBOSE') # ###################################################################### # # Spectroscopic Data Client Interface # # This API provides convenience methods that allow an application to # import the Client class without having to explicitly instantiate a # class object. The parameter descriptions and example usage is given # in the comments for the class methods. Module methods have their # docstrings patched below. # # ###################################################################### # ################################### # Spectroscopic Data error class # ################################### class dlSpecError(Exception): '''A throwable error class. ''' def __init__(self, message): self.message = message def __str__(self): return self.message # ################################### # Py2/Py3 Compatability Utilities # ################################### def spcToString(s): '''spcToString -- Force a return value to be type 'string' for all Python versions. ''' if is_py3: if isinstance(s, bytes): strval = str(s.decode()) elif isinstance(s, str): strval = s else: if isinstance(s, bytes) or isinstance(s, unicode): strval = str(s) else: strval = s return strval # ----------------------------- # Utility Methods # ----------------------------- # -------------------------------------------------------------------- # SET_SVC_URL -- Set the ServiceURL to call. # def set_svc_url(svc_url): return sp_client.set_svc_url(svc_url.strip('/')) # -------------------------------------------------------------------- # GET_SVC_URL -- Get the ServiceURL to call. # def get_svc_url(): return sp_client.get_svc_url() # -------------------------------------------------------------------- # SET_PROFILE -- Set the service profile to use. # def set_profile(profile): return sp_client.set_profile(profile) # -------------------------------------------------------------------- # GET_PROFILE -- Get the service profile to use. # def get_profile(): return sp_client.get_profile() # -------------------------------------------------------------------- # SET_CONTEXT -- Set the dataset context to use. # def set_context(context): return sp_client.set_context(context) # -------------------------------------------------------------------- # GET_CONTEXT -- Get the dataset context to use. # def get_context(): return sp_client.get_context() # -------------------------------------------------------------------- # ISALIVE -- Ping the service to see if it responds. # def isAlive(svc_url=DEF_SERVICE_URL, timeout=5): return sp_client.isAlive(svc_url=svc_url, timeout=timeout) # -------------------------------------------------------------------- # LIST_PROFILES -- List the available service profiles. # @multimethod('spc', 1, False) def list_profiles(profile, fmt='text'): return sp_client._list_profiles(profile=profile, fmt=fmt) @multimethod('spc', 0, False) def list_profiles(profile=None, fmt='text'): '''Retrieve the profiles supported by the spectro data service. Usage: list_profiles ([profile], fmt='text') MultiMethod Usage: ------------------ specClient.list_profiles (profile) specClient.list_profiles () Parameters ---------- profile: str A specific profile configuration to list. If None, a list of available profiles is returned. format: str Result format: One of 'text' or 'json' Returns ------- profiles: list/dict A list of the names of the supported profiles or a dictionary of the specific profile Example ------- .. code-block:: python profiles = specClient.list_profiles(profile) profiles = specClient.list_profiles() ''' return sp_client._list_profiles(profile=profile, fmt=fmt) # -------------------------------------------------------------------- # LIST_CONTEXTS -- List the available dataset contexts. # @multimethod('spc',1,False) def list_contexts(context, fmt='text'): return sp_client._list_contexts(context=context, fmt=fmt) @multimethod('spc',0,False) def list_contexts(context=None, fmt='text'): '''Retrieve the contexts supported by the spectro data service. Usage: list_contexts ([context], fmt='text') MultiMethod Usage: ------------------ specClient.list_contexts (context) specClient.list_contexts () Parameters ---------- contexts: str A specific contexts configuration to list. If None, a list of available contexts is returned. format: str Result format: One of 'text' or 'json' Returns ------- contexts: list/dict A list of the names of the supported contexts or a dictionary of the specific contexts Example ------- .. code-block:: python contexts = specClient.list_contexts(context) contexts = specClient.list_contexts() ''' return sp_client._list_contexts(context=context, fmt=fmt) # -------------------------------------------------------------------- # CATALOGS -- List available catalogs for a given dataset context # def catalogs(context='default', profile='default', fmt='text'): '''List available catalogs for a given dataset context ''' return sp_client.catalogs(context=context, profile=profile, fmt=fmt) # -------------------------------------------------------------------- # TO_SPECTRUM1D -- Utility method to convert a Numpy array to Spectrum1D # def to_Spectrum1D(npy_data): '''Utility method to convert a Numpy array to Spectrum1D ''' return sp_client.to_Spectrum1D(npy_data) # -------------------------------------------------------------------- # TO_PANDAS -- Utility method to convert a Numpy array to a Pandas DataFrame # def to_pandas(npy_data): '''Utility method to convert a Numpy array to a Pandas DataFrame ''' return sp_client.to_pandas(npy_data) # -------------------------------------------------------------------- # TO_TABLE -- Utility method to convert a Numpy array to an Astropy Table # def to_Table(npy_data): '''Utility method to convert a Numpy array to an Astropy Table object. ''' return sp_client.to_Table(npy_data) ####################################### # Spectroscopic Data Client Methods ####################################### # -------------------------------------------------------------------- # QUERY -- Query for spectra by position. # @multimethod('spc',3,False) def query(ra, dec, size, constraint=None, out=None, context=None, profile=None, **kw): return sp_client._query(ra=ra, dec=dec, size=size, pos=None, region=None, constraint=constraint, out=out, context=context, profile=profile, **kw) @multimethod('spc',2,False) def query(pos, size, constraint=None, out=None, context=None, profile=None, **kw): return sp_client._query(ra=None, dec=None, size=size, pos=pos, region=None, constraint=constraint, out=out, context=context, profile=profile, **kw) @multimethod('spc',1,False) def query(region, constraint=None, out=None, context=None, profile=None, **kw): return sp_client._query(ra=None, dec=None, size=None, pos=None, region=region, constraint=constraint, out=out, context=context, profile=profile, **kw) @multimethod('spc',0,False) def query(constraint=None, out=None, context=None, profile=None, **kw): '''Query for a list of spectrum IDs that can then be retrieved from the service. Usage: id_list = query(ra, dec, size, constraint=None, out=None, context=None, profile=None, **kw) id_list = query(pos, size, constraint=None, out=None, context=None, profile=None, **kw) id_list = query(region, constraint=None, out=None, context=None, profile=None, **kw) id_list = query(constraint=None, out=None, context=None, profile=None, **kw) Parameters ---------- ra: float RA search center specified in degrees. dec: float Dec of search center specified in degrees. size: float Size of search center specified in degrees. pos: Astropy Coord object Coordinate of search center specified as an Astropy Coord object. region: float Array of polygon vertices (in degrees) defining a search region. constraint: str A valid SQL syntax that can be used as a WHERE constraint in the search query. out: str Output filename to create. If None or an empty string the query results are returned directly to the client. Otherwise, results are writeen to the named file with one identifier per line. A Data Lab 'vos://' prefix will save results to the named virtual storage file. context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: For context='sdss_dr16' | 'default': fields: specobjid # or 'bestobjid', etc tuple # a plate/mjd/fiber tuple Service will always return array of 'specobjid' value, the p/m/f tuple is extracted from the bitmask value by the client. catalog: <schema>.<table> # alternative catalog to query e.g. a # VAC from earlier DR (must support an # ra/dec search and return a specobjid- # like value) For all contexts: verbose = False Print verbose messages during retrieval debug = False Print debug messages during retrieval Returns ------- result: array An array of spectrum IDs appropriate for the dataset context. Example ------- 1) Query by position: .. code-block:: python id_list = spec.query (0.125, 12.123, 0.1) ''' return sp_client._query(ra=None, dec=None, size=None, pos=None, region=None, constraint=constraint, out=out, context=context, profile=profile, **kw) # -------------------------------------------------------------------- # GETSPEC -- Retrieve spectra for a list of objects. # def getSpec(id_list, fmt='numpy', out=None, align=False, cutout=None, context=None, profile=None, **kw): '''Get spectra for a list of object IDs. Usage: getSpec(id_list, fmt='numpy', out=None, align=False, cutout=None, context=None, profile=None, **kw) Parameters ---------- id_list: list object List of object identifiers. fmt: str Return format of spectra out: Output file or return to caller if None align: Align spectra to common wavelength grid with zero-padding cutout: Wavelength cutout range (as "<start>-<end>") context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: values = None Spectrum vectors to return. token = None Data Lab auth token. id_col = None Name of ID column in input table. verbose = False Print verbose messages during retrieval debug = False Print debug messages during retrieval Returns ------- result: object or array of objects or 'OK' string Example ------- 1) Retrieve spectra individually: .. code-block:: python id_list = spec.query (0.125, 12.123, 0.1) for id in id_list: spec = spec.getSpec (id) .... do something 2) Retrieve spectra in bulk: .. code-block:: python spec = spec.getSpec (id_list, fmt='numpy') .... 'spec' is an array of NumPy objects that may be different sizes ''' return sp_client.getSpec(id_list=id_list, fmt=fmt, out=out, align=align, cutout=cutout, context=context, profile=profile, **kw) # -------------------------------------------------------------------- # PLOT -- Utility to batch plot a single spectrum, display plot directly. # def plot(spec, context=None, profile=None, out=None, **kw): '''Utility to batch plot a single spectrum. Usage: spec.plot(id, context=None, profile=None, **kw) Parameters ---------- spec: object ID or data array Spectrum to be plotted. If 'spec' is a numpy array or a Spectrum1D object the data are plotted directly, otherwise the value is assumed to be an object ID that will be retrieved from the service. out: str Output filename. If specified, plot saved as PNG. context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: rest_frame - Whether or not to plot the spectra in the rest-frame (def: True) z - Redshift value xlim - Set the xrange of the plot ylim - Set the yrange of the plot values - A comma-delimited string of which values to plot, a combination of 'flux,model,sky,ivar' mark_lines - Which lines to mark. No lines marked if None or an empty string, otherwise one of 'em|abs|all|both' grid - Plot grid lines (def: True) dark - Dark-mode plot colors (def: True) em_lines - List of emission lines to plot. If not given, all the lines in the default list will be plotted. abs_lines - Lines of absorption lines to plot. If not given, all the lines in the default list will be plotted. spec_args - Plotting kwargs for the spectrum model_args - Plotting kwargs for the model ivar_args - Plotting kwargs for the ivar sky_args - Plotting kwargs for the sky Returns ------- Nothing Example ------- 1) Plot a single spectrum, save to a virtual storage file .. code-block:: python spec.plot (specID, context='sdss_dr16', out='vos://spec.png') ''' return sp_client.plot(spec, context=context, profile=profile, out=None, **kw) # -------------------------------------------------------------------- # PROSPECT -- Utility wrapper to launch the interactive PROSPECT tool. # def prospect(spec, context=None, profile=None, **kw): '''Utility wrapper to launch the interactive PROSPECT tool. Usage: stat = prospect(spec, context=None, profile=None, **kw) Parameters ---------- spec: object ID or data array Spectrum to be plotted. If 'spec' is a numpy array or a Spectrum1D object the data are plotted directly, otherwise the value is assumed to be an object ID that will be retrieved from the service. context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: TBD Returns ------- result: str Status 'OK' string or error message. Example ------- 1) Plot .... .. code-block:: python stat = spec.prospect (specID) ''' pass # -------------------------------------------------------------------- # PREVIEW -- Get a preview plot of a spectrum # def preview(spec, context=None, profile=None, **kw): '''Get a preview plot of a spectrum Usage: spec.preview(spec, context=None, profile=None, **kw): Parameters ---------- id_list: list object List of object identifiers. context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: N/A Returns ------- image: A PNG image object Example ------- 1) Display a preview plot a given spectrum: .. code-block:: python from IPython.display import display, Image display(Image(spec.preview(id), format='png', width=400, height=100, unconfined=True)) ''' pass return sp_client.preview(spec, context=context, profile=profile, **kw) # -------------------------------------------------------------------- # PLOTGRID -- Get a grid of preview plots of a spectrum list. # def plotGrid(id_list, nx, ny, page=0, context=None, profile=None, **kw): '''Get a grid of preview plots of a spectrum list. Usage: image = plotGrid(id_list, nx, ny, page=0, context=None, profile=None, **kw): Parameters ---------- id_list: list object List of object identifiers. nx: int Number of plots in the X dimension ny: int Number of plots in the Y dimension page: int Dataset context. context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: verbose = False Print verbose messages during retrieval debug = False Print debug messages during retrieval Returns ------- image: A PNG image object Example ------- 1) Display a 5x5 grid of preview plots for a list: .. code-block:: python npages = np.round((len(id_list) / 25) + (25 / len(id_list)) for pg in range(npages): data = spec.getGridPlot(id_list, 5, 5, page=pg) display(Image(data, format='png', width=400, height=100, unconfined=True)) ''' return sp_client.plotGrid(id_list, nx, ny, page=page, context=context, profile=profile, **kw) # -------------------------------------------------------------------- # STACKEDIMAGE -- Get a stacked image of a list of spectra. # def stackedImage(id_list, align=False, yflip=False, context=None, profile=None, **kw): '''Get ... Usage: Parameters ---------- id_list: list object List of spectrum identifiers. context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: verbose = False Print verbose messages during retrieval debug = False Print debug messages during retrieval Returns ------- result: .... Example ------- 1) Query .... .. code-block:: python id_list = spec.query (0.125, 12.123, 0.1) ''' pass return sp_client.stackedImage(id_list, align=align, yflip=yflip, context=context, profile=profile, **kw) ####################################### # Spectroscopic Data Client Class ####################################### class specClient(object): ''' SPECCLIENT -- Client-side methods to access the Data Lab Spectroscopic Data Service. ''' def __init__(self, context='default', profile='default'): '''Initialize the specClient class. ''' self.svc_url = DEF_SERVICE_URL # service URL self.qm_svc_url = QM_SERVICE_URL # Query Manager service URL self.sm_svc_url = SM_SERVICE_URL # Storage Manager service URL self.auth_token = def_token(None) # default auth token (not used) self.svc_profile = profile # service profile self.svc_context = context # dataset context self.hostip = THIS_IP self.hostname = THIS_HOST self.debug = DEBUG # interface debug flag self.verbose = VERBOSE # interface verbose flag # Get the server-side config for the context. Note this must also # be updated whenever we do a set_svc_url() or set_context(). self.context = self._list_contexts(context) # Standard Data Lab service methods. # def set_svc_url(self, svc_url): '''Set the URL of the Spectroscopic Data Service to be used. Parameters ---------- svc_url: str Spectroscopic Data service base URL to call. Returns ------- Nothing Example ------- .. code-block:: python from dl import specClient specClient.set_svc_url("http://localhost:7001/") ''' self.svc_url = spcToString(svc_url.strip('/')) self.context = self._list_contexts(context=self.svc_context) def get_svc_url(self): '''Return the currently-used Spectroscopic Data Service URL. Parameters ---------- None Returns ------- service_url: str The currently-used Spectroscopic Data Service URL. Example ------- .. code-block:: python from dl import specClient service_url = specClient.get_svc_url() ''' return spcToString(self.svc_url) def set_profile(self, profile): '''Set the requested service profile. Parameters ---------- profile: str Requested service profile string. Returns ------- Nothing Example ------- .. code-block:: python from dl import specClient profile = specClient.client.set_profile("dev") ''' url = self.svc_url + '/validate?what=profile&value=%s' % profile if spcToString(self.curl_get(url)) == 'OK': self.svc_profile = spcToString(profile) return 'OK' else: raise Exception('Invalid profile "%s"' % profile) return 'OK' def get_profile(self): '''Get the requested service profile. Parameters ---------- None Returns ------- profile: str The currently requested service profile. Example ------- .. code-block:: python from dl import specClient profile = specClient.client.get_profile() ''' return spcToString(self.svc_profile) def set_context(self, context): '''Set the requested dataset context. Parameters ---------- context: str Requested dataset context string. Returns ------- Nothing Example ------- .. code-block:: python from dl import specClient context = specClient.client.set_context("dev") ''' url = self.svc_url + '/validate?what=context&value=%s' % context if spcToString(self.curl_get(url)) == 'OK': self.svc_context = spcToString(context) self.context = self._list_contexts(context=self.svc_context) return 'OK' else: raise Exception('Invalid context "%s"' % context) def get_context(self): '''Get the requested dataset context. Parameters ---------- None Returns ------- context: str The currently requested dataset context. Example ------- .. code-block:: python from dl import specClient context = specClient.client.get_context() ''' return spcToString(self.svc_context) def isAlive(self, svc_url=DEF_SERVICE_URL): '''Check whether the service at the given URL is alive and responding. This is a simple call to the root service URL or ping() method. Parameters ---------- service_url: str The Query Service URL to ping. Returns ------- result: bool True if service responds properly, False otherwise Example ------- .. code-block:: python from dl import specClient if specClient.isAlive(): print("Spec Server is alive") ''' url = svc_url try: r = requests.get(url, timeout=2) resp = r.text if r.status_code != 200: return False elif resp is not None and r.text.lower()[:11] != "hello world": return False except Exception: return False return True ################################################### # UTILITY METHODS ################################################### @multimethod('_spc',1,True) def list_profiles(self, profile, fmt='text'): '''Usage: specClient.client.list_profiles (profile, ...) ''' return self._list_profiles(profile=profile, fmt=fmt) @multimethod('_spc',0,True) def list_profiles(self, profile=None, fmt='text'): '''Usage: specClient.client.list_profiles (...) ''' return self._list_profiles(profile=profile, fmt=fmt) def _list_profiles(self, profile=None, fmt='text'): '''Implementation of the list_profiles() method. ''' headers = self.getHeaders(def_token(None)) svc_url = '%s/profiles?' % self.svc_url svc_url += "profile=%s&" % profile svc_url += "format=%s" % fmt r = requests.get(svc_url, headers=headers) profiles = spcToString(r.content) if '{' in profiles: profiles = json.loads(profiles) return profiles @multimethod('_spc',1,True) def list_contexts(self, context, fmt='text'): '''Usage: specClient.client.list_contexts (context, ...) ''' return self._list_contexts(context=context, fmt=fmt) @multimethod('_spc',0,True) def list_contexts(self, context=None, fmt='text'): '''Usage: specClient.client.list_contexts (...) ''' return self._list_contexts(context=context, fmt=fmt) def _list_contexts(self, context=None, fmt='text'): '''Implementation of the list_contexts() method. ''' headers = self.getHeaders(def_token(None)) svc_url = '%s/contexts?' % self.svc_url svc_url += "context=%s&" % context svc_url += "format=%s" % fmt r = requests.get(svc_url, headers=headers) contexts = spcToString(r.content) if '{' in contexts: contexts = json.loads(contexts) return contexts def catalogs(self, context='default', profile='default', fmt='text'): '''Usage: specClient.client.catalogs (...) ''' headers = self.getHeaders(None) svc_url = '%s/catalogs?' % self.svc_url svc_url += "context=%s&" % context svc_url += "profile=%s&" % profile svc_url += "format=%s" % fmt r = requests.get(svc_url, headers=headers) catalogs = spcToString(r.text) if '{' in catalogs: catalogs = json.loads(catalogs) return spcToString(catalogs) # -------------------------------------------------------------------- # TO_SPECTRUM1D -- Utility method to convert a Numpy array to Spectrum1D # def to_Spectrum1D(self, npy_data): ''' Convert a Numpy spectrum array to a Spectrum1D object. ''' if npy_data.ndim == 2: lamb = 10**npy_data['loglam'][0] * u.AA else: lamb = 10**npy_data['loglam'] * u.AA flux = npy_data['flux'] * 10**-17 * u.Unit('erg cm-2 s-1 AA-1') mask = npy_data['flux'] == 0 flux_unit = u.Unit('erg cm-2 s-1 AA-1') uncertainty = InverseVariance(npy_data['ivar'] / flux_unit**2) spec1d = Spectrum1D(spectral_axis=lamb, flux=flux, uncertainty=uncertainty, mask=mask) spec1d.meta['sky'] = npy_data['sky'] * 10**-17 * flux_unit spec1d.meta['model'] = npy_data['model'] * 10**-17 * flux_unit spec1d.meta['ivar'] = npy_data['ivar'] return spec1d # -------------------------------------------------------------------- # TO_PANDAS -- Utility method to convert a Numpy array to a Pandas DataFrame # def to_pandas(self, npy_data): '''Utility method to convert a Numpy array to a Pandas DataFrame ''' return pd.DataFrame(data=npy_data, columns=npy_data.dtype.names) # -------------------------------------------------------------------- # TO_TABLE -- Utility method to convert a Numpy array to an Astropy Table # def to_Table(self, npy_data): '''Utility method to convert a Numpy array to an Astropy Table object. ''' return Table(data=npy_data, names=npy_data.dtype.names) ################################################### # SERVICE METHODS ################################################### # -------------------------------------------------------------------- # QUERY -- Query for spectra by position. # @multimethod('_spc',3,True) def query(self, ra, dec, size, constraint=None, out=None, context=None, profile=None, **kw): return self._query(ra=ra, dec=dec, size=size, pos=None, region=None, constraint=constraint, out=out, context=context, profile=profile, **kw) @multimethod('_spc',2,True) def query(self, pos, size, constraint=None, out=None, context=None, profile=None, **kw): return self._query(ra=None, dec=None, size=None, pos=pos, region=None, constraint=constraint, out=out, context=context, profile=profile, **kw) @multimethod('_spc',1,True) def query(self, region, constraint=None, out=None, context=None, profile=None, **kw): return self._query(ra=None, dec=None, size=None, pos=None, region=region, constraint=constraint, out=out, context=context, profile=profile, **kw) @multimethod('_spc',0,True) def query(self, constraint=None, out=None, context=None, profile=None, **kw): '''Query for a list of spectrum IDs that can then be retrieved from the service. Usage: id_list = query(ra, dec, size, constraint=None, out=None, context=None, profile=None, **kw) id_list = query(pos, size, constraint=None, out=None, context=None, profile=None, **kw) id_list = query(region, constraint=None, out=None, context=None, profile=None, **kw) id_list = query(constraint=None, out=None, context=None, profile=None, **kw) Parameters ---------- ra: float RA search center specified in degrees. dec: float Dec of search center specified in degrees. size: float Size of search center specified in degrees. pos: Astropy Coord object Coordinate of search center specified as an Astropy Coord object. region: float Array of polygon vertices (in degrees) defining a search region. out: str Save query results to output filename. May be a 'vos://' URI or local filename. If set to an empty string, the ID list is returned as an ascii string. constraint: str A valid SQL syntax that can be used as a WHERE constraint in the search query. context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: For context='sdss_dr16' | 'default': fields: specobjid # or 'bestobjid', etc tuple # a plate/mjd/fiber/run2d tuple Service will always return array of 'specobjid' value, the p/m/f tuple is extracted from the bitmask value by the client. catalog: <schema>.<table> # alternative catalog to query e.g. a # VAC from earlier DR (must support an # ra/dec search and return a specobjid- # like value) For all contexts: timeout = 600 # Query timeout token = None # User auth token verbose = False # Print verbose output debug = False # Print debug messages Returns ------- result: array An array of spectrum IDs appropriate for the dataset context. Example ------- 1) Query by position: .. code-block:: python id_list = spec.query (0.125, 12.123, 0.1) ''' return self._query(ra=None, dec=None, size=None, pos=None, region=None, constraint=constraint, out=out, context=context, profile=profile, **kw) def _query(self, ra=None, dec=None, size=None, pos=None, region=None, constraint=None, out=None, context=None, profile=None, **kw): '''Implementation of the query() method. ''' if context in [None, '']: context = self.svc_context if profile in [None, '']: profile = self.svc_profile # Process optional keyword arguments. ofields = kw['fields'] if 'fields' in kw else self.context['id_main'] catalog = kw['catalog'] if 'catalog' in kw else self.context['catalog'] if context == 'default' or context.startswith('sdss'): if ofields == 'tuple': ofields = 'plate,mjd,fiberid,run2d' timeout = kw['timeout'] if 'timeout' in kw else 600 token = kw['token'] if 'token' in kw else self.auth_token verbose = kw['verbose'] if 'verbose' in kw else self.verbose debug = kw['debug'] if 'debug' in kw else self.debug # Build the query URL constraint clause. _size = size if region is not None: pquery = 'q3c_poly_query(ra,dec,ARRAY%s)' % region elif pos is not None: pquery = 'q3c_radial_query(ra,dec,%f,%f,%f)' % \ (pos.ra.degree, pos.dec.degree, _size) elif ra is not None and dec is not None: pquery = 'q3c_radial_query(ra,dec,%f,%f,%f)' % (ra, dec, _size) else: pquery = '' # Create the query string for the IDs, adding any user-defined # fields or constraints. cond = pquery if constraint not in [None, '']: if constraint.strip()[:5].lower() in ['limit', 'order'] or pquery == '': cond += ' %s' % constraint else: cond += ' AND %s' % constraint # Set service call headers. headers = self.getHeaders(None) # Query for the ID/fields. _svc_url = '%s/query?' % self.svc_url # base service URL _svc_url += 'id=&' # no ID value _svc_url += 'fields=%s&' % quote_plus(ofields) # fields to retrieve _svc_url += 'catalog=%s&' % quote_plus(catalog) # catalog to query _svc_url += 'cond=%s&' % quote_plus(cond) # WHERE condition _svc_url += 'context=%s&' % context # dataset context _svc_url += 'profile=%s&' % profile # service profile _svc_url += 'debug=%s&' % debug # system debug flag _svc_url += 'verbose=%s' % False # system verbose flag r = requests.get(_svc_url, headers=headers) _res = spcToString(r.content) # Query result is in CSV, convert to a named table. res = convert(_res, outfmt='table') if out in [None, '']: if ofields.count(',') > 0: return res else: return np.array(res[self.context['id_main']]) else: # Note: memory expensive for large lists ..... csv_text = _res if out.startswith('vos://'): return storeClient.saveAs(csv_text, out)[0] else: with open(out, "w") as fd: fd.write(csv_text) fd.write('\n') return 'OK' # -------------------------------------------------------------------- # GETSPEC -- Retrieve spectra for a list of objects. # def getSpec(self, id_list, fmt='numpy', out=None, align=False, cutout=None, context=None, profile=None, **kw): '''Get spectra for a list of object IDs. Usage: getSpec(id_list, fmt='numpy', out=None, align=False, cutout=None, context=None, profile=None, **kw) Parameters ---------- id_list: list object List of object identifiers. format: Return format of spectra out: Output filename or return to caller if None align: Align spectra to common wavelength grid with zero-padding cutout: Wavelength cutout range (as "<start>-<end>") context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: values = None Spectrum vectors to return. token = None Data Lab auth token. id_col = None Name of ID column in input table. verbose = False Print verbose messages during retrieval debug = False Print debug messages during retrieval Returns ------- result: object or array of objects or 'OK' string Example ------- 1) Retrieve spectra individually: .. code-block:: python id_list = spec.query (0.125, 12.123, 0.1) for id in id_list: spec = spec.getSpec (id) .... do something 2) Retrieve spectra in bulk: .. code-block:: python spec = spec.getSpec (id_list, fmt='numpy') .... 'spec' is an array of NumPy objects that may be different sizes ''' if context in [None, '']: context = self.svc_context if profile in [None, '']: profile = self.svc_profile # Process optional parameters. values = kw['values'] if 'values' in kw else 'all' token = kw['token'] if 'token' in kw else self.auth_token id_col = kw['id_col'] if 'id_col' in kw else None verbose = kw['verbose'] if 'verbose' in kw else self.verbose debug = kw['debug'] if 'debug' in kw else self.debug # Set service call headers. headers = {'Content-Type': 'application/x-www-form-urlencoded', 'X-DL-ClientVersion': __version__, 'X-DL-OriginIP': self.hostip, 'X-DL-OriginHost': self.hostname, 'X-DL-AuthToken': def_token(None)} if debug: print('getSpec(): in ty id_list = ' + str(type(id_list))) # Extract the ID list from the input value. ids = self.extractIDList(id_list) # Force alignment for SpectrumCollection format. if fmt.lower() == 'spectrumcollection': align = True if debug: print('ty ids: ' + str(type(ids))) # Initialize the payload. data = {'id_list': str(ids), 'values': values, 'format': fmt, 'align': align, 'cutout': str(cutout), 'w0': 0.0, 'w1': 0.0, 'context': context, 'profile': profile, 'debug': debug, 'verbose': verbose } # Get the limits of the collection url = '%s/listSpan' % self.svc_url resp = requests.post(url, data=data, headers=headers) v = json.loads(resp.text) data['w0'], data['w1'] = v['w0'], v['w1'] url = '%s/getSpec' % self.svc_url if align: # If we're aligning columns, the server will pad the values # and return a common array size. resp = requests.post(url, data=data, headers=headers) _data = np.load(BytesIO(resp.content), allow_pickle=False) else: # If not aligning columns, request each spectrum individually # so we can return a list object. _data = [] for id in ids: data['id_list'] = str(id) resp = requests.post(url, data=data, headers=headers) if fmt.lower() == 'fits': _data.append(resp.content) else: np_data = np.load(BytesIO(resp.content), allow_pickle=False) _data.append(np_data) if fmt.lower() != 'fits': _data = np.array(_data) if fmt.lower() == 'fits': # Note: assumes a single file is requested. if len(_data) == 1: return _data[0] else: return _data else: if fmt.lower()[:5] == 'numpy': # NUMPY array if len(_data) == 1: return _data[0] else: return _data elif fmt.lower()[:6] == 'pandas': # Pandas DataFrame if len(_data) == 1: return self.to_pandas(_data[0]) else: pd_data = [] for d in _data: pd_data.append(self.to_pandas(d)) return pd_data elif fmt.lower()[:6] == 'tables': # Astropy Table if len(_data) == 1: return self.to_Table(_data[0]) else: tb_data = [] for d in _data: tb_data.append(self.to_Table(d)) return tb_data elif fmt.lower()[:8] == 'spectrum': # Spectrum1D if len(_data) == 1: return self.to_Spectrum1D(_data[0]) elif align: return self.to_Spectrum1D(_data) else: sp_data = [] for i in range(len(_data)): sp_data.append(self.to_Spectrum1D(_data[i])) # Convert to a SpectrumCollection object if requested. if fmt.lower() == 'spectrumcollection': return SpectrumCollection.from_spectra(sp_data) else: return sp_data else: raise Exception("Unknown return format '%s'" % fmt) # -------------------------------------------------------------------- # PLOT -- Utility to batch plot a single spectrum, display plot directly. # def plot(self, spec, context=None, profile=None, out=None, **kw): '''Utility to batch plot a single spectrum. Usage: spec.plot(id, context=None, profile=None, **kw) Parameters ---------- spec: object ID or data array Spectrum to be plotted. If 'spec' is a numpy array or a Spectrum1D object the data are plotted directly, otherwise the value is assumed to be an object ID that will be retrieved from the service. out: str Output filename. If specified, plot saved as PNG. context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: rest_frame - Whether or not to plot the spectra in the rest-frame. If True, the wavelengths are assumed to have been already shifted and no 'z' value is required. If False, wavelengths are assumed to be in observed frame and a 'z' value is required to overplot absorption/emission lines. (def: True) z - Redshift value (def: None) xlim - Set the xrange of the plot ylim - Set the yrange of the plot title - Plot title (def: object ID) xlabel - Plot x-axis label (def: wavelength) ylabel - Plot y-axis label (def: flux units) out - Saved output filename. values - A comma-delimited string of which values to plot, a combination of 'flux,model,sky,ivar' mark_lines - Which lines to mark. No lines marked if None or an empty string, otherwise one of 'em|abs|all|both' grid - Plot grid lines (def: True) dark - Dark-mode plot colors (def: True) em_lines - List of emission lines to plot. If not given, all the lines in the default list will be plotted. abs_lines - Lines of absorption lines to plot. If not given, all the lines in the default list will be plotted. spec_args - Plotting kwargs for the spectrum model_args - Plotting kwargs for the model ivar_args - Plotting kwargs for the ivar sky_args - Plotting kwargs for the sky Returns ------- Nothing Example ------- 1) Plot a single spectrum, save to a virtual storage file .. code-block:: python spec.plot (specID, context='sdss_dr16', out='vos://spec.png') ''' verbose = kw['verbose'] if 'verbose' in kw else self.verbose debug = kw['debug'] if 'debug' in kw else self.debug if context in [None, '']: context = self.svc_context if profile in [None, '']: profile = self.svc_profile # See whether we've been passed a spectrum ID or a data. _id = None if isinstance(spec, int) or \ isinstance(spec, np.int64) or isinstance(spec, np.uint64) or \ isinstance(spec, tuple) or \ isinstance(spec, str): _id = spec dlist = sp_client.getSpec(spec, context=context, profile=profile) data = dlist wavelength = 10.0**data['loglam'] flux = data['flux'] model = data['model'] sky = data['sky'] ivar = data['ivar'] else: if isinstance(spec, np.ndarray) or \ isinstance(spec, pd.core.frame.DataFrame): wavelength = 10.0**spec['loglam'] flux = spec['flux'] model = spec['model'] sky = spec['sky'] ivar = spec['ivar'] elif isinstance(spec, Spectrum1D): wavelength = np.array(spec.spectral_axis.value) flux = spec.flux model = spec.meta['model'] sky = spec.meta['sky'] ivar = spec.meta['ivar'] # Get the wavelength frame and redshift for the plot. if 'z' in kw: z = float(kw['z']) # use supplied value del(kw['z']) else: z = None if _id is not None: # Query for the redshift field of the catalog. headers = self.getHeaders(None) _svc_url = '%s/query?' % self.svc_url # base service URL _svc_url += "id=%s&" % str(_id) _svc_url += "fields=%s&" % self.context['redshift'] _svc_url += "catalog=%s&" % self.context['catalog'] _svc_url += "cond=&" _svc_url += "context=%s&" % context _svc_url += "profile=%s&" % profile _svc_url += "debug=%s&" % debug _svc_url += "verbose=%s" % verbose r = requests.get(_svc_url, headers=headers) if r.status_code == 200: _val = spcToString(r.content).split('\n')[1:-1][0] z = float(_val) if 'rest_frame' in kw: rest_frame = (str(kw['rest_frame']).lower() == 'true') del(kw['rest_frame']) else: rest_frame = True if self.context['rest_frame'] == 'false': # Data is in the observed rest frame, convert to rest frame if we # have a redshift. if rest_frame: if z is not None: wavelength /= (1 + z) else: warnings.warn('Redshift needed to plot in rest frame.') rest_frame = False else: # Data is already in rest frame, convert to observed frame if we # have a redshift. if not rest_frame: if z is not None: wavelength *= (1 + z) else: warning.warn('Redshift needed to plot in observed frame.') rest_frame = True self._plotSpec(wavelength, flux, model=model, sky=sky, ivar=ivar, rest_frame=rest_frame, z=z, **kw) # -------------------------------------------------------------------- # PROSPECT -- Utility wrapper to launch the interactive PROSPECT tool. # def prospect(self, spec, context=None, profile=None, **kw): '''Utility wrapper to launch the interactive PROSPECT tool. Usage: stat = prospect(spec, context=None, profile=None, **kw) Parameters ---------- spec: object ID or data array Spectrum to be plotted. If 'spec' is a numpy array or a Spectrum1D object the data are plotted directly, otherwise the value is assumed to be an object ID that will be retrieved from the service. context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: TBD Returns ------- result: str Status 'OK' string or error message. Example ------- 1) Plot .... .. code-block:: python stat = spec.prospect (specID) ''' if context in [None, '']: context = self.svc_context if profile in [None, '']: profile = self.svc_profile pass # -------------------------------------------------------------------- # PREVIEW -- Get a preview plot of a spectrum # def preview(self, spec, context=None, profile=None, **kw): '''Get a preview plot of a spectrum Usage: spec.preview(spec, context=None, profile=None, **kw): Parameters ---------- spec: objectID Object identifiers. context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: N/A Returns ------- image: A PNG image object Example ------- 1) Display a preview plot a given spectrum: .. code-block:: python from IPython.display import display, Image display(Image(spec.preview(id), format='png', width=400, height=100, unconfined=True)) ''' if context in [None, '']: context = self.svc_context if profile in [None, '']: profile = self.svc_profile url = self.svc_url + '/preview?id=%s' % str(spec) url = url + '&context=%s&profile=%s' % (context, profile) try: if USE_CURL: return Image.open(BytesIO(self.curl_get(url))) else: return Image.open(BytesIO(requests.get(url, timeout=2).content)) except Exception as e: raise Exception("Error getting plot data: " + str(e)) # -------------------------------------------------------------------- # PLOTGRID -- Get a grid of preview plots of a spectrum list. # def plotGrid(self, id_list, nx, ny, page=0, context=None, profile=None, **kw): '''Get a grid of preview plots of a spectrum list. Usage: image = plotGrid(id_list, nx, ny, page=0, context=None, profile=None, **kw): Parameters ---------- id_list: list object List of object identifiers. nx: int Number of plots in the X dimension ny: int Number of plots in the Y dimension page: int Dataset context. context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: verbose = False Print verbose messages during retrieval debug = False Print debug messages during retrieval Returns ------- image: A PNG image object Example ------- 1) Display a 5x5 grid of preview plots for a list: .. code-block:: python npages = np.round((len(id_list) / 25) + (25 / len(id_list)) for pg in range(npages): data = spec.getGridPlot(id_list, 5, 5, page=pg) display(Image(data, format='png', width=400, height=100, unconfined=True)) ''' if context in [None, '']: context = self.svc_context if profile in [None, '']: profile = self.svc_profile # Process optional parameters. token = kw['token'] if 'token' in kw else self.auth_token verbose = kw['verbose'] if 'verbose' in kw else self.verbose debug = kw['debug'] if 'debug' in kw else self.debug fmt = kw['fmt'] if 'fmt' in kw else 'png' # Set service call headers. headers = {'Content-Type': 'application/x-www-form-urlencoded', 'X-DL-ClientVersion': __version__, 'X-DL-OriginIP': self.hostip, 'X-DL-OriginHost': self.hostname, 'X-DL-AuthToken': token} # Build the query URL string. url = '%s/plotGrid' % self.svc_url if isinstance(id_list, list) or isinstance(id_list, np.ndarray): n_ids = len(id_list) sz_grid = nx * ny if sz_grid >= n_ids: # Use the whole list. ids = id_list p_start = 0 p_end = len(id_list) - 1 else: p_start = page * sz_grid p_end = min(n_ids, p_start + sz_grid) ids = id_list[p_start:p_end] else: ids = id_list # Initialize the payload. data = {'id_list': str(list(ids)), 'ncols': ny, 'context': context, 'profile': profile, 'debug': debug, 'verbose': verbose } resp = requests.post(url, data=data, headers=headers) if fmt == 'png': return Image.open(BytesIO(resp.content)) else: return resp.content # -------------------------------------------------------------------- # STACKEDIMAGE -- Get a stacked image of a list of spectra. # def stackedImage(self, id_list, align=False, yflip=False, context=None, profile=None, **kw): '''Get ... Usage: Parameters ---------- id_list: list object List of spectrum identifiers. context: str Dataset context. profile: str Data service profile. **kw: dict Optional keyword arguments. Supported keywords currently include: verbose = False Print verbose messages during retrieval debug = False Print debug messages during retrieval Returns ------- result: .... Example ------- 1) Query .... .. code-block:: python id_list = spec.query (0.125, 12.123, 0.1) ''' if context in [None, '']: context = self.svc_context if profile in [None, '']: profile = self.svc_profile # Process optional parameters. scale = kw['scale'] if 'scale' in kw else (1.0, 1.0) if isinstance(scale, float): xscale = yscale = scale else: xscale = scale[0] yscale = scale[1] thickness = kw['thickness'] if 'thickness' in kw else 1 inverse = kw['inverse'] if 'inverse' in kw else False cmap = kw['cmap'] if 'cmap' in kw else 'gray' width = kw['width'] if 'width' in kw else 0 height = kw['height'] if 'height' in kw else 0 token = kw['token'] if 'token' in kw else self.auth_token verbose = kw['verbose'] if 'verbose' in kw else self.verbose debug = kw['debug'] if 'debug' in kw else self.debug fmt = kw['fmt'] if 'fmt' in kw else 'png' # Set service call headers. headers = {'Content-Type': 'application/x-www-form-urlencoded', 'X-DL-ClientVersion': __version__, 'X-DL-OriginIP': self.hostip, 'X-DL-OriginHost': self.hostname, 'X-DL-AuthToken': token} # Build the query URL string. url = '%s/stackedImage' % self.svc_url # Initialize the payload. data = {'id_list': str(list(id_list)), 'context': context, 'xscale': xscale, 'yscale': yscale, 'thickness': thickness, 'cmap': cmap, 'inverse': inverse, 'width': width, 'height': height, 'profile': profile, 'debug': debug, 'verbose': verbose } resp = requests.post(url, data=data, headers=headers) if fmt == 'png': return Image.open(BytesIO(resp.content)) else: return resp.content ################################################### # STATIC UTILITY METHODS ################################################### # -------------------------------------------------------------------- # _PLOTSPEC -- Plot a spectrum. # @staticmethod def _plotSpec(wavelength, flux, model=None, sky=None, ivar=None, rest_frame=True, z=0.0, xlim=None, ylim=None, title=None, xlabel=None, ylabel=None, out=None, **kw): """Plot a spectrum. Inputs: * wavelength - Array of spectrum wavelength values to plot. * flux - Array of spectrum flux values to plot. * model - Array of model spectrum values to plot (if not None). * sky - Array of sky spectrum values to plot (if not None). * ivar - Array of inverse-variance values to plot (if not None). * rest_frame - Whether or not to plot the spectra in the rest-frame. If True, the wavelengths are assumed to have been already shifted and no 'z' value is required. If False, wavelengths are assumed to be in observed frame and a 'z' value is required to overplot absorption/emission lines. (def: True) * z - Redshift (def: None) * xlim - Setting the xrange of the plot (e.g. '[5000.0,6000.0]') * ylim - Setting the yrange of the plot (e.g. '[0.0,25.0]') * title - Plot title (def: object ID) * xlabel - Plot x-axis label (def: wavelength) * ylabel - Plot y-axis label (def: flux units) * out - Saved output filename. Optional kwargs: * values - A comma-delimited string of which values to plot, a combination of 'flux,model,sky,ivar' * mark_lines - Which lines to mark. No lines marked if None or an empty string, otherwise one of 'em|abs|all|both' * grid - Plot grid lines (def: True) * dark - Dark-mode plot colors (def: True) * em_lines - List of emission lines to plot. If not given, all the lines in the default list will be plotted. * abs_lines - Lines of absorption lines to plot. If not given, all the lines in the default list will be plotted. * spec_args - Plotting kwargs for the spectrum. * model_args - Plotting kwargs for the model. * ivar_args - Plotting kwargs for the ivar. * sky_args - Plotting kwargs for the sky. """ def labelLines(lines, ax, color, yloc): '''Select only those lines that are visible in the x-range of the plot. ''' if rest_frame is False and z is None: warnings.warn( 'Redshift required to mark lines in observed frame') return for ii in range(len(lines)): # If rest_frame=False, shift lines to the observed frame. lam = lines[ii]['lambda'] if rest_frame is False: lam = lam * (1+z) # Plot only lines within the x-range of the plot. if ((lam > xbounds[0]) & (lam < xbounds[1])): ax.axvline(lam, color=color, lw=1.0, linestyle=':') ax.annotate(lines[ii]['label'], xy=(lam, yloc), xycoords=ax.get_xaxis_transform(), fontsize=12, rotation=90, color=color) # Process the optional kwargs. dark = kw['dark'] if 'dark' in kw else True grid = kw['grid'] if 'grid' in kw else True mark_lines = kw['mark_lines'] if 'mark_lines' in kw else 'all' em_lines = kw['em_lines'] if 'em_lines' in kw else None abs_lines = kw['abs_lines'] if 'abs_lines' in kw else None values = kw['values'] if 'values' in kw else 'flux,model' if 'spec_args' in kw: spec_args = kw['spec_args'] else: spec_args = {'color': '#ababab', 'linewidth': 1.0, 'alpha': 1.0} if 'model_args' in kw: model_args = kw['model_args'] else: model_args = {'color': 'red', 'linewidth': 1.2} if 'sky_args' in kw: sky_args = kw['sky_args'] else: sky_args = {'color': 'brown', 'linewidth': 1.0} if 'ivar_args' in kw: ivar_args = kw['ivar_args'] else: ivar_args = {'color': 'blue', 'linewidth': 1.0} # Setting up the plot if dark: fig = plt.figure(dpi=100, figsize=(12, 5), facecolor='#2F4F4F') plt.rcParams['axes.facecolor'] = '#121212' plt.rcParams['axes.edgecolor'] = '#00FFFF' else: fig = plt.figure(dpi=100, figsize=(12, 5)) plt.rcParams['axes.facecolor'] = '#FFFFFF' ax = fig.add_subplot(111) if 'flux' in values: if ivar is None: ax.plot(wavelength, flux, label='Flux', **spec_args) else: ax.plot(wavelength, flux * (ivar > 0), label='Flux', **spec_args) if 'model' in values and model is not None: if ivar is None: ax.plot(wavelength, model, label='Model', **model_args) else: ax.plot(wavelength, model * (ivar > 0), label='Model', **model_args) if 'sky' in values and sky is not None and ivar is not None: if ivar is None: ax.plot(wavelength, sky, label='Sky', **model_args) else: ax.plot(wavelength, sky * (ivar > 0), label='Sky', **sky_args) if 'ivar' in values and ivar is not None: ax.plot(wavelength, ivar * (ivar > 0), label='Ivar', **ivar_args) plt.xlim(xlim) plt.ylim(ylim) am_color = ('#00FF00' if dark else 'black') if ylabel is None: if rest_frame: plt.xlabel('Rest Wavelength ($\AA$)', color=am_color) else: if z is not None: plt.xlabel('Observed Wavelength ($\AA$) z=%.3g' % z, color=am_color) else: plt.xlabel('Observed Wavelength ($\AA$) z=(unknown)', color=am_color) else: plt.xlabel(xlabel, color=am_color) if ylabel is None: ylab = '$F_{\lambda}$ ($10^{-17}~ergs~s^{-1}~cm^{-2}~\AA^{-1}$)' plt.ylabel(ylab, color=am_color) else: plt.ylabel(ylabel, color=am_color) if dark: ax.tick_params(color='cyan', labelcolor='yellow') if grid: plt.grid(color='gray', linestyle='dashdot', linewidth=0.5) if title not in [None, '']: ax.set_title(title, c=am_color) # Plotting Absorption/Emission lines - only works if either of the # lines is set to True if mark_lines not in [None, '']: if mark_lines.lower() in ['all', 'both']: opt = 'ea' else: opt = mark_lines.lower() # Select any lines listed by the user. e_lines = _em_lines if em_lines is not None: e_lines = list(filter(lambda x: x['name'] in em_lines, _em_lines)) a_lines = _abs_lines if abs_lines is not None: a_lines = list(filter(lambda x: x['name'] in abs_lines, _abs_lines)) xbounds = ax.get_xbound() # Getting the x-range of the plot lcol = ['#FFFF00', '#00FFFF'] if dark else ['#FF0000', '#0000FF'] if 'e' in opt: labelLines(e_lines, ax, lcol[0], 0.875) if 'a' in opt: labelLines(a_lines, ax, lcol[1], 0.05) leg = ax.legend() if dark: for text in leg.get_texts(): plt.setp(text, color='w') if out is not None: plt.savefig(out) else: plt.show() ################################################### # PRIVATE UTILITY METHODS ################################################### def debug(self, debug_val): '''Toggle debug flag. ''' self.debug = debug_val def retBoolValue(self, url): '''Utility method to call a boolean service at the given URL. ''' response = "" try: # Add the auth token to the reauest header. if self.auth_token != None: headers = {'X-DL-AuthToken': self.auth_token} r = requests.get(url, headers=headers) else: r = requests.get(url) response = spcToString(r.content) if r.status_code != 200: raise Exception(r.content) except Exception: return spcToString(r.content) else: return response def getHeaders(self, token): '''Get default tracking headers. ''' tok = def_token(token) user, uid, gid, hash = tok.strip().split('.', 3) hdrs = {'Content-Type': 'text/ascii', 'X-DL-ClientVersion': __version__, 'X-DL-OriginIP': self.hostip, 'X-DL-OriginHost': self.hostname, 'X-DL-User': user, 'X-DL-AuthToken': tok} return hdrs def getFromURL(self, svc_url, path, token): '''Get something from a URL. Return a 'response' object. ''' try: hdrs = self.getHeaders(token) resp = requests.get("%s%s" % (svc_url, path), headers=hdrs) except Exception as e: raise dlSpecError(str(e)) return resp def curl_get(self, url): '''Utility routine to use cURL to return a URL ''' b_obj = BytesIO() crl = pycurl.Curl() crl.setopt(crl.URL, url) crl.setopt(crl.WRITEDATA, b_obj) crl.perform() crl.close() return b_obj.getvalue() def extractIDList(self, id_list, id_col=None): '''Extract a 1-D array or single identifier from an input ID type. ''' if isinstance(id_list, str): # Input is a string. This may be a text string of identifiers, # a filename or a CSV table. if os.path.exists(id_list): # Read list from a local file. with open(id_list, 'r') as fd: _list = fd.read() if _list.startswith(self.context['id_main']): # CSV string? ids = _list.split('\n')[1:-1] else: ids = _list.split('\n')[:-1] elif id_list.startswith('vos://'): # Read list from virtual storage. ids = storeClient.get(id_list).split('\n')[:-1] elif id_list.find(',') > 0 or \ id_list.startswith(self.context['id_main']): # CSV string? pdata = convert(id_list, outfmt='pandas') ids = np.array(pdata[self.context['id_main']]) else: ids = np.array([id_list]) el = ids[0] if isinstance(el, str): cnv_list = [] if el[0] == '(': # Assume a tuple for el in ids: if el != '': cnv_list.append(el[1:-1]) else: for el in ids: if el != '': cnv_list.append(int(el)) ids = np.array(cnv_list) elif isinstance(id_list, int) or \ isinstance(id_list, np.int64) or \ isinstance(id_list, np.uint64) or\ isinstance(id_list, tuple): # Input is a single integer or tuple type (e.g. a specobjid # or a (plate,mjd,fiber), simply convert it to a list. ids = [id_list] elif isinstance(id_list, list): # Input is already a list type, just return it. ids = id_list elif isinstance(id_list, pd.core.frame.DataFrame): try: ids = id_list[self.context['id_main']].tolist() except KeyError as e: ids = None elif isinstance(id_list, np.ndarray): # Input is a numpy array. If it's a 1-D array assume it contains # identifiers and convert to a list, otherwise try to extract the # id column. if id_list.ndim == 1 and id_list.dtype.names is None: ids = id_list.tolist() else: try: if id_list.dtype.names is not None: # structured array ids = id_list[self.context['id_main']].tolist() else: # ndarray, use first column ids = id_list[:, 0].tolist() except ValueError as e: ids = None else: ids = np.array(id_list[self.context['id_main']]) return ids # ################################### # Spectroscopic Data Client Handles # ################################### def getClient(context='default', profile='default'): '''Get a new instance of the specClient client. Parameters ---------- context: str Dataset context profile: str Service profile Returns ------- client: specClient An specClient object Example ------- .. code-block:: python new_client = specClient.getClient() ''' return specClient(context=context, profile=profile) # Get the default client object. sp_client = client = getClient(context='default', profile='default') # ########################################## # Patch the docstrings for module functions # ########################################## set_svc_url.__doc__ = sp_client.set_svc_url.__doc__ get_svc_url.__doc__ = sp_client.get_svc_url.__doc__ set_profile.__doc__ = sp_client.set_profile.__doc__ get_profile.__doc__ = sp_client.get_profile.__doc__ set_context.__doc__ = sp_client.set_context.__doc__ get_context.__doc__ = sp_client.get_context.__doc__ # Define a set of spectral lines. # # This is the set of emission lines from the SDSS spZline files. # Wavelengths are in air for lambda > 2000, vacuum for lambda < 2000. # # Emission Lines _em_lines = [ {"name": "Ly-alpha", "lambda": 1215.67, "label": "Ly$\\alpha$"}, {"name": "N V 1240", "lambda": 1240.81, "label": "N V"}, {"name": "C IV 1549", "lambda": 1549.48, "label": "C IV"}, {"name": "He II 1640", "lambda": 1640.42, "label": "He II"}, {"name": "C III] 1908", "lambda": 1908.734, "label": "C III]"}, {"name": "Mg II 2799", "lambda": 2800.315, "label": "Mg II"}, {"name": "[O II] 3725", "lambda": 3727.092, "label": " "}, {"name": "[O II] 3727", "lambda": 3729.875, "label": "[O II]"}, {"name": "[Ne III] 3868", "lambda": 3869.857, "label": "[Ne III]"}, {"name": "H-zeta", "lambda": 3890.151, "label": "H$\\zeta$"}, {"name": "[Ne III] 3970", "lambda": 3971.123, "label": "[Ne III]"}, {"name": "H-epsilon", "lambda": 3971.195, "label": "H$\\epsilon$"}, {"name": "H-delta", "lambda": 4102.892, "label": "H$\\delta$"}, {"name": "H-gamma", "lambda": 4341.684, "label": "H$\\beta$"}, {"name": "[O III] 4363", "lambda": 4364.435, "label": "[O III]"}, {"name": "He II 4685", "lambda": 4686.991, "label": "He II"}, {"name": "H-beta", "lambda": 4862.683, "label": "H$\\beta$"}, {"name": "[O III] 4959", "lambda": 4960.294, "label": "[O III]"}, {"name": "[O III] 5007", "lambda": 5008.239, "label": "[O III]"}, {"name": "He II 5411", "lambda": 5413.025, "label": "He II"}, {"name": "[O I] 5577", "lambda": 5578.888, "label": "[O I]"}, {"name": "[N II] 5755", "lambda": 5756.186, "label": "[Ne II]"}, {"name": "He I 5876", "lambda": 5877.308, "label": "He I"}, {"name": "[O I] 6300", "lambda": 6302.046, "label": "[O I]"}, {"name": "[S III] 6312", "lambda": 6313.806, "label": "[S III]"}, {"name": "[O I] 6363", "lambda": 6365.535, "label": "[O I]"}, {"name": "[N II] 6548", "lambda": 6549.859, "label": "[N II]"}, {"name": "H-alpha", "lambda": 6564.614, "label": "H$\\alpha$"}, {"name": "[N II] 6583", "lambda": 6585.268, "label": "[N II]"}, {"name": "[S II] 6716", "lambda": 6718.294, "label": "[S II]"}, {"name": "[S II] 6730", "lambda": 6732.678, "label": "[S II]"}, {"name": "[Ar III] 7135", "lambda": 7137.758, "label": "[Ar III]"} ] # Absorption lines _abs_lines = [ {"name": "H12", "lambda": 3751.22, "label": "H12"}, {"name": "H11", "lambda": 3771.70, "label": "H11"}, {"name": "H10", "lambda": 3798.98, "label": "H10"}, {"name": "H9", "lambda": 3836.48, "label": "H9"}, {"name": "H-zeta", "lambda": 3890.151, "label": "H$\\zeta$"}, {"name": "K (Ca II 3933)", "lambda": 3934.814, "label": "K (Ca II)"}, {"name": "H (Ca II 3968)", "lambda": 3969.623, "label": "H (Ca II)"}, {"name": "H-epsilon", "lambda": 3971.195, "label": "H$\\epsilon$"}, {"name": "H-delta", "lambda": 4102.892, "label": "H$\\delta$"}, {"name": "G (Ca I 4307)", "lambda": 4308.952, "label": "G (Ca I)"}, {"name": "H-gamma", "lambda": 4341.684, "label": "H$\\gamma$"}, {"name": "H-beta", "lambda": 4862.683, "label": "H$\\beta$"}, {"name": "Mg I 5183", "lambda": 5185.048, "label": " "}, {"name": "Mg I 5172", "lambda": 5174.125, "label": " "}, {"name": "Mg I 5167", "lambda": 5168.762, "label": "Mg I"}, {"name": "D2 (Na I 5889)", "lambda": 5891.582, "label": " "}, {"name": "D1 (Na I 5895)", "lambda": 5897.554, "label": "D1,2 (Na I)"}, {"name": "H-alpha", "lambda": 6564.614, "label": "H$\\alpha$"} ] def airtovac(l): '''Convert air wavelengths (greater than 2000A) to vacuum wavelengths. ''' if l < 2000.0: return l vac = l for iter in range(2): sigma2 = (1.0e4 / vac) * (1.0e4 / vac) fact = 1.0 + 5.792105e-2 / (238.0185 - sigma2) + \ 1.67917e-3 / (57.362 - sigma2) vac = l * fact return vac
[ "matplotlib.pyplot.savefig", "socket.socket", "dl.helpers.utils.convert", "os.path.isfile", "matplotlib.pyplot.figure", "dl.Util.def_token", "requests.post", "specutils.SpectrumCollection.from_spectra", "pandas.DataFrame", "warnings.simplefilter", "json.loads", "os.path.exists", "matplotlib.pyplot.setp", "socket.gethostname", "requests.get", "specutils.Spectrum1D", "io.BytesIO", "dl.Util.multimethod", "matplotlib.pyplot.show", "matplotlib.pyplot.ylim", "logging.disable", "dl.storeClient.saveAs", "matplotlib.pyplot.ylabel", "pycurl.Curl", "matplotlib.pyplot.grid", "astropy.units.Unit", "matplotlib.pyplot.xlim", "astropy.table.Table", "urllib.parse.quote_plus", "numpy.array", "warnings.warn", "matplotlib.pyplot.xlabel", "astropy.nddata.InverseVariance", "dl.storeClient.get", "logging.getLogger" ]
[((2320, 2367), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'AstropyWarning'], {}), "('ignore', AstropyWarning)\n", (2341, 2367), False, 'import warnings\n'), ((2384, 2416), 'logging.disable', 'logging.disable', (['logging.WARNING'], {}), '(logging.WARNING)\n', (2399, 2416), False, 'import logging\n'), ((3465, 3485), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (3483, 3485), False, 'import socket\n'), ((3826, 3863), 'socket.socket', 'socket.socket', ([], {'type': 'socket.SOCK_DGRAM'}), '(type=socket.SOCK_DGRAM)\n', (3839, 3863), False, 'import socket\n'), ((4600, 4633), 'os.path.isfile', 'os.path.isfile', (['"""/tmp/SPEC_DEBUG"""'], {}), "('/tmp/SPEC_DEBUG')\n", (4614, 4633), False, 'import os\n'), ((4644, 4679), 'os.path.isfile', 'os.path.isfile', (['"""/tmp/SPEC_VERBOSE"""'], {}), "('/tmp/SPEC_VERBOSE')\n", (4658, 4679), False, 'import os\n'), ((7604, 7632), 'dl.Util.multimethod', 'multimethod', (['"""spc"""', '(1)', '(False)'], {}), "('spc', 1, False)\n", (7615, 7632), False, 'from dl.Util import multimethod\n'), ((7739, 7767), 'dl.Util.multimethod', 'multimethod', (['"""spc"""', '(0)', '(False)'], {}), "('spc', 0, False)\n", (7750, 7767), False, 'from dl.Util import multimethod\n'), ((8800, 8828), 'dl.Util.multimethod', 'multimethod', (['"""spc"""', '(1)', '(False)'], {}), "('spc', 1, False)\n", (8811, 8828), False, 'from dl.Util import multimethod\n'), ((8932, 8960), 'dl.Util.multimethod', 'multimethod', (['"""spc"""', '(0)', '(False)'], {}), "('spc', 0, False)\n", (8943, 8960), False, 'from dl.Util import multimethod\n'), ((11326, 11354), 'dl.Util.multimethod', 'multimethod', (['"""spc"""', '(3)', '(False)'], {}), "('spc', 3, False)\n", (11337, 11354), False, 'from dl.Util import multimethod\n'), ((11744, 11772), 'dl.Util.multimethod', 'multimethod', (['"""spc"""', '(2)', '(False)'], {}), "('spc', 2, False)\n", (11755, 11772), False, 'from dl.Util import multimethod\n'), ((12160, 12188), 'dl.Util.multimethod', 'multimethod', (['"""spc"""', '(1)', '(False)'], {}), "('spc', 1, False)\n", (12171, 12188), False, 'from dl.Util import multimethod\n'), ((12576, 12604), 'dl.Util.multimethod', 'multimethod', (['"""spc"""', '(0)', '(False)'], {}), "('spc', 0, False)\n", (12587, 12604), False, 'from dl.Util import multimethod\n'), ((30644, 30672), 'dl.Util.multimethod', 'multimethod', (['"""_spc"""', '(1)', '(True)'], {}), "('_spc', 1, True)\n", (30655, 30672), False, 'from dl.Util import multimethod\n'), ((30866, 30894), 'dl.Util.multimethod', 'multimethod', (['"""_spc"""', '(0)', '(True)'], {}), "('_spc', 0, True)\n", (30877, 30894), False, 'from dl.Util import multimethod\n'), ((31583, 31611), 'dl.Util.multimethod', 'multimethod', (['"""_spc"""', '(1)', '(True)'], {}), "('_spc', 1, True)\n", (31594, 31611), False, 'from dl.Util import multimethod\n'), ((31805, 31833), 'dl.Util.multimethod', 'multimethod', (['"""_spc"""', '(0)', '(True)'], {}), "('_spc', 0, True)\n", (31816, 31833), False, 'from dl.Util import multimethod\n'), ((35033, 35061), 'dl.Util.multimethod', 'multimethod', (['"""_spc"""', '(3)', '(True)'], {}), "('_spc', 3, True)\n", (35044, 35061), False, 'from dl.Util import multimethod\n'), ((35461, 35489), 'dl.Util.multimethod', 'multimethod', (['"""_spc"""', '(2)', '(True)'], {}), "('_spc', 2, True)\n", (35472, 35489), False, 'from dl.Util import multimethod\n'), ((35887, 35915), 'dl.Util.multimethod', 'multimethod', (['"""_spc"""', '(1)', '(True)'], {}), "('_spc', 1, True)\n", (35898, 35915), False, 'from dl.Util import multimethod\n'), ((36313, 36341), 'dl.Util.multimethod', 'multimethod', (['"""_spc"""', '(0)', '(True)'], {}), "('_spc', 0, True)\n", (36324, 36341), False, 'from dl.Util import multimethod\n'), ((2417, 2447), 'logging.getLogger', 'logging.getLogger', (['"""specutils"""'], {}), "('specutils')\n", (2434, 2447), False, 'import logging\n'), ((25470, 25485), 'dl.Util.def_token', 'def_token', (['None'], {}), '(None)\n', (25479, 25485), False, 'from dl.Util import def_token\n'), ((31397, 31435), 'requests.get', 'requests.get', (['svc_url'], {'headers': 'headers'}), '(svc_url, headers=headers)\n', (31409, 31435), False, 'import requests\n'), ((32336, 32374), 'requests.get', 'requests.get', (['svc_url'], {'headers': 'headers'}), '(svc_url, headers=headers)\n', (32348, 32374), False, 'import requests\n'), ((32879, 32917), 'requests.get', 'requests.get', (['svc_url'], {'headers': 'headers'}), '(svc_url, headers=headers)\n', (32891, 32917), False, 'import requests\n'), ((33621, 33648), 'astropy.units.Unit', 'u.Unit', (['"""erg cm-2 s-1 AA-1"""'], {}), "('erg cm-2 s-1 AA-1')\n", (33627, 33648), True, 'from astropy import units as u\n'), ((33671, 33721), 'astropy.nddata.InverseVariance', 'InverseVariance', (["(npy_data['ivar'] / flux_unit ** 2)"], {}), "(npy_data['ivar'] / flux_unit ** 2)\n", (33686, 33721), False, 'from astropy.nddata import InverseVariance\n'), ((33738, 33815), 'specutils.Spectrum1D', 'Spectrum1D', ([], {'spectral_axis': 'lamb', 'flux': 'flux', 'uncertainty': 'uncertainty', 'mask': 'mask'}), '(spectral_axis=lamb, flux=flux, uncertainty=uncertainty, mask=mask)\n', (33748, 33815), False, 'from specutils import Spectrum1D\n'), ((34353, 34410), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'npy_data', 'columns': 'npy_data.dtype.names'}), '(data=npy_data, columns=npy_data.dtype.names)\n', (34365, 34410), True, 'import pandas as pd\n'), ((34713, 34761), 'astropy.table.Table', 'Table', ([], {'data': 'npy_data', 'names': 'npy_data.dtype.names'}), '(data=npy_data, names=npy_data.dtype.names)\n', (34718, 34761), False, 'from astropy.table import Table\n'), ((42285, 42324), 'requests.get', 'requests.get', (['_svc_url'], {'headers': 'headers'}), '(_svc_url, headers=headers)\n', (42297, 42324), False, 'import requests\n'), ((42438, 42467), 'dl.helpers.utils.convert', 'convert', (['_res'], {'outfmt': '"""table"""'}), "(_res, outfmt='table')\n", (42445, 42467), False, 'from dl.helpers.utils import convert\n'), ((46836, 46882), 'requests.post', 'requests.post', (['url'], {'data': 'data', 'headers': 'headers'}), '(url, data=data, headers=headers)\n', (46849, 46882), False, 'import requests\n'), ((46895, 46916), 'json.loads', 'json.loads', (['resp.text'], {}), '(resp.text)\n', (46905, 46916), False, 'import json\n'), ((62595, 62641), 'requests.post', 'requests.post', (['url'], {'data': 'data', 'headers': 'headers'}), '(url, data=data, headers=headers)\n', (62608, 62641), False, 'import requests\n'), ((65593, 65639), 'requests.post', 'requests.post', (['url'], {'data': 'data', 'headers': 'headers'}), '(url, data=data, headers=headers)\n', (65606, 65639), False, 'import requests\n'), ((71784, 71798), 'matplotlib.pyplot.xlim', 'plt.xlim', (['xlim'], {}), '(xlim)\n', (71792, 71798), True, 'from matplotlib import pyplot as plt\n'), ((71807, 71821), 'matplotlib.pyplot.ylim', 'plt.ylim', (['ylim'], {}), '(ylim)\n', (71815, 71821), True, 'from matplotlib import pyplot as plt\n'), ((75098, 75114), 'dl.Util.def_token', 'def_token', (['token'], {}), '(token)\n', (75107, 75114), False, 'from dl.Util import def_token\n'), ((75916, 75925), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (75923, 75925), False, 'from io import BytesIO\n'), ((75940, 75953), 'pycurl.Curl', 'pycurl.Curl', ([], {}), '()\n', (75951, 75953), False, 'import pycurl\n'), ((30202, 30230), 'requests.get', 'requests.get', (['url'], {'timeout': '(2)'}), '(url, timeout=2)\n', (30214, 30230), False, 'import requests\n'), ((31238, 31253), 'dl.Util.def_token', 'def_token', (['None'], {}), '(None)\n', (31247, 31253), False, 'from dl.Util import def_token\n'), ((31529, 31549), 'json.loads', 'json.loads', (['profiles'], {}), '(profiles)\n', (31539, 31549), False, 'import json\n'), ((32177, 32192), 'dl.Util.def_token', 'def_token', (['None'], {}), '(None)\n', (32186, 32192), False, 'from dl.Util import def_token\n'), ((32468, 32488), 'json.loads', 'json.loads', (['contexts'], {}), '(contexts)\n', (32478, 32488), False, 'import json\n'), ((33008, 33028), 'json.loads', 'json.loads', (['catalogs'], {}), '(catalogs)\n', (33018, 33028), False, 'import json\n'), ((33536, 33563), 'astropy.units.Unit', 'u.Unit', (['"""erg cm-2 s-1 AA-1"""'], {}), "('erg cm-2 s-1 AA-1')\n", (33542, 33563), True, 'from astropy import units as u\n'), ((41785, 41804), 'urllib.parse.quote_plus', 'quote_plus', (['ofields'], {}), '(ofields)\n', (41795, 41804), False, 'from urllib.parse import quote_plus\n'), ((41863, 41882), 'urllib.parse.quote_plus', 'quote_plus', (['catalog'], {}), '(catalog)\n', (41873, 41882), False, 'from urllib.parse import quote_plus\n'), ((41935, 41951), 'urllib.parse.quote_plus', 'quote_plus', (['cond'], {}), '(cond)\n', (41945, 41951), False, 'from urllib.parse import quote_plus\n'), ((45919, 45934), 'dl.Util.def_token', 'def_token', (['None'], {}), '(None)\n', (45928, 45934), False, 'from dl.Util import def_token\n'), ((47165, 47211), 'requests.post', 'requests.post', (['url'], {'data': 'data', 'headers': 'headers'}), '(url, data=data, headers=headers)\n', (47178, 47211), False, 'import requests\n'), ((70526, 70583), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'dpi': '(100)', 'figsize': '(12, 5)', 'facecolor': '"""#2F4F4F"""'}), "(dpi=100, figsize=(12, 5), facecolor='#2F4F4F')\n", (70536, 70583), True, 'from matplotlib import pyplot as plt\n'), ((70726, 70762), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'dpi': '(100)', 'figsize': '(12, 5)'}), '(dpi=100, figsize=(12, 5))\n', (70736, 70762), True, 'from matplotlib import pyplot as plt\n'), ((72345, 72379), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {'color': 'am_color'}), '(xlabel, color=am_color)\n', (72355, 72379), True, 'from matplotlib import pyplot as plt\n'), ((72496, 72528), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylab'], {'color': 'am_color'}), '(ylab, color=am_color)\n', (72506, 72528), True, 'from matplotlib import pyplot as plt\n'), ((72555, 72589), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabel'], {'color': 'am_color'}), '(ylabel, color=am_color)\n', (72565, 72589), True, 'from matplotlib import pyplot as plt\n'), ((72699, 72757), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'color': '"""gray"""', 'linestyle': '"""dashdot"""', 'linewidth': '(0.5)'}), "(color='gray', linestyle='dashdot', linewidth=0.5)\n", (72707, 72757), True, 'from matplotlib import pyplot as plt\n'), ((74035, 74051), 'matplotlib.pyplot.savefig', 'plt.savefig', (['out'], {}), '(out)\n', (74046, 74051), True, 'from matplotlib import pyplot as plt\n'), ((74078, 74088), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (74086, 74088), True, 'from matplotlib import pyplot as plt\n'), ((75660, 75712), 'requests.get', 'requests.get', (["('%s%s' % (svc_url, path))"], {'headers': 'hdrs'}), "('%s%s' % (svc_url, path), headers=hdrs)\n", (75672, 75712), False, 'import requests\n'), ((76410, 76433), 'os.path.exists', 'os.path.exists', (['id_list'], {}), '(id_list)\n', (76424, 76433), False, 'import os\n'), ((42606, 42644), 'numpy.array', 'np.array', (["res[self.context['id_main']]"], {}), "(res[self.context['id_main']])\n", (42614, 42644), True, 'import numpy as np\n'), ((47240, 47261), 'io.BytesIO', 'BytesIO', (['resp.content'], {}), '(resp.content)\n', (47247, 47261), False, 'from io import BytesIO\n'), ((47532, 47578), 'requests.post', 'requests.post', (['url'], {'data': 'data', 'headers': 'headers'}), '(url, data=data, headers=headers)\n', (47545, 47578), False, 'import requests\n'), ((47875, 47890), 'numpy.array', 'np.array', (['_data'], {}), '(_data)\n', (47883, 47890), True, 'import numpy as np\n'), ((55163, 55202), 'requests.get', 'requests.get', (['_svc_url'], {'headers': 'headers'}), '(_svc_url, headers=headers)\n', (55175, 55202), False, 'import requests\n'), ((62697, 62718), 'io.BytesIO', 'BytesIO', (['resp.content'], {}), '(resp.content)\n', (62704, 62718), False, 'from io import BytesIO\n'), ((65695, 65716), 'io.BytesIO', 'BytesIO', (['resp.content'], {}), '(resp.content)\n', (65702, 65716), False, 'from io import BytesIO\n'), ((68696, 68762), 'warnings.warn', 'warnings.warn', (['"""Redshift required to mark lines in observed frame"""'], {}), "('Redshift required to mark lines in observed frame')\n", (68709, 68762), False, 'import warnings\n'), ((71944, 71998), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Rest Wavelength ($\\\\AA$)"""'], {'color': 'am_color'}), "('Rest Wavelength ($\\\\AA$)', color=am_color)\n", (71954, 71998), True, 'from matplotlib import pyplot as plt\n'), ((73968, 73993), 'matplotlib.pyplot.setp', 'plt.setp', (['text'], {'color': '"""w"""'}), "(text, color='w')\n", (73976, 73993), True, 'from matplotlib import pyplot as plt\n'), ((74668, 74702), 'requests.get', 'requests.get', (['url'], {'headers': 'headers'}), '(url, headers=headers)\n', (74680, 74702), False, 'import requests\n'), ((74741, 74758), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (74753, 74758), False, 'import requests\n'), ((77681, 77699), 'numpy.array', 'np.array', (['cnv_list'], {}), '(cnv_list)\n', (77689, 77699), True, 'import numpy as np\n'), ((42811, 42844), 'dl.storeClient.saveAs', 'storeClient.saveAs', (['csv_text', 'out'], {}), '(csv_text, out)\n', (42829, 42844), False, 'from dl import storeClient\n'), ((54107, 54141), 'numpy.array', 'np.array', (['spec.spectral_axis.value'], {}), '(spec.spectral_axis.value)\n', (54115, 54141), True, 'import numpy as np\n'), ((55833, 55888), 'warnings.warn', 'warnings.warn', (['"""Redshift needed to plot in rest frame."""'], {}), "('Redshift needed to plot in rest frame.')\n", (55846, 55888), False, 'import warnings\n'), ((72070, 72142), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (["('Observed Wavelength ($\\\\AA$) z=%.3g' % z)"], {'color': 'am_color'}), "('Observed Wavelength ($\\\\AA$) z=%.3g' % z, color=am_color)\n", (72080, 72142), True, 'from matplotlib import pyplot as plt\n'), ((72215, 72288), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Observed Wavelength ($\\\\AA$) z=(unknown)"""'], {'color': 'am_color'}), "('Observed Wavelength ($\\\\AA$) z=(unknown)', color=am_color)\n", (72225, 72288), True, 'from matplotlib import pyplot as plt\n'), ((47728, 47749), 'io.BytesIO', 'BytesIO', (['resp.content'], {}), '(resp.content)\n', (47735, 47749), False, 'from io import BytesIO\n'), ((77078, 77111), 'dl.helpers.utils.convert', 'convert', (['id_list'], {'outfmt': '"""pandas"""'}), "(id_list, outfmt='pandas')\n", (77085, 77111), False, 'from dl.helpers.utils import convert\n'), ((77139, 77179), 'numpy.array', 'np.array', (["pdata[self.context['id_main']]"], {}), "(pdata[self.context['id_main']])\n", (77147, 77179), True, 'import numpy as np\n'), ((77220, 77239), 'numpy.array', 'np.array', (['[id_list]'], {}), '([id_list])\n', (77228, 77239), True, 'import numpy as np\n'), ((59231, 59259), 'requests.get', 'requests.get', (['url'], {'timeout': '(2)'}), '(url, timeout=2)\n', (59243, 59259), False, 'import requests\n'), ((79170, 79212), 'numpy.array', 'np.array', (["id_list[self.context['id_main']]"], {}), "(id_list[self.context['id_main']])\n", (79178, 79212), True, 'import numpy as np\n'), ((76885, 76909), 'dl.storeClient.get', 'storeClient.get', (['id_list'], {}), '(id_list)\n', (76900, 76909), False, 'from dl import storeClient\n'), ((49537, 49577), 'specutils.SpectrumCollection.from_spectra', 'SpectrumCollection.from_spectra', (['sp_data'], {}), '(sp_data)\n', (49568, 49577), False, 'from specutils import SpectrumCollection\n')]
import os,sys import pandas as pd import numpy as np import json,time import tensorflow as tf import filterSlidingWindow from tensorflow import keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Activation, Dropout,BatchNormalization,Conv2D,Conv1D,Flatten,LSTM,MaxPool1D,TimeDistributed from sklearn.preprocessing import LabelEncoder,LabelBinarizer from sklearn.model_selection import train_test_split, StratifiedKFold from tensorflow.keras.callbacks import TensorBoard from sklearn.metrics import confusion_matrix class dataModel: def __init__(self): """ loads, preprocess and splits data on start up. """ #initialize parameters self.xTrain = None self.yTrain = None self.xValidation = None self.yValidation = None self.xTest = None self.yTest = None self.nClasses = None self.models = None self.model = None self.loadPreprocessData() def loadPreprocessData(self): """ Loads data from the file data.json. Each trial is then filtered and windowed according to below parameters Afterwards the data is split stratified wise into training, validation and test sets. """ fs = 32 windowSize = fs*4 slide = fs*1 cutoff = 5 order = 4 labeledData = filterSlidingWindow.loadFileApplyfilterAndSlidingWindow(windowSize,slide,cutoff,order) self.stratifyData(labeledData) def stratifyData(self,data): """ Given data is split stratified wise into 70% training, 15% validation and 15% test sets. """ xTrain,xValidation,yTrain,yValidation = train_test_split(data["trials"],data['labels'],test_size = 0.3,random_state=42,stratify=data['labels']) xValidation,xTest,yValidation,yTest = train_test_split(xValidation,yValidation,test_size = 0.5,random_state=42,stratify=yValidation) encoder = LabelBinarizer() self.xTrain = np.array(xTrain).reshape((len(xTrain),128,3)) self.xValidation = np.array(xValidation).reshape((len(xValidation),128,3)) self.xTest = np.array(xTest).reshape((len(xTest),128,3)) self.yTrainDecoded = yTrain self.yTrain = encoder.fit_transform(yTrain) self.yValidation = encoder.fit_transform(yValidation) self.yTest = encoder.fit_transform(yTest) #after transforming to one hot label vectors, the length is equal to the amount of classes self.nClasses = len(self.yTest[0]) def buildNets1DLSTM(self): """ According to below lists, this function will build and compile several versions of a 1d convolutional neural network followed by a LSTM """ models = [] denseLayers = [0] CNNLayers = [3] filters = [128] for dense in denseLayers: for CNNLayer in CNNLayers: for filt in filters: nameOfModel = "{}-conv-{}-filter-{}-dense-{}".format(CNNLayer,filt,dense,int(time.time())) model = Sequential() model.add(Conv1D(input_shape = (128,3,),kernel_size = (3), padding = "valid", filters = filt)) model.add(Activation("elu")) model.add(BatchNormalization()) model.add(MaxPool1D(pool_size=2,padding="valid")) for _ in range(CNNLayer): model.add(Conv1D(kernel_size = (2), padding = "valid", filters = filt)) model.add(Activation("elu")) model.add(BatchNormalization()) model.add(MaxPool1D(pool_size=2,padding="valid")) #model.add(Flatten()) model.add(LSTM(100)) for _ in range(dense): model.add(Dense(filt)) model.add(Activation("elu")) model.add(Dense(self.nClasses, activation = "softmax" )) model.compile(loss='categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy']) #model.summary() keyVals = {"model":model, "name":nameOfModel} models.append(keyVals) self.models = models def crossTrainEval(self,name,epochs,batchSize): """ This method will run 10x cross fold validation on the compiled model stored in self.model """ print("training network {}".format(name)) skf = StratifiedKFold(n_splits=10, shuffle=True) cross = skf.split(self.xTrain,self.yTrainDecoded) trainAccuracies = [] evalAccuracies = [] for train,test in cross: model= keras.models.clone_model(self.model) model.build((None, 10)) # replace 10 with number of variables in input layer model.compile(optimizer='adam', loss='categorical_crossentropy',metrics = ['accuracy']) model.set_weights(self.model.get_weights()) model.fit(self.xTrain[train],self.yTrain[train],epochs = epochs, batch_size = batchSize, verbose = 0, validation_data = (self.xTrain[test],self.yTrain[test])) trainAccuracies.append(model.evaluate(self.xTrain[train],self.yTrain[train])[1]) evalAccuracies.append(model.evaluate(self.xTrain[test],self.yTrain[test])[1]) accuracies = (np.mean(trainAccuracies),np.mean(evalAccuracies)) print("crossval accuracies are {}".format(accuracies)) return accuracies def trainNetwork(self,epochs,batchSize): """ This method will train the current model stored in self.model with validation data """ print("training network") self.model.fit(self.xTrain,self.yTrain,epochs = epochs, batch_size = batchSize, verbose = 1, validation_data = (self.xValidation,self.yValidation)) def validateNetwork(self): """ This method will get the validation accuracy of the trained model stored in self.model """ accuracy = self.model.evaluate(self.xValidation,self.yValidation) print("The accurcy on the Eval Data was: " + str(accuracy)) return accuracy def testNetwork(self): """ This method will get the unseen test accuracy of the trained model stored in self.model """ accuracy = self.model.evaluate(self.xTest,self.yTest) print("The accurcy on the test Data was: " + str(accuracy)) dataModel1 = dataModel() dataModel1.buildNets1DLSTM() for keyVals in dataModel1.models: dataModel1.model = keyVals["model"] name = keyVals["name"] print("10x crossfold validating {}".format(name)) dataModel1.crossTrainEval(name,epochs=200,batchSize=100) print("training the {}".format(name)) dataModel1.trainNetwork(epochs=200,batchSize =100) valAcc = dataModel1.validateNetwork() if valAcc >= 0.9: break dataModel1.testNetwork()
[ "filterSlidingWindow.loadFileApplyfilterAndSlidingWindow", "sklearn.preprocessing.LabelBinarizer", "tensorflow.keras.layers.BatchNormalization", "tensorflow.keras.models.clone_model", "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.Conv1D", "sklearn.model_selection.train_test_split", "tensorflow.keras.layers.MaxPool1D", "time.time", "numpy.mean", "sklearn.model_selection.StratifiedKFold", "numpy.array", "tensorflow.keras.models.Sequential", "tensorflow.keras.layers.Activation", "tensorflow.keras.layers.LSTM" ]
[((1417, 1510), 'filterSlidingWindow.loadFileApplyfilterAndSlidingWindow', 'filterSlidingWindow.loadFileApplyfilterAndSlidingWindow', (['windowSize', 'slide', 'cutoff', 'order'], {}), '(windowSize, slide,\n cutoff, order)\n', (1472, 1510), False, 'import filterSlidingWindow\n'), ((1751, 1860), 'sklearn.model_selection.train_test_split', 'train_test_split', (["data['trials']", "data['labels']"], {'test_size': '(0.3)', 'random_state': '(42)', 'stratify': "data['labels']"}), "(data['trials'], data['labels'], test_size=0.3,\n random_state=42, stratify=data['labels'])\n", (1767, 1860), False, 'from sklearn.model_selection import train_test_split, StratifiedKFold\n'), ((1902, 2002), 'sklearn.model_selection.train_test_split', 'train_test_split', (['xValidation', 'yValidation'], {'test_size': '(0.5)', 'random_state': '(42)', 'stratify': 'yValidation'}), '(xValidation, yValidation, test_size=0.5, random_state=42,\n stratify=yValidation)\n', (1918, 2002), False, 'from sklearn.model_selection import train_test_split, StratifiedKFold\n'), ((2016, 2032), 'sklearn.preprocessing.LabelBinarizer', 'LabelBinarizer', ([], {}), '()\n', (2030, 2032), False, 'from sklearn.preprocessing import LabelEncoder, LabelBinarizer\n'), ((4713, 4755), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', ([], {'n_splits': '(10)', 'shuffle': '(True)'}), '(n_splits=10, shuffle=True)\n', (4728, 4755), False, 'from sklearn.model_selection import train_test_split, StratifiedKFold\n'), ((4923, 4959), 'tensorflow.keras.models.clone_model', 'keras.models.clone_model', (['self.model'], {}), '(self.model)\n', (4947, 4959), False, 'from tensorflow import keras\n'), ((5594, 5618), 'numpy.mean', 'np.mean', (['trainAccuracies'], {}), '(trainAccuracies)\n', (5601, 5618), True, 'import numpy as np\n'), ((5619, 5642), 'numpy.mean', 'np.mean', (['evalAccuracies'], {}), '(evalAccuracies)\n', (5626, 5642), True, 'import numpy as np\n'), ((2055, 2071), 'numpy.array', 'np.array', (['xTrain'], {}), '(xTrain)\n', (2063, 2071), True, 'import numpy as np\n'), ((2128, 2149), 'numpy.array', 'np.array', (['xValidation'], {}), '(xValidation)\n', (2136, 2149), True, 'import numpy as np\n'), ((2205, 2220), 'numpy.array', 'np.array', (['xTest'], {}), '(xTest)\n', (2213, 2220), True, 'import numpy as np\n'), ((3154, 3166), 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), '()\n', (3164, 3166), False, 'from tensorflow.keras.models import Sequential\n'), ((3197, 3271), 'tensorflow.keras.layers.Conv1D', 'Conv1D', ([], {'input_shape': '(128, 3)', 'kernel_size': '(3)', 'padding': '"""valid"""', 'filters': 'filt'}), "(input_shape=(128, 3), kernel_size=3, padding='valid', filters=filt)\n", (3203, 3271), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout, BatchNormalization, Conv2D, Conv1D, Flatten, LSTM, MaxPool1D, TimeDistributed\n'), ((3312, 3329), 'tensorflow.keras.layers.Activation', 'Activation', (['"""elu"""'], {}), "('elu')\n", (3322, 3329), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout, BatchNormalization, Conv2D, Conv1D, Flatten, LSTM, MaxPool1D, TimeDistributed\n'), ((3361, 3381), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (3379, 3381), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout, BatchNormalization, Conv2D, Conv1D, Flatten, LSTM, MaxPool1D, TimeDistributed\n'), ((3413, 3452), 'tensorflow.keras.layers.MaxPool1D', 'MaxPool1D', ([], {'pool_size': '(2)', 'padding': '"""valid"""'}), "(pool_size=2, padding='valid')\n", (3422, 3452), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout, BatchNormalization, Conv2D, Conv1D, Flatten, LSTM, MaxPool1D, TimeDistributed\n'), ((3871, 3880), 'tensorflow.keras.layers.LSTM', 'LSTM', (['(100)'], {}), '(100)\n', (3875, 3880), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout, BatchNormalization, Conv2D, Conv1D, Flatten, LSTM, MaxPool1D, TimeDistributed\n'), ((4077, 4119), 'tensorflow.keras.layers.Dense', 'Dense', (['self.nClasses'], {'activation': '"""softmax"""'}), "(self.nClasses, activation='softmax')\n", (4082, 4119), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout, BatchNormalization, Conv2D, Conv1D, Flatten, LSTM, MaxPool1D, TimeDistributed\n'), ((3112, 3123), 'time.time', 'time.time', ([], {}), '()\n', (3121, 3123), False, 'import json, time\n'), ((3554, 3606), 'tensorflow.keras.layers.Conv1D', 'Conv1D', ([], {'kernel_size': '(2)', 'padding': '"""valid"""', 'filters': 'filt'}), "(kernel_size=2, padding='valid', filters=filt)\n", (3560, 3606), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout, BatchNormalization, Conv2D, Conv1D, Flatten, LSTM, MaxPool1D, TimeDistributed\n'), ((3650, 3667), 'tensorflow.keras.layers.Activation', 'Activation', (['"""elu"""'], {}), "('elu')\n", (3660, 3667), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout, BatchNormalization, Conv2D, Conv1D, Flatten, LSTM, MaxPool1D, TimeDistributed\n'), ((3703, 3723), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (3721, 3723), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout, BatchNormalization, Conv2D, Conv1D, Flatten, LSTM, MaxPool1D, TimeDistributed\n'), ((3759, 3798), 'tensorflow.keras.layers.MaxPool1D', 'MaxPool1D', ([], {'pool_size': '(2)', 'padding': '"""valid"""'}), "(pool_size=2, padding='valid')\n", (3768, 3798), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout, BatchNormalization, Conv2D, Conv1D, Flatten, LSTM, MaxPool1D, TimeDistributed\n'), ((3960, 3971), 'tensorflow.keras.layers.Dense', 'Dense', (['filt'], {}), '(filt)\n', (3965, 3971), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout, BatchNormalization, Conv2D, Conv1D, Flatten, LSTM, MaxPool1D, TimeDistributed\n'), ((4007, 4024), 'tensorflow.keras.layers.Activation', 'Activation', (['"""elu"""'], {}), "('elu')\n", (4017, 4024), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout, BatchNormalization, Conv2D, Conv1D, Flatten, LSTM, MaxPool1D, TimeDistributed\n')]
#!/usr/bin/env python3 import numpy as np from matplotlib import pyplot as plt positiondata = np.loadtxt("positiondata.txt", delimiter=' ') measurementdata = np.loadtxt("measurementdata.txt", delimiter=' ') posteriordata = np.loadtxt("posterior.txt", delimiter=' ') plt.figure(figsize=(10,4)) plt.plot(np.arange(0, 50, 1), measurementdata, 'bx', label='measurements') total = 0 for hypothesis in posteriordata: plt.plot(np.arange(0, 50, 1), hypothesis, color="orange", linestyle='-', label='_nolegend_', alpha=0.01) total += 1 plt.plot(np.array([]), color="orange", label="estimate") plt.plot(np.arange(0, 50, 1), positiondata, 'r--', label='ground truth') plt.legend(loc="upper left") plt.savefig('kalman_img1.png', dpi=300)
[ "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "numpy.arange", "numpy.loadtxt", "numpy.array", "matplotlib.pyplot.savefig" ]
[((98, 143), 'numpy.loadtxt', 'np.loadtxt', (['"""positiondata.txt"""'], {'delimiter': '""" """'}), "('positiondata.txt', delimiter=' ')\n", (108, 143), True, 'import numpy as np\n'), ((162, 210), 'numpy.loadtxt', 'np.loadtxt', (['"""measurementdata.txt"""'], {'delimiter': '""" """'}), "('measurementdata.txt', delimiter=' ')\n", (172, 210), True, 'import numpy as np\n'), ((227, 269), 'numpy.loadtxt', 'np.loadtxt', (['"""posterior.txt"""'], {'delimiter': '""" """'}), "('posterior.txt', delimiter=' ')\n", (237, 269), True, 'import numpy as np\n'), ((271, 298), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 4)'}), '(figsize=(10, 4))\n', (281, 298), True, 'from matplotlib import pyplot as plt\n'), ((670, 698), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper left"""'}), "(loc='upper left')\n", (680, 698), True, 'from matplotlib import pyplot as plt\n'), ((699, 738), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""kalman_img1.png"""'], {'dpi': '(300)'}), "('kalman_img1.png', dpi=300)\n", (710, 738), True, 'from matplotlib import pyplot as plt\n'), ((308, 327), 'numpy.arange', 'np.arange', (['(0)', '(50)', '(1)'], {}), '(0, 50, 1)\n', (317, 327), True, 'import numpy as np\n'), ((548, 560), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (556, 560), True, 'import numpy as np\n'), ((606, 625), 'numpy.arange', 'np.arange', (['(0)', '(50)', '(1)'], {}), '(0, 50, 1)\n', (615, 625), True, 'import numpy as np\n'), ((428, 447), 'numpy.arange', 'np.arange', (['(0)', '(50)', '(1)'], {}), '(0, 50, 1)\n', (437, 447), True, 'import numpy as np\n')]
#! /usr/bin/env python # -*- coding: utf-8 -*- # # graph_tool -- a general graph manipulation python module # # Copyright (C) 2006-2018 <NAME> <<EMAIL>> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ ``graph_tool.spectral`` - Spectral properties --------------------------------------------- Summary +++++++ .. autosummary:: :nosignatures: adjacency laplacian incidence transition modularity_matrix Contents ++++++++ """ from __future__ import division, absolute_import, print_function from .. import _degree, _prop, Graph, GraphView, _limit_args from .. stats import label_self_loops import numpy import scipy.sparse import scipy.sparse.linalg from .. dl_import import dl_import dl_import("from . import libgraph_tool_spectral") __all__ = ["adjacency", "laplacian", "incidence", "transition", "modularity_matrix"] def adjacency(g, weight=None, index=None): r"""Return the adjacency matrix of the graph. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used. weight : :class:`~graph_tool.PropertyMap` (optional, default: True) Edge property map with the edge weights. index : :class:`~graph_tool.PropertyMap` (optional, default: None) Vertex property map specifying the row/column indexes. If not provided, the internal vertex index is used. Returns ------- a : :class:`~scipy.sparse.csr_matrix` The (sparse) adjacency matrix. Notes ----- The adjacency matrix is defined as .. math:: a_{i,j} = \begin{cases} 1 & \text{if } (j, i) \in E, \\ 2 & \text{if } i = j \text{ and } (i, i) \in E, \\ 0 & \text{otherwise}, \end{cases} where :math:`E` is the edge set. In the case of weighted edges, the entry values are multiplied by the weight of the respective edge. In the case of networks with parallel edges, the entries in the matrix become simply the edge multiplicities (or twice them for the diagonal). .. note:: For directed graphs the definition above means that the entry :math:`a_{i,j}` corresponds to the directed edge :math:`j\to i`. Although this is a typical definition in network and graph theory literature, many also use the transpose of this matrix. Examples -------- .. testsetup:: import scipy.linalg from pylab import * >>> g = gt.collection.data["polblogs"] >>> A = gt.adjacency(g) >>> ew, ev = scipy.linalg.eig(A.todense()) >>> figure(figsize=(8, 2)) <...> >>> scatter(real(ew), imag(ew), c=sqrt(abs(ew)), linewidths=0, alpha=0.6) <...> >>> xlabel(r"$\operatorname{Re}(\lambda)$") Text(...) >>> ylabel(r"$\operatorname{Im}(\lambda)$") Text(...) >>> tight_layout() >>> savefig("adjacency-spectrum.pdf") .. testcode:: :hide: savefig("adjacency-spectrum.png") .. figure:: adjacency-spectrum.* :align: center Adjacency matrix spectrum for the political blog network. References ---------- .. [wikipedia-adjacency] http://en.wikipedia.org/wiki/Adjacency_matrix """ if index is None: if g.get_vertex_filter()[0] is not None: index = g.new_vertex_property("int64_t") index.fa = numpy.arange(g.num_vertices()) else: index = g.vertex_index E = g.num_edges() if g.is_directed() else 2 * g.num_edges() data = numpy.zeros(E, dtype="double") i = numpy.zeros(E, dtype="int32") j = numpy.zeros(E, dtype="int32") libgraph_tool_spectral.adjacency(g._Graph__graph, _prop("v", g, index), _prop("e", g, weight), data, i, j) if E > 0: V = max(g.num_vertices(), max(i.max() + 1, j.max() + 1)) else: V = g.num_vertices() m = scipy.sparse.coo_matrix((data, (i,j)), shape=(V, V)) m = m.tocsr() return m @_limit_args({"deg": ["total", "in", "out"]}) def laplacian(g, deg="total", normalized=False, weight=None, index=None): r"""Return the Laplacian matrix of the graph. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used. deg : str (optional, default: "total") Degree to be used, in case of a directed graph. normalized : bool (optional, default: False) Whether to compute the normalized Laplacian. weight : :class:`~graph_tool.PropertyMap` (optional, default: True) Edge property map with the edge weights. index : :class:`~graph_tool.PropertyMap` (optional, default: None) Vertex property map specifying the row/column indexes. If not provided, the internal vertex index is used. Returns ------- l : :class:`~scipy.sparse.csr_matrix` The (sparse) Laplacian matrix. Notes ----- The weighted Laplacian matrix is defined as .. math:: \ell_{ij} = \begin{cases} \Gamma(v_i) & \text{if } i = j \\ -w_{ij} & \text{if } i \neq j \text{ and } (j, i) \in E \\ 0 & \text{otherwise}. \end{cases} Where :math:`\Gamma(v_i)=\sum_j A_{ij}w_{ij}` is sum of the weights of the edges incident on vertex :math:`v_i`. The normalized version is .. math:: \ell_{ij} = \begin{cases} 1 & \text{ if } i = j \text{ and } \Gamma(v_i) \neq 0 \\ -\frac{w_{ij}}{\sqrt{\Gamma(v_i)\Gamma(v_j)}} & \text{ if } i \neq j \text{ and } (j, i) \in E \\ 0 & \text{otherwise}. \end{cases} In the case of unweighted edges, it is assumed :math:`w_{ij} = 1`. For directed graphs, it is assumed :math:`\Gamma(v_i)=\sum_j A_{ij}w_{ij} + \sum_j A_{ji}w_{ji}` if ``deg=="total"``, :math:`\Gamma(v_i)=\sum_j A_{ji}w_{ji}` if ``deg=="out"`` or :math:`\Gamma(v_i)=\sum_j A_{ij}w_{ij}` ``deg=="in"``. .. note:: For directed graphs the definition above means that the entry :math:`\ell_{i,j}` corresponds to the directed edge :math:`j\to i`. Although this is a typical definition in network and graph theory literature, many also use the transpose of this matrix. Examples -------- .. testsetup:: import scipy.linalg from pylab import * >>> g = gt.collection.data["polblogs"] >>> L = gt.laplacian(g) >>> ew, ev = scipy.linalg.eig(L.todense()) >>> figure(figsize=(8, 2)) <...> >>> scatter(real(ew), imag(ew), c=sqrt(abs(ew)), linewidths=0, alpha=0.6) <...> >>> xlabel(r"$\operatorname{Re}(\lambda)$") Text(...) >>> ylabel(r"$\operatorname{Im}(\lambda)$") Text(...) >>> tight_layout() >>> savefig("laplacian-spectrum.pdf") .. testcode:: :hide: savefig("laplacian-spectrum.png") .. figure:: laplacian-spectrum.* :align: center Laplacian matrix spectrum for the political blog network. >>> L = gt.laplacian(g, normalized=True) >>> ew, ev = scipy.linalg.eig(L.todense()) >>> figure(figsize=(8, 2)) <...> >>> scatter(real(ew), imag(ew), c=sqrt(abs(ew)), linewidths=0, alpha=0.6) <...> >>> xlabel(r"$\operatorname{Re}(\lambda)$") Text(...) >>> ylabel(r"$\operatorname{Im}(\lambda)$") Text(...) >>> tight_layout() >>> savefig("norm-laplacian-spectrum.pdf") .. testcode:: :hide: savefig("norm-laplacian-spectrum.png") .. figure:: norm-laplacian-spectrum.* :align: center Normalized Laplacian matrix spectrum for the political blog network. References ---------- .. [wikipedia-laplacian] http://en.wikipedia.org/wiki/Laplacian_matrix """ if index is None: if g.get_vertex_filter()[0] is not None: index = g.new_vertex_property("int64_t") index.fa = numpy.arange(g.num_vertices()) else: index = g.vertex_index V = g.num_vertices() nself = int(label_self_loops(g, mark_only=True).a.sum()) E = g.num_edges() - nself if not g.is_directed(): E *= 2 N = E + g.num_vertices() data = numpy.zeros(N, dtype="double") i = numpy.zeros(N, dtype="int32") j = numpy.zeros(N, dtype="int32") if normalized: libgraph_tool_spectral.norm_laplacian(g._Graph__graph, _prop("v", g, index), _prop("e", g, weight), deg, data, i, j) else: libgraph_tool_spectral.laplacian(g._Graph__graph, _prop("v", g, index), _prop("e", g, weight), deg, data, i, j) if E > 0: V = max(g.num_vertices(), max(i.max() + 1, j.max() + 1)) else: V = g.num_vertices() m = scipy.sparse.coo_matrix((data, (i, j)), shape=(V, V)) m = m.tocsr() return m def incidence(g, vindex=None, eindex=None): r"""Return the incidence matrix of the graph. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used. vindex : :class:`~graph_tool.PropertyMap` (optional, default: None) Vertex property map specifying the row indexes. If not provided, the internal vertex index is used. eindex : :class:`~graph_tool.PropertyMap` (optional, default: None) Edge property map specifying the column indexes. If not provided, the internal edge index is used. Returns ------- a : :class:`~scipy.sparse.csr_matrix` The (sparse) incidence matrix. Notes ----- For undirected graphs, the incidence matrix is defined as .. math:: b_{i,j} = \begin{cases} 1 & \text{if vertex } v_i \text{and edge } e_j \text{ are incident}, \\ 0 & \text{otherwise} \end{cases} For directed graphs, the definition is .. math:: b_{i,j} = \begin{cases} 1 & \text{if edge } e_j \text{ enters vertex } v_i, \\ -1 & \text{if edge } e_j \text{ leaves vertex } v_i, \\ 0 & \text{otherwise} \end{cases} Examples -------- .. testsetup:: gt.seed_rng(42) >>> g = gt.random_graph(100, lambda: (2,2)) >>> m = gt.incidence(g) >>> print(m.todense()) [[-1. -1. 0. ... 0. 0. 0.] [ 0. 0. 0. ... 0. 0. 0.] [ 0. 0. 0. ... 0. 0. 0.] ... [ 0. 0. -1. ... 0. 0. 0.] [ 0. 0. 0. ... 0. 0. 0.] [ 0. 0. 0. ... 0. 0. 0.]] References ---------- .. [wikipedia-incidence] http://en.wikipedia.org/wiki/Incidence_matrix """ if vindex is None: if g.get_edge_filter()[0] is not None: vindex = g.new_vertex_property("int64_t") vindex.fa = numpy.arange(g.num_vertices()) else: vindex = g.vertex_index if eindex is None: if g.get_edge_filter()[0] is not None: eindex = g.new_edge_property("int64_t") eindex.fa = numpy.arange(g.num_edges()) else: eindex = g.edge_index E = g.num_edges() if E == 0: raise ValueError("Cannot construct incidence matrix for a graph with no edges.") data = numpy.zeros(2 * E, dtype="double") i = numpy.zeros(2 * E, dtype="int32") j = numpy.zeros(2 * E, dtype="int32") libgraph_tool_spectral.incidence(g._Graph__graph, _prop("v", g, vindex), _prop("e", g, eindex), data, i, j) m = scipy.sparse.coo_matrix((data, (i,j))) m = m.tocsr() return m def transition(g, weight=None, index=None): r"""Return the transition matrix of the graph. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used. weight : :class:`~graph_tool.PropertyMap` (optional, default: True) Edge property map with the edge weights. index : :class:`~graph_tool.PropertyMap` (optional, default: None) Vertex property map specifying the row/column indexes. If not provided, the internal vertex index is used. Returns ------- T : :class:`~scipy.sparse.csr_matrix` The (sparse) transition matrix. Notes ----- The transition matrix is defined as .. math:: T_{ij} = \frac{A_{ij}}{k_j} where :math:`k_i = \sum_j A_{ji}`, and :math:`A_{ij}` is the adjacency matrix. In the case of weighted edges, the values of the adjacency matrix are multiplied by the edge weights. .. note:: For directed graphs the definition above means that the entry :math:`T_{ij}` corresponds to the directed edge :math:`j\to i`. Although this is a typical definition in network and graph theory literature, many also use the transpose of this matrix. Examples -------- .. testsetup:: import scipy.linalg from pylab import * >>> g = gt.collection.data["polblogs"] >>> T = gt.transition(g) >>> ew, ev = scipy.linalg.eig(T.todense()) >>> figure(figsize=(8, 2)) <...> >>> scatter(real(ew), imag(ew), c=sqrt(abs(ew)), linewidths=0, alpha=0.6) <...> >>> xlabel(r"$\operatorname{Re}(\lambda)$") Text(...) >>> ylabel(r"$\operatorname{Im}(\lambda)$") Text(...) >>> tight_layout() >>> savefig("transition-spectrum.pdf") .. testcode:: :hide: savefig("transition-spectrum.png") .. figure:: transition-spectrum.* :align: center Transition matrix spectrum for the political blog network. References ---------- .. [wikipedia-transition] https://en.wikipedia.org/wiki/Stochastic_matrix """ if index is None: if g.get_vertex_filter()[0] is not None: index = g.new_vertex_property("int64_t") index.fa = numpy.arange(g.num_vertices()) else: index = g.vertex_index E = g.num_edges() if g.is_directed() else 2 * g.num_edges() data = numpy.zeros(E, dtype="double") i = numpy.zeros(E, dtype="int32") j = numpy.zeros(E, dtype="int32") libgraph_tool_spectral.transition(g._Graph__graph, _prop("v", g, index), _prop("e", g, weight), data, i, j) if E > 0: V = max(g.num_vertices(), max(i.max() + 1, j.max() + 1)) else: V = g.num_vertices() m = scipy.sparse.coo_matrix((data, (i,j)), shape=(V, V)) m = m.tocsr() return m def modularity_matrix(g, weight=None, index=None): r"""Return the modularity matrix of the graph. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used. weight : :class:`~graph_tool.PropertyMap` (optional, default: True) Edge property map with the edge weights. index : :class:`~graph_tool.PropertyMap` (optional, default: None) Vertex property map specifying the row/column indexes. If not provided, the internal vertex index is used. Returns ------- B : :class:`~scipy.sparse.linalg.LinearOperator` The (sparse) modularity matrix, represented as a :class:`~scipy.sparse.linalg.LinearOperator`. Notes ----- The modularity matrix is defined as .. math:: B_{ij} = A_{ij} - \frac{k^+_i k^-_j}{2E} where :math:`k^+_i = \sum_j A_{ji}`, :math:`k^-_i = \sum_j A_{ij}`, :math:`2E=\sum_{ij}A_{ij}` and :math:`A_{ij}` is the adjacency matrix. In the case of weighted edges, the values of the adjacency matrix are multiplied by the edge weights. Examples -------- .. testsetup:: import scipy.linalg from pylab import * >>> g = gt.collection.data["polblogs"] >>> B = gt.modularity_matrix(g) >>> B = B * np.identity(B.shape[0]) # transform to a dense matrix >>> ew, ev = scipy.linalg.eig(B) >>> figure(figsize=(8, 2)) <...> >>> scatter(real(ew), imag(ew), c=sqrt(abs(ew)), linewidths=0, alpha=0.6) <...> >>> xlabel(r"$\operatorname{Re}(\lambda)$") Text(...) >>> ylabel(r"$\operatorname{Im}(\lambda)$") Text(...) >>> tight_layout() >>> savefig("modularity-spectrum.pdf") .. testcode:: :hide: savefig("modularity-spectrum.png") .. figure:: modularity-spectrum.* :align: center Modularity matrix spectrum for the political blog network. References ---------- .. [newman-modularity] <NAME>, <NAME>, "Finding and evaluating community structure in networks", Phys. Rev. E 69, 026113 (2004). :doi:`10.1103/PhysRevE.69.026113` """ A = adjacency(g, weight=weight, index=index) if g.is_directed(): k_in = g.degree_property_map("in", weight=weight).fa else: k_in = g.degree_property_map("out", weight=weight).fa k_out = g.degree_property_map("out", weight=weight).fa N = A.shape[0] E2 = float(k_out.sum()) def matvec(x): M = x.shape[0] if len(x.shape) > 1: x = x.reshape(M) nx = A * x - k_out * numpy.dot(k_in, x) / E2 return nx def rmatvec(x): M = x.shape[0] if len(x.shape) > 1: x = x.reshape(M) nx = A.T * x - k_in * numpy.dot(k_out, x) / E2 return nx B = scipy.sparse.linalg.LinearOperator((g.num_vertices(), g.num_vertices()), matvec=matvec, rmatvec=rmatvec, dtype="float") return B
[ "numpy.dot", "numpy.zeros" ]
[((4078, 4108), 'numpy.zeros', 'numpy.zeros', (['E'], {'dtype': '"""double"""'}), "(E, dtype='double')\n", (4089, 4108), False, 'import numpy\n'), ((4117, 4146), 'numpy.zeros', 'numpy.zeros', (['E'], {'dtype': '"""int32"""'}), "(E, dtype='int32')\n", (4128, 4146), False, 'import numpy\n'), ((4155, 4184), 'numpy.zeros', 'numpy.zeros', (['E'], {'dtype': '"""int32"""'}), "(E, dtype='int32')\n", (4166, 4184), False, 'import numpy\n'), ((8721, 8751), 'numpy.zeros', 'numpy.zeros', (['N'], {'dtype': '"""double"""'}), "(N, dtype='double')\n", (8732, 8751), False, 'import numpy\n'), ((8760, 8789), 'numpy.zeros', 'numpy.zeros', (['N'], {'dtype': '"""int32"""'}), "(N, dtype='int32')\n", (8771, 8789), False, 'import numpy\n'), ((8798, 8827), 'numpy.zeros', 'numpy.zeros', (['N'], {'dtype': '"""int32"""'}), "(N, dtype='int32')\n", (8809, 8827), False, 'import numpy\n'), ((11735, 11769), 'numpy.zeros', 'numpy.zeros', (['(2 * E)'], {'dtype': '"""double"""'}), "(2 * E, dtype='double')\n", (11746, 11769), False, 'import numpy\n'), ((11778, 11811), 'numpy.zeros', 'numpy.zeros', (['(2 * E)'], {'dtype': '"""int32"""'}), "(2 * E, dtype='int32')\n", (11789, 11811), False, 'import numpy\n'), ((11820, 11853), 'numpy.zeros', 'numpy.zeros', (['(2 * E)'], {'dtype': '"""int32"""'}), "(2 * E, dtype='int32')\n", (11831, 11853), False, 'import numpy\n'), ((14469, 14499), 'numpy.zeros', 'numpy.zeros', (['E'], {'dtype': '"""double"""'}), "(E, dtype='double')\n", (14480, 14499), False, 'import numpy\n'), ((14508, 14537), 'numpy.zeros', 'numpy.zeros', (['E'], {'dtype': '"""int32"""'}), "(E, dtype='int32')\n", (14519, 14537), False, 'import numpy\n'), ((14546, 14575), 'numpy.zeros', 'numpy.zeros', (['E'], {'dtype': '"""int32"""'}), "(E, dtype='int32')\n", (14557, 14575), False, 'import numpy\n'), ((17506, 17524), 'numpy.dot', 'numpy.dot', (['k_in', 'x'], {}), '(k_in, x)\n', (17515, 17524), False, 'import numpy\n'), ((17680, 17699), 'numpy.dot', 'numpy.dot', (['k_out', 'x'], {}), '(k_out, x)\n', (17689, 17699), False, 'import numpy\n')]
# --------------------------------------------------------------- # het_util.py # Set-up time: 2021/4/1 11:40 # Copyright (c) 2020 ICT # Licensed under The MIT License [see LICENSE for details] # Written by Kenneth-Wong (Wenbin-Wang) @ VIPL.ICT # Contact: <EMAIL> [OR] <EMAIL> # --------------------------------------------------------------- import torch import numpy as np from .vctree_util import ArbitraryTree from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps def generate_forest(det_result, pick_parent, isc_thresh, child_order='leftright', num_embed_depth=None, need_depth=False): """ generate a list of trees that covers all the objects in a batch im_inds: [obj_num] box_priors: [obj_num, (x1, y1, x2, y2)] pair_scores: [obj_num, obj_num] output: list of trees, each present a chunk of overlaping objects """ output_forest = [] # the list of trees, each one is a chunk of overlapping objects output_depths = [] # the list of tree depths, all_bboxes, all_dists, all_labels = det_result.bboxes, det_result.dists, det_result.labels num_objs = [len(b) for b in all_bboxes] if all_dists is not None: node_scores = [dist.max(1)[0] for dist in all_dists] else: node_scores = [torch.ones(len(b)).to(all_bboxes[0]) for b in all_bboxes] areas = torch.cat(all_bboxes, 0) areas = (areas[:, 3] - areas[:, 1] + 1) * (areas[:, 2] - areas[:, 0] + 1) split_areas = areas.split(num_objs) split_areas = [a.cpu().numpy() for a in split_areas] all_sorted_idxes = [np.argsort(a)[::-1] for a in split_areas] bbox_intersections = [bbox_overlaps(boxes.cpu().numpy()[:, :4], boxes.cpu().numpy()[:, :4], mode='iof') for boxes in all_bboxes] offset = 0 for img_id, (scores, bboxes, labels, areas, sorted_idxes, intersection, num_obj) in enumerate(zip(node_scores, all_bboxes, all_labels, split_areas, all_sorted_idxes, bbox_intersections, num_objs)): # select the nodes from the same image node_container = [] depth_labels = np.zeros(num_objs[img_id], dtype=np.int32) # note: the index of root is the N+tree_id root = ArbitraryTree(sum(num_objs)+img_id, -1, -1, is_root=True) bboxes = bboxes[:, :4] # put all nodes into node container for idx in range(num_obj): new_node = ArbitraryTree(offset + idx, scores[idx], labels[idx], bboxes[idx]) node_container.append(new_node) # iteratively generate tree gen_het(node_container, root, areas, sorted_idxes, intersection, pick_parent=pick_parent, isc_thresh=isc_thresh, child_order=child_order) if need_depth: get_tree_depth(root, depth_labels, offset, num_embed_depth) output_depths.append(torch.from_numpy(depth_labels).long().to(bboxes.device)) output_forest.append(root) offset += num_obj if need_depth: output_depths = torch.cat(output_depths, 0) return output_forest, output_depths def gen_het(node_container, root, areas, sorted_idxes, intersection, pick_parent='area', isc_thresh=0.9, child_order='leftright'): num_nodes = len(node_container) if num_nodes == 0: return # first step: sort the rois according to areas sorted_node_container = [node_container[i] for i in sorted_idxes] if pick_parent == 'isc': sort_key = 1 elif pick_parent == 'area': sort_key = 2 else: raise NotImplementedError # i, j for sorted_node_container, origin_i, origin_j for node_container for i in range(num_nodes): current_node = sorted_node_container[i] possible_parent = [] origin_i = sorted_idxes[i] for j in range(0, i): # all nodes that are larger than current_node origin_j = sorted_idxes[j] M = intersection[origin_i, origin_j] N = intersection[origin_j, origin_i] if M > isc_thresh: possible_parent.append((j, N, areas[origin_j])) if len(possible_parent) == 0: # assign the parrent of i as root root.add_child(current_node) else: if pick_parent != 'area' and pick_parent != 'isc': raise NotImplementedError('%s for pick_parent not implemented' % pick_parent) parent_id = sorted(possible_parent, key=lambda d: d[sort_key], reverse=True)[0][0] sorted_node_container[parent_id].add_child(current_node) # sort the children sort_childs(root, child_order) def sort_childs(root, order='leftright'): if len(root.children) == 0: return children = root.children boxes = np.vstack([n.box.cpu().numpy() for n in children]) node_scores = np.array([n.score for n in children]) if order == 'leftright': scores = (boxes[:, 0] + boxes[:, 2]) / 2 scores = scores / (np.max(scores) + 1) elif order == 'size': scores = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1) scores = scores / (np.max(scores) + 1) elif order == 'confidence': scores = node_scores elif order == 'random': scores = np.random.rand(len(children)) else: raise NotImplementedError('Unknown sorting method: %s' % order) sorted_id = np.argsort(-scores) root.children = [children[i] for i in sorted_id] for i in range(len(root.children)): sort_childs(root.children[i], order) def get_tree_depth(root, tree_depths, offset, num_embed_depth): if root.parent is not None: depth = root.depth() if num_embed_depth is not None and depth >= num_embed_depth: depth = num_embed_depth - 1 tree_depths[root.index - offset] = depth for c in root.children: get_tree_depth(c, tree_depths, offset, num_embed_depth)
[ "numpy.zeros", "torch.cat", "numpy.argsort", "numpy.max", "numpy.array", "torch.from_numpy" ]
[((1370, 1394), 'torch.cat', 'torch.cat', (['all_bboxes', '(0)'], {}), '(all_bboxes, 0)\n', (1379, 1394), False, 'import torch\n'), ((5522, 5559), 'numpy.array', 'np.array', (['[n.score for n in children]'], {}), '([n.score for n in children])\n', (5530, 5559), True, 'import numpy as np\n'), ((6088, 6107), 'numpy.argsort', 'np.argsort', (['(-scores)'], {}), '(-scores)\n', (6098, 6107), True, 'import numpy as np\n'), ((2743, 2785), 'numpy.zeros', 'np.zeros', (['num_objs[img_id]'], {'dtype': 'np.int32'}), '(num_objs[img_id], dtype=np.int32)\n', (2751, 2785), True, 'import numpy as np\n'), ((3668, 3695), 'torch.cat', 'torch.cat', (['output_depths', '(0)'], {}), '(output_depths, 0)\n', (3677, 3695), False, 'import torch\n'), ((1598, 1611), 'numpy.argsort', 'np.argsort', (['a'], {}), '(a)\n', (1608, 1611), True, 'import numpy as np\n'), ((5668, 5682), 'numpy.max', 'np.max', (['scores'], {}), '(scores)\n', (5674, 5682), True, 'import numpy as np\n'), ((5827, 5841), 'numpy.max', 'np.max', (['scores'], {}), '(scores)\n', (5833, 5841), True, 'import numpy as np\n'), ((3501, 3531), 'torch.from_numpy', 'torch.from_numpy', (['depth_labels'], {}), '(depth_labels)\n', (3517, 3531), False, 'import torch\n')]
import matplotlib.pyplot as plt import numpy as np import math from collections import defaultdict class Graph: def __init__(self): self.graph = defaultdict(list) def addEdge(self, u, v): self.graph[u].append(v) def delEdge(self, u): self.graph[u].clear() def DFSUtil(self, v, visited): visited.add(v) for neighbour in self.graph[v]: if neighbour not in visited: self.DFSUtil(neighbour, visited) def DFS(self, v): visited = set() self.DFSUtil(v, visited) return visited color=['g', 'r', 'b', 'g'] file = open("CSCI3230_ClusteringData.csv") title = np.loadtxt(file, delimiter=",", dtype = str, max_rows=1) pointData = np.loadtxt(file, delimiter=",") file.close() file = open("CSCI3230_initialCluster.csv") initCluster = np.loadtxt(file, delimiter=",", skiprows=1) file.close() file = open("DBSCAN_Clustering Parameters.csv") e, minPts = np.loadtxt(file, delimiter=",", skiprows=1) dist = np.zeros((pointData.shape[0], pointData.shape[0])) file.close() core = np.zeros((pointData.shape[0])) g = Graph() for i, record1 in enumerate(pointData): dist[i][i] = -1 for j, record2 in enumerate(pointData[:i]): if (((record1[0] - record2[0])**2 + (record1[1] - record2[1])**2)**0.5 <= e): dist[i][j] = -1 dist[j][i] = -1 g.addEdge(i, j) g.addEdge(j, i) for i, record in enumerate(dist): print("%c's neighbour: " % chr(i+ord('a')), end = " ") for j, element in enumerate(record): if (element == -1): print("%c" % chr(j+ord('a')), end = " ") print() print("Core points:", end = " ") for i, record in enumerate(dist): if np.sum(record) <= -minPts: print("%c" % chr(i+ord('a')), end = " ") core[i] = -1 else: g.delEdge(i) print() clusternum = -1 cluster = [] for i, isCore in enumerate(core): if (isCore == -1): cluster.append([]) clusternum += 1 cluster[clusternum] = g.DFS(i) for j, removecore in enumerate(cluster[clusternum]): core[removecore] = clusternum + 1 pointData[removecore][2] = clusternum + 1 for i, corenum in enumerate(cluster): print(cluster[i]) for record in pointData: plt.scatter(record[0], record[1], c=color[int(record[2])]) plt.title("Q3d DBSCAN model") plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "numpy.sum", "numpy.zeros", "collections.defaultdict", "numpy.loadtxt" ]
[((686, 740), 'numpy.loadtxt', 'np.loadtxt', (['file'], {'delimiter': '""","""', 'dtype': 'str', 'max_rows': '(1)'}), "(file, delimiter=',', dtype=str, max_rows=1)\n", (696, 740), True, 'import numpy as np\n'), ((756, 787), 'numpy.loadtxt', 'np.loadtxt', (['file'], {'delimiter': '""","""'}), "(file, delimiter=',')\n", (766, 787), True, 'import numpy as np\n'), ((863, 906), 'numpy.loadtxt', 'np.loadtxt', (['file'], {'delimiter': '""","""', 'skiprows': '(1)'}), "(file, delimiter=',', skiprows=1)\n", (873, 906), True, 'import numpy as np\n'), ((985, 1028), 'numpy.loadtxt', 'np.loadtxt', (['file'], {'delimiter': '""","""', 'skiprows': '(1)'}), "(file, delimiter=',', skiprows=1)\n", (995, 1028), True, 'import numpy as np\n'), ((1037, 1087), 'numpy.zeros', 'np.zeros', (['(pointData.shape[0], pointData.shape[0])'], {}), '((pointData.shape[0], pointData.shape[0]))\n', (1045, 1087), True, 'import numpy as np\n'), ((1112, 1140), 'numpy.zeros', 'np.zeros', (['pointData.shape[0]'], {}), '(pointData.shape[0])\n', (1120, 1140), True, 'import numpy as np\n'), ((2425, 2454), 'matplotlib.pyplot.title', 'plt.title', (['"""Q3d DBSCAN model"""'], {}), "('Q3d DBSCAN model')\n", (2434, 2454), True, 'import matplotlib.pyplot as plt\n'), ((2456, 2466), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2464, 2466), True, 'import matplotlib.pyplot as plt\n'), ((165, 182), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (176, 182), False, 'from collections import defaultdict\n'), ((1782, 1796), 'numpy.sum', 'np.sum', (['record'], {}), '(record)\n', (1788, 1796), True, 'import numpy as np\n')]
import copy import numpy as np class BaseElement(object): def __init__(self, object_index, medium_index, fl_brightness, points): """Initialize a basic element Parameters ---------- object_index: float Refractive index of the element medium_index: float Refractive index of surrounding medium fl_brightness: float Fluorescence brightness points: 2d ndarray Coordinates of the element [m] Notes ----- When subclassing this class, override this method with additional parameters (e.g. position, size) and call it with super(ClassName, self).__init__(...). """ #: refractive index of the object self.object_index = object_index #: refractive index of the medium self.medium_index = medium_index #: brightness of the fluorescence signal self.fl_brightness = fl_brightness #: 2D array of points describing the geometrical object. This #: variable is used for affine transforms (e.g. when rotating #: the object). self.points = np.array(points) def draw(self, grid_size, pixel_size): ri = np.ones(grid_size, dtype=float) * self.medium_index fl = np.zeros(grid_size, dtype=float) for pp in self.points: # ODTbrain convention cy, cz, cx = np.array(pp/pixel_size, dtype=int) ri[cx, cy, cz] = self.object_index fl[cx, cy, cz] = self.fl_brightness return ri, fl def transform(self, x=0, y=0, z=0, rot_main=0, rot_in_plane=0, rot_perp_plane=0): """Rotate and translate self.points Notes ----- - By convention, sinogram generation in cellsino is performed by modifying the pitch (rotation about y-axis). - Rotation is performed prior to translation. First, the points are rotated about the y-axis (``rot_main``, the main sinogram acquisition angle). Second, the points are rotated about the x-axis (``rot_perp_plane``, perpendicular to the imaging plane). Third, the points are rotated about the z-axis (``rot_in_plane``, within the imaging plane). """ # The definition of the angles are such that the sinogram # can be plugged right into ODTbrain/radontea without # transposing it (when only `rot_main` is set). alpha = -rot_main beta = rot_perp_plane gamma = rot_in_plane Rx = np.array([ [1, 0, 0], [0, np.cos(alpha), -np.sin(alpha)], [0, np.sin(alpha), np.cos(alpha)], ]) Ry = np.array([ [np.cos(beta), 0, np.sin(beta)], [0, 1, 0], [-np.sin(beta), 0, np.cos(beta)], ]) Rz = np.array([ [np.cos(gamma), -np.sin(gamma), 0], [np.sin(gamma), np.cos(gamma), 0], [0, 0, 1], ]) R = np.dot(np.dot(Ry, Rz), Rx) rotated = np.dot(R, self.points.T).T rotated_pad = np.pad(rotated, ((0, 0), (0, 1)), mode="constant", constant_values=1) T = np.array([[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1], ]) translated = np.dot(T, rotated_pad.T)[:-1].T # return a copy of the current instance with points transformed telement = copy.copy(self) telement.points = translated return telement
[ "numpy.pad", "numpy.zeros", "numpy.ones", "copy.copy", "numpy.sin", "numpy.array", "numpy.cos", "numpy.dot" ]
[((1179, 1195), 'numpy.array', 'np.array', (['points'], {}), '(points)\n', (1187, 1195), True, 'import numpy as np\n'), ((1318, 1350), 'numpy.zeros', 'np.zeros', (['grid_size'], {'dtype': 'float'}), '(grid_size, dtype=float)\n', (1326, 1350), True, 'import numpy as np\n'), ((3355, 3424), 'numpy.pad', 'np.pad', (['rotated', '((0, 0), (0, 1))'], {'mode': '"""constant"""', 'constant_values': '(1)'}), "(rotated, ((0, 0), (0, 1)), mode='constant', constant_values=1)\n", (3361, 3424), True, 'import numpy as np\n'), ((3467, 3533), 'numpy.array', 'np.array', (['[[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]]'], {}), '([[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]])\n', (3475, 3533), True, 'import numpy as np\n'), ((3769, 3784), 'copy.copy', 'copy.copy', (['self'], {}), '(self)\n', (3778, 3784), False, 'import copy\n'), ((1253, 1284), 'numpy.ones', 'np.ones', (['grid_size'], {'dtype': 'float'}), '(grid_size, dtype=float)\n', (1260, 1284), True, 'import numpy as np\n'), ((1441, 1477), 'numpy.array', 'np.array', (['(pp / pixel_size)'], {'dtype': 'int'}), '(pp / pixel_size, dtype=int)\n', (1449, 1477), True, 'import numpy as np\n'), ((3268, 3282), 'numpy.dot', 'np.dot', (['Ry', 'Rz'], {}), '(Ry, Rz)\n', (3274, 3282), True, 'import numpy as np\n'), ((3306, 3330), 'numpy.dot', 'np.dot', (['R', 'self.points.T'], {}), '(R, self.points.T)\n', (3312, 3330), True, 'import numpy as np\n'), ((3645, 3669), 'numpy.dot', 'np.dot', (['T', 'rotated_pad.T'], {}), '(T, rotated_pad.T)\n', (3651, 3669), True, 'import numpy as np\n'), ((2691, 2704), 'numpy.cos', 'np.cos', (['alpha'], {}), '(alpha)\n', (2697, 2704), True, 'import numpy as np\n'), ((2749, 2762), 'numpy.sin', 'np.sin', (['alpha'], {}), '(alpha)\n', (2755, 2762), True, 'import numpy as np\n'), ((2765, 2778), 'numpy.cos', 'np.cos', (['alpha'], {}), '(alpha)\n', (2771, 2778), True, 'import numpy as np\n'), ((2854, 2866), 'numpy.cos', 'np.cos', (['beta'], {}), '(beta)\n', (2860, 2866), True, 'import numpy as np\n'), ((2872, 2884), 'numpy.sin', 'np.sin', (['beta'], {}), '(beta)\n', (2878, 2884), True, 'import numpy as np\n'), ((2984, 2996), 'numpy.cos', 'np.cos', (['beta'], {}), '(beta)\n', (2990, 2996), True, 'import numpy as np\n'), ((3072, 3085), 'numpy.cos', 'np.cos', (['gamma'], {}), '(gamma)\n', (3078, 3085), True, 'import numpy as np\n'), ((3130, 3143), 'numpy.sin', 'np.sin', (['gamma'], {}), '(gamma)\n', (3136, 3143), True, 'import numpy as np\n'), ((3146, 3159), 'numpy.cos', 'np.cos', (['gamma'], {}), '(gamma)\n', (3152, 3159), True, 'import numpy as np\n'), ((2707, 2720), 'numpy.sin', 'np.sin', (['alpha'], {}), '(alpha)\n', (2713, 2720), True, 'import numpy as np\n'), ((2967, 2979), 'numpy.sin', 'np.sin', (['beta'], {}), '(beta)\n', (2973, 2979), True, 'import numpy as np\n'), ((3088, 3101), 'numpy.sin', 'np.sin', (['gamma'], {}), '(gamma)\n', (3094, 3101), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import time import numpy as np from litex import RemoteClient wb = RemoteClient() wb.open() # # # x = np.linspace(0,2 * np.pi, 1000) sine = (2**15 * np.sin(x)) + 2**15 sine = sine.astype('int').tolist() print("artistic sine output...") i = 0 while(1): i = (i + 1) % 1000 wb.regs.dac_dacval.write(sine[i]) #time.sleep(0.001) # # # wb.close()
[ "litex.RemoteClient", "numpy.sin", "numpy.linspace" ]
[((93, 107), 'litex.RemoteClient', 'RemoteClient', ([], {}), '()\n', (105, 107), False, 'from litex import RemoteClient\n'), ((130, 161), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(1000)'], {}), '(0, 2 * np.pi, 1000)\n', (141, 161), True, 'import numpy as np\n'), ((177, 186), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (183, 186), True, 'import numpy as np\n')]
## License: Apache 2.0. See LICENSE file in root directory. ## Copyright(c) 2017 Intel Corporation. All Rights Reserved. ##################################################### ## Align Depth to Color ## ##################################################### # First import the library import pyrealsense2 as rs # Import Numpy for easy array manipulation import numpy as np import sys,os # Import OpenCV for easy image rendering import cv2 import json print(os.path.expanduser("~")) jsonObj = json.load(open("custom.json")) json_string= str(jsonObj).replace("'", '\"') #print(json_string) path = os.path.expanduser("~") # Create a pipeline pipeline = rs.pipeline() i = 765 #Create a config and configure the pipeline to stream # different resolutions of color and depth streams config = rs.config() freq=int(jsonObj['stream-fps']) print("W: ", int(jsonObj['stream-width'])) print("H: ", int(jsonObj['stream-height'])) print("FPS: ", int(jsonObj['stream-fps'])) config.enable_stream(rs.stream.depth, int(jsonObj['stream-width']), int(jsonObj['stream-height']), rs.format.z16, int(jsonObj['stream-fps'])) config.enable_stream(rs.stream.color, int(jsonObj['stream-width']), int(jsonObj['stream-height']), rs.format.bgr8, int(jsonObj['stream-fps'])) profile = pipeline.start(config) dev = profile.get_device() advnc_mode = rs.rs400_advanced_mode(dev) advnc_mode.load_json(json_string) # config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30) # config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30) # Start streaming #profile = pipeline.start(config) # Getting the depth sensor's depth scale (see rs-align example for explanation) depth_sensor = profile.get_device().first_depth_sensor() depth_scale = depth_sensor.get_depth_scale() print("Depth Scale is: " , depth_scale) # We will be removing the background of objects more than # clipping_distance_in_meters meters away clipping_distance_in_meters = 0.375 #1 meter clipping_distance = clipping_distance_in_meters / depth_scale bg_depth_image_fill = np.load('/home/kittipong/dataset_assemble/bg_image_fillter1.npy') bg_depth_image_raw = np.load('/home/kittipong/dataset_assemble/bg_image1.npy') # Create an align object # rs.align allows us to perform alignment of depth frames to others frames # The "align_to" is the stream type to which we plan to align depth frames. align_to = rs.stream.color align = rs.align(align_to) # Streaming loop try: while True: # Get frameset of color and depth frames = pipeline.wait_for_frames() # frames.get_depth_frame() is a 640x360 depth image # Align the depth frame to color frame aligned_frames = align.process(frames) # Get aligned frames aligned_depth_frame = aligned_frames.get_depth_frame() # aligned_depth_frame is a 640x480 depth image color_frame = aligned_frames.get_color_frame() # Validate that both frames are valid if not aligned_depth_frame or not color_frame: continue #colorizer = rs.colorizer(0) depth_image_raw = np.asanyarray(aligned_depth_frame.get_data()) depth_to_disparity = rs.disparity_transform(True) disparity_to_depth = rs.disparity_transform(False) spatial = rs.spatial_filter() spatial.set_option(rs.option.filter_magnitude, 2) spatial.set_option(rs.option.filter_smooth_alpha, 0.5) spatial.set_option(rs.option.filter_smooth_delta, 20) spatial.set_option(rs.option.holes_fill, 3) hole_filling = rs.hole_filling_filter() temporal = rs.temporal_filter() depth_filter = depth_to_disparity.process(aligned_depth_frame) depth_filter = spatial.process(depth_filter) depth_filter = temporal.process(depth_filter) depth_filter = disparity_to_depth.process(depth_filter) depth_filter = hole_filling.process(depth_filter) colorizer = rs.colorizer(2) depth_image_fill = np.asanyarray(depth_filter.get_data()) depth_image_pre = np.asanyarray(aligned_depth_frame.get_data()) depth_image = np.asanyarray(colorizer.colorize(aligned_depth_frame).get_data()) color_image = np.asanyarray(color_frame.get_data()) depth_image_fillter = np.asanyarray(colorizer.colorize(depth_filter).get_data()) # Remove background - Set pixels further than clipping_distance to grey grey_color = 153 #depth_image_3d = np.dstack((depth_image,depth_image,depth_image)) #depth image is 1 channel, color is 3 channels depth_image_fill_8bit = depth_image_fill.astype("uint8") depth_image_3d = np.dstack((depth_image_pre,depth_image_pre,depth_image_pre)) bg_removed = np.where((depth_image_3d > clipping_distance) | (depth_image_3d <= 0), grey_color, color_image) depth_bg_removed = np.where((depth_image_3d > clipping_distance) | (depth_image_3d <= 0), grey_color, depth_image) raw_depth_bg_remove = np.where((depth_image_raw > clipping_distance) | (depth_image_raw <= 0), 0, depth_image_raw) fillter_depth_bg_remove = np.where((depth_image_fill > clipping_distance) | (depth_image_fill <= 0), 0, depth_image_fill) #depth_image_raw_8 = cv2.convertScaleAbs(depth_image_pre, alpha=0.03) depth_image_raw_8 = depth_image_raw.astype('uint8') depth_image_diff = np.asanyarray(bg_depth_image_raw-depth_image_raw) depth_image_diff_8bit = depth_image_diff.astype('uint8') depth_image_diff_8bit = (np.where((depth_image_raw > bg_depth_image_raw),0,depth_image_diff_8bit)).astype("uint8") depth_image_diff_fillter = np.asanyarray(bg_depth_image_fill-depth_image_fill) depth_image_diff_fillter_8bit = depth_image_diff_fillter.astype('uint8') depth_image_diff_fillter_8bit = (np.where((depth_image_fill > bg_depth_image_fill),0,depth_image_diff_fillter_8bit)).astype("uint8") # Render images #depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET) #depth_colormap = np.asanyarray(colorizer.colorize(depth_image).get_data()) images = np.hstack((color_image,depth_image,bg_removed)) images2 = np.hstack((np.dstack((raw_depth_bg_remove.astype('uint8'),raw_depth_bg_remove.astype('uint8'),raw_depth_bg_remove.astype('uint8'))),np.dstack((depth_image_diff_fillter_8bit,depth_image_diff_fillter_8bit,depth_image_diff_fillter_8bit)),depth_bg_removed)) images3 = np.vstack((images,images2)) test = np.dstack((color_image,depth_image_raw_8)) testfilter = np.dstack((color_image,depth_image_fill_8bit)) test1 = np.dstack((color_image,depth_image_diff_8bit)) test1filter = np.dstack((color_image,depth_image_diff_fillter_8bit)) test2 = np.dstack((color_image,raw_depth_bg_remove.astype('uint8'))) test2fillter = np.dstack((color_image,fillter_depth_bg_remove.astype('uint8'))) #print(np.min(depth_image_8bit)) cv2.namedWindow('Align Example', cv2.WINDOW_AUTOSIZE) cv2.imshow('Align Example',cv2.resize(images3,(960,480))) key = cv2.waitKey(1) if key == ord("r"): bg_depth_image_raw = depth_image_raw bg_depth_image_fill = depth_image_fill np.save(path+'/dataset_assemble/bg_image1',bg_depth_image_raw) np.save(path+'/dataset_assemble/bg_image_fillter1',bg_depth_image_fill) if key == ord("s"): cv2.imwrite(path+'/dataset_assemble/color_image'+str(i)+'.png', color_image) cv2.imwrite(path+'/dataset_assemble/Depth/nonfilter/bg_remove'+str(i)+'.png',bg_removed) cv2.imwrite(path+'/dataset_assemble/Depth/nonfilter/depth_image'+str(i)+'.png', depth_image) cv2.imwrite(path+'/dataset_assemble/Depth/nonfilter/fuse_image_8bit'+str(i)+'.png', test) cv2.imwrite(path+'/dataset_assemble/Depth/nonfilter/fuse_image_bgremove'+str(i)+'.png', test1) cv2.imwrite(path+'/dataset_assemble/Depth/nonfilter/fuse_image_bgremove_v2_'+str(i)+'.png', test2) np.save(path+'/dataset_assemble/Depth/nonfilter/depth_image_raw'+str(i), depth_image_raw) cv2.imwrite(path+'/dataset_assemble/Depth/filter/depth_image'+str(i)+'.png',depth_image_fillter) cv2.imwrite(path+'/dataset_assemble/Depth/filter/fuse_image_8bit'+str(i)+'.png',testfilter) cv2.imwrite(path+'/dataset_assemble/Depth/filter/fuse_image_bgremove'+str(i)+'.png',test1filter ) cv2.imwrite(path+'/dataset_assemble/Depth/filter/fuse_image_bgremove_v2_'+str(i)+'.png',test2fillter) np.save(path+'/dataset_assemble/Depth/filter/depth_image_raw'+str(i), depth_image_fill) print(i) i=i+1 # Press esc or 'q' to close the image window if key & 0xFF == ord('q') or key == 27: cv2.destroyAllWindows() break finally: pipeline.stop()
[ "numpy.load", "pyrealsense2.disparity_transform", "pyrealsense2.pipeline", "pyrealsense2.temporal_filter", "pyrealsense2.config", "pyrealsense2.hole_filling_filter", "cv2.destroyAllWindows", "cv2.resize", "numpy.dstack", "pyrealsense2.rs400_advanced_mode", "numpy.save", "cv2.waitKey", "pyrealsense2.align", "pyrealsense2.colorizer", "numpy.hstack", "numpy.vstack", "pyrealsense2.spatial_filter", "numpy.asanyarray", "numpy.where", "os.path.expanduser", "cv2.namedWindow" ]
[((622, 645), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (640, 645), False, 'import sys, os\n'), ((677, 690), 'pyrealsense2.pipeline', 'rs.pipeline', ([], {}), '()\n', (688, 690), True, 'import pyrealsense2 as rs\n'), ((814, 825), 'pyrealsense2.config', 'rs.config', ([], {}), '()\n', (823, 825), True, 'import pyrealsense2 as rs\n'), ((1346, 1373), 'pyrealsense2.rs400_advanced_mode', 'rs.rs400_advanced_mode', (['dev'], {}), '(dev)\n', (1368, 1373), True, 'import pyrealsense2 as rs\n'), ((2054, 2119), 'numpy.load', 'np.load', (['"""/home/kittipong/dataset_assemble/bg_image_fillter1.npy"""'], {}), "('/home/kittipong/dataset_assemble/bg_image_fillter1.npy')\n", (2061, 2119), True, 'import numpy as np\n'), ((2141, 2198), 'numpy.load', 'np.load', (['"""/home/kittipong/dataset_assemble/bg_image1.npy"""'], {}), "('/home/kittipong/dataset_assemble/bg_image1.npy')\n", (2148, 2198), True, 'import numpy as np\n'), ((2410, 2428), 'pyrealsense2.align', 'rs.align', (['align_to'], {}), '(align_to)\n', (2418, 2428), True, 'import pyrealsense2 as rs\n'), ((484, 507), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (502, 507), False, 'import sys, os\n'), ((3183, 3211), 'pyrealsense2.disparity_transform', 'rs.disparity_transform', (['(True)'], {}), '(True)\n', (3205, 3211), True, 'import pyrealsense2 as rs\n'), ((3241, 3270), 'pyrealsense2.disparity_transform', 'rs.disparity_transform', (['(False)'], {}), '(False)\n', (3263, 3270), True, 'import pyrealsense2 as rs\n'), ((3289, 3308), 'pyrealsense2.spatial_filter', 'rs.spatial_filter', ([], {}), '()\n', (3306, 3308), True, 'import pyrealsense2 as rs\n'), ((3567, 3591), 'pyrealsense2.hole_filling_filter', 'rs.hole_filling_filter', ([], {}), '()\n', (3589, 3591), True, 'import pyrealsense2 as rs\n'), ((3611, 3631), 'pyrealsense2.temporal_filter', 'rs.temporal_filter', ([], {}), '()\n', (3629, 3631), True, 'import pyrealsense2 as rs\n'), ((3970, 3985), 'pyrealsense2.colorizer', 'rs.colorizer', (['(2)'], {}), '(2)\n', (3982, 3985), True, 'import pyrealsense2 as rs\n'), ((4698, 4760), 'numpy.dstack', 'np.dstack', (['(depth_image_pre, depth_image_pre, depth_image_pre)'], {}), '((depth_image_pre, depth_image_pre, depth_image_pre))\n', (4707, 4760), True, 'import numpy as np\n'), ((4780, 4879), 'numpy.where', 'np.where', (['((depth_image_3d > clipping_distance) | (depth_image_3d <= 0))', 'grey_color', 'color_image'], {}), '((depth_image_3d > clipping_distance) | (depth_image_3d <= 0),\n grey_color, color_image)\n', (4788, 4879), True, 'import numpy as np\n'), ((4903, 5002), 'numpy.where', 'np.where', (['((depth_image_3d > clipping_distance) | (depth_image_3d <= 0))', 'grey_color', 'depth_image'], {}), '((depth_image_3d > clipping_distance) | (depth_image_3d <= 0),\n grey_color, depth_image)\n', (4911, 5002), True, 'import numpy as np\n'), ((5029, 5125), 'numpy.where', 'np.where', (['((depth_image_raw > clipping_distance) | (depth_image_raw <= 0))', '(0)', 'depth_image_raw'], {}), '((depth_image_raw > clipping_distance) | (depth_image_raw <= 0), 0,\n depth_image_raw)\n', (5037, 5125), True, 'import numpy as np\n'), ((5156, 5256), 'numpy.where', 'np.where', (['((depth_image_fill > clipping_distance) | (depth_image_fill <= 0))', '(0)', 'depth_image_fill'], {}), '((depth_image_fill > clipping_distance) | (depth_image_fill <= 0), \n 0, depth_image_fill)\n', (5164, 5256), True, 'import numpy as np\n'), ((5418, 5469), 'numpy.asanyarray', 'np.asanyarray', (['(bg_depth_image_raw - depth_image_raw)'], {}), '(bg_depth_image_raw - depth_image_raw)\n', (5431, 5469), True, 'import numpy as np\n'), ((5692, 5745), 'numpy.asanyarray', 'np.asanyarray', (['(bg_depth_image_fill - depth_image_fill)'], {}), '(bg_depth_image_fill - depth_image_fill)\n', (5705, 5745), True, 'import numpy as np\n'), ((6202, 6251), 'numpy.hstack', 'np.hstack', (['(color_image, depth_image, bg_removed)'], {}), '((color_image, depth_image, bg_removed))\n', (6211, 6251), True, 'import numpy as np\n'), ((6540, 6568), 'numpy.vstack', 'np.vstack', (['(images, images2)'], {}), '((images, images2))\n', (6549, 6568), True, 'import numpy as np\n'), ((6583, 6626), 'numpy.dstack', 'np.dstack', (['(color_image, depth_image_raw_8)'], {}), '((color_image, depth_image_raw_8))\n', (6592, 6626), True, 'import numpy as np\n'), ((6647, 6694), 'numpy.dstack', 'np.dstack', (['(color_image, depth_image_fill_8bit)'], {}), '((color_image, depth_image_fill_8bit))\n', (6656, 6694), True, 'import numpy as np\n'), ((6710, 6757), 'numpy.dstack', 'np.dstack', (['(color_image, depth_image_diff_8bit)'], {}), '((color_image, depth_image_diff_8bit))\n', (6719, 6757), True, 'import numpy as np\n'), ((6779, 6834), 'numpy.dstack', 'np.dstack', (['(color_image, depth_image_diff_fillter_8bit)'], {}), '((color_image, depth_image_diff_fillter_8bit))\n', (6788, 6834), True, 'import numpy as np\n'), ((7052, 7105), 'cv2.namedWindow', 'cv2.namedWindow', (['"""Align Example"""', 'cv2.WINDOW_AUTOSIZE'], {}), "('Align Example', cv2.WINDOW_AUTOSIZE)\n", (7067, 7105), False, 'import cv2\n'), ((7189, 7203), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (7200, 7203), False, 'import cv2\n'), ((7141, 7172), 'cv2.resize', 'cv2.resize', (['images3', '(960, 480)'], {}), '(images3, (960, 480))\n', (7151, 7172), False, 'import cv2\n'), ((7344, 7409), 'numpy.save', 'np.save', (["(path + '/dataset_assemble/bg_image1')", 'bg_depth_image_raw'], {}), "(path + '/dataset_assemble/bg_image1', bg_depth_image_raw)\n", (7351, 7409), True, 'import numpy as np\n'), ((7419, 7493), 'numpy.save', 'np.save', (["(path + '/dataset_assemble/bg_image_fillter1')", 'bg_depth_image_fill'], {}), "(path + '/dataset_assemble/bg_image_fillter1', bg_depth_image_fill)\n", (7426, 7493), True, 'import numpy as np\n'), ((8928, 8951), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (8949, 8951), False, 'import cv2\n'), ((5566, 5638), 'numpy.where', 'np.where', (['(depth_image_raw > bg_depth_image_raw)', '(0)', 'depth_image_diff_8bit'], {}), '(depth_image_raw > bg_depth_image_raw, 0, depth_image_diff_8bit)\n', (5574, 5638), True, 'import numpy as np\n'), ((5866, 5952), 'numpy.where', 'np.where', (['(depth_image_fill > bg_depth_image_fill)', '(0)', 'depth_image_diff_fillter_8bit'], {}), '(depth_image_fill > bg_depth_image_fill, 0,\n depth_image_diff_fillter_8bit)\n', (5874, 5952), True, 'import numpy as np\n'), ((6400, 6508), 'numpy.dstack', 'np.dstack', (['(depth_image_diff_fillter_8bit, depth_image_diff_fillter_8bit,\n depth_image_diff_fillter_8bit)'], {}), '((depth_image_diff_fillter_8bit, depth_image_diff_fillter_8bit,\n depth_image_diff_fillter_8bit))\n', (6409, 6508), True, 'import numpy as np\n')]
import numpy as np penalty_12 = [ 'l2']#'l1', penalty_12none = ['l1', 'l2', None] penalty_all = ['l1', 'l2', None, 'elasticnet'] penalty_12e = ['l1', 'l2', 'elasticnet'] max_iter = [100 , 300, 1000] max_iter_inf = [100 , 300, 500, 1000, np.inf] max_iter_inf2 = [100 , 300, 500, 1000, -1] n_iter = [5 , 10, 20] tol = [1e-4, 1e-3, 1e-2] alpha = [1e-5, 1e-4, 1e-3, 1e-2, 0.1, 1, 3, 10] alpha_small = [1e-5, 1e-3, 0.1 , 1] C = [1e-2, 0.1 , 1, 5, 10] C_small = [ 0.1, 1 , 5] degree = [1, 2, 3, 4, 5] eta0 = [1e-4, 1e-3, 1e-2, 0.1] epsilon = [1e-3, 1e-2, 0.1, 0] warm_start = [True, False] normalize = [True, False] shrinking = [True, False] kernel = ['linear']#, 'rbf', 'sigmoid', 'poly']#, they are very slow gamma = list(np.logspace(-9, 3, 6)) + ['auto'] gamma_small = list(np.logspace(-6, 3, 3)) + ['auto'] coef0 = [0, 0.1, 0.3, 0.5, 0.7, 1] coef0_small = [0, 0.4, 0.7, 1] nu = [1e-4, 1e-2, 0.1, 0.3, 0.5, 0.75, 0.9] nu_small = [1e-2, 0.1, 0.5, 0.9] n_estimators = [2, 3, 5, 10, 25, 50, 100] n_estimators_small = [2, 10, 25, 100] n_neighbors = [1, 3, 10, 15, 30] neighbor_leaf_size = [1, 2, 5, 10, 20, 30, 50, 100] neighbor_radius = [1e-2, 0.1, 1, 5, 10] neighbor_algo = ['ball_tree' , 'kd_tree', 'brute'] neighbor_metric = ['cityblock' , 'euclidean', 'l1', 'l2', 'manhattan'] learning_rate = ['invscaling', 'adaptive', 'constant' ] learning_rate_small = ['invscaling', 'adaptive'] max_features = [None, 'auto', 'log2', 3, 5, 10, 25, 50] max_features_small = [None, 'auto', 'log2', 3, 5, 10] max_depth = [None, 3, 8, 20, 50] max_depth_small = [None, 5, 10] min_samples_split = [2, 5, 10, 0.1] min_impurity_split = [1e-7, 1e-6, 1e-5, 1e-4, 1e-3] min_samples_leaf = [2] #tree_learning_rate = [0.8, 1]
[ "numpy.logspace" ]
[((962, 983), 'numpy.logspace', 'np.logspace', (['(-9)', '(3)', '(6)'], {}), '(-9, 3, 6)\n', (973, 983), True, 'import numpy as np\n'), ((1023, 1044), 'numpy.logspace', 'np.logspace', (['(-6)', '(3)', '(3)'], {}), '(-6, 3, 3)\n', (1034, 1044), True, 'import numpy as np\n')]
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plot import numpy, scipy, cvxpy, pprint, itertools from scipy.spatial import ConvexHull from patch import * def random_2d_convex_hull(): ps = numpy.random.rand(30, 2) hull = ConvexHull(ps) print("ps= {}".format(ps) ) plot.plot(ps[:,0], ps[:,1], 'o') for simplex in hull.simplices: plot.plot(ps[simplex, 0], ps[simplex, 1], 'k-') plot.plot(ps[hull.vertices,0], ps[hull.vertices,1], 'r--', lw=2) plot.plot(ps[hull.vertices[0],0], ps[hull.vertices[0],1], 'ro') # plot.show() plot.savefig("random_2d_convex_hull.png") plot.gcf().clear() def stability_region_mds_4_2(): ps = numpy.array([ [0, 0], [2.5, 0], [0, 2.5], [2, 0], [0, 2], [2, 1], [1, 2] ] ) hull = ConvexHull(ps) for simplex in hull.simplices: plot.plot(ps[simplex, 0], ps[simplex, 1], 'k-') plot.plot(ps[hull.vertices,0], ps[hull.vertices,1], 'r--', lw=2) plot.plot(ps[hull.vertices[0],0], ps[hull.vertices[0],1], 'ro') # plot.show() plot.savefig("stability_region_mds_4_2.png") plot.gcf().clear() def opt(): # Problem data. m = 30 n = 20 numpy.random.seed(1) A = numpy.random.randn(m, n) b = numpy.random.randn(m) # Construct the problem. x = Variable(n) obj = Minimize(sum_squares(A*x - b)) constraints = [0 <= x, x <= 1] prob = Problem(obj, constraints) # The optimal obj is returned by prob.solve(). result = prob.solve() # The optimal value for x is stored in x.value. print("x= {}".format(x.value) ) # The optimal Lagrange multiplier for a constraint is stored in constraint.dual_value. print("constraints[0].dual_value= {}".format(constraints[0].dual_value) ) def plot_hull_of_ps(p_l, fname, title): ps = numpy.empty((len(p_l), 2)) for i,p in enumerate(p_l): # ps[i,:] = [[p[0], p[1]]] ps[i,0] = p[0] ps[i,1] = p[1] print("ps= {}".format(ps) ) plot.plot(ps[:,0], ps[:,1], 'o') """ hull = ConvexHull(ps) for simplex in hull.simplices: plot.plot(ps[simplex, 0], ps[simplex, 1], 'k-') plot.plot(ps[hull.vertices,0], ps[hull.vertices,1], 'r--', lw=2) plot.plot(ps[hull.vertices[0],0], ps[hull.vertices[0],1], 'ro') """ # plot.show() # axes = plot.gca() # axes.set_xlim([0, 2] ) plot.title(title) plot.savefig(fname) plot.gcf().clear() """ # Matrix factorization alpha = 0.002 # 0.0002 D = numpy.zeros((n,2)) step = 0 while step < 100000: step += 1 for i in range(n): for j in range(2): if M[i,j] == 1: e_ij = M[i,j] - numpy.dot(D[i,:], C[:,j]) for k in range(2): D[i][k] = D[i][k] + alpha*(2*e_ij * C[k][j] ) # print("step= {}, D=\n{}".format(step, D) ) e = 0 for i in range(n): for j in range(2): e = e + pow(M[i][j] - numpy.dot(D[i,:], C[:,j]), 2) if e < 0.1: break print("step= {}, D=\n{}".format(step, D) ) M_ = numpy.dot(D, C) print("M=\n{}".format(M_) ) """ def generator_matrix_to_M_C(G): n = G.shape[1] s_rg_l = [[], []] for s in range(0, 2): for c in range(n): m = numpy.column_stack((G[:,s], G[:,c])) if numpy.linalg.det(m) == 0: # c is a systematic node for s s_rg_l[s].append((c,)) for subset in itertools.combinations(range(n), 2): if s in subset: continue m = numpy.column_stack((G[:,subset[0]], G[:,subset[1]])) # print("m= {}".format(m) ) if numpy.linalg.det(m): # print("columns {}, {} are LI".format(os, c) ) s_rg_l[s].append((subset[0], subset[1])) print("s_rg_l= {}".format(pprint.pformat(s_rg_l) ) ) r_0 = len(s_rg_l[0] ) r_1 = len(s_rg_l[1] ) r = r_0 + r_1 # if r != len(s_rg_l[1] ): # log(ERROR, "Code was supposed to be symmetric, but it is not.") # return 1 x = s_rg_l[0] + s_rg_l[1] M = numpy.zeros((n,r)) for i in range(n): for j in range(r): if i in x[j]: M[i,j] = 1 print("M= {}".format(M) ) C = numpy.zeros((2 ,r)) C[0,0:r_0] = 1 C[1,r_0:r] = 1 print("C= {}".format(C) ) return r, M, C def generator_matrix(code, n, k=2): if k != 2: log(ERROR, "Only for k=2") return 1 if code == 'MDS': G = numpy.zeros((2, n)) for j in range(n): if j == 0: G[0,j] = 1 G[1,j] = 0 elif j == 1: G[0,j] = 0 G[1,j] = 1 else: G[0,j] = j-1 G[1,j] = 1 return G else: log(ERROR, "unexpected code= {}".format(code) ) return 1 def plot_xy_stability_region(n): # Rep(2) # G = numpy.matrix([[1,0], [0,1]]) # G = numpy.matrix([[1,0], [0,1], [1,0], [0,1] ]) # MDS(3,2) # G = numpy.matrix([[1,0], [0,1], [1,1]]) # MDS(4,2) # G = numpy.matrix([[1,0], [0,1], [1,1], [2,1]]) # MDS(5,2) # G = numpy.matrix([[1,0], [0,1], [1,1], [2,1], [3,1]]) # MDS(6,2) # G = numpy.matrix([[1,0], [0,1], [1,1], [2,1], [3,1], [4,1]]) # MDS(7,2) # G = numpy.matrix([[1,0], [0,1], [1,1], [2,1], [3,1], [4,1], [5,1]]) # Mixed # G = numpy.matrix([[1,0], [0,1], [1,1], [2,1], [3,1], [1,0] ]) # G = numpy.matrix([[1,0], [0,1], [1,1], [2,1], [3,1], [1,1] ]) # G = numpy.matrix([[1,0], [0,1], [1,1], [1,0], [0,1], [1,1] ]) # G = G.transpose() code = 'MDS' # 'Rep' # 'MDS' # 'Mixed' G = generator_matrix(code, n) print("G= {}".format(G) ) n = G.shape[1] r, M, C = generator_matrix_to_M_C(G) p_l = [] # x = cvxpy.Variable(r, 1, name='x') for b in numpy.linspace(0, 1, 20): # print("b= {}".format(b) ) length = math.sqrt((1-b)**2 + b**2) w = numpy.matrix([[(1-b)/length, b/length]] ) # print("w.shape= {}, w= {}".format(w.shape, w) ) w_ = w*C # print("w_= {}".format(w_) ) # obj = cvxpy.Maximize(w*(C*x) ) obj = cvxpy.Maximize(w_*x) # print("obj= {}".format(obj) ) constraints = [M*x == 1, x >= 0] # [M*x <= 1, x >= 0] prob = cvxpy.Problem(obj, constraints) # print("prob= {}".format(prob) ) prob.solve() print("status= {}".format(prob.status) ) # print("optimal value= {}".format(prob.value) ) y = C*(x.value) # print("optimal y= {}".format(y) ) p_l.append((y[0], y[1]) ) plot_hull_of_ps(p_l, "plot_xy_stability_region_{}_n_{}.png".format(code, n), title='{}, n= {}, k= 2'.format(code, n) ) log(WARNING, "done, code= {}, n= {}".format(code, n) ) if __name__ == "__main__": # random_2d_convex_hull() # stability_region_mds_4_2() # opt() plot_xy_stability_region(n=4) # for n in range(3, 10): # plot_xy_stability_region(n) # plot_xy_stability_region(n=100)
[ "matplotlib.pyplot.title", "pprint.pformat", "numpy.random.seed", "cvxpy.Maximize", "numpy.random.randn", "cvxpy.Problem", "numpy.linspace", "numpy.linalg.det", "matplotlib.use", "cvxpy.Variable", "matplotlib.pyplot.gcf", "scipy.spatial.ConvexHull", "numpy.matrix", "matplotlib.pyplot.plot", "numpy.zeros", "numpy.array", "numpy.column_stack", "numpy.random.rand", "matplotlib.pyplot.savefig" ]
[((18, 39), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (32, 39), False, 'import matplotlib\n'), ((213, 237), 'numpy.random.rand', 'numpy.random.rand', (['(30)', '(2)'], {}), '(30, 2)\n', (230, 237), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((247, 261), 'scipy.spatial.ConvexHull', 'ConvexHull', (['ps'], {}), '(ps)\n', (257, 261), False, 'from scipy.spatial import ConvexHull\n'), ((300, 334), 'matplotlib.pyplot.plot', 'plot.plot', (['ps[:, 0]', 'ps[:, 1]', '"""o"""'], {}), "(ps[:, 0], ps[:, 1], 'o')\n", (309, 334), True, 'import matplotlib.pyplot as plot\n'), ((420, 486), 'matplotlib.pyplot.plot', 'plot.plot', (['ps[hull.vertices, 0]', 'ps[hull.vertices, 1]', '"""r--"""'], {'lw': '(2)'}), "(ps[hull.vertices, 0], ps[hull.vertices, 1], 'r--', lw=2)\n", (429, 486), True, 'import matplotlib.pyplot as plot\n'), ((487, 552), 'matplotlib.pyplot.plot', 'plot.plot', (['ps[hull.vertices[0], 0]', 'ps[hull.vertices[0], 1]', '"""ro"""'], {}), "(ps[hull.vertices[0], 0], ps[hull.vertices[0], 1], 'ro')\n", (496, 552), True, 'import matplotlib.pyplot as plot\n'), ((569, 610), 'matplotlib.pyplot.savefig', 'plot.savefig', (['"""random_2d_convex_hull.png"""'], {}), "('random_2d_convex_hull.png')\n", (581, 610), True, 'import matplotlib.pyplot as plot\n'), ((672, 745), 'numpy.array', 'numpy.array', (['[[0, 0], [2.5, 0], [0, 2.5], [2, 0], [0, 2], [2, 1], [1, 2]]'], {}), '([[0, 0], [2.5, 0], [0, 2.5], [2, 0], [0, 2], [2, 1], [1, 2]])\n', (683, 745), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((762, 776), 'scipy.spatial.ConvexHull', 'ConvexHull', (['ps'], {}), '(ps)\n', (772, 776), False, 'from scipy.spatial import ConvexHull\n'), ((867, 933), 'matplotlib.pyplot.plot', 'plot.plot', (['ps[hull.vertices, 0]', 'ps[hull.vertices, 1]', '"""r--"""'], {'lw': '(2)'}), "(ps[hull.vertices, 0], ps[hull.vertices, 1], 'r--', lw=2)\n", (876, 933), True, 'import matplotlib.pyplot as plot\n'), ((934, 999), 'matplotlib.pyplot.plot', 'plot.plot', (['ps[hull.vertices[0], 0]', 'ps[hull.vertices[0], 1]', '"""ro"""'], {}), "(ps[hull.vertices[0], 0], ps[hull.vertices[0], 1], 'ro')\n", (943, 999), True, 'import matplotlib.pyplot as plot\n'), ((1016, 1060), 'matplotlib.pyplot.savefig', 'plot.savefig', (['"""stability_region_mds_4_2.png"""'], {}), "('stability_region_mds_4_2.png')\n", (1028, 1060), True, 'import matplotlib.pyplot as plot\n'), ((1132, 1152), 'numpy.random.seed', 'numpy.random.seed', (['(1)'], {}), '(1)\n', (1149, 1152), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((1159, 1183), 'numpy.random.randn', 'numpy.random.randn', (['m', 'n'], {}), '(m, n)\n', (1177, 1183), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((1190, 1211), 'numpy.random.randn', 'numpy.random.randn', (['m'], {}), '(m)\n', (1208, 1211), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((1897, 1931), 'matplotlib.pyplot.plot', 'plot.plot', (['ps[:, 0]', 'ps[:, 1]', '"""o"""'], {}), "(ps[:, 0], ps[:, 1], 'o')\n", (1906, 1931), True, 'import matplotlib.pyplot as plot\n'), ((2254, 2271), 'matplotlib.pyplot.title', 'plot.title', (['title'], {}), '(title)\n', (2264, 2271), True, 'import matplotlib.pyplot as plot\n'), ((2274, 2293), 'matplotlib.pyplot.savefig', 'plot.savefig', (['fname'], {}), '(fname)\n', (2286, 2293), True, 'import matplotlib.pyplot as plot\n'), ((3773, 3792), 'numpy.zeros', 'numpy.zeros', (['(n, r)'], {}), '((n, r))\n', (3784, 3792), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((3912, 3931), 'numpy.zeros', 'numpy.zeros', (['(2, r)'], {}), '((2, r))\n', (3923, 3931), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((5333, 5363), 'cvxpy.Variable', 'cvxpy.Variable', (['r', '(1)'], {'name': '"""x"""'}), "(r, 1, name='x')\n", (5347, 5363), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((5375, 5399), 'numpy.linspace', 'numpy.linspace', (['(0)', '(1)', '(20)'], {}), '(0, 1, 20)\n', (5389, 5399), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((370, 417), 'matplotlib.pyplot.plot', 'plot.plot', (['ps[simplex, 0]', 'ps[simplex, 1]', '"""k-"""'], {}), "(ps[simplex, 0], ps[simplex, 1], 'k-')\n", (379, 417), True, 'import matplotlib.pyplot as plot\n'), ((817, 864), 'matplotlib.pyplot.plot', 'plot.plot', (['ps[simplex, 0]', 'ps[simplex, 1]', '"""k-"""'], {}), "(ps[simplex, 0], ps[simplex, 1], 'k-')\n", (826, 864), True, 'import matplotlib.pyplot as plot\n'), ((4136, 4155), 'numpy.zeros', 'numpy.zeros', (['(2, n)'], {}), '((2, n))\n', (4147, 4155), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((5486, 5532), 'numpy.matrix', 'numpy.matrix', (['[[(1 - b) / length, b / length]]'], {}), '([[(1 - b) / length, b / length]])\n', (5498, 5532), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((5676, 5698), 'cvxpy.Maximize', 'cvxpy.Maximize', (['(w_ * x)'], {}), '(w_ * x)\n', (5690, 5698), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((5802, 5833), 'cvxpy.Problem', 'cvxpy.Problem', (['obj', 'constraints'], {}), '(obj, constraints)\n', (5815, 5833), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((613, 623), 'matplotlib.pyplot.gcf', 'plot.gcf', ([], {}), '()\n', (621, 623), True, 'import matplotlib.pyplot as plot\n'), ((1063, 1073), 'matplotlib.pyplot.gcf', 'plot.gcf', ([], {}), '()\n', (1071, 1073), True, 'import matplotlib.pyplot as plot\n'), ((2296, 2306), 'matplotlib.pyplot.gcf', 'plot.gcf', ([], {}), '()\n', (2304, 2306), True, 'import matplotlib.pyplot as plot\n'), ((3038, 3076), 'numpy.column_stack', 'numpy.column_stack', (['(G[:, s], G[:, c])'], {}), '((G[:, s], G[:, c]))\n', (3056, 3076), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((3281, 3335), 'numpy.column_stack', 'numpy.column_stack', (['(G[:, subset[0]], G[:, subset[1]])'], {}), '((G[:, subset[0]], G[:, subset[1]]))\n', (3299, 3335), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((3377, 3396), 'numpy.linalg.det', 'numpy.linalg.det', (['m'], {}), '(m)\n', (3393, 3396), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((3531, 3553), 'pprint.pformat', 'pprint.pformat', (['s_rg_l'], {}), '(s_rg_l)\n', (3545, 3553), False, 'import numpy, scipy, cvxpy, pprint, itertools\n'), ((3084, 3103), 'numpy.linalg.det', 'numpy.linalg.det', (['m'], {}), '(m)\n', (3100, 3103), False, 'import numpy, scipy, cvxpy, pprint, itertools\n')]
from unittest import TestCase import numpy as np from uniqed.models.tof import TOF import matplotlib.pyplot as plt class TestTOF(TestCase): def _gen_data(self, n=100, d=5): return np.random.random(n*d).reshape([n, d]) def test_fit(self): X = self._gen_data() TOF().fit(X) def test_predict(self): X = self._gen_data() TOF().fit(X).predict(X) TOF(cutoff_n=70).fit(X).predict(X) def test__get_outliers_inds(self): X = self._gen_data() TOF()._get_outliers_inds(TOF().fit(X).predict(X)) def test__find_nearest_neighbors(self): X = self._gen_data() tof = TOF().fit(X) tof._find_nearest_neighbors(X) tof = TOF().fit(X) tof._find_nearest_neighbors(X, k=7) def test__compute_cutoff(self): X = self._gen_data() tof = TOF().fit(X) tof._compute_cutoff(cutoff_n=100) with self.assertRaises(ValueError): tof._compute_cutoff(cutoff_n='goosebump') def test__compute_cutoff2(self): X = self._gen_data() tof = TOF(k=21).fit(X) tof._compute_cutoff(cutoff_n=100) def test__compute_p_value(self): x = np.arange(100) p = np.arange(0.01, 1.01, 0.01) p_calculated = TOF()._compute_p_value(x) is_equal = np.round(p, 2) == np.round(p_calculated, 2) self.assertTrue(np.all(is_equal)) def test__compute_outlier_score(self): X = self._gen_data() TOF().fit(X)._compute_outlier_score(X) def test__compute_tof(self): X = self._gen_data() nn_ids = np.array([[1, 3], [0, 2], [3,2], [0,1]]) ids = np.arange(4).reshape([4, 1]) score = np.mean((nn_ids-ids)**2, axis=1)**(1/2) calcscore = TOF().fit(X)._compute_tof(nn_ids, ids) is_eq = np.all(score==calcscore) self.assertTrue(is_eq) def test__compute_perc_cutoff(self): X = self._gen_data() z = np.arange(1, 101).astype(int) cutoff = 10 perc = 100-cutoff+1 tof = TOF().fit(X) tof.outlier_score_ = z perc_cutoff = tof._compute_perc_cutoff(cutoff).astype(int) self.assertTrue(perc_cutoff==perc)
[ "numpy.mean", "numpy.array", "numpy.arange", "numpy.random.random", "uniqed.models.tof.TOF", "numpy.round", "numpy.all" ]
[((1204, 1218), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (1213, 1218), True, 'import numpy as np\n'), ((1231, 1258), 'numpy.arange', 'np.arange', (['(0.01)', '(1.01)', '(0.01)'], {}), '(0.01, 1.01, 0.01)\n', (1240, 1258), True, 'import numpy as np\n'), ((1613, 1655), 'numpy.array', 'np.array', (['[[1, 3], [0, 2], [3, 2], [0, 1]]'], {}), '([[1, 3], [0, 2], [3, 2], [0, 1]])\n', (1621, 1655), True, 'import numpy as np\n'), ((1828, 1854), 'numpy.all', 'np.all', (['(score == calcscore)'], {}), '(score == calcscore)\n', (1834, 1854), True, 'import numpy as np\n'), ((1327, 1341), 'numpy.round', 'np.round', (['p', '(2)'], {}), '(p, 2)\n', (1335, 1341), True, 'import numpy as np\n'), ((1345, 1370), 'numpy.round', 'np.round', (['p_calculated', '(2)'], {}), '(p_calculated, 2)\n', (1353, 1370), True, 'import numpy as np\n'), ((1395, 1411), 'numpy.all', 'np.all', (['is_equal'], {}), '(is_equal)\n', (1401, 1411), True, 'import numpy as np\n'), ((1713, 1749), 'numpy.mean', 'np.mean', (['((nn_ids - ids) ** 2)'], {'axis': '(1)'}), '((nn_ids - ids) ** 2, axis=1)\n', (1720, 1749), True, 'import numpy as np\n'), ((194, 217), 'numpy.random.random', 'np.random.random', (['(n * d)'], {}), '(n * d)\n', (210, 217), True, 'import numpy as np\n'), ((294, 299), 'uniqed.models.tof.TOF', 'TOF', ([], {}), '()\n', (297, 299), False, 'from uniqed.models.tof import TOF\n'), ((518, 523), 'uniqed.models.tof.TOF', 'TOF', ([], {}), '()\n', (521, 523), False, 'from uniqed.models.tof import TOF\n'), ((656, 661), 'uniqed.models.tof.TOF', 'TOF', ([], {}), '()\n', (659, 661), False, 'from uniqed.models.tof import TOF\n'), ((723, 728), 'uniqed.models.tof.TOF', 'TOF', ([], {}), '()\n', (726, 728), False, 'from uniqed.models.tof import TOF\n'), ((860, 865), 'uniqed.models.tof.TOF', 'TOF', ([], {}), '()\n', (863, 865), False, 'from uniqed.models.tof import TOF\n'), ((1094, 1103), 'uniqed.models.tof.TOF', 'TOF', ([], {'k': '(21)'}), '(k=21)\n', (1097, 1103), False, 'from uniqed.models.tof import TOF\n'), ((1282, 1287), 'uniqed.models.tof.TOF', 'TOF', ([], {}), '()\n', (1285, 1287), False, 'from uniqed.models.tof import TOF\n'), ((1668, 1680), 'numpy.arange', 'np.arange', (['(4)'], {}), '(4)\n', (1677, 1680), True, 'import numpy as np\n'), ((1968, 1985), 'numpy.arange', 'np.arange', (['(1)', '(101)'], {}), '(1, 101)\n', (1977, 1985), True, 'import numpy as np\n'), ((2060, 2065), 'uniqed.models.tof.TOF', 'TOF', ([], {}), '()\n', (2063, 2065), False, 'from uniqed.models.tof import TOF\n'), ((373, 378), 'uniqed.models.tof.TOF', 'TOF', ([], {}), '()\n', (376, 378), False, 'from uniqed.models.tof import TOF\n'), ((405, 421), 'uniqed.models.tof.TOF', 'TOF', ([], {'cutoff_n': '(70)'}), '(cutoff_n=70)\n', (408, 421), False, 'from uniqed.models.tof import TOF\n'), ((1494, 1499), 'uniqed.models.tof.TOF', 'TOF', ([], {}), '()\n', (1497, 1499), False, 'from uniqed.models.tof import TOF\n'), ((1773, 1778), 'uniqed.models.tof.TOF', 'TOF', ([], {}), '()\n', (1776, 1778), False, 'from uniqed.models.tof import TOF\n'), ((543, 548), 'uniqed.models.tof.TOF', 'TOF', ([], {}), '()\n', (546, 548), False, 'from uniqed.models.tof import TOF\n')]
""" Created on Tue Mar 12 01:27:39 2019 @author: soumi """ from ast import literal_eval import numpy as np from skimage.draw import line_aa from skimage.transform import resize import imageio #get bound of the image def get_bounds(strokes): min_x, max_x, min_y, max_y = (1000, 0, 1000, 0) for stroke in strokes: for x in stroke[0]: min_x = min(min_x, x) max_x = max(max_x, x) for y in stroke[1]: min_y = min(min_y, y) max_y = max(max_y, y) return (min_x, max_x, min_y, max_y) # convert strokes to bitmap def strokes_to_npy(strokes): # if no stroke- Convert to a black image of dimension 150 by 150 if len(strokes)==0: dims=(150,150) img = np.zeros(dims, dtype=np.uint8) else: min_x, max_x, min_y, max_y = get_bounds(strokes) # Add boundary of 20 pixels dims = (20 + max_x - min_x, 20 + max_y - min_y) img = np.zeros(dims, dtype=np.uint8) #fix according to binary abs_x = min_x - 10 abs_y = min_y - 10 for stroke in strokes: if len(stroke[0]) >1: prev_x = stroke[0][0]-abs_x prev_y = stroke[1][0]-abs_y for i in range(len(stroke[0])-1): dx = stroke[0][i+1]-abs_x dy = stroke[1][i+1]-abs_y rr, cc, val = line_aa(prev_x, prev_y, dx, dy) img[rr, cc] = (val * 255).astype(np.uint8) prev_x = dx prev_y = dy return img.T # fit in square box def reshape_to_square(img, size=512): img_resize = resize(img, (size, size)) return img_resize # crate a square image of dimension 100 by 100 def strokeToSquareImage(strokes, size=100): strokes = np.asarray(strokes) img = strokes_to_npy(strokes) img_resize = resize(img, (size, size)) return img_resize # convert the image and create a outfile.jpg in local directory def getImage(content): img = strokeToSquareImage(strokes) imageio.imwrite('outfile.jpg', 255-img) # scipy.misc.imsave('outfile.jpg', 255-img) return img # provide full path of the file or save it locally def readStrokes(fileName): f = open(fileName, 'r') x = f.read() f.close() strokes = literal_eval(str(x)) return strokes if __name__ == '__main__': strokes = readStrokes("temp") getImage(strokes)
[ "skimage.draw.line_aa", "numpy.asarray", "numpy.zeros", "skimage.transform.resize", "imageio.imwrite" ]
[((1669, 1694), 'skimage.transform.resize', 'resize', (['img', '(size, size)'], {}), '(img, (size, size))\n', (1675, 1694), False, 'from skimage.transform import resize\n'), ((1823, 1842), 'numpy.asarray', 'np.asarray', (['strokes'], {}), '(strokes)\n', (1833, 1842), True, 'import numpy as np\n'), ((1894, 1919), 'skimage.transform.resize', 'resize', (['img', '(size, size)'], {}), '(img, (size, size))\n', (1900, 1919), False, 'from skimage.transform import resize\n'), ((2078, 2119), 'imageio.imwrite', 'imageio.imwrite', (['"""outfile.jpg"""', '(255 - img)'], {}), "('outfile.jpg', 255 - img)\n", (2093, 2119), False, 'import imageio\n'), ((753, 783), 'numpy.zeros', 'np.zeros', (['dims'], {'dtype': 'np.uint8'}), '(dims, dtype=np.uint8)\n', (761, 783), True, 'import numpy as np\n'), ((958, 988), 'numpy.zeros', 'np.zeros', (['dims'], {'dtype': 'np.uint8'}), '(dims, dtype=np.uint8)\n', (966, 988), True, 'import numpy as np\n'), ((1415, 1446), 'skimage.draw.line_aa', 'line_aa', (['prev_x', 'prev_y', 'dx', 'dy'], {}), '(prev_x, prev_y, dx, dy)\n', (1422, 1446), False, 'from skimage.draw import line_aa\n')]
# Author: wangxy # Emial: <EMAIL> import copy, math import numpy as np from numba import jit from scipy.spatial import ConvexHull def iou_batch(boxA, boxB): boxA = [int(x) for x in boxA] boxB = [int(x) for x in boxB] xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxA[3], boxB[3]) interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) iou = interArea / float(boxAArea + boxBArea - interArea) return iou @jit def poly_area(x, y): """ Ref: http://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates """ return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) @jit def box3d_vol(corners): ''' corners: (8,3) no assumption on axis direction ''' a = np.sqrt(np.sum((corners[0, :] - corners[1, :]) ** 2)) b = np.sqrt(np.sum((corners[1, :] - corners[2, :]) ** 2)) c = np.sqrt(np.sum((corners[0, :] - corners[4, :]) ** 2)) return a * b * c def convex_hull_intersection(p1, p2): """ Compute area of two convex hull's intersection area. p1,p2 are a list of (x,y) tuples of hull vertices. return a list of (x,y) for the intersection and its volume """ inter_p = polygon_clip(p1, p2) if inter_p is not None: hull_inter = ConvexHull(inter_p) return inter_p, hull_inter.volume else: return None, 0.0 def polygon_clip(subjectPolygon, clipPolygon): """ Clip a polygon with another polygon. Ref: https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping#Python Args: subjectPolygon: a list of (x,y) 2d points, any polygon. clipPolygon: a list of (x,y) 2d points, has to be *convex* Note: **points have to be counter-clockwise ordered** Return: a list of (x,y) vertex point for the intersection polygon. """ def inside(p): return (cp2[0] - cp1[0]) * (p[1] - cp1[1]) > (cp2[1] - cp1[1]) * (p[0] - cp1[0]) def computeIntersection(): dc = [cp1[0] - cp2[0], cp1[1] - cp2[1]] dp = [s[0] - e[0], s[1] - e[1]] n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0] n2 = s[0] * e[1] - s[1] * e[0] n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0]) return [(n1 * dp[0] - n2 * dc[0]) * n3, (n1 * dp[1] - n2 * dc[1]) * n3] outputList = subjectPolygon cp1 = clipPolygon[-1] for clipVertex in clipPolygon: cp2 = clipVertex inputList = outputList outputList = [] s = inputList[-1] for subjectVertex in inputList: e = subjectVertex if inside(e): if not inside(s): outputList.append(computeIntersection()) outputList.append(e) elif inside(s): outputList.append(computeIntersection()) s = e cp1 = cp2 if len(outputList) == 0: return None return (outputList) def iou3d(corners1, corners2): ''' Compute 3D bounding box IoU, only working for object parallel to ground Input: corners1: numpy array (8,3), assume up direction is negative Y corners2: numpy array (8,3), assume up direction is negative Y Output: iou: 3D bounding box IoU iou_2d: bird's eye view 2D bounding box IoU todo (rqi): add more description on corner points' orders. ''' # corner points are in counter clockwise order rect1 = [(corners1[i, 0], corners1[i, 2]) for i in range(3, -1, -1)] rect2 = [(corners2[i, 0], corners2[i, 2]) for i in range(3, -1, -1)] area1 = poly_area(np.array(rect1)[:, 0], np.array(rect1)[:, 1]) area2 = poly_area(np.array(rect2)[:, 0], np.array(rect2)[:, 1]) # inter_area = shapely_polygon_intersection(rect1, rect2) _, inter_area = convex_hull_intersection(rect1, rect2) # try: # _, inter_area = convex_hull_intersection(rect1, rect2) # except ValueError: # inter_area = 0 # except scipy.spatial.qhull.QhullError: # inter_area = 0 iou_2d = inter_area / (area1 + area2 - inter_area) ymax = min(corners1[0, 1], corners2[0, 1]) ymin = max(corners1[4, 1], corners2[4, 1]) inter_vol = inter_area * max(0.0, ymax - ymin) vol1 = box3d_vol(corners1) vol2 = box3d_vol(corners2) iou = inter_vol / (vol1 + vol2 - inter_vol) return iou, iou_2d def eucliDistance(detection, track): # coefficient_det = math.sqrt(detection[0] ** 2 + detection[1] ** 2 + detection[2] ** 2) # coefficient_trk = math.sqrt(track[0] ** 2 + track[1] ** 2 + track[2] ** 2) # x = [i / coefficient_det for i in detection] # y = [k / coefficient_trk for k in track] # dist = math.sqrt((x[0] - y[0]) ** 2 + (x[1] - y[1]) ** 2 + (x[2] - y[2]) ** 2) dist = math.sqrt((detection[0] - track[0]) ** 2 + (detection[1] - track[1]) ** 2 + (detection[2] - track[2]) ** 2) # dist = 1 /(1+dist) # Normalization return dist def roty(t): ''' Rotation about the y-axis. ''' c = np.cos(t) s = np.sin(t) return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]]) def convert_3dbox_to_8corner(bbox3d_input): ''' Takes an object's 3D box with the representation of [x,y,z,theta,l,w,h] and convert it to the 8 corners of the 3D box Returns: corners_3d: (8,3) array in in rect camera coord ''' # compute rotational matrix around yaw axis bbox3d = copy.copy(bbox3d_input) R = roty(bbox3d[3]) # 3d bounding box dimensions l = bbox3d[4] w = bbox3d[5] h = bbox3d[6] # 3d bounding box corners 这是什么东西 x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]; y_corners = [0, 0, 0, 0, -h, -h, -h, -h]; z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]; # rotate and translate 3d bounding box corners_3d = np.dot(R, np.vstack( [x_corners, y_corners, z_corners])) # np.vstack([x_corners,y_corners,z_corners]) 3*8按照竖直方向排列 # print corners_3d.shape corners_3d[0, :] = corners_3d[0, :] + bbox3d[0] # x corners_3d[1, :] = corners_3d[1, :] + bbox3d[1] # y corners_3d[2, :] = corners_3d[2, :] + bbox3d[2] # z return np.transpose(corners_3d)
[ "numpy.sum", "math.sqrt", "numpy.roll", "copy.copy", "numpy.transpose", "numpy.sin", "numpy.array", "numpy.cos", "scipy.spatial.ConvexHull", "numpy.vstack" ]
[((4886, 4997), 'math.sqrt', 'math.sqrt', (['((detection[0] - track[0]) ** 2 + (detection[1] - track[1]) ** 2 + (\n detection[2] - track[2]) ** 2)'], {}), '((detection[0] - track[0]) ** 2 + (detection[1] - track[1]) ** 2 +\n (detection[2] - track[2]) ** 2)\n', (4895, 4997), False, 'import copy, math\n'), ((5115, 5124), 'numpy.cos', 'np.cos', (['t'], {}), '(t)\n', (5121, 5124), True, 'import numpy as np\n'), ((5133, 5142), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (5139, 5142), True, 'import numpy as np\n'), ((5154, 5198), 'numpy.array', 'np.array', (['[[c, 0, s], [0, 1, 0], [-s, 0, c]]'], {}), '([[c, 0, s], [0, 1, 0], [-s, 0, c]])\n', (5162, 5198), True, 'import numpy as np\n'), ((5568, 5591), 'copy.copy', 'copy.copy', (['bbox3d_input'], {}), '(bbox3d_input)\n', (5577, 5591), False, 'import copy, math\n'), ((6344, 6368), 'numpy.transpose', 'np.transpose', (['corners_3d'], {}), '(corners_3d)\n', (6356, 6368), True, 'import numpy as np\n'), ((940, 984), 'numpy.sum', 'np.sum', (['((corners[0, :] - corners[1, :]) ** 2)'], {}), '((corners[0, :] - corners[1, :]) ** 2)\n', (946, 984), True, 'import numpy as np\n'), ((1002, 1046), 'numpy.sum', 'np.sum', (['((corners[1, :] - corners[2, :]) ** 2)'], {}), '((corners[1, :] - corners[2, :]) ** 2)\n', (1008, 1046), True, 'import numpy as np\n'), ((1064, 1108), 'numpy.sum', 'np.sum', (['((corners[0, :] - corners[4, :]) ** 2)'], {}), '((corners[0, :] - corners[4, :]) ** 2)\n', (1070, 1108), True, 'import numpy as np\n'), ((1449, 1468), 'scipy.spatial.ConvexHull', 'ConvexHull', (['inter_p'], {}), '(inter_p)\n', (1459, 1468), False, 'from scipy.spatial import ConvexHull\n'), ((6017, 6061), 'numpy.vstack', 'np.vstack', (['[x_corners, y_corners, z_corners]'], {}), '([x_corners, y_corners, z_corners])\n', (6026, 6061), True, 'import numpy as np\n'), ((3718, 3733), 'numpy.array', 'np.array', (['rect1'], {}), '(rect1)\n', (3726, 3733), True, 'import numpy as np\n'), ((3741, 3756), 'numpy.array', 'np.array', (['rect1'], {}), '(rect1)\n', (3749, 3756), True, 'import numpy as np\n'), ((3786, 3801), 'numpy.array', 'np.array', (['rect2'], {}), '(rect2)\n', (3794, 3801), True, 'import numpy as np\n'), ((3809, 3824), 'numpy.array', 'np.array', (['rect2'], {}), '(rect2)\n', (3817, 3824), True, 'import numpy as np\n'), ((792, 805), 'numpy.roll', 'np.roll', (['y', '(1)'], {}), '(y, 1)\n', (799, 805), True, 'import numpy as np\n'), ((819, 832), 'numpy.roll', 'np.roll', (['x', '(1)'], {}), '(x, 1)\n', (826, 832), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ ------------------------------- Time : 2018-12-02 12:29 Author : diw Email : <EMAIL> File : predict.py Desc: Load model, predict audio's class. ------------------------------- """ """ audio_class = ['angry','fear','happy','neutral','sad','surprise'] Input audio's format: BIT DEPTH = 16(paInt16) Sample Rate = 16000 CHANNELS = 1 Usage: Load model: model = load_model('model/best_model.h5') get_result: predict_class,predict_prob = get_audioclass(model,wav_file_path): get_allaudio: predict_class,predict_prob,result_dic = get_audioclass(model,wav_file_path,all = True): result_dic: {class:prob} """ from keras.models import load_model from pyAudioAnalysis import audioFeatureExtraction from keras.preprocessing import sequence import numpy as np from scipy import stats import pickle import librosa import os from keras import backend as K #获取音频 from get_audio import microphone_audio # classes = {0: 'angry', 1: 'fear', 2: 'happy', 3: 'neutral', 4: 'sad', 5: 'surprise'} classes_e_n = {0: 'emotional', 1: 'neutral'} classes = {0: 'angry', 1: 'fear', 2: 'happy', 3: 'sad', 4: 'surprise'} gender_classes = {0:'male',1:'female'} max_len = 1024 nb_features = 36 nb_attention_param = 256 attention_init_value = 1.0 / 256 dropout_rate = 0.5 nb_lstm_cells = 128 nb_classes = 6 masking_value = -100.0 frame_size = 0.025 # 25 msec segments step = 0.01 # 10 msec time step if('tensorflow' == K.backend()): import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) def get_data(audio_path): # 采样率16000 # 前1秒为噪声提取 # data, sr = librosa.load(audio_path, sr=16000, offset=1.0, duration=3.0) data, sr = librosa.load(audio_path, sr=16000) return data, sr def extract_dataset_tosequence(data, Fs=16000, save=False): # x:librosa读取的文件 Fs:采样率 f_global = [] # 34D short-term feature f = audioFeatureExtraction.stFeatureExtraction( data, Fs, frame_size * Fs, step * Fs) # for pyAudioAnalysis which support python3 if type(f) is tuple: f = f[0] # Harmonic ratio and pitch, 2D hr_pitch = audioFeatureExtraction.stFeatureSpeed( data, Fs, frame_size * Fs, step * Fs) f = np.append(f, hr_pitch.transpose(), axis=0) # Z-normalized f = stats.zscore(f, axis=0) f = f.transpose() f_global.append(f) # print("Extracting features from data") f_global = sequence.pad_sequences(f_global, maxlen=max_len, dtype='float32', padding='post', value=masking_value) if save: print("Saving features to file...") pickle.dump(f, open('features.p', 'wb')) return f_global def find_max(list_iter): # 返回:概率,类别id prob_list = list_iter[0] max = prob_list[0] index = 0 for i in range(len(prob_list)): current_prob = prob_list[i] if(current_prob >= max): max = current_prob index = i return max, index # test_folder = '/Users/diweng/github_project/keras_audio_classifier/data/test' def test_model(model_path, test_folder, model_type = 'emotion'): model = load_model(model_path) emotion_list = os.listdir(test_folder) total = 0 count = 0 if (model_type == 'emotion'): for current_emotion in emotion_list: if (current_emotion == '.DS_Store' or current_emotion == '_desktop.ini'): continue emotion_total = 0 emotion_count = 0 current_emotion_path = test_folder + '/' + current_emotion test_file_list = os.listdir(current_emotion_path) for current_test_file in test_file_list: if (not current_test_file.endswith('.wav')): continue test_file_path = current_emotion_path + '/' + current_test_file data, sr = get_data(test_file_path) f = extract_dataset_tosequence(data, sr) f_ex = np.full((f.shape[0], nb_attention_param), attention_init_value, dtype=np.float32) predict_output = model.predict([f_ex, f]) predict_prob, predict_label = find_max(predict_output) predict_class = classes[predict_label] total += 1 emotion_total += 1 if(predict_class == current_emotion): emotion_count += 1 count += 1 current_accuracy = float(emotion_count) / emotion_total print('%s accuracy: %.2f%%' % (str(current_emotion), current_accuracy * 100)) elif(model_type == 'gender'): speaker_class = {'ZhaoZuoxiang':0, 'wangzhe':0, 'zhaoquanyin':1, 'liuchanhg':1} for current_emotion in emotion_list: if (current_emotion == '.DS_Store' or current_emotion == '_desktop.ini'): continue gender_total = 0 gender_count = 0 current_emotion_path = test_folder + '/' + current_emotion test_file_list = os.listdir(current_emotion_path) for current_test_file in test_file_list: if (current_test_file == '.DS_Store' or current_test_file == '_desktop.ini'): continue current_gender = speaker_class[current_test_file.split('_')[1]] test_file_path = current_emotion_path + '/' + current_test_file data, sr = get_data(test_file_path) f = extract_dataset_tosequence(data, sr) f_ex = np.full((f.shape[0], nb_attention_param), attention_init_value, dtype=np.float32) predict_output = model.predict([f_ex, f]) predict_prob, predict_label = find_max(predict_output) total += 1 gender_total += 1 if (predict_label == current_gender): gender_count += 1 count += 1 current_accuracy = float(gender_count) / gender_total print('%s accuracy: %.2f%%' % (str(current_emotion), current_accuracy * 100)) total_accuracy = float(count) / total print('Total accuracy: %.2f%%' % (total_accuracy * 100)) def analyse_emotionn(model,test_file): dic = {} data, sr = get_data(test_file) f = extract_dataset_tosequence(data, sr) f_ex = np.full((f.shape[0], nb_attention_param), attention_init_value, dtype=np.float32) predict_output = model.predict([f_ex, f]) predict_prob, predict_label = find_max(predict_output) predict_class = classes[predict_label] for i in range(len(predict_output[0])): current_prob = predict_output[0][i] current_class = classes[i] # print('当前语音的情感为:%-8s 的概率为:%.2f%%' % # (str(current_class), current_prob * 100)) dic[current_class] = current_prob * 100 # print('因此,当前语音的情感为:%s, 概率为:%.2f%%' % # (str(predict_class), predict_prob * 100)) return dic def get_audioclass(model,test_file,model_type = 'emotion',all = False): if(model_type == 'emotion'): data, sr = get_data(test_file) f = extract_dataset_tosequence(data, sr) f_ex = np.full((f.shape[0], nb_attention_param), attention_init_value, dtype=np.float32) predict_output = model.predict([f_ex, f]) predict_prob, predict_label = find_max(predict_output) predict_class = classes[predict_label] class_dic = {} for i in range(len(predict_output[0])): current_prob = predict_output[0][i] current_class = classes[i] class_dic[current_class] = current_prob # print('当前语音的情感为:%-8s 的概率为:%.2f%%' % # (str(current_class), current_prob * 100)) if(all): return predict_class,predict_prob,class_dic return predict_class,predict_prob elif(model_type == 'gender'): data, sr = get_data(test_file) f = extract_dataset_tosequence(data, sr) f_ex = np.full((f.shape[0], nb_attention_param), attention_init_value, dtype=np.float32) predict_output = model.predict([f_ex, f]) predict_prob, predict_label = find_max(predict_output) predict_class = gender_classes[predict_label] class_dic = {} for i in range(len(predict_output[0])): current_prob = predict_output[0][i] current_class = gender_classes[i] class_dic[current_class] = current_prob # print('当前语音的情感为:%-8s 的概率为:%.2f%%' % # (str(current_class), current_prob * 100)) if (all): return predict_class, predict_prob, class_dic return predict_class, predict_prob elif(model_type == 'emotion_neutral'): data, sr = get_data(test_file) f = extract_dataset_tosequence(data, sr) f_ex = np.full((f.shape[0], nb_attention_param), attention_init_value, dtype=np.float32) predict_output = model.predict([f_ex, f]) predict_prob, predict_label = find_max(predict_output) predict_class = classes_e_n[predict_label] return predict_prob,predict_class def model_confusion_matrix(model, test_folder,model_type): if(model_type == 'emotion'): # 真实结果的预测结果list, y为真实结果,x为预测结果 result_list = [] # emotion_list = ['angry','fear','happy','neutral','sad','surprise'] # emotion_list = ['angry','fear','happy','sad','surprise'] emotion_list = ['angry','happy','sad'] for current_emotion in emotion_list: result_list.append([0 for i in range(len(emotion_list))]) for current_emotion in emotion_list: current_emotion_path = test_folder + '/' + current_emotion test_file_list = os.listdir(current_emotion_path) for current_test_file in test_file_list: if (not current_test_file.endswith('.wav')): continue test_file_path = current_emotion_path + '/' + current_test_file data, sr = get_data(test_file_path) f = extract_dataset_tosequence(data, sr) f_ex = np.full((f.shape[0], nb_attention_param), attention_init_value, dtype=np.float32) predict_output = model.predict([f_ex, f]) predict_prob, predict_label = find_max(predict_output) result_list[emotion_list.index(current_emotion)][int(predict_label)] += 1 print(result_list) elif (model_type == 'gender'): # 真实结果的预测结果list, y为真实结果,x为预测结果 result_list = [] gender_list = ['male', 'female'] male_list = ['Zhe.Wang','Zuoxiang.Zhao'] female_list=['Chang.Liu','Quanyin.Zhao',] emotion_list = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise'] for current_gender in gender_list: result_list.append([0 for i in range(len(gender_list))]) speak_list = os.listdir(test_folder) for current_speak in speak_list: if(current_speak in male_list): gender = 0 elif(current_speak in female_list): gender = 1 else: continue speak_path = test_folder + '/' + current_speak for current_emotion in emotion_list: current_emotion_path = speak_path + '/' + current_emotion test_file_list = os.listdir(current_emotion_path) for current_test_file in test_file_list: if (not current_test_file.endswith('.wav')): continue test_file_path = current_emotion_path + '/' + current_test_file data, sr = get_data(test_file_path) f = extract_dataset_tosequence(data, sr) f_ex = np.full((f.shape[0], nb_attention_param), attention_init_value, dtype=np.float32) predict_output = model.predict([f_ex, f]) predict_prob, predict_label = find_max(predict_output) result_list[gender_list.index(gender)][int(predict_label)] += 1 print(result_list) print(result_list) if __name__ == '__main__': #input wav format # FORMAT = pyaudio.paInt16 # CHANNELS = 1 # RATE = 16000 test_file = 'input.wav' test_folder = '/Volumes/data/CAS/不同文本100/ChangLiu' model_path = 'model/test_12.h5' model = load_model(model_path) # test_model(model_path,test_folder,model_type='emotion') # #获取音频 # microphone_audio(test_file) # #验证模型正确率 # print(analyse_emotionn(model,test_file)) # emotion_predict_class, emotion_predict_prob, emotion_class_dic = get_audioclass(model, test_file, 'emotion', # all=True) from keras.utils import plot_model plot_model(model, to_file='model.png', show_shapes=True) model_confusion_matrix(model,test_folder,model_type='emotion')
[ "pyAudioAnalysis.audioFeatureExtraction.stFeatureSpeed", "keras.models.load_model", "numpy.full", "scipy.stats.zscore", "keras.preprocessing.sequence.pad_sequences", "keras.backend.backend", "tensorflow.Session", "pyAudioAnalysis.audioFeatureExtraction.stFeatureExtraction", "tensorflow.ConfigProto", "keras.utils.plot_model", "librosa.load", "os.listdir" ]
[((1461, 1472), 'keras.backend.backend', 'K.backend', ([], {}), '()\n', (1470, 1472), True, 'from keras import backend as K\n'), ((1578, 1594), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (1592, 1594), True, 'import tensorflow as tf\n'), ((1649, 1674), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (1659, 1674), True, 'import tensorflow as tf\n'), ((1825, 1859), 'librosa.load', 'librosa.load', (['audio_path'], {'sr': '(16000)'}), '(audio_path, sr=16000)\n', (1837, 1859), False, 'import librosa\n'), ((2025, 2110), 'pyAudioAnalysis.audioFeatureExtraction.stFeatureExtraction', 'audioFeatureExtraction.stFeatureExtraction', (['data', 'Fs', '(frame_size * Fs)', '(step * Fs)'], {}), '(data, Fs, frame_size * Fs, step * Fs\n )\n', (2067, 2110), False, 'from pyAudioAnalysis import audioFeatureExtraction\n'), ((2257, 2332), 'pyAudioAnalysis.audioFeatureExtraction.stFeatureSpeed', 'audioFeatureExtraction.stFeatureSpeed', (['data', 'Fs', '(frame_size * Fs)', '(step * Fs)'], {}), '(data, Fs, frame_size * Fs, step * Fs)\n', (2294, 2332), False, 'from pyAudioAnalysis import audioFeatureExtraction\n'), ((2421, 2444), 'scipy.stats.zscore', 'stats.zscore', (['f'], {'axis': '(0)'}), '(f, axis=0)\n', (2433, 2444), False, 'from scipy import stats\n'), ((2552, 2659), 'keras.preprocessing.sequence.pad_sequences', 'sequence.pad_sequences', (['f_global'], {'maxlen': 'max_len', 'dtype': '"""float32"""', 'padding': '"""post"""', 'value': 'masking_value'}), "(f_global, maxlen=max_len, dtype='float32', padding=\n 'post', value=masking_value)\n", (2574, 2659), False, 'from keras.preprocessing import sequence\n'), ((3384, 3406), 'keras.models.load_model', 'load_model', (['model_path'], {}), '(model_path)\n', (3394, 3406), False, 'from keras.models import load_model\n'), ((3426, 3449), 'os.listdir', 'os.listdir', (['test_folder'], {}), '(test_folder)\n', (3436, 3449), False, 'import os\n'), ((6626, 6712), 'numpy.full', 'np.full', (['(f.shape[0], nb_attention_param)', 'attention_init_value'], {'dtype': 'np.float32'}), '((f.shape[0], nb_attention_param), attention_init_value, dtype=np.\n float32)\n', (6633, 6712), True, 'import numpy as np\n'), ((12852, 12874), 'keras.models.load_model', 'load_model', (['model_path'], {}), '(model_path)\n', (12862, 12874), False, 'from keras.models import load_model\n'), ((13306, 13362), 'keras.utils.plot_model', 'plot_model', (['model'], {'to_file': '"""model.png"""', 'show_shapes': '(True)'}), "(model, to_file='model.png', show_shapes=True)\n", (13316, 13362), False, 'from keras.utils import plot_model\n'), ((7471, 7557), 'numpy.full', 'np.full', (['(f.shape[0], nb_attention_param)', 'attention_init_value'], {'dtype': 'np.float32'}), '((f.shape[0], nb_attention_param), attention_init_value, dtype=np.\n float32)\n', (7478, 7557), True, 'import numpy as np\n'), ((3829, 3861), 'os.listdir', 'os.listdir', (['current_emotion_path'], {}), '(current_emotion_path)\n', (3839, 3861), False, 'import os\n'), ((8310, 8396), 'numpy.full', 'np.full', (['(f.shape[0], nb_attention_param)', 'attention_init_value'], {'dtype': 'np.float32'}), '((f.shape[0], nb_attention_param), attention_init_value, dtype=np.\n float32)\n', (8317, 8396), True, 'import numpy as np\n'), ((10098, 10130), 'os.listdir', 'os.listdir', (['current_emotion_path'], {}), '(current_emotion_path)\n', (10108, 10130), False, 'import os\n'), ((11307, 11330), 'os.listdir', 'os.listdir', (['test_folder'], {}), '(test_folder)\n', (11317, 11330), False, 'import os\n'), ((4218, 4304), 'numpy.full', 'np.full', (['(f.shape[0], nb_attention_param)', 'attention_init_value'], {'dtype': 'np.float32'}), '((f.shape[0], nb_attention_param), attention_init_value, dtype=np.\n float32)\n', (4225, 4304), True, 'import numpy as np\n'), ((5296, 5328), 'os.listdir', 'os.listdir', (['current_emotion_path'], {}), '(current_emotion_path)\n', (5306, 5328), False, 'import os\n'), ((9176, 9262), 'numpy.full', 'np.full', (['(f.shape[0], nb_attention_param)', 'attention_init_value'], {'dtype': 'np.float32'}), '((f.shape[0], nb_attention_param), attention_init_value, dtype=np.\n float32)\n', (9183, 9262), True, 'import numpy as np\n'), ((10487, 10573), 'numpy.full', 'np.full', (['(f.shape[0], nb_attention_param)', 'attention_init_value'], {'dtype': 'np.float32'}), '((f.shape[0], nb_attention_param), attention_init_value, dtype=np.\n float32)\n', (10494, 10573), True, 'import numpy as np\n'), ((5797, 5883), 'numpy.full', 'np.full', (['(f.shape[0], nb_attention_param)', 'attention_init_value'], {'dtype': 'np.float32'}), '((f.shape[0], nb_attention_param), attention_init_value, dtype=np.\n float32)\n', (5804, 5883), True, 'import numpy as np\n'), ((11778, 11810), 'os.listdir', 'os.listdir', (['current_emotion_path'], {}), '(current_emotion_path)\n', (11788, 11810), False, 'import os\n'), ((12195, 12281), 'numpy.full', 'np.full', (['(f.shape[0], nb_attention_param)', 'attention_init_value'], {'dtype': 'np.float32'}), '((f.shape[0], nb_attention_param), attention_init_value, dtype=np.\n float32)\n', (12202, 12281), True, 'import numpy as np\n')]
import os import pytest import sys import numpy as np try: import pymake except: msg = "Error. Pymake package is not available.\n" msg += "Try installing using the following command:\n" msg += " pip install https://github.com/modflowpy/pymake/zipball/master" raise Exception(msg) try: import flopy except: msg = "Error. FloPy package is not available.\n" msg += "Try installing using the following command:\n" msg += " pip install flopy" raise Exception(msg) from framework import testing_framework from simulation import Simulation ex = ["aux02"] exdirs = [] for s in ex: exdirs.append(os.path.join("temp", s)) def build_model(idx, dir): nlay, nrow, ncol = 1, 10, 10 nper = 3 perlen = [1.0, 1.0, 1.0] nstp = [10, 10, 10] tsmult = [1.0, 1.0, 1.0] lenx = 300.0 delr = delc = lenx / float(nrow) strt = 100.0 nouter, ninner = 100, 300 hclose, rclose, relax = 1e-9, 1e-3, 0.97 tdis_rc = [] for i in range(nper): tdis_rc.append((perlen[i], nstp[i], tsmult[i])) name = ex[idx] # build MODFLOW 6 files ws = dir sim = flopy.mf6.MFSimulation( sim_name=name, version="mf6", exe_name="mf6", sim_ws=ws ) # create tdis package tdis = flopy.mf6.ModflowTdis(sim, time_units="DAYS", nper=nper, perioddata=tdis_rc) # create gwf model gwf = flopy.mf6.ModflowGwf(sim, modelname=name) # create iterative model solution and register the gwf model with it ims = flopy.mf6.ModflowIms( sim, print_option="SUMMARY", outer_dvclose=hclose, outer_maximum=nouter, under_relaxation="DBD", inner_maximum=ninner, inner_dvclose=hclose, rcloserecord=rclose, linear_acceleration="BICGSTAB", scaling_method="NONE", reordering_method="NONE", relaxation_factor=relax, ) sim.register_ims_package(ims, [gwf.name]) dis = flopy.mf6.ModflowGwfdis( gwf, nlay=nlay, nrow=nrow, ncol=ncol, delr=delr, delc=delc, top=90.0, botm=0.0, ) # initial conditions ic = flopy.mf6.ModflowGwfic(gwf, strt=strt) # node property flow npf = flopy.mf6.ModflowGwfnpf(gwf, save_flows=True, icelltype=1, k=1.0, k33=0.01) # chd files chdlist0 = [] chdlist0.append([(0, 0, 0), 100.0] + [a for a in range(100)]) chdlist0.append([(0, nrow - 1, ncol - 1), 95.0] + [a for a in range(100)]) chdspdict = {0: chdlist0} chd = flopy.mf6.ModflowGwfchd( gwf, stress_period_data=chdspdict, save_flows=True, auxiliary=[f"aux{i}" for i in range(100)], pname="CHD-1", ) # output control oc = flopy.mf6.ModflowGwfoc( gwf, budget_filerecord="{}.bud".format(name), head_filerecord="{}.hds".format(name), headprintrecord=[("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")], saverecord=[("HEAD", "ALL"), ("BUDGET", "ALL")], printrecord=[("HEAD", "ALL"), ("BUDGET", "ALL")], filename="{}.oc".format(name), ) return sim, None def eval_model(sim): print("evaluating model...") # maw budget aux variables fpth = os.path.join(sim.simpath, "aux02.bud") bobj = flopy.utils.CellBudgetFile(fpth, precision="double") records = bobj.get_data(text="CHD") for r in records: for a in range(100): aname = f"AUX{a}" assert np.allclose(r[aname], a) return # - No need to change any code below @pytest.mark.parametrize( "idx, dir", list(enumerate(exdirs)), ) def test_mf6model(idx, dir): # initialize testing framework test = testing_framework() # build the model test.build_mf6_models(build_model, idx, dir) # run the test model test.run_mf6(Simulation(dir, exfunc=eval_model, idxsim=idx)) def main(): # initialize testing framework test = testing_framework() # run the test model for idx, dir in enumerate(exdirs): test.build_mf6_models(build_model, idx, dir) sim = Simulation(dir, exfunc=eval_model, idxsim=idx) test.run_mf6(sim) if __name__ == "__main__": # print message print("standalone run of {}".format(os.path.basename(__file__))) # run main routine main()
[ "flopy.mf6.ModflowIms", "flopy.utils.CellBudgetFile", "os.path.join", "flopy.mf6.ModflowTdis", "os.path.basename", "numpy.allclose", "framework.testing_framework", "flopy.mf6.ModflowGwfnpf", "flopy.mf6.ModflowGwf", "simulation.Simulation", "flopy.mf6.ModflowGwfic", "flopy.mf6.MFSimulation", "flopy.mf6.ModflowGwfdis" ]
[((1137, 1216), 'flopy.mf6.MFSimulation', 'flopy.mf6.MFSimulation', ([], {'sim_name': 'name', 'version': '"""mf6"""', 'exe_name': '"""mf6"""', 'sim_ws': 'ws'}), "(sim_name=name, version='mf6', exe_name='mf6', sim_ws=ws)\n", (1159, 1216), False, 'import flopy\n'), ((1268, 1344), 'flopy.mf6.ModflowTdis', 'flopy.mf6.ModflowTdis', (['sim'], {'time_units': '"""DAYS"""', 'nper': 'nper', 'perioddata': 'tdis_rc'}), "(sim, time_units='DAYS', nper=nper, perioddata=tdis_rc)\n", (1289, 1344), False, 'import flopy\n'), ((1379, 1420), 'flopy.mf6.ModflowGwf', 'flopy.mf6.ModflowGwf', (['sim'], {'modelname': 'name'}), '(sim, modelname=name)\n', (1399, 1420), False, 'import flopy\n'), ((1505, 1810), 'flopy.mf6.ModflowIms', 'flopy.mf6.ModflowIms', (['sim'], {'print_option': '"""SUMMARY"""', 'outer_dvclose': 'hclose', 'outer_maximum': 'nouter', 'under_relaxation': '"""DBD"""', 'inner_maximum': 'ninner', 'inner_dvclose': 'hclose', 'rcloserecord': 'rclose', 'linear_acceleration': '"""BICGSTAB"""', 'scaling_method': '"""NONE"""', 'reordering_method': '"""NONE"""', 'relaxation_factor': 'relax'}), "(sim, print_option='SUMMARY', outer_dvclose=hclose,\n outer_maximum=nouter, under_relaxation='DBD', inner_maximum=ninner,\n inner_dvclose=hclose, rcloserecord=rclose, linear_acceleration=\n 'BICGSTAB', scaling_method='NONE', reordering_method='NONE',\n relaxation_factor=relax)\n", (1525, 1810), False, 'import flopy\n'), ((1954, 2061), 'flopy.mf6.ModflowGwfdis', 'flopy.mf6.ModflowGwfdis', (['gwf'], {'nlay': 'nlay', 'nrow': 'nrow', 'ncol': 'ncol', 'delr': 'delr', 'delc': 'delc', 'top': '(90.0)', 'botm': '(0.0)'}), '(gwf, nlay=nlay, nrow=nrow, ncol=ncol, delr=delr,\n delc=delc, top=90.0, botm=0.0)\n', (1977, 2061), False, 'import flopy\n'), ((2164, 2202), 'flopy.mf6.ModflowGwfic', 'flopy.mf6.ModflowGwfic', (['gwf'], {'strt': 'strt'}), '(gwf, strt=strt)\n', (2186, 2202), False, 'import flopy\n'), ((2239, 2314), 'flopy.mf6.ModflowGwfnpf', 'flopy.mf6.ModflowGwfnpf', (['gwf'], {'save_flows': '(True)', 'icelltype': '(1)', 'k': '(1.0)', 'k33': '(0.01)'}), '(gwf, save_flows=True, icelltype=1, k=1.0, k33=0.01)\n', (2262, 2314), False, 'import flopy\n'), ((3242, 3280), 'os.path.join', 'os.path.join', (['sim.simpath', '"""aux02.bud"""'], {}), "(sim.simpath, 'aux02.bud')\n", (3254, 3280), False, 'import os\n'), ((3292, 3344), 'flopy.utils.CellBudgetFile', 'flopy.utils.CellBudgetFile', (['fpth'], {'precision': '"""double"""'}), "(fpth, precision='double')\n", (3318, 3344), False, 'import flopy\n'), ((3709, 3728), 'framework.testing_framework', 'testing_framework', ([], {}), '()\n', (3726, 3728), False, 'from framework import testing_framework\n'), ((3952, 3971), 'framework.testing_framework', 'testing_framework', ([], {}), '()\n', (3969, 3971), False, 'from framework import testing_framework\n'), ((635, 658), 'os.path.join', 'os.path.join', (['"""temp"""', 's'], {}), "('temp', s)\n", (647, 658), False, 'import os\n'), ((3844, 3890), 'simulation.Simulation', 'Simulation', (['dir'], {'exfunc': 'eval_model', 'idxsim': 'idx'}), '(dir, exfunc=eval_model, idxsim=idx)\n', (3854, 3890), False, 'from simulation import Simulation\n'), ((4104, 4150), 'simulation.Simulation', 'Simulation', (['dir'], {'exfunc': 'eval_model', 'idxsim': 'idx'}), '(dir, exfunc=eval_model, idxsim=idx)\n', (4114, 4150), False, 'from simulation import Simulation\n'), ((3485, 3509), 'numpy.allclose', 'np.allclose', (['r[aname]', 'a'], {}), '(r[aname], a)\n', (3496, 3509), True, 'import numpy as np\n'), ((4266, 4292), 'os.path.basename', 'os.path.basename', (['__file__'], {}), '(__file__)\n', (4282, 4292), False, 'import os\n')]
import numpy as np from kernel_tuner import core from kernel_tuner.interface import Options, _kernel_options from kernel_tuner.integration import TuneResults class PythonKernel(object): def __init__(self, kernel_name, kernel_string, problem_size, arguments, params=None, inputs=None, outputs=None, device=0, platform=0, block_size_names=None, grid_div_x=None, grid_div_y=None, grid_div_z=None, verbose=True, lang=None, results_file=None): """ Construct Python helper object to compile and call the kernel from Python This object compiles a GPU kernel parameterized using the parameters in params. GPU memory is allocated for each argument using its size and type as listed in arguments. The object can be called directly as a function with the kernel arguments as function arguments. Kernel arguments marked as inputs will be copied to the GPU on every kernel launch. Only the kernel arguments marked as outputs will be returned, note that the result is always returned in a list, even when there is only one output. Most of the arguments to this function are the same as with tune_kernel or run_kernel in Kernel Tuner, and are therefore not duplicated here. The two new arguments are: :param inputs: a boolean list of length arguments to signal whether an argument is input to the kernel :type inputs: list(bool) :param outputs: a boolean list of length arguments to signal whether an argument is output of the kernel :type outputs: list(bool) """ #construct device interface kernel_source = core.KernelSource(kernel_name, kernel_string, lang) self.dev = core.DeviceInterface(kernel_source, device=device, quiet=True) if not params: params = {} #if results_file is passed use the results file to lookup tunable parameters if results_file: results = TuneResults(results_file) params.update(results.get_best_config(self.dev.name, problem_size)) self.params = params #construct kernel_options to hold information about the kernel opts = locals() kernel_options = Options([(k, opts[k]) for k in _kernel_options.keys() if k in opts.keys()]) #instantiate the kernel given the parameters in params self.kernel_instance = self.dev.create_kernel_instance(kernel_source, kernel_options, params, verbose) #compile the kernel self.func = self.dev.compile_kernel(self.kernel_instance, verbose) #setup GPU memory self.gpu_args = self.dev.ready_argument_list(arguments) if inputs: self.inputs = inputs else: self.inputs = [True for _ in arguments] if outputs: self.outputs = outputs else: self.outputs = [True for _ in arguments] def update_gpu_args(self, args): for i, arg in enumerate(args): if self.inputs[i]: if isinstance(args[i], np.ndarray): self.dev.dev.memcpy_htod(self.gpu_args[i], arg) else: self.gpu_args[i] = arg return self.gpu_args def get_gpu_result(self, args): results = [] for i, _ in enumerate(self.gpu_args): if self.outputs[i] and isinstance(args[i], np.ndarray): res = np.zeros_like(args[i]) self.dev.memcpy_dtoh(res, self.gpu_args[i]) results.append(res) return results def run_kernel(self, args): """Run the GPU kernel Copy the arguments marked as inputs to the GPU Call the GPU kernel Copy the arguments marked as outputs from the GPU Return the outputs in a list of numpy arrays :param args: A list with the kernel arguments as numpy arrays or numpy scalars :type args: list(np.ndarray or np.generic) """ self.update_gpu_args(args) self.dev.run_kernel(self.func, self.gpu_args, self.kernel_instance) return self.get_gpu_result(args) def __call__(self, *args): """Run the GPU kernel Copy the arguments marked as inputs to the GPU Call the GPU kernel Copy the arguments marked as outputs from the GPU Return the outputs in a list of numpy arrays :param *args: A variable number of kernel arguments as numpy arrays or numpy scalars :type *args: np.ndarray or np.generic """ return self.run_kernel(args) def __del__(self): if hasattr(self, 'dev'): self.dev.__exit__([None, None, None])
[ "numpy.zeros_like", "kernel_tuner.integration.TuneResults", "kernel_tuner.core.DeviceInterface", "kernel_tuner.interface._kernel_options.keys", "kernel_tuner.core.KernelSource" ]
[((1716, 1767), 'kernel_tuner.core.KernelSource', 'core.KernelSource', (['kernel_name', 'kernel_string', 'lang'], {}), '(kernel_name, kernel_string, lang)\n', (1733, 1767), False, 'from kernel_tuner import core\n'), ((1787, 1849), 'kernel_tuner.core.DeviceInterface', 'core.DeviceInterface', (['kernel_source'], {'device': 'device', 'quiet': '(True)'}), '(kernel_source, device=device, quiet=True)\n', (1807, 1849), False, 'from kernel_tuner import core\n'), ((2030, 2055), 'kernel_tuner.integration.TuneResults', 'TuneResults', (['results_file'], {}), '(results_file)\n', (2041, 2055), False, 'from kernel_tuner.integration import TuneResults\n'), ((3488, 3510), 'numpy.zeros_like', 'np.zeros_like', (['args[i]'], {}), '(args[i])\n', (3501, 3510), True, 'import numpy as np\n'), ((2317, 2339), 'kernel_tuner.interface._kernel_options.keys', '_kernel_options.keys', ([], {}), '()\n', (2337, 2339), False, 'from kernel_tuner.interface import Options, _kernel_options\n')]
import pytest from .fixtures import * import pandas as pd import numpy as np DROPPED_ROWS_INDICES = [2, 5, 7, 10] @pytest.mark.parametrize("original_df", [ make_table(unsorted_int_index, rows=30, astype="pandas"), make_table(unsorted_datetime_index, rows=37, astype="pandas"), make_table(unsorted_string_index, rows=125, astype="pandas") ]) def test_insert_table(original_df, store): # Arrange row_indices = np.random.choice(original_df.index, size=5, replace=False) insert_df = original_df.loc[row_indices, :] expected = original_df.copy().sort_index() original_df = original_df.drop(index=row_indices) partition_size = get_partition_size( original_df, num_partitions=NUMBER_OF_PARTITIONS) store.write_table(TABLE_NAME, original_df, partition_size=partition_size, warnings='ignore') table = store.select_table(TABLE_NAME) # Act table.insert(insert_df) # Assert df = store.read_pandas(TABLE_NAME) assert df.equals(expected) def test_insert_table_with_pandas_series(store): # Arrange original_df = make_table(cols=1, astype='pandas').squeeze() row_indices = np.random.choice(original_df.index, size=5, replace=False) insert_df = original_df.loc[row_indices] expected = original_df.copy().sort_index() original_df = original_df.drop(index=row_indices) partition_size = get_partition_size( original_df, num_partitions=NUMBER_OF_PARTITIONS) store.write_table(TABLE_NAME, original_df, partition_size=partition_size, warnings='ignore') table = store.select_table(TABLE_NAME) # Act table.insert(insert_df) # Assert df = store.read_pandas(TABLE_NAME) assert df.equals(expected) def _wrong_index_dtype(): df = make_table(sorted_datetime_index, astype="pandas") return df def _existing_index_values(): df = make_table(astype="pandas") return df def _duplicate_index_values(): df = make_table(astype="pandas") df = df.iloc[DROPPED_ROWS_INDICES, :] df = pd.concat([df, df]) # Duplicate df return df def _wrong_column_dtype(): df = make_table(sorted_string_index, cols=4, astype="pandas") df = df.reset_index() df.columns = ['c0', 'c1', 'c2', 'c3', 'c4'] df = df.iloc[DROPPED_ROWS_INDICES, :] return df def _wrong_column_names(): df = make_table(cols=2, astype="pandas") df = df.iloc[DROPPED_ROWS_INDICES, :] df.columns = ['c1', 'non-existant_column'] return df def _duplicate_column_names(): df = make_table(cols=6, astype="pandas") df = df.iloc[DROPPED_ROWS_INDICES, :] df.columns = ['c0', 'c0', 'c1', 'c2', 'c3', 'c4'] return df @pytest.mark.parametrize( ("insert_df", "exception"), [ (_wrong_index_dtype(), TypeError), (_existing_index_values(), ValueError), (_duplicate_index_values(), IndexError), (_wrong_column_dtype(), TypeError), (_wrong_column_names(), ValueError), (_duplicate_column_names(), IndexError), ], ids=[ "_wrong_index_dtype", "_existing_index_values", "_duplicate_index_values", "_wrong_column_dtype", "_wrong_column_names", "_duplicate_column_names", ], ) def test_can_insert_table(insert_df, exception, store): # Arrange original_df = make_table(cols=5, astype='pandas') original_df = original_df.drop(index=DROPPED_ROWS_INDICES) store.write_table(TABLE_NAME, original_df) table = store.select_table(TABLE_NAME) # Act with pytest.raises(exception) as e: table.insert(insert_df) # Assert assert isinstance(e.type(), exception)
[ "pytest.raises", "pandas.concat", "numpy.random.choice" ]
[((432, 490), 'numpy.random.choice', 'np.random.choice', (['original_df.index'], {'size': '(5)', 'replace': '(False)'}), '(original_df.index, size=5, replace=False)\n', (448, 490), True, 'import numpy as np\n'), ((1214, 1272), 'numpy.random.choice', 'np.random.choice', (['original_df.index'], {'size': '(5)', 'replace': '(False)'}), '(original_df.index, size=5, replace=False)\n', (1230, 1272), True, 'import numpy as np\n'), ((2152, 2171), 'pandas.concat', 'pd.concat', (['[df, df]'], {}), '([df, df])\n', (2161, 2171), True, 'import pandas as pd\n'), ((3654, 3678), 'pytest.raises', 'pytest.raises', (['exception'], {}), '(exception)\n', (3667, 3678), False, 'import pytest\n')]
from django.shortcuts import render,redirect from .models import given_image,predicted_label,image_name from .forms import given_image_form import numpy as np import pandas as pd from PIL import Image import cv2 import os.path import pickle from sklearn.tree import DecisionTreeClassifier # Create your views here. def home(request): form=given_image_form(request.POST or None,request.FILES or None) if form.is_valid(): form.save() a=form.cleaned_data['image_given'] name=image_name(name_of_image=a) name.save() b=image_name.objects.all().last() print(b) c=str(b) new_path=os.path.join('/home/vipul/media/',c) print(new_path) img=cv2.imread(new_path) print(img) arr=np.array(img) print(arr.shape) new_img=np.reshape(arr,(784,3), order='C') final_img=new_img[0:,1] print(new_img.shape) print(final_img.shape) #classifier=decision_tree_model() #pred_label=classifier.predict([final_img]) #label_pred=predicted_label(label=np.asscalar(pred_label)) #label_pred.save() loaded_classifier=pickle.load(open('decision_tree_model.sav','rb')) pred_label=loaded_classifier.predict([final_img]) label_pred=predicted_label(label=np.asscalar(pred_label)) label_pred.save() number=predicted_label.objects.all().last() context={"number":number} return render(request,'mnistwebsite/successPage.html',context) context={'form':form} return render(request,'mnistwebsite/home.html',context) def successPage(request): return render(request,'successPage.html')
[ "cv2.imread", "numpy.array", "numpy.reshape", "django.shortcuts.render", "numpy.asscalar" ]
[((1654, 1704), 'django.shortcuts.render', 'render', (['request', '"""mnistwebsite/home.html"""', 'context'], {}), "(request, 'mnistwebsite/home.html', context)\n", (1660, 1704), False, 'from django.shortcuts import render, redirect\n'), ((1750, 1785), 'django.shortcuts.render', 'render', (['request', '"""successPage.html"""'], {}), "(request, 'successPage.html')\n", (1756, 1785), False, 'from django.shortcuts import render, redirect\n'), ((748, 768), 'cv2.imread', 'cv2.imread', (['new_path'], {}), '(new_path)\n', (758, 768), False, 'import cv2\n'), ((805, 818), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (813, 818), True, 'import numpy as np\n'), ((869, 905), 'numpy.reshape', 'np.reshape', (['arr', '(784, 3)'], {'order': '"""C"""'}), "(arr, (784, 3), order='C')\n", (879, 905), True, 'import numpy as np\n'), ((1556, 1613), 'django.shortcuts.render', 'render', (['request', '"""mnistwebsite/successPage.html"""', 'context'], {}), "(request, 'mnistwebsite/successPage.html', context)\n", (1562, 1613), False, 'from django.shortcuts import render, redirect\n'), ((1377, 1400), 'numpy.asscalar', 'np.asscalar', (['pred_label'], {}), '(pred_label)\n', (1388, 1400), True, 'import numpy as np\n')]
""" Unit tests for optimizers. """ import numpy as np import pytest from numpy.linalg import norm from scipy.integrate import odeint from sklearn.base import BaseEstimator from sklearn.exceptions import ConvergenceWarning from sklearn.exceptions import NotFittedError from sklearn.linear_model import ElasticNet from sklearn.linear_model import Lasso from sklearn.utils.validation import check_is_fitted from pysindy import FiniteDifference from pysindy import PolynomialLibrary from pysindy import SINDy from pysindy.feature_library import CustomLibrary from pysindy.optimizers import ConstrainedSR3 from pysindy.optimizers import SINDyOptimizer from pysindy.optimizers import SR3 from pysindy.optimizers import STLSQ from pysindy.optimizers import TrappingSR3 from pysindy.utils import supports_multiple_targets def lorenz(z, t): return 10 * (z[1] - z[0]), z[0] * (28 - z[2]) - z[1], z[0] * z[1] - 8 / 3 * z[2] class DummyLinearModel(BaseEstimator): # Does not natively support multiple targets def fit(self, x, y): self.coef_ = np.ones(x.shape[1]) self.intercept_ = 0 return self def predict(self, x): return x class DummyEmptyModel(BaseEstimator): # Does not have fit or predict methods def __init__(self): self.fit_intercept = False self.normalize = False class DummyModelNoCoef(BaseEstimator): # Does not set the coef_ attribute def fit(self, x, y): self.intercept_ = 0 return self def predict(self, x): return x @pytest.mark.parametrize( "cls, support", [ (Lasso, True), (STLSQ, True), (SR3, True), (ConstrainedSR3, True), (TrappingSR3, True), (DummyLinearModel, False), ], ) def test_supports_multiple_targets(cls, support): assert supports_multiple_targets(cls()) == support @pytest.fixture(params=["data_derivative_1d", "data_derivative_2d"]) def data(request): return request.getfixturevalue(request.param) @pytest.mark.parametrize( "optimizer", [ STLSQ(), SR3(), ConstrainedSR3(), TrappingSR3(), Lasso(fit_intercept=False), ElasticNet(fit_intercept=False), DummyLinearModel(), ], ) def test_fit(data, optimizer): x, x_dot = data if len(x.shape) == 1: x = x.reshape(-1, 1) opt = SINDyOptimizer(optimizer, unbias=False) opt.fit(x, x_dot) check_is_fitted(opt) assert opt.complexity >= 0 if len(x_dot.shape) > 1: assert opt.coef_.shape == (x.shape[1], x_dot.shape[1]) else: assert opt.coef_.shape == (1, x.shape[1]) @pytest.mark.parametrize( "optimizer", [STLSQ(), SR3()], ) def test_not_fitted(optimizer): with pytest.raises(NotFittedError): optimizer.predict(np.ones((1, 3))) @pytest.mark.parametrize("optimizer", [STLSQ(), SR3()]) def test_complexity_not_fitted(optimizer, data_derivative_2d): with pytest.raises(NotFittedError): optimizer.complexity x, _ = data_derivative_2d optimizer.fit(x, x) assert optimizer.complexity > 0 @pytest.mark.parametrize( "kwargs", [{"normalize": True}, {"fit_intercept": True}, {"copy_X": False}] ) def test_alternate_parameters(data_derivative_1d, kwargs): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) model = STLSQ(**kwargs) model.fit(x, x_dot) model.fit(x, x_dot, sample_weight=x[:, 0]) check_is_fitted(model) @pytest.mark.parametrize("optimizer", [STLSQ, SR3, ConstrainedSR3]) @pytest.mark.parametrize("params", [dict(threshold=-1), dict(max_iter=0)]) def test_general_bad_parameters(optimizer, params): with pytest.raises(ValueError): optimizer(**params) @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3]) @pytest.mark.parametrize( "params", [dict(nu=0), dict(tol=0), dict(trimming_fraction=-1), dict(trimming_fraction=2)], ) def test_sr3_bad_parameters(optimizer, params): with pytest.raises(ValueError): optimizer(**params) @pytest.mark.parametrize( "params", [ dict(eta=-1), dict(tol=0), dict(tol_m=0), dict(eps_solver=0), dict(alpha_m=-1), dict(alpha_A=-1), dict(gamma=1), dict(evolve_w=False, relax_optim=False), dict(thresholder="l0"), dict(threshold=-1), dict(max_iter=0), dict(eta=10, alpha_m=20), dict(eta=10, alpha_A=20), ], ) def test_trapping_bad_parameters(params): with pytest.raises(ValueError): TrappingSR3(**params) @pytest.mark.parametrize( "params", [dict(PL=np.random.rand(3, 3, 3, 9)), dict(PQ=np.random.rand(3, 3, 3, 3, 9))], ) def test_trapping_bad_tensors(params): x = np.random.standard_normal((10, 9)) x_dot = np.random.standard_normal((10, 3)) with pytest.raises(ValueError): model = TrappingSR3(**params) model.fit(x, x_dot) @pytest.mark.parametrize( "params", [dict(PL=np.ones((3, 3, 3, 9)), PQ=np.ones((3, 3, 3, 3, 9)))], ) def test_trapping_quadratic_library(params): x = np.random.standard_normal((10, 3)) library_functions = [ lambda x: x, lambda x, y: x * y, lambda x: x ** 2, ] library_function_names = [ lambda x: str(x), lambda x, y: "{} * {}".format(x, y), lambda x: "{}^2".format(x), ] sindy_library = CustomLibrary( library_functions=library_functions, function_names=library_function_names ) opt = TrappingSR3(**params) model = SINDy(optimizer=opt, feature_library=sindy_library) model.fit(x) assert opt.PL.shape == (3, 3, 3, 9) assert opt.PQ.shape == (3, 3, 3, 3, 9) check_is_fitted(model) @pytest.mark.parametrize( "params", [dict(PL=np.ones((3, 3, 3, 9)), PQ=np.ones((3, 3, 3, 3, 9)))], ) def test_trapping_cubic_library(params): x = np.random.standard_normal((10, 3)) library_functions = [ lambda x: x, lambda x, y: x * y, lambda x: x ** 2, lambda x, y, z: x * y * z, lambda x, y: x ** 2 * y, lambda x: x ** 3, ] library_function_names = [ lambda x: str(x), lambda x, y: "{} * {}".format(x, y), lambda x: "{}^2".format(x), lambda x, y, z: "{} * {} * {}".format(x, y, z), lambda x, y: "{}^2 * {}".format(x, y), lambda x: "{}^3".format(x), ] sindy_library = CustomLibrary( library_functions=library_functions, function_names=library_function_names ) with pytest.raises(ValueError): opt = TrappingSR3(**params) model = SINDy(optimizer=opt, feature_library=sindy_library) model.fit(x) @pytest.mark.parametrize( "error, optimizer, params", [ (ValueError, STLSQ, dict(alpha=-1)), (NotImplementedError, SR3, dict(thresholder="l2")), (NotImplementedError, ConstrainedSR3, dict(thresholder="l2")), (ValueError, ConstrainedSR3, dict(thresholder="weighted_l0", thresholds=None)), (ValueError, ConstrainedSR3, dict(thresholder="weighted_l0", thresholds=None)), (ValueError, ConstrainedSR3, dict(thresholds=-np.ones((5, 5)))), ], ) def test_specific_bad_parameters(error, optimizer, params): with pytest.raises(error): optimizer(**params) def test_bad_optimizers(data_derivative_1d): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) with pytest.raises(AttributeError): opt = SINDyOptimizer(DummyEmptyModel()) with pytest.raises(AttributeError): opt = SINDyOptimizer(DummyModelNoCoef()) opt.fit(x, x_dot) @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3]) def test_initial_guess_sr3(optimizer): x = np.random.standard_normal((10, 3)) x_dot = np.random.standard_normal((10, 2)) control_model = optimizer(max_iter=1).fit(x, x_dot) initial_guess = np.random.standard_normal((x_dot.shape[1], x.shape[1])) guess_model = optimizer(max_iter=1, initial_guess=initial_guess).fit(x, x_dot) assert np.any(np.not_equal(control_model.coef_, guess_model.coef_)) # The different capitalizations are intentional; # I want to make sure different versions are recognized @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3]) @pytest.mark.parametrize("thresholder", ["L0", "l1"]) def test_prox_functions(data_derivative_1d, optimizer, thresholder): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) model = optimizer(thresholder=thresholder) model.fit(x, x_dot) check_is_fitted(model) def test_cad_prox_function(data_derivative_1d): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) model = SR3(thresholder="cAd") model.fit(x, x_dot) check_is_fitted(model) @pytest.mark.parametrize("thresholder", ["weighted_l0", "weighted_l1"]) def test_weighted_prox_functions(data, thresholder): x, x_dot = data if x.ndim == 1: x = x.reshape(-1, 1) thresholds = np.ones((1, 1)) else: thresholds = np.ones((x_dot.shape[1], x.shape[1])) model = ConstrainedSR3(thresholder=thresholder, thresholds=thresholds) model.fit(x, x_dot) check_is_fitted(model) @pytest.mark.parametrize("thresholder", ["L0", "l1"]) def test_constrained_sr3_prox_functions(data_derivative_1d, thresholder): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) model = ConstrainedSR3(thresholder=thresholder) model.fit(x, x_dot) check_is_fitted(model) def test_unbias(data_derivative_1d): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) optimizer_biased = SINDyOptimizer( STLSQ(threshold=0.01, alpha=0.1, max_iter=1), unbias=False ) optimizer_biased.fit(x, x_dot) optimizer_unbiased = SINDyOptimizer( STLSQ(threshold=0.01, alpha=0.1, max_iter=1), unbias=True ) optimizer_unbiased.fit(x, x_dot) assert ( norm(optimizer_biased.coef_ - optimizer_unbiased.coef_) / norm(optimizer_unbiased.coef_) > 1e-9 ) def test_unbias_external(data_derivative_1d): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) optimizer_biased = SINDyOptimizer( Lasso(alpha=0.1, fit_intercept=False, max_iter=1), unbias=False ) optimizer_biased.fit(x, x_dot) optimizer_unbiased = SINDyOptimizer( Lasso(alpha=0.1, fit_intercept=False, max_iter=1), unbias=True ) optimizer_unbiased.fit(x, x_dot) assert ( norm(optimizer_biased.coef_ - optimizer_unbiased.coef_) / (norm(optimizer_unbiased.coef_) + 1e-5) > 1e-9 ) @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3]) def test_sr3_trimming(optimizer, data_linear_oscillator_corrupted): X, X_dot, trimming_array = data_linear_oscillator_corrupted optimizer_without_trimming = SINDyOptimizer(optimizer(), unbias=False) optimizer_without_trimming.fit(X, X_dot) optimizer_trimming = SINDyOptimizer(optimizer(trimming_fraction=0.15), unbias=False) optimizer_trimming.fit(X, X_dot) # Check that trimming found the right samples to remove np.testing.assert_array_equal( optimizer_trimming.optimizer.trimming_array, trimming_array ) # Check that the coefficients found by the optimizer with trimming # are closer to the true coefficients than the coefficients found by the # optimizer without trimming true_coef = np.array([[-2.0, 0.0], [0.0, 1.0]]) assert norm(true_coef - optimizer_trimming.coef_) < norm( true_coef - optimizer_without_trimming.coef_ ) @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3]) def test_sr3_disable_trimming(optimizer, data_linear_oscillator_corrupted): x, x_dot, _ = data_linear_oscillator_corrupted model_plain = optimizer() model_plain.fit(x, x_dot) model_trimming = optimizer(trimming_fraction=0.5) model_trimming.disable_trimming() model_trimming.fit(x, x_dot) np.testing.assert_allclose(model_plain.coef_, model_trimming.coef_) @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3]) def test_sr3_enable_trimming(optimizer, data_linear_oscillator_corrupted): x, x_dot, _ = data_linear_oscillator_corrupted model_plain = optimizer() model_plain.enable_trimming(trimming_fraction=0.5) model_plain.fit(x, x_dot) model_trimming = optimizer(trimming_fraction=0.5) model_trimming.fit(x, x_dot) np.testing.assert_allclose(model_plain.coef_, model_trimming.coef_) @pytest.mark.parametrize("optimizer", [SR3, ConstrainedSR3, TrappingSR3]) def test_sr3_warn(optimizer, data_linear_oscillator_corrupted): x, x_dot, _ = data_linear_oscillator_corrupted model = optimizer(max_iter=1, tol=1e-10) with pytest.warns(ConvergenceWarning): model.fit(x, x_dot) @pytest.mark.parametrize( "optimizer", [ STLSQ(max_iter=1), SR3(max_iter=1), ConstrainedSR3(max_iter=1), TrappingSR3(max_iter=1), ], ) def test_fit_warn(data_derivative_1d, optimizer): x, x_dot = data_derivative_1d x = x.reshape(-1, 1) with pytest.warns(ConvergenceWarning): optimizer.fit(x, x_dot) @pytest.mark.parametrize("optimizer", [ConstrainedSR3, TrappingSR3]) @pytest.mark.parametrize("target_value", [0, -1, 3]) def test_row_format_constraints(data_linear_combination, optimizer, target_value): # Solution is x_dot = x.dot(np.array([[1, 1, 0], [0, 1, 1]])) x, x_dot = data_linear_combination constraint_rhs = target_value * np.ones(2) constraint_lhs = np.zeros((2, x.shape[1] * x_dot.shape[1])) # Should force corresponding entries of coef_ to be target_value constraint_lhs[0, 0] = 1 constraint_lhs[1, 3] = 1 model = optimizer( constraint_lhs=constraint_lhs, constraint_rhs=constraint_rhs, constraint_order="feature", ) model.fit(x, x_dot) np.testing.assert_allclose( np.array([model.coef_[0, 0], model.coef_[1, 1]]), target_value, atol=1e-8 ) @pytest.mark.parametrize("optimizer", [ConstrainedSR3, TrappingSR3]) @pytest.mark.parametrize("target_value", [0, -1, 3]) def test_target_format_constraints(data_linear_combination, optimizer, target_value): x, x_dot = data_linear_combination constraint_rhs = target_value * np.ones(2) constraint_lhs = np.zeros((2, x.shape[1] * x_dot.shape[1])) # Should force corresponding entries of coef_ to be target_value constraint_lhs[0, 1] = 1 constraint_lhs[1, 4] = 1 model = optimizer(constraint_lhs=constraint_lhs, constraint_rhs=constraint_rhs) model.fit(x, x_dot) np.testing.assert_allclose(model.coef_[:, 1], target_value, atol=1e-8) @pytest.mark.parametrize("thresholds", [0.005, 0.05]) @pytest.mark.parametrize("relax_optim", [False, True]) @pytest.mark.parametrize("noise_levels", [0.0, 0.05, 0.5]) def test_trapping_inequality_constraints(thresholds, relax_optim, noise_levels): t = np.arange(0, 40, 0.05) x = odeint(lorenz, [-8, 8, 27], t) x = x + np.random.normal(0.0, noise_levels, x.shape) # if order is "feature" constraint_rhs = np.array([-10.0, -2.0]) constraint_matrix = np.zeros((2, 30)) constraint_matrix[0, 6] = 1.0 constraint_matrix[1, 17] = 1.0 feature_names = ["x", "y", "z"] opt = TrappingSR3( threshold=thresholds, constraint_lhs=constraint_matrix, constraint_rhs=constraint_rhs, constraint_order="feature", inequality_constraints=True, relax_optim=relax_optim, ) poly_lib = PolynomialLibrary(degree=2) model = SINDy( optimizer=opt, feature_library=poly_lib, differentiation_method=FiniteDifference(drop_endpoints=True), feature_names=feature_names, ) model.fit(x, t=t[1] - t[0]) assert np.all( np.dot(constraint_matrix, (model.coefficients()).flatten("F")) <= constraint_rhs ) or np.allclose( np.dot(constraint_matrix, (model.coefficients()).flatten("F")), constraint_rhs ) def test_inequality_constraints_reqs(): constraint_rhs = np.array([-10.0, -2.0]) constraint_matrix = np.zeros((2, 30)) constraint_matrix[0, 6] = 1.0 constraint_matrix[1, 17] = 1.0 with pytest.raises(ValueError): TrappingSR3( threshold=0.0, constraint_lhs=constraint_matrix, constraint_rhs=constraint_rhs, constraint_order="feature", inequality_constraints=True, relax_optim=True, )
[ "numpy.ones", "pysindy.optimizers.STLSQ", "numpy.arange", "pysindy.optimizers.TrappingSR3", "numpy.linalg.norm", "numpy.random.normal", "pytest.mark.parametrize", "pysindy.PolynomialLibrary", "sklearn.linear_model.ElasticNet", "scipy.integrate.odeint", "pytest.warns", "pysindy.optimizers.SR3", "pysindy.SINDy", "pytest.raises", "numpy.testing.assert_allclose", "pysindy.optimizers.ConstrainedSR3", "sklearn.linear_model.Lasso", "numpy.testing.assert_array_equal", "pysindy.feature_library.CustomLibrary", "pytest.fixture", "numpy.not_equal", "numpy.random.standard_normal", "pysindy.optimizers.SINDyOptimizer", "numpy.zeros", "pysindy.FiniteDifference", "sklearn.utils.validation.check_is_fitted", "numpy.array", "numpy.random.rand" ]
[((1541, 1706), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""cls, support"""', '[(Lasso, True), (STLSQ, True), (SR3, True), (ConstrainedSR3, True), (\n TrappingSR3, True), (DummyLinearModel, False)]'], {}), "('cls, support', [(Lasso, True), (STLSQ, True), (SR3,\n True), (ConstrainedSR3, True), (TrappingSR3, True), (DummyLinearModel, \n False)])\n", (1564, 1706), False, 'import pytest\n'), ((1872, 1939), 'pytest.fixture', 'pytest.fixture', ([], {'params': "['data_derivative_1d', 'data_derivative_2d']"}), "(params=['data_derivative_1d', 'data_derivative_2d'])\n", (1886, 1939), False, 'import pytest\n'), ((3110, 3215), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""kwargs"""', "[{'normalize': True}, {'fit_intercept': True}, {'copy_X': False}]"], {}), "('kwargs', [{'normalize': True}, {'fit_intercept': \n True}, {'copy_X': False}])\n", (3133, 3215), False, 'import pytest\n'), ((3466, 3532), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""optimizer"""', '[STLSQ, SR3, ConstrainedSR3]'], {}), "('optimizer', [STLSQ, SR3, ConstrainedSR3])\n", (3489, 3532), False, 'import pytest\n'), ((3727, 3786), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""optimizer"""', '[SR3, ConstrainedSR3]'], {}), "('optimizer', [SR3, ConstrainedSR3])\n", (3750, 3786), False, 'import pytest\n'), ((7616, 7675), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""optimizer"""', '[SR3, ConstrainedSR3]'], {}), "('optimizer', [SR3, ConstrainedSR3])\n", (7639, 7675), False, 'import pytest\n'), ((8202, 8261), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""optimizer"""', '[SR3, ConstrainedSR3]'], {}), "('optimizer', [SR3, ConstrainedSR3])\n", (8225, 8261), False, 'import pytest\n'), ((8263, 8315), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""thresholder"""', "['L0', 'l1']"], {}), "('thresholder', ['L0', 'l1'])\n", (8286, 8315), False, 'import pytest\n'), ((8740, 8810), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""thresholder"""', "['weighted_l0', 'weighted_l1']"], {}), "('thresholder', ['weighted_l0', 'weighted_l1'])\n", (8763, 8810), False, 'import pytest\n'), ((9169, 9221), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""thresholder"""', "['L0', 'l1']"], {}), "('thresholder', ['L0', 'l1'])\n", (9192, 9221), False, 'import pytest\n'), ((10563, 10622), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""optimizer"""', '[SR3, ConstrainedSR3]'], {}), "('optimizer', [SR3, ConstrainedSR3])\n", (10586, 10622), False, 'import pytest\n'), ((11531, 11590), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""optimizer"""', '[SR3, ConstrainedSR3]'], {}), "('optimizer', [SR3, ConstrainedSR3])\n", (11554, 11590), False, 'import pytest\n'), ((11981, 12040), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""optimizer"""', '[SR3, ConstrainedSR3]'], {}), "('optimizer', [SR3, ConstrainedSR3])\n", (12004, 12040), False, 'import pytest\n'), ((12447, 12519), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""optimizer"""', '[SR3, ConstrainedSR3, TrappingSR3]'], {}), "('optimizer', [SR3, ConstrainedSR3, TrappingSR3])\n", (12470, 12519), False, 'import pytest\n'), ((13121, 13188), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""optimizer"""', '[ConstrainedSR3, TrappingSR3]'], {}), "('optimizer', [ConstrainedSR3, TrappingSR3])\n", (13144, 13188), False, 'import pytest\n'), ((13190, 13241), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""target_value"""', '[0, -1, 3]'], {}), "('target_value', [0, -1, 3])\n", (13213, 13241), False, 'import pytest\n'), ((13962, 14029), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""optimizer"""', '[ConstrainedSR3, TrappingSR3]'], {}), "('optimizer', [ConstrainedSR3, TrappingSR3])\n", (13985, 14029), False, 'import pytest\n'), ((14031, 14082), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""target_value"""', '[0, -1, 3]'], {}), "('target_value', [0, -1, 3])\n", (14054, 14082), False, 'import pytest\n'), ((14635, 14687), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""thresholds"""', '[0.005, 0.05]'], {}), "('thresholds', [0.005, 0.05])\n", (14658, 14687), False, 'import pytest\n'), ((14689, 14742), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""relax_optim"""', '[False, True]'], {}), "('relax_optim', [False, True])\n", (14712, 14742), False, 'import pytest\n'), ((14744, 14801), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""noise_levels"""', '[0.0, 0.05, 0.5]'], {}), "('noise_levels', [0.0, 0.05, 0.5])\n", (14767, 14801), False, 'import pytest\n'), ((2371, 2410), 'pysindy.optimizers.SINDyOptimizer', 'SINDyOptimizer', (['optimizer'], {'unbias': '(False)'}), '(optimizer, unbias=False)\n', (2385, 2410), False, 'from pysindy.optimizers import SINDyOptimizer\n'), ((2438, 2458), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['opt'], {}), '(opt)\n', (2453, 2458), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((3348, 3363), 'pysindy.optimizers.STLSQ', 'STLSQ', ([], {}), '(**kwargs)\n', (3353, 3363), False, 'from pysindy.optimizers import STLSQ\n'), ((3440, 3462), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['model'], {}), '(model)\n', (3455, 3462), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((4738, 4772), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(10, 9)'], {}), '((10, 9))\n', (4763, 4772), True, 'import numpy as np\n'), ((4785, 4819), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(10, 3)'], {}), '((10, 3))\n', (4810, 4819), True, 'import numpy as np\n'), ((5086, 5120), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(10, 3)'], {}), '((10, 3))\n', (5111, 5120), True, 'import numpy as np\n'), ((5392, 5486), 'pysindy.feature_library.CustomLibrary', 'CustomLibrary', ([], {'library_functions': 'library_functions', 'function_names': 'library_function_names'}), '(library_functions=library_functions, function_names=\n library_function_names)\n', (5405, 5486), False, 'from pysindy.feature_library import CustomLibrary\n'), ((5506, 5527), 'pysindy.optimizers.TrappingSR3', 'TrappingSR3', ([], {}), '(**params)\n', (5517, 5527), False, 'from pysindy.optimizers import TrappingSR3\n'), ((5540, 5591), 'pysindy.SINDy', 'SINDy', ([], {'optimizer': 'opt', 'feature_library': 'sindy_library'}), '(optimizer=opt, feature_library=sindy_library)\n', (5545, 5591), False, 'from pysindy import SINDy\n'), ((5696, 5718), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['model'], {}), '(model)\n', (5711, 5718), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((5879, 5913), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(10, 3)'], {}), '((10, 3))\n', (5904, 5913), True, 'import numpy as np\n'), ((6418, 6512), 'pysindy.feature_library.CustomLibrary', 'CustomLibrary', ([], {'library_functions': 'library_functions', 'function_names': 'library_function_names'}), '(library_functions=library_functions, function_names=\n library_function_names)\n', (6431, 6512), False, 'from pysindy.feature_library import CustomLibrary\n'), ((7723, 7757), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(10, 3)'], {}), '((10, 3))\n', (7748, 7757), True, 'import numpy as np\n'), ((7770, 7804), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(10, 2)'], {}), '((10, 2))\n', (7795, 7804), True, 'import numpy as np\n'), ((7883, 7938), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(x_dot.shape[1], x.shape[1])'], {}), '((x_dot.shape[1], x.shape[1]))\n', (7908, 7938), True, 'import numpy as np\n'), ((8519, 8541), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['model'], {}), '(model)\n', (8534, 8541), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((8663, 8685), 'pysindy.optimizers.SR3', 'SR3', ([], {'thresholder': '"""cAd"""'}), "(thresholder='cAd')\n", (8666, 8685), False, 'from pysindy.optimizers import SR3\n'), ((8714, 8736), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['model'], {}), '(model)\n', (8729, 8736), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((9052, 9114), 'pysindy.optimizers.ConstrainedSR3', 'ConstrainedSR3', ([], {'thresholder': 'thresholder', 'thresholds': 'thresholds'}), '(thresholder=thresholder, thresholds=thresholds)\n', (9066, 9114), False, 'from pysindy.optimizers import ConstrainedSR3\n'), ((9143, 9165), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['model'], {}), '(model)\n', (9158, 9165), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((9367, 9406), 'pysindy.optimizers.ConstrainedSR3', 'ConstrainedSR3', ([], {'thresholder': 'thresholder'}), '(thresholder=thresholder)\n', (9381, 9406), False, 'from pysindy.optimizers import ConstrainedSR3\n'), ((9435, 9457), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['model'], {}), '(model)\n', (9450, 9457), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((11068, 11162), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['optimizer_trimming.optimizer.trimming_array', 'trimming_array'], {}), '(optimizer_trimming.optimizer.trimming_array,\n trimming_array)\n', (11097, 11162), True, 'import numpy as np\n'), ((11371, 11406), 'numpy.array', 'np.array', (['[[-2.0, 0.0], [0.0, 1.0]]'], {}), '([[-2.0, 0.0], [0.0, 1.0]])\n', (11379, 11406), True, 'import numpy as np\n'), ((11910, 11977), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['model_plain.coef_', 'model_trimming.coef_'], {}), '(model_plain.coef_, model_trimming.coef_)\n', (11936, 11977), True, 'import numpy as np\n'), ((12376, 12443), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['model_plain.coef_', 'model_trimming.coef_'], {}), '(model_plain.coef_, model_trimming.coef_)\n', (12402, 12443), True, 'import numpy as np\n'), ((13499, 13541), 'numpy.zeros', 'np.zeros', (['(2, x.shape[1] * x_dot.shape[1])'], {}), '((2, x.shape[1] * x_dot.shape[1]))\n', (13507, 13541), True, 'import numpy as np\n'), ((14277, 14319), 'numpy.zeros', 'np.zeros', (['(2, x.shape[1] * x_dot.shape[1])'], {}), '((2, x.shape[1] * x_dot.shape[1]))\n', (14285, 14319), True, 'import numpy as np\n'), ((14561, 14632), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['model.coef_[:, 1]', 'target_value'], {'atol': '(1e-08)'}), '(model.coef_[:, 1], target_value, atol=1e-08)\n', (14587, 14632), True, 'import numpy as np\n'), ((14891, 14913), 'numpy.arange', 'np.arange', (['(0)', '(40)', '(0.05)'], {}), '(0, 40, 0.05)\n', (14900, 14913), True, 'import numpy as np\n'), ((14922, 14952), 'scipy.integrate.odeint', 'odeint', (['lorenz', '[-8, 8, 27]', 't'], {}), '(lorenz, [-8, 8, 27], t)\n', (14928, 14952), False, 'from scipy.integrate import odeint\n'), ((15059, 15082), 'numpy.array', 'np.array', (['[-10.0, -2.0]'], {}), '([-10.0, -2.0])\n', (15067, 15082), True, 'import numpy as np\n'), ((15107, 15124), 'numpy.zeros', 'np.zeros', (['(2, 30)'], {}), '((2, 30))\n', (15115, 15124), True, 'import numpy as np\n'), ((15240, 15428), 'pysindy.optimizers.TrappingSR3', 'TrappingSR3', ([], {'threshold': 'thresholds', 'constraint_lhs': 'constraint_matrix', 'constraint_rhs': 'constraint_rhs', 'constraint_order': '"""feature"""', 'inequality_constraints': '(True)', 'relax_optim': 'relax_optim'}), "(threshold=thresholds, constraint_lhs=constraint_matrix,\n constraint_rhs=constraint_rhs, constraint_order='feature',\n inequality_constraints=True, relax_optim=relax_optim)\n", (15251, 15428), False, 'from pysindy.optimizers import TrappingSR3\n'), ((15491, 15518), 'pysindy.PolynomialLibrary', 'PolynomialLibrary', ([], {'degree': '(2)'}), '(degree=2)\n', (15508, 15518), False, 'from pysindy import PolynomialLibrary\n'), ((16026, 16049), 'numpy.array', 'np.array', (['[-10.0, -2.0]'], {}), '([-10.0, -2.0])\n', (16034, 16049), True, 'import numpy as np\n'), ((16074, 16091), 'numpy.zeros', 'np.zeros', (['(2, 30)'], {}), '((2, 30))\n', (16082, 16091), True, 'import numpy as np\n'), ((1056, 1075), 'numpy.ones', 'np.ones', (['x.shape[1]'], {}), '(x.shape[1])\n', (1063, 1075), True, 'import numpy as np\n'), ((2068, 2075), 'pysindy.optimizers.STLSQ', 'STLSQ', ([], {}), '()\n', (2073, 2075), False, 'from pysindy.optimizers import STLSQ\n'), ((2085, 2090), 'pysindy.optimizers.SR3', 'SR3', ([], {}), '()\n', (2088, 2090), False, 'from pysindy.optimizers import SR3\n'), ((2100, 2116), 'pysindy.optimizers.ConstrainedSR3', 'ConstrainedSR3', ([], {}), '()\n', (2114, 2116), False, 'from pysindy.optimizers import ConstrainedSR3\n'), ((2126, 2139), 'pysindy.optimizers.TrappingSR3', 'TrappingSR3', ([], {}), '()\n', (2137, 2139), False, 'from pysindy.optimizers import TrappingSR3\n'), ((2149, 2175), 'sklearn.linear_model.Lasso', 'Lasso', ([], {'fit_intercept': '(False)'}), '(fit_intercept=False)\n', (2154, 2175), False, 'from sklearn.linear_model import Lasso\n'), ((2185, 2216), 'sklearn.linear_model.ElasticNet', 'ElasticNet', ([], {'fit_intercept': '(False)'}), '(fit_intercept=False)\n', (2195, 2216), False, 'from sklearn.linear_model import ElasticNet\n'), ((2752, 2781), 'pytest.raises', 'pytest.raises', (['NotFittedError'], {}), '(NotFittedError)\n', (2765, 2781), False, 'import pytest\n'), ((2692, 2699), 'pysindy.optimizers.STLSQ', 'STLSQ', ([], {}), '()\n', (2697, 2699), False, 'from pysindy.optimizers import STLSQ\n'), ((2701, 2706), 'pysindy.optimizers.SR3', 'SR3', ([], {}), '()\n', (2704, 2706), False, 'from pysindy.optimizers import SR3\n'), ((2956, 2985), 'pytest.raises', 'pytest.raises', (['NotFittedError'], {}), '(NotFittedError)\n', (2969, 2985), False, 'import pytest\n'), ((2867, 2874), 'pysindy.optimizers.STLSQ', 'STLSQ', ([], {}), '()\n', (2872, 2874), False, 'from pysindy.optimizers import STLSQ\n'), ((2876, 2881), 'pysindy.optimizers.SR3', 'SR3', ([], {}), '()\n', (2879, 2881), False, 'from pysindy.optimizers import SR3\n'), ((3669, 3694), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (3682, 3694), False, 'import pytest\n'), ((3972, 3997), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (3985, 3997), False, 'import pytest\n'), ((4507, 4532), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4520, 4532), False, 'import pytest\n'), ((4542, 4563), 'pysindy.optimizers.TrappingSR3', 'TrappingSR3', ([], {}), '(**params)\n', (4553, 4563), False, 'from pysindy.optimizers import TrappingSR3\n'), ((4829, 4854), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4842, 4854), False, 'import pytest\n'), ((4872, 4893), 'pysindy.optimizers.TrappingSR3', 'TrappingSR3', ([], {}), '(**params)\n', (4883, 4893), False, 'from pysindy.optimizers import TrappingSR3\n'), ((6531, 6556), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (6544, 6556), False, 'import pytest\n'), ((6572, 6593), 'pysindy.optimizers.TrappingSR3', 'TrappingSR3', ([], {}), '(**params)\n', (6583, 6593), False, 'from pysindy.optimizers import TrappingSR3\n'), ((6610, 6661), 'pysindy.SINDy', 'SINDy', ([], {'optimizer': 'opt', 'feature_library': 'sindy_library'}), '(optimizer=opt, feature_library=sindy_library)\n', (6615, 6661), False, 'from pysindy import SINDy\n'), ((7252, 7272), 'pytest.raises', 'pytest.raises', (['error'], {}), '(error)\n', (7265, 7272), False, 'import pytest\n'), ((7418, 7447), 'pytest.raises', 'pytest.raises', (['AttributeError'], {}), '(AttributeError)\n', (7431, 7447), False, 'import pytest\n'), ((7507, 7536), 'pytest.raises', 'pytest.raises', (['AttributeError'], {}), '(AttributeError)\n', (7520, 7536), False, 'import pytest\n'), ((8040, 8092), 'numpy.not_equal', 'np.not_equal', (['control_model.coef_', 'guess_model.coef_'], {}), '(control_model.coef_, guess_model.coef_)\n', (8052, 8092), True, 'import numpy as np\n'), ((8954, 8969), 'numpy.ones', 'np.ones', (['(1, 1)'], {}), '((1, 1))\n', (8961, 8969), True, 'import numpy as np\n'), ((9001, 9038), 'numpy.ones', 'np.ones', (['(x_dot.shape[1], x.shape[1])'], {}), '((x_dot.shape[1], x.shape[1]))\n', (9008, 9038), True, 'import numpy as np\n'), ((9604, 9648), 'pysindy.optimizers.STLSQ', 'STLSQ', ([], {'threshold': '(0.01)', 'alpha': '(0.1)', 'max_iter': '(1)'}), '(threshold=0.01, alpha=0.1, max_iter=1)\n', (9609, 9648), False, 'from pysindy.optimizers import STLSQ\n'), ((9754, 9798), 'pysindy.optimizers.STLSQ', 'STLSQ', ([], {'threshold': '(0.01)', 'alpha': '(0.1)', 'max_iter': '(1)'}), '(threshold=0.01, alpha=0.1, max_iter=1)\n', (9759, 9798), False, 'from pysindy.optimizers import STLSQ\n'), ((10150, 10199), 'sklearn.linear_model.Lasso', 'Lasso', ([], {'alpha': '(0.1)', 'fit_intercept': '(False)', 'max_iter': '(1)'}), '(alpha=0.1, fit_intercept=False, max_iter=1)\n', (10155, 10199), False, 'from sklearn.linear_model import Lasso\n'), ((10305, 10354), 'sklearn.linear_model.Lasso', 'Lasso', ([], {'alpha': '(0.1)', 'fit_intercept': '(False)', 'max_iter': '(1)'}), '(alpha=0.1, fit_intercept=False, max_iter=1)\n', (10310, 10354), False, 'from sklearn.linear_model import Lasso\n'), ((11418, 11460), 'numpy.linalg.norm', 'norm', (['(true_coef - optimizer_trimming.coef_)'], {}), '(true_coef - optimizer_trimming.coef_)\n', (11422, 11460), False, 'from numpy.linalg import norm\n'), ((11463, 11513), 'numpy.linalg.norm', 'norm', (['(true_coef - optimizer_without_trimming.coef_)'], {}), '(true_coef - optimizer_without_trimming.coef_)\n', (11467, 11513), False, 'from numpy.linalg import norm\n'), ((12690, 12722), 'pytest.warns', 'pytest.warns', (['ConvergenceWarning'], {}), '(ConvergenceWarning)\n', (12702, 12722), False, 'import pytest\n'), ((13052, 13084), 'pytest.warns', 'pytest.warns', (['ConvergenceWarning'], {}), '(ConvergenceWarning)\n', (13064, 13084), False, 'import pytest\n'), ((12811, 12828), 'pysindy.optimizers.STLSQ', 'STLSQ', ([], {'max_iter': '(1)'}), '(max_iter=1)\n', (12816, 12828), False, 'from pysindy.optimizers import STLSQ\n'), ((12838, 12853), 'pysindy.optimizers.SR3', 'SR3', ([], {'max_iter': '(1)'}), '(max_iter=1)\n', (12841, 12853), False, 'from pysindy.optimizers import SR3\n'), ((12863, 12889), 'pysindy.optimizers.ConstrainedSR3', 'ConstrainedSR3', ([], {'max_iter': '(1)'}), '(max_iter=1)\n', (12877, 12889), False, 'from pysindy.optimizers import ConstrainedSR3\n'), ((12899, 12922), 'pysindy.optimizers.TrappingSR3', 'TrappingSR3', ([], {'max_iter': '(1)'}), '(max_iter=1)\n', (12910, 12922), False, 'from pysindy.optimizers import TrappingSR3\n'), ((13467, 13477), 'numpy.ones', 'np.ones', (['(2)'], {}), '(2)\n', (13474, 13477), True, 'import numpy as np\n'), ((13879, 13927), 'numpy.array', 'np.array', (['[model.coef_[0, 0], model.coef_[1, 1]]'], {}), '([model.coef_[0, 0], model.coef_[1, 1]])\n', (13887, 13927), True, 'import numpy as np\n'), ((14245, 14255), 'numpy.ones', 'np.ones', (['(2)'], {}), '(2)\n', (14252, 14255), True, 'import numpy as np\n'), ((14965, 15009), 'numpy.random.normal', 'np.random.normal', (['(0.0)', 'noise_levels', 'x.shape'], {}), '(0.0, noise_levels, x.shape)\n', (14981, 15009), True, 'import numpy as np\n'), ((16170, 16195), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (16183, 16195), False, 'import pytest\n'), ((16205, 16381), 'pysindy.optimizers.TrappingSR3', 'TrappingSR3', ([], {'threshold': '(0.0)', 'constraint_lhs': 'constraint_matrix', 'constraint_rhs': 'constraint_rhs', 'constraint_order': '"""feature"""', 'inequality_constraints': '(True)', 'relax_optim': '(True)'}), "(threshold=0.0, constraint_lhs=constraint_matrix, constraint_rhs\n =constraint_rhs, constraint_order='feature', inequality_constraints=\n True, relax_optim=True)\n", (16216, 16381), False, 'from pysindy.optimizers import TrappingSR3\n'), ((2809, 2824), 'numpy.ones', 'np.ones', (['(1, 3)'], {}), '((1, 3))\n', (2816, 2824), True, 'import numpy as np\n'), ((9877, 9932), 'numpy.linalg.norm', 'norm', (['(optimizer_biased.coef_ - optimizer_unbiased.coef_)'], {}), '(optimizer_biased.coef_ - optimizer_unbiased.coef_)\n', (9881, 9932), False, 'from numpy.linalg import norm\n'), ((9943, 9973), 'numpy.linalg.norm', 'norm', (['optimizer_unbiased.coef_'], {}), '(optimizer_unbiased.coef_)\n', (9947, 9973), False, 'from numpy.linalg import norm\n'), ((10433, 10488), 'numpy.linalg.norm', 'norm', (['(optimizer_biased.coef_ - optimizer_unbiased.coef_)'], {}), '(optimizer_biased.coef_ - optimizer_unbiased.coef_)\n', (10437, 10488), False, 'from numpy.linalg import norm\n'), ((15626, 15663), 'pysindy.FiniteDifference', 'FiniteDifference', ([], {'drop_endpoints': '(True)'}), '(drop_endpoints=True)\n', (15642, 15663), False, 'from pysindy import FiniteDifference\n'), ((4619, 4645), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)', '(3)', '(9)'], {}), '(3, 3, 3, 9)\n', (4633, 4645), True, 'import numpy as np\n'), ((4656, 4685), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)', '(3)', '(3)', '(9)'], {}), '(3, 3, 3, 3, 9)\n', (4670, 4685), True, 'import numpy as np\n'), ((4977, 4998), 'numpy.ones', 'np.ones', (['(3, 3, 3, 9)'], {}), '((3, 3, 3, 9))\n', (4984, 4998), True, 'import numpy as np\n'), ((5003, 5027), 'numpy.ones', 'np.ones', (['(3, 3, 3, 3, 9)'], {}), '((3, 3, 3, 3, 9))\n', (5010, 5027), True, 'import numpy as np\n'), ((5774, 5795), 'numpy.ones', 'np.ones', (['(3, 3, 3, 9)'], {}), '((3, 3, 3, 9))\n', (5781, 5795), True, 'import numpy as np\n'), ((5800, 5824), 'numpy.ones', 'np.ones', (['(3, 3, 3, 3, 9)'], {}), '((3, 3, 3, 3, 9))\n', (5807, 5824), True, 'import numpy as np\n'), ((10500, 10530), 'numpy.linalg.norm', 'norm', (['optimizer_unbiased.coef_'], {}), '(optimizer_unbiased.coef_)\n', (10504, 10530), False, 'from numpy.linalg import norm\n'), ((7155, 7170), 'numpy.ones', 'np.ones', (['(5, 5)'], {}), '((5, 5))\n', (7162, 7170), True, 'import numpy as np\n')]
import warnings from ast import literal_eval from datetime import datetime import numpy as np from scipy.stats import pearsonr from sklearn import metrics from sklearn.utils.multiclass import type_of_target MULTICLASS_INDICATOR = "multiclass-indicator" warnings.filterwarnings("ignore") def get_epoch_time(): return int((datetime.now() - datetime(1970, 1, 1)).total_seconds()) def count_params(trainable_variables): # to return number of trainable variables. Example: shared.count_params(tf.trainable_variables())) return np.sum([np.prod(v.get_shape().as_list()) for v in trainable_variables]) def load_id2gt(gt_file): ids = [] fgt = open(gt_file) id2gt = dict() for line in fgt.readlines(): id, gt = line.strip().split("\t") # id is string id2gt[id] = literal_eval(gt) # gt is array ids.append(id) return ids, id2gt def load_id2path(index_file): paths = [] fspec = open(index_file) id2path = dict() for line in fspec.readlines(): id, path = line.strip().split("\t") id2path[id] = path paths.append(path) return paths, id2path def type_of_groundtruth(y): """ Get the type of groundtruth data by extending scikit learn functionality. scikit-learn will detect one-hot encoded multiclass data as multilabl-indicator. If this is the case this function returns "multiclass-indicator", which is currently not used in scikit-learn, and the scikit-learn result otherwise. Args: y: numpy array with the groundtruth data Returns: target_type: string Either "multiclass-indicator" or the result of sklearn.utils.multiclass.type_of_target """ scikit_learn_type = type_of_target(y) if ( scikit_learn_type == "multilabel-indicator" and np.count_nonzero(y) == y.shape[0] ): return MULTICLASS_INDICATOR else: return scikit_learn_type def compute_auc(true, estimated): """ Calculate macro PR-AUC and macro ROC-AUC using the default scikit-learn parameters. Multiclass data is currently not supported and ROC-AUC & PR AUC will be NaN. """ estimated = np.array(estimated) true = np.array(true) if type_of_groundtruth(true) == MULTICLASS_INDICATOR: pr_auc = np.nan # if we move to scikit-learn 0.22 we can calculate a roc_auc_score for # multiclass data like this: # estimated = estimated.argmax(axis=1) # roc_auc = metrics.roc_auc_score(true, estimated, multi_class="ovr") roc_auc = np.nan else: pr_auc = metrics.average_precision_score(true, estimated) roc_auc = metrics.roc_auc_score(true, estimated) return roc_auc, pr_auc def sigmoid(x): return 1 / (1 + np.exp(-x)) def minmax_standarize(x, x_min=-1, x_max=1, headroom=0.1): return (x - x_min) / ((x_max + headroom) - (x_min - headroom)) def average_predictions(pred_array, id_array, ids, id2gt=None): # averaging probabilities -> one could also do majority voting print('Averaging predictions') y_pred = [] y_true = [] healthy_ids = [] for id in ids: try: avg = np.mean(pred_array[np.where(id_array == id)], axis=0) if np.isnan(avg).any(): print('{} skipped because it contains nans'.format(id)) continue if np.isposinf(avg).any(): print('{} skipped because it contains pos infs'.format(id)) continue if np.isneginf(avg).any(): print('{} skipped because it contains neg infs'.format(id)) continue y_pred.append(avg) if id2gt: y_true.append(id2gt[id]) healthy_ids.append(id) except: print(id) if id2gt: return y_true, y_pred, healthy_ids else: return y_pred def average_predictions_ids(pred_array, id_array, ids): # averages the predictions and returns the ids of the elements # that did not fail. print('Averaging predictions') y_pred = [] ids_present = [] for id in ids: try: avg = np.mean(pred_array[np.where(id_array == id)], axis=0) if np.isnan(avg).any(): print('{} skipped because it contains nans'.format(id)) continue if np.isposinf(avg).any(): print('{} skipped because it contains pos infs'.format(id)) continue if np.isneginf(avg).any(): print('{} skipped because it contains neg infs'.format(id)) continue y_pred.append(avg) ids_present.append(id) except: print(id) return y_pred, ids_present def compute_accuracy(y_true, y_pred): y_true = np.array(y_true) y_pred = np.array(y_pred) print('computing accuracy of {} elements'.format(len(y_true))) groundtruth_type = type_of_groundtruth(y_true) if groundtruth_type == "multilabel-indicator": y_pred = np.round(y_pred) return metrics.accuracy_score(y_true, y_pred) elif groundtruth_type == MULTICLASS_INDICATOR: y_true = np.argmax(y_true, axis=1) y_pred = np.argmax(y_pred, axis=1) else: y_true = np.squeeze(y_true) y_pred = np.round(np.squeeze(y_pred)) return metrics.balanced_accuracy_score(y_true, y_pred) def compute_pearson_correlation(y_true, y_pred, axis=0): print(f'computing Pearson Correlation Coefficient of {len(y_true)} elements') mx = np.mean(y_true,axis=axis) my = np.mean(y_pred,axis=axis) xm, ym = y_true - mx, y_pred - my r_num = np.mean(xm * ym, axis=axis) r_den = np.std(xm, axis=axis) * np.std(ym, axis=axis) return r_num / r_den def compute_ccc(y_true, y_pred, axis=0): print(f'computing Concordance Correlation Coefficient of {len(y_true)} elements') # Concordance Correlation Coefficient (CCC) x_mean = np.mean(y_true, axis=axis) y_mean = np.mean(y_pred, axis=axis) x_var = np.var(y_true, axis=axis) y_var = np.var(y_pred, axis=axis) cov = np.mean((y_true - x_mean) * (y_pred - y_mean)) numerator = 2 * cov denominator = x_var + y_var + (x_mean - y_mean) ** 2 return numerator / denominator # R2 score def compute_r2_score(y_true, y_pred, axis=0): print(f'computing R2 Score of {len(y_true)} elements') y_true = np.array(y_true) y_pred = np.array(y_pred) ss_residual = np.sum(np.square(y_true - y_pred), axis=0) ss_total = np.sum( np.square(y_true - np.mean(y_true)), axis=0 ) r_squared = 1.0 - np.nan_to_num(ss_residual/ss_total) return r_squared # Adjusted R2 score def compute_adjusted_r2_score(y_true, y_pred, p): # p refers to the number of predictors (i.e for arousal and valence p=2) print(f'computing Adjusted R2 Score of {len(y_true)} elements') r_squared = compute_r2_score(y_true, y_pred) adjusted_r_squared = 1 - (1 - r_squared) * (len(y_true) - 1.0) / (len(y_true) - p - 1.0) return adjusted_r_squared def compute_root_mean_squared_error(y_true, y_pred): print(f'computing Root Mean Squared Error of {len(y_true)} elements') y_true = np.array(y_true) y_pred = np.array(y_pred) return metrics.mean_squared_error(y_true, y_pred, multioutput="raw_values", squared=True) def compute_mean_squared_error(y_true, y_pred): print(f'computing Mean Squared Error of {len(y_true)} elements') y_true = np.array(y_true) y_pred = np.array(y_pred) return metrics.mean_squared_error(y_true, y_pred, multioutput="raw_values", squared=False)
[ "numpy.nan_to_num", "numpy.argmax", "sklearn.metrics.accuracy_score", "numpy.isnan", "numpy.mean", "numpy.exp", "numpy.round", "numpy.isposinf", "numpy.std", "sklearn.utils.multiclass.type_of_target", "sklearn.metrics.average_precision_score", "numpy.var", "sklearn.metrics.mean_squared_error", "datetime.datetime.now", "numpy.isneginf", "numpy.square", "sklearn.metrics.roc_auc_score", "datetime.datetime", "numpy.squeeze", "numpy.count_nonzero", "warnings.filterwarnings", "sklearn.metrics.balanced_accuracy_score", "numpy.where", "numpy.array", "ast.literal_eval" ]
[((256, 289), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (279, 289), False, 'import warnings\n'), ((1737, 1754), 'sklearn.utils.multiclass.type_of_target', 'type_of_target', (['y'], {}), '(y)\n', (1751, 1754), False, 'from sklearn.utils.multiclass import type_of_target\n'), ((2186, 2205), 'numpy.array', 'np.array', (['estimated'], {}), '(estimated)\n', (2194, 2205), True, 'import numpy as np\n'), ((2217, 2231), 'numpy.array', 'np.array', (['true'], {}), '(true)\n', (2225, 2231), True, 'import numpy as np\n'), ((4850, 4866), 'numpy.array', 'np.array', (['y_true'], {}), '(y_true)\n', (4858, 4866), True, 'import numpy as np\n'), ((4880, 4896), 'numpy.array', 'np.array', (['y_pred'], {}), '(y_pred)\n', (4888, 4896), True, 'import numpy as np\n'), ((5396, 5443), 'sklearn.metrics.balanced_accuracy_score', 'metrics.balanced_accuracy_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (5427, 5443), False, 'from sklearn import metrics\n'), ((5595, 5621), 'numpy.mean', 'np.mean', (['y_true'], {'axis': 'axis'}), '(y_true, axis=axis)\n', (5602, 5621), True, 'import numpy as np\n'), ((5630, 5656), 'numpy.mean', 'np.mean', (['y_pred'], {'axis': 'axis'}), '(y_pred, axis=axis)\n', (5637, 5656), True, 'import numpy as np\n'), ((5706, 5733), 'numpy.mean', 'np.mean', (['(xm * ym)'], {'axis': 'axis'}), '(xm * ym, axis=axis)\n', (5713, 5733), True, 'import numpy as np\n'), ((6010, 6036), 'numpy.mean', 'np.mean', (['y_true'], {'axis': 'axis'}), '(y_true, axis=axis)\n', (6017, 6036), True, 'import numpy as np\n'), ((6050, 6076), 'numpy.mean', 'np.mean', (['y_pred'], {'axis': 'axis'}), '(y_pred, axis=axis)\n', (6057, 6076), True, 'import numpy as np\n'), ((6090, 6115), 'numpy.var', 'np.var', (['y_true'], {'axis': 'axis'}), '(y_true, axis=axis)\n', (6096, 6115), True, 'import numpy as np\n'), ((6128, 6153), 'numpy.var', 'np.var', (['y_pred'], {'axis': 'axis'}), '(y_pred, axis=axis)\n', (6134, 6153), True, 'import numpy as np\n'), ((6165, 6211), 'numpy.mean', 'np.mean', (['((y_true - x_mean) * (y_pred - y_mean))'], {}), '((y_true - x_mean) * (y_pred - y_mean))\n', (6172, 6211), True, 'import numpy as np\n'), ((6463, 6479), 'numpy.array', 'np.array', (['y_true'], {}), '(y_true)\n', (6471, 6479), True, 'import numpy as np\n'), ((6493, 6509), 'numpy.array', 'np.array', (['y_pred'], {}), '(y_pred)\n', (6501, 6509), True, 'import numpy as np\n'), ((7263, 7279), 'numpy.array', 'np.array', (['y_true'], {}), '(y_true)\n', (7271, 7279), True, 'import numpy as np\n'), ((7293, 7309), 'numpy.array', 'np.array', (['y_pred'], {}), '(y_pred)\n', (7301, 7309), True, 'import numpy as np\n'), ((7321, 7407), 'sklearn.metrics.mean_squared_error', 'metrics.mean_squared_error', (['y_true', 'y_pred'], {'multioutput': '"""raw_values"""', 'squared': '(True)'}), "(y_true, y_pred, multioutput='raw_values',\n squared=True)\n", (7347, 7407), False, 'from sklearn import metrics\n'), ((7536, 7552), 'numpy.array', 'np.array', (['y_true'], {}), '(y_true)\n', (7544, 7552), True, 'import numpy as np\n'), ((7566, 7582), 'numpy.array', 'np.array', (['y_pred'], {}), '(y_pred)\n', (7574, 7582), True, 'import numpy as np\n'), ((7594, 7681), 'sklearn.metrics.mean_squared_error', 'metrics.mean_squared_error', (['y_true', 'y_pred'], {'multioutput': '"""raw_values"""', 'squared': '(False)'}), "(y_true, y_pred, multioutput='raw_values',\n squared=False)\n", (7620, 7681), False, 'from sklearn import metrics\n'), ((807, 823), 'ast.literal_eval', 'literal_eval', (['gt'], {}), '(gt)\n', (819, 823), False, 'from ast import literal_eval\n'), ((2608, 2656), 'sklearn.metrics.average_precision_score', 'metrics.average_precision_score', (['true', 'estimated'], {}), '(true, estimated)\n', (2639, 2656), False, 'from sklearn import metrics\n'), ((2675, 2713), 'sklearn.metrics.roc_auc_score', 'metrics.roc_auc_score', (['true', 'estimated'], {}), '(true, estimated)\n', (2696, 2713), False, 'from sklearn import metrics\n'), ((5084, 5100), 'numpy.round', 'np.round', (['y_pred'], {}), '(y_pred)\n', (5092, 5100), True, 'import numpy as np\n'), ((5116, 5154), 'sklearn.metrics.accuracy_score', 'metrics.accuracy_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (5138, 5154), False, 'from sklearn import metrics\n'), ((5746, 5767), 'numpy.std', 'np.std', (['xm'], {'axis': 'axis'}), '(xm, axis=axis)\n', (5752, 5767), True, 'import numpy as np\n'), ((5770, 5791), 'numpy.std', 'np.std', (['ym'], {'axis': 'axis'}), '(ym, axis=axis)\n', (5776, 5791), True, 'import numpy as np\n'), ((6536, 6562), 'numpy.square', 'np.square', (['(y_true - y_pred)'], {}), '(y_true - y_pred)\n', (6545, 6562), True, 'import numpy as np\n'), ((6675, 6712), 'numpy.nan_to_num', 'np.nan_to_num', (['(ss_residual / ss_total)'], {}), '(ss_residual / ss_total)\n', (6688, 6712), True, 'import numpy as np\n'), ((1828, 1847), 'numpy.count_nonzero', 'np.count_nonzero', (['y'], {}), '(y)\n', (1844, 1847), True, 'import numpy as np\n'), ((2779, 2789), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (2785, 2789), True, 'import numpy as np\n'), ((5223, 5248), 'numpy.argmax', 'np.argmax', (['y_true'], {'axis': '(1)'}), '(y_true, axis=1)\n', (5232, 5248), True, 'import numpy as np\n'), ((5266, 5291), 'numpy.argmax', 'np.argmax', (['y_pred'], {'axis': '(1)'}), '(y_pred, axis=1)\n', (5275, 5291), True, 'import numpy as np\n'), ((5319, 5337), 'numpy.squeeze', 'np.squeeze', (['y_true'], {}), '(y_true)\n', (5329, 5337), True, 'import numpy as np\n'), ((5364, 5382), 'numpy.squeeze', 'np.squeeze', (['y_pred'], {}), '(y_pred)\n', (5374, 5382), True, 'import numpy as np\n'), ((6622, 6637), 'numpy.mean', 'np.mean', (['y_true'], {}), '(y_true)\n', (6629, 6637), True, 'import numpy as np\n'), ((330, 344), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (342, 344), False, 'from datetime import datetime\n'), ((347, 367), 'datetime.datetime', 'datetime', (['(1970)', '(1)', '(1)'], {}), '(1970, 1, 1)\n', (355, 367), False, 'from datetime import datetime\n'), ((3209, 3233), 'numpy.where', 'np.where', (['(id_array == id)'], {}), '(id_array == id)\n', (3217, 3233), True, 'import numpy as np\n'), ((3259, 3272), 'numpy.isnan', 'np.isnan', (['avg'], {}), '(avg)\n', (3267, 3272), True, 'import numpy as np\n'), ((3393, 3409), 'numpy.isposinf', 'np.isposinf', (['avg'], {}), '(avg)\n', (3404, 3409), True, 'import numpy as np\n'), ((3534, 3550), 'numpy.isneginf', 'np.isneginf', (['avg'], {}), '(avg)\n', (3545, 3550), True, 'import numpy as np\n'), ((4211, 4235), 'numpy.where', 'np.where', (['(id_array == id)'], {}), '(id_array == id)\n', (4219, 4235), True, 'import numpy as np\n'), ((4261, 4274), 'numpy.isnan', 'np.isnan', (['avg'], {}), '(avg)\n', (4269, 4274), True, 'import numpy as np\n'), ((4395, 4411), 'numpy.isposinf', 'np.isposinf', (['avg'], {}), '(avg)\n', (4406, 4411), True, 'import numpy as np\n'), ((4536, 4552), 'numpy.isneginf', 'np.isneginf', (['avg'], {}), '(avg)\n', (4547, 4552), True, 'import numpy as np\n')]
# %% from logging import critical from typing import Callable, Tuple, Union import numpy as np from enum import Enum, auto from scipy.stats import norm, t, chi2 # %% decimal_limit = 2 class TestType(Enum): # Non-directional DOUBLE_TAILED = auto() # directional LOWER_TAILED = auto() UPPER_TAILED = auto() # https://machinelearningmastery.com/critical-values-for-statistical-hypothesis-testing/ # https://dfrieds.com/math/z-tests.html#:~:text=In%20this%20instance%2C%20the%20z,and%20standard%20deviation%20of%201). # https://reneshbedre.github.io/blog/anova.html # https://statisticsbyjim.com/hypothesis-testing/one-tailed-two-tailed-hypothesis-tests/ # %% def get_standard_error(σ: float, n: int) -> float: return round(σ / np.sqrt(n), decimal_limit) # def get_standard_error(μ:float, σ:float, n:int)->float: def get_z_critical_normal(alpha: float) -> float: # Calculate Zc probability = 1 - alpha return round(norm.ppf(probability), decimal_limit) def get_z_critical_t(alpha: float, df: int) -> float: # Calculate Zc probability = 1 - alpha return round(t.ppf(probability, df), decimal_limit) def get_z_critical_chi2(alpha: float, df: int) -> float: # Calculate Zc probability = 1 - alpha return round(chi2.ppf(probability, df), decimal_limit) def prepare_output(LCV, UCV, critical_value, population_mean, z_critical): msg = ( '"Fail" to reject the null hypothesis' if LCV <= round(population_mean, decimal_limit) <= UCV else "Reject the null hypothesis" ) return f"LCV: {LCV}, UCV: {UCV}, Addition Value: {critical_value}, Zc: {z_critical}, Result: {msg}" def get_critical_value( population_mean: float, population_std: float, sample_size: int, alpha: float, test_type: TestType, df=None, critical_value_calculator: Union[ Callable[[float, int], float], Callable[[float], float] ] = get_z_critical_normal, standard_error_calculator: Callable[[float, int], float] = get_standard_error, sample_mean: float = None, ) -> Union[float, Tuple[float, float]]: if test_type == TestType.DOUBLE_TAILED: alpha = alpha / 2 se = standard_error_calculator(population_std, sample_size) if df is None: z_critical = critical_value_calculator(alpha) else: z_critical = critical_value_calculator(alpha, df) critical_value = round(z_critical * se, decimal_limit) LCV = population_mean - critical_value UCV = population_mean + critical_value if sample_mean is None: sample_mean = population_mean return prepare_output(LCV, UCV, critical_value, sample_mean, z_critical) def get_critical_value_with_zc( z_critical: float, population_mean: float, population_std: float, sample_size: int, sample_mean: float = None, ) -> float: se = get_standard_error(population_std, sample_size) critical_value = round(z_critical * se, decimal_limit) LCV = population_mean - critical_value UCV = population_mean + critical_value if sample_mean is None: sample_mean = population_mean return prepare_output(LCV, UCV, critical_value, sample_mean, z_critical) # %% get_critical_value_with_zc(2.17, 36, 4, 49) # %% get_critical_value_with_zc(2.17, 36, 4, 49, sample_mean=34.6) # %% alpha = 0.03 test_type = TestType.DOUBLE_TAILED population_mean = 36 population_std = 4 sample_size = 49 get_critical_value(population_mean, population_std, sample_size, alpha, test_type) # %% # se = get_standard_error(population_std, sample_size) # sample_mean = 34.5 # z = (sample_mean - population_mean) / se # z # %% alpha = 0.05 test_type = TestType.LOWER_TAILED population_mean = 350 print(get_z_critical_normal(alpha)) population_std = 90 sample_size = 36 sample_mean = 34.6 x = 370.16 get_critical_value(population_mean, population_std, sample_size, alpha, test_type) # %% alpha = 0.03 test_type = TestType.LOWER_TAILED population_mean = 2.5 print(get_z_critical_normal(alpha)) population_std = 0.6 sample_size = 100 sample_mean = 2.6 get_critical_value( population_mean, population_std, sample_size, alpha, test_type, sample_mean=sample_mean, ) # %% alpha = 0.03 test_type = TestType.LOWER_TAILED population_mean = 2.5 population_std = 0.6 sample_size = 1000 sample_mean = 2.6 get_critical_value( population_mean, population_std, sample_size, alpha, test_type, sample_mean=sample_mean, ) # %% alpha = 0.02 test_type = TestType.DOUBLE_TAILED population_mean = 60 population_std = 10.7 sample_size = 100 sample_mean = 62.6 get_critical_value( population_mean, population_std, sample_size, alpha, test_type, sample_mean=sample_mean, ) # %%
[ "scipy.stats.norm.ppf", "scipy.stats.chi2.ppf", "enum.auto", "scipy.stats.t.ppf", "numpy.sqrt" ]
[((264, 270), 'enum.auto', 'auto', ([], {}), '()\n', (268, 270), False, 'from enum import Enum, auto\n'), ((310, 316), 'enum.auto', 'auto', ([], {}), '()\n', (314, 316), False, 'from enum import Enum, auto\n'), ((337, 343), 'enum.auto', 'auto', ([], {}), '()\n', (341, 343), False, 'from enum import Enum, auto\n'), ((994, 1015), 'scipy.stats.norm.ppf', 'norm.ppf', (['probability'], {}), '(probability)\n', (1002, 1015), False, 'from scipy.stats import norm, t, chi2\n'), ((1158, 1180), 'scipy.stats.t.ppf', 't.ppf', (['probability', 'df'], {}), '(probability, df)\n', (1163, 1180), False, 'from scipy.stats import norm, t, chi2\n'), ((1326, 1351), 'scipy.stats.chi2.ppf', 'chi2.ppf', (['probability', 'df'], {}), '(probability, df)\n', (1334, 1351), False, 'from scipy.stats import norm, t, chi2\n'), ((783, 793), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (790, 793), True, 'import numpy as np\n')]
# test solver import numpy as np from MLEK.main.solver import solver from MLEK.main.utils import irfft def V_gen(nbasis, V0): hamilton_mat = np.zeros((nbasis, nbasis), dtype=np.complex64) np.fill_diagonal(hamilton_mat[1:, :-1], V0*(-0.25)) Vq = np.zeros(nbasis, dtype=np.complex64) Vq[0], Vq[1] = -0.5*V0, -0.25*V0 return hamilton_mat, Vq nk = 100 nbasis = 10 V0 = 10 hamilton_mat, Vq = V_gen(nbasis, V0) mu = 10 T, mu, dens_q = solver(nk, nbasis, mu, hamilton_mat) kpoints = np.linspace(0, np.pi, nk) print(dens_q[0]) X = np.linspace(0, 1, 100) dens_x = irfft(dens_q, 100) # print(delta_En_k) # # print(Vq[1]) # print(dens_q[0]) # print((dens_q[0]**3)*(np.pi**2)/6) # print(T) omega = 2*np.pi*np.sqrt(V0) f = lambda x: np.sqrt(omega/np.pi)*np.exp(-omega*x**2) y = f(X) import matplotlib.pyplot as plt plt.plot(X, dens_x, 'b') plt.plot(X, y, 'r') plt.show()
[ "numpy.fill_diagonal", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "MLEK.main.solver.solver", "numpy.zeros", "MLEK.main.utils.irfft", "numpy.exp", "numpy.linspace", "numpy.sqrt" ]
[((452, 488), 'MLEK.main.solver.solver', 'solver', (['nk', 'nbasis', 'mu', 'hamilton_mat'], {}), '(nk, nbasis, mu, hamilton_mat)\n', (458, 488), False, 'from MLEK.main.solver import solver\n'), ((500, 525), 'numpy.linspace', 'np.linspace', (['(0)', 'np.pi', 'nk'], {}), '(0, np.pi, nk)\n', (511, 525), True, 'import numpy as np\n'), ((548, 570), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (559, 570), True, 'import numpy as np\n'), ((580, 598), 'MLEK.main.utils.irfft', 'irfft', (['dens_q', '(100)'], {}), '(dens_q, 100)\n', (585, 598), False, 'from MLEK.main.utils import irfft\n'), ((830, 854), 'matplotlib.pyplot.plot', 'plt.plot', (['X', 'dens_x', '"""b"""'], {}), "(X, dens_x, 'b')\n", (838, 854), True, 'import matplotlib.pyplot as plt\n'), ((855, 874), 'matplotlib.pyplot.plot', 'plt.plot', (['X', 'y', '"""r"""'], {}), "(X, y, 'r')\n", (863, 874), True, 'import matplotlib.pyplot as plt\n'), ((875, 885), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (883, 885), True, 'import matplotlib.pyplot as plt\n'), ((147, 193), 'numpy.zeros', 'np.zeros', (['(nbasis, nbasis)'], {'dtype': 'np.complex64'}), '((nbasis, nbasis), dtype=np.complex64)\n', (155, 193), True, 'import numpy as np\n'), ((198, 249), 'numpy.fill_diagonal', 'np.fill_diagonal', (['hamilton_mat[1:, :-1]', '(V0 * -0.25)'], {}), '(hamilton_mat[1:, :-1], V0 * -0.25)\n', (214, 249), True, 'import numpy as np\n'), ((259, 295), 'numpy.zeros', 'np.zeros', (['nbasis'], {'dtype': 'np.complex64'}), '(nbasis, dtype=np.complex64)\n', (267, 295), True, 'import numpy as np\n'), ((721, 732), 'numpy.sqrt', 'np.sqrt', (['V0'], {}), '(V0)\n', (728, 732), True, 'import numpy as np\n'), ((747, 769), 'numpy.sqrt', 'np.sqrt', (['(omega / np.pi)'], {}), '(omega / np.pi)\n', (754, 769), True, 'import numpy as np\n'), ((768, 791), 'numpy.exp', 'np.exp', (['(-omega * x ** 2)'], {}), '(-omega * x ** 2)\n', (774, 791), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jun 14 11:48:32 2021 @author: surajitrana """ import matplotlib.pyplot as plt import numpy as np def plot_barchart(): x = np.array(["Apple", "Samsung", "IBM", "Intel"]) y = np.array([1000, 560, 900, 678]) plt.xlabel("Brands") plt.ylabel("Sales (in billions USD)") plt.title("Sales of brands over FY1-2021") plt.bar(x, y, color="hotpink", width=0.3) plt.show() if __name__ == '__main__': plot_barchart()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "matplotlib.pyplot.bar", "numpy.array", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((197, 243), 'numpy.array', 'np.array', (["['Apple', 'Samsung', 'IBM', 'Intel']"], {}), "(['Apple', 'Samsung', 'IBM', 'Intel'])\n", (205, 243), True, 'import numpy as np\n'), ((252, 283), 'numpy.array', 'np.array', (['[1000, 560, 900, 678]'], {}), '([1000, 560, 900, 678])\n', (260, 283), True, 'import numpy as np\n'), ((289, 309), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Brands"""'], {}), "('Brands')\n", (299, 309), True, 'import matplotlib.pyplot as plt\n'), ((314, 351), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Sales (in billions USD)"""'], {}), "('Sales (in billions USD)')\n", (324, 351), True, 'import matplotlib.pyplot as plt\n'), ((356, 398), 'matplotlib.pyplot.title', 'plt.title', (['"""Sales of brands over FY1-2021"""'], {}), "('Sales of brands over FY1-2021')\n", (365, 398), True, 'import matplotlib.pyplot as plt\n'), ((403, 444), 'matplotlib.pyplot.bar', 'plt.bar', (['x', 'y'], {'color': '"""hotpink"""', 'width': '(0.3)'}), "(x, y, color='hotpink', width=0.3)\n", (410, 444), True, 'import matplotlib.pyplot as plt\n'), ((449, 459), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (457, 459), True, 'import matplotlib.pyplot as plt\n')]
import numpy as np import scipy.io as spio # Utility functions to initialize the problem from Grid.GridProcessing import Grid from Shapes.ShapesFunctions import * # Specify the file that includes dynamic systems from dynamics.DubinsCar4D_HRI import * # Plot options from plot_options import * # Solver core from solver import HJSolver import math ## Note: this is adapted from user_definer.py and will try to visualize the value function at the end. # for this scenario this visualization won't work (haven't tried to fix it yet) and will raise an error. # however, it will still save the final value function to your computer before the error is raised """ USER INTERFACES - Define grid - Generate initial values for grid using shape functions - Time length for computations - Initialize plotting option - Call HJSolver function """ # find the implicit surface of the Robot's avoid set: def ShapeRobotAvoid(xs,params): # find the implicit surface of the Robot's avoid set: # -x_r + lgt_lb <= 0 (data1), and # x_r - lgt_ub <= 0 (data2), and # y_R - y_H - lat_bd <= 0 (data3), and # -y_R + y_H - lat_bd <= 0 (data4) # state vector = [x_r, y_R, y_H, v_r] # # NOTICE: # This function assumes zero sublevel set, i.e. negative inside, # positive outside. Add a negative sign if using this as an avoid set. # set specifications lgt_lb = params['avoid']['lgt_lb'] lgt_ub = params['avoid']['lgt_ub'] lat_bd = params['avoid']['lat_bd'] # data1: -x_r + lgt_lb <= 0 data1 = -xs[0] + lgt_lb # data2: x_r - lgt_ub <= 0 data2 = xs[0] - lgt_ub # data3: y_R - y_H - lat_bd <= 0 data3 = xs[1] - xs[2] - lat_bd # data4: -y_R + y_H - lat_bd <= 0 data4 = -xs[1] + xs[2] - lat_bd # the final data is just the intersection of the four data = Intersection(data1, data2) data = Intersection(data, data3) data = Intersection(data, data4) return(data) ''' Defining parameters for the scenario ''' # dictionary keeping track of extra arguments for the solver extraArgs = {} extraArgs['obstacles'] = None # dictionary tracking parameters of the problem params = {} # road width params['rd_bd_min'] = -3.7 params['rd_bd_max'] = 3.7 # relative longitudinal distance params['rd_len_lb'] = -18 params['rd_len_ub'] = 12 # desired cruising speed params['vDes'] = 30 # relative velocity bounds params['v_rel_lb'] = -10 params['v_rel_ub'] = 10 # target set specs params['xr_tar_overtake'] = 10 params['xr_tar_lanekeep'] = params['rd_len_lb'] + 3 # avoid set specs params['avoid'] ={'lgt_lb': -5.5, 'lgt_ub': 5.5, 'lat_bd':2.0} # input bounds and model parameters params['accMax_R'] = 3 params['vLatMax_R'] = 3 params['accMax_H'] = 1 params['vLatMax_H'] = 1 params['accMax_R_sh'] = 3 params['vLatMax_R_sh'] = 3 params['accMax_H_sh'] = 1 params['vLatMax_H_sh'] = 1 params['talpha'] = 0.01 ''' Defining the grid for the problem ''' # states x_r y_R y_H v_r HJ_grid_min = np.array([params['rd_len_lb'], params['rd_bd_min'], params['rd_bd_min'], params['v_rel_lb']]) HJ_grid_max = np.array([params['rd_len_ub'], params['rd_bd_max'], params['rd_bd_max'], params['v_rel_ub']]) HJ_dims = 4 # number of dimensions HJ_N = np.array([41, 15, 15, 31]) # number of grid points per dimension HJ_pdDims = [] # periodic dimensions # g = Grid(np.array([min, max, num_dim, pts_each_dim, pDim=[]) g = Grid(HJ_grid_min, HJ_grid_max , HJ_dims, HJ_N, HJ_pdDims) # optimized_dp lacks the "xs" field for their grid objects, constructing here xs = np.empty([4,HJ_N[0],HJ_N[1],HJ_N[2],HJ_N[3]]) for l in range(HJ_N[3]): for k in range(HJ_N[2]): for j in range(HJ_N[1]): xs[0][:,j,k,l] = g.vs[0][:,0,0,0] for i in range(HJ_N[0]): xs[1][i,:,k,l] = g.vs[1][0,:,0,0] for j in range(HJ_N[1]): for i in range(HJ_N[0]): xs[2][i,j,:,l] = g.vs[2][0,0,:,0] for k in range(HJ_N[2]): for j in range(HJ_N[1]): for i in range(HJ_N[0]): xs[3][i,j,k,:] = g.vs[3][0,0,0,:] ''' making target and avoid sets ''' inf = np.inf # going off road boundaries - Robot rd_bd_left_R = ShapeRectangle(g, [-inf, params['rd_bd_max']-0.5, -inf, -inf], [inf, inf, inf, inf]) rd_bd_right_R = ShapeRectangle(g, [-inf, -inf, -inf, -inf], [inf, params['rd_bd_min']+0.5, inf, inf]) D_compl_R = Union(rd_bd_left_R, rd_bd_right_R) # going off road boundaries - Human rd_bd_left_H = ShapeRectangle(g, [-inf, -inf, params['rd_bd_max'], -inf], [inf, inf, inf, inf]) rd_bd_right_H = ShapeRectangle(g, [-inf, -inf, -inf, -inf], [inf, inf, params['rd_bd_min'], inf]) D_compl_H = Union(rd_bd_left_H, rd_bd_right_H) # avoid set - Robot HJ_avoid = ShapeRobotAvoid(xs, params) HJ_avoid = Union(HJ_avoid, D_compl_R) # target set - Robot # overtake target_ot = ShapeRectangle(g, [params['xr_tar_overtake'], 0, -inf, -inf], [inf, params['rd_bd_max'], inf, inf]) # lanekeep target_lk = ShapeRectangle(g, [-inf, params['rd_bd_min'], -inf, -inf], [params['xr_tar_lanekeep'], params['rd_bd_max'], inf, inf]) HJ_target = Union(target_ot, target_lk) HJ_target = Union(HJ_target, D_compl_H) ''' compute the Reach-Avoid set ''' uMode = "min" dMode = "max" HJ_minwith = "minVWithVInit" my_car = DubinsCar4D_HRI([0,0,0,0], params['accMax_R_sh'], params['accMax_H_sh'], params['vLatMax_R_sh'], params['vLatMax_H_sh'], params['talpha'], uMode, dMode) # Look-back length and time step lookback_length = 15.0 #15.0 t_step = 0.05 small_number = 1e-5 tau = np.arange(start=0, stop=lookback_length + small_number, step=t_step) #po2 = PlotOptions("3d_plot", [0,1,2], []) """ Assign one of the following strings to `compMethod` to specify the characteristics of computation "none" -> compute Backward Reachable Set "minVWithV0" -> compute Backward Reachable Tube "maxVWithVInit" -> compute max V over time "minVWithVInit" compute min V over time """ extraArgs['obstacles'] = HJ_avoid # HJSolver(dynamics object, grid, initial value function, time length, system objectives, plotting options, extra arguments) HJSolver(my_car, g, HJ_target, tau, HJ_minwith, None, extraArgs)
[ "Grid.GridProcessing.Grid", "numpy.empty", "numpy.array", "numpy.arange", "solver.HJSolver" ]
[((3021, 3118), 'numpy.array', 'np.array', (["[params['rd_len_lb'], params['rd_bd_min'], params['rd_bd_min'], params[\n 'v_rel_lb']]"], {}), "([params['rd_len_lb'], params['rd_bd_min'], params['rd_bd_min'],\n params['v_rel_lb']])\n", (3029, 3118), True, 'import numpy as np\n'), ((3129, 3226), 'numpy.array', 'np.array', (["[params['rd_len_ub'], params['rd_bd_max'], params['rd_bd_max'], params[\n 'v_rel_ub']]"], {}), "([params['rd_len_ub'], params['rd_bd_max'], params['rd_bd_max'],\n params['v_rel_ub']])\n", (3137, 3226), True, 'import numpy as np\n'), ((3267, 3293), 'numpy.array', 'np.array', (['[41, 15, 15, 31]'], {}), '([41, 15, 15, 31])\n', (3275, 3293), True, 'import numpy as np\n'), ((3438, 3494), 'Grid.GridProcessing.Grid', 'Grid', (['HJ_grid_min', 'HJ_grid_max', 'HJ_dims', 'HJ_N', 'HJ_pdDims'], {}), '(HJ_grid_min, HJ_grid_max, HJ_dims, HJ_N, HJ_pdDims)\n', (3442, 3494), False, 'from Grid.GridProcessing import Grid\n'), ((3581, 3630), 'numpy.empty', 'np.empty', (['[4, HJ_N[0], HJ_N[1], HJ_N[2], HJ_N[3]]'], {}), '([4, HJ_N[0], HJ_N[1], HJ_N[2], HJ_N[3]])\n', (3589, 3630), True, 'import numpy as np\n'), ((5490, 5558), 'numpy.arange', 'np.arange', ([], {'start': '(0)', 'stop': '(lookback_length + small_number)', 'step': 't_step'}), '(start=0, stop=lookback_length + small_number, step=t_step)\n', (5499, 5558), True, 'import numpy as np\n'), ((6044, 6108), 'solver.HJSolver', 'HJSolver', (['my_car', 'g', 'HJ_target', 'tau', 'HJ_minwith', 'None', 'extraArgs'], {}), '(my_car, g, HJ_target, tau, HJ_minwith, None, extraArgs)\n', (6052, 6108), False, 'from solver import HJSolver\n')]
# -*- coding: utf-8 -*- import numpy as np import pyworld import pysptk from pysptk.synthesis import MLSADF class Synthesizer(object): """ Speech synthesizer with several acoustic features Parameters ---------- fs: int, optional Sampling frequency Default set to 16000 fftl: int, optional Frame Length of STFT Default set to 1024 shiftms: int, optional Shift size for STFT Default set to 5 """ def __init__(self, fs=16000, fftl=1024, shiftms=5): self.fs = fs self.fftl = fftl self.shiftms = shiftms return def synthesis(self, f0, mcep, ap, rmcep=None, alpha=0.42): """synthesis generates waveform from F0, mcep, aperiodicity Parameters ---------- f0 : array, shape (`T`, `1`) array of F0 sequence mcep : array, shape (`T`, `dim`) array of mel-cepstrum sequence ap : array, shape (`T`, `fftlen / 2 + 1`) or (`T`, `dim_codeap`) array of aperiodicity or code aperiodicity rmcep : array, optional, shape (`T`, `dim`) array of reference mel-cepstrum sequence Default set to None alpha : int, optional Parameter of all-path transfer function Default set to 0.42 Returns ---------- wav: array, Synethesized waveform """ if rmcep is not None: # power modification mcep = mod_power(mcep, rmcep, alpha=alpha) if ap.shape[1] < self.fftl // 2 + 1: # decode codeap to ap ap = pyworld.decode_aperiodicity(ap, self.fs, self.fftl) # mcep into spc spc = pysptk.mc2sp(mcep, alpha, self.fftl) # generate waveform using world vocoder with f0, spc, ap wav = pyworld.synthesize(f0, spc, ap, self.fs, frame_period=self.shiftms) return wav def synthesis_diff(self, x, diffmcep, rmcep=None, alpha=0.42): """filtering with a differential mel-cesptrum Parameters ---------- x : array, shape (`samples`) array of waveform sequence diffmcep : array, shape (`T`, `dim`) array of differential mel-cepstrum sequence rmcep : array, shape (`T`, `dim`) array of reference mel-cepstrum sequence Default set to None alpha : float, optional Parameter of all-path transfer function Default set to 0.42 Return ---------- wav: array, shape (`samples`) Synethesized waveform """ x = x.astype(np.float64) dim = diffmcep.shape[1] - 1 shiftl = int(self.fs / 1000 * self.shiftms) if rmcep is not None: # power modification diffmcep = mod_power(rmcep + diffmcep, rmcep, alpha=alpha) - rmcep b = np.apply_along_axis(pysptk.mc2b, 1, diffmcep, alpha) assert np.isfinite(b).all() mlsa_fil = pysptk.synthesis.Synthesizer( MLSADF(dim, alpha=alpha), shiftl) wav = mlsa_fil.synthesis(x, b) return wav def synthesis_spc(self, f0, spc, ap): """synthesis generates waveform from F0, mcep, ap Parameters ---------- f0 : array, shape (`T`, `1`) array of F0 sequence spc : array, shape (`T`, `fftl // 2 + 1`) array of mel-cepstrum sequence ap : array, shape (`T`, `fftl // 2 + 1`) array of aperiodicity Return ------ wav: vector, shape (`samples`) Synethesized waveform """ # generate waveform using world vocoder with f0, spc, ap wav = pyworld.synthesize(f0, spc, ap, self.fs, frame_period=self.shiftms) return wav def mod_power(cvmcep, rmcep, alpha=0.42, irlen=1024): """Power modification based on inpulse responce Parameters ---------- cvmcep : array, shape (`T`, `dim`) array of converted mel-cepstrum rmcep : array, shape (`T`, `dim`) array of reference mel-cepstrum alpha : float, optional All-path filter transfer function Default set to 0.42 irlen : int, optional Length for IIR filter Default set to 1024 Return ------ modified_cvmcep : array, shape (`T`, `dim`) array of power modified converted mel-cepstrum """ if rmcep.shape != cvmcep.shape: raise ValueError("The shapes of the converted and \ reference mel-cepstrum are different: \ {} / {}".format(cvmcep.shape, rmcep.shape)) cv_e = pysptk.mc2e(cvmcep, alpha=alpha, irlen=irlen) r_e = pysptk.mc2e(rmcep, alpha=alpha, irlen=irlen) dpow = np.log(r_e / cv_e) / 2 modified_cvmcep = np.copy(cvmcep) modified_cvmcep[:, 0] += dpow return modified_cvmcep
[ "pyworld.synthesize", "numpy.log", "numpy.copy", "pysptk.synthesis.MLSADF", "pyworld.decode_aperiodicity", "numpy.isfinite", "numpy.apply_along_axis", "pysptk.mc2sp", "pysptk.mc2e" ]
[((4755, 4800), 'pysptk.mc2e', 'pysptk.mc2e', (['cvmcep'], {'alpha': 'alpha', 'irlen': 'irlen'}), '(cvmcep, alpha=alpha, irlen=irlen)\n', (4766, 4800), False, 'import pysptk\n'), ((4811, 4855), 'pysptk.mc2e', 'pysptk.mc2e', (['rmcep'], {'alpha': 'alpha', 'irlen': 'irlen'}), '(rmcep, alpha=alpha, irlen=irlen)\n', (4822, 4855), False, 'import pysptk\n'), ((4914, 4929), 'numpy.copy', 'np.copy', (['cvmcep'], {}), '(cvmcep)\n', (4921, 4929), True, 'import numpy as np\n'), ((1742, 1778), 'pysptk.mc2sp', 'pysptk.mc2sp', (['mcep', 'alpha', 'self.fftl'], {}), '(mcep, alpha, self.fftl)\n', (1754, 1778), False, 'import pysptk\n'), ((1859, 1926), 'pyworld.synthesize', 'pyworld.synthesize', (['f0', 'spc', 'ap', 'self.fs'], {'frame_period': 'self.shiftms'}), '(f0, spc, ap, self.fs, frame_period=self.shiftms)\n', (1877, 1926), False, 'import pyworld\n'), ((2959, 3011), 'numpy.apply_along_axis', 'np.apply_along_axis', (['pysptk.mc2b', '(1)', 'diffmcep', 'alpha'], {}), '(pysptk.mc2b, 1, diffmcep, alpha)\n', (2978, 3011), True, 'import numpy as np\n'), ((3778, 3845), 'pyworld.synthesize', 'pyworld.synthesize', (['f0', 'spc', 'ap', 'self.fs'], {'frame_period': 'self.shiftms'}), '(f0, spc, ap, self.fs, frame_period=self.shiftms)\n', (3796, 3845), False, 'import pyworld\n'), ((4868, 4886), 'numpy.log', 'np.log', (['(r_e / cv_e)'], {}), '(r_e / cv_e)\n', (4874, 4886), True, 'import numpy as np\n'), ((1651, 1702), 'pyworld.decode_aperiodicity', 'pyworld.decode_aperiodicity', (['ap', 'self.fs', 'self.fftl'], {}), '(ap, self.fs, self.fftl)\n', (1678, 1702), False, 'import pyworld\n'), ((3110, 3134), 'pysptk.synthesis.MLSADF', 'MLSADF', (['dim'], {'alpha': 'alpha'}), '(dim, alpha=alpha)\n', (3116, 3134), False, 'from pysptk.synthesis import MLSADF\n'), ((3027, 3041), 'numpy.isfinite', 'np.isfinite', (['b'], {}), '(b)\n', (3038, 3041), True, 'import numpy as np\n')]
import numpy as np from taped.util import ( DFLT_SR, DFLT_SAMPLE_WIDTH, DFLT_CHK_SIZE, DFLT_STREAM_BUF_SIZE_S, waveform_to_bytes, ) from taped.scrap.audio_pokes import live_wf_ctx ###################################################################################################### # Example applications from itertools import islice import pyaudio from time import sleep import soundfile as sf from io import BytesIO def asis(wf): return wf def reverse_and_print(wf): print('reversed sounds like this...') return wf[::-1] def listen_and_shout( transform_wf=asis, every_seconds=1, input_device_index=None, sr=DFLT_SR, sample_width=DFLT_SAMPLE_WIDTH, chk_size=DFLT_CHK_SIZE, stream_buffer_size_s=DFLT_STREAM_BUF_SIZE_S, ): """ :param transform_wf: Callable that will be called on recorded waveform before outputting to speakers :param every_seconds: Frequency :param input_device_index: Index of Input Device to use. Unspecified (or None) uses default device. :param sr: Specifies the desired sample rate (in Hz) :param sample_width: Sample width in bytes (1, 2, 3, or 4) :param chk_size: :param stream_buffer_size_s: How many seconds of data to keep in the buffer (i.e. how far in the past you can see) """ # Create an interface to PortAudio p = pyaudio.PyAudio() if sample_width != 2: from warnings import warn warn("I've never seen it work with anything than sample_width=2") # 'output = True' indicates that the sound will be played rather than recorded stream = p.open( format=sample_width, channels=1, rate=int(sr / sample_width), # why? I don't know. I guess unit is bytes here? output=True, ) with live_wf_ctx( input_device_index, sr=sr, sample_width=sample_width, chk_size=chk_size, stream_buffer_size_s=stream_buffer_size_s, ) as wf_gen: while True: try: wf = list(islice(wf_gen, int(sr * every_seconds))) b = waveform_to_bytes(transform_wf(wf), sr, sample_width) stream.write(b) except KeyboardInterrupt: print('KeyboardInterrupt... Closing down') break # Close and terminate the stream stream.close() p.terminate() def vol(wf): return np.std(np.abs(wf)) def print_vol_num(wf): print(f'{vol(wf):0.04f}') def print_vol(wf, char='-', gain=2, saturation_vol=99): log_vol = int(min(saturation_vol, max(1, gain * np.std(np.abs(wf)) / 100))) print(f'{char * log_vol}') def push_sound_through_a_pipe( callback=print_vol_num, every_seconds=1, input_device_index=None, sr=DFLT_SR, sample_width=DFLT_SAMPLE_WIDTH, chk_size=DFLT_CHK_SIZE, stream_buffer_size_s=DFLT_STREAM_BUF_SIZE_S, ): """ :param transform_wf: Callable that will be called on recorded waveform before outputting to speakers :param every_seconds: Frequency :param input_device_index: Index of Input Device to use. Unspecified (or None) uses default device. :param sr: Specifies the desired sample rate (in Hz) :param sample_width: Sample width in bytes (1, 2, 3, or 4) :param chk_size: :param stream_buffer_size_s: How many seconds of data to keep in the buffer (i.e. how far in the past you can see) """ with live_wf_ctx( input_device_index, sr=sr, sample_width=sample_width, chk_size=chk_size, stream_buffer_size_s=stream_buffer_size_s, ) as wf_gen: while True: try: callback(list(islice(wf_gen, int(sr * every_seconds)))) except KeyboardInterrupt: print('KeyboardInterrupt... Closing down') break
[ "warnings.warn", "taped.scrap.audio_pokes.live_wf_ctx", "pyaudio.PyAudio", "numpy.abs" ]
[((1362, 1379), 'pyaudio.PyAudio', 'pyaudio.PyAudio', ([], {}), '()\n', (1377, 1379), False, 'import pyaudio\n'), ((1450, 1515), 'warnings.warn', 'warn', (['"""I\'ve never seen it work with anything than sample_width=2"""'], {}), '("I\'ve never seen it work with anything than sample_width=2")\n', (1454, 1515), False, 'from warnings import warn\n'), ((1793, 1925), 'taped.scrap.audio_pokes.live_wf_ctx', 'live_wf_ctx', (['input_device_index'], {'sr': 'sr', 'sample_width': 'sample_width', 'chk_size': 'chk_size', 'stream_buffer_size_s': 'stream_buffer_size_s'}), '(input_device_index, sr=sr, sample_width=sample_width, chk_size=\n chk_size, stream_buffer_size_s=stream_buffer_size_s)\n', (1804, 1925), False, 'from taped.scrap.audio_pokes import live_wf_ctx\n'), ((2416, 2426), 'numpy.abs', 'np.abs', (['wf'], {}), '(wf)\n', (2422, 2426), True, 'import numpy as np\n'), ((3427, 3559), 'taped.scrap.audio_pokes.live_wf_ctx', 'live_wf_ctx', (['input_device_index'], {'sr': 'sr', 'sample_width': 'sample_width', 'chk_size': 'chk_size', 'stream_buffer_size_s': 'stream_buffer_size_s'}), '(input_device_index, sr=sr, sample_width=sample_width, chk_size=\n chk_size, stream_buffer_size_s=stream_buffer_size_s)\n', (3438, 3559), False, 'from taped.scrap.audio_pokes import live_wf_ctx\n'), ((2600, 2610), 'numpy.abs', 'np.abs', (['wf'], {}), '(wf)\n', (2606, 2610), True, 'import numpy as np\n')]
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data loaders for Graph Agreement Models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import logging import os import pickle import sys from gam.data.dataset import Dataset from gam.data.dataset import PlanetoidDataset from gam.data.preprocessing import convert_image from gam.data.preprocessing import split_train_val_unlabeled import networkx as nx import numpy as np from scipy import sparse as sp import tensorflow_datasets as tfds def load_data_tf_datasets(dataset_name, target_num_train_per_class, target_num_val, seed): """Load and preprocess data from tensorflow_datasets.""" logging.info('Loading and preprocessing data from tensorflow datasets...') # Load train data. ds = tfds.load(dataset_name, split=tfds.Split.TRAIN, batch_size=-1) ds = tfds.as_numpy(ds) train_inputs, train_labels = ds['image'], ds['label'] # Load test data. ds = tfds.load(dataset_name, split=tfds.Split.TEST, batch_size=-1) ds = tfds.as_numpy(ds) test_inputs, test_labels = ds['image'], ds['label'] # Remove extra dimensions of size 1. train_labels = np.squeeze(train_labels) test_labels = np.squeeze(test_labels) logging.info('Splitting data...') data = split_train_val_unlabeled(train_inputs, train_labels, target_num_train_per_class, target_num_val, seed) train_inputs = data[0] train_labels = data[1] val_inputs = data[2] val_labels = data[3] unlabeled_inputs = data[4] unlabeled_labels = data[5] logging.info('Converting data to Dataset format...') data = Dataset.build_from_splits( name=dataset_name, inputs_train=train_inputs, labels_train=train_labels, inputs_val=val_inputs, labels_val=val_labels, inputs_test=test_inputs, labels_test=test_labels, inputs_unlabeled=unlabeled_inputs, labels_unlabeled=unlabeled_labels, feature_preproc_fn=convert_image) return data def load_data_realistic_ssl(dataset_name, data_path, label_map_path): """Loads data from the `ealistic Evaluation of Deep SSL Algorithms`.""" logging.info('Loading data from pickle at %s.', data_path) train_set, validation_set, test_set = pickle.load(open(data_path, 'rb')) train_inputs = train_set['images'] train_labels = train_set['labels'] val_inputs = validation_set['images'] val_labels = validation_set['labels'] test_inputs = test_set['images'] test_labels = test_set['labels'] # Load label map that specifies which trainining labeles are available. train_indices = json.load(open(label_map_path, 'r')) train_indices = [ int(key.encode('ascii', 'ignore')) for key in train_indices['values'] ] train_indices = np.asarray(train_indices) # Select the loaded train indices, and make the rest unlabeled. unlabeled_mask = np.ones((train_inputs.shape[0],), dtype=np.bool) unlabeled_mask[train_indices] = False unlabeled_inputs = train_inputs[unlabeled_mask] unlabeled_labels = train_labels[unlabeled_mask] train_inputs = train_inputs[train_indices] train_labels = train_labels[train_indices] # Select a feature preprocessing function, depending on the dataset. feature_preproc_fn = ((lambda image: image) if dataset_name == 'cifar10' else convert_image) data = Dataset.build_from_splits( name=dataset_name, inputs_train=train_inputs, labels_train=train_labels, inputs_val=val_inputs, labels_val=val_labels, inputs_test=test_inputs, labels_test=test_labels, inputs_unlabeled=unlabeled_inputs, labels_unlabeled=unlabeled_labels, feature_preproc_fn=feature_preproc_fn) return data def load_from_planetoid_files(dataset_name, path): """Loads Planetoid data in GCN format, as released with the GCN code. This function is adapted from https://github.com/tkipf/gcn. This function assumes that the following files can be found at the location specified by `path`: ind.dataset_str.x => the feature vectors of the training instances as scipy.sparse.csr.csr_matrix object. ind.dataset_str.tx => the feature vectors of the test instances as scipy.sparse.csr.csr_matrix object. ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training instances (a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object. ind.dataset_str.y => the one-hot labels of the labeled training instances as numpy.ndarray object. ind.dataset_str.ty => the one-hot labels of the test instances as numpy.ndarray object. ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object. ind.dataset_str.graph => a dict in the format {index: [index_of_neighbor_nodes]} as collections.defaultdict object. ind.dataset_str.test.index => the indices of test instances in graph, for the inductive setting as list object. Args: dataset_name: A string representing the dataset name (e.g., `cora`). path: Path to the directory containing the files. Returns: All data input files loaded (as well the training/test data). """ def _sample_mask(idx, l): """Create mask.""" mask = np.zeros(l) mask[idx] = 1 return np.array(mask, dtype=np.bool) def _parse_index_file(filename): """Parse index file.""" index = [] for line in open(filename): index.append(int(line.strip())) return index def _load_file(name): """Load from data file.""" filename = 'ind.{}.{}'.format(dataset_name, name) filename = os.path.join(path, filename) with open(filename, 'rb') as f: if sys.version_info > (3, 0): return pickle.load(f, encoding='latin1') # pylint: disable=unexpected-keyword-arg else: return pickle.load(f) x = _load_file('x') y = _load_file('y') tx = _load_file('tx') ty = _load_file('ty') allx = _load_file('allx') ally = _load_file('ally') graph = _load_file('graph') filename = 'ind.{}.test.index'.format(dataset_name) filename = os.path.join(path, filename) test_idx_reorder = _parse_index_file(filename) test_idx_range = np.sort(test_idx_reorder) if dataset_name == 'citeseer': # Fix citeseer dataset (there are some isolated nodes in the graph). # Find isolated nodes, add them as zero-vecs into the right position. test_idx_range_full = range( min(test_idx_reorder), max(test_idx_reorder) + 1) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range - min(test_idx_range), :] = tx tx = tx_extended ty_extended = np.zeros((len(test_idx_range_full), y.shape[1])) ty_extended[test_idx_range - min(test_idx_range), :] = ty ty = ty_extended features = sp.vstack((allx, tx)).tolil() features[test_idx_reorder, :] = features[test_idx_range, :] adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) labels = np.vstack((ally, ty)) labels[test_idx_reorder, :] = labels[test_idx_range, :] idx_test = test_idx_range.tolist() idx_train = range(len(y)) idx_val = range(len(y), len(y) + 500) train_mask = _sample_mask(idx_train, labels.shape[0]) val_mask = _sample_mask(idx_val, labels.shape[0]) test_mask = _sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape) y_val = np.zeros(labels.shape) y_test = np.zeros(labels.shape) y_train[train_mask, :] = labels[train_mask, :] y_val[val_mask, :] = labels[val_mask, :] y_test[test_mask, :] = labels[test_mask, :] return (adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask, labels) def load_data_planetoid(name, path, splits_path=None, row_normalize=False): """Load Planetoid data.""" if splits_path is None: # Load from file in Planetoid format. (adj, features, _, _, _, train_mask, val_mask, test_mask, labels) = load_from_planetoid_files(name, path) else: # Otherwise load from a path where we saved a pickle with random splits. logging.info('Loading from splits path: %s', splits_path) (adj, features, _, _, _, train_mask, val_mask, test_mask, labels) = pickle.load(open(splits_path, 'rb')) return PlanetoidDataset( name, adj, features, train_mask, val_mask, test_mask, labels, row_normalize=row_normalize)
[ "gam.data.dataset.PlanetoidDataset", "tensorflow_datasets.load", "gam.data.dataset.Dataset.build_from_splits", "networkx.from_dict_of_lists", "tensorflow_datasets.as_numpy", "scipy.sparse.vstack", "numpy.asarray", "numpy.zeros", "numpy.ones", "logging.info", "numpy.sort", "pickle.load", "numpy.array", "gam.data.preprocessing.split_train_val_unlabeled", "numpy.squeeze", "os.path.join", "numpy.vstack" ]
[((1277, 1351), 'logging.info', 'logging.info', (['"""Loading and preprocessing data from tensorflow datasets..."""'], {}), "('Loading and preprocessing data from tensorflow datasets...')\n", (1289, 1351), False, 'import logging\n'), ((1380, 1442), 'tensorflow_datasets.load', 'tfds.load', (['dataset_name'], {'split': 'tfds.Split.TRAIN', 'batch_size': '(-1)'}), '(dataset_name, split=tfds.Split.TRAIN, batch_size=-1)\n', (1389, 1442), True, 'import tensorflow_datasets as tfds\n'), ((1450, 1467), 'tensorflow_datasets.as_numpy', 'tfds.as_numpy', (['ds'], {}), '(ds)\n', (1463, 1467), True, 'import tensorflow_datasets as tfds\n'), ((1551, 1612), 'tensorflow_datasets.load', 'tfds.load', (['dataset_name'], {'split': 'tfds.Split.TEST', 'batch_size': '(-1)'}), '(dataset_name, split=tfds.Split.TEST, batch_size=-1)\n', (1560, 1612), True, 'import tensorflow_datasets as tfds\n'), ((1620, 1637), 'tensorflow_datasets.as_numpy', 'tfds.as_numpy', (['ds'], {}), '(ds)\n', (1633, 1637), True, 'import tensorflow_datasets as tfds\n'), ((1749, 1773), 'numpy.squeeze', 'np.squeeze', (['train_labels'], {}), '(train_labels)\n', (1759, 1773), True, 'import numpy as np\n'), ((1790, 1813), 'numpy.squeeze', 'np.squeeze', (['test_labels'], {}), '(test_labels)\n', (1800, 1813), True, 'import numpy as np\n'), ((1817, 1850), 'logging.info', 'logging.info', (['"""Splitting data..."""'], {}), "('Splitting data...')\n", (1829, 1850), False, 'import logging\n'), ((1860, 1967), 'gam.data.preprocessing.split_train_val_unlabeled', 'split_train_val_unlabeled', (['train_inputs', 'train_labels', 'target_num_train_per_class', 'target_num_val', 'seed'], {}), '(train_inputs, train_labels,\n target_num_train_per_class, target_num_val, seed)\n', (1885, 1967), False, 'from gam.data.preprocessing import split_train_val_unlabeled\n'), ((2191, 2243), 'logging.info', 'logging.info', (['"""Converting data to Dataset format..."""'], {}), "('Converting data to Dataset format...')\n", (2203, 2243), False, 'import logging\n'), ((2253, 2569), 'gam.data.dataset.Dataset.build_from_splits', 'Dataset.build_from_splits', ([], {'name': 'dataset_name', 'inputs_train': 'train_inputs', 'labels_train': 'train_labels', 'inputs_val': 'val_inputs', 'labels_val': 'val_labels', 'inputs_test': 'test_inputs', 'labels_test': 'test_labels', 'inputs_unlabeled': 'unlabeled_inputs', 'labels_unlabeled': 'unlabeled_labels', 'feature_preproc_fn': 'convert_image'}), '(name=dataset_name, inputs_train=train_inputs,\n labels_train=train_labels, inputs_val=val_inputs, labels_val=val_labels,\n inputs_test=test_inputs, labels_test=test_labels, inputs_unlabeled=\n unlabeled_inputs, labels_unlabeled=unlabeled_labels, feature_preproc_fn\n =convert_image)\n', (2278, 2569), False, 'from gam.data.dataset import Dataset\n'), ((2775, 2833), 'logging.info', 'logging.info', (['"""Loading data from pickle at %s."""', 'data_path'], {}), "('Loading data from pickle at %s.', data_path)\n", (2787, 2833), False, 'import logging\n'), ((3380, 3405), 'numpy.asarray', 'np.asarray', (['train_indices'], {}), '(train_indices)\n', (3390, 3405), True, 'import numpy as np\n'), ((3492, 3540), 'numpy.ones', 'np.ones', (['(train_inputs.shape[0],)'], {'dtype': 'np.bool'}), '((train_inputs.shape[0],), dtype=np.bool)\n', (3499, 3540), True, 'import numpy as np\n'), ((3972, 4293), 'gam.data.dataset.Dataset.build_from_splits', 'Dataset.build_from_splits', ([], {'name': 'dataset_name', 'inputs_train': 'train_inputs', 'labels_train': 'train_labels', 'inputs_val': 'val_inputs', 'labels_val': 'val_labels', 'inputs_test': 'test_inputs', 'labels_test': 'test_labels', 'inputs_unlabeled': 'unlabeled_inputs', 'labels_unlabeled': 'unlabeled_labels', 'feature_preproc_fn': 'feature_preproc_fn'}), '(name=dataset_name, inputs_train=train_inputs,\n labels_train=train_labels, inputs_val=val_inputs, labels_val=val_labels,\n inputs_test=test_inputs, labels_test=test_labels, inputs_unlabeled=\n unlabeled_inputs, labels_unlabeled=unlabeled_labels, feature_preproc_fn\n =feature_preproc_fn)\n', (3997, 4293), False, 'from gam.data.dataset import Dataset\n'), ((7075, 7103), 'os.path.join', 'os.path.join', (['path', 'filename'], {}), '(path, filename)\n', (7087, 7103), False, 'import os\n'), ((7172, 7197), 'numpy.sort', 'np.sort', (['test_idx_reorder'], {}), '(test_idx_reorder)\n', (7179, 7197), True, 'import numpy as np\n'), ((7959, 7980), 'numpy.vstack', 'np.vstack', (['(ally, ty)'], {}), '((ally, ty))\n', (7968, 7980), True, 'import numpy as np\n'), ((8321, 8343), 'numpy.zeros', 'np.zeros', (['labels.shape'], {}), '(labels.shape)\n', (8329, 8343), True, 'import numpy as np\n'), ((8354, 8376), 'numpy.zeros', 'np.zeros', (['labels.shape'], {}), '(labels.shape)\n', (8362, 8376), True, 'import numpy as np\n'), ((8388, 8410), 'numpy.zeros', 'np.zeros', (['labels.shape'], {}), '(labels.shape)\n', (8396, 8410), True, 'import numpy as np\n'), ((9211, 9322), 'gam.data.dataset.PlanetoidDataset', 'PlanetoidDataset', (['name', 'adj', 'features', 'train_mask', 'val_mask', 'test_mask', 'labels'], {'row_normalize': 'row_normalize'}), '(name, adj, features, train_mask, val_mask, test_mask,\n labels, row_normalize=row_normalize)\n', (9227, 9322), False, 'from gam.data.dataset import PlanetoidDataset\n'), ((6232, 6243), 'numpy.zeros', 'np.zeros', (['l'], {}), '(l)\n', (6240, 6243), True, 'import numpy as np\n'), ((6273, 6302), 'numpy.array', 'np.array', (['mask'], {'dtype': 'np.bool'}), '(mask, dtype=np.bool)\n', (6281, 6302), True, 'import numpy as np\n'), ((6594, 6622), 'os.path.join', 'os.path.join', (['path', 'filename'], {}), '(path, filename)\n', (6606, 6622), False, 'import os\n'), ((7917, 7945), 'networkx.from_dict_of_lists', 'nx.from_dict_of_lists', (['graph'], {}), '(graph)\n', (7938, 7945), True, 'import networkx as nx\n'), ((9029, 9086), 'logging.info', 'logging.info', (['"""Loading from splits path: %s"""', 'splits_path'], {}), "('Loading from splits path: %s', splits_path)\n", (9041, 9086), False, 'import logging\n'), ((7797, 7818), 'scipy.sparse.vstack', 'sp.vstack', (['(allx, tx)'], {}), '((allx, tx))\n', (7806, 7818), True, 'from scipy import sparse as sp\n'), ((6710, 6743), 'pickle.load', 'pickle.load', (['f'], {'encoding': '"""latin1"""'}), "(f, encoding='latin1')\n", (6721, 6743), False, 'import pickle\n'), ((6813, 6827), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (6824, 6827), False, 'import pickle\n')]
import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('Position_Salaries.csv') X = dataset.iloc[:, 1:-1].values y = dataset.iloc[:, dataset.shape[1]-1:dataset.shape[1]].values #Feature Scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() sc_y = StandardScaler() X = sc_X.fit_transform(X) y = sc_y.fit_transform(y) #Fitting SVR to the dataset from sklearn.svm import SVR regressor = SVR(kernel = 'rbf') regressor.fit(X, y) #Predicting a new result y_pred = sc_y.inverse_transform(regressor.predict(sc_X.transform(np.reshape([6.5], (-1, 1))))) #Visualizing the SVR results X_grid = np.arange(min(sc_X.inverse_transform(X)), max(sc_X.inverse_transform(X)), 0.1) X_grid = X_grid.reshape((len(X_grid), 1)) plt.scatter(sc_X.inverse_transform(X), sc_y.inverse_transform(y), color = 'red') plt.plot(sc_X.inverse_transform(X), sc_y.inverse_transform(regressor.predict(X)), color = 'blue') plt.scatter(6.5, y_pred, color = 'green') plt.show()
[ "sklearn.svm.SVR", "sklearn.preprocessing.StandardScaler", "matplotlib.pyplot.show", "pandas.read_csv", "matplotlib.pyplot.scatter", "numpy.reshape" ]
[((82, 118), 'pandas.read_csv', 'pd.read_csv', (['"""Position_Salaries.csv"""'], {}), "('Position_Salaries.csv')\n", (93, 118), True, 'import pandas as pd\n'), ((290, 306), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (304, 306), False, 'from sklearn.preprocessing import StandardScaler\n'), ((314, 330), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (328, 330), False, 'from sklearn.preprocessing import StandardScaler\n'), ((452, 469), 'sklearn.svm.SVR', 'SVR', ([], {'kernel': '"""rbf"""'}), "(kernel='rbf')\n", (455, 469), False, 'from sklearn.svm import SVR\n'), ((952, 991), 'matplotlib.pyplot.scatter', 'plt.scatter', (['(6.5)', 'y_pred'], {'color': '"""green"""'}), "(6.5, y_pred, color='green')\n", (963, 991), True, 'import matplotlib.pyplot as plt\n'), ((994, 1004), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1002, 1004), True, 'import matplotlib.pyplot as plt\n'), ((583, 609), 'numpy.reshape', 'np.reshape', (['[6.5]', '(-1, 1)'], {}), '([6.5], (-1, 1))\n', (593, 609), True, 'import numpy as np\n')]
import numpy as np import torch from scipy import signal import math import cv2 import random class Transform: def __init__(self): pass def add_noise(self, signal, noise_amount): """ adding noise """ signal = signal.T noise = (0.4 ** 0.5) * np.random.normal(1, noise_amount, np.shape(signal)[0]) noise = noise[:,None] noised_signal = signal + noise noised_signal = noised_signal.T # print(noised_signal.shape) return noised_signal def add_noise_with_SNR(self,signal, noise_amount): """ adding noise created using: https://stackoverflow.com/a/53688043/10700812 """ signal = signal[0] target_snr_db = noise_amount # 20 x_watts = signal ** 2 # Calculate signal power and convert to dB sig_avg_watts = np.mean(x_watts) sig_avg_db = 10 * np.log10(sig_avg_watts) # Calculate noise then convert to watts noise_avg_db = sig_avg_db - target_snr_db noise_avg_watts = 10 ** (noise_avg_db / 10) mean_noise = 0 noise_volts = np.random.normal(mean_noise, np.sqrt(noise_avg_watts), len(x_watts)) # Generate an sample of white noise noised_signal = signal + noise_volts # noise added signal noised_signal = noised_signal[None,:] # print(noised_signal.shape) return noised_signal def scaled(self,signal, factor_list): """" scale the signal """ factor = round(np.random.uniform(factor_list[0],factor_list[1]),2) signal[0] = 1 / (1 + np.exp(-signal[0])) # print(signal.max()) return signal def negate(self,signal): """ negate the signal """ signal[0] = signal[0] * (-1) return signal def hor_filp(self,signal): """ flipped horizontally """ hor_flipped = np.flip(signal,axis=1) return hor_flipped def permute(self,signal, pieces): """ signal: numpy array (batch x window) pieces: number of segments along time """ signal = signal.T pieces = int(np.ceil(np.shape(signal)[0] / (np.shape(signal)[0] // pieces)).tolist()) #向上取整 piece_length = int(np.shape(signal)[0] // pieces) sequence = list(range(0, pieces)) np.random.shuffle(sequence) permuted_signal = np.reshape(signal[:(np.shape(signal)[0] // pieces * pieces)], (pieces, piece_length)).tolist() tail = signal[(np.shape(signal)[0] // pieces * pieces):] permuted_signal = np.asarray(permuted_signal)[sequence] permuted_signal = np.concatenate(permuted_signal, axis=0) permuted_signal = np.concatenate((permuted_signal,tail[:,0]), axis=0) permuted_signal = permuted_signal[:,None] permuted_signal = permuted_signal.T return permuted_signal def cutout_resize(self,signal,pieces): """ signal: numpy array (batch x window) pieces: number of segments along time cutout 1 piece """ signal = signal.T pieces = int(np.ceil(np.shape(signal)[0] / (np.shape(signal)[0] // pieces)).tolist()) # 向上取整 piece_length = int(np.shape(signal)[0] // pieces) import random sequence = [] cutout = random.randint(0, pieces) # print(cutout) # sequence1 = list(range(0, cutout)) # sequence2 = list(range(int(cutout + 1), pieces)) # sequence = np.hstack((sequence1, sequence2)) for i in range(pieces): if i == cutout: pass else: sequence.append(i) # print(sequence) cutout_signal = np.reshape(signal[:(np.shape(signal)[0] // pieces * pieces)], (pieces, piece_length)).tolist() tail = signal[(np.shape(signal)[0] // pieces * pieces):] cutout_signal = np.asarray(cutout_signal)[sequence] cutout_signal = np.hstack(cutout_signal) cutout_signal = np.concatenate((cutout_signal, tail[:, 0]), axis=0) cutout_signal = cv2.resize(cutout_signal, (1, 3072), interpolation=cv2.INTER_LINEAR) cutout_signal = cutout_signal.T return cutout_signal def cutout_zero(self,signal,pieces): """ signal: numpy array (batch x window) pieces: number of segments along time cutout 1 piece """ signal = signal.T ones = np.ones((np.shape(signal)[0],np.shape(signal)[1])) # print(ones.shape) # assert False pieces = int(np.ceil(np.shape(signal)[0] / (np.shape(signal)[0] // pieces)).tolist()) # 向上取整 piece_length = int(np.shape(signal)[0] // pieces) cutout = random.randint(1, pieces) cutout_signal = np.reshape(signal[:(np.shape(signal)[0] // pieces * pieces)], (pieces, piece_length)).tolist() ones_pieces = np.reshape(ones[:(np.shape(signal)[0] // pieces * pieces)], (pieces, piece_length)).tolist() tail = signal[(np.shape(signal)[0] // pieces * pieces):] cutout_signal = np.asarray(cutout_signal) ones_pieces = np.asarray(ones_pieces) for i in range(pieces): if i == cutout: ones_pieces[i]*=0 cutout_signal = cutout_signal * ones_pieces cutout_signal = np.hstack(cutout_signal) cutout_signal = np.concatenate((cutout_signal, tail[:, 0]), axis=0) cutout_signal = cutout_signal[:,None] cutout_signal = cutout_signal.T return cutout_signal # mic def crop_resize(self, signal, size): signal = signal.T size = signal.shape[0] * size size = int(size) start = random.randint(0, signal.shape[0]-size) crop_signal = signal[start:start + size,:] # print(crop_signal.shape) crop_signal = cv2.resize(crop_signal, (1, 3072), interpolation=cv2.INTER_LINEAR) # print(crop_signal.shape) crop_signal = crop_signal.T return crop_signal def move_avg(self,a,n, mode="same"): # a = a.T result = np.convolve(a[0], np.ones((n,)) / n, mode=mode) return result[None,:] def bandpass_filter(self, x, order, cutoff, fs=100): result = np.zeros((x.shape[0], x.shape[1])) w1 = 2 * cutoff[0] / int(fs) w2 = 2 * cutoff[1] / int(fs) b, a = signal.butter(order, [w1, w2], btype='bandpass') # 配置滤波器 8 表示滤波器的阶数 result = signal.filtfilt(b, a, x, axis=1) # print(result.shape) return result def lowpass_filter(self, x, order, cutoff, fs=100): result = np.zeros((x.shape[0], x.shape[1])) w1 = 2 * cutoff[0] / int(fs) # w2 = 2 * cutoff[1] / fs b, a = signal.butter(order, w1, btype='lowpass') # 配置滤波器 8 表示滤波器的阶数 result = signal.filtfilt(b, a, x, axis=1) # print(result.shape) return result def highpass_filter(self, x, order, cutoff, fs=100): result = np.zeros((x.shape[0], x.shape[1])) w1 = 2 * cutoff[0] / int(fs) # w2 = 2 * cutoff[1] / fs b, a = signal.butter(order, w1, btype='highpass') # 配置滤波器 8 表示滤波器的阶数 result = signal.filtfilt(b, a, x, axis=1) # print(result.shape) return result def time_warp(self,signal, sampling_freq, pieces, stretch_factor, squeeze_factor): """ signal: numpy array (batch x window) sampling freq pieces: number of segments along time stretch factor squeeze factor """ signal = signal.T total_time = np.shape(signal)[0] // sampling_freq segment_time = total_time / pieces sequence = list(range(0, pieces)) stretch = np.random.choice(sequence, math.ceil(len(sequence) / 2), replace=False) squeeze = list(set(sequence).difference(set(stretch))) initialize = True for i in sequence: orig_signal = signal[int(i * np.floor(segment_time * sampling_freq)):int( (i + 1) * np.floor(segment_time * sampling_freq))] orig_signal = orig_signal.reshape(np.shape(orig_signal)[0], 1) if i in stretch: output_shape = int(np.ceil(np.shape(orig_signal)[0] * stretch_factor)) new_signal = cv2.resize(orig_signal, (1, output_shape), interpolation=cv2.INTER_LINEAR) if initialize == True: time_warped = new_signal initialize = False else: time_warped = np.vstack((time_warped, new_signal)) elif i in squeeze: output_shape = int(np.ceil(np.shape(orig_signal)[0] * squeeze_factor)) new_signal = cv2.resize(orig_signal, (1, output_shape), interpolation=cv2.INTER_LINEAR) if initialize == True: time_warped = new_signal initialize = False else: time_warped = np.vstack((time_warped, new_signal)) time_warped = cv2.resize(time_warped, (1,3072), interpolation=cv2.INTER_LINEAR) time_warped = time_warped.T return time_warped if __name__ == '__main__': from transform import Transform import matplotlib.pyplot as plt Trans = Transform() input = np.zeros((1,3072)) input = Trans.add_noise(input,10) plt.subplot(211) plt.plot(input[0]) # print(input.shape) # output = Trans.cutout_resize(input,10) order = random.randint(3, 10) cutoff = random.uniform(5, 20) output = Trans.filter(input, order, [2,15], mode='lowpass') plt.subplot(212) plt.plot(output[0]) plt.savefig('filter.png') # print(output.shape)
[ "numpy.floor", "numpy.ones", "numpy.shape", "numpy.mean", "numpy.exp", "random.randint", "numpy.log10", "scipy.signal.butter", "cv2.resize", "numpy.random.shuffle", "numpy.asarray", "transform.Transform", "numpy.hstack", "numpy.concatenate", "numpy.vstack", "matplotlib.pyplot.subplot", "numpy.random.uniform", "numpy.flip", "matplotlib.pyplot.plot", "random.uniform", "scipy.signal.filtfilt", "numpy.zeros", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((9807, 9818), 'transform.Transform', 'Transform', ([], {}), '()\n', (9816, 9818), False, 'from transform import Transform\n'), ((9832, 9851), 'numpy.zeros', 'np.zeros', (['(1, 3072)'], {}), '((1, 3072))\n', (9840, 9851), True, 'import numpy as np\n'), ((9895, 9911), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(211)'], {}), '(211)\n', (9906, 9911), True, 'import matplotlib.pyplot as plt\n'), ((9917, 9935), 'matplotlib.pyplot.plot', 'plt.plot', (['input[0]'], {}), '(input[0])\n', (9925, 9935), True, 'import matplotlib.pyplot as plt\n'), ((10023, 10044), 'random.randint', 'random.randint', (['(3)', '(10)'], {}), '(3, 10)\n', (10037, 10044), False, 'import random\n'), ((10059, 10080), 'random.uniform', 'random.uniform', (['(5)', '(20)'], {}), '(5, 20)\n', (10073, 10080), False, 'import random\n'), ((10151, 10167), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(212)'], {}), '(212)\n', (10162, 10167), True, 'import matplotlib.pyplot as plt\n'), ((10173, 10192), 'matplotlib.pyplot.plot', 'plt.plot', (['output[0]'], {}), '(output[0])\n', (10181, 10192), True, 'import matplotlib.pyplot as plt\n'), ((10198, 10223), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""filter.png"""'], {}), "('filter.png')\n", (10209, 10223), True, 'import matplotlib.pyplot as plt\n'), ((906, 922), 'numpy.mean', 'np.mean', (['x_watts'], {}), '(x_watts)\n', (913, 922), True, 'import numpy as np\n'), ((2034, 2057), 'numpy.flip', 'np.flip', (['signal'], {'axis': '(1)'}), '(signal, axis=1)\n', (2041, 2057), True, 'import numpy as np\n'), ((2486, 2513), 'numpy.random.shuffle', 'np.random.shuffle', (['sequence'], {}), '(sequence)\n', (2503, 2513), True, 'import numpy as np\n'), ((2836, 2875), 'numpy.concatenate', 'np.concatenate', (['permuted_signal'], {'axis': '(0)'}), '(permuted_signal, axis=0)\n', (2850, 2875), True, 'import numpy as np\n'), ((2903, 2956), 'numpy.concatenate', 'np.concatenate', (['(permuted_signal, tail[:, 0])'], {'axis': '(0)'}), '((permuted_signal, tail[:, 0]), axis=0)\n', (2917, 2956), True, 'import numpy as np\n'), ((3559, 3584), 'random.randint', 'random.randint', (['(0)', 'pieces'], {}), '(0, pieces)\n', (3573, 3584), False, 'import random\n'), ((4256, 4280), 'numpy.hstack', 'np.hstack', (['cutout_signal'], {}), '(cutout_signal)\n', (4265, 4280), True, 'import numpy as np\n'), ((4306, 4357), 'numpy.concatenate', 'np.concatenate', (['(cutout_signal, tail[:, 0])'], {'axis': '(0)'}), '((cutout_signal, tail[:, 0]), axis=0)\n', (4320, 4357), True, 'import numpy as np\n'), ((4385, 4453), 'cv2.resize', 'cv2.resize', (['cutout_signal', '(1, 3072)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(cutout_signal, (1, 3072), interpolation=cv2.INTER_LINEAR)\n', (4395, 4453), False, 'import cv2\n'), ((5079, 5104), 'random.randint', 'random.randint', (['(1)', 'pieces'], {}), '(1, pieces)\n', (5093, 5104), False, 'import random\n'), ((5508, 5533), 'numpy.asarray', 'np.asarray', (['cutout_signal'], {}), '(cutout_signal)\n', (5518, 5533), True, 'import numpy as np\n'), ((5557, 5580), 'numpy.asarray', 'np.asarray', (['ones_pieces'], {}), '(ones_pieces)\n', (5567, 5580), True, 'import numpy as np\n'), ((5758, 5782), 'numpy.hstack', 'np.hstack', (['cutout_signal'], {}), '(cutout_signal)\n', (5767, 5782), True, 'import numpy as np\n'), ((5808, 5859), 'numpy.concatenate', 'np.concatenate', (['(cutout_signal, tail[:, 0])'], {'axis': '(0)'}), '((cutout_signal, tail[:, 0]), axis=0)\n', (5822, 5859), True, 'import numpy as np\n'), ((6142, 6183), 'random.randint', 'random.randint', (['(0)', '(signal.shape[0] - size)'], {}), '(0, signal.shape[0] - size)\n', (6156, 6183), False, 'import random\n'), ((6295, 6361), 'cv2.resize', 'cv2.resize', (['crop_signal', '(1, 3072)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(crop_signal, (1, 3072), interpolation=cv2.INTER_LINEAR)\n', (6305, 6361), False, 'import cv2\n'), ((6703, 6737), 'numpy.zeros', 'np.zeros', (['(x.shape[0], x.shape[1])'], {}), '((x.shape[0], x.shape[1]))\n', (6711, 6737), True, 'import numpy as np\n'), ((6830, 6878), 'scipy.signal.butter', 'signal.butter', (['order', '[w1, w2]'], {'btype': '"""bandpass"""'}), "(order, [w1, w2], btype='bandpass')\n", (6843, 6878), False, 'from scipy import signal\n'), ((6917, 6949), 'scipy.signal.filtfilt', 'signal.filtfilt', (['b', 'a', 'x'], {'axis': '(1)'}), '(b, a, x, axis=1)\n', (6932, 6949), False, 'from scipy import signal\n'), ((7083, 7117), 'numpy.zeros', 'np.zeros', (['(x.shape[0], x.shape[1])'], {}), '((x.shape[0], x.shape[1]))\n', (7091, 7117), True, 'import numpy as np\n'), ((7207, 7248), 'scipy.signal.butter', 'signal.butter', (['order', 'w1'], {'btype': '"""lowpass"""'}), "(order, w1, btype='lowpass')\n", (7220, 7248), False, 'from scipy import signal\n'), ((7287, 7319), 'scipy.signal.filtfilt', 'signal.filtfilt', (['b', 'a', 'x'], {'axis': '(1)'}), '(b, a, x, axis=1)\n', (7302, 7319), False, 'from scipy import signal\n'), ((7454, 7488), 'numpy.zeros', 'np.zeros', (['(x.shape[0], x.shape[1])'], {}), '((x.shape[0], x.shape[1]))\n', (7462, 7488), True, 'import numpy as np\n'), ((7578, 7620), 'scipy.signal.butter', 'signal.butter', (['order', 'w1'], {'btype': '"""highpass"""'}), "(order, w1, btype='highpass')\n", (7591, 7620), False, 'from scipy import signal\n'), ((7659, 7691), 'scipy.signal.filtfilt', 'signal.filtfilt', (['b', 'a', 'x'], {'axis': '(1)'}), '(b, a, x, axis=1)\n', (7674, 7691), False, 'from scipy import signal\n'), ((9559, 9625), 'cv2.resize', 'cv2.resize', (['time_warped', '(1, 3072)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(time_warped, (1, 3072), interpolation=cv2.INTER_LINEAR)\n', (9569, 9625), False, 'import cv2\n'), ((950, 973), 'numpy.log10', 'np.log10', (['sig_avg_watts'], {}), '(sig_avg_watts)\n', (958, 973), True, 'import numpy as np\n'), ((1195, 1219), 'numpy.sqrt', 'np.sqrt', (['noise_avg_watts'], {}), '(noise_avg_watts)\n', (1202, 1219), True, 'import numpy as np\n'), ((1619, 1668), 'numpy.random.uniform', 'np.random.uniform', (['factor_list[0]', 'factor_list[1]'], {}), '(factor_list[0], factor_list[1])\n', (1636, 1668), True, 'import numpy as np\n'), ((2771, 2798), 'numpy.asarray', 'np.asarray', (['permuted_signal'], {}), '(permuted_signal)\n', (2781, 2798), True, 'import numpy as np\n'), ((4193, 4218), 'numpy.asarray', 'np.asarray', (['cutout_signal'], {}), '(cutout_signal)\n', (4203, 4218), True, 'import numpy as np\n'), ((1701, 1719), 'numpy.exp', 'np.exp', (['(-signal[0])'], {}), '(-signal[0])\n', (1707, 1719), True, 'import numpy as np\n'), ((6564, 6577), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (6571, 6577), True, 'import numpy as np\n'), ((8081, 8097), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (8089, 8097), True, 'import numpy as np\n'), ((8794, 8868), 'cv2.resize', 'cv2.resize', (['orig_signal', '(1, output_shape)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(orig_signal, (1, output_shape), interpolation=cv2.INTER_LINEAR)\n', (8804, 8868), False, 'import cv2\n'), ((357, 373), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (365, 373), True, 'import numpy as np\n'), ((2401, 2417), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (2409, 2417), True, 'import numpy as np\n'), ((3462, 3478), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (3470, 3478), True, 'import numpy as np\n'), ((4800, 4816), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (4808, 4816), True, 'import numpy as np\n'), ((4820, 4836), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (4828, 4836), True, 'import numpy as np\n'), ((5026, 5042), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (5034, 5042), True, 'import numpy as np\n'), ((8617, 8638), 'numpy.shape', 'np.shape', (['orig_signal'], {}), '(orig_signal)\n', (8625, 8638), True, 'import numpy as np\n'), ((9053, 9089), 'numpy.vstack', 'np.vstack', (['(time_warped, new_signal)'], {}), '((time_warped, new_signal))\n', (9062, 9089), True, 'import numpy as np\n'), ((9240, 9314), 'cv2.resize', 'cv2.resize', (['orig_signal', '(1, output_shape)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(orig_signal, (1, output_shape), interpolation=cv2.INTER_LINEAR)\n', (9250, 9314), False, 'import cv2\n'), ((9499, 9535), 'numpy.vstack', 'np.vstack', (['(time_warped, new_signal)'], {}), '((time_warped, new_signal))\n', (9508, 9535), True, 'import numpy as np\n'), ((2702, 2718), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (2710, 2718), True, 'import numpy as np\n'), ((4124, 4140), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (4132, 4140), True, 'import numpy as np\n'), ((5439, 5455), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (5447, 5455), True, 'import numpy as np\n'), ((8457, 8495), 'numpy.floor', 'np.floor', (['(segment_time * sampling_freq)'], {}), '(segment_time * sampling_freq)\n', (8465, 8495), True, 'import numpy as np\n'), ((8529, 8567), 'numpy.floor', 'np.floor', (['(segment_time * sampling_freq)'], {}), '(segment_time * sampling_freq)\n', (8537, 8567), True, 'import numpy as np\n'), ((2302, 2318), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (2310, 2318), True, 'import numpy as np\n'), ((3361, 3377), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (3369, 3377), True, 'import numpy as np\n'), ((4925, 4941), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (4933, 4941), True, 'import numpy as np\n'), ((8720, 8741), 'numpy.shape', 'np.shape', (['orig_signal'], {}), '(orig_signal)\n', (8728, 8741), True, 'import numpy as np\n'), ((2325, 2341), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (2333, 2341), True, 'import numpy as np\n'), ((3384, 3400), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (3392, 3400), True, 'import numpy as np\n'), ((4948, 4964), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (4956, 4964), True, 'import numpy as np\n'), ((9166, 9187), 'numpy.shape', 'np.shape', (['orig_signal'], {}), '(orig_signal)\n', (9174, 9187), True, 'import numpy as np\n'), ((2563, 2579), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (2571, 2579), True, 'import numpy as np\n'), ((3985, 4001), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (3993, 4001), True, 'import numpy as np\n'), ((5150, 5166), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (5158, 5166), True, 'import numpy as np\n'), ((5304, 5320), 'numpy.shape', 'np.shape', (['signal'], {}), '(signal)\n', (5312, 5320), True, 'import numpy as np\n')]
import numpy from obspy import Stream, UTCDateTime from obspy.clients.neic.client import Client from geomagio import TimeseriesUtility from geomagio.edge import SNCL class MockMiniSeedClient(Client): """replaces default obspy miniseed client's get_waveforms method to return trace of ones Note: includes 'return_empty' parameter to simulate situations where no data is received """ def __init__(self, return_empty: bool = False): self.return_empty = return_empty def get_waveforms( self, network: str, station: str, location: str, channel: str, starttime: UTCDateTime, endtime: UTCDateTime, ): if self.return_empty: return Stream() sncl = SNCL( station=station, network=network, channel=channel, location=location, ) trace = TimeseriesUtility.create_empty_trace( starttime=starttime, endtime=endtime, observatory=station, channel=channel, type=sncl.data_type, interval=sncl.interval, network=network, station=station, location=location, ) trace.data = numpy.ones(trace.stats.npts) return Stream([trace]) class MisalignedMiniSeedClient(MockMiniSeedClient): """mock client that adds an offset value to endtime""" def __init__(self, return_empty: bool = False, increment: int = 1): super().__init__(return_empty=return_empty) self.increment = increment self.offset = 0 def get_waveforms( self, network: str, station: str, location: str, channel: str, starttime: UTCDateTime, endtime: UTCDateTime, ): endtime = endtime + self.offset self.offset = self.offset + self.increment return super().get_waveforms( network, station, location, channel, starttime, endtime )
[ "geomagio.TimeseriesUtility.create_empty_trace", "geomagio.edge.SNCL", "numpy.ones", "obspy.Stream" ]
[((761, 835), 'geomagio.edge.SNCL', 'SNCL', ([], {'station': 'station', 'network': 'network', 'channel': 'channel', 'location': 'location'}), '(station=station, network=network, channel=channel, location=location)\n', (765, 835), False, 'from geomagio.edge import SNCL\n'), ((911, 1130), 'geomagio.TimeseriesUtility.create_empty_trace', 'TimeseriesUtility.create_empty_trace', ([], {'starttime': 'starttime', 'endtime': 'endtime', 'observatory': 'station', 'channel': 'channel', 'type': 'sncl.data_type', 'interval': 'sncl.interval', 'network': 'network', 'station': 'station', 'location': 'location'}), '(starttime=starttime, endtime=endtime,\n observatory=station, channel=channel, type=sncl.data_type, interval=\n sncl.interval, network=network, station=station, location=location)\n', (947, 1130), False, 'from geomagio import TimeseriesUtility\n'), ((1262, 1290), 'numpy.ones', 'numpy.ones', (['trace.stats.npts'], {}), '(trace.stats.npts)\n', (1272, 1290), False, 'import numpy\n'), ((1306, 1321), 'obspy.Stream', 'Stream', (['[trace]'], {}), '([trace])\n', (1312, 1321), False, 'from obspy import Stream, UTCDateTime\n'), ((737, 745), 'obspy.Stream', 'Stream', ([], {}), '()\n', (743, 745), False, 'from obspy import Stream, UTCDateTime\n')]
import numpy as np from yaglm.metrics.base import Scorer from yaglm.autoassign import autoassign from yaglm.config.penalty import Lasso, ElasticNet from yaglm.utils import count_support from yaglm.extmath import log_binom class InfoCriteria(Scorer): """ Computes information criteria for GLM model selection. Note this returns the negative of the information criterion such that larger values mean indicate a better fit. Parameters ---------- crit: str Which information criteria to use. Must be one of ['aic', 'bic', 'ebic']. gamma: float, str The gamma argument to ebic() zero_tol: float, str The zero tolerance for support counting. See yaglm.utils.count_support() """ @autoassign def __init__(self, crit='ebic', gamma='default', zero_tol=1e-6): pass @property def name(self): return self.crit # TODO: currently ignores sample_weight def __call__(self, estimator, X, y, sample_weight=None): """ Returns the negative information criteria. Parameters ---------- estimator: Estimator The fit estimator to score. X: array-like, shape (n_samples, n_features) The covariate data to used for scoring. y: array-like, shape (n_samples, ) or (n_samples, n_responses) The response data to used for scoring. sample_weight: None, array-like (n_samples, ) (Optional) Sample weight to use for scoring. Output ------ scores: float The negative information criteria score so that larger values indicate better model fit. """ # formatting if not isinstance(estimator.fit_penalty_, (Lasso, ElasticNet)): raise NotImplementedError("Information criteria is currently only" " supported for Lasso and Elastic Net.") # compute data log-likelihood log_lik = estimator.sample_log_liks(X=X, y=y).sum() n_samples = X.shape[0] if self.crit in ['aic', 'bic']: dof = estimator.inferencer_.dof_ if dof is None: raise NotImplementedError("The estimator does not currently" "support estimating the degrees of" " freedom.") if self.crit == 'aic': return -aic(log_lik=log_lik, n_samples=n_samples, dof=dof) elif self.crit == 'bic': return -bic(log_lik=log_lik, n_samples=n_samples, dof=dof) elif self.crit == 'ebic': n_support = count_support(estimator.coef_, zero_tol=self.zero_tol) n_features = estimator.inferencer_.X_shape_[1] return -ebic(log_lik=log_lik, n_samples=n_samples, n_features=n_features, n_support=n_support, gamma=self.gamma, fit_intercept=estimator.fit_intercept) else: raise NotImplementedError("crit must be on of " "['aic', 'bic', 'ebic'], " " not {}".format(self.crit)) def bic(log_lik, n_samples, dof): """ Calculates the Bayesian Information Criterion. Parameters ---------- log_lik: float The observed data log-likelihood. n_samples: int Number of samples. dof: int Number of degrees of freedom. Output ------ aic: float """ return - 2 * log_lik + np.log(n_samples) * dof def aic(log_lik, n_samples, dof): """ Calculates the Akaike Information Criterion. Parameters ---------- log_lik: float The observed data log-likelihood. n_samples: int Number of samples. dof: int Number of degrees of freedom. Output ------ bic: float """ return - 2 * log_lik + 2 * dof # TODO: how to generalize this for more general DoF estimates. Both for the formula and the default gamma. def ebic(log_lik, n_samples, n_features, n_support, gamma='default', fit_intercept=True): """ Calculates the Extended Bayesian Information Criterion defined as -2 log(Lik) + n_support * log(n_samples) + 2 * gamma log(|model_space|) where |model_space| = (n_features choose n_support). Parameters ---------- log_lik: float The observed data log-likelihood. n_samples: int Number of samples. n_features: int Number of features. n_support: int Number of non-zero coefficient elements. gamma: str or float If a number, must be between 0 and 1 inclusive. If gamma='default' then we use gamma = 1 - 0.5 * log(n_samples) / log(n_features) as suggested in (Chen and Chen, 2008). fit_intercept: bool Whether or not an intercept was included in the model. Output ------ ebic: float References ---------- <NAME>. and <NAME>., 2008. Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), pp.759-771. """ # agument n_features if there was an intercept if fit_intercept: n_features = n_features + 1 n_support = n_support + 1 # maybe compute default if gamma == 'default': # default formula from Section 5 of (Chen and Chen, 2008) gamma = 1 - 0.5 * (np.log(n_samples) / np.log(n_features)) gamma = np.clip(gamma, a_min=0, a_max=1) # check gamma assert gamma >= 0 and gamma <= 1, "Gamma should be in [0, 1]" # log of model space log (n_features choose n_support) log_model_size = log_binom(n=n_features, k=n_support) return bic(log_lik=log_lik, n_samples=n_samples, dof=n_support) + \ 2 * gamma * log_model_size
[ "yaglm.utils.count_support", "numpy.log", "yaglm.extmath.log_binom", "numpy.clip" ]
[((5733, 5769), 'yaglm.extmath.log_binom', 'log_binom', ([], {'n': 'n_features', 'k': 'n_support'}), '(n=n_features, k=n_support)\n', (5742, 5769), False, 'from yaglm.extmath import log_binom\n'), ((5534, 5566), 'numpy.clip', 'np.clip', (['gamma'], {'a_min': '(0)', 'a_max': '(1)'}), '(gamma, a_min=0, a_max=1)\n', (5541, 5566), True, 'import numpy as np\n'), ((3604, 3621), 'numpy.log', 'np.log', (['n_samples'], {}), '(n_samples)\n', (3610, 3621), True, 'import numpy as np\n'), ((2659, 2713), 'yaglm.utils.count_support', 'count_support', (['estimator.coef_'], {'zero_tol': 'self.zero_tol'}), '(estimator.coef_, zero_tol=self.zero_tol)\n', (2672, 2713), False, 'from yaglm.utils import count_support\n'), ((5478, 5495), 'numpy.log', 'np.log', (['n_samples'], {}), '(n_samples)\n', (5484, 5495), True, 'import numpy as np\n'), ((5498, 5516), 'numpy.log', 'np.log', (['n_features'], {}), '(n_features)\n', (5504, 5516), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np """ Input: Q_tab : Tabulr Q (numpy matrix |S| by |A|) env : an environment object (e.g. env = Maze()) isMaze : fixed to True arrow : True if you want to plot arrows.s """ def value_plot(Q_tab, env, isMaze = True, arrow = True): direction={0:(0,-0.4),1:(0,0.4),2:(-0.4,0),3:(0.4,0)} #(x,y) cooridnate V = np.max(Q_tab,axis=1) best_action = np.argmax(Q_tab,axis=1) if isMaze: idx2cell = env.idx2cell for i in xrange(8): f,ax = plt.subplots() y_mat = np.zeros(env.dim) for j in xrange(len(idx2cell)): pos = idx2cell[j] y_mat[pos[0], pos[1]] = V[8*j+i] if arrow: a = best_action[8*j+i] ax.arrow(pos[1], pos[0], direction[a][0], direction[a][1], head_width=0.05, head_length=0.1, fc='r', ec='r') y_mat[env.goal_pos] = max(V)+0.1 ax.imshow(y_mat,cmap='gray') else: n = int(np.sqrt(len(V))) tab = np.zeros((n,n)) for r in xrange(n): for c in xrange(n): if not(r==(n-1)and c==(n-1)): tab[r,c] = V[n*c+r] if arrow: d = direction[best_action[n*c+r]] plt.arrow(c,r,d[0],d[1], head_width=0.05, head_length=0.1, fc='r', ec='r') tab[env.goal_pos] = max(V[:-1])+0.1 plt.imshow(tab,cmap='gray') plt.show()
[ "matplotlib.pyplot.show", "numpy.argmax", "matplotlib.pyplot.imshow", "numpy.zeros", "numpy.max", "matplotlib.pyplot.arrow", "matplotlib.pyplot.subplots" ]
[((379, 400), 'numpy.max', 'np.max', (['Q_tab'], {'axis': '(1)'}), '(Q_tab, axis=1)\n', (385, 400), True, 'import numpy as np\n'), ((418, 442), 'numpy.argmax', 'np.argmax', (['Q_tab'], {'axis': '(1)'}), '(Q_tab, axis=1)\n', (427, 442), True, 'import numpy as np\n'), ((1516, 1526), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1524, 1526), True, 'import matplotlib.pyplot as plt\n'), ((1082, 1098), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (1090, 1098), True, 'import numpy as np\n'), ((1483, 1511), 'matplotlib.pyplot.imshow', 'plt.imshow', (['tab'], {'cmap': '"""gray"""'}), "(tab, cmap='gray')\n", (1493, 1511), True, 'import matplotlib.pyplot as plt\n'), ((536, 550), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (548, 550), True, 'import matplotlib.pyplot as plt\n'), ((571, 588), 'numpy.zeros', 'np.zeros', (['env.dim'], {}), '(env.dim)\n', (579, 588), True, 'import numpy as np\n'), ((1356, 1433), 'matplotlib.pyplot.arrow', 'plt.arrow', (['c', 'r', 'd[0]', 'd[1]'], {'head_width': '(0.05)', 'head_length': '(0.1)', 'fc': '"""r"""', 'ec': '"""r"""'}), "(c, r, d[0], d[1], head_width=0.05, head_length=0.1, fc='r', ec='r')\n", (1365, 1433), True, 'import matplotlib.pyplot as plt\n')]
#!/usr/bin/env python3 import numpy as np import pickle import sklearn.metrics import sklearn.preprocessing import sklearn.feature_selection import sklearn.svm import utils def main(): metadata = utils.get_metadata() settings = utils.get_settings('probablygood.gavin.json') settings['R_SEED'] = None # settings['SUBJECTS'] = ['Patient_2'] scaler = sklearn.preprocessing.StandardScaler() thresh = sklearn.feature_selection.VarianceThreshold() # selector = sklearn.feature_selection.SelectKBest() classifier = sklearn.svm.SVC(probability=True) pipe = sklearn.pipeline.Pipeline([('scl', scaler), ('thr', thresh), # ('sel', selector), ('cls', classifier)]) output = {} data = utils.get_data(settings) da = utils.DataAssembler(settings, data, metadata) global_results = {} for subject in list(settings['SUBJECTS']) + ['global']: global_results[subject] = {} for i in range(10): print("iteration {0}".format(i)) for subject in settings['SUBJECTS']: print(subject) X, y = da.build_training(subject) # cv = utils.Sequence_CV(da.training_segments, metadata) train, test, train_results, test_results = fit_and_return_parts_and_results( da, metadata, pipe, X, y) output.update({subject: {'train': train, 'test': test, 'train_results': train_results, 'test_results': test_results}}) # with open('raw_cv_data.pickle', 'wb') as fh: # pickle.dump(output, fh) summary_stats = mean_var_calc(output) for subject in settings['SUBJECTS']: for t in summary_stats[subject]: try: global_results[subject][t] += [summary_stats[subject][t]] except KeyError: global_results[subject][t] = [summary_stats[subject][t]] print(global_results) for subject in settings['SUBJECTS']: for t in global_results[subject]: meanscore = np.mean(global_results[subject][t]) varscore = np.var(global_results[subject][t]) print("For {0} mean {1} was " "{2} with sigma {3}".format(subject, t, meanscore, varscore)) with open('summary_stats.pickle', 'wb') as fh: pickle.dump(global_results, fh) def fit_and_return_parts_and_results(da, metadata, pipe, X, y): ''' function to fit a CV and return a list of parts and results ''' train_results = [] test_results = [] train_partition = [] test_partition = [] cv = utils.Sequence_CV(da.training_segments, metadata) for train, test in cv: weight = len(y[train]) / sum(y[train]) weights = [weight if i == 1 else 1 for i in y[train]] pipe.fit(X[train], y[train], cls__sample_weight=weights) ptest = pipe.predict_proba(X[test]) ptrain = pipe.predict_proba(X[train]) # train_score = sklearn.metrics.roc_auc_score(y[train], p_train[:,1]) # test_score = sklearn.metrics.roc_auc_score(y[test], p_test[:,1]) # store subject predictions and true labels train_results.append(np.hstack([y[train][np.newaxis].T, ptrain[:, 1][np.newaxis].T])) test_results.append(np.hstack([y[test][np.newaxis].T, ptest[:, 1][np.newaxis].T])) return train_partition, test_partition, train_results, test_results def mean_var_calc(output): summary_stats = {} global_train = [] global_test = [] for subject in output.keys(): train_results = np.vstack(output[subject]['train_results']) trainscore = sklearn.metrics.roc_auc_score(train_results[:, 0], train_results[:, 1]) global_train.append(train_results) test_results = np.vstack(output[subject]['test_results']) testscore = sklearn.metrics.roc_auc_score(test_results[:, 0], test_results[:, 1]) global_test.append(test_results) # mean = np.mean(output[subject]['results']) # var = np.var(output[subject]['results']) summary_stats.update({subject: {'trainscore': trainscore, 'testscore': testscore}}) global_train = np.vstack(global_train[:]) globaltrainscore = sklearn.metrics.roc_auc_score(global_train[:, 0], global_train[:, 1]) global_test = np.vstack(global_test[:]) globaltestscore = sklearn.metrics.roc_auc_score(global_test[:, 0], global_test[:, 1]) summary_stats['global'] = {'trainscore': globaltrainscore, 'testscore': globaltestscore} return summary_stats if __name__ == '__main__': main()
[ "utils.get_settings", "pickle.dump", "utils.DataAssembler", "utils.get_metadata", "utils.Sequence_CV", "numpy.hstack", "numpy.mean", "utils.get_data", "numpy.var", "numpy.vstack" ]
[((204, 224), 'utils.get_metadata', 'utils.get_metadata', ([], {}), '()\n', (222, 224), False, 'import utils\n'), ((240, 285), 'utils.get_settings', 'utils.get_settings', (['"""probablygood.gavin.json"""'], {}), "('probablygood.gavin.json')\n", (258, 285), False, 'import utils\n'), ((869, 893), 'utils.get_data', 'utils.get_data', (['settings'], {}), '(settings)\n', (883, 893), False, 'import utils\n'), ((903, 948), 'utils.DataAssembler', 'utils.DataAssembler', (['settings', 'data', 'metadata'], {}), '(settings, data, metadata)\n', (922, 948), False, 'import utils\n'), ((3104, 3153), 'utils.Sequence_CV', 'utils.Sequence_CV', (['da.training_segments', 'metadata'], {}), '(da.training_segments, metadata)\n', (3121, 3153), False, 'import utils\n'), ((4878, 4904), 'numpy.vstack', 'np.vstack', (['global_train[:]'], {}), '(global_train[:])\n', (4887, 4904), True, 'import numpy as np\n'), ((5069, 5094), 'numpy.vstack', 'np.vstack', (['global_test[:]'], {}), '(global_test[:])\n', (5078, 5094), True, 'import numpy as np\n'), ((2817, 2848), 'pickle.dump', 'pickle.dump', (['global_results', 'fh'], {}), '(global_results, fh)\n', (2828, 2848), False, 'import pickle\n'), ((4144, 4187), 'numpy.vstack', 'np.vstack', (["output[subject]['train_results']"], {}), "(output[subject]['train_results'])\n", (4153, 4187), True, 'import numpy as np\n'), ((4399, 4441), 'numpy.vstack', 'np.vstack', (["output[subject]['test_results']"], {}), "(output[subject]['test_results'])\n", (4408, 4441), True, 'import numpy as np\n'), ((2541, 2576), 'numpy.mean', 'np.mean', (['global_results[subject][t]'], {}), '(global_results[subject][t])\n', (2548, 2576), True, 'import numpy as np\n'), ((2600, 2634), 'numpy.var', 'np.var', (['global_results[subject][t]'], {}), '(global_results[subject][t])\n', (2606, 2634), True, 'import numpy as np\n'), ((3682, 3745), 'numpy.hstack', 'np.hstack', (['[y[train][np.newaxis].T, ptrain[:, 1][np.newaxis].T]'], {}), '([y[train][np.newaxis].T, ptrain[:, 1][np.newaxis].T])\n', (3691, 3745), True, 'import numpy as np\n'), ((3815, 3876), 'numpy.hstack', 'np.hstack', (['[y[test][np.newaxis].T, ptest[:, 1][np.newaxis].T]'], {}), '([y[test][np.newaxis].T, ptest[:, 1][np.newaxis].T])\n', (3824, 3876), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2019 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Unit tests for the nowcasting.OpticalFlow plugin """ import unittest from datetime import datetime, timedelta import iris import numpy as np from iris.coords import DimCoord from iris.exceptions import InvalidCubeError from iris.tests import IrisTest from improver.nowcasting.optical_flow import OpticalFlow from improver.tests.set_up_test_cubes import set_up_variable_cube from improver.utilities.warnings_handler import ManageWarnings class Test__init__(IrisTest): """Test OpticalFlow class initialisation""" def test_basic(self): """Test initialisation and types""" plugin = OpticalFlow() self.assertIsInstance(plugin.data_smoothing_radius_km, float) self.assertIsInstance(plugin.data_smoothing_method, str) self.assertIsInstance(plugin.iterations, int) self.assertIsInstance(plugin.point_weight, float) self.assertIsNone(plugin.data1) self.assertIsNone(plugin.data2) self.assertIsNone(plugin.shape) class Test__repr__(IrisTest): """Test string representation""" def test_basic(self): """Test string representation""" expected_string = ('<OpticalFlow: data_smoothing_radius_km: 14.0, ' 'data_smoothing_method: box, iterations: 100, ' 'point_weight: 0.1, metadata_dict: {}>') result = str(OpticalFlow()) self.assertEqual(result, expected_string) class Test_makekernel(IrisTest): """Test makekernel function""" def test_basic(self): """Test for correct output type""" result = OpticalFlow().makekernel(2) self.assertIsInstance(result, np.ndarray) def test_values(self): """Test output values""" expected_output = np.array([[0., 0., 0., 0., 0.], [0., 0.0625, 0.1250, 0.0625, 0.], [0., 0.1250, 0.2500, 0.1250, 0.], [0., 0.0625, 0.1250, 0.0625, 0.], [0., 0., 0., 0., 0.]]) result = OpticalFlow().makekernel(2) self.assertArrayAlmostEqual(result, expected_output) class OpticalFlowUtilityTest(IrisTest): """Class with shared plugin definition for small utility tests""" def setUp(self): """Set up dummy plugin and populate data members""" self.plugin = OpticalFlow() self.plugin.data1 = np.array([[1., 2., 3., 4., 5.], [0., 1., 2., 3., 4.], [0., 0., 1., 2., 3.]]) self.plugin.data2 = np.array([[0., 1., 2., 3., 4.], [0., 0., 1., 2., 3.], [0., 0., 0., 1., 2.]]) self.plugin.shape = self.plugin.data1.shape class Test_interp_to_midpoint(OpticalFlowUtilityTest): """Test interp_to_midpoint averaging function""" def test_basic(self): """Test result is of correct type and shape""" result = self.plugin.interp_to_midpoint(self.plugin.data1) self.assertIsInstance(result, np.ndarray) self.assertSequenceEqual(result.shape, (2, 4)) def test_values(self): """Test output values""" expected_output = np.array([[1., 2., 3., 4.], [0.25, 1., 2., 3.]]) result = self.plugin.interp_to_midpoint(self.plugin.data1) self.assertArrayAlmostEqual(result, expected_output) def test_first_axis(self): """Test averaging over first axis""" expected_output = np.array([[0.5, 1.5, 2.5, 3.5, 4.5], [0.0, 0.5, 1.5, 2.5, 3.5]]) result = self.plugin.interp_to_midpoint(self.plugin.data1, axis=0) self.assertArrayAlmostEqual(result, expected_output) def test_second_axis(self): """Test averaging over second axis""" expected_output = np.array([[1.5, 2.5, 3.5, 4.5], [0.5, 1.5, 2.5, 3.5], [0.0, 0.5, 1.5, 2.5]]) result = self.plugin.interp_to_midpoint(self.plugin.data1, axis=1) self.assertArrayAlmostEqual(result, expected_output) def test_array_too_small(self): """Test returns empty array if averaging over an axis of length 1""" small_array = self.plugin.data1[0, :].reshape((1, 5)) result = self.plugin.interp_to_midpoint(small_array) self.assertEqual(result.size, 0.) def test_small_array_single_axis(self): """Test sensible output if averaging over one valid axis""" expected_output = np.array([[1.5, 2.5, 3.5, 4.5]]) small_array = self.plugin.data1[0, :].reshape((1, 5)) result = self.plugin.interp_to_midpoint(small_array, axis=1) self.assertArrayAlmostEqual(result, expected_output) class Test__partial_derivative_spatial(OpticalFlowUtilityTest): """Test _partial_derivative_spatial function""" def test_basic(self): """Test for correct output type and shape""" result = self.plugin._partial_derivative_spatial(axis=0) self.assertIsInstance(result, np.ndarray) self.assertSequenceEqual(result.shape, self.plugin.shape) def test_first_axis(self): """Test output values for axis=0""" expected_output = np.array([[-0.1875, -0.4375, -0.5, -0.5, -0.25], [-0.2500, -0.6875, -0.9375, -1.0, -0.50], [-0.0625, -0.2500, -0.4375, -0.5, -0.25]]) result = self.plugin._partial_derivative_spatial(axis=0) self.assertArrayAlmostEqual(result, expected_output) def test_second_axis(self): """Test output values for axis=1""" expected_output = np.array([[0.1875, 0.4375, 0.5000, 0.5, 0.25], [0.2500, 0.6875, 0.9375, 1.0, 0.50], [0.0625, 0.2500, 0.4375, 0.5, 0.25]]) result = self.plugin._partial_derivative_spatial(axis=1) self.assertArrayAlmostEqual(result, expected_output) class Test__partial_derivative_temporal(OpticalFlowUtilityTest): """Test _partial_derivative_temporal function""" def test_basic(self): """Test for correct output type and shape""" result = self.plugin._partial_derivative_temporal() self.assertIsInstance(result, np.ndarray) self.assertSequenceEqual(result.shape, self.plugin.shape) def test_values(self): """Test output values. Note this is NOT the same function as _partial_derivative_spatial(axis=0), the output arrays are the same as a result of the choice of data.""" expected_output = np.array([[-0.1875, -0.4375, -0.5, -0.5, -0.25], [-0.2500, -0.6875, -0.9375, -1.0, -0.50], [-0.0625, -0.2500, -0.4375, -0.5, -0.25]]) result = self.plugin._partial_derivative_temporal() self.assertArrayAlmostEqual(result, expected_output) class Test__make_subboxes(OpticalFlowUtilityTest): """Test _make_subboxes function""" def test_basic(self): """Test for correct output types""" self.plugin.boxsize = 2 boxes, weights = self.plugin._make_subboxes(self.plugin.data1) self.assertIsInstance(boxes, list) self.assertIsInstance(boxes[0], np.ndarray) self.assertIsInstance(weights, np.ndarray) def test_box_list(self): """Test function carves up array as expected""" expected_boxes = \ [np.array([[1., 2.], [0., 1.]]), np.array([[3., 4.], [2., 3.]]), np.array([[5.], [4.]]), np.array([[0., 0.]]), np.array([[1., 2.]]), np.array([[3.]])] self.plugin.boxsize = 2 boxes, _ = self.plugin._make_subboxes(self.plugin.data1) for box, ebox in zip(boxes, expected_boxes): self.assertArrayAlmostEqual(box, ebox) def test_weights_values(self): """Test output weights values""" expected_weights = np.array([0.54216664, 0.95606307, 0.917915, 0., 0.46473857, 0.54216664]) self.plugin.boxsize = 2 _, weights = self.plugin._make_subboxes(self.plugin.data1) self.assertArrayAlmostEqual(weights, expected_weights) class OpticalFlowDisplacementTest(IrisTest): """Class with shared plugin definition for smoothing and regridding tests""" def setUp(self): """Define input matrices and dummy plugin""" self.umat = np.array([[1., 0., 0., 0., 0.], [1., 1., 0., 0., 0.], [2., 1., 1., 0., 0.], [3., 2., 1., 1., 0.]]) self.vmat = np.array([[3., 2., 1., 0., 0.], [2., 1., 0., 0., 0.], [1., 0., 0., 0., 0.], [0., 0., 0., 1., 0.]]) self.weights = 0.3*np.multiply(self.umat, self.vmat) self.plugin = OpticalFlow(iterations=20) self.plugin.data_smoothing_radius = 3 self.plugin.boxsize = 3 # NOTE data dimensions are NOT exact multiples of box size self.plugin.data1 = np.zeros((11, 14)) self.plugin.shape = self.plugin.data1.shape class Test__box_to_grid(OpticalFlowDisplacementTest): """Test _box_to_grid function""" def test_basic(self): """Test for correct output types""" umat = self.plugin._box_to_grid(self.umat) self.assertIsInstance(umat, np.ndarray) self.assertSequenceEqual(umat.shape, (11, 14)) def test_values(self): """Test output matrix values""" expected_umat = np.array( [[1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [2., 2., 2., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0.], [2., 2., 2., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0.], [2., 2., 2., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0.], [3., 3., 3., 2., 2., 2., 1., 1., 1., 1., 1., 1., 0., 0.], [3., 3., 3., 2., 2., 2., 1., 1., 1., 1., 1., 1., 0., 0.]]) umat = self.plugin._box_to_grid(self.umat) self.assertArrayAlmostEqual(umat, expected_umat) class Test_smooth(OpticalFlowDisplacementTest): """Test simple smooth function""" def test_basic(self): """Test for correct output types""" output = self.plugin.smooth(self.umat, 2) self.assertIsInstance(output, np.ndarray) def test_box_smooth(self): """Test smooth over square box (default)""" expected_output = np.array([[0.84, 0.60, 0.36, 0.12, 0.04], [1.20, 0.92, 0.60, 0.28, 0.12], [1.56, 1.24, 0.84, 0.44, 0.20], [1.92, 1.56, 1.08, 0.60, 0.28]]) output = self.plugin.smooth(self.umat, 2) self.assertArrayAlmostEqual(output, expected_output) def test_kernel_smooth(self): """Test smooth over circular kernel""" expected_output = np.array([[0.8125, 0.3750, 0.0625, 0., 0.], [1.1250, 0.7500, 0.3125, 0.0625, 0.], [1.8125, 1.3125, 0.7500, 0.3125, 0.0625], [2.5000, 1.8125, 1.1250, 0.6250, 0.1875]]) output = self.plugin.smooth(self.umat, 2, method='kernel') self.assertArrayAlmostEqual(output, expected_output) def test_null_behaviour(self): """Test smooth with a kernel radius of 1 has no effect""" output = self.plugin.smooth(self.umat, 1, method='kernel') self.assertArrayAlmostEqual(output, self.umat) class Test__smart_smooth(OpticalFlowDisplacementTest): """Test _smart_smooth function""" def test_basic(self): """Test for correct output types""" umat = self.plugin._smart_smooth(self.umat, self.umat, self.weights) self.assertIsInstance(umat, np.ndarray) self.assertSequenceEqual(umat.shape, self.umat.shape) def test_values(self): """Test output matrices have expected values""" expected_umat = np.array([[1., 1., 1., 0., 0.], [1.25352113, 1.19354839, 1., 0.08333333, 0.], [1.48780488, 1.50000000, 1., 1.00000000, 1.], [2., 2., 1., 1., 1.]]) umat = self.plugin._smart_smooth(self.umat, self.umat, self.weights) self.assertArrayAlmostEqual(umat, expected_umat) class Test__smooth_advection_fields(OpticalFlowDisplacementTest): """Test smoothing of advection displacements""" def test_basic(self): """Test for correct output types""" vmat = self.plugin._smooth_advection_fields(self.vmat, self.weights) self.assertIsInstance(vmat, np.ndarray) self.assertSequenceEqual(vmat.shape, (11, 14)) def test_values(self): """Test output matrices have expected values""" first_row_v = np.array( [2.451711, 2.451711, 2.451711, 2.341303, 2.341303, 2.341303, 2.028805, 2.028805, 2.028805, 1.694845, 1.694845, 1.694845, 1.503583, 1.503583]) vmat = self.plugin._smooth_advection_fields(self.vmat, self.weights) self.assertArrayAlmostEqual(vmat[0], first_row_v) class Test_solve_for_uv(IrisTest): """Test solve_for_uv function""" def setUp(self): """Define input matrices""" self.I_xy = np.array([[2., 3.], [1., -2.]]) self.I_t = np.array([-8., 3.]) def test_basic(self): """Test for correct output types""" u, v = OpticalFlow().solve_for_uv(self.I_xy, self.I_t) self.assertIsInstance(u, float) self.assertIsInstance(v, float) def test_values(self): """Test output values""" u, v = OpticalFlow().solve_for_uv(self.I_xy, self.I_t) self.assertAlmostEqual(u, 1.) self.assertAlmostEqual(v, 2.) class Test_extreme_value_check(IrisTest): """Test extreme_value_check function""" def setUp(self): """Define some test velocity matrices""" self.umat = 0.2*np.arange(12).reshape((3, 4)) self.vmat = -0.1*np.ones((3, 4), dtype=float) self.weights = np.full((3, 4), 0.5) def test_basic(self): """Test for correct output types""" OpticalFlow().extreme_value_check(self.umat, self.vmat, self.weights) self.assertIsInstance(self.umat, np.ndarray) self.assertIsInstance(self.vmat, np.ndarray) self.assertIsInstance(self.weights, np.ndarray) def test_values(self): """Test extreme data values are infilled with zeros""" expected_umat = np.array([[0., 0.2, 0.4, 0.6], [0.8, 0., 0., 0.], [0., 0., 0., 0.]]) expected_vmat = np.array([[-0.1, -0.1, -0.1, -0.1], [-0.1, 0., 0., 0.], [0., 0., 0., 0.]]) expected_weights = np.array([[0.5, 0.5, 0.5, 0.5], [0.5, 0., 0., 0.], [0., 0., 0., 0.]]) OpticalFlow().extreme_value_check(self.umat, self.vmat, self.weights) self.assertArrayAlmostEqual(self.umat, expected_umat) self.assertArrayAlmostEqual(self.vmat, expected_vmat) self.assertArrayAlmostEqual(self.weights, expected_weights) def test_null_behaviour(self): """Test reasonable data values are preserved""" umat = 0.5*np.ones((3, 4), dtype=float) expected_umat = np.copy(umat) expected_vmat = np.copy(self.vmat) expected_weights = np.copy(self.weights) OpticalFlow().extreme_value_check(umat, self.vmat, self.weights) self.assertArrayAlmostEqual(umat, expected_umat) self.assertArrayAlmostEqual(self.vmat, expected_vmat) self.assertArrayAlmostEqual(self.weights, expected_weights) class Test_calculate_displacement_vectors(IrisTest): """Test calculation of advection displacement vectors""" def setUp(self): """Set up plugin options and input rainfall-like matrices that produce non-singular outputs. Large matrices with zeros are needed for the smoothing algorithms to behave sensibly.""" self.plugin = OpticalFlow(iterations=20) self.plugin.data_smoothing_radius = 3 self.plugin.boxsize = 3 rainfall_block = np.array([[1., 1., 1., 1., 1., 1., 1.], [1., 2., 2., 2., 2., 1., 1.], [1., 2., 3., 3., 2., 1., 1.], [1., 2., 3., 3., 2., 1., 1.], [1., 2., 2., 2., 2., 1., 1.], [1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1.]]) first_input = np.zeros((10, 10), dtype=np.float32) first_input[1:8, 2:9] = rainfall_block self.plugin.data1 = first_input self.plugin.shape = first_input.shape second_input = np.zeros((10, 10), dtype=np.float32) second_input[2:9, 1:8] = rainfall_block self.plugin.data2 = second_input self.partial_dx = self.plugin._partial_derivative_spatial(axis=1) self.partial_dy = self.plugin._partial_derivative_spatial(axis=0) self.partial_dt = self.plugin._partial_derivative_temporal() def test_basic(self): """Test outputs are of the correct type""" umat, _ = self.plugin.calculate_displacement_vectors( self.partial_dx, self.partial_dy, self.partial_dt) self.assertIsInstance(umat, np.ndarray) self.assertSequenceEqual(umat.shape, self.plugin.shape) def test_values(self): """Test output values""" umat, vmat = self.plugin.calculate_displacement_vectors( self.partial_dx, self.partial_dy, self.partial_dt) self.assertAlmostEqual(np.mean(umat), np.float32(-0.124607998)) self.assertAlmostEqual(np.mean(vmat), np.float32(0.124607998)) class Test__zero_advection_velocities_warning(IrisTest): """Test the _zero_advection_velocities_warning.""" def setUp(self): """Set up arrays of advection velocities""" self.plugin = OpticalFlow() rain = np.ones((3, 3)) self.rain_mask = np.where(rain > 0) @ManageWarnings(record=True) def test_warning_raised(self, warning_list=None): """Test that a warning is raised if an excess number of zero values are present within the input array.""" greater_than_10_percent_zeroes_array = ( np.array([[3., 5., 7.], [0., 2., 1.], [1., 1., 1.]])) warning_msg = "cells within the domain have zero advection" self.plugin._zero_advection_velocities_warning( greater_than_10_percent_zeroes_array, self.rain_mask) self.assertTrue(any(item.category == UserWarning for item in warning_list)) self.assertTrue(any(warning_msg in str(item) for item in warning_list)) @ManageWarnings(record=True) def test_no_warning_raised_if_no_zeroes(self, warning_list=None): """Test that no warning is raised if the number of zero values in the array is below the threshold used to define an excessive number of zero values.""" nonzero_array = np.array([[3., 5., 7.], [2., 2., 1.], [1., 1., 1.]]) self.plugin._zero_advection_velocities_warning(nonzero_array, self.rain_mask) self.assertTrue(len(warning_list) == 0) @ManageWarnings(record=True) def test_no_warning_raised_if_fewer_zeroes_than_threshold( self, warning_list=None): """Test that no warning is raised if the number of zero values in the array is below the threshold used to define an excessive number of zero values when at least one zero exists within the array.""" rain = np.ones((5, 5)) less_than_10_percent_zeroes_array = ( np.array([[1., 3., 5., 7., 1.], [0., 2., 1., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]])) self.plugin._zero_advection_velocities_warning( less_than_10_percent_zeroes_array, np.where(rain > 0)) self.assertTrue(len(warning_list) == 0) @ManageWarnings(record=True) def test_no_warning_raised_for_modified_threshold( self, warning_list=None): """Test that no warning is raised if the number of zero values in the array is below the threshold used to define an excessive number of zero values when the threshold is modified.""" less_than_30_percent_zeroes_array = ( np.array([[3., 5., 7.], [0., 2., 1.], [0., 1., 1.]])) self.plugin._zero_advection_velocities_warning( less_than_30_percent_zeroes_array, self.rain_mask, zero_vel_threshold=0.3) self.assertTrue(len(warning_list) == 0) @ManageWarnings(record=True) def test_no_warning_raised_outside_rain(self, warning_list=None): """Test warning ignores zeros outside the rain area mask""" rain = np.array([[0, 0, 1], [0, 1, 1], [1, 1, 1]]) wind = np.array([[0, 0, 1], [0, 1, 1], [1, 1, 1]]) self.plugin._zero_advection_velocities_warning( wind, np.where(rain > 0)) self.assertTrue(len(warning_list) == 0) class Test_process_dimensionless(IrisTest): """Test the process_dimensionless method""" def setUp(self): """Set up plugin options and input rainfall-like matrices that produce non-singular outputs. Large matrices with zeros are needed for the smoothing algorithms to behave sensibly.""" self.plugin = OpticalFlow(iterations=20) self.plugin.boxsize = 3 self.smoothing_kernel = 3 rainfall_block = np.array([[1., 1., 1., 1., 1., 1., 1.], [1., 2., 2., 2., 2., 1., 1.], [1., 2., 3., 3., 2., 1., 1.], [1., 2., 3., 3., 2., 1., 1.], [1., 2., 2., 2., 2., 1., 1.], [1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1.]]) self.first_input = np.zeros((16, 16), dtype=np.float32) self.first_input[1:8, 2:9] = rainfall_block self.second_input = np.zeros((16, 16), dtype=np.float32) self.second_input[2:9, 1:8] = rainfall_block def test_basic(self): """Test outputs are of the correct type and value""" ucomp, vcomp = self.plugin.process_dimensionless( self.first_input, self.second_input, 0, 1, self.smoothing_kernel) self.assertIsInstance(ucomp, np.ndarray) self.assertIsInstance(vcomp, np.ndarray) self.assertAlmostEqual(np.mean(ucomp), 0.97735876) self.assertAlmostEqual(np.mean(vcomp), -0.97735894) def test_axis_inversion(self): """Test inverting x and y axis indices gives the correct result""" ucomp, vcomp = self.plugin.process_dimensionless( self.first_input, self.second_input, 1, 0, self.smoothing_kernel) self.assertAlmostEqual(np.mean(ucomp), -0.97735894) self.assertAlmostEqual(np.mean(vcomp), 0.97735876) class Test_process(IrisTest): """Test the process method""" def setUp(self): """Set up plugin and input rainfall-like cubes""" self.plugin = OpticalFlow(iterations=20) self.plugin.data_smoothing_radius_km = np.float32(6.) coord_points = 2000*np.arange(16, dtype=np.float32) # in metres rainfall_block = np.array([[1., 1., 1., 1., 1., 1., 1.], [1., 2., 2., 2., 2., 1., 1.], [1., 2., 3., 3., 2., 1., 1.], [1., 2., 3., 3., 2., 1., 1.], [1., 2., 2., 2., 2., 1., 1.], [1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1.]], dtype=np.float32) data1 = np.zeros((16, 16), dtype=np.float32) data1[1:8, 2:9] = rainfall_block self.cube1 = set_up_variable_cube( data1, name="rainfall_rate", units="mm h-1", spatial_grid="equalarea", time=datetime(2018, 2, 20, 4, 0), frt=datetime(2018, 2, 20, 4, 0)) self.cube1.coord(axis='x').points = coord_points self.cube1.coord(axis='y').points = coord_points data2 = np.zeros((16, 16), dtype=np.float32) data2[2:9, 1:8] = rainfall_block self.cube2 = set_up_variable_cube( data2, name="rainfall_rate", units="mm h-1", spatial_grid="equalarea", time=datetime(2018, 2, 20, 4, 15), frt=datetime(2018, 2, 20, 4, 15)) self.cube2.coord(axis='x').points = coord_points self.cube2.coord(axis='y').points = coord_points def test_basic(self): """Test correct output types and metadata""" ucube, vcube = self.plugin.process(self.cube1, self.cube2, boxsize=3) for cube in [ucube, vcube]: self.assertIsInstance(cube, iris.cube.Cube) self.assertEqual(cube.coord("time")[0], self.cube2.coord("time")[0]) self.assertEqual(cube.units, "m s-1") self.assertIn("precipitation_advection", cube.name()) self.assertIn("velocity", cube.name()) def test_metadata(self): """Test correct output types and metadata""" metadata_dict = {"attributes": { "mosg__grid_version": "1.0.0", "mosg__model_configuration": "nc_det", "source": "Met Office Nowcast", "institution": "Met Office", "title": "Nowcast on UK 2 km Standard Grid"}} plugin = OpticalFlow(iterations=20, metadata_dict=metadata_dict) plugin.data_smoothing_radius_km = 6. ucube, vcube = plugin.process(self.cube1, self.cube2, boxsize=3) for cube in [ucube, vcube]: self.assertEqual(cube.attributes, metadata_dict["attributes"]) def test_values(self): """Test velocity values are as expected (in m/s)""" ucube, vcube = self.plugin.process(self.cube1, self.cube2, boxsize=3) self.assertAlmostEqual( np.mean(ucube.data), -2.1719084) self.assertAlmostEqual(np.mean(vcube.data), 2.1719084) def test_values_with_precip_rate_in_m_per_s(self): """Test velocity values are as expected (in m/s) when the input precipitation rates are in units of m/s rather than the expected mm/hr.""" self.cube1.convert_units('m s-1') self.cube2.convert_units('m s-1') ucube, vcube = self.plugin.process(self.cube1, self.cube2, boxsize=3) self.assertAlmostEqual( np.mean(ucube.data), -2.1719084) self.assertAlmostEqual(np.mean(vcube.data), 2.1719084) def test_values_with_masked_data(self): """Test velocity values are as expected when masked cubes are used as input to the tests. This test is to capture behaviour whereby mask fill values were being used as valid data. This resulted in far from correct velocities being calculated by the optical flow code. Notably the velocity fields did not reflect the position of precipitation in the input precipitation fields, and the returned velocities were too low. In this test masked cubes are used and comparable unmasked cubes in which there the fill values are included in the field. We expect the results to be different, with higher velocities returned for the masked cubes. """ mask = np.zeros((16, 16)) mask[:2, :] = 1 mask[:, :2] = 1 # Ensure the masked data points contain a high fill value. data1 = self.cube1.data data2 = self.cube2.data data1[:2, :] = 1.0E36 data1[:, :2] = 1.0E36 data2[:2, :] = 1.0E36 data2[:, :2] = 1.0E36 masked1 = np.ma.MaskedArray(self.cube1.data, mask=mask) masked2 = np.ma.MaskedArray(self.cube2.data, mask=mask) masked_cube1 = self.cube1.copy(data=masked1) masked_cube2 = self.cube2.copy(data=masked2) unmasked_cube1 = self.cube1.copy(data=data1) unmasked_cube2 = self.cube2.copy(data=data2) ucube_masked, vcube_masked = self.plugin.process( masked_cube1, masked_cube2, boxsize=3) ucube_unmasked, vcube_unmasked = self.plugin.process( unmasked_cube1, unmasked_cube2, boxsize=3) self.assertAlmostEqual( np.mean(ucube_masked.data), -1.4995803) self.assertAlmostEqual( np.mean(vcube_masked.data), 1.4995805) self.assertAlmostEqual( np.mean(ucube_unmasked.data), -0.2869996) self.assertAlmostEqual( np.mean(vcube_unmasked.data), 0.28699964) def test_error_for_unconvertable_units(self): """Test that an exception is raised if the input precipitation cubes have units that cannot be converted to mm/hr.""" self.cube1.units = 'm' self.cube2.units = 'm' msg = "Input data are in units that cannot be converted to mm/hr" with self.assertRaisesRegex(ValueError, msg): self.plugin.process(self.cube1, self.cube2, boxsize=3) def test_input_cubes_unchanged(self): """Test the input precipitation rate cubes are unchanged by use in the optical flow plugin. One of the cubes is converted to rates in ms-1 before use to ensure the cube remains in these units despite the default working units within optical flow being mm/hr.""" self.cube1.convert_units("m s-1") cube1_ref = self.cube1.copy() cube2_ref = self.cube2.copy() _, _ = self.plugin.process(self.cube1, self.cube2, boxsize=3) self.assertEqual(self.cube1, cube1_ref) self.assertEqual(self.cube2, cube2_ref) def test_decrease_time_interval(self): """Test that decreasing the time interval between radar frames below 15 minutes does not alter the smoothing radius. To test this the time interval is halved, which should give an answer identical to the values test above multiplied by a factor of two.""" time_unit = self.cube2.coord("time").units new_time = time_unit.num2date(self.cube2.coord("time").points[0]) new_time -= timedelta(seconds=450) self.cube2.remove_coord("time") time_coord = DimCoord(time_unit.date2num(new_time), standard_name="time", units=time_unit) self.cube2.add_aux_coord(time_coord) ucube, vcube = self.plugin.process(self.cube1, self.cube2, boxsize=3) self.assertAlmostEqual( np.mean(ucube.data), -2.1719084 * 2.) self.assertAlmostEqual(np.mean(vcube.data), 2.1719084 * 2.) def test_increase_time_interval(self): """Test that increasing the time interval between radar frames above 15 minutes leads to an increase in the data smoothing radius. In this test this will result in a smoothing radius larger than the box size, which is not allowed and will raise an exception. The updated radius value in this case is 12 km (6 grid squares), exceeding the 3 square box size.""" time_unit = self.cube2.coord("time").units new_time = time_unit.num2date(self.cube2.coord("time").points[0]) new_time += timedelta(seconds=900) self.cube2.remove_coord("time") time_coord = DimCoord(time_unit.date2num(new_time), standard_name="time", units=time_unit) self.cube2.add_aux_coord(time_coord) msg = "Box size ([0-9]+) too small" with self.assertRaisesRegex(ValueError, msg): self.plugin.process(self.cube1, self.cube2, boxsize=3) def test_error_small_kernel(self): """Test failure if data smoothing radius is too small""" self.plugin.data_smoothing_radius_km = 3. msg = "Input data smoothing radius 1 too small " with self.assertRaisesRegex(ValueError, msg): _ = self.plugin.process(self.cube1, self.cube2) def test_error_small_box(self): """Test failure if box size is smaller than data smoothing radius""" msg = "Box size 2 too small" with self.assertRaisesRegex(ValueError, msg): self.plugin.process(self.cube1, self.cube2, boxsize=2) def test_error_unmatched_coords(self): """Test failure if cubes are provided on unmatched grids""" cube2 = self.cube2.copy() for ax in ["x", "y"]: cube2.coord(axis=ax).points = 4*np.arange(16) msg = "Input cubes on unmatched grids" with self.assertRaisesRegex(InvalidCubeError, msg): _ = self.plugin.process(self.cube1, cube2) def test_error_no_time_difference(self): """Test failure if two cubes are provided with the same time""" msg = "Expected positive time difference " with self.assertRaisesRegex(InvalidCubeError, msg): _ = self.plugin.process(self.cube1, self.cube1) def test_error_negative_time_difference(self): """Test failure if cubes are provided in the wrong order""" msg = "Expected positive time difference " with self.assertRaisesRegex(InvalidCubeError, msg): _ = self.plugin.process(self.cube2, self.cube1) @ManageWarnings(record=True) def test_warning_zero_inputs(self, warning_list=None): """Test code raises a warning and sets advection velocities to zero if there is no rain in the input cubes.""" null_data = np.zeros(self.cube1.shape) cube1 = self.cube1.copy(data=null_data) cube2 = self.cube2.copy(data=null_data) ucube, vcube = self.plugin.process(cube1, cube2) warning_msg = "No non-zero data in input fields" self.assertTrue(any(item.category == UserWarning for item in warning_list)) self.assertTrue(any(warning_msg in str(item) for item in warning_list)) self.assertArrayAlmostEqual(ucube.data, null_data) self.assertArrayAlmostEqual(vcube.data, null_data) def test_error_nonmatching_inputs(self): """Test failure if cubes are of different data types""" self.cube1.rename("snowfall_rate") msg = "Input cubes contain different data types" with self.assertRaisesRegex(ValueError, msg): self.plugin.process(self.cube1, self.cube2) @ManageWarnings(record=True) def test_warning_nonprecip_inputs(self, warning_list=None): """Test code raises a warning if input cubes have non-rain variable names""" self.cube1.rename("snowfall_rate") self.cube2.rename("snowfall_rate") _, _ = self.plugin.process(self.cube1, self.cube2, boxsize=3) warning_msg = "Input data are of non-precipitation type" self.assertTrue(any(item.category == UserWarning for item in warning_list)) self.assertTrue(any(warning_msg in str(item) for item in warning_list)) if __name__ == '__main__': unittest.main()
[ "unittest.main", "numpy.full", "numpy.multiply", "numpy.copy", "numpy.float32", "improver.nowcasting.optical_flow.OpticalFlow", "numpy.zeros", "numpy.ones", "numpy.ma.MaskedArray", "datetime.datetime", "numpy.where", "numpy.array", "datetime.timedelta", "numpy.mean", "improver.utilities.warnings_handler.ManageWarnings", "numpy.arange" ]
[((20613, 20640), 'improver.utilities.warnings_handler.ManageWarnings', 'ManageWarnings', ([], {'record': '(True)'}), '(record=True)\n', (20627, 20640), False, 'from improver.utilities.warnings_handler import ManageWarnings\n'), ((21393, 21420), 'improver.utilities.warnings_handler.ManageWarnings', 'ManageWarnings', ([], {'record': '(True)'}), '(record=True)\n', (21407, 21420), False, 'from improver.utilities.warnings_handler import ManageWarnings\n'), ((22008, 22035), 'improver.utilities.warnings_handler.ManageWarnings', 'ManageWarnings', ([], {'record': '(True)'}), '(record=True)\n', (22022, 22035), False, 'from improver.utilities.warnings_handler import ManageWarnings\n'), ((22837, 22864), 'improver.utilities.warnings_handler.ManageWarnings', 'ManageWarnings', ([], {'record': '(True)'}), '(record=True)\n', (22851, 22864), False, 'from improver.utilities.warnings_handler import ManageWarnings\n'), ((23531, 23558), 'improver.utilities.warnings_handler.ManageWarnings', 'ManageWarnings', ([], {'record': '(True)'}), '(record=True)\n', (23545, 23558), False, 'from improver.utilities.warnings_handler import ManageWarnings\n'), ((36316, 36343), 'improver.utilities.warnings_handler.ManageWarnings', 'ManageWarnings', ([], {'record': '(True)'}), '(record=True)\n', (36330, 36343), False, 'from improver.utilities.warnings_handler import ManageWarnings\n'), ((37451, 37478), 'improver.utilities.warnings_handler.ManageWarnings', 'ManageWarnings', ([], {'record': '(True)'}), '(record=True)\n', (37465, 37478), False, 'from improver.utilities.warnings_handler import ManageWarnings\n'), ((38110, 38125), 'unittest.main', 'unittest.main', ([], {}), '()\n', (38123, 38125), False, 'import unittest\n'), ((2274, 2287), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {}), '()\n', (2285, 2287), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((3419, 3594), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0625, 0.125, 0.0625, 0.0], [0.0, 0.125,\n 0.25, 0.125, 0.0], [0.0, 0.0625, 0.125, 0.0625, 0.0], [0.0, 0.0, 0.0, \n 0.0, 0.0]]'], {}), '([[0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0625, 0.125, 0.0625, 0.0], [\n 0.0, 0.125, 0.25, 0.125, 0.0], [0.0, 0.0625, 0.125, 0.0625, 0.0], [0.0,\n 0.0, 0.0, 0.0, 0.0]])\n', (3427, 3594), True, 'import numpy as np\n'), ((4042, 4055), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {}), '()\n', (4053, 4055), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((4084, 4180), 'numpy.array', 'np.array', (['[[1.0, 2.0, 3.0, 4.0, 5.0], [0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 0.0, 1.0, 2.0,\n 3.0]]'], {}), '([[1.0, 2.0, 3.0, 4.0, 5.0], [0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 0.0, \n 1.0, 2.0, 3.0]])\n', (4092, 4180), True, 'import numpy as np\n'), ((4266, 4362), 'numpy.array', 'np.array', (['[[0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 0.0, 1.0, 2.0, 3.0], [0.0, 0.0, 0.0, 1.0,\n 2.0]]'], {}), '([[0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 0.0, 1.0, 2.0, 3.0], [0.0, 0.0, \n 0.0, 1.0, 2.0]])\n', (4274, 4362), True, 'import numpy as np\n'), ((4923, 4978), 'numpy.array', 'np.array', (['[[1.0, 2.0, 3.0, 4.0], [0.25, 1.0, 2.0, 3.0]]'], {}), '([[1.0, 2.0, 3.0, 4.0], [0.25, 1.0, 2.0, 3.0]])\n', (4931, 4978), True, 'import numpy as np\n'), ((5239, 5303), 'numpy.array', 'np.array', (['[[0.5, 1.5, 2.5, 3.5, 4.5], [0.0, 0.5, 1.5, 2.5, 3.5]]'], {}), '([[0.5, 1.5, 2.5, 3.5, 4.5], [0.0, 0.5, 1.5, 2.5, 3.5]])\n', (5247, 5303), True, 'import numpy as np\n'), ((5581, 5657), 'numpy.array', 'np.array', (['[[1.5, 2.5, 3.5, 4.5], [0.5, 1.5, 2.5, 3.5], [0.0, 0.5, 1.5, 2.5]]'], {}), '([[1.5, 2.5, 3.5, 4.5], [0.5, 1.5, 2.5, 3.5], [0.0, 0.5, 1.5, 2.5]])\n', (5589, 5657), True, 'import numpy as np\n'), ((6284, 6316), 'numpy.array', 'np.array', (['[[1.5, 2.5, 3.5, 4.5]]'], {}), '([[1.5, 2.5, 3.5, 4.5]])\n', (6292, 6316), True, 'import numpy as np\n'), ((6990, 7123), 'numpy.array', 'np.array', (['[[-0.1875, -0.4375, -0.5, -0.5, -0.25], [-0.25, -0.6875, -0.9375, -1.0, -\n 0.5], [-0.0625, -0.25, -0.4375, -0.5, -0.25]]'], {}), '([[-0.1875, -0.4375, -0.5, -0.5, -0.25], [-0.25, -0.6875, -0.9375, \n -1.0, -0.5], [-0.0625, -0.25, -0.4375, -0.5, -0.25]])\n', (6998, 7123), True, 'import numpy as np\n'), ((7425, 7543), 'numpy.array', 'np.array', (['[[0.1875, 0.4375, 0.5, 0.5, 0.25], [0.25, 0.6875, 0.9375, 1.0, 0.5], [\n 0.0625, 0.25, 0.4375, 0.5, 0.25]]'], {}), '([[0.1875, 0.4375, 0.5, 0.5, 0.25], [0.25, 0.6875, 0.9375, 1.0, 0.5\n ], [0.0625, 0.25, 0.4375, 0.5, 0.25]])\n', (7433, 7543), True, 'import numpy as np\n'), ((8367, 8500), 'numpy.array', 'np.array', (['[[-0.1875, -0.4375, -0.5, -0.5, -0.25], [-0.25, -0.6875, -0.9375, -1.0, -\n 0.5], [-0.0625, -0.25, -0.4375, -0.5, -0.25]]'], {}), '([[-0.1875, -0.4375, -0.5, -0.5, -0.25], [-0.25, -0.6875, -0.9375, \n -1.0, -0.5], [-0.0625, -0.25, -0.4375, -0.5, -0.25]])\n', (8375, 8500), True, 'import numpy as np\n'), ((9713, 9786), 'numpy.array', 'np.array', (['[0.54216664, 0.95606307, 0.917915, 0.0, 0.46473857, 0.54216664]'], {}), '([0.54216664, 0.95606307, 0.917915, 0.0, 0.46473857, 0.54216664])\n', (9721, 9786), True, 'import numpy as np\n'), ((10212, 10335), 'numpy.array', 'np.array', (['[[1.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0, 0.0], [2.0, 1.0, 1.0, 0.0,\n 0.0], [3.0, 2.0, 1.0, 1.0, 0.0]]'], {}), '([[1.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0, 0.0], [2.0, 1.0, \n 1.0, 0.0, 0.0], [3.0, 2.0, 1.0, 1.0, 0.0]])\n', (10220, 10335), True, 'import numpy as np\n'), ((10422, 10545), 'numpy.array', 'np.array', (['[[3.0, 2.0, 1.0, 0.0, 0.0], [2.0, 1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0,\n 0.0], [0.0, 0.0, 0.0, 1.0, 0.0]]'], {}), '([[3.0, 2.0, 1.0, 0.0, 0.0], [2.0, 1.0, 0.0, 0.0, 0.0], [1.0, 0.0, \n 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0]])\n', (10430, 10545), True, 'import numpy as np\n'), ((10695, 10721), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {'iterations': '(20)'}), '(iterations=20)\n', (10706, 10721), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((10895, 10913), 'numpy.zeros', 'np.zeros', (['(11, 14)'], {}), '((11, 14))\n', (10903, 10913), True, 'import numpy as np\n'), ((11376, 12222), 'numpy.array', 'np.array', (['[[1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [\n 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n [2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n [2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n [2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n [3.0, 3.0, 3.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],\n [3.0, 3.0, 3.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0]]'], {}), '([[1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0], [1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0], [1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0], [2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,\n 0.0], [2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,\n 0.0], [2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,\n 0.0], [3.0, 3.0, 3.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0,\n 0.0], [3.0, 3.0, 3.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0,\n 0.0]])\n', (11384, 12222), True, 'import numpy as np\n'), ((12646, 12784), 'numpy.array', 'np.array', (['[[0.84, 0.6, 0.36, 0.12, 0.04], [1.2, 0.92, 0.6, 0.28, 0.12], [1.56, 1.24, \n 0.84, 0.44, 0.2], [1.92, 1.56, 1.08, 0.6, 0.28]]'], {}), '([[0.84, 0.6, 0.36, 0.12, 0.04], [1.2, 0.92, 0.6, 0.28, 0.12], [\n 1.56, 1.24, 0.84, 0.44, 0.2], [1.92, 1.56, 1.08, 0.6, 0.28]])\n', (12654, 12784), True, 'import numpy as np\n'), ((13113, 13281), 'numpy.array', 'np.array', (['[[0.8125, 0.375, 0.0625, 0.0, 0.0], [1.125, 0.75, 0.3125, 0.0625, 0.0], [\n 1.8125, 1.3125, 0.75, 0.3125, 0.0625], [2.5, 1.8125, 1.125, 0.625, 0.1875]]'], {}), '([[0.8125, 0.375, 0.0625, 0.0, 0.0], [1.125, 0.75, 0.3125, 0.0625, \n 0.0], [1.8125, 1.3125, 0.75, 0.3125, 0.0625], [2.5, 1.8125, 1.125, \n 0.625, 0.1875]])\n', (13121, 13281), True, 'import numpy as np\n'), ((14202, 14357), 'numpy.array', 'np.array', (['[[1.0, 1.0, 1.0, 0.0, 0.0], [1.25352113, 1.19354839, 1.0, 0.08333333, 0.0],\n [1.48780488, 1.5, 1.0, 1.0, 1.0], [2.0, 2.0, 1.0, 1.0, 1.0]]'], {}), '([[1.0, 1.0, 1.0, 0.0, 0.0], [1.25352113, 1.19354839, 1.0, \n 0.08333333, 0.0], [1.48780488, 1.5, 1.0, 1.0, 1.0], [2.0, 2.0, 1.0, 1.0,\n 1.0]])\n', (14210, 14357), True, 'import numpy as np\n'), ((15114, 15274), 'numpy.array', 'np.array', (['[2.451711, 2.451711, 2.451711, 2.341303, 2.341303, 2.341303, 2.028805, \n 2.028805, 2.028805, 1.694845, 1.694845, 1.694845, 1.503583, 1.503583]'], {}), '([2.451711, 2.451711, 2.451711, 2.341303, 2.341303, 2.341303, \n 2.028805, 2.028805, 2.028805, 1.694845, 1.694845, 1.694845, 1.503583, \n 1.503583])\n', (15122, 15274), True, 'import numpy as np\n'), ((15643, 15678), 'numpy.array', 'np.array', (['[[2.0, 3.0], [1.0, -2.0]]'], {}), '([[2.0, 3.0], [1.0, -2.0]])\n', (15651, 15678), True, 'import numpy as np\n'), ((15724, 15745), 'numpy.array', 'np.array', (['[-8.0, 3.0]'], {}), '([-8.0, 3.0])\n', (15732, 15745), True, 'import numpy as np\n'), ((16448, 16468), 'numpy.full', 'np.full', (['(3, 4)', '(0.5)'], {}), '((3, 4), 0.5)\n', (16455, 16468), True, 'import numpy as np\n'), ((16895, 16971), 'numpy.array', 'np.array', (['[[0.0, 0.2, 0.4, 0.6], [0.8, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]'], {}), '([[0.0, 0.2, 0.4, 0.6], [0.8, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]])\n', (16903, 16971), True, 'import numpy as np\n'), ((17056, 17142), 'numpy.array', 'np.array', (['[[-0.1, -0.1, -0.1, -0.1], [-0.1, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]'], {}), '([[-0.1, -0.1, -0.1, -0.1], [-0.1, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, \n 0.0]])\n', (17064, 17142), True, 'import numpy as np\n'), ((17226, 17302), 'numpy.array', 'np.array', (['[[0.5, 0.5, 0.5, 0.5], [0.5, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]'], {}), '([[0.5, 0.5, 0.5, 0.5], [0.5, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]])\n', (17234, 17302), True, 'import numpy as np\n'), ((17804, 17817), 'numpy.copy', 'np.copy', (['umat'], {}), '(umat)\n', (17811, 17817), True, 'import numpy as np\n'), ((17842, 17860), 'numpy.copy', 'np.copy', (['self.vmat'], {}), '(self.vmat)\n', (17849, 17860), True, 'import numpy as np\n'), ((17888, 17909), 'numpy.copy', 'np.copy', (['self.weights'], {}), '(self.weights)\n', (17895, 17909), True, 'import numpy as np\n'), ((18538, 18564), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {'iterations': '(20)'}), '(iterations=20)\n', (18549, 18564), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((18669, 18953), 'numpy.array', 'np.array', (['[[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0],\n [1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0], [1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0\n ], [1.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, \n 1.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]'], {}), '([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 2.0, 2.0, 2.0, 2.0, \n 1.0, 1.0], [1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0], [1.0, 2.0, 3.0, 3.0, \n 2.0, 1.0, 1.0], [1.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0], [1.0, 1.0, 1.0, \n 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]])\n', (18677, 18953), True, 'import numpy as np\n'), ((19123, 19159), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {'dtype': 'np.float32'}), '((10, 10), dtype=np.float32)\n', (19131, 19159), True, 'import numpy as np\n'), ((19317, 19353), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {'dtype': 'np.float32'}), '((10, 10), dtype=np.float32)\n', (19325, 19353), True, 'import numpy as np\n'), ((20518, 20531), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {}), '()\n', (20529, 20531), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((20547, 20562), 'numpy.ones', 'np.ones', (['(3, 3)'], {}), '((3, 3))\n', (20554, 20562), True, 'import numpy as np\n'), ((20588, 20606), 'numpy.where', 'np.where', (['(rain > 0)'], {}), '(rain > 0)\n', (20596, 20606), True, 'import numpy as np\n'), ((20879, 20940), 'numpy.array', 'np.array', (['[[3.0, 5.0, 7.0], [0.0, 2.0, 1.0], [1.0, 1.0, 1.0]]'], {}), '([[3.0, 5.0, 7.0], [0.0, 2.0, 1.0], [1.0, 1.0, 1.0]])\n', (20887, 20940), True, 'import numpy as np\n'), ((21692, 21753), 'numpy.array', 'np.array', (['[[3.0, 5.0, 7.0], [2.0, 2.0, 1.0], [1.0, 1.0, 1.0]]'], {}), '([[3.0, 5.0, 7.0], [2.0, 2.0, 1.0], [1.0, 1.0, 1.0]])\n', (21700, 21753), True, 'import numpy as np\n'), ((22376, 22391), 'numpy.ones', 'np.ones', (['(5, 5)'], {}), '((5, 5))\n', (22383, 22391), True, 'import numpy as np\n'), ((22450, 22600), 'numpy.array', 'np.array', (['[[1.0, 3.0, 5.0, 7.0, 1.0], [0.0, 2.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0,\n 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0]]'], {}), '([[1.0, 3.0, 5.0, 7.0, 1.0], [0.0, 2.0, 1.0, 1.0, 1.0], [1.0, 1.0, \n 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0]])\n', (22458, 22600), True, 'import numpy as np\n'), ((23224, 23285), 'numpy.array', 'np.array', (['[[3.0, 5.0, 7.0], [0.0, 2.0, 1.0], [0.0, 1.0, 1.0]]'], {}), '([[3.0, 5.0, 7.0], [0.0, 2.0, 1.0], [0.0, 1.0, 1.0]])\n', (23232, 23285), True, 'import numpy as np\n'), ((23712, 23755), 'numpy.array', 'np.array', (['[[0, 0, 1], [0, 1, 1], [1, 1, 1]]'], {}), '([[0, 0, 1], [0, 1, 1], [1, 1, 1]])\n', (23720, 23755), True, 'import numpy as np\n'), ((23821, 23864), 'numpy.array', 'np.array', (['[[0, 0, 1], [0, 1, 1], [1, 1, 1]]'], {}), '([[0, 0, 1], [0, 1, 1], [1, 1, 1]])\n', (23829, 23864), True, 'import numpy as np\n'), ((24403, 24429), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {'iterations': '(20)'}), '(iterations=20)\n', (24414, 24429), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((24522, 24806), 'numpy.array', 'np.array', (['[[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0],\n [1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0], [1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0\n ], [1.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, \n 1.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]'], {}), '([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 2.0, 2.0, 2.0, 2.0, \n 1.0, 1.0], [1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0], [1.0, 2.0, 3.0, 3.0, \n 2.0, 1.0, 1.0], [1.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0], [1.0, 1.0, 1.0, \n 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]])\n', (24530, 24806), True, 'import numpy as np\n'), ((24981, 25017), 'numpy.zeros', 'np.zeros', (['(16, 16)'], {'dtype': 'np.float32'}), '((16, 16), dtype=np.float32)\n', (24989, 25017), True, 'import numpy as np\n'), ((25099, 25135), 'numpy.zeros', 'np.zeros', (['(16, 16)'], {'dtype': 'np.float32'}), '((16, 16), dtype=np.float32)\n', (25107, 25135), True, 'import numpy as np\n'), ((26164, 26190), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {'iterations': '(20)'}), '(iterations=20)\n', (26175, 26190), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((26238, 26253), 'numpy.float32', 'np.float32', (['(6.0)'], {}), '(6.0)\n', (26248, 26253), True, 'import numpy as np\n'), ((26352, 26659), 'numpy.array', 'np.array', (['[[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0],\n [1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0], [1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0\n ], [1.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, \n 1.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]'], {'dtype': 'np.float32'}), '([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 2.0, 2.0, 2.0, 2.0, \n 1.0, 1.0], [1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0], [1.0, 2.0, 3.0, 3.0, \n 2.0, 1.0, 1.0], [1.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0], [1.0, 1.0, 1.0, \n 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]], dtype=np.float32\n )\n', (26360, 26659), True, 'import numpy as np\n'), ((26852, 26888), 'numpy.zeros', 'np.zeros', (['(16, 16)'], {'dtype': 'np.float32'}), '((16, 16), dtype=np.float32)\n', (26860, 26888), True, 'import numpy as np\n'), ((27278, 27314), 'numpy.zeros', 'np.zeros', (['(16, 16)'], {'dtype': 'np.float32'}), '((16, 16), dtype=np.float32)\n', (27286, 27314), True, 'import numpy as np\n'), ((28594, 28649), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {'iterations': '(20)', 'metadata_dict': 'metadata_dict'}), '(iterations=20, metadata_dict=metadata_dict)\n', (28605, 28649), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((30502, 30520), 'numpy.zeros', 'np.zeros', (['(16, 16)'], {}), '((16, 16))\n', (30510, 30520), True, 'import numpy as np\n'), ((30840, 30885), 'numpy.ma.MaskedArray', 'np.ma.MaskedArray', (['self.cube1.data'], {'mask': 'mask'}), '(self.cube1.data, mask=mask)\n', (30857, 30885), True, 'import numpy as np\n'), ((30904, 30949), 'numpy.ma.MaskedArray', 'np.ma.MaskedArray', (['self.cube2.data'], {'mask': 'mask'}), '(self.cube2.data, mask=mask)\n', (30921, 30949), True, 'import numpy as np\n'), ((33271, 33293), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(450)'}), '(seconds=450)\n', (33280, 33293), False, 'from datetime import datetime, timedelta\n'), ((34334, 34356), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(900)'}), '(seconds=900)\n', (34343, 34356), False, 'from datetime import datetime, timedelta\n'), ((36550, 36576), 'numpy.zeros', 'np.zeros', (['self.cube1.shape'], {}), '(self.cube1.shape)\n', (36558, 36576), True, 'import numpy as np\n'), ((3032, 3045), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {}), '()\n', (3043, 3045), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((9232, 9266), 'numpy.array', 'np.array', (['[[1.0, 2.0], [0.0, 1.0]]'], {}), '([[1.0, 2.0], [0.0, 1.0]])\n', (9240, 9266), True, 'import numpy as np\n'), ((9264, 9298), 'numpy.array', 'np.array', (['[[3.0, 4.0], [2.0, 3.0]]'], {}), '([[3.0, 4.0], [2.0, 3.0]])\n', (9272, 9298), True, 'import numpy as np\n'), ((9309, 9333), 'numpy.array', 'np.array', (['[[5.0], [4.0]]'], {}), '([[5.0], [4.0]])\n', (9317, 9333), True, 'import numpy as np\n'), ((9333, 9355), 'numpy.array', 'np.array', (['[[0.0, 0.0]]'], {}), '([[0.0, 0.0]])\n', (9341, 9355), True, 'import numpy as np\n'), ((9368, 9390), 'numpy.array', 'np.array', (['[[1.0, 2.0]]'], {}), '([[1.0, 2.0]])\n', (9376, 9390), True, 'import numpy as np\n'), ((9390, 9407), 'numpy.array', 'np.array', (['[[3.0]]'], {}), '([[3.0]])\n', (9398, 9407), True, 'import numpy as np\n'), ((10639, 10672), 'numpy.multiply', 'np.multiply', (['self.umat', 'self.vmat'], {}), '(self.umat, self.vmat)\n', (10650, 10672), True, 'import numpy as np\n'), ((16396, 16424), 'numpy.ones', 'np.ones', (['(3, 4)'], {'dtype': 'float'}), '((3, 4), dtype=float)\n', (16403, 16424), True, 'import numpy as np\n'), ((17751, 17779), 'numpy.ones', 'np.ones', (['(3, 4)'], {'dtype': 'float'}), '((3, 4), dtype=float)\n', (17758, 17779), True, 'import numpy as np\n'), ((20196, 20209), 'numpy.mean', 'np.mean', (['umat'], {}), '(umat)\n', (20203, 20209), True, 'import numpy as np\n'), ((20211, 20235), 'numpy.float32', 'np.float32', (['(-0.124607998)'], {}), '(-0.124607998)\n', (20221, 20235), True, 'import numpy as np\n'), ((20268, 20281), 'numpy.mean', 'np.mean', (['vmat'], {}), '(vmat)\n', (20275, 20281), True, 'import numpy as np\n'), ((20283, 20306), 'numpy.float32', 'np.float32', (['(0.124607998)'], {}), '(0.124607998)\n', (20293, 20306), True, 'import numpy as np\n'), ((22763, 22781), 'numpy.where', 'np.where', (['(rain > 0)'], {}), '(rain > 0)\n', (22771, 22781), True, 'import numpy as np\n'), ((23989, 24007), 'numpy.where', 'np.where', (['(rain > 0)'], {}), '(rain > 0)\n', (23997, 24007), True, 'import numpy as np\n'), ((25542, 25556), 'numpy.mean', 'np.mean', (['ucomp'], {}), '(ucomp)\n', (25549, 25556), True, 'import numpy as np\n'), ((25601, 25615), 'numpy.mean', 'np.mean', (['vcomp'], {}), '(vcomp)\n', (25608, 25615), True, 'import numpy as np\n'), ((25908, 25922), 'numpy.mean', 'np.mean', (['ucomp'], {}), '(ucomp)\n', (25915, 25922), True, 'import numpy as np\n'), ((25968, 25982), 'numpy.mean', 'np.mean', (['vcomp'], {}), '(vcomp)\n', (25975, 25982), True, 'import numpy as np\n'), ((26282, 26313), 'numpy.arange', 'np.arange', (['(16)'], {'dtype': 'np.float32'}), '(16, dtype=np.float32)\n', (26291, 26313), True, 'import numpy as np\n'), ((29089, 29108), 'numpy.mean', 'np.mean', (['ucube.data'], {}), '(ucube.data)\n', (29096, 29108), True, 'import numpy as np\n'), ((29153, 29172), 'numpy.mean', 'np.mean', (['vcube.data'], {}), '(vcube.data)\n', (29160, 29172), True, 'import numpy as np\n'), ((29610, 29629), 'numpy.mean', 'np.mean', (['ucube.data'], {}), '(ucube.data)\n', (29617, 29629), True, 'import numpy as np\n'), ((29674, 29693), 'numpy.mean', 'np.mean', (['vcube.data'], {}), '(vcube.data)\n', (29681, 29693), True, 'import numpy as np\n'), ((31435, 31461), 'numpy.mean', 'np.mean', (['ucube_masked.data'], {}), '(ucube_masked.data)\n', (31442, 31461), True, 'import numpy as np\n'), ((31519, 31545), 'numpy.mean', 'np.mean', (['vcube_masked.data'], {}), '(vcube_masked.data)\n', (31526, 31545), True, 'import numpy as np\n'), ((31602, 31630), 'numpy.mean', 'np.mean', (['ucube_unmasked.data'], {}), '(ucube_unmasked.data)\n', (31609, 31630), True, 'import numpy as np\n'), ((31688, 31716), 'numpy.mean', 'np.mean', (['vcube_unmasked.data'], {}), '(vcube_unmasked.data)\n', (31695, 31716), True, 'import numpy as np\n'), ((33631, 33650), 'numpy.mean', 'np.mean', (['ucube.data'], {}), '(ucube.data)\n', (33638, 33650), True, 'import numpy as np\n'), ((33700, 33719), 'numpy.mean', 'np.mean', (['vcube.data'], {}), '(vcube.data)\n', (33707, 33719), True, 'import numpy as np\n'), ((3254, 3267), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {}), '()\n', (3265, 3267), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((3737, 3750), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {}), '()\n', (3748, 3750), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((15830, 15843), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {}), '()\n', (15841, 15843), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((16034, 16047), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {}), '()\n', (16045, 16047), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((16548, 16561), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {}), '()\n', (16559, 16561), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((17378, 17391), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {}), '()\n', (17389, 17391), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((17918, 17931), 'improver.nowcasting.optical_flow.OpticalFlow', 'OpticalFlow', ([], {}), '()\n', (17929, 17931), False, 'from improver.nowcasting.optical_flow import OpticalFlow\n'), ((27073, 27100), 'datetime.datetime', 'datetime', (['(2018)', '(2)', '(20)', '(4)', '(0)'], {}), '(2018, 2, 20, 4, 0)\n', (27081, 27100), False, 'from datetime import datetime, timedelta\n'), ((27118, 27145), 'datetime.datetime', 'datetime', (['(2018)', '(2)', '(20)', '(4)', '(0)'], {}), '(2018, 2, 20, 4, 0)\n', (27126, 27145), False, 'from datetime import datetime, timedelta\n'), ((27499, 27527), 'datetime.datetime', 'datetime', (['(2018)', '(2)', '(20)', '(4)', '(15)'], {}), '(2018, 2, 20, 4, 15)\n', (27507, 27527), False, 'from datetime import datetime, timedelta\n'), ((27545, 27573), 'datetime.datetime', 'datetime', (['(2018)', '(2)', '(20)', '(4)', '(15)'], {}), '(2018, 2, 20, 4, 15)\n', (27553, 27573), False, 'from datetime import datetime, timedelta\n'), ((35554, 35567), 'numpy.arange', 'np.arange', (['(16)'], {}), '(16)\n', (35563, 35567), True, 'import numpy as np\n'), ((16341, 16354), 'numpy.arange', 'np.arange', (['(12)'], {}), '(12)\n', (16350, 16354), True, 'import numpy as np\n')]
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests total magnetization integrals calculator.""" from test import QiskitNatureTestCase from ddt import ddt, data import numpy as np from qiskit_nature.problems.second_quantization.electronic.integrals_calculators import ( calc_total_magnetization_ints, ) @ddt class TestMagnetizationIntegralsCalculator(QiskitNatureTestCase): """Tests total magnetization integrals calculator.""" num_modes_list = [1, 2, 3] expected_h_1_list = [ [[-0.5 + 0.0j]], [[0.5 + 0.0j, 0.0 + 0.0j], [0.0 + 0.0j, -0.5 + 0.0j]], [ [0.5 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j], [0.0 + 0.0j, -0.5 + 0.0j, -0.0 + 0.0j], [0.0 + 0.0j, -0.0 + 0.0j, -0.5 + 0.0j], ], ] expected_h_2_list = [None, None, None] @data(*num_modes_list) def test_calc_total_magnetization_ints(self, num_modes): """Tests that one-body integrals for total magnetization are calculated correctly.""" expected_h_1 = self.expected_h_1_list[num_modes - 1] expected_h_2 = self.expected_h_2_list[num_modes - 1] h_1, h_2 = calc_total_magnetization_ints(num_modes) assert np.allclose(h_1, expected_h_1) assert h_2 == expected_h_2
[ "qiskit_nature.problems.second_quantization.electronic.integrals_calculators.calc_total_magnetization_ints", "numpy.allclose", "ddt.data" ]
[((1251, 1272), 'ddt.data', 'data', (['*num_modes_list'], {}), '(*num_modes_list)\n', (1255, 1272), False, 'from ddt import ddt, data\n'), ((1570, 1610), 'qiskit_nature.problems.second_quantization.electronic.integrals_calculators.calc_total_magnetization_ints', 'calc_total_magnetization_ints', (['num_modes'], {}), '(num_modes)\n', (1599, 1610), False, 'from qiskit_nature.problems.second_quantization.electronic.integrals_calculators import calc_total_magnetization_ints\n'), ((1626, 1656), 'numpy.allclose', 'np.allclose', (['h_1', 'expected_h_1'], {}), '(h_1, expected_h_1)\n', (1637, 1656), True, 'import numpy as np\n')]
import abc import copy import numpy as np from .config import DATABUFFER_CONFIG class databuffer(object): def __init__(self, hyperparams): config = copy.deepcopy(DATABUFFER_CONFIG) config.update(hyperparams) self.max_size = config['memory_size'] self.state_dims = config['n_states'] if isinstance(self.state_dims, dict): self.state_dims = self.state_dims['n_s'] if 'n_actions' in config.keys(): self.n_actions = config['n_actions'] self.actions_dims = config['n_action_dims'] self.dicrete_action = config['dicrete_action'] if isinstance(self.state_dims, (int, np.int64)): self.state_dims = (self.state_dims, ) self.S = np.zeros((0,) + self.state_dims, dtype = np.float32) self.A = np.zeros([0, self.actions_dims], dtype = np.uint8 if self.dicrete_action else np.float32) self.R = np.zeros([0, 1], dtype = np.float32) self.S_ = np.zeros((0,) + self.state_dims, dtype = np.float32) self.done = np.zeros([0, 1], dtype = np.uint8) # other data in transitions. For example, goals, episode infos, etc. self.other_data = None if 'other_data' in config: self.other_data = {} for key, box in config['other_data'].items(): self.other_data[key] = np.zeros((0,) + box.shape[1:], dtype=box.dtype) # memory counter: How many transitions are recorded in total self.mem_c = 0 def store_transition(self, transitions): self.S = np.concatenate((self.S, transitions['state']), axis=0) self.A = np.concatenate((self.A, transitions['action']), axis=0) self.R = np.concatenate((self.R, transitions['reward']), axis=0) self.done = np.concatenate((self.done, transitions['done']), axis=0) self.S_ = np.concatenate((self.S_, transitions['next_state']), axis=0) if self.other_data: for key in self.other_data.keys(): assert 'other_data' in transitions, \ "Other data types should be included in transitions except S, A, R, Done, and S_." self.other_data[key] = np.concatenate((self.other_data[key], transitions['other_data'][key]), axis=0) self.mem_c += transitions['state'].shape[0] if self.mem_c >self.max_size: self.S = self.S[-self.max_size:] self.A = self.A[-self.max_size:] self.R = self.R[-self.max_size:] self.done = self.done[-self.max_size:] self.S_ = self.S_[-self.max_size:] if self.other_data: for key in self.other_data.keys(): self.other_data[key] = self.other_data[key][-self.max_size:] def sample_batch(self, batch_size = None): if batch_size is not None: if batch_size > self.mem_c or batch_size > self.max_size: raise RuntimeError("Batch size is bigger than buffer size") # sample without putting back # sample_index = np.random.choice(min(self.max_size, self.mem_c), size=batch_size) # sample with putting back sample_index = np.random.randint(0, self.mem_c, size=batch_size) else: sample_index = np.arange(min(self.max_size, self.mem_c)) batch = {} batch['state'] = self.S[sample_index] batch['action'] = self.A[sample_index] batch['reward'] = self.R[sample_index] batch['done'] = self.done[sample_index] batch['next_state'] = self.S_[sample_index] batch['other_data'] = None if self.other_data: batch['other_data'] = {} for key in self.other_data.keys(): batch['other_data'][key] = self.other_data[key][sample_index] return batch, sample_index def reset_buffer(self): self.S = np.zeros((0,) + self.state_dims, dtype=np.float32) self.A = np.zeros([0, self.actions_dims], dtype = np.uint8 if self.dicrete_action else np.float32) self.R = np.zeros([0, 1], dtype = np.float32) self.S_ = np.zeros((0,) + self.state_dims, dtype=np.float32) self.done = np.zeros([0, 1], dtype = np.bool) if self.other_data: for key in self.other_data.keys(): self.other_data[key] = np.zeros((0,) + self.other_data[key].shape[1:], dtype=self.other_data[key].dtype) self.mem_c = 0 class databuffer_PG_gaussian(databuffer): def __init__(self, hyperparams): super(databuffer_PG_gaussian, self).__init__(hyperparams) self.mu = np.zeros([0, self.actions_dims]) self.sigma = np.zeros([0, self.actions_dims]) self.logpac = np.zeros([0, 1], dtype=np.float32) def store_transition(self, transitions): databuffer.store_transition(self, transitions) self.mu = np.concatenate((self.mu, transitions['mu']), axis=0) self.sigma = np.concatenate((self.sigma, transitions['sigma']), axis=0) self.logpac = np.concatenate((self.logpac, transitions['logpac']), axis=0) if self.mem_c >self.max_size: self.mu = self.mu[-self.max_size:] self.sigma = self.sigma[-self.max_size:] self.logpac = self.logpac[-self.max_size:] def sample_batch(self, batch_size= None): batch, sample_index = databuffer.sample_batch(self, batch_size) batch['mu'] = self.mu[sample_index] batch['sigma'] = self.sigma[sample_index] batch['logpac'] = self.logpac[sample_index] return batch, sample_index def reset_buffer(self): databuffer.reset_buffer(self) self.mu = np.zeros([0, self.actions_dims]) self.sigma = np.zeros([0, self.actions_dims]) self.logpac = np.zeros([0, 1], dtype=np.float32) class databuffer_PG_softmax(databuffer): def __init__(self, hyperparams): super(databuffer_PG_softmax, self).__init__(hyperparams) self.distri = np.zeros([0, self.n_actions]) self.logpac = np.zeros([0, 1], dtype=np.float32) def store_transition(self, transitions): databuffer.store_transition(self, transitions) self.distri = np.concatenate((self.distri, transitions['distri']), axis=0) self.logpac = np.concatenate((self.logpac, transitions['logpac']), axis=0) if self.mem_c >self.max_size: self.distri = self.distri[-self.max_size:] self.logpac = self.logpac[-self.max_size:] def sample_batch(self, batch_size= None): batch, sample_index = databuffer.sample_batch(self, batch_size) batch['distri'] = self.distri[sample_index] batch['logpac'] = self.logpac[sample_index] return batch, sample_index def reset_buffer(self): databuffer.reset_buffer(self) self.distri = np.zeros([0, self.n_actions]) self.logpac = np.zeros([0, 1], dtype=np.float32)
[ "copy.deepcopy", "numpy.random.randint", "numpy.zeros", "numpy.concatenate" ]
[((161, 193), 'copy.deepcopy', 'copy.deepcopy', (['DATABUFFER_CONFIG'], {}), '(DATABUFFER_CONFIG)\n', (174, 193), False, 'import copy\n'), ((740, 790), 'numpy.zeros', 'np.zeros', (['((0,) + self.state_dims)'], {'dtype': 'np.float32'}), '((0,) + self.state_dims, dtype=np.float32)\n', (748, 790), True, 'import numpy as np\n'), ((810, 901), 'numpy.zeros', 'np.zeros', (['[0, self.actions_dims]'], {'dtype': '(np.uint8 if self.dicrete_action else np.float32)'}), '([0, self.actions_dims], dtype=np.uint8 if self.dicrete_action else\n np.float32)\n', (818, 901), True, 'import numpy as np\n'), ((917, 951), 'numpy.zeros', 'np.zeros', (['[0, 1]'], {'dtype': 'np.float32'}), '([0, 1], dtype=np.float32)\n', (925, 951), True, 'import numpy as np\n'), ((972, 1022), 'numpy.zeros', 'np.zeros', (['((0,) + self.state_dims)'], {'dtype': 'np.float32'}), '((0,) + self.state_dims, dtype=np.float32)\n', (980, 1022), True, 'import numpy as np\n'), ((1045, 1077), 'numpy.zeros', 'np.zeros', (['[0, 1]'], {'dtype': 'np.uint8'}), '([0, 1], dtype=np.uint8)\n', (1053, 1077), True, 'import numpy as np\n'), ((1558, 1612), 'numpy.concatenate', 'np.concatenate', (["(self.S, transitions['state'])"], {'axis': '(0)'}), "((self.S, transitions['state']), axis=0)\n", (1572, 1612), True, 'import numpy as np\n'), ((1630, 1685), 'numpy.concatenate', 'np.concatenate', (["(self.A, transitions['action'])"], {'axis': '(0)'}), "((self.A, transitions['action']), axis=0)\n", (1644, 1685), True, 'import numpy as np\n'), ((1703, 1758), 'numpy.concatenate', 'np.concatenate', (["(self.R, transitions['reward'])"], {'axis': '(0)'}), "((self.R, transitions['reward']), axis=0)\n", (1717, 1758), True, 'import numpy as np\n'), ((1779, 1835), 'numpy.concatenate', 'np.concatenate', (["(self.done, transitions['done'])"], {'axis': '(0)'}), "((self.done, transitions['done']), axis=0)\n", (1793, 1835), True, 'import numpy as np\n'), ((1854, 1914), 'numpy.concatenate', 'np.concatenate', (["(self.S_, transitions['next_state'])"], {'axis': '(0)'}), "((self.S_, transitions['next_state']), axis=0)\n", (1868, 1914), True, 'import numpy as np\n'), ((3882, 3932), 'numpy.zeros', 'np.zeros', (['((0,) + self.state_dims)'], {'dtype': 'np.float32'}), '((0,) + self.state_dims, dtype=np.float32)\n', (3890, 3932), True, 'import numpy as np\n'), ((3950, 4041), 'numpy.zeros', 'np.zeros', (['[0, self.actions_dims]'], {'dtype': '(np.uint8 if self.dicrete_action else np.float32)'}), '([0, self.actions_dims], dtype=np.uint8 if self.dicrete_action else\n np.float32)\n', (3958, 4041), True, 'import numpy as np\n'), ((4057, 4091), 'numpy.zeros', 'np.zeros', (['[0, 1]'], {'dtype': 'np.float32'}), '([0, 1], dtype=np.float32)\n', (4065, 4091), True, 'import numpy as np\n'), ((4112, 4162), 'numpy.zeros', 'np.zeros', (['((0,) + self.state_dims)'], {'dtype': 'np.float32'}), '((0,) + self.state_dims, dtype=np.float32)\n', (4120, 4162), True, 'import numpy as np\n'), ((4183, 4214), 'numpy.zeros', 'np.zeros', (['[0, 1]'], {'dtype': 'np.bool'}), '([0, 1], dtype=np.bool)\n', (4191, 4214), True, 'import numpy as np\n'), ((4600, 4632), 'numpy.zeros', 'np.zeros', (['[0, self.actions_dims]'], {}), '([0, self.actions_dims])\n', (4608, 4632), True, 'import numpy as np\n'), ((4654, 4686), 'numpy.zeros', 'np.zeros', (['[0, self.actions_dims]'], {}), '([0, self.actions_dims])\n', (4662, 4686), True, 'import numpy as np\n'), ((4709, 4743), 'numpy.zeros', 'np.zeros', (['[0, 1]'], {'dtype': 'np.float32'}), '([0, 1], dtype=np.float32)\n', (4717, 4743), True, 'import numpy as np\n'), ((4863, 4915), 'numpy.concatenate', 'np.concatenate', (["(self.mu, transitions['mu'])"], {'axis': '(0)'}), "((self.mu, transitions['mu']), axis=0)\n", (4877, 4915), True, 'import numpy as np\n'), ((4937, 4995), 'numpy.concatenate', 'np.concatenate', (["(self.sigma, transitions['sigma'])"], {'axis': '(0)'}), "((self.sigma, transitions['sigma']), axis=0)\n", (4951, 4995), True, 'import numpy as np\n'), ((5018, 5078), 'numpy.concatenate', 'np.concatenate', (["(self.logpac, transitions['logpac'])"], {'axis': '(0)'}), "((self.logpac, transitions['logpac']), axis=0)\n", (5032, 5078), True, 'import numpy as np\n'), ((5657, 5689), 'numpy.zeros', 'np.zeros', (['[0, self.actions_dims]'], {}), '([0, self.actions_dims])\n', (5665, 5689), True, 'import numpy as np\n'), ((5711, 5743), 'numpy.zeros', 'np.zeros', (['[0, self.actions_dims]'], {}), '([0, self.actions_dims])\n', (5719, 5743), True, 'import numpy as np\n'), ((5766, 5800), 'numpy.zeros', 'np.zeros', (['[0, 1]'], {'dtype': 'np.float32'}), '([0, 1], dtype=np.float32)\n', (5774, 5800), True, 'import numpy as np\n'), ((5967, 5996), 'numpy.zeros', 'np.zeros', (['[0, self.n_actions]'], {}), '([0, self.n_actions])\n', (5975, 5996), True, 'import numpy as np\n'), ((6019, 6053), 'numpy.zeros', 'np.zeros', (['[0, 1]'], {'dtype': 'np.float32'}), '([0, 1], dtype=np.float32)\n', (6027, 6053), True, 'import numpy as np\n'), ((6177, 6237), 'numpy.concatenate', 'np.concatenate', (["(self.distri, transitions['distri'])"], {'axis': '(0)'}), "((self.distri, transitions['distri']), axis=0)\n", (6191, 6237), True, 'import numpy as np\n'), ((6260, 6320), 'numpy.concatenate', 'np.concatenate', (["(self.logpac, transitions['logpac'])"], {'axis': '(0)'}), "((self.logpac, transitions['logpac']), axis=0)\n", (6274, 6320), True, 'import numpy as np\n'), ((6816, 6845), 'numpy.zeros', 'np.zeros', (['[0, self.n_actions]'], {}), '([0, self.n_actions])\n', (6824, 6845), True, 'import numpy as np\n'), ((6868, 6902), 'numpy.zeros', 'np.zeros', (['[0, 1]'], {'dtype': 'np.float32'}), '([0, 1], dtype=np.float32)\n', (6876, 6902), True, 'import numpy as np\n'), ((3184, 3233), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.mem_c'], {'size': 'batch_size'}), '(0, self.mem_c, size=batch_size)\n', (3201, 3233), True, 'import numpy as np\n'), ((1354, 1401), 'numpy.zeros', 'np.zeros', (['((0,) + box.shape[1:])'], {'dtype': 'box.dtype'}), '((0,) + box.shape[1:], dtype=box.dtype)\n', (1362, 1401), True, 'import numpy as np\n'), ((2186, 2264), 'numpy.concatenate', 'np.concatenate', (["(self.other_data[key], transitions['other_data'][key])"], {'axis': '(0)'}), "((self.other_data[key], transitions['other_data'][key]), axis=0)\n", (2200, 2264), True, 'import numpy as np\n'), ((4331, 4417), 'numpy.zeros', 'np.zeros', (['((0,) + self.other_data[key].shape[1:])'], {'dtype': 'self.other_data[key].dtype'}), '((0,) + self.other_data[key].shape[1:], dtype=self.other_data[key].\n dtype)\n', (4339, 4417), True, 'import numpy as np\n')]
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test Neural Network.""" import unittest from test import QiskitMachineLearningTestCase import numpy as np from ddt import ddt, data from qiskit_machine_learning.neural_networks import NeuralNetwork class _NeuralNetwork(NeuralNetwork): """Dummy implementation to test the abstract neural network class.""" def _forward(self, input_data, weights): """Expects as input either None, or a 2-dim array and returns.""" # handle None input if self.num_inputs == 0 and input_data is None: return np.zeros(self.output_shape) return np.zeros(self.output_shape) def _backward(self, input_data, weights): # return None if there are no weights input_grad = None if self.num_inputs > 0: input_grad = np.zeros((*self.output_shape, self.num_inputs)) weight_grad = None if self.num_weights > 0: weight_grad = np.zeros((*self.output_shape, self.num_weights)) return input_grad, weight_grad @ddt class TestNeuralNetwork(QiskitMachineLearningTestCase): """Neural Network Tests.""" @data( # no input ((0, 0, 1), None), ((0, 1, 1), None), ((0, 1, 2), None), ((0, 1, (2, 2)), None), # 1d input ((1, 0, 1), 0), ((1, 1, 1), 0), ((1, 1, 2), 0), ((1, 1, (2, 2)), 0), # multi-dimensional input and weights ((2, 2, (2, 2)), [0, 0]) ) def test_forward_shape(self, params): """Test forward shape.""" config, input_data = params network = _NeuralNetwork(*config) shape = network.forward(input_data, np.zeros(network.num_weights)).shape self.assertEqual(shape, network.output_shape) @data( # no input ((0, 0, 1), None), ((0, 1, 1), None), ((0, 1, 2), None), ((0, 1, (2, 2)), None), # 1d input ((1, 0, 1), 0), ((1, 1, 1), 0), ((1, 1, 2), 0), ((1, 1, (2, 2)), 0), # multi-dimensional input and weights ((2, 2, (2, 2)), [0, 0]) ) def test_backward_shape(self, params): """ Test backward shape """ config, input_data = params network = _NeuralNetwork(*config) input_grad, weights_grad = network.backward(input_data, np.zeros(network.num_weights)) if network.num_inputs > 0: self.assertEqual(input_grad.shape, (*network.output_shape, network.num_inputs)) else: self.assertEqual(input_grad, None) if network.num_weights > 0: self.assertEqual(weights_grad.shape, (*network.output_shape, network.num_weights)) else: self.assertEqual(weights_grad, None) if __name__ == '__main__': unittest.main()
[ "unittest.main", "ddt.data", "numpy.zeros" ]
[((1599, 1789), 'ddt.data', 'data', (['((0, 0, 1), None)', '((0, 1, 1), None)', '((0, 1, 2), None)', '((0, 1, (2, 2)), None)', '((1, 0, 1), 0)', '((1, 1, 1), 0)', '((1, 1, 2), 0)', '((1, 1, (2, 2)), 0)', '((2, 2, (2, 2)), [0, 0])'], {}), '(((0, 0, 1), None), ((0, 1, 1), None), ((0, 1, 2), None), ((0, 1, (2, 2\n )), None), ((1, 0, 1), 0), ((1, 1, 1), 0), ((1, 1, 2), 0), ((1, 1, (2, \n 2)), 0), ((2, 2, (2, 2)), [0, 0]))\n', (1603, 1789), False, 'from ddt import ddt, data\n'), ((2241, 2431), 'ddt.data', 'data', (['((0, 0, 1), None)', '((0, 1, 1), None)', '((0, 1, 2), None)', '((0, 1, (2, 2)), None)', '((1, 0, 1), 0)', '((1, 1, 1), 0)', '((1, 1, 2), 0)', '((1, 1, (2, 2)), 0)', '((2, 2, (2, 2)), [0, 0])'], {}), '(((0, 0, 1), None), ((0, 1, 1), None), ((0, 1, 2), None), ((0, 1, (2, 2\n )), None), ((1, 0, 1), 0), ((1, 1, 1), 0), ((1, 1, 2), 0), ((1, 1, (2, \n 2)), 0), ((2, 2, (2, 2)), [0, 0]))\n', (2245, 2431), False, 'from ddt import ddt, data\n'), ((3257, 3272), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3270, 3272), False, 'import unittest\n'), ((1070, 1097), 'numpy.zeros', 'np.zeros', (['self.output_shape'], {}), '(self.output_shape)\n', (1078, 1097), True, 'import numpy as np\n'), ((1026, 1053), 'numpy.zeros', 'np.zeros', (['self.output_shape'], {}), '(self.output_shape)\n', (1034, 1053), True, 'import numpy as np\n'), ((1274, 1321), 'numpy.zeros', 'np.zeros', (['(*self.output_shape, self.num_inputs)'], {}), '((*self.output_shape, self.num_inputs))\n', (1282, 1321), True, 'import numpy as np\n'), ((1409, 1457), 'numpy.zeros', 'np.zeros', (['(*self.output_shape, self.num_weights)'], {}), '((*self.output_shape, self.num_weights))\n', (1417, 1457), True, 'import numpy as np\n'), ((2809, 2838), 'numpy.zeros', 'np.zeros', (['network.num_weights'], {}), '(network.num_weights)\n', (2817, 2838), True, 'import numpy as np\n'), ((2144, 2173), 'numpy.zeros', 'np.zeros', (['network.num_weights'], {}), '(network.num_weights)\n', (2152, 2173), True, 'import numpy as np\n')]
import numpy as np import torch import gym import argparse import os import copy import utils import TD3 import Q_TD3 import pandas as pd import json,os import time #device = torch.device("cuda:4" if torch.cuda.is_available() else "cpu") def eval_policy(policy, env_name,eval_episodes=10): eval_env = gym.make(env_name) avg_reward = 0. for _ in range(eval_episodes): state, done = eval_env.reset(), False while not done: action = policy.select_action(np.array(state)) state, reward, done, _ = eval_env.step(action) avg_reward += reward avg_reward /= eval_episodes print("---------------------------------------") print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}") print("---------------------------------------") return avg_reward def eval_actionnoise_policy(policy, env_name,eval_episodes=10,policy_noise=0.1,noise_clip = 0.5,max_action = 1): eval_env = gym.make(env_name) avg_reward = 0. for _ in range(eval_episodes): state, done = eval_env.reset(), False while not done: action = policy.select_action(np.array(state)) action = torch.Tensor(action) noise = (torch.randn_like(action) * policy_noise).clamp(-noise_clip, noise_clip) action = np.array((action + noise).clamp(-max_action, max_action)) #.cpu().detach().numpy() state, reward, done, _ = eval_env.step(action) avg_reward += reward avg_reward /= eval_episodes return avg_reward def eval_statenoise_policy(policy, env_name,eval_episodes=10,state_noise=0.1,noise_clip = 0.5): eval_env = gym.make(env_name) avg_reward = 0. for _ in range(eval_episodes): state, done = eval_env.reset(), False while not done: state = torch.Tensor(state) noise = (torch.randn_like(state) * state_noise).clamp(-noise_clip, noise_clip) state = state + noise action = policy.select_action(np.array(state)) state, reward, done, _ = eval_env.step(action) avg_reward += reward avg_reward /= eval_episodes return avg_reward if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--policy", default="TD3") # Policy name parser.add_argument("--env", default="HalfCheetah-v3") # OpenAI gym environment name parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds parser.add_argument("--start_timesteps", default=1e4, type=int) # Time steps initial random policy is used parser.add_argument("--eval_freq", default=5e3, type=int) # How often (time steps) we evaluate parser.add_argument("--max_timesteps", default=1e6, type=int) # Max time steps to run environment parser.add_argument("--expl_noise", default=0.1) # Std of Gaussian exploration noise parser.add_argument("--batch_size", default=100, type=int) # Batch size for both actor and critic parser.add_argument("--discount", default=0.99) # Discount factor parser.add_argument("--tau", default=0.005) # Target network update rate parser.add_argument("--policy_noise", default=0.2,type=float) # Noise added to target policy during critic update parser.add_argument("--noise_clip", default=0.5,type=float) # Range to clip target policy noise parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates parser.add_argument("--save_model", default="False") # Save model and optimizer parameters parser.add_argument("--load_model", default="") # Model load file name, "" doesn't load, "default" uses file_name parser.add_argument("--training_mode", default="Online") #training_mode Offline or Online parser.add_argument("--cuda_device" , default= 1) # Choosing the CUDA device to run it on parser.add_argument("--comment" , default= "none") # Comment changes file name for hyper paramter search parser.add_argument("--noisy_testing" , default= "False") # Add noise to testing parser.add_argument("--hidden_dim" , default= 64, type=int,help="hidden dim for Q-MLP") parser.add_argument("--nf_fac" , default= 1.0,type=float,help="hidden dim reduction factor for quadratic neruon in for Q-MLP") parser.add_argument("--init_zeros" , default= "False",help=" quadratic neuron weight initializersfor Q-MLP") parser.add_argument("--pause_hour" , default= 0,type=int,help="pasue run of script for pause_hour hours.") # choosing the device to run it on args = parser.parse_args() if args.pause_hour > 0: # Pause until a certain time time.sleep(3600.0*args.pause_hour) init_zeros= False if args.init_zeros == "True": init_zeros= True policy_name = args.policy if args.comment != "none": policy_name = args.policy + args.comment file_name = f"{policy_name}_{args.env}_{args.seed}_{args.training_mode}" print("---------------------------------------") print(f"Policy: {args.policy}, Env: {args.env}, Seed: {args.seed},Training_mode: {args.training_mode}") print("---------------------------------------") if args.save_model == "True" and not os.path.exists("./models"): os.makedirs("./models") #Set the device for the job torch.cuda.set_device(int(args.cuda_device)) device_name = str("cuda:" + str(args.cuda_device)) print("The current device is: ", device_name ) device = torch.device( device_name if torch.cuda.is_available() else "cpu") env = gym.make(args.env) # Set seeds env.seed(args.seed) torch.manual_seed(args.seed) np.random.seed(args.seed) state_dim = env.observation_space.shape[0] state_max = env.observation_space.shape action_dim = env.action_space.shape[0] max_action = float(env.action_space.high[0]) kwargs = { "state_dim": state_dim, "action_dim": action_dim, "max_action": max_action, "discount": args.discount, "tau": args.tau, } # Initialize policy #print(args.policy == "TD3") #print(args.policy) if args.policy == "TD3": # Target policy smoothing is scaled wrt the action scale kwargs["env"] = env kwargs["policy_noise"] = args.policy_noise * max_action kwargs["noise_clip"] = args.noise_clip * max_action kwargs["policy_freq"] = args.policy_freq kwargs["device"] = device policy = TD3.TD3(**kwargs) variant = dict( algorithm= policy_name, env=args.env, ) elif args.policy == "Q_TD3": # Target policy smoothing is scaled wrt the action scale kwargs["env"] = env kwargs["policy_noise"] = args.policy_noise * max_action kwargs["noise_clip"] = args.noise_clip * max_action kwargs["policy_freq"] = args.policy_freq kwargs["device"] = device kwargs["hidden_dim"] = args.hidden_dim kwargs["nf_fac"] = args.nf_fac kwargs["init_zeros"] = init_zeros policy = Q_TD3.TD3(**kwargs) variant = dict( algorithm="Q_TD3", env=args.env, ) else: raise Exception("invaled policy!!!") if not os.path.exists(f"./data/{args.env}/{policy_name}/seed{args.seed}"): os.makedirs(f'./data/{args.env}/{policy_name}/seed{args.seed}') with open(f'./data/{args.env}/{policy_name}/seed{int(args.seed)}/variant.json', 'w') as outfile: json.dump(variant,outfile) noise_ls = [0.05,0.1,0.15,0.2,0.25] # if args.noisy_testing == "True": # for count in range(0,len(noise_ls)): # os.makedirs(f'./data/{args.env}/{policy_name}/seed{args.seed}/action_noise{count}') # os.makedirs(f'./data/{args.env}/{policy_name}/seed{args.seed}/state_noise{count}') if args.load_model != "": policy_file = file_name if args.load_model == "default" else args.load_model policy.load(f"./models/{policy_file}") replay_buffer = utils.ReplayBuffer(state_dim, action_dim) # Evaluate untrained policy evaluations = [eval_policy(policy, args.env)] evaluations_statenoise = [] evaluations_actionnoise = [] state, done = env.reset(), False episode_reward = 0 episode_timesteps = 0 episode_num = 0 ep_reward_list = [] for t in range(int(args.max_timesteps)): episode_timesteps += 1 # Select action randomly or according to policy if t < args.start_timesteps: action = env.action_space.sample() else: action = ( policy.select_action(np.array(state)) + np.random.normal(0, max_action * args.expl_noise, size=action_dim) ).clip(-max_action, max_action) # Perform action next_state, reward, done, _ = env.step(action) done_bool = float(done) if episode_timesteps < env._max_episode_steps else 0 # Store data in replay buffer replay_buffer.add(state, action, next_state, reward, done_bool) state = next_state # Store observation and reward bounds policy.obs_upper_bound = np.amax(state) if policy.obs_upper_bound < np.amax(state) else policy.obs_upper_bound policy.obs_lower_bound = np.amin(state) if policy.obs_lower_bound > np.amin(state) else policy.obs_lower_bound policy.reward_lower_bound = (reward) if policy.reward_lower_bound > reward else policy.reward_lower_bound policy.reward_upper_bound = (reward) if policy.reward_upper_bound < reward else policy.reward_upper_bound episode_reward += reward # Train agent after collecting sufficient data if args.training_mode == 'Online': if t >= args.start_timesteps: policy.train(replay_buffer, args.batch_size) #,train_steps = 1) if done: ep_reward_list.append(episode_reward) print(f"Total T: {t+1} Episode Num: {episode_num+1} Episode T: {episode_timesteps} Reward: {episode_reward:.3f}") if args.training_mode == 'Offline': if t >= args.start_timesteps: policy.train(replay_buffer, args.batch_size,train_steps = episode_timesteps) # Reset environment state, done = env.reset(), False episode_reward = 0 episode_timesteps = 0 episode_num += 1 # Evaluate episode if (t + 1) % args.eval_freq == 0: evaluations.append(eval_policy(policy, args.env)) if args.save_model == "True": policy.save(f"./models/{file_name}") data = np.array(evaluations) df = pd.DataFrame(data=data,columns=["Average Return"]).reset_index() df['Timesteps'] = df['index'] * args.eval_freq df['env'] = args.env df['algorithm_name'] = policy_name#args.policy df.to_csv(f'./data/{args.env}/{policy_name}/seed{args.seed}/progress.csv', index = False) if args.noisy_testing == "True": #count = -1 for noise in noise_ls: #count +=1 evaluations_actionnoise.append(eval_actionnoise_policy(policy, args.env,policy_noise=noise,max_action = max_action)) data = np.array(evaluations_actionnoise) df = pd.DataFrame(data=data,columns=["Average Return"]).reset_index() df['Timesteps'] = df['index'] * args.eval_freq df['env'] = args.env df['algorithm_name'] = policy_name#args.policy df.to_csv(f'./data/{args.env}/{policy_name}/seed{args.seed}/action_noise_progress.csv', index = False) evaluations_statenoise.append(eval_statenoise_policy(policy, args.env,state_noise=noise/5)) data = np.array(evaluations_statenoise) df = pd.DataFrame(data=data,columns=["Average Return"]).reset_index() df['Timesteps'] = df['index'] * args.eval_freq df['env'] = args.env df['algorithm_name'] = policy_name#args.policy df.to_csv(f'./data/{args.env}/{policy_name}/seed{args.seed}/state_noise_progress.csv', index = False)
[ "numpy.random.seed", "argparse.ArgumentParser", "numpy.amin", "numpy.random.normal", "utils.ReplayBuffer", "pandas.DataFrame", "os.path.exists", "TD3.TD3", "torch.Tensor", "json.dump", "torch.randn_like", "torch.manual_seed", "time.sleep", "torch.cuda.is_available", "gym.make", "os.makedirs", "numpy.amax", "numpy.array", "Q_TD3.TD3" ]
[((313, 331), 'gym.make', 'gym.make', (['env_name'], {}), '(env_name)\n', (321, 331), False, 'import gym\n'), ((908, 926), 'gym.make', 'gym.make', (['env_name'], {}), '(env_name)\n', (916, 926), False, 'import gym\n'), ((1530, 1548), 'gym.make', 'gym.make', (['env_name'], {}), '(env_name)\n', (1538, 1548), False, 'import gym\n'), ((2019, 2044), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2042, 2044), False, 'import argparse\n'), ((5464, 5482), 'gym.make', 'gym.make', (['args.env'], {}), '(args.env)\n', (5472, 5482), False, 'import gym\n'), ((5518, 5546), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (5535, 5546), False, 'import torch\n'), ((5548, 5573), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (5562, 5573), True, 'import numpy as np\n'), ((7629, 7670), 'utils.ReplayBuffer', 'utils.ReplayBuffer', (['state_dim', 'action_dim'], {}), '(state_dim, action_dim)\n', (7647, 7670), False, 'import utils\n'), ((4614, 4650), 'time.sleep', 'time.sleep', (['(3600.0 * args.pause_hour)'], {}), '(3600.0 * args.pause_hour)\n', (4624, 4650), False, 'import time\n'), ((5167, 5190), 'os.makedirs', 'os.makedirs', (['"""./models"""'], {}), "('./models')\n", (5178, 5190), False, 'import json, os\n'), ((6265, 6282), 'TD3.TD3', 'TD3.TD3', ([], {}), '(**kwargs)\n', (6272, 6282), False, 'import TD3\n'), ((6914, 6980), 'os.path.exists', 'os.path.exists', (['f"""./data/{args.env}/{policy_name}/seed{args.seed}"""'], {}), "(f'./data/{args.env}/{policy_name}/seed{args.seed}')\n", (6928, 6980), False, 'import json, os\n'), ((6984, 7047), 'os.makedirs', 'os.makedirs', (['f"""./data/{args.env}/{policy_name}/seed{args.seed}"""'], {}), "(f'./data/{args.env}/{policy_name}/seed{args.seed}')\n", (6995, 7047), False, 'import json, os\n'), ((7148, 7175), 'json.dump', 'json.dump', (['variant', 'outfile'], {}), '(variant, outfile)\n', (7157, 7175), False, 'import json, os\n'), ((1096, 1116), 'torch.Tensor', 'torch.Tensor', (['action'], {}), '(action)\n', (1108, 1116), False, 'import torch\n'), ((1667, 1686), 'torch.Tensor', 'torch.Tensor', (['state'], {}), '(state)\n', (1679, 1686), False, 'import torch\n'), ((5137, 5163), 'os.path.exists', 'os.path.exists', (['"""./models"""'], {}), "('./models')\n", (5151, 5163), False, 'import json, os\n'), ((5413, 5438), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (5436, 5438), False, 'import torch\n'), ((6768, 6787), 'Q_TD3.TD3', 'Q_TD3.TD3', ([], {}), '(**kwargs)\n', (6777, 6787), False, 'import Q_TD3\n'), ((8619, 8633), 'numpy.amax', 'np.amax', (['state'], {}), '(state)\n', (8626, 8633), True, 'import numpy as np\n'), ((8732, 8746), 'numpy.amin', 'np.amin', (['state'], {}), '(state)\n', (8739, 8746), True, 'import numpy as np\n'), ((9900, 9921), 'numpy.array', 'np.array', (['evaluations'], {}), '(evaluations)\n', (9908, 9921), True, 'import numpy as np\n'), ((472, 487), 'numpy.array', 'np.array', (['state'], {}), '(state)\n', (480, 487), True, 'import numpy as np\n'), ((1067, 1082), 'numpy.array', 'np.array', (['state'], {}), '(state)\n', (1075, 1082), True, 'import numpy as np\n'), ((1839, 1854), 'numpy.array', 'np.array', (['state'], {}), '(state)\n', (1847, 1854), True, 'import numpy as np\n'), ((8662, 8676), 'numpy.amax', 'np.amax', (['state'], {}), '(state)\n', (8669, 8676), True, 'import numpy as np\n'), ((8775, 8789), 'numpy.amin', 'np.amin', (['state'], {}), '(state)\n', (8782, 8789), True, 'import numpy as np\n'), ((9930, 9981), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'data', 'columns': "['Average Return']"}), "(data=data, columns=['Average Return'])\n", (9942, 9981), True, 'import pandas as pd\n'), ((10463, 10496), 'numpy.array', 'np.array', (['evaluations_actionnoise'], {}), '(evaluations_actionnoise)\n', (10471, 10496), True, 'import numpy as np\n'), ((10942, 10974), 'numpy.array', 'np.array', (['evaluations_statenoise'], {}), '(evaluations_statenoise)\n', (10950, 10974), True, 'import numpy as np\n'), ((1129, 1153), 'torch.randn_like', 'torch.randn_like', (['action'], {}), '(action)\n', (1145, 1153), False, 'import torch\n'), ((1699, 1722), 'torch.randn_like', 'torch.randn_like', (['state'], {}), '(state)\n', (1715, 1722), False, 'import torch\n'), ((8183, 8249), 'numpy.random.normal', 'np.random.normal', (['(0)', '(max_action * args.expl_noise)'], {'size': 'action_dim'}), '(0, max_action * args.expl_noise, size=action_dim)\n', (8199, 8249), True, 'import numpy as np\n'), ((8160, 8175), 'numpy.array', 'np.array', (['state'], {}), '(state)\n', (8168, 8175), True, 'import numpy as np\n'), ((10507, 10558), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'data', 'columns': "['Average Return']"}), "(data=data, columns=['Average Return'])\n", (10519, 10558), True, 'import pandas as pd\n'), ((10985, 11036), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'data', 'columns': "['Average Return']"}), "(data=data, columns=['Average Return'])\n", (10997, 11036), True, 'import pandas as pd\n')]
from typing import Tuple, List import numpy as np from .types import GridShape, ReceptiveFieldRect def estimate_rf_from_gradient(receptive_field_grad: np.ndarray) -> ReceptiveFieldRect: """ Given input gradient tensors of shape [N, W, H, C] it returns the estimated size of gradient `blob` in W-H directions i.e. this function computes the size of gradient in W-H axis for each feature map. :param receptive_field_grad: a numpy tensor with gradient values obtained for certain feature map :return: a corresponding ReceptiveFieldRect """ receptive_field_grad = np.array(receptive_field_grad).mean(0).mean(-1) binary_map: np.ndarray = (receptive_field_grad[:, :] > 0) x_cs: np.ndarray = binary_map.sum(-1) >= 1 y_cs: np.ndarray = binary_map.sum(0) >= 1 x = np.arange(len(x_cs)) y = np.arange(len(y_cs)) width = x_cs.sum() height = y_cs.sum() x = np.sum(x * x_cs) / width y = np.sum(y * y_cs) / height return ReceptiveFieldRect(x, y, width, height) def estimate_rf_from_gradients( receptive_field_grads: List[np.ndarray] ) -> List[ReceptiveFieldRect]: """ Given input gradient tensors of shape [N, W, H, C] it returns the estimated size of gradient `blob` in W-H directions i.e. this function computes the size of gradient in W-H axis for each feature map. :param receptive_field_grads: a list of numpy tensor with gradient values obtained for different feature maps :return: a list of corresponding ReceptiveFieldRect """ return [ estimate_rf_from_gradient(receptive_field_grad) for receptive_field_grad in receptive_field_grads ]
[ "numpy.array", "numpy.sum" ]
[((870, 886), 'numpy.sum', 'np.sum', (['(x * x_cs)'], {}), '(x * x_cs)\n', (876, 886), True, 'import numpy as np\n'), ((900, 916), 'numpy.sum', 'np.sum', (['(y * y_cs)'], {}), '(y * y_cs)\n', (906, 916), True, 'import numpy as np\n'), ((574, 604), 'numpy.array', 'np.array', (['receptive_field_grad'], {}), '(receptive_field_grad)\n', (582, 604), True, 'import numpy as np\n')]
""" Graph related functions. """ import itertools import json from networkx.readwrite import json_graph import networkx as nx import numpy as np import seaborn as sns from scipy.special import comb import trilearn.auxiliary_functions def from_json_file(filename): """From json graph to graph. Args: filename (string): Filename of json graph. Returns: NetworksX graph: NetworkX version of the json graph. """ with open(filename) as data_file: json_G = json.load(data_file) return json_graph.node_link_graph(json_G) def replace_node(graph, node, new_node): """Replaces node by new_node in graph. Args: graph (NetworkX graph): A graph. node (hashable object): A node. new_node (hashable object): Another node. """ graph.add_node(new_node) graph.add_edges_from([(new_node, n) for n in graph.neighbors(node)]) graph.remove_node(node) def plot(graph, filename, layout="dot"): """ Plots a networkx graph and saves it to filename. Args: graph (NetworkX graph): A graph. filename (string): The filename. """ agraph = nx.nx_agraph.to_agraph(graph) agraph.layout(layout) agraph.draw(filename) def graph_to_tuple(graph): """ Takes a NetworkX graph and returns a tuplized adjacency matrix. Args: graph (NetworkX graph): A graph Returns: tuple: A flattened adjacency matrix in tuple format. Example: >>> g.nodes NodeView((0, 1, 2, 3, 4)) >>> g.edges EdgeView([(0, 1), (0, 2), (1, 2), (2, 3), (3, 4)]) >>> glib.graph_to_tuple(g) (0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0) """ p = graph.order() mat = np.array(nx.to_numpy_matrix(graph), dtype=int).reshape(p*p) return tuple(mat) def tuple_to_graph(vecmat): """ Takes a tuple of the rows in an adjacency matrix and returns a nx.graph. This is a kind of serialization of a graph. Args: vecmat (tuple): tuple of the rows in an adjacency matrix. Returns: NetworkX graph """ p = int(np.sqrt(len(vecmat))) mat = np.array(vecmat).reshape(p, p) mat += mat.T mat = np.matrix(mat) return nx.from_numpy_matrix(mat) def hash_graph(graph): """ A hash value of the tupelized version of graph. Args: graph (NetworkX graph): A graph Returns: int: A hash value of a graph. Example: >>> g = dlib.sample(5) >>> g.nodes NodeView((0, 1, 2, 3, 4)) >>> g.edges EdgeView([(0, 1), (0, 3), (1, 2), (1, 3), (2, 3)]) >>> glib.hash_graph(g) 249771633555694270 """ return hash(str(graph_to_tuple(graph))) def true_distribution(seqdist, filename): """Calculating true distribution for a graph with 6 nodes. Args: seqdist (SequentialDistribution): A (Sequential) distribution for a decomposable graph. filename (string): Filename to save marginal edge distribtion. Returns: dict: The graph distribution evaluated for each graph. """ p = seqdist.p no_chordal = 0 true_heatmap = np.matrix(np.zeros(p*p).reshape(p, p)) max_ll = -100000 graph_ll = {} graph_post = {} for val in itertools.product(*([[0, 1]] * comb(p, 2))): vec_mat = [0] vec_mat += list(val[0:5]) vec_mat += [0]*2 vec_mat += list(val[5:9]) vec_mat += [0]*3 vec_mat += list(val[9:12]) vec_mat += [0]*4 vec_mat += list(val[12:14]) vec_mat += [0]*5 vec_mat += [val[14]] vec_mat += [0]*6 mat = np.array(vec_mat).reshape(p, p) mat += mat.T mat = np.matrix(mat) graph1 = nx.from_numpy_matrix(mat) if nx.is_chordal(graph1): no_chordal += 1 logl = seqdist.log_likelihood(graph1) if logl > max_ll: max_ll = logl graph_ll[tuple(vec_mat)] = logl # Rescaled normalizing constant norm_const_rescaled = sum([np.exp(rp-max_ll) for g, rp in graph_ll.iteritems()]) for vec_mat, ll in graph_ll.iteritems(): mat = np.array(vec_mat).reshape(p, p) mat += mat.T mat = np.matrix(mat) graph1 = nx.from_numpy_matrix(mat) if nx.is_chordal(graph1): graph_post[vec_mat] = np.exp(ll-max_ll) / norm_const_rescaled true_heatmap += mat * graph_post[vec_mat] with sns.axes_style("white"): sns.heatmap(heatmap, mask=mask, annot=False, cmap="Blues", xticklabels=range(1, p+1), yticklabels=range(1, p+1), vmin=0.0, vmax=1.0, square=True, cbar=True) plt.yticks(rotation=0) plt.savefig(filename_prefix+"_edge_heatmap_cbar.eps", format="eps",bbox_inches='tight', dpi=100) plt.clf() trilearn.auxiliary_functions.plot_matrix(np.array(true_heatmap), filename, "png", title="Czech Autoworkers posterior heatmap, lambda=" + str(seqdist.cell_alpha)) return graph_post def plot_adjmat(graph, cbar=False): """ Plots the adjecency matrix of graph. Args: graph (NetworkX graph): A graph. """ heatmap = nx.to_numpy_matrix(graph) mask = np.zeros_like(heatmap) mask[np.triu_indices_from(mask)] = True with sns.axes_style("white"): sns.heatmap(heatmap, mask=mask, annot=False, cmap="Blues", vmin=0.0, vmax=1.0, square=True, cbar=cbar, xticklabels=5, yticklabels=5)
[ "networkx.readwrite.json_graph.node_link_graph", "numpy.matrix", "numpy.zeros_like", "json.load", "networkx.from_numpy_matrix", "seaborn.axes_style", "seaborn.heatmap", "scipy.special.comb", "networkx.nx_agraph.to_agraph", "numpy.zeros", "networkx.is_chordal", "networkx.to_numpy_matrix", "numpy.array", "numpy.exp", "numpy.triu_indices_from" ]
[((535, 569), 'networkx.readwrite.json_graph.node_link_graph', 'json_graph.node_link_graph', (['json_G'], {}), '(json_G)\n', (561, 569), False, 'from networkx.readwrite import json_graph\n'), ((1151, 1180), 'networkx.nx_agraph.to_agraph', 'nx.nx_agraph.to_agraph', (['graph'], {}), '(graph)\n', (1173, 1180), True, 'import networkx as nx\n'), ((2237, 2251), 'numpy.matrix', 'np.matrix', (['mat'], {}), '(mat)\n', (2246, 2251), True, 'import numpy as np\n'), ((2263, 2288), 'networkx.from_numpy_matrix', 'nx.from_numpy_matrix', (['mat'], {}), '(mat)\n', (2283, 2288), True, 'import networkx as nx\n'), ((5447, 5472), 'networkx.to_numpy_matrix', 'nx.to_numpy_matrix', (['graph'], {}), '(graph)\n', (5465, 5472), True, 'import networkx as nx\n'), ((5484, 5506), 'numpy.zeros_like', 'np.zeros_like', (['heatmap'], {}), '(heatmap)\n', (5497, 5506), True, 'import numpy as np\n'), ((502, 522), 'json.load', 'json.load', (['data_file'], {}), '(data_file)\n', (511, 522), False, 'import json\n'), ((3744, 3758), 'numpy.matrix', 'np.matrix', (['mat'], {}), '(mat)\n', (3753, 3758), True, 'import numpy as np\n'), ((3776, 3801), 'networkx.from_numpy_matrix', 'nx.from_numpy_matrix', (['mat'], {}), '(mat)\n', (3796, 3801), True, 'import networkx as nx\n'), ((3814, 3835), 'networkx.is_chordal', 'nx.is_chordal', (['graph1'], {}), '(graph1)\n', (3827, 3835), True, 'import networkx as nx\n'), ((4298, 4312), 'numpy.matrix', 'np.matrix', (['mat'], {}), '(mat)\n', (4307, 4312), True, 'import numpy as np\n'), ((4330, 4355), 'networkx.from_numpy_matrix', 'nx.from_numpy_matrix', (['mat'], {}), '(mat)\n', (4350, 4355), True, 'import networkx as nx\n'), ((4367, 4388), 'networkx.is_chordal', 'nx.is_chordal', (['graph1'], {}), '(graph1)\n', (4380, 4388), True, 'import networkx as nx\n'), ((5083, 5105), 'numpy.array', 'np.array', (['true_heatmap'], {}), '(true_heatmap)\n', (5091, 5105), True, 'import numpy as np\n'), ((5516, 5542), 'numpy.triu_indices_from', 'np.triu_indices_from', (['mask'], {}), '(mask)\n', (5536, 5542), True, 'import numpy as np\n'), ((5560, 5583), 'seaborn.axes_style', 'sns.axes_style', (['"""white"""'], {}), "('white')\n", (5574, 5583), True, 'import seaborn as sns\n'), ((5593, 5730), 'seaborn.heatmap', 'sns.heatmap', (['heatmap'], {'mask': 'mask', 'annot': '(False)', 'cmap': '"""Blues"""', 'vmin': '(0.0)', 'vmax': '(1.0)', 'square': '(True)', 'cbar': 'cbar', 'xticklabels': '(5)', 'yticklabels': '(5)'}), "(heatmap, mask=mask, annot=False, cmap='Blues', vmin=0.0, vmax=\n 1.0, square=True, cbar=cbar, xticklabels=5, yticklabels=5)\n", (5604, 5730), True, 'import seaborn as sns\n'), ((2179, 2195), 'numpy.array', 'np.array', (['vecmat'], {}), '(vecmat)\n', (2187, 2195), True, 'import numpy as np\n'), ((4086, 4105), 'numpy.exp', 'np.exp', (['(rp - max_ll)'], {}), '(rp - max_ll)\n', (4092, 4105), True, 'import numpy as np\n'), ((4532, 4555), 'seaborn.axes_style', 'sns.axes_style', (['"""white"""'], {}), "('white')\n", (4546, 4555), True, 'import seaborn as sns\n'), ((1780, 1805), 'networkx.to_numpy_matrix', 'nx.to_numpy_matrix', (['graph'], {}), '(graph)\n', (1798, 1805), True, 'import networkx as nx\n'), ((3200, 3215), 'numpy.zeros', 'np.zeros', (['(p * p)'], {}), '(p * p)\n', (3208, 3215), True, 'import numpy as np\n'), ((3334, 3344), 'scipy.special.comb', 'comb', (['p', '(2)'], {}), '(p, 2)\n', (3338, 3344), False, 'from scipy.special import comb\n'), ((3677, 3694), 'numpy.array', 'np.array', (['vec_mat'], {}), '(vec_mat)\n', (3685, 3694), True, 'import numpy as np\n'), ((4231, 4248), 'numpy.array', 'np.array', (['vec_mat'], {}), '(vec_mat)\n', (4239, 4248), True, 'import numpy as np\n'), ((4424, 4443), 'numpy.exp', 'np.exp', (['(ll - max_ll)'], {}), '(ll - max_ll)\n', (4430, 4443), True, 'import numpy as np\n')]
import sys if sys.version_info < (3,): range = xrange import numpy as np import pandas as pd import scipy.linalg as la import scipy.sparse as sp import scipy.stats as ss from scipy.stats import multivariate_normal from .. import arma from .. import output as op from .. import tests as tst from .. import tsm as tsm from .. import data_check as dc from .kernels import * class GPNARX(tsm.TSM): """ Inherits time series methods from TSM class. **** GAUSSIAN PROCESS NONLINEAR AUTOREGRESSIVE (GP-NARX) MODELS **** Parameters ---------- data : pd.DataFrame or np.array Field to specify the time series data that will be used. ar : int Field to specify how many AR terms the model will have. kernel : kernel object For example, SquaredExponential() or OrnsteinUhlenbeck() integ : int (default : 0) Specifies how many time to difference the time series. target : str (pd.DataFrame) or int (np.array) Specifies which column name or array index to use. By default, first column/array will be selected as the dependent variable. """ def __init__(self, data, ar, kernel, integ=0, target=None): # Initialize TSM object super(GPNARX,self).__init__('GPNARX') # Latent variables self.ar = ar if ar < 1: raise ValueError('Cannot have less than 1 AR term!') self.integ = integ self.max_lag = self.ar self.model_name = 'GPNARX(' + str(self.ar) + ')' self._z_hide = 0 # Whether to cutoff variance latent variables from results self.supported_methods = ["MLE","PML","Laplace","M-H","BBVI"] self.default_method = "MLE" self.multivariate_model = False # Format the data self.data, self.data_name, self.is_pandas, self.index = dc.data_check(data,target) self.data_original = self.data.copy() # Difference data for order in range(self.integ): self.data = np.diff(self.data) self.data_name = "Differenced " + self.data_name self.index = self.index[self.integ:len(self.index)] # Apply normalization self.data_full = self.data.copy() self.data = np.array(self.data_full[self.max_lag:self.data_full.shape[0]]) # adjust for lags self._norm_mean = np.mean(self.data) self._norm_std = np.std(self.data) self.data = (self.data - self._norm_mean) / self._norm_std self.data_full = (self.data_full - self._norm_mean) / self._norm_std self.kernel = kernel self.kernel.X = self.X().T # Define latent variables self._create_latent_variables() self.neg_loglik = self.full_neg_loglik def _alpha(self, L): """ Covariance-derived term to construct expectations. See Rasmussen & Williams. Parameters ---------- L : np.ndarray Cholesky triangular Returns ---------- np.ndarray (alpha) """ return la.cho_solve((L.T, True), la.cho_solve((L, True), np.transpose(self.data))) def _construct_predict(self, beta, h): """ Creates h-step ahead forecasts for the Gaussian process Parameters ---------- beta : np.array Contains untransformed starting values for the latent variables h: int How many steps ahead to forecast Returns ---------- - predictions - variance of predictions """ # Refactor this entire code in future parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(beta.shape[0])]) Xstart = self.X().copy() Xstart = [i for i in Xstart] predictions = np.zeros(h) variances = np.zeros(h) for step in range(0,h): Xstar = [] for lag in range(0,self.max_lag): if lag == 0: if step == 0: Xstar.append([self.data[-1]]) Xstart[0] = np.append(Xstart[0],self.data[-1]) else: Xstar.append([predictions[step-1]]) Xstart[0] = np.append(Xstart[0],predictions[step-1]) else: Xstar.append([Xstart[lag-1][-2]]) Xstart[lag] = np.append(Xstart[lag],Xstart[lag-1][-2]) Kstar = self.kernel.Kstar(parm, np.transpose(np.array(Xstar))) L = self._L(parm) alpha = self._alpha(L) predictions[step] = np.dot(np.transpose(Kstar), alpha) v = la.cho_solve((L, True), Kstar) variances[step] = self.kernel.Kstarstar(parm, np.transpose(np.array(Xstar))) - np.dot(v.T, v) return predictions, variances, predictions - 1.98*np.power(variances,0.5), predictions + 1.98*np.power(variances,0.5) def _create_latent_variables(self): """ Creates model latent variables Returns ---------- None (changes model attributes) """ # Create latent variables for no, i in enumerate(self.kernel.build_latent_variables()): self.latent_variables.add_z(i[0],i[1],i[2]) self.latent_variables.z_list[no].start = i[3] self.z_no = len(self.kernel.build_latent_variables()) # Use an ARIMA model to find starting point for the initial noise latent variable arma_start = arma.ARIMA(self.data, ar=self.ar, ma=0, integ=self.integ) x = arma_start.fit() arma_starting_values = arma_start.latent_variables.get_z_values() self.latent_variables.z_list[0].start = np.log(np.exp(np.power(arma_starting_values[-1],2))) def _L(self, parm): """ Creates cholesky decomposition of covariance matrix Parameters ---------- parm : np.array Contains transformed latent variables Returns ---------- The cholesky decomposition (L) of K """ return np.linalg.cholesky(self.kernel.K(parm) + np.identity(self.X().shape[1])*parm[0]) def X(self): """ Creates design matrix of variables to use in GP regression Returns ---------- The design matrix """ if self.ar == 1: return np.array([self.data_full[(self.max_lag-1):-1]]) else: for i in range(0,self.ar): datapoint = self.data_full[(self.max_lag-i-1):-i-1] if i == 0: X = datapoint else: X = np.vstack((X,datapoint)) return X def expected_values(self, beta): """ Expected values of the function given the covariance matrix and hyperparameters Parameters ---------- beta : np.ndarray Contains untransformed values for latent variables Returns ---------- The expected values of the function """ parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(beta.shape[0])]) L = self._L(parm) alpha = self._alpha(L) return np.dot(np.transpose(self.kernel.K(parm)), alpha) def variance_values(self, beta): """ Covariance matrix for the estimated function Parameters ---------- beta : np.array Contains untransformed starting values for latent variables Returns ---------- Covariance matrix for the estimated function """ parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(beta.shape[0])]) L = self._L(parm) v = la.cho_solve((L, True), self.kernel.K(parm)) return self.kernel.K(parm) - np.dot(v.T, v) def full_neg_loglik(self, beta): """ Creates the negative log marginal likelihood of the model Parameters ---------- beta : np.array Contains untransformed starting values for latent variables Returns ---------- The negative log marginal logliklihood of the model """ parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(beta.shape[0])]) L = self._L(parm) return -(-0.5*(np.dot(np.transpose(self.data),self._alpha(L))) - np.log(np.diag(L)).sum() - (self.data.shape[0]/2.0)*np.log(2.0*np.pi)) def plot_fit(self, intervals=True, **kwargs): """ Plots the fit of the Gaussian process model to the data Parameters ---------- beta : np.array Contains untransformed starting values for latent variables intervals : Boolean Whether to plot uncertainty intervals or not Returns ---------- None (plots the fit of the function) """ import matplotlib.pyplot as plt import seaborn as sns figsize = kwargs.get('figsize',(10,7)) date_index = self.index[self.max_lag:] expectation = self.expected_values(self.latent_variables.get_z_values()) variance = self.variance_values(self.latent_variables.get_z_values()) upper = expectation + 1.98*np.power(np.diag(variance),0.5) lower = expectation - 1.98*np.power(np.diag(variance),0.5) plt.figure(figsize=figsize) plt.subplot(2, 2, 1) plt.title(self.data_name + " Raw") plt.plot(date_index,self.data*self._norm_std + self._norm_mean,'k') plt.subplot(2, 2, 2) plt.title(self.data_name + " Raw and Expected") plt.plot(date_index,self.data*self._norm_std + self._norm_mean,'k',alpha=0.2) plt.plot(date_index,self.expected_values(self.latent_variables.get_z_values())*self._norm_std + self._norm_mean,'b') plt.subplot(2, 2, 3) plt.title(self.data_name + " Raw and Expected (with intervals)") if intervals == True: plt.fill_between(date_index, lower*self._norm_std + self._norm_mean, upper*self._norm_std + self._norm_mean, alpha=0.2) plt.plot(date_index,self.data*self._norm_std + self._norm_mean,'k',alpha=0.2) plt.plot(date_index,self.expected_values(self.latent_variables.get_z_values())*self._norm_std + self._norm_mean,'b') plt.subplot(2, 2, 4) plt.title("Expected " + self.data_name + " (with intervals)") if intervals == True: plt.fill_between(date_index, lower*self._norm_std + self._norm_mean, upper*self._norm_std + self._norm_mean, alpha=0.2) plt.plot(date_index,self.expected_values(self.latent_variables.get_z_values())*self._norm_std + self._norm_mean,'b') plt.show() def plot_predict(self, h=5, past_values=20, intervals=True,**kwargs): """ Plots forecast with the estimated model Parameters ---------- h : int (default : 5) How many steps ahead would you like to forecast? past_values : int (default : 20) How many past observations to show on the forecast graph? intervals : Boolean Would you like to show 95% prediction intervals for the forecast? Returns ---------- - Plot of the forecast - Error bars, forecasted_values, plot_values, plot_index """ import matplotlib.pyplot as plt import seaborn as sns figsize = kwargs.get('figsize',(10,7)) if self.latent_variables.estimated is False: raise Exception("No latent variables estimated!") else: predictions, variance, lower, upper = self._construct_predict(self.latent_variables.get_z_values(),h) full_predictions = np.append(self.data,predictions) full_lower = np.append(self.data,lower) full_upper = np.append(self.data,upper) date_index = self.shift_dates(h) # Plot values (how far to look back) plot_values = full_predictions[-h-past_values:]*self._norm_std + self._norm_mean plot_index = date_index[-h-past_values:] # Lower and upper intervals lower = np.append(full_predictions[-h-1],lower) upper = np.append(full_predictions[-h-1],upper) plt.figure(figsize=figsize) if intervals == True: plt.fill_between(date_index[-h-1:], lower*self._norm_std + self._norm_mean, upper*self._norm_std + self._norm_mean, alpha=0.2) plt.plot(plot_index,plot_values) plt.title("Forecast for " + self.data_name) plt.xlabel("Time") plt.ylabel(self.data_name) plt.show() def predict_is(self, h=5, fit_once=True): """ Makes dynamic in-sample predictions with the estimated model Parameters ---------- h : int (default : 5) How many steps would you like to forecast? fit_once : boolean (default: True) Fits only once before the in-sample prediction; if False, fits after every new datapoint Returns ---------- - pd.DataFrame with predicted values """ predictions = [] for t in range(0,h): x = GPNARX(ar=self.ar,kernel=self.kernel,integ=self.integ, data=self.data_original[:-h+t]) if fit_once is False: x.fit(printer=False) if t == 0: if fit_once is True: x.fit(printer=False) saved_lvs = x.latent_variables predictions = x.predict(1) else: if fit_once is True: x.latent_variables = saved_lvs predictions = pd.concat([predictions,x.predict(1)]) predictions.rename(columns={0:self.data_name}, inplace=True) predictions.index = self.index[-h:] return predictions def plot_predict_is(self, h=5, fit_once=True, **kwargs): """ Plots forecasts with the estimated model against data (Simulated prediction with data) Parameters ---------- h : int (default : 5) How many steps to forecast fit_once : boolean (default: True) Fits only once before the in-sample prediction; if False, fits after every new datapoint Returns ---------- - Plot of the forecast against data """ import matplotlib.pyplot as plt import seaborn as sns figsize = kwargs.get('figsize',(10,7)) plt.figure(figsize=figsize) date_index = self.index[-h:] predictions = self.predict_is(h, fit_once=fit_once) data = self.data[-h:] plt.plot(date_index,data*self._norm_std + self._norm_mean,label='Data') plt.plot(date_index,predictions,label='Predictions',c='black') plt.title(self.data_name) plt.legend(loc=2) plt.show() def predict(self, h=5): """ Makes forecast with the estimated model Parameters ---------- h : int (default : 5) How many steps ahead would you like to forecast? Returns ---------- - pd.DataFrame with predicted values """ if self.latent_variables.estimated is False: raise Exception("No latent variables estimated!") else: predictions, _, _, _ = self._construct_predict(self.latent_variables.get_z_values(),h) predictions = predictions*self._norm_std + self._norm_mean date_index = self.shift_dates(h) result = pd.DataFrame(predictions) result.rename(columns={0:self.data_name}, inplace=True) result.index = date_index[-h:] return result
[ "matplotlib.pyplot.title", "matplotlib.pyplot.figure", "numpy.mean", "numpy.diag", "matplotlib.pyplot.fill_between", "pandas.DataFrame", "numpy.std", "numpy.power", "scipy.linalg.cho_solve", "numpy.transpose", "numpy.append", "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "matplotlib.pyplot.ylabel", "numpy.dot", "numpy.vstack", "matplotlib.pyplot.subplot", "numpy.log", "matplotlib.pyplot.plot", "numpy.zeros", "numpy.diff", "numpy.array", "matplotlib.pyplot.xlabel" ]
[((2273, 2335), 'numpy.array', 'np.array', (['self.data_full[self.max_lag:self.data_full.shape[0]]'], {}), '(self.data_full[self.max_lag:self.data_full.shape[0]])\n', (2281, 2335), True, 'import numpy as np\n'), ((2380, 2398), 'numpy.mean', 'np.mean', (['self.data'], {}), '(self.data)\n', (2387, 2398), True, 'import numpy as np\n'), ((2424, 2441), 'numpy.std', 'np.std', (['self.data'], {}), '(self.data)\n', (2430, 2441), True, 'import numpy as np\n'), ((3882, 3893), 'numpy.zeros', 'np.zeros', (['h'], {}), '(h)\n', (3890, 3893), True, 'import numpy as np\n'), ((3914, 3925), 'numpy.zeros', 'np.zeros', (['h'], {}), '(h)\n', (3922, 3925), True, 'import numpy as np\n'), ((9581, 9608), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (9591, 9608), True, 'import matplotlib.pyplot as plt\n'), ((9619, 9639), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (9630, 9639), True, 'import matplotlib.pyplot as plt\n'), ((9648, 9682), 'matplotlib.pyplot.title', 'plt.title', (["(self.data_name + ' Raw')"], {}), "(self.data_name + ' Raw')\n", (9657, 9682), True, 'import matplotlib.pyplot as plt\n'), ((9693, 9764), 'matplotlib.pyplot.plot', 'plt.plot', (['date_index', '(self.data * self._norm_std + self._norm_mean)', '"""k"""'], {}), "(date_index, self.data * self._norm_std + self._norm_mean, 'k')\n", (9701, 9764), True, 'import matplotlib.pyplot as plt\n'), ((9770, 9790), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (9781, 9790), True, 'import matplotlib.pyplot as plt\n'), ((9799, 9846), 'matplotlib.pyplot.title', 'plt.title', (["(self.data_name + ' Raw and Expected')"], {}), "(self.data_name + ' Raw and Expected')\n", (9808, 9846), True, 'import matplotlib.pyplot as plt\n'), ((9856, 9942), 'matplotlib.pyplot.plot', 'plt.plot', (['date_index', '(self.data * self._norm_std + self._norm_mean)', '"""k"""'], {'alpha': '(0.2)'}), "(date_index, self.data * self._norm_std + self._norm_mean, 'k',\n alpha=0.2)\n", (9864, 9942), True, 'import matplotlib.pyplot as plt\n'), ((10068, 10088), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (10079, 10088), True, 'import matplotlib.pyplot as plt\n'), ((10097, 10161), 'matplotlib.pyplot.title', 'plt.title', (["(self.data_name + ' Raw and Expected (with intervals)')"], {}), "(self.data_name + ' Raw and Expected (with intervals)')\n", (10106, 10161), True, 'import matplotlib.pyplot as plt\n'), ((10360, 10446), 'matplotlib.pyplot.plot', 'plt.plot', (['date_index', '(self.data * self._norm_std + self._norm_mean)', '"""k"""'], {'alpha': '(0.2)'}), "(date_index, self.data * self._norm_std + self._norm_mean, 'k',\n alpha=0.2)\n", (10368, 10446), True, 'import matplotlib.pyplot as plt\n'), ((10572, 10592), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (10583, 10592), True, 'import matplotlib.pyplot as plt\n'), ((10602, 10663), 'matplotlib.pyplot.title', 'plt.title', (["('Expected ' + self.data_name + ' (with intervals)')"], {}), "('Expected ' + self.data_name + ' (with intervals)')\n", (10611, 10663), True, 'import matplotlib.pyplot as plt\n'), ((10987, 10997), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10995, 10997), True, 'import matplotlib.pyplot as plt\n'), ((14995, 15022), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (15005, 15022), True, 'import matplotlib.pyplot as plt\n'), ((15159, 15234), 'matplotlib.pyplot.plot', 'plt.plot', (['date_index', '(data * self._norm_std + self._norm_mean)'], {'label': '"""Data"""'}), "(date_index, data * self._norm_std + self._norm_mean, label='Data')\n", (15167, 15234), True, 'import matplotlib.pyplot as plt\n'), ((15239, 15304), 'matplotlib.pyplot.plot', 'plt.plot', (['date_index', 'predictions'], {'label': '"""Predictions"""', 'c': '"""black"""'}), "(date_index, predictions, label='Predictions', c='black')\n", (15247, 15304), True, 'import matplotlib.pyplot as plt\n'), ((15310, 15335), 'matplotlib.pyplot.title', 'plt.title', (['self.data_name'], {}), '(self.data_name)\n', (15319, 15335), True, 'import matplotlib.pyplot as plt\n'), ((15344, 15361), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(2)'}), '(loc=2)\n', (15354, 15361), True, 'import matplotlib.pyplot as plt\n'), ((15373, 15383), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (15381, 15383), True, 'import matplotlib.pyplot as plt\n'), ((2033, 2051), 'numpy.diff', 'np.diff', (['self.data'], {}), '(self.data)\n', (2040, 2051), True, 'import numpy as np\n'), ((4760, 4790), 'scipy.linalg.cho_solve', 'la.cho_solve', (['(L, True)', 'Kstar'], {}), '((L, True), Kstar)\n', (4772, 4790), True, 'import scipy.linalg as la\n'), ((6464, 6511), 'numpy.array', 'np.array', (['[self.data_full[self.max_lag - 1:-1]]'], {}), '([self.data_full[self.max_lag - 1:-1]])\n', (6472, 6511), True, 'import numpy as np\n'), ((7985, 7999), 'numpy.dot', 'np.dot', (['v.T', 'v'], {}), '(v.T, v)\n', (7991, 7999), True, 'import numpy as np\n'), ((10209, 10337), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['date_index', '(lower * self._norm_std + self._norm_mean)', '(upper * self._norm_std + self._norm_mean)'], {'alpha': '(0.2)'}), '(date_index, lower * self._norm_std + self._norm_mean, \n upper * self._norm_std + self._norm_mean, alpha=0.2)\n', (10225, 10337), True, 'import matplotlib.pyplot as plt\n'), ((10710, 10838), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['date_index', '(lower * self._norm_std + self._norm_mean)', '(upper * self._norm_std + self._norm_mean)'], {'alpha': '(0.2)'}), '(date_index, lower * self._norm_std + self._norm_mean, \n upper * self._norm_std + self._norm_mean, alpha=0.2)\n', (10726, 10838), True, 'import matplotlib.pyplot as plt\n'), ((12045, 12078), 'numpy.append', 'np.append', (['self.data', 'predictions'], {}), '(self.data, predictions)\n', (12054, 12078), True, 'import numpy as np\n'), ((12103, 12130), 'numpy.append', 'np.append', (['self.data', 'lower'], {}), '(self.data, lower)\n', (12112, 12130), True, 'import numpy as np\n'), ((12155, 12182), 'numpy.append', 'np.append', (['self.data', 'upper'], {}), '(self.data, upper)\n', (12164, 12182), True, 'import numpy as np\n'), ((12484, 12526), 'numpy.append', 'np.append', (['full_predictions[-h - 1]', 'lower'], {}), '(full_predictions[-h - 1], lower)\n', (12493, 12526), True, 'import numpy as np\n'), ((12544, 12586), 'numpy.append', 'np.append', (['full_predictions[-h - 1]', 'upper'], {}), '(full_predictions[-h - 1], upper)\n', (12553, 12586), True, 'import numpy as np\n'), ((12597, 12624), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (12607, 12624), True, 'import matplotlib.pyplot as plt\n'), ((12899, 12932), 'matplotlib.pyplot.plot', 'plt.plot', (['plot_index', 'plot_values'], {}), '(plot_index, plot_values)\n', (12907, 12932), True, 'import matplotlib.pyplot as plt\n'), ((12944, 12987), 'matplotlib.pyplot.title', 'plt.title', (["('Forecast for ' + self.data_name)"], {}), "('Forecast for ' + self.data_name)\n", (12953, 12987), True, 'import matplotlib.pyplot as plt\n'), ((13000, 13018), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time"""'], {}), "('Time')\n", (13010, 13018), True, 'import matplotlib.pyplot as plt\n'), ((13031, 13057), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['self.data_name'], {}), '(self.data_name)\n', (13041, 13057), True, 'import matplotlib.pyplot as plt\n'), ((13070, 13080), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (13078, 13080), True, 'import matplotlib.pyplot as plt\n'), ((16091, 16116), 'pandas.DataFrame', 'pd.DataFrame', (['predictions'], {}), '(predictions)\n', (16103, 16116), True, 'import pandas as pd\n'), ((3146, 3169), 'numpy.transpose', 'np.transpose', (['self.data'], {}), '(self.data)\n', (3158, 3169), True, 'import numpy as np\n'), ((4716, 4735), 'numpy.transpose', 'np.transpose', (['Kstar'], {}), '(Kstar)\n', (4728, 4735), True, 'import numpy as np\n'), ((4882, 4896), 'numpy.dot', 'np.dot', (['v.T', 'v'], {}), '(v.T, v)\n', (4888, 4896), True, 'import numpy as np\n'), ((5813, 5850), 'numpy.power', 'np.power', (['arma_starting_values[-1]', '(2)'], {}), '(arma_starting_values[-1], 2)\n', (5821, 5850), True, 'import numpy as np\n'), ((12675, 12812), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['date_index[-h - 1:]', '(lower * self._norm_std + self._norm_mean)', '(upper * self._norm_std + self._norm_mean)'], {'alpha': '(0.2)'}), '(date_index[-h - 1:], lower * self._norm_std + self.\n _norm_mean, upper * self._norm_std + self._norm_mean, alpha=0.2)\n', (12691, 12812), True, 'import matplotlib.pyplot as plt\n'), ((4490, 4533), 'numpy.append', 'np.append', (['Xstart[lag]', 'Xstart[lag - 1][-2]'], {}), '(Xstart[lag], Xstart[lag - 1][-2])\n', (4499, 4533), True, 'import numpy as np\n'), ((4589, 4604), 'numpy.array', 'np.array', (['Xstar'], {}), '(Xstar)\n', (4597, 4604), True, 'import numpy as np\n'), ((4956, 4980), 'numpy.power', 'np.power', (['variances', '(0.5)'], {}), '(variances, 0.5)\n', (4964, 4980), True, 'import numpy as np\n'), ((5000, 5024), 'numpy.power', 'np.power', (['variances', '(0.5)'], {}), '(variances, 0.5)\n', (5008, 5024), True, 'import numpy as np\n'), ((6749, 6774), 'numpy.vstack', 'np.vstack', (['(X, datapoint)'], {}), '((X, datapoint))\n', (6758, 6774), True, 'import numpy as np\n'), ((8645, 8664), 'numpy.log', 'np.log', (['(2.0 * np.pi)'], {}), '(2.0 * np.pi)\n', (8651, 8664), True, 'import numpy as np\n'), ((9482, 9499), 'numpy.diag', 'np.diag', (['variance'], {}), '(variance)\n', (9489, 9499), True, 'import numpy as np\n'), ((9549, 9566), 'numpy.diag', 'np.diag', (['variance'], {}), '(variance)\n', (9556, 9566), True, 'import numpy as np\n'), ((4182, 4217), 'numpy.append', 'np.append', (['Xstart[0]', 'self.data[-1]'], {}), '(Xstart[0], self.data[-1])\n', (4191, 4217), True, 'import numpy as np\n'), ((4339, 4382), 'numpy.append', 'np.append', (['Xstart[0]', 'predictions[step - 1]'], {}), '(Xstart[0], predictions[step - 1])\n', (4348, 4382), True, 'import numpy as np\n'), ((4862, 4877), 'numpy.array', 'np.array', (['Xstar'], {}), '(Xstar)\n', (4870, 4877), True, 'import numpy as np\n'), ((8550, 8573), 'numpy.transpose', 'np.transpose', (['self.data'], {}), '(self.data)\n', (8562, 8573), True, 'import numpy as np\n'), ((8600, 8610), 'numpy.diag', 'np.diag', (['L'], {}), '(L)\n', (8607, 8610), True, 'import numpy as np\n')]
""" Composite Laminate Module (:mod:`compmech.composite.laminate`) ============================================================== .. currentmodule:: compmech.composite.laminate """ from __future__ import division, absolute_import import numpy as np from .lamina import Lamina from .matlamina import read_laminaprop from compmech.constants import DOUBLE from compmech.logger import * from numpy.linalg.linalg import inv def read_stack(stack, plyt=None, laminaprop=None, plyts=[], laminaprops=[], offset=0., lam3D=False): """Read a laminate stacking sequence data. An ``Laminate`` object is returned based on the inputs given. Parameters ---------- stack : list Angles of the stacking sequence in degrees. plyt : float, optional When all plies have the same thickness, ``plyt`` can be supplied. laminaprop : tuple, optional When all plies have the same material properties, ``laminaprop`` can be supplied. plyts : list, optional A list of floats with the thickness of each ply. laminaprops : list, optional A list of tuples with a laminaprop for each ply. offset : float, optional Offset along the normal axis about the mid-surface, which influences the laminate properties. lam3D : bool Use 3D model by Chou 1971, requires 3D material properties Notes ----- ``plyt`` or ``plyts`` must be supplied ``laminaprop`` or ``laminaprops`` must be supplied For orthotropic plies, the ``laminaprop`` should be:: laminaprop = (E11, E22, nu12, G12, G13, G23) For isotropic plies, the ``laminaprop`` should be:: laminaprop = (E, E, nu) For lam3D, the ``laminaprop`` should be:: laminaprop = (e1, e2, nu12, g12, g13, g23, e3, nu13, nu23, a1, a2, a3) """ lam = Laminate() lam.offset = offset lam.stack = stack lam.lam3D = lam3D if not plyts: if not plyt: error('plyt or plyts must be supplied') raise ValueError else: plyts = [plyt for i in stack] if not laminaprops: if not laminaprop: error('laminaprop or laminaprops must be supplied') raise ValueError else: laminaprops = [laminaprop for i in stack] lam.plies = [] for plyt, laminaprop, theta in zip(plyts, laminaprops, stack): laminaprop = laminaprop ply = Lamina() ply.theta = float(theta) ply.t = plyt ply.matobj = read_laminaprop(laminaprop) lam.plies.append(ply) lam.rebuild() lam.calc_constitutive_matrix() return lam def read_lamination_parameters(thickness, laminaprop, xiA1, xiA2, xiA3, xiA4, xiB1, xiB2, xiB3, xiB4, xiD1, xiD2, xiD3, xiD4, xiE1, xiE2, xiE3, xiE4): r"""Calculates a laminate based on the lamination parameters. The lamination parameters: `\xi_{A1} \cdots \xi_{A4}`, `\xi_{B1} \cdots \xi_{B4}`, `\xi_{C1} \cdots \xi_{C4}`, `\xi_{D1} \cdots \xi_{D4}`, `\xi_{E1} \cdots \xi_{E4}` are used to calculate the laminate constitutive matrix. Parameters ---------- thickness : float The total thickness of the laminate laminaprop : tuple The laminaprop tuple used to define the laminate material. xiA1 to xiD4 : float The 16 lamination parameters used to define the laminate. Returns ------- lam : Laminate laminate with the ABD and ABDE matrices already calculated """ lam = Laminate() lam.t = thickness lam.matobj = read_laminaprop(laminaprop) lam.xiA = np.array([1, xiA1, xiA2, xiA3, xiA4], dtype=DOUBLE) lam.xiB = np.array([0, xiB1, xiB2, xiB3, xiB4], dtype=DOUBLE) lam.xiD = np.array([1, xiD1, xiD2, xiD3, xiD4], dtype=DOUBLE) lam.xiE = np.array([1, xiE1, xiE2, xiE3, xiE4], dtype=DOUBLE) lam.calc_ABDE_from_lamination_parameters() return lam class Laminate(object): r""" ========= =========================================================== attribute description ========= =========================================================== plies list of plies t total thickness of the laminate offset offset at the normal direction e1 equivalent laminate modulus in 1 direction e2 equivalent laminate modulus in 2 direction g12 equivalent laminate shear modulus in 12 direction nu12 equivalent laminate Poisson ratio in 12 direction nu21 equivalent laminate Poisson ratio in 21 direction xiA laminate parameters for extensional matrix A xiB laminate parameters for extension-bending matrix B xiD laminate parameters for bending matrix D A laminate extension matrix B laminate extension-bending matrix D laminate bending matrix E laminate transferse shear matrix ABD laminate ABD matrix ABDE laminate ABD matrix with transverse shear terms ========= =========================================================== """ def __init__(self): self.plies = [] self.matobj = None self.t = None self.offset = 0. self.e1 = None self.e2 = None self.e3 = None self.nu12 = None self.g12 = None self.g13 = None self.g23 = None self.a1 = None self.a2 = None self.xiA = None self.xiB = None self.xiD = None self.A = None self.B = None self.D = None self.E = None self.ABD = None self.ABDE = None self.lam3D = False def rebuild(self): lam_thick = 0 for ply in self.plies: ply.rebuild() lam_thick += ply.t self.t = lam_thick def calc_equivalent_modulus(self): """Calculates the equivalent laminate properties. The following attributes are calculated: e1, e2, g12, nu12, nu21 """ if not self.lam3D: AI = np.matrix(self.ABD, dtype=DOUBLE).I a11, a12, a22, a33 = AI[0, 0], AI[0, 1], AI[1, 1], AI[2, 2] self.e1 = 1. / (self.t * a11) self.e2 = 1. / (self.t * a22) self.g12 = 1. / (self.t * a33) self.nu12 = - a12 / a11 self.nu21 = - a12 / a22 # Eq. 5.110 Ganesh/Rana Lecture19 Hygrothermal laminate theory # or Eq. 4.72 into Eg.4.64 with delta_T=1 (Kaw 2006) a = np.squeeze(np.array(np.dot(AI, self.QLAL))) self.a1 = a[0] self.a2 = a[1] self.a12 = a[2] else: H = inv(self.C_general) # Bogetti 1995 Eq. 29 self.e1 = 1. / H[0, 0] # Bogetti 1995 Eq. 30 self.e2 = 1. / H[1, 1] # Bogetti 1995 Eq. 31 self.e3 = 1. / H[2, 2] # Bogetti 1995 Eq. 32 self.g23 = 1. / H[3, 3] # Bogetti 1995 Eq. 33 self.g13 = 1. / H[4, 4] # Bogetti 1995 Eq. 34 self.g12 = 1. / H[5, 5] # Bogetti 1995 Eq. 35 self.nu23 = - H[1, 2] / H[1, 1] # Bogetti 1995 Eq. 36 self.nu13 = - H[0, 2] / H[0, 0] # Bogetti 1995 Eq. 37 self.nu12 = - H[0, 1] / H[0, 0] # Bogetti 1995 Eq. 38 self.nu32 = - H[1, 2] / H[2, 2] # Bogetti 1995 Eq. 39 self.nu31 = - H[0, 2] / H[2, 2] # Bogetti 1995 Eq. 40 self.nu21 = - H[0, 1] / H[1, 1] # Bogetti 1995 Eq. 41 N = self.N self.a1 = np.dot(H[0, :], N) # Bogetti Eq. 44 self.a2 = np.dot(H[1, :], N) # Bogetti Eq. 45 self.a3 = np.dot(H[2, :], N) # Bogetti Eq. 46 self.a23 = np.dot(H[3, :], N) # Bogetti Eq. 47 self.a13 = np.dot(H[4, :], N) # Bogetti Eq. 48 self.a12 = np.dot(H[5, :], N) # Bogetti Eq. 49 def calc_lamination_parameters(self): """Calculate the lamination parameters. The following attributes are calculated: xiA, xiB, xiD, xiE """ xiA1, xiA2, xiA3, xiA4 = 0, 0, 0, 0 xiB1, xiB2, xiB3, xiB4 = 0, 0, 0, 0 xiD1, xiD2, xiD3, xiD4 = 0, 0, 0, 0 xiE1, xiE2, xiE3, xiE4 = 0, 0, 0, 0 lam_thick = sum([ply.t for ply in self.plies]) self.t = lam_thick h0 = -lam_thick / 2. + self.offset for ply in self.plies: hk_1 = h0 h0 += ply.t hk = h0 Afac = ply.t / lam_thick Bfac = (2. / lam_thick**2) * (hk**2 - hk_1**2) Dfac = (4. / lam_thick**3) * (hk**3 - hk_1**3) Efac = (1. / lam_thick) * (hk - hk_1) # * (5./6) * (5./6) cos2t = ply.cos2t cos4t = ply.cos4t sin2t = ply.sin2t sin4t = ply.sin4t xiA1 += Afac * cos2t xiA2 += Afac * sin2t xiA3 += Afac * cos4t xiA4 += Afac * sin4t xiB1 += Bfac * cos2t xiB2 += Bfac * sin2t xiB3 += Bfac * cos4t xiB4 += Bfac * sin4t xiD1 += Dfac * cos2t xiD2 += Dfac * sin2t xiD3 += Dfac * cos4t xiD4 += Dfac * sin4t xiE1 += Efac * cos2t xiE2 += Efac * sin2t xiE3 += Efac * cos4t xiE4 += Efac * sin4t self.xiA = np.array([1, xiA1, xiA2, xiA3, xiA4], dtype=DOUBLE) self.xiB = np.array([0, xiB1, xiB2, xiB3, xiB4], dtype=DOUBLE) self.xiD = np.array([1, xiD1, xiD2, xiD3, xiD4], dtype=DOUBLE) self.xiE = np.array([1, xiE1, xiE2, xiE3, xiE4], dtype=DOUBLE) def calc_ABDE_from_lamination_parameters(self): """Use the ABDE matrix based on lamination parameters. Given the lamination parameters ``xiA``, ``xiB``, ``xiC`` and ``xiD``, the ABD matrix is calculated. """ # dummies used to unpack vector results du1, du2, du3, du4, du5, du6 = 0, 0, 0, 0, 0, 0 # A matrix terms A11, A22, A12, du1, du2, du3, A66, A16, A26 =\ (self.t) * np.dot(self.matobj.u, self.xiA) # B matrix terms B11, B22, B12, du1, du2, du3, B66, B16, B26 =\ (self.t**2 / 4.) * np.dot(self.matobj.u, self.xiB) # D matrix terms D11, D22, D12, du1, du2, du3, D66, D16, D26 =\ (self.t**3 / 12.) * np.dot(self.matobj.u, self.xiD) # E matrix terms du1, du2, du3, E44, E55, E45, du4, du5, du6 =\ (self.t) * np.dot(self.matobj.u, self.xiE) self.A = np.array([[A11, A12, A16], [A12, A22, A26], [A16, A26, A66]], dtype=DOUBLE) self.B = np.array([[B11, B12, B16], [B12, B22, B26], [B16, B26, B66]], dtype=DOUBLE) self.D = np.array([[D11, D12, D16], [D12, D22, D26], [D16, D26, D66]], dtype=DOUBLE) # printing E acoordingly to Reddy definition for E44, E45 and E55 self.E = np.array([[E55, E45], [E45, E44]], dtype=DOUBLE) self.ABD = np.array([[A11, A12, A16, B11, B12, B16], [A12, A22, A26, B12, B22, B26], [A16, A26, A66, B16, B26, B66], [B11, B12, B16, D11, D12, D16], [B12, B22, B26, D12, D22, D26], [B16, B26, B66, D16, D26, D66]], dtype=DOUBLE) # printing ABDE acoordingly to Reddy definition for E44, E45 and E55 self.ABDE = np.array([[A11, A12, A16, B11, B12, B16, 0, 0], [A12, A22, A26, B12, B22, B26, 0, 0], [A16, A26, A66, B16, B26, B66, 0, 0], [B11, B12, B16, D11, D12, D16, 0, 0], [B12, B22, B26, D12, D22, D26, 0, 0], [B16, B26, B66, D16, D26, D66, 0, 0], [0, 0, 0, 0, 0, 0, E55, E45], [0, 0, 0, 0, 0, 0, E45, E44]], dtype=DOUBLE) def calc_constitutive_matrix(self): """Calculates the laminate constitutive matrix This is the commonly called ``ABD`` matrix with ``shape=(6, 6)`` when the classical laminated plate theory is used, or the ``ABDE`` matrix when the first-order shear deformation theory is used, containing the transverse shear terms. """ self.A_general = np.zeros([5, 5], dtype=DOUBLE) self.B_general = np.zeros([5, 5], dtype=DOUBLE) self.D_general = np.zeros([5, 5], dtype=DOUBLE) self.QLALN_general = np.zeros([5], dtype=DOUBLE) self.QLALM_general = np.zeros([5], dtype=DOUBLE) lam_thick = sum([ply.t for ply in self.plies]) self.t = lam_thick h0 = -lam_thick / 2 + self.offset for ply in self.plies: hk_1 = h0 h0 += ply.t hk = h0 self.A_general += ply.QL * (hk - hk_1) self.B_general += 1 / 2. * ply.QL * (hk**2 - hk_1**2) self.D_general += 1 / 3. * ply.QL * (hk**3 - hk_1**3) # TODO add CTE laminate matrix # Reddy Eq. 3.3.41 QLAL_dot = np.dot(ply.QL, ply.AL) self.QLALN_general += QLAL_dot * (hk - hk_1) self.QLALM_general += 1 / 2. * QLAL_dot * (hk**2 - hk_1**2) self.A = self.A_general[0:3, 0:3] self.B = self.B_general[0:3, 0:3] self.D = self.D_general[0:3, 0:3] self.E = self.A_general[3:5, 3:5] # Note Reddy convention Reddy Eq. 2.4.8 # E11 = A44 = 23 = yz # E22 = A55 = 13 = xz conc1 = np.concatenate([self.A, self.B], axis=1) conc2 = np.concatenate([self.B, self.D], axis=1) self.ABD = np.concatenate([conc1, conc2], axis=0) self.ABDE = np.zeros((8, 8), dtype=DOUBLE) self.ABDE[0:6, 0:6] = self.ABD self.ABDE[6:8, 6:8] = self.E self.QLALN = self.QLALN_general[0:3] self.QLALM = self.QLALM_general[0:3] self.QLAL = np.concatenate([self.QLALN, self.QLALM], axis=0) self._calc_stiffness_matrix_3D() def _calc_stiffness_matrix_3D(self): ''' Calculates the laminate stiffness matrix <NAME>, 1971, Elastic Constants of Layered Media Theory assumes symmetric laminate ''' # general laminate stiffness matrix self.C_general = np.zeros([6, 6], dtype=DOUBLE) lam_thick = self.t # Chou 1971 Eq. 8 def _sum_l_up(j, lam_thick): sum_l_up = 0. for plyl in self.plies: tl = plyl.t vl = tl / lam_thick CLl = plyl.CL sum_l_up += vl * CLl[2, j] / CLl[2, 2] return sum_l_up def _sum_l_low(lam_thick): sum_l_low = 0. for plyl in self.plies: tl = plyl.t vl = tl / lam_thick CLl = plyl.CL sum_l_low += vl / CLl[2, 2] return sum_l_low for i in [0, 1, 2, 5]: for j in [0, 1, 2, 5]: for plyk in self.plies: tk = plyk.t vk = tk / lam_thick CLk = plyk.CL self.C_general[i, j] += vk * (CLk[i, j] - (CLk[i, 2] * CLk[2, j]) / (CLk[2, 2]) + (CLk[i, 2] * _sum_l_up(j, lam_thick)) / (CLk[2, 2] * _sum_l_low(lam_thick))) # Chou 1971 Eq. 9 def _sum_k_up_34(i, j, lam_thick): sum_k_up_34 = 0. for plyk in self.plies: tk = plyk.t vk = tk / lam_thick CLk = plyk.CL deltak = plyk.delta_CL45 sum_k_up_34 += vk / deltak * CLk[i, j] return sum_k_up_34 def _sum_kl_low_34(lam_thick): sum_kl_low_34 = 0. for plyk in self.plies: tk = plyk.t vk = tk / lam_thick CLk = plyk.CL deltak = plyk.delta_CL45 for plyl in self.plies: tl = plyl.t vl = tl / lam_thick CLl = plyl.CL deltal = plyk.delta_CL45 sum_kl_low_34 += (vk * vl) /\ (deltak * deltal) * \ (CLk[3, 3] * CLl[4, 4] - CLk[3, 4] * CLl[4, 3]) return sum_kl_low_34 for i in [3, 4]: for j in [3, 4]: self.C_general[i, j] = _sum_k_up_34( i, j, lam_thick) / _sum_kl_low_34(lam_thick) # Bogetti Eq. 43 self.N = np.zeros([6], dtype=DOUBLE) for i in range(6): for j in range(6): for plyk in self.plies: tk = plyk.t vk = tk / lam_thick CLk = plyk.CL AL3D = plyk.AL3D self.N[i] += CLk[i, j] * AL3D[j] * vk def force_balanced_LP(self): r"""Force balanced lamination parameters The lamination parameters `\xi_{A2}` and `\xi_{A4}` are set to null to force a balanced laminate. """ dummy, xiA1, xiA2, xiA3, xiA4 = self.xiA self.xiA = np.array([1, xiA1, 0, xiA3, 0], dtype=DOUBLE) self.calc_ABDE_from_lamination_parameters() def force_symmetric_LP(self): r"""Force symmetric lamination parameters The lamination parameters `\xi_{Bi}` are set to null to force a symmetric laminate. """ self.xiB = np.zeros(5) self.calc_ABDE_from_lamination_parameters() def force_orthotropic(self): r"""Force an orthotropic laminate The terms `A_{13}`, `A_{23}`, `A_{31}`, `A_{32}`, `B_{13}`, `B_{23}`, `B_{31}`, `B_{32}`, `D_{13}`, `D_{23}`, `D_{31}`, `D_{32}` are set to zero to force an orthotropic laminate. """ if self.offset != 0.: raise RuntimeError( 'Laminates with offset cannot be forced orthotropic!') self.A[0, 2] = 0. self.A[1, 2] = 0. self.A[2, 0] = 0. self.A[2, 1] = 0. self.B[0, 2] = 0. self.B[1, 2] = 0. self.B[2, 0] = 0. self.B[2, 1] = 0. self.D[0, 2] = 0. self.D[1, 2] = 0. self.D[2, 0] = 0. self.D[2, 1] = 0. self.ABD[0, 2] = 0. # A16 self.ABD[1, 2] = 0. # A26 self.ABD[2, 0] = 0. # A61 self.ABD[2, 1] = 0. # A62 self.ABD[0, 5] = 0. # B16 self.ABD[5, 0] = 0. # B61 self.ABD[1, 5] = 0. # B26 self.ABD[5, 1] = 0. # B62 self.ABD[3, 2] = 0. # B16 self.ABD[2, 3] = 0. # B61 self.ABD[4, 2] = 0. # B26 self.ABD[2, 4] = 0. # B62 self.ABD[3, 5] = 0. # D16 self.ABD[4, 5] = 0. # D26 self.ABD[5, 3] = 0. # D61 self.ABD[5, 4] = 0. # D62 self.ABDE[0, 2] = 0. # A16 self.ABDE[1, 2] = 0. # A26 self.ABDE[2, 0] = 0. # A61 self.ABDE[2, 1] = 0. # A62 self.ABDE[0, 5] = 0. # B16 self.ABDE[5, 0] = 0. # B61 self.ABDE[1, 5] = 0. # B26 self.ABDE[5, 1] = 0. # B62 self.ABDE[3, 2] = 0. # B16 self.ABDE[2, 3] = 0. # B61 self.ABDE[4, 2] = 0. # B26 self.ABDE[2, 4] = 0. # B62 self.ABDE[3, 5] = 0. # D16 self.ABDE[4, 5] = 0. # D26 self.ABDE[5, 3] = 0. # D61 self.ABDE[5, 4] = 0. # D62 def force_symmetric(self): """Force a symmetric laminate The `B` terms of the constitutive matrix are set to zero. """ if self.offset != 0.: raise RuntimeError( 'Laminates with offset cannot be forced symmetric!') self.B = np.zeros((3, 3)) self.ABD[0:3, 3:6] = 0 self.ABD[3:6, 0:3] = 0 self.ABDE[0:3, 3:6] = 0 self.ABDE[3:6, 0:3] = 0 def apply_load(self, F, dT): ''' Obtain strains of stacking due to loading F = [n_x, n_y, n_xy, m_x, m_y, m_xy] in N/m :param: F: force vector :param: dT: delta temperature :return: eps0: vector of strains due to normal loads eps0=[eps_x, eps_y, eps_xy] :return: eps1: vector of strains due to bending loads eps1=[eps_x, eps_y, eps_xy] ''' # Reddy, Eq. 3.3.40 eps = np.dot(inv(self.ABD), (F + self.QLAL * dT)) eps0 = eps[0:3] eps1 = eps[3:6] return eps0, eps1
[ "numpy.matrix", "numpy.linalg.linalg.inv", "numpy.zeros", "numpy.array", "numpy.dot", "numpy.concatenate" ]
[((3755, 3806), 'numpy.array', 'np.array', (['[1, xiA1, xiA2, xiA3, xiA4]'], {'dtype': 'DOUBLE'}), '([1, xiA1, xiA2, xiA3, xiA4], dtype=DOUBLE)\n', (3763, 3806), True, 'import numpy as np\n'), ((3821, 3872), 'numpy.array', 'np.array', (['[0, xiB1, xiB2, xiB3, xiB4]'], {'dtype': 'DOUBLE'}), '([0, xiB1, xiB2, xiB3, xiB4], dtype=DOUBLE)\n', (3829, 3872), True, 'import numpy as np\n'), ((3887, 3938), 'numpy.array', 'np.array', (['[1, xiD1, xiD2, xiD3, xiD4]'], {'dtype': 'DOUBLE'}), '([1, xiD1, xiD2, xiD3, xiD4], dtype=DOUBLE)\n', (3895, 3938), True, 'import numpy as np\n'), ((3953, 4004), 'numpy.array', 'np.array', (['[1, xiE1, xiE2, xiE3, xiE4]'], {'dtype': 'DOUBLE'}), '([1, xiE1, xiE2, xiE3, xiE4], dtype=DOUBLE)\n', (3961, 4004), True, 'import numpy as np\n'), ((9511, 9562), 'numpy.array', 'np.array', (['[1, xiA1, xiA2, xiA3, xiA4]'], {'dtype': 'DOUBLE'}), '([1, xiA1, xiA2, xiA3, xiA4], dtype=DOUBLE)\n', (9519, 9562), True, 'import numpy as np\n'), ((9582, 9633), 'numpy.array', 'np.array', (['[0, xiB1, xiB2, xiB3, xiB4]'], {'dtype': 'DOUBLE'}), '([0, xiB1, xiB2, xiB3, xiB4], dtype=DOUBLE)\n', (9590, 9633), True, 'import numpy as np\n'), ((9653, 9704), 'numpy.array', 'np.array', (['[1, xiD1, xiD2, xiD3, xiD4]'], {'dtype': 'DOUBLE'}), '([1, xiD1, xiD2, xiD3, xiD4], dtype=DOUBLE)\n', (9661, 9704), True, 'import numpy as np\n'), ((9724, 9775), 'numpy.array', 'np.array', (['[1, xiE1, xiE2, xiE3, xiE4]'], {'dtype': 'DOUBLE'}), '([1, xiE1, xiE2, xiE3, xiE4], dtype=DOUBLE)\n', (9732, 9775), True, 'import numpy as np\n'), ((10702, 10777), 'numpy.array', 'np.array', (['[[A11, A12, A16], [A12, A22, A26], [A16, A26, A66]]'], {'dtype': 'DOUBLE'}), '([[A11, A12, A16], [A12, A22, A26], [A16, A26, A66]], dtype=DOUBLE)\n', (10710, 10777), True, 'import numpy as np\n'), ((10850, 10925), 'numpy.array', 'np.array', (['[[B11, B12, B16], [B12, B22, B26], [B16, B26, B66]]'], {'dtype': 'DOUBLE'}), '([[B11, B12, B16], [B12, B22, B26], [B16, B26, B66]], dtype=DOUBLE)\n', (10858, 10925), True, 'import numpy as np\n'), ((10998, 11073), 'numpy.array', 'np.array', (['[[D11, D12, D16], [D12, D22, D26], [D16, D26, D66]]'], {'dtype': 'DOUBLE'}), '([[D11, D12, D16], [D12, D22, D26], [D16, D26, D66]], dtype=DOUBLE)\n', (11006, 11073), True, 'import numpy as np\n'), ((11220, 11268), 'numpy.array', 'np.array', (['[[E55, E45], [E45, E44]]'], {'dtype': 'DOUBLE'}), '([[E55, E45], [E45, E44]], dtype=DOUBLE)\n', (11228, 11268), True, 'import numpy as np\n'), ((11316, 11541), 'numpy.array', 'np.array', (['[[A11, A12, A16, B11, B12, B16], [A12, A22, A26, B12, B22, B26], [A16, A26,\n A66, B16, B26, B66], [B11, B12, B16, D11, D12, D16], [B12, B22, B26,\n D12, D22, D26], [B16, B26, B66, D16, D26, D66]]'], {'dtype': 'DOUBLE'}), '([[A11, A12, A16, B11, B12, B16], [A12, A22, A26, B12, B22, B26], [\n A16, A26, A66, B16, B26, B66], [B11, B12, B16, D11, D12, D16], [B12,\n B22, B26, D12, D22, D26], [B16, B26, B66, D16, D26, D66]], dtype=DOUBLE)\n', (11324, 11541), True, 'import numpy as np\n'), ((11776, 12104), 'numpy.array', 'np.array', (['[[A11, A12, A16, B11, B12, B16, 0, 0], [A12, A22, A26, B12, B22, B26, 0, 0],\n [A16, A26, A66, B16, B26, B66, 0, 0], [B11, B12, B16, D11, D12, D16, 0,\n 0], [B12, B22, B26, D12, D22, D26, 0, 0], [B16, B26, B66, D16, D26, D66,\n 0, 0], [0, 0, 0, 0, 0, 0, E55, E45], [0, 0, 0, 0, 0, 0, E45, E44]]'], {'dtype': 'DOUBLE'}), '([[A11, A12, A16, B11, B12, B16, 0, 0], [A12, A22, A26, B12, B22,\n B26, 0, 0], [A16, A26, A66, B16, B26, B66, 0, 0], [B11, B12, B16, D11,\n D12, D16, 0, 0], [B12, B22, B26, D12, D22, D26, 0, 0], [B16, B26, B66,\n D16, D26, D66, 0, 0], [0, 0, 0, 0, 0, 0, E55, E45], [0, 0, 0, 0, 0, 0,\n E45, E44]], dtype=DOUBLE)\n', (11784, 12104), True, 'import numpy as np\n'), ((12728, 12758), 'numpy.zeros', 'np.zeros', (['[5, 5]'], {'dtype': 'DOUBLE'}), '([5, 5], dtype=DOUBLE)\n', (12736, 12758), True, 'import numpy as np\n'), ((12784, 12814), 'numpy.zeros', 'np.zeros', (['[5, 5]'], {'dtype': 'DOUBLE'}), '([5, 5], dtype=DOUBLE)\n', (12792, 12814), True, 'import numpy as np\n'), ((12840, 12870), 'numpy.zeros', 'np.zeros', (['[5, 5]'], {'dtype': 'DOUBLE'}), '([5, 5], dtype=DOUBLE)\n', (12848, 12870), True, 'import numpy as np\n'), ((12900, 12927), 'numpy.zeros', 'np.zeros', (['[5]'], {'dtype': 'DOUBLE'}), '([5], dtype=DOUBLE)\n', (12908, 12927), True, 'import numpy as np\n'), ((12957, 12984), 'numpy.zeros', 'np.zeros', (['[5]'], {'dtype': 'DOUBLE'}), '([5], dtype=DOUBLE)\n', (12965, 12984), True, 'import numpy as np\n'), ((13933, 13973), 'numpy.concatenate', 'np.concatenate', (['[self.A, self.B]'], {'axis': '(1)'}), '([self.A, self.B], axis=1)\n', (13947, 13973), True, 'import numpy as np\n'), ((13990, 14030), 'numpy.concatenate', 'np.concatenate', (['[self.B, self.D]'], {'axis': '(1)'}), '([self.B, self.D], axis=1)\n', (14004, 14030), True, 'import numpy as np\n'), ((14051, 14089), 'numpy.concatenate', 'np.concatenate', (['[conc1, conc2]'], {'axis': '(0)'}), '([conc1, conc2], axis=0)\n', (14065, 14089), True, 'import numpy as np\n'), ((14110, 14140), 'numpy.zeros', 'np.zeros', (['(8, 8)'], {'dtype': 'DOUBLE'}), '((8, 8), dtype=DOUBLE)\n', (14118, 14140), True, 'import numpy as np\n'), ((14329, 14377), 'numpy.concatenate', 'np.concatenate', (['[self.QLALN, self.QLALM]'], {'axis': '(0)'}), '([self.QLALN, self.QLALM], axis=0)\n', (14343, 14377), True, 'import numpy as np\n'), ((14696, 14726), 'numpy.zeros', 'np.zeros', (['[6, 6]'], {'dtype': 'DOUBLE'}), '([6, 6], dtype=DOUBLE)\n', (14704, 14726), True, 'import numpy as np\n'), ((17126, 17153), 'numpy.zeros', 'np.zeros', (['[6]'], {'dtype': 'DOUBLE'}), '([6], dtype=DOUBLE)\n', (17134, 17153), True, 'import numpy as np\n'), ((17733, 17778), 'numpy.array', 'np.array', (['[1, xiA1, 0, xiA3, 0]'], {'dtype': 'DOUBLE'}), '([1, xiA1, 0, xiA3, 0], dtype=DOUBLE)\n', (17741, 17778), True, 'import numpy as np\n'), ((18049, 18060), 'numpy.zeros', 'np.zeros', (['(5)'], {}), '(5)\n', (18057, 18060), True, 'import numpy as np\n'), ((20311, 20327), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (20319, 20327), True, 'import numpy as np\n'), ((6848, 6867), 'numpy.linalg.linalg.inv', 'inv', (['self.C_general'], {}), '(self.C_general)\n', (6851, 6867), False, 'from numpy.linalg.linalg import inv\n'), ((7691, 7709), 'numpy.dot', 'np.dot', (['H[0, :]', 'N'], {}), '(H[0, :], N)\n', (7697, 7709), True, 'import numpy as np\n'), ((7750, 7768), 'numpy.dot', 'np.dot', (['H[1, :]', 'N'], {}), '(H[1, :], N)\n', (7756, 7768), True, 'import numpy as np\n'), ((7809, 7827), 'numpy.dot', 'np.dot', (['H[2, :]', 'N'], {}), '(H[2, :], N)\n', (7815, 7827), True, 'import numpy as np\n'), ((7869, 7887), 'numpy.dot', 'np.dot', (['H[3, :]', 'N'], {}), '(H[3, :], N)\n', (7875, 7887), True, 'import numpy as np\n'), ((7929, 7947), 'numpy.dot', 'np.dot', (['H[4, :]', 'N'], {}), '(H[4, :], N)\n', (7935, 7947), True, 'import numpy as np\n'), ((7989, 8007), 'numpy.dot', 'np.dot', (['H[5, :]', 'N'], {}), '(H[5, :], N)\n', (7995, 8007), True, 'import numpy as np\n'), ((10230, 10261), 'numpy.dot', 'np.dot', (['self.matobj.u', 'self.xiA'], {}), '(self.matobj.u, self.xiA)\n', (10236, 10261), True, 'import numpy as np\n'), ((10373, 10404), 'numpy.dot', 'np.dot', (['self.matobj.u', 'self.xiB'], {}), '(self.matobj.u, self.xiB)\n', (10379, 10404), True, 'import numpy as np\n'), ((10517, 10548), 'numpy.dot', 'np.dot', (['self.matobj.u', 'self.xiD'], {}), '(self.matobj.u, self.xiD)\n', (10523, 10548), True, 'import numpy as np\n'), ((10652, 10683), 'numpy.dot', 'np.dot', (['self.matobj.u', 'self.xiE'], {}), '(self.matobj.u, self.xiE)\n', (10658, 10683), True, 'import numpy as np\n'), ((13488, 13510), 'numpy.dot', 'np.dot', (['ply.QL', 'ply.AL'], {}), '(ply.QL, ply.AL)\n', (13494, 13510), True, 'import numpy as np\n'), ((20905, 20918), 'numpy.linalg.linalg.inv', 'inv', (['self.ABD'], {}), '(self.ABD)\n', (20908, 20918), False, 'from numpy.linalg.linalg import inv\n'), ((6227, 6260), 'numpy.matrix', 'np.matrix', (['self.ABD'], {'dtype': 'DOUBLE'}), '(self.ABD, dtype=DOUBLE)\n', (6236, 6260), True, 'import numpy as np\n'), ((6711, 6732), 'numpy.dot', 'np.dot', (['AI', 'self.QLAL'], {}), '(AI, self.QLAL)\n', (6717, 6732), True, 'import numpy as np\n')]
import qulacs from qulacs.gate import to_matrix_gate, RZ from math import pi import numpy as np from ..op.util import break_operators_into_subsets_dummy from ..context import rotation_factor from time import time class ElpTime: init_tot = 0.0 init_0 = 0.0 init_1 = 0.0 init_2 = 0.0 init_3 = 0.0 init_4 = 0.0 symbol = 0.0 coef_list_0 = 0.0 coef_list_1 = 0.0 coef_list_2 = 0.0 coef_list_3 = 0.0 circuit = 0.0 def pauli_product_exponentiate_circuit(circuit, qoperator, control_bit=None): assert len(qoperator.terms) == 1, 'len(qoperator.terms) == {}'.format(len(qoperator.terms)) pauli_product = list(qoperator.terms)[0] # e.x. pauli_product = ((0,'X'), (1, 'Z')) if len(pauli_product)==0: return coeff = qoperator.terms[pauli_product] #kura> assert coeff.real == 0, 'coeff.real == {}'.format(coeff.real) # print('pauli_product',pauli_product,'coeff',coeff) assert abs(coeff.real) < 1e-10, 'coeff.real == {0:10.3e}'.format(coeff.real) theta = qoperator.terms[pauli_product].imag # 1. relevant_qubits = [] gates = [] for index_qubit, pauli_axis in pauli_product: relevant_qubits += [index_qubit] if pauli_axis=='X': circuit.add_H_gate(index_qubit) if pauli_axis=='Y': circuit.add_RX_gate(index_qubit, -pi/4 * rotation_factor) # 2. pairs_cnot = [(relevant_qubits[i], relevant_qubits[i+1]) for i in range(len(relevant_qubits)-1)] for pair_cnot in pairs_cnot: circuit.add_CNOT_gate(*pair_cnot) rz_gate = RZ(relevant_qubits[-1], theta * rotation_factor) if control_bit==None: circuit.add_gate(rz_gate) else: rz_mat_gate = to_matrix_gate(rz_gate) rz_mat_gate.add_control_qubit(control_bit, 1) circuit.add_gate(rz_mat_gate) for pair_cnot in reversed(pairs_cnot): circuit.add_CNOT_gate(*pair_cnot) # 3. gates = [] for index_qubit, pauli_axis in pauli_product: if pauli_axis=='X': circuit.add_H_gate(index_qubit) if pauli_axis=='Y': circuit.add_RX_gate(index_qubit, pi/4 * rotation_factor) def trotter_step_1st_order(circuit, qubit_operator, control_bit=None, function_break_operator=break_operators_into_subsets_dummy, *, reverse_order=False): subsets_qubit_operator = function_break_operator(qubit_operator) for subset in subsets_qubit_operator: for term in subset: pauli_product_exponentiate_circuit(circuit, term, control_bit) def trotter_step_2nd_order(circuit, qubit_operator, control_bit=None, function_break_operator=break_operators_into_subsets_dummy): subsets_qubit_operator = function_break_operator(qubit_operator) for subset in subsets_qubit_operator[:-1]: for term in subset: pauli_product_exponentiate_circuit(circuit, .5*term, control_bit) for term in subsets_qubit_operator[-1]: pauli_product_exponentiate_circuit(circuit, term, control_bit) for subset in reversed(subsets_qubit_operator[:-1]): for term in subset: pauli_product_exponentiate_circuit(circuit, .5*term, control_bit) from ..op.symbol import WrappedExpr class TrotterStep: """TrotterStepは、qubit operatorの指数関数をTrotter展開によりシミュレートする量子回路を扱うクラスです。 qubit operatorの係数にはWrappedExprクラスのインスタンスである数式を含むことができます。 Args: n_qubit (int): 量子ビット数 qubit_operator (openfermion.QubitOperator or list[tuple[pauli_string, coefficient]]): qubit operator order (int, optional): Trotter order (1 or 2) Examples: .. code-block:: python n_site = 4 fop = FermionOperator((), const) for p in range(n_site): for q in range(n_site): fop += FermionOperator('p^ q', WrappedExpr('t{}{}'.format(p,q))) qop = jordan_wigner(fop) ts = TrotterStep(n_site, qop) Note: hoge Attributes: circuit (qulacs.ParametricQuantumCircuit): パラメータを含む量子回路 """ def __init__(self, n_qubit, qubit_operator, order=2, reverse_exp_sequence=False): self._n_qubit = n_qubit ElpTime.init_tot -= time() ElpTime.init_0 -= time() import openfermion if isinstance(qubit_operator, openfermion.QubitOperator): pauli_string_and_amplitude_list = list(qubit_operator.terms.items()) elif isinstance(qubit_operator, dict): pauli_string_and_amplitude_list = list(qubit_operator.items()) self._n_term = len(pauli_string_and_amplitude_list) self._pauli_string_list = [] self._amplitude_expr_list = [] for pauli_string, amplitude_expr in pauli_string_and_amplitude_list[::-1 if reverse_exp_sequence else 1]: self._pauli_string_list.append(pauli_string) self._amplitude_expr_list.append(amplitude_expr) ElpTime.init_0 += time() # initialize parametrized 1st- or 2nd-order trotter circuit ElpTime.init_1 -= time() self._circuit = qulacs.ParametricQuantumCircuit(self._n_qubit) assert order in (1,2), 'order({}) not in (1,2)'.format(order) if order==1: self._iterm_list = list(range(self._n_term)) self._rotation_coeff_list = [1.0]*self._n_term elif order==2: self._iterm_list = list(range(self._n_term-1)) + [self._n_term-1] + list(range(self._n_term-2, -1, -1)) self._rotation_coeff_list = [0.5]*(self._n_term-1) + [1.0] + [0.5]*(self._n_term-1) for iterm in self._iterm_list: pauli_string = self._pauli_string_list[iterm] target = [index for index, axis in pauli_string] pauli_ids = [{'X':1, 'Y':2, 'Z':3}[axis] for index, axis in pauli_string] self._circuit.add_parametric_multi_Pauli_rotation_gate(target, pauli_ids, 0.0) ElpTime.init_1 += time() ElpTime.init_2 -= time() self._symbols = set() for amplitude_expr in self._amplitude_expr_list: if isinstance(amplitude_expr, WrappedExpr): self._symbols.update(amplitude_expr.expr.free_symbols) self._symbol_number_pairs = {} self._amplitude_value_list = [0]*self._n_term self._angle_list = [0]*self._n_term ElpTime.init_2 += time() ElpTime.init_3 -= time() import sympy #from sympy import expand, Matrix _coef_symbols = [] for iterm, amp_expr in enumerate(self._amplitude_expr_list): if isinstance(amp_expr, WrappedExpr): #print(sympy.expand(amp_expr.expr)) symbols_sorted = sorted(list(self._symbols),key=str) _coef_symbols.append([complex(sympy.expand(amp_expr.expr).coeff(symbol)) for symbol in symbols_sorted]) self._coef_symbols = np.array(_coef_symbols) self.subs([] if len(self._symbols)==0 else [(symbol, 0.0) for symbol in self._symbols]) ElpTime.init_3 += time() ElpTime.init_4 -= time() #only if you need expantion coefficient for T(\theta)> from sympy import solve, Eq #only if you need expantion coefficient for T(\theta)> equation_list = [] #only if you need expantion coefficient for T(\theta)> for iterm, amp_expr in enumerate(self._amplitude_expr_list): #only if you need expantion coefficient for T(\theta)> amp_expr = amp_expr.expr if isinstance(amp_expr, WrappedExpr) else amp_expr #only if you need expantion coefficient for T(\theta)> p = WrappedExpr('p{}'.format(iterm)).expr #only if you need expantion coefficient for T(\theta)> equation_list.append(Eq(amp_expr, p)) #only if you need expantion coefficient for T(\theta)> symbol_list = list(self._symbols) #only if you need expantion coefficient for T(\theta)> self._fop_coeff_expr = solve(equation_list, symbol_list) ElpTime.init_4 += time() ElpTime.init_tot += time() #PRINT print("TrotterStep:{0:5.2f}".format(ElpTime.init_tot),end="") #PRINT print(" ( init_0:{0:5.2f}".format(ElpTime.init_0),end="") #PRINT print(" | init_1:{0:5.2f}".format(ElpTime.init_1),end="") #PRINT print(" | init_2:{0:5.2f}".format(ElpTime.init_2),end="") #PRINT print(" | init_3:{0:5.2f}".format(ElpTime.init_3),end="") #PRINT print(" | init_4:{0:5.2f}".format(ElpTime.init_4),end="") #PRINT print(")") def subs(self, symbol_number_pairs): """引数として渡されたテーブルに基づいて量子回路のパラメータを更新します。 """ from sympy import Array from sympy.utilities.iterables import flatten ElpTime.symbol -= time() # update self._symbol_number_pairs if isinstance(symbol_number_pairs, dict): symbol_number_pairs = list(symbol_number_pairs.items()) symbol_list, number_list = [], [] for old, new in symbol_number_pairs: if isinstance(old, Array): assert old.shape == new.shape symbol_list += flatten(old) number_list += list(new.flatten()) # assume new as numpy.ndarray else: symbol_list += [old] number_list += [new] #PRINT print('slist', symbol_list) #PRINT print('nlist', number_list) update_pairs = {} for symbol, number in zip(symbol_list, number_list): symbol = symbol.expr if isinstance(symbol, WrappedExpr) else symbol if symbol not in self._symbols: continue assert (symbol not in update_pairs) or (update_pairs[symbol]==number) ,'{} {} {}'.format(symbol, update_pairs[symbol], number) # assert that no conflicts occur update_pairs[symbol] = number #PRINT print('update_pairs', update_pairs) self._symbol_number_pairs.update(update_pairs) ElpTime.symbol += time() # update self._substituted_coeff_list & self._angle_list #SLOW> #SLOW> for iterm in range(self._n_term): #SLOW> ElpTime.coef_list_0 -= time() #SLOW> amplitude_expr = self._amplitude_expr_list[iterm] #SLOW> ElpTime.coef_list_0 += time() #SLOW> ElpTime.coef_list_1 -= time() #SLOW> if isinstance(amplitude_expr, WrappedExpr): #SLOW> amp_value = complex(amplitude_expr.subs(self._symbol_number_pairs)) #SLOW> else: #SLOW> amp_value = complex(amplitude_expr) #SLOW> self._amplitude_value_list[iterm] = amp_value #SLOW> ElpTime.coef_list_1 += time() #SLOW> ElpTime.coef_list_2 -= time() #SLOW> self._angle_list[iterm] = float(amp_value.imag) #SLOW> ElpTime.coef_list_2 += time() #BGN:FAST if isinstance(self._amplitude_expr_list[0], WrappedExpr): ElpTime.coef_list_3 -= time() symbols_sorted = sorted(list(self._symbols),key=str) subs_number_vec = np.array([self._symbol_number_pairs.get(symbol) for symbol in symbols_sorted]) _amplitude_value_vec = np.einsum('ij,j->i', self._coef_symbols, subs_number_vec) np.allclose(np.array(self._amplitude_value_list),_amplitude_value_vec) self._amplitude_value_list = _amplitude_value_vec.tolist() self._angle_list = _amplitude_value_vec.imag.tolist() ElpTime.coef_list_3 += time() else: for iterm in range(self._n_term): amplitude_value = complex(self._amplitude_expr_list[iterm]) self._angle_list[iterm] = float(amplitude_value.imag) #END:FAST ElpTime.circuit -= time() # update params of self._circuit for iparam, iterm in enumerate(self._iterm_list): angle = self._angle_list[iterm] rotation_coeff = self._rotation_coeff_list[iterm] param = rotation_coeff * angle * rotation_factor self._circuit.set_parameter(iparam, param) ElpTime.circuit += time() #PRINT print("symbol:{0:5.2f}".format(ElpTime.symbol),end="") #PRINT print(" | coef_list_0:{0:5.2f}".format(ElpTime.coef_list_0),end="") #PRINT print(" | coef_list_1:{0:5.2f}".format(ElpTime.coef_list_1),end="") #PRINT print(" | coef_list_2:{0:5.2f}".format(ElpTime.coef_list_2),end="") #PRINT print(" | coef_list_3:{0:5.2f}".format(ElpTime.coef_list_3),end="") #PRINT print(" | circuit:{0:5.2f}".format(ElpTime.circuit),end="") #PRINT print("") def count_gates(self): ngate = [0]*(self._n_qubit+1) for ps in self._pauli_string_list: ngate[len(ps)] += 1 return ngate def __repr__(self): return str(self) def __str__(self): len_pauli_string_print = sum([len(str(isite))+2 for isite in range(self._n_qubit)]) s = '='*(len_pauli_string_print+101) + '\n' s += str(self._circuit) s += 'n_qubits ({:3d})\n'.format(self._n_qubit) s += 'free_symbols ({:3d}) : {}\n'.format(len(self._symbols), str(self._symbols)) for symbol, number in sorted(self._symbol_number_pairs.items(), key=lambda x:str(x[0])): s += '{:6} : {:.8e}\n'.format(str(symbol), number) s += '-'*(len_pauli_string_print+101) + '\n' s += ' '*7+'PauliString' + ' '*(len_pauli_string_print-8) + 'Amplitude[Expr]' s += ' '*37 + 'Amplitude[Value]' +'\n'# + ' '*13 + 'Angle(deg)\n' for iterm in range(self._n_term): pauli_string = self._pauli_string_list[iterm] amplitude_expr = self._amplitude_expr_list[iterm] amplitude_value = self._amplitude_value_list[iterm] angle = self._angle_list[iterm] s += '{:3d}: '.format(iterm) ipauli = 0 for index in range(self._n_qubit): if ipauli < len(pauli_string) and index == pauli_string[ipauli][0]: index, axis = pauli_string[ipauli] s += axis + str(index) + ' ' ipauli += 1 else: s += ' ' * (len(str(index))+2) str_amp_expr = str(amplitude_expr) if len(str_amp_expr)>50: str_amp_expr = str_amp_expr[:47] + '...' s += ' {:50} '.format(str_amp_expr) s += '{:+.10e} '.format(amplitude_value.imag) s += ' '*11 if amplitude_value.real==0 else '({:+1.0e} ~ real part) '.format(amplitude_value.real) #s += '{:+.7f}\n'.format(angle) s += '\n' s += '='*(len_pauli_string_print+101) return s def _test(): from symbol_for_openfermion import WrappedExpr as Symbol from openfermion import FermionOperator, jordan_wigner x = Symbol('x') y = Symbol('y') fop = FermionOperator('3^ 0 3', x) fop += FermionOperator('3^ 1 2', y**2) fop *= FermionOperator('2^', x + y*4 -2) c1 = TrotterStep(n_qubit=4, qubit_operator=jordan_wigner(fop)) print(c1) c1.subs([(x, 1.), (y, 5.)]) print(c1) x, y = 1., 5. fop = FermionOperator('3^ 0 3', x) fop += FermionOperator('3^ 1 2', y**2) fop *= FermionOperator('2^', x + y*4 -2) c1 = TrotterStep(n_qubit=4, qubit_operator=jordan_wigner(fop)) print(c1) def _test2(): from symbol_for_openfermion import WrappedExpr as Symbol from openfermion import FermionOperator, jordan_wigner, get_sparse_operator from sympy import Array np.random.seed(100) import scipy n_orb = 2 const = Symbol('const') T1 = [[None for _ in range(n_orb)] for _ in range(n_orb)] for p in range(n_orb): for q in range(p, n_orb): t = Symbol('t{}{}'.format(p,q)) T1[p][q] = T1[q][p] = t T1 = Array(T1) print(T1) const_value = np.random.rand() T1_value = np.random.rand(n_orb,n_orb)*0.01 T1_value += T1_value.T print(const_value) print(T1_value) def op1e(const, Tmat): fop = FermionOperator('', const) for p in range(n_orb): for q in range(n_orb): fop += FermionOperator( ((2*p , 1),(2*q , 0)), Tmat[p,q] ) fop += FermionOperator( ((2*p+1, 1),(2*q+1, 0)), Tmat[p,q] ) return fop fop_symbol = op1e(const, T1) qop_symbol = jordan_wigner(fop_symbol) print(fop_symbol) print(qop_symbol) n_qubit = n_orb*2 # c1 : TrotterStep with symbolic qop c1 = TrotterStep(n_qubit, (-1j)*qop_symbol) print(c1) symbol_number_pairs = [(const, const_value), (T1, T1_value)] c1.subs(symbol_number_pairs) print(c1) # c2 : TrotterStep with numerical qop fop_number = op1e(const_value, T1_value) qop_number = jordan_wigner(fop_number) c2 = TrotterStep(n_qubit, (-1j)*qop_number) print(c2) # c3 : oldtype with numerical qop c3 = qulacs.QuantumCircuit(n_qubit) trotter_step_2nd_order(c3, (-1j)*qop_number) s0 = qulacs.QuantumState(n_qubit) s0.set_Haar_random_state() s1 = s0.copy() s2 = s0.copy() s3 = s0.copy() from util_qulacs import convert_state_vector sv = convert_state_vector( n_qubit, s0.get_vector() ) corr1 = [] corr2 = [] corr3 = [] corrv = [] for t in range(100): corr1.append( qulacs.state.inner_product(s0, s1) ) corr2.append( qulacs.state.inner_product(s0, s2) ) corr3.append( qulacs.state.inner_product(s0, s3)*np.exp(-1j*qop_number.terms[()]*t) ) corrv.append( np.dot(np.conjugate(convert_state_vector(n_qubit, s0.get_vector())), sv) ) c1._circuit.update_quantum_state(s1) c2._circuit.update_quantum_state(s2) c3.update_quantum_state(s3) sv = scipy.sparse.linalg.expm_multiply(-1j * get_sparse_operator(qop_number), sv) import matplotlib.pyplot as plt plt.plot(np.array(corr1).real, label='1') plt.plot(np.array(corr2).real, label='2') plt.plot(np.array(corr3).real, label='3') plt.plot(np.array(corrv).real, label='4') plt.legend() plt.show() # print('s1', s1.get_vector()) # print('s2', s2.get_vector()) # print('s3', s3.get_vector()) def _test3(): n_qubit = 1 c1 = qulacs.ParametricQuantumCircuit(n_qubit) pauli_string = ((0,'Z'),) target = [index for index, axis in pauli_string] pauli_ids = [{'X':1, 'Y':2, 'Z':3}[axis] for index, axis in pauli_string] angle = 1.0 c1.add_parametric_multi_Pauli_rotation_gate(target, pauli_ids, angle) s1 = qulacs.QuantumState(n_qubit) c1.update_quantum_state(s1) print(s1) def _example(): from symbol_for_openfermion import WrappedExpr as Symbol from openfermion import FermionOperator, jordan_wigner, get_sparse_operator import sympy np.random.seed(100) import scipy n_orb = 2 const = Symbol('const') T1 = [[None for _ in range(n_orb)] for _ in range(n_orb)] for p in range(n_orb): for q in range(p, n_orb): t = Symbol('t{}{}'.format(p,q)) T1[p][q] = T1[q][p] = t T1 = sympy.Array(T1) print('T1:') print(T1) const_value = np.random.rand() T1_value = np.random.rand(n_orb,n_orb)*0.01 T1_value += T1_value.T print('const_value = ', const_value) print('T1_value = ') print(T1_value) def op1e(const, Tmat): fop = FermionOperator('', const) for p in range(n_orb): for q in range(n_orb): fop += FermionOperator( ((2*p , 1),(2*q , 0)), Tmat[p,q] ) fop += FermionOperator( ((2*p+1, 1),(2*q+1, 0)), Tmat[p,q] ) return fop fop_symbol = op1e(const, T1) qop_symbol = jordan_wigner(fop_symbol) print(fop_symbol) print(qop_symbol) n_qubit = n_orb*2 # c1 : TrotterStep with symbolic qop c1 = TrotterStep(n_qubit, (-1j)*qop_symbol) print(c1) symbol_number_pairs = [(const, const_value), (T1, T1_value)] c1.subs(symbol_number_pairs) print(c1) # c2 : TrotterStep with numerical qop fop_number = op1e(const_value, T1_value) qop_number = jordan_wigner(fop_number) c2 = TrotterStep(n_qubit, (-1j)*qop_number) print(c2) s0 = qulacs.QuantumState(n_qubit) s0.set_Haar_random_state() s1 = s0.copy() s2 = s0.copy() corr1 = [] corr2 = [] for t in range(100): corr1.append( qulacs.state.inner_product(s0, s1) ) corr2.append( qulacs.state.inner_product(s0, s2) ) c1._circuit.update_quantum_state(s1) c2._circuit.update_quantum_state(s2) import matplotlib.pyplot as plt plt.plot(np.array(corr1).real, '--', label='c1') plt.plot(np.array(corr2).real, '-.', label='c2') plt.legend() plt.show() if __name__=='__main__': _example()
[ "numpy.random.seed", "numpy.einsum", "qulacs.ParametricQuantumCircuit", "numpy.exp", "sympy.utilities.iterables.flatten", "sympy.expand", "openfermion.jordan_wigner", "qulacs.gate.RZ", "openfermion.FermionOperator", "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "qulacs.QuantumState", "qulacs.state.inner_product", "symbol_for_openfermion.WrappedExpr", "qulacs.QuantumCircuit", "time.time", "openfermion.get_sparse_operator", "sympy.Array", "numpy.array", "qulacs.gate.to_matrix_gate", "numpy.random.rand" ]
[((1577, 1625), 'qulacs.gate.RZ', 'RZ', (['relevant_qubits[-1]', '(theta * rotation_factor)'], {}), '(relevant_qubits[-1], theta * rotation_factor)\n', (1579, 1625), False, 'from qulacs.gate import to_matrix_gate, RZ\n'), ((14664, 14675), 'symbol_for_openfermion.WrappedExpr', 'Symbol', (['"""x"""'], {}), "('x')\n", (14670, 14675), True, 'from symbol_for_openfermion import WrappedExpr as Symbol\n'), ((14684, 14695), 'symbol_for_openfermion.WrappedExpr', 'Symbol', (['"""y"""'], {}), "('y')\n", (14690, 14695), True, 'from symbol_for_openfermion import WrappedExpr as Symbol\n'), ((14707, 14735), 'openfermion.FermionOperator', 'FermionOperator', (['"""3^ 0 3"""', 'x'], {}), "('3^ 0 3', x)\n", (14722, 14735), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((14747, 14780), 'openfermion.FermionOperator', 'FermionOperator', (['"""3^ 1 2"""', '(y ** 2)'], {}), "('3^ 1 2', y ** 2)\n", (14762, 14780), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((14790, 14826), 'openfermion.FermionOperator', 'FermionOperator', (['"""2^"""', '(x + y * 4 - 2)'], {}), "('2^', x + y * 4 - 2)\n", (14805, 14826), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((14981, 15009), 'openfermion.FermionOperator', 'FermionOperator', (['"""3^ 0 3"""', 'x'], {}), "('3^ 0 3', x)\n", (14996, 15009), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((15021, 15054), 'openfermion.FermionOperator', 'FermionOperator', (['"""3^ 1 2"""', '(y ** 2)'], {}), "('3^ 1 2', y ** 2)\n", (15036, 15054), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((15064, 15100), 'openfermion.FermionOperator', 'FermionOperator', (['"""2^"""', '(x + y * 4 - 2)'], {}), "('2^', x + y * 4 - 2)\n", (15079, 15100), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((15368, 15387), 'numpy.random.seed', 'np.random.seed', (['(100)'], {}), '(100)\n', (15382, 15387), True, 'import numpy as np\n'), ((15433, 15448), 'symbol_for_openfermion.WrappedExpr', 'Symbol', (['"""const"""'], {}), "('const')\n", (15439, 15448), True, 'from symbol_for_openfermion import WrappedExpr as Symbol\n'), ((15661, 15670), 'sympy.Array', 'Array', (['T1'], {}), '(T1)\n', (15666, 15670), False, 'from sympy import Array\n'), ((15704, 15720), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (15718, 15720), True, 'import numpy as np\n'), ((16198, 16223), 'openfermion.jordan_wigner', 'jordan_wigner', (['fop_symbol'], {}), '(fop_symbol)\n', (16211, 16223), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((16612, 16637), 'openfermion.jordan_wigner', 'jordan_wigner', (['fop_number'], {}), '(fop_number)\n', (16625, 16637), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((16748, 16778), 'qulacs.QuantumCircuit', 'qulacs.QuantumCircuit', (['n_qubit'], {}), '(n_qubit)\n', (16769, 16778), False, 'import qulacs\n'), ((16840, 16868), 'qulacs.QuantumState', 'qulacs.QuantumState', (['n_qubit'], {}), '(n_qubit)\n', (16859, 16868), False, 'import qulacs\n'), ((17900, 17912), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (17910, 17912), True, 'import matplotlib.pyplot as plt\n'), ((17917, 17927), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (17925, 17927), True, 'import matplotlib.pyplot as plt\n'), ((18075, 18115), 'qulacs.ParametricQuantumCircuit', 'qulacs.ParametricQuantumCircuit', (['n_qubit'], {}), '(n_qubit)\n', (18106, 18115), False, 'import qulacs\n'), ((18377, 18405), 'qulacs.QuantumState', 'qulacs.QuantumState', (['n_qubit'], {}), '(n_qubit)\n', (18396, 18405), False, 'import qulacs\n'), ((18632, 18651), 'numpy.random.seed', 'np.random.seed', (['(100)'], {}), '(100)\n', (18646, 18651), True, 'import numpy as np\n'), ((18697, 18712), 'symbol_for_openfermion.WrappedExpr', 'Symbol', (['"""const"""'], {}), "('const')\n", (18703, 18712), True, 'from symbol_for_openfermion import WrappedExpr as Symbol\n'), ((18925, 18940), 'sympy.Array', 'sympy.Array', (['T1'], {}), '(T1)\n', (18936, 18940), False, 'import sympy\n'), ((18991, 19007), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (19005, 19007), True, 'import numpy as np\n'), ((19528, 19553), 'openfermion.jordan_wigner', 'jordan_wigner', (['fop_symbol'], {}), '(fop_symbol)\n', (19541, 19553), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((19942, 19967), 'openfermion.jordan_wigner', 'jordan_wigner', (['fop_number'], {}), '(fop_number)\n', (19955, 19967), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((20040, 20068), 'qulacs.QuantumState', 'qulacs.QuantumState', (['n_qubit'], {}), '(n_qubit)\n', (20059, 20068), False, 'import qulacs\n'), ((20549, 20561), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (20559, 20561), True, 'import matplotlib.pyplot as plt\n'), ((20566, 20576), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (20574, 20576), True, 'import matplotlib.pyplot as plt\n'), ((1718, 1741), 'qulacs.gate.to_matrix_gate', 'to_matrix_gate', (['rz_gate'], {}), '(rz_gate)\n', (1732, 1741), False, 'from qulacs.gate import to_matrix_gate, RZ\n'), ((4186, 4192), 'time.time', 'time', ([], {}), '()\n', (4190, 4192), False, 'from time import time\n'), ((4219, 4225), 'time.time', 'time', ([], {}), '()\n', (4223, 4225), False, 'from time import time\n'), ((4919, 4925), 'time.time', 'time', ([], {}), '()\n', (4923, 4925), False, 'from time import time\n'), ((5021, 5027), 'time.time', 'time', ([], {}), '()\n', (5025, 5027), False, 'from time import time\n'), ((5052, 5098), 'qulacs.ParametricQuantumCircuit', 'qulacs.ParametricQuantumCircuit', (['self._n_qubit'], {}), '(self._n_qubit)\n', (5083, 5098), False, 'import qulacs\n'), ((5904, 5910), 'time.time', 'time', ([], {}), '()\n', (5908, 5910), False, 'from time import time\n'), ((5938, 5944), 'time.time', 'time', ([], {}), '()\n', (5942, 5944), False, 'from time import time\n'), ((6323, 6329), 'time.time', 'time', ([], {}), '()\n', (6327, 6329), False, 'from time import time\n'), ((6357, 6363), 'time.time', 'time', ([], {}), '()\n', (6361, 6363), False, 'from time import time\n'), ((6835, 6858), 'numpy.array', 'np.array', (['_coef_symbols'], {}), '(_coef_symbols)\n', (6843, 6858), True, 'import numpy as np\n'), ((6982, 6988), 'time.time', 'time', ([], {}), '()\n', (6986, 6988), False, 'from time import time\n'), ((7016, 7022), 'time.time', 'time', ([], {}), '()\n', (7020, 7022), False, 'from time import time\n'), ((7912, 7918), 'time.time', 'time', ([], {}), '()\n', (7916, 7918), False, 'from time import time\n'), ((7947, 7953), 'time.time', 'time', ([], {}), '()\n', (7951, 7953), False, 'from time import time\n'), ((8631, 8637), 'time.time', 'time', ([], {}), '()\n', (8635, 8637), False, 'from time import time\n'), ((9828, 9834), 'time.time', 'time', ([], {}), '()\n', (9832, 9834), False, 'from time import time\n'), ((11566, 11572), 'time.time', 'time', ([], {}), '()\n', (11570, 11572), False, 'from time import time\n'), ((11921, 11927), 'time.time', 'time', ([], {}), '()\n', (11925, 11927), False, 'from time import time\n'), ((15736, 15764), 'numpy.random.rand', 'np.random.rand', (['n_orb', 'n_orb'], {}), '(n_orb, n_orb)\n', (15750, 15764), True, 'import numpy as np\n'), ((15881, 15907), 'openfermion.FermionOperator', 'FermionOperator', (['""""""', 'const'], {}), "('', const)\n", (15896, 15907), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((19023, 19051), 'numpy.random.rand', 'np.random.rand', (['n_orb', 'n_orb'], {}), '(n_orb, n_orb)\n', (19037, 19051), True, 'import numpy as np\n'), ((19211, 19237), 'openfermion.FermionOperator', 'FermionOperator', (['""""""', 'const'], {}), "('', const)\n", (19226, 19237), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((10787, 10793), 'time.time', 'time', ([], {}), '()\n', (10791, 10793), False, 'from time import time\n'), ((11003, 11060), 'numpy.einsum', 'np.einsum', (['"""ij,j->i"""', 'self._coef_symbols', 'subs_number_vec'], {}), "('ij,j->i', self._coef_symbols, subs_number_vec)\n", (11012, 11060), True, 'import numpy as np\n'), ((11316, 11322), 'time.time', 'time', ([], {}), '()\n', (11320, 11322), False, 'from time import time\n'), ((14871, 14889), 'openfermion.jordan_wigner', 'jordan_wigner', (['fop'], {}), '(fop)\n', (14884, 14889), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((15145, 15163), 'openfermion.jordan_wigner', 'jordan_wigner', (['fop'], {}), '(fop)\n', (15158, 15163), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((17172, 17206), 'qulacs.state.inner_product', 'qulacs.state.inner_product', (['s0', 's1'], {}), '(s0, s1)\n', (17198, 17206), False, 'import qulacs\n'), ((17231, 17265), 'qulacs.state.inner_product', 'qulacs.state.inner_product', (['s0', 's2'], {}), '(s0, s2)\n', (17257, 17265), False, 'import qulacs\n'), ((17725, 17740), 'numpy.array', 'np.array', (['corr1'], {}), '(corr1)\n', (17733, 17740), True, 'import numpy as np\n'), ((17771, 17786), 'numpy.array', 'np.array', (['corr2'], {}), '(corr2)\n', (17779, 17786), True, 'import numpy as np\n'), ((17817, 17832), 'numpy.array', 'np.array', (['corr3'], {}), '(corr3)\n', (17825, 17832), True, 'import numpy as np\n'), ((17863, 17878), 'numpy.array', 'np.array', (['corrv'], {}), '(corrv)\n', (17871, 17878), True, 'import numpy as np\n'), ((20216, 20250), 'qulacs.state.inner_product', 'qulacs.state.inner_product', (['s0', 's1'], {}), '(s0, s1)\n', (20242, 20250), False, 'import qulacs\n'), ((20275, 20309), 'qulacs.state.inner_product', 'qulacs.state.inner_product', (['s0', 's2'], {}), '(s0, s2)\n', (20301, 20309), False, 'import qulacs\n'), ((20452, 20467), 'numpy.array', 'np.array', (['corr1'], {}), '(corr1)\n', (20460, 20467), True, 'import numpy as np\n'), ((20505, 20520), 'numpy.array', 'np.array', (['corr2'], {}), '(corr2)\n', (20513, 20520), True, 'import numpy as np\n'), ((8991, 9003), 'sympy.utilities.iterables.flatten', 'flatten', (['old'], {}), '(old)\n', (8998, 9003), False, 'from sympy.utilities.iterables import flatten\n'), ((11085, 11121), 'numpy.array', 'np.array', (['self._amplitude_value_list'], {}), '(self._amplitude_value_list)\n', (11093, 11121), True, 'import numpy as np\n'), ((15997, 16050), 'openfermion.FermionOperator', 'FermionOperator', (['((2 * p, 1), (2 * q, 0))', 'Tmat[p, q]'], {}), '(((2 * p, 1), (2 * q, 0)), Tmat[p, q])\n', (16012, 16050), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((16074, 16135), 'openfermion.FermionOperator', 'FermionOperator', (['((2 * p + 1, 1), (2 * q + 1, 0))', 'Tmat[p, q]'], {}), '(((2 * p + 1, 1), (2 * q + 1, 0)), Tmat[p, q])\n', (16089, 16135), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((17290, 17324), 'qulacs.state.inner_product', 'qulacs.state.inner_product', (['s0', 's3'], {}), '(s0, s3)\n', (17316, 17324), False, 'import qulacs\n'), ((17325, 17365), 'numpy.exp', 'np.exp', (['(-1.0j * qop_number.terms[()] * t)'], {}), '(-1.0j * qop_number.terms[()] * t)\n', (17331, 17365), True, 'import numpy as np\n'), ((17638, 17669), 'openfermion.get_sparse_operator', 'get_sparse_operator', (['qop_number'], {}), '(qop_number)\n', (17657, 17669), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((19327, 19380), 'openfermion.FermionOperator', 'FermionOperator', (['((2 * p, 1), (2 * q, 0))', 'Tmat[p, q]'], {}), '(((2 * p, 1), (2 * q, 0)), Tmat[p, q])\n', (19342, 19380), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((19404, 19465), 'openfermion.FermionOperator', 'FermionOperator', (['((2 * p + 1, 1), (2 * q + 1, 0))', 'Tmat[p, q]'], {}), '(((2 * p + 1, 1), (2 * q + 1, 0)), Tmat[p, q])\n', (19419, 19465), False, 'from openfermion import FermionOperator, jordan_wigner, get_sparse_operator\n'), ((6732, 6759), 'sympy.expand', 'sympy.expand', (['amp_expr.expr'], {}), '(amp_expr.expr)\n', (6744, 6759), False, 'import sympy\n')]
import sys import numpy as np from numpy.core._multiarray_umath import ndarray import models as md class individual: model: md.individual_graph start_direction: ndarray end_direction: ndarray end_position: ndarray start_position: ndarray hermite_matrix: ndarray def __init__(self, state_person=1, state_sickness=1, prob_of_death=0.1, days_until_recovered=10, steps=24, city_size=100): # Cinematic properties self.time = 0 # self.range = np.random.uniform(0,city_size) self.range = city_size self.steps = steps self.delta = 1 / self.steps self.current_step = 0 self.city_size = city_size self.start_position = np.random.uniform(0, 100, [2, 1]) self.end_position = self.get_random_position(self.range) self.start_direction = self.get_random_vector() self.end_direction = self.get_random_vector() self.matrix_cinematic = np.concatenate([self.start_position, self.end_position, -self.start_direction, -self.end_direction], axis=1) self.hermite_matrix = np.array([[1, -1, -1, 1], [0, 0, 3, -2], [0, 1, -2, 1], [0, 0, -1, 1]], dtype=np.float32) self.move = self.steps_forward # set movement action # Health state properties self.health_condition = state_person # health state of the person. 0 for very Healthy, 1 for average, 2 for vulnerable self.probability_of_death = prob_of_death self.days_sick = 0 self.days_until_recovered = days_until_recovered self.state_sickness = state_sickness # 0 for dead, 1 for susceptible, 2 for sick, 3 for immune # model self.model = md.individual_graph(self.city_size, self.start_position, self.state_sickness) self.pass_one_day = None self.is_sick = self.non_sick_person_exam if state_sickness == 2: self.get_sick = self.get_sick_non_receptive_person self.get_sick_non_immune() else: self.get_sick = self.get_sick_non_immune self.pass_one_day = self.non_sick_day # print('positions : \n start:',self.start_position,' \n end: ',self.end_position) def reached_position(self): # print('before: \n start:',self.start_position,' \n end: ',self.end_position) # print('before: \n start:',self.start_direction,' \n end: ',self.end_direction) pos = self.start_position.copy() self.start_position = self.end_position.copy() self.end_position = pos self.start_direction = self.end_position self.end_direction = self.get_random_vector() # print('positions : \n start:',self.start_position,' \n end: ',self.end_position) # print('after : \n start:',self.start_direction,' \n end: ',self.end_direction) self.matrix_cinematic = np.concatenate([self.start_position, self.end_position, self.start_direction, self.end_direction], axis=1) def get_random_position(self, radius): """ :rtype: ndarray """ pos = self.start_position + np.random.uniform(-radius / 2, radius / 2, [2, 1]) counter = 0 # print("start: ",self.start_position) while pos[0] < 0 or pos[0] > self.city_size: pos[0] = self.start_position[0] + np.random.uniform(-radius / 2, radius / 2, [1]) counter += 1 # print("new: ", pos) if counter > 5: pos[0] = np.random.uniform(0, self.city_size) # if pos[0] > 0: # pos[0] = self.city_size-1 # else: # pos[0] = 0 break counter = 0 while pos[1] < 0 or pos[1] > self.city_size: pos[1] = self.start_position[1] + np.random.uniform(-radius / 2, radius / 2, [1]) counter += 1 # print("new: ", pos) if counter > 5: pos[1] = np.random.uniform(0, self.city_size) # if pos[1] > 0: # pos[1] = self.city_size - 1 # else: # pos[1] = 0 break return pos def get_random_vector(self): """ Method to get a random vector, used mainly to get a unitary direction to define next position :rtype: ndarray """ vector = np.random.normal(0, 25, [2, 1]) # return vector / np.linalg.norm(vector) return vector def steps_forward(self): # print("time: {:.2f}".format(self.time)) # print("time: {:d}/{:d}".format(self.current_step,self.steps)) if self.current_step == self.steps: # print("end moving") self.reached_position() self.time = 0 self.current_step = 0 # self.model.update_location(self.start_position) return self.start_position # print("move forward") time = np.array([[1], [self.time], [self.time ** 2], [self.time ** 3]]) self.time += self.delta self.current_step += 1 # pos = self.hermite_location(time) # self.model.update_location(pos) # return pos return self.hermite_location(time) def death_state_no_move(self): """ Method to give the position of dead units. Dead units don't move :rtype: ndarray :return: """ return self.start_position def hermite_location(self, time): # print("shape Cinematic:",self.matrix_cinematic.shape) # print("shape hermite_matrix:",self.hermite_matrix.shape) # print("shape time:",time.shape) return np.matmul(self.matrix_cinematic, np.matmul(self.hermite_matrix, time)) def strong_immune_system_sick(self): if np.random.uniform() < self.probability_of_death / 50: self.set_death_state() return True self.sickness_evolution_one_day() return False def average_immune_system_sick(self): if np.random.uniform() < self.probability_of_death: self.set_death_state() return True self.sickness_evolution_one_day() return False def weak_immune_system_sick(self): if np.random.uniform() < self.probability_of_death * 2: self.set_death_state() return True self.sickness_evolution_one_day() return False def non_sick_day(self): pass def sickness_evolution_one_day(self): self.days_sick += 1 # print("increase in days: ", self.days_sick) if self.days_sick > self.days_until_recovered: # print("cured") self.state_sickness = 3 # recovered/immune self.get_sick = self.get_sick_non_receptive_person self.model.update_state(3) self.pass_one_day = self.non_sick_day self.is_sick = self.non_sick_person_exam def set_death_state(self): # print("new death") self.start_position = self.steps_forward() # last step self.move = self.death_state_no_move self.get_sick = self.get_sick_non_receptive_person self.state_sickness = 0 self.model.update_state(0) self.pass_one_day = self.non_sick_day self.is_sick = self.non_sick_person_exam def get_sick_non_immune(self): self.state_sickness = 2 self.is_sick = self.sick_person_exam self.model.update_state(2) if self.health_condition == 0: self.pass_one_day = self.strong_immune_system_sick elif self.health_condition == 1: self.pass_one_day = self.average_immune_system_sick else: self.pass_one_day = self.weak_immune_system_sick def get_sick_non_receptive_person(self): """ Method that simulates that an immune person or dead person enter in contact with the virus. Nothing happens in this representation. :return: """ pass def sick_person_exam(self): return True def non_sick_person_exam(self): return False def set_model(self, model): self.model = model def draw(self, pipeline): self.model.draw(pipeline)
[ "numpy.random.uniform", "models.individual_graph", "numpy.array", "numpy.random.normal", "numpy.matmul", "numpy.concatenate" ]
[((738, 771), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(100)', '[2, 1]'], {}), '(0, 100, [2, 1])\n', (755, 771), True, 'import numpy as np\n'), ((979, 1092), 'numpy.concatenate', 'np.concatenate', (['[self.start_position, self.end_position, -self.start_direction, -self.\n end_direction]'], {'axis': '(1)'}), '([self.start_position, self.end_position, -self.\n start_direction, -self.end_direction], axis=1)\n', (993, 1092), True, 'import numpy as np\n'), ((1167, 1260), 'numpy.array', 'np.array', (['[[1, -1, -1, 1], [0, 0, 3, -2], [0, 1, -2, 1], [0, 0, -1, 1]]'], {'dtype': 'np.float32'}), '([[1, -1, -1, 1], [0, 0, 3, -2], [0, 1, -2, 1], [0, 0, -1, 1]],\n dtype=np.float32)\n', (1175, 1260), True, 'import numpy as np\n'), ((1839, 1916), 'models.individual_graph', 'md.individual_graph', (['self.city_size', 'self.start_position', 'self.state_sickness'], {}), '(self.city_size, self.start_position, self.state_sickness)\n', (1858, 1916), True, 'import models as md\n'), ((3038, 3149), 'numpy.concatenate', 'np.concatenate', (['[self.start_position, self.end_position, self.start_direction, self.\n end_direction]'], {'axis': '(1)'}), '([self.start_position, self.end_position, self.\n start_direction, self.end_direction], axis=1)\n', (3052, 3149), True, 'import numpy as np\n'), ((4594, 4625), 'numpy.random.normal', 'np.random.normal', (['(0)', '(25)', '[2, 1]'], {}), '(0, 25, [2, 1])\n', (4610, 4625), True, 'import numpy as np\n'), ((5171, 5235), 'numpy.array', 'np.array', (['[[1], [self.time], [self.time ** 2], [self.time ** 3]]'], {}), '([[1], [self.time], [self.time ** 2], [self.time ** 3]])\n', (5179, 5235), True, 'import numpy as np\n'), ((3322, 3372), 'numpy.random.uniform', 'np.random.uniform', (['(-radius / 2)', '(radius / 2)', '[2, 1]'], {}), '(-radius / 2, radius / 2, [2, 1])\n', (3339, 3372), True, 'import numpy as np\n'), ((5920, 5956), 'numpy.matmul', 'np.matmul', (['self.hermite_matrix', 'time'], {}), '(self.hermite_matrix, time)\n', (5929, 5956), True, 'import numpy as np\n'), ((6011, 6030), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (6028, 6030), True, 'import numpy as np\n'), ((6241, 6260), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (6258, 6260), True, 'import numpy as np\n'), ((6463, 6482), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (6480, 6482), True, 'import numpy as np\n'), ((3539, 3586), 'numpy.random.uniform', 'np.random.uniform', (['(-radius / 2)', '(radius / 2)', '[1]'], {}), '(-radius / 2, radius / 2, [1])\n', (3556, 3586), True, 'import numpy as np\n'), ((3699, 3735), 'numpy.random.uniform', 'np.random.uniform', (['(0)', 'self.city_size'], {}), '(0, self.city_size)\n', (3716, 3735), True, 'import numpy as np\n'), ((4015, 4062), 'numpy.random.uniform', 'np.random.uniform', (['(-radius / 2)', '(radius / 2)', '[1]'], {}), '(-radius / 2, radius / 2, [1])\n', (4032, 4062), True, 'import numpy as np\n'), ((4175, 4211), 'numpy.random.uniform', 'np.random.uniform', (['(0)', 'self.city_size'], {}), '(0, self.city_size)\n', (4192, 4211), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 4 19:44:03 2021 @author: mike_ubuntu """ ''' По данным из решения волнового уравнения получаем 1 уравнение (тесты методов src.structure.) ''' import time import sys sys.path.append('/media/mike_ubuntu/DATA/ESYS/') import numpy as np import copy from collections import OrderedDict from src.moeadd.moeadd import * from src.moeadd.moeadd_supplementary import * import src.globals as global_var import src.structure as structure from src.supplementary import memory_assesment from src.evaluators import simple_function_evaluator from src.cache.cache import Cache, upload_simple_tokens, download_variable from src.token_family import Evaluator, Token_family, constancy_hard_equality from src.supplementary import Define_Derivatives, factor_params_to_str from src.evo_optimizer import Operator_director, Operator_builder import src.sys_search_operators as operators import matplotlib.pyplot as plt def test_single_token_type(): seed = None if type(seed) != type(None): np.random.seed(seed) folder= sys.path[-1] + 'preprocessing/Wave/' boundary = 15 print(sys.path) u_tensors = download_variable(folder + 'wave_HP.npy', folder + 'Derivatives.npy', boundary, time_axis=0) u_names = Define_Derivatives('u', 3, 2) global_var.init_caches(set_grids=False) global_var.tensor_cache.memory_usage_properties(obj_test_case=u_tensors[0, ...], mem_for_cache_frac = 25) upload_simple_tokens(u_names, u_tensors, global_var.tensor_cache) u_tokens = Token_family('U') u_tokens.set_status(unique_specific_token=False, unique_token_type=False, meaningful = True, unique_for_right_part = True) equal_params = {'power' : 0} u_token_params = OrderedDict([('power', (1, 2))]) u_tokens.set_params(u_names, u_token_params, equal_params) u_tokens.use_glob_cache() # u_eval_params = {'params_names':['power'], 'params_equality':{'power' : 0}} u_tokens.set_evaluator(simple_function_evaluator) director = Operator_director() director.operator_assembly() tokens = [u_tokens,] pop_constructor = operators.systems_population_constructor(tokens=tokens, terms_number=5, max_factors_in_term=1, eq_search_evo = director.constructor.operator) equation_creation_params = {'eq_search_iters':2} optimizer = moeadd_optimizer(pop_constructor, 7, 20, equation_creation_params, delta = 1/50., neighbors_number = 3) evo_operator = operators.sys_search_evolutionary_operator(operators.mixing_xover, operators.gaussian_mutation) optimizer.set_evolutionary(operator=evo_operator) best_obj = np.concatenate(np.ones([1]), np.zeros(shape=len([1 for token_family in tokens if token_family.status['meaningful']]))) print(best_obj) raise NotImplementedError #test_single_token_type() # del u_tensors # u_tensors =
[ "sys.path.append", "src.globals.tensor_cache.memory_usage_properties", "src.cache.cache.upload_simple_tokens", "numpy.random.seed", "src.cache.cache.download_variable", "src.token_family.Token_family", "src.evo_optimizer.Operator_director", "src.supplementary.Define_Derivatives", "numpy.ones", "src.globals.init_caches", "collections.OrderedDict", "src.sys_search_operators.sys_search_evolutionary_operator", "src.sys_search_operators.systems_population_constructor" ]
[((240, 288), 'sys.path.append', 'sys.path.append', (['"""/media/mike_ubuntu/DATA/ESYS/"""'], {}), "('/media/mike_ubuntu/DATA/ESYS/')\n", (255, 288), False, 'import sys\n'), ((1190, 1286), 'src.cache.cache.download_variable', 'download_variable', (["(folder + 'wave_HP.npy')", "(folder + 'Derivatives.npy')", 'boundary'], {'time_axis': '(0)'}), "(folder + 'wave_HP.npy', folder + 'Derivatives.npy',\n boundary, time_axis=0)\n", (1207, 1286), False, 'from src.cache.cache import Cache, upload_simple_tokens, download_variable\n'), ((1297, 1326), 'src.supplementary.Define_Derivatives', 'Define_Derivatives', (['"""u"""', '(3)', '(2)'], {}), "('u', 3, 2)\n", (1315, 1326), False, 'from src.supplementary import Define_Derivatives, factor_params_to_str\n'), ((1332, 1371), 'src.globals.init_caches', 'global_var.init_caches', ([], {'set_grids': '(False)'}), '(set_grids=False)\n', (1354, 1371), True, 'import src.globals as global_var\n'), ((1376, 1483), 'src.globals.tensor_cache.memory_usage_properties', 'global_var.tensor_cache.memory_usage_properties', ([], {'obj_test_case': 'u_tensors[0, ...]', 'mem_for_cache_frac': '(25)'}), '(obj_test_case=u_tensors[0,\n ...], mem_for_cache_frac=25)\n', (1423, 1483), True, 'import src.globals as global_var\n'), ((1486, 1551), 'src.cache.cache.upload_simple_tokens', 'upload_simple_tokens', (['u_names', 'u_tensors', 'global_var.tensor_cache'], {}), '(u_names, u_tensors, global_var.tensor_cache)\n', (1506, 1551), False, 'from src.cache.cache import Cache, upload_simple_tokens, download_variable\n'), ((1576, 1593), 'src.token_family.Token_family', 'Token_family', (['"""U"""'], {}), "('U')\n", (1588, 1593), False, 'from src.token_family import Evaluator, Token_family, constancy_hard_equality\n'), ((1801, 1833), 'collections.OrderedDict', 'OrderedDict', (["[('power', (1, 2))]"], {}), "([('power', (1, 2))])\n", (1812, 1833), False, 'from collections import OrderedDict\n'), ((2088, 2107), 'src.evo_optimizer.Operator_director', 'Operator_director', ([], {}), '()\n', (2105, 2107), False, 'from src.evo_optimizer import Operator_director, Operator_builder\n'), ((2197, 2340), 'src.sys_search_operators.systems_population_constructor', 'operators.systems_population_constructor', ([], {'tokens': 'tokens', 'terms_number': '(5)', 'max_factors_in_term': '(1)', 'eq_search_evo': 'director.constructor.operator'}), '(tokens=tokens, terms_number=5,\n max_factors_in_term=1, eq_search_evo=director.constructor.operator)\n', (2237, 2340), True, 'import src.sys_search_operators as operators\n'), ((2664, 2763), 'src.sys_search_operators.sys_search_evolutionary_operator', 'operators.sys_search_evolutionary_operator', (['operators.mixing_xover', 'operators.gaussian_mutation'], {}), '(operators.mixing_xover,\n operators.gaussian_mutation)\n', (2706, 2763), True, 'import src.sys_search_operators as operators\n'), ((1061, 1081), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1075, 1081), True, 'import numpy as np\n'), ((2908, 2920), 'numpy.ones', 'np.ones', (['[1]'], {}), '([1])\n', (2915, 2920), True, 'import numpy as np\n')]
from bert.preprocess import PAD_INDEX from sklearn.metrics import f1_score, balanced_accuracy_score import numpy as np def mlm_accuracy(predictions, targets): mlm_predictions, nsp_predictions = predictions mlm_targets, is_nexts = targets relevent_indexes = np.where(mlm_targets != PAD_INDEX) relevent_predictions = mlm_predictions[relevent_indexes] relevent_targets = mlm_targets[relevent_indexes] corrects = np.equal(relevent_predictions, relevent_targets) return corrects.mean() def nsp_accuracy(predictions, targets): mlm_predictions, nsp_predictions = predictions mlm_targets, is_nexts = targets corrects = np.equal(nsp_predictions, is_nexts) return corrects.mean() def classification_accuracy(predictions, targets): # corrects = np.equal(predictions, targets) # return corrects.mean() return balanced_accuracy_score(targets, predictions) def f1_weighted(predictions, targets): return f1_score(targets, predictions, average='weighted')
[ "sklearn.metrics.f1_score", "numpy.where", "sklearn.metrics.balanced_accuracy_score", "numpy.equal" ]
[((273, 307), 'numpy.where', 'np.where', (['(mlm_targets != PAD_INDEX)'], {}), '(mlm_targets != PAD_INDEX)\n', (281, 307), True, 'import numpy as np\n'), ((438, 486), 'numpy.equal', 'np.equal', (['relevent_predictions', 'relevent_targets'], {}), '(relevent_predictions, relevent_targets)\n', (446, 486), True, 'import numpy as np\n'), ((671, 706), 'numpy.equal', 'np.equal', (['nsp_predictions', 'is_nexts'], {}), '(nsp_predictions, is_nexts)\n', (679, 706), True, 'import numpy as np\n'), ((891, 936), 'sklearn.metrics.balanced_accuracy_score', 'balanced_accuracy_score', (['targets', 'predictions'], {}), '(targets, predictions)\n', (914, 936), False, 'from sklearn.metrics import f1_score, balanced_accuracy_score\n'), ((996, 1046), 'sklearn.metrics.f1_score', 'f1_score', (['targets', 'predictions'], {'average': '"""weighted"""'}), "(targets, predictions, average='weighted')\n", (1004, 1046), False, 'from sklearn.metrics import f1_score, balanced_accuracy_score\n')]
import numpy as np import astropy.units as u from astropy.units.quantity import Quantity from astropy.units import UnitTypeError, get_physical_type from astropy.config.paths import get_cache_dir from snewpy import get_models import os try: from snewpy import model_path except ImportError: model_path = os.path.join(get_cache_dir(), 'snewpy/models') import logging from snewpy.models import ccsn, presn def init_model(model_name, download=True, download_dir=model_path, **user_param): """Attempts to retrieve instantiated SNEWPY model using model class name and model parameters. If a model name is valid, but is not found and `download`=True, this function will attempt to download the model Parameters ---------- model_name : str Name of SNEWPY model to import, must exactly match the name of the corresponding model class download : bool Switch for attempting to download model data if the first load attempt failed due to a missing file. download_dir : str Local directory to download model files to. user_param : varies User-requested model parameters used to initialize the model, if one is found. Error checking is performed during model initialization Raises ------ ValueError If the requested model_name does not match any SNEWPY models See Also -------- snewpy.models.ccsn snewpy.models.presn Example ------- >>> from snewpy.models.registry import init_model; import astropy.units as u >>> init_model('Nakazato_2013', progenitor_mass=13*u.Msun, metallicity=0.004, revival_time=0*u.s, eos='shen') Nakazato_2013 Model: nakazato-shen-BH-z0.004-s30.0.fits Progenitor mass : 30.0 solMass EOS : Shen Metallicity : 0.004 Revival time : 0.0 ms """ if model_name in dir(ccsn): module = ccsn elif model_name in dir(presn): module = presn else: raise ValueError(f"Unable to find model with name '{model_name}' in snewpy.models.ccsn or snewpy.models.presn") try: return getattr(module, model_name)(**user_param) except FileNotFoundError as e: logger = logging.getLogger() logger.warning(f"Unable to find model {model_name} in {download_dir}") if not download: raise e logger.warning(f"Attempting to download model...") get_models(model_name, download_dir) return getattr(module, model_name)(**user_param) def check_param_values(model, **user_param): """Performs generic check that the requested model parameters have valid values and units for the requested SNEWPY model. Parameters ---------- model : snewpy.model.SupernovaModel Model class used to perform parameter check user_param : varies User-requested model parameters to be tested for validity. MUST be provided as keyword arguments that match the model `param` class member Raises ------ ValueError If invalid model parameters are provided based on units, allowed values, etc. UnitTypeError If invalid units are provided for a model parameter See Also -------- snewpy.models.ccsn snewpy.models.presn """ model_param = model.param # Check that the appropriate number of params are provided if len(user_param) != len(model_param): raise ValueError(f"Invalid model parameters, expected {len(model_param)} " f"but {len(user_param)} were given") # Check that user-requested params have valid units and values for (key, allowed_params), user_param in zip(model_param.items(), user_param.values()): # If both have units, check that the user param value is valid. If valid, continue. Else, error if type(user_param) == Quantity and type(allowed_params) == Quantity: if get_physical_type(user_param.unit) != get_physical_type(allowed_params.unit): raise UnitTypeError(f"Incorrect units {user_param.unit} provided for parameter {key}, " f"expected {allowed_params.unit}") elif user_param.to(allowed_params.unit).value in allowed_params.value: continue else: raise ValueError(f"Invalid value '{user_param}' provided for parameter {key}, " f"allowed value(s): {allowed_params}") # If one only one has units, then error elif (type(user_param) == Quantity) ^ (type(allowed_params) == Quantity): # User param has units, model param is unitless if type(user_param) == Quantity: raise ValueError(f"Invalid units {user_param.unit} for parameter {key} provided, expected None") else: raise ValueError(f"Missing units for parameter {key}, expected {allowed_params.unit}") # Check that unitless user param value is valid. If valid, continue. Else, Error elif user_param in allowed_params: continue else: raise ValueError(f"Invalid value '{user_param}' provided for parameter {key}, " f"allowed value(s): {allowed_params}") def get_sukhbold_2015_fname(eos, progenitor_mass, **kwargs): if eos not in ('LS220', 'SFHo'): raise ValueError(f'Invalid value for model argument `eos`, expected ("LS220", "SFHo") given "{eos}"') if progenitor_mass.value == 9.6: fname = f'sukhbold-{eos}-z{progenitor_mass.value:3.1f}.fits' elif progenitor_mass.value == 27.0: fname = f'sukhbold-{eos}-s{progenitor_mass.value:3.1f}.fits' else: raise ValueError('Invalid value for model argument `progenitor_mass`, expected (9.6, 27.0) Msun, ' f'given {progenitor_mass}') return fname def get_tamborra_2014_fname(progenitor_mass, **kwargs): if progenitor_mass.value in (20.0, 27.0): fname = f's{progenitor_mass.value:3.1f}c_3D_dir1' else: raise ValueError('Invalid value for model argument `progenitor_mass`, expected (20.0, 27.0) Msun, ' f'given {progenitor_mass}') return fname def get_bollig_2016_fname(progenitor_mass, **kwargs): if progenitor_mass.value in (11.2, 27.0): fname = f's{progenitor_mass.value:3.1f}c' else: raise ValueError('Invalid value for model argument `progenitor_mass`, expected (20.0, 27.0) Msun, ' f'given {progenitor_mass.value}') return fname def get_walk_2018_fname(progenitor_mass=15. * u.Msun, **kwargs): if progenitor_mass.value != 15.0: raise ValueError('Invalid value for model argument `progenitor_mass`, expected (15.0) Msun, ' f'given {progenitor_mass}') return f's{progenitor_mass.value:3.1f}c_3D_nonrot_dir1' def get_walk_2019_fname(progenitor_mass=40. * u.Msun, **kwargs): if progenitor_mass.value != 40.0: raise ValueError('Invalid value for model argument `progenitor_mass`, expected (40.0) Msun, ' f'given {progenitor_mass}') return f's{progenitor_mass.value:3.1f}c_3DBH_dir1' def get_oconnor_2013_params(progenitor_mass, eos, **kwargs): if eos not in ('LS220', 'HShen'): raise ValueError(f'Invalid value for model argument `eos`, expected ("LS220", "SFHo") given "{eos}"') if progenitor_mass.value not in (12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 40, 45, 50, 55, 60, 70, 80, 100, 120): raise ValueError('Invalid value for model argument `progenitor_mass`, expected (12..33, 35, 40, 45, 50, 55, 60,' f' 70, 80, 100, 120) Msun, given {progenitor_mass}') return int(progenitor_mass.value), eos def get_oconnor_2015_fname(**kwargs): return 'M1_neutrinos.dat' def get_zha_2021_fname(progenitor_mass, **kwargs): if progenitor_mass.value not in (16, 17, 18, 19.89, 19, 20, 21, 22.39, 22, 23, 24, 25, 26, 30, 33): raise ValueError('Invalid value for model argument `progenitor_mass`, expected (16, 17, 18, 19.89, 19, 20, 21, ' f'22.39, 22, 23, 24, 25, 26, 30, 33) Msun, given {progenitor_mass}') if progenitor_mass.value.is_integer(): fname = f's{int(progenitor_mass.value):2d}.dat' else: fname = f's{progenitor_mass.value:4.2f}.dat' return fname def get_warren_2020_fname(progenitor_mass, turb_mixing, **kwargs): if turb_mixing not in (1.23, 1.25, 1.27): raise ValueError('Invalid value for model argument `alpha_lambda`, expected (1.23, 1.25, 1.27) ' f'{turb_mixing}') if progenitor_mass.value in np.arange(9.25, 13., 0.25) or progenitor_mass.value in np.arange(13., 30.1, 0.1) or \ progenitor_mass.value == 90.: fname = f'stir_a{turb_mixing:3.2f}/stir_multimessenger_a{turb_mixing:3.2f}_m{progenitor_mass.value:.2f}.h5' elif progenitor_mass.value in (31, 32, 33, 34, 35, 40, 45, 50, 55, 60, 70, 80, 100, 120): fname = f'stir_a{turb_mixing:3.2f}/stir_multimessenger_a{turb_mixing:3.2f}_m{progenitor_mass.value:d}.h5' else: raise ValueError(f'Invalid value for model argument `progenitor_mass`, given {progenitor_mass}, expected ' '9.25.. 0.25 ..13.0, 13.0.. 0.1 .. 30.0, 31..33, 35.. 5 ..60, 60.. 10 ..90, 80.. 20 ..120') return fname def get_kuroda_2020_fname(rot_vel, mag_field_exponent, **kwargs): if rot_vel.value not in (0, 1): raise ValueError(f'Invalid value for model argument `rot_vel`, expected (0, 1) rad / s, given {rot_vel}') if mag_field_exponent not in (0, 12, 13): raise ValueError('Invalid value for model argument `mag_field_exponent, expected (0, 12, 13), ' f'given {mag_field_exponent}') if (rot_vel.value == 0 and mag_field_exponent in (12, 13)) or (rot_vel.value == 1 and mag_field_exponent == 0): raise ValueError('Invalid combination of model arguments, Allowed combinations of model arguments `rot_val` and' ' `mag_field_exponent` are (0 rad/s, 0), (1 rad/s, 12), and (1 rad/s, 13). Given ' f'{(rot_vel, mag_field_exponent)}') return f'LnuR{int(rot_vel.value):1d}0B{int(mag_field_exponent):02d}.dat' def get_fornax_2019_fname(progenitor_mass, **kwargs): if progenitor_mass.value not in (9, 10, 12, 13, 14, 15, 16, 19, 25, 60): ValueError(f'Invalid value for model argument `progenitor_mass`, given {progenitor_mass}, expected ' '(9, 10, 12, 13, 14, 15, 16, 19, 25, 60)') if progenitor_mass.value == 16: return f'lum_spec_{int(progenitor_mass.value):2d}M_r250.h5' return f'lum_spec_{int(progenitor_mass.value):2d}M.h5' lookup_dict = {'Sukhbold_2015': get_sukhbold_2015_fname, 'Tamborra_2014': get_tamborra_2014_fname, 'Bollig_2016': get_bollig_2016_fname, 'Walk_2018': get_walk_2018_fname, 'Walk_2019': get_walk_2019_fname, 'OConnor_2013': get_oconnor_2013_params, # UNIQUE INIT SIGNATURE 'OConnor_2015': get_oconnor_2015_fname, 'Zha_2021': get_zha_2021_fname, 'Warren_2020': get_warren_2020_fname, 'Kuroda_2020': get_kuroda_2020_fname, 'Fornax_2019': get_fornax_2019_fname} # import numpy as np # from numbers import Number # from scipy.special import loggamma, gdtr # # def _energy_pdf(a, Ea, E): # return np.exp((1 + a) * np.log(1 + a) - loggamma(1 + a) + # a * np.log(E) - (1 + a) * np.log(Ea) - (1 + a) * (E / Ea)) # # def parts_by_index(x, n): # """Returns a list of size-n numpy arrays containing indices for the # elements of x, and one size-m array ( with m<n ) if there are remaining # elements of x. # # Returns # ------- # i_part : list # List of index partitions (partitions are numpy array). # """ # nParts = x.size//n # i_part = [ np.arange( i*n, (i+1)*n ) for i in range(nParts) ] # # # Generate final partition of size <n if x.size is not multiple of n # if len(i_part)*n != x.size: # i_part += [ np.arange( len(i_part)*n, x.size ) ] # # # Ensure that last partition always has 2 or more elements # if len(i_part[-1]) < 2: # i_part[-2] = np.append(i_part[-2], i_part[-1]) # i_part = i_part[0:-1] # # return i_part # # # # def energy_pdf(a, Ea, E, *, limit_size=True): # # TODO: Figure out how to reconcile this # if isinstance(E, np.ndarray): # if limit_size and E.size > 1e6: # raise ValueError('Input argument size exceeded. Argument`E` is a np.ndarray with size {E.size}, which may ' # 'lead to large memory consumption while this function executes. To proceed, please reduce ' # 'the size of `E` or use keyword argument `limit_size=False`') # if all(isinstance(var, np.ndarray) for var in (a, Ea)): # if a.size == Ea.size: # # Vectorized function can lead to unregulated memory usage, better to define it only when needed # _vec_energy_pdf = np.vectorize(_energy_pdf, excluded=['E'], signature='(1,n),(1,n)->(m,n)') # return _vec_energy_pdf(a=a, Ea=Ea, E=E) # else: # raise ValueError('Invalid input array size. Arguments `a` and `Ea` must have the same size. ' # f'Given sizes ({a.size}) and ({Ea.size}) respectively.') # elif all(isinstance(var, Number) for var in (a, Ea)): # return _energy_pdf(a, Ea, E) # else: # raise ValueError('Invalid argument types, arguments `a` and `Ea` must be numbers or np.ndarray. ' # f'Given types ({type(a)}) and ({type(Ea)}) respectively.') # # # def integrate_by_partitions(func, func_args, func_kwargs, axis=1, partition_size=1000): # # # Perform core calculation on partitions in E to regulate memory usage in vectorized function # # _size = func_args.values()[axis].size # # result = np.zeros(_size) # # idx = 0 # # if limit < _size: # # idc_split = np.arange(E.size, step=limit) # # for idx in idc_split[:-1]: # # _E = Enu[idx:idx + limit] # # _phot = phot[idx:idx + limit] # # result[:, idx:idx + limit] = np.trapz(self.energy_spectrum(t=t, E=_E, flavor=flavor).value * _phot, _E, # # axis=0) # # # # _E = Enu[idx:] # # _phot = phot[idx:] # # result[:, idx:idx + limit] = np.trapz(self.energy_spectrum(t=t, E=_E, flavor=flavor).value * _phot, _E, axis=0) # # return result # # def energy_cdf(a, Ea, E): # return gdtr(1., a + 1., (a + 1.) * (E / Ea))
[ "snewpy.get_models", "astropy.units.UnitTypeError", "astropy.config.paths.get_cache_dir", "astropy.units.get_physical_type", "numpy.arange", "logging.getLogger" ]
[((327, 342), 'astropy.config.paths.get_cache_dir', 'get_cache_dir', ([], {}), '()\n', (340, 342), False, 'from astropy.config.paths import get_cache_dir\n'), ((2196, 2215), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (2213, 2215), False, 'import logging\n'), ((2407, 2443), 'snewpy.get_models', 'get_models', (['model_name', 'download_dir'], {}), '(model_name, download_dir)\n', (2417, 2443), False, 'from snewpy import get_models\n'), ((8764, 8791), 'numpy.arange', 'np.arange', (['(9.25)', '(13.0)', '(0.25)'], {}), '(9.25, 13.0, 0.25)\n', (8773, 8791), True, 'import numpy as np\n'), ((8819, 8845), 'numpy.arange', 'np.arange', (['(13.0)', '(30.1)', '(0.1)'], {}), '(13.0, 30.1, 0.1)\n', (8828, 8845), True, 'import numpy as np\n'), ((3900, 3934), 'astropy.units.get_physical_type', 'get_physical_type', (['user_param.unit'], {}), '(user_param.unit)\n', (3917, 3934), False, 'from astropy.units import UnitTypeError, get_physical_type\n'), ((3938, 3976), 'astropy.units.get_physical_type', 'get_physical_type', (['allowed_params.unit'], {}), '(allowed_params.unit)\n', (3955, 3976), False, 'from astropy.units import UnitTypeError, get_physical_type\n'), ((4000, 4122), 'astropy.units.UnitTypeError', 'UnitTypeError', (['f"""Incorrect units {user_param.unit} provided for parameter {key}, expected {allowed_params.unit}"""'], {}), "(\n f'Incorrect units {user_param.unit} provided for parameter {key}, expected {allowed_params.unit}'\n )\n", (4013, 4122), False, 'from astropy.units import UnitTypeError, get_physical_type\n')]
############################################################################## # # Author: <NAME> # Date: 30 April 2019 # Name: file_decoder.py # Description: # This script takes in .mat files (produced by record_spectrum_orbcomm.py) and # produces multiple plots of the signals spectrum, constellation, timing # recovery, eye diagram, and IQ samples. Additionally, raw decoded bits are # printed and saved to a file (./packets.txt). # ############################################################################## import glob from datetime import datetime, timedelta import ephem import numpy as np from scipy.io import loadmat import scipy.signal as scisig import matplotlib.pyplot as plt from sat_db import active_orbcomm_satellites from orbcomm_packet import packet_dict from helpers import butter_lowpass_filter, complex_mix, rrcosfilter from helpers import fletcher_checksum, ecef_to_lla, lla_to_ecef # speed of light c = 299792458.0 # m/s # Perform brute force error correction brute_force_1bit_error_correction = True # Where to save decoded packets packet_file = r'./packets.txt' # Where the data files are located data_dir = r'./data/' sample_file = sorted(glob.glob(data_dir + "*.mat"))[0] # Load the .mat file and print some of the metadata data = loadmat(sample_file) print("Filename: {}".format(sample_file)) print("Timestamp: {}".format(data['timestamp'][0][0])) print("Data collected on: {}".format(datetime.utcfromtimestamp(data['timestamp'][0][0]))) print("Satellites in recording: {}".format(', '.join(data['sats']))) print("SDR Sample rate: {} Hz".format(data['fs'][0][0])) print("SDR Center frequency: {} Hz".format(data['fc'][0][0])) frequencies = [] for sat_name in data['sats']: freq1, freq2 = active_orbcomm_satellites[sat_name]['frequencies'] frequencies.append(freq1) frequencies.append(freq2) print("Satellite frequencies: {}".format(', '.join([str(xx) for xx in frequencies]))) # Extract the values from file for some further processing samples = data['samples'][0] center_freq = data['fc'][0][0] sample_rate = data['fs'][0][0] timestamp = data['timestamp'][0][0] lat = data['lat'][0][0] lon = data['lon'][0][0] alt = data['alt'][0][0] print("Number of samples: {}".format(len(samples))) # Check which satellite frequency is contained in the recording # If both frequencies are present, decode the lower one. sat_center_frequency = 0 for freq in frequencies: if freq > (center_freq - sample_rate/2.0) and freq < (center_freq + sample_rate/2.0): sat_center_frequency = freq break if sat_center_frequency == 0: print("Satellite channel frequencies are not in the recorded spectrum.") exit() # To force decoding the upper frequency uncomment this line # sat_center_frequency = frequencies[1] # PyEphem observer obs = ephem.Observer() obs.lat, obs.lon = '{}'.format(lat), '{}'.format(lon) obs.elevation = alt # Technically is the altitude of observer obs.date = datetime.utcfromtimestamp(timestamp) # Normalize samples samples /= np.median(np.abs(samples)) # Get the TLE information from the .mat file sat_line0, sat_line1, sat_line2 = [str(xx) for xx in data['tles'][0]] sat = ephem.readtle(sat_line0, sat_line1, sat_line2) sat.compute(obs) # Use the TLE info that was in the .mat file to calculate doppler shift # of the satellite's transmission relative_vel = sat.range_velocity doppler = c/(c+relative_vel) * sat_center_frequency - sat_center_frequency # Mix the samples to baseband (compensating for doppler shift) # There will be a residual carrier error because of the RLTSDR frequency offset freq_shift = center_freq - sat_center_frequency - doppler mixed_down_samples, _ = complex_mix(samples, freq_shift, sample_rate) filter_freq = 10e3 baud_rate = 4800.0 samples_per_symbol = 2 # We should only need 2 samples per symbol if sample_rate == 1.2288e6: # Low pass filter the signal filtered_samples = butter_lowpass_filter(mixed_down_samples, filter_freq, sample_rate, order=5) # Decimated signal decimation = int(sample_rate/(samples_per_symbol*baud_rate)) decimated_samples = filtered_samples[::decimation] elif sample_rate == 19200.0: print("Single channel recording detected.") filter_freq = 4e3 filtered_samples = butter_lowpass_filter(mixed_down_samples, filter_freq, sample_rate, order=2) decimation = 2 decimated_samples = filtered_samples[::decimation] filtered_samples = filtered_samples # estimate remaining carrier error (RTLSDR frequency error) # signal to the fourth power, take the fft, peak is at frequency offset rbw = 1 nperseg = int(sample_rate/decimation/rbw) # take first min(50e3, len(samples)) of the samples to the 4th power. signal_to_4th_power = np.power(decimated_samples[:int(min(len(decimated_samples), 50e3)):], 4) f, pxx = scisig.welch(signal_to_4th_power, fs=sample_rate/decimation, return_onesided=False, nperseg=nperseg, scaling='density') f = (np.roll(f, int(len(f)/2))) pxx = np.roll(pxx, int(len(pxx)/2)) search_window = int(1000. / ((sample_rate/decimation)/nperseg)) # search +/- 1 kHz around fc frequency_peak = np.argmax(pxx[int(len(pxx)/2 - search_window):int(len(pxx)/2 + search_window)]) freq_offset = -(frequency_peak - search_window)*(sample_rate/decimation/nperseg) / 4 baseband_samples, _ = complex_mix(decimated_samples, freq_offset, sample_rate/decimation) print("Remaining frequency offset after doppler compensation: {} Hz".format(freq_offset)) # Create RRC taps alpha = 0.4 baudrate = 1. num_of_symbols_half_filter = 8. rrc_num_taps = samples_per_symbol * num_of_symbols_half_filter * 2. + 1. t_idx, rrc_taps = rrcosfilter(rrc_num_taps, alpha, baudrate, samples_per_symbol) matched_filtered_samples = scisig.lfilter(rrc_taps, [1.0], baseband_samples) # Manually find a close timing offset # For only 2 samples per symbol, 0 works all the time. sample_delay = 0 tau = 0. # initial timing offset estimate dtau = 0. # initial timing _rate_ offset estimate buf = np.zeros(5, dtype=np.complex64) # filter buffer th = np.array([-2., -1., 0., 1., 2.]) # time vector for interpolating filter w = np.sqrt(np.hamming(5).T) # window function for interpolating filter alpha = 0.0005 # loop filter bandwidth (timing _rate_ adjustment factor) beta = 2*np.sqrt(alpha) # (timing _phase_ adjustment factor) counter = sample_delay + 1 # interpolating filter adds delay time_recovery_samples = np.zeros(len(matched_filtered_samples), dtype=np.complex64) buf_dz = [0.,0.,0.] dtau_vect = np.zeros(len(matched_filtered_samples)) tau_vect = np.zeros(len(matched_filtered_samples)) timing_error = np.zeros(len(matched_filtered_samples)) err = 0.0 # Timing recovery i = 1 i_offset = 0 while i < len(time_recovery_samples) - 1 and i - i_offset + 2 < len(matched_filtered_samples): # push sample into interpolating filter # If the time offset exceeds one sample in either direction if tau > 1.0: # Use the samples from last time i_offset += 1 tau += -1 elif tau < -1.0: # Push two samples into the buffer buf[:-2] = buf[2:] buf[-2:] = matched_filtered_samples[int(i - i_offset):int(i - i_offset + 2)] i_offset += -1 tau += 1 else: # Or just normally add one sample to the buffer buf[:-1] = buf[1:] buf[-1] = matched_filtered_samples[int(i - i_offset)] # interpolate matched filter output hi = np.sinc(th - tau) * w # interpolating filter coefficients hi /= np.sum(hi) time_recovery_samples[i] = np.dot(buf, np.flip(hi, 0)) # compute matched filter output # take (approximate) derivative of filter output buf_dz[:-1] = buf_dz[1:] buf_dz[-1] = time_recovery_samples[i] dz = -np.dot(buf_dz, np.array([-1, 0, 1])) # determine if an output sample needs to be computed counter = counter + 1 if counter >= samples_per_symbol: # decrement counter by samples per symbol counter = counter - samples_per_symbol # compute timing error signal, accounting for delay err = np.tanh( (dz * np.conj(time_recovery_samples[i-1])).real ) # update timing rate change dtau = dtau + alpha * err tau = tau + beta * err timing_error[i] = err # update timing error tau = tau + dtau/samples_per_symbol # save results for plotting dtau_vect[i] = dtau tau_vect[i] = tau + i_offset i += 1 # Plot timing offset plt.figure() plt.subplot(311) plt.title("Timing offset (tau)") plt.plot(tau_vect) plt.subplot(312) plt.title("Derivative (Dtau)") plt.plot(dtau_vect) plt.tight_layout() plt.subplot(313) plt.title("Timing error signal") plt.plot(timing_error) plt.tight_layout() # Plot eye-diagram plt.figure() plt.subplot(311) plt.title("Eye Diagram before matched filter") offset = samples_per_symbol * 200 num_plots = 8 length = 64 for xx in range(num_plots): plt.plot(baseband_samples[offset:offset+length].imag) offset += length plt.subplot(312) plt.title("After matched filter") offset = samples_per_symbol * 200 for xx in range(num_plots): plt.plot(matched_filtered_samples[offset:offset+length].imag) offset += length plt.grid() plt.subplot(313) plt.title("After timing recovery") offset = samples_per_symbol * 200 for xx in range(num_plots): plt.plot(time_recovery_samples[offset:offset+length].imag) offset += length plt.grid() plt.tight_layout() # Costas loop phase_est = np.zeros(len(time_recovery_samples)+1) alpha = 0.03 beta = 0.2 * alpha**2 frequency_out = 0.0 freq_out = [] for idx, sample in enumerate(time_recovery_samples): signal_out = sample * np.exp(-1j * phase_est[idx]) phase_error = np.sign(signal_out.real)*signal_out.imag - np.sign(signal_out.imag)*signal_out.real frequency_out += beta * phase_error phase_est[idx+1] = phase_est[idx] + alpha * phase_error + frequency_out freq_out.append(frequency_out) # Alternative phase correcting code: # PLL code loosely based on liquid dsp simple pll tutorial: # http://liquidsdr.org/blog/pll-simple-howto/ ## After timing recovery, performing a fine-frequency PLL ## First take the signal to the fourth power, then low pass filter # filter_freq = 0.5e3 # signal_to_4th_power2 = np.power(time_recovery_samples, 4) # filtered_sig4th = butter_lowpass_filter(signal_to_4th_power2, filter_freq, sample_rate/decimation, order=5) # phase_est = np.zeros(len(time_recovery_samples)+1) # alpha = 0.01 # beta = 0.2 * alpha**2 # frequency_out = 0.0 # freq_out = [] # for idx, sample in enumerate(filtered_sig4th): # signal_out = np.exp(1j * phase_est[idx]) # phase_error = np.angle( sample * np.conj(signal_out) ) # old_freq = frequency_out # frequency_out += beta * phase_error # phase_est[idx+1] = phase_est[idx] + alpha * phase_error + frequency_out # freq_out.append(frequency_out) plt.figure() plt.subplot(211) plt.title('Phase output of PLL') plt.plot(phase_est) plt.grid() plt.subplot(212) plt.title('Frequency of PLL') plt.plot(freq_out) plt.grid() # Phase compensate the IQ samples phase_comp_samples = time_recovery_samples * np.conj(np.exp(1j*phase_est[:-1])) # Decode to bits # normalize phase compensated samples; phase_comp_samples /= np.median(np.abs(phase_comp_samples)) # Select peak sample from each symbol demod_symbols = phase_comp_samples[::samples_per_symbol] #Differential demodulation # A 1 is a 90 degree phase shift forward from the last symbol # A 0 is a -90 degree phase shift forward from the last symbol bits = [] angles = [] for xx in range(1, len(demod_symbols)): angle = np.angle(demod_symbols[xx], deg=True) - np.angle(demod_symbols[xx-1], deg=True) if angle > 180: angle -= 360 if angle < -180: angle += 360 angles.append(angle) bit = 0 if angle > 0: bit = 1 bits.append(bit) # Plot the angles between each symbol, should be +/- 90 degrees plt.figure() plt.title('Angle between successive symbols') plt.xlabel('symbol number') plt.ylabel('Angle (degrees)') plt.plot(angles, 'x') plt.grid() # convert to a string of 0's and 1's bit_string = ''.join([str(bit) for bit in bits]) # Find first full packet size_of_packets = 12*8 # bits num_of_possible_packets = len(bit_string)/size_of_packets bit_offset = 0 print("Number of possible packets: {}".format(num_of_possible_packets)) # Extract the headers from the packet dictionary packet_headers = [packet_dict[packet_type]['header'] for packet_type in packet_dict] # for all bit offsets (of the length of the packets) # calculate a score for most valid headers of that offset # this also checks a bit-reversed score (in case my endianness is reversed) scores = np.zeros(size_of_packets) revscores = np.zeros(size_of_packets) for xx in range(0, size_of_packets): for yy in range(xx, len(bit_string)-xx-8, size_of_packets): if bit_string[yy:yy+8][::-1] in packet_headers: scores[xx] += 1 if bit_string[yy:yy+8] in packet_headers: revscores[xx] += 1 reverse = False if np.max(scores) < np.max(revscores): reverse = True if reverse: bit_offset = np.argmax(revscores) else: bit_offset = np.argmax(scores) print("Bit stream offset: {}".format(bit_offset)) packets = [] last_packet_epheris = False for xx in range(bit_offset, len(bit_string)-size_of_packets, size_of_packets): if last_packet_epheris == True: last_packet_epheris = False continue packet = '' if reverse: header = '{:02X}'.format(int(bit_string[xx:xx+8], 2)) else: header = '{:02X}'.format(int(bit_string[xx:xx+8][::-1], 2)) ephemeris_header = packet_dict['Ephemeris']['hex_header'] packet_length = 12*8 if header == ephemeris_header: packet_length = 24*8 last_packet_epheris = True for yy in range(0, packet_length, 8): if reverse: packet += '{:02X}'.format(int(bit_string[xx+yy:xx+yy+8], 2)) else: packet += '{:02X}'.format(int(bit_string[xx+yy:xx+yy+8][::-1], 2)) packets.append(packet) # Save the packets (in hex) to a file with open(packet_file, 'w') as f: for packet in packets: f.write(packet + '\n') # Print out the parsed packets error_packets = 0 fixed_packets = 0 print("\nList of packets: (### indicates checksum failed)") for packet in packets: output = '' # Compute the fletcher16 checksum over the whole packet # 0000 output is a good packet if fletcher_checksum(packet) != '0000' and brute_force_1bit_error_correction: # Attempt to correct errors by flipping bits until the checksum comes out correct binary_packet = format(int(packet, 16), '0>{}b'.format(int(len(packet)/2*8))) for xx in range(0, len(binary_packet)): temp_packet = '' if binary_packet[xx] == '0': temp_bits = binary_packet[:xx] + '1' + binary_packet[xx+1:] else: temp_bits = binary_packet[:xx] + '0' + binary_packet[xx+1:] for yy in range(0, len(binary_packet), 8): if reverse: temp_packet += '{:02X}'.format(int(temp_bits[yy:yy+8][::-1], 2)) else: temp_packet += '{:02X}'.format(int(temp_bits[yy:yy+8], 2)) if fletcher_checksum(temp_packet) == '0000': # print("Found correct packet!") packet = temp_packet fixed_packets += 1 break if fletcher_checksum(packet) != '0000': output += '### ' error_packets += 1 for packet_type in packet_dict: packet_info = packet_dict[packet_type] if packet[:2] == packet_info['hex_header']: output += '{}: '.format(packet_type) for part, (start, stop) in packet_info['message_parts']: output += '{}: {} '.format(part, packet[start:stop]) print(output) if packet_type == 'Ephemeris': payload = ''.join([packet[xx:xx+2] for xx in range(42, 2, -2)]) # calculate current satellite time start_date = datetime.strptime('Jan 6 1980 00:00', '%b %d %Y %H:%M') week_number = payload[:4] time_of_week = payload[4:10] this_week = start_date + timedelta(weeks=int(week_number, 16)) this_time = this_week + timedelta(seconds=int(time_of_week, 16)) print("\tCurrent satellite time: {} Z".format(this_time)) # calculate satellite ECEF position zdot = payload[10:15][::-1] ydot = payload[15:20][::-1] xdot = payload[20:25][::-1] zpos = payload[25:30][::-1] ypos = payload[30:35][::-1] xpos = payload[35:40][::-1] # Constants/equations from Orbcomm Serial Interface Specification E80050015-Rev F max_r_sat = 8378155.0 max_v_sat = 7700.0 val_20_bits = 1048576.0 # ECEF position. x_temp = int(xpos[:2][::-1], 16) + 256. * int(xpos[2:4][::-1], 16) + 256**2 * int(xpos[4:], 16) x_ecef = ((2*x_temp*max_r_sat)/val_20_bits - max_r_sat) y_temp = int(ypos[:2][::-1], 16) + 256. * int(ypos[2:4][::-1], 16) + 256**2 * int(ypos[4:], 16) y_ecef = ((2*y_temp*max_r_sat)/val_20_bits - max_r_sat) z_temp = int(zpos[:2][::-1], 16) + 256. * int(zpos[2:4][::-1], 16) + 256**2 * int(zpos[4:], 16) z_ecef = ((2*z_temp*max_r_sat)/val_20_bits - max_r_sat) # ECEF velocity vectors vx_temp = int(xdot[:2][::-1], 16) + 256. * int(xdot[2:4][::-1], 16) + 256**2 * int(xdot[4:], 16) vx_ecef = ((2*vx_temp*max_v_sat)/val_20_bits - max_v_sat) vy_temp = int(ydot[:2][::-1], 16) + 256. * int(ydot[2:4][::-1], 16) + 256**2 * int(ydot[4:], 16) vy_ecef = ((2*vy_temp*max_v_sat)/val_20_bits - max_v_sat) vz_temp = int(zdot[:2][::-1], 16) + 256. * int(zdot[2:4][::-1], 16) + 256**2 * int(zdot[4:], 16) vz_ecef = ((2*vz_temp*max_v_sat)/val_20_bits - max_v_sat) # Calculate satellites reported velocity sat_vel = np.sqrt(vx_ecef**2 + vy_ecef**2 + vz_ecef**2) # Calculate the satellites reported position lat, lon, alt = ecef_to_lla(x_ecef, y_ecef, z_ecef) # Calculate the distance between satellite's reported position and the ephemeris position ephem_lat, ephem_lon, ephem_alt = (np.degrees(sat.sublat), np.degrees(sat.sublong), sat.elevation) ephem_x_ecef, ephem_y_ecef, ephem_z_ecef = lla_to_ecef(ephem_lat, ephem_lon, ephem_alt) distance = np.sqrt((x_ecef - ephem_x_ecef)**2 + (y_ecef - ephem_y_ecef)**2 + (z_ecef - ephem_z_ecef)**2) # Calculate velocity from pyephem by calculating the position half a second before and after timestamp # to get "distance traveled per second" # 0.5 seconds in the past obs.date = datetime.utcfromtimestamp(timestamp - 0.5) sat.compute(obs) ephem_lat, ephem_lon, ephem_alt = (np.degrees(sat.sublat), np.degrees(sat.sublong), sat.elevation) ephem_x_ecef_1, ephem_y_ecef_1, ephem_z_ecef_1 = lla_to_ecef(ephem_lat, ephem_lon, ephem_alt) # 0.5 seconds in the future obs.date = datetime.utcfromtimestamp(timestamp + 0.5) sat.compute(obs) ephem_lat, ephem_lon, ephem_alt = (np.degrees(sat.sublat), np.degrees(sat.sublong), sat.elevation) ephem_x_ecef_2, ephem_y_ecef_2, ephem_z_ecef_2 = lla_to_ecef(ephem_lat, ephem_lon, ephem_alt) # Calculate distance between those points (since it is over 1 second, it is the same as velocity) ephem_vel = np.sqrt((ephem_x_ecef_1 - ephem_x_ecef_2)**2 + (ephem_y_ecef_1 - ephem_y_ecef_2)**2 + (ephem_z_ecef_1 - ephem_z_ecef_2)**2) print("\tSat Lat/Lon: {:8.4f}, {:8.4f}, Altitude: {:6.1f} km, Velocity: {:6.1f} m/s".format(lat, lon, alt/1000.0, sat_vel)) print("\tEphem Lat/Lon: {:8.4f}, {:8.4f}, Altitude: {:6.1f} km, Velocity: {:6.1f} m/s".format(np.degrees(sat.sublat), np.degrees(sat.sublong), sat.elevation/1000.0, ephem_vel)) print("\tDifference in reported and ephemeris position: {:6.1f} km".format(distance/1000.0)) print("\tDifference in reported and ephemeris velocity: {:6.1f} m/s".format(abs(sat_vel - ephem_vel))) break # Unrecognized just means I don't know what these packets are for # would also happen if the header is corrupted if output in ['', '### ']: print("{}Unrecognized packet: {}".format(output, packet)) print("{} packets with errors, {} packets corrected, PER: {:5.1f}%".format(error_packets+fixed_packets, fixed_packets, float(error_packets)/len(packets)*100)) # Plot IQ samples plt.figure() plt.subplot(211) plt.title("Before carrier recovery") plt.plot(phase_comp_samples[1000:1080].real) plt.plot(phase_comp_samples[1000:1080].imag) plt.grid() plt.subplot(212) plt.title("After carrier recovery") plt.plot(time_recovery_samples[1000:1080].real) plt.plot(time_recovery_samples[1000:1080].imag) plt.grid() plt.tight_layout() # Plot spectrum of recording plt.figure() plt.subplot(221) nperseg = int(sample_rate/100.0) f, full_pxx = scisig.welch(samples, fs=sample_rate, nperseg=nperseg, \ return_onesided=False, scaling='density') f = (np.roll(f, int(len(f)/2)) + center_freq)/1e6 full_pxx = np.roll(full_pxx, int(len(full_pxx)/2)) full_pxx = 10*np.log10(full_pxx) plt.plot(f, full_pxx) plt.title("Periodogram of recording\nRed dots are orbcomm channels") plt.xlabel("Frequency (Hz)") plt.ylabel("Magnitude (dB)") low_point = np.min(full_pxx) for freq in frequencies: plt.plot(freq/1e6, low_point, 'ro') # Plot one of the channels as baseband # and plot the decimated signal plt.subplot(222) f, pxx = scisig.welch(baseband_samples, fs=sample_rate/decimation, \ return_onesided=False, nperseg=nperseg, scaling='density') f = (np.roll(f, int(len(f)/2))) pxx = np.roll(pxx, int(len(pxx)/2)) pxx = 10*np.log10(pxx) plt.plot(f, pxx, label='Decimated') # plot the low-pass filtered signal f, pxx = scisig.welch(filtered_samples, fs=sample_rate, nperseg=nperseg, \ return_onesided=False, scaling='density') f = (np.roll(f, int(len(f)/2))) pxx = np.roll(pxx, int(len(pxx)/2)) pxx = 10*np.log10(pxx) plt.plot(f, pxx, label='original signal') plt.xlim([-45e3, 45e3]) plt.ylim([np.min(full_pxx)-40, np.max(pxx)+1]) plt.title("Spectrum of one channel at baseband") plt.xlabel("Frequency (Hz)") plt.ylabel("Magnitude (dB)") plt.legend(loc='best') # plot the signal raised to the 4th power # Gives an idea of frequency offset after doppler compensation plt.subplot(223) nperseg = len(signal_to_4th_power) f, pxx = scisig.welch(signal_to_4th_power, fs=sample_rate/decimation, \ return_onesided=False, nperseg=nperseg, scaling='density') f = (np.roll(f, int(len(f)/2))) pxx = np.roll(pxx, int(len(pxx)/2)) pxx = 10*np.log10(pxx) plt.plot(f, pxx) plt.xlim([-2e3, 2e3]) plt.title("Spectrum of signal to 4th power") plt.xlabel("Frequency (Hz)") plt.ylabel("Magnitude (dB)") plt.tight_layout() # Plot complex samples from one channel plt.figure() ax = plt.subplot(111) matched_filtered_samples /= np.median(np.abs(matched_filtered_samples)) phase_comp_samples /= np.median(np.abs(phase_comp_samples)) plt.scatter(matched_filtered_samples.real[100*samples_per_symbol::samples_per_symbol], matched_filtered_samples.imag[100*samples_per_symbol::samples_per_symbol], marker='x', label='after MF') plt.scatter(phase_comp_samples.real[100*samples_per_symbol::samples_per_symbol], phase_comp_samples.imag[100*samples_per_symbol::samples_per_symbol], marker='x', label='timing recovery') plt.legend(loc='best') plt.title("Complex samples (10k samples)") plt.xlabel("Real") plt.ylabel("Imag") plt.grid() ax.set_aspect(aspect=1) plt.tight_layout() plt.show()
[ "matplotlib.pyplot.title", "ephem.Observer", "numpy.abs", "scipy.signal.welch", "numpy.sum", "scipy.io.loadmat", "helpers.butter_lowpass_filter", "numpy.argmax", "numpy.angle", "helpers.complex_mix", "matplotlib.pyplot.figure", "numpy.sinc", "numpy.exp", "glob.glob", "matplotlib.pyplot.tight_layout", "numpy.degrees", "scipy.signal.lfilter", "ephem.readtle", "helpers.lla_to_ecef", "datetime.datetime.utcfromtimestamp", "numpy.max", "numpy.log10", "numpy.conj", "matplotlib.pyplot.show", "numpy.hamming", "matplotlib.pyplot.legend", "numpy.min", "datetime.datetime.strptime", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.grid", "helpers.rrcosfilter", "matplotlib.pyplot.subplot", "matplotlib.pyplot.xlim", "numpy.flip", "matplotlib.pyplot.plot", "helpers.ecef_to_lla", "matplotlib.pyplot.scatter", "numpy.zeros", "helpers.fletcher_checksum", "numpy.array", "numpy.sign", "matplotlib.pyplot.xlabel", "numpy.sqrt" ]
[((1269, 1289), 'scipy.io.loadmat', 'loadmat', (['sample_file'], {}), '(sample_file)\n', (1276, 1289), False, 'from scipy.io import loadmat\n'), ((2796, 2812), 'ephem.Observer', 'ephem.Observer', ([], {}), '()\n', (2810, 2812), False, 'import ephem\n'), ((2940, 2976), 'datetime.datetime.utcfromtimestamp', 'datetime.utcfromtimestamp', (['timestamp'], {}), '(timestamp)\n', (2965, 2976), False, 'from datetime import datetime, timedelta\n'), ((3158, 3204), 'ephem.readtle', 'ephem.readtle', (['sat_line0', 'sat_line1', 'sat_line2'], {}), '(sat_line0, sat_line1, sat_line2)\n', (3171, 3204), False, 'import ephem\n'), ((3664, 3709), 'helpers.complex_mix', 'complex_mix', (['samples', 'freq_shift', 'sample_rate'], {}), '(samples, freq_shift, sample_rate)\n', (3675, 3709), False, 'from helpers import butter_lowpass_filter, complex_mix, rrcosfilter\n'), ((4868, 4993), 'scipy.signal.welch', 'scisig.welch', (['signal_to_4th_power'], {'fs': '(sample_rate / decimation)', 'return_onesided': '(False)', 'nperseg': 'nperseg', 'scaling': '"""density"""'}), "(signal_to_4th_power, fs=sample_rate / decimation,\n return_onesided=False, nperseg=nperseg, scaling='density')\n", (4880, 4993), True, 'import scipy.signal as scisig\n'), ((5442, 5511), 'helpers.complex_mix', 'complex_mix', (['decimated_samples', 'freq_offset', '(sample_rate / decimation)'], {}), '(decimated_samples, freq_offset, sample_rate / decimation)\n', (5453, 5511), False, 'from helpers import butter_lowpass_filter, complex_mix, rrcosfilter\n'), ((5768, 5830), 'helpers.rrcosfilter', 'rrcosfilter', (['rrc_num_taps', 'alpha', 'baudrate', 'samples_per_symbol'], {}), '(rrc_num_taps, alpha, baudrate, samples_per_symbol)\n', (5779, 5830), False, 'from helpers import butter_lowpass_filter, complex_mix, rrcosfilter\n'), ((5858, 5907), 'scipy.signal.lfilter', 'scisig.lfilter', (['rrc_taps', '[1.0]', 'baseband_samples'], {}), '(rrc_taps, [1.0], baseband_samples)\n', (5872, 5907), True, 'import scipy.signal as scisig\n'), ((6175, 6206), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'np.complex64'}), '(5, dtype=np.complex64)\n', (6183, 6206), True, 'import numpy as np\n'), ((6233, 6270), 'numpy.array', 'np.array', (['[-2.0, -1.0, 0.0, 1.0, 2.0]'], {}), '([-2.0, -1.0, 0.0, 1.0, 2.0])\n', (6241, 6270), True, 'import numpy as np\n'), ((8684, 8696), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8694, 8696), True, 'import matplotlib.pyplot as plt\n'), ((8697, 8713), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(311)'], {}), '(311)\n', (8708, 8713), True, 'import matplotlib.pyplot as plt\n'), ((8714, 8746), 'matplotlib.pyplot.title', 'plt.title', (['"""Timing offset (tau)"""'], {}), "('Timing offset (tau)')\n", (8723, 8746), True, 'import matplotlib.pyplot as plt\n'), ((8747, 8765), 'matplotlib.pyplot.plot', 'plt.plot', (['tau_vect'], {}), '(tau_vect)\n', (8755, 8765), True, 'import matplotlib.pyplot as plt\n'), ((8767, 8783), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(312)'], {}), '(312)\n', (8778, 8783), True, 'import matplotlib.pyplot as plt\n'), ((8784, 8814), 'matplotlib.pyplot.title', 'plt.title', (['"""Derivative (Dtau)"""'], {}), "('Derivative (Dtau)')\n", (8793, 8814), True, 'import matplotlib.pyplot as plt\n'), ((8815, 8834), 'matplotlib.pyplot.plot', 'plt.plot', (['dtau_vect'], {}), '(dtau_vect)\n', (8823, 8834), True, 'import matplotlib.pyplot as plt\n'), ((8835, 8853), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (8851, 8853), True, 'import matplotlib.pyplot as plt\n'), ((8855, 8871), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(313)'], {}), '(313)\n', (8866, 8871), True, 'import matplotlib.pyplot as plt\n'), ((8872, 8904), 'matplotlib.pyplot.title', 'plt.title', (['"""Timing error signal"""'], {}), "('Timing error signal')\n", (8881, 8904), True, 'import matplotlib.pyplot as plt\n'), ((8905, 8927), 'matplotlib.pyplot.plot', 'plt.plot', (['timing_error'], {}), '(timing_error)\n', (8913, 8927), True, 'import matplotlib.pyplot as plt\n'), ((8928, 8946), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (8944, 8946), True, 'import matplotlib.pyplot as plt\n'), ((8967, 8979), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8977, 8979), True, 'import matplotlib.pyplot as plt\n'), ((8980, 8996), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(311)'], {}), '(311)\n', (8991, 8996), True, 'import matplotlib.pyplot as plt\n'), ((8997, 9043), 'matplotlib.pyplot.title', 'plt.title', (['"""Eye Diagram before matched filter"""'], {}), "('Eye Diagram before matched filter')\n", (9006, 9043), True, 'import matplotlib.pyplot as plt\n'), ((9211, 9227), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(312)'], {}), '(312)\n', (9222, 9227), True, 'import matplotlib.pyplot as plt\n'), ((9228, 9261), 'matplotlib.pyplot.title', 'plt.title', (['"""After matched filter"""'], {}), "('After matched filter')\n", (9237, 9261), True, 'import matplotlib.pyplot as plt\n'), ((9412, 9422), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (9420, 9422), True, 'import matplotlib.pyplot as plt\n'), ((9423, 9439), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(313)'], {}), '(313)\n', (9434, 9439), True, 'import matplotlib.pyplot as plt\n'), ((9440, 9474), 'matplotlib.pyplot.title', 'plt.title', (['"""After timing recovery"""'], {}), "('After timing recovery')\n", (9449, 9474), True, 'import matplotlib.pyplot as plt\n'), ((9622, 9632), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (9630, 9632), True, 'import matplotlib.pyplot as plt\n'), ((9633, 9651), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (9649, 9651), True, 'import matplotlib.pyplot as plt\n'), ((11086, 11098), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (11096, 11098), True, 'import matplotlib.pyplot as plt\n'), ((11099, 11115), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(211)'], {}), '(211)\n', (11110, 11115), True, 'import matplotlib.pyplot as plt\n'), ((11116, 11148), 'matplotlib.pyplot.title', 'plt.title', (['"""Phase output of PLL"""'], {}), "('Phase output of PLL')\n", (11125, 11148), True, 'import matplotlib.pyplot as plt\n'), ((11149, 11168), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_est'], {}), '(phase_est)\n', (11157, 11168), True, 'import matplotlib.pyplot as plt\n'), ((11169, 11179), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (11177, 11179), True, 'import matplotlib.pyplot as plt\n'), ((11181, 11197), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(212)'], {}), '(212)\n', (11192, 11197), True, 'import matplotlib.pyplot as plt\n'), ((11198, 11227), 'matplotlib.pyplot.title', 'plt.title', (['"""Frequency of PLL"""'], {}), "('Frequency of PLL')\n", (11207, 11227), True, 'import matplotlib.pyplot as plt\n'), ((11228, 11246), 'matplotlib.pyplot.plot', 'plt.plot', (['freq_out'], {}), '(freq_out)\n', (11236, 11246), True, 'import matplotlib.pyplot as plt\n'), ((11247, 11257), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (11255, 11257), True, 'import matplotlib.pyplot as plt\n'), ((12125, 12137), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (12135, 12137), True, 'import matplotlib.pyplot as plt\n'), ((12138, 12183), 'matplotlib.pyplot.title', 'plt.title', (['"""Angle between successive symbols"""'], {}), "('Angle between successive symbols')\n", (12147, 12183), True, 'import matplotlib.pyplot as plt\n'), ((12184, 12211), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""symbol number"""'], {}), "('symbol number')\n", (12194, 12211), True, 'import matplotlib.pyplot as plt\n'), ((12212, 12241), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Angle (degrees)"""'], {}), "('Angle (degrees)')\n", (12222, 12241), True, 'import matplotlib.pyplot as plt\n'), ((12242, 12263), 'matplotlib.pyplot.plot', 'plt.plot', (['angles', '"""x"""'], {}), "(angles, 'x')\n", (12250, 12263), True, 'import matplotlib.pyplot as plt\n'), ((12264, 12274), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (12272, 12274), True, 'import matplotlib.pyplot as plt\n'), ((12895, 12920), 'numpy.zeros', 'np.zeros', (['size_of_packets'], {}), '(size_of_packets)\n', (12903, 12920), True, 'import numpy as np\n'), ((12933, 12958), 'numpy.zeros', 'np.zeros', (['size_of_packets'], {}), '(size_of_packets)\n', (12941, 12958), True, 'import numpy as np\n'), ((21440, 21452), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (21450, 21452), True, 'import matplotlib.pyplot as plt\n'), ((21453, 21469), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(211)'], {}), '(211)\n', (21464, 21469), True, 'import matplotlib.pyplot as plt\n'), ((21470, 21506), 'matplotlib.pyplot.title', 'plt.title', (['"""Before carrier recovery"""'], {}), "('Before carrier recovery')\n", (21479, 21506), True, 'import matplotlib.pyplot as plt\n'), ((21507, 21551), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_comp_samples[1000:1080].real'], {}), '(phase_comp_samples[1000:1080].real)\n', (21515, 21551), True, 'import matplotlib.pyplot as plt\n'), ((21552, 21596), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_comp_samples[1000:1080].imag'], {}), '(phase_comp_samples[1000:1080].imag)\n', (21560, 21596), True, 'import matplotlib.pyplot as plt\n'), ((21597, 21607), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (21605, 21607), True, 'import matplotlib.pyplot as plt\n'), ((21609, 21625), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(212)'], {}), '(212)\n', (21620, 21625), True, 'import matplotlib.pyplot as plt\n'), ((21626, 21661), 'matplotlib.pyplot.title', 'plt.title', (['"""After carrier recovery"""'], {}), "('After carrier recovery')\n", (21635, 21661), True, 'import matplotlib.pyplot as plt\n'), ((21662, 21709), 'matplotlib.pyplot.plot', 'plt.plot', (['time_recovery_samples[1000:1080].real'], {}), '(time_recovery_samples[1000:1080].real)\n', (21670, 21709), True, 'import matplotlib.pyplot as plt\n'), ((21710, 21757), 'matplotlib.pyplot.plot', 'plt.plot', (['time_recovery_samples[1000:1080].imag'], {}), '(time_recovery_samples[1000:1080].imag)\n', (21718, 21757), True, 'import matplotlib.pyplot as plt\n'), ((21758, 21768), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (21766, 21768), True, 'import matplotlib.pyplot as plt\n'), ((21769, 21787), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (21785, 21787), True, 'import matplotlib.pyplot as plt\n'), ((21818, 21830), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (21828, 21830), True, 'import matplotlib.pyplot as plt\n'), ((21831, 21847), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(221)'], {}), '(221)\n', (21842, 21847), True, 'import matplotlib.pyplot as plt\n'), ((21895, 21996), 'scipy.signal.welch', 'scisig.welch', (['samples'], {'fs': 'sample_rate', 'nperseg': 'nperseg', 'return_onesided': '(False)', 'scaling': '"""density"""'}), "(samples, fs=sample_rate, nperseg=nperseg, return_onesided=\n False, scaling='density')\n", (21907, 21996), True, 'import scipy.signal as scisig\n'), ((22155, 22176), 'matplotlib.pyplot.plot', 'plt.plot', (['f', 'full_pxx'], {}), '(f, full_pxx)\n', (22163, 22176), True, 'import matplotlib.pyplot as plt\n'), ((22177, 22248), 'matplotlib.pyplot.title', 'plt.title', (['"""Periodogram of recording\nRed dots are orbcomm channels"""'], {}), '("""Periodogram of recording\nRed dots are orbcomm channels""")\n', (22186, 22248), True, 'import matplotlib.pyplot as plt\n'), ((22246, 22274), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frequency (Hz)"""'], {}), "('Frequency (Hz)')\n", (22256, 22274), True, 'import matplotlib.pyplot as plt\n'), ((22275, 22303), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Magnitude (dB)"""'], {}), "('Magnitude (dB)')\n", (22285, 22303), True, 'import matplotlib.pyplot as plt\n'), ((22316, 22332), 'numpy.min', 'np.min', (['full_pxx'], {}), '(full_pxx)\n', (22322, 22332), True, 'import numpy as np\n'), ((22470, 22486), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(222)'], {}), '(222)\n', (22481, 22486), True, 'import matplotlib.pyplot as plt\n'), ((22496, 22619), 'scipy.signal.welch', 'scisig.welch', (['baseband_samples'], {'fs': '(sample_rate / decimation)', 'return_onesided': '(False)', 'nperseg': 'nperseg', 'scaling': '"""density"""'}), "(baseband_samples, fs=sample_rate / decimation, return_onesided\n =False, nperseg=nperseg, scaling='density')\n", (22508, 22619), True, 'import scipy.signal as scisig\n'), ((22728, 22763), 'matplotlib.pyplot.plot', 'plt.plot', (['f', 'pxx'], {'label': '"""Decimated"""'}), "(f, pxx, label='Decimated')\n", (22736, 22763), True, 'import matplotlib.pyplot as plt\n'), ((22810, 22919), 'scipy.signal.welch', 'scisig.welch', (['filtered_samples'], {'fs': 'sample_rate', 'nperseg': 'nperseg', 'return_onesided': '(False)', 'scaling': '"""density"""'}), "(filtered_samples, fs=sample_rate, nperseg=nperseg,\n return_onesided=False, scaling='density')\n", (22822, 22919), True, 'import scipy.signal as scisig\n'), ((23032, 23073), 'matplotlib.pyplot.plot', 'plt.plot', (['f', 'pxx'], {'label': '"""original signal"""'}), "(f, pxx, label='original signal')\n", (23040, 23073), True, 'import matplotlib.pyplot as plt\n'), ((23074, 23103), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-45000.0, 45000.0]'], {}), '([-45000.0, 45000.0])\n', (23082, 23103), True, 'import matplotlib.pyplot as plt\n'), ((23146, 23194), 'matplotlib.pyplot.title', 'plt.title', (['"""Spectrum of one channel at baseband"""'], {}), "('Spectrum of one channel at baseband')\n", (23155, 23194), True, 'import matplotlib.pyplot as plt\n'), ((23195, 23223), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frequency (Hz)"""'], {}), "('Frequency (Hz)')\n", (23205, 23223), True, 'import matplotlib.pyplot as plt\n'), ((23224, 23252), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Magnitude (dB)"""'], {}), "('Magnitude (dB)')\n", (23234, 23252), True, 'import matplotlib.pyplot as plt\n'), ((23253, 23275), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (23263, 23275), True, 'import matplotlib.pyplot as plt\n'), ((23382, 23398), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(223)'], {}), '(223)\n', (23393, 23398), True, 'import matplotlib.pyplot as plt\n'), ((23443, 23568), 'scipy.signal.welch', 'scisig.welch', (['signal_to_4th_power'], {'fs': '(sample_rate / decimation)', 'return_onesided': '(False)', 'nperseg': 'nperseg', 'scaling': '"""density"""'}), "(signal_to_4th_power, fs=sample_rate / decimation,\n return_onesided=False, nperseg=nperseg, scaling='density')\n", (23455, 23568), True, 'import scipy.signal as scisig\n'), ((23680, 23696), 'matplotlib.pyplot.plot', 'plt.plot', (['f', 'pxx'], {}), '(f, pxx)\n', (23688, 23696), True, 'import matplotlib.pyplot as plt\n'), ((23697, 23724), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-2000.0, 2000.0]'], {}), '([-2000.0, 2000.0])\n', (23705, 23724), True, 'import matplotlib.pyplot as plt\n'), ((23719, 23763), 'matplotlib.pyplot.title', 'plt.title', (['"""Spectrum of signal to 4th power"""'], {}), "('Spectrum of signal to 4th power')\n", (23728, 23763), True, 'import matplotlib.pyplot as plt\n'), ((23764, 23792), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frequency (Hz)"""'], {}), "('Frequency (Hz)')\n", (23774, 23792), True, 'import matplotlib.pyplot as plt\n'), ((23793, 23821), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Magnitude (dB)"""'], {}), "('Magnitude (dB)')\n", (23803, 23821), True, 'import matplotlib.pyplot as plt\n'), ((23822, 23840), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (23838, 23840), True, 'import matplotlib.pyplot as plt\n'), ((23882, 23894), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (23892, 23894), True, 'import matplotlib.pyplot as plt\n'), ((23900, 23916), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (23911, 23916), True, 'import matplotlib.pyplot as plt\n'), ((24051, 24255), 'matplotlib.pyplot.scatter', 'plt.scatter', (['matched_filtered_samples.real[100 * samples_per_symbol::samples_per_symbol]', 'matched_filtered_samples.imag[100 * samples_per_symbol::samples_per_symbol]'], {'marker': '"""x"""', 'label': '"""after MF"""'}), "(matched_filtered_samples.real[100 * samples_per_symbol::\n samples_per_symbol], matched_filtered_samples.imag[100 *\n samples_per_symbol::samples_per_symbol], marker='x', label='after MF')\n", (24062, 24255), True, 'import matplotlib.pyplot as plt\n'), ((24243, 24443), 'matplotlib.pyplot.scatter', 'plt.scatter', (['phase_comp_samples.real[100 * samples_per_symbol::samples_per_symbol]', 'phase_comp_samples.imag[100 * samples_per_symbol::samples_per_symbol]'], {'marker': '"""x"""', 'label': '"""timing recovery"""'}), "(phase_comp_samples.real[100 * samples_per_symbol::\n samples_per_symbol], phase_comp_samples.imag[100 * samples_per_symbol::\n samples_per_symbol], marker='x', label='timing recovery')\n", (24254, 24443), True, 'import matplotlib.pyplot as plt\n'), ((24430, 24452), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (24440, 24452), True, 'import matplotlib.pyplot as plt\n'), ((24453, 24495), 'matplotlib.pyplot.title', 'plt.title', (['"""Complex samples (10k samples)"""'], {}), "('Complex samples (10k samples)')\n", (24462, 24495), True, 'import matplotlib.pyplot as plt\n'), ((24496, 24514), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Real"""'], {}), "('Real')\n", (24506, 24514), True, 'import matplotlib.pyplot as plt\n'), ((24515, 24533), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Imag"""'], {}), "('Imag')\n", (24525, 24533), True, 'import matplotlib.pyplot as plt\n'), ((24534, 24544), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (24542, 24544), True, 'import matplotlib.pyplot as plt\n'), ((24569, 24587), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (24585, 24587), True, 'import matplotlib.pyplot as plt\n'), ((24588, 24598), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (24596, 24598), True, 'import matplotlib.pyplot as plt\n'), ((3019, 3034), 'numpy.abs', 'np.abs', (['samples'], {}), '(samples)\n', (3025, 3034), True, 'import numpy as np\n'), ((3973, 4049), 'helpers.butter_lowpass_filter', 'butter_lowpass_filter', (['mixed_down_samples', 'filter_freq', 'sample_rate'], {'order': '(5)'}), '(mixed_down_samples, filter_freq, sample_rate, order=5)\n', (3994, 4049), False, 'from helpers import butter_lowpass_filter, complex_mix, rrcosfilter\n'), ((6490, 6504), 'numpy.sqrt', 'np.sqrt', (['alpha'], {}), '(alpha)\n', (6497, 6504), True, 'import numpy as np\n'), ((7733, 7743), 'numpy.sum', 'np.sum', (['hi'], {}), '(hi)\n', (7739, 7743), True, 'import numpy as np\n'), ((9136, 9191), 'matplotlib.pyplot.plot', 'plt.plot', (['baseband_samples[offset:offset + length].imag'], {}), '(baseband_samples[offset:offset + length].imag)\n', (9144, 9191), True, 'import matplotlib.pyplot as plt\n'), ((9329, 9392), 'matplotlib.pyplot.plot', 'plt.plot', (['matched_filtered_samples[offset:offset + length].imag'], {}), '(matched_filtered_samples[offset:offset + length].imag)\n', (9337, 9392), True, 'import matplotlib.pyplot as plt\n'), ((9542, 9602), 'matplotlib.pyplot.plot', 'plt.plot', (['time_recovery_samples[offset:offset + length].imag'], {}), '(time_recovery_samples[offset:offset + length].imag)\n', (9550, 9602), True, 'import matplotlib.pyplot as plt\n'), ((11462, 11488), 'numpy.abs', 'np.abs', (['phase_comp_samples'], {}), '(phase_comp_samples)\n', (11468, 11488), True, 'import numpy as np\n'), ((13245, 13259), 'numpy.max', 'np.max', (['scores'], {}), '(scores)\n', (13251, 13259), True, 'import numpy as np\n'), ((13262, 13279), 'numpy.max', 'np.max', (['revscores'], {}), '(revscores)\n', (13268, 13279), True, 'import numpy as np\n'), ((13329, 13349), 'numpy.argmax', 'np.argmax', (['revscores'], {}), '(revscores)\n', (13338, 13349), True, 'import numpy as np\n'), ((13373, 13390), 'numpy.argmax', 'np.argmax', (['scores'], {}), '(scores)\n', (13382, 13390), True, 'import numpy as np\n'), ((22136, 22154), 'numpy.log10', 'np.log10', (['full_pxx'], {}), '(full_pxx)\n', (22144, 22154), True, 'import numpy as np\n'), ((22362, 22405), 'matplotlib.pyplot.plot', 'plt.plot', (['(freq / 1000000.0)', 'low_point', '"""ro"""'], {}), "(freq / 1000000.0, low_point, 'ro')\n", (22370, 22405), True, 'import matplotlib.pyplot as plt\n'), ((22714, 22727), 'numpy.log10', 'np.log10', (['pxx'], {}), '(pxx)\n', (22722, 22727), True, 'import numpy as np\n'), ((23017, 23030), 'numpy.log10', 'np.log10', (['pxx'], {}), '(pxx)\n', (23025, 23030), True, 'import numpy as np\n'), ((23665, 23678), 'numpy.log10', 'np.log10', (['pxx'], {}), '(pxx)\n', (23673, 23678), True, 'import numpy as np\n'), ((23956, 23988), 'numpy.abs', 'np.abs', (['matched_filtered_samples'], {}), '(matched_filtered_samples)\n', (23962, 23988), True, 'import numpy as np\n'), ((24022, 24048), 'numpy.abs', 'np.abs', (['phase_comp_samples'], {}), '(phase_comp_samples)\n', (24028, 24048), True, 'import numpy as np\n'), ((1175, 1204), 'glob.glob', 'glob.glob', (["(data_dir + '*.mat')"], {}), "(data_dir + '*.mat')\n", (1184, 1204), False, 'import glob\n'), ((1424, 1474), 'datetime.datetime.utcfromtimestamp', 'datetime.utcfromtimestamp', (["data['timestamp'][0][0]"], {}), "(data['timestamp'][0][0])\n", (1449, 1474), False, 'from datetime import datetime, timedelta\n'), ((4317, 4393), 'helpers.butter_lowpass_filter', 'butter_lowpass_filter', (['mixed_down_samples', 'filter_freq', 'sample_rate'], {'order': '(2)'}), '(mixed_down_samples, filter_freq, sample_rate, order=2)\n', (4338, 4393), False, 'from helpers import butter_lowpass_filter, complex_mix, rrcosfilter\n'), ((6323, 6336), 'numpy.hamming', 'np.hamming', (['(5)'], {}), '(5)\n', (6333, 6336), True, 'import numpy as np\n'), ((7664, 7681), 'numpy.sinc', 'np.sinc', (['(th - tau)'], {}), '(th - tau)\n', (7671, 7681), True, 'import numpy as np\n'), ((7787, 7801), 'numpy.flip', 'np.flip', (['hi', '(0)'], {}), '(hi, 0)\n', (7794, 7801), True, 'import numpy as np\n'), ((9867, 9897), 'numpy.exp', 'np.exp', (['(-1.0j * phase_est[idx])'], {}), '(-1.0j * phase_est[idx])\n', (9873, 9897), True, 'import numpy as np\n'), ((11346, 11375), 'numpy.exp', 'np.exp', (['(1.0j * phase_est[:-1])'], {}), '(1.0j * phase_est[:-1])\n', (11352, 11375), True, 'import numpy as np\n'), ((11813, 11850), 'numpy.angle', 'np.angle', (['demod_symbols[xx]'], {'deg': '(True)'}), '(demod_symbols[xx], deg=True)\n', (11821, 11850), True, 'import numpy as np\n'), ((11853, 11894), 'numpy.angle', 'np.angle', (['demod_symbols[xx - 1]'], {'deg': '(True)'}), '(demod_symbols[xx - 1], deg=True)\n', (11861, 11894), True, 'import numpy as np\n'), ((15685, 15710), 'helpers.fletcher_checksum', 'fletcher_checksum', (['packet'], {}), '(packet)\n', (15702, 15710), False, 'from helpers import fletcher_checksum, ecef_to_lla, lla_to_ecef\n'), ((7988, 8008), 'numpy.array', 'np.array', (['[-1, 0, 1]'], {}), '([-1, 0, 1])\n', (7996, 8008), True, 'import numpy as np\n'), ((9914, 9938), 'numpy.sign', 'np.sign', (['signal_out.real'], {}), '(signal_out.real)\n', (9921, 9938), True, 'import numpy as np\n'), ((9957, 9981), 'numpy.sign', 'np.sign', (['signal_out.imag'], {}), '(signal_out.imag)\n', (9964, 9981), True, 'import numpy as np\n'), ((14668, 14693), 'helpers.fletcher_checksum', 'fletcher_checksum', (['packet'], {}), '(packet)\n', (14685, 14693), False, 'from helpers import fletcher_checksum, ecef_to_lla, lla_to_ecef\n'), ((23108, 23124), 'numpy.min', 'np.min', (['full_pxx'], {}), '(full_pxx)\n', (23114, 23124), True, 'import numpy as np\n'), ((23129, 23140), 'numpy.max', 'np.max', (['pxx'], {}), '(pxx)\n', (23135, 23140), True, 'import numpy as np\n'), ((15492, 15522), 'helpers.fletcher_checksum', 'fletcher_checksum', (['temp_packet'], {}), '(temp_packet)\n', (15509, 15522), False, 'from helpers import fletcher_checksum, ecef_to_lla, lla_to_ecef\n'), ((16326, 16381), 'datetime.datetime.strptime', 'datetime.strptime', (['"""Jan 6 1980 00:00"""', '"""%b %d %Y %H:%M"""'], {}), "('Jan 6 1980 00:00', '%b %d %Y %H:%M')\n", (16343, 16381), False, 'from datetime import datetime, timedelta\n'), ((18504, 18555), 'numpy.sqrt', 'np.sqrt', (['(vx_ecef ** 2 + vy_ecef ** 2 + vz_ecef ** 2)'], {}), '(vx_ecef ** 2 + vy_ecef ** 2 + vz_ecef ** 2)\n', (18511, 18555), True, 'import numpy as np\n'), ((18643, 18678), 'helpers.ecef_to_lla', 'ecef_to_lla', (['x_ecef', 'y_ecef', 'z_ecef'], {}), '(x_ecef, y_ecef, z_ecef)\n', (18654, 18678), False, 'from helpers import fletcher_checksum, ecef_to_lla, lla_to_ecef\n'), ((18960, 19004), 'helpers.lla_to_ecef', 'lla_to_ecef', (['ephem_lat', 'ephem_lon', 'ephem_alt'], {}), '(ephem_lat, ephem_lon, ephem_alt)\n', (18971, 19004), False, 'from helpers import fletcher_checksum, ecef_to_lla, lla_to_ecef\n'), ((19032, 19136), 'numpy.sqrt', 'np.sqrt', (['((x_ecef - ephem_x_ecef) ** 2 + (y_ecef - ephem_y_ecef) ** 2 + (z_ecef -\n ephem_z_ecef) ** 2)'], {}), '((x_ecef - ephem_x_ecef) ** 2 + (y_ecef - ephem_y_ecef) ** 2 + (\n z_ecef - ephem_z_ecef) ** 2)\n', (19039, 19136), True, 'import numpy as np\n'), ((19371, 19413), 'datetime.datetime.utcfromtimestamp', 'datetime.utcfromtimestamp', (['(timestamp - 0.5)'], {}), '(timestamp - 0.5)\n', (19396, 19413), False, 'from datetime import datetime, timedelta\n'), ((19627, 19671), 'helpers.lla_to_ecef', 'lla_to_ecef', (['ephem_lat', 'ephem_lon', 'ephem_alt'], {}), '(ephem_lat, ephem_lon, ephem_alt)\n', (19638, 19671), False, 'from helpers import fletcher_checksum, ecef_to_lla, lla_to_ecef\n'), ((19744, 19786), 'datetime.datetime.utcfromtimestamp', 'datetime.utcfromtimestamp', (['(timestamp + 0.5)'], {}), '(timestamp + 0.5)\n', (19769, 19786), False, 'from datetime import datetime, timedelta\n'), ((20000, 20044), 'helpers.lla_to_ecef', 'lla_to_ecef', (['ephem_lat', 'ephem_lon', 'ephem_alt'], {}), '(ephem_lat, ephem_lon, ephem_alt)\n', (20011, 20044), False, 'from helpers import fletcher_checksum, ecef_to_lla, lla_to_ecef\n'), ((20187, 20320), 'numpy.sqrt', 'np.sqrt', (['((ephem_x_ecef_1 - ephem_x_ecef_2) ** 2 + (ephem_y_ecef_1 - ephem_y_ecef_2) **\n 2 + (ephem_z_ecef_1 - ephem_z_ecef_2) ** 2)'], {}), '((ephem_x_ecef_1 - ephem_x_ecef_2) ** 2 + (ephem_y_ecef_1 -\n ephem_y_ecef_2) ** 2 + (ephem_z_ecef_1 - ephem_z_ecef_2) ** 2)\n', (20194, 20320), True, 'import numpy as np\n'), ((8319, 8356), 'numpy.conj', 'np.conj', (['time_recovery_samples[i - 1]'], {}), '(time_recovery_samples[i - 1])\n', (8326, 8356), True, 'import numpy as np\n'), ((18837, 18859), 'numpy.degrees', 'np.degrees', (['sat.sublat'], {}), '(sat.sublat)\n', (18847, 18859), True, 'import numpy as np\n'), ((18861, 18884), 'numpy.degrees', 'np.degrees', (['sat.sublong'], {}), '(sat.sublong)\n', (18871, 18884), True, 'import numpy as np\n'), ((19498, 19520), 'numpy.degrees', 'np.degrees', (['sat.sublat'], {}), '(sat.sublat)\n', (19508, 19520), True, 'import numpy as np\n'), ((19522, 19545), 'numpy.degrees', 'np.degrees', (['sat.sublong'], {}), '(sat.sublong)\n', (19532, 19545), True, 'import numpy as np\n'), ((19871, 19893), 'numpy.degrees', 'np.degrees', (['sat.sublat'], {}), '(sat.sublat)\n', (19881, 19893), True, 'import numpy as np\n'), ((19895, 19918), 'numpy.degrees', 'np.degrees', (['sat.sublong'], {}), '(sat.sublong)\n', (19905, 19918), True, 'import numpy as np\n'), ((20564, 20586), 'numpy.degrees', 'np.degrees', (['sat.sublat'], {}), '(sat.sublat)\n', (20574, 20586), True, 'import numpy as np\n'), ((20588, 20611), 'numpy.degrees', 'np.degrees', (['sat.sublong'], {}), '(sat.sublong)\n', (20598, 20611), True, 'import numpy as np\n')]
import json import numpy as np import glob import re import copy import uuid from preprocessing import prune_sentence with open('data/concepts_and_synonyms.txt', "r") as f: sec_tag_labels = f.readlines() sec_tag_labels = sec_tag_labels[1:] headers = set([line.strip().split("\t")[-2].lower().strip().replace('_', ' ') for line in sec_tag_labels]) def split_sections(lines): """ :param lines: Clinical note in the form of a list of strings. Each element is a line. :return: - sections: List of strings, each element is a section. - section_nums: List of integer lists, each element is a list of lines belonging to each section. In order to split the clinical notes into sections, we notice that most sections begin with easily identifiable headers. To detect these headers we use a combination of heuristics such as whether the line contains colons, all uppercase formatting or phrases found in a list of clinical headers taken from SecTag {Denny et al. 2008}. Conditions for Header Detection 1) (Line matches with header regex) AND (Group 1 of regex is (Upper AND shorter than 4) OR in the header list OR there is nothing in this line following ':') 2) (Line matches alpha regex) AND (first word segment is short) AND (more than one line in section) AND (last line ends in period) AND (Group 1 is (in header OR Upper) """ # Regex (Non Letters) (Letter without ':') (Post Colon) header_regex = re.compile("([^A-Za-z]*)([^:]+):(.*)") # Words in first part of header. '2. Pulmonary disease. The patient ...' group(1) = Pulmonary disease alpha = re.compile("[^A-Za-z]*([A-Za-z ]*)[^A-Za-z](.*)") sections = [] section_nums = [] section = [] lines_in_section = [] for line_num, original_line in enumerate(lines): line = original_line.strip() is_header = False match = header_regex.match(line) alpha_match = alpha.match(line) # If there's a match check first group if match: header = match.group(2) post_colon = match.group(3).strip() upper = header.isupper() short = len(header.split(" ")) < 5 ends_in_colon = post_colon == "" # All caps is always header if (upper and short) or ends_in_colon: is_header = True # If header in headers else: header = header.strip().lower() is_header = header in headers # If no match check first word section of whole line as header elif alpha_match and len(section) > 1: last_line = section[-1] if last_line != "" and last_line[-1] == ".": header = alpha_match.group(1).strip() if len(header.split(" ")) < 5: upper = header.isupper() in_headers = header.lower() in headers if upper or in_headers: is_header = True #Add previous section if it exists and we encounter a header if is_header and section != []: sections.append(section) section_nums.append(lines_in_section) section = [] lines_in_section = [] section.append(original_line) lines_in_section.append(line_num) sections.append(section) section_nums.append(lines_in_section) return sections, section_nums def load_emrqa_datasets(data_dir="../data/datasets/*json"): """ :return: dictionary from filename to decoded json objects in data directory """ datasets = {} files = glob.glob(data_dir) for file in files: with open(file, "r") as f: json_file = f.read() result = json.loads(json_file) datasets[file] = result return datasets def flip_section_list(section_nums): line_to_section = {} for section_num, line_list in enumerate(section_nums): for line in line_list: line_to_section[line] = section_num return line_to_section def group_answers_by_section(qa, sections, section_nums, line_to_section, orig_num_answers, new_num_answers, errors): new_answers = [] answers = qa['answers'] # Group answers by section number for one qa section_num_to_answers = {} for answer in answers: orig_num_answers += 1 evidence_lines = answer['evidence_start'] answer_texts = answer['text'] evidences = answer['evidence'] if isinstance(evidence_lines, int): evidence_lines = [evidence_lines] answer_texts = [answer_texts] evidences = [evidences] for evidence_line, evidence, answer_text in zip(evidence_lines, evidences, answer_texts): new_answer = copy.deepcopy(answer) new_num_answers += 1 section_num = line_to_section[evidence_line - 1] first_section_line = section_nums[section_num][0] new_evidence_line = evidence_line - first_section_line new_answer['evidence_start'] = new_evidence_line new_answer['answer_start'][0] = new_evidence_line new_answer['evidence'] = evidence new_answer['text'] = answer_text new_answer['answer_entity_type'] = 'single' section = sections[section_num] if section_num in section_num_to_answers: new_answers = section_num_to_answers[section_num] else: new_answers = [] section_text = ''.join(section) if evidence in section_text: new_answers.append(new_answer) section_num_to_answers[section_num] = new_answers else: errors += 1 return section_num_to_answers, orig_num_answers, new_num_answers, errors def create_split_docs_emrqa(emrqa): """ :param emrqa: Decoded emrQA dataset json :return: json dataset with the same structure as the emrQA but linking each question with a section in a document instead of the whole report. """ errors = 0 orig_num_answers = 0 new_num_answers = 0 emrqa_datasets = {} for task in emrqa['data']: title = task['title'] #Splitting only medication and relations datasets due for evaluation if title in ['medication', 'relations']: reports = task['paragraphs'] documents = [] #Looping through all medical reports for report in reports: note_id = report['note_id'] text_lines = report['context'] qas = report['qas'] new_report = {"title": note_id} new_paragraphs = [] #Splitting Sections sections, section_nums = split_sections(text_lines) #Reversing the map from lines to section numbers line_to_section = flip_section_list(section_nums) section_num_to_qas = {} #Looping through all questions for this report, each question might have multiple answers for qa in qas: section_num_to_answers, orig_num_answers, new_num_answers, errors = group_answers_by_section(qa, sections, section_nums, line_to_section, orig_num_answers, new_num_answers, errors) # Aggregate qas with equivalent section num for section_num in section_num_to_answers.keys(): new_answers = section_num_to_answers[section_num] new_qa = copy.deepcopy(qa) new_qa['answers'] = new_answers if section_num in section_num_to_qas: new_qas = section_num_to_qas[section_num] else: new_qas = [] new_qas.append(new_qa) section_num_to_qas[section_num] = new_qas for section_num in section_num_to_qas.keys(): section = sections[section_num] paragraph = {"note_id": note_id + "_" + str(section_num), "context": section, "qas": section_num_to_qas[section_num]} new_paragraphs.append(paragraph) new_report['paragraphs'] = new_paragraphs documents.append(new_report) print("Saving {}".format(title)) emrqa_datasets[title] = documents return emrqa_datasets, orig_num_answers, new_num_answers, errors def locate_answer_start(evidence, context): while evidence[-1] in [',', '.', '?', '!', '-', ' ']: evidence = evidence[:-1] char_pos = -1 temp_evidence = evidence final_evidence = temp_evidence while char_pos == -1: char_pos = context.find(temp_evidence) final_evidence = temp_evidence temp_evidence = ' '.join(temp_evidence.split()[:-1]) return char_pos, final_evidence def combine_answer_lines(answers): line_numbers = [] answers_by_line = {} combined_answers = [] for answer in answers: line = answer['evidence_start'] line_numbers.append(line) answers_by_line[line] = answer ordered_line_numbers = np.sort(line_numbers) prev_line = ordered_line_numbers[0] combined_line = answers_by_line[prev_line]['evidence'] for line_num in ordered_line_numbers[1:]: if line_num - prev_line == 1: combined_line += " " + answers_by_line[line_num]['evidence'] else: combined_answers.append({'evidence': combined_line}) combined_line = answers_by_line[line_num]['evidence'] prev_line = line_num combined_answers.append({'evidence': combined_line}) return combined_answers def transform_emrqa_to_squad_format(emrqa_format_dataset): answers_checked = 0 long_answers = 0 squad_format_dataset = {} for title in emrqa_format_dataset.keys(): records = emrqa_format_dataset[title] new_records = [] for record in records: record_id = record['title'] sections = record['paragraphs'] new_record = {'title': record_id} new_sections = [] context_set = set() for section in sections: text_list = section['context'] context = " ".join((" ".join(text_list).split())) context = prune_sentence(context) qas = section['qas'] new_qas = [] for qa in qas: questions = qa['question'] answers = qa['answers'] new_answers = [] if len(answers) > 1: answers = combine_answer_lines(answers) # Clean Answers and Check that they are in the context for answer in answers: evidence = answer['evidence'] evidence = prune_sentence(evidence) evidence_length = len(evidence.split()) if len(evidence.strip()) > 0 and evidence_length < 20: answer_start, evidence = locate_answer_start(evidence, context) new_answers.append({'answer_start': answer_start, 'text': evidence}) assert evidence in context answers_checked += 1 else: long_answers += 1 # Add new qa pair for each question paraphrase for question in questions: # If all answers were too long don't append question if len(new_answers) > 0: new_qas.append({'question': question, 'id': str(uuid.uuid1().hex), 'answers': new_answers}) # If all questions in section had longer than acceptable answers if len(new_qas) > 0: context_set.add(section['note_id']) new_sections.append({'qas': new_qas, 'context': context}) # else: # print("Lost Section") assert len(context_set) == len(new_sections) # if all sections in record only had longer than accetable answers if len(new_sections) > 0: new_record['paragraphs'] = new_sections new_records.append(new_record) # else: # print("Lost Whole record") squad_format_dataset[title] = new_records return squad_format_dataset, answers_checked, long_answers def count_squad_format_qas_and_contexts(noheader_squad_dataset): num_qas = {} num_contexts = {} for title in noheader_squad_dataset.keys(): num_qa = 0 num_context = 0 records = noheader_squad_dataset[title] for record in records: sections = record['paragraphs'] num_context += 1 for section in sections: qas = section['qas'] for qa in qas: num_qa += 1 num_qas[title] = num_qa num_contexts[title] = num_context return num_qas, num_contexts def add_header_and_save(emrqa_datasets, directory): for name in emrqa_datasets.keys(): emrqa_datasets[name] = {'version': '1', 'data': emrqa_datasets[name]} json.dump(emrqa_datasets[name], open(directory + '{}.json'.format(name), 'w')) return emrqa_datasets
[ "copy.deepcopy", "json.loads", "numpy.sort", "uuid.uuid1", "glob.glob", "preprocessing.prune_sentence", "re.compile" ]
[((1504, 1542), 're.compile', 're.compile', (['"""([^A-Za-z]*)([^:]+):(.*)"""'], {}), "('([^A-Za-z]*)([^:]+):(.*)')\n", (1514, 1542), False, 'import re\n'), ((1662, 1711), 're.compile', 're.compile', (['"""[^A-Za-z]*([A-Za-z ]*)[^A-Za-z](.*)"""'], {}), "('[^A-Za-z]*([A-Za-z ]*)[^A-Za-z](.*)')\n", (1672, 1711), False, 'import re\n'), ((3689, 3708), 'glob.glob', 'glob.glob', (['data_dir'], {}), '(data_dir)\n', (3698, 3708), False, 'import glob\n'), ((9491, 9512), 'numpy.sort', 'np.sort', (['line_numbers'], {}), '(line_numbers)\n', (9498, 9512), True, 'import numpy as np\n'), ((3823, 3844), 'json.loads', 'json.loads', (['json_file'], {}), '(json_file)\n', (3833, 3844), False, 'import json\n'), ((4860, 4881), 'copy.deepcopy', 'copy.deepcopy', (['answer'], {}), '(answer)\n', (4873, 4881), False, 'import copy\n'), ((10695, 10718), 'preprocessing.prune_sentence', 'prune_sentence', (['context'], {}), '(context)\n', (10709, 10718), False, 'from preprocessing import prune_sentence\n'), ((7750, 7767), 'copy.deepcopy', 'copy.deepcopy', (['qa'], {}), '(qa)\n', (7763, 7767), False, 'import copy\n'), ((11261, 11285), 'preprocessing.prune_sentence', 'prune_sentence', (['evidence'], {}), '(evidence)\n', (11275, 11285), False, 'from preprocessing import prune_sentence\n'), ((12121, 12133), 'uuid.uuid1', 'uuid.uuid1', ([], {}), '()\n', (12131, 12133), False, 'import uuid\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Apr 1 21:22:56 2022 Using Gaussian basis set to propagate the nonadiabatic molecular dynamics @author: <NAME> """ import numpy as np class GWP: def __init__(self, x, p, a, phase, coeff): self.x = x self.p = p self.a = a self.phase = phase self.coeff = coeff # electronic coefficients class NAMD: def __init__(self, bases, dim=1): self.nbasis = len(bases) self.nstates = len(bases[0].coeff) self.dim = dim def overlap(self): """ construct overlap matrix from GWPs defined by {a,x,p} """ # N = self.nbasis # S = np.identity(N, dtype=np.complex128) # for j in range(N): # gj = self.bases[j] # aj, qj, pj = gj.a, gj.x, gj.p # for k in range(j): # gk = self.bases[k] # ak, qk, pk = gk.a, gk.x, gk.p # dq = qk - qj # dp = pk - pj # S[j,k] = (aj*ak)**0.25 * np.sqrt(2./(aj+ak)) * np.exp( \ # -0.5 * aj*ak/(aj+ak) * (dp**2/aj/ak + dq**2 \ # + 2.0*1j* (pj/aj + pk/ak) *dq) ) # S[k, j] = S[j, k].conj() # return S def kmat(self): pass def vmat(self): pass def run(self): pass def overlap_1d(aj, x, px, sj, ak, y, py, sk): """ overlap between two 1D GWPs """ dp = py - px dq = y - x return (aj*ak)**0.25 * np.sqrt(2./(aj+ak)) * np.exp( \ -0.5 * aj*ak/(aj+ak) * (dp**2/aj/ak + dq**2 \ + 2.0*1j* (px/aj + py/ak) *dq) ) * np.exp(1j * (sk-sj)) def overlap(gj, gk): """ overlap between two GWPs defined by {a,x,p} """ aj, qj, pj, sj = gj.a, gj.x, gj.p, gj.phase ak, qk, pk, sk = gk.a, gk.x, gk.p, gk.phase tmp = 1.0 for d in range(ndim): tmp *= overlap_1d(aj[d], qj[d], pj[d], sj, ak[d], qk[d], pk[d], sk) return tmp def kin_me(gj, gk): """ kinetic energy matrix elements between two multidimensional GWPs """ aj, qj, pj, sj = gj.a, gj.x, gj.p, gj.phase ak, qk, pk, sk = gk.a, gk.x, gk.p, gk.phase l = 0.0 for d in range(ndim): l += kin_1d(aj[d], qj[d], pj[d], sj, ak[d], qk[d], pk[d], sk, am[d]) return l # @numba.jit def kin_1d(aj, qj, pj, sj, ak, qk, pk, sk, am): """ kinetic energy matrix elements between two multidimensional GWPs """ p0 = (aj*pk + ak*pj)/(aj+ak) d0 = 0.5/am * ( (p0+1j*aj*ak/(aj+ak)*(qj-qk))**2 + aj*ak/(aj+ak) ) l = d0 * overlap_1d(aj, qj, pj, sj, ak, qk, pk, sk) return l def kmat(bset): """ kinetic energy matrix """ nb = len(bset) kin = np.zeros((nb, nb), dtype=complex) for i in range(nb): gi = bset[i] for j in range(i+1): gj = bset[j] kin[i,j] = kin_me(gi, gj) kin[j,i] = np.conj(kin[i,j]) return kin def H(): """ construct the hamiltonian matrix Kinetic energy operator can be computed exactly. Potential energy operator - approximation Nonadiabatic coupling - """
[ "numpy.conj", "numpy.zeros", "numpy.exp", "numpy.sqrt" ]
[((2769, 2802), 'numpy.zeros', 'np.zeros', (['(nb, nb)'], {'dtype': 'complex'}), '((nb, nb), dtype=complex)\n', (2777, 2802), True, 'import numpy as np\n'), ((1685, 1709), 'numpy.exp', 'np.exp', (['(1.0j * (sk - sj))'], {}), '(1.0j * (sk - sj))\n', (1691, 1709), True, 'import numpy as np\n'), ((1566, 1677), 'numpy.exp', 'np.exp', (['(-0.5 * aj * ak / (aj + ak) * (dp ** 2 / aj / ak + dq ** 2 + 2.0 * 1.0j * (\n px / aj + py / ak) * dq))'], {}), '(-0.5 * aj * ak / (aj + ak) * (dp ** 2 / aj / ak + dq ** 2 + 2.0 * \n 1.0j * (px / aj + py / ak) * dq))\n', (1572, 1677), True, 'import numpy as np\n'), ((2966, 2984), 'numpy.conj', 'np.conj', (['kin[i, j]'], {}), '(kin[i, j])\n', (2973, 2984), True, 'import numpy as np\n'), ((1544, 1568), 'numpy.sqrt', 'np.sqrt', (['(2.0 / (aj + ak))'], {}), '(2.0 / (aj + ak))\n', (1551, 1568), True, 'import numpy as np\n')]
""" 2019 (c) piteren """ import numpy as np from typing import List from ptools.neuralmess.get_tf import tf from ptools.neuralmess.base_elements import my_initializer, flatten_LOTens # residual (advanced) connection for (any) layer def lay_res( lay_in, # layer input lay_out, # layer output name= 'residual', use_RCW= False, # use residual connection weights use_PWRCW= False, # pointwise weights match_dims= True): # concatenates zeros to input when thinner # TODO: not working for higher dimm tensors with tf.variable_scope(name): output = lay_out iW = int(lay_in.shape[-1]) oW = int(output.shape[-1]) matchedDims = iW == oW # pad input with zeros to match dimension of output if iW < oW and match_dims: lay_in = tf.pad( tensor= lay_in, paddings= tf.constant([[0,0],[0,oW-iW]])) matchedDims = True if matchedDims: if use_RCW: if use_PWRCW: shape = [oW] else: shape = [] convRCW = tf.get_variable( name= 'rcw', shape= shape, initializer= tf.constant_initializer(0)) output = lay_in * (1 - tf.sigmoid(convRCW)) + output * tf.sigmoid(convRCW) else: output = lay_in + output return output # returns [0,1] tensor: 1 where input not activated over whole batch, seq... (nane - Not Activated NEurons) # we assume that value =< 0 means: not activated # we check over all axes but last (feats) def zeroes(input :tf.Tensor) -> List[tf.Tensor]: axes = [ix for ix in range(len(input.shape))][:-1] # all but last(feats) axes indexes list like: [0,1,2] for 4d shape activated = tf.where( # 1 for value greater than zero, other 0 condition= tf.math.greater(input, 0), x= tf.ones_like(input), # true y= tf.zeros_like(input)) # false activated_reduced = tf.reduce_sum(activated, axis=axes) # 1 or more for activated, 0 for not activated not_activated = tf.equal(activated_reduced, 0) # true where summed gives zero (~invert) nn_zeros = tf.cast(not_activated, dtype=tf.int8) # cast to 1 where summed gives zero return nn_zeros # dense layer def lay_dense( input, units :int, # layer width name= 'dense', reuse= False, activation= None, use_bias= True, initializer= None, seed= 12321): if initializer is None: initializer = my_initializer(seed) dense_lay = tf.layers.Dense( units= units, activation= activation, use_bias= use_bias, kernel_initializer= initializer, name= name, _reuse= reuse) output = dense_lay(input) return output # 1d convolution layer, with Gated Linear Unit option def lay_conv1D( input, name= 'conv1D', kernels= (3,5,7), # layer kernels filters= (36,12,6), # int divisible by len(kernels) or tuple of len(kernels) dilation= 1, activation= None, use_bias= True, gated_LU= False, # Gated Linear Unit architecture initializer= None, padding= 'valid', # 'same' adds padding, 'valid' does not seed= 12321, verb= 0): if initializer is None: initializer = my_initializer(seed) with tf.variable_scope(name): sub_out_list = [] if type(kernels) is not tuple: kernels = (kernels,) if verb > 1: print(' > %s: kernels %s, filters %s, dilation %s' % (name, kernels, filters, dilation)) for k in range(len(kernels)): with tf.variable_scope('kernel_%d' % k): sub_kernel = kernels[k] if type(filters) is not tuple: sub_filters = filters // len(kernels) else: sub_filters = filters[k] if gated_LU: sub_filters *= 2 conv_lay = tf.layers.Conv1D( filters= sub_filters, kernel_size= sub_kernel, dilation_rate= dilation, activation= None, use_bias= use_bias, kernel_initializer= initializer, padding= padding, data_format= 'channels_last') sub_output = conv_lay(input) if verb > 1: print(' >> sub_conv: filters %s, kernel %s' % (sub_filters, sub_kernel)) sub_out_list.append(sub_output) output = tf.concat(sub_out_list, axis=-1) if gated_LU: s1, s2 = tf.split(output, num_or_size_splits=2, axis=-1) output = s1 * tf.sigmoid(s2) elif activation: output = activation(output) return output # 2d convolution layer def lay_conv2D( input, name= 'conv2d', kernels= (3, 5, 7), # layer kernels filters= (36, 12, 6), # int divisible by len(kernels) or tuple of len(kernels) dilation= 1, activation= None, useBias= True, gatedLU= False, # Gated Linear Unit architecture initializer= None, seed= 12321, verbLev= 0): if initializer is None: initializer = my_initializer(seed) with tf.variable_scope(name): variables = [] subOutList = [] if type(kernels) is not tuple: kernels = (kernels,) if verbLev > 0: print(' > %s: kernels %s, filetrs %s, dilation %s' % (name, kernels, filters, dilation)) for k in range(len(kernels)): with tf.variable_scope('kernel_%d' % k): subKernel = kernels[k] if type(filters) is not tuple: subFilters = filters / len(kernels) else: subFilters = filters[k] if gatedLU: subFilters *= 2 convLay = tf.layers.Conv2D( filters= subFilters, kernel_size= subKernel, dilation_rate= dilation, activation= None, use_bias= useBias, kernel_initializer= initializer, padding= 'valid', data_format= 'channels_last') subOutput = convLay(input) for var in convLay.variables: variables.append(var) if verbLev > 1: print(' >> subConv: filters %s, kernel %s' % (subFilters, subKernel)) subOutList.append(subOutput) output = tf.concat(subOutList, axis=-1) if gatedLU: s1, s2 = tf.split(output, num_or_size_splits=2, axis=-1) output = s1 * tf.sigmoid(s2) else: if activation: output = activation(output) variables = flatten_LOTens(variables) return output, variables # attention for Query, Key and Value def attn( q, # decides about output shape k, v, dropout= 0.0, drop_flag= None, seed= 12321): w = tf.matmul(q, k, transpose_b=True) # q*kT, here we calculate weights - how much each key is relevant to each query w = w * tf.rsqrt(tf.cast(v.shape[-1].value, w.dtype)) # scale by 1/sqrt(v.dim[-1]) w = tf.nn.softmax(w) # normalize sum to 1 if dropout: w = tf.layers.dropout( inputs= w, rate= dropout, training= drop_flag, seed= seed) att = tf.matmul(w, v) return { 'attention': att, 'att_weights': w} # time & feats dropout (for sequences) def tf_drop( input, # tensor [batch,seq,feats] time_drop :float, feat_drop :float, train_flag, # tensor seed= 12321): output = input in_shape = tf.shape(input) # time (per vector) dropout if time_drop: t_drop = tf.ones(shape=in_shape[-2]) t_drop = tf.layers.dropout( inputs= t_drop, rate= time_drop, training= train_flag, seed= seed) t_drop = tf.expand_dims(t_drop, axis=-1) output *= t_drop # feature (constant in time) dropout if feat_drop: f_drop = tf.ones(shape=in_shape[-1]) f_drop = tf.layers.dropout( inputs= f_drop, rate= feat_drop, training= train_flag, seed= seed) f_drop = tf.expand_dims(f_drop, axis=-2) output *= f_drop return output # positional encoding layer def positional_encoding( positions :int, # max number of positions to encode width :int, # width of positions vector min_pi_range= 1, max_pi_range= 10, as_numpy= True, verb= 0): angle_rates = np.linspace(min_pi_range/max_pi_range, 1, num=width) if verb > 0: print(f'\ni.linspace\n{angle_rates}') angle_rates = angle_rates[np.newaxis, :] if verb > 0: print(f'\nangle_rates.new_axis\n{angle_rates}') pos = np.arange(positions)[:, np.newaxis] if verb > 0: print(f'\npos.arange.newaxis\n{pos}') pos = pos / positions * max_pi_range if verb > 0: print(f'\npos.scaled to range\n{pos}') angle_rads = pos * angle_rates if verb > 0: print(f'\nangle_rads {angle_rads.shape}\n{angle_rads}') angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2] * np.pi) angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2] * np.pi) pos_encoding = angle_rads[np.newaxis, ...] pos_encoding = pos_encoding - pos_encoding.mean() if as_numpy: pos_encoding = pos_encoding.astype(dtype=np.float32) else: pos_encoding = tf.cast(pos_encoding, dtype=tf.float32) return pos_encoding def attention_example(): print('self attention') q = tf.constant(value=np.random.rand(5,4)) k = tf.constant(value=np.random.rand(5,4)) v = tf.constant(value=np.random.rand(5,4)) attn_out = attn(q,k,v) print(attn_out) print('task attention') q = tf.constant(value=np.random.rand(1, 4)) k = tf.constant(value=np.random.rand(5, 4)) v = tf.constant(value=np.random.rand(5, 4)) attn_out = attn(q, k, v) print(attn_out) print('general attention') vector_width = 4 number_of_queries = 2 # number of queries may vary number_of_keys_and_values = 5 # each key is for each value, so their number has to match q = tf.constant(value=np.random.rand(number_of_queries, vector_width)) k = tf.constant(value=np.random.rand(number_of_keys_and_values, vector_width)) v = tf.constant(value=np.random.rand(number_of_keys_and_values, vector_width)) attn_out = attn(q, k, v) print(attn_out) def tf_drop_example(): v = tf.constant(value=np.random.rand(2,3,4).astype(np.float32)) print(v) v_drop = tf_drop(input=v, time_drop=0.0, feat_drop=0.5, train_flag=True, seed=112) print(v_drop) with tf.Session() as sess: v, v_drop = sess.run([v, v_drop]) print(v) print(v_drop) if __name__ == '__main__': #attention_example() tf_drop_example()
[ "ptools.neuralmess.get_tf.tf.split", "ptools.neuralmess.get_tf.tf.layers.dropout", "ptools.neuralmess.get_tf.tf.equal", "ptools.neuralmess.get_tf.tf.matmul", "ptools.neuralmess.base_elements.flatten_LOTens", "ptools.neuralmess.get_tf.tf.cast", "numpy.sin", "numpy.arange", "ptools.neuralmess.get_tf.tf.Session", "ptools.neuralmess.get_tf.tf.math.greater", "ptools.neuralmess.get_tf.tf.reduce_sum", "ptools.neuralmess.get_tf.tf.nn.softmax", "ptools.neuralmess.get_tf.tf.expand_dims", "ptools.neuralmess.get_tf.tf.layers.Conv1D", "numpy.linspace", "ptools.neuralmess.get_tf.tf.zeros_like", "ptools.neuralmess.get_tf.tf.concat", "ptools.neuralmess.get_tf.tf.ones_like", "ptools.neuralmess.get_tf.tf.layers.Dense", "numpy.cos", "ptools.neuralmess.get_tf.tf.constant", "ptools.neuralmess.get_tf.tf.constant_initializer", "ptools.neuralmess.get_tf.tf.sigmoid", "ptools.neuralmess.base_elements.my_initializer", "ptools.neuralmess.get_tf.tf.ones", "ptools.neuralmess.get_tf.tf.variable_scope", "numpy.random.rand", "ptools.neuralmess.get_tf.tf.layers.Conv2D", "ptools.neuralmess.get_tf.tf.shape" ]
[((2240, 2275), 'ptools.neuralmess.get_tf.tf.reduce_sum', 'tf.reduce_sum', (['activated'], {'axis': 'axes'}), '(activated, axis=axes)\n', (2253, 2275), False, 'from ptools.neuralmess.get_tf import tf\n'), ((2343, 2373), 'ptools.neuralmess.get_tf.tf.equal', 'tf.equal', (['activated_reduced', '(0)'], {}), '(activated_reduced, 0)\n', (2351, 2373), False, 'from ptools.neuralmess.get_tf import tf\n'), ((2439, 2476), 'ptools.neuralmess.get_tf.tf.cast', 'tf.cast', (['not_activated'], {'dtype': 'tf.int8'}), '(not_activated, dtype=tf.int8)\n', (2446, 2476), False, 'from ptools.neuralmess.get_tf import tf\n'), ((2901, 3032), 'ptools.neuralmess.get_tf.tf.layers.Dense', 'tf.layers.Dense', ([], {'units': 'units', 'activation': 'activation', 'use_bias': 'use_bias', 'kernel_initializer': 'initializer', 'name': 'name', '_reuse': 'reuse'}), '(units=units, activation=activation, use_bias=use_bias,\n kernel_initializer=initializer, name=name, _reuse=reuse)\n', (2916, 3032), False, 'from ptools.neuralmess.get_tf import tf\n'), ((7754, 7787), 'ptools.neuralmess.get_tf.tf.matmul', 'tf.matmul', (['q', 'k'], {'transpose_b': '(True)'}), '(q, k, transpose_b=True)\n', (7763, 7787), False, 'from ptools.neuralmess.get_tf import tf\n'), ((7983, 7999), 'ptools.neuralmess.get_tf.tf.nn.softmax', 'tf.nn.softmax', (['w'], {}), '(w)\n', (7996, 7999), False, 'from ptools.neuralmess.get_tf import tf\n'), ((8238, 8253), 'ptools.neuralmess.get_tf.tf.matmul', 'tf.matmul', (['w', 'v'], {}), '(w, v)\n', (8247, 8253), False, 'from ptools.neuralmess.get_tf import tf\n'), ((8584, 8599), 'ptools.neuralmess.get_tf.tf.shape', 'tf.shape', (['input'], {}), '(input)\n', (8592, 8599), False, 'from ptools.neuralmess.get_tf import tf\n'), ((9636, 9690), 'numpy.linspace', 'np.linspace', (['(min_pi_range / max_pi_range)', '(1)'], {'num': 'width'}), '(min_pi_range / max_pi_range, 1, num=width)\n', (9647, 9690), True, 'import numpy as np\n'), ((10188, 10223), 'numpy.sin', 'np.sin', (['(angle_rads[:, 0::2] * np.pi)'], {}), '(angle_rads[:, 0::2] * np.pi)\n', (10194, 10223), True, 'import numpy as np\n'), ((10250, 10285), 'numpy.cos', 'np.cos', (['(angle_rads[:, 1::2] * np.pi)'], {}), '(angle_rads[:, 1::2] * np.pi)\n', (10256, 10285), True, 'import numpy as np\n'), ((652, 675), 'ptools.neuralmess.get_tf.tf.variable_scope', 'tf.variable_scope', (['name'], {}), '(name)\n', (669, 675), False, 'from ptools.neuralmess.get_tf import tf\n'), ((2864, 2884), 'ptools.neuralmess.base_elements.my_initializer', 'my_initializer', (['seed'], {}), '(seed)\n', (2878, 2884), False, 'from ptools.neuralmess.base_elements import my_initializer, flatten_LOTens\n'), ((3834, 3854), 'ptools.neuralmess.base_elements.my_initializer', 'my_initializer', (['seed'], {}), '(seed)\n', (3848, 3854), False, 'from ptools.neuralmess.base_elements import my_initializer, flatten_LOTens\n'), ((3864, 3887), 'ptools.neuralmess.get_tf.tf.variable_scope', 'tf.variable_scope', (['name'], {}), '(name)\n', (3881, 3887), False, 'from ptools.neuralmess.get_tf import tf\n'), ((5103, 5135), 'ptools.neuralmess.get_tf.tf.concat', 'tf.concat', (['sub_out_list'], {'axis': '(-1)'}), '(sub_out_list, axis=-1)\n', (5112, 5135), False, 'from ptools.neuralmess.get_tf import tf\n'), ((5873, 5893), 'ptools.neuralmess.base_elements.my_initializer', 'my_initializer', (['seed'], {}), '(seed)\n', (5887, 5893), False, 'from ptools.neuralmess.base_elements import my_initializer, flatten_LOTens\n'), ((5903, 5926), 'ptools.neuralmess.get_tf.tf.variable_scope', 'tf.variable_scope', (['name'], {}), '(name)\n', (5920, 5926), False, 'from ptools.neuralmess.get_tf import tf\n'), ((7232, 7262), 'ptools.neuralmess.get_tf.tf.concat', 'tf.concat', (['subOutList'], {'axis': '(-1)'}), '(subOutList, axis=-1)\n', (7241, 7262), False, 'from ptools.neuralmess.get_tf import tf\n'), ((7483, 7508), 'ptools.neuralmess.base_elements.flatten_LOTens', 'flatten_LOTens', (['variables'], {}), '(variables)\n', (7497, 7508), False, 'from ptools.neuralmess.base_elements import my_initializer, flatten_LOTens\n'), ((8084, 8156), 'ptools.neuralmess.get_tf.tf.layers.dropout', 'tf.layers.dropout', ([], {'inputs': 'w', 'rate': 'dropout', 'training': 'drop_flag', 'seed': 'seed'}), '(inputs=w, rate=dropout, training=drop_flag, seed=seed)\n', (8101, 8156), False, 'from ptools.neuralmess.get_tf import tf\n'), ((8668, 8695), 'ptools.neuralmess.get_tf.tf.ones', 'tf.ones', ([], {'shape': 'in_shape[-2]'}), '(shape=in_shape[-2])\n', (8675, 8695), False, 'from ptools.neuralmess.get_tf import tf\n'), ((8713, 8798), 'ptools.neuralmess.get_tf.tf.layers.dropout', 'tf.layers.dropout', ([], {'inputs': 't_drop', 'rate': 'time_drop', 'training': 'train_flag', 'seed': 'seed'}), '(inputs=t_drop, rate=time_drop, training=train_flag, seed=seed\n )\n', (8730, 8798), False, 'from ptools.neuralmess.get_tf import tf\n'), ((8882, 8913), 'ptools.neuralmess.get_tf.tf.expand_dims', 'tf.expand_dims', (['t_drop'], {'axis': '(-1)'}), '(t_drop, axis=-1)\n', (8896, 8913), False, 'from ptools.neuralmess.get_tf import tf\n'), ((9016, 9043), 'ptools.neuralmess.get_tf.tf.ones', 'tf.ones', ([], {'shape': 'in_shape[-1]'}), '(shape=in_shape[-1])\n', (9023, 9043), False, 'from ptools.neuralmess.get_tf import tf\n'), ((9061, 9146), 'ptools.neuralmess.get_tf.tf.layers.dropout', 'tf.layers.dropout', ([], {'inputs': 'f_drop', 'rate': 'feat_drop', 'training': 'train_flag', 'seed': 'seed'}), '(inputs=f_drop, rate=feat_drop, training=train_flag, seed=seed\n )\n', (9078, 9146), False, 'from ptools.neuralmess.get_tf import tf\n'), ((9230, 9261), 'ptools.neuralmess.get_tf.tf.expand_dims', 'tf.expand_dims', (['f_drop'], {'axis': '(-2)'}), '(f_drop, axis=-2)\n', (9244, 9261), False, 'from ptools.neuralmess.get_tf import tf\n'), ((9865, 9885), 'numpy.arange', 'np.arange', (['positions'], {}), '(positions)\n', (9874, 9885), True, 'import numpy as np\n'), ((10485, 10524), 'ptools.neuralmess.get_tf.tf.cast', 'tf.cast', (['pos_encoding'], {'dtype': 'tf.float32'}), '(pos_encoding, dtype=tf.float32)\n', (10492, 10524), False, 'from ptools.neuralmess.get_tf import tf\n'), ((11745, 11757), 'ptools.neuralmess.get_tf.tf.Session', 'tf.Session', ([], {}), '()\n', (11755, 11757), False, 'from ptools.neuralmess.get_tf import tf\n'), ((2054, 2079), 'ptools.neuralmess.get_tf.tf.math.greater', 'tf.math.greater', (['input', '(0)'], {}), '(input, 0)\n', (2069, 2079), False, 'from ptools.neuralmess.get_tf import tf\n'), ((2101, 2120), 'ptools.neuralmess.get_tf.tf.ones_like', 'tf.ones_like', (['input'], {}), '(input)\n', (2113, 2120), False, 'from ptools.neuralmess.get_tf import tf\n'), ((2168, 2188), 'ptools.neuralmess.get_tf.tf.zeros_like', 'tf.zeros_like', (['input'], {}), '(input)\n', (2181, 2188), False, 'from ptools.neuralmess.get_tf import tf\n'), ((5178, 5225), 'ptools.neuralmess.get_tf.tf.split', 'tf.split', (['output'], {'num_or_size_splits': '(2)', 'axis': '(-1)'}), '(output, num_or_size_splits=2, axis=-1)\n', (5186, 5225), False, 'from ptools.neuralmess.get_tf import tf\n'), ((7304, 7351), 'ptools.neuralmess.get_tf.tf.split', 'tf.split', (['output'], {'num_or_size_splits': '(2)', 'axis': '(-1)'}), '(output, num_or_size_splits=2, axis=-1)\n', (7312, 7351), False, 'from ptools.neuralmess.get_tf import tf\n'), ((7907, 7942), 'ptools.neuralmess.get_tf.tf.cast', 'tf.cast', (['v.shape[-1].value', 'w.dtype'], {}), '(v.shape[-1].value, w.dtype)\n', (7914, 7942), False, 'from ptools.neuralmess.get_tf import tf\n'), ((10630, 10650), 'numpy.random.rand', 'np.random.rand', (['(5)', '(4)'], {}), '(5, 4)\n', (10644, 10650), True, 'import numpy as np\n'), ((10677, 10697), 'numpy.random.rand', 'np.random.rand', (['(5)', '(4)'], {}), '(5, 4)\n', (10691, 10697), True, 'import numpy as np\n'), ((10724, 10744), 'numpy.random.rand', 'np.random.rand', (['(5)', '(4)'], {}), '(5, 4)\n', (10738, 10744), True, 'import numpy as np\n'), ((10847, 10867), 'numpy.random.rand', 'np.random.rand', (['(1)', '(4)'], {}), '(1, 4)\n', (10861, 10867), True, 'import numpy as np\n'), ((10895, 10915), 'numpy.random.rand', 'np.random.rand', (['(5)', '(4)'], {}), '(5, 4)\n', (10909, 10915), True, 'import numpy as np\n'), ((10943, 10963), 'numpy.random.rand', 'np.random.rand', (['(5)', '(4)'], {}), '(5, 4)\n', (10957, 10963), True, 'import numpy as np\n'), ((11253, 11300), 'numpy.random.rand', 'np.random.rand', (['number_of_queries', 'vector_width'], {}), '(number_of_queries, vector_width)\n', (11267, 11300), True, 'import numpy as np\n'), ((11336, 11391), 'numpy.random.rand', 'np.random.rand', (['number_of_keys_and_values', 'vector_width'], {}), '(number_of_keys_and_values, vector_width)\n', (11350, 11391), True, 'import numpy as np\n'), ((11419, 11474), 'numpy.random.rand', 'np.random.rand', (['number_of_keys_and_values', 'vector_width'], {}), '(number_of_keys_and_values, vector_width)\n', (11433, 11474), True, 'import numpy as np\n'), ((4152, 4186), 'ptools.neuralmess.get_tf.tf.variable_scope', 'tf.variable_scope', (["('kernel_%d' % k)"], {}), "('kernel_%d' % k)\n", (4169, 4186), False, 'from ptools.neuralmess.get_tf import tf\n'), ((4461, 4670), 'ptools.neuralmess.get_tf.tf.layers.Conv1D', 'tf.layers.Conv1D', ([], {'filters': 'sub_filters', 'kernel_size': 'sub_kernel', 'dilation_rate': 'dilation', 'activation': 'None', 'use_bias': 'use_bias', 'kernel_initializer': 'initializer', 'padding': 'padding', 'data_format': '"""channels_last"""'}), "(filters=sub_filters, kernel_size=sub_kernel, dilation_rate\n =dilation, activation=None, use_bias=use_bias, kernel_initializer=\n initializer, padding=padding, data_format='channels_last')\n", (4477, 4670), False, 'from ptools.neuralmess.get_tf import tf\n'), ((5252, 5266), 'ptools.neuralmess.get_tf.tf.sigmoid', 'tf.sigmoid', (['s2'], {}), '(s2)\n', (5262, 5266), False, 'from ptools.neuralmess.get_tf import tf\n'), ((6215, 6249), 'ptools.neuralmess.get_tf.tf.variable_scope', 'tf.variable_scope', (["('kernel_%d' % k)"], {}), "('kernel_%d' % k)\n", (6232, 6249), False, 'from ptools.neuralmess.get_tf import tf\n'), ((6530, 6736), 'ptools.neuralmess.get_tf.tf.layers.Conv2D', 'tf.layers.Conv2D', ([], {'filters': 'subFilters', 'kernel_size': 'subKernel', 'dilation_rate': 'dilation', 'activation': 'None', 'use_bias': 'useBias', 'kernel_initializer': 'initializer', 'padding': '"""valid"""', 'data_format': '"""channels_last"""'}), "(filters=subFilters, kernel_size=subKernel, dilation_rate=\n dilation, activation=None, use_bias=useBias, kernel_initializer=\n initializer, padding='valid', data_format='channels_last')\n", (6546, 6736), False, 'from ptools.neuralmess.get_tf import tf\n'), ((7378, 7392), 'ptools.neuralmess.get_tf.tf.sigmoid', 'tf.sigmoid', (['s2'], {}), '(s2)\n', (7388, 7392), False, 'from ptools.neuralmess.get_tf import tf\n'), ((993, 1028), 'ptools.neuralmess.get_tf.tf.constant', 'tf.constant', (['[[0, 0], [0, oW - iW]]'], {}), '([[0, 0], [0, oW - iW]])\n', (1004, 1028), False, 'from ptools.neuralmess.get_tf import tf\n'), ((11576, 11599), 'numpy.random.rand', 'np.random.rand', (['(2)', '(3)', '(4)'], {}), '(2, 3, 4)\n', (11590, 11599), True, 'import numpy as np\n'), ((1359, 1385), 'ptools.neuralmess.get_tf.tf.constant_initializer', 'tf.constant_initializer', (['(0)'], {}), '(0)\n', (1382, 1385), False, 'from ptools.neuralmess.get_tf import tf\n'), ((1459, 1478), 'ptools.neuralmess.get_tf.tf.sigmoid', 'tf.sigmoid', (['convRCW'], {}), '(convRCW)\n', (1469, 1478), False, 'from ptools.neuralmess.get_tf import tf\n'), ((1427, 1446), 'ptools.neuralmess.get_tf.tf.sigmoid', 'tf.sigmoid', (['convRCW'], {}), '(convRCW)\n', (1437, 1446), False, 'from ptools.neuralmess.get_tf import tf\n')]
#!/usr/bin/python #coding = utf-8 import numpy as np from RiskQuantLib.SecurityList.BondList.bondList import bondList from RiskQuantLib.Security.Bond.bondIndexUnderlyingBond import bondIndexUnderlyingBond from RiskQuantLib.Set.SecurityList.BondList.bondIndexUnderlyingBondList import setBondIndexUnderlyingBondList class bondIndexUnderlyingBondList(bondList,setBondIndexUnderlyingBondList): elementClass = bondIndexUnderlyingBond def __init__(self): super(bondIndexUnderlyingBondList,self).__init__() self.listType = 'Bond Index Underlying Bond List' def addBond(self, codeString, nameString, weightNum = np.nan, securityTypeString = 'Bond Index Underlying Bond'): underlyingBond = bondIndexUnderlyingBond(codeString,nameString,securityTypeString) underlyingBond.setWeight(weightNum) tmpList = self.all + [underlyingBond] self.setAll(tmpList) def addBondSeries(self, bondCodeSeries, bondNameSeries, bondWeightSeries = np.nan, securityTypeString = 'Bond Index Underlying Bond'): bondSeries = [bondIndexUnderlyingBond(i,j,securityTypeString) for i,j in zip(bondCodeSeries,bondNameSeries)] if not (type(bondWeightSeries)==type(np.nan) and np.isnan(bondWeightSeries)): [i.setWeight(j) for i,j in zip(bondSeries,bondWeightSeries)] tmpList = self.all + bondSeries self.setAll(tmpList)
[ "RiskQuantLib.Security.Bond.bondIndexUnderlyingBond.bondIndexUnderlyingBond", "numpy.isnan" ]
[((720, 787), 'RiskQuantLib.Security.Bond.bondIndexUnderlyingBond.bondIndexUnderlyingBond', 'bondIndexUnderlyingBond', (['codeString', 'nameString', 'securityTypeString'], {}), '(codeString, nameString, securityTypeString)\n', (743, 787), False, 'from RiskQuantLib.Security.Bond.bondIndexUnderlyingBond import bondIndexUnderlyingBond\n'), ((1067, 1116), 'RiskQuantLib.Security.Bond.bondIndexUnderlyingBond.bondIndexUnderlyingBond', 'bondIndexUnderlyingBond', (['i', 'j', 'securityTypeString'], {}), '(i, j, securityTypeString)\n', (1090, 1116), False, 'from RiskQuantLib.Security.Bond.bondIndexUnderlyingBond import bondIndexUnderlyingBond\n'), ((1219, 1245), 'numpy.isnan', 'np.isnan', (['bondWeightSeries'], {}), '(bondWeightSeries)\n', (1227, 1245), True, 'import numpy as np\n')]
#Author: <NAME>. Licence: MIT. Objective: Create representations of texts import os import random import sys # Import other directory import timeit # Measure time import numpy import scipy import torch from afinn import Afinn from scipy.sparse import hstack from sklearn.datasets import dump_svmlight_file # save format svmlight from sklearn.datasets import load_svmlight_file, load_svmlight_files from sklearn.decomposition import NMF # modelagem de topicos from sklearn.decomposition import (TruncatedSVD) from sklearn.feature_extraction.text import TfidfVectorizer # representation tfidf from sklearn.preprocessing import (MaxAbsScaler, MinMaxScaler, Normalizer,PowerTransformer, QuantileTransformer, StandardScaler) from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import claudio_funcoes_sub as cv # Functions utils author random.seed(42); torch.manual_seed(42); numpy.random.seed(seed=42) # reproducibily soluction def assign_GPU(Tokenizer_output): tokens_tensor = Tokenizer_output['input_ids'].to('cuda:0') attention_mask = Tokenizer_output['attention_mask'].to('cuda:0') output = {'input_ids' : tokens_tensor, #'token_type_ids' : token_type_ids, 'attention_mask' : attention_mask} return output def vader(text): """Return score Vader""" analyzer = SentimentIntensityAnalyzer() dict_vader = analyzer.polarity_scores(text) return [dict_vader['neg'], dict_vader['neu'], dict_vader['pos']] #return [dict_vader['compound']] def representation_bert(x, pooling=None): """Create representation BERT""" import numpy from transformers import BertModel, BertTokenizer if "16" in pooling: limit_token=16 elif "32" in pooling: limit_token=32 elif "64" in pooling: limit_token=64 elif "128" in pooling: limit_token=128 elif "256" in pooling: limit_token=256 elif "512" in pooling: limit_token=512 limit_token=512 tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased', output_hidden_states = True) model = model.to('cuda:0') # gpu for index_doc in range(len(x)): inputs = tokenizer(x[index_doc], return_tensors="pt", max_length=limit_token, truncation=True) inputs = assign_GPU(inputs) outputs = model(**inputs) if 'bert_concat' in pooling or 'bert_sum' in pooling or 'bert_last_avg' in pooling or 'bert_cls' in pooling: hidden_states = outputs[2] token_embeddings = torch.stack(hidden_states, dim=0) token_embeddings = torch.squeeze(token_embeddings, dim=1) # remove a primeira dimensao que do embedding incial token_embeddings = token_embeddings.permute(1,0,2) # reordena para em cada linha ser um token diferente vets = [] for token in token_embeddings: if 'bert_concat' == pooling: vets.append( torch.cat((token[-1], token[-2], token[-3], token[-4]), dim=0).cpu().detach().numpy() ) # concatena as 4 ultimas dimensoes elif 'bert_sum' == pooling: vets.append( torch.sum(token[-4:], dim=0).cpu().detach().numpy() ) elif 'bert_last_avg' == pooling: vets.append( torch.mean(token[-4:], dim=0).cpu().detach().numpy() ) elif 'bert_cls' == pooling: x[index_doc] = token[-1].cpu().detach().numpy() # o primeiro token é o cls e ultima camada break if 'bert_cls' != pooling: x[index_doc] = numpy.mean( vets, axis=0) else: tokens = outputs[0].cpu().detach().numpy()[0] if 'bert_avg' in pooling: x[index_doc] = numpy.mean(tokens, axis=0) #average elif 'bert_max' in pooling: x[index_doc] = numpy.amax(tokens, axis=0) return x def process_transform(dataset, x_all=None): for trans in sys.argv[6].split(','): if x_all == None: x_all = cv.file_to_corpus('dataset/' +dataset +'/orig/texts.txt') y = cv.file_to_corpus('dataset/' +dataset +'/orig/score.txt') y = [float(y) for y in y] elif 'bert' in trans: x_all = [cv.preprocessor(x) for x in x_all] x = representation_bert(x_all, trans) elif trans == 'vader': x_all = [cv.preprocessor(x) for x in x_all] x = [vader(x) for x in x_all] elif trans == 'affin': afinn = Afinn(emoticons=True) x = [[afinn.score(x)] for x in x_all] try: os.mkdir("dataset/representations/"+dataset +'_f_' +trans) # Create directory except OSError: print('directory exist') print(dataset +'_f_' +trans) dump_svmlight_file(x, y, "dataset/representations/" +dataset +'_f_' +trans +'/feature') cv.save_dict_file('times/' +name_dataset +"_0", {'time_representation': (timeit.default_timer() - ini)}) if __name__ == "__main__": ini = timeit.default_timer() # Time process name_dataset = sys.argv[1] # name dataset ids=sys.argv[2] # file ids datas=sys.argv[3] # file texts labels=sys.argv[4] # file label index = int(sys.argv[5]) # index fold rs = sys.argv[6] # representations name_dataset_real = ids.split("/")[1] #process_transform(name_dataset_real) # generate bert try: os.mkdir("dataset/representations/"+name_dataset) # Create directory except OSError: pass#; print('directory exist') x_train, y_train, x_test, y_test = cv.ids_train_test(ids, datas, labels, index) x_train = [cv.preprocessor(x) for x in x_train] x_test = [cv.preprocessor(x) for x in x_test] y_train = [float(y) for y in y_train] # float para permitir utilizar no classificador y_test = [float(y) for y in y_test] if ',' in rs or 'bert' in rs: x_train = None x_test = None for r in rs.split(','): scaler_boolean = False soma_um = False if '_min_max' in r: scaler_boolean = True scaler = MinMaxScaler() r = r.split('_min_max')[0] if '_scaler' in r: scaler_boolean = True if 'tfidf' in r: scaler = StandardScaler(with_mean=False) else : scaler = StandardScaler() r = r.split('_scaler')[0] if '_maxabs' in r: scaler_boolean = True scaler = MaxAbsScaler() r = r.split('_maxabs')[0] if '_quantile' in r: scaler_boolean = True scaler = QuantileTransformer(random_state=42) r = r.split('_quantile')[0] if '_power' in r: scaler_boolean = True scaler = PowerTransformer() r = r.split('_power')[0] if '_normalizer' in r: scaler_boolean = True if '_normalizer_l1' in r: scaler = Normalizer(norm='l1') r = r.split('_normalizer_l1')[0] elif '_normalizer_l2' in r: scaler = Normalizer(norm='l2') r = r.split('_normalizer_l2')[0] elif '_normalizer_max' in r: scaler = Normalizer(norm='max') r = r.split('_normalizer_max')[0] if 'word_tfidf' in r or 'char_tfidf' in r or 'graph' in r:# in r or 'roberta_min_max' in r or 'metafeature' in r: f_x_train, nao_usa1, f_x_test, nao_usa2 = load_svmlight_files([open('dataset/representations/' +name_dataset_real +'_' +r +'/train'+str(index), 'rb'), open('dataset/representations/' +name_dataset_real +'_' +r +'/test'+str(index), 'rb')]) else: f_x, nao_usa = load_svmlight_file(open("dataset/representations/" +name_dataset_real +'_f_' +r +'/feature', 'rb')) f_x_train, f_x_test = cv.ids_train_test_representation(ids, f_x, index, ' ') if scaler_boolean == True: f_x_train = scaler.fit_transform(f_x_train) f_x_test = scaler.transform(f_x_test) if x_train is None: x_train = f_x_train x_test = f_x_test else: x_train = hstack([ x_train, scipy.sparse.csr_matrix(f_x_train) ]) x_test = hstack([ x_test, scipy.sparse.csr_matrix(f_x_test) ]) if ',' in rs or 'min_max' in rs or 'scaler' in rs or '_maxabs' in rs or '_porwer' in rs or '_normalizer' in rs: cv.save_dict_file('times/' +name_dataset +"_" +str(index), {'time_representation': (timeit.default_timer() - ini)}) dump_svmlight_file(x_train, y_train, "dataset/representations/" + name_dataset +'/train'+str(index)) dump_svmlight_file(x_test, y_test, "dataset/representations/" + name_dataset +'/test'+str(index)) print("Time End: %f" % (timeit.default_timer() - ini)) else: #utilizar para representacoes que dependem do fold r = rs if 'word_tfidf_bigram' in r: word_tfidf = TfidfVectorizer(ngram_range=(1,2)) x_train = word_tfidf.fit_transform(x_train) x_test = word_tfidf.transform(x_test) elif 'word_tfidf' in r : from sklearn.decomposition import PCA word_tfidf = TfidfVectorizer()#tokenizer=word_tokenize ) x_train = word_tfidf.fit_transform(x_train) x_test = word_tfidf.transform(x_test) if 'pca' in r or 'svd' in r: lenght_reduction = int(sys.argv[7]) if 'pca' in r: transformador = PCA(n_components=lenght_reduction, random_state=42) elif 'svd' in r: print('SVD') transformador = TruncatedSVD(n_components=lenght_reduction, random_state=42) x_train = transformador.fit_transform(x_train) #print(f"reduction: {x_train.shape}") x_test = transformador.transform(x_test) try: os.mkdir( f"dataset/representations/{name_dataset}_{lenght_reduction}") # Create directory except: pass dump_svmlight_file(x_train, y_train, f"dataset/representations/{name_dataset}_{lenght_reduction}/train{str(index)}") dump_svmlight_file(x_test, y_test, f"dataset/representations/{name_dataset}_{lenght_reduction}/test{str(index)}") elif r == 'char_tfidf': char_tfidf = TfidfVectorizer(analyzer='char_wb', ngram_range=(2,6)) x_train = char_tfidf.fit_transform(x_train) x_test = char_tfidf.transform(x_test) elif r =='vader': x_train = [vader(x) for x in x_train] x_test = [vader(x) for x in x_test] elif r == 'affin': afinn = Afinn(emoticons=True) x_train = [[afinn.score(x)] for x in x_train] x_test = [[afinn.score(x)] for x in x_test] print("dataset/representations/" + name_dataset +'/train'+str(index)) try: os.mkdir( f"dataset/representations/{name_dataset}") # Create directory except: pass dump_svmlight_file(x_train, y_train, f"dataset/representations/{name_dataset}/train{str(index)}") dump_svmlight_file(x_test, y_test, f"dataset/representations/{name_dataset}/test{str(index)}") cv.save_dict_file('times/' +name_dataset +"_" +str(index), {'time_representation': (timeit.default_timer() - ini)}) print("Time End: %f" % (timeit.default_timer() - ini))
[ "os.mkdir", "numpy.random.seed", "sklearn.preprocessing.StandardScaler", "sklearn.feature_extraction.text.TfidfVectorizer", "sklearn.preprocessing.MinMaxScaler", "torch.cat", "sklearn.preprocessing.MaxAbsScaler", "numpy.mean", "claudio_funcoes_sub.file_to_corpus", "claudio_funcoes_sub.preprocessor", "sklearn.decomposition.TruncatedSVD", "claudio_funcoes_sub.ids_train_test", "torch.squeeze", "random.seed", "transformers.BertModel.from_pretrained", "torch.mean", "sklearn.preprocessing.PowerTransformer", "torch.manual_seed", "sklearn.preprocessing.QuantileTransformer", "claudio_funcoes_sub.ids_train_test_representation", "scipy.sparse.csr_matrix", "transformers.BertTokenizer.from_pretrained", "afinn.Afinn", "torch.sum", "sklearn.datasets.dump_svmlight_file", "torch.stack", "timeit.default_timer", "numpy.amax", "vaderSentiment.vaderSentiment.SentimentIntensityAnalyzer", "sklearn.decomposition.PCA", "sklearn.preprocessing.Normalizer" ]
[((853, 868), 'random.seed', 'random.seed', (['(42)'], {}), '(42)\n', (864, 868), False, 'import random\n'), ((870, 891), 'torch.manual_seed', 'torch.manual_seed', (['(42)'], {}), '(42)\n', (887, 891), False, 'import torch\n'), ((893, 919), 'numpy.random.seed', 'numpy.random.seed', ([], {'seed': '(42)'}), '(seed=42)\n', (910, 919), False, 'import numpy\n'), ((1333, 1361), 'vaderSentiment.vaderSentiment.SentimentIntensityAnalyzer', 'SentimentIntensityAnalyzer', ([], {}), '()\n', (1359, 1361), False, 'from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer\n'), ((1974, 2024), 'transformers.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['"""bert-base-uncased"""'], {}), "('bert-base-uncased')\n", (2003, 2024), False, 'from transformers import BertModel, BertTokenizer\n'), ((2037, 2110), 'transformers.BertModel.from_pretrained', 'BertModel.from_pretrained', (['"""bert-base-uncased"""'], {'output_hidden_states': '(True)'}), "('bert-base-uncased', output_hidden_states=True)\n", (2062, 2110), False, 'from transformers import BertModel, BertTokenizer\n'), ((5149, 5171), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (5169, 5171), False, 'import timeit\n'), ((5716, 5760), 'claudio_funcoes_sub.ids_train_test', 'cv.ids_train_test', (['ids', 'datas', 'labels', 'index'], {}), '(ids, datas, labels, index)\n', (5733, 5760), True, 'import claudio_funcoes_sub as cv\n'), ((4910, 5005), 'sklearn.datasets.dump_svmlight_file', 'dump_svmlight_file', (['x', 'y', "('dataset/representations/' + dataset + '_f_' + trans + '/feature')"], {}), "(x, y, 'dataset/representations/' + dataset + '_f_' +\n trans + '/feature')\n", (4928, 5005), False, 'from sklearn.datasets import dump_svmlight_file\n'), ((5539, 5590), 'os.mkdir', 'os.mkdir', (["('dataset/representations/' + name_dataset)"], {}), "('dataset/representations/' + name_dataset)\n", (5547, 5590), False, 'import os\n'), ((5776, 5794), 'claudio_funcoes_sub.preprocessor', 'cv.preprocessor', (['x'], {}), '(x)\n', (5791, 5794), True, 'import claudio_funcoes_sub as cv\n'), ((5827, 5845), 'claudio_funcoes_sub.preprocessor', 'cv.preprocessor', (['x'], {}), '(x)\n', (5842, 5845), True, 'import claudio_funcoes_sub as cv\n'), ((2571, 2604), 'torch.stack', 'torch.stack', (['hidden_states'], {'dim': '(0)'}), '(hidden_states, dim=0)\n', (2582, 2604), False, 'import torch\n'), ((2636, 2674), 'torch.squeeze', 'torch.squeeze', (['token_embeddings'], {'dim': '(1)'}), '(token_embeddings, dim=1)\n', (2649, 2674), False, 'import torch\n'), ((4105, 4164), 'claudio_funcoes_sub.file_to_corpus', 'cv.file_to_corpus', (["('dataset/' + dataset + '/orig/texts.txt')"], {}), "('dataset/' + dataset + '/orig/texts.txt')\n", (4122, 4164), True, 'import claudio_funcoes_sub as cv\n'), ((4179, 4238), 'claudio_funcoes_sub.file_to_corpus', 'cv.file_to_corpus', (["('dataset/' + dataset + '/orig/score.txt')"], {}), "('dataset/' + dataset + '/orig/score.txt')\n", (4196, 4238), True, 'import claudio_funcoes_sub as cv\n'), ((4713, 4775), 'os.mkdir', 'os.mkdir', (["('dataset/representations/' + dataset + '_f_' + trans)"], {}), "('dataset/representations/' + dataset + '_f_' + trans)\n", (4721, 4775), False, 'import os\n'), ((9520, 9555), 'sklearn.feature_extraction.text.TfidfVectorizer', 'TfidfVectorizer', ([], {'ngram_range': '(1, 2)'}), '(ngram_range=(1, 2))\n', (9535, 9555), False, 'from sklearn.feature_extraction.text import TfidfVectorizer\n'), ((11558, 11609), 'os.mkdir', 'os.mkdir', (['f"""dataset/representations/{name_dataset}"""'], {}), "(f'dataset/representations/{name_dataset}')\n", (11566, 11609), False, 'import os\n'), ((3642, 3666), 'numpy.mean', 'numpy.mean', (['vets'], {'axis': '(0)'}), '(vets, axis=0)\n', (3652, 3666), False, 'import numpy\n'), ((3834, 3860), 'numpy.mean', 'numpy.mean', (['tokens'], {'axis': '(0)'}), '(tokens, axis=0)\n', (3844, 3860), False, 'import numpy\n'), ((6270, 6284), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '()\n', (6282, 6284), False, 'from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler, Normalizer, PowerTransformer, QuantileTransformer, StandardScaler\n'), ((6738, 6752), 'sklearn.preprocessing.MaxAbsScaler', 'MaxAbsScaler', ([], {}), '()\n', (6750, 6752), False, 'from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler, Normalizer, PowerTransformer, QuantileTransformer, StandardScaler\n'), ((6891, 6927), 'sklearn.preprocessing.QuantileTransformer', 'QuantileTransformer', ([], {'random_state': '(42)'}), '(random_state=42)\n', (6910, 6927), False, 'from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler, Normalizer, PowerTransformer, QuantileTransformer, StandardScaler\n'), ((7065, 7083), 'sklearn.preprocessing.PowerTransformer', 'PowerTransformer', ([], {}), '()\n', (7081, 7083), False, 'from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler, Normalizer, PowerTransformer, QuantileTransformer, StandardScaler\n'), ((8284, 8338), 'claudio_funcoes_sub.ids_train_test_representation', 'cv.ids_train_test_representation', (['ids', 'f_x', 'index', '""" """'], {}), "(ids, f_x, index, ' ')\n", (8316, 8338), True, 'import claudio_funcoes_sub as cv\n'), ((9774, 9791), 'sklearn.feature_extraction.text.TfidfVectorizer', 'TfidfVectorizer', ([], {}), '()\n', (9789, 9791), False, 'from sklearn.feature_extraction.text import TfidfVectorizer\n'), ((3925, 3951), 'numpy.amax', 'numpy.amax', (['tokens'], {'axis': '(0)'}), '(tokens, axis=0)\n', (3935, 3951), False, 'import numpy\n'), ((4334, 4352), 'claudio_funcoes_sub.preprocessor', 'cv.preprocessor', (['x'], {}), '(x)\n', (4349, 4352), True, 'import claudio_funcoes_sub as cv\n'), ((5079, 5101), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (5099, 5101), False, 'import timeit\n'), ((6460, 6491), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {'with_mean': '(False)'}), '(with_mean=False)\n', (6474, 6491), False, 'from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler, Normalizer, PowerTransformer, QuantileTransformer, StandardScaler\n'), ((6569, 6585), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (6583, 6585), False, 'from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler, Normalizer, PowerTransformer, QuantileTransformer, StandardScaler\n'), ((7295, 7316), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""l1"""'}), "(norm='l1')\n", (7305, 7316), False, 'from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler, Normalizer, PowerTransformer, QuantileTransformer, StandardScaler\n'), ((9349, 9371), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (9369, 9371), False, 'import timeit\n'), ((10984, 11039), 'sklearn.feature_extraction.text.TfidfVectorizer', 'TfidfVectorizer', ([], {'analyzer': '"""char_wb"""', 'ngram_range': '(2, 6)'}), "(analyzer='char_wb', ngram_range=(2, 6))\n", (10999, 11039), False, 'from sklearn.feature_extraction.text import TfidfVectorizer\n'), ((11964, 11986), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (11984, 11986), False, 'import timeit\n'), ((12029, 12051), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (12049, 12051), False, 'import timeit\n'), ((4483, 4501), 'claudio_funcoes_sub.preprocessor', 'cv.preprocessor', (['x'], {}), '(x)\n', (4498, 4501), True, 'import claudio_funcoes_sub as cv\n'), ((4611, 4632), 'afinn.Afinn', 'Afinn', ([], {'emoticons': '(True)'}), '(emoticons=True)\n', (4616, 4632), False, 'from afinn import Afinn\n'), ((7456, 7477), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""l2"""'}), "(norm='l2')\n", (7466, 7477), False, 'from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler, Normalizer, PowerTransformer, QuantileTransformer, StandardScaler\n'), ((8719, 8753), 'scipy.sparse.csr_matrix', 'scipy.sparse.csr_matrix', (['f_x_train'], {}), '(f_x_train)\n', (8742, 8753), False, 'import scipy\n'), ((8799, 8832), 'scipy.sparse.csr_matrix', 'scipy.sparse.csr_matrix', (['f_x_test'], {}), '(f_x_test)\n', (8822, 8832), False, 'import scipy\n'), ((9061, 9083), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (9081, 9083), False, 'import timeit\n'), ((10093, 10144), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'lenght_reduction', 'random_state': '(42)'}), '(n_components=lenght_reduction, random_state=42)\n', (10096, 10144), False, 'from sklearn.decomposition import PCA\n'), ((10523, 10593), 'os.mkdir', 'os.mkdir', (['f"""dataset/representations/{name_dataset}_{lenght_reduction}"""'], {}), "(f'dataset/representations/{name_dataset}_{lenght_reduction}')\n", (10531, 10593), False, 'import os\n'), ((7618, 7640), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""max"""'}), "(norm='max')\n", (7628, 7640), False, 'from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler, Normalizer, PowerTransformer, QuantileTransformer, StandardScaler\n'), ((10247, 10307), 'sklearn.decomposition.TruncatedSVD', 'TruncatedSVD', ([], {'n_components': 'lenght_reduction', 'random_state': '(42)'}), '(n_components=lenght_reduction, random_state=42)\n', (10259, 10307), False, 'from sklearn.decomposition import TruncatedSVD\n'), ((11318, 11339), 'afinn.Afinn', 'Afinn', ([], {'emoticons': '(True)'}), '(emoticons=True)\n', (11323, 11339), False, 'from afinn import Afinn\n'), ((2987, 3049), 'torch.cat', 'torch.cat', (['(token[-1], token[-2], token[-3], token[-4])'], {'dim': '(0)'}), '((token[-1], token[-2], token[-3], token[-4]), dim=0)\n', (2996, 3049), False, 'import torch\n'), ((3187, 3215), 'torch.sum', 'torch.sum', (['token[-4:]'], {'dim': '(0)'}), '(token[-4:], dim=0)\n', (3196, 3215), False, 'import torch\n'), ((3323, 3352), 'torch.mean', 'torch.mean', (['token[-4:]'], {'dim': '(0)'}), '(token[-4:], dim=0)\n', (3333, 3352), False, 'import torch\n')]
# -*- coding: utf-8 -*- """A set of utility functions to support outlier detection. """ # Author: <NAME> <<EMAIL>> # License: BSD 2 clause from __future__ import division from __future__ import print_function import os import numpy as np import pandas as pd from numpy import percentile import numbers import sklearn from sklearn.metrics import precision_score from sklearn.preprocessing import StandardScaler from sklearn.utils import column_or_1d from sklearn.utils import check_array from sklearn.utils import check_consistent_length from sklearn.utils import check_random_state from sklearn.utils.random import sample_without_replacement MAX_INT = np.iinfo(np.int32).max MIN_INT = -1 * MAX_INT def make_dirs_if_not_exists(save_dir): # make saving directory if needed if not os.path.isdir(save_dir): os.makedirs(save_dir) def read_csv_to_df(file_loc, header_lower=True, usecols=None, dtype=None, low_memory=True, encoding=None): """Read in csv files with necessary processing Parameters ---------- file_loc header_lower low_memory Returns ------- """ if dtype != None: df = pd.read_csv(file_loc, usecols=usecols, dtype=dtype, low_memory=low_memory, encoding=encoding) else: df = pd.read_csv(file_loc, usecols=usecols, low_memory=low_memory, encoding=encoding) if header_lower: df.columns = df.columns.str.lower() return df def read_excel_to_df(file_loc, header_lower=True, usecols=None, dtype=None, low_memory=True, encoding=None): """Read in excel files with necessary processing Parameters ---------- file_loc header_lower low_memory Returns ------- """ if dtype != None: df = pd.read_excel(file_loc, usecols=usecols, dtype=dtype, low_memory=low_memory, encoding=encoding) else: df = pd.read_excel(file_loc, usecols=usecols, low_memory=low_memory, encoding=encoding) if header_lower: df.columns = df.columns.str.lower() return df def check_parameter(param, low=MIN_INT, high=MAX_INT, param_name='', include_left=False, include_right=False): """Check if an input is within the defined range. Parameters ---------- param : int, float The input parameter to check. low : int, float The lower bound of the range. high : int, float The higher bound of the range. param_name : str, optional (default='') The name of the parameter. include_left : bool, optional (default=False) Whether includes the lower bound (lower bound <=). include_right : bool, optional (default=False) Whether includes the higher bound (<= higher bound). Returns ------- within_range : bool or raise errors Whether the parameter is within the range of (low, high) """ # param, low and high should all be numerical if not isinstance(param, (numbers.Integral, np.integer, np.float)): raise TypeError('{param_name} is set to {param} Not numerical'.format( param=param, param_name=param_name)) if not isinstance(low, (numbers.Integral, np.integer, np.float)): raise TypeError('low is set to {low}. Not numerical'.format(low=low)) if not isinstance(high, (numbers.Integral, np.integer, np.float)): raise TypeError('high is set to {high}. Not numerical'.format( high=high)) # at least one of the bounds should be specified if low is MIN_INT and high is MAX_INT: raise ValueError('Neither low nor high bounds is undefined') # if wrong bound values are used if low > high: raise ValueError( 'Lower bound > Higher bound') # value check under different bound conditions if (include_left and include_right) and (param < low or param > high): raise ValueError( '{param_name} is set to {param}. ' 'Not in the range of [{low}, {high}].'.format( param=param, low=low, high=high, param_name=param_name)) elif (include_left and not include_right) and ( param < low or param >= high): raise ValueError( '{param_name} is set to {param}. ' 'Not in the range of [{low}, {high}).'.format( param=param, low=low, high=high, param_name=param_name)) elif (not include_left and include_right) and ( param <= low or param > high): raise ValueError( '{param_name} is set to {param}. ' 'Not in the range of ({low}, {high}].'.format( param=param, low=low, high=high, param_name=param_name)) elif (not include_left and not include_right) and ( param <= low or param >= high): raise ValueError( '{param_name} is set to {param}. ' 'Not in the range of ({low}, {high}).'.format( param=param, low=low, high=high, param_name=param_name)) else: return True
[ "os.makedirs", "os.path.isdir", "pandas.read_csv", "numpy.iinfo", "pandas.read_excel" ]
[((658, 676), 'numpy.iinfo', 'np.iinfo', (['np.int32'], {}), '(np.int32)\n', (666, 676), True, 'import numpy as np\n'), ((793, 816), 'os.path.isdir', 'os.path.isdir', (['save_dir'], {}), '(save_dir)\n', (806, 816), False, 'import os\n'), ((826, 847), 'os.makedirs', 'os.makedirs', (['save_dir'], {}), '(save_dir)\n', (837, 847), False, 'import os\n'), ((1171, 1268), 'pandas.read_csv', 'pd.read_csv', (['file_loc'], {'usecols': 'usecols', 'dtype': 'dtype', 'low_memory': 'low_memory', 'encoding': 'encoding'}), '(file_loc, usecols=usecols, dtype=dtype, low_memory=low_memory,\n encoding=encoding)\n', (1182, 1268), True, 'import pandas as pd\n'), ((1313, 1398), 'pandas.read_csv', 'pd.read_csv', (['file_loc'], {'usecols': 'usecols', 'low_memory': 'low_memory', 'encoding': 'encoding'}), '(file_loc, usecols=usecols, low_memory=low_memory, encoding=encoding\n )\n', (1324, 1398), True, 'import pandas as pd\n'), ((1829, 1928), 'pandas.read_excel', 'pd.read_excel', (['file_loc'], {'usecols': 'usecols', 'dtype': 'dtype', 'low_memory': 'low_memory', 'encoding': 'encoding'}), '(file_loc, usecols=usecols, dtype=dtype, low_memory=low_memory,\n encoding=encoding)\n', (1842, 1928), True, 'import pandas as pd\n'), ((1975, 2062), 'pandas.read_excel', 'pd.read_excel', (['file_loc'], {'usecols': 'usecols', 'low_memory': 'low_memory', 'encoding': 'encoding'}), '(file_loc, usecols=usecols, low_memory=low_memory, encoding=\n encoding)\n', (1988, 2062), True, 'import pandas as pd\n')]
#!/usr/bin/env python3 """ 音声情報処理 n本ノック !! """ # MIT License # Copyright (C) 2020 by <NAME> # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # Commentary: # - 音声セグメントからMUSIC法により基本周波数を推定する import matplotlib.pyplot as plt import numpy as np import scipy from scipy.io import wavfile import librosa IN_WAVE_FILE = "voice_a.wav" # 「あ」の音声 FRAME_LENGTH = 1024 # フレーム長 (FFTサイズ) HOP_LENGTH = 80 # フレームのシフト長 CUTOFF = 4000 # 遮断周波数 (Hz) # 音声のロード fs, data = wavfile.read(IN_WAVE_FILE) data = data.astype(np.float64) # フレーム化 frames = librosa.util.frame(data, frame_length=FRAME_LENGTH, hop_length=HOP_LENGTH).T # 周波数軸 freq_axis = np.linspace(0, fs, frames.shape[0]) # MUSIC法のノイズ成分を高域の周波数成分と見なす ORDER = np.min(np.where(freq_axis > CUTOFF)) # 標本共分散行列の計算 cov_frames = np.cov(frames, bias=True) # 固有値と固有ベクトルを計算 # →固有値は大きい順に並び、固有ベクトル(縦)もそれに対応して並ぶ eigval, eigvec = np.linalg.eig(cov_frames) # ノイズ成分の固有ベクトル noise_eigvec = eigvec[:, 2 * ORDER + 1:] # パワースペクトルをノイズ成分の固有ベクトルから計算 power_noise_eigvec = np.abs(np.fft.fft(noise_eigvec)) power_noise_eigvec = power_noise_eigvec ** 2 # MUSIC法の疑似スペクトルを計算 music_pseudo_spec = 1.0 / np.sum(power_noise_eigvec, axis=1) # 基本周波数の推定 # →ピーク位置の最小値を与える周波数 fo = freq_axis[np.min(scipy.signal.argrelmax(music_pseudo_spec))] print(f"Estimatied fundamental frequency = {fo:.2f} Hz") # 波形表示 fig = plt.figure(figsize=(10, 6)) n_samples = len(data) time = np.arange(n_samples) / fs plt.plot(time, data) plt.xlabel("Time (sec)") plt.ylabel("Amplitude") plt.title("Waveform (/a/)") plt.show() # MUSIC法による疑似スペクトルの計算結果 fig = plt.figure(figsize=(10, 6)) plt.plot(freq_axis, 20 * np.log10(music_pseudo_spec)) plt.xlim(0, fs/2) plt.xlabel("Frequency (Hz)") plt.ylabel("Power [dB]") plt.title( f"Pseudospectrum via MUSIC method\nFundamental Frequency = {fo:.2f} Hz") plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "librosa.util.frame", "matplotlib.pyplot.show", "numpy.sum", "matplotlib.pyplot.plot", "numpy.fft.fft", "numpy.linalg.eig", "scipy.io.wavfile.read", "matplotlib.pyplot.figure", "numpy.where", "numpy.arange", "scipy.signal.argrelmax", "numpy.linspace", "matplotlib.pyplot.ylabel", "numpy.log10", "numpy.cov", "matplotlib.pyplot.xlabel" ]
[((1511, 1537), 'scipy.io.wavfile.read', 'wavfile.read', (['IN_WAVE_FILE'], {}), '(IN_WAVE_FILE)\n', (1523, 1537), False, 'from scipy.io import wavfile\n'), ((1712, 1747), 'numpy.linspace', 'np.linspace', (['(0)', 'fs', 'frames.shape[0]'], {}), '(0, fs, frames.shape[0])\n', (1723, 1747), True, 'import numpy as np\n'), ((1849, 1874), 'numpy.cov', 'np.cov', (['frames'], {'bias': '(True)'}), '(frames, bias=True)\n', (1855, 1874), True, 'import numpy as np\n'), ((1944, 1969), 'numpy.linalg.eig', 'np.linalg.eig', (['cov_frames'], {}), '(cov_frames)\n', (1957, 1969), True, 'import numpy as np\n'), ((2406, 2433), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (2416, 2433), True, 'import matplotlib.pyplot as plt\n'), ((2489, 2509), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'data'], {}), '(time, data)\n', (2497, 2509), True, 'import matplotlib.pyplot as plt\n'), ((2510, 2534), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (sec)"""'], {}), "('Time (sec)')\n", (2520, 2534), True, 'import matplotlib.pyplot as plt\n'), ((2535, 2558), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Amplitude"""'], {}), "('Amplitude')\n", (2545, 2558), True, 'import matplotlib.pyplot as plt\n'), ((2559, 2586), 'matplotlib.pyplot.title', 'plt.title', (['"""Waveform (/a/)"""'], {}), "('Waveform (/a/)')\n", (2568, 2586), True, 'import matplotlib.pyplot as plt\n'), ((2587, 2597), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2595, 2597), True, 'import matplotlib.pyplot as plt\n'), ((2629, 2656), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (2639, 2656), True, 'import matplotlib.pyplot as plt\n'), ((2711, 2730), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(fs / 2)'], {}), '(0, fs / 2)\n', (2719, 2730), True, 'import matplotlib.pyplot as plt\n'), ((2729, 2757), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frequency (Hz)"""'], {}), "('Frequency (Hz)')\n", (2739, 2757), True, 'import matplotlib.pyplot as plt\n'), ((2758, 2782), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Power [dB]"""'], {}), "('Power [dB]')\n", (2768, 2782), True, 'import matplotlib.pyplot as plt\n'), ((2783, 2873), 'matplotlib.pyplot.title', 'plt.title', (['f"""Pseudospectrum via MUSIC method\nFundamental Frequency = {fo:.2f} Hz"""'], {}), '(\n f"""Pseudospectrum via MUSIC method\nFundamental Frequency = {fo:.2f} Hz""")\n', (2792, 2873), True, 'import matplotlib.pyplot as plt\n'), ((2871, 2881), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2879, 2881), True, 'import matplotlib.pyplot as plt\n'), ((1587, 1661), 'librosa.util.frame', 'librosa.util.frame', (['data'], {'frame_length': 'FRAME_LENGTH', 'hop_length': 'HOP_LENGTH'}), '(data, frame_length=FRAME_LENGTH, hop_length=HOP_LENGTH)\n', (1605, 1661), False, 'import librosa\n'), ((1792, 1820), 'numpy.where', 'np.where', (['(freq_axis > CUTOFF)'], {}), '(freq_axis > CUTOFF)\n', (1800, 1820), True, 'import numpy as np\n'), ((2084, 2108), 'numpy.fft.fft', 'np.fft.fft', (['noise_eigvec'], {}), '(noise_eigvec)\n', (2094, 2108), True, 'import numpy as np\n'), ((2202, 2236), 'numpy.sum', 'np.sum', (['power_noise_eigvec'], {'axis': '(1)'}), '(power_noise_eigvec, axis=1)\n', (2208, 2236), True, 'import numpy as np\n'), ((2463, 2483), 'numpy.arange', 'np.arange', (['n_samples'], {}), '(n_samples)\n', (2472, 2483), True, 'import numpy as np\n'), ((2291, 2332), 'scipy.signal.argrelmax', 'scipy.signal.argrelmax', (['music_pseudo_spec'], {}), '(music_pseudo_spec)\n', (2313, 2332), False, 'import scipy\n'), ((2682, 2709), 'numpy.log10', 'np.log10', (['music_pseudo_spec'], {}), '(music_pseudo_spec)\n', (2690, 2709), True, 'import numpy as np\n')]
import numpy as np def calc_area(vertex): vec_a = vertex[:,1] - vertex[:,0] vec_b = vertex[:,2] - vertex[:,0] normal = np.cross(vec_a, vec_b) area = np.absolute(np.linalg.norm(normal, ord=2, axis=1))*0.5 return area def uniform_sample_on_triangle(triangle): while True: rn = np.random.rand(2) if np.sum(rn) <= 1.0: break return rn[0]*(triangle[1]-triangle[0]) + rn[1]*(triangle[2]-triangle[0]) + triangle[0] # mesh def mesh2pcl(triangle_collection, numpoints): area_collection = calc_area(triangle_collection) total_area = np.sum(area_collection) print("Triangle count: {}".format(triangle_collection.shape[0])) #print("Total surface area: {}".format(total_area)) area_collection /= total_area # sample k points # note that this will give an error if self.area_collection.shape[0] = 0 (implies empty shape) sampled_triangles = np.random.choice(area_collection.shape[0], size=numpoints, p=area_collection) # Sample one random uvs on each triangle rand_uv = np.random.rand(numpoints, 2) oob_idx = np.sum(rand_uv, axis=-1) > 1.0 rand_uv[oob_idx,:] = -rand_uv[oob_idx,:] + 1.0 sampled_triangle_collection = triangle_collection[sampled_triangles,:,:] sampled_points = rand_uv[:,[0]] * (sampled_triangle_collection[:,1,:] - sampled_triangle_collection[:,0,:]) \ + rand_uv[:,[1]] * (sampled_triangle_collection[:,2,:] - sampled_triangle_collection[:,0,:]) \ + sampled_triangle_collection[:,0,:] return sampled_points.astype(np.float32)
[ "numpy.sum", "numpy.cross", "numpy.linalg.norm", "numpy.random.choice", "numpy.random.rand" ]
[((132, 154), 'numpy.cross', 'np.cross', (['vec_a', 'vec_b'], {}), '(vec_a, vec_b)\n', (140, 154), True, 'import numpy as np\n'), ((590, 613), 'numpy.sum', 'np.sum', (['area_collection'], {}), '(area_collection)\n', (596, 613), True, 'import numpy as np\n'), ((933, 1010), 'numpy.random.choice', 'np.random.choice', (['area_collection.shape[0]'], {'size': 'numpoints', 'p': 'area_collection'}), '(area_collection.shape[0], size=numpoints, p=area_collection)\n', (949, 1010), True, 'import numpy as np\n'), ((1075, 1103), 'numpy.random.rand', 'np.random.rand', (['numpoints', '(2)'], {}), '(numpoints, 2)\n', (1089, 1103), True, 'import numpy as np\n'), ((309, 326), 'numpy.random.rand', 'np.random.rand', (['(2)'], {}), '(2)\n', (323, 326), True, 'import numpy as np\n'), ((1118, 1142), 'numpy.sum', 'np.sum', (['rand_uv'], {'axis': '(-1)'}), '(rand_uv, axis=-1)\n', (1124, 1142), True, 'import numpy as np\n'), ((178, 215), 'numpy.linalg.norm', 'np.linalg.norm', (['normal'], {'ord': '(2)', 'axis': '(1)'}), '(normal, ord=2, axis=1)\n', (192, 215), True, 'import numpy as np\n'), ((338, 348), 'numpy.sum', 'np.sum', (['rn'], {}), '(rn)\n', (344, 348), True, 'import numpy as np\n')]
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import cv2 import numpy as np from PIL import Image class testdataset: def __init__(self, test_root_dir='.', resize=1920): self.resize = resize self.test_root_dir = test_root_dir self.counter = 0 def __iter__(self): self.imagedir = os.path.join(self.test_root_dir, 'ch4_test_images') if not os.path.exists(self.imagedir): raise ValueError("test dataset is not exist!") self.img_names = [i for i in os.listdir(self.imagedir) if os.path.splitext(i)[-1].lower() in ['.jpg', '.png', '.jpeg']] self.image_paths = [] for img_name in self.img_names: self.image_paths.append(os.path.join(self.imagedir, img_name)) return self def __next__(self): if self.counter >= len(self.image_paths): raise StopIteration() img_path = self.image_paths[self.counter] img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) long_size = max(img.shape[:2]) img_resized = np.zeros((long_size, long_size, 3), np.uint8) img_resized[:img.shape[0], :img.shape[1], :] = img img_resized = cv2.resize(img_resized, dsize=(self.resize, self.resize)) img_resized = Image.fromarray(img_resized) img_resized = img_resized.convert('RGB') img_resized = np.asarray(img_resized) img_name = os.path.split(self.image_paths[self.counter])[-1] self.counter += 1 return img, img_resized, img_name
[ "cv2.cvtColor", "numpy.asarray", "numpy.zeros", "os.path.exists", "cv2.imread", "os.path.splitext", "PIL.Image.fromarray", "os.path.split", "os.path.join", "os.listdir", "cv2.resize" ]
[((952, 1003), 'os.path.join', 'os.path.join', (['self.test_root_dir', '"""ch4_test_images"""'], {}), "(self.test_root_dir, 'ch4_test_images')\n", (964, 1003), False, 'import os\n'), ((1603, 1623), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (1613, 1623), False, 'import cv2\n'), ((1638, 1674), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2RGB'], {}), '(img, cv2.COLOR_BGR2RGB)\n', (1650, 1674), False, 'import cv2\n'), ((1736, 1781), 'numpy.zeros', 'np.zeros', (['(long_size, long_size, 3)', 'np.uint8'], {}), '((long_size, long_size, 3), np.uint8)\n', (1744, 1781), True, 'import numpy as np\n'), ((1863, 1920), 'cv2.resize', 'cv2.resize', (['img_resized'], {'dsize': '(self.resize, self.resize)'}), '(img_resized, dsize=(self.resize, self.resize))\n', (1873, 1920), False, 'import cv2\n'), ((1943, 1971), 'PIL.Image.fromarray', 'Image.fromarray', (['img_resized'], {}), '(img_resized)\n', (1958, 1971), False, 'from PIL import Image\n'), ((2043, 2066), 'numpy.asarray', 'np.asarray', (['img_resized'], {}), '(img_resized)\n', (2053, 2066), True, 'import numpy as np\n'), ((1020, 1049), 'os.path.exists', 'os.path.exists', (['self.imagedir'], {}), '(self.imagedir)\n', (1034, 1049), False, 'import os\n'), ((2086, 2131), 'os.path.split', 'os.path.split', (['self.image_paths[self.counter]'], {}), '(self.image_paths[self.counter])\n', (2099, 2131), False, 'import os\n'), ((1147, 1172), 'os.listdir', 'os.listdir', (['self.imagedir'], {}), '(self.imagedir)\n', (1157, 1172), False, 'import os\n'), ((1371, 1408), 'os.path.join', 'os.path.join', (['self.imagedir', 'img_name'], {}), '(self.imagedir, img_name)\n', (1383, 1408), False, 'import os\n'), ((1202, 1221), 'os.path.splitext', 'os.path.splitext', (['i'], {}), '(i)\n', (1218, 1221), False, 'import os\n')]
from pynq import DefaultIP from pynq import DefaultHierarchy from pynq import allocate import numpy as np from rfsoc_qpsk.dma_timer import DmaTimer class QPSKRx(DefaultHierarchy): def __init__(self, description): super().__init__(description) def get_decimated(self): return self.qpsk_rx_dec.get_frame(self.dma_rx_dec) def get_coarse_synced(self): return self.qpsk_rx_csync.get_frame(self.dma_rx_csync) def get_rrced(self): return self.qpsk_rx_rrc.get_frame(self.dma_rx_rrc) def get_data(self): return self.qpsk_rx_tsync.get_frame(self.dma_rx_tsync) @staticmethod def checkhierarchy(description): if 'dma_rx_dec' in description['ip'] \ and 'qpsk_rx_dec' in description['ip'] \ and 'dma_rx_csync' in description['ip'] \ and 'qpsk_rx_csync' in description['ip'] \ and 'dma_rx_rrc' in description['ip'] \ and 'qpsk_rx_rrc' in description['ip'] \ and 'dma_rx_tsync' in description['ip'] \ and 'qpsk_rx_tsync' in description['ip']: return True return False class DataInspector(DefaultIP): def __init__(self, description, pkt_size, buf_dtype=np.int16, buf_words_per_pkt=2): super().__init__(description) # Init config register self.reset = 1 self.enable = 1 self.pkt_size = pkt_size-1 self.auto_restart = 0 self.reset = 0 # Init buffer self.buf = allocate(shape=(pkt_size * buf_words_per_pkt, ), dtype=np.int16) def _process_frame(self, frame): # By default treat frame as interleaved IQ stream. return frame[::2] + 1j * frame[1::2] def get_frame(self, dma): self.transfer = 1 dma.recvchannel.transfer(self.buf) dma.recvchannel.wait() self.transfer = 0 frame = self._process_frame(np.array(self.buf)) return frame # Func to return a MMIO getter and setter based on a relative addr def _create_mmio_property(addr): def _get(self): return self.read(addr) def _set(self, value): self.write(addr, value) return property(_get, _set) # LUT of property addresses for our data-driven properties _data_inspector_props = [ ("reset", 0 ), ("pkt_size", 4 ), ("enable", 8 ), ("auto_restart", 12), ("transfer", 16) ] # Generate getters and setters based on _data_inspector_props for (name, addr) in _data_inspector_props: setattr(DataInspector, name, _create_mmio_property(addr)) class RxDecimator(DataInspector): def __init__(self, description): super().__init__(description, 128) bindto = ['UoS:SysGen:axi_qpsk_rx_dec:1.1'] class RxCSync(DataInspector): def __init__(self, description): super().__init__(description, 128) bindto = ['UoS:SysGen:axi_qpsk_rx_csync:1.1'] class RxRRC(DataInspector): def __init__(self, description): super().__init__(description, 512) bindto = ['UoS:SysGen:axi_qpsk_rx_rrc:1.1'] class RxTSync(DataInspector): def __init__(self, description): super().__init__(description, 16) # Set loop filter reset counter to 1 second # (@ 16kHz) self.sync_reset=0 bindto = ['UoS:SysGen:axi_qpsk_rx_tsync:1.1'] setattr(RxTSync, 'sync_reset', _create_mmio_property(20))
[ "numpy.array", "pynq.allocate" ]
[((1567, 1630), 'pynq.allocate', 'allocate', ([], {'shape': '(pkt_size * buf_words_per_pkt,)', 'dtype': 'np.int16'}), '(shape=(pkt_size * buf_words_per_pkt,), dtype=np.int16)\n', (1575, 1630), False, 'from pynq import allocate\n'), ((1975, 1993), 'numpy.array', 'np.array', (['self.buf'], {}), '(self.buf)\n', (1983, 1993), True, 'import numpy as np\n')]
import os import sys # Adding project folder to import modules root = os.getcwd().replace("\\", "/") sys.path.append(root) import mod.env.config as conf from mod.env.config import ConfigNetwork import pandas as pd from copy import deepcopy from collections import defaultdict from pprint import pprint import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set(style="ticks") context = "paper" fig_format = "pdf" def movingaverage(data, w, start=0, start_den=2): new_data = np.zeros(len(data)) for i in range(len(data)): if i < start: new_data[i] = sum(data[i : i + int(w / start_den)]) / int( w / start_den ) continue if i + w < len(data): new_data[i] = sum(data[i : i + w]) / w else: new_data[i] = sum(data[i - w : i]) / w return new_data if __name__ == "__main__": adhoc_compare = dict() adhoc_compare_labels = dict() colors = dict() markers = dict() linewidth = dict() test_label = "hire500" # test_label = "rebalance" # test_label = "pavfav" # test_label = "exploration" # test_label = "flood" # test_label = "unlimited" # test_label = "policy" # test_label = "b" # adhoc_compare["p"] = [ # "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_0.00_0.00_1.00_B_2.40_10.00_0.00_0.00_0.00", # "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_0.00_4.80_1.00_B_2.40_10.00_0.00_2.40_0.00", # "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_0.00_1.00_B_2.40_10.00_5.00_0.00_0.00", # "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_1.00_B_2.40_10.00_5.00_2.40_0.00", # "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_10.00_0.00_0.00_1.00_B_2.40_15.00_0.00_0.00_0.00", # ] d = "0.01" adhoc_compare["hire500"] = [ f"SH_LIN_V=0000-0500[S{d}](R)_I=1_L[5]=(10102, 10203, 1030-, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", f"SH_LIN_V=0000-0500[S{d}](R)_I=1_L[3]=(10202, 32303, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", f"SH_LIN_V=0000-0500[S{d}](R)_I=1_L[3]=(10-02, 32-03, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", f"SH_LIN_V=0000-0500[S{d}](R)_I=1_L[3]=(10-0-, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", f"SH_LIN_V=0000-0500[S{d}](R)_I=1_L[4]=(10203, 1030-, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", f"SH_LIN_V=0000-0500[S{d}](R)_I=1_L[3]=(10303, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", f"SH_LIN_V=0000-0500[S{d}](R)_I=1_L[3]=(32202, 33303, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.10](R)_I=1_L[5]=(10102, 10203, 1030-, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.10](R)_I=1_L[3]=(10202, 32303, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.10](R)_I=1_L[3]=(10-02, 32-03, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.10](R)_I=1_L[3]=(10-0-, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.10](R)_I=1_L[4]=(10203, 1030-, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.10](R)_I=1_L[3]=(10303, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.10](R)_I=1_L[3]=(32202, 33303, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.01](R)_I=1_L[5]=(10102, 10203, 1030-, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.01](R)_I=1_L[3]=(10202, 32303, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.01](R)_I=1_L[3]=(10-02, 32-03, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.01](R)_I=1_L[3]=(10-0-, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.01](R)_I=1_L[4]=(10203, 1030-, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.01](R)_I=1_L[3]=(10303, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.01](R)_I=1_L[3]=(32202, 33303, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.01](R)_I=1_L[3]=(10202, 32303, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.01](R)_I=1_L[3]=(10-02, 32-03, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.01](R)_I=1_L[3]=(10-0-, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.01](R)_I=1_L[4]=(10203, 1030-, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", # "SH_LIN_V=0000-0500[S0.01](R)_I=1_L[3]=(10303, 32-0-, 33-0-)_R=([1-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_P_B_2.40_10.00_5.00_2.40_P", ] colors["hire500"] = ["k", "g", "r", "b", "k", "g", "r", "b", "k", "g", "r", "b"] markers["hire500"] = [None, None, None, None, "o", "o", "o","o", "x","x","x","x"] adhoc_compare_labels["hire500"] = [ f"{d} - (10102, 10203, 1030-, 32-0-, 33-0-)", f"{d} - (10202, 32302, 33-0-)", f"{d} - (10-02, 32-02, 33-0-)", f"{d} - (10-0-, 32-0-, 33-0-)", f"{d} - (10203, 1030-, 32-0-, 33-0-)", f"{d} - (10303, 32-0-, 33-0-)", f"{d} - (32202, 33303, 33-0-)", "0.10 - (10102, 10203, 1030-, 32-0-, 33-0-)", "0.10 - (10202, 32302, 33-0-)", "0.10 - (10-02, 32-02, 33-0-)", "0.10 - (10-0-, 32-0-, 33-0-)", "0.10 - (10203, 1030-, 32-0-, 33-0-)", "0.10 - (10303, 32-0-, 33-0-)", "0.10 - (32202, 33303, 33-0-)", "0.10 - (10102, 10203, 1030-, 32-0-, 33-0-)", "0.10 - (10202, 32302, 33-0-)", "0.10 - (10-02, 32-02, 33-0-)", "0.10 - (10-0-, 32-0-, 33-0-)", "0.10 - (10203, 1030-, 32-0-, 33-0-)", "0.10 - (10303, 32-0-, 33-0-)", "0.10 - (32202, 33303, 33-0-)", ] # adhoc_compare["hire500m"] = [ # "HI_LIN_V=0000-0500[S1.00][M](R)_I=1_L[3]=(10-01, 32-02, 33-03)_R=([1-8][L(05)]T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_0.00_B_2.40_10.00_5.00_2.40_1.00", # "HI_LIN_V=0000-0500[S1.00][M](R)_I=1_L[3]=(10-01, 32-02, 33-03)_R=([1-8][L(05)]T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_1.00_B_2.40_10.00_5.00_2.40_0.00", # "HI_LIN_V=0000-0500[S1.00][M](R)_I=1_L[3]=(10-02, 32-0-, 33-0-)_R=([1-8][L(05)]T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_0.00_B_2.40_10.00_5.00_2.40_1.00", # "HI_LIN_V=0000-0500[S1.00][M](R)_I=1_L[3]=(10-02, 32-0-, 33-0-)_R=([1-8][L(05)]T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_1.00_B_2.40_10.00_5.00_2.40_0.00", # "HI_LIN_V=0000-0500[S1.00][M](R)_I=1_L[3]=(10-02, 32-03, 33-0-)_R=([1-8][L(05)]T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_0.00_B_2.40_10.00_5.00_2.40_1.00", # "HI_LIN_V=0000-0500[S1.00][M](R)_I=1_L[3]=(10-02, 32-03, 33-0-)_R=([1-8][L(05)]T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_1.00_B_2.40_10.00_5.00_2.40_0.00", # "HI_LIN_V=0000-0500[S1.00][M](R)_I=1_L[4]=(10-02, 10-03, 32-0-, 33-0-)_R=([1-8][L(05)]T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_0.00_B_2.40_10.00_5.00_2.40_1.00", # "HI_LIN_V=0000-0500[S1.00][M](R)_I=1_L[4]=(10-02, 10-03, 32-0-, 33-0-)_R=([1-8][L(05)]T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_1.00_B_2.40_10.00_5.00_2.40_0.00", # ] # adhoc_compare_labels["hire500m"] = [ # "500[M] - (10-01, 32-02, 33-03) - 1", # "500[M] - (10-01, 32-02, 33-03) - 2", # "500[M] - (10-02, 32-0-, 33-0-) - 1", # "500[M] - (10-02, 32-0-, 33-0-) - 2", # "500[M] - (10-02, 32-03, 33-0-) - 1", # "500[M] - (10-02, 32-03, 33-0-) - 2", # "500[M] - (10-02, 10-03, 32-0-, 33-0-) - 1", # "500[M] - (10-02, 10-03, 32-0-, 33-0-) - 2", # ] adhoc_compare["b"] = [ "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_0.00_0.00_0.00_B_2.40_10.00_0.00_0.00_1.00", "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_0.00_4.80_0.00_B_2.40_10.00_0.00_2.40_1.00", "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_0.00_0.00_B_2.40_10.00_5.00_0.00_1.00", "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_0.00_B_2.40_10.00_5.00_2.40_1.00", "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_7.20_0.00_B_2.40_10.00_5.00_4.80_1.00", "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_9.60_0.00_B_2.40_10.00_5.00_7.20_1.00", "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_10.00_0.00_0.00_0.00_B_2.40_15.00_0.00_0.00_1.00", ] adhoc_compare_labels["b"] = [ r"10min (max. pk. delay)", r"10min (max. pk. delay) + 1 $\times$ RP", r"10min (max. pk. delay) + 5min (pen. tolerance)", r"10min (max. pk. delay) + 5min (pen. tolerance) + 1 $\times$ RP", r"10min (max. pk. delay) + 5min (pen. tolerance) + 2 $\times$ RP", r"10min (max. pk. delay) + 5min (pen. tolerance) + 3 $\times$ RP", r"15min (max. pk. delay) + 5min (pen. tolerance)", ] adhoc_compare_labels["sensitivity_analysis"] = [ "SEN_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_9.60_10.00_0.00_0.00_1.00_B_7.20_15.00_0.00_0.0,0_0.00", "SEN_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_9.60_10.00_0.00_0.00_0.00_B_7.20_15.00_0.00_0.00_1.00", "SEN_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_9.60_5.00_0.00_0.00_1.00_B_7.20_10.00_0.00_0.00_0.00", "SEN_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_9.60_5.00_0.00_0.00_0.00_B_7.20_10.00_0.00_0.00_1.00", "SEN_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_7.20_10.00_0.00_0.00_1.00_B_4.80_15.00_0.00_0.00_0.00", "SEN_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_7.20_10.00_0.00_0.00_0.00_B_4.80_15.00_0.00_0.00_1.00", "SEN_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_7.20_5.00_0.00_0.00_1.00_B_4.80_10.00_0.00_0.00_0.00", "SEN_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_7.20_5.00_0.00_0.00_0.00_B_4.80_10.00_0.00_0.00_1.00", "SEN_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_10.00_0.00_0.00_1.00_B_2.40_15.00_0.00_0.00_0.00", "SEN_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_10.00_0.00_0.00_0.00_B_2.40_15.00_0.00_0.00_1.00", "SEN_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_0.00_0.00_1.00_B_2.40_10.00_0.00_0.00_0.00", "SEN_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_0.00_0.00_0.00_B_2.40_10.00_0.00_0.00_1.00", ] adhoc_compare["a"] = [ "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_0.00_0.00_1.00_B_2.40_10.00_0.00_0.00_0.00", "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_0.00_4.80_1.00_B_2.40_10.00_0.00_2.40_0.00", "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_0.00_1.00_B_2.40_10.00_5.00_0.00_0.00", "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_4.80_1.00_B_2.40_10.00_5.00_2.40_0.00", "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_7.20_1.00_B_2.40_10.00_5.00_4.80_0.00", "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_5.00_5.00_9.60_1.00_B_2.40_10.00_5.00_7.20_0.00", "SL_LIN_cars=0300-0000(R)_t=1_levels[3]=(10-0-, 32-0-, 33-0-)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10_A_4.80_10.00_0.00_0.00_1.00_B_2.40_15.00_0.00_0.00_0.00", ] adhoc_compare_labels["a"] = [ "5", "5+P", "5+5", "5+5+2P", "5+5+3P", "5+5+4P", "10", ] adhoc_compare["penalty"] = [ "baselineB10_disable_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-4, 2-4][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "baselineB10_pen_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-4, 2-4][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "baselineB10_pen_rej_pen_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-4, 2-4][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", ] adhoc_compare_labels["penalty"] = [ "10 min. pickup delay", "10 min. pickup delay + 5 min. tolerance", "10 min. pickup delay + 5 min. tolerance + rejection penalty", ] # ################################################################ # # Discount function ############################################## # # ################################################################ # adhoc_compare["penalize"] = [ "base_LIN_V=0300-0000(R)_I=1_L[3]=(10-0-, 32-0-, 33-0-)_R=([0-8][L(05)]_T=[05h,+30m+04h+60m]_0.10(S)_1.00_0.10_A_4.80_5.00_0.00_0.00_0.00_B_2.40_10.00_0.00_0.00_1.00", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8][tabu=00])[L(05)]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([2-8][tabu=00])[L(05)]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([2-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([3-8][tabu=00])[L(05)]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([3-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", ] adhoc_compare_labels["penalize"] = [ "Adjacent neighbors (30s)", r"8 $\times$ RC1", r"8 $\times$ RC1 [P]", r"8 $\times$ RC5", r"8 $\times$ RC5 [P]", r"8 $\times$ RC10", r"8 $\times$ RC10 [P]", ] colors["penalize"] = ["k", "g", "g", "r", "r", "b", "b"] markers["penalize"] = [None, None, "o", None, "o", None, "o"] linewidth["penalize"] = [1, 1, 1, 1, 1, 1, 1] # ################################################################ # # Rebalance ###################################################### # # ################################################################ # adhoc_compare["rebalance"] = [ "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 3-4][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "far_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4, 3-2][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", ] adhoc_compare_labels["rebalance"] = [ r"8 $\times$ RC1", r"8 $\times$ RC1 + 4 $\times$ RC5", r"8 $\times$ RC1 + 4 $\times$ RC10", r"8 $\times$ RC1 + 4 $\times$ RC5 + 2 $\times$ RC10", ] linewidth["rebalance"] = [1, 1, 1, 1, 1, 1, 1] markers["rebalance"] = [None, "o", "x", "D"] colors["rebalance"] = [ "k", "g", "r", "b", "magenta", "gold", "gray", "pink", "#cab2d6", ] # ################################################################ # # Max. number of cars ############################################ # # ################################################################ # adhoc_compare["flood"] = [ # "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "far_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[L(02)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[L(10)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", ] adhoc_compare_labels["flood"] = [ # "unlimited", "2", "5", "10", ] colors["flood"] = ["r", "k", "g", "r"] linewidth["flood"] = [1, 1, 1, 1, 1, 1, 1] markers["flood"] = ["x", None, "o"] # ################################################################ # # Max. number of cars (unlimited)################################# # # ################################################################ # adhoc_compare["unlimited"] = [ "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8][tabu=00])[P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", ] adhoc_compare_labels["unlimited"] = [ r"8 $\times$ RC1", r"8 $\times$ RC1 (unlimited)", r"8 $\times$ RC1 + 4 $\times$ RC5", r"8 $\times$ RC1 + 4 $\times$ RC5 (unlimited)", ] colors["unlimited"] = ["k", "k", "r", "r"] linewidth["unlimited"] = [1, 1, 1, 1, 1, 1, 1] markers["unlimited"] = [None, "o", None, "o"] adhoc_compare["policy"] = [ "myopic_[MY]_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", # "myopic_[RA]_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "annealing_hire_LIN_cars=0300-0200(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", ] adhoc_compare_labels["policy"] = [ "Myopic", # "Random rebalance", "VFA (300 PAVs)", "VFA (300 PAVs + 200 FAVs)", ] # Rebalance # adhoc_compare["flood"] = [ # "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", # "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8][tabu=00])[P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", # "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", # "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", # ] # adhoc_compare_labels["flood"] = [ # "8 x RC1", # "8 x RC1 (unlimited)", # "8 x RC1 + 4 x RC5", # "8 x RC1 + 4 x RC5 (unlimited)", # ] # adhoc_compare_labels["avoidflood"] = [ # ] adhoc_compare["exploration"] = [ "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "annealing_[X]LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "annealing0.25_[X]LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "far_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8, 2-4][thompson=06][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "annealing_[X]LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-16][thompson=08][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", ] adhoc_compare_labels["exploration"] = [ "8 x RC1 + 4 x RC5", # "16 x RC1", # "16 x RC1 (annealing)", # "16 x RC1 (annealing thompson 8)", "8 x RC1 (annealing)", "8 x RC1 (annealing 0.25)", "8 x RC1 + 4 x RC5 (thompson 6)", "16 x RC1 (thompson 6)", ] adhoc_compare["pavfav"] = [ "only1_LIN_cars=0300-0000(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", "annealing_hire_LIN_cars=0300-0200(R)_t=1_levels[3]=(1-0, 3-300, 3-600)_rebal=([1-8][tabu=00])[L(05)][P]_[05h,+30m+04h+60m]_match=15_0.10(S)_1.00_0.10", ] adhoc_compare_labels["pavfav"] = ["300 PAVs", "300 PAVs + 200 FAVs"] # adhoc_compare_labels = [ # "Rebalance to closest nodes", # "Rebalance to closest nodes + 1min RCs", # "Rebalance to 1min RCs", # "Rebalance to 1min RCs [P]", # "Rebalance to 1min (8), 5min(4), 10min(2) RCs [P]", # "Rebalance to 1min (8), 5min(4), 10min(2) RCs [P] + annealing", # "Rebalance to 1min RCs [P] + annealing", # "Rebalance to 1min RCs [P] + annealing (0.1)", # # "Annealing", # # "Annealing + Thompson (0.5)", # # "Annealing + Thompson (0.2)", # ] colors["policy"] = ["k", "r", "g"] markers["policy"] = [None, "x", "D"] colors["pavfav"] = ["k", "r"] colors["exploration"] = [ "k", "g", "r", "b", "magenta", "gold", "gray", "pink", "#cab2d6", ] # linewidth["penalize"] = [2, 2, 1, 2, 1, 2, 1] # linewidth["policy"] = [1, 1, 1, 1, 1, 1, 1] linewidth["pavfav"] = [1, 1, 1, 1, 1, 1, 1] markers["pavfav"] = [None, "o", "x"] linewidth["exploration"] = [1, 1, 1, 1, 1, 1, 1] # markers["exploration"] = [None, "o", "x"] colors_default = [ "k", "g", "r", "b", "#fb9a99", "#e31a1c", "#fdbf6f", "#ff7f00", "#cab2d6", ] legend_pos = dict() legend_pos["policy"] = "center right" SL = "Requests serviced" OF = "Objective function" TIME = "Time(s)" XLABEL = "Iteration" window = 50 ITERATIONS = 1000 markers_default = [None] * len(adhoc_compare[test_label]) # markers = [None, "o", "*", "x", "|", None] shadow = False dpi = 1200 d = dict() d_plot = defaultdict(list) for exp, sum_label in zip( adhoc_compare[test_label], adhoc_compare_labels[test_label] ): # folder = "O:/phd/output_paper/" # folder = conf.FOLDER_OUTPUT # path_all_stats = folder + exp + "/overall_stats.csv" # config_exp = ConfigNetwork() # Comparison is drawn from training path_all_stats = conf.FOLDER_OUTPUT + exp + "/adp/train/overall_stats.csv" print(sum_label, path_all_stats) config_exp = ConfigNetwork() try: # config_exp.load(folder + exp + "/exp_settings.json") config_exp.load(conf.FOLDER_OUTPUT + exp + "/exp_settings.json") df = pd.read_csv(path_all_stats) except Exception as e: print(f"Cannot load file!Exception: \"{e}\"") continue print(sum_label) # spatiotemporal_levels = exp[2].get_levels() # neighbors = exp[2].get_reb_neighbors() id_label = exp # spatiotemporal_levels + neighbors d["reward_" + id_label] = df["Total reward"][:ITERATIONS] d["service_rate_" + id_label] = df["Service rate"][:ITERATIONS] d["time_" + id_label] = df["time"][:ITERATIONS] d_plot[OF].append( (id_label, sum_label, df["Total reward"][:ITERATIONS].values) ) d_plot[SL].append( (id_label, sum_label, df["Service rate"][:ITERATIONS].values) ) # d_plot["Time(s)"].append( # (id_label, sum_label, df["time"][:ITERATIONS]) # ) # print(f" - {id_label}")\ yticks = dict() yticks_labels = dict() yticks[OF] = np.linspace(0, 600, 8) yticks[SL] = np.linspace(0.5, 0.7, 5) # Policy # yticks[OF] = np.linspace(13000, 19000, 13) # yticks[SL] = np.linspace(0.5, 0.95, 10) # yticks[OF] = np.linspace(13000, 19000, 7) # yticks[SL] = np.linspace(0.5, 0.95, 8) yticks_labels[SL] = [f"{s:3.0%}" for s in yticks[SL]] yticks_labels[OF] = [f"{p:,.0f}" for p in yticks[OF]] yticks[TIME] = np.linspace(0, 300, 5) yticks_labels["Time(s)"] = np.linspace(0, 300, 5) df_outcome = pd.DataFrame(d) df_outcome = df_outcome[sorted(df_outcome.columns.values)] df_outcome.to_csv("outcome_tuning.csv", index=False) sns.set_context(context) np.set_printoptions(precision=3) fig, axs = plt.subplots(1, len(d_plot), figsize=(8 * len(d_plot), 6)) for i, cat_label_data in enumerate(d_plot.items()): cat, label_data = cat_label_data if shadow: for j, label_data in enumerate(label_data): label, sum_label, data = label_data axs[i].plot( data, color=colors.get(test_label, colors_default)[j], linewidth=linewidth.get(test_label, [2] * len(label_data))[ j ], marker=markers.get(test_label, markers_default)[j], alpha=0.25, label="", ) cat, label_data = cat_label_data for j, ld in enumerate(label_data): label, sum_label, data = ld mavg = movingaverage(data, window) axs[i].plot( mavg, color=colors.get(test_label, colors_default)[j], linewidth=linewidth.get(test_label, [1] * len(label_data))[j], marker=markers.get(test_label, markers_default)[j], fillstyle="none", markevery=25, # linestyle=':', label=sum_label, ) # And add a special annotation for the group we are interested in # axs[i].text(ITERATIONS+0.2, mavg[-1], sum_label, horizontalalignment='left', size='small', color='k') # axs[i].set_title(vst) axs[i].set_xlabel(XLABEL) axs[i].set_ylabel(cat) axs[i].set_xlim(0, len(data)) axs[i].set_yticks(yticks[cat]) axs[i].set_yticklabels(yticks_labels[cat]) plt.legend( loc=legend_pos.get(test_label, "lower right"), frameon=False, bbox_to_anchor=(1, 0, 0, 1), # (0.5, -0.15), ncol=1, # title="Max. #cars/location" ) # plt.show() print(f'Saving "{test_label}.{fig_format}"...') plt.savefig(f"{test_label}.{fig_format}", bbox_inches="tight", dpi=dpi)
[ "sys.path.append", "pandas.DataFrame", "numpy.set_printoptions", "os.getcwd", "pandas.read_csv", "collections.defaultdict", "numpy.linspace", "seaborn.set", "seaborn.set_context", "matplotlib.pyplot.savefig", "mod.env.config.ConfigNetwork" ]
[((103, 124), 'sys.path.append', 'sys.path.append', (['root'], {}), '(root)\n', (118, 124), False, 'import sys\n'), ((379, 401), 'seaborn.set', 'sns.set', ([], {'style': '"""ticks"""'}), "(style='ticks')\n", (386, 401), True, 'import seaborn as sns\n'), ((27632, 27649), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (27643, 27649), False, 'from collections import defaultdict\n'), ((29282, 29304), 'numpy.linspace', 'np.linspace', (['(0)', '(600)', '(8)'], {}), '(0, 600, 8)\n', (29293, 29304), True, 'import numpy as np\n'), ((29322, 29346), 'numpy.linspace', 'np.linspace', (['(0.5)', '(0.7)', '(5)'], {}), '(0.5, 0.7, 5)\n', (29333, 29346), True, 'import numpy as np\n'), ((29686, 29708), 'numpy.linspace', 'np.linspace', (['(0)', '(300)', '(5)'], {}), '(0, 300, 5)\n', (29697, 29708), True, 'import numpy as np\n'), ((29740, 29762), 'numpy.linspace', 'np.linspace', (['(0)', '(300)', '(5)'], {}), '(0, 300, 5)\n', (29751, 29762), True, 'import numpy as np\n'), ((29780, 29795), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (29792, 29795), True, 'import pandas as pd\n'), ((29926, 29950), 'seaborn.set_context', 'sns.set_context', (['context'], {}), '(context)\n', (29941, 29950), True, 'import seaborn as sns\n'), ((29955, 29987), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(3)'}), '(precision=3)\n', (29974, 29987), True, 'import numpy as np\n'), ((31998, 32069), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""{test_label}.{fig_format}"""'], {'bbox_inches': '"""tight"""', 'dpi': 'dpi'}), "(f'{test_label}.{fig_format}', bbox_inches='tight', dpi=dpi)\n", (32009, 32069), True, 'import matplotlib.pyplot as plt\n'), ((72, 83), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (81, 83), False, 'import os\n'), ((28129, 28144), 'mod.env.config.ConfigNetwork', 'ConfigNetwork', ([], {}), '()\n', (28142, 28144), False, 'from mod.env.config import ConfigNetwork\n'), ((28329, 28356), 'pandas.read_csv', 'pd.read_csv', (['path_all_stats'], {}), '(path_all_stats)\n', (28340, 28356), True, 'import pandas as pd\n')]
import pygame import numpy as np '''GUI for the Game of Mills. Gets the Mapping of the field as an array. Has a fixed conversion Array as an 2D Space on which the board is to be represented, which can be scaled as needed. Scans the GUI for mouseclicks, and transforms them via indexation of the unscaled Array back into the coordinates of the board which can be returned to commit the move of the player. Graphical Representation of both Arrays (scaled Array has same Architecture, but differing dimensions. Ignores the additional layer of the board-Array for meta-data about the game such as stages, counters and past moves. Author: <NAME>, https://github.com/PPetermeier Date: 28.02.2021 Based on the implementation of mills with alphazero from Simon Schnecko. 2,7 ------------- 2,0 ------------- 2,1 | | | | 1,7 ------- 1,0 ------- 1,1 | | | | | | | | 0,7 - 0,0 - 0,1 | | | | | | | | 2,6 - 1,6 - 0,6 0,2 - 1,2 - 2,2 | | | | | | | | 0,5 - 0,4 - 0,3 | | | | | | | | 1,5 ------- 1,4 ------- 1,3 | | | | 2,5 ------------- 2,4 ------------- 2,3 1,1 ------------- 1,7 ------------- 1,13 | | | | 3,3 ------- 3,7 ------- 3,11 | | | | | | | | 5,5 - 5,7 - 5,9 | | | | | | | | 7,1 - 7,3 - 7,5 7,9 - 7,11 - 7,13 | | | | | | | | 9,5 - 9,7 - 9,9 | | | | | | | | 11,3------- 11,7-------11,11 | | | | 13,1 -------------13,7-------------13,13 ''' ##------------ Umwandlungstabellen zwischen Index & Koordinate------------ scale: int = 100 line = int(scale / 10) def setscale(value): scale = value def getscale(): return scale def testboard(): testboard = np.zeros((3, 8)) return testboard # ---------------Überlegungen, wie eine Schnittstellentabelle automatisiert erstellt werden kann ---------- # def write_coordinates(board): # coordinates = np.copy(board) # dimension = 1 # for i in range(len(coordinates)): # dimension + 4 # vdistance = 2, 0 # hdistance = 0, 2 # cdistance = 2, 0 # anchor1 = (dimension / 2) - 2 # anchor2 = dimension / 2 # anchor =np.array([anchor1, anchor2]) # anchor[0] = int(dimension / 2) - 2), int(dimension / 2) # counter = anchor # for i in range(len(coordinates)): # for j in range(len(coordinates[i])): # if i == 0 and j == 0: # coordinates[i[j]] = int(anchor1), int(anchor2) # break # if i > 0 == True and j == 0: # counter = anchor - int(i * cdistance) # coordinates[i[j]] = counter # if j == 1: # counter = counter + hdistance # coordinates[i[j]] = counter # break # if j < 4 == True: # counter = counter + vdistance # coordinates[i[j]] = counter # break # if j < 6 == True: # counter = counter - hdistance # coordinates[i[j]] = counter # break # else: # counter = counter - vdistance # vdistance[0] + 1, hdistance[1] + 1 # return coordinates ##--------------------------Fixe Schnittstelle zwischen board und GUI ---------------------- coordinates = np.array([[(5, 7), (5, 9), (7, 9), (9, 9), (9, 7), (9, 5), (7, 5), (5, 5)], [(3, 7), (3, 11), (7, 11), (11, 11), (11, 7), (11, 3), (7, 3), (3, 3)], [(1, 7), (1, 13), (7, 13), (13, 13), (13, 7), (13, 1), (7, 1), (1, 1)]]) coordinates = np.roll(np.fliplr(coordinates), 7 , 1) scaled_coordinates = coordinates * scale def get_index(gui_position1, gui_position2): ## Das selbsterstellte Board hat vermute ich die Reihen und Spalten vertauscht. Sollte es zu Problemen kommen, einfach im loop rows & cols miteinander vertauschen! gui_position1 = int(round(gui_position1/scale)) gui_position2 = int(round(gui_position2/scale)) search = (gui_position1, gui_position2) rows = coordinates.shape[0] cols = coordinates.shape[1] failure = False print(search) for i in range(rows): for j in range(cols): if np.all(coordinates[i, j] == search): return i, j return failure def get_gui_position(index_position1, index_position2): gui_position = scaled_coordinates[index_position1, index_position2] return gui_position ##------------Farbdefinition----------------------------- BLACK, GREEN, BLUE, GRAY, YELLOW, WHITE = (0, 0, 0), (0, 255, 0), (0, 0, 255), (127, 127, 127), (255, 255, 0), ( 255, 255, 255) ##-------------- Darstellungserstellung ---------------- def drawbackground(): pygame.draw.rect(screen, WHITE, (0, 0, 14 * scale, 14 * scale)) # Hintergrund def drawlines(): for i in range(3): for j in range(8): start, finish = scaled_coordinates[i][j], scaled_coordinates[i][((j + 1) % 8)] pygame.draw.line(screen, BLACK, start, finish, line) if j % 2 == 0 and i == 0: start, finish = scaled_coordinates[i][j], scaled_coordinates[(i + 2)][j] pygame.draw.line(screen, BLACK, start, finish, line) pygame.display.update() ## Soll nach jedem Zug aufgerufen werden, sofern nicht jedes Mal das Board komplett neu gezeichnet werden muss? Wenn nein, werden hier nur die Veraenderungen angezeigt def updateboard(board): for i in range(3): for j in range(8): # valid = get_legal_moves(player) Hier fehlt die Einbindung von legal_moves # if board[i, j] == valid: # pygame.draw.circle(surface=screen, color=GREEN, center=(get_gui_position(i, j)), radius=(scale / 2)) # pygame.display.update() if board[i, j] == 1: pygame.draw.circle(surface=screen, color=YELLOW, center=(get_gui_position(i, j)), radius=(scale / 2)) pygame.display.update() if board[i, j] == -1: pygame.draw.circle(surface=screen, color=BLUE, center=(get_gui_position(i, j)), radius=(scale / 2)) pygame.display.update() if board[i, j] == 0: pygame.draw.circle(surface=screen, color=GRAY, center=(get_gui_position(i, j)), radius=(scale / 2)) pygame.display.update() ## ------------------------- Initialisierungsvariabeln ------------------------------- board = testboard() width: int = 14 * scale height: int = 14 * scale size = (width, height) pygame.init() screen = pygame.display.set_mode(size) myfont = pygame.font.SysFont("monospace", 75) # board = write_coordinates(board) drawbackground() drawlines() updateboard(board) pygame.display.update() pygame.time.wait(30000) ## --------------Eventsteuerung, entnommen und angepasst aus Uebung 3 -------------- # while board.pieces[3, 7] == 0: ##piece [3,7]: speichert Spielzustand player_turn = True player = 1 def set_piece(board, player, col, row): place = get_index(col, row) if place != False: board[place] = player else: Message = 'Du hast eine ungültige Stelle angeklickt, versuch es nochmal auf einem leeren Feld' print(Message) def scanning(): while player_turn: for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONDOWN: posx = event.pos[0] posy = event.pos[1] col = int(round(posx)) row = int(round(posy)) set_piece(board, player, col, row) updateboard(board) #position = [int(math.floor(posy / scale)), int(math.floor(posx / scale))] # column = int(math.floor(posy / scale)) # row = int(math.floor(posx / scale)) # valid = self.game.getValidMoves(board, player) # for i in range(valid): # if position == valid(i): # execute_move(position) # updateboard(board) # pygame.display.update() # break pygame.display.update() scanning()
[ "pygame.draw.line", "pygame.font.SysFont", "pygame.draw.rect", "pygame.display.set_mode", "pygame.event.get", "numpy.zeros", "pygame.init", "pygame.time.wait", "numpy.fliplr", "pygame.display.update", "numpy.array", "numpy.all" ]
[((3601, 3829), 'numpy.array', 'np.array', (['[[(5, 7), (5, 9), (7, 9), (9, 9), (9, 7), (9, 5), (7, 5), (5, 5)], [(3, 7),\n (3, 11), (7, 11), (11, 11), (11, 7), (11, 3), (7, 3), (3, 3)], [(1, 7),\n (1, 13), (7, 13), (13, 13), (13, 7), (13, 1), (7, 1), (1, 1)]]'], {}), '([[(5, 7), (5, 9), (7, 9), (9, 9), (9, 7), (9, 5), (7, 5), (5, 5)],\n [(3, 7), (3, 11), (7, 11), (11, 11), (11, 7), (11, 3), (7, 3), (3, 3)],\n [(1, 7), (1, 13), (7, 13), (13, 13), (13, 7), (13, 1), (7, 1), (1, 1)]])\n', (3609, 3829), True, 'import numpy as np\n'), ((6819, 6832), 'pygame.init', 'pygame.init', ([], {}), '()\n', (6830, 6832), False, 'import pygame\n'), ((6842, 6871), 'pygame.display.set_mode', 'pygame.display.set_mode', (['size'], {}), '(size)\n', (6865, 6871), False, 'import pygame\n'), ((6881, 6917), 'pygame.font.SysFont', 'pygame.font.SysFont', (['"""monospace"""', '(75)'], {}), "('monospace', 75)\n", (6900, 6917), False, 'import pygame\n'), ((7001, 7024), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (7022, 7024), False, 'import pygame\n'), ((7025, 7048), 'pygame.time.wait', 'pygame.time.wait', (['(30000)'], {}), '(30000)\n', (7041, 7048), False, 'import pygame\n'), ((2030, 2046), 'numpy.zeros', 'np.zeros', (['(3, 8)'], {}), '((3, 8))\n', (2038, 2046), True, 'import numpy as np\n'), ((3892, 3914), 'numpy.fliplr', 'np.fliplr', (['coordinates'], {}), '(coordinates)\n', (3901, 3914), True, 'import numpy as np\n'), ((5012, 5075), 'pygame.draw.rect', 'pygame.draw.rect', (['screen', 'WHITE', '(0, 0, 14 * scale, 14 * scale)'], {}), '(screen, WHITE, (0, 0, 14 * scale, 14 * scale))\n', (5028, 5075), False, 'import pygame\n'), ((5515, 5538), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (5536, 5538), False, 'import pygame\n'), ((7560, 7578), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (7576, 7578), False, 'import pygame\n'), ((8365, 8388), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (8386, 8388), False, 'import pygame\n'), ((4500, 4535), 'numpy.all', 'np.all', (['(coordinates[i, j] == search)'], {}), '(coordinates[i, j] == search)\n', (4506, 4535), True, 'import numpy as np\n'), ((5262, 5314), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'BLACK', 'start', 'finish', 'line'], {}), '(screen, BLACK, start, finish, line)\n', (5278, 5314), False, 'import pygame\n'), ((5458, 5510), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'BLACK', 'start', 'finish', 'line'], {}), '(screen, BLACK, start, finish, line)\n', (5474, 5510), False, 'import pygame\n'), ((6235, 6258), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (6256, 6258), False, 'import pygame\n'), ((6425, 6448), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (6446, 6448), False, 'import pygame\n'), ((6614, 6637), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (6635, 6637), False, 'import pygame\n')]
#!/usr/bin/env python3 import os as os import sys as sys import logging as log import io as io import traceback as trb import argparse as argp import collections as col import numpy as np def parse_command_line(): """ :return: """ parser = argp.ArgumentParser(prog="np_cov_to_regions.py", description=__doc__) parser.add_argument( "--debug", "-d", action="store_true", default=False, dest="debug", help="Print status and error messages to STDOUT. Otherwise, only" " errors/warnings will be reported to STDERR.", ) parser.add_argument( "--seq-info", "-seq", type=str, required=True, dest="seqinfo", help="Single line from a FASTA index file (fai).", ) parser.add_argument( "--num-regions", "-nr", type=int, required=True, dest="numregions", help="Number of regions to create", ) parser.add_argument( "--output", "-o", type=str, default="stdout", help="Output regions to file (or stdout by default)." ) return parser.parse_args() def read_reference_index(fpath, logger): """ :param fpath: :param logger: :return: """ logger.debug('Reading sequence info from path {}'.format(fpath)) with open(fpath, 'r') as fai: seq_name, seq_length = fai.readline().split('\t')[:2] logger.debug('Read sequence {} (length {}) info file'.format(seq_name, seq_length)) return seq_name, int(seq_length) def prepare_data_structures(seqs, logger): """ DEPRECATED :param seqs: :param logger: :return: """ seqs = sorted(seqs, key=lambda x: x[1], reverse=True) # debug example: seqs = [('s1', 10), ('s2', 8)] total_seq_length = sum([x[1] for x in seqs]) logger.debug('Maximal total sequence length: {} Gbp'.format(round(total_seq_length / 10**9, 2))) pos_depth = np.zeros(total_seq_length, dtype=np.int16) seq_boundaries = col.defaultdict(dict) last_end = 0 for sn, sl in seqs: offset = last_end - 1 seq_boundaries[sn]['offset'] = offset seq_boundaries[sn]['length'] = sl seq_boundaries[sn]['array_start'] = last_end seq_boundaries[sn]['array_end'] = last_end + sl last_end = last_end + sl return seq_boundaries, pos_depth def read_coverage_per_position(seq_name, seq_length, logger): """ :param seq_name: :param seq_length: :param logger: :return: """ logger.debug('Processing coverage data for sequence {}'.format(seq_name)) pos_depth = np.zeros(seq_length, dtype=np.int64) int64 = np.int64 for line in sys.stdin: _, pos, depth = line.split('\t') # -1: bedtools genomecov returns 1-based coords pos_depth[int64(pos) - 1] = int64(depth) logger.debug('Input stream ended...') return pos_depth def dump_unicov_regions(depth_per_region, pos_depth, seq_name, seq_len, output, logger): """ :param depth_per_region: :param pos_depth: :param seq_name: :param seq_len: :param output: :param logger: :return: """ logger.debug('Writing individual regions to file: {}'.format(output)) if 'stdout' not in output: os.makedirs(os.path.dirname(os.path.abspath(output)), exist_ok=True) else: output = '/dev/stdout' pos_depth = pos_depth.cumsum() with open(output, 'w') as dump: start = 1 while 1: pos_depth -= depth_per_region try: current_end = np.nonzero(pos_depth > 0)[0][0] except IndexError: _ = dump.write('{}:{}-{}\n'.format(seq_name, start, seq_len)) break else: _ = dump.write('{}:{}-{}\n'.format(seq_name, start, current_end)) start = current_end logger.debug('Regions with approx. uniform coverage generated') return def main(logger, cargs): """ :param logger: :param cargs: :return: """ logger.debug("Starting computations") seq_name, seq_length = read_reference_index(cargs.seqinfo, logger) pos_depth = read_coverage_per_position(seq_name, seq_length, logger) total_depth = pos_depth.sum() logger.debug('Total cumulative depth: {}'.format(total_depth)) depth_per_region = np.int64(round(total_depth / cargs.numregions, 0)) logger.debug('Approx. depth per region ({}): {}'.format(cargs.numregions, depth_per_region)) dump_unicov_regions(depth_per_region, pos_depth, seq_name, seq_length, cargs.output, logger) return if __name__ == "__main__": logger = None rc = 0 try: log_msg_format = "%(asctime)s | %(levelname)s | %(message)s" cargs = parse_command_line() if cargs.debug: log.basicConfig(stream=sys.stderr, level=log.DEBUG, format=log_msg_format) else: log.basicConfig(stream=sys.stderr, level=log.WARNING, format=log_msg_format) logger = log.getLogger() logger.debug("Logger initiated") main(logger, cargs) logger.debug("Run completed - exit") log.shutdown() except Exception as exc: rc = 1 if logger is not None: logger.error("Unrecoverable error: {}".format(str(exc))) logger.debug("=== TRACEBACK ===\n\n") buf = io.StringIO() trb.print_exc(file=buf) logger.error(buf.getvalue()) logger.debug("Exit\n") log.shutdown() else: trb.print_exc() finally: sys.exit(rc)
[ "os.path.abspath", "io.StringIO", "traceback.print_exc", "argparse.ArgumentParser", "logging.basicConfig", "numpy.zeros", "collections.defaultdict", "numpy.nonzero", "logging.shutdown", "sys.exit", "logging.getLogger" ]
[((260, 329), 'argparse.ArgumentParser', 'argp.ArgumentParser', ([], {'prog': '"""np_cov_to_regions.py"""', 'description': '__doc__'}), "(prog='np_cov_to_regions.py', description=__doc__)\n", (279, 329), True, 'import argparse as argp\n'), ((1982, 2024), 'numpy.zeros', 'np.zeros', (['total_seq_length'], {'dtype': 'np.int16'}), '(total_seq_length, dtype=np.int16)\n', (1990, 2024), True, 'import numpy as np\n'), ((2046, 2067), 'collections.defaultdict', 'col.defaultdict', (['dict'], {}), '(dict)\n', (2061, 2067), True, 'import collections as col\n'), ((2658, 2694), 'numpy.zeros', 'np.zeros', (['seq_length'], {'dtype': 'np.int64'}), '(seq_length, dtype=np.int64)\n', (2666, 2694), True, 'import numpy as np\n'), ((5070, 5085), 'logging.getLogger', 'log.getLogger', ([], {}), '()\n', (5083, 5085), True, 'import logging as log\n'), ((5208, 5222), 'logging.shutdown', 'log.shutdown', ([], {}), '()\n', (5220, 5222), True, 'import logging as log\n'), ((5651, 5663), 'sys.exit', 'sys.exit', (['rc'], {}), '(rc)\n', (5659, 5663), True, 'import sys as sys\n'), ((4875, 4949), 'logging.basicConfig', 'log.basicConfig', ([], {'stream': 'sys.stderr', 'level': 'log.DEBUG', 'format': 'log_msg_format'}), '(stream=sys.stderr, level=log.DEBUG, format=log_msg_format)\n', (4890, 4949), True, 'import logging as log\n'), ((4976, 5052), 'logging.basicConfig', 'log.basicConfig', ([], {'stream': 'sys.stderr', 'level': 'log.WARNING', 'format': 'log_msg_format'}), '(stream=sys.stderr, level=log.WARNING, format=log_msg_format)\n', (4991, 5052), True, 'import logging as log\n'), ((3345, 3368), 'os.path.abspath', 'os.path.abspath', (['output'], {}), '(output)\n', (3360, 3368), True, 'import os as os\n'), ((5435, 5448), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (5446, 5448), True, 'import io as io\n'), ((5461, 5484), 'traceback.print_exc', 'trb.print_exc', ([], {'file': 'buf'}), '(file=buf)\n', (5474, 5484), True, 'import traceback as trb\n'), ((5573, 5587), 'logging.shutdown', 'log.shutdown', ([], {}), '()\n', (5585, 5587), True, 'import logging as log\n'), ((5614, 5629), 'traceback.print_exc', 'trb.print_exc', ([], {}), '()\n', (5627, 5629), True, 'import traceback as trb\n'), ((3624, 3649), 'numpy.nonzero', 'np.nonzero', (['(pos_depth > 0)'], {}), '(pos_depth > 0)\n', (3634, 3649), True, 'import numpy as np\n')]
import numpy as np from multiprocessing import Pool, cpu_count import statsmodels.api as sm from statsmodels.gam.api import GLMGam, BSplines from scipy.stats import norm from tqdm import tqdm from itertools import product import pandas as pd from ananke.graphs import ADMG from ananke.models import LinearGaussianSEM from statsmodels.stats.proportion import proportion_confint import os import sys try: sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) except NameError: print("Cannot load testing module") from wrapper_resampler import ShiftedTester np.random.seed(1) # Help functions def e(n=1): return np.random.normal(size=(n, 1)) # Gaussian noise def u(n=1): return np.random.uniform(size=(n, 1)) # Gaussian noise def cb(*args): return np.concatenate(args, axis=1) # Col bind inv = np.linalg.inv p = norm.pdf # Simulate data from a Gaussian SCM def scm(n, causal_effect=0): H = 1/2*e(n)**2 #2*e(n) X1 = np.random.gamma(2, size=(n,1)) X2 = X1*H + e(n) X3 = X2**2 + 1.5*e(n) X4 = causal_effect*X1 + X3 + H + e(n) return cb(H, X1, X2, X3, X4) def weight(X): num = p(X[:, 3], loc=X[:,3].mean(), scale=1.0) denom = p(X[:, 3], loc=X[:,2]**2, scale=2) return num/denom # Fitted weight def weight_fit(X): num = p(X[:, 3], loc=X[:,3].mean(), scale=1.0) mod1 = GLMGam(X[:,3], smoother=BSplines(X[:,2], df = 10, degree=3)).fit() denom = p(X[:,3], loc=mod1.fittedvalues, scale=np.sqrt(mod1.scale)) return num/denom # Test function: Regress X4 ~ X1 and get p-value def T(X): return (sm.OLS(X[:, 4], sm.tools.add_constant(X[:, 1])).fit().pvalues[1] < 0.05)*1 # Parameters for choice-of-m algorithm tune_m_repeats = 25 cutoff = np.quantile(np.random.uniform(size=(1000, tune_m_repeats)).min(axis=1), 0.05) # Loop parameters causal_effects = [0, 0.3]#np.linspace(0, 5, num=21) n_range = [int(10**(x/2)) for x in range(4, 10)] tests = {"LinReg": T} m_choices = ["heuristic", "sqrt"] methods = ["resampling"] combinations = list(product(n_range, causal_effects, m_choices, methods)) ## Wrap as function to apply multiprocessing def conduct_experiment(i=None): out = [] for n, c_e, m_choice, method in combinations: X = scm(n, causal_effect=c_e) # Do not do anything if m < 5 or (m>n and not replacement) try: psi = ShiftedTester(weight_fit, tests["LinReg"], replacement="NO-REPL-reject", reject_retries=100) m = psi.tune_m(X, j_x = [3], j_y=[2], gaussian=True, cond = [X[:,3].mean()], m_factor=1.3, p_cutoff=cutoff, repeats=tune_m_repeats, replacement=False, m_init=int(np.sqrt(n))) if m_choice == "heuristic" else None out.append(psi.test(X, m=m)) except: # Catch errors from test statistic print(f"Error occurred {c_e}, {n}, {m_choice}, {method}") out.append(np.nan) return(out) ## Conduct multiple experiments with multiprocessing and export to R for plotting: if __name__ == '__main__': repeats = 1000 # Multiprocess pool = Pool(cpu_count()-2) res = np.array( list(tqdm(pool.imap_unordered(conduct_experiment, range(repeats)), total=repeats))) pool.close() # Count non-nas, to be used for binomial confidence intervals counts = (~np.isnan(res)).sum(axis=0) nans = np.isnan(res).sum(axis=0) res = np.nansum(res, axis=0) df = pd.DataFrame( [(x/(repeats-n), *v, *proportion_confint(x, repeats-n, method="binom_test"), n) for x, v, n in zip(res, combinations, nans)], columns=["alpha", "n", "Causal_Effect", "m_choice", "method", "Lower", "Upper", "NoNans"]) # Export to R for ggplotting df['alpha'] = df["alpha"].replace(np.NaN, "NA") df.to_csv("experiment-dormant-nonparametric.csv")
[ "numpy.random.uniform", "numpy.nansum", "os.path.abspath", "numpy.random.seed", "wrapper_resampler.ShiftedTester", "statsmodels.api.tools.add_constant", "numpy.isnan", "statsmodels.stats.proportion.proportion_confint", "numpy.random.gamma", "multiprocessing.cpu_count", "statsmodels.gam.api.BSplines", "numpy.random.normal", "itertools.product", "numpy.concatenate", "numpy.sqrt" ]
[((581, 598), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (595, 598), True, 'import numpy as np\n'), ((636, 665), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(n, 1)'}), '(size=(n, 1))\n', (652, 665), True, 'import numpy as np\n'), ((703, 733), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(n, 1)'}), '(size=(n, 1))\n', (720, 733), True, 'import numpy as np\n'), ((774, 802), 'numpy.concatenate', 'np.concatenate', (['args'], {'axis': '(1)'}), '(args, axis=1)\n', (788, 802), True, 'import numpy as np\n'), ((952, 983), 'numpy.random.gamma', 'np.random.gamma', (['(2)'], {'size': '(n, 1)'}), '(2, size=(n, 1))\n', (967, 983), True, 'import numpy as np\n'), ((2012, 2064), 'itertools.product', 'product', (['n_range', 'causal_effects', 'm_choices', 'methods'], {}), '(n_range, causal_effects, m_choices, methods)\n', (2019, 2064), False, 'from itertools import product\n'), ((3404, 3426), 'numpy.nansum', 'np.nansum', (['res'], {'axis': '(0)'}), '(res, axis=0)\n', (3413, 3426), True, 'import numpy as np\n'), ((1457, 1476), 'numpy.sqrt', 'np.sqrt', (['mod1.scale'], {}), '(mod1.scale)\n', (1464, 1476), True, 'import numpy as np\n'), ((1724, 1770), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(1000, tune_m_repeats)'}), '(size=(1000, tune_m_repeats))\n', (1741, 1770), True, 'import numpy as np\n'), ((2344, 2440), 'wrapper_resampler.ShiftedTester', 'ShiftedTester', (['weight_fit', "tests['LinReg']"], {'replacement': '"""NO-REPL-reject"""', 'reject_retries': '(100)'}), "(weight_fit, tests['LinReg'], replacement='NO-REPL-reject',\n reject_retries=100)\n", (2357, 2440), False, 'from wrapper_resampler import ShiftedTester\n'), ((3104, 3115), 'multiprocessing.cpu_count', 'cpu_count', ([], {}), '()\n', (3113, 3115), False, 'from multiprocessing import Pool, cpu_count\n'), ((3368, 3381), 'numpy.isnan', 'np.isnan', (['res'], {}), '(res)\n', (3376, 3381), True, 'import numpy as np\n'), ((453, 478), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (468, 478), False, 'import os\n'), ((3330, 3343), 'numpy.isnan', 'np.isnan', (['res'], {}), '(res)\n', (3338, 3343), True, 'import numpy as np\n'), ((1363, 1397), 'statsmodels.gam.api.BSplines', 'BSplines', (['X[:, 2]'], {'df': '(10)', 'degree': '(3)'}), '(X[:, 2], df=10, degree=3)\n', (1371, 1397), False, 'from statsmodels.gam.api import GLMGam, BSplines\n'), ((3482, 3537), 'statsmodels.stats.proportion.proportion_confint', 'proportion_confint', (['x', '(repeats - n)'], {'method': '"""binom_test"""'}), "(x, repeats - n, method='binom_test')\n", (3500, 3537), False, 'from statsmodels.stats.proportion import proportion_confint\n'), ((2665, 2675), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (2672, 2675), True, 'import numpy as np\n'), ((1583, 1613), 'statsmodels.api.tools.add_constant', 'sm.tools.add_constant', (['X[:, 1]'], {}), '(X[:, 1])\n', (1604, 1613), True, 'import statsmodels.api as sm\n')]
""" This module contains classes used to define the standard behavior of the agent. It relies on the controllers, the chosen training/test policy and the learning algorithm to specify its behavior in the environment. """ import os import numpy as np import copy import sys import joblib from warnings import warn from .experiment import base_controllers as controllers from .helper import tree from deer.policies import EpsilonGreedyPolicy class NeuralAgent(object): """The NeuralAgent class wraps a learning algorithm (such as a deep Q-network) for training and testing in a given environment. Attach controllers to it in order to conduct an experiment (when to train the agent, when to test,...). Parameters ----------- environment : object from class Environment The environment in which the agent interacts learning_algo : object from class LearningAlgo The learning algorithm associated to the agent replay_memory_size : int Size of the replay memory. Default : 1000000 replay_start_size : int Number of observations (=number of time steps taken) in the replay memory before starting learning. Default: minimum possible according to environment.inputDimensions(). batch_size : int Number of tuples taken into account for each iteration of gradient descent. Default : 32 random_state : numpy random number generator Default : random seed. exp_priority : float The exponent that determines how much prioritization is used, default is 0 (uniform priority). One may check out Schaul et al. (2016) - Prioritized Experience Replay. train_policy : object from class Policy Policy followed when in training mode (mode -1) test_policy : object from class Policy Policy followed when in other modes than training (validation and test modes) only_full_history : boolean Whether we wish to train the neural network only on full histories or we wish to fill with zeroes the observations before the beginning of the episode """ def __init__(self, environment, learning_algo, replay_memory_size=1000000, replay_start_size=None, batch_size=32, random_state=np.random.RandomState(), exp_priority=0, train_policy=None, test_policy=None, only_full_history=True): inputDims = environment.inputDimensions() if replay_start_size == None: replay_start_size = max(inputDims[i][0] for i in range(len(inputDims))) elif replay_start_size < max(inputDims[i][0] for i in range(len(inputDims))) : raise AgentError("Replay_start_size should be greater than the biggest history of a state.") self._controllers = [] self._environment = environment self._learning_algo = learning_algo self._replay_memory_size = replay_memory_size self._replay_start_size = replay_start_size self._batch_size = batch_size self._random_state = random_state self._exp_priority = exp_priority self._only_full_history = only_full_history self._dataset = DataSet(environment, max_size=replay_memory_size, random_state=random_state, use_priority=self._exp_priority, only_full_history=self._only_full_history) self._tmp_dataset = None # Will be created by startTesting() when necessary self._mode = -1 self._totalModeNbrEpisode = 0 self._total_mode_reward = 0 self._training_loss_averages = [] self._Vs_on_last_episode = [] self._in_episode = False self._selected_action = -1 self._state = [] for i in range(len(inputDims)): self._state.append(np.zeros(inputDims[i], dtype=float)) if (train_policy==None): self._train_policy = EpsilonGreedyPolicy(learning_algo, environment.nActions(), random_state, 0.1) else: self._train_policy = train_policy if (test_policy==None): self._test_policy = EpsilonGreedyPolicy(learning_algo, environment.nActions(), random_state, 0.) else: self._test_policy = test_policy self.gathering_data=True # Whether the agent is gathering data or not self.sticky_action=1 # Number of times the agent is forced to take the same action as part of one actual time step def setControllersActive(self, toDisable, active): """ Activate controller """ for i in toDisable: self._controllers[i].setActive(active) def setLearningRate(self, lr): """ Set the learning rate for the gradient descent """ self._learning_algo.setLearningRate(lr) def learningRate(self): """ Get the learning rate """ return self._learning_algo.learningRate() def setDiscountFactor(self, df): """ Set the discount factor """ self._learning_algo.setDiscountFactor(df) def discountFactor(self): """ Get the discount factor """ return self._learning_algo.discountFactor() def overrideNextAction(self, action): """ Possibility to override the chosen action. This possibility should be used on the signal OnActionChosen. """ self._selected_action = action def avgBellmanResidual(self): """ Returns the average training loss on the epoch """ if (len(self._training_loss_averages) == 0): return -1 return np.average(self._training_loss_averages) def avgEpisodeVValue(self): """ Returns the average V value on the episode (on time steps where a non-random action has been taken) """ if (len(self._Vs_on_last_episode) == 0): return -1 if(np.trim_zeros(self._Vs_on_last_episode)!=[]): return np.average(np.trim_zeros(self._Vs_on_last_episode)) else: return 0 def totalRewardOverLastTest(self): """ Returns the average sum of rewards per episode and the number of episode """ return self._total_mode_reward/self._totalModeNbrEpisode, self._totalModeNbrEpisode def attach(self, controller): if (isinstance(controller, controllers.Controller)): self._controllers.append(controller) else: raise TypeError("The object you try to attach is not a Controller.") def detach(self, controllerIdx): return self._controllers.pop(controllerIdx) def mode(self): return self._mode def startMode(self, mode, epochLength): if self._in_episode: raise AgentError("Trying to start mode while current episode is not yet finished. This method can be " "called only *between* episodes for testing and validation.") elif mode == -1: raise AgentError("Mode -1 is reserved and means 'training mode'; use resumeTrainingMode() instead.") else: self._mode = mode self._total_mode_reward = 0. del self._tmp_dataset self._tmp_dataset = DataSet(self._environment, self._random_state, max_size=self._replay_memory_size, only_full_history=self._only_full_history) def resumeTrainingMode(self): self._mode = -1 def summarizeTestPerformance(self): if self._mode == -1: raise AgentError("Cannot summarize test performance outside test environment.") self._environment.summarizePerformance(self._tmp_dataset, self._learning_algo, train_data_set=self._dataset) def train(self): """ This function selects a random batch of data (with self._dataset.randomBatch) and performs a Q-learning iteration (with self._learning_algo.train). """ # We make sure that the number of elements in the replay memory # is strictly superior to self._replay_start_size before taking # a random batch and perform training if self._dataset.n_elems <= self._replay_start_size: return try: if hasattr(self._learning_algo, 'nstep'): observations, actions, rewards, terminals, rndValidIndices = self._dataset.randomBatch_nstep(self._batch_size, self._learning_algo.nstep, self._exp_priority) loss, loss_ind = self._learning_algo.train(observations, actions, rewards, terminals) else: states, actions, rewards, next_states, terminals, rndValidIndices = self._dataset.randomBatch(self._batch_size, self._exp_priority) loss, loss_ind = self._learning_algo.train(states, actions, rewards, next_states, terminals) self._training_loss_averages.append(loss) if (self._exp_priority): self._dataset.updatePriorities(pow(loss_ind,self._exp_priority)+0.0001, rndValidIndices[1]) except SliceError as e: warn("Training not done - " + str(e), AgentWarning) def dumpNetwork(self, fname, nEpoch=-1): """ Dump the network Parameters ----------- fname : string Name of the file where the network will be dumped nEpoch : int Epoch number (Optional) """ try: os.mkdir("nnets") except Exception: pass basename = "nnets/" + fname for f in os.listdir("nnets/"): if fname in f: os.remove("nnets/" + f) all_params = self._learning_algo.getAllParams() if (nEpoch>=0): joblib.dump(all_params, basename + ".epoch={}".format(nEpoch)) else: joblib.dump(all_params, basename, compress=True) def setNetwork(self, fname, nEpoch=-1): """ Set values into the network Parameters ----------- fname : string Name of the file where the values are nEpoch : int Epoch number (Optional) """ basename = "nnets/" + fname if (nEpoch>=0): all_params = joblib.load(basename + ".epoch={}".format(nEpoch)) else: all_params = joblib.load(basename) self._learning_algo.setAllParams(all_params) def run(self, n_epochs, epoch_length): """ This function encapsulates the inference and the learning. If the agent is in train mode (mode = -1): It starts by calling the controllers method "onStart", Then it runs a given number of epochs where an epoch is made up of one or many episodes (called with agent._runEpisode) and where an epoch ends up after the number of steps reaches the argument "epoch_length". It ends up by calling the controllers method "end". If the agent is on non train mode (mode > -1): This function runs a number of epochs in non train mode (mode > -1), thus without controllers. Parameters ----------- n_epochs : int number of epochs epoch_length : int maximum number of steps for a given epoch """ if(self._mode==-1): self._run_train(n_epochs, epoch_length) else: self._run_non_train(n_epochs, epoch_length) def _run_train(self, n_epochs, epoch_length): """ This function encapsulates the whole process of the learning. It starts by calling the controllers method "onStart", Then it runs a given number of epochs where an epoch is made up of one or many episodes (called with agent._runEpisode) and where an epoch ends up after the number of steps reaches the argument "epoch_length". It ends up by calling the controllers method "end". Parameters ----------- n_epochs : int number of epochs epoch_length : int maximum number of steps for a given epoch """ for c in self._controllers: c.onStart(self) i = 0 while i < n_epochs: nbr_steps_left=epoch_length self._training_loss_averages = [] while nbr_steps_left > 0: # run new episodes until the number of steps left for the epoch has reached 0 nbr_steps_left = self._runEpisode(nbr_steps_left) i += 1 for c in self._controllers: c.onEpochEnd(self) self._environment.end() for c in self._controllers: c.onEnd(self) def _run_non_train(self, n_epochs, epoch_length): """ This function runs a number of epochs in non train mode (id > -1). Parameters ----------- n_epochs : int number of epochs epoch_length : int maximum number of steps for a given epoch """ for c in self._controllers: c.onStart(self) i = 0 while i < n_epochs: nbr_steps_left=epoch_length self._totalModeNbrEpisode=0 while nbr_steps_left > 0: self._totalModeNbrEpisode += 1 nbr_steps_left = self._runEpisode(nbr_steps_left) i += 1 for c in self._controllers: c.onEpochEnd(self) self._environment.end() for c in self._controllers: c.onEnd(self) def _runEpisode(self, maxSteps): """ This function runs an episode of learning. An episode ends up when the environment method "inTerminalState" returns True (or when the number of steps reaches the argument "maxSteps") Parameters ----------- maxSteps : int maximum number of steps before automatically ending the episode """ self._in_episode = True initState = self._environment.reset(self._mode) inputDims = self._environment.inputDimensions() for i in range(len(inputDims)): if inputDims[i][0] > 1: self._state[i][1:] = initState[i][1:] self._Vs_on_last_episode = [] is_terminal=False reward=0 while maxSteps > 0: maxSteps -= 1 if(self.gathering_data==True or self._mode!=-1): obs = self._environment.observe() for i in range(len(obs)): self._state[i][0:-1] = self._state[i][1:] self._state[i][-1] = obs[i] V, action, reward = self._step() self._Vs_on_last_episode.append(V) if self._mode != -1: self._total_mode_reward += reward is_terminal = self._environment.inTerminalState() # If the transition ends up in a terminal state, mark transition as terminal # Note that the new obs will not be stored, as it is unnecessary. if(maxSteps>0): self._addSample(obs, action, reward, is_terminal) else: self._addSample(obs, action, reward, True) # If the episode ends because max number of steps is reached, mark the transition as terminal for c in self._controllers: c.onActionTaken(self) if is_terminal: break self._in_episode = False for c in self._controllers: c.onEpisodeEnd(self, is_terminal, reward) return maxSteps def _step(self): """ This method is called at each time step and performs one action in the environment. Returns ------- V : float Estimated value function of current state. action : int The id of the action selected by the agent. reward : float Reward obtained for the transition """ action, V = self._chooseAction() reward=0 for i in range(self.sticky_action): reward += self._environment.act(action) return V, action, reward def _addSample(self, ponctualObs, action, reward, is_terminal): if self._mode != -1: self._tmp_dataset.addSample(ponctualObs, action, reward, is_terminal, priority=1) else: self._dataset.addSample(ponctualObs, action, reward, is_terminal, priority=1) def _chooseAction(self): if self._mode != -1: # Act according to the test policy if not in training mode action, V = self._test_policy.action(self._state, mode=self._mode, dataset=self._dataset) else: if self._dataset.n_elems > self._replay_start_size: # follow the train policy action, V = self._train_policy.action(self._state, mode=None, dataset=self._dataset) #is self._state the only way to store/pass the state? else: # Still gathering initial data: choose dummy action action, V = self._train_policy.randomAction() for c in self._controllers: c.onActionChosen(self, action) return action, V class AgentError(RuntimeError): """Exception raised for errors when calling the various Agent methods at wrong times. Attributes: expr -- input expression in which the error occurred msg -- explanation of the error """ def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class AgentWarning(RuntimeWarning): """Warning issued of the various Agent methods. Attributes: expr -- input expression in which the error occurred msg -- explanation of the error """ class DataSet(object): """A replay memory consisting of circular buffers for observations, actions, rewards and terminals.""" def __init__(self, env, random_state=None, max_size=1000000, use_priority=False, only_full_history=True): """Initializer. Parameters ----------- inputDims : list of tuples Each tuple relates to one of the observations where the first value is the history size considered for this observation and the rest describes the shape of each punctual observation (e.g., scalar, vector or matrix). See base_classes.Environment.inputDimensions() documentation for more info. random_state : Numpy random number generator If None, a new one is created with default numpy seed. max_size : float The replay memory maximum size. Default : 1000000 """ self._batch_dimensions = env.inputDimensions() self._max_history_size = np.max([self._batch_dimensions[i][0] for i in range (len(self._batch_dimensions))]) self._size = max_size self._use_priority = use_priority self._only_full_history = only_full_history if ( isinstance(env.nActions(),int) ): self._actions = CircularBuffer(max_size, dtype="int8") else: self._actions = CircularBuffer(max_size, dtype='object') self._rewards = CircularBuffer(max_size) self._terminals = CircularBuffer(max_size, dtype="bool") if (self._use_priority): self._prioritiy_tree = tree.SumTree(max_size) self._translation_array = np.zeros(max_size) self._observations = np.zeros(len(self._batch_dimensions), dtype='object') # Initialize the observations container if necessary for i in range(len(self._batch_dimensions)): self._observations[i] = CircularBuffer(max_size, elemShape=self._batch_dimensions[i][1:], dtype=env.observationType(i)) if (random_state == None): self._random_state = np.random.RandomState() else: self._random_state = random_state self.n_elems = 0 self.sticky_action=1 # Number of times the agent is forced to take the same action as part of one actual time step def actions(self): """Get all actions currently in the replay memory, ordered by time where they were taken.""" return self._actions.getSlice(0) def rewards(self): """Get all rewards currently in the replay memory, ordered by time where they were received.""" return self._rewards.getSlice(0) def terminals(self): """Get all terminals currently in the replay memory, ordered by time where they were observed. terminals[i] is True if actions()[i] lead to a terminal state (i.e. corresponded to a terminal transition), and False otherwise. """ return self._terminals.getSlice(0) def observations(self): """Get all observations currently in the replay memory, ordered by time where they were observed. """ ret = np.zeros_like(self._observations) for input in range(len(self._observations)): ret[input] = self._observations[input].getSlice(0) return ret def updatePriorities(self, priorities, rndValidIndices): """ """ for i in range( len(rndValidIndices) ): self._prioritiy_tree.update(rndValidIndices[i], priorities[i]) def randomBatch(self, batch_size, use_priority): """Returns a batch of states, actions, rewards, terminal status, and next_states for a number batch_size of randomly chosen transitions. Note that if terminal[i] == True, then next_states[s][i] == np.zeros_like(states[s][i]) for each s. Parameters ----------- batch_size : int Number of transitions to return. use_priority : Boolean Whether to use prioritized replay or not Returns ------- states : numpy array of objects Each object is a numpy array that relates to one of the observations with size [batch_size * history size * size of punctual observation (which is 2D,1D or scalar)]). States are taken randomly in the data with the only constraint that they are complete regarding the history size for each observation. actions : numpy array of integers [batch_size] actions[i] is the action taken after having observed states[:][i]. rewards : numpy array of floats [batch_size] rewards[i] is the reward obtained for taking actions[i-1]. next_states : numpy array of objects Each object is a numpy array that relates to one of the observations with size [batch_size * history size * size of punctual observation (which is 2D,1D or scalar)]). terminals : numpy array of booleans [batch_size] terminals[i] is True if the transition leads to a terminal state and False otherwise Throws ------- SliceError If a batch of this batch_size could not be built based on current data set (not enough data or all trajectories are too short). """ if (self._max_history_size + self.sticky_action - 1 >= self.n_elems): raise SliceError( "Not enough elements in the dataset to create a " "complete state. {} elements in dataset; requires {}" .format(self.n_elems, self._max_history_size)) if (self._use_priority): #FIXME : take into account the case where self._only_full_history is false rndValidIndices, rndValidIndices_tree = self._randomPrioritizedBatch(batch_size) if (rndValidIndices.size == 0): raise SliceError("Could not find a state with full histories") else: rndValidIndices = np.zeros(batch_size, dtype='int32') if (self._only_full_history): for i in range(batch_size): # TODO: multithread this loop? rndValidIndices[i] = self._randomValidStateIndex(self._max_history_size+self.sticky_action-1) else: for i in range(batch_size): # TODO: multithread this loop? rndValidIndices[i] = self._randomValidStateIndex(minimum_without_terminal=self.sticky_action) actions = self._actions.getSliceBySeq(rndValidIndices) rewards = self._rewards.getSliceBySeq(rndValidIndices) terminals = self._terminals.getSliceBySeq(rndValidIndices) states = np.zeros(len(self._batch_dimensions), dtype='object') next_states = np.zeros_like(states) # We calculate the first terminal index backward in time and set it # at maximum to the value self._max_history_size+self.sticky_action-1 first_terminals=[] for rndValidIndex in rndValidIndices: first_terminal=1 while first_terminal<self._max_history_size+self.sticky_action-1: if (self._terminals[rndValidIndex-first_terminal]==True or first_terminal>rndValidIndex): break first_terminal+=1 first_terminals.append(first_terminal) for input in range(len(self._batch_dimensions)): states[input] = np.zeros((batch_size,) + self._batch_dimensions[input], dtype=self._observations[input].dtype) next_states[input] = np.zeros_like(states[input]) for i in range(batch_size): slice=self._observations[input].getSlice(rndValidIndices[i]-self.sticky_action+2-min(self._batch_dimensions[input][0],first_terminals[i]+self.sticky_action-1), rndValidIndices[i]+1) if (len(slice)==len(states[input][i])): states[input][i] = slice else: for j in range(len(slice)): states[input][i][-j-1]=slice[-j-1] # If transition leads to terminal, we don't care about next state if rndValidIndices[i] >= self.n_elems - 1 or terminals[i]: next_states[input][i] = np.zeros_like(states[input][i]) else: slice=self._observations[input].getSlice(rndValidIndices[i]+2-min(self._batch_dimensions[input][0],first_terminals[i]+1), rndValidIndices[i]+2) if (len(slice)==len(states[input][i])): next_states[input][i] = slice else: for j in range(len(slice)): next_states[input][i][-j-1]=slice[-j-1] #next_states[input][i] = self._observations[input].getSlice(rndValidIndices[i]+2-min(self._batch_dimensions[input][0],first_terminal), rndValidIndices[i]+2) if (self._use_priority): return states, actions, rewards, next_states, terminals, [rndValidIndices, rndValidIndices_tree] else: return states, actions, rewards, next_states, terminals, rndValidIndices def randomBatch_nstep(self, batch_size, nstep, use_priority): """Return corresponding states, actions, rewards, terminal status, and next_states for a number batch_size of randomly chosen transitions. Note that if terminal[i] == True, then next_states[s][i] == np.zeros_like(states[s][i]) for each s. Parameters ----------- batch_size : int Number of transitions to return. nstep : int Number of transitions to be considered for each element use_priority : Boolean Whether to use prioritized replay or not Returns ------- states : numpy array of objects Each object is a numpy array that relates to one of the observations with size [batch_size * (history size+nstep-1) * size of punctual observation (which is 2D,1D or scalar)]). States are taken randomly in the data with the only constraint that they are complete regarding the history size for each observation. actions : numpy array of integers [batch_size, nstep] actions[i] is the action taken after having observed states[:][i]. rewards : numpy array of floats [batch_size, nstep] rewards[i] is the reward obtained for taking actions[i-1]. next_states : numpy array of objects Each object is a numpy array that relates to one of the observations with size [batch_size * (history size+nstep-1) * size of punctual observation (which is 2D,1D or scalar)]). terminals : numpy array of booleans [batch_size, nstep] terminals[i] is True if the transition leads to a terminal state and False otherwise Throws ------- SliceError If a batch of this size could not be built based on current data set (not enough data or all trajectories are too short). """ if (self._max_history_size + self.sticky_action - 1 >= self.n_elems): raise SliceError( "Not enough elements in the dataset to create a " "complete state. {} elements in dataset; requires {}" .format(self.n_elems, self._max_history_size)) if (self._use_priority): #FIXME : take into account the case where self._only_full_history is false rndValidIndices, rndValidIndices_tree = self._randomPrioritizedBatch(batch_size) if (rndValidIndices.size == 0): raise SliceError("Could not find a state with full histories") else: rndValidIndices = np.zeros(batch_size, dtype='int32') if (self._only_full_history): for i in range(batch_size): # TODO: multithread this loop? rndValidIndices[i] = self._randomValidStateIndex(self._max_history_size+self.sticky_action*nstep-1) else: for i in range(batch_size): # TODO: multithread this loop? rndValidIndices[i] = self._randomValidStateIndex(minimum_without_terminal=self.sticky_action*nstep) actions=np.zeros((batch_size,(nstep)*self.sticky_action), dtype=int) rewards=np.zeros((batch_size,(nstep)*self.sticky_action)) terminals=np.zeros((batch_size,(nstep)*self.sticky_action)) for i in range(batch_size): actions[i] = self._actions.getSlice(rndValidIndices[i]-self.sticky_action*nstep+1,rndValidIndices[i]+self.sticky_action) rewards[i] = self._rewards.getSlice(rndValidIndices[i]-self.sticky_action*nstep+1,rndValidIndices[i]+self.sticky_action) terminals[i] = self._terminals.getSlice(rndValidIndices[i]-self.sticky_action*nstep+1,rndValidIndices[i]+self.sticky_action) observations = np.zeros(len(self._batch_dimensions), dtype='object') # We calculate the first terminal index backward in time and set it # at maximum to the value self._max_history_size+self.sticky_action-1 first_terminals=[] for rndValidIndex in rndValidIndices: first_terminal=1 while first_terminal<self._max_history_size+self.sticky_action*nstep-1: if (self._terminals[rndValidIndex-first_terminal]==True or first_terminal>rndValidIndex): break first_terminal+=1 first_terminals.append(first_terminal) batch_dimensions=copy.deepcopy(self._batch_dimensions) for input in range(len(self._batch_dimensions)): batch_dimensions[input]=tuple( x + y for x, y in zip(self._batch_dimensions[input],(self.sticky_action*(nstep+1)-1,0,0)) ) observations[input] = np.zeros((batch_size,) + batch_dimensions[input], dtype=self._observations[input].dtype) for i in range(batch_size): slice=self._observations[input].getSlice(rndValidIndices[i]-self.sticky_action*nstep+2-min(self._batch_dimensions[input][0],first_terminals[i]-self.sticky_action*nstep+1), rndValidIndices[i]+self.sticky_action+1) if (len(slice)==len(observations[input][i])): observations[input][i] = slice else: for j in range(len(slice)): observations[input][i][-j-1]=slice[-j-1] # If transition leads to terminal, we don't care about next state if terminals[i][-1]:#rndValidIndices[i] >= self.n_elems - 1 or terminals[i]: observations[input][rndValidIndices[i]:rndValidIndices[i]+self.sticky_action+1] = 0 if (self._use_priority): return observations, actions, rewards, terminals, [rndValidIndices, rndValidIndices_tree] else: return observations, actions, rewards, terminals, rndValidIndices def _randomValidStateIndex(self, minimum_without_terminal): """ Returns the index corresponding to a timestep that is valid """ index_lowerBound = minimum_without_terminal - 1 # We try out an index in the acceptable range of the replay memory index = self._random_state.randint(index_lowerBound, self.n_elems-1) # Check if slice is valid wrt terminals # The selected index may correspond to a terminal transition but not # the previous minimum_without_terminal-1 transition firstTry = index startWrapped = False while True: i = index-1 processed = 0 for _ in range(minimum_without_terminal-1): if (i < 0 or self._terminals[i]): break; i -= 1 processed += 1 if (processed < minimum_without_terminal - 1): # if we stopped prematurely, shift slice to the left and try again index = i if (index < index_lowerBound): startWrapped = True index = self.n_elems - 1 if (startWrapped and index <= firstTry): raise SliceError("Could not find a state with full histories") else: # else index was ok according to terminals return index def _randomPrioritizedBatch(self, batch_size): indices_tree = self._prioritiy_tree.getBatch(batch_size, self._random_state, self) indices_replay_mem=np.zeros(indices_tree.size,dtype='int32') for i in range(len(indices_tree)): indices_replay_mem[i]= int(self._translation_array[indices_tree[i]] \ - self._actions.getLowerBound()) return indices_replay_mem, indices_tree def addSample(self, obs, action, reward, is_terminal, priority): """Store the punctual observations, action, reward, is_terminal and priority in the dataset. Parameters ----------- obs : ndarray An ndarray(dtype='object') where obs[s] corresponds to the punctual observation s before the agent took action [action]. action : int The action taken after having observed [obs]. reward : float The reward associated to taking this [action]. is_terminal : bool Tells whether [action] lead to a terminal state (i.e. corresponded to a terminal transition). priority : float The priority to be associated with the sample """ # Store observations for i in range(len(self._batch_dimensions)): self._observations[i].append(obs[i]) # Update tree and translation table if (self._use_priority): index = self._actions.getIndex() if (index >= self._size): ub = self._actions.getUpperBound() true_size = self._actions.getTrueSize() tree_ind = index%self._size if (ub == true_size): size_extension = true_size - self._size # New index index = self._size - 1 tree_ind = -1 # Shift translation array self._translation_array -= size_extension + 1 tree_ind = np.where(self._translation_array==tree_ind)[0][0] else: tree_ind = index self._prioritiy_tree.update(tree_ind) self._translation_array[tree_ind] = index # Store rest of sample self._actions.append(action) self._rewards.append(reward) self._terminals.append(is_terminal) if (self.n_elems < self._size): self.n_elems += 1 class CircularBuffer(object): def __init__(self, size, elemShape=(), extension=0.1, dtype="float32"): self._size = size self._data = np.zeros((int(size+extension*size),) + elemShape, dtype=dtype) self._trueSize = self._data.shape[0] self._lb = 0 self._ub = size self._cur = 0 self.dtype = dtype def append(self, obj): if self._cur > self._size: #> instead of >= self._lb += 1 self._ub += 1 if self._ub >= self._trueSize: # Rolling array without copying whole array (for memory constraints) # basic command: self._data[0:self._size-1] = self._data[self._lb:] OR NEW self._data[0:self._size] = self._data[self._lb-1:] n_splits=10 for i in range(n_splits): self._data[i*(self._size)//n_splits:(i+1)*(self._size)//n_splits] = self._data[(self._lb-1)+i*(self._size)//n_splits:(self._lb-1)+(i+1)*(self._size)//n_splits] self._lb = 0 self._ub = self._size self._cur = self._size #OLD self._size - 1 self._data[self._cur] = obj self._cur += 1 def __getitem__(self, i): return self._data[self._lb + i] def getSliceBySeq(self, seq): return self._data[seq + self._lb] def getSlice(self, start, end=sys.maxsize): if end == sys.maxsize: return self._data[self._lb+start:self._cur] else: return self._data[self._lb+start:self._lb+end] def getLowerBound(self): return self._lb def getUpperBound(self): return self._ub def getIndex(self): return self._cur def getTrueSize(self): return self._trueSize class SliceError(LookupError): """Exception raised for errors when getting slices from CircularBuffers. Attributes: expr -- input expression in which the error occurred msg -- explanation of the error """ def __init__(self, value): self.value = value def __str__(self): return repr(self.value) if __name__ == "__main__": pass
[ "os.mkdir", "copy.deepcopy", "numpy.zeros_like", "numpy.average", "os.remove", "numpy.trim_zeros", "numpy.zeros", "joblib.dump", "numpy.random.RandomState", "numpy.where", "joblib.load", "os.listdir" ]
[((2233, 2256), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (2254, 2256), True, 'import numpy as np\n'), ((5500, 5540), 'numpy.average', 'np.average', (['self._training_loss_averages'], {}), '(self._training_loss_averages)\n', (5510, 5540), True, 'import numpy as np\n'), ((9394, 9414), 'os.listdir', 'os.listdir', (['"""nnets/"""'], {}), "('nnets/')\n", (9404, 9414), False, 'import os\n'), ((20931, 20964), 'numpy.zeros_like', 'np.zeros_like', (['self._observations'], {}), '(self._observations)\n', (20944, 20964), True, 'import numpy as np\n'), ((24603, 24624), 'numpy.zeros_like', 'np.zeros_like', (['states'], {}), '(states)\n', (24616, 24624), True, 'import numpy as np\n'), ((30172, 30233), 'numpy.zeros', 'np.zeros', (['(batch_size, nstep * self.sticky_action)'], {'dtype': 'int'}), '((batch_size, nstep * self.sticky_action), dtype=int)\n', (30180, 30233), True, 'import numpy as np\n'), ((30249, 30299), 'numpy.zeros', 'np.zeros', (['(batch_size, nstep * self.sticky_action)'], {}), '((batch_size, nstep * self.sticky_action))\n', (30257, 30299), True, 'import numpy as np\n'), ((30317, 30367), 'numpy.zeros', 'np.zeros', (['(batch_size, nstep * self.sticky_action)'], {}), '((batch_size, nstep * self.sticky_action))\n', (30325, 30367), True, 'import numpy as np\n'), ((31489, 31526), 'copy.deepcopy', 'copy.deepcopy', (['self._batch_dimensions'], {}), '(self._batch_dimensions)\n', (31502, 31526), False, 'import copy\n'), ((34454, 34496), 'numpy.zeros', 'np.zeros', (['indices_tree.size'], {'dtype': '"""int32"""'}), "(indices_tree.size, dtype='int32')\n", (34462, 34496), True, 'import numpy as np\n'), ((5780, 5819), 'numpy.trim_zeros', 'np.trim_zeros', (['self._Vs_on_last_episode'], {}), '(self._Vs_on_last_episode)\n', (5793, 5819), True, 'import numpy as np\n'), ((9279, 9296), 'os.mkdir', 'os.mkdir', (['"""nnets"""'], {}), "('nnets')\n", (9287, 9296), False, 'import os\n'), ((9666, 9714), 'joblib.dump', 'joblib.dump', (['all_params', 'basename'], {'compress': '(True)'}), '(all_params, basename, compress=True)\n', (9677, 9714), False, 'import joblib\n'), ((10167, 10188), 'joblib.load', 'joblib.load', (['basename'], {}), '(basename)\n', (10178, 10188), False, 'import joblib\n'), ((19433, 19451), 'numpy.zeros', 'np.zeros', (['max_size'], {}), '(max_size)\n', (19441, 19451), True, 'import numpy as np\n'), ((19851, 19874), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (19872, 19874), True, 'import numpy as np\n'), ((23816, 23851), 'numpy.zeros', 'np.zeros', (['batch_size'], {'dtype': '"""int32"""'}), "(batch_size, dtype='int32')\n", (23824, 23851), True, 'import numpy as np\n'), ((25276, 25375), 'numpy.zeros', 'np.zeros', (['((batch_size,) + self._batch_dimensions[input])'], {'dtype': 'self._observations[input].dtype'}), '((batch_size,) + self._batch_dimensions[input], dtype=self.\n _observations[input].dtype)\n', (25284, 25375), True, 'import numpy as np\n'), ((25404, 25432), 'numpy.zeros_like', 'np.zeros_like', (['states[input]'], {}), '(states[input])\n', (25417, 25432), True, 'import numpy as np\n'), ((29652, 29687), 'numpy.zeros', 'np.zeros', (['batch_size'], {'dtype': '"""int32"""'}), "(batch_size, dtype='int32')\n", (29660, 29687), True, 'import numpy as np\n'), ((31753, 31846), 'numpy.zeros', 'np.zeros', (['((batch_size,) + batch_dimensions[input])'], {'dtype': 'self._observations[input].dtype'}), '((batch_size,) + batch_dimensions[input], dtype=self._observations[\n input].dtype)\n', (31761, 31846), True, 'import numpy as np\n'), ((3716, 3751), 'numpy.zeros', 'np.zeros', (['inputDims[i]'], {'dtype': 'float'}), '(inputDims[i], dtype=float)\n', (3724, 3751), True, 'import numpy as np\n'), ((5856, 5895), 'numpy.trim_zeros', 'np.trim_zeros', (['self._Vs_on_last_episode'], {}), '(self._Vs_on_last_episode)\n', (5869, 5895), True, 'import numpy as np\n'), ((9459, 9482), 'os.remove', 'os.remove', (["('nnets/' + f)"], {}), "('nnets/' + f)\n", (9468, 9482), False, 'import os\n'), ((26103, 26134), 'numpy.zeros_like', 'np.zeros_like', (['states[input][i]'], {}), '(states[input][i])\n', (26116, 26134), True, 'import numpy as np\n'), ((36301, 36346), 'numpy.where', 'np.where', (['(self._translation_array == tree_ind)'], {}), '(self._translation_array == tree_ind)\n', (36309, 36346), True, 'import numpy as np\n')]
import numpy as np import pandas from pandas import Series, DataFrame import matplotlib.pyplot as plt from pylab import rcParams def sendfunc(rows1): import seaborn as sb sb.set_style('dark') l = list(rows1) data = [] for i in l: data.append(list(i)) length=len(data[0]) columnNames=[] for i in range(0,length): columnNames.append(data[0][i]) df = pandas.DataFrame(dict(graph=columnNames)) #for i in range(0,len(data)): #print(df.iloc[i]['graph']) for i in range(1,len(data)): column = [float(c) for c in data[i]] if(i==1): df['d']=column elif i==2: df['e']=column elif(i==3): df['f']=column elif(i==4): df['g']=column ind = np.arange(len(df)) width = 0.2 sb.set_style('dark') fig, sb = plt.subplots() sb.text(df.d, 0, " " + str('CPU (Avg)'), color='black', fontsize=15) sb.text(df.e, width, " " + str('Connection (Max)'), color='black', fontsize=15) sb.text(df.f, width + width, " " + str('Tables'), color='black', fontsize=15) sb.text(df.g, width + width + width, " " + str('Storage Capacity'), color='black', fontsize=15) sb.barh(ind, df.d, width, color='#C7F0A0', label='CPU (Avg)') sb.barh(ind + width, df.e, width, color='#FFF4B2', label='Connection (Max)') sb.barh(ind + width + width, df.f, width, color='#FFACBC', label='Tables') sb.barh(ind + width + width + width, df.g, width, color='#B1C1D8', label='Storage Capacity') sb.set(yticks=ind, yticklabels=df.graph, ylim=[2*width - 1, len(df)]) plt.xticks(np.arange(0,110,10)) plt.grid(axis='x') plt.xlabel('Total Capacity %', fontsize=15) sb.tick_params(axis= 'x', which='major', labelsize=15) plt.rcParams['ytick.labelsize']=12 #plt.rcParams['axes.labelcolor']='cyan' plt.gca().axes.get_yaxis().set_visible(False) plt.gcf().set_size_inches(20, 10) fig.savefig('graph_images/clusterstats.png',transparent=False, bbox_inches='tight', pad_inches=0)
[ "seaborn.set_style", "seaborn.barh", "seaborn.tick_params", "numpy.arange", "matplotlib.pyplot.gca", "matplotlib.pyplot.gcf", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.subplots", "matplotlib.pyplot.grid" ]
[((190, 210), 'seaborn.set_style', 'sb.set_style', (['"""dark"""'], {}), "('dark')\n", (202, 210), True, 'import seaborn as sb\n'), ((877, 897), 'seaborn.set_style', 'sb.set_style', (['"""dark"""'], {}), "('dark')\n", (889, 897), True, 'import seaborn as sb\n'), ((913, 927), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (925, 927), True, 'import matplotlib.pyplot as plt\n'), ((1276, 1337), 'seaborn.barh', 'sb.barh', (['ind', 'df.d', 'width'], {'color': '"""#C7F0A0"""', 'label': '"""CPU (Avg)"""'}), "(ind, df.d, width, color='#C7F0A0', label='CPU (Avg)')\n", (1283, 1337), True, 'import seaborn as sb\n'), ((1343, 1419), 'seaborn.barh', 'sb.barh', (['(ind + width)', 'df.e', 'width'], {'color': '"""#FFF4B2"""', 'label': '"""Connection (Max)"""'}), "(ind + width, df.e, width, color='#FFF4B2', label='Connection (Max)')\n", (1350, 1419), True, 'import seaborn as sb\n'), ((1425, 1499), 'seaborn.barh', 'sb.barh', (['(ind + width + width)', 'df.f', 'width'], {'color': '"""#FFACBC"""', 'label': '"""Tables"""'}), "(ind + width + width, df.f, width, color='#FFACBC', label='Tables')\n", (1432, 1499), True, 'import seaborn as sb\n'), ((1505, 1602), 'seaborn.barh', 'sb.barh', (['(ind + width + width + width)', 'df.g', 'width'], {'color': '"""#B1C1D8"""', 'label': '"""Storage Capacity"""'}), "(ind + width + width + width, df.g, width, color='#B1C1D8', label=\n 'Storage Capacity')\n", (1512, 1602), True, 'import seaborn as sb\n'), ((1719, 1737), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'axis': '"""x"""'}), "(axis='x')\n", (1727, 1737), True, 'import matplotlib.pyplot as plt\n'), ((1743, 1786), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Total Capacity %"""'], {'fontsize': '(15)'}), "('Total Capacity %', fontsize=15)\n", (1753, 1786), True, 'import matplotlib.pyplot as plt\n'), ((1792, 1845), 'seaborn.tick_params', 'sb.tick_params', ([], {'axis': '"""x"""', 'which': '"""major"""', 'labelsize': '(15)'}), "(axis='x', which='major', labelsize=15)\n", (1806, 1845), True, 'import seaborn as sb\n'), ((1693, 1714), 'numpy.arange', 'np.arange', (['(0)', '(110)', '(10)'], {}), '(0, 110, 10)\n', (1702, 1714), True, 'import numpy as np\n'), ((1990, 1999), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (1997, 1999), True, 'import matplotlib.pyplot as plt\n'), ((1937, 1946), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1944, 1946), True, 'import matplotlib.pyplot as plt\n')]
# -*- coding: utf-8 -*- """ Created on Thu Jun 6 21:38:42 2019 """ import numpy as np from scipy import linalg # try to keep it in block ##################### basic functions ################################################ def mass_action_law (ln_X, ln_K, A): ''' all inputs are numpy arrays!!! NO_activity!!!! ln [C_i] = log_K_i + Sum(aij*ln_Xj) ln_C = A*ln_X+ln_K parameters: - ln_X --> vector of primary variables - A --> stoichiometrix matrix [columns=X, rows = C_i] - ln_K --> vector of equilibrium constant ''' ln_C = ln_K+np.matmul(A,ln_X) return ln_C def u_componentvector(A,C): ''' - A --> stoichiometrix matrix [columns=X, rows = C_i] - C --> vector of concentrations ''' u = np.matmul(A.transpose(),C) return u def surface_charge_edgelayer_flm(C,psi_L0,psi_L1): ''' A generic way to calculate the surface charge for layers on the edges in the flm i.e. the O layer and the d layer. Using the flm theory. - C --> the capacitance (i.e. C1 or C3 in the flm) - psi_L0 --> the electrostatic potential in the reference layer (i.e. psi_O or psi_d in the flm model) - psi_L1 --> the electrostatic potential away from the reference layer (i.e. the psi_C or psi_A in the flm model) Note: The user must be sure of the units, in general electrostatic potential is in volts and the capacitance is in farrads. ''' sigma = C*(psi_L0-psi_L1) return sigma def surface_charge_between_layer_flm(C_left, C_right, psi_mid, psi_left, psi_right): ''' A generic way to calculate the surface charge for the inbetween layers in the flm i.e. the C layer and the A layer. Using the flm theory. - C_left --> The capacitance between the psi_mid and the psi_left (i.e. C1,C2 or C3) - C_right --> The capacitance between the psi_mid and the psi_right - psi_mid --> the electrostatic potential of the middle (i.e. the layer reference electrostatic potential. So, psi_C or psi_A in the flm model) - psi_left --> the electrostatic potential on the left (i.e. psi_0 or psi_C in the flm model) - psi_right --> the electrostatic potential on the right (i.e. psi_A or psi_d in the flm model) Note: The user must be sure of the units, in general electrostatic potential is in volts and the capacitance is in farrads. ''' sigma = C_left*(psi_mid-psi_left) + C_right*(psi_mid-psi_right) return sigma def surface_charge_diffusive_monovalentelectrolyte (R, T, epsilon, epsilon_0, ionic_strength, F, psi_d): ''' If previously the units were important, here the coherence between units is even more important sigma_d =〖-(8*1000*RTε_o εI)〗^(1/2) sinh((Fψ_d)/2RT) ''' partA = np.sqrt(8*1000*R*T*epsilon*epsilon_0*ionic_strength) inner_B = (F*psi_d)/(2*R*T) partB = np.sinh(inner_B) sigma_d = partA*partB return sigma_d def charge_2_mol (charge, s, a, F): ''' The surface charge is multiplyed by specific surface area (or area), solid concentration (or grams) depending what is desired the units should be coherent and agree with the whole problem. - s is the solid concentration (or grams) - a is the specific surface area (or area) - F is the Faraday constant ''' Tmol = (charge*s*a)/F return Tmol def boltzman_2_psi(X, R, T, F): ''' - X is the boltzman factor - R is the universal gas constant - T is the temperature - F is the Faraday constant As usual every constant should be coherent ''' partA = (-R*T)/F partB = np.log(X) psi= partA*partB return psi def calculate_ionicstrength(Z,C): ''' It is supossed to be numpy format vector Z is the vector of charge ''' # Multiplication must be pointwise for the vector # multiply function of numpy. Multiplies pointwise according to the documentation and own experience. I = np.matmul(np.multiply(Z,Z),C) I = I/2 return I ####################### functions of basic functions ############################### 'relative to residual function' def calculate_T (X, C, idx_Aq,pos_eb_0, pos_eb_c, pos_eb_a, pos_eb_d, temp, s, a, epsilon, epsilon_0, C_vector, R, T, F,Z): X_0 = X[pos_eb_0] X_C = X[pos_eb_c] X_A = X[pos_eb_a] X_D = X[pos_eb_d] 'Now the psi' psi_0 = boltzman_2_psi(X_0, R, temp, F) psi_C = boltzman_2_psi(X_C, R, temp, F) psi_A = boltzman_2_psi(X_A, R, temp, F) psi_D = boltzman_2_psi(X_D, R, temp, F) 'Now the charge' #previous to charge Caq = C[idx_Aq] ionic_strength = calculate_ionicstrength(Z, Caq) # charge sigma_0 = surface_charge_edgelayer_flm(C_vector[0],psi_0,psi_C) sigma_C = surface_charge_between_layer_flm(C_vector[0], C_vector[1], psi_C, psi_0, psi_A) sigma_A = surface_charge_between_layer_flm(C_vector[1], C_vector[2], psi_A, psi_C, psi_D) sigma_d_flm = surface_charge_edgelayer_flm(C_vector[2],psi_D,psi_A) sigma_d_pb = surface_charge_diffusive_monovalentelectrolyte (R, temp, epsilon, epsilon_0, ionic_strength, F, psi_D) 'Change value in the electrostatic positions' T[pos_eb_0] = charge_2_mol(sigma_0, s, a, F) T[pos_eb_c] = charge_2_mol(sigma_C, s, a, F) T[pos_eb_a] = charge_2_mol(sigma_A, s, a, F) T[pos_eb_d] = charge_2_mol(sigma_d_pb, s, a, F) + charge_2_mol(sigma_d_flm, s, a, F) return T def calculate_residual_function(T,ln_X, ln_K, A, idx_Aq, pos_eb_0, pos_eb_c, pos_eb_a, pos_eb_d, temp, s, a, epsilon, epsilon_0, C_vector, R, F,Z, idx_fix_species = None): ln_C = mass_action_law (ln_X, ln_K, A) C = np.exp(ln_C) u = u_componentvector(A,C) X = np.exp(ln_X) T = calculate_T (X, C, idx_Aq,pos_eb_0, pos_eb_c, pos_eb_a, pos_eb_d, temp, s, a, epsilon, epsilon_0, C_vector, R, T, F, Z) Y = u-T if idx_fix_species != None: Y[idx_fix_species]=0 return Y,T 'relative to Jacobian' def calculate_J_classicalPart(ln_X, ln_K, A): ln_C = mass_action_law (ln_X, ln_K, A) C = np.exp(ln_C) n = len(ln_X) Z = np.zeros((n,n)) for i in range(0, n): for j in range(0, n): Z[i,j]= np.matmul(np.multiply(A[:,i], A[:,j]), C) return Z, C def calculate_electrostatic_part (J, s, a, R, T, C_vector, Caq, Z, F, pos_eb_0, pos_eb_c, pos_eb_a, pos_eb_d, epsilon, epsilon_0, psi_d): # plane 0 J[pos_eb_0,pos_eb_0] = J[pos_eb_0, pos_eb_0] + ((C_vector[0]*R*T*s*a)/(F*F)) J[pos_eb_0, pos_eb_c] = J[pos_eb_0, pos_eb_c] - ((C_vector[0]*R*T*s*a)/(F*F)) # plane C J[pos_eb_c, pos_eb_0] = J[pos_eb_c, pos_eb_0] - ((C_vector[0]*R*T*s*a)/(F*F)) J[pos_eb_c, pos_eb_c] = J[pos_eb_c, pos_eb_c] + (((C_vector[0]+C_vector[1])*R*T*s*a)/(F*F)) J[pos_eb_c, pos_eb_a] = J[pos_eb_c, pos_eb_a] - ((C_vector[1]*R*T*s*a)/(F*F)) # plane A J[pos_eb_a, pos_eb_c] = J[pos_eb_a, pos_eb_c] - ((C_vector[1]*R*T*s*a)/(F*F)) J[pos_eb_a, pos_eb_a] = J[pos_eb_a, pos_eb_a] + (((C_vector[1]+C_vector[2])*R*T*s*a)/(F*F)) J[pos_eb_a, pos_eb_d] = J[pos_eb_a, pos_eb_d] - ((C_vector[2]*R*T*s*a)/(F*F)) #plane D J[pos_eb_d, pos_eb_a] = J[pos_eb_d, pos_eb_a] - ((R*T*s*a*C_vector[2])/(F*F)) J[pos_eb_d, pos_eb_d] = calculate_derivative_Td (C_vector[2], R, T, F, Caq, Z, epsilon, epsilon_0, psi_d,s,a) return J def calculate_derivative_Td (C, R, T, F, Caq, Z, epsilon, epsilon_0, psi_d,s,a): ionic_strength = calculate_ionicstrength(Z, Caq) # DT_Dpsid = -np.sqrt(8*1000*R*T*epsilon*epsilon_0*ionic_strength)*np.cosh((F*psi_d)/(2*R*T))*(F/(2*R*T)) - C Dpsid_DlnXpsid = (-R*T)/F j_d = DT_Dpsid*Dpsid_DlnXpsid*((s*a)/F) return j_d def calculate_jacobian_function(ln_X, ln_K, A, idx_Aq, pos_eb_0, pos_eb_c, pos_eb_a, pos_eb_d, temp, s, a, epsilon, epsilon_0, C_vector, R, F,Z,idx_fix_species = None): length_X=len(ln_X) # [J,C] = calculate_J_classicalPart(ln_X, ln_K, A) Caq = C[idx_Aq] X = np.exp(ln_X) psi_d = boltzman_2_psi(X[pos_eb_d], R, temp, F) J = calculate_electrostatic_part (J, s, a, R, temp, C_vector, Caq, Z, F, pos_eb_0, pos_eb_c, pos_eb_a, pos_eb_d, epsilon, epsilon_0, psi_d) # finally just return Z if idx_fix_species != None: for d in idx_fix_species: v=np.zeros(length_X) v[d]=1 J[d,:] = v return J ###################### SOLVING #################################################### def four_layer_one_surface_speciation ( T, lnX_guess, A, Z, ln_k, idx_Aq,pos_eb_0, pos_eb_c, pos_eb_a, pos_eb_d, temp, s, a, epsilon, C_vector, idx_fix_species = None, tolerance = 1e-6, max_iterations = 100, debug_flm = None): ''' - T --> The vector of Total values (The electrostatic values will be recalculated, so it does not matter what has been introduced) - lnX_guess --> The vector of primary vairables, it might be preconditioned in the future. - A --> stoichiometrix and component matrix (i.e. transpose). Number of rows = number species, Number of columns = number of primary variables - ln_k --> A vector of log(Konstant equilibrium). Primary species of aquoues and sorption have a log_k=0 - idx_Aq --> An index vector with the different aqueous species position. It must coincide with the rows of "A". - Z --> The vector of charge of the different ion. The order is determine by the rows of "A" for aqueous species. That means that it is link to idx_Aq somehow. - pos_eb_0, pos_eb_c, pos_eb_a, pos_eb_d --> This is basically the position of the boltzman factor for the different planes - s --> concentration of suspended solid. - a --> is the specific surface area - epsilon --> relative permittivity - C_vector --> [C1, C2, C3] - temp --> Temperature of the chemical system in Kelvins. - debug_flm --> the class is given, only if important information about a problem is desired. ''' # Instantiation of parameters that are constant F = 96485.3328959 # C/mol R = 8.314472 # J/(K*mol) epsilon_0 = 8.854187871e-12 # Farrads = F/m - permittivity in vaccuum if idx_fix_species != None: lnX_guess [idx_fix_species] = np.log(T [idx_fix_species]) ln_X = lnX_guess #X = np.exp(ln_X) # instantiation variables for loop counter_iterations = 0 abs_err = tolerance + 1 while abs_err>tolerance and counter_iterations < max_iterations: # Calculate Residual function [Y,T] = calculate_residual_function(T,ln_X, ln_k, A, idx_Aq, pos_eb_0, pos_eb_c, pos_eb_a, pos_eb_d, temp, s, a, epsilon, epsilon_0, C_vector, R, F,Z,idx_fix_species) # Calculate Jacobian Residual function J = calculate_jacobian_function(ln_X, ln_k, A, idx_Aq, pos_eb_0, pos_eb_c, pos_eb_a, pos_eb_d, temp, s, a, epsilon, epsilon_0, C_vector, R, F,Z, idx_fix_species) #print(J) # Here the precondition techniques can be implemented # solve delta_ln_X = linalg.solve(J,-Y) #print(delta_ln_X) #update X #X = X*np.exp(delta_ln_X) ln_X = ln_X + delta_ln_X ln_C = mass_action_law (ln_X, ln_k, A) C = np.exp(ln_C) u = u_componentvector(A,C) # Vector_error = # error d = u-T if idx_fix_species != None: d[idx_fix_species] =0 abs_err = max(abs(d)) # Relaxation factor borrow from <NAME> to avoid negative values #max_1 = 1 #max_2 =np.amax(-2*np.multiply(delta_ln_X, 1/ln_X)) #Max_f = np.amax([max_1, max_2]) #Del_mul = 1/Max_f #ln_X = Del_mul*delta_ln_X #ln_X = ln_X+delta_ln_X counter_iterations += 1 if counter_iterations >= max_iterations or np.isnan(abs_err): raise ValueError('Max number of iterations surpassed.') # things to do if goes well X = np.exp(ln_X) ln_C = mass_action_law (ln_X, ln_k, A) C = np.exp(ln_C) if debug_flm is not None: return X, C, debug_flm else: return X, C ############################## DEBUG CLASS ############################################################ class Debug_flm: def __init__(self): self.array_Jacobians = [] self.array_residuals = [] self.array_tolerance = [] self.n_iterations = 0 def append_Jacobian (self,a): self.array_Jacobians.append(a) def append_Residual (self,a): self.array_Jacobians.append(a) def append_tolerance (self,a): self.array_Jacobians.append(a) def inc_iteration(self): self.n_iterations += 1
[ "scipy.linalg.solve", "numpy.multiply", "numpy.log", "numpy.zeros", "numpy.isnan", "numpy.exp", "numpy.matmul", "numpy.cosh", "numpy.sinh", "numpy.sqrt" ]
[((2849, 2913), 'numpy.sqrt', 'np.sqrt', (['(8 * 1000 * R * T * epsilon * epsilon_0 * ionic_strength)'], {}), '(8 * 1000 * R * T * epsilon * epsilon_0 * ionic_strength)\n', (2856, 2913), True, 'import numpy as np\n'), ((2946, 2962), 'numpy.sinh', 'np.sinh', (['inner_B'], {}), '(inner_B)\n', (2953, 2962), True, 'import numpy as np\n'), ((3722, 3731), 'numpy.log', 'np.log', (['X'], {}), '(X)\n', (3728, 3731), True, 'import numpy as np\n'), ((5755, 5767), 'numpy.exp', 'np.exp', (['ln_C'], {}), '(ln_C)\n', (5761, 5767), True, 'import numpy as np\n'), ((5807, 5819), 'numpy.exp', 'np.exp', (['ln_X'], {}), '(ln_X)\n', (5813, 5819), True, 'import numpy as np\n'), ((6160, 6172), 'numpy.exp', 'np.exp', (['ln_C'], {}), '(ln_C)\n', (6166, 6172), True, 'import numpy as np\n'), ((6199, 6215), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (6207, 6215), True, 'import numpy as np\n'), ((8074, 8086), 'numpy.exp', 'np.exp', (['ln_X'], {}), '(ln_X)\n', (8080, 8086), True, 'import numpy as np\n'), ((12121, 12133), 'numpy.exp', 'np.exp', (['ln_X'], {}), '(ln_X)\n', (12127, 12133), True, 'import numpy as np\n'), ((12185, 12197), 'numpy.exp', 'np.exp', (['ln_C'], {}), '(ln_C)\n', (12191, 12197), True, 'import numpy as np\n'), ((617, 635), 'numpy.matmul', 'np.matmul', (['A', 'ln_X'], {}), '(A, ln_X)\n', (626, 635), True, 'import numpy as np\n'), ((4082, 4099), 'numpy.multiply', 'np.multiply', (['Z', 'Z'], {}), '(Z, Z)\n', (4093, 4099), True, 'import numpy as np\n'), ((10427, 10453), 'numpy.log', 'np.log', (['T[idx_fix_species]'], {}), '(T[idx_fix_species])\n', (10433, 10453), True, 'import numpy as np\n'), ((11210, 11229), 'scipy.linalg.solve', 'linalg.solve', (['J', '(-Y)'], {}), '(J, -Y)\n', (11222, 11229), False, 'from scipy import linalg\n'), ((11400, 11412), 'numpy.exp', 'np.exp', (['ln_C'], {}), '(ln_C)\n', (11406, 11412), True, 'import numpy as np\n'), ((11993, 12010), 'numpy.isnan', 'np.isnan', (['abs_err'], {}), '(abs_err)\n', (12001, 12010), True, 'import numpy as np\n'), ((8392, 8410), 'numpy.zeros', 'np.zeros', (['length_X'], {}), '(length_X)\n', (8400, 8410), True, 'import numpy as np\n'), ((6301, 6330), 'numpy.multiply', 'np.multiply', (['A[:, i]', 'A[:, j]'], {}), '(A[:, i], A[:, j])\n', (6312, 6330), True, 'import numpy as np\n'), ((7661, 7693), 'numpy.cosh', 'np.cosh', (['(F * psi_d / (2 * R * T))'], {}), '(F * psi_d / (2 * R * T))\n', (7668, 7693), True, 'import numpy as np\n'), ((7608, 7672), 'numpy.sqrt', 'np.sqrt', (['(8 * 1000 * R * T * epsilon * epsilon_0 * ionic_strength)'], {}), '(8 * 1000 * R * T * epsilon * epsilon_0 * ionic_strength)\n', (7615, 7672), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import sys import shutil from pathlib import Path from multiprocessing import Pool import numpy as np import spectral_cube from astropy import convolution sys.path.append('/lustre/aoc/users/bsvoboda/temp/nestfit') import nestfit as nf from nestfit.main import get_irdc_priors from . import (PDir, read_cube, TARGETS, VELOS) TARGETS_NOMOS = [t for t in TARGETS if t != 'G285_mosaic'] def get_cubestack(target, rms=0.33): im_11_cube = read_cube(PDir.vla_map_name(target, 'nh3_11', modif='jfeather', ext='image.fits')) pb_11_cube = read_cube(PDir.vla_map_name(target, 'nh3_11', modif='joint', ext='pb.fits')) im_22_cube = read_cube(PDir.vla_map_name(target, 'nh3_22', modif='jfeather', ext='image.fits')) pb_22_cube = read_cube(PDir.vla_map_name(target, 'nh3_22', modif='joint', ext='pb.fits')) nm_11 = nf.NoiseMap.from_pbimg(rms, pb_11_cube._data) nm_22 = nf.NoiseMap.from_pbimg(rms, pb_22_cube._data) cubes = ( nf.DataCube(im_11_cube, noise_map=nm_11, trans_id=1), nf.DataCube(im_22_cube, noise_map=nm_22, trans_id=2), ) stack = nf.CubeStack(cubes) # first channel in some of the datasets are NaNs stack.cubes[0].data[:,:,0] = 0 stack.cubes[1].data[:,:,0] = 0 return stack def get_runner(stack, utrans, ncomp=1): spec_data, has_nans = stack.get_spec_data(190, 190) assert not has_nans runner = nf.AmmoniaRunner.from_data(spec_data, utrans, ncomp=ncomp) return runner def get_bins(vsys): bin_minmax = [ (vsys-4.0, vsys+4.0), # vcen ( 7.0, 30.0), # trot ( 2.8, 12.0), # tex (12.5, 16.5), # ncol ( 0.0, 2.0), # sigm ( 0.0, 1.0), # orth ] bins = np.array([ np.linspace(lo, hi, 200) for (lo, hi) in bin_minmax ]) return bins def if_exists_delete_store(name): filen = f'{name}.store' if Path(filen).exists(): print(f'-- Deleting {filen}') shutil.rmtree(filen) def run_nested(target, store_prefix, nproc=8): store_name = f'data/run/{store_prefix}_{target}' if_exists_delete_store(store_name) utrans = get_irdc_priors(vsys=VELOS[target]) runner_cls = nf.AmmoniaRunner stack = get_cubestack(target) fitter = nf.CubeFitter(stack, utrans, runner_cls, ncomp_max=2, nlive_snr_fact=5) fitter.fit_cube(store_name=store_name, nproc=nproc) def run_nested_all(store_prefix, nproc=8): for target in TARGETS_NOMOS: run_nested(target, store_prefix, nproc=nproc) def postprocess_run(target, store_prefix): evid_kernel = convolution.Gaussian2DKernel(1.5) # std-dev in pixels s2 = np.sqrt(2) / 2 k_arr = np.array([ [s2**2, s2**1, s2**2], [s2**1, s2**0, s2**1], [s2**2, s2**1, s2**2], ]) post_kernel = convolution.CustomKernel(k_arr) utrans = get_irdc_priors(vsys=VELOS[target]) par_bins = get_bins(VELOS[target]) store_name = f'data/run/{store_prefix}_{target}' store = nf.HdfStore(store_name) stack = get_cubestack(target) runner = get_runner(stack, utrans, ncomp=1) # begin post-processing steps nf.aggregate_run_attributes(store) nf.convolve_evidence(store, evid_kernel) nf.aggregate_run_products(store) nf.aggregate_run_pdfs(store, par_bins=par_bins) nf.convolve_post_pdfs(store, post_kernel, evid_weight=False) nf.quantize_conv_marginals(store) nf.deblend_hf_intensity(store, stack, runner) store.close() def parallel_postprocess(store_prefix, nproc=12): args = zip( TARGETS_NOMOS, [store_prefix] * len(TARGETS_NOMOS), ) with Pool(nproc) as pool: pool.starmap(postprocess_run, args) if __name__ == '__main__': prefix = 'nested' args = sys.argv[1:] assert len(args) > 0 assert args[0] in ('--run-nested', '--post-proc') flag = args[0] if flag == '--run-nested': run_nested_all(prefix, nproc=16) elif flag == '--post-proc': parallel_postprocess(prefix, nproc=12)
[ "astropy.convolution.Gaussian2DKernel", "nestfit.aggregate_run_attributes", "astropy.convolution.CustomKernel", "nestfit.CubeStack", "nestfit.CubeFitter", "pathlib.Path", "shutil.rmtree", "nestfit.convolve_evidence", "nestfit.main.get_irdc_priors", "sys.path.append", "nestfit.HdfStore", "nestfit.convolve_post_pdfs", "numpy.linspace", "nestfit.aggregate_run_pdfs", "nestfit.deblend_hf_intensity", "multiprocessing.Pool", "nestfit.NoiseMap.from_pbimg", "nestfit.AmmoniaRunner.from_data", "nestfit.aggregate_run_products", "numpy.array", "nestfit.DataCube", "nestfit.quantize_conv_marginals", "numpy.sqrt" ]
[((181, 239), 'sys.path.append', 'sys.path.append', (['"""/lustre/aoc/users/bsvoboda/temp/nestfit"""'], {}), "('/lustre/aoc/users/bsvoboda/temp/nestfit')\n", (196, 239), False, 'import sys\n'), ((899, 944), 'nestfit.NoiseMap.from_pbimg', 'nf.NoiseMap.from_pbimg', (['rms', 'pb_11_cube._data'], {}), '(rms, pb_11_cube._data)\n', (921, 944), True, 'import nestfit as nf\n'), ((957, 1002), 'nestfit.NoiseMap.from_pbimg', 'nf.NoiseMap.from_pbimg', (['rms', 'pb_22_cube._data'], {}), '(rms, pb_22_cube._data)\n', (979, 1002), True, 'import nestfit as nf\n'), ((1167, 1186), 'nestfit.CubeStack', 'nf.CubeStack', (['cubes'], {}), '(cubes)\n', (1179, 1186), True, 'import nestfit as nf\n'), ((1462, 1520), 'nestfit.AmmoniaRunner.from_data', 'nf.AmmoniaRunner.from_data', (['spec_data', 'utrans'], {'ncomp': 'ncomp'}), '(spec_data, utrans, ncomp=ncomp)\n', (1488, 1520), True, 'import nestfit as nf\n'), ((2232, 2267), 'nestfit.main.get_irdc_priors', 'get_irdc_priors', ([], {'vsys': 'VELOS[target]'}), '(vsys=VELOS[target])\n', (2247, 2267), False, 'from nestfit.main import get_irdc_priors\n'), ((2349, 2420), 'nestfit.CubeFitter', 'nf.CubeFitter', (['stack', 'utrans', 'runner_cls'], {'ncomp_max': '(2)', 'nlive_snr_fact': '(5)'}), '(stack, utrans, runner_cls, ncomp_max=2, nlive_snr_fact=5)\n', (2362, 2420), True, 'import nestfit as nf\n'), ((2684, 2717), 'astropy.convolution.Gaussian2DKernel', 'convolution.Gaussian2DKernel', (['(1.5)'], {}), '(1.5)\n', (2712, 2717), False, 'from astropy import convolution\n'), ((2775, 2877), 'numpy.array', 'np.array', (['[[s2 ** 2, s2 ** 1, s2 ** 2], [s2 ** 1, s2 ** 0, s2 ** 1], [s2 ** 2, s2 ** \n 1, s2 ** 2]]'], {}), '([[s2 ** 2, s2 ** 1, s2 ** 2], [s2 ** 1, s2 ** 0, s2 ** 1], [s2 ** \n 2, s2 ** 1, s2 ** 2]])\n', (2783, 2877), True, 'import numpy as np\n'), ((2916, 2947), 'astropy.convolution.CustomKernel', 'convolution.CustomKernel', (['k_arr'], {}), '(k_arr)\n', (2940, 2947), False, 'from astropy import convolution\n'), ((2961, 2996), 'nestfit.main.get_irdc_priors', 'get_irdc_priors', ([], {'vsys': 'VELOS[target]'}), '(vsys=VELOS[target])\n', (2976, 2996), False, 'from nestfit.main import get_irdc_priors\n'), ((3101, 3124), 'nestfit.HdfStore', 'nf.HdfStore', (['store_name'], {}), '(store_name)\n', (3112, 3124), True, 'import nestfit as nf\n'), ((3245, 3279), 'nestfit.aggregate_run_attributes', 'nf.aggregate_run_attributes', (['store'], {}), '(store)\n', (3272, 3279), True, 'import nestfit as nf\n'), ((3284, 3324), 'nestfit.convolve_evidence', 'nf.convolve_evidence', (['store', 'evid_kernel'], {}), '(store, evid_kernel)\n', (3304, 3324), True, 'import nestfit as nf\n'), ((3329, 3361), 'nestfit.aggregate_run_products', 'nf.aggregate_run_products', (['store'], {}), '(store)\n', (3354, 3361), True, 'import nestfit as nf\n'), ((3366, 3413), 'nestfit.aggregate_run_pdfs', 'nf.aggregate_run_pdfs', (['store'], {'par_bins': 'par_bins'}), '(store, par_bins=par_bins)\n', (3387, 3413), True, 'import nestfit as nf\n'), ((3418, 3478), 'nestfit.convolve_post_pdfs', 'nf.convolve_post_pdfs', (['store', 'post_kernel'], {'evid_weight': '(False)'}), '(store, post_kernel, evid_weight=False)\n', (3439, 3478), True, 'import nestfit as nf\n'), ((3483, 3516), 'nestfit.quantize_conv_marginals', 'nf.quantize_conv_marginals', (['store'], {}), '(store)\n', (3509, 3516), True, 'import nestfit as nf\n'), ((3521, 3566), 'nestfit.deblend_hf_intensity', 'nf.deblend_hf_intensity', (['store', 'stack', 'runner'], {}), '(store, stack, runner)\n', (3544, 3566), True, 'import nestfit as nf\n'), ((1029, 1081), 'nestfit.DataCube', 'nf.DataCube', (['im_11_cube'], {'noise_map': 'nm_11', 'trans_id': '(1)'}), '(im_11_cube, noise_map=nm_11, trans_id=1)\n', (1040, 1081), True, 'import nestfit as nf\n'), ((1095, 1147), 'nestfit.DataCube', 'nf.DataCube', (['im_22_cube'], {'noise_map': 'nm_22', 'trans_id': '(2)'}), '(im_22_cube, noise_map=nm_22, trans_id=2)\n', (1106, 1147), True, 'import nestfit as nf\n'), ((2057, 2077), 'shutil.rmtree', 'shutil.rmtree', (['filen'], {}), '(filen)\n', (2070, 2077), False, 'import shutil\n'), ((2748, 2758), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (2755, 2758), True, 'import numpy as np\n'), ((3744, 3755), 'multiprocessing.Pool', 'Pool', (['nproc'], {}), '(nproc)\n', (3748, 3755), False, 'from multiprocessing import Pool\n'), ((1831, 1855), 'numpy.linspace', 'np.linspace', (['lo', 'hi', '(200)'], {}), '(lo, hi, 200)\n', (1842, 1855), True, 'import numpy as np\n'), ((1989, 2000), 'pathlib.Path', 'Path', (['filen'], {}), '(filen)\n', (1993, 2000), False, 'from pathlib import Path\n')]
from entente.landmarks.symmetrize_landmarks import ( symmetrize_landmarks_using_plane, symmetrize_landmarks_using_topology, ) import numpy as np from polliwog import Plane import pytest from vg.compat import v1 as vg from ..test_symmetry import create_seat_and_arm_mesh def test_symmetrize_landmarks_using_plane(): original = np.array([[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]]) symmetrized = symmetrize_landmarks_using_plane(Plane.yz, original) np.testing.assert_allclose(symmetrized, original, atol=1) mirrored = np.copy(original) mirrored[:, 0] = -mirrored[:, 0] np.testing.assert_allclose(np.flipud(symmetrized), mirrored, atol=1) distances_to_original = vg.euclidean_distance(symmetrized, original) distances_to_mirrored = vg.euclidean_distance(np.flipud(symmetrized), mirrored) np.testing.assert_allclose(distances_to_original, distances_to_mirrored, atol=1e-1) def test_symmetrize_landmarks_using_plane_non_plane(): original = np.array([[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]]) with pytest.raises(ValueError, match=r"plane_of_symmetry should be a Plane"): symmetrize_landmarks_using_plane("not_a_plane", original) def test_symmetrize_landmarks_using_topology(): mesh = create_seat_and_arm_mesh() original = np.array([[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]]) symmetrized = symmetrize_landmarks_using_topology( mesh, Plane.yz, original, atol=1e-1 ) np.testing.assert_allclose(symmetrized, original, atol=1) mirrored = np.copy(original) mirrored[:, 0] = -mirrored[:, 0] np.testing.assert_allclose(np.flipud(symmetrized), mirrored, atol=1) distances_to_original = vg.euclidean_distance(symmetrized, original) distances_to_mirrored = vg.euclidean_distance(np.flipud(symmetrized), mirrored) np.testing.assert_allclose(distances_to_original, distances_to_mirrored, atol=1e-1) def test_symmetrize_landmarks_using_topology_asymmetrical(): mesh = create_seat_and_arm_mesh().translated(np.array([50.0, 0.0, 0.0])) original = np.array([[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]]) with pytest.raises( ValueError, match=r"Some landmarks are near triangles which are not mirrored" ): symmetrize_landmarks_using_topology(mesh, Plane.yz, original, atol=1e-1) def test_symmetrize_landmarks_using_topology_non_plane(): mesh = create_seat_and_arm_mesh().translated(np.array([50.0, 0.0, 0.0])) original = np.array([[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]]) with pytest.raises(ValueError, match=r"plane_of_symmetry should be a Plane"): symmetrize_landmarks_using_topology(mesh, "not_a_plane", original, atol=1e-1)
[ "numpy.copy", "numpy.flipud", "pytest.raises", "vg.compat.v1.euclidean_distance", "numpy.array", "numpy.testing.assert_allclose", "entente.landmarks.symmetrize_landmarks.symmetrize_landmarks_using_plane", "entente.landmarks.symmetrize_landmarks.symmetrize_landmarks_using_topology" ]
[((340, 410), 'numpy.array', 'np.array', (['[[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]]'], {}), '([[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]])\n', (348, 410), True, 'import numpy as np\n'), ((429, 481), 'entente.landmarks.symmetrize_landmarks.symmetrize_landmarks_using_plane', 'symmetrize_landmarks_using_plane', (['Plane.yz', 'original'], {}), '(Plane.yz, original)\n', (461, 481), False, 'from entente.landmarks.symmetrize_landmarks import symmetrize_landmarks_using_plane, symmetrize_landmarks_using_topology\n'), ((487, 544), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['symmetrized', 'original'], {'atol': '(1)'}), '(symmetrized, original, atol=1)\n', (513, 544), True, 'import numpy as np\n'), ((561, 578), 'numpy.copy', 'np.copy', (['original'], {}), '(original)\n', (568, 578), True, 'import numpy as np\n'), ((719, 763), 'vg.compat.v1.euclidean_distance', 'vg.euclidean_distance', (['symmetrized', 'original'], {}), '(symmetrized, original)\n', (740, 763), True, 'from vg.compat import v1 as vg\n'), ((852, 938), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['distances_to_original', 'distances_to_mirrored'], {'atol': '(0.1)'}), '(distances_to_original, distances_to_mirrored,\n atol=0.1)\n', (878, 938), True, 'import numpy as np\n'), ((1008, 1078), 'numpy.array', 'np.array', (['[[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]]'], {}), '([[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]])\n', (1016, 1078), True, 'import numpy as np\n'), ((1330, 1400), 'numpy.array', 'np.array', (['[[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]]'], {}), '([[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]])\n', (1338, 1400), True, 'import numpy as np\n'), ((1419, 1490), 'entente.landmarks.symmetrize_landmarks.symmetrize_landmarks_using_topology', 'symmetrize_landmarks_using_topology', (['mesh', 'Plane.yz', 'original'], {'atol': '(0.1)'}), '(mesh, Plane.yz, original, atol=0.1)\n', (1454, 1490), False, 'from entente.landmarks.symmetrize_landmarks import symmetrize_landmarks_using_plane, symmetrize_landmarks_using_topology\n'), ((1511, 1568), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['symmetrized', 'original'], {'atol': '(1)'}), '(symmetrized, original, atol=1)\n', (1537, 1568), True, 'import numpy as np\n'), ((1585, 1602), 'numpy.copy', 'np.copy', (['original'], {}), '(original)\n', (1592, 1602), True, 'import numpy as np\n'), ((1743, 1787), 'vg.compat.v1.euclidean_distance', 'vg.euclidean_distance', (['symmetrized', 'original'], {}), '(symmetrized, original)\n', (1764, 1787), True, 'from vg.compat import v1 as vg\n'), ((1876, 1962), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['distances_to_original', 'distances_to_mirrored'], {'atol': '(0.1)'}), '(distances_to_original, distances_to_mirrored,\n atol=0.1)\n', (1902, 1962), True, 'import numpy as np\n'), ((2115, 2185), 'numpy.array', 'np.array', (['[[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]]'], {}), '([[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]])\n', (2123, 2185), True, 'import numpy as np\n'), ((2536, 2606), 'numpy.array', 'np.array', (['[[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]]'], {}), '([[-18.5657, 54.7161, -19.5649], [20.0896, 54.919, -19.5738]])\n', (2544, 2606), True, 'import numpy as np\n'), ((648, 670), 'numpy.flipud', 'np.flipud', (['symmetrized'], {}), '(symmetrized)\n', (657, 670), True, 'import numpy as np\n'), ((814, 836), 'numpy.flipud', 'np.flipud', (['symmetrized'], {}), '(symmetrized)\n', (823, 836), True, 'import numpy as np\n'), ((1088, 1158), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""plane_of_symmetry should be a Plane"""'}), "(ValueError, match='plane_of_symmetry should be a Plane')\n", (1101, 1158), False, 'import pytest\n'), ((1169, 1226), 'entente.landmarks.symmetrize_landmarks.symmetrize_landmarks_using_plane', 'symmetrize_landmarks_using_plane', (['"""not_a_plane"""', 'original'], {}), "('not_a_plane', original)\n", (1201, 1226), False, 'from entente.landmarks.symmetrize_landmarks import symmetrize_landmarks_using_plane, symmetrize_landmarks_using_topology\n'), ((1672, 1694), 'numpy.flipud', 'np.flipud', (['symmetrized'], {}), '(symmetrized)\n', (1681, 1694), True, 'import numpy as np\n'), ((1838, 1860), 'numpy.flipud', 'np.flipud', (['symmetrized'], {}), '(symmetrized)\n', (1847, 1860), True, 'import numpy as np\n'), ((2072, 2098), 'numpy.array', 'np.array', (['[50.0, 0.0, 0.0]'], {}), '([50.0, 0.0, 0.0])\n', (2080, 2098), True, 'import numpy as np\n'), ((2195, 2291), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Some landmarks are near triangles which are not mirrored"""'}), "(ValueError, match=\n 'Some landmarks are near triangles which are not mirrored')\n", (2208, 2291), False, 'import pytest\n'), ((2311, 2382), 'entente.landmarks.symmetrize_landmarks.symmetrize_landmarks_using_topology', 'symmetrize_landmarks_using_topology', (['mesh', 'Plane.yz', 'original'], {'atol': '(0.1)'}), '(mesh, Plane.yz, original, atol=0.1)\n', (2346, 2382), False, 'from entente.landmarks.symmetrize_landmarks import symmetrize_landmarks_using_plane, symmetrize_landmarks_using_topology\n'), ((2493, 2519), 'numpy.array', 'np.array', (['[50.0, 0.0, 0.0]'], {}), '([50.0, 0.0, 0.0])\n', (2501, 2519), True, 'import numpy as np\n'), ((2616, 2686), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""plane_of_symmetry should be a Plane"""'}), "(ValueError, match='plane_of_symmetry should be a Plane')\n", (2629, 2686), False, 'import pytest\n'), ((2697, 2773), 'entente.landmarks.symmetrize_landmarks.symmetrize_landmarks_using_topology', 'symmetrize_landmarks_using_topology', (['mesh', '"""not_a_plane"""', 'original'], {'atol': '(0.1)'}), "(mesh, 'not_a_plane', original, atol=0.1)\n", (2732, 2773), False, 'from entente.landmarks.symmetrize_landmarks import symmetrize_landmarks_using_plane, symmetrize_landmarks_using_topology\n')]
""" Show some diagnostic plots for an LNGS wav. Usage: plotwav.py [filename] If not specified, the file read is darksidehd/nuvhd_lf_3x_tile57_77K_64V_6VoV_1.wav. The plots are: * An histogram of all data; * A temporal plot of some events; * The temporal distribution of the trigger rising edge. At most 1000 events are read from the wav. """ import sys import numpy as np from matplotlib import pyplot as plt import readwav import fighelp if len(sys.argv) == 1: filename = 'darksidehd/nuvhd_lf_3x_tile57_77K_64V_6VoV_1.wav' else: filename = sys.argv[1] data = readwav.readwav(filename, mmap=False, maxevents=1000) signal = data[:, 0, :].reshape(-1) trigger = data[:, 1, :].reshape(-1) print('computing global histogram...') fig = fighelp.figwithsize([11.8, 4.8], resetfigcount=True) ax = fig.subplots(1, 1) ax.set_title('Histogram of all data') ax.set_xlabel('ADC value') ax.set_ylabel('occurences') ax.plot(np.bincount(signal, minlength=1024), drawstyle='steps', label='signal') ax.plot(np.bincount(trigger, minlength=1024), drawstyle='steps', label='trigger') ax.set_yscale('symlog') ax.set_ylim(-1, ax.get_ylim()[1]) ax.grid() ax.legend(loc='best') fighelp.saveaspng(fig) fig.show() fig = fighelp.figwithsize([8.21, 5.09]) ax = fig.subplots(1, 1) start = 0 s = slice(start, start + 125000) ax.plot(signal[s], ',', color='red', label='signal') ax.plot(trigger[s], ',', color='blue', label='trigger') ax.set_ylim(-1, 2**10 + 1) ax.legend(loc='best') ax.set_title('Original signal') ax.set_xlabel(f'Sample number (starting from {start})') ax.set_ylabel('ADC value') fighelp.saveaspng(fig) fig.show() fig = fighelp.figwithsize() ax = fig.subplots(1, 1) trig = readwav.first_nonzero(data[:, 1, :] < 600) ax.hist(trig, bins='auto', histtype='step') ax.set_title('Distribution of trigger rising edge') ax.set_xlabel('Sample number @ 1 GSa/s') ax.set_ylabel('Counts per bin') fighelp.saveaspng(fig) fig.show()
[ "readwav.readwav", "fighelp.saveaspng", "fighelp.figwithsize", "readwav.first_nonzero", "numpy.bincount" ]
[((588, 641), 'readwav.readwav', 'readwav.readwav', (['filename'], {'mmap': '(False)', 'maxevents': '(1000)'}), '(filename, mmap=False, maxevents=1000)\n', (603, 641), False, 'import readwav\n'), ((761, 813), 'fighelp.figwithsize', 'fighelp.figwithsize', (['[11.8, 4.8]'], {'resetfigcount': '(True)'}), '([11.8, 4.8], resetfigcount=True)\n', (780, 813), False, 'import fighelp\n'), ((1187, 1209), 'fighelp.saveaspng', 'fighelp.saveaspng', (['fig'], {}), '(fig)\n', (1204, 1209), False, 'import fighelp\n'), ((1228, 1261), 'fighelp.figwithsize', 'fighelp.figwithsize', (['[8.21, 5.09]'], {}), '([8.21, 5.09])\n', (1247, 1261), False, 'import fighelp\n'), ((1606, 1628), 'fighelp.saveaspng', 'fighelp.saveaspng', (['fig'], {}), '(fig)\n', (1623, 1628), False, 'import fighelp\n'), ((1647, 1668), 'fighelp.figwithsize', 'fighelp.figwithsize', ([], {}), '()\n', (1666, 1668), False, 'import fighelp\n'), ((1702, 1744), 'readwav.first_nonzero', 'readwav.first_nonzero', (['(data[:, 1, :] < 600)'], {}), '(data[:, 1, :] < 600)\n', (1723, 1744), False, 'import readwav\n'), ((1917, 1939), 'fighelp.saveaspng', 'fighelp.saveaspng', (['fig'], {}), '(fig)\n', (1934, 1939), False, 'import fighelp\n'), ((941, 976), 'numpy.bincount', 'np.bincount', (['signal'], {'minlength': '(1024)'}), '(signal, minlength=1024)\n', (952, 976), True, 'import numpy as np\n'), ((1021, 1057), 'numpy.bincount', 'np.bincount', (['trigger'], {'minlength': '(1024)'}), '(trigger, minlength=1024)\n', (1032, 1057), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Thu Mar 28 17:27:37 2019 @author: <NAME> """ import copy import numpy as np import populationevolution as popev import populationevolution.raggedtoregular as r2r import SweepApproximationFunctions as SAF def compareNeq_Ntrue(mu_min, delta_f, M, P_mu, K, t): Neq = SAF.findNeq(mu_min, delta_f, M, P_mu, K) N_start = Neq.astype('int64') rounding_error = K - np.sum(N_start) N_start[0,0] = N_start[0,0] + rounding_error pop = popev.Population(0, mu_min, N_start, delta_f, M, 0, 0, P_mu, K) mu_list = pop.mutation_list delta_Ns = [diffNeq_Npop(mu_list, Neq, pop.mutation_list, pop.population_distribution)] for i in range(t): pop.update() delta_Ns.append(diffNeq_Npop(mu_list, Neq, pop.mutation_list, pop.population_distribution)) delta_Ns = r2r.ragged_to_regular(delta_Ns) new_shape = (delta_Ns.shape[1], delta_Ns.shape[2]) Neq_rs = np.zeros(new_shape, dtype=Neq.dtype) Neq_rs[:Neq.shape[0],:Neq.shape[1]] = Neq mu_list_rs = np.minimum(np.geomspace(mu_min, mu_min*M**(new_shape[1]-1), new_shape[1]),1) f_list = np.linspace(0, -delta_f*new_shape[0], new_shape[0], endpoint=False) return mu_list_rs, f_list, Neq_rs, delta_Ns def diffNeq_Npop(mu_list, Neq, pop_mut, pop_dist): fs, mus = np.maximum(pop_dist.shape, Neq.shape) M = mu_list[1]/mu_list[0] Neq_padded = np.zeros((fs,mus),dtype=Neq.dtype) Neq_padded[:Neq.shape[0],:Neq.shape[1]]=Neq mu_list_padded = np.minimum(mu_list[0]*M**np.arange(mus),1) pop_dist_padded = np.zeros((fs,mus),dtype=pop_dist.dtype) pop_dist_padded[:pop_dist.shape[0],:pop_dist.shape[1]]=pop_dist pop_mut_padded = np.minimum(pop_mut[0]*M**np.arange(mus),1) if not np.allclose(pop_mut_padded, mu_list_padded): print('eq_mu_list:', mu_list_padded) print('pop_mu_list:', pop_mut_padded) raise RuntimeError('the mutation rates of Neq and the population being' 'tested do not match.') return pop_dist_padded - Neq_padded def mean_probability_error(delta_Ns, K): ''' Calculate the sum of the absolute value of delta_Ns over time then divide by 2.''' # The first axis of the array delta_Ns is the time axis so taking # the cumulative sum and dividing by the array ts give us delta_N # averaged over time for increasing values of time. The second two axes # are the fitness and mutation rate axes so taking the absolute value, # summing over those and dividing by 2*K gives us a normalized measure # of the deviation of N from the approximate equilibrium. We divide by 2 # because that way if there is no overlap in the distributions the measure # will equal 1. ts = np.arange(1,delta_Ns.shape[0]+1).reshape((-1,1,1)) return np.sum(np.abs(np.cumsum(delta_Ns,axis=0)/ts), axis=(1,2))/(2*K) def delta_over_std(Neq, delta_N): K = np.sum(Neq) std = np.sqrt(Neq*(1-Neq/K)) return delta_N/std def invader_Neq(mu_min, delta_f, M, P_mu, K, inv_f_step, inv_mu_step): s = SAF.effective_fitness_difference(0, delta_f*inv_f_step, mu_min, mu_min*float(M)**inv_mu_step) if inv_f_step < 0: raise ValueError('Invading mutants must have a fitness equal to or' ' above the maximum fitness in the invaded' ' population.') elif inv_f_step == 0: if inv_mu_step > -1: raise ValueError('Invading mutants at the same fitness as the' ' invaded population must have a lower mutation' ' rate.') else: if SAF.fixation_probability(K, s) == 0: raise ValueError('Invading mutants must have an effective increase' ' in fitness or be effectively neutral. Try ' 'increasing the fitness or decreasing the' ' mutation rate of the invader.') Neq = SAF.findNeq(mu_min, delta_f, M, P_mu, K) N_start = Neq.astype('int64') rounding_error = K - np.sum(N_start) N_start[0,0] = N_start[0,0] + rounding_error - 1 vertical_pad = (inv_f_step, 0) if inv_mu_step < 0: horizontal_pad = (np.abs(inv_mu_step),0) elif inv_mu_step >= N_start.shape[1]: horizontal_pad = (0, inv_mu_step - N_start.shape[1]) else: horizontal_pad = (0,0) N_start = np.pad(N_start, (vertical_pad, horizontal_pad),mode='constant') N_start[0,np.maximum(0,inv_mu_step)] = 1 return N_start def invasion(mu_min, delta_f, M, P_mu, K, inv_f_step, inv_mu_step, max_steps=10**6): N_start = invader_Neq(mu_min, delta_f, M, P_mu, K, inv_f_step, inv_mu_step) mu_inv = mu_min*float(M)**inv_mu_step f_inv = delta_f*inv_f_step if inv_mu_step < 0: mu_min2 = mu_inv else: mu_min2 = mu_min pop = popev.Population(f_inv, mu_min2, N_start, delta_f, M, 0, 0, P_mu, K) threshold = .5*SAF.findNeq(mu_inv, delta_f, M, P_mu, K)[0,0] for i in range(1,max_steps): pop.update() if pop(f_inv, mu_inv) == 0: return False, i if pop(f_inv, mu_inv) >= threshold: return True, i raise RuntimeError('The invading mutant failed to either fix or' ' go extinct before the maximum number of allowable' ' function evaluations was reached.') def estimate_fix_prob(mu_min, delta_f, M, P_mu, K, inv_f_step, inv_mu_step): s = SAF.effective_fitness_difference(0, delta_f*inv_f_step, mu_min, mu_min*float(M)**inv_mu_step) exp_fix_prob = SAF.fixation_probability(K, s) if exp_fix_prob < 10**-5: raise RuntimeError('Empirically estimating the fixation probability' ' for such an unlikely event is a waste of time.') test_count = int(np.maximum(100*(1-exp_fix_prob)/exp_fix_prob,100)) fixations = 0 extinction_times = [] fixation_times = [] for i in range(test_count): invader_survival, time = invasion(mu_min, delta_f, M, P_mu, K, inv_f_step, inv_mu_step) if invader_survival: fixations = fixations + 1 fixation_times.append(time) else: extinction_times.append(time) return test_count, fixations, fixation_times, extinction_times def value_array_to_waiting_times(fmumodes): ''' Change an array of the mode of the fitness and mutation rate to a pair of arrays. The array of the mode should have a shape of (t, 2). The first array is the value of the mode fitness and mutation rate in the order they occur, the second is the time spent at each mode before the change to the next value. Rapid fluctuations in the mode during a transition are smoothed out by looking ahead at the mode a bit after making this first pair of arrays and merging together times. ''' mode, tau = run_length_encoding(fmumodes) return merge_flucs(mode, tau) # shamelessly stolen from stackoverflow answer here # https://stackoverflow.com/questions/1066758/ # find-length-of-sequences-of-identical-values-in-a-numpy-array-run-length-encodi # by <NAME>. Then modified to work on arrays of shape (t,2) and # rearranged to fit my old choice of argument and output orders def run_length_encoding(inarray): ia = np.asarray(inarray) n = len(ia) if n == 0: return (None, None) elif n == 1: return (ia[0], 1) else: x = ia[1:] != ia[:-1] y = np.logical_or(x[:,0], x[:,1]) i = np.append(np.where(y), n-1) z = np.diff(np.append(-1, i)) return (ia[i], z) def merge_flucs(fmus, taus): l = len(taus) i = 0 fmus_fused = [] taus_fused = [] curr = fmus[0] taucurr = taus[0] while i < l-2: nex = fmus[i+1] taunex = taus[i+1] nexnex = fmus[i+2] taunexnex = taus[i+2] if np.all(curr==nexnex): taucurr = taucurr + taunex + taunexnex i = i + 2 else: fmus_fused.append(curr) taus_fused.append(taucurr) curr = nex taucurr = taunex i = i + 1 return np.array(fmus_fused), np.array(taus_fused) def waiting_times_to_waiting_dict(f_mu_pairs, waiting_times): ''' Change a pair of arrays where the first array is fitness, mutation rate pairs and the second is the waiting times before changing to the next fitness and mutation rate into a dictionary of lists of lists of the empirical distribution of waiting times for transitions from each mutation rate to either a higher fitness and the same mutation rate, a lower mutation rate, or a higher fitness and mutation rate, plus a grab bag for any transitions that were double sweeps (for example crossed two fitness steps at once). ''' if len(f_mu_pairs) != len(waiting_times): raise ValueError('The array of fitness and mutation rate pairs must be' 'of the same length as the array of waiting times.') fs = np.unique(f_mu_pairs[:,0]) delta_f = np.median(np.diff(np.unique(fs))) mus = np.unique(f_mu_pairs[:,1]) M = mus[1]/mus[0] wts_by_mu = [[] for i in range(mus.size)] wait_dict = {'f_up': copy.deepcopy(wts_by_mu), 'mu_down': copy.deepcopy(wts_by_mu), 'mu_up': copy.deepcopy(wts_by_mu), 'mu_2up': copy.deepcopy(wts_by_mu), 'grab_bag': copy.deepcopy(wts_by_mu)} for i in range(len(f_mu_pairs)-1): f = f_mu_pairs[i,0] mu = f_mu_pairs[i,1] ix = np.where(mu==mus)[0][0] f_next = f_mu_pairs[i+1,0] mu_next = f_mu_pairs[i+1,1] if np.isclose(mu, mu_next) and np.isclose(f + delta_f, f_next): wait_dict['f_up'][ix].append(waiting_times[i]) elif np.isclose(mu/M, mu_next) and np.isclose(f, f_next): wait_dict['mu_down'][ix].append(waiting_times[i]) elif np.isclose(M*mu, mu_next) and np.isclose(f + delta_f, f_next): wait_dict['mu_up'][ix].append(waiting_times[i]) elif np.isclose(M**2*mu, mu_next) and np.isclose(f + delta_f, f_next): wait_dict['mu_2up'][ix].append(waiting_times[i]) else: wait_dict['grab_bag'][ix].append((mu_next, f, f_next, waiting_times[i])) return mus, wait_dict def waiting_dict_to_rates(mus, wait_dict): ''' From a dictionary of the waiting times between the different types of sweeps in the mutator-antimutator case in a simulation, compute the transition rates between states. ''' waitsum_dict = {} trans_counts = {} for trans in ['f_up', 'mu_down', 'mu_up', 'mu_2up']: waitsum_dict[trans]=np.array([np.sum(wts) for wts in wait_dict[trans]]) trans_counts[trans]=np.array([len(wts) for wts in wait_dict[trans]]) wait_total = (waitsum_dict['f_up'] + waitsum_dict['mu_down'] + waitsum_dict['mu_up'] + waitsum_dict['mu_2up']) count_total = (trans_counts['f_up'] + trans_counts['mu_down'] + trans_counts['mu_up'] + trans_counts['mu_2up']) rates_total = count_total/wait_total rate_dict = {} for trans in ['f_up', 'mu_down', 'mu_up', 'mu_2up']: rate_dict[trans] = rates_total*trans_counts[trans]/count_total empirical_Tm = np.zeros((mus.size, mus.size), dtype='float64') for i, rate in list(enumerate(rate_dict['mu_down']))[1:]: empirical_Tm[i-1, i] = rate empirical_Tm[i, i] -= rate for i, rate in list(enumerate(rate_dict['mu_up']))[:-1]: empirical_Tm[i+1, i] = rate empirical_Tm[i, i] -= rate for i, rate in list(enumerate(rate_dict['mu_2up']))[:-2]: empirical_Tm[i+2, i] = rate empirical_Tm[i, i] -= rate return empirical_Tm, rate_dict['f_up']
[ "numpy.maximum", "numpy.sum", "numpy.abs", "numpy.allclose", "numpy.isclose", "numpy.arange", "numpy.unique", "numpy.pad", "populationevolution.Population", "SweepApproximationFunctions.fixation_probability", "numpy.geomspace", "numpy.append", "numpy.cumsum", "numpy.linspace", "SweepApproximationFunctions.findNeq", "copy.deepcopy", "numpy.asarray", "numpy.all", "populationevolution.raggedtoregular.ragged_to_regular", "numpy.zeros", "numpy.where", "numpy.array", "numpy.logical_or", "numpy.sqrt" ]
[((311, 351), 'SweepApproximationFunctions.findNeq', 'SAF.findNeq', (['mu_min', 'delta_f', 'M', 'P_mu', 'K'], {}), '(mu_min, delta_f, M, P_mu, K)\n', (322, 351), True, 'import SweepApproximationFunctions as SAF\n'), ((486, 549), 'populationevolution.Population', 'popev.Population', (['(0)', 'mu_min', 'N_start', 'delta_f', 'M', '(0)', '(0)', 'P_mu', 'K'], {}), '(0, mu_min, N_start, delta_f, M, 0, 0, P_mu, K)\n', (502, 549), True, 'import populationevolution as popev\n'), ((899, 930), 'populationevolution.raggedtoregular.ragged_to_regular', 'r2r.ragged_to_regular', (['delta_Ns'], {}), '(delta_Ns)\n', (920, 930), True, 'import populationevolution.raggedtoregular as r2r\n'), ((999, 1035), 'numpy.zeros', 'np.zeros', (['new_shape'], {'dtype': 'Neq.dtype'}), '(new_shape, dtype=Neq.dtype)\n', (1007, 1035), True, 'import numpy as np\n'), ((1271, 1340), 'numpy.linspace', 'np.linspace', (['(0)', '(-delta_f * new_shape[0])', 'new_shape[0]'], {'endpoint': '(False)'}), '(0, -delta_f * new_shape[0], new_shape[0], endpoint=False)\n', (1282, 1340), True, 'import numpy as np\n'), ((1479, 1516), 'numpy.maximum', 'np.maximum', (['pop_dist.shape', 'Neq.shape'], {}), '(pop_dist.shape, Neq.shape)\n', (1489, 1516), True, 'import numpy as np\n'), ((1564, 1600), 'numpy.zeros', 'np.zeros', (['(fs, mus)'], {'dtype': 'Neq.dtype'}), '((fs, mus), dtype=Neq.dtype)\n', (1572, 1600), True, 'import numpy as np\n'), ((1733, 1774), 'numpy.zeros', 'np.zeros', (['(fs, mus)'], {'dtype': 'pop_dist.dtype'}), '((fs, mus), dtype=pop_dist.dtype)\n', (1741, 1774), True, 'import numpy as np\n'), ((3086, 3097), 'numpy.sum', 'np.sum', (['Neq'], {}), '(Neq)\n', (3092, 3097), True, 'import numpy as np\n'), ((3108, 3136), 'numpy.sqrt', 'np.sqrt', (['(Neq * (1 - Neq / K))'], {}), '(Neq * (1 - Neq / K))\n', (3115, 3136), True, 'import numpy as np\n'), ((4184, 4224), 'SweepApproximationFunctions.findNeq', 'SAF.findNeq', (['mu_min', 'delta_f', 'M', 'P_mu', 'K'], {}), '(mu_min, delta_f, M, P_mu, K)\n', (4195, 4224), True, 'import SweepApproximationFunctions as SAF\n'), ((4619, 4683), 'numpy.pad', 'np.pad', (['N_start', '(vertical_pad, horizontal_pad)'], {'mode': '"""constant"""'}), "(N_start, (vertical_pad, horizontal_pad), mode='constant')\n", (4625, 4683), True, 'import numpy as np\n'), ((5094, 5162), 'populationevolution.Population', 'popev.Population', (['f_inv', 'mu_min2', 'N_start', 'delta_f', 'M', '(0)', '(0)', 'P_mu', 'K'], {}), '(f_inv, mu_min2, N_start, delta_f, M, 0, 0, P_mu, K)\n', (5110, 5162), True, 'import populationevolution as popev\n'), ((5891, 5921), 'SweepApproximationFunctions.fixation_probability', 'SAF.fixation_probability', (['K', 's'], {}), '(K, s)\n', (5915, 5921), True, 'import SweepApproximationFunctions as SAF\n'), ((7664, 7683), 'numpy.asarray', 'np.asarray', (['inarray'], {}), '(inarray)\n', (7674, 7683), True, 'import numpy as np\n'), ((9404, 9431), 'numpy.unique', 'np.unique', (['f_mu_pairs[:, 0]'], {}), '(f_mu_pairs[:, 0])\n', (9413, 9431), True, 'import numpy as np\n'), ((9489, 9516), 'numpy.unique', 'np.unique', (['f_mu_pairs[:, 1]'], {}), '(f_mu_pairs[:, 1])\n', (9498, 9516), True, 'import numpy as np\n'), ((11756, 11803), 'numpy.zeros', 'np.zeros', (['(mus.size, mus.size)'], {'dtype': '"""float64"""'}), "((mus.size, mus.size), dtype='float64')\n", (11764, 11803), True, 'import numpy as np\n'), ((411, 426), 'numpy.sum', 'np.sum', (['N_start'], {}), '(N_start)\n', (417, 426), True, 'import numpy as np\n'), ((1110, 1178), 'numpy.geomspace', 'np.geomspace', (['mu_min', '(mu_min * M ** (new_shape[1] - 1))', 'new_shape[1]'], {}), '(mu_min, mu_min * M ** (new_shape[1] - 1), new_shape[1])\n', (1122, 1178), True, 'import numpy as np\n'), ((1916, 1959), 'numpy.allclose', 'np.allclose', (['pop_mut_padded', 'mu_list_padded'], {}), '(pop_mut_padded, mu_list_padded)\n', (1927, 1959), True, 'import numpy as np\n'), ((4284, 4299), 'numpy.sum', 'np.sum', (['N_start'], {}), '(N_start)\n', (4290, 4299), True, 'import numpy as np\n'), ((6128, 6184), 'numpy.maximum', 'np.maximum', (['(100 * (1 - exp_fix_prob) / exp_fix_prob)', '(100)'], {}), '(100 * (1 - exp_fix_prob) / exp_fix_prob, 100)\n', (6138, 6184), True, 'import numpy as np\n'), ((8250, 8272), 'numpy.all', 'np.all', (['(curr == nexnex)'], {}), '(curr == nexnex)\n', (8256, 8272), True, 'import numpy as np\n'), ((8519, 8539), 'numpy.array', 'np.array', (['fmus_fused'], {}), '(fmus_fused)\n', (8527, 8539), True, 'import numpy as np\n'), ((8541, 8561), 'numpy.array', 'np.array', (['taus_fused'], {}), '(taus_fused)\n', (8549, 8561), True, 'import numpy as np\n'), ((9609, 9633), 'copy.deepcopy', 'copy.deepcopy', (['wts_by_mu'], {}), '(wts_by_mu)\n', (9622, 9633), False, 'import copy\n'), ((9663, 9687), 'copy.deepcopy', 'copy.deepcopy', (['wts_by_mu'], {}), '(wts_by_mu)\n', (9676, 9687), False, 'import copy\n'), ((9698, 9722), 'copy.deepcopy', 'copy.deepcopy', (['wts_by_mu'], {}), '(wts_by_mu)\n', (9711, 9722), False, 'import copy\n'), ((9751, 9775), 'copy.deepcopy', 'copy.deepcopy', (['wts_by_mu'], {}), '(wts_by_mu)\n', (9764, 9775), False, 'import copy\n'), ((9806, 9830), 'copy.deepcopy', 'copy.deepcopy', (['wts_by_mu'], {}), '(wts_by_mu)\n', (9819, 9830), False, 'import copy\n'), ((2916, 2951), 'numpy.arange', 'np.arange', (['(1)', '(delta_Ns.shape[0] + 1)'], {}), '(1, delta_Ns.shape[0] + 1)\n', (2925, 2951), True, 'import numpy as np\n'), ((4438, 4457), 'numpy.abs', 'np.abs', (['inv_mu_step'], {}), '(inv_mu_step)\n', (4444, 4457), True, 'import numpy as np\n'), ((4697, 4723), 'numpy.maximum', 'np.maximum', (['(0)', 'inv_mu_step'], {}), '(0, inv_mu_step)\n', (4707, 4723), True, 'import numpy as np\n'), ((5209, 5249), 'SweepApproximationFunctions.findNeq', 'SAF.findNeq', (['mu_inv', 'delta_f', 'M', 'P_mu', 'K'], {}), '(mu_inv, delta_f, M, P_mu, K)\n', (5220, 5249), True, 'import SweepApproximationFunctions as SAF\n'), ((7838, 7869), 'numpy.logical_or', 'np.logical_or', (['x[:, 0]', 'x[:, 1]'], {}), '(x[:, 0], x[:, 1])\n', (7851, 7869), True, 'import numpy as np\n'), ((9463, 9476), 'numpy.unique', 'np.unique', (['fs'], {}), '(fs)\n', (9472, 9476), True, 'import numpy as np\n'), ((10047, 10070), 'numpy.isclose', 'np.isclose', (['mu', 'mu_next'], {}), '(mu, mu_next)\n', (10057, 10070), True, 'import numpy as np\n'), ((10075, 10106), 'numpy.isclose', 'np.isclose', (['(f + delta_f)', 'f_next'], {}), '(f + delta_f, f_next)\n', (10085, 10106), True, 'import numpy as np\n'), ((1693, 1707), 'numpy.arange', 'np.arange', (['mus'], {}), '(mus)\n', (1702, 1707), True, 'import numpy as np\n'), ((1887, 1901), 'numpy.arange', 'np.arange', (['mus'], {}), '(mus)\n', (1896, 1901), True, 'import numpy as np\n'), ((3847, 3877), 'SweepApproximationFunctions.fixation_probability', 'SAF.fixation_probability', (['K', 's'], {}), '(K, s)\n', (3871, 3877), True, 'import SweepApproximationFunctions as SAF\n'), ((7890, 7901), 'numpy.where', 'np.where', (['y'], {}), '(y)\n', (7898, 7901), True, 'import numpy as np\n'), ((7928, 7944), 'numpy.append', 'np.append', (['(-1)', 'i'], {}), '(-1, i)\n', (7937, 7944), True, 'import numpy as np\n'), ((9941, 9960), 'numpy.where', 'np.where', (['(mu == mus)'], {}), '(mu == mus)\n', (9949, 9960), True, 'import numpy as np\n'), ((10180, 10207), 'numpy.isclose', 'np.isclose', (['(mu / M)', 'mu_next'], {}), '(mu / M, mu_next)\n', (10190, 10207), True, 'import numpy as np\n'), ((10210, 10231), 'numpy.isclose', 'np.isclose', (['f', 'f_next'], {}), '(f, f_next)\n', (10220, 10231), True, 'import numpy as np\n'), ((11124, 11135), 'numpy.sum', 'np.sum', (['wts'], {}), '(wts)\n', (11130, 11135), True, 'import numpy as np\n'), ((2992, 3019), 'numpy.cumsum', 'np.cumsum', (['delta_Ns'], {'axis': '(0)'}), '(delta_Ns, axis=0)\n', (3001, 3019), True, 'import numpy as np\n'), ((10308, 10335), 'numpy.isclose', 'np.isclose', (['(M * mu)', 'mu_next'], {}), '(M * mu, mu_next)\n', (10318, 10335), True, 'import numpy as np\n'), ((10338, 10369), 'numpy.isclose', 'np.isclose', (['(f + delta_f)', 'f_next'], {}), '(f + delta_f, f_next)\n', (10348, 10369), True, 'import numpy as np\n'), ((10444, 10476), 'numpy.isclose', 'np.isclose', (['(M ** 2 * mu)', 'mu_next'], {}), '(M ** 2 * mu, mu_next)\n', (10454, 10476), True, 'import numpy as np\n'), ((10477, 10508), 'numpy.isclose', 'np.isclose', (['(f + delta_f)', 'f_next'], {}), '(f + delta_f, f_next)\n', (10487, 10508), True, 'import numpy as np\n')]
import os import csv from argparse import ArgumentParser import numpy as np import torch from torchvision import transforms from assets.inference import classify from assets.mtdp import build_model from assets.mtdp.components import Head from assets.mtdp.networks import SingleHead from svm_classifier_train import group_per_slide, compute_challenge_score from sklearn.metrics import accuracy_score, confusion_matrix, roc_auc_score from sklearn.model_selection import train_test_split def write_submission(preds): with open("submission.csv", "w+") as file: file.write("filename,0,1,2,3\n") for filename, pred_cls in preds.items(): file.write(os.path.basename(filename) + "," + ",".join([str(int(pred_cls == cls)) for cls in range(4)]) + "\n") def read_test_files(): with open("data/test_metadata.csv", "r") as file: reader = csv.reader(file, delimiter=',') next(reader) filenames = list() for row in reader: filenames.append(row[0]) return filenames def main(argv): parser = ArgumentParser() parser.add_argument("-f", "--model_filename", dest="model_filename") parser.add_argument("-d", "--device", dest="device", default="cuda:0") parser.add_argument("-j", "--n_jobs", dest="n_jobs", default=5, type=int) parser.add_argument("-a", "--architecture", dest="architecture", default="resnet50") parser.add_argument("-s", "--tile_size", dest="tile_size", default=512, type=int) parser.add_argument("-o", "--overlap", dest="overlap", default=0, type=int) parser.add_argument("-z", "--zoom_level", dest="zoom_level", default=0, type=int) parser.add_argument("-b", "--batch_size", dest="batch_size", default=32, type=int) parser.add_argument("-i", "--image_path", dest="image_path", default=".") parser.add_argument("-m", "--metadata_path", dest="metadata_path", default=".") parser.add_argument("-l", "--model_path", dest="model_path", default=".") args, _ = parser.parse_known_args(argv) slidenames, slide2annots, slide2cls = group_per_slide(args.metadata_path) N_CLASSES = 4 ZOOM_LEVEL = args.zoom_level TILE_SIZE = args.tile_size TILE_OVERLAP = args.overlap BATCH_SIZE = args.batch_size ARCH = args.architecture MODEL_PATH = os.path.join(args.model_path, args.model_filename) trans = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # ImageNet stats ]) device = torch.device(args.device) state_dict = torch.load(MODEL_PATH, map_location=device) features = build_model(arch=ARCH, pretrained=False, pool=True) model = SingleHead(features, Head(features.n_features(), n_classes=4)) model.load_state_dict(state_dict) model.eval() model.to(device) y_pred, y_true = list(), list() print("{} slide(s) to process".format(len(slidenames))) probas, tiles, filenames = list(), list(), list() for i, filename in enumerate(slidenames): slide_path = os.path.join(args.image_path, filename) print("--- {} ---".format(slide_path)) try: with torch.no_grad(): cls_dict, slide_tiles, slide_probas = classify( slide_path=slide_path, model=model, device=device, transform=trans, batch_size=BATCH_SIZE, tile_size=TILE_SIZE, tile_overlap=TILE_OVERLAP, num_workers=args.n_jobs - 1, zoom_level=ZOOM_LEVEL, n_classes=N_CLASSES ) probas.append(slide_probas) tiles.extend(slide_tiles) filenames.extend([filename for _ in range(len(slide_tiles))]) except Exception as e: print("/!\\ error during prediction {}".format(str(e))) print("/!\\ ... predicting 0") probas.append([1., 0., 0., 0.]) tiles.extend([]) filenames.append(filename) print("-> {:3.2f}% - {} / {}".format(100 * (i + 1) / len(slidenames), i + 1, len(slidenames))) probas = np.vstack(probas) return { "probas": probas, "filenames": filenames, "tiles": [(tile.abs_offset_x, tile.abs_offset_y, tile.height, tile.width) for tile in tiles] } # print() # print("slide: ") # val_slide_acc = accuracy_score(y_true, y_pred) # val_slide_score = compute_challenge_score(y_true, y_pred) # val_slide_cm = confusion_matrix(y_true, y_pred) # print("> slide acc: ", val_slide_acc) # print("> slide sco: ", val_slide_score) # print("> slide cm : ") # print(val_slide_cm) if __name__ == "__main__": import sys returned = main(sys.argv[1:]) np.save("final_probas.npy", returned["probas"]) np.save("final_filenames.npy", np.array(returned["filenames"])) np.save("final_tiles.npy", np.array(returned["tiles"]))
[ "svm_classifier_train.group_per_slide", "assets.mtdp.build_model", "numpy.save", "csv.reader", "argparse.ArgumentParser", "os.path.basename", "torch.load", "assets.inference.classify", "numpy.array", "torch.device", "torchvision.transforms.Normalize", "torch.no_grad", "os.path.join", "numpy.vstack", "torchvision.transforms.ToTensor" ]
[((1075, 1091), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (1089, 1091), False, 'from argparse import ArgumentParser\n'), ((2073, 2108), 'svm_classifier_train.group_per_slide', 'group_per_slide', (['args.metadata_path'], {}), '(args.metadata_path)\n', (2088, 2108), False, 'from svm_classifier_train import group_per_slide, compute_challenge_score\n'), ((2303, 2353), 'os.path.join', 'os.path.join', (['args.model_path', 'args.model_filename'], {}), '(args.model_path, args.model_filename)\n', (2315, 2353), False, 'import os\n'), ((2542, 2567), 'torch.device', 'torch.device', (['args.device'], {}), '(args.device)\n', (2554, 2567), False, 'import torch\n'), ((2585, 2628), 'torch.load', 'torch.load', (['MODEL_PATH'], {'map_location': 'device'}), '(MODEL_PATH, map_location=device)\n', (2595, 2628), False, 'import torch\n'), ((2644, 2695), 'assets.mtdp.build_model', 'build_model', ([], {'arch': 'ARCH', 'pretrained': '(False)', 'pool': '(True)'}), '(arch=ARCH, pretrained=False, pool=True)\n', (2655, 2695), False, 'from assets.mtdp import build_model\n'), ((4228, 4245), 'numpy.vstack', 'np.vstack', (['probas'], {}), '(probas)\n', (4237, 4245), True, 'import numpy as np\n'), ((4861, 4908), 'numpy.save', 'np.save', (['"""final_probas.npy"""', "returned['probas']"], {}), "('final_probas.npy', returned['probas'])\n", (4868, 4908), True, 'import numpy as np\n'), ((875, 906), 'csv.reader', 'csv.reader', (['file'], {'delimiter': '""","""'}), "(file, delimiter=',')\n", (885, 906), False, 'import csv\n'), ((3065, 3104), 'os.path.join', 'os.path.join', (['args.image_path', 'filename'], {}), '(args.image_path, filename)\n', (3077, 3104), False, 'import os\n'), ((4944, 4975), 'numpy.array', 'np.array', (["returned['filenames']"], {}), "(returned['filenames'])\n", (4952, 4975), True, 'import numpy as np\n'), ((5008, 5035), 'numpy.array', 'np.array', (["returned['tiles']"], {}), "(returned['tiles'])\n", (5016, 5035), True, 'import numpy as np\n'), ((2396, 2417), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2415, 2417), False, 'from torchvision import transforms\n'), ((2427, 2502), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n', (2447, 2502), False, 'from torchvision import transforms\n'), ((3182, 3197), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3195, 3197), False, 'import torch\n'), ((3253, 3481), 'assets.inference.classify', 'classify', ([], {'slide_path': 'slide_path', 'model': 'model', 'device': 'device', 'transform': 'trans', 'batch_size': 'BATCH_SIZE', 'tile_size': 'TILE_SIZE', 'tile_overlap': 'TILE_OVERLAP', 'num_workers': '(args.n_jobs - 1)', 'zoom_level': 'ZOOM_LEVEL', 'n_classes': 'N_CLASSES'}), '(slide_path=slide_path, model=model, device=device, transform=trans,\n batch_size=BATCH_SIZE, tile_size=TILE_SIZE, tile_overlap=TILE_OVERLAP,\n num_workers=args.n_jobs - 1, zoom_level=ZOOM_LEVEL, n_classes=N_CLASSES)\n', (3261, 3481), False, 'from assets.inference import classify\n'), ((678, 704), 'os.path.basename', 'os.path.basename', (['filename'], {}), '(filename)\n', (694, 704), False, 'import os\n')]
import PSICT_UIF import numpy as np import os import sys import Labber from PSICT_extras.PSICT_MultiPulse.PSICT_MultiPulse_tools import writePulseDefs, writePulseSeqs ## Create pulse definitions (list of dicts) pulse_defs = [] ## qubit pulse_defs.append({'a': 0.3, 'w': 60e-9, 'v': 0e-9, 's': 60e-9, 'f': 90e6, 'o': 2, 'p': 0, 'DRAG': 20e-9}) ## magnon pulse_defs.append({'a': 0.5, 'w': 85e-9, 'v': 0e-9, 's': 85e-9, 'f': 60e6, 'o': 3, 'p': 0, 'DRAG': 30e-9}) ## dead pulse_defs.append({'a': 0.0, 'w': 0e-9, 'v': 40e-9, 's': 0e-9, 'f': 0e6, 'o': 4, 'p': 0}) ## trigger pulse_defs.append({'a': 1.5, 'w': 0e-9, 'v': 20e-9, 's': 0e-9, 'f': 0e6, 'o': 4, 'p': 0}) ## readout pulse_defs.append({'a': 0.64, 'w': 0e-9, 'v': 400e-9, 's': 0e-9, 'f': 85e6, 'o': 1, 'p': 90, 'fix_phase': 1}) ## qubit pulse_defs.append({'a': 0.3, 'w': 60e-9, 'v': 0e-9, 's': 60e-9, 'f': 90e6, 'o': 2, 'p': 0, 'DRAG': 0}) ## magnon pulse_defs.append({'a': 0.5, 'w': 85e-9, 'v': 0e-9, 's': 85e-9, 'f': 60e6, 'o': 3, 'p': 0, 'DRAG': 0}) ## Set key order pulse_def_key_order = ['a', 'w', 'v', 's', 'f', 'p', 'o', 'DRAG', 'fix_phase'] ## Write to file pulse_def_path = os.path.abspath('definitions_002.txt') writePulseDefs(pulse_def_path, pulse_defs, pulse_def_key_order) print('Pulse definitions written to file: {}'.format(pulse_def_path)) ## Generate list of lists of pulse sequences pulse_seqs = [] pulse_seqs.append(np.array([2,2,0,3,4])) pulse_seqs.append(np.array([2,2,5,3,4])) pulse_seqs.append(np.array([2,2,1,3,4])) pulse_seqs.append(np.array([2,2,6,3,4])) n_pulse_seqs = len(pulse_seqs) ## Write to file pulse_seq_path = os.path.abspath('sequence_002.txt') writePulseSeqs(pulse_seq_path, pulse_seqs) print('Pulse sequences written to file: {}'.format(pulse_seq_path)) ############################################################################## ## Do not change the script structure beyond this point! pulse_sequence = 'MultiPulse-Test01' slave_PSICT_options = { 'running_as_slave': True, 'config_path': '../PSICT_config.py', ## Set template file directory and name 'template_dir': 'C:/Users/Pierre/Google Drive/Quantum magnonics/Data/Reference_files/', 'template_file': 'MultiPulse_test02', ## Set output file directory and name (where result will be saved) 'output_dir': 'C:/Users/Pierre/Google Drive/Quantum magnonics/Data/2019/01/Data_0101', 'output_file': 'MultiPulse_test_0074', ## Script copy options 'script_copy_target_dir': 'C:/Users/Pierre/Google Drive/Quantum magnonics/Data/Measurement_scripts/MultiPulse/', } slave_general_options = { 'sideband': -1, # IF frequency in Hz of the readout square pulse 'readout_IF_frequency': 90e6, # Power in dBm of the local oscillator used for readout (LO1) 'readout_LO_power': 19, # Optimal target frequency in Hz of the readout square pulse 'readout_frequency_opt': 8.412050e9, # Optimal amplitude in V of the readout square pulse 'readout_amplitude_opt': 0.23, # ''Optimal'' duration in seconds of the readout square pulse 'readout_plateau_opt': 400e-9, # IF frequency in Hz of the qubit control pulse 'qubit_IF_frequency': 95e6, # Power in dBm of the local oscillator used for qubit control (LO2) 'qubit_LO_power': 16, # Target control frequency in Hz of the qubit control gaussian pulse 'qubit_frequency_opt': 7.924759e9, # IF frequency in Hz of the magnon control pulse 'magnon_IF_frequency': 115e6, # Power in dBm of the local oscillator used for qubit control (LO3) 'magnon_LO_power': 16, # Target control frequency in Hz of the qubit control gaussian pulse 'magnon_frequency_opt': 7.787615e9, ## Parameters for pi pulses 'qubit_width_pi': 12e-9, ## Gaussian pulses 'qubit_amplitude_pi_dict': {12e-9: 1.109358, 200e-9: 0.073707, }, #1.068168, }, ## Lambda values for different pi-pulse durations 'lambda_dict': {}, ## Square pulses 'qubit_plateau_pi': 0e-9, ## General settings for pulse sequences # Truncation range for gaussian pulses according to the definition of the 'Single-qubit pulse generator' 'SQPG_truncation_range': 3, # Sampling rate in samples/second for the pulse sequence/AWG 'SQPG_sampling_rate': 1e09, # Duration in seconds of the pulse sequence 'SQPG_sequence_duration': 4000e-9, ## General settings for the digitizer # Number of repetitions (shots) averaged at the digitizer, 1: single-shot 'N_shots': 1e04, # Length in seconds of the measured time trace 'digitizer_length': 600e-9, # Sampling rate in samples/second of the digitizer 'digitizer_sampling_rate': 5e08, ## General setting for the demodulation # Time in seconds to start the demodulation, takes into account the delay before the readout pulse arrive 'demodulation_skip_start': 200e-9, # Length in seconds of the demodulation, should be close to readout_plateau, and at maximum digitizer_length 'demodulation_length': 400e-9, # Current in amperes for the coil 'current': -7.97e-3, } slave_pulse_sequence_options = { 'MultiPulse-Test01': { 'Number of points': 5E3, 'First pulse delay': 100e-9, 'Generate from final pulse': 0, 'Final pulse time': 3e-6, 'pulse_def_path': pulse_def_path, 'pulse_seq_path': pulse_seq_path, },## } ## SCRIPT COPY BREAKPOINT def run_pulse_sequence(pulse_sequence_name, PSICT_options, general_options, pulse_sequence_options_all, *, verbose = 0): ''' Run the pulse sequence specified by pulse_sequence_name. Options passed in via parameter dicts. ''' pulse_sequence = pulse_sequence_name pulse_sequence_options = pulse_sequence_options_all[pulse_sequence] ############################################################################# ## PSICT and directory setup print('-------------------------------------------') print('==>', pulse_sequence) print('PSICT_UIF version is', PSICT_UIF.__version__) ## Initialise PSICT-UIF interface object psictInterface = PSICT_UIF.psictUIFInterface(verbose = 0) psictInterface.is_slave = PSICT_options['running_as_slave'] ## Set file paths config_path = PSICT_options['config_path'] template_dir = PSICT_options['template_dir'] template_file = PSICT_options['template_file'] output_dir = PSICT_options['output_dir'] output_file = PSICT_options['output_file'] script_copy_target_dir = PSICT_options['script_copy_target_dir'] psictInterface.load_config_file(config_path, verbose = 0) psictInterface.set_template_file(template_dir, template_file, verbose = 0) psictInterface.set_output_file(output_dir, output_file, verbose = 1) psictInterface.set_script_copy_target_dir(script_copy_target_dir, verbose = 0) ############################################################################# ## General options ## Converting dictionary-defined parameters to variables ## This has the beneficial side effect of ensuring each of these parameters ## exists in the options dict passed to the function sideband = general_options['sideband'] readout_IF_frequency = general_options['readout_IF_frequency'] readout_LO_power = general_options['readout_LO_power'] readout_frequency_opt = general_options['readout_frequency_opt'] readout_amplitude_opt = general_options['readout_amplitude_opt'] readout_plateau_opt = general_options['readout_plateau_opt'] qubit_IF_frequency = general_options['qubit_IF_frequency'] qubit_LO_power = general_options['qubit_LO_power'] qubit_frequency_opt = general_options['qubit_frequency_opt'] magnon_IF_frequency = general_options['magnon_IF_frequency'] magnon_LO_power = general_options['magnon_LO_power'] magnon_frequency_opt = general_options['magnon_frequency_opt'] qubit_width_pi = general_options['qubit_width_pi'] qubit_amplitude_pi_dict = general_options['qubit_amplitude_pi_dict'] qubit_amplitude_pi = qubit_amplitude_pi_dict[qubit_width_pi] lambda_dict = general_options['lambda_dict'] qubit_plateau_pi = general_options['qubit_plateau_pi'] SQPG_truncation_range = general_options['SQPG_truncation_range'] SQPG_sampling_rate = general_options['SQPG_sampling_rate'] SQPG_sequence_duration = general_options['SQPG_sequence_duration'] N_shots = general_options['N_shots'] digitizer_length = general_options['digitizer_length'] digitizer_sampling_rate = general_options['digitizer_sampling_rate'] demodulation_skip_start = general_options['demodulation_skip_start'] demodulation_length = general_options['demodulation_length'] current = general_options['current'] ############################################################################# ## Pulse sequences if pulse_sequence == 'MultiPulse-Test01': # Target frequency in Hz of the readout square pulse readout_frequency = readout_frequency_opt # Amplitude in V of the readout square pulse readout_amplitude = readout_amplitude_opt # Duration in seconds of the readout square pulse readout_plateau = readout_plateau_opt # Target control frequency in Hz of the qubit control gaussian pulse qubit_frequency = qubit_frequency_opt # Amplitude in V of the qubit control gaussian pulse qubit_amplitude = qubit_amplitude_pi # Width in seconds of the qubit control gaussian pulse qubit_width = qubit_width_pi # Target control frequency in Hz of the magnon control gaussian pulse magnon_frequency = magnon_frequency_opt point_values = { 'MultiPulse': { 'Number of points': pulse_sequence_options['Number of points'], 'First pulse delay': pulse_sequence_options['First pulse delay'], 'Generate from final pulse': pulse_sequence_options['Generate from final pulse'], 'Final pulse time': pulse_sequence_options['Final pulse time'], }, # end MultiPulse } # end point values Labber_api_client_values = { 'MultiPulse': { }, # end MultiPulse } # end api client values instr_config_values = { 'MultiPulse': { 'Pulse definitions file': pulse_sequence_options['pulse_def_path'], 'Pulse sequences file': pulse_sequence_options['pulse_seq_path'], }, # end MultiPulse } # end instr_config_values Labber_api_hardware_names = {'MultiPulse': 'PSICT MultiPulse'} iteration_values = { 'MultiPulse': {'Pulse sequence counter': [0, n_pulse_seqs - 1, n_pulse_seqs]}, } iteration_order = [ ('MultiPulse', 'Pulse sequence counter'), ] # end iteration order # end reference ## Channel relations - set available quantities (could be outsourced to rcfile?) channel_defs = { } # end relation channels channel_relations = { } # end channel relations ## end Qubit_Ramsey ############################################################################# ## Set parameters & measure ############################################################################# ## Set input parameter values psictInterface.set_point_values(point_values, verbose = 0) psictInterface.set_api_client_values(Labber_api_client_values, \ hardware_names = Labber_api_hardware_names, server_name = 'localhost', verbose = 0) psictInterface.set_instr_config_values(instr_config_values, \ hardware_names = Labber_api_hardware_names, server_name = 'localhost', \ verbose = 0) psictInterface.set_iteration_values(iteration_values, iteration_order, verbose = 1) psictInterface.set_channel_relations(channel_defs, channel_relations, verbose = 0) ## Run measurement psictInterface.perform_measurement(dry_run = False, verbose = 1) return psictInterface.fileManager.output_path ## if __name__ == '__main__': ## This block will only be executed if the slave is run explicitly as a standalone script # print('Running as a standalone script...') slave_PSICT_options['running_as_slave'] = False run_pulse_sequence(pulse_sequence, slave_PSICT_options, slave_general_options, slave_pulse_sequence_options, verbose = 1) else: ## This block will only be run when the slave is imported (ie 'run' through a master script) # print('Running as slave script...') slave_PSICT_options['running_as_slave'] = True ##
[ "os.path.abspath", "numpy.array", "PSICT_UIF.psictUIFInterface", "PSICT_extras.PSICT_MultiPulse.PSICT_MultiPulse_tools.writePulseSeqs", "PSICT_extras.PSICT_MultiPulse.PSICT_MultiPulse_tools.writePulseDefs" ]
[((1138, 1176), 'os.path.abspath', 'os.path.abspath', (['"""definitions_002.txt"""'], {}), "('definitions_002.txt')\n", (1153, 1176), False, 'import os\n'), ((1177, 1240), 'PSICT_extras.PSICT_MultiPulse.PSICT_MultiPulse_tools.writePulseDefs', 'writePulseDefs', (['pulse_def_path', 'pulse_defs', 'pulse_def_key_order'], {}), '(pulse_def_path, pulse_defs, pulse_def_key_order)\n', (1191, 1240), False, 'from PSICT_extras.PSICT_MultiPulse.PSICT_MultiPulse_tools import writePulseDefs, writePulseSeqs\n'), ((1602, 1637), 'os.path.abspath', 'os.path.abspath', (['"""sequence_002.txt"""'], {}), "('sequence_002.txt')\n", (1617, 1637), False, 'import os\n'), ((1638, 1680), 'PSICT_extras.PSICT_MultiPulse.PSICT_MultiPulse_tools.writePulseSeqs', 'writePulseSeqs', (['pulse_seq_path', 'pulse_seqs'], {}), '(pulse_seq_path, pulse_seqs)\n', (1652, 1680), False, 'from PSICT_extras.PSICT_MultiPulse.PSICT_MultiPulse_tools import writePulseDefs, writePulseSeqs\n'), ((1391, 1416), 'numpy.array', 'np.array', (['[2, 2, 0, 3, 4]'], {}), '([2, 2, 0, 3, 4])\n', (1399, 1416), True, 'import numpy as np\n'), ((1432, 1457), 'numpy.array', 'np.array', (['[2, 2, 5, 3, 4]'], {}), '([2, 2, 5, 3, 4])\n', (1440, 1457), True, 'import numpy as np\n'), ((1473, 1498), 'numpy.array', 'np.array', (['[2, 2, 1, 3, 4]'], {}), '([2, 2, 1, 3, 4])\n', (1481, 1498), True, 'import numpy as np\n'), ((1514, 1539), 'numpy.array', 'np.array', (['[2, 2, 6, 3, 4]'], {}), '([2, 2, 6, 3, 4])\n', (1522, 1539), True, 'import numpy as np\n'), ((5816, 5854), 'PSICT_UIF.psictUIFInterface', 'PSICT_UIF.psictUIFInterface', ([], {'verbose': '(0)'}), '(verbose=0)\n', (5843, 5854), False, 'import PSICT_UIF\n')]
import numpy as np # flattening two_dim_array = np.array([[1, 2, 3], [4, 5, 6]]) """ array([[1, 2, 3], [4, 5, 6]]) """ # convert 2Dim to 1Dim two_dim_array.ravel() # array([1, 2, 3, 4, 5, 6]) # transpose two_dim_array.T """ array([[1, 4], [2, 5], [3, 6]]) """ # re-shaping one_dim_array = two_dim_array.ravel() # array([1, 2, 3, 4, 5, 6]) two_dim_array = one_dim_array.reshape((2,3)) """ array([[1, 2, 3], [4, 5, 6]]) """ # assign value two_dim_array[0,1] = 500 """ array([[ 1, 500, 3], [ 4, 5, 6]]) """
[ "numpy.array" ]
[((52, 84), 'numpy.array', 'np.array', (['[[1, 2, 3], [4, 5, 6]]'], {}), '([[1, 2, 3], [4, 5, 6]])\n', (60, 84), True, 'import numpy as np\n')]
""" Module provides telemetry services. """ import collections import numpy class Telemetry: """ Calculates object movement parameters like velocity, acceleration. Additionally the class provides service to predict further position of the object using velocity and acceleration. """ _position_length = 4 def __init__(self): """ Initializes telemetry instance. """ self._positions = collections.deque() self._pos_prev = 0 self._pos_cur = 0 self._velocity = 0 def __str__(self): """ :return: String representation of a telemetry of an object. """ return "v: '%.1f'" % self._velocity def update(self, position): """ Calculates current state the object. :param: position: distance change (difference). """ self._positions.appendleft(position) if len(self._positions) > Telemetry._position_length: self._positions.pop() ds = numpy.diff(self._positions) self._pos_prev = self._pos_cur self._pos_cur = position #self._velocity = self._pos_cur - self._pos_prev self._velocity = int(numpy.sum(ds) / 2) def get_velocity(self): """ :return: Velocity of an object that is tracked by this telemetry instance. It may return '0' if there is no enough data (distance changes) - common situation at the begging. """ return self._velocity def predict_position(self): """ Calculates next position of an object. :return: Predicted position of an object. """ #print("Current position: %d, Velocity: %d -> Next position: %d" % (self._pos_cur, self._velocity, self._pos_cur + self._velocity)) return self._pos_cur + self._velocity
[ "numpy.diff", "numpy.sum", "collections.deque" ]
[((467, 486), 'collections.deque', 'collections.deque', ([], {}), '()\n', (484, 486), False, 'import collections\n'), ((1062, 1089), 'numpy.diff', 'numpy.diff', (['self._positions'], {}), '(self._positions)\n', (1072, 1089), False, 'import numpy\n'), ((1256, 1269), 'numpy.sum', 'numpy.sum', (['ds'], {}), '(ds)\n', (1265, 1269), False, 'import numpy\n')]
import datetime as dt import glob import os import pickle import time # for start stop calc from threading import Thread import numpy as np import torch import torch.utils.data as data from deeplio.common import utils, logger from deeplio.common.laserscan import LaserScan class KittiRawData: """ KiitiRawData more or less same as pykitti with some application specific changes """ SEQ_NUM = { "2011_10_03_0027": 0, "2011_10_03_0042": 1, "2011_10_03_0034": 2, "2011_09_30_0016": 4, "2011_09_30_0018": 5, "2011_09_30_0020": 6, "2011_09_30_0027": 7, "2011_09_30_0028": 8, "2011_09_30_0033": 9, "2011_09_30_0034": 10, } def __init__(self, base_path_sync, base_path_unsync, date, drive, cfg=None, oxts_bin=False, oxts_txt=False, max_points=150000, **kwargs): self.drive = drive self.date = date self.seq_nr = self.SEQ_NUM['{}_{}'.format(self.date, self.drive)] self.dataset_sync = 'sync' self.dataset_unsync = 'extract' self.drive_full_sync = date + '_drive_' + drive + '_' + self.dataset_sync self.drive_full_unsync = date + '_drive_' + drive + '_' + self.dataset_unsync self.calib_path = os.path.join(base_path_sync, date) self.data_path_sync = os.path.join(base_path_sync, date, self.drive_full_sync) self.data_path_unsync = os.path.join(base_path_unsync, date, self.drive_full_unsync) self.frames = kwargs.get('frames', None) self.max_points = max_points if cfg is not None: ds_config = cfg['kitti'] self.image_width = ds_config.get('image-width', 1024) self.image_height = ds_config.get('image-height', 64) self.fov_up = ds_config.get('fov-up', 3) self.fov_down = ds_config.get('fov-down', -25) self.max_depth = ds_config.get('max-depth', 80) self.min_depth = ds_config.get('min-depth', 2) # Find all the data files self._get_velo_files() #self._load_calib() self._load_timestamps() # Give priority to binary files, sicne they are laoded much faster if oxts_bin: self._load_oxts_bin() elif oxts_txt: self._get_oxt_files() self._load_oxts() self.imu_get_counter = 0 def __len__(self): return len(self.velo_files) def get_velo(self, idx): """Read velodyne [x,y,z,reflectance] scan at the specified index.""" return utils.load_velo_scan(self.velo_files[idx]) def get_velo_image(self, idx): scan = LaserScan(project=False, H=self.image_height, W=self.image_width, fov_up=self.fov_up, fov_down=self.fov_down, min_depth=self.min_depth, max_depth=self.max_depth) scan.open_scan(self.velo_files[idx]) scan.do_range_projection() scan.do_normal_projection() # get projected data proj_xyz = scan.proj_xyz / self.max_depth proj_remission = scan.proj_remission proj_range = scan.proj_range proj_normal = scan.proj_normal image = np.dstack((proj_xyz, proj_remission, proj_normal, proj_range)) return image def get_imu_values(self, idx): oxt = self.oxts_unsync[idx] imu_values = np.array([[oxt[0].ax, oxt[0].ay, oxt[0].az, oxt[0].wx, oxt[0].wy, oxt[0].wz] for oxt in oxt], dtype=np.float) return imu_values def _get_velo_files(self): # first try to get binary files self.velo_files = sorted(glob.glob( os.path.join(self.data_path_sync, 'velodyne_points', 'data', '*.bin'))) # if there is no bin files for velo, so the velo file are in text format if self.velo_files is None: self.velo_files = sorted(glob.glob( os.path.join(self.data_path_unsync, 'velodyne_points', 'data', '*.txt'))) # Subselect the chosen range of frames, if any if self.frames is not None: self.velo_files = utils.subselect_files( self.velo_files, self.frames) self.velo_files = np.asarray(self.velo_files) def _get_oxt_files(self): """Find and list data files for each sensor.""" self.oxts_files_sync = sorted(glob.glob( os.path.join(self.data_path_sync, 'oxts', 'data', '*.txt'))) if self.frames is not None: self.oxts_files_sync = utils.subselect_files( self.oxts_files_sync, self.frames) self.oxts_files_sync = np.asarray(self.oxts_files_sync) self.oxts_files_unsync = sorted(glob.glob( os.path.join(self.data_path_unsync, 'oxts', 'data', '*.txt'))) if self.frames is not None: self.oxts_files_unsync = utils.subselect_files( self.oxts_files_unsync, self.frames) self.oxts_files_unsync = np.asarray(self.oxts_files_unsync) def _load_calib_rigid(self, filename): """Read a rigid transform calibration file as a numpy.array.""" filepath = os.path.join(self.calib_path, filename) data = utils.read_calib_file(filepath) return utils.transform_from_rot_trans(data['R'], data['T']) def _load_calib(self): """Load and compute intrinsic and extrinsic calibration parameters.""" # We'll build the calibration parameters as a dictionary, then # convert it to a namedtuple to prevent it from being modified later data = {} # Load the rigid transformation from IMU to velodyne data['T_velo_imu'] = self._load_calib_rigid('calib_imu_to_velo.txt') def _load_timestamps(self): """Load timestamps from file.""" timestamp_file_unsync = os.path.join(self.data_path_unsync, 'oxts', 'timestamps.txt') timestamp_file_velo = os.path.join(self.data_path_sync, 'velodyne_points', 'timestamps.txt') timestamp_file_sync = os.path.join(self.data_path_sync, 'oxts', 'timestamps.txt') # Read and parse the timestamps self.timestamps_unsync = [] with open(timestamp_file_unsync, 'r') as f: for line in f.readlines(): # NB: datetime only supports microseconds, but KITTI timestamps # give nanoseconds, so need to truncate last 4 characters to # get rid of \n (counts as 1) and extra 3 digits t = dt.datetime.strptime(line[:-4], '%Y-%m-%d %H:%M:%S.%f') self.timestamps_unsync.append(t) self.timestamps_unsync = np.array(self.timestamps_unsync) # Read and parse the timestamps self.timestamps_velo = [] with open(timestamp_file_velo, 'r') as f: for line in f.readlines(): # NB: datetime only supports microseconds, but KITTI timestamps # give nanoseconds, so need to truncate last 4 characters to # get rid of \n (counts as 1) and extra 3 digits t = dt.datetime.strptime(line[:-4], '%Y-%m-%d %H:%M:%S.%f') self.timestamps_velo.append(t) self.timestamps_velo = np.array(self.timestamps_velo) # Read and parse the timestamps self.timestamps_sync = [] with open(timestamp_file_sync, 'r') as f: for line in f.readlines(): # NB: datetime only supports microseconds, but KITTI timestamps # give nanoseconds, so need to truncate last 4 characters to # get rid of \n (counts as 1) and extra 3 digits t = dt.datetime.strptime(line[:-4], '%Y-%m-%d %H:%M:%S.%f') self.timestamps_sync.append(t) self.timestamps_sync = np.array(self.timestamps_sync) def _load_oxts(self): """Load OXTS data from file.""" self.oxts_sync = np.array(utils.load_oxts_packets_and_poses(self.oxts_files_sync)) self.oxts_unsync = np.array(utils.load_oxts_packets_and_poses(self.oxts_files_unsync)) def _load_oxts_bin(self): oxts_file_sync = os.path.join(self.data_path_sync, 'oxts', 'data.pkl') with open(oxts_file_sync, 'rb') as f: self.oxts_sync = pickle.load(f) oxts_file_unsync = os.path.join(self.data_path_unsync, 'oxts', 'data.pkl') with open(oxts_file_unsync, 'rb') as f: self.oxts_unsync = pickle.load(f) def _load_oxts_lazy(self, indices): oxts = utils.load_oxts_packets_and_poses(self.oxts_files_sync[indices]) return oxts class Kitti(data.Dataset): # In unsynced KITTI raw dataset are some timestamp holes - i.g. 2011_10_03_27 # e.g. there is no corresponding IMU/GPS measurment to some velodyne frames, # We set the min. no. so we can check and ignore these holes. DEFAULT_NUM_OXT_SAMPLES = 15 def __init__(self, config, ds_type='train', transform=None, has_imu=True, has_lidar=True): """ :param root_path: :param config: Configuration file including split settings :param transform: """ ds_config_common = config['datasets'] ds_config = ds_config_common['kitti'] self._seq_size = ds_config_common['sequence-size'] # Increment because we need always one sample more self.internal_seq_size = self.seq_size + 1 self.inv_depth = ds_config.get('inverse-depth', False) self.mean_img = ds_config['mean-image'] self.std_img = ds_config['std-image'] self.mean_imu = ds_config['mean-imu'] self.std_imu = ds_config['std-imu'] self.channels = config['channels'] self.has_imu = has_imu self.has_lidar = has_lidar crop_factors = ds_config.get('crop-factors', [0, 0]) self.crop_top = crop_factors[0] self.crop_left = crop_factors[1] self.ds_type = ds_type self.transform = transform self.datasets = [] self.length_each_drive = [] self.bins = [] self.images = [None] * self.internal_seq_size root_path_sync = ds_config['root-path-sync'] root_path_unsync = ds_config['root-path-unsync'] # Since we are intrested in sequence of lidar frame - e.g. multiple frame at each iteration, # depending on the sequence size and the current wanted index coming from pytorch dataloader # we must switch between each drive if not enough frames exists in that specific drive wanted from dataloader, # therefor we separate valid indices in each drive in bins. last_bin_end = -1 for date, drives in ds_config[self.ds_type].items(): for drive in drives: date = str(date).replace('-', '_') drive = '{0:04d}'.format(drive) ds = KittiRawData(root_path_sync, root_path_unsync, date, drive, ds_config_common, oxts_bin=True) length = len(ds) bin_start = last_bin_end + 1 bin_end = bin_start + length - 1 self.bins.append([bin_start, bin_end]) last_bin_end = bin_end self.length_each_drive.append(length) self.datasets.append(ds) self.bins = np.asarray(self.bins) self.length_each_drive = np.array(self.length_each_drive) self.length = self.bins.flatten()[-1] + 1 self.logger = logger.get_app_logger() @property def seq_size(self): return self._seq_size @seq_size.setter def seq_size(self, size): self.seq_size = size self.internal_seq_size = size + 1 def load_ground_truth(self, dataset, indices): gts_alls = dataset.oxts_sync[indices] gts = [] for gt in gts_alls: T = gt[1] x = T[:3, 3].flatten() R = T[:3, :3].flatten() v = np.array([gt[0].vf, gt[0].vl, gt[0].vu]) gts.append(np.hstack((x, R, v))) return np.array(gts) def load_images(self, dataset, indices): threads = [None] * self.internal_seq_size for i in range(self.internal_seq_size): threads[i] = Thread(target=self.load_image, args=(dataset, indices[i], i)) threads[i].start() for i in range(self.internal_seq_size): threads[i].join() def load_image(self, dataset, ds_index, img_index): img = dataset.get_velo_image(ds_index) self.images[img_index] = img def load_imus(self, dataset, velo_timestamps): imus = [] valids = [] for i in range(self.internal_seq_size - 1): velo_start_ts = velo_timestamps[i] velo_stop_ts = velo_timestamps[i+1] mask = ((dataset.timestamps_unsync >= velo_start_ts) & (dataset.timestamps_unsync < velo_stop_ts)) oxt_indices = np.argwhere(mask).flatten() len_oxt = len(oxt_indices) if (len_oxt== 0): self.logger.debug("No OXT-samples: DS: {}_{}, len:{}, velo-timestamps: {}-{}". format(dataset.date, dataset.drive, len_oxt, velo_start_ts, velo_stop_ts)) imu_values = np.zeros((self.DEFAULT_NUM_OXT_SAMPLES, 6), dtype=np.float) valids.append(False) else: oxts = dataset.oxts_unsync[oxt_indices] imu_values = np.array([[oxt[0].ax, oxt[0].ay, oxt[0].az, oxt[0].wx, oxt[0].wy, oxt[0].wz] for oxt in oxts], dtype=np.float) imu_values = np.pad(imu_values, ((0, np.maximum(self.DEFAULT_NUM_OXT_SAMPLES - len_oxt, 0).astype(np.int)), (0, 0))) if self.DEFAULT_NUM_OXT_SAMPLES < len_oxt: imu_values = imu_values[0:self.DEFAULT_NUM_OXT_SAMPLES, :] valids.append(True) imus.append(imu_values) return imus, valids def transform_images(self): imgs_org = torch.stack([torch.from_numpy(im.transpose(2, 0, 1)) for im in self.images]) imgs_org = imgs_org[:, self.channels] ct, cl = self.crop_top, self.crop_left mean = torch.as_tensor(self.mean_img) std = torch.as_tensor(self.std_img) if ct > 0 and cl == 0: imgs_normalized = [torch.from_numpy(img[ct:-ct, :, :].transpose(2, 0, 1)) for img in self.images] elif ct > 0 and cl > 0: imgs_normalized = [torch.from_numpy(img[ct:-ct, cl:-cl, :].transpose(2, 0, 1)) for img in self.images] elif ct == 0 and cl > 0: imgs_normalized = [torch.from_numpy(img[:, cl:-cl, :].transpose(2, 0, 1)) for img in self.images] else: imgs_normalized = [torch.from_numpy(img.transpose(2, 0, 1)) for img in self.images] imgs_normalized = torch.stack(imgs_normalized) imgs_normalized.sub_(mean[None, :, None, None]) imgs_normalized = imgs_normalized[:, self.channels] return imgs_org, imgs_normalized def transform_imus(self, imus): imus_norm = [torch.from_numpy((imu - self.mean_imu) / self.std_imu).type(torch.float32) for imu in imus] return imus_norm def get_dataset_and_index(self, index): idx = -1 num_drive = -1 for i, bin in enumerate(self.bins): bin_start = bin[0] bin_end = bin[1] if bin_start <= index <= bin_end: idx = index - bin_start num_drive = i break if idx < 0 or num_drive < 0: self.logger.error("Error: No bins and no drive number found!") return None dataset = self.datasets[num_drive] # get frame indices len_ds = len(dataset) if idx <= len_ds - self.internal_seq_size: indices = list(range(idx, idx + self.internal_seq_size)) elif (len_ds - self.internal_seq_size) < idx < len_ds: indices = list(range(len_ds - self.internal_seq_size, len_ds)) else: self.logger.error("Wrong index ({}) in {}_{}".format(idx, dataset.date, dataset.drive)) raise Exception("Wrong index ({}) in {}_{}".format(idx, dataset.date, dataset.drive)) return dataset, indices def create_imu_data(self, dataset, indices, velo_timespamps): # load and transform imus imus, valids = self.load_imus(dataset, velo_timespamps) imus = torch.stack(self.transform_imus(imus)) data = {'imus': imus, 'valids': valids} return data def create_lidar_data(self, dataset, indices, velo_timespamps): # load and transform images self.load_images(dataset, indices) org_images, proc_images = self.transform_images() data = {'images': proc_images, 'untrans-images': org_images} return data def create_data_deeplio(self, dataset, indices, velo_timespamps): imu_data = self.create_imu_data(dataset, indices, velo_timespamps) img_data = self.create_lidar_data(dataset, indices, velo_timespamps) data = {**imu_data, **img_data} return data def __len__(self): return self.length def __getitem__(self, index): if torch.is_tensor(index): index = index.tolist() start = time.time() dataset, indices = self.get_dataset_and_index(index) # Get frame timestamps velo_timespamps = [dataset.timestamps_velo[idx] for idx in indices] lidar_data = {} if self.has_lidar: lidar_data = self.create_lidar_data(dataset, indices, velo_timespamps) imu_data = {} if self.has_imu: imu_data = self.create_imu_data(dataset, indices, velo_timespamps) arch_data = {**imu_data, **lidar_data} # load and transform ground truth gts = torch.from_numpy(self.load_ground_truth(dataset, indices)).type(torch.float32) meta_data = {'index': [index], 'date': [dataset.date], 'drive': [dataset.drive], 'velo-index': [indices], 'velo-timestamps': [ts.timestamp() for ts in velo_timespamps]} data = {'data': arch_data, 'gts': gts, 'meta': meta_data} end = time.time() #print(index, dataset.data_path, indices) #self.logger.debug("Idx:{}, dt: {}".format(index, end - start)) return data def __repr__(self): # printing dataset informations rep = "Kitti-Dataset" \ "Type: {}, Length: {}, Seq.length: {}\n" \ "Date\tDrive\tlength\tstart-end\n".format(self.ds_type, self.length, self.internal_seq_size) seqs = "" for i in range(len(self.length_each_drive)): date = self.datasets[i].date drive = self.datasets[i].drive length = self.length_each_drive[i] bins = self.bins[i] seqs = "".join("{}{}\t{}\t{}\t{}\n".format(seqs, date, drive, length, bins)) rep = "{}{}".format(rep,seqs) return rep
[ "deeplio.common.laserscan.LaserScan", "numpy.maximum", "pickle.load", "os.path.join", "deeplio.common.utils.transform_from_rot_trans", "deeplio.common.logger.get_app_logger", "deeplio.common.utils.subselect_files", "torch.is_tensor", "numpy.dstack", "threading.Thread", "deeplio.common.utils.read_calib_file", "numpy.asarray", "numpy.hstack", "datetime.datetime.strptime", "numpy.argwhere", "torch.from_numpy", "torch.stack", "numpy.zeros", "deeplio.common.utils.load_oxts_packets_and_poses", "time.time", "numpy.array", "torch.as_tensor", "deeplio.common.utils.load_velo_scan" ]
[((1279, 1313), 'os.path.join', 'os.path.join', (['base_path_sync', 'date'], {}), '(base_path_sync, date)\n', (1291, 1313), False, 'import os\n'), ((1345, 1401), 'os.path.join', 'os.path.join', (['base_path_sync', 'date', 'self.drive_full_sync'], {}), '(base_path_sync, date, self.drive_full_sync)\n', (1357, 1401), False, 'import os\n'), ((1434, 1494), 'os.path.join', 'os.path.join', (['base_path_unsync', 'date', 'self.drive_full_unsync'], {}), '(base_path_unsync, date, self.drive_full_unsync)\n', (1446, 1494), False, 'import os\n'), ((2572, 2614), 'deeplio.common.utils.load_velo_scan', 'utils.load_velo_scan', (['self.velo_files[idx]'], {}), '(self.velo_files[idx])\n', (2592, 2614), False, 'from deeplio.common import utils, logger\n'), ((2666, 2836), 'deeplio.common.laserscan.LaserScan', 'LaserScan', ([], {'project': '(False)', 'H': 'self.image_height', 'W': 'self.image_width', 'fov_up': 'self.fov_up', 'fov_down': 'self.fov_down', 'min_depth': 'self.min_depth', 'max_depth': 'self.max_depth'}), '(project=False, H=self.image_height, W=self.image_width, fov_up=\n self.fov_up, fov_down=self.fov_down, min_depth=self.min_depth,\n max_depth=self.max_depth)\n', (2675, 2836), False, 'from deeplio.common.laserscan import LaserScan\n'), ((3187, 3249), 'numpy.dstack', 'np.dstack', (['(proj_xyz, proj_remission, proj_normal, proj_range)'], {}), '((proj_xyz, proj_remission, proj_normal, proj_range))\n', (3196, 3249), True, 'import numpy as np\n'), ((3364, 3478), 'numpy.array', 'np.array', (['[[oxt[0].ax, oxt[0].ay, oxt[0].az, oxt[0].wx, oxt[0].wy, oxt[0].wz] for oxt in\n oxt]'], {'dtype': 'np.float'}), '([[oxt[0].ax, oxt[0].ay, oxt[0].az, oxt[0].wx, oxt[0].wy, oxt[0].wz\n ] for oxt in oxt], dtype=np.float)\n', (3372, 3478), True, 'import numpy as np\n'), ((4289, 4316), 'numpy.asarray', 'np.asarray', (['self.velo_files'], {}), '(self.velo_files)\n', (4299, 4316), True, 'import numpy as np\n'), ((4703, 4735), 'numpy.asarray', 'np.asarray', (['self.oxts_files_sync'], {}), '(self.oxts_files_sync)\n', (4713, 4735), True, 'import numpy as np\n'), ((5046, 5080), 'numpy.asarray', 'np.asarray', (['self.oxts_files_unsync'], {}), '(self.oxts_files_unsync)\n', (5056, 5080), True, 'import numpy as np\n'), ((5216, 5255), 'os.path.join', 'os.path.join', (['self.calib_path', 'filename'], {}), '(self.calib_path, filename)\n', (5228, 5255), False, 'import os\n'), ((5271, 5302), 'deeplio.common.utils.read_calib_file', 'utils.read_calib_file', (['filepath'], {}), '(filepath)\n', (5292, 5302), False, 'from deeplio.common import utils, logger\n'), ((5318, 5370), 'deeplio.common.utils.transform_from_rot_trans', 'utils.transform_from_rot_trans', (["data['R']", "data['T']"], {}), "(data['R'], data['T'])\n", (5348, 5370), False, 'from deeplio.common import utils, logger\n'), ((5889, 5950), 'os.path.join', 'os.path.join', (['self.data_path_unsync', '"""oxts"""', '"""timestamps.txt"""'], {}), "(self.data_path_unsync, 'oxts', 'timestamps.txt')\n", (5901, 5950), False, 'import os\n'), ((5981, 6051), 'os.path.join', 'os.path.join', (['self.data_path_sync', '"""velodyne_points"""', '"""timestamps.txt"""'], {}), "(self.data_path_sync, 'velodyne_points', 'timestamps.txt')\n", (5993, 6051), False, 'import os\n'), ((6082, 6141), 'os.path.join', 'os.path.join', (['self.data_path_sync', '"""oxts"""', '"""timestamps.txt"""'], {}), "(self.data_path_sync, 'oxts', 'timestamps.txt')\n", (6094, 6141), False, 'import os\n'), ((6690, 6722), 'numpy.array', 'np.array', (['self.timestamps_unsync'], {}), '(self.timestamps_unsync)\n', (6698, 6722), True, 'import numpy as np\n'), ((7263, 7293), 'numpy.array', 'np.array', (['self.timestamps_velo'], {}), '(self.timestamps_velo)\n', (7271, 7293), True, 'import numpy as np\n'), ((7834, 7864), 'numpy.array', 'np.array', (['self.timestamps_sync'], {}), '(self.timestamps_sync)\n', (7842, 7864), True, 'import numpy as np\n'), ((8174, 8227), 'os.path.join', 'os.path.join', (['self.data_path_sync', '"""oxts"""', '"""data.pkl"""'], {}), "(self.data_path_sync, 'oxts', 'data.pkl')\n", (8186, 8227), False, 'import os\n'), ((8346, 8401), 'os.path.join', 'os.path.join', (['self.data_path_unsync', '"""oxts"""', '"""data.pkl"""'], {}), "(self.data_path_unsync, 'oxts', 'data.pkl')\n", (8358, 8401), False, 'import os\n'), ((8552, 8616), 'deeplio.common.utils.load_oxts_packets_and_poses', 'utils.load_oxts_packets_and_poses', (['self.oxts_files_sync[indices]'], {}), '(self.oxts_files_sync[indices])\n', (8585, 8616), False, 'from deeplio.common import utils, logger\n'), ((11302, 11323), 'numpy.asarray', 'np.asarray', (['self.bins'], {}), '(self.bins)\n', (11312, 11323), True, 'import numpy as np\n'), ((11357, 11389), 'numpy.array', 'np.array', (['self.length_each_drive'], {}), '(self.length_each_drive)\n', (11365, 11389), True, 'import numpy as np\n'), ((11464, 11487), 'deeplio.common.logger.get_app_logger', 'logger.get_app_logger', ([], {}), '()\n', (11485, 11487), False, 'from deeplio.common import utils, logger\n'), ((12033, 12046), 'numpy.array', 'np.array', (['gts'], {}), '(gts)\n', (12041, 12046), True, 'import numpy as np\n'), ((14235, 14265), 'torch.as_tensor', 'torch.as_tensor', (['self.mean_img'], {}), '(self.mean_img)\n', (14250, 14265), False, 'import torch\n'), ((14280, 14309), 'torch.as_tensor', 'torch.as_tensor', (['self.std_img'], {}), '(self.std_img)\n', (14295, 14309), False, 'import torch\n'), ((14878, 14906), 'torch.stack', 'torch.stack', (['imgs_normalized'], {}), '(imgs_normalized)\n', (14889, 14906), False, 'import torch\n'), ((17271, 17293), 'torch.is_tensor', 'torch.is_tensor', (['index'], {}), '(index)\n', (17286, 17293), False, 'import torch\n'), ((17347, 17358), 'time.time', 'time.time', ([], {}), '()\n', (17356, 17358), False, 'import time\n'), ((18255, 18266), 'time.time', 'time.time', ([], {}), '()\n', (18264, 18266), False, 'import time\n'), ((4194, 4245), 'deeplio.common.utils.subselect_files', 'utils.subselect_files', (['self.velo_files', 'self.frames'], {}), '(self.velo_files, self.frames)\n', (4215, 4245), False, 'from deeplio.common import utils, logger\n'), ((4598, 4654), 'deeplio.common.utils.subselect_files', 'utils.subselect_files', (['self.oxts_files_sync', 'self.frames'], {}), '(self.oxts_files_sync, self.frames)\n', (4619, 4654), False, 'from deeplio.common import utils, logger\n'), ((4937, 4995), 'deeplio.common.utils.subselect_files', 'utils.subselect_files', (['self.oxts_files_unsync', 'self.frames'], {}), '(self.oxts_files_unsync, self.frames)\n', (4958, 4995), False, 'from deeplio.common import utils, logger\n'), ((7966, 8021), 'deeplio.common.utils.load_oxts_packets_and_poses', 'utils.load_oxts_packets_and_poses', (['self.oxts_files_sync'], {}), '(self.oxts_files_sync)\n', (7999, 8021), False, 'from deeplio.common import utils, logger\n'), ((8059, 8116), 'deeplio.common.utils.load_oxts_packets_and_poses', 'utils.load_oxts_packets_and_poses', (['self.oxts_files_unsync'], {}), '(self.oxts_files_unsync)\n', (8092, 8116), False, 'from deeplio.common import utils, logger\n'), ((8303, 8317), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (8314, 8317), False, 'import pickle\n'), ((8481, 8495), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (8492, 8495), False, 'import pickle\n'), ((11932, 11972), 'numpy.array', 'np.array', (['[gt[0].vf, gt[0].vl, gt[0].vu]'], {}), '([gt[0].vf, gt[0].vl, gt[0].vu])\n', (11940, 11972), True, 'import numpy as np\n'), ((12217, 12278), 'threading.Thread', 'Thread', ([], {'target': 'self.load_image', 'args': '(dataset, indices[i], i)'}), '(target=self.load_image, args=(dataset, indices[i], i))\n', (12223, 12278), False, 'from threading import Thread\n'), ((3691, 3760), 'os.path.join', 'os.path.join', (['self.data_path_sync', '"""velodyne_points"""', '"""data"""', '"""*.bin"""'], {}), "(self.data_path_sync, 'velodyne_points', 'data', '*.bin')\n", (3703, 3760), False, 'import os\n'), ((4465, 4523), 'os.path.join', 'os.path.join', (['self.data_path_sync', '"""oxts"""', '"""data"""', '"""*.txt"""'], {}), "(self.data_path_sync, 'oxts', 'data', '*.txt')\n", (4477, 4523), False, 'import os\n'), ((4800, 4860), 'os.path.join', 'os.path.join', (['self.data_path_unsync', '"""oxts"""', '"""data"""', '"""*.txt"""'], {}), "(self.data_path_unsync, 'oxts', 'data', '*.txt')\n", (4812, 4860), False, 'import os\n'), ((6552, 6607), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['line[:-4]', '"""%Y-%m-%d %H:%M:%S.%f"""'], {}), "(line[:-4], '%Y-%m-%d %H:%M:%S.%f')\n", (6572, 6607), True, 'import datetime as dt\n'), ((7129, 7184), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['line[:-4]', '"""%Y-%m-%d %H:%M:%S.%f"""'], {}), "(line[:-4], '%Y-%m-%d %H:%M:%S.%f')\n", (7149, 7184), True, 'import datetime as dt\n'), ((7700, 7755), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['line[:-4]', '"""%Y-%m-%d %H:%M:%S.%f"""'], {}), "(line[:-4], '%Y-%m-%d %H:%M:%S.%f')\n", (7720, 7755), True, 'import datetime as dt\n'), ((11996, 12016), 'numpy.hstack', 'np.hstack', (['(x, R, v)'], {}), '((x, R, v))\n', (12005, 12016), True, 'import numpy as np\n'), ((13236, 13295), 'numpy.zeros', 'np.zeros', (['(self.DEFAULT_NUM_OXT_SAMPLES, 6)'], {'dtype': 'np.float'}), '((self.DEFAULT_NUM_OXT_SAMPLES, 6), dtype=np.float)\n', (13244, 13295), True, 'import numpy as np\n'), ((13436, 13551), 'numpy.array', 'np.array', (['[[oxt[0].ax, oxt[0].ay, oxt[0].az, oxt[0].wx, oxt[0].wy, oxt[0].wz] for oxt in\n oxts]'], {'dtype': 'np.float'}), '([[oxt[0].ax, oxt[0].ay, oxt[0].az, oxt[0].wx, oxt[0].wy, oxt[0].wz\n ] for oxt in oxts], dtype=np.float)\n', (13444, 13551), True, 'import numpy as np\n'), ((3969, 4040), 'os.path.join', 'os.path.join', (['self.data_path_unsync', '"""velodyne_points"""', '"""data"""', '"""*.txt"""'], {}), "(self.data_path_unsync, 'velodyne_points', 'data', '*.txt')\n", (3981, 4040), False, 'import os\n'), ((12905, 12922), 'numpy.argwhere', 'np.argwhere', (['mask'], {}), '(mask)\n', (12916, 12922), True, 'import numpy as np\n'), ((15123, 15177), 'torch.from_numpy', 'torch.from_numpy', (['((imu - self.mean_imu) / self.std_imu)'], {}), '((imu - self.mean_imu) / self.std_imu)\n', (15139, 15177), False, 'import torch\n'), ((13679, 13732), 'numpy.maximum', 'np.maximum', (['(self.DEFAULT_NUM_OXT_SAMPLES - len_oxt)', '(0)'], {}), '(self.DEFAULT_NUM_OXT_SAMPLES - len_oxt, 0)\n', (13689, 13732), True, 'import numpy as np\n')]
""" _physical_abstract_data.py Copyright 2016 University of Melbourne. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import os from fourdvar.datadef.abstract._fourdvar_data import FourDVarData import fourdvar.util.netcdf_handle as ncf from fourdvar.util.archive_handle import get_archive_path import fourdvar.util.date_handle as dt from fourdvar.params.input_defn import inc_icon import setup_logging logger = setup_logging.get_logger( __file__ ) class PhysicalAbstractData( FourDVarData ): """Parent for PhysicalData and PhysicalAdjointData """ #Parameters tsec = None #No. seconds per timestep nstep = None #No. timesteps for emis data nlays_emis = None #No. layers for emis_data nrows = None #No. rows for all data ncols = None #No. columns for all data spcs = None #list of species for all data emis_unc = None #dict of emis uncertainty values if inc_icon is True: nlays_icon = None #No. layers for icon data icon_unc = None #dict of icon uncertainty values #this class variable should be overloaded in children icon_units = 'NA' #unit to attach to netCDF archive #these class variables should be overloaded in children archive_name = 'physical_abstract_data.ncf' #default archive filename emis_units = 'NA' #unit to attach to netCDF archive def __init__( self, icon_dict, emis_dict ): """ application: create an instance of PhysicalData input: user-defined output: None eg: new_phys = datadef.PhysicalData( filelist ) """ #icon_dict: {var-name: np.array([layer, row, column]) #emis_dict: {var-name: np.array([time, layer, row, column]) #params must all be set and not None (usally using cls.from_file) self.assert_params() if inc_icon is True: assert set( icon_dict.keys() ) == set( self.spcs ), 'invalid icon spcs.' self.icon = {} assert set( emis_dict.keys() ) == set( self.spcs ), 'invalid emis spcs.' self.emis = {} for spcs_name in self.spcs: if inc_icon is True: icon_data = np.array( icon_dict[ spcs_name ] ) assert len( icon_data.shape ) == 3, 'icon dimensions invalid.' inl,inr,inc = icon_data.shape assert inl == self.nlays_icon, 'icon layers invalid.' assert inr == self.nrows, 'icon rows invalid.' assert inc == self.ncols, 'icon columns invalid.' self.icon[ spcs_name ] = icon_data emis_data = np.array( emis_dict[ spcs_name ] ) assert len( emis_data.shape ) == 4, 'emis dimensions invalid.' ent,enl,enr,enc = emis_data.shape assert ent == self.nstep, 'emis timesteps invalid.' assert enl == self.nlays_emis, 'emis layers invalid.' assert enr == self.nrows, 'emis rows invalid.' assert enc == self.ncols, 'emis columns invalid.' self.emis[ spcs_name ] = emis_data return None def archive( self, path=None ): """ extension: save a copy of data to archive/experiment directory input: string or None output: None notes: this will overwrite any clash in namespace. if input is None file will write default archive_name. output is a netCDF file compatible with from_file method. """ unc = lambda spc: spc + '_UNC' save_path = get_archive_path() if path is None: path = self.archive_name save_path = os.path.join( save_path, path ) if os.path.isfile( save_path ): os.remove( save_path ) #construct netCDF file attr_dict = { 'SDATE': np.int32( dt.replace_date('<YYYYDDD>',dt.start_date) ), 'EDATE': np.int32( dt.replace_date('<YYYYDDD>',dt.end_date) ) } minute, second = divmod( self.tsec, 60 ) hour, minute = divmod( minute, 60 ) day, hour = divmod( hour, 24 ) hms = int( '{:02}{:02}{:02}'.format( hour, minute, second ) ) attr_dict[ 'TSTEP' ] = np.array( [np.int32(day), np.int32(hms)] ) var_list =''.join( [ '{:<16}'.format( s ) for s in self.spcs ] ) attr_dict[ 'VAR-LIST' ] = var_list dim_dict = { 'ROW': self.nrows, 'COL': self.ncols } root = ncf.create( path=save_path, attr=attr_dict, dim=dim_dict, is_root=True ) if inc_icon is True: icon_dim = { 'LAY': self.nlays_icon } icon_var = {} emis_dim = { 'LAY': self.nlays_emis, 'TSTEP': None } emis_var = {} for spc in self.spcs: if inc_icon is True: icon_var[ spc ] = ( 'f4', ('LAY','ROW','COL',), self.icon[ spc ] ) icon_var[ unc(spc) ] = ( 'f4', ('LAY','ROW','COL'), self.icon_unc[ spc ] ) emis_var[ spc ] = ( 'f4', ('TSTEP','LAY','ROW','COL'), self.emis[ spc ] ) emis_var[ unc(spc) ] = ( 'f4', ('TSTEP','LAY','ROW','COL'), self.emis_unc[ spc ] ) if inc_icon is True: ncf.create( parent=root, name='icon', dim=icon_dim, var=icon_var, is_root=False ) ncf.create( parent=root, name='emis', dim=emis_dim, var=emis_var, is_root=False ) root.close() return None @classmethod def from_file( cls, filename ): """ extension: create a PhysicalData instance from a file input: user-defined output: PhysicalData eg: prior_phys = datadef.PhysicalData.from_file( "saved_prior.data" ) """ daysec = 24*60*60 unc = lambda spc: spc + '_UNC' #get all data/parameters from file sdate = str( ncf.get_attr( filename, 'SDATE' ) ) edate = str( ncf.get_attr( filename, 'EDATE' ) ) tstep = ncf.get_attr( filename, 'TSTEP' ) day, step = int(tstep[0]), int(tstep[1]) tsec = daysec*day + 3600*(step//10000) + 60*((step//100)%100) + (step)%100 spcs_list = ncf.get_attr( filename, 'VAR-LIST' ).split() unc_list = [ unc( spc ) for spc in spcs_list ] if inc_icon is True: icon_dict = ncf.get_variable( filename, spcs_list, group='icon' ) icon_unc = ncf.get_variable( filename, unc_list, group='icon' ) emis_dict = ncf.get_variable( filename, spcs_list, group='emis' ) emis_unc = ncf.get_variable( filename, unc_list, group='emis' ) for spc in spcs_list: if inc_icon is True: icon_unc[ spc ] = icon_unc.pop( unc( spc ) ) emis_unc[ spc ] = emis_unc.pop( unc( spc ) ) #ensure parameters from file are valid msg = 'invalid start date' assert sdate == dt.replace_date( '<YYYYDDD>', dt.start_date ), msg msg = 'invalid end date' assert edate == dt.replace_date( '<YYYYDDD>', dt.end_date ), msg emis_shape = [ e.shape for e in emis_dict.values() ] for eshape in emis_shape[1:]: assert eshape == emis_shape[0], 'all emis spcs must have the same shape.' estep, elays, erows, ecols = emis_shape[0] if inc_icon is True: icon_shape = [ i.shape for i in icon_dict.values() ] for ishape in icon_shape[1:]: assert ishape == icon_shape[0], 'all icon spcs must have the same shape.' ilays, irows, icols = icon_shape[0] assert irows == erows, 'icon & emis must match rows.' assert icols == ecols, 'icon & emis must match columns.' assert max(daysec,tsec) % min(daysec,tsec) == 0, 'tsec must be a factor or multiple of No. seconds in a day.' assert (tsec >= daysec) or (estep % (daysec//tsec) == 0), 'nstep must cleanly divide into days.' for spc in spcs_list: msg = 'Uncertainty values are invalid for this data.' if inc_icon is True: assert icon_unc[ spc ].shape == icon_dict[ spc ].shape, msg assert ( icon_unc[ spc ] > 0 ).all(), msg assert emis_unc[ spc ].shape == emis_dict[ spc ].shape, msg assert ( emis_unc[ spc ] > 0 ).all(), msg #assign new param values. par_name = ['tsec','nstep','nlays_emis','nrows','ncols','spcs','emis_unc'] par_val = [tsec, estep, elays, erows, ecols, spcs_list, emis_unc] par_mutable = ['emis_unc'] if inc_icon is True: par_name += [ 'nlays_icon', 'icon_unc' ] par_val += [ ilays, icon_unc ] par_mutable += ['icon_unc'] for name, val in zip( par_name, par_val ): old_val = getattr( cls, name ) if old_val is not None: #param already defined, ensure no clash. if name in par_mutable: #parameter is mutable, affect applied globally msg = 'Any change to PhysicalAbstractData.{} is applied globally!'.format( name ) logger.warn( msg ) else: msg = 'cannot change PhysicalAbstractData.{}'.format( name ) assert np.array_equal( old_val, val ), msg #set this abstract classes attribute, not calling child! setattr( PhysicalAbstractData, name, val ) if inc_icon is False: icon_dict = None return cls( icon_dict, emis_dict ) @classmethod def example( cls ): """ application: return a valid example with arbitrary values. input: None output: PhysicalData eg: mock_phys = datadef.PhysicalData.example() notes: only used for testing. must have date_handle dates & PhysicalData parameters already defined. """ icon_val = 0 emis_val = 0 #params must all be set and not None (usally using cls.from_file) cls.assert_params() if inc_icon is True: icon_val += np.zeros((cls.nlays_icon, cls.nrows, cls.ncols)) icon_dict = { spc: icon_val.copy() for spc in cls.spcs } else: icon_dict = None emis_val += np.zeros((cls.nstep, cls.nlays_emis, cls.nrows, cls.ncols)) emis_dict = { spc: emis_val.copy() for spc in cls.spcs } return cls( icon_dict, emis_dict ) @classmethod def assert_params( cls ): """ extension: assert that all needed physical parameters are valid. input: None output: None notes: method raises assertion error if None valued parameter is found. """ par_name = ['tsec','nstep','nlays_emis','nrows','ncols','spcs','emis_unc'] if inc_icon is True: par_name += [ 'nlays_icon', 'icon_unc' ] for param in par_name: msg = 'missing definition for {0}.{1}'.format( cls.__name__, param ) assert getattr( cls, param ) is not None, msg assert max(24*60*60,cls.tsec) % min(24*60*60,cls.tsec) == 0, 'invalid step size (tsec).' assert (cls.tsec>=24*60*60) or (cls.nstep % ((24*60*60)//cls.tsec) == 0), 'invalid step count (nstep).' return None def cleanup( self ): """ application: called when physical data instance is no longer required input: None output: None eg: old_phys.cleanup() notes: called after test instance is no longer needed, used to delete files etc. """ pass return None
[ "os.remove", "setup_logging.get_logger", "fourdvar.util.date_handle.replace_date", "numpy.zeros", "fourdvar.util.archive_handle.get_archive_path", "fourdvar.util.netcdf_handle.create", "os.path.isfile", "numpy.array", "fourdvar.util.netcdf_handle.get_variable", "numpy.int32", "numpy.array_equal", "fourdvar.util.netcdf_handle.get_attr", "os.path.join" ]
[((909, 943), 'setup_logging.get_logger', 'setup_logging.get_logger', (['__file__'], {}), '(__file__)\n', (933, 943), False, 'import setup_logging\n'), ((4183, 4201), 'fourdvar.util.archive_handle.get_archive_path', 'get_archive_path', ([], {}), '()\n', (4199, 4201), False, 'from fourdvar.util.archive_handle import get_archive_path\n'), ((4284, 4313), 'os.path.join', 'os.path.join', (['save_path', 'path'], {}), '(save_path, path)\n', (4296, 4313), False, 'import os\n'), ((4327, 4352), 'os.path.isfile', 'os.path.isfile', (['save_path'], {}), '(save_path)\n', (4341, 4352), False, 'import os\n'), ((5071, 5141), 'fourdvar.util.netcdf_handle.create', 'ncf.create', ([], {'path': 'save_path', 'attr': 'attr_dict', 'dim': 'dim_dict', 'is_root': '(True)'}), '(path=save_path, attr=attr_dict, dim=dim_dict, is_root=True)\n', (5081, 5141), True, 'import fourdvar.util.netcdf_handle as ncf\n'), ((6069, 6148), 'fourdvar.util.netcdf_handle.create', 'ncf.create', ([], {'parent': 'root', 'name': '"""emis"""', 'dim': 'emis_dim', 'var': 'emis_var', 'is_root': '(False)'}), "(parent=root, name='emis', dim=emis_dim, var=emis_var, is_root=False)\n", (6079, 6148), True, 'import fourdvar.util.netcdf_handle as ncf\n'), ((6747, 6778), 'fourdvar.util.netcdf_handle.get_attr', 'ncf.get_attr', (['filename', '"""TSTEP"""'], {}), "(filename, 'TSTEP')\n", (6759, 6778), True, 'import fourdvar.util.netcdf_handle as ncf\n'), ((7245, 7296), 'fourdvar.util.netcdf_handle.get_variable', 'ncf.get_variable', (['filename', 'spcs_list'], {'group': '"""emis"""'}), "(filename, spcs_list, group='emis')\n", (7261, 7296), True, 'import fourdvar.util.netcdf_handle as ncf\n'), ((7318, 7368), 'fourdvar.util.netcdf_handle.get_variable', 'ncf.get_variable', (['filename', 'unc_list'], {'group': '"""emis"""'}), "(filename, unc_list, group='emis')\n", (7334, 7368), True, 'import fourdvar.util.netcdf_handle as ncf\n'), ((11131, 11190), 'numpy.zeros', 'np.zeros', (['(cls.nstep, cls.nlays_emis, cls.nrows, cls.ncols)'], {}), '((cls.nstep, cls.nlays_emis, cls.nrows, cls.ncols))\n', (11139, 11190), True, 'import numpy as np\n'), ((3227, 3257), 'numpy.array', 'np.array', (['emis_dict[spcs_name]'], {}), '(emis_dict[spcs_name])\n', (3235, 3257), True, 'import numpy as np\n'), ((4368, 4388), 'os.remove', 'os.remove', (['save_path'], {}), '(save_path)\n', (4377, 4388), False, 'import os\n'), ((5955, 6034), 'fourdvar.util.netcdf_handle.create', 'ncf.create', ([], {'parent': 'root', 'name': '"""icon"""', 'dim': 'icon_dim', 'var': 'icon_var', 'is_root': '(False)'}), "(parent=root, name='icon', dim=icon_dim, var=icon_var, is_root=False)\n", (5965, 6034), True, 'import fourdvar.util.netcdf_handle as ncf\n'), ((6638, 6669), 'fourdvar.util.netcdf_handle.get_attr', 'ncf.get_attr', (['filename', '"""SDATE"""'], {}), "(filename, 'SDATE')\n", (6650, 6669), True, 'import fourdvar.util.netcdf_handle as ncf\n'), ((6695, 6726), 'fourdvar.util.netcdf_handle.get_attr', 'ncf.get_attr', (['filename', '"""EDATE"""'], {}), "(filename, 'EDATE')\n", (6707, 6726), True, 'import fourdvar.util.netcdf_handle as ncf\n'), ((7095, 7146), 'fourdvar.util.netcdf_handle.get_variable', 'ncf.get_variable', (['filename', 'spcs_list'], {'group': '"""icon"""'}), "(filename, spcs_list, group='icon')\n", (7111, 7146), True, 'import fourdvar.util.netcdf_handle as ncf\n'), ((7172, 7222), 'fourdvar.util.netcdf_handle.get_variable', 'ncf.get_variable', (['filename', 'unc_list'], {'group': '"""icon"""'}), "(filename, unc_list, group='icon')\n", (7188, 7222), True, 'import fourdvar.util.netcdf_handle as ncf\n'), ((7676, 7719), 'fourdvar.util.date_handle.replace_date', 'dt.replace_date', (['"""<YYYYDDD>"""', 'dt.start_date'], {}), "('<YYYYDDD>', dt.start_date)\n", (7691, 7719), True, 'import fourdvar.util.date_handle as dt\n'), ((7784, 7825), 'fourdvar.util.date_handle.replace_date', 'dt.replace_date', (['"""<YYYYDDD>"""', 'dt.end_date'], {}), "('<YYYYDDD>', dt.end_date)\n", (7799, 7825), True, 'import fourdvar.util.date_handle as dt\n'), ((10941, 10989), 'numpy.zeros', 'np.zeros', (['(cls.nlays_icon, cls.nrows, cls.ncols)'], {}), '((cls.nlays_icon, cls.nrows, cls.ncols))\n', (10949, 10989), True, 'import numpy as np\n'), ((2746, 2776), 'numpy.array', 'np.array', (['icon_dict[spcs_name]'], {}), '(icon_dict[spcs_name])\n', (2754, 2776), True, 'import numpy as np\n'), ((4463, 4506), 'fourdvar.util.date_handle.replace_date', 'dt.replace_date', (['"""<YYYYDDD>"""', 'dt.start_date'], {}), "('<YYYYDDD>', dt.start_date)\n", (4478, 4506), True, 'import fourdvar.util.date_handle as dt\n'), ((4550, 4591), 'fourdvar.util.date_handle.replace_date', 'dt.replace_date', (['"""<YYYYDDD>"""', 'dt.end_date'], {}), "('<YYYYDDD>', dt.end_date)\n", (4565, 4591), True, 'import fourdvar.util.date_handle as dt\n'), ((4839, 4852), 'numpy.int32', 'np.int32', (['day'], {}), '(day)\n', (4847, 4852), True, 'import numpy as np\n'), ((4854, 4867), 'numpy.int32', 'np.int32', (['hms'], {}), '(hms)\n', (4862, 4867), True, 'import numpy as np\n'), ((6933, 6967), 'fourdvar.util.netcdf_handle.get_attr', 'ncf.get_attr', (['filename', '"""VAR-LIST"""'], {}), "(filename, 'VAR-LIST')\n", (6945, 6967), True, 'import fourdvar.util.netcdf_handle as ncf\n'), ((10083, 10111), 'numpy.array_equal', 'np.array_equal', (['old_val', 'val'], {}), '(old_val, val)\n', (10097, 10111), True, 'import numpy as np\n')]
import numpy as np # Untested function from source.env.lib.log import Blob def discountRewards(rewards, gamma=0.99): rets, N = [], len(rewards) discounts = np.array([gamma ** i for i in range(N)]) rewards = np.array(rewards) for idx in range(N): rets.append(sum(rewards[idx:] * discounts[:N - idx])) return rets class Rollout: def __init__(self): self.atnArgs = [] self.vals = [] self.rewards = [] self.states = [] self.feather = Feather() def step(self, atnArgs, val, reward, stim=None): self.atnArgs.append(atnArgs) self.vals.append(val) self.states.append(stim) self.rewards.append(reward) def finish(self): self.lifespan = len(self.rewards) self.feather.finish() # Rollout logger class Feather: def __init__(self): self.blob = Blob() def scrawl(self, apple, ent, reward): self.blob.annID = ent.annID self.stats(reward, apple) def stats(self, reward, apple): self.blob.reward.append(reward) self.blob.apples.append(apple) def finish(self): self.blob.finish()
[ "source.env.lib.log.Blob", "numpy.array" ]
[((223, 240), 'numpy.array', 'np.array', (['rewards'], {}), '(rewards)\n', (231, 240), True, 'import numpy as np\n'), ((873, 879), 'source.env.lib.log.Blob', 'Blob', ([], {}), '()\n', (877, 879), False, 'from source.env.lib.log import Blob\n')]
import sys import os # import warnings # import pickle from datetime import datetime import requests from bs4 import BeautifulSoup import numpy as np import matplotlib.pyplot as plt from scipy import stats from astropy.timeseries import LombScargle # from astroquery.simbad import Simbad # cSimbad = Simbad() # cSimbad.add_votable_fields('ids', 'sptype', 'flux(V)', 'flux(B)') main_url = 'https://wasp.cerit-sc.cz' def build_search_url(star, limit=1, radius=1): star = star.replace(' ', '').replace('+', '%2B') url = f'{main_url}/search?'\ f'objid={star}&limit={limit}&radius={radius}&radiusUnit=deg' return url def query(star): url = build_search_url(star) response = requests.get(url) if response.status_code != 200: print(response) return return response.content.decode() def parse(content, star): if 'not found in Sesame' in content: raise ValueError(f'object ID "{star}" not found') if 'No objects matching specified criteria were found.' in content: raise ValueError('superWASP query did not match any object') soup = BeautifulSoup(content, 'html.parser') table = soup.find_all('table')[0] tablerow = table.find_all('tr')[1] data = np.array(tablerow.find_all('td'), dtype=object) inds = [2, 3, 4, 6, 7, 8, 9, 10] name, npts, files, start, stop, ra, dec, mag = data[inds] name = name.text npts = int(npts.text) csv_link = files.find_all('a')[1].attrs['href'] start, stop = start.text, stop.text start = datetime.strptime(start[:-2], '%Y-%m-%d %H:%M:%S') stop = datetime.strptime(stop[:-2], '%Y-%m-%d %H:%M:%S') ra, dec = float(ra.text), float(dec.text) mag = float(mag.text) return name, npts, csv_link, start, stop, ra, dec, mag def get_lightcurve(star, verbose=True): content = query(star) name, npts, csv_link, start, stop, ra, dec, mag = parse(content, star) if verbose: print( f'Found "{name}" ({npts} observations ' f'between {start.date()} and {stop.date()})' ) filename = name.replace(' ', '_') + '.csv' if os.path.exists(filename): return filename # download the lightcurve if verbose: print('Downloading lightcurve...', end=' ', flush=True) url = main_url + csv_link response = requests.get(url) if response.status_code != 200: if verbose: print('failed!') return # save the lightcurve to a file with open(filename, 'w') as f: f.write(response.text) if verbose: print() print(f'Saved lightcurve to {filename}') return filename class superWASP: def __init__(self, filename, verbose=True): self.verbose = verbose # read the lightcurve data = np.genfromtxt(filename, delimiter=',', names=True) self.target = filename[:-4] self.N = data.size self.time = data['HJD'] self.time -= 24e5 self.mag = data['magnitude'] median_mag = np.median(self.mag) self.flux = np.negative(self.mag - median_mag) + median_mag self.flux_err = data['magnitude_error'] self.c_time = self.time.copy() self.c_flux = self.flux.copy() self.c_flux_err = self.flux_err.copy() self.mask = np.ones_like(self.flux, dtype=bool) def __repr__(self): return f'superWASP({self.target}, {self.N} points)' @classmethod def query_object(cls, star, verbose=True): filename = get_lightcurve(star, verbose) return cls(filename, verbose=verbose) def sigmaclip(self, start_sigma=4, step=0.8, niter=5): def plotit(original, mask): plt.close('sigmaclip_fig') fig, ax = plt.subplots(1, 1, num='sigmaclip_fig', constrained_layout=True) ax.errorbar(self.time, original, fmt='o', ms=2, alpha=0.2) ax.plot(self.time[~mask], original[~mask], 'x', color='r', ms=2) plt.show() original = self.flux.copy() it, start = 0, start_sigma sigma = start msg = 'sigma={:.2f} continue(c) stop(s) : ' while it < niter: clipped, lo, up = stats.sigmaclip(original, low=sigma, high=sigma) mask = (original > lo) & (original < up) plotit(original, mask) go_on = input(msg.format(sigma)) if go_on == 's': break sigma *= step self.c_time = self.time[mask] self.c_flux = clipped self.c_flux_err = self.flux_err[mask] self.mask = mask return clipped, lo, up def detrend(self, plot=True, degree=1, weigh=True): # if self.verbose: # print('Removing trend') t, y, e = self.c_time, self.c_flux, self.c_flux_err if weigh: fitp = np.polyfit(t, y, degree, w=1/e) else: fitp = np.polyfit(t, y, degree) print(f'coefficients: {fitp}') if plot: ax, _ = self.plot() tt = np.linspace(t.min(), t.max(), 1000) # max_zorder = max([l.get_zorder() for l in ax.get_lines()]) ax.plot(tt, np.polyval(fitp, tt), color='k', lw=3, zorder=3) y = y - np.polyval(fitp, t) self.c_flux = y def plot(self, ax=None, **kwargs): if ax is None: fig, ax = plt.subplots(1, 1, constrained_layout=True) else: fig = ax.figure markers, caps, bars = ax.errorbar(self.c_time, self.c_flux, self.c_flux_err, fmt='o', ms=2, alpha=0.6, ecolor='k') [bar.set_alpha(0.2) for bar in bars] [cap.set_alpha(0.5) for cap in caps] ax.set(ylabel='-mag', xlabel='JD [days]') return ax, fig def gls(self): model = LombScargle(self.c_time, self.c_flux, self.c_flux_err) f, p = model.autopower() if (p < 0).any(): f, p = model.autopower(method='cython') fig, ax = plt.subplots(1, 1, constrained_layout=True) ax.semilogx(1/f, p) # ax.hlines(model.false_alarm_level([0.01, 0.1]), *ax.get_xlim(), # color='k', alpha=0.5) return model if __name__ == "__main__": get_lightcurve(sys.argv[1])
[ "numpy.ones_like", "matplotlib.pyplot.show", "scipy.stats.sigmaclip", "numpy.polyfit", "numpy.median", "astropy.timeseries.LombScargle", "matplotlib.pyplot.close", "numpy.polyval", "os.path.exists", "numpy.genfromtxt", "numpy.negative", "datetime.datetime.strptime", "requests.get", "bs4.BeautifulSoup", "matplotlib.pyplot.subplots" ]
[((706, 723), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (718, 723), False, 'import requests\n'), ((1117, 1154), 'bs4.BeautifulSoup', 'BeautifulSoup', (['content', '"""html.parser"""'], {}), "(content, 'html.parser')\n", (1130, 1154), False, 'from bs4 import BeautifulSoup\n'), ((1544, 1594), 'datetime.datetime.strptime', 'datetime.strptime', (['start[:-2]', '"""%Y-%m-%d %H:%M:%S"""'], {}), "(start[:-2], '%Y-%m-%d %H:%M:%S')\n", (1561, 1594), False, 'from datetime import datetime\n'), ((1606, 1655), 'datetime.datetime.strptime', 'datetime.strptime', (['stop[:-2]', '"""%Y-%m-%d %H:%M:%S"""'], {}), "(stop[:-2], '%Y-%m-%d %H:%M:%S')\n", (1623, 1655), False, 'from datetime import datetime\n'), ((2139, 2163), 'os.path.exists', 'os.path.exists', (['filename'], {}), '(filename)\n', (2153, 2163), False, 'import os\n'), ((2345, 2362), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (2357, 2362), False, 'import requests\n'), ((2813, 2863), 'numpy.genfromtxt', 'np.genfromtxt', (['filename'], {'delimiter': '""","""', 'names': '(True)'}), "(filename, delimiter=',', names=True)\n", (2826, 2863), True, 'import numpy as np\n'), ((3043, 3062), 'numpy.median', 'np.median', (['self.mag'], {}), '(self.mag)\n', (3052, 3062), True, 'import numpy as np\n'), ((3325, 3360), 'numpy.ones_like', 'np.ones_like', (['self.flux'], {'dtype': 'bool'}), '(self.flux, dtype=bool)\n', (3337, 3360), True, 'import numpy as np\n'), ((5904, 5958), 'astropy.timeseries.LombScargle', 'LombScargle', (['self.c_time', 'self.c_flux', 'self.c_flux_err'], {}), '(self.c_time, self.c_flux, self.c_flux_err)\n', (5915, 5958), False, 'from astropy.timeseries import LombScargle\n'), ((6088, 6131), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'constrained_layout': '(True)'}), '(1, 1, constrained_layout=True)\n', (6100, 6131), True, 'import matplotlib.pyplot as plt\n'), ((3083, 3117), 'numpy.negative', 'np.negative', (['(self.mag - median_mag)'], {}), '(self.mag - median_mag)\n', (3094, 3117), True, 'import numpy as np\n'), ((3714, 3740), 'matplotlib.pyplot.close', 'plt.close', (['"""sigmaclip_fig"""'], {}), "('sigmaclip_fig')\n", (3723, 3740), True, 'import matplotlib.pyplot as plt\n'), ((3763, 3827), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'num': '"""sigmaclip_fig"""', 'constrained_layout': '(True)'}), "(1, 1, num='sigmaclip_fig', constrained_layout=True)\n", (3775, 3827), True, 'import matplotlib.pyplot as plt\n'), ((4023, 4033), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4031, 4033), True, 'import matplotlib.pyplot as plt\n'), ((4237, 4285), 'scipy.stats.sigmaclip', 'stats.sigmaclip', (['original'], {'low': 'sigma', 'high': 'sigma'}), '(original, low=sigma, high=sigma)\n', (4252, 4285), False, 'from scipy import stats\n'), ((4887, 4920), 'numpy.polyfit', 'np.polyfit', (['t', 'y', 'degree'], {'w': '(1 / e)'}), '(t, y, degree, w=1 / e)\n', (4897, 4920), True, 'import numpy as np\n'), ((4952, 4976), 'numpy.polyfit', 'np.polyfit', (['t', 'y', 'degree'], {}), '(t, y, degree)\n', (4962, 4976), True, 'import numpy as np\n'), ((5283, 5302), 'numpy.polyval', 'np.polyval', (['fitp', 't'], {}), '(fitp, t)\n', (5293, 5302), True, 'import numpy as np\n'), ((5412, 5455), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'constrained_layout': '(True)'}), '(1, 1, constrained_layout=True)\n', (5424, 5455), True, 'import matplotlib.pyplot as plt\n'), ((5217, 5237), 'numpy.polyval', 'np.polyval', (['fitp', 'tt'], {}), '(fitp, tt)\n', (5227, 5237), True, 'import numpy as np\n')]
import numpy as np class GreedyOpt: """ iterable: the items to pick from size: size of subset of items to search target: Function to minimize """ def __init__(self, iterable=[], target=lambda x: 1): self.iterable = iterable self._target = target self.result = [] self.min_vals = [] self.min_items = [] def set_target(self, target): self._target = target def target(self, item): """ Called every search len(iterable) times. Total number of calls: size*items """ return self._target(item) def add(self, item): """ called every time a minimum found Total number of calls: size """ self.result.append(item) def run(self, size): return self.run_size(size) def items(self): return self.iterable def step(self): items = np.array(self.items()) costs = np.array([self.target(i) for i in items]) if len(costs) == 0: return 1 min_idx = np.argmin(costs) min_item = items[min_idx] min_val = costs[min_idx] self.min_items.append(min_item) self.min_vals.append(min_val) self.add(min_item) def run_cost(self, cost): while True: error_code = self.step() if error_code==1: print('Greedy search failed to find desired cost') raise Exception('Failed to optimize') if self.min_vals[-1] < cost: break def run_size(self, size): for i in range(size): self.step() return self.result class GreedyParvars(GreedyOpt): def __init__(self, graph, *args, **kwargs): super().__init__(*args, **kwargs) self.graph = graph def items(self): return self.graph.nodes def target(self, item): return - self.graph.degree(item) def add(self, item): super().add(item) self.graph.remove_node(item) #qtree.graph_model.eliminate_node(self.graph, item)
[ "numpy.argmin" ]
[((1099, 1115), 'numpy.argmin', 'np.argmin', (['costs'], {}), '(costs)\n', (1108, 1115), True, 'import numpy as np\n')]
import os import subprocess from multiprocessing.pool import Pool import miditoolkit import pandas as pd import pretty_midi from tqdm import tqdm import numpy as np import pickle from copy import deepcopy from midi_preprocess.utils.hparams import hparams import midi_preprocess.steps.track_separate as tc def filter_and_merge(processed_data_dir, instru2program): base_dir = 'midi_preprocess' melody_model = pickle.load(open(f'{base_dir}/model/melody_model_new', 'rb')) bass_model = pickle.load(open(f'{base_dir}/model/bass_model', 'rb')) chord_model = pickle.load(open(f'{base_dir}/model/chord_model', 'rb')) df = pd.read_csv(open(f'{processed_data_dir}/meta.csv')) print(f"| load #midi infos: {df.shape[0]}.") pool = Pool(int(os.getenv('N_PROC', os.cpu_count()))) save_dir = f'{processed_data_dir}/midi_recog_tracks' subprocess.check_call(f'rm -rf "{save_dir}"', shell=True) futures = [pool.apply_async(filter_recog_merge_job, args=[ midi_info['path'], midi_info, instru2program, save_dir, melody_model, bass_model, chord_model ]) for idx, midi_info in df.iterrows()] pool.close() merged_infos = [] for f, (idx, midi_info) in zip(tqdm(futures), df.iterrows()): res = f.get() merged_info = {} merged_info.update(midi_info) if isinstance(res, str): merged_info['msg'] = res else: merged_info['msg'] = '' merged_info.update(res) merged_infos.append(merged_info) df = pd.DataFrame(merged_infos) df = df.set_index(['id']) df.to_csv(f'{processed_data_dir}/meta.csv') pool.join() n_merged = len([x for x in merged_infos if x['msg'] == '']) print(f"| merged #midi: {n_merged}") def predict_track_with_model(midi_path, melody_model, bass_model, chord_model): try: ret = tc.cal_file_features(midi_path) # remove empty track and calculate the features features, pm = ret except Exception as e: features = None pm = pretty_midi.PrettyMIDI(midi_path) if features is None and pm is None: pm = pretty_midi.PrettyMIDI(midi_path) if features is None or features.shape[0] == 0: return pm, [], [] features = tc.add_labels(features) # add label tc.remove_file_duplicate_tracks(features, pm) # delete duplicate track features = tc.predict_labels(features, melody_model, bass_model, chord_model) # predict lead, bass, chord predicted_melody_tracks_idx = np.where(features.melody_predict)[0] predicted_bass_tracks_idx = np.where(features.bass_predict)[0] melody_tracks_idx = np.concatenate((predicted_melody_tracks_idx, np.where(features.is_melody)[0])) bass_tracks_idx = np.concatenate((predicted_bass_tracks_idx, np.where(features.is_bass)[0])) return pm, melody_tracks_idx, bass_tracks_idx def filter_recog_merge_job(midi_path, midi_info, instru2program, save_dir, melody_model, bass_model, chord_model): filter_msg = filter_tracks(midi_info) if filter_msg != '': return filter_msg pm, melody_tracks_idx, bass_tracks_idx = predict_track_with_model(midi_path, melody_model, bass_model, chord_model) if pm is None: return 'pm is None' pm_new = deepcopy(pm) pm_new.instruments = [] for i, instru_old in enumerate(pm.instruments): program_old = instru_old.program instru = deepcopy(instru_old) if i in melody_tracks_idx and 'MUMIDI_' not in instru.name or instru.name == 'MUMIDI_Lead': instru.name = 'Lead' elif i in bass_tracks_idx and 'MUMIDI_' not in instru.name or instru.name == 'MUMIDI_Bass': instru.name = 'Bass' elif instru_old.is_drum and 'MUMIDI_' not in instru.name or instru.name == 'MUMIDI_Drums': # drum instru.name = 'Drums' elif program_old // 8 == 0 and 'MUMIDI_' not in instru.name or instru.name == 'MUMIDI_Piano': # piano instru.name = 'Piano' elif program_old // 8 == 3 and 'MUMIDI_' not in instru.name or instru.name == 'MUMIDI_Guitar': # guitar instru.name = 'Guitar' elif 40 <= program_old <= 54 and 'MUMIDI_' not in instru.name or instru.name == 'MUMIDI_Strings': # string instru.name = 'Strings' elif 73 <= program_old <= 88: # Lead instru.name = 'Lead' elif program_old // 8 == 4: # Bass instru.name = 'Bass' else: instru.name = 'UnRec' instru.program = instru_old.program pm_new.instruments.append(instru) os.makedirs(save_dir, exist_ok=True) out_path = f"{save_dir}/{midi_info['id']}.mid" pm_new.write(out_path) merged_midi_info = get_merged_midi_info(out_path, instru2program) filter_msg = filter_tracks(midi_info) if filter_msg != '': return '[merged]' + filter_msg return merged_midi_info def filter_tracks(midi_info): # filter out too long n_beats > 10000, and too short n_beats < 16 if midi_info['n_beats'] > hparams['max_n_beats'] or midi_info['n_beats'] < hparams['min_n_beats']: return 'invalid beats' if midi_info['n_notes'] < hparams['min_n_notes']: return 'invalid n_notes' if midi_info['n_pitches'] < hparams['min_n_pitches']: return 'Invalid pitches' if midi_info['cross_bar_rate'] > hparams['max_cross_bar_rate']: return 'Invalid cross_bar' return '' def get_merged_midi_info(midi_fn, instru2program): try: mf = miditoolkit.MidiFile(midi_fn) except KeyboardInterrupt: raise except Exception as e: return str(e) # merge tracks track_lists_to_merge = get_tracks_to_merge(mf, instru2program) n_merge_track = [len(x) for x in track_lists_to_merge] available_instrs = list(set([x2 for x in track_lists_to_merge for x2 in x])) # Important for 6 tracks # notes all_vels = [x1.velocity for i, x in enumerate(mf.instruments) if i in available_instrs for x1 in x.notes] # all instruments note connection in a line all_pitches = [x1.pitch for i, x in enumerate(mf.instruments) if i in available_instrs for x1 in x.notes] n_notes = len(all_vels) # numbers of notes if n_notes == 0: return 'empty tracks' n_beats = max([x1.end for i, x in enumerate(mf.instruments) if i in available_instrs for x1 in x.notes]) // mf.ticks_per_beat + 1 n_instru = len(mf.instruments) n_pitches = len(set(all_pitches)) # pitch classes vel_mean = np.mean(all_vels) vel_std = np.std(all_vels) n_cross_bar = 0 for i, instru in enumerate(mf.instruments): if i not in available_instrs: continue for n in instru.notes: start_beat = n.start / mf.ticks_per_beat end_beat = n.end / mf.ticks_per_beat if (start_beat + 0.25) // 4 < (end_beat - 0.25) // 4 and start_beat % 4 > 0.125: n_cross_bar += 1 return { 'path_recog_tracks': midi_fn, # velocity 'vel_mean': vel_mean, 'vel_std': vel_std, # stats 'n_notes': n_notes, 'n_instru': n_instru, 'n_beats': n_beats, 'n_pitches': n_pitches, 'n_cross_bar': n_cross_bar, # tracks 'n_tracks': n_merge_track, 'track_lists_to_merge': track_lists_to_merge, } def get_tracks_to_merge(mf, instru2program): track_lists_to_merge = [[] for _ in range(6)] instru_order = {v: k for k, v in enumerate(instru2program.keys())} for idx, instr in enumerate(mf.instruments): instr_name = instr.name if instr_name in instru_order: track_lists_to_merge[instru_order[instr_name]].append(idx) return track_lists_to_merge
[ "pandas.DataFrame", "midi_preprocess.steps.track_separate.remove_file_duplicate_tracks", "midi_preprocess.steps.track_separate.add_labels", "copy.deepcopy", "os.makedirs", "tqdm.tqdm", "midi_preprocess.steps.track_separate.predict_labels", "numpy.std", "midi_preprocess.steps.track_separate.cal_file_features", "os.cpu_count", "numpy.mean", "pretty_midi.PrettyMIDI", "numpy.where", "miditoolkit.MidiFile", "subprocess.check_call" ]
[((859, 916), 'subprocess.check_call', 'subprocess.check_call', (['f"""rm -rf "{save_dir}\\""""'], {'shell': '(True)'}), '(f\'rm -rf "{save_dir}"\', shell=True)\n', (880, 916), False, 'import subprocess\n'), ((1522, 1548), 'pandas.DataFrame', 'pd.DataFrame', (['merged_infos'], {}), '(merged_infos)\n', (1534, 1548), True, 'import pandas as pd\n'), ((2238, 2261), 'midi_preprocess.steps.track_separate.add_labels', 'tc.add_labels', (['features'], {}), '(features)\n', (2251, 2261), True, 'import midi_preprocess.steps.track_separate as tc\n'), ((2279, 2324), 'midi_preprocess.steps.track_separate.remove_file_duplicate_tracks', 'tc.remove_file_duplicate_tracks', (['features', 'pm'], {}), '(features, pm)\n', (2310, 2324), True, 'import midi_preprocess.steps.track_separate as tc\n'), ((2366, 2432), 'midi_preprocess.steps.track_separate.predict_labels', 'tc.predict_labels', (['features', 'melody_model', 'bass_model', 'chord_model'], {}), '(features, melody_model, bass_model, chord_model)\n', (2383, 2432), True, 'import midi_preprocess.steps.track_separate as tc\n'), ((3267, 3279), 'copy.deepcopy', 'deepcopy', (['pm'], {}), '(pm)\n', (3275, 3279), False, 'from copy import deepcopy\n'), ((4586, 4622), 'os.makedirs', 'os.makedirs', (['save_dir'], {'exist_ok': '(True)'}), '(save_dir, exist_ok=True)\n', (4597, 4622), False, 'import os\n'), ((6546, 6563), 'numpy.mean', 'np.mean', (['all_vels'], {}), '(all_vels)\n', (6553, 6563), True, 'import numpy as np\n'), ((6578, 6594), 'numpy.std', 'np.std', (['all_vels'], {}), '(all_vels)\n', (6584, 6594), True, 'import numpy as np\n'), ((1200, 1213), 'tqdm.tqdm', 'tqdm', (['futures'], {}), '(futures)\n', (1204, 1213), False, 'from tqdm import tqdm\n'), ((1853, 1884), 'midi_preprocess.steps.track_separate.cal_file_features', 'tc.cal_file_features', (['midi_path'], {}), '(midi_path)\n', (1873, 1884), True, 'import midi_preprocess.steps.track_separate as tc\n'), ((2112, 2145), 'pretty_midi.PrettyMIDI', 'pretty_midi.PrettyMIDI', (['midi_path'], {}), '(midi_path)\n', (2134, 2145), False, 'import pretty_midi\n'), ((2496, 2529), 'numpy.where', 'np.where', (['features.melody_predict'], {}), '(features.melody_predict)\n', (2504, 2529), True, 'import numpy as np\n'), ((2565, 2596), 'numpy.where', 'np.where', (['features.bass_predict'], {}), '(features.bass_predict)\n', (2573, 2596), True, 'import numpy as np\n'), ((3418, 3438), 'copy.deepcopy', 'deepcopy', (['instru_old'], {}), '(instru_old)\n', (3426, 3438), False, 'from copy import deepcopy\n'), ((5515, 5544), 'miditoolkit.MidiFile', 'miditoolkit.MidiFile', (['midi_fn'], {}), '(midi_fn)\n', (5535, 5544), False, 'import miditoolkit\n'), ((2025, 2058), 'pretty_midi.PrettyMIDI', 'pretty_midi.PrettyMIDI', (['midi_path'], {}), '(midi_path)\n', (2047, 2058), False, 'import pretty_midi\n'), ((780, 794), 'os.cpu_count', 'os.cpu_count', ([], {}), '()\n', (792, 794), False, 'import os\n'), ((2669, 2697), 'numpy.where', 'np.where', (['features.is_melody'], {}), '(features.is_melody)\n', (2677, 2697), True, 'import numpy as np\n'), ((2768, 2794), 'numpy.where', 'np.where', (['features.is_bass'], {}), '(features.is_bass)\n', (2776, 2794), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 5 09:01:46 2021 @author: Michi """ import os import sys import numpy as np PACKAGE_PARENT = '..' SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT))) import Globals import astropy.units as u from population.astro.astroMassDistribution import AstroSmoothPowerLawMass, BrokenPowerLawMass, TruncPowerLawMass, PowerLawPlusPeakMass from population.astro.astroSpinDistribution import DummySpinDist, GaussSpinDist from population.astro.rateEvolution import PowerLawRateEvolution, AstroPhRateEvolution from population.astro.astroPopulation import AstroPopulation from cosmology.cosmo import Cosmo from population.allPopulations import AllPopulations from dataStructures.mockData import GWMockData, GWMockInjectionsData from dataStructures.O3adata import O3aData, O3aInjectionsData from dataStructures.O1O2data import O1O2Data, O1O2InjectionsData from dataStructures.O3bdata import O3bData, O3bInjectionsData #import astropy.units as u #from posteriors.prior import Prior #from posteriors.likelihood import HyperLikelihood #from posteriors.selectionBias import SelectionBiasInjections #from posteriors.posterior import Posterior mass_functions = { 'smooth_pow_law': AstroSmoothPowerLawMass, 'broken_pow_law': BrokenPowerLawMass, 'trunc_pow_law': TruncPowerLawMass, 'pow_law_peak': PowerLawPlusPeakMass, } spin_functions = { 'gauss': GaussSpinDist, 'skip': DummySpinDist } rate_functions = { # 'gauss': AstroSmoothPowerLawMass(), 'simple_pow_law': PowerLawRateEvolution, 'astro-ph' : AstroPhRateEvolution, } fnames_data = { 'mock': 'observations.h5', 'O3a': '', 'O1O2': '', 'O3b': '', } fnames_inj = { 'mock': 'selected.h5', 'O3a': 'o3a_bbhpop_inj_info.hdf', 'O1O2':'injections_O1O2an_spin.h5', 'O3b':'' } fnames_inj_3 = { 'mock': 'selected.h5', 'O3a': 'endo3_bbhpop-LIGO-T2100113-v12-1238166018-15843600.hdf5', 'O1O2':'injections_O1O2an_spin.h5', 'O3b':'endo3_bbhpop-LIGO-T2100113-v12-1256655642-12905976.hdf5' } fnames_SNRs = { 'mock': 'optimal_snr.h5' } def setup_chain(nwalkers, exp_values, priorNames, priorLimits, priorParams, params_inference, perc_variation_init=10, seed=1312): ''' Returns initial position for the walkers ------- pos : TYPE DESCRIPTION. ''' ndim=len(params_inference) eps = [val if val!=0 else 1 for val in exp_values ] lowLims = [ max( [exp_values[i]-eps[i]*perc_variation_init/100, priorLimits[p][0] ] ) for i,p in enumerate(params_inference) ] upLims = [ min( [ exp_values[i]+eps[i]*perc_variation_init/100, priorLimits[p][1] ]) for i,p in enumerate(params_inference) ] for i in range(len(lowLims)): if lowLims[i]>upLims[i]: lowLim=upLims[i] upLim=lowLims[i] upLims[i]=upLim lowLims[i]=lowLim if priorNames[params_inference[i]]=='gauss': print('Re-adjusting intervals for %s to gaussian prior limits...' %params_inference[i]) mu, sigma = priorParams[params_inference[i]]['mu'], priorParams[params_inference[i]]['sigma'] lowLim = lowLims[i] upLim=upLims[i] lowLims[i] = max(lowLim, mu-5*sigma) upLims[i] = min(upLim, mu+5*sigma) print('lowLims: %s' %lowLims) print('upLims: %s' %upLims) Delta = [upLims[i]-lowLims[i] for i in range(ndim)] print('Delta: %s' %Delta) print('Initial intervals for initialization of the walkers have an amplitude of +-%s percent around the expeced values of %s'%(perc_variation_init, str(exp_values)) ) np.random.seed(seed) pos = Delta*np.random.rand(nwalkers, ndim)+lowLims return pos def build_model( populations, cosmo_args={}, mass_args={}, spin_args={}, rate_args={}, ): ''' Parameters ---------- populations : dict { pop_name : {mass_function: , spin_distribution: , rate: } }. Returns ------- None. ''' # Create cosmology myCosmo = Cosmo(**cosmo_args) # Collector of all populations allPops = AllPopulations(myCosmo) for population in populations.keys(): print('Adding population %s' %population) # Create mass dist massFunction = mass_functions[populations[population]['mass_function']](**mass_args) # Create spin dist spinDist = spin_functions[populations[population]['spin_distribution']](**spin_args) # Create rate rate = rate_functions[populations[population]['rate']](**rate_args) # Create population pop_ = AstroPopulation(rate, massFunction, spinDist) allPops.add_pop(pop_) return allPops def load_data(dataset_name, injections_name=None, nObsUse=None, nSamplesUse=None, percSamplesUse=None, nInjUse=None, dist_unit=u.Gpc, data_args ={}, inj_args ={}, Tobs=None): # for O2/O3, injections_name can be None in which case the LVC injections are used (they should be in the same folder as the data) # or specify the name of a folder containing a file 'selected.h5' ############################################################ # DATA if "mock" in dataset_name: dataset_key='mock' else: dataset_key=dataset_name fname = os.path.join(Globals.dataPath, dataset_name, fnames_data[dataset_key]) fnameInj = os.path.join(Globals.dataPath, dataset_name, fnames_inj[dataset_key] ) if dataset_key=='mock': Data = GWMockData(fname, nObsUse=nObsUse, nSamplesUse=nSamplesUse, percSamplesUse=percSamplesUse, dist_unit=dist_unit, Tobs=Tobs) if 'SNR_th' in inj_args.keys(): snr_th = inj_args['SNR_th'] else: snr_th=None fnameInj = os.path.join(Globals.dataPath, injections_name, fnames_inj[dataset_key] ) injData = GWMockInjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=Tobs, snr_th=snr_th) elif dataset_name=='O3a': Data = O3aData(fname, nObsUse=nObsUse, nSamplesUse=nSamplesUse, percSamplesUse=percSamplesUse, dist_unit=dist_unit, **data_args) if injections_name is None: injData = O3aInjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, **inj_args) else: fnameInj = os.path.join(Globals.dataPath, dataset_name, injections_name, 'selected.h5') #fnames_inj[dataset_key] ) if 'SNR_th' in inj_args.keys(): snr_th = inj_args['SNR_th'] else: snr_th=None injData = GWMockInjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=Data.Tobs, snr_th=snr_th ) elif dataset_name=='O1O2': Data = O1O2Data(fname, nObsUse=nObsUse, nSamplesUse=nSamplesUse, percSamplesUse=percSamplesUse, dist_unit=dist_unit, **data_args) if injections_name is None: injData = O1O2InjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, **inj_args) else: fnameInj = os.path.join(Globals.dataPath, dataset_name, injections_name, 'selected.h5') if 'SNR_th' in inj_args.keys(): snr_th = inj_args['SNR_th'] else: snr_th=None injData = GWMockInjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=Data.Tobs, snr_th=snr_th) elif dataset_name=='O3b': Data = O3bData(fname, nObsUse=nObsUse, nSamplesUse=nSamplesUse, percSamplesUse=percSamplesUse, dist_unit=dist_unit, **data_args) if injections_name is None: injData = O3bInjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, **inj_args) #raise ValueError('LVC injections are not supported for O3b. Specify a name for the injections') else: fnameInj = os.path.join(Globals.dataPath, dataset_name, injections_name, 'selected.h5') if 'SNR_th' in inj_args.keys(): snr_th = inj_args['SNR_th'] else: snr_th=None injData = GWMockInjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=Data.Tobs, snr_th=snr_th ) else: raise ValueError('Dataset name not valid') return Data, injData def load_injections(dataset_name, injections_name=None, nInjUse=None, dist_unit=u.Gpc, inj_args ={}, Tobs=None): # for O2/O3, injections_name can be None in which case the LVC injections are used (they should be in the same folder as the data) # or specify the name of a folder containing a file 'selected.h5' ############################################################ # DATA if "mock" in dataset_name: dataset_key='mock' else: dataset_key=dataset_name if inj_args['which_injections']=='GWTC-2': fnameInj = os.path.join(Globals.dataPath, dataset_name, fnames_inj[dataset_key] ) elif inj_args['which_injections']=='GWTC-3': fnameInj = os.path.join(Globals.dataPath, dataset_name, fnames_inj_3[dataset_key] ) #else: # raise ValueError('which_injections you entered %s' %which_injections) if dataset_key=='mock': #Data = GWMockData(fname, nObsUse=nObsUse, nSamplesUse=nSamplesUse, percSamplesUse=percSamplesUse, dist_unit=dist_unit, Tobs=Tobs) if 'SNR_th' in inj_args.keys(): snr_th = inj_args['SNR_th'] else: snr_th=None fnameInj = os.path.join(Globals.dataPath, injections_name, fnames_inj[dataset_key] ) injData = GWMockInjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=Tobs, snr_th=snr_th) elif dataset_name=='O3a': #Data = O3aData(fname, nObsUse=nObsUse, nSamplesUse=nSamplesUse, percSamplesUse=percSamplesUse, dist_unit=dist_unit, **data_args) if injections_name is None: injData = O3aInjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, **inj_args) else: fnameInj = os.path.join(Globals.dataPath, dataset_name, injections_name, 'selected.h5') #fnames_inj[dataset_key] ) if 'SNR_th' in inj_args.keys(): snr_th = inj_args['SNR_th'] else: snr_th=None injData = GWMockInjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=183.375/365., snr_th=snr_th ) elif dataset_name=='O1O2': #Data = O1O2Data(fname, nObsUse=nObsUse, nSamplesUse=nSamplesUse, percSamplesUse=percSamplesUse, dist_unit=dist_unit, **data_args) if injections_name is None: injData = O1O2InjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, **inj_args) else: fnameInj = os.path.join(Globals.dataPath, dataset_name, injections_name, 'selected.h5') if 'SNR_th' in inj_args.keys(): snr_th = inj_args['SNR_th'] else: snr_th=None injData = GWMockInjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=(129+267)/365., snr_th=snr_th) elif dataset_name=='O3b': #Data = O3bData(fname, nObsUse=nObsUse, nSamplesUse=nSamplesUse, percSamplesUse=percSamplesUse, dist_unit=dist_unit, **data_args) if injections_name is None: injData = O3bInjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, **inj_args) #raise ValueError('LVC injections are not supported for O3b. Specify a name for the injections') else: fnameInj = os.path.join(Globals.dataPath, dataset_name, injections_name, 'selected.h5') if 'SNR_th' in inj_args.keys(): snr_th = inj_args['SNR_th'] else: snr_th=None injData = GWMockInjectionsData(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=147.083/365. , snr_th=snr_th ) else: raise ValueError('Dataset name not valid') return injData
[ "os.path.expanduser", "cosmology.cosmo.Cosmo", "population.astro.astroPopulation.AstroPopulation", "numpy.random.seed", "dataStructures.O3adata.O3aData", "dataStructures.O3bdata.O3bInjectionsData", "os.getcwd", "dataStructures.mockData.GWMockInjectionsData", "dataStructures.O3adata.O3aInjectionsData", "dataStructures.O1O2data.O1O2InjectionsData", "dataStructures.O3bdata.O3bData", "population.allPopulations.AllPopulations", "numpy.random.rand", "dataStructures.O1O2data.O1O2Data", "os.path.join", "dataStructures.mockData.GWMockData" ]
[((4125, 4145), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (4139, 4145), True, 'import numpy as np\n'), ((4542, 4561), 'cosmology.cosmo.Cosmo', 'Cosmo', ([], {}), '(**cosmo_args)\n', (4547, 4561), False, 'from cosmology.cosmo import Cosmo\n'), ((4620, 4643), 'population.allPopulations.AllPopulations', 'AllPopulations', (['myCosmo'], {}), '(myCosmo)\n', (4634, 4643), False, 'from population.allPopulations import AllPopulations\n'), ((5997, 6067), 'os.path.join', 'os.path.join', (['Globals.dataPath', 'dataset_name', 'fnames_data[dataset_key]'], {}), '(Globals.dataPath, dataset_name, fnames_data[dataset_key])\n', (6009, 6067), False, 'import os\n'), ((6087, 6156), 'os.path.join', 'os.path.join', (['Globals.dataPath', 'dataset_name', 'fnames_inj[dataset_key]'], {}), '(Globals.dataPath, dataset_name, fnames_inj[dataset_key])\n', (6099, 6156), False, 'import os\n'), ((307, 347), 'os.path.join', 'os.path.join', (['SCRIPT_DIR', 'PACKAGE_PARENT'], {}), '(SCRIPT_DIR, PACKAGE_PARENT)\n', (319, 347), False, 'import os\n'), ((5214, 5259), 'population.astro.astroPopulation.AstroPopulation', 'AstroPopulation', (['rate', 'massFunction', 'spinDist'], {}), '(rate, massFunction, spinDist)\n', (5229, 5259), False, 'from population.astro.astroPopulation import AstroPopulation\n'), ((6218, 6345), 'dataStructures.mockData.GWMockData', 'GWMockData', (['fname'], {'nObsUse': 'nObsUse', 'nSamplesUse': 'nSamplesUse', 'percSamplesUse': 'percSamplesUse', 'dist_unit': 'dist_unit', 'Tobs': 'Tobs'}), '(fname, nObsUse=nObsUse, nSamplesUse=nSamplesUse, percSamplesUse=\n percSamplesUse, dist_unit=dist_unit, Tobs=Tobs)\n', (6228, 6345), False, 'from dataStructures.mockData import GWMockData, GWMockInjectionsData\n'), ((6483, 6555), 'os.path.join', 'os.path.join', (['Globals.dataPath', 'injections_name', 'fnames_inj[dataset_key]'], {}), '(Globals.dataPath, injections_name, fnames_inj[dataset_key])\n', (6495, 6555), False, 'import os\n'), ((6579, 6678), 'dataStructures.mockData.GWMockInjectionsData', 'GWMockInjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit', 'Tobs': 'Tobs', 'snr_th': 'snr_th'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=\n Tobs, snr_th=snr_th)\n', (6599, 6678), False, 'from dataStructures.mockData import GWMockData, GWMockInjectionsData\n'), ((9721, 9790), 'os.path.join', 'os.path.join', (['Globals.dataPath', 'dataset_name', 'fnames_inj[dataset_key]'], {}), '(Globals.dataPath, dataset_name, fnames_inj[dataset_key])\n', (9733, 9790), False, 'import os\n'), ((10374, 10446), 'os.path.join', 'os.path.join', (['Globals.dataPath', 'injections_name', 'fnames_inj[dataset_key]'], {}), '(Globals.dataPath, injections_name, fnames_inj[dataset_key])\n', (10386, 10446), False, 'import os\n'), ((10470, 10569), 'dataStructures.mockData.GWMockInjectionsData', 'GWMockInjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit', 'Tobs': 'Tobs', 'snr_th': 'snr_th'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=\n Tobs, snr_th=snr_th)\n', (10490, 10569), False, 'from dataStructures.mockData import GWMockData, GWMockInjectionsData\n'), ((229, 240), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (238, 240), False, 'import os\n'), ((242, 270), 'os.path.expanduser', 'os.path.expanduser', (['__file__'], {}), '(__file__)\n', (260, 270), False, 'import os\n'), ((4162, 4192), 'numpy.random.rand', 'np.random.rand', (['nwalkers', 'ndim'], {}), '(nwalkers, ndim)\n', (4176, 4192), True, 'import numpy as np\n'), ((6728, 6854), 'dataStructures.O3adata.O3aData', 'O3aData', (['fname'], {'nObsUse': 'nObsUse', 'nSamplesUse': 'nSamplesUse', 'percSamplesUse': 'percSamplesUse', 'dist_unit': 'dist_unit'}), '(fname, nObsUse=nObsUse, nSamplesUse=nSamplesUse, percSamplesUse=\n percSamplesUse, dist_unit=dist_unit, **data_args)\n', (6735, 6854), False, 'from dataStructures.O3adata import O3aData, O3aInjectionsData\n'), ((9868, 9939), 'os.path.join', 'os.path.join', (['Globals.dataPath', 'dataset_name', 'fnames_inj_3[dataset_key]'], {}), '(Globals.dataPath, dataset_name, fnames_inj_3[dataset_key])\n', (9880, 9939), False, 'import os\n'), ((6917, 6994), 'dataStructures.O3adata.O3aInjectionsData', 'O3aInjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, **inj_args)\n', (6934, 6994), False, 'from dataStructures.O3adata import O3aData, O3aInjectionsData\n'), ((7041, 7117), 'os.path.join', 'os.path.join', (['Globals.dataPath', 'dataset_name', 'injections_name', '"""selected.h5"""'], {}), "(Globals.dataPath, dataset_name, injections_name, 'selected.h5')\n", (7053, 7117), False, 'import os\n'), ((7301, 7405), 'dataStructures.mockData.GWMockInjectionsData', 'GWMockInjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit', 'Tobs': 'Data.Tobs', 'snr_th': 'snr_th'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=\n Data.Tobs, snr_th=snr_th)\n', (7321, 7405), False, 'from dataStructures.mockData import GWMockData, GWMockInjectionsData\n'), ((7483, 7610), 'dataStructures.O1O2data.O1O2Data', 'O1O2Data', (['fname'], {'nObsUse': 'nObsUse', 'nSamplesUse': 'nSamplesUse', 'percSamplesUse': 'percSamplesUse', 'dist_unit': 'dist_unit'}), '(fname, nObsUse=nObsUse, nSamplesUse=nSamplesUse, percSamplesUse=\n percSamplesUse, dist_unit=dist_unit, **data_args)\n', (7491, 7610), False, 'from dataStructures.O1O2data import O1O2Data, O1O2InjectionsData\n'), ((10809, 10886), 'dataStructures.O3adata.O3aInjectionsData', 'O3aInjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, **inj_args)\n', (10826, 10886), False, 'from dataStructures.O3adata import O3aData, O3aInjectionsData\n'), ((10933, 11009), 'os.path.join', 'os.path.join', (['Globals.dataPath', 'dataset_name', 'injections_name', '"""selected.h5"""'], {}), "(Globals.dataPath, dataset_name, injections_name, 'selected.h5')\n", (10945, 11009), False, 'import os\n'), ((11193, 11303), 'dataStructures.mockData.GWMockInjectionsData', 'GWMockInjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit', 'Tobs': '(183.375 / 365.0)', 'snr_th': 'snr_th'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=\n 183.375 / 365.0, snr_th=snr_th)\n', (11213, 11303), False, 'from dataStructures.mockData import GWMockData, GWMockInjectionsData\n'), ((7673, 7751), 'dataStructures.O1O2data.O1O2InjectionsData', 'O1O2InjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, **inj_args)\n', (7691, 7751), False, 'from dataStructures.O1O2data import O1O2Data, O1O2InjectionsData\n'), ((7798, 7874), 'os.path.join', 'os.path.join', (['Globals.dataPath', 'dataset_name', 'injections_name', '"""selected.h5"""'], {}), "(Globals.dataPath, dataset_name, injections_name, 'selected.h5')\n", (7810, 7874), False, 'import os\n'), ((8031, 8135), 'dataStructures.mockData.GWMockInjectionsData', 'GWMockInjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit', 'Tobs': 'Data.Tobs', 'snr_th': 'snr_th'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=\n Data.Tobs, snr_th=snr_th)\n', (8051, 8135), False, 'from dataStructures.mockData import GWMockData, GWMockInjectionsData\n'), ((8194, 8320), 'dataStructures.O3bdata.O3bData', 'O3bData', (['fname'], {'nObsUse': 'nObsUse', 'nSamplesUse': 'nSamplesUse', 'percSamplesUse': 'percSamplesUse', 'dist_unit': 'dist_unit'}), '(fname, nObsUse=nObsUse, nSamplesUse=nSamplesUse, percSamplesUse=\n percSamplesUse, dist_unit=dist_unit, **data_args)\n', (8201, 8320), False, 'from dataStructures.O3bdata import O3bData, O3bInjectionsData\n'), ((11569, 11647), 'dataStructures.O1O2data.O1O2InjectionsData', 'O1O2InjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, **inj_args)\n', (11587, 11647), False, 'from dataStructures.O1O2data import O1O2Data, O1O2InjectionsData\n'), ((11694, 11770), 'os.path.join', 'os.path.join', (['Globals.dataPath', 'dataset_name', 'injections_name', '"""selected.h5"""'], {}), "(Globals.dataPath, dataset_name, injections_name, 'selected.h5')\n", (11706, 11770), False, 'import os\n'), ((11927, 12041), 'dataStructures.mockData.GWMockInjectionsData', 'GWMockInjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit', 'Tobs': '((129 + 267) / 365.0)', 'snr_th': 'snr_th'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=(\n 129 + 267) / 365.0, snr_th=snr_th)\n', (11947, 12041), False, 'from dataStructures.mockData import GWMockData, GWMockInjectionsData\n'), ((8383, 8460), 'dataStructures.O3bdata.O3bInjectionsData', 'O3bInjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, **inj_args)\n', (8400, 8460), False, 'from dataStructures.O3bdata import O3bData, O3bInjectionsData\n'), ((8620, 8696), 'os.path.join', 'os.path.join', (['Globals.dataPath', 'dataset_name', 'injections_name', '"""selected.h5"""'], {}), "(Globals.dataPath, dataset_name, injections_name, 'selected.h5')\n", (8632, 8696), False, 'import os\n'), ((8853, 8957), 'dataStructures.mockData.GWMockInjectionsData', 'GWMockInjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit', 'Tobs': 'Data.Tobs', 'snr_th': 'snr_th'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=\n Data.Tobs, snr_th=snr_th)\n', (8873, 8957), False, 'from dataStructures.mockData import GWMockData, GWMockInjectionsData\n'), ((12285, 12362), 'dataStructures.O3bdata.O3bInjectionsData', 'O3bInjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, **inj_args)\n', (12302, 12362), False, 'from dataStructures.O3bdata import O3bData, O3bInjectionsData\n'), ((12522, 12598), 'os.path.join', 'os.path.join', (['Globals.dataPath', 'dataset_name', 'injections_name', '"""selected.h5"""'], {}), "(Globals.dataPath, dataset_name, injections_name, 'selected.h5')\n", (12534, 12598), False, 'import os\n'), ((12755, 12865), 'dataStructures.mockData.GWMockInjectionsData', 'GWMockInjectionsData', (['fnameInj'], {'nInjUse': 'nInjUse', 'dist_unit': 'dist_unit', 'Tobs': '(147.083 / 365.0)', 'snr_th': 'snr_th'}), '(fnameInj, nInjUse=nInjUse, dist_unit=dist_unit, Tobs=\n 147.083 / 365.0, snr_th=snr_th)\n', (12775, 12865), False, 'from dataStructures.mockData import GWMockData, GWMockInjectionsData\n')]
import numpy as np from PuzzleLib.Backend import gpuarray, Blas from PuzzleLib.Backend.Dnn import PoolMode, poolNd, poolNdBackward from PuzzleLib.Modules.Module import ModuleError, Module class SubtractMean(Module): def __init__(self, size=5, includePad=True, name=None): super().__init__(name) self.registerBlueprint(locals()) if size % 2 != 1 or size == 1: raise ModuleError("Subtractive norm size must be odd and > 1") self.size = self.repeat(size, 2) self.pad = (self.size[0] // 2, self.size[1] // 2) self.mode = PoolMode.avgWithPad if includePad else PoolMode.avgNoPad self.means = None self.workspace = None def updateData(self, data): self.means, self.workspace = poolNd( data, size=self.size, stride=1, pad=self.pad, mode=self.mode, test=not self.train ) self.data = Blas.addVectorToVector(data.ravel(), self.means.ravel(), beta=-1.0).reshape(*data.shape) def updateGrad(self, grad): meansGrad = poolNdBackward( self.inData, self.means, grad, self.workspace, size=self.size, stride=1, pad=self.pad, mode=self.mode ) Blas.addVectorToVector(grad.ravel(), meansGrad.ravel(), out=meansGrad.ravel(), beta=-1.0) self.grad = meansGrad def dataShapeFrom(self, shape): return shape def checkDataShape(self, shape): if len(shape) != 4: raise ModuleError("Data must be 4d tensor") def gradShapeFrom(self, shape): return shape def checkGradShape(self, shape): if len(shape) != 4: raise ModuleError("Grad must be 4d tensor") def reset(self): super().reset() self.means = None self.workspace = None def unittest(): batchsize, maps, h, w = 1, 1, 6, 6 size = 3 data = gpuarray.to_gpu(np.random.randn(batchsize, maps, h, w).astype(np.float32)) subtractMean = SubtractMean(size=size) subtractMean(data) hpad, wpad = subtractMean.pad hostData = np.zeros(shape=(batchsize, maps, h + 2 * hpad, w + 2 * wpad), dtype=np.float32) hostData[:, :, hpad:-hpad, wpad:-wpad] = data.get() hostOutData = np.empty(subtractMean.data.shape, dtype=np.float32) for b in range(batchsize): for c in range(maps): for y in range(data.shape[2]): for x in range(data.shape[3]): hostOutData[b, c, y, x] -= np.sum(hostData[b, c, y:y + size, x:x + size]) / size**2 assert np.allclose(hostOutData, subtractMean.data.get()) grad = gpuarray.to_gpu(np.random.randn(*subtractMean.data.shape).astype(np.float32)) subtractMean.backward(grad) hostGrad = grad.get() hostInGrad = np.zeros(shape=hostData.shape, dtype=np.float32) hostInGrad[:, :, hpad:-hpad, wpad:-wpad] = hostGrad for b in range(batchsize): for c in range(maps): for y in range(hostGrad.shape[2]): for x in range(hostGrad.shape[3]): for dy in range(size): for dx in range(size): hostInGrad[b, c, y + dy, x + dx] -= hostGrad[b, c, y, x] / size**2 assert np.allclose(hostInGrad[:, :, hpad:-hpad, wpad:-wpad], subtractMean.grad.get()) if __name__ == "__main__": unittest()
[ "PuzzleLib.Backend.Dnn.poolNd", "numpy.sum", "numpy.random.randn", "numpy.empty", "numpy.zeros", "PuzzleLib.Backend.Dnn.poolNdBackward", "PuzzleLib.Modules.Module.ModuleError" ]
[((1836, 1915), 'numpy.zeros', 'np.zeros', ([], {'shape': '(batchsize, maps, h + 2 * hpad, w + 2 * wpad)', 'dtype': 'np.float32'}), '(shape=(batchsize, maps, h + 2 * hpad, w + 2 * wpad), dtype=np.float32)\n', (1844, 1915), True, 'import numpy as np\n'), ((1985, 2036), 'numpy.empty', 'np.empty', (['subtractMean.data.shape'], {'dtype': 'np.float32'}), '(subtractMean.data.shape, dtype=np.float32)\n', (1993, 2036), True, 'import numpy as np\n'), ((2461, 2509), 'numpy.zeros', 'np.zeros', ([], {'shape': 'hostData.shape', 'dtype': 'np.float32'}), '(shape=hostData.shape, dtype=np.float32)\n', (2469, 2509), True, 'import numpy as np\n'), ((704, 798), 'PuzzleLib.Backend.Dnn.poolNd', 'poolNd', (['data'], {'size': 'self.size', 'stride': '(1)', 'pad': 'self.pad', 'mode': 'self.mode', 'test': '(not self.train)'}), '(data, size=self.size, stride=1, pad=self.pad, mode=self.mode, test=\n not self.train)\n', (710, 798), False, 'from PuzzleLib.Backend.Dnn import PoolMode, poolNd, poolNdBackward\n'), ((949, 1071), 'PuzzleLib.Backend.Dnn.poolNdBackward', 'poolNdBackward', (['self.inData', 'self.means', 'grad', 'self.workspace'], {'size': 'self.size', 'stride': '(1)', 'pad': 'self.pad', 'mode': 'self.mode'}), '(self.inData, self.means, grad, self.workspace, size=self.\n size, stride=1, pad=self.pad, mode=self.mode)\n', (963, 1071), False, 'from PuzzleLib.Backend.Dnn import PoolMode, poolNd, poolNdBackward\n'), ((380, 436), 'PuzzleLib.Modules.Module.ModuleError', 'ModuleError', (['"""Subtractive norm size must be odd and > 1"""'], {}), "('Subtractive norm size must be odd and > 1')\n", (391, 436), False, 'from PuzzleLib.Modules.Module import ModuleError, Module\n'), ((1308, 1345), 'PuzzleLib.Modules.Module.ModuleError', 'ModuleError', (['"""Data must be 4d tensor"""'], {}), "('Data must be 4d tensor')\n", (1319, 1345), False, 'from PuzzleLib.Modules.Module import ModuleError, Module\n'), ((1463, 1500), 'PuzzleLib.Modules.Module.ModuleError', 'ModuleError', (['"""Grad must be 4d tensor"""'], {}), "('Grad must be 4d tensor')\n", (1474, 1500), False, 'from PuzzleLib.Modules.Module import ModuleError, Module\n'), ((1672, 1710), 'numpy.random.randn', 'np.random.randn', (['batchsize', 'maps', 'h', 'w'], {}), '(batchsize, maps, h, w)\n', (1687, 1710), True, 'import numpy as np\n'), ((2332, 2373), 'numpy.random.randn', 'np.random.randn', (['*subtractMean.data.shape'], {}), '(*subtractMean.data.shape)\n', (2347, 2373), True, 'import numpy as np\n'), ((2191, 2237), 'numpy.sum', 'np.sum', (['hostData[b, c, y:y + size, x:x + size]'], {}), '(hostData[b, c, y:y + size, x:x + size])\n', (2197, 2237), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np np.random.seed(1234) import os import time import datetime from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from builddata import * from model import ConvKB # Parameters # ================================================== parser = ArgumentParser("ConvKB", formatter_class=ArgumentDefaultsHelpFormatter, conflict_handler='resolve') parser.add_argument("--data", default="../data/", help="Data sources.") parser.add_argument("--run_folder", default="../", help="Data sources.") parser.add_argument("--name", default="WN18RR", help="Name of the dataset.") parser.add_argument("--embedding_dim", default=50, type=int, help="Dimensionality of character embedding") parser.add_argument("--filter_sizes", default="1", help="Comma-separated filter sizes") parser.add_argument("--num_filters", default=500, type=int, help="Number of filters per filter size") parser.add_argument("--dropout_keep_prob", default=1.0, type=float, help="Dropout keep probability") parser.add_argument("--l2_reg_lambda", default=0.001, type=float, help="L2 regularization lambda") parser.add_argument("--learning_rate", default=0.0001, type=float, help="Learning rate") parser.add_argument("--is_trainable", default=True, type=bool, help="") parser.add_argument("--batch_size", default=128, type=int, help="Batch Size") parser.add_argument("--neg_ratio", default=1.0, type=float, help="Number of negative triples generated by positive") parser.add_argument("--num_epochs", default=201, type=int, help="Number of training epochs") parser.add_argument("--saveStep", default=200, type=int, help="") parser.add_argument("--allow_soft_placement", default=True, type=bool, help="Allow device soft device placement") parser.add_argument("--log_device_placement", default=False, type=bool, help="Log placement of ops on devices") parser.add_argument("--model_name", default='wn18rr', help="") parser.add_argument("--useConstantInit", action='store_true') parser.add_argument("--model_index", default='200', help="") parser.add_argument("--seed", default=1234, type=int, help="") parser.add_argument("--num_splits", default=8, type=int, help="Split the validation set into 8 parts for a faster evaluation") parser.add_argument("--testIdx", default=1, type=int, help="From 0 to 7. Index of one of 8 parts") parser.add_argument("--decode", action='store_false') args = parser.parse_args() print(args) # Load data print("Loading data...") train, valid, test, words_indexes, indexes_words, \ headTailSelector, entity2id, id2entity, relation2id, id2relation = build_data(path=args.data, name=args.name) data_size = len(train) train_batch = Batch_Loader(train, words_indexes, indexes_words, headTailSelector, \ entity2id, id2entity, relation2id, id2relation, batch_size=args.batch_size, neg_ratio=args.neg_ratio) entity_array = np.array(list(train_batch.indexes_ents.keys())) lstEmbed = [] #Using the pre-trained embeddings. print("Using pre-trained model.") lstEmbed = np.empty([len(words_indexes), args.embedding_dim]).astype(np.float32) initEnt, initRel = init_norm_Vector(args.data + args.name + '/relation2vec' + str(args.embedding_dim) + '.init', args.data + args.name + '/entity2vec' + str(args.embedding_dim) + '.init', args.embedding_dim) for _word in words_indexes: if _word in relation2id: index = relation2id[_word] _ind = words_indexes[_word] lstEmbed[_ind] = initRel[index] elif _word in entity2id: index = entity2id[_word] _ind = words_indexes[_word] lstEmbed[_ind] = initEnt[index] else: print('*****************Error********************!') break lstEmbed = np.array(lstEmbed, dtype=np.float32) assert len(words_indexes) % (len(entity2id) + len(relation2id)) == 0 print("Loading data... finished!") x_valid = np.array(list(valid.keys())).astype(np.int32) y_valid = np.array(list(valid.values())).astype(np.float32) x_test = np.array(list(test.keys())).astype(np.int32) y_test = np.array(list(test.values())).astype(np.float32) # Training # ================================================== with tf.Graph().as_default(): tf.set_random_seed(args.seed) session_conf = tf.ConfigProto(allow_soft_placement=args.allow_soft_placement, log_device_placement=args.log_device_placement) session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) with sess.as_default(): global_step = tf.Variable(0, name="global_step", trainable=False) cnn = ConvKB( sequence_length=x_valid.shape[1], # 3 num_classes=y_valid.shape[1], # 1 pre_trained=lstEmbed, embedding_size=args.embedding_dim, filter_sizes=list(map(int, args.filter_sizes.split(","))), num_filters=args.num_filters, vocab_size=len(words_indexes), l2_reg_lambda=args.l2_reg_lambda, is_trainable=args.is_trainable, useConstantInit=args.useConstantInit) optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate) # optimizer = tf.train.RMSPropOptimizer(learning_rate=args.learning_rate) # optimizer = tf.train.GradientDescentOptimizer(learning_rate=args.learning_rate) grads_and_vars = optimizer.compute_gradients(cnn.loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step) out_dir = os.path.abspath(os.path.join(args.run_folder, "runs", args.model_name)) print("Writing to {}\n".format(out_dir)) # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) # Initialize all variables sess.run(tf.global_variables_initializer()) def train_step(x_batch, y_batch): """ A single training step """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: args.dropout_keep_prob, } _, step, loss = sess.run([train_op, global_step, cnn.loss], feed_dict) if step % 10000 == 0: print(step) num_batches_per_epoch = int((data_size - 1) / args.batch_size) + 1 for epoch in range(args.num_epochs): for batch_num in range(num_batches_per_epoch): x_batch, y_batch = train_batch() train_step(x_batch, y_batch) current_step = tf.train.global_step(sess, global_step) if epoch >= 0: if epoch % args.saveStep == 0: path = cnn.saver.save(sess, checkpoint_prefix, global_step=epoch) print("Saved model checkpoint to {}\n".format(path))
[ "numpy.random.seed", "argparse.ArgumentParser", "os.makedirs", "tensorflow.global_variables_initializer", "tensorflow.Session", "os.path.exists", "tensorflow.set_random_seed", "tensorflow.ConfigProto", "tensorflow.Variable", "numpy.array", "tensorflow.Graph", "tensorflow.train.AdamOptimizer", "os.path.join", "tensorflow.train.global_step" ]
[((44, 64), 'numpy.random.seed', 'np.random.seed', (['(1234)'], {}), '(1234)\n', (58, 64), True, 'import numpy as np\n'), ((295, 398), 'argparse.ArgumentParser', 'ArgumentParser', (['"""ConvKB"""'], {'formatter_class': 'ArgumentDefaultsHelpFormatter', 'conflict_handler': '"""resolve"""'}), "('ConvKB', formatter_class=ArgumentDefaultsHelpFormatter,\n conflict_handler='resolve')\n", (309, 398), False, 'from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter\n'), ((3656, 3692), 'numpy.array', 'np.array', (['lstEmbed'], {'dtype': 'np.float32'}), '(lstEmbed, dtype=np.float32)\n', (3664, 3692), True, 'import numpy as np\n'), ((4125, 4154), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['args.seed'], {}), '(args.seed)\n', (4143, 4154), True, 'import tensorflow as tf\n'), ((4171, 4285), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': 'args.allow_soft_placement', 'log_device_placement': 'args.log_device_placement'}), '(allow_soft_placement=args.allow_soft_placement,\n log_device_placement=args.log_device_placement)\n', (4185, 4285), True, 'import tensorflow as tf\n'), ((4346, 4377), 'tensorflow.Session', 'tf.Session', ([], {'config': 'session_conf'}), '(config=session_conf)\n', (4356, 4377), True, 'import tensorflow as tf\n'), ((4419, 4470), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'name': '"""global_step"""', 'trainable': '(False)'}), "(0, name='global_step', trainable=False)\n", (4430, 4470), True, 'import tensorflow as tf\n'), ((4887, 4943), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'args.learning_rate'}), '(learning_rate=args.learning_rate)\n', (4909, 4943), True, 'import tensorflow as tf\n'), ((5564, 5601), 'os.path.join', 'os.path.join', (['checkpoint_dir', '"""model"""'], {}), "(checkpoint_dir, 'model')\n", (5576, 5601), False, 'import os\n'), ((4099, 4109), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (4107, 4109), True, 'import tensorflow as tf\n'), ((5270, 5324), 'os.path.join', 'os.path.join', (['args.run_folder', '"""runs"""', 'args.model_name'], {}), "(args.run_folder, 'runs', args.model_name)\n", (5282, 5324), False, 'import os\n'), ((5504, 5540), 'os.path.join', 'os.path.join', (['out_dir', '"""checkpoints"""'], {}), "(out_dir, 'checkpoints')\n", (5516, 5540), False, 'import os\n'), ((5611, 5641), 'os.path.exists', 'os.path.exists', (['checkpoint_dir'], {}), '(checkpoint_dir)\n', (5625, 5641), False, 'import os\n'), ((5646, 5673), 'os.makedirs', 'os.makedirs', (['checkpoint_dir'], {}), '(checkpoint_dir)\n', (5657, 5673), False, 'import os\n'), ((5715, 5748), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (5746, 5748), True, 'import tensorflow as tf\n'), ((6311, 6350), 'tensorflow.train.global_step', 'tf.train.global_step', (['sess', 'global_step'], {}), '(sess, global_step)\n', (6331, 6350), True, 'import tensorflow as tf\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # author: 11360 # datetime: 2021/2/28 23:43 # project: Particle Filter import numpy as np import matplotlib.pyplot as plt dt = 0.4 # 认为噪声仍服从高斯分布 variance_Q = 0.1 * dt # 状态转移噪声协方差 variance_R = 1 * dt # 测量协方差 class Particle_filter: def __init__(self, particle_num): self.particle_num = particle_num def estimate(self, particles, weights): """ 每一步对系统状态进行估计,求z关于后验概率的期望,对应即求Particles与权重的加权平均 """ mean = np.average(particles, weights=weights) var = np.average((particles - mean) ** 2, weights=weights) return mean, var def simple_resample(self, particles, weights): """ 通过累计分布函数进行重采样 """ N = len(particles) cumulative_sum = np.cumsum(weights) cumulative_sum[-1] = 1. # 避免误差 rn = np.random.rand(N) # 0-1之间的均匀分布采样 indexes = np.searchsorted(cumulative_sum, rn) # 在数组A中插入数组B,返回索引 # 根据索引采样 particles[:] = particles[indexes] weights.fill(1.0 / N) return particles, weights def make_data(self): """ 构造观测值 """ z = np.random.normal(0, 1) # 初始真实状态 self.hidden_data = [z] self.observe_data = [dt * z ** 3 + np.random.normal(0, variance_R)] for i in range(99): # 100个数据点 z = z + z * dt * np.cos(z) + np.random.normal(0, variance_Q) x = dt * z ** 3 + np.random.normal(0, variance_R) self.hidden_data.append(z) self.observe_data.append(x) def filter(self, resampling=True): z_estimate = 0 # 初始状态估计值 self.z_estimate_lst = [z_estimate] V = 1 # 初始协方差 z_particles = z_estimate + np.random.normal(0, V, self.particle_num) Particles_weights = np.array([1 / self.particle_num for _ in range(self.particle_num)]) self.z_particles_lst = [z_particles] for i in range(1, len(self.observe_data)): # 从p(zt|zt-1)中采样 z_particles_sampling = self.sampling(z_particles) x_particles_sampling = dt * z_particles_sampling ** 3 # 计算权重 Particles_weights = self.cal_weights(self.observe_data[i], x_particles_sampling, Particles_weights) # 估计 z_est, z_var_ssd = self.estimate(z_particles_sampling, Particles_weights) self.z_estimate_lst.append(z_est) # 重采样 if resampling: z_particles, Particles_weights = self.simple_resample(z_particles_sampling, Particles_weights) self.z_particles_lst.append(z_particles) else: z_particles = z_particles_sampling self.z_particles_lst.append(z_particles) def sampling(self, z_particles): """ 从p(zt|zt-1)中采样 """ z_particles_sampling = z_particles + dt * z_particles * np.cos(z_particles) + \ np.random.normal(0, variance_Q, self.particle_num) return z_particles_sampling def cal_weights(self, observed_data, x_particles_sampling, old_par_weights): """ 计算p(xt|zt)w(t-1), 由于每次都进行重采样,w(t-1)是常数 """ variance_R_guji = variance_R + 2 Particles_weights = (1 / np.sqrt(2 * np.pi * variance_R_guji)) * np.exp(-(observed_data - x_particles_sampling) ** 2 / (2 * variance_R_guji)) Particles_weights = Particles_weights * old_par_weights Particles_weights /= np.sum(Particles_weights) return Particles_weights def plot(self): plt.figure() num = len(self.observe_data) x = [i for i in range(num)] plt.scatter(x, self.observe_data, c="r", s=5) plt.scatter(x, self.z_estimate_lst, c="g", s=5) p1, = plt.plot(x, self.observe_data, c="r", ) for i in range(self.particle_num): p3, = plt.plot(x, [self.z_particles_lst[j][i] for j in range(num)], color='gray') p2, = plt.plot(x, self.z_estimate_lst, c="g") plt.legend([p1, p2, p3], ["Observed data", "Estimated state", "Particle trajectory"]) plt.show() if __name__ == "__main__": obj = Particle_filter(100) obj.make_data() obj.filter(resampling=False) obj.plot()
[ "numpy.average", "numpy.sum", "matplotlib.pyplot.plot", "matplotlib.pyplot.show", "matplotlib.pyplot.scatter", "matplotlib.pyplot.legend", "numpy.searchsorted", "numpy.cumsum", "matplotlib.pyplot.figure", "numpy.exp", "numpy.random.normal", "numpy.cos", "numpy.random.rand", "numpy.sqrt" ]
[((505, 543), 'numpy.average', 'np.average', (['particles'], {'weights': 'weights'}), '(particles, weights=weights)\n', (515, 543), True, 'import numpy as np\n'), ((559, 611), 'numpy.average', 'np.average', (['((particles - mean) ** 2)'], {'weights': 'weights'}), '((particles - mean) ** 2, weights=weights)\n', (569, 611), True, 'import numpy as np\n'), ((777, 795), 'numpy.cumsum', 'np.cumsum', (['weights'], {}), '(weights)\n', (786, 795), True, 'import numpy as np\n'), ((851, 868), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (865, 868), True, 'import numpy as np\n'), ((904, 939), 'numpy.searchsorted', 'np.searchsorted', (['cumulative_sum', 'rn'], {}), '(cumulative_sum, rn)\n', (919, 939), True, 'import numpy as np\n'), ((1152, 1174), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {}), '(0, 1)\n', (1168, 1174), True, 'import numpy as np\n'), ((3566, 3591), 'numpy.sum', 'np.sum', (['Particles_weights'], {}), '(Particles_weights)\n', (3572, 3591), True, 'import numpy as np\n'), ((3658, 3670), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3668, 3670), True, 'import matplotlib.pyplot as plt\n'), ((3755, 3800), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'self.observe_data'], {'c': '"""r"""', 's': '(5)'}), "(x, self.observe_data, c='r', s=5)\n", (3766, 3800), True, 'import matplotlib.pyplot as plt\n'), ((3810, 3857), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'self.z_estimate_lst'], {'c': '"""g"""', 's': '(5)'}), "(x, self.z_estimate_lst, c='g', s=5)\n", (3821, 3857), True, 'import matplotlib.pyplot as plt\n'), ((3873, 3910), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'self.observe_data'], {'c': '"""r"""'}), "(x, self.observe_data, c='r')\n", (3881, 3910), True, 'import matplotlib.pyplot as plt\n'), ((4067, 4106), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'self.z_estimate_lst'], {'c': '"""g"""'}), "(x, self.z_estimate_lst, c='g')\n", (4075, 4106), True, 'import matplotlib.pyplot as plt\n'), ((4118, 4207), 'matplotlib.pyplot.legend', 'plt.legend', (['[p1, p2, p3]', "['Observed data', 'Estimated state', 'Particle trajectory']"], {}), "([p1, p2, p3], ['Observed data', 'Estimated state',\n 'Particle trajectory'])\n", (4128, 4207), True, 'import matplotlib.pyplot as plt\n'), ((4213, 4223), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4221, 4223), True, 'import matplotlib.pyplot as plt\n'), ((1749, 1790), 'numpy.random.normal', 'np.random.normal', (['(0)', 'V', 'self.particle_num'], {}), '(0, V, self.particle_num)\n', (1765, 1790), True, 'import numpy as np\n'), ((2974, 3024), 'numpy.random.normal', 'np.random.normal', (['(0)', 'variance_Q', 'self.particle_num'], {}), '(0, variance_Q, self.particle_num)\n', (2990, 3024), True, 'import numpy as np\n'), ((3318, 3394), 'numpy.exp', 'np.exp', (['(-(observed_data - x_particles_sampling) ** 2 / (2 * variance_R_guji))'], {}), '(-(observed_data - x_particles_sampling) ** 2 / (2 * variance_R_guji))\n', (3324, 3394), True, 'import numpy as np\n'), ((1261, 1292), 'numpy.random.normal', 'np.random.normal', (['(0)', 'variance_R'], {}), '(0, variance_R)\n', (1277, 1292), True, 'import numpy as np\n'), ((1390, 1421), 'numpy.random.normal', 'np.random.normal', (['(0)', 'variance_Q'], {}), '(0, variance_Q)\n', (1406, 1421), True, 'import numpy as np\n'), ((1453, 1484), 'numpy.random.normal', 'np.random.normal', (['(0)', 'variance_R'], {}), '(0, variance_R)\n', (1469, 1484), True, 'import numpy as np\n'), ((3278, 3314), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi * variance_R_guji)'], {}), '(2 * np.pi * variance_R_guji)\n', (3285, 3314), True, 'import numpy as np\n'), ((2918, 2937), 'numpy.cos', 'np.cos', (['z_particles'], {}), '(z_particles)\n', (2924, 2937), True, 'import numpy as np\n'), ((1378, 1387), 'numpy.cos', 'np.cos', (['z'], {}), '(z)\n', (1384, 1387), True, 'import numpy as np\n')]
import numpy as np from ml.model import NumberRecognizeNN from ml.data_processor import DataProcessor class ModelAPI(): def __init__(self, resource): self.resource = resource self.model = NumberRecognizeNN(resource.INPUT_SIZE, resource.OUTPUT_SIZE) resource.load_model(self.model) means, stds = resource.load_normalization_params() self.dp = DataProcessor(means, stds) def predict(self, data): _data = data if isinstance(data, (tuple, list)): _data = np.array([data], dtype=np.float32) f_data = self.dp.format_x(_data, size=self.resource.INPUT_SIZE) predicted = self.model(f_data) number = np.argmax(predicted.data, axis=1) return number
[ "ml.model.NumberRecognizeNN", "numpy.array", "ml.data_processor.DataProcessor", "numpy.argmax" ]
[((211, 271), 'ml.model.NumberRecognizeNN', 'NumberRecognizeNN', (['resource.INPUT_SIZE', 'resource.OUTPUT_SIZE'], {}), '(resource.INPUT_SIZE, resource.OUTPUT_SIZE)\n', (228, 271), False, 'from ml.model import NumberRecognizeNN\n'), ((390, 416), 'ml.data_processor.DataProcessor', 'DataProcessor', (['means', 'stds'], {}), '(means, stds)\n', (403, 416), False, 'from ml.data_processor import DataProcessor\n'), ((696, 729), 'numpy.argmax', 'np.argmax', (['predicted.data'], {'axis': '(1)'}), '(predicted.data, axis=1)\n', (705, 729), True, 'import numpy as np\n'), ((532, 566), 'numpy.array', 'np.array', (['[data]'], {'dtype': 'np.float32'}), '([data], dtype=np.float32)\n', (540, 566), True, 'import numpy as np\n')]
""" Users can register their rollout func here, with the same parameters list like method `sequential` and return a Dict-like metric results. Examples: >>> def custom_rollout_function( ... agent_interfaces: List[env.AgentInterface], ... env_desc: Dict[str, Any], ... metric_type: str, ... max_iter: int, ... behavior_policy_mapping: Dict[AgentID, PolicyID], ... ) -> Dict[str, Any] In your custom rollout function, you can decide extra data you wanna save by specifying extra columns when Episode initialization. """ import collections from typing import Iterator import ray import numpy as np from malib import settings from malib.utils.general import iter_many_dicts_recursively from malib.utils.typing import ( AgentID, BufferDescription, Dict, Any, Tuple, List, BehaviorMode, EnvID, Callable, Union, ) from malib.utils.logger import Log from malib.utils.episode import Episode, NewEpisodeDict, EpisodeKey from malib.rollout.postprocessor import get_postprocessor from malib.envs.vector_env import VectorEnv, SubprocVecEnv from malib.envs.agent_interface import AgentInterface def _process_environment_returns( env_rets: Dict[EnvID, Dict[str, Dict[AgentID, Any]]], agent_interfaces: Dict[AgentID, AgentInterface], filtered_env_outputs: Dict[EnvID, Dict[str, Dict[AgentID, Any]]], ) -> Tuple[ Dict[EnvID, Dict[str, Dict[AgentID, Any]]], Dict[EnvID, Dict[str, Dict[AgentID, Any]]], List[EnvID], ]: """Processes environment returns, including observation, rewards. Also the agent communication. """ policy_inputs = {} drop_env_ids = [] for env_id, rets in env_rets.items(): # preset done if no done policy_input = {} drop = False if env_id not in filtered_env_outputs: filtered_env_outputs[env_id] = {} filtered_env_output = filtered_env_outputs[env_id] for k, ret in rets.items(): if k in [EpisodeKey.CUR_OBS, EpisodeKey.NEXT_OBS]: output = { aid: agent_interfaces[aid].transform_observation( observation=obs, state=None )["obs"] for aid, obs in ret.items() } if k == EpisodeKey.NEXT_OBS: if EpisodeKey.CUR_OBS not in filtered_env_output: filtered_env_output[EpisodeKey.CUR_OBS] = output policy_input[EpisodeKey.CUR_OBS] = output elif k == EpisodeKey.NEXT_STATE: if EpisodeKey.CUR_STATE not in filtered_env_output: filtered_env_output[EpisodeKey.CUR_STATE] = ret policy_input[EpisodeKey.CUR_STATE] = ret else: if k == EpisodeKey.DONE: done = ret["__all__"] drop = done drop_env_ids.append(env_id) output = {k: v for k, v in ret.items() if k != "__all__"} else: output = ret policy_input[k] = output filtered_env_output[k] = output if not drop: policy_inputs[env_id] = policy_input # we transfer DONE key as a signal for some masking behaviors if EpisodeKey.DONE not in policy_input: policy_input = { EpisodeKey.DONE: dict.fromkeys(rets[EpisodeKey.CUR_OBS], False) } return policy_inputs, filtered_env_outputs, drop_env_ids def _do_policy_eval( policy_inputs: Dict[EnvID, Dict[str, Dict[AgentID, Any]]], agent_interfaces: Dict[AgentID, AgentInterface], episodes: NewEpisodeDict, ) -> Dict[str, Dict[EnvID, Dict[AgentID, Any]]]: actions, action_dists, next_rnn_state = {}, {}, {} env_ids = list(policy_inputs.keys()) # we need to link environment id to agent ids, especially in the case of # sequential rollout env_agent_ids = [] # collect by agent wise agent_wise_inputs = collections.defaultdict( lambda: collections.defaultdict(lambda: []) ) for env_id in env_ids: env_episode = episodes[env_id] # for agent_id, interface in agent_interfaces.items(): env_agent_ids.append(list(policy_inputs[env_id][EpisodeKey.CUR_OBS].keys())) for agent_id in policy_inputs[env_id][EpisodeKey.CUR_OBS].keys(): interface = agent_interfaces[agent_id] if len(env_episode[EpisodeKey.RNN_STATE][agent_id]) < 1: obs_shape = policy_inputs[env_id][EpisodeKey.CUR_OBS][agent_id].shape env_episode[EpisodeKey.RNN_STATE][agent_id].append( interface.get_initial_state( batch_size=None if len(obs_shape) == 1 else obs_shape[0] ) ) # FIXME(ming): maybe wrong in some cases, I didn't load it yet. last_done = np.zeros(obs_shape[:-1]) else: last_done = env_episode[EpisodeKey.DONE][agent_id][-1] last_rnn_state = env_episode[EpisodeKey.RNN_STATE][agent_id][-1] agent_wise_inputs[agent_id][EpisodeKey.RNN_STATE].append(last_rnn_state) # rnn mask dependences on done or not agent_wise_inputs[agent_id][EpisodeKey.DONE].append(last_done) for k, agent_v in policy_inputs[env_id].items(): for agent_id, v in agent_v.items(): agent_wise_inputs[agent_id][k].append(v) for agent_id, inputs in agent_wise_inputs.items(): interface = agent_interfaces[agent_id] ( actions[agent_id], action_dists[agent_id], next_rnn_state[agent_id], ) = interface.compute_action(**inputs) return { EpisodeKey.ACTION: actions, EpisodeKey.ACTION_DIST: action_dists, EpisodeKey.RNN_STATE: next_rnn_state, }, dict(zip(env_ids, env_agent_ids)) def _process_policy_outputs( active_env_to_agent_ids: Dict[EnvID, List[AgentID]], # policy_outputs: Dict[str, Dict[AgentID, DataTransferType]], policy_outputs: Dict[str, Dict[AgentID, Iterator]], env: VectorEnv, ) -> Dict[EnvID, Dict[AgentID, Any]]: """Proceses the policy returns. Here we convert the policy return to legal environment step inputs.""" assert ( EpisodeKey.ACTION in policy_outputs and EpisodeKey.ACTION_DIST in policy_outputs ), "`action` and `action_prob` are required in the policy outputs, please check the return of `_do_policy_eval`: {}".format( list(policy_outputs.keys()) ) detached_policy_outputs = {} for i, (env_id, agent_ids) in enumerate(active_env_to_agent_ids.items()): detached = collections.defaultdict(lambda: collections.defaultdict()) for k, agent_v in policy_outputs.items(): for aid in agent_ids: _v = agent_v[aid] if k == EpisodeKey.RNN_STATE: detached[k][aid] = [next(__v) for __v in _v] else: detached[k][aid] = next(_v) detached_policy_outputs[env_id] = detached env_actions: Dict[EnvID, Dict[AgentID, Any]] = env.action_adapter( detached_policy_outputs ) return env_actions, detached_policy_outputs # def _reduce_rollout_info(rollout_info) -> Dict[str, float]: # res = {} # if isinstance(rollout_info, list) or isinstance(rollout_info, tuple): # _item = np.array(rollout_info) # res["mean"] = np.mean(_item) # res["min"] = np.min(_item) # res["max"] = np.max(_item) # elif isinstance(rollout_info, dict): # for k, item in rollout_info.items(): # res[k] = _reduce_rollout_info(item) # else: # res = rollout_info # return res def env_runner( env: VectorEnv, agent_interfaces: Dict[AgentID, AgentInterface], buffer_desc: BufferDescription, runtime_config: Dict[str, Any], dataset_server: ray.ObjectRef = None, custom_environment_return_processor: Callable = None, custom_policy_output_processor: Callable = None, custom_do_policy_eval: Callable = None, ) -> Dict[str, Dict[str, Any]]: """Rollout in simultaneous mode, support environment vectorization. :param VectorEnv env: The environment instance. :param Dict[Agent,AgentInterface] agent_interfaces: The dict of agent interfaces for interacting with environment. :param ray.ObjectRef dataset_server: The offline dataset server handler, buffering data if it is not None. :return: A dict of rollout information. """ # collect runtime configuration into runtime_config # keys in runtime config: # 1. num_envs: determines how many environments will this runner use # 2. max_step: the maximum length of one episode # 3. fragement_length: the total length you wanna run in this runner # 4. behavior_policies: a dict of policy ids, mapping from agent id to policy id behavior_policies = runtime_config["behavior_policies"] sample_dist = runtime_config.get("behavior_policy_dist", None) for agent_id, interface in agent_interfaces.items(): interface.reset(policy_id=behavior_policies[agent_id], sample_dist=sample_dist) # if buffer_desc is not None: # assert runtime_config["trainable_mapping"] is None, (runtime_config, dataset_server) rets = env.reset( limits=runtime_config["num_envs"], fragment_length=runtime_config["fragment_length"], max_step=runtime_config["max_step"], custom_reset_config=runtime_config["custom_reset_config"], trainable_mapping=runtime_config["trainable_mapping"], ) if isinstance(env, VectorEnv): assert len(env.active_envs) > 0, (env._active_envs, rets, env) episodes = NewEpisodeDict(lambda env_id: Episode(behavior_policies, env_id=env_id)) # process_environment_returns = ( # custom_environment_return_processor or _process_environment_returns # ) # process_policy_outputs = custom_policy_output_processor or _process_policy_outputs # do_policy_eval = custom_do_policy_eval or _do_policy_eval # XXX(ming): currently, we mute all processors' cutomization to avoid unpredictable behaviors process_environment_returns = _process_environment_returns process_policy_outputs = _process_policy_outputs do_policy_eval = _do_policy_eval while not env.is_terminated(): filtered_env_outputs = {} # ============ a frame ============= ( active_policy_inputs, filtered_env_outputs, drop_env_ids, ) = process_environment_returns(rets, agent_interfaces, filtered_env_outputs) active_policy_outputs, active_env_to_agent_ids = do_policy_eval( active_policy_inputs, agent_interfaces, episodes ) env_inputs, detached_policy_outputs = process_policy_outputs( active_env_to_agent_ids, active_policy_outputs, env ) # XXX(ming): maybe more general inputs. rets = env.step(env_inputs) # again, filter next_obs here ( active_policy_inputs, filtered_env_outputs, drop_env_ids, ) = process_environment_returns(rets, agent_interfaces, filtered_env_outputs) # filter policy inputs here # ================================= episodes.record(detached_policy_outputs, filtered_env_outputs) rollout_info = env.collect_info() if dataset_server: policies = { aid: interface.get_policy(behavior_policies[aid]) for aid, interface in agent_interfaces.items() } batch_mode = runtime_config["batch_mode"] trainable_agents = list(runtime_config["trainable_mapping"].keys()) episodes = list(episodes.to_numpy(batch_mode, filter=trainable_agents).values()) for handler in get_postprocessor(runtime_config["postprocessor_types"]): episodes = handler(episodes, policies) buffer_desc.batch_size = ( env.batched_step_cnt if batch_mode == "time_step" else len(episodes) ) indices = None while indices is None: batch = ray.get(dataset_server.get_producer_index.remote(buffer_desc)) indices = batch.data # buffer_desc.batch_size = len(indices) buffer_desc.data = episodes buffer_desc.indices = indices dataset_server.save.remote(buffer_desc) ph = list(rollout_info.values()) holder = {} for history, ds, k, vs in iter_many_dicts_recursively(*ph, history=[]): arr = [np.sum(_vs) for _vs in vs] prefix = "/".join(history) # print(history, prefix, _arr, vs) holder[prefix] = arr return {"total_fragment_length": env.batched_step_cnt, "eval_info": holder} class Stepping: def __init__( self, exp_cfg: Dict[str, Any], env_desc: Dict[str, Any], dataset_server=None, use_subproc_env: bool = False, batch_mode: str = "time_step", postprocessor_types: List[Union[str, Callable]] = ["default"], ): # init environment here self.env_desc = env_desc self.batch_mode = batch_mode self.postprocessor_types = postprocessor_types # if not env.is_sequential: if use_subproc_env: self.env = SubprocVecEnv( env_desc["observation_spaces"], env_desc["action_spaces"], env_desc["creator"], env_desc["config"], max_num_envs=2, # FIXME(ziyu): currently just fixed it. ) else: self.env = VectorEnv( observation_spaces=env_desc["observation_spaces"], action_spaces=env_desc["action_spaces"], creator=env_desc["creator"], configs=env_desc["config"], ) self._dataset_server = dataset_server @classmethod def as_remote( cls, num_cpus: int = None, num_gpus: int = None, memory: int = None, object_store_memory: int = None, resources: dict = None, ) -> type: """Return a remote class for Actor initialization.""" return ray.remote( num_cpus=num_cpus, num_gpus=num_gpus, memory=memory, object_store_memory=object_store_memory, resources=resources, )(cls) @Log.data_feedback(enable=settings.DATA_FEEDBACK) def run( self, agent_interfaces: Dict[AgentID, AgentInterface], fragment_length: int, desc: Dict[str, Any], buffer_desc: BufferDescription = None, ) -> Tuple[str, Dict[str, List]]: """Environment stepping, rollout/simulate with environment vectorization if it is feasible. :param Dict[AgentID,AgentInterface] agent_interface: A dict of agent interfaces. :param Union[str,type] metric_type: Metric type or handler. :param int fragment_length: The maximum length of an episode. :param Dict[str,Any] desc: The description of task. :param str role: Indicator of stepping type. Values in `rollout` or `simulation`. :returns: A tuple of a dict of MetricEntry and the caculation of total frames. """ task_type = desc["flag"] behavior_policies = {} if task_type == "rollout": for interface in agent_interfaces.values(): interface.set_behavior_mode(BehaviorMode.EXPLORATION) else: for interface in agent_interfaces.values(): interface.set_behavior_mode(BehaviorMode.EXPLOITATION) # desc: policy_distribution, behavior_policies, num_episodes policy_distribution = desc.get("policy_distribution") for agent, interface in agent_interfaces.items(): if policy_distribution: interface.reset(sample_dist=policy_distribution[agent]) behavior_policies[agent] = interface.behavior_policy # behavior policies is a mapping from agents to policy ids # update with external behavior_policies behavior_policies.update(desc["behavior_policies"] or {}) # specify the number of running episodes num_episodes = desc["num_episodes"] max_step = desc.get("max_step", None) self.add_envs(num_episodes) rollout_results = env_runner( self.env, agent_interfaces, buffer_desc if task_type == "rollout" else None, runtime_config={ "max_step": max_step, "fragment_length": fragment_length, "num_envs": num_episodes, "behavior_policies": behavior_policies, "custom_reset_config": None, "batch_mode": self.batch_mode, "trainable_mapping": desc["behavior_policies"] if task_type == "rollout" else None, "postprocessor_types": self.postprocessor_types, }, dataset_server=self._dataset_server if task_type == "rollout" else None, ) return task_type, rollout_results def add_envs(self, maximum: int) -> int: """Create environments, if env is an instance of VectorEnv, add these new environment instances into it, otherwise do nothing. :returns: The number of nested environments. """ if not isinstance(self.env, VectorEnv): return 1 existing_env_num = getattr(self.env, "num_envs", 1) if existing_env_num >= maximum: return self.env.num_envs self.env.add_envs(num=maximum - existing_env_num) return self.env.num_envs def close(self): if self.env is not None: self.env.close()
[ "ray.remote", "malib.utils.general.iter_many_dicts_recursively", "numpy.sum", "malib.utils.logger.Log.data_feedback", "malib.rollout.postprocessor.get_postprocessor", "numpy.zeros", "malib.envs.vector_env.VectorEnv", "collections.defaultdict", "malib.utils.episode.Episode", "malib.envs.vector_env.SubprocVecEnv" ]
[((12640, 12684), 'malib.utils.general.iter_many_dicts_recursively', 'iter_many_dicts_recursively', (['*ph'], {'history': '[]'}), '(*ph, history=[])\n', (12667, 12684), False, 'from malib.utils.general import iter_many_dicts_recursively\n'), ((14564, 14612), 'malib.utils.logger.Log.data_feedback', 'Log.data_feedback', ([], {'enable': 'settings.DATA_FEEDBACK'}), '(enable=settings.DATA_FEEDBACK)\n', (14581, 14612), False, 'from malib.utils.logger import Log\n'), ((11979, 12035), 'malib.rollout.postprocessor.get_postprocessor', 'get_postprocessor', (["runtime_config['postprocessor_types']"], {}), "(runtime_config['postprocessor_types'])\n", (11996, 12035), False, 'from malib.rollout.postprocessor import get_postprocessor\n'), ((4106, 4142), 'collections.defaultdict', 'collections.defaultdict', (['(lambda : [])'], {}), '(lambda : [])\n', (4129, 4142), False, 'import collections\n'), ((9892, 9933), 'malib.utils.episode.Episode', 'Episode', (['behavior_policies'], {'env_id': 'env_id'}), '(behavior_policies, env_id=env_id)\n', (9899, 9933), False, 'from malib.utils.episode import Episode, NewEpisodeDict, EpisodeKey\n'), ((12701, 12712), 'numpy.sum', 'np.sum', (['_vs'], {}), '(_vs)\n', (12707, 12712), True, 'import numpy as np\n'), ((13464, 13597), 'malib.envs.vector_env.SubprocVecEnv', 'SubprocVecEnv', (["env_desc['observation_spaces']", "env_desc['action_spaces']", "env_desc['creator']", "env_desc['config']"], {'max_num_envs': '(2)'}), "(env_desc['observation_spaces'], env_desc['action_spaces'],\n env_desc['creator'], env_desc['config'], max_num_envs=2)\n", (13477, 13597), False, 'from malib.envs.vector_env import VectorEnv, SubprocVecEnv\n'), ((13767, 13935), 'malib.envs.vector_env.VectorEnv', 'VectorEnv', ([], {'observation_spaces': "env_desc['observation_spaces']", 'action_spaces': "env_desc['action_spaces']", 'creator': "env_desc['creator']", 'configs': "env_desc['config']"}), "(observation_spaces=env_desc['observation_spaces'], action_spaces=\n env_desc['action_spaces'], creator=env_desc['creator'], configs=\n env_desc['config'])\n", (13776, 13935), False, 'from malib.envs.vector_env import VectorEnv, SubprocVecEnv\n'), ((14356, 14485), 'ray.remote', 'ray.remote', ([], {'num_cpus': 'num_cpus', 'num_gpus': 'num_gpus', 'memory': 'memory', 'object_store_memory': 'object_store_memory', 'resources': 'resources'}), '(num_cpus=num_cpus, num_gpus=num_gpus, memory=memory,\n object_store_memory=object_store_memory, resources=resources)\n', (14366, 14485), False, 'import ray\n'), ((4989, 5013), 'numpy.zeros', 'np.zeros', (['obs_shape[:-1]'], {}), '(obs_shape[:-1])\n', (4997, 5013), True, 'import numpy as np\n'), ((6812, 6837), 'collections.defaultdict', 'collections.defaultdict', ([], {}), '()\n', (6835, 6837), False, 'import collections\n')]
import warnings from typing import Set, Dict, Optional, List, Tuple import numpy as np import pandas as pd from mdrsl.data_structures.rules.rule_part import Consequent from mdrsl.evaluation.interpretability.basic_rule_set_stats import BasicRuleSetStatistics, is_valid_fraction from mdrsl.rule_models.mids.cover.cover_checker import CoverChecker from mdrsl.rule_models.mids.cover.overlap_cacher import OverlapChecker from mdrsl.rule_models.mids.mids_rule import MIDSRule from mdrsl.rule_models.mids.mids_ruleset import MIDSRuleSet from mdrsl.utils.value_collection import ValueCollector TargetAttr = str TargetVal = object DefaultCoverChecker = CoverChecker DefaultOverlapChecker = OverlapChecker class MIDSInterpretabilityStatistics(BasicRuleSetStatistics): def __init__(self, rule_length_collector: ValueCollector, fraction_bodily_overlap: float, fraction_uncovered_examples: float, avg_frac_predicted_classes: float, frac_predicted_classes_per_target_attr: Dict[TargetAttr, float], # ground_set_size: Optional[int] = None ): super().__init__(rule_length_collector, model_abbreviation="MIDS") self.fraction_bodily_overlap: float = fraction_bodily_overlap self.fraction_uncovered_examples: float = fraction_uncovered_examples self.avg_frac_predicted_classes: float = avg_frac_predicted_classes self.frac_predicted_classes_per_target_attr: Dict[TargetAttr, float] = frac_predicted_classes_per_target_attr # self.ground_set_size: Optional[int] = ground_set_size def to_str(self, indentation: str = "") -> str: output_string = ( indentation + "Rule length stats: " + str(self.rule_length_counter) + "\n" + indentation + "Fraction bodily overlap: " + str(self.fraction_bodily_overlap) + "\n" + indentation + "Fraction uncovered examples: " + str(self.fraction_uncovered_examples) + "\n" + indentation + "Avg fraction predicted classes: " + str(self.avg_frac_predicted_classes) + "\n" + indentation + "Fraction predicted classs by target:\n" + indentation + "\t" + str(self.frac_predicted_classes_per_target_attr) + "\n" ) return output_string def __str__(self): return self.to_str() def satisfies(self, condition: 'MIDSInterpretabilityStatitisticsAbstractCondition') -> bool: return condition.is_satisfied_by(self) class MIDSInterpretabilityStatisticsCalculator: @staticmethod def _fraction_overlap(ruleset: MIDSRuleSet, test_dataframe: pd.DataFrame, target_attr: Optional[TargetAttr] = None, cover_checker_on_test: Optional[CoverChecker] = None, overlap_checker_on_test: Optional[OverlapChecker] = None, debug=False) -> float: """ This metric captures the extend of overlap between every pair of rules in a decision set R. Smaller values of this metric signify higher interpretability. Boundary values: 0.0 if no rules in R overlap: 1.0 if all data points in are covered by all rules in R. NOTE: * this is 0.0 for any decision list, because their if-else structure ensures that a rule in the list applies only to those data points which have not been covered by any of the preceeding rules * this is 0.0 for the empty rule set :param ruleset: :param test_dataframe: :param cover_checker_on_test: :param overlap_checker_on_test: :return: """ if type(ruleset) != MIDSRuleSet: raise Exception(f"Type of ruleset must be MIDSRuleSet, but is {type(ruleset)}") # warnings.warn("FRACTION_OVERLAP IS CURRENTLY NOT RELATIVE TO A TARGET ATTRIBUTE. THIS MIGHT BE INCORRECT") ruleset_size: int = len(ruleset) if ruleset_size == 0: print("Warning: the MIDS rule set is empty.") return 0.0 nb_of_test_examples: int = test_dataframe.index.size if nb_of_test_examples == 0: raise Exception("There are no test instances to calculate overlap on") if cover_checker_on_test is None: cover_checker_on_test = DefaultCoverChecker() if overlap_checker_on_test is None: overlap_checker_on_test = DefaultOverlapChecker(cover_checker_on_test, debug) overlap_sum: int = 0 rule_i: MIDSRule rule_j: MIDSRule for i, rule_i in enumerate(ruleset.ruleset): for j, rule_j in enumerate(ruleset.ruleset): if i <= j: continue else: if target_attr is None: overlap_sum += overlap_checker_on_test.get_pure_overlap_count(rule_i, rule_j, test_dataframe) else: overlap_sum += overlap_checker_on_test.get_relative_overlap_count(rule_i, rule_j, test_dataframe, target_attr) if overlap_sum == 0: warnings.warn("overlap is 0, which is unlikely") return 0 else: frac_overlap = 2 / (ruleset_size * (ruleset_size - 1)) * overlap_sum / nb_of_test_examples if not is_valid_fraction(frac_overlap): raise Exception("Fraction overlap is not within [0,1]: " + str(frac_overlap)) return frac_overlap @staticmethod def fraction_bodily_overlap(ruleset: MIDSRuleSet, test_dataframe: pd.DataFrame, cover_checker_on_test: Optional[CoverChecker] = None, overlap_checker_on_test: Optional[OverlapChecker] = None, debug=False) -> float: return MIDSInterpretabilityStatisticsCalculator._fraction_overlap( ruleset=ruleset, test_dataframe=test_dataframe, target_attr=None, cover_checker_on_test=cover_checker_on_test, overlap_checker_on_test=overlap_checker_on_test, debug=debug ) @staticmethod def get_fraction_overlap_relative_to_target_attr(ruleset: MIDSRuleSet, test_dataframe: pd.DataFrame, target_attr: str, cover_checker_on_test: Optional[CoverChecker] = None, overlap_checker_on_test: Optional[OverlapChecker] = None, debug=False ) -> float: """ This metric captures the extend of overlap between every pair of rules in a decision set R. Smaller values of this metric signify higher interpretability. Boundary values: 0.0 if no rules in R overlap: 1.0 if all data points in are covered by all rules in R. NOTE: * this is 0.0 for any decision list, because their if-else structure ensures that a rule in the list applies only to those data points which have not been covered by any of the preceeding rules * this is 0.0 for the empty rule set :param ruleset: :param test_dataframe: :param target_attr: :param cover_checker_on_test: :param overlap_checker_on_test: :param debug: :return: """ if target_attr is None: raise Exception("Cannot calculate relative overlap fraction without a given target attr. It is None.") return MIDSInterpretabilityStatisticsCalculator._fraction_overlap( ruleset=ruleset, test_dataframe=test_dataframe, target_attr=target_attr, cover_checker_on_test=cover_checker_on_test, overlap_checker_on_test=overlap_checker_on_test, debug=debug ) @staticmethod def fraction_uncovered_examples(ruleset: MIDSRuleSet, test_dataframe: pd.DataFrame, cover_checker_on_test: Optional[CoverChecker] = None ) -> float: """ This metric computes the fraction of the data points which are not covered by any rule in the decision set. REMEMBER, COVER is independent of the head of a rule. Boundary values: 0.0 if every data point is covered by some rule in the data set. 1.0 when no data point is covered by any rule in R (This could be the case when |R| = 0 ) Note: * for decision lists, this metric is the fraction of the data points that are covered by the ELSE clause of the list (i.e. the default prediction). :param ruleset: :param test_dataframe: :param cover_checker_on_test: :return: """ if type(ruleset) != MIDSRuleSet: raise Exception("Type of ruleset must be IDSRuleSet") if cover_checker_on_test is None: cover_checker_on_test = DefaultCoverChecker() nb_of_test_examples: int = test_dataframe.index.size if nb_of_test_examples == 0: raise Exception("There are no test instances to calculate the fraction uncovered on") cover_cumulative_mask: np.ndarray = np.zeros(nb_of_test_examples, dtype=bool) for rule in ruleset.ruleset: cover_mask = cover_checker_on_test.get_cover(rule, test_dataframe) cover_cumulative_mask = np.logical_or(cover_cumulative_mask, cover_mask) nb_of_covered_test_examples: int = np.count_nonzero(cover_cumulative_mask) frac_uncovered: float = 1 - 1 / nb_of_test_examples * nb_of_covered_test_examples if not is_valid_fraction(frac_uncovered): raise Exception("Fraction uncovered examples is not within [0,1]: " + str(frac_uncovered)) return frac_uncovered @staticmethod def fraction_predicted_classes(ruleset: MIDSRuleSet, test_dataframe, target_attributes: List[TargetAttr] ) -> Tuple[float, Dict[TargetAttr, float]]: """ This metric denotes the fraction of the classes in the data that are predicted by the ruleset R. Returns: 1. fraction per target attribute, averaged over the different targets 2. a map from target attribute to fraction for that target attr Boundary value: 0.0 if no class is predicted (e.g. the ruleset is empty) 1.0 every class is predicted by some rule in R. Note: * The same for decision lists, but we not consider the ELSE clause (the default prediction). :param target_attributes: :param ruleset: :param test_dataframe: :return: """ if type(ruleset) != MIDSRuleSet: raise Exception("Type of ruleset must be IDSRuleSet") warnings.warn( "Ugly conversion to string to deal with numerical attributes." " Clean this up (look at Survived in Titanic).") values_in_data_per_target_attribute: Dict[TargetAttr, Set[TargetVal]] = {} predicted_values_per_target_attribute: Dict[TargetAttr, Set[TargetVal]] = {} for target_attr in target_attributes: values_as_str: List[str] = [str(val) for val in test_dataframe[target_attr].values] values_in_data_per_target_attribute[target_attr] = set(values_as_str) predicted_values_per_target_attribute[target_attr] = set() target_attribute_set: Set[TargetAttr] = set(target_attributes) for rule in ruleset.ruleset: consequent: Consequent = rule.car.consequent for literal in consequent.get_literals(): predicted_attribute: TargetAttr = literal.get_attribute() predicted_value: TargetVal = literal.get_value() if predicted_attribute in target_attribute_set: predicted_value_str = str(predicted_value) predicted_values: Set[TargetVal] = predicted_values_per_target_attribute[predicted_attribute] if predicted_value_str in values_in_data_per_target_attribute[predicted_attribute]: predicted_values.add(predicted_value_str) # print("values_in_data_per_target_attribute", values_in_data_per_target_attribute) # print("predicted_values_per_target_attribute", predicted_values_per_target_attribute) frac_predicted_classes_per_target_attr: Dict[TargetAttr, float] = {} avg_frac_predicted_classes: float = 0 for target_attr in values_in_data_per_target_attribute.keys(): values_occuring_in_data = values_in_data_per_target_attribute[target_attr] predicted_values = predicted_values_per_target_attribute[target_attr] domain_size_in_test_data = len(values_occuring_in_data) nb_of_predicted_values = len(predicted_values) frac_classes: float = nb_of_predicted_values / domain_size_in_test_data frac_predicted_classes_per_target_attr[target_attr] = frac_classes avg_frac_predicted_classes += frac_classes nb_of_target_attrs = len(target_attributes) avg_frac_predicted_classes = avg_frac_predicted_classes / nb_of_target_attrs if not is_valid_fraction(avg_frac_predicted_classes): raise Exception("Avg fraction predicted classes examples is not within [0,1]: " + str(avg_frac_predicted_classes)) return avg_frac_predicted_classes, frac_predicted_classes_per_target_attr @staticmethod def calculate_ruleset_statistics(ruleset: MIDSRuleSet, test_dataframe: pd.DataFrame, target_attributes: List[TargetAttr] ) -> MIDSInterpretabilityStatistics: rule_length_collector = ValueCollector() for rule in ruleset.ruleset: rule_length_collector.add_value(len(rule)) fraction_bodily_overlap: float = MIDSInterpretabilityStatisticsCalculator.fraction_bodily_overlap( ruleset=ruleset, test_dataframe=test_dataframe) fraction_uncovered_examples: float = MIDSInterpretabilityStatisticsCalculator.fraction_uncovered_examples( ruleset=ruleset, test_dataframe=test_dataframe ) avg_frac_predicted_classes: float frac_predicted_classes_per_target_attr: Dict[TargetAttr, float] avg_frac_predicted_classes, frac_predicted_classes_per_target_attr = \ MIDSInterpretabilityStatisticsCalculator.fraction_predicted_classes( ruleset=ruleset, test_dataframe=test_dataframe, target_attributes=target_attributes ) statistics = MIDSInterpretabilityStatistics( rule_length_collector=rule_length_collector, fraction_bodily_overlap=fraction_bodily_overlap, fraction_uncovered_examples=fraction_uncovered_examples, avg_frac_predicted_classes=avg_frac_predicted_classes, frac_predicted_classes_per_target_attr=frac_predicted_classes_per_target_attr # ground_set_size=ground_set_size ) return statistics class MIDSInterpretabilityStatisticsAbstractCondition: def is_satisfied_by(self, interpret_stats: MIDSInterpretabilityStatistics) -> bool: raise NotImplementedError("abstract method") class MIDSInterpretabilityStatisticsBoundaryCondition(MIDSInterpretabilityStatisticsAbstractCondition): def __init__(self, max_fraction_bodily_overlap: float = 1.0, max_fraction_uncovered_examples: float = 1.0, min_avg_fraction_predicted_classes: float = 0.0, min_frac_predicted_classes_for_each_target_attr: float = 0.5, max_n_rules: int = 500, max_avg_rule_length: int = 10 ): self.max_fraction_bodily_overlap: float = max_fraction_bodily_overlap self.max_fraction_uncovered_examples: float = max_fraction_uncovered_examples self.min_avg_fraction_predicted_classes: float = min_avg_fraction_predicted_classes self.min_frac_predicted_classes_for_each_target_attr: float = min_frac_predicted_classes_for_each_target_attr self.max_n_rules: int = max_n_rules self.max_avg_rule_length: int = max_avg_rule_length def is_satisfied_by(self, interpret_stats: MIDSInterpretabilityStatistics) -> bool: return ( interpret_stats.ruleset_size() <= self.max_n_rules and interpret_stats.avg_nb_of_literals_per_rule() <= self.max_avg_rule_length and interpret_stats.fraction_bodily_overlap <= self.max_fraction_bodily_overlap and interpret_stats.fraction_uncovered_examples <= self.max_fraction_uncovered_examples and interpret_stats.avg_frac_predicted_classes >= self.min_avg_fraction_predicted_classes and self._is_frac_predicted_classes_for_each_class_above_threshold(interpret_stats) ) def _is_frac_predicted_classes_for_each_class_above_threshold(self, interpret_stats: MIDSInterpretabilityStatistics): for frac_predicted_classes_for_single_target in interpret_stats.frac_predicted_classes_per_target_attr.values(): if frac_predicted_classes_for_single_target < self.min_frac_predicted_classes_for_each_target_attr: return False return True
[ "numpy.count_nonzero", "numpy.zeros", "mdrsl.utils.value_collection.ValueCollector", "numpy.logical_or", "mdrsl.evaluation.interpretability.basic_rule_set_stats.is_valid_fraction", "warnings.warn" ]
[((9609, 9650), 'numpy.zeros', 'np.zeros', (['nb_of_test_examples'], {'dtype': 'bool'}), '(nb_of_test_examples, dtype=bool)\n', (9617, 9650), True, 'import numpy as np\n'), ((9897, 9936), 'numpy.count_nonzero', 'np.count_nonzero', (['cover_cumulative_mask'], {}), '(cover_cumulative_mask)\n', (9913, 9936), True, 'import numpy as np\n'), ((11259, 11391), 'warnings.warn', 'warnings.warn', (['"""Ugly conversion to string to deal with numerical attributes. Clean this up (look at Survived in Titanic)."""'], {}), "(\n 'Ugly conversion to string to deal with numerical attributes. Clean this up (look at Survived in Titanic).'\n )\n", (11272, 11391), False, 'import warnings\n'), ((14276, 14292), 'mdrsl.utils.value_collection.ValueCollector', 'ValueCollector', ([], {}), '()\n', (14290, 14292), False, 'from mdrsl.utils.value_collection import ValueCollector\n'), ((5296, 5344), 'warnings.warn', 'warnings.warn', (['"""overlap is 0, which is unlikely"""'], {}), "('overlap is 0, which is unlikely')\n", (5309, 5344), False, 'import warnings\n'), ((9804, 9852), 'numpy.logical_or', 'np.logical_or', (['cover_cumulative_mask', 'cover_mask'], {}), '(cover_cumulative_mask, cover_mask)\n', (9817, 9852), True, 'import numpy as np\n'), ((10044, 10077), 'mdrsl.evaluation.interpretability.basic_rule_set_stats.is_valid_fraction', 'is_valid_fraction', (['frac_uncovered'], {}), '(frac_uncovered)\n', (10061, 10077), False, 'from mdrsl.evaluation.interpretability.basic_rule_set_stats import BasicRuleSetStatistics, is_valid_fraction\n'), ((13703, 13748), 'mdrsl.evaluation.interpretability.basic_rule_set_stats.is_valid_fraction', 'is_valid_fraction', (['avg_frac_predicted_classes'], {}), '(avg_frac_predicted_classes)\n', (13720, 13748), False, 'from mdrsl.evaluation.interpretability.basic_rule_set_stats import BasicRuleSetStatistics, is_valid_fraction\n'), ((5503, 5534), 'mdrsl.evaluation.interpretability.basic_rule_set_stats.is_valid_fraction', 'is_valid_fraction', (['frac_overlap'], {}), '(frac_overlap)\n', (5520, 5534), False, 'from mdrsl.evaluation.interpretability.basic_rule_set_stats import BasicRuleSetStatistics, is_valid_fraction\n')]
import cv2 from PIL import Image, ImageTk import io import tensorflow as tf from dataloader import mask_gen_cs_kar, mask_gen_hor_cs_kar_albedo import numpy as np import random import os import glob from html import HTML import skvideo.io import argparse tf.enable_eager_execution() os.environ["CUDA_VISIBLE_DEVICES"] = '1' # sg.theme('DarkBlue1') parser = argparse.ArgumentParser() parser.add_argument('--modelpath', required=True, help='folder where checkpoint is stored') parser.add_argument('--masks', default= '/home/yam28/Documents/phdYoop/Stamps/dataset/val/synthgiraffebis') parser.add_argument('--ims', default='/home/yam28/Documents/phdYoop/datasets/giraffe_datasetbis/albedo/PNG') parser.add_argument('--fullrotation', default=0) args = parser.parse_args() l_to_m_model = os.path.join(args.modelpath, 'frozen_model_l_to_m.pb') m_to_l_model = os.path.join(args.modelpath, 'frozen_model_z_to_l.pb') orig_im = args.masks mpaths = sorted(glob.glob(os.path.join(orig_im, '*.png'))) np.random.seed(42) np.random.shuffle(mpaths) lenm = len(mpaths) mpaths = mpaths[int(0.9*len(mpaths)):][:10] # impath = '/home/yam28/Documents/phdYoop/datasets/COCO/val2017' impath = args.ims nb_landmarks = int(l_to_m_model.split('_nbl')[1].split('/')[0]) SHAPE = 256 dataloader = mask_gen_hor_cs_kar_albedo(mpaths, impath, SHAPE, 8, 8) def get_img_data(f, maxsize=(200, 200), first=True): """Generate image data using PIL """ img = Image.open(f) img.thumbnail(maxsize) if first: # tkinter is inactive the first time bio = io.BytesIO() img.save(bio, format="PNG") del img return bio.getvalue() return ImageTk.PhotoImage(img) def create_template(nr, r): # r = np.reshape(np.squeeze(r) * SHAPE, [10, 2]) r = np.squeeze(r*SHAPE) nr = nr*SHAPE margin = 3 box = np.array([0, 0, 0, 0]) bbx = np.zeros([1, SHAPE, SHAPE, 1]) mins = np.min(nr, axis=0) maxs = np.max(nr, axis=0) box[1] = int(mins[1]) - margin box[3] = int(maxs[1]) + margin box[0] = int(mins[0]) - margin box[2] = int(maxs[0]) + margin if box[0] < 0: box[0] = 0 if box[1] < 0: box[1] = 0 if box[3] > SHAPE: box[3] = SHAPE - 1 if box[2] > SHAPE: box[2] = SHAPE - 1 if box[3] == box[1]: box[3] += 1 if box[0] == box[2]: box[2] += 1 # if box[0]>r[0]: # box[0]=r[0] # if box[1]>r[1]: # box[1]=r[1] # if box[2]<r[2]: # box[2]=r[2] # if box[3]<r[3]: # box[3]=r[3] bbx[:, box[0]:box[2], box[1]:box[3], :] = 1 box = np.reshape(box, [1,1,1,4])/SHAPE return bbx, box #taken from https://github.com/tomasjakab/imm/ def get_coord(x, other_axis, axis_size): # get "x-y" coordinates: g_c_prob = tf.reduce_mean(x, axis=other_axis) # B,W,NMAP g_c_prob = tf.nn.softmax(g_c_prob, axis=1) # B,W,NMAP coord_pt = tf.to_float(tf.linspace(-1.0, 1.0, axis_size)) # W coord_pt = tf.reshape(coord_pt, [1, axis_size, 1]) g_c = tf.reduce_sum(g_c_prob * coord_pt, axis=1) return g_c, g_c_prob # taken from https://github.com/tomasjakab/imm/ def get_gaussian_maps(mu, shape_hw, inv_std, mode='ankush'): """ Generates [B,SHAPE_H,SHAPE_W,NMAPS] tensor of 2D gaussians, given the gaussian centers: MU [B, NMAPS, 2] tensor. STD: is the fixed standard dev. """ with tf.name_scope(None, 'gauss_map', [mu]): mu_y, mu_x = mu[:, :, 0:1], mu[:, :, 1:2] y = np.linspace(0., 1.0, shape_hw[0]) x = np.linspace(0., 1.0, shape_hw[1]) if mode in ['rot', 'flat']: mu_y, mu_x = np.expand_dims(mu_y, -1), np.expand_dims(mu_x, -1) y = np.reshape(y, [1, 1, shape_hw[0], 1]) x = np.reshape(x, [1, 1, 1, shape_hw[1]]) g_y = np.square(y - mu_y) g_x = np.square(x - mu_x) dist = (g_y + g_x) * inv_std**2 if mode == 'rot': g_yx = np.exp(-dist) else: g_yx = tf.exp(-tf.pow(dist + 1e-5, 0.25)) elif mode == 'ankush': y = tf.reshape(y, [1, 1, shape_hw[0]]) x = tf.reshape(x, [1, 1, shape_hw[1]]) g_y = tf.exp(-tf.sqrt(1e-4 + tf.abs((mu_y - y) * inv_std))) g_x = tf.exp(-tf.sqrt(1e-4 + tf.abs((mu_x - x) * inv_std))) g_y = tf.expand_dims(g_y, axis=3) g_x = tf.expand_dims(g_x, axis=2) g_yx = tf.matmul(g_y, g_x) # [B, NMAPS, H, W] else: raise ValueError('Unknown mode: ' + str(mode)) g_yx = np.transpose(g_yx, [0, 2, 3, 1]) return g_yx # get "maximally" different random colors: # ref: https://gist.github.com/adewes/5884820 def get_random_color(pastel_factor = 0.5): return [(x+pastel_factor)/(1.0+pastel_factor) for x in [np.random.uniform(0,1.0) for i in [1,2,3]]] def color_distance(c1,c2): return sum([abs(x[0]-x[1]) for x in zip(c1,c2)]) def generate_new_color(existing_colors,pastel_factor = 0.5): max_distance = None best_color = None for i in range(0,100): color = get_random_color(pastel_factor = pastel_factor) if not existing_colors: return color best_distance = min([color_distance(color,c) for c in existing_colors]) if not max_distance or best_distance > max_distance: max_distance = best_distance best_color = color return best_color def get_n_colors(n, pastel_factor=0.9): colors = [] for i in range(n): colors.append(generate_new_color(colors,pastel_factor = 0.9)) return colors COLORS = get_n_colors(nb_landmarks, pastel_factor=0.9) def colorize_landmark_maps(maps): """ Given BxHxWxN maps of landmarks, returns an aggregated landmark map in which each landmark is colored randomly. BxHxWxN """ n_maps = maps.shape[-1] # get n colors: # colors = get_n_colors(n_maps, pastel_factor=0.0) hmaps = [np.expand_dims(maps[..., i], axis=3) * np.reshape(COLORS[i], [1, 1, 1, 3]) for i in range(n_maps)] return np.max(hmaps, axis=0) def get_landmarks(mus, sigma, rotx, roty, rotz, tx, ty, tz, focal=1.): assert mus is not None assert sigma is not None count = 4 rotXval = rotx rotYval = roty rotZval = rotz rotX = (rotXval) * np.pi / 180 rotY = (rotYval) * np.pi / 180 rotZ = (rotZval) * np.pi / 180 zr = tf.zeros_like(rotY) ons = tf.ones_like(rotY) RX = tf.stack([tf.stack([ons, zr, zr], axis=-1), tf.stack([zr, tf.cos(rotX), -tf.sin(rotX)], axis=-1), tf.stack([zr, tf.sin(rotX), tf.cos(rotX)], axis=-1)], axis=-1) RY = tf.stack([tf.stack([tf.cos(rotY), zr, tf.sin(rotY)], axis=-1), tf.stack([zr, ons, zr], axis=-1), tf.stack([-tf.sin(rotY), zr, tf.cos(rotY)], axis=-1)], axis=-1) RZ = tf.stack([tf.stack([tf.cos(rotZ), -tf.sin(rotZ), zr], axis=-1), tf.stack([tf.sin(rotZ), tf.cos(rotZ), zr], axis=-1), tf.stack([zr, zr, ons], axis=-1)], axis=-1) # Composed rotation matrix with (RX,RY,RZ) R = tf.matmul(tf.matmul(RX, RY), RZ) # R = tf.stack([R] * nb_landmarks, axis=0)[None, :, :, :] transvec = tf.constant(np.array([[tx, ty, tz]]), dtype=tf.float64) transvec = tf.stack([transvec] * nb_landmarks, axis=1) transvec = transvec[:, :, tf.newaxis, :] px = tf.zeros([tf.shape(mus)[0], nb_landmarks]) py = tf.zeros([tf.shape(mus)[0], nb_landmarks]) fvs = tf.ones_like(px) * focal zv = tf.zeros_like(px) ov = tf.ones_like(px) K = tf.stack([tf.stack([fvs, zv, zv], axis=-1), tf.stack([zv, fvs, zv], axis=-1), tf.stack([px, py, ov], axis=-1)], axis=-1) K = tf.cast(K, tf.float64) K = tf.identity(K, name='K') R = tf.cast(R, tf.float64) * tf.ones_like(sigma) sigma = tf.linalg.matmul(tf.linalg.matmul(R, sigma), R, transpose_b=True) invsigma = tf.linalg.inv(sigma) mus = tf.cast(mus, tf.float64) mus = tf.transpose(tf.linalg.matmul(R, tf.transpose(mus, [0, 1, 3, 2])), [0, 1, 3, 2]) + transvec M0 = tf.matmul(invsigma, tf.matmul(mus, mus, transpose_a=True)) M0 = tf.matmul(M0, invsigma, transpose_b=True) M1 = (tf.matmul(tf.matmul(mus, invsigma), mus, transpose_b=True) - 1) M1 = M1 * invsigma M = M0 - M1 Mtmp = tf.constant(np.array([[1, 1, 0], [1, 1, 0], [0, 0, 1]]), dtype=tf.float64) M = -M + 2 * M * Mtmp[tf.newaxis, tf.newaxis, :, :] M33 = tf.gather(tf.gather(M, [0, 1], axis=2), [0, 1], axis=3) K33 = tf.gather(tf.gather(K, [0, 1], axis=2), [0, 1], axis=3) M31 = tf.gather(tf.gather(M, [0, 1], axis=2), [1, 2], axis=3) M23 = tf.gather(tf.gather(M, [0, 2], axis=2), [0, 1], axis=3) det_m31 = tf.linalg.det(M31) det_m23 = tf.linalg.det(M23) det_m33 = tf.linalg.det(M33) det_m = tf.linalg.det(M) mup0 = tf.squeeze(tf.matmul(K33, tf.stack([det_m31, -det_m23], axis=-1)[:, :, :, tf.newaxis]), axis=-1) / ( det_m33[:, :, tf.newaxis]) mup1 = tf.stack([K[:, :, 0, 2], K[:, :, 1, 2]], axis=-1) mup = mup0 + mup1 sigma_w = det_m / det_m33 sigma_w = sigma_w[:, :, None, None] invm33 = tf.linalg.inv(M33) sigmap = -sigma_w * invm33 gauss_xy_list = [] mup = tf.cast(mup, tf.float32) sigmap = tf.cast(sigmap, tf.float32) mup = tf.identity(mup, name='mu2d') sigmap = tf.identity(sigmap, name='sigma2d') gm2d = get_gaussian_maps_2d(mup, sigmap, [256, 256]) return mup, sigmap, gm2d def get_landmarks_(mus, sigma, rotx, roty, rotz, tx, ty, tz, focal=1.): assert mus is not None assert sigma is not None count = 4 rotXval = rotx rotYval = roty rotZval = rotz rotX = (rotXval) * np.pi / 180 rotY = (rotYval) * np.pi / 180 rotZ = (rotZval) * np.pi / 180 # Rotation matrices around the X,Y,Z axis ons = tf.ones_like(rotY) zr = tf.zeros_like(rotY) RX = tf.stack([tf.stack([ons, zr, zr], axis=-1), tf.stack([zr, tf.cos(rotX), -tf.sin(rotX)], axis=-1), tf.stack([zr, tf.sin(rotX), tf.cos(rotX)], axis=-1)], axis=-1) RY = tf.stack([tf.stack([tf.cos(rotY), zr, tf.sin(rotY)], axis=-1), tf.stack([zr, ons, zr], axis=-1), tf.stack([-tf.sin(rotY), zr, tf.cos(rotY)], axis=-1)], axis=-1) RZ = tf.stack([tf.stack([tf.cos(rotZ), -tf.sin(rotZ), zr], axis=-1), tf.stack([tf.sin(rotZ), tf.cos(rotZ), zr], axis=-1), tf.stack([zr, zr, ons], axis=-1)], axis=-1) # Composed rotation matrix with (RX,RY,RZ) R = tf.matmul(tf.matmul(RX, RY), RZ) # R = tf.stack([R] * nb_landmarks, axis=0)[None, :, :, :] transvec = tf.constant(np.array([[tx, ty, tz]]), dtype=tf.float32) transvec = tf.stack([transvec] * nb_landmarks, axis=1) transvec = transvec[:, :, None, :] px = tf.zeros([tf.shape(mus)[0], nb_landmarks]) py = tf.zeros([tf.shape(mus)[0], nb_landmarks]) fvs = tf.ones_like(px) * focal zv = tf.zeros_like(px) ov = tf.ones_like(px) K = tf.stack([tf.stack([fvs, zv, zv], axis=-1), tf.stack([zv, fvs, zv], axis=-1), tf.stack([px, py, ov], axis=-1)], axis=-1) K = tf.identity(K, name='K') R = R * tf.ones_like(sigma) sigma = tf.linalg.matmul(tf.linalg.matmul(R, sigma), R, transpose_b=True) # mus = tf.linalg.matmul(mus, tf.linalg.inv(R)) + transvec mus = tf.transpose(tf.linalg.matmul(R, tf.transpose(mus, [0, 1, 3, 2])), [0, 1, 3, 2]) + transvec invsigma = tf.linalg.inv(sigma) M0 = tf.matmul(invsigma, tf.matmul(mus, mus, transpose_a=True)) M0 = tf.matmul(M0, invsigma, transpose_b=True) M1 = (tf.matmul(tf.matmul(mus, invsigma), mus, transpose_b=True) - 1) M1 = M1 * invsigma M = M0 - M1 Mtmp = tf.constant(np.array([[1, 1, 0], [1, 1, 0], [0, 0, 1]]), dtype=tf.float32) M = -M + 2 * M * Mtmp[None, None, :, :] M33 = tf.gather(tf.gather(M, [0, 1], axis=2), [0, 1], axis=3) K33 = tf.gather(tf.gather(K, [0, 1], axis=2), [0, 1], axis=3) M31 = tf.gather(tf.gather(M, [0, 1], axis=2), [1, 2], axis=3) M23 = tf.gather(tf.gather(M, [0, 2], axis=2), [0, 1], axis=3) det_m31 = tf.linalg.det(M31) det_m23 = tf.linalg.det(M23) det_m33 = tf.linalg.det(M33) det_m = tf.linalg.det(M) mup0 = tf.squeeze(tf.matmul(K33, tf.stack([det_m31, -det_m23], axis=-1)[:, :, :, None]), axis=-1) / ( det_m33[:, :, None]) mup1 = tf.stack([K[:, :, 0, 2], K[:, :, 1, 2]], axis=-1) mup = mup0 + mup1 sigma_w = det_m / det_m33 sigma_w = sigma_w[:, :, None, None] invm33 = tf.linalg.inv(M33) sigmap = -sigma_w * invm33 gm = get_gaussian_maps_2d(mup, sigmap, [256, 256]) return mup, sigmap, gm def get_gaussian_maps_2d(mu, sigma, shape_hw, mode='rot'): """ Generates [B,SHAPE_H,SHAPE_W,NMAPS] tensor of 2D gaussians, given the gaussian centers: MU [B, NMAPS, 2] tensor. STD: is the fixed standard dev. """ with tf.name_scope(None, 'gauss_map', [mu]): y = tf.to_float(tf.linspace(-1.0, 1.0, shape_hw[0])) x = tf.to_float(tf.linspace(-1.0, 1.0, shape_hw[1])) [x,y] = tf.meshgrid(x,y) xy = tf.stack([x, y], axis=-1) xy = tf.stack([xy] * nb_landmarks, axis=0) xy = xy[tf.newaxis, : ,:, :, :] mu = mu[:,:,tf.newaxis, tf.newaxis,:] invsigma = tf.linalg.inv(sigma) invsigma = tf.cast(invsigma, tf.float32) pp = tf.tile(invsigma[:, :, tf.newaxis, :, :], [1, 1, shape_hw[1], 1, 1]) X = xy-mu dist = tf.matmul(X,pp) dist = tf.reduce_sum((dist*X), axis=-1) g_yx = tf.exp(-dist) g_yx = tf.transpose(g_yx, perm=[0, 2, 3, 1]) return g_yx # im = cv2.imread(orig_im) # create PIL image from frame # im = cv2.resize(im, (SHAPE,SHAPE)) with tf.gfile.GFile(m_to_l_model, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) with tf.Graph().as_default() as graph_m_to_l: tf.import_graph_def(graph_def, name='') with tf.gfile.GFile(l_to_m_model, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) with tf.Graph().as_default() as graph_l_to_m: tf.import_graph_def(graph_def, name='') # We access the input and output nodes # if 'nozgm' not in args.modelpath: # if 'nozgm' not in args.modelpath: # mask_ltm = graph_l_to_m.get_tensor_by_name('mask:0') mu2d_ltm = graph_l_to_m.get_tensor_by_name('gen/genlandmarks/mu2d:0') sigma2d_ltm = graph_l_to_m.get_tensor_by_name('gen/genlandmarks/sigma2d:0') genm = graph_l_to_m.get_tensor_by_name('gen/genmask/convlast/output:0') if '_ete_' in args.modelpath: input_mtl = graph_m_to_l.get_tensor_by_name('input:0') mask_mtl = graph_m_to_l.get_tensor_by_name('mask:0') # bbx = graph_m_to_l.get_tensor_by_name('bbx:0') mu3d_mtl = graph_m_to_l.get_tensor_by_name('gen/genlandmarks/mu3d:0') sigma3d_mtl = graph_m_to_l.get_tensor_by_name('gen/genlandmarks/sigma3d:0') theta3d_mtl = graph_m_to_l.get_tensor_by_name('gen/genlandmarks/theta3d:0') if args.fullrotation: angle=360 eval_dir = os.path.join(os.path.dirname(m_to_l_model), 'evalm_360/ims') os.makedirs(eval_dir, exist_ok=True) else: angle = int(args.modelpath.split('_ange')[1].split('_')[0]) eval_dir = os.path.join(os.path.dirname(m_to_l_model), 'evalm/ims') os.makedirs(eval_dir, exist_ok=True) html = HTML(os.path.dirname(eval_dir), 'show images') html.add_header('%s' % ('3d gm perspective')) fourcc = cv2.VideoWriter_fourcc(*'MP4V') ims = [] texts = [] links = [] mus = [] sigmas = [] nb_frames = 60 # angle_range = list(np.linspace(-angle, 0., int(nb_frames/2))) + list(np.linspace(0, angle, int(nb_frames/2)))[1:] angle_range = list(np.linspace(0., angle, nb_frames)) for its, (np_im, template, np_m, r, z_np, z2_np) in enumerate(dataloader): ims = [] texts = [] links = [] with tf.Session(graph=graph_m_to_l, config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))) as sess_m_to_l: if '_ete_' in args.modelpath: mu3d, sig3d, thet3d = sess_m_to_l.run([mu3d_mtl, sigma3d_mtl, theta3d_mtl], feed_dict={mask_mtl: np_m, input_mtl: np_im}) else: mu3d, sig3d, thet3d = sess_m_to_l.run([mu3d_mtl, sigma3d_mtl, theta3d_mtl], feed_dict={mask_mtl: np_m}) sess_m_to_l.close() cv2.imwrite(os.path.join(eval_dir, 'm%d.png'%its), 255-np_m.squeeze()) ims.append('./ims/m%d.png'%its) texts.append('input m') links.append('./ims/m%d.png'%its) gmframes = [] mframes = [] np.save(os.path.join(eval_dir, 'm_%d.npy'%its), mu3d) np.save(os.path.join(eval_dir, 'sig3d_%d.npy'%its), sig3d) for x in angle_range: x = np.array([[x]], dtype=np.float32) zrs = tf.zeros_like(x) mu2d, sigma2d, gm2d = get_landmarks(mu3d, sig3d, zrs, thet3d[0,0] + x*1., zrs, 0., 0., -2.) with tf.Session(graph=graph_l_to_m, config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))) as sess_l_to_m: m_final = sess_l_to_m.run(genm, feed_dict={mu2d_ltm: mu2d.numpy(), sigma2d_ltm: sigma2d.numpy()}) m_final = 255 - (np.squeeze((m_final + 1) * 0.5 * 255)).astype(np.uint8) sess_l_to_m.close() mframes.append(m_final) gmframes.append(255-(np.squeeze(colorize_landmark_maps(gm2d))*255).astype(np.uint8)) if x == 0: gm2drgb = colorize_landmark_maps(gm2d) cv2.imwrite(os.path.join(eval_dir, '2dgm_%d.png'%its), (gm2drgb.squeeze()[:,:,::-1]*255).astype(np.uint8)) ims.append('./ims/2dgm_%d.png'%its) texts.append('2dgm') links.append('./ims/2dgm_%d.png'%its) cv2.imwrite(os.path.join(eval_dir, 'genm_%d.png'%its), m_final) ims.append('./ims/genm_%d.png'%its) texts.append('gen m') links.append('./ims/genm_%d.png'%its) vidgmpath = os.path.join(eval_dir, 'vid_gm%d.mp4' % its) skvideo.io.vwrite(vidgmpath, gmframes) vidgmpath_avi = os.path.join(eval_dir, 'vid_gm%d.avi' % its) skvideo.io.vwrite(vidgmpath_avi, gmframes) ims.append(os.path.join('./ims', os.path.basename(vidgmpath))) texts.append('gmvid') links.append(os.path.join('./ims', os.path.basename(vidgmpath))) vidmpath = os.path.join(eval_dir, 'vid_m%d.mp4' % its) skvideo.io.vwrite(vidmpath, mframes) vidmpath_avi = os.path.join(eval_dir, 'vid_m%d.avi' % its) skvideo.io.vwrite(vidmpath_avi, mframes) ims.append(os.path.join('./ims', os.path.basename(vidmpath))) texts.append('mvid') links.append(os.path.join('./ims', os.path.basename(vidmpath))) html.add_im_vid(ims, texts, links, width=256) html.save()
[ "tensorflow.meshgrid", "tensorflow.reduce_sum", "numpy.random.seed", "argparse.ArgumentParser", "cv2.VideoWriter_fourcc", "tensorflow.identity", "tensorflow.reshape", "tensorflow.zeros_like", "tensorflow.matmul", "tensorflow.linalg.det", "tensorflow.linalg.inv", "numpy.exp", "tensorflow.GPUOptions", "os.path.join", "tensorflow.nn.softmax", "tensorflow.abs", "tensorflow.sin", "tensorflow.gather", "os.path.dirname", "numpy.transpose", "tensorflow.stack", "tensorflow.cast", "numpy.max", "tensorflow.exp", "dataloader.mask_gen_hor_cs_kar_albedo", "numpy.linspace", "numpy.reshape", "tensorflow.GraphDef", "tensorflow.name_scope", "numpy.random.shuffle", "io.BytesIO", "os.path.basename", "tensorflow.linspace", "numpy.square", "tensorflow.reduce_mean", "tensorflow.ones_like", "tensorflow.transpose", "numpy.min", "tensorflow.tile", "tensorflow.gfile.GFile", "tensorflow.Graph", "tensorflow.enable_eager_execution", "numpy.squeeze", "tensorflow.import_graph_def", "tensorflow.expand_dims", "numpy.random.uniform", "PIL.ImageTk.PhotoImage", "os.makedirs", "tensorflow.linalg.matmul", "numpy.zeros", "numpy.expand_dims", "tensorflow.pow", "PIL.Image.open", "tensorflow.shape", "numpy.array", "tensorflow.cos" ]
[((254, 281), 'tensorflow.enable_eager_execution', 'tf.enable_eager_execution', ([], {}), '()\n', (279, 281), True, 'import tensorflow as tf\n'), ((357, 382), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (380, 382), False, 'import argparse\n'), ((783, 837), 'os.path.join', 'os.path.join', (['args.modelpath', '"""frozen_model_l_to_m.pb"""'], {}), "(args.modelpath, 'frozen_model_l_to_m.pb')\n", (795, 837), False, 'import os\n'), ((853, 907), 'os.path.join', 'os.path.join', (['args.modelpath', '"""frozen_model_z_to_l.pb"""'], {}), "(args.modelpath, 'frozen_model_z_to_l.pb')\n", (865, 907), False, 'import os\n'), ((989, 1007), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (1003, 1007), True, 'import numpy as np\n'), ((1008, 1033), 'numpy.random.shuffle', 'np.random.shuffle', (['mpaths'], {}), '(mpaths)\n', (1025, 1033), True, 'import numpy as np\n'), ((1269, 1324), 'dataloader.mask_gen_hor_cs_kar_albedo', 'mask_gen_hor_cs_kar_albedo', (['mpaths', 'impath', 'SHAPE', '(8)', '(8)'], {}), '(mpaths, impath, SHAPE, 8, 8)\n', (1295, 1324), False, 'from dataloader import mask_gen_cs_kar, mask_gen_hor_cs_kar_albedo\n'), ((15066, 15097), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'MP4V'"], {}), "(*'MP4V')\n", (15088, 15097), False, 'import cv2\n'), ((1434, 1447), 'PIL.Image.open', 'Image.open', (['f'], {}), '(f)\n', (1444, 1447), False, 'from PIL import Image, ImageTk\n'), ((1666, 1689), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', (['img'], {}), '(img)\n', (1684, 1689), False, 'from PIL import Image, ImageTk\n'), ((1780, 1801), 'numpy.squeeze', 'np.squeeze', (['(r * SHAPE)'], {}), '(r * SHAPE)\n', (1790, 1801), True, 'import numpy as np\n'), ((1843, 1865), 'numpy.array', 'np.array', (['[0, 0, 0, 0]'], {}), '([0, 0, 0, 0])\n', (1851, 1865), True, 'import numpy as np\n'), ((1876, 1906), 'numpy.zeros', 'np.zeros', (['[1, SHAPE, SHAPE, 1]'], {}), '([1, SHAPE, SHAPE, 1])\n', (1884, 1906), True, 'import numpy as np\n'), ((1918, 1936), 'numpy.min', 'np.min', (['nr'], {'axis': '(0)'}), '(nr, axis=0)\n', (1924, 1936), True, 'import numpy as np\n'), ((1948, 1966), 'numpy.max', 'np.max', (['nr'], {'axis': '(0)'}), '(nr, axis=0)\n', (1954, 1966), True, 'import numpy as np\n'), ((2768, 2802), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['x'], {'axis': 'other_axis'}), '(x, axis=other_axis)\n', (2782, 2802), True, 'import tensorflow as tf\n'), ((2830, 2861), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['g_c_prob'], {'axis': '(1)'}), '(g_c_prob, axis=1)\n', (2843, 2861), True, 'import tensorflow as tf\n'), ((2956, 2995), 'tensorflow.reshape', 'tf.reshape', (['coord_pt', '[1, axis_size, 1]'], {}), '(coord_pt, [1, axis_size, 1])\n', (2966, 2995), True, 'import tensorflow as tf\n'), ((3006, 3048), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(g_c_prob * coord_pt)'], {'axis': '(1)'}), '(g_c_prob * coord_pt, axis=1)\n', (3019, 3048), True, 'import tensorflow as tf\n'), ((4362, 4394), 'numpy.transpose', 'np.transpose', (['g_yx', '[0, 2, 3, 1]'], {}), '(g_yx, [0, 2, 3, 1])\n', (4374, 4394), True, 'import numpy as np\n'), ((5784, 5805), 'numpy.max', 'np.max', (['hmaps'], {'axis': '(0)'}), '(hmaps, axis=0)\n', (5790, 5805), True, 'import numpy as np\n'), ((6119, 6138), 'tensorflow.zeros_like', 'tf.zeros_like', (['rotY'], {}), '(rotY)\n', (6132, 6138), True, 'import tensorflow as tf\n'), ((6149, 6167), 'tensorflow.ones_like', 'tf.ones_like', (['rotY'], {}), '(rotY)\n', (6161, 6167), True, 'import tensorflow as tf\n'), ((6993, 7036), 'tensorflow.stack', 'tf.stack', (['([transvec] * nb_landmarks)'], {'axis': '(1)'}), '([transvec] * nb_landmarks, axis=1)\n', (7001, 7036), True, 'import tensorflow as tf\n'), ((7232, 7249), 'tensorflow.zeros_like', 'tf.zeros_like', (['px'], {}), '(px)\n', (7245, 7249), True, 'import tensorflow as tf\n'), ((7259, 7275), 'tensorflow.ones_like', 'tf.ones_like', (['px'], {}), '(px)\n', (7271, 7275), True, 'import tensorflow as tf\n'), ((7431, 7453), 'tensorflow.cast', 'tf.cast', (['K', 'tf.float64'], {}), '(K, tf.float64)\n', (7438, 7453), True, 'import tensorflow as tf\n'), ((7462, 7486), 'tensorflow.identity', 'tf.identity', (['K'], {'name': '"""K"""'}), "(K, name='K')\n", (7473, 7486), True, 'import tensorflow as tf\n'), ((7634, 7654), 'tensorflow.linalg.inv', 'tf.linalg.inv', (['sigma'], {}), '(sigma)\n', (7647, 7654), True, 'import tensorflow as tf\n'), ((7665, 7689), 'tensorflow.cast', 'tf.cast', (['mus', 'tf.float64'], {}), '(mus, tf.float64)\n', (7672, 7689), True, 'import tensorflow as tf\n'), ((7870, 7911), 'tensorflow.matmul', 'tf.matmul', (['M0', 'invsigma'], {'transpose_b': '(True)'}), '(M0, invsigma, transpose_b=True)\n', (7879, 7911), True, 'import tensorflow as tf\n'), ((8447, 8465), 'tensorflow.linalg.det', 'tf.linalg.det', (['M31'], {}), '(M31)\n', (8460, 8465), True, 'import tensorflow as tf\n'), ((8480, 8498), 'tensorflow.linalg.det', 'tf.linalg.det', (['M23'], {}), '(M23)\n', (8493, 8498), True, 'import tensorflow as tf\n'), ((8513, 8531), 'tensorflow.linalg.det', 'tf.linalg.det', (['M33'], {}), '(M33)\n', (8526, 8531), True, 'import tensorflow as tf\n'), ((8544, 8560), 'tensorflow.linalg.det', 'tf.linalg.det', (['M'], {}), '(M)\n', (8557, 8560), True, 'import tensorflow as tf\n'), ((8720, 8769), 'tensorflow.stack', 'tf.stack', (['[K[:, :, 0, 2], K[:, :, 1, 2]]'], {'axis': '(-1)'}), '([K[:, :, 0, 2], K[:, :, 1, 2]], axis=-1)\n', (8728, 8769), True, 'import tensorflow as tf\n'), ((8876, 8894), 'tensorflow.linalg.inv', 'tf.linalg.inv', (['M33'], {}), '(M33)\n', (8889, 8894), True, 'import tensorflow as tf\n'), ((8960, 8984), 'tensorflow.cast', 'tf.cast', (['mup', 'tf.float32'], {}), '(mup, tf.float32)\n', (8967, 8984), True, 'import tensorflow as tf\n'), ((8998, 9025), 'tensorflow.cast', 'tf.cast', (['sigmap', 'tf.float32'], {}), '(sigmap, tf.float32)\n', (9005, 9025), True, 'import tensorflow as tf\n'), ((9036, 9065), 'tensorflow.identity', 'tf.identity', (['mup'], {'name': '"""mu2d"""'}), "(mup, name='mu2d')\n", (9047, 9065), True, 'import tensorflow as tf\n'), ((9079, 9114), 'tensorflow.identity', 'tf.identity', (['sigmap'], {'name': '"""sigma2d"""'}), "(sigmap, name='sigma2d')\n", (9090, 9114), True, 'import tensorflow as tf\n'), ((9563, 9581), 'tensorflow.ones_like', 'tf.ones_like', (['rotY'], {}), '(rotY)\n', (9575, 9581), True, 'import tensorflow as tf\n'), ((9591, 9610), 'tensorflow.zeros_like', 'tf.zeros_like', (['rotY'], {}), '(rotY)\n', (9604, 9610), True, 'import tensorflow as tf\n'), ((10434, 10477), 'tensorflow.stack', 'tf.stack', (['([transvec] * nb_landmarks)'], {'axis': '(1)'}), '([transvec] * nb_landmarks, axis=1)\n', (10442, 10477), True, 'import tensorflow as tf\n'), ((10667, 10684), 'tensorflow.zeros_like', 'tf.zeros_like', (['px'], {}), '(px)\n', (10680, 10684), True, 'import tensorflow as tf\n'), ((10694, 10710), 'tensorflow.ones_like', 'tf.ones_like', (['px'], {}), '(px)\n', (10706, 10710), True, 'import tensorflow as tf\n'), ((10866, 10890), 'tensorflow.identity', 'tf.identity', (['K'], {'name': '"""K"""'}), "(K, name='K')\n", (10877, 10890), True, 'import tensorflow as tf\n'), ((11182, 11202), 'tensorflow.linalg.inv', 'tf.linalg.inv', (['sigma'], {}), '(sigma)\n', (11195, 11202), True, 'import tensorflow as tf\n'), ((11281, 11322), 'tensorflow.matmul', 'tf.matmul', (['M0', 'invsigma'], {'transpose_b': '(True)'}), '(M0, invsigma, transpose_b=True)\n', (11290, 11322), True, 'import tensorflow as tf\n'), ((11846, 11864), 'tensorflow.linalg.det', 'tf.linalg.det', (['M31'], {}), '(M31)\n', (11859, 11864), True, 'import tensorflow as tf\n'), ((11879, 11897), 'tensorflow.linalg.det', 'tf.linalg.det', (['M23'], {}), '(M23)\n', (11892, 11897), True, 'import tensorflow as tf\n'), ((11912, 11930), 'tensorflow.linalg.det', 'tf.linalg.det', (['M33'], {}), '(M33)\n', (11925, 11930), True, 'import tensorflow as tf\n'), ((11943, 11959), 'tensorflow.linalg.det', 'tf.linalg.det', (['M'], {}), '(M)\n', (11956, 11959), True, 'import tensorflow as tf\n'), ((12107, 12156), 'tensorflow.stack', 'tf.stack', (['[K[:, :, 0, 2], K[:, :, 1, 2]]'], {'axis': '(-1)'}), '([K[:, :, 0, 2], K[:, :, 1, 2]], axis=-1)\n', (12115, 12156), True, 'import tensorflow as tf\n'), ((12263, 12281), 'tensorflow.linalg.inv', 'tf.linalg.inv', (['M33'], {}), '(M33)\n', (12276, 12281), True, 'import tensorflow as tf\n'), ((13410, 13444), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['m_to_l_model', '"""rb"""'], {}), "(m_to_l_model, 'rb')\n", (13424, 13444), True, 'import tensorflow as tf\n'), ((13467, 13480), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (13478, 13480), True, 'import tensorflow as tf\n'), ((13571, 13610), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['graph_def'], {'name': '""""""'}), "(graph_def, name='')\n", (13590, 13610), True, 'import tensorflow as tf\n'), ((13617, 13651), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['l_to_m_model', '"""rb"""'], {}), "(l_to_m_model, 'rb')\n", (13631, 13651), True, 'import tensorflow as tf\n'), ((13674, 13687), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (13685, 13687), True, 'import tensorflow as tf\n'), ((13778, 13817), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['graph_def'], {'name': '""""""'}), "(graph_def, name='')\n", (13797, 13817), True, 'import tensorflow as tf\n'), ((14736, 14772), 'os.makedirs', 'os.makedirs', (['eval_dir'], {'exist_ok': '(True)'}), '(eval_dir, exist_ok=True)\n', (14747, 14772), False, 'import os\n'), ((14919, 14955), 'os.makedirs', 'os.makedirs', (['eval_dir'], {'exist_ok': '(True)'}), '(eval_dir, exist_ok=True)\n', (14930, 14955), False, 'import os\n'), ((14969, 14994), 'os.path.dirname', 'os.path.dirname', (['eval_dir'], {}), '(eval_dir)\n', (14984, 14994), False, 'import os\n'), ((15301, 15335), 'numpy.linspace', 'np.linspace', (['(0.0)', 'angle', 'nb_frames'], {}), '(0.0, angle, nb_frames)\n', (15312, 15335), True, 'import numpy as np\n'), ((17632, 17676), 'os.path.join', 'os.path.join', (['eval_dir', "('vid_gm%d.mp4' % its)"], {}), "(eval_dir, 'vid_gm%d.mp4' % its)\n", (17644, 17676), False, 'import os\n'), ((17740, 17784), 'os.path.join', 'os.path.join', (['eval_dir', "('vid_gm%d.avi' % its)"], {}), "(eval_dir, 'vid_gm%d.avi' % its)\n", (17752, 17784), False, 'import os\n'), ((18011, 18054), 'os.path.join', 'os.path.join', (['eval_dir', "('vid_m%d.mp4' % its)"], {}), "(eval_dir, 'vid_m%d.mp4' % its)\n", (18023, 18054), False, 'import os\n'), ((18115, 18158), 'os.path.join', 'os.path.join', (['eval_dir', "('vid_m%d.avi' % its)"], {}), "(eval_dir, 'vid_m%d.avi' % its)\n", (18127, 18158), False, 'import os\n'), ((956, 986), 'os.path.join', 'os.path.join', (['orig_im', '"""*.png"""'], {}), "(orig_im, '*.png')\n", (968, 986), False, 'import os\n'), ((1560, 1572), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (1570, 1572), False, 'import io\n'), ((2581, 2610), 'numpy.reshape', 'np.reshape', (['box', '[1, 1, 1, 4]'], {}), '(box, [1, 1, 1, 4])\n', (2591, 2610), True, 'import numpy as np\n'), ((2901, 2934), 'tensorflow.linspace', 'tf.linspace', (['(-1.0)', '(1.0)', 'axis_size'], {}), '(-1.0, 1.0, axis_size)\n', (2912, 2934), True, 'import tensorflow as tf\n'), ((3355, 3393), 'tensorflow.name_scope', 'tf.name_scope', (['None', '"""gauss_map"""', '[mu]'], {}), "(None, 'gauss_map', [mu])\n", (3368, 3393), True, 'import tensorflow as tf\n'), ((3450, 3484), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'shape_hw[0]'], {}), '(0.0, 1.0, shape_hw[0])\n', (3461, 3484), True, 'import numpy as np\n'), ((3492, 3526), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'shape_hw[1]'], {}), '(0.0, 1.0, shape_hw[1])\n', (3503, 3526), True, 'import numpy as np\n'), ((3634, 3671), 'numpy.reshape', 'np.reshape', (['y', '[1, 1, shape_hw[0], 1]'], {}), '(y, [1, 1, shape_hw[0], 1])\n', (3644, 3671), True, 'import numpy as np\n'), ((3680, 3717), 'numpy.reshape', 'np.reshape', (['x', '[1, 1, 1, shape_hw[1]]'], {}), '(x, [1, 1, 1, shape_hw[1]])\n', (3690, 3717), True, 'import numpy as np\n'), ((3729, 3748), 'numpy.square', 'np.square', (['(y - mu_y)'], {}), '(y - mu_y)\n', (3738, 3748), True, 'import numpy as np\n'), ((3759, 3778), 'numpy.square', 'np.square', (['(x - mu_x)'], {}), '(x - mu_x)\n', (3768, 3778), True, 'import numpy as np\n'), ((6821, 6838), 'tensorflow.matmul', 'tf.matmul', (['RX', 'RY'], {}), '(RX, RY)\n', (6830, 6838), True, 'import tensorflow as tf\n'), ((6934, 6958), 'numpy.array', 'np.array', (['[[tx, ty, tz]]'], {}), '([[tx, ty, tz]])\n', (6942, 6958), True, 'import numpy as np\n'), ((7198, 7214), 'tensorflow.ones_like', 'tf.ones_like', (['px'], {}), '(px)\n', (7210, 7214), True, 'import tensorflow as tf\n'), ((7496, 7518), 'tensorflow.cast', 'tf.cast', (['R', 'tf.float64'], {}), '(R, tf.float64)\n', (7503, 7518), True, 'import tensorflow as tf\n'), ((7521, 7540), 'tensorflow.ones_like', 'tf.ones_like', (['sigma'], {}), '(sigma)\n', (7533, 7540), True, 'import tensorflow as tf\n'), ((7570, 7596), 'tensorflow.linalg.matmul', 'tf.linalg.matmul', (['R', 'sigma'], {}), '(R, sigma)\n', (7586, 7596), True, 'import tensorflow as tf\n'), ((7822, 7859), 'tensorflow.matmul', 'tf.matmul', (['mus', 'mus'], {'transpose_a': '(True)'}), '(mus, mus, transpose_a=True)\n', (7831, 7859), True, 'import tensorflow as tf\n'), ((8050, 8093), 'numpy.array', 'np.array', (['[[1, 1, 0], [1, 1, 0], [0, 0, 1]]'], {}), '([[1, 1, 0], [1, 1, 0], [0, 0, 1]])\n', (8058, 8093), True, 'import numpy as np\n'), ((8189, 8217), 'tensorflow.gather', 'tf.gather', (['M', '[0, 1]'], {'axis': '(2)'}), '(M, [0, 1], axis=2)\n', (8198, 8217), True, 'import tensorflow as tf\n'), ((8255, 8283), 'tensorflow.gather', 'tf.gather', (['K', '[0, 1]'], {'axis': '(2)'}), '(K, [0, 1], axis=2)\n', (8264, 8283), True, 'import tensorflow as tf\n'), ((8321, 8349), 'tensorflow.gather', 'tf.gather', (['M', '[0, 1]'], {'axis': '(2)'}), '(M, [0, 1], axis=2)\n', (8330, 8349), True, 'import tensorflow as tf\n'), ((8387, 8415), 'tensorflow.gather', 'tf.gather', (['M', '[0, 2]'], {'axis': '(2)'}), '(M, [0, 2], axis=2)\n', (8396, 8415), True, 'import tensorflow as tf\n'), ((10262, 10279), 'tensorflow.matmul', 'tf.matmul', (['RX', 'RY'], {}), '(RX, RY)\n', (10271, 10279), True, 'import tensorflow as tf\n'), ((10375, 10399), 'numpy.array', 'np.array', (['[[tx, ty, tz]]'], {}), '([[tx, ty, tz]])\n', (10383, 10399), True, 'import numpy as np\n'), ((10633, 10649), 'tensorflow.ones_like', 'tf.ones_like', (['px'], {}), '(px)\n', (10645, 10649), True, 'import tensorflow as tf\n'), ((10904, 10923), 'tensorflow.ones_like', 'tf.ones_like', (['sigma'], {}), '(sigma)\n', (10916, 10923), True, 'import tensorflow as tf\n'), ((10953, 10979), 'tensorflow.linalg.matmul', 'tf.linalg.matmul', (['R', 'sigma'], {}), '(R, sigma)\n', (10969, 10979), True, 'import tensorflow as tf\n'), ((11233, 11270), 'tensorflow.matmul', 'tf.matmul', (['mus', 'mus'], {'transpose_a': '(True)'}), '(mus, mus, transpose_a=True)\n', (11242, 11270), True, 'import tensorflow as tf\n'), ((11461, 11504), 'numpy.array', 'np.array', (['[[1, 1, 0], [1, 1, 0], [0, 0, 1]]'], {}), '([[1, 1, 0], [1, 1, 0], [0, 0, 1]])\n', (11469, 11504), True, 'import numpy as np\n'), ((11588, 11616), 'tensorflow.gather', 'tf.gather', (['M', '[0, 1]'], {'axis': '(2)'}), '(M, [0, 1], axis=2)\n', (11597, 11616), True, 'import tensorflow as tf\n'), ((11654, 11682), 'tensorflow.gather', 'tf.gather', (['K', '[0, 1]'], {'axis': '(2)'}), '(K, [0, 1], axis=2)\n', (11663, 11682), True, 'import tensorflow as tf\n'), ((11720, 11748), 'tensorflow.gather', 'tf.gather', (['M', '[0, 1]'], {'axis': '(2)'}), '(M, [0, 1], axis=2)\n', (11729, 11748), True, 'import tensorflow as tf\n'), ((11786, 11814), 'tensorflow.gather', 'tf.gather', (['M', '[0, 2]'], {'axis': '(2)'}), '(M, [0, 2], axis=2)\n', (11795, 11814), True, 'import tensorflow as tf\n'), ((12628, 12666), 'tensorflow.name_scope', 'tf.name_scope', (['None', '"""gauss_map"""', '[mu]'], {}), "(None, 'gauss_map', [mu])\n", (12641, 12666), True, 'import tensorflow as tf\n'), ((12796, 12813), 'tensorflow.meshgrid', 'tf.meshgrid', (['x', 'y'], {}), '(x, y)\n', (12807, 12813), True, 'import tensorflow as tf\n'), ((12822, 12847), 'tensorflow.stack', 'tf.stack', (['[x, y]'], {'axis': '(-1)'}), '([x, y], axis=-1)\n', (12830, 12847), True, 'import tensorflow as tf\n'), ((12857, 12894), 'tensorflow.stack', 'tf.stack', (['([xy] * nb_landmarks)'], {'axis': '(0)'}), '([xy] * nb_landmarks, axis=0)\n', (12865, 12894), True, 'import tensorflow as tf\n'), ((12988, 13008), 'tensorflow.linalg.inv', 'tf.linalg.inv', (['sigma'], {}), '(sigma)\n', (13001, 13008), True, 'import tensorflow as tf\n'), ((13024, 13053), 'tensorflow.cast', 'tf.cast', (['invsigma', 'tf.float32'], {}), '(invsigma, tf.float32)\n', (13031, 13053), True, 'import tensorflow as tf\n'), ((13063, 13131), 'tensorflow.tile', 'tf.tile', (['invsigma[:, :, tf.newaxis, :, :]', '[1, 1, shape_hw[1], 1, 1]'], {}), '(invsigma[:, :, tf.newaxis, :, :], [1, 1, shape_hw[1], 1, 1])\n', (13070, 13131), True, 'import tensorflow as tf\n'), ((13157, 13173), 'tensorflow.matmul', 'tf.matmul', (['X', 'pp'], {}), '(X, pp)\n', (13166, 13173), True, 'import tensorflow as tf\n'), ((13184, 13216), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(dist * X)'], {'axis': '(-1)'}), '(dist * X, axis=-1)\n', (13197, 13216), True, 'import tensorflow as tf\n'), ((13229, 13242), 'tensorflow.exp', 'tf.exp', (['(-dist)'], {}), '(-dist)\n', (13235, 13242), True, 'import tensorflow as tf\n'), ((13255, 13292), 'tensorflow.transpose', 'tf.transpose', (['g_yx'], {'perm': '[0, 2, 3, 1]'}), '(g_yx, perm=[0, 2, 3, 1])\n', (13267, 13292), True, 'import tensorflow as tf\n'), ((14684, 14713), 'os.path.dirname', 'os.path.dirname', (['m_to_l_model'], {}), '(m_to_l_model)\n', (14699, 14713), False, 'import os\n'), ((14871, 14900), 'os.path.dirname', 'os.path.dirname', (['m_to_l_model'], {}), '(m_to_l_model)\n', (14886, 14900), False, 'import os\n'), ((16025, 16064), 'os.path.join', 'os.path.join', (['eval_dir', "('m%d.png' % its)"], {}), "(eval_dir, 'm%d.png' % its)\n", (16037, 16064), False, 'import os\n'), ((16233, 16273), 'os.path.join', 'os.path.join', (['eval_dir', "('m_%d.npy' % its)"], {}), "(eval_dir, 'm_%d.npy' % its)\n", (16245, 16273), False, 'import os\n'), ((16291, 16335), 'os.path.join', 'os.path.join', (['eval_dir', "('sig3d_%d.npy' % its)"], {}), "(eval_dir, 'sig3d_%d.npy' % its)\n", (16303, 16335), False, 'import os\n'), ((16380, 16413), 'numpy.array', 'np.array', (['[[x]]'], {'dtype': 'np.float32'}), '([[x]], dtype=np.float32)\n', (16388, 16413), True, 'import numpy as np\n'), ((16428, 16444), 'tensorflow.zeros_like', 'tf.zeros_like', (['x'], {}), '(x)\n', (16441, 16444), True, 'import tensorflow as tf\n'), ((3574, 3598), 'numpy.expand_dims', 'np.expand_dims', (['mu_y', '(-1)'], {}), '(mu_y, -1)\n', (3588, 3598), True, 'import numpy as np\n'), ((3600, 3624), 'numpy.expand_dims', 'np.expand_dims', (['mu_x', '(-1)'], {}), '(mu_x, -1)\n', (3614, 3624), True, 'import numpy as np\n'), ((3851, 3864), 'numpy.exp', 'np.exp', (['(-dist)'], {}), '(-dist)\n', (3857, 3864), True, 'import numpy as np\n'), ((3957, 3991), 'tensorflow.reshape', 'tf.reshape', (['y', '[1, 1, shape_hw[0]]'], {}), '(y, [1, 1, shape_hw[0]])\n', (3967, 3991), True, 'import tensorflow as tf\n'), ((4000, 4034), 'tensorflow.reshape', 'tf.reshape', (['x', '[1, 1, shape_hw[1]]'], {}), '(x, [1, 1, shape_hw[1]])\n', (4010, 4034), True, 'import tensorflow as tf\n'), ((4175, 4202), 'tensorflow.expand_dims', 'tf.expand_dims', (['g_y'], {'axis': '(3)'}), '(g_y, axis=3)\n', (4189, 4202), True, 'import tensorflow as tf\n'), ((4213, 4240), 'tensorflow.expand_dims', 'tf.expand_dims', (['g_x'], {'axis': '(2)'}), '(g_x, axis=2)\n', (4227, 4240), True, 'import tensorflow as tf\n'), ((4252, 4271), 'tensorflow.matmul', 'tf.matmul', (['g_y', 'g_x'], {}), '(g_y, g_x)\n', (4261, 4271), True, 'import tensorflow as tf\n'), ((5665, 5701), 'numpy.expand_dims', 'np.expand_dims', (['maps[..., i]'], {'axis': '(3)'}), '(maps[..., i], axis=3)\n', (5679, 5701), True, 'import numpy as np\n'), ((5704, 5739), 'numpy.reshape', 'np.reshape', (['COLORS[i]', '[1, 1, 1, 3]'], {}), '(COLORS[i], [1, 1, 1, 3])\n', (5714, 5739), True, 'import numpy as np\n'), ((6188, 6220), 'tensorflow.stack', 'tf.stack', (['[ons, zr, zr]'], {'axis': '(-1)'}), '([ons, zr, zr], axis=-1)\n', (6196, 6220), True, 'import tensorflow as tf\n'), ((6430, 6462), 'tensorflow.stack', 'tf.stack', (['[zr, ons, zr]'], {'axis': '(-1)'}), '([zr, ons, zr], axis=-1)\n', (6438, 6462), True, 'import tensorflow as tf\n'), ((6711, 6743), 'tensorflow.stack', 'tf.stack', (['[zr, zr, ons]'], {'axis': '(-1)'}), '([zr, zr, ons], axis=-1)\n', (6719, 6743), True, 'import tensorflow as tf\n'), ((7294, 7326), 'tensorflow.stack', 'tf.stack', (['[fvs, zv, zv]'], {'axis': '(-1)'}), '([fvs, zv, zv], axis=-1)\n', (7302, 7326), True, 'import tensorflow as tf\n'), ((7328, 7360), 'tensorflow.stack', 'tf.stack', (['[zv, fvs, zv]'], {'axis': '(-1)'}), '([zv, fvs, zv], axis=-1)\n', (7336, 7360), True, 'import tensorflow as tf\n'), ((7380, 7411), 'tensorflow.stack', 'tf.stack', (['[px, py, ov]'], {'axis': '(-1)'}), '([px, py, ov], axis=-1)\n', (7388, 7411), True, 'import tensorflow as tf\n'), ((7932, 7956), 'tensorflow.matmul', 'tf.matmul', (['mus', 'invsigma'], {}), '(mus, invsigma)\n', (7941, 7956), True, 'import tensorflow as tf\n'), ((9630, 9662), 'tensorflow.stack', 'tf.stack', (['[ons, zr, zr]'], {'axis': '(-1)'}), '([ons, zr, zr], axis=-1)\n', (9638, 9662), True, 'import tensorflow as tf\n'), ((9872, 9904), 'tensorflow.stack', 'tf.stack', (['[zr, ons, zr]'], {'axis': '(-1)'}), '([zr, ons, zr], axis=-1)\n', (9880, 9904), True, 'import tensorflow as tf\n'), ((10153, 10185), 'tensorflow.stack', 'tf.stack', (['[zr, zr, ons]'], {'axis': '(-1)'}), '([zr, zr, ons], axis=-1)\n', (10161, 10185), True, 'import tensorflow as tf\n'), ((10729, 10761), 'tensorflow.stack', 'tf.stack', (['[fvs, zv, zv]'], {'axis': '(-1)'}), '([fvs, zv, zv], axis=-1)\n', (10737, 10761), True, 'import tensorflow as tf\n'), ((10763, 10795), 'tensorflow.stack', 'tf.stack', (['[zv, fvs, zv]'], {'axis': '(-1)'}), '([zv, fvs, zv], axis=-1)\n', (10771, 10795), True, 'import tensorflow as tf\n'), ((10815, 10846), 'tensorflow.stack', 'tf.stack', (['[px, py, ov]'], {'axis': '(-1)'}), '([px, py, ov], axis=-1)\n', (10823, 10846), True, 'import tensorflow as tf\n'), ((11343, 11367), 'tensorflow.matmul', 'tf.matmul', (['mus', 'invsigma'], {}), '(mus, invsigma)\n', (11352, 11367), True, 'import tensorflow as tf\n'), ((12689, 12724), 'tensorflow.linspace', 'tf.linspace', (['(-1.0)', '(1.0)', 'shape_hw[0]'], {}), '(-1.0, 1.0, shape_hw[0])\n', (12700, 12724), True, 'import tensorflow as tf\n'), ((12747, 12782), 'tensorflow.linspace', 'tf.linspace', (['(-1.0)', '(1.0)', 'shape_hw[1]'], {}), '(-1.0, 1.0, shape_hw[1])\n', (12758, 12782), True, 'import tensorflow as tf\n'), ((13526, 13536), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (13534, 13536), True, 'import tensorflow as tf\n'), ((13733, 13743), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (13741, 13743), True, 'import tensorflow as tf\n'), ((17869, 17896), 'os.path.basename', 'os.path.basename', (['vidgmpath'], {}), '(vidgmpath)\n', (17885, 17896), False, 'import os\n'), ((17964, 17991), 'os.path.basename', 'os.path.basename', (['vidgmpath'], {}), '(vidgmpath)\n', (17980, 17991), False, 'import os\n'), ((18241, 18267), 'os.path.basename', 'os.path.basename', (['vidmpath'], {}), '(vidmpath)\n', (18257, 18267), False, 'import os\n'), ((18334, 18360), 'os.path.basename', 'os.path.basename', (['vidmpath'], {}), '(vidmpath)\n', (18350, 18360), False, 'import os\n'), ((4601, 4626), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1.0)'], {}), '(0, 1.0)\n', (4618, 4626), True, 'import numpy as np\n'), ((7103, 7116), 'tensorflow.shape', 'tf.shape', (['mus'], {}), '(mus)\n', (7111, 7116), True, 'import tensorflow as tf\n'), ((7155, 7168), 'tensorflow.shape', 'tf.shape', (['mus'], {}), '(mus)\n', (7163, 7168), True, 'import tensorflow as tf\n'), ((7733, 7764), 'tensorflow.transpose', 'tf.transpose', (['mus', '[0, 1, 3, 2]'], {}), '(mus, [0, 1, 3, 2])\n', (7745, 7764), True, 'import tensorflow as tf\n'), ((10538, 10551), 'tensorflow.shape', 'tf.shape', (['mus'], {}), '(mus)\n', (10546, 10551), True, 'import tensorflow as tf\n'), ((10590, 10603), 'tensorflow.shape', 'tf.shape', (['mus'], {}), '(mus)\n', (10598, 10603), True, 'import tensorflow as tf\n'), ((11108, 11139), 'tensorflow.transpose', 'tf.transpose', (['mus', '[0, 1, 3, 2]'], {}), '(mus, [0, 1, 3, 2])\n', (11120, 11139), True, 'import tensorflow as tf\n'), ((17180, 17223), 'os.path.join', 'os.path.join', (['eval_dir', "('2dgm_%d.png' % its)"], {}), "(eval_dir, '2dgm_%d.png' % its)\n", (17192, 17223), False, 'import os\n'), ((17431, 17474), 'os.path.join', 'os.path.join', (['eval_dir', "('genm_%d.png' % its)"], {}), "(eval_dir, 'genm_%d.png' % its)\n", (17443, 17474), False, 'import os\n'), ((3896, 3922), 'tensorflow.pow', 'tf.pow', (['(dist + 1e-05)', '(0.25)'], {}), '(dist + 1e-05, 0.25)\n', (3902, 3922), True, 'import tensorflow as tf\n'), ((6236, 6248), 'tensorflow.cos', 'tf.cos', (['rotX'], {}), '(rotX)\n', (6242, 6248), True, 'import tensorflow as tf\n'), ((6309, 6321), 'tensorflow.sin', 'tf.sin', (['rotX'], {}), '(rotX)\n', (6315, 6321), True, 'import tensorflow as tf\n'), ((6323, 6335), 'tensorflow.cos', 'tf.cos', (['rotX'], {}), '(rotX)\n', (6329, 6335), True, 'import tensorflow as tf\n'), ((6387, 6399), 'tensorflow.cos', 'tf.cos', (['rotY'], {}), '(rotY)\n', (6393, 6399), True, 'import tensorflow as tf\n'), ((6405, 6417), 'tensorflow.sin', 'tf.sin', (['rotY'], {}), '(rotY)\n', (6411, 6417), True, 'import tensorflow as tf\n'), ((6512, 6524), 'tensorflow.cos', 'tf.cos', (['rotY'], {}), '(rotY)\n', (6518, 6524), True, 'import tensorflow as tf\n'), ((6576, 6588), 'tensorflow.cos', 'tf.cos', (['rotZ'], {}), '(rotZ)\n', (6582, 6588), True, 'import tensorflow as tf\n'), ((6649, 6661), 'tensorflow.sin', 'tf.sin', (['rotZ'], {}), '(rotZ)\n', (6655, 6661), True, 'import tensorflow as tf\n'), ((6663, 6675), 'tensorflow.cos', 'tf.cos', (['rotZ'], {}), '(rotZ)\n', (6669, 6675), True, 'import tensorflow as tf\n'), ((8599, 8637), 'tensorflow.stack', 'tf.stack', (['[det_m31, -det_m23]'], {'axis': '(-1)'}), '([det_m31, -det_m23], axis=-1)\n', (8607, 8637), True, 'import tensorflow as tf\n'), ((9678, 9690), 'tensorflow.cos', 'tf.cos', (['rotX'], {}), '(rotX)\n', (9684, 9690), True, 'import tensorflow as tf\n'), ((9751, 9763), 'tensorflow.sin', 'tf.sin', (['rotX'], {}), '(rotX)\n', (9757, 9763), True, 'import tensorflow as tf\n'), ((9765, 9777), 'tensorflow.cos', 'tf.cos', (['rotX'], {}), '(rotX)\n', (9771, 9777), True, 'import tensorflow as tf\n'), ((9829, 9841), 'tensorflow.cos', 'tf.cos', (['rotY'], {}), '(rotY)\n', (9835, 9841), True, 'import tensorflow as tf\n'), ((9847, 9859), 'tensorflow.sin', 'tf.sin', (['rotY'], {}), '(rotY)\n', (9853, 9859), True, 'import tensorflow as tf\n'), ((9954, 9966), 'tensorflow.cos', 'tf.cos', (['rotY'], {}), '(rotY)\n', (9960, 9966), True, 'import tensorflow as tf\n'), ((10018, 10030), 'tensorflow.cos', 'tf.cos', (['rotZ'], {}), '(rotZ)\n', (10024, 10030), True, 'import tensorflow as tf\n'), ((10091, 10103), 'tensorflow.sin', 'tf.sin', (['rotZ'], {}), '(rotZ)\n', (10097, 10103), True, 'import tensorflow as tf\n'), ((10105, 10117), 'tensorflow.cos', 'tf.cos', (['rotZ'], {}), '(rotZ)\n', (10111, 10117), True, 'import tensorflow as tf\n'), ((11998, 12036), 'tensorflow.stack', 'tf.stack', (['[det_m31, -det_m23]'], {'axis': '(-1)'}), '([det_m31, -det_m23], axis=-1)\n', (12006, 12036), True, 'import tensorflow as tf\n'), ((6251, 6263), 'tensorflow.sin', 'tf.sin', (['rotX'], {}), '(rotX)\n', (6257, 6263), True, 'import tensorflow as tf\n'), ((6494, 6506), 'tensorflow.sin', 'tf.sin', (['rotY'], {}), '(rotY)\n', (6500, 6506), True, 'import tensorflow as tf\n'), ((6591, 6603), 'tensorflow.sin', 'tf.sin', (['rotZ'], {}), '(rotZ)\n', (6597, 6603), True, 'import tensorflow as tf\n'), ((9693, 9705), 'tensorflow.sin', 'tf.sin', (['rotX'], {}), '(rotX)\n', (9699, 9705), True, 'import tensorflow as tf\n'), ((9936, 9948), 'tensorflow.sin', 'tf.sin', (['rotY'], {}), '(rotY)\n', (9942, 9948), True, 'import tensorflow as tf\n'), ((10033, 10045), 'tensorflow.sin', 'tf.sin', (['rotZ'], {}), '(rotZ)\n', (10039, 10045), True, 'import tensorflow as tf\n'), ((15528, 15560), 'tensorflow.GPUOptions', 'tf.GPUOptions', ([], {'allow_growth': '(True)'}), '(allow_growth=True)\n', (15541, 15560), True, 'import tensorflow as tf\n'), ((16872, 16909), 'numpy.squeeze', 'np.squeeze', (['((m_final + 1) * 0.5 * 255)'], {}), '((m_final + 1) * 0.5 * 255)\n', (16882, 16909), True, 'import numpy as np\n'), ((4069, 4097), 'tensorflow.abs', 'tf.abs', (['((mu_y - y) * inv_std)'], {}), '((mu_y - y) * inv_std)\n', (4075, 4097), True, 'import tensorflow as tf\n'), ((4133, 4161), 'tensorflow.abs', 'tf.abs', (['((mu_x - x) * inv_std)'], {}), '((mu_x - x) * inv_std)\n', (4139, 4161), True, 'import tensorflow as tf\n'), ((16623, 16655), 'tensorflow.GPUOptions', 'tf.GPUOptions', ([], {'allow_growth': '(True)'}), '(allow_growth=True)\n', (16636, 16655), True, 'import tensorflow as tf\n')]
import json from seesaw.query_interface import AccessMethod import numpy as np import pandas as pd from .dataset_manager import GlobalDataManager, SeesawDatasetManager import os import time import numpy as np import sklearn.metrics import math import pyroaring as pr from dataclasses import dataclass, field def get_image_paths(image_root, path_array, idxs): return [ os.path.normpath(f"{image_root}/{path_array[int(i)]}").replace("//", "/") for i in idxs ] from .basic_types import * from .search_loop_models import * from .search_loop_tools import * from .dataset_tools import * from .fine_grained_embedding import * from .search_loop_models import adjust_vec, adjust_vec2 from .util import * from .pairwise_rank_loss import VecState from .query_interface import * from .textual_feedback_box import OnlineModel, join_vecs2annotations @dataclass class LoopState: curr_str: str = None tvec: np.ndarray = None tmod: str = None latency_profile: list = field(default_factory=list) vec_state: VecState = None model: OnlineModel = None class SeesawLoop: q: InteractiveQuery params: SessionParams state: LoopState def __init__( self, gdm: GlobalDataManager, q: InteractiveQuery, params: SessionParams ): self.params = params self.state = LoopState() self.q = q if self.params.interactive in ["textual"]: param_dict = gdm.global_cache.read_state_dict( "/home/gridsan/groups/fastai/omoll/seesaw_root/models/clip/ViT-B-32.pt", jit=True, ) self.state.model = OnlineModel(param_dict, self.params.method_config) lp = { "n_images": None, "n_posvecs": None, "n_negvecs": None, "lookup": None, "label": None, "refine": None, } s = self.state ## ensure non-empty s.latency_profile.append(lp) def next_batch(self): """ gets next batch of image indices based on current vector """ start_lookup = time.time() s = self.state p = self.params lp = { "n_images": None, "n_posvecs": None, "n_negvecs": None, "lookup": None, "label": None, "refine": None, } s.latency_profile.append(lp) if p.interactive == "textual": if p.method_config["mode"] == "finetune": vec = s.model.encode_string(s.curr_str) rescore_m = lambda vecs: vecs @ vec.reshape(-1, 1) elif p.method_config["mode"] == "linear": if len(s.model.linear_scorer.scorers) == 0: ## first time vec = s.model.encode_string(s.curr_str) s.model.linear_scorer.add_scorer( s.curr_str, torch.from_numpy(vec.reshape(-1)) ) rescore_m = self.state.model.score_vecs vec = self.state.model.get_lookup_vec(s.curr_str) else: vec = s.tvec rescore_m = lambda vecs: vecs @ vec.reshape(-1, 1) b = self.q.query_stateful( mode=s.tmode, vector=vec, batch_size=p.batch_size, shortlist_size=p.shortlist_size, agg_method=p.agg_method, rescore_method=rescore_m, ) idxbatch = b["dbidxs"] lp["n_images"] = idxbatch.shape[0] lp["lookup"] = time.time() - start_lookup return b def compute_image_activatins(self, dbidx, annotations): pass def refine(self): """ update based on vector. box dict will have every index from idx batch, including empty dfs. """ start_refine = time.time() p = self.params s = self.state lp = s.latency_profile[-1] lp["label"] = start_refine - lp["lookup"] if p.interactive == "plain": return elif p.interactive in ["textual"]: # get vectors and string corresponding to current annotations # run the updater. print("textual update") if ( "image_vector_strategy" not in p.dict() or p.image_vector_strategy == None or p.image_vector_strategy == "matched" ): vecs = [] strs = [] acc = [] for dbidx in self.q.label_db.get_seen(): annot = self.q.label_db.get(dbidx, format="box") assert annot is not None if len(annot) == 0: continue dfvec, dfbox = join_vecs2annotations(self.q.index, dbidx, annot) # best_box_iou, best_box_idx ## vectors with overlap df = dfbox # use boxes as guide for now mask_boxes = df.best_box_iou > p.method_config["vector_box_min_iou"] df = df[mask_boxes] if df.shape[0] > 0: vecs.append(df.vectors.values) strs.append(df.descriptions.values) acc.append(df.marked_accepted.values) if len(vecs) == 0: print("no annotations for update... skipping") return all_vecs = np.concatenate(vecs) all_strs = np.concatenate(strs) marked_accepted = np.concatenate(acc) elif p.image_vector_strategy == "computed": vecs = [] strs = [] acc = [] # annot = self.q.label_db.get(dbidx, format='box') for dbidx in self.q.label_db.get_seen(): annot = self.q.label_db.get(dbidx, format="box") if len(annot) == 0: continue vecs.append(self.compute_image_activations(dbidx, annot)) strs.append() pass else: assert False, "unknown image vec strategy" losses = s.model.update(all_vecs, marked_accepted, all_strs, s.curr_str) print("done with update", losses) else: Xt, yt = self.q.getXy() lp["n_posvecs"] = (yt == 1).sum() # .shape[0] lp["n_negvecs"] = (yt != 1).sum() if (yt.shape[0] > 0) and (yt.max() > yt.min()): s.tmode = "dot" if p.interactive == "sklearn": lr = sklearn.linear_model.LogisticRegression( class_weight="balanced" ) lr.fit(Xt, yt) s.tvec = lr.coef_.reshape(1, -1) elif p.interactive == "pytorch": prob = yt.sum() / yt.shape[0] w = np.clip((1 - prob) / prob, 0.1, 10.0) cfg = p.method_config if cfg["model_type"] == "logistic": mod = PTLogisiticRegression( Xt.shape[1], learning_ratep=p.learning_rate, C=0, positive_weight=w, ) if cfg["warm_start"] == "warm": iv = torch.from_numpy(s.tvec) iv = iv / iv.norm() mod.linear.weight.data = iv.type(mod.linear.weight.dtype) elif cfg["warm_start"] == "default": pass fit_reg( mod=mod, X=Xt.astype("float32"), y=yt.astype("float"), batch_size=p.minibatch_size, ) s.tvec = mod.linear.weight.detach().numpy().reshape(1, -1) elif cfg["model_type"] in ["cosine", "multirank"]: for i in range(cfg["num_epochs"]): s.tvec = adjust_vec( s.tvec, Xt, yt, learning_rate=cfg["learning_rate"], max_examples=cfg["max_examples"], minibatch_size=cfg["minibatch_size"], loss_margin=cfg["loss_margin"], ) elif cfg["model_type"] in ["multirank2"]: npairs = yt.sum() * (1 - yt).sum() max_iters = ( math.ceil( min(npairs, cfg["max_examples"]) // cfg["minibatch_size"] ) * cfg["num_epochs"] ) print("max iters this round would have been", max_iters) # print(s.vec_state.) # vecs * niters = number of vector seen. # n vec seen <= 10000 # niters <= 10000/vecs max_vec_seen = 10000 n_iters = math.ceil(max_vec_seen / Xt.shape[0]) n_steps = np.clip(n_iters, 20, 200) # print(f'steps for this iteration {n_steps}. num vecs: {Xt.shape[0]} ') # want iters * vecs to be const.. # eg. dota. 1000*100*30 for _ in range(n_steps): loss = s.vec_state.update(Xt, yt) if loss == 0: # gradient is 0 when loss is 0. print("loss is 0, breaking early") break s.tvec = s.vec_state.get_vec() elif cfg["model_type"] == "solver": s.tvec = adjust_vec2(s.tvec, Xt, yt, **p.solver_opts) else: assert False, "model type" else: assert False else: # print('missing positives or negatives to do any training', yt.shape, yt.max(), yt.min()) pass class Session: current_dataset: str current_index: str loop: SeesawLoop acc_indices: list image_timing: dict acc_activations: list total_results: int timing: list seen: pr.BitMap accepted: pr.BitMap q: InteractiveQuery index: AccessMethod def __init__( self, gdm: GlobalDataManager, dataset: SeesawDatasetManager, hdb: AccessMethod, params: SessionParams, ): self.gdm = gdm self.dataset = dataset self.acc_indices = [] self.acc_activations = [] self.seen = pr.BitMap([]) self.accepted = pr.BitMap([]) self.params = params self.init_q = None self.timing = [] self.image_timing = {} self.index = hdb self.q = hdb.new_query() self.loop = SeesawLoop(self.gdm, self.q, params=self.params) self.action_log = [] self._log("init") def get_totals(self): return {"seen": len(self.seen), "accepted": len(self.accepted)} def _log(self, message: str): self.action_log.append( { "logger": "server", "time": time.time(), "message": message, "seen": len(self.seen), "accepted": len(self.accepted), } ) def next(self): self._log("next.start") start = time.time() r = self.loop.next_batch() delta = time.time() - start self.acc_indices.append(r["dbidxs"]) self.acc_activations.append(r["activations"]) self.timing.append(delta) self._log("next.end") return r["dbidxs"] def set_text(self, key): self._log("set_text") self.init_q = key p = self.loop.params s = self.loop.state s.curr_str = key s.tvec = self.index.string2vec(string=key) s.tmode = "dot" if p.method_config.get("model_type", None) == "multirank2": s.vec_state = VecState( s.tvec, margin=p.loss_margin, opt_class=torch.optim.SGD, opt_params={"lr": p.learning_rate}, ) def update_state(self, state: SessionState): self._update_labeldb(state) self._log( "update_state.end" ) # log this after updating so that it includes all new information def refine(self): self._log("refine.start") self.loop.refine() self._log("refine.end") def get_state(self) -> SessionState: gdata = [] for indices, accs in zip(self.acc_indices, self.acc_activations): imdata = self.get_panel_data(idxbatch=indices, activation_batch=accs) gdata.append(imdata) dat = {} dat["action_log"] = self.action_log dat["gdata"] = gdata dat["timing"] = self.timing dat["reference_categories"] = [] dat["params"] = self.params dat["query_string"] = self.loop.state.curr_str return SessionState(**dat) def get_panel_data(self, *, idxbatch, activation_batch=None): reslabs = [] urls = get_image_paths(self.dataset.image_root, self.dataset.paths, idxbatch) for i, (url, dbidx) in enumerate(zip(urls, idxbatch)): dbidx = int(dbidx) boxes = self.q.label_db.get( dbidx, format="box" ) # None means no annotations yet (undef), empty means no boxes. if activation_batch is None: activations = None else: activations = [] for row in activation_batch[i].to_dict(orient="records"): score = row["score"] del row["score"] activations.append(ActivationData(box=Box(**row), score=score)) elt = Imdata( url=url, dbidx=dbidx, boxes=boxes, activations=activations, timing=self.image_timing.get(dbidx, []), ) reslabs.append(elt) return reslabs def _update_labeldb(self, state: SessionState): ## clear bitmap and reconstruct bc user may have erased previously accepted images self.action_log = state.action_log # just replace the log gdata = state.gdata self.accepted.clear() self.seen.clear() for ldata in gdata: for imdata in ldata: self.image_timing[imdata.dbidx] = imdata.timing self.seen.add(imdata.dbidx) if is_image_accepted(imdata): self.accepted.add(imdata.dbidx) self.q.label_db.put(imdata.dbidx, imdata.boxes) def prep_data(ds, p: SessionParams): box_data, qgt = ds.load_ground_truth() catgt = qgt[p.index_spec.c_name] positive_box_data = box_data[box_data.category == p.index_spec.c_name] present = pr.FrozenBitMap(catgt[~catgt.isna()].index.values) positive = pr.FrozenBitMap(positive_box_data.dbidx.values) assert positive.intersection(present) == positive return box_data, present, positive def make_session(gdm, p: SessionParams): ds = gdm.get_dataset(p.index_spec.d_name) hdb = gdm.load_index(p.index_spec.d_name, p.index_spec.i_name) print("index loaded") box_data = None subset = None positive = None if p.index_spec.c_name is not None: print("prepping data....") box_data, subset, positive = prep_data(ds, p) assert len(positive) != 0 hdb = hdb.subset(subset) print("about to construct session...") session = Session(gdm, ds, hdb, p) print("session constructed...") return { "session": session, "box_data": box_data, "subset": subset, "positive": positive, }
[ "math.ceil", "pyroaring.FrozenBitMap", "numpy.clip", "time.time", "dataclasses.field", "pyroaring.BitMap", "numpy.concatenate" ]
[((997, 1024), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (1002, 1024), False, 'from dataclasses import dataclass, field\n'), ((15548, 15595), 'pyroaring.FrozenBitMap', 'pr.FrozenBitMap', (['positive_box_data.dbidx.values'], {}), '(positive_box_data.dbidx.values)\n', (15563, 15595), True, 'import pyroaring as pr\n'), ((2116, 2127), 'time.time', 'time.time', ([], {}), '()\n', (2125, 2127), False, 'import time\n'), ((3828, 3839), 'time.time', 'time.time', ([], {}), '()\n', (3837, 3839), False, 'import time\n'), ((11100, 11113), 'pyroaring.BitMap', 'pr.BitMap', (['[]'], {}), '([])\n', (11109, 11113), True, 'import pyroaring as pr\n'), ((11138, 11151), 'pyroaring.BitMap', 'pr.BitMap', (['[]'], {}), '([])\n', (11147, 11151), True, 'import pyroaring as pr\n'), ((11917, 11928), 'time.time', 'time.time', ([], {}), '()\n', (11926, 11928), False, 'import time\n'), ((3540, 3551), 'time.time', 'time.time', ([], {}), '()\n', (3549, 3551), False, 'import time\n'), ((11981, 11992), 'time.time', 'time.time', ([], {}), '()\n', (11990, 11992), False, 'import time\n'), ((11686, 11697), 'time.time', 'time.time', ([], {}), '()\n', (11695, 11697), False, 'import time\n'), ((5477, 5497), 'numpy.concatenate', 'np.concatenate', (['vecs'], {}), '(vecs)\n', (5491, 5497), True, 'import numpy as np\n'), ((5525, 5545), 'numpy.concatenate', 'np.concatenate', (['strs'], {}), '(strs)\n', (5539, 5545), True, 'import numpy as np\n'), ((5580, 5599), 'numpy.concatenate', 'np.concatenate', (['acc'], {}), '(acc)\n', (5594, 5599), True, 'import numpy as np\n'), ((6985, 7022), 'numpy.clip', 'np.clip', (['((1 - prob) / prob)', '(0.1)', '(10.0)'], {}), '((1 - prob) / prob, 0.1, 10.0)\n', (6992, 7022), True, 'import numpy as np\n'), ((9442, 9479), 'math.ceil', 'math.ceil', (['(max_vec_seen / Xt.shape[0])'], {}), '(max_vec_seen / Xt.shape[0])\n', (9451, 9479), False, 'import math\n'), ((9514, 9539), 'numpy.clip', 'np.clip', (['n_iters', '(20)', '(200)'], {}), '(n_iters, 20, 200)\n', (9521, 9539), True, 'import numpy as np\n')]
# # Plot convergence of reduced models as the non-dimensional conductivity is # increased. Here "bar" refers to the averaged through-cell model (i.e. DFNCC) # import pybamm import sys import pickle import shared import numpy as np import matplotlib.pyplot as plt import matplotlib # set style matplotlib.rc_file("_matplotlibrc", use_default_template=True) # increase recursion limit for large expression trees sys.setrecursionlimit(100000) pybamm.set_logging_level("INFO") # choose values to loop over and provide filenames values = np.array([1e5, 1e6, 1e7, 1e8, 1e9]) / 4.758 # sets non-dim sigma to 1e5 etc. filenames = [ "comsol_data/comsol_1plus1D_sigma_1e5.pickle", "comsol_data/comsol_1plus1D_sigma_1e6.pickle", "comsol_data/comsol_1plus1D_sigma_1e7.pickle", "comsol_data/comsol_1plus1D_sigma_1e8.pickle", "comsol_data/comsol_1plus1D_sigma_1e9.pickle", ] # load current collector and DFN models cc_model = pybamm.current_collector.EffectiveResistance1D() dfn_av = pybamm.lithium_ion.DFN({"thermal": "x-lumped"}, name="Average DFN") dfn = pybamm.lithium_ion.DFN( {"current collector": "potential pair", "dimensionality": 1, "thermal": "x-lumped"}, name="1+1D DFN", ) models = {"Current collector": cc_model, "Average DFN": dfn_av, "1+1D DFN": dfn} # parameters param = dfn.default_parameter_values # process model and geometry, and discretise meshes = {} discs = {} for name, model in models.items(): param.process_model(model) geometry = model.default_geometry param.process_geometry(geometry) # set mesh var = pybamm.standard_spatial_vars submesh_types = model.default_submesh_types # set npts var = pybamm.standard_spatial_vars npts = 16 var_pts = { var.x_n: npts, var.x_s: npts, var.x_p: npts, var.r_n: npts, var.r_p: npts, var.z: npts, } meshes[name] = pybamm.Mesh(geometry, submesh_types, var_pts) discs[name] = pybamm.Discretisation(meshes[name], model.default_spatial_methods) discs[name].process_model(model, check_model=False) # solve models. Then compute "error" errors = { "Negative current collector potential [V]": [None] * len(values), "Positive current collector potential [V]": [None] * len(values), "X-averaged negative particle surface concentration [mol.m-3]": [None] * len(values), "X-averaged positive particle surface concentration [mol.m-3]": [None] * len(values), "Current collector current density [A.m-2]": [None] * len(values), "X-averaged cell temperature [K]": [None] * len(values), "Terminal voltage [V]": [None] * len(values), } errors_bar = { "Negative current collector potential [V]": [None] * len(values), "Positive current collector potential [V]": [None] * len(values), "X-averaged negative particle surface concentration [mol.m-3]": [None] * len(values), "X-averaged positive particle surface concentration [mol.m-3]": [None] * len(values), "Current collector current density [A.m-2]": [None] * len(values), "X-averaged cell temperature [K]": [None] * len(values), "Terminal voltage [V]": [None] * len(values), } sigmas = [None] * len(values) for i, val in enumerate(values): comsol_variables = pickle.load(open(filenames[i], "rb")) comsol_t = comsol_variables["time"] # update values param.update( { "Negative current collector conductivity [S.m-1]": val, "Positive current collector conductivity [S.m-1]": val, } ) for name, model in models.items(): param.update_model(model, discs[name]) # solve tau = param.evaluate(pybamm.standard_parameters_lithium_ion.tau_discharge) time = comsol_t / tau solutions = {} for name, model in models.items(): if name == "Current collector": solver = pybamm.AlgebraicSolver(tol=1e-6) solutions[name] = solver.solve(model) else: # solver solver = pybamm.CasadiSolver( atol=1e-6, rtol=1e-6, root_tol=1e-3, root_method="hybr", mode="fast" ) solutions[name] = solver.solve(model, time) mesh = meshes["1+1D DFN"] cc_mesh = meshes["Current collector"] solution = solutions["1+1D DFN"] solution_1D = solutions["Average DFN"] cc_solution = solutions["Current collector"] # create comsol vars interpolated onto pybamm mesh to compare errors comsol_model = shared.make_comsol_model(comsol_variables, mesh, param, thermal=True) # compute "error" using times up to voltage cut off t = solutions["1+1D DFN"].t # Note: casadi doesnt support events so we find this time after the solve if isinstance(solver, pybamm.CasadiSolver): V_cutoff = param.evaluate( pybamm.standard_parameters_lithium_ion.voltage_low_cut_dimensional ) voltage = pybamm.ProcessedVariable( models["1+1D DFN"].variables["Terminal voltage [V]"], solution.t, solution.y, mesh=mesh, )(time) # only use times up to the voltage cutoff voltage_OK = voltage[voltage > V_cutoff] t = t[0 : len(voltage_OK)] def compute_error(variable_name): domain = comsol_model.variables[variable_name].domain if domain == []: comsol_var = pybamm.ProcessedVariable( comsol_model.variables[variable_name], solution.t, solution.y, mesh=mesh )(t=t) pybamm_var = pybamm.ProcessedVariable( models["1+1D DFN"].variables[variable_name], solution.t, solution.y, mesh=mesh, )(t=t) else: z = mesh["current collector"][0].nodes comsol_var = pybamm.ProcessedVariable( comsol_model.variables[variable_name], solution.t, solution.y, mesh=mesh )(z=z, t=t) pybamm_var = pybamm.ProcessedVariable( models["1+1D DFN"].variables[variable_name], solution.t, solution.y, mesh=mesh, )(z=z, t=t) # Compute error in positive potential with respect to the voltage if variable_name == "Positive current collector potential [V]": comsol_var = comsol_var - pybamm.ProcessedVariable( comsol_model.variables["Terminal voltage [V]"], solution.t, solution.y, mesh=mesh, )(t=t) pybamm_var = pybamm_var - pybamm.ProcessedVariable( models["1+1D DFN"].variables["Terminal voltage [V]"], solution.t, solution.y, mesh=mesh, )(t=t) # compute RMS difference divided by RMS of comsol_var error = np.sqrt(np.nanmean((pybamm_var - comsol_var) ** 2)) / np.sqrt( np.nanmean((comsol_var) ** 2) ) return error def compute_error_bar(variable_name): domain = comsol_model.variables[variable_name].domain if domain == []: comsol_var = pybamm.ProcessedVariable( comsol_model.variables[variable_name], solution.t, solution.y, mesh=cc_mesh, )(t=t) else: z = cc_mesh["current collector"][0].nodes comsol_var = pybamm.ProcessedVariable( comsol_model.variables[variable_name], solution.t, solution.y, mesh=cc_mesh, )(z=z, t=t) # Compute error in positive potential with respect to the voltage if variable_name == "Positive current collector potential [V]": comsol_var = comsol_var - pybamm.ProcessedVariable( comsol_model.variables["Terminal voltage [V]"], solution.t, solution.y, mesh=mesh, )(t=t) # compute pybamm vars for 1+1D bar model R_cc = param.process_symbol( cc_model.variables["Effective current collector resistance"] ).evaluate(t=cc_solution.t, y=cc_solution.y)[0][0] V_av_1D = pybamm.ProcessedVariable( models["Average DFN"].variables["Terminal voltage"], solution_1D.t, solution_1D.y, mesh=mesh, ) I_av = pybamm.ProcessedVariable( models["Average DFN"].variables["Total current density"], solution_1D.t, solution_1D.y, mesh=mesh, ) def V_av(t): return V_av_1D(t) - I_av(t) * R_cc pot_scale = param.evaluate( pybamm.standard_parameters_lithium_ion.potential_scale ) U_ref = param.evaluate( pybamm.standard_parameters_lithium_ion.U_p_ref ) - param.evaluate(pybamm.standard_parameters_lithium_ion.U_n_ref) def V_av_dim(t): return U_ref + V_av(t) * pot_scale if variable_name == "Negative current collector potential [V]": potentials = cc_model.get_processed_potentials( cc_solution, cc_mesh, param, V_av, I_av ) pybamm_var = potentials[variable_name](t, z) elif variable_name == "Positive current collector potential [V]": potentials = cc_model.get_processed_potentials( cc_solution, cc_mesh, param, V_av, I_av ) pybamm_var = potentials[variable_name](t, z) - V_av_dim(t) elif variable_name == "Terminal voltage [V]": pybamm_var = V_av_dim(t) else: pybamm_var_1D = pybamm.ProcessedVariable( models["Average DFN"].variables[variable_name], solution_1D.t, solution_1D.y, mesh=mesh, ) pybamm_var = np.transpose( np.repeat(pybamm_var_1D(t)[:, np.newaxis], len(z), axis=1) ) # compute RMS difference divided by RMS of comsol_var error = np.sqrt(np.nanmean((pybamm_var - comsol_var) ** 2)) / np.sqrt( np.nanmean((comsol_var) ** 2) ) return error # compute non-dim sigma (note sigma_cn=sigma_cp) sigmas[i] = param.evaluate(pybamm.standard_parameters_lithium_ion.sigma_cn) # compute errors for variable in errors.keys(): try: errors[variable][i] = compute_error(variable) except KeyError: pass try: errors_bar[variable][i] = compute_error_bar(variable) except KeyError: pass # set up figure fig, ax = plt.subplots(1, 2, figsize=(6.4, 4)) fig.subplots_adjust(left=0.1, bottom=0.1, right=0.8, top=0.93, wspace=0.33, hspace=0.5) labels = { "Negative current collector potential [V]": r"$\phi^*_{\mathrm{s,cn}}$", "Positive current collector potential [V]": r"$\phi^*_{\mathrm{s,cp}} - V^*$", "X-averaged negative particle surface concentration [mol.m-3]": r"$\bar{c}_{\mathrm{s,n,surf}}^*$", "X-averaged positive particle surface concentration [mol.m-3]": r"$\bar{c}_{\mathrm{s,p,surf}}^*$", "Current collector current density [A.m-2]": r"$\mathcal{I}^*$", "X-averaged cell temperature [K]": r"$\bar{T}^*$", "Terminal voltage [V]": r"$V^*$", } # loop of vals to plot delta = param.evaluate(pybamm.standard_parameters_lithium_ion.delta) sigmas = np.array(sigmas) counter = 0 for variable in [ "Negative current collector potential [V]", "Positive current collector potential [V]", "X-averaged negative particle surface concentration [mol.m-3]", "X-averaged positive particle surface concentration [mol.m-3]", ]: counter += 1 # dummy points for colors to add to legend ax[1].plot(np.nan, np.nan, "o", color="C{}".format(counter), label=labels[variable]) try: ax[0].plot( sigmas * delta ** 2, errors[variable], marker="o", linestyle="solid", markersize=7, fillstyle="none", color="C{}".format(counter), ) except KeyError: pass try: ax[0].plot( sigmas * delta ** 2, errors_bar[variable], marker="x", linestyle="dotted", markersize=7, color="C{}".format(counter), ) except KeyError: pass for variable in [ "Current collector current density [A.m-2]", "X-averaged cell temperature [K]", "Terminal voltage [V]", ]: counter += 1 # dummy points for colors to add to legend ax[1].plot(np.nan, np.nan, "o", color="C{}".format(counter), label=labels[variable]) try: ax[1].plot( sigmas * delta ** 2, errors[variable], marker="o", linestyle="solid", markersize=7, fillstyle="none", color="C{}".format(counter), ) except KeyError: pass try: ax[1].plot( sigmas * delta ** 2, errors_bar[variable], marker="x", linestyle="dotted", markersize=7, color="C{}".format(counter), ) except KeyError: pass # labels and legend ax[0].set_xlabel(r"$\sigma' = \delta^2 \sigma$") ax[0].set_ylabel("RMS Error") ax[0].set_xscale("log") ax[0].set_yscale("log") ax[1].set_xlabel(r"$\sigma' = \delta^2 \sigma$") ax[1].set_ylabel("RMS Error") ax[1].set_xscale("log") ax[1].set_yscale("log") ax[0].set_xlim([1e-1, 1e4]) ax[0].set_ylim([1e-4, 1]) ax[0].set_xticks([1, 1e1, 1e2, 1e3, 1e4]) ax[0].set_yticks([1e-4, 1e-3, 1e-2, 1e-1, 1e-2, 1e-1, 1]) ax[1].set_xlim([1e-1, 1e4]) ax[1].set_ylim([1e-6, 1]) ax[1].set_xticks([1, 1e1, 1e2, 1e3, 1e4]) ax[1].set_yticks([1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e-2, 1e-1, 1]) leg1 = ax[1].legend(loc="lower left", bbox_to_anchor=(1.05, 0.1), borderaxespad=0.0) # add dummy points for legend of styles m_1plus1D, = ax[1].plot(np.nan, np.nan, "ko-", fillstyle="none") m_DFNCC, = ax[1].plot(np.nan, np.nan, "kx:") leg2 = ax[1].legend( [m_1plus1D, m_DFNCC], [r"$1+1$D", "DFNCC"], loc="lower left", bbox_to_anchor=(1.05, 0.8), borderaxespad=0.0, ) ax[1].add_artist(leg1) plt.show()
[ "pybamm.CasadiSolver", "pybamm.current_collector.EffectiveResistance1D", "matplotlib.pyplot.show", "pybamm.Discretisation", "pybamm.AlgebraicSolver", "pybamm.Mesh", "pybamm.set_logging_level", "shared.make_comsol_model", "matplotlib.rc_file", "matplotlib.pyplot.subplots", "numpy.array", "sys.setrecursionlimit", "pybamm.lithium_ion.DFN", "pybamm.ProcessedVariable", "numpy.nanmean" ]
[((295, 357), 'matplotlib.rc_file', 'matplotlib.rc_file', (['"""_matplotlibrc"""'], {'use_default_template': '(True)'}), "('_matplotlibrc', use_default_template=True)\n", (313, 357), False, 'import matplotlib\n'), ((413, 442), 'sys.setrecursionlimit', 'sys.setrecursionlimit', (['(100000)'], {}), '(100000)\n', (434, 442), False, 'import sys\n'), ((444, 476), 'pybamm.set_logging_level', 'pybamm.set_logging_level', (['"""INFO"""'], {}), "('INFO')\n", (468, 476), False, 'import pybamm\n'), ((939, 987), 'pybamm.current_collector.EffectiveResistance1D', 'pybamm.current_collector.EffectiveResistance1D', ([], {}), '()\n', (985, 987), False, 'import pybamm\n'), ((997, 1064), 'pybamm.lithium_ion.DFN', 'pybamm.lithium_ion.DFN', (["{'thermal': 'x-lumped'}"], {'name': '"""Average DFN"""'}), "({'thermal': 'x-lumped'}, name='Average DFN')\n", (1019, 1064), False, 'import pybamm\n'), ((1071, 1199), 'pybamm.lithium_ion.DFN', 'pybamm.lithium_ion.DFN', (["{'current collector': 'potential pair', 'dimensionality': 1, 'thermal':\n 'x-lumped'}"], {'name': '"""1+1D DFN"""'}), "({'current collector': 'potential pair',\n 'dimensionality': 1, 'thermal': 'x-lumped'}, name='1+1D DFN')\n", (1093, 1199), False, 'import pybamm\n'), ((10686, 10722), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(6.4, 4)'}), '(1, 2, figsize=(6.4, 4))\n', (10698, 10722), True, 'import matplotlib.pyplot as plt\n'), ((11456, 11472), 'numpy.array', 'np.array', (['sigmas'], {}), '(sigmas)\n', (11464, 11472), True, 'import numpy as np\n'), ((14295, 14305), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (14303, 14305), True, 'import matplotlib.pyplot as plt\n'), ((538, 608), 'numpy.array', 'np.array', (['[100000.0, 1000000.0, 10000000.0, 100000000.0, 1000000000.0]'], {}), '([100000.0, 1000000.0, 10000000.0, 100000000.0, 1000000000.0])\n', (546, 608), True, 'import numpy as np\n'), ((1897, 1942), 'pybamm.Mesh', 'pybamm.Mesh', (['geometry', 'submesh_types', 'var_pts'], {}), '(geometry, submesh_types, var_pts)\n', (1908, 1942), False, 'import pybamm\n'), ((1961, 2027), 'pybamm.Discretisation', 'pybamm.Discretisation', (['meshes[name]', 'model.default_spatial_methods'], {}), '(meshes[name], model.default_spatial_methods)\n', (1982, 2027), False, 'import pybamm\n'), ((4473, 4542), 'shared.make_comsol_model', 'shared.make_comsol_model', (['comsol_variables', 'mesh', 'param'], {'thermal': '(True)'}), '(comsol_variables, mesh, param, thermal=True)\n', (4497, 4542), False, 'import shared\n'), ((8230, 8353), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (["models['Average DFN'].variables['Terminal voltage']", 'solution_1D.t', 'solution_1D.y'], {'mesh': 'mesh'}), "(models['Average DFN'].variables['Terminal voltage'\n ], solution_1D.t, solution_1D.y, mesh=mesh)\n", (8254, 8353), False, 'import pybamm\n'), ((8423, 8551), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (["models['Average DFN'].variables['Total current density']", 'solution_1D.t', 'solution_1D.y'], {'mesh': 'mesh'}), "(models['Average DFN'].variables[\n 'Total current density'], solution_1D.t, solution_1D.y, mesh=mesh)\n", (8447, 8551), False, 'import pybamm\n'), ((3863, 3896), 'pybamm.AlgebraicSolver', 'pybamm.AlgebraicSolver', ([], {'tol': '(1e-06)'}), '(tol=1e-06)\n', (3885, 3896), False, 'import pybamm\n'), ((4002, 4099), 'pybamm.CasadiSolver', 'pybamm.CasadiSolver', ([], {'atol': '(1e-06)', 'rtol': '(1e-06)', 'root_tol': '(0.001)', 'root_method': '"""hybr"""', 'mode': '"""fast"""'}), "(atol=1e-06, rtol=1e-06, root_tol=0.001, root_method=\n 'hybr', mode='fast')\n", (4021, 4099), False, 'import pybamm\n'), ((4900, 5018), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (["models['1+1D DFN'].variables['Terminal voltage [V]']", 'solution.t', 'solution.y'], {'mesh': 'mesh'}), "(models['1+1D DFN'].variables[\n 'Terminal voltage [V]'], solution.t, solution.y, mesh=mesh)\n", (4924, 5018), False, 'import pybamm\n'), ((5365, 5467), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (['comsol_model.variables[variable_name]', 'solution.t', 'solution.y'], {'mesh': 'mesh'}), '(comsol_model.variables[variable_name], solution.t,\n solution.y, mesh=mesh)\n', (5389, 5467), False, 'import pybamm\n'), ((5524, 5632), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (["models['1+1D DFN'].variables[variable_name]", 'solution.t', 'solution.y'], {'mesh': 'mesh'}), "(models['1+1D DFN'].variables[variable_name],\n solution.t, solution.y, mesh=mesh)\n", (5548, 5632), False, 'import pybamm\n'), ((5803, 5905), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (['comsol_model.variables[variable_name]', 'solution.t', 'solution.y'], {'mesh': 'mesh'}), '(comsol_model.variables[variable_name], solution.t,\n solution.y, mesh=mesh)\n', (5827, 5905), False, 'import pybamm\n'), ((5967, 6075), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (["models['1+1D DFN'].variables[variable_name]", 'solution.t', 'solution.y'], {'mesh': 'mesh'}), "(models['1+1D DFN'].variables[variable_name],\n solution.t, solution.y, mesh=mesh)\n", (5991, 6075), False, 'import pybamm\n'), ((6861, 6903), 'numpy.nanmean', 'np.nanmean', (['((pybamm_var - comsol_var) ** 2)'], {}), '((pybamm_var - comsol_var) ** 2)\n', (6871, 6903), True, 'import numpy as np\n'), ((6928, 6955), 'numpy.nanmean', 'np.nanmean', (['(comsol_var ** 2)'], {}), '(comsol_var ** 2)\n', (6938, 6955), True, 'import numpy as np\n'), ((7145, 7250), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (['comsol_model.variables[variable_name]', 'solution.t', 'solution.y'], {'mesh': 'cc_mesh'}), '(comsol_model.variables[variable_name], solution.t,\n solution.y, mesh=cc_mesh)\n', (7169, 7250), False, 'import pybamm\n'), ((7424, 7529), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (['comsol_model.variables[variable_name]', 'solution.t', 'solution.y'], {'mesh': 'cc_mesh'}), '(comsol_model.variables[variable_name], solution.t,\n solution.y, mesh=cc_mesh)\n', (7448, 7529), False, 'import pybamm\n'), ((10105, 10147), 'numpy.nanmean', 'np.nanmean', (['((pybamm_var - comsol_var) ** 2)'], {}), '((pybamm_var - comsol_var) ** 2)\n', (10115, 10147), True, 'import numpy as np\n'), ((10172, 10199), 'numpy.nanmean', 'np.nanmean', (['(comsol_var ** 2)'], {}), '(comsol_var ** 2)\n', (10182, 10199), True, 'import numpy as np\n'), ((6346, 6457), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (["comsol_model.variables['Terminal voltage [V]']", 'solution.t', 'solution.y'], {'mesh': 'mesh'}), "(comsol_model.variables['Terminal voltage [V]'],\n solution.t, solution.y, mesh=mesh)\n", (6370, 6457), False, 'import pybamm\n'), ((6576, 6694), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (["models['1+1D DFN'].variables['Terminal voltage [V]']", 'solution.t', 'solution.y'], {'mesh': 'mesh'}), "(models['1+1D DFN'].variables[\n 'Terminal voltage [V]'], solution.t, solution.y, mesh=mesh)\n", (6600, 6694), False, 'import pybamm\n'), ((7800, 7911), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (["comsol_model.variables['Terminal voltage [V]']", 'solution.t', 'solution.y'], {'mesh': 'mesh'}), "(comsol_model.variables['Terminal voltage [V]'],\n solution.t, solution.y, mesh=mesh)\n", (7824, 7911), False, 'import pybamm\n'), ((9696, 9813), 'pybamm.ProcessedVariable', 'pybamm.ProcessedVariable', (["models['Average DFN'].variables[variable_name]", 'solution_1D.t', 'solution_1D.y'], {'mesh': 'mesh'}), "(models['Average DFN'].variables[variable_name],\n solution_1D.t, solution_1D.y, mesh=mesh)\n", (9720, 9813), False, 'import pybamm\n')]
from numpy import mat from math import sin, cos, radians def rot_y(de): t = mat([ [ cos(de), 0, sin(de)], [ 0, 1, 0], [-sin(de), 0, cos(de)] ]) return t def rot_z(de): t = mat([ [cos(de), -sin(de), 0], [sin(de), cos(de), 0], [ 0, 0, 1] ]) return t def transf(x, y, z, a_degree, b_degree): a, b = radians(a_degree), radians(b_degree) nozzle_length = 3.63 nozzle_offset = 7.63 table_x_offset = 30 table_z_offset = 54.375 point_init = mat([nozzle_length, 0 , -nozzle_offset]).T point_after = rot_z(b) * rot_y(a) * point_init\ + mat([x, y, -z]).T axis_trans = mat([-table_x_offset, 0, table_z_offset]).T point_table = point_after + axis_trans #print(point_table) vector = rot_z(b) * rot_y(a) * mat([1, 0, 0]).T #print(vector) print(x, y, z, a_degree, b_degree) return point_table[0,0], point_table[1,0], point_table[2,0],\ vector[0,0], vector[1,0], vector[2,0]
[ "math.radians", "numpy.mat", "math.cos", "math.sin" ]
[((523, 540), 'math.radians', 'radians', (['a_degree'], {}), '(a_degree)\n', (530, 540), False, 'from math import sin, cos, radians\n'), ((542, 559), 'math.radians', 'radians', (['b_degree'], {}), '(b_degree)\n', (549, 559), False, 'from math import sin, cos, radians\n'), ((680, 719), 'numpy.mat', 'mat', (['[nozzle_length, 0, -nozzle_offset]'], {}), '([nozzle_length, 0, -nozzle_offset])\n', (683, 719), False, 'from numpy import mat\n'), ((834, 875), 'numpy.mat', 'mat', (['[-table_x_offset, 0, table_z_offset]'], {}), '([-table_x_offset, 0, table_z_offset])\n', (837, 875), False, 'from numpy import mat\n'), ((798, 813), 'numpy.mat', 'mat', (['[x, y, -z]'], {}), '([x, y, -z])\n', (801, 813), False, 'from numpy import mat\n'), ((984, 998), 'numpy.mat', 'mat', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (987, 998), False, 'from numpy import mat\n'), ((105, 112), 'math.cos', 'cos', (['de'], {}), '(de)\n', (108, 112), False, 'from math import sin, cos, radians\n'), ((117, 124), 'math.sin', 'sin', (['de'], {}), '(de)\n', (120, 124), False, 'from math import sin, cos, radians\n'), ((197, 204), 'math.cos', 'cos', (['de'], {}), '(de)\n', (200, 204), False, 'from math import sin, cos, radians\n'), ((310, 317), 'math.cos', 'cos', (['de'], {}), '(de)\n', (313, 317), False, 'from math import sin, cos, radians\n'), ((350, 357), 'math.sin', 'sin', (['de'], {}), '(de)\n', (353, 357), False, 'from math import sin, cos, radians\n'), ((360, 367), 'math.cos', 'cos', (['de'], {}), '(de)\n', (363, 367), False, 'from math import sin, cos, radians\n'), ((185, 192), 'math.sin', 'sin', (['de'], {}), '(de)\n', (188, 192), False, 'from math import sin, cos, radians\n'), ((320, 327), 'math.sin', 'sin', (['de'], {}), '(de)\n', (323, 327), False, 'from math import sin, cos, radians\n')]
"""resample converts audio samples from one sampling rate to another. This module contains no actual resampling code; it simply tries a series of options in descending order of preference, using the best one available. """ import numpy as np import signal @signal.processor def resample(clip, new_rate): # this would be a good place to make sure that the sampling rate requested # is reasonable. data = _engine(clip, clip.sample_rate, new_rate) return signal.Clip(data, new_rate) def _scikits(data, old_rate, new_rate): ratio = float(new_rate) / float(old_rate) # samples must run along axis 0 and there is no option to change # that, so we'll have to transpose our array in each direction. return scikits.samplerate.resample(data.T, ratio).T def _samplerate(data, old_rate, new_rate): ratio = float(new_rate) / float(old_rate) # samplerate expects data to be in [samples, channels] order, with no # option to specify the axis. return samplerate.resample(data.T, ratio).T def _resampy(data, old_rate, new_rate): # resampy assumes [channels, samples] unless you tell it otherwise return resampy.resample(data, old_rate, new_rate) def _nnresample(data, old_rate, new_rate): # nnresample copies scipy.signal's API, so it assumes time is axis 0 # unless you specify otherwise return nnresample.resample(data, new_rate, old_rate, axis=-1) def _scipy_signal(data, old_rate, new_rate): ratio = float(new_rate) / float(old_rate) new_length = int(np.ceil(data.shape[-1] * ratio)) # scipy.signal assumes [samples, channels] unless you specify axis return scipy.signal.resample(data, new_length, axis=-1) def _audioop(data, old_rate, new_rate): nchannels = data.shape[0] if data.ndim > 1 else 1 orig_type = data.dtype if data.dtype.kind == "f": # ratecv only works on integer arrays, so we'll have to convert floats. data = (data * np.iinfo(np.int16).max).astype(np.int16) width = data.dtype.itemsize buf, _ = audioop.ratecv(data, width, nchannels, old_rate, new_rate, None) out = np.frombuffer(buf, dtype=data.dtype) if orig_type.kind == "f": out = out.astype(orig_type) / float(np.iinfo(np.int16).max) return out # On initialization, try different options until we find a resampling library. _engine = None # scikits.samplerate is fast and good, but it is based on libsamplerate # so it won't load if the library is not installed; it also hasn't been # updated for python 3, or in a while at all. if not _engine: try: import scikits.samplerate _engine = _scikits except ImportError: pass # samplerate is a separate fork of scikits.samplerate, also based on # libsamplerate, with the same interface. if not _engine: try: import samplerate _engine = _samplerate except ImportError: pass # resampy is fast and good. if not _engine: try: import resampy _engine = _resampy except ImportError: pass # nnresample is a better wrapper around scipy.signal.resample if not _engine: try: import nnresample _engine = _nnresample except ImportError: pass # scipy.signal.resample works but the audio quality is poor if not _engine: try: import scipy.signal _engine = _scipy_signal except ImportError: pass # audioop.ratecv isn't good, but it's built in. if not _engine: import audioop _engine = _audioop
[ "nnresample.resample", "samplerate.resample", "numpy.ceil", "signal.Clip", "numpy.frombuffer", "resampy.resample", "numpy.iinfo", "audioop.ratecv" ]
[((472, 499), 'signal.Clip', 'signal.Clip', (['data', 'new_rate'], {}), '(data, new_rate)\n', (483, 499), False, 'import signal\n'), ((1152, 1194), 'resampy.resample', 'resampy.resample', (['data', 'old_rate', 'new_rate'], {}), '(data, old_rate, new_rate)\n', (1168, 1194), False, 'import resampy\n'), ((1359, 1413), 'nnresample.resample', 'nnresample.resample', (['data', 'new_rate', 'old_rate'], {'axis': '(-1)'}), '(data, new_rate, old_rate, axis=-1)\n', (1378, 1413), False, 'import nnresample\n'), ((2035, 2099), 'audioop.ratecv', 'audioop.ratecv', (['data', 'width', 'nchannels', 'old_rate', 'new_rate', 'None'], {}), '(data, width, nchannels, old_rate, new_rate, None)\n', (2049, 2099), False, 'import audioop\n'), ((2110, 2146), 'numpy.frombuffer', 'np.frombuffer', (['buf'], {'dtype': 'data.dtype'}), '(buf, dtype=data.dtype)\n', (2123, 2146), True, 'import numpy as np\n'), ((991, 1025), 'samplerate.resample', 'samplerate.resample', (['data.T', 'ratio'], {}), '(data.T, ratio)\n', (1010, 1025), False, 'import samplerate\n'), ((1528, 1559), 'numpy.ceil', 'np.ceil', (['(data.shape[-1] * ratio)'], {}), '(data.shape[-1] * ratio)\n', (1535, 1559), True, 'import numpy as np\n'), ((2221, 2239), 'numpy.iinfo', 'np.iinfo', (['np.int16'], {}), '(np.int16)\n', (2229, 2239), True, 'import numpy as np\n'), ((1949, 1967), 'numpy.iinfo', 'np.iinfo', (['np.int16'], {}), '(np.int16)\n', (1957, 1967), True, 'import numpy as np\n')]
import torch import numpy as np from .energy.base import Energy from .sampling.base import Sampler from .distribution import CustomDistribution __all__ = ["ProductEnergy", "ProductSampler", "ProductDistribution"] class ProductEnergy(Energy): """Stack multiple energies together to form an energy on the product space. The energy on the product space is the sum of its independent components. Parameters ---------- components : Sequence[Energy] The individual energies that form the direct product. cat_dim : int or None If None, the .energy function takes multiple tensors (one for each component). Otherwise, it expects one tensor that is then split along dimension `cat_dim`. Notes ----- The underlying components have to be single-event energies. """ def __init__(self, components, cat_dim=None, **kwargs): event_shapes, lengths = _stacked_event_shapes([c.event_shape for c in components], cat_dim) super().__init__(dim=event_shapes, **kwargs) self._components = torch.nn.ModuleList(components) self._cat_dim = cat_dim self._lengths = lengths def _energy(self, *xs): if self._cat_dim is None: assert len(xs) == len(self._components) energies = [dist.energy(x) for dist, x in zip(self._components, xs)] else: assert len(xs) == 1 xs = xs[0].split(self._lengths, dim=self._cat_dim) energies = [dist.energy(x) for x, dist in zip(xs, self._components)] return torch.sum(torch.stack(energies, dim=-1), dim=-1) def __getitem__(self, index): return self._components[index] def __iter__(self): return self._components.__iter__() def __len__(self): return self._components.__len__() class ProductSampler(Sampler): """Sampler on the product space. Parameters ---------- components : Sequence[Sampler] The individual samplers that form the direct product. cat_dim : int or None If None, the .sample function generates multiple tensors (one for each component). Otherwise, it returns one tensor that is concatenated along dimension `cat_dim`. """ def __init__(self, components, cat_dim=None, **kwargs): super().__init__(**kwargs) self._components = torch.nn.ModuleList(components) self._cat_dim = cat_dim def _sample(self, n_samples): samples = tuple(dist._sample(n_samples) for dist in self._components) if self._cat_dim is None: return samples else: return torch.cat(samples, dim=self._cat_dim) def _sample_with_temperature(self, n_samples, temperature=1.0): samples = tuple(dist._sample_with_temperature(n_samples, temperature) for dist in self._components) if self._cat_dim is None: return samples else: return torch.cat(samples, dim=self._cat_dim) def __getitem__(self, index): return self._components[index] def __iter__(self): return self._components.__iter__() def __len__(self): return self._components.__len__() class ProductDistribution(CustomDistribution): """Distribution on a product space. Encapsulate multiple distributions in one object. Parameters ---------- components : Iterable List of distributions. cat_dim : int or None The dimension along which samples from the individual components are concatenated. If None, don't concatenate. Notes ----- The underlying components have to be single-event distributions. """ def __init__(self, components, cat_dim=None): super().__init__( energy=ProductEnergy(components=components, cat_dim=cat_dim), sampler=ProductSampler(components=components, cat_dim=cat_dim) ) def _stacked_event_shapes(event_shapes, cat_dim): if cat_dim is None: return event_shapes, None else: lengths = [e[cat_dim] for e in event_shapes] shape = np.array(event_shapes[0]) # assert that shapes are consistent for e in event_shapes: assert len(e) == len(shape) assert _shapes_consistent(e, shape, cat_dim) # concatenate events along dimensions `cat_dim` shape[cat_dim] = sum(s[cat_dim] for s in event_shapes) event_shapes = torch.Size(shape.tolist()) return event_shapes, lengths def _shapes_consistent(shape1, shape2, cat_dim): """check if shapes are the same in all dimensions but `cat_dim`""" diff = np.abs(np.array(shape1) - shape2) return diff.sum() == diff[cat_dim]
[ "torch.cat", "numpy.array", "torch.stack", "torch.nn.ModuleList" ]
[((1066, 1097), 'torch.nn.ModuleList', 'torch.nn.ModuleList', (['components'], {}), '(components)\n', (1085, 1097), False, 'import torch\n'), ((2354, 2385), 'torch.nn.ModuleList', 'torch.nn.ModuleList', (['components'], {}), '(components)\n', (2373, 2385), False, 'import torch\n'), ((4087, 4112), 'numpy.array', 'np.array', (['event_shapes[0]'], {}), '(event_shapes[0])\n', (4095, 4112), True, 'import numpy as np\n'), ((1573, 1602), 'torch.stack', 'torch.stack', (['energies'], {'dim': '(-1)'}), '(energies, dim=-1)\n', (1584, 1602), False, 'import torch\n'), ((2625, 2662), 'torch.cat', 'torch.cat', (['samples'], {'dim': 'self._cat_dim'}), '(samples, dim=self._cat_dim)\n', (2634, 2662), False, 'import torch\n'), ((2934, 2971), 'torch.cat', 'torch.cat', (['samples'], {'dim': 'self._cat_dim'}), '(samples, dim=self._cat_dim)\n', (2943, 2971), False, 'import torch\n'), ((4631, 4647), 'numpy.array', 'np.array', (['shape1'], {}), '(shape1)\n', (4639, 4647), True, 'import numpy as np\n')]
""" for ssl, use nginx, and get cert as per https://www.nginx.com/blog/using-free-ssltls-certificates-from-lets-encrypt-with-nginx/ example config server { server_name <url to server here>; client_max_body_size 200M; ## Main site location. location / { proxy_pass http://127.0.0.1:5000; proxy_set_header Host $host; proxy_set_header X-Forwarded-Host $server_name; proxy_set_header X-Real-IP $remote_addr; } listen 443 ssl; # managed by Certbot ssl_certificate /etc/letsencrypt/live/<url to server here>/fullchain.pem; # managed by Certbot ssl_certificate_key /etc/letsencrypt/live/<url to server here>/privkey.pem; # managed by Certbot include /etc/letsencrypt/options-ssl-nginx.conf; # managed by Certbot ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem; # managed by Certbot } server { if ($host = <url to server here>) { return 301 https://$host$request_uri; } # managed by Certbot listen 80 default_server; server_name <url to server here>; return 404; # managed by Certbot } """ import datetime import argparse import uuid import random from typing import List, Optional import os from aiohttp import web from aiohttp_cors.resource_options import ResourceOptions from ruamel import yaml import sqlalchemy from sqlalchemy.orm import sessionmaker import aiohttp_cors import numpy as np from mll.turk.webservice.task_creator import TaskCreator from mll.turk.webservice import tables, datetime_utils num_examples_per_game = 50 def get_unique_string(): return uuid.uuid4().hex def meaning_to_str(meaning: List[int]): return ','.join([str(v) for v in meaning]) def create_game_instance( remote, requester_id: str, task_id: str, task_type: str, grammar: str, num_holdout: int, config): seed = r.randint(1000000) task_creator = TaskCreator( task_type=task_type, seed=seed, grammar=grammar, num_examples=num_examples_per_game) game_instance = tables.GameInstance( requester_id=requester_id, task_id=task_id, example_idx=0, seed=seed, num_steps=num_examples_per_game, start_datetime=datetime_utils.datetime_to_str(datetime.datetime.now()), status='STARTED', completion_code=get_unique_string(), max_cards=task_creator.max_cards, remote=remote, num_cards=2, num_holdout=num_holdout, num_holdout_correct=0, cents_per_ten=config.cents_per_ten) return game_instance def get_config(task_id: str): with open(f'mll/turk/webservice/configs/{task_id}.yaml') as f: config = yaml.safe_load(f) # print('config', config) config['num_holdout'] = config.get('num_holdout', 0) config['holdout_idxes'] = config.get('holdout_idxes', []) config['cents_per_ten'] = config.get('cents_per_ten', 0) # print('config', config) return argparse.Namespace(**config) class AutoInc: def __init__(self, autoinc_every: Optional[int], game_instance): self.autoinc_every = autoinc_every self.game_instance = game_instance def __call__(self, example_idx): if self.autoinc_every is not None: if (example_idx + 1) % self.autoinc_every == 0: _min_num_cards = (example_idx + 1) // self.autoinc_every + 2 _min_num_cards = min(self.game_instance.max_cards - self.game_instance.num_holdout, _min_num_cards) if _min_num_cards > self.game_instance.num_cards: self.game_instance.num_cards += 1 def handle_completion(game_instance): end_datetime = datetime.datetime.now() game_instance.finish_datetime = datetime_utils.datetime_to_str(end_datetime) game_instance.status = 'COMPLETE' start_datetime = datetime_utils.str_to_datetime(game_instance.start_datetime) duration_seconds = datetime_utils.datetime_diff_seconds(end_datetime, start_datetime) game_instance.duration_seconds = duration_seconds session.commit() return web.json_response({ 'messageType': 'gameCompleted', 'taskId': game_instance.task_id, 'requesterId': game_instance.requester_id, 'score': game_instance.score, 'completionCode': game_instance.completion_code }) def create_new_step_result(config, game_instance): task_creator = TaskCreator( task_type=config.task_type, seed=game_instance.seed, num_examples=num_examples_per_game, grammar=config.grammar) is_holdout = False # print('holdout_idxes', config.holdout_idxes) if game_instance.example_idx in config.holdout_idxes: # print('creating holdout example') # holdout example holdout_idx = config.holdout_idxes.index(game_instance.example_idx) idx = game_instance.num_cards + holdout_idx is_holdout = True else: idx = random.randint(0, game_instance.num_cards - 1) # print('num_cards', game_instance.num_cards, 'idx', idx) ex = task_creator.create_example(idx=idx) # print('ex', ex) start_datetime = datetime_utils.datetime_to_str(datetime.datetime.now()) step_result = tables.StepResult( requester_id=game_instance.requester_id, task_id=game_instance.task_id, example_idx=game_instance.example_idx, image_path=ex['filepath'], expected_utt=ex['expected'], meaning=meaning_to_str(ex['meaning']), start_datetime=start_datetime, status='TODO', score=0, num_cards=game_instance.num_cards, is_holdout=is_holdout) return step_result async def _fetch(request_object, increment_idx: bool = False): """ Expected request, example: { requesterId: "ABCEEFGCDF", taskId: "COMP", } response example: { pictureUrl: "img/asdevsafdfd.png", requesterId: "ABCEEFGCDF", taskId: "COMP", exampleIdx: 15, numCards: 3 } """ request = argparse.Namespace(**await request_object.json()) # print('_fetch', request) config = get_config(request.taskId) game_instance = session.query(tables.GameInstance).filter_by( requester_id=request.requesterId, task_id=request.taskId).first() if game_instance is None: # print('creating new game instance') client_ip = get_client_ip(request_object=request_object) game_instance = create_game_instance( requester_id=request.requesterId, task_id=request.taskId, remote=client_ip, grammar=config.grammar, task_type=config.task_type, num_holdout=config.num_holdout, config=config) session.add(game_instance) session.commit() game_instance.example_idx if game_instance.num_cards is None: game_instance.num_cards = 2 # print('game_instance', game_instance, 'example_idx', game_instance.example_idx) auto_inc = AutoInc(autoinc_every=config.autoinc_every, game_instance=game_instance) step_result = session.query(tables.StepResult).filter_by( requester_id=request.requesterId, task_id=request.taskId, example_idx=game_instance.example_idx).first() if increment_idx: if step_result.status == 'DONE': game_instance.example_idx += 1 if game_instance.example_idx >= game_instance.num_steps: return handle_completion(game_instance=game_instance) step_result = None auto_inc(game_instance.example_idx) else: increment_idx = False if step_result is None: step_result = create_new_step_result( config=config, game_instance=game_instance) session.add(step_result) session.commit() response = { 'messageType': 'example', 'taskId': request.taskId, 'requesterId': request.requesterId, 'exampleIdx': game_instance.example_idx, 'pictureUrl': step_result.image_path, 'score': game_instance.score, 'totalSteps': game_instance.num_steps, 'maxCards': game_instance.max_cards, 'numCards': game_instance.num_cards, 'isHoldout': step_result.is_holdout, 'cents_per_ten': game_instance.cents_per_ten } return web.json_response(response) async def fetch_task(request): return await _fetch(request) async def fetch_next(request): return await _fetch(request, increment_idx=True) async def fetch_training_example(request_object): request = argparse.Namespace(**await request_object.json()) # print('fetch_training_example', request) game_instance = session.query(tables.GameInstance).filter_by( requester_id=request.requesterId, task_id=request.taskId).first() if game_instance is None: print('game instance None => exiting') return web.json_response({'messageType': 'error', 'error': 'game instance not found'}) config = get_config(task_id=request.taskId) task_creator = TaskCreator( task_type=config.task_type, seed=game_instance.seed, num_examples=num_examples_per_game, grammar=config.grammar) meaning_idx = random.randint(0, game_instance.num_cards - 1) # print('num_cards', game_instance.num_cards, 'meaning_idx', meaning_idx) ex = task_creator.create_example(idx=meaning_idx) # print('ex', ex) print(request.taskId) response = { 'messageType': 'example', 'taskId': request.taskId, 'requesterId': request.requesterId, 'pictureUrl': ex['filepath'], 'utt': ex['expected'], } return web.json_response(response) async def send_feedback(request_object): request = argparse.Namespace(**await request_object.json()) print('send_feedback', request.feedback) game_instance = session.query(tables.GameInstance).filter_by( requester_id=request.requesterId, task_id=request.taskId).first() if game_instance is None: print('game instance None => exiting') return web.json_response({'messageType': 'error', 'error': 'game instance not found'}) if game_instance.feedback is None: game_instance.feedback = '' game_instance.feedback = game_instance.feedback + request.feedback session.commit() response = { 'messageType': 'receivedFeedback', 'taskId': request.taskId, 'requesterId': request.requesterId, } return web.json_response(response) def handle_correct(request, step_result, game_instance): return_score = 1 if step_result.status == 'TODO': step_result.status = 'DONE' step_result.score = step_result.num_cards - 1 step_result.player_utt = request.code step_result.finish_datetime = datetime_utils.datetime_to_str(datetime.datetime.now()) game_instance.score += step_result.score if step_result.is_holdout: game_instance.num_holdout_correct += 1 result_text = f'Yes! You get {step_result.score} points!' else: result_text = 'Yes! But you already submitted for this example :)' return result_text, return_score def handle_wrong(step_result, request): result_text = 'No. The correct code is: ' + step_result.expected_utt return_score = 0 if step_result.status == 'TODO': step_result.status = 'DONE' step_result.score = 0 step_result.player_utt = request.code step_result.finish_datetime = datetime_utils.datetime_to_str(datetime.datetime.now()) return result_text, return_score async def evaluate(request_object): """ request has keys requesterId, taskId, exampleIdx, code response has keys requesterId, taskId, exampleIdx, resultText, score """ request = argparse.Namespace(**await request_object.json()) # print('evaluate', request) game_instance = session.query(tables.GameInstance).filter_by( requester_id=request.requesterId, task_id=request.taskId).first() # print('game_instance', game_instance) step_result = session.query(tables.StepResult).filter_by( requester_id=request.requesterId, task_id=request.taskId, example_idx=game_instance.example_idx).first() if game_instance.score is None: game_instance.score = 0 if step_result.expected_utt == request.code: result_str = '==' result_text, return_score = handle_correct( game_instance=game_instance, request=request, step_result=step_result) else: result_str = '!=' result_text, return_score = handle_wrong(step_result=step_result, request=request) session.commit() print( request.taskId, request.code, result_str, step_result.expected_utt, 'ex=' + str(game_instance.example_idx), 'score=' + str(game_instance.score), 'num_ho=' + str(game_instance.num_holdout_correct) ) response = { 'requesterId': request.requesterId, 'taskId': request.taskId, 'exampleCorrect': return_score, 'score': game_instance.score, 'resultText': result_text } return web.json_response(response) async def add_card(request_object): request = argparse.Namespace(**await request_object.json()) print('add_card', request) game_instance = session.query(tables.GameInstance).filter_by( requester_id=request.requesterId, task_id=request.taskId).first() print('game_instance', game_instance) if game_instance.num_cards < game_instance.max_cards - game_instance.num_holdout: game_instance.num_cards += 1 session.commit() return web.json_response({ 'numCards': game_instance.num_cards }) async def remove_card(request_object): request = argparse.Namespace(**await request_object.json()) print('remove_card', request) game_instance = session.query(tables.GameInstance).filter_by( requester_id=request.requesterId, task_id=request.taskId).first() print('game_instance', game_instance) if game_instance.num_cards > 2: game_instance.num_cards -= 1 session.commit() return web.json_response({ 'numCards': game_instance.num_cards }) def get_client_ip(request_object): return request_object.headers.get('X-Real-IP', request_object.remote) def diag(request): print('request.remote', request.remote, 'host', request.host) print('peername', request.transport.get_extra_info('peername')) print('headers', request.headers) print('client ip', request.headers.get('X-Real-IP', 'not found')) print('client ip', get_client_ip(request)) response = {} return web.json_response(response) if not os.path.isdir('data'): os.makedirs('data') engine = sqlalchemy.create_engine('sqlite:///data/turk.db', echo=False) print('engine', engine) Session = sessionmaker(bind=engine) print('Session', Session) session = Session() tables.create_tables(engine) r = np.random.RandomState() app = web.Application() # await remotes_setup(app) cors = aiohttp_cors.setup(app, defaults={ '*': ResourceOptions(allow_credentials=False, allow_headers=['content-type']) }) app.add_routes([ web.static('/html/img', 'html/img'), web.static('/web', 'mll/turk/turk-web/build', show_index=False), web.static('/favicon', 'mll/turk/turk-web/public/favicon/', show_index=False) ]) cors.add(app.router.add_route('POST', r'/api/v1/fetch_task', fetch_task)) cors.add(app.router.add_route('POST', r'/api/v1/fetch_next', fetch_next)) cors.add(app.router.add_route('POST', r'/api/v1/fetch_training_example', fetch_training_example)) cors.add(app.router.add_route('POST', r'/api/v1/evaluate', evaluate)) cors.add(app.router.add_route('POST', r'/api/v1/add_card', add_card)) cors.add(app.router.add_route('POST', r'/api/v1/remove_card', remove_card)) cors.add(app.router.add_route('POST', r'/api/v1/send_feedback', send_feedback)) cors.add(app.router.add_route('GET', r'/api/v1/diag', diag)) if __name__ == '__main__': web.run_app(app)
[ "argparse.Namespace", "mll.turk.webservice.datetime_utils.datetime_to_str", "aiohttp_cors.resource_options.ResourceOptions", "mll.turk.webservice.datetime_utils.str_to_datetime", "random.randint", "ruamel.yaml.safe_load", "mll.turk.webservice.datetime_utils.datetime_diff_seconds", "numpy.random.RandomState", "aiohttp.web.json_response", "aiohttp.web.static", "aiohttp.web.run_app", "datetime.datetime.now", "aiohttp.web.Application", "mll.turk.webservice.tables.create_tables", "sqlalchemy.orm.sessionmaker", "uuid.uuid4", "mll.turk.webservice.task_creator.TaskCreator", "os.makedirs", "os.path.isdir", "sqlalchemy.create_engine" ]
[((14626, 14688), 'sqlalchemy.create_engine', 'sqlalchemy.create_engine', (['"""sqlite:///data/turk.db"""'], {'echo': '(False)'}), "('sqlite:///data/turk.db', echo=False)\n", (14650, 14688), False, 'import sqlalchemy\n'), ((14723, 14748), 'sqlalchemy.orm.sessionmaker', 'sessionmaker', ([], {'bind': 'engine'}), '(bind=engine)\n', (14735, 14748), False, 'from sqlalchemy.orm import sessionmaker\n'), ((14795, 14823), 'mll.turk.webservice.tables.create_tables', 'tables.create_tables', (['engine'], {}), '(engine)\n', (14815, 14823), False, 'from mll.turk.webservice import tables, datetime_utils\n'), ((14829, 14852), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (14850, 14852), True, 'import numpy as np\n'), ((14860, 14877), 'aiohttp.web.Application', 'web.Application', ([], {}), '()\n', (14875, 14877), False, 'from aiohttp import web\n'), ((1991, 2092), 'mll.turk.webservice.task_creator.TaskCreator', 'TaskCreator', ([], {'task_type': 'task_type', 'seed': 'seed', 'grammar': 'grammar', 'num_examples': 'num_examples_per_game'}), '(task_type=task_type, seed=seed, grammar=grammar, num_examples=\n num_examples_per_game)\n', (2002, 2092), False, 'from mll.turk.webservice.task_creator import TaskCreator\n'), ((2964, 2992), 'argparse.Namespace', 'argparse.Namespace', ([], {}), '(**config)\n', (2982, 2992), False, 'import argparse\n'), ((3678, 3701), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3699, 3701), False, 'import datetime\n'), ((3738, 3782), 'mll.turk.webservice.datetime_utils.datetime_to_str', 'datetime_utils.datetime_to_str', (['end_datetime'], {}), '(end_datetime)\n', (3768, 3782), False, 'from mll.turk.webservice import tables, datetime_utils\n'), ((3842, 3902), 'mll.turk.webservice.datetime_utils.str_to_datetime', 'datetime_utils.str_to_datetime', (['game_instance.start_datetime'], {}), '(game_instance.start_datetime)\n', (3872, 3902), False, 'from mll.turk.webservice import tables, datetime_utils\n'), ((3926, 3992), 'mll.turk.webservice.datetime_utils.datetime_diff_seconds', 'datetime_utils.datetime_diff_seconds', (['end_datetime', 'start_datetime'], {}), '(end_datetime, start_datetime)\n', (3962, 3992), False, 'from mll.turk.webservice import tables, datetime_utils\n'), ((4079, 4294), 'aiohttp.web.json_response', 'web.json_response', (["{'messageType': 'gameCompleted', 'taskId': game_instance.task_id,\n 'requesterId': game_instance.requester_id, 'score': game_instance.score,\n 'completionCode': game_instance.completion_code}"], {}), "({'messageType': 'gameCompleted', 'taskId': game_instance.\n task_id, 'requesterId': game_instance.requester_id, 'score':\n game_instance.score, 'completionCode': game_instance.completion_code})\n", (4096, 4294), False, 'from aiohttp import web\n'), ((4404, 4532), 'mll.turk.webservice.task_creator.TaskCreator', 'TaskCreator', ([], {'task_type': 'config.task_type', 'seed': 'game_instance.seed', 'num_examples': 'num_examples_per_game', 'grammar': 'config.grammar'}), '(task_type=config.task_type, seed=game_instance.seed,\n num_examples=num_examples_per_game, grammar=config.grammar)\n', (4415, 4532), False, 'from mll.turk.webservice.task_creator import TaskCreator\n'), ((8216, 8243), 'aiohttp.web.json_response', 'web.json_response', (['response'], {}), '(response)\n', (8233, 8243), False, 'from aiohttp import web\n'), ((8941, 9069), 'mll.turk.webservice.task_creator.TaskCreator', 'TaskCreator', ([], {'task_type': 'config.task_type', 'seed': 'game_instance.seed', 'num_examples': 'num_examples_per_game', 'grammar': 'config.grammar'}), '(task_type=config.task_type, seed=game_instance.seed,\n num_examples=num_examples_per_game, grammar=config.grammar)\n', (8952, 9069), False, 'from mll.turk.webservice.task_creator import TaskCreator\n'), ((9102, 9148), 'random.randint', 'random.randint', (['(0)', '(game_instance.num_cards - 1)'], {}), '(0, game_instance.num_cards - 1)\n', (9116, 9148), False, 'import random\n'), ((9545, 9572), 'aiohttp.web.json_response', 'web.json_response', (['response'], {}), '(response)\n', (9562, 9572), False, 'from aiohttp import web\n'), ((10360, 10387), 'aiohttp.web.json_response', 'web.json_response', (['response'], {}), '(response)\n', (10377, 10387), False, 'from aiohttp import web\n'), ((13008, 13035), 'aiohttp.web.json_response', 'web.json_response', (['response'], {}), '(response)\n', (13025, 13035), False, 'from aiohttp import web\n'), ((13510, 13566), 'aiohttp.web.json_response', 'web.json_response', (["{'numCards': game_instance.num_cards}"], {}), "({'numCards': game_instance.num_cards})\n", (13527, 13566), False, 'from aiohttp import web\n'), ((14011, 14067), 'aiohttp.web.json_response', 'web.json_response', (["{'numCards': game_instance.num_cards}"], {}), "({'numCards': game_instance.num_cards})\n", (14028, 14067), False, 'from aiohttp import web\n'), ((14532, 14559), 'aiohttp.web.json_response', 'web.json_response', (['response'], {}), '(response)\n', (14549, 14559), False, 'from aiohttp import web\n'), ((14569, 14590), 'os.path.isdir', 'os.path.isdir', (['"""data"""'], {}), "('data')\n", (14582, 14590), False, 'import os\n'), ((14596, 14615), 'os.makedirs', 'os.makedirs', (['"""data"""'], {}), "('data')\n", (14607, 14615), False, 'import os\n'), ((15880, 15896), 'aiohttp.web.run_app', 'web.run_app', (['app'], {}), '(app)\n', (15891, 15896), False, 'from aiohttp import web\n'), ((1702, 1714), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1712, 1714), False, 'import uuid\n'), ((2695, 2712), 'ruamel.yaml.safe_load', 'yaml.safe_load', (['f'], {}), '(f)\n', (2709, 2712), False, 'from ruamel import yaml\n'), ((4926, 4972), 'random.randint', 'random.randint', (['(0)', '(game_instance.num_cards - 1)'], {}), '(0, game_instance.num_cards - 1)\n', (4940, 4972), False, 'import random\n'), ((5156, 5179), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (5177, 5179), False, 'import datetime\n'), ((8792, 8871), 'aiohttp.web.json_response', 'web.json_response', (["{'messageType': 'error', 'error': 'game instance not found'}"], {}), "({'messageType': 'error', 'error': 'game instance not found'})\n", (8809, 8871), False, 'from aiohttp import web\n'), ((9957, 10036), 'aiohttp.web.json_response', 'web.json_response', (["{'messageType': 'error', 'error': 'game instance not found'}"], {}), "({'messageType': 'error', 'error': 'game instance not found'})\n", (9974, 10036), False, 'from aiohttp import web\n'), ((15053, 15088), 'aiohttp.web.static', 'web.static', (['"""/html/img"""', '"""html/img"""'], {}), "('/html/img', 'html/img')\n", (15063, 15088), False, 'from aiohttp import web\n'), ((15094, 15157), 'aiohttp.web.static', 'web.static', (['"""/web"""', '"""mll/turk/turk-web/build"""'], {'show_index': '(False)'}), "('/web', 'mll/turk/turk-web/build', show_index=False)\n", (15104, 15157), False, 'from aiohttp import web\n'), ((15163, 15240), 'aiohttp.web.static', 'web.static', (['"""/favicon"""', '"""mll/turk/turk-web/public/favicon/"""'], {'show_index': '(False)'}), "('/favicon', 'mll/turk/turk-web/public/favicon/', show_index=False)\n", (15173, 15240), False, 'from aiohttp import web\n'), ((10710, 10733), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (10731, 10733), False, 'import datetime\n'), ((11412, 11435), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (11433, 11435), False, 'import datetime\n'), ((14956, 15028), 'aiohttp_cors.resource_options.ResourceOptions', 'ResourceOptions', ([], {'allow_credentials': '(False)', 'allow_headers': "['content-type']"}), "(allow_credentials=False, allow_headers=['content-type'])\n", (14971, 15028), False, 'from aiohttp_cors.resource_options import ResourceOptions\n'), ((2311, 2334), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2332, 2334), False, 'import datetime\n')]
####################################################################### # Copyright (C) 2017 <NAME>(<EMAIL>) # # Permission given to modify the code as long as you keep this # # declaration at the top # ####################################################################### import numpy as np import pickle import logging from load_mnist import * from Backprop import * tag = 'online_MNIST' logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) fh = logging.FileHandler('log/%s.txt' % tag) fh.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) ch.setFormatter(formatter) logger.addHandler(fh) logger.addHandler(ch) train_x, train_y = load_mnist('training') test_x, test_y = load_mnist('testing') dim_in = 28 * 28 train_examples = 5000 test_examples = 100 train_x = train_x[: train_examples, :].reshape([-1, dim_in]) train_x = np.concatenate((train_x, np.ones((train_examples, 1))), axis=1) train_y = train_y[: train_examples, :] test_x = test_x[: test_examples, :].reshape([-1, dim_in]) test_x = np.concatenate((test_x, np.ones((test_examples, 1))), axis=1) test_y = test_y[: test_examples, :] train_x = np.asarray(train_x) train_y = np.asarray(train_y) test_x = np.asarray(test_x) test_y = np.asarray(test_y) dims = [dim_in, 1024, 10] labels = ['SMD', 'BP'] window_size = 0 train_acc = np.zeros((len(labels), train_examples)) def train(learning_rate): # init_fn = orthogonal_init init_fn = normal_init gate_type = Relu # gate_type = Tanh smd = Backprop(dims, learning_rate, gate_type, SMDLayer, init_fn) bp = Backprop(dims, learning_rate, gate_type, BPLayer, init_fn) methods = [smd, bp] for train_index in range(len(train_x)): for method_ind in range(len(methods)): method = methods[method_ind] x = train_x[train_index, :].reshape(1, -1) y = train_y[train_index, :].reshape(1, -1) correct_labels = method.train(x, y) train_acc[method_ind, train_index] = correct_labels if train_index - window_size >= 0: # acc = np.mean(train_acc[method_ind, train_index - window_size: train_index]) acc = np.mean(train_acc[method_ind, :train_index]) logger.info('%s, %dth example, average accuracy %f' % (labels[method_ind], train_index, acc)) else: logger.info('%s, %dth example %d' % (labels[method_ind], train_index, correct_labels)) with open('tmp/%s_%s_%s.bin' % (tag, gate_type().name, str(learning_rate)), 'wb') as f: pickle.dump({'acc': train_acc}, f) train(0.0001)
[ "pickle.dump", "logging.FileHandler", "numpy.asarray", "logging.StreamHandler", "numpy.ones", "logging.Formatter", "numpy.mean", "logging.getLogger" ]
[((458, 485), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (475, 485), False, 'import logging\n'), ((522, 561), 'logging.FileHandler', 'logging.FileHandler', (["('log/%s.txt' % tag)"], {}), "('log/%s.txt' % tag)\n", (541, 561), False, 'import logging\n'), ((594, 617), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (615, 617), False, 'import logging\n'), ((656, 729), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s - %(name)s - %(levelname)s - %(message)s"""'], {}), "('%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n", (673, 729), False, 'import logging\n'), ((1321, 1340), 'numpy.asarray', 'np.asarray', (['train_x'], {}), '(train_x)\n', (1331, 1340), True, 'import numpy as np\n'), ((1351, 1370), 'numpy.asarray', 'np.asarray', (['train_y'], {}), '(train_y)\n', (1361, 1370), True, 'import numpy as np\n'), ((1380, 1398), 'numpy.asarray', 'np.asarray', (['test_x'], {}), '(test_x)\n', (1390, 1398), True, 'import numpy as np\n'), ((1408, 1426), 'numpy.asarray', 'np.asarray', (['test_y'], {}), '(test_y)\n', (1418, 1426), True, 'import numpy as np\n'), ((1067, 1095), 'numpy.ones', 'np.ones', (['(train_examples, 1)'], {}), '((train_examples, 1))\n', (1074, 1095), True, 'import numpy as np\n'), ((1236, 1263), 'numpy.ones', 'np.ones', (['(test_examples, 1)'], {}), '((test_examples, 1))\n', (1243, 1263), True, 'import numpy as np\n'), ((2789, 2823), 'pickle.dump', 'pickle.dump', (["{'acc': train_acc}", 'f'], {}), "({'acc': train_acc}, f)\n", (2800, 2823), False, 'import pickle\n'), ((2356, 2400), 'numpy.mean', 'np.mean', (['train_acc[method_ind, :train_index]'], {}), '(train_acc[method_ind, :train_index])\n', (2363, 2400), True, 'import numpy as np\n')]
import numpy as np from scipy.signal import convolve import cv2 import os def generateDefocusKernel(diameter, kernelSize=33): """ Generate a defocus kernel. :param diameter: Diameter of the actual generated kernel. :param kernelSize: Overall size of the kernel image in px. :return: Generated defocus blur kernel. """ # Ensure uneven kernel diameter if diameter % 2 == 0: diameter += 1 # Generate centered defocus blur kernel. kern = np.zeros((kernelSize, kernelSize), np.uint8) cv2.circle(kern, (kernelSize, kernelSize), diameter, 255, -1, cv2.LINE_AA, shift=1) # Normalize kernel to range [0,1] kern = np.float32(kern) / 255.0 kern /= np.sum(kern) return kern def addDefocusBlur(img, diameter, keep_image_dim=True): """ Generate a defocus blur kernel and applied it an image. :param img: Input image to blur. :param diameter: Diameter of the generated defocus kernel. :param keep_image_dim: Keep the input image dimensions during the convolution of image and kernel. """ # Decide convolution mode conv_mode = "valid" if keep_image_dim: conv_mode = "same" # Generate defocus blur kernel. kernel = generateDefocusKernel(int(diameter)) resultChannels = () numChannels = 3 if len(img.shape) == 3 else 1 if numChannels > 1: for channelIdx in range(numChannels): # Convolve each image channel individually with the defocus kernel. resultChannel = convolve(img[:,:,channelIdx], kernel, mode=conv_mode).astype("uint8") # Collect blurred channels. resultChannels += resultChannel, result = np.dstack(resultChannels) else: result = convolve(img, kernel, mode=conv_mode).astype("uint8") return result # Example # if __name__ == '__main__': # dirIn = r"../../data/udacity/img/GT" # imgName = "1478019984182279255.jpg" # defocusDiameter = 11 # dirOut = os.path.join(r"../../data/udacity/img/defocusBlur", str(defocusDiameter)) # if not os.path.exists(dirOut): # os.makedirs(dirOut) # img = cv2.imread(os.path.join(dirIn, imgName)) # defocusedImg = addDefocusBlur(img, 11) # cv2.imwrite(os.path.join(dirOut, imgName), defocusedImg)
[ "numpy.dstack", "cv2.circle", "numpy.sum", "numpy.float32", "numpy.zeros", "scipy.signal.convolve" ]
[((493, 537), 'numpy.zeros', 'np.zeros', (['(kernelSize, kernelSize)', 'np.uint8'], {}), '((kernelSize, kernelSize), np.uint8)\n', (501, 537), True, 'import numpy as np\n'), ((542, 629), 'cv2.circle', 'cv2.circle', (['kern', '(kernelSize, kernelSize)', 'diameter', '(255)', '(-1)', 'cv2.LINE_AA'], {'shift': '(1)'}), '(kern, (kernelSize, kernelSize), diameter, 255, -1, cv2.LINE_AA,\n shift=1)\n', (552, 629), False, 'import cv2\n'), ((717, 729), 'numpy.sum', 'np.sum', (['kern'], {}), '(kern)\n', (723, 729), True, 'import numpy as np\n'), ((680, 696), 'numpy.float32', 'np.float32', (['kern'], {}), '(kern)\n', (690, 696), True, 'import numpy as np\n'), ((1711, 1736), 'numpy.dstack', 'np.dstack', (['resultChannels'], {}), '(resultChannels)\n', (1720, 1736), True, 'import numpy as np\n'), ((1764, 1801), 'scipy.signal.convolve', 'convolve', (['img', 'kernel'], {'mode': 'conv_mode'}), '(img, kernel, mode=conv_mode)\n', (1772, 1801), False, 'from scipy.signal import convolve\n'), ((1539, 1594), 'scipy.signal.convolve', 'convolve', (['img[:, :, channelIdx]', 'kernel'], {'mode': 'conv_mode'}), '(img[:, :, channelIdx], kernel, mode=conv_mode)\n', (1547, 1594), False, 'from scipy.signal import convolve\n')]
# # Copyright (c) 2018 TECHNICAL UNIVERSITY OF MUNICH, DEPARTMENT OF MECHANICAL ENGINEERING, CHAIR OF APPLIED MECHANICS, # BOLTZMANNSTRASSE 15, 85748 GARCHING/MUNICH, GERMANY, <EMAIL>. # # Distributed under 3-Clause BSD license. See LICENSE file for more information. # r""" This module describes different nonholonomic and holonomic constraints and provides a base classes for them This module follows the following conventions: Holonomic Constraint: .. math:: g(u, t) = 0 The differential of the constraint (Pfaffian Form) is: .. math:: \mathrm{d}g = B(u, t) \mathrm{d}u + b(u, t) \mathrm{d}t = 0 The above is the starting point for nonholonomic constraints but can simply be derived for holonomic constraints via the derivatives of the constraint function g(u, t) The total time derivative of the constraint describes the constraints on velocity level .. math:: \frac{\mathrm{d}g}{\mathrm{d}t} = B(u, t) \cdot \dot{u} + b(u, t) = 0 The second time derivative of the constraint function describes the constraints on acceleration level: .. math:: \frac{\mathrm{d}^2 g}{\mathrm{d} t^2} &= B(u, t) \cdot \ddot{u} + \frac{\mathrm{d}B(u, t)}{\mathrm{d} t} \cdot \ \dot{u} + \frac{\mathrm{d}b(u, t)}{\mathrm{d} t} \\ &= B(u, t) \cdot \ddot{u} + \frac{\partial B(u, t)}{\partial u} \cdot \dot{u}^2 + \ \frac{\partial B(u, t)}{\partial t} \cdot \dot{u} + \frac{\partial b(u, t)}{\partial u} \dot{u} + \ \frac{\partial b(u, t)}{\partial t} \\ &= B(u, t) \cdot \ddot{u} + a(u, du, t) \\ &= 0 """ import numpy as np from ..linalg.norms import vector_norm __all__ = ['NonholonomicConstraintBase', 'HolonomicConstraintBase', 'DirichletConstraint', 'FixedDistanceConstraint', 'FixedDistanceToLineConstraint', 'NodesCollinear2DConstraint', 'EqualDisplacementConstraint', 'FixedDistanceToPlaneConstraint', 'NodesCoplanarConstraint' ] class NonholonomicConstraintBase: NO_OF_CONSTRAINTS = 0 def __init__(self): return def after_assignment(self, dofids): """ Method that is called after assignment in Constraint Manager No changes are needed in this function for most cases. But it provides the opportunity to change the state of the constraint after it has been assigned to the constraint manager Parameters ---------- dofids: list or numpy.array list or numpy.array containing the dofids of the dofs which are passed to the constraint Returns ------- None """ return def B(self, X, u, t): """ Linear map from velocities to constraint function (c.f. module description) Parameters ---------- X: ndarray local node coordinates of dofs in reference domain u: ndarray local displacements t: float current time Returns ------- B: ndarray Linear map from velocities to constraint function """ raise NotImplementedError('The B has not been implemented for this constraint') def b(self, X, u, t): """ Part of the nonholonomic constraint equation that is independent of the velocities Parameters ---------- X: ndarray local node coordinates of dofs in reference domain u: ndarray local displacements t: float time Returns ------- b: ndarray Velocity independent part of the constraint function on velocity level """ raise NotImplementedError('The partial time derivative of the constraint function is not implemented for this' 'constraint') def a(self, X, u, du, t): r""" It computes the inhomogeneous part on acceleration level .. math:: \frac{\partial B(u, t)}{\partial u} \cdot \dot{u}^2 + \ \frac{\partial B(u, t)}{\partial t} \cdot \dot{u} + \frac{\partial b(u, t)}{\partial u} \dot{u} + \ \frac{\partial b(u, t)}{\partial t} \\ Parameters ---------- X: numpy.array Empty numpy array because dirichlet constraints do not need information about node coordinates u: numpy.array current displacements for the dofs that shall be constrained du: numpy.array current velocities for the dofs that schall be constrained t: float time Returns ------- a: numpy.array The above described entity (inhomogeneous part of acceleration level constraint) """ raise NotImplementedError('The total time derivative of the partial time derivative is not implemented for this' 'constraint') class HolonomicConstraintBase(NonholonomicConstraintBase): NO_OF_CONSTRAINTS = 0 def __init__(self): super().__init__() return def B(self, X, u, t): """ Partial Derivative of holonomic constraint function g w.r.t. displacements u Parameters ---------- X: ndarray local node coordinates of dofs in reference domain u: ndarray local displacements t: float time Returns ------- B: ndarray Partial derivative of constraint function g w.r.t. displacements u """ raise NotImplementedError('The B has not been implemented for this constraint') def b(self, X, u, t): """ Partial Derivative of holonomic constraint function g w.r.t. time t Parameters ---------- X: ndarray local node coordinates of dofs in reference domain u: ndarray local displacements t: float time Returns ------- b: ndarray Partial derivative of the constraint function g w.r.t. time t """ raise NotImplementedError('The partial time derivative of the constraint function is not implemented for this' 'constraint') def a(self, X, u, du, t): r""" It computes the inhomogeneous part on acceleration level .. math:: \frac{\partial B(u, t)}{\partial u} \cdot \dot{u}^2 + \ \frac{\partial B(u, t)}{\partial t} \cdot \dot{u} + \frac{\partial b(u, t)}{\partial u} \dot{u} + \ \frac{\partial b(u, t)}{\partial t} \\ Parameters ---------- X: numpy.array Empty numpy array because dirichlet constraints do not need information about node coordinates u: numpy.array current displacements for the dofs that shall be constrained du: numpy.array current velocities for the dofs that schall be constrained t: float time Returns ------- a: numpy.array The above described entity (inhomogeneous part of acceleration level constraint) """ raise NotImplementedError('The total time derivative of the partial time derivative is not implemented for this' 'constraint') def g(self, X, u, t): """ Residual of holonomic constraint-function g Parameters ---------- X: ndarray local node coordinates of dofs in reference domain u: ndarray local displacements t: float time Returns ------- g: ndarray residual of holonomic constraint function """ raise NotImplementedError('The constraint function has not been implemented for this constraint') class DirichletConstraint(HolonomicConstraintBase): """ Class to define a Dirichlet constraints on several dofs. Attributes ---------- _U: function contains the function of enforced displacements _dU: function contains the function of enforced velocities (time derivative of _U) _ddU: function contains the function of enforced accelerations (time derivative of _dU) """ NO_OF_CONSTRAINTS = 1 def __init__(self, U=(lambda t: 0.), dU=(lambda t: 0.), ddU=(lambda t: 0.)): """ A Dirichlet Constraint can be initialized with predefined displacements Parameters ---------- U: function function with signature float U: f(float: t) describing enforced displacements dU: function function with signature float dU: f(float: t) describing enforced velocities ddU: function function with signature float ddU: f(float: t) describing enforced accelerations """ super().__init__() self._U = U self._dU = dU self._ddU = ddU return def after_assignment(self, dofids): """ In this case the number of constraints is set after assignment because this is unknown before Parameters ---------- dofids: list or numpy.array list or numpy.array containing the dof-IDs of the dofs that are constrained by this Dirichlet Constraint Returns ------- None """ return def g(self, X_local, u_local, t): """ Constraint-function for a fixed dirichlet constraint. Parameters ---------- X_local: numpy.array Empty numpy array because Dirichlet Constraints to not need node coordinates u_local: numpy.array current displacements for the dofs that shall be constrained t: float time Returns ------- g: ndarray Residual of the holonomic constraint function """ return np.array(u_local - self._U(t), dtype=float) def B(self, X_local, u_local, t): """ Jacobian of constraint-function w.r.t. displacements u Parameters ---------- X_local: numpy.array Empty numpy array because dirichlet constraints do not need information about node coordinates u_local: numpy.array current displacements for the dofs that shall be constrained t: float time Returns ------- B: ndarray Partial derivative of constraint function g w.r.t. displacements u """ return np.array([1], dtype=float) def b(self, X, u, t): """ Partial Derivative of holonomic constraint function g w.r.t. time t Parameters ---------- X: ndarray local node coordinates of dofs in reference domain u: ndarray local displacements t: float time Returns ------- b: ndarray Partial derivative of the constraint function g w.r.t. time t """ return np.array([-self._dU(t)], ndmin=1) def a(self, X, u, du, t): r""" It computes the inhomogeneous part on acceleration level .. math:: \frac{\partial B(u, t)}{\partial u} \cdot \dot{u}^2 + \ \frac{\partial B(u, t)}{\partial t} \cdot \dot{u} + \frac{\partial b(u, t)}{\partial u} \dot{u} + \ \frac{\partial b(u, t)}{\partial t} \\ Parameters ---------- X: numpy.array Empty numpy array because dirichlet constraints do not need information about node coordinates u: numpy.array current displacements for the dofs that shall be constrained du: numpy.array current velocities for the dofs that schall be constrained t: float time Returns ------- a: numpy.array The above described entity (inhomogeneous part of acceleration level constraint) """ return np.array([-self._ddU(t)], ndmin=1) class FixedDistanceConstraint(HolonomicConstraintBase): """ Class to define a fixed distance between two nodes. """ NO_OF_CONSTRAINTS = 1 def __init__(self): super().__init__() return def g(self, X_local, u_local, t): """ Return residual of constraint function for a fixed distance constraint between two nodes. Parameters ---------- X_local: numpy.array X-Coords in reference Domain for both points just concatenated e.g. [x1 y1 z1 x2 y2 z2], [x1 y1 x2 y2] for 3D or 2D problems respectively u_local: numpy.array current displacements for both points just concatenated (c.f. X_local) t: float time, default: 0, in this case not necessary because fixed distance does not change over time Returns ------- g : numpy.array Residual of constraint function """ dofs_per_node = len(u_local) // 2 u1 = u_local[:dofs_per_node] u2 = u_local[dofs_per_node:] X1 = X_local[:dofs_per_node] X2 = X_local[dofs_per_node:] x1 = X1 + u1 x2 = X2 + u2 scaling = vector_norm(X2 - X1) return np.array((vector_norm(x2 - x1) - vector_norm(X2 - X1)) * 10. / scaling, dtype=float, ndmin=1) def B(self, X_local, u_local, t): """ Return derivative of c_equation with respect to u for a Fixed Distance constraint. Parameters ---------- X_local: numpy.array X-Coords in reference Domain for degrees of freedom e.g. [x1 x2 y3 y4 z5] if x-direction of node 1 and 2, y-direction node 3 and 4 and z-direction of node 5 is constrained u_local: numpy.array current displacements for the dofs that shall be constrained t: float time Returns ------- B: ndarray Partial derivative of constraint function g w.r.t. displacements u """ dofs_per_node = len(u_local) // 2 u1 = u_local[:dofs_per_node] u2 = u_local[dofs_per_node:] X1 = X_local[:dofs_per_node] X2 = X_local[dofs_per_node:] x1 = X1 + u1 x2 = X2 + u2 scaling = vector_norm(X2 - X1) l_current = vector_norm(x2 - x1) return 10.0 * np.concatenate((-(x2 - x1) / (l_current * scaling), (x2 - x1) / (l_current * scaling))) def b(self, X, u, t): """ Partial Derivative of holonomic constraint function g w.r.t. time t Parameters ---------- X: ndarray local node coordinates of dofs in reference domain u: ndarray local displacements t: float time Returns ------- b: ndarray Partial derivative of the constraint function g w.r.t. time t """ return np.array([0.0], dtype=float, ndmin=1) def a(self, X, u, du, t): r""" It computes the inhomogeneous part on acceleration level .. math:: \frac{\partial B(u, t)}{\partial u} \cdot \dot{u}^2 + \ \frac{\partial B(u, t)}{\partial t} \cdot \dot{u} + \frac{\partial b(u, t)}{\partial u} \dot{u} + \ \frac{\partial b(u, t)}{\partial t} \\ Parameters ---------- X: numpy.array Empty numpy array because dirichlet constraints do not need information about node coordinates u: numpy.array current displacements for the dofs that shall be constrained du: numpy.array current velocities for the dofs that schall be constrained t: float time Returns ------- a: numpy.array The above described entity (inhomogeneous part of acceleration level constraint) """ # a consists of four terms: # 1. partial derivative dB/du * du^2 no_of_dofs = len(u) delta = 1e-8*vector_norm(u) + 1e-8 dBdu = np.zeros((1, no_of_dofs)) uplus = u.copy() uminus = u.copy() for i in range(no_of_dofs): uplus[:] = u uplus[i] = uplus[i] + delta uminus[:] = u uminus[i] = uminus[i] - delta jplus = self.B(X, uplus, t) jminus = self.B(X, uminus, t) dBdu[:] += (jplus - jminus)/(2*delta)*du[i] # 2. partial derivative dB/dt delta = 1e-8 dBdt = (self.B(X, u, t + delta) - self.B(X, u, t - delta)) / (2 * delta) # 3. partial derivative db/du is zero # 4. partial derivative db/dt is zero return dBdu.dot(du) + dBdt.dot(du) class FixedDistanceToLineConstraint(HolonomicConstraintBase): NO_OF_CONSTRAINTS = 1 def __init__(self): """ """ super().__init__() return def g(self, X_local, u_local, t): """ Constraint-function for a fixed distance to line constraint. This function calculates the residuum of the constraints for a Fixed Distance To Line Constraint. The idea is that I will have a lot of nodes, forming a Line (not necessarily a straight line), and a point x3. This point is then constrained to keep a fixed distance from this line, based on linear approximations of the line by its nodes. Parameters ---------- X_local: numpy.array X-Coords in reference Domain for 2 points forming a line and a third point that shall keep the same distance to this line e.g. [x1 y1 z1 x2 y2 z2 x3 y3 z3], [x1 y1 x2 y2 x3 y3] for 3D or 2D problems respectively u_local: numpy.array current displacements for both points just concatenated (c.f. X_local) t: float time Returns ------- g: ndarray Residual of the holonomic constraint function """ dofs_per_node = len(u_local)//3 X1 = X_local[:dofs_per_node] X2 = X_local[dofs_per_node:2*dofs_per_node] X3 = X_local[-dofs_per_node:] x = X_local + u_local x1 = x[:dofs_per_node] x2 = x[dofs_per_node:2*dofs_per_node] x3 = x[-dofs_per_node:] # The vector of direction of the line is line_dir = x2 - x1 # x3_dir is the vector from x1 to x3, so that we can find the distance x3_dir = x3 - x1 # The norm of the rejection of x3_dir relative to line_dir gives us the # distance from x3 to the small line we have # rejection current is the perpendicular line from line to x3 # therefore the norm of rejection_current is the distance of x3 to the line rejection_current = x3_dir - ((x3_dir.dot(line_dir)) /(np.linalg.norm(line_dir))**2)*line_dir # Calculate the initial rejection vector initial_dir = X2 - X1 X3_dir_initial = X3 - X1 rejection_initial = X3_dir_initial - ((X3_dir_initial.dot(initial_dir)) / (np.linalg.norm(initial_dir))**2)*initial_dir # the squared current distance must be equal to the squared initial distance return np.array([rejection_current.dot(rejection_current) - rejection_initial.dot(rejection_initial)], ndmin=1) def B(self, X_local, u_local, t): """ Jacobian of constraint-function w.r.t. displacements u Parameters ---------- X_local: numpy.array X-Coords in reference Domain for 2 points forming a line and a third point that shall keep the same distance to this line e.g. [x1 y1 z1 x2 y2 z2 x3 y3 z3], [x1 y1 x2 y2 x3 y3] for 3D or 2D problems respectively u_local: numpy.array current displacements for the dofs t: float time Returns ------- B: ndarray Partial derivative of constraint function g w.r.t. displacements u """ dofs_per_node = len(u_local)//3 if dofs_per_node > 2: x = X_local + u_local x1 = x[:dofs_per_node] x2 = x[dofs_per_node:2*dofs_per_node] x3 = x[-dofs_per_node:] r_12 = x2 - x1 r_13 = x3 - x1 a1 = x1[0] b1 = x1[1] c1 = x1[2] a2 = x2[0] b2 = x2[1] c2 = x2[2] # a3 = x3[0] # b3 = x3[1] # c3 = x3[2] # r_13 = [a3-a1, b3-b1, c3-c1] # r_12 = [a2-a1, b2-b1, c2-c1] # coef is s in documentation coef = ((r_13.dot(r_12))/(r_12.dot(r_12))) v = r_13 - coef*r_12 # dcoefdP1 = ( r_12 @ (-I) ) / (r_12.dot(r_12)) # + ( r_13 @ ( (-I) / (r_12.dot(r_12)) # + (2*r_12.T @ r_13)/(r_12.dot(r_12)**2)) # drejdP1 = -I - (dcoefdP1.T @ r_12) + coef * I # bP1 = 2 * v @ drejdP1.T # ------------------------------------------------------------------- # Derivatives of coeff with respect to... # ... x1 dcoefda1 = np.array([-1,0,0]).dot(r_12)/(r_12.dot(r_12)) \ + r_13.dot(np.array([-1,0,0])/(r_12.dot(r_12)) \ +r_12*(2*(a2-a1)/(r_12.dot(r_12)**2))) # ... y1 dcoefdb1 = np.array([0, -1, 0]).dot(r_12) / (r_12.dot(r_12)) \ + r_13.dot(np.array([0, -1, 0]) / (r_12.dot(r_12)) \ + r_12 * (2 * (b2 - b1) / (r_12.dot(r_12) ** 2))) # ... z1 dcoefdc1 = np.array([0, 0, -1]).dot(r_12) / (r_12.dot(r_12)) \ + r_13.dot(np.array([0, 0, -1]) / (r_12.dot(r_12)) \ + r_12 * (2 * (c2 - c1) / (r_12.dot(r_12) ** 2))) # ... x2 dcoefda2 = r_13.dot(np.array([1, 0, 0]) / (r_12.dot(r_12)) \ + r_12 * (2 * (a2 - a1) / (r_12.dot(r_12) ** 2))) # ... y2 dcoefdb2 = r_13.dot(np.array([0, 1, 0]) / (r_12.dot(r_12)) \ + r_12 * (2 * (b2 - b1) / (r_12.dot(r_12) ** 2))) # ... z2 dcoefdc2 = r_13.dot(np.array([0, 0, 1]) / (r_12.dot(r_12)) \ + r_12 * (2 * (c2 - c1) / (r_12.dot(r_12) ** 2))) # ... x3 dcoefda3 = np.array([1, 0, 0]).dot(r_12) / (r_12.dot(r_12)) # ... y3 dcoefdb3 = np.array([0, 1, 0]).dot(r_12) / (r_12.dot(r_12)) # ... z3 dcoefdc3 = np.array([0, 0, 1]).dot(r_12) / (r_12.dot(r_12)) # END of derivatives of coeff # All formulas checked by Meyer # ---------------------------------------------------------------- # ---------------------------------------------------------------- # Comment by Meyer: THIS SECTION IS PROBABLY WRONG! # drejda1 = np.array([-1, 0, 0]) - dcoefda1*r_12 \ + np.array([coef, 0, 0]) drejdb1 = np.array([0, -1, 0]) - dcoefdb1*r_12 \ + np.array([0, coef, 0]) drejdc1 = np.array([0, 0, -1]) - dcoefdc1*r_12 \ + np.array([0, 0, coef]) drejda2 = - dcoefda2*r_12 - np.array([coef, 0, 0]) drejdb2 = - dcoefdb2*r_12 - np.array([0, coef, 0]) drejdc2 = - dcoefdc2*r_12 - np.array([0, 0, coef]) drejda3 = np.array([1,0,0]) - dcoefda3*r_12 drejdb3 = np.array([0,1,0]) - dcoefdb3*r_12 drejdc3 = np.array([0,0,1]) - dcoefdc3*r_12 bx1 = np.array([ 2*v.dot(drejda1), 2*v.dot(drejdb1), 2*v.dot(drejdc1) ]) bx2 = np.array([ 2*v.dot(drejda2), 2*v.dot(drejdb2), 2*v.dot(drejdc2) ]) bx3 = np.array([ 2*v.dot(drejda3), 2*v.dot(drejdb3), 2*v.dot(drejdc3) ]) b = np.concatenate((bx1,bx2,bx3)) else: x = X_local + u_local x1 = x[:dofs_per_node] x2 = x[dofs_per_node:2*dofs_per_node] x3 = x[-dofs_per_node:] r_12 = x2 - x1 r_13 = x3 - x1 a1 = x1[0] b1 = x1[1] a2 = x2[0] b2 = x2[1] # coef is s in documentation coef = ((r_13.dot(r_12))/(r_12.dot(r_12))) v = r_13 - coef*r_12 # ------------------------------------------------------------------- # Derivatives of coeff with respect to... # ... x1 dcoefda1 = np.array([-1,0]).dot(r_12)/(r_12.dot(r_12)) \ + r_13.dot(np.array([-1,0])/(r_12.dot(r_12)) \ +r_12*(2*(a2-a1)/(r_12.dot(r_12)**2))) # ... y1 dcoefdb1 = np.array([0, -1]).dot(r_12) / (r_12.dot(r_12)) \ + r_13.dot(np.array([0, -1]) / (r_12.dot(r_12)) \ + r_12 * (2 * (b2 - b1) / (r_12.dot(r_12) ** 2))) # ... x2 dcoefda2 = r_13.dot(np.array([1, 0]) / (r_12.dot(r_12)) \ + r_12 * (2 * (a2 - a1) / (r_12.dot(r_12) ** 2))) # ... y2 dcoefdb2 = np.array([0,0]).dot(r_12)/(r_12.dot(r_12)) \ + r_13.dot(np.array([0,1])/(r_12.dot(r_12)) \ +r_12*(2*(b2-b1)/(r_12.dot(r_12)**2))) # ... x3 dcoefda3 = np.array([1, 0]).dot(r_12) / (r_12.dot(r_12)) # ... y3 dcoefdb3 = np.array([0, 1]).dot(r_12) / (r_12.dot(r_12)) # END of derivatives of coeff # All formulas checked by Meyer # ----------------------------------------------------------------------- # Comment by Meyer: CAUTION: The following formulas seem to be wrong! # The formulas in the thesis of Gruber seem to be correct but are not the same as here drejda1 = np.array([-1, 0]) - dcoefda1*r_12 + np.array([coef, 0]) drejdb1 = np.array([0, -1]) - dcoefdb1*r_12 + np.array([0, coef]) drejda2 = - dcoefda2*r_12 - np.array([coef, 0]) drejdb2 = - dcoefdb2*r_12 - np.array([0, coef]) drejda3 = np.array([1,0]) - dcoefda3*r_12 drejdb3 = np.array([0,1]) - dcoefdb3*r_12 bx1 = np.array([ 2*v.dot(drejda1), 2*v.dot(drejdb1) ]) bx2 = np.array([ 2*v.dot(drejda2), 2*v.dot(drejdb2) ]) bx3 = np.array([ 2*v.dot(drejda3), 2*v.dot(drejdb3) ]) b = np.concatenate((bx1,bx2,bx3)) return b def b(self, X, u, t): """ Partial Derivative of holonomic constraint function g w.r.t. time t Parameters ---------- X: ndarray local node coordinates of dofs in reference domain u: ndarray local displacements t: float time Returns ------- b: ndarray Partial derivative of the constraint function g w.r.t. time t """ return np.array([0.0], dtype=float, ndmin=1) def a(self, X, u, du, t): r""" It computes the inhomogeneous part on acceleration level .. math:: \frac{\partial B(u, t)}{\partial u} \cdot \dot{u}^2 + \ \frac{\partial B(u, t)}{\partial t} \cdot \dot{u} + \frac{\partial b(u, t)}{\partial u} \dot{u} + \ \frac{\partial b(u, t)}{\partial t} \\ Parameters ---------- X: numpy.array Empty numpy array because dirichlet constraints do not need information about node coordinates u: numpy.array current displacements for the dofs that shall be constrained du: numpy.array current velocities for the dofs that schall be constrained t: float time Returns ------- a: numpy.array The above described entity (inhomogeneous part of acceleration level constraint) """ raise NotImplementedError('The a entity has not been implemented for the fixed distance to line' 'constraint yet') class NodesCollinear2DConstraint(HolonomicConstraintBase): """ Class to define collinearity (three points on a line). This function works with two given coordinates of the nodes and makes them collinear. If you want a 3D effect, you have to make two constraints, one for (X and Y) and the other for (X and Z or Y and Z). This is made in this manner because each constraint can only remove one degree of freedom of the system, not two, at a time. Caution: Only three points are allowed to be passed to the functions Otherwise the results will be wrong.""" NO_OF_CONSTRAINTS = 1 def __init__(self): """ Constructor """ super().__init__() return def g(self, X_local, u_local, t): """ Constraint-function for a 2d collinear constraint. Parameters ---------- X_local: numpy.array X-Coords in reference Domain for three points just concatenated but only for 2 dimensions e.g. x and y [x1 y1 x2 y2 x3 y3] or y and z [y1 z1 y2 z2 y3 z3] u_local: numpy.array current displacements for three points just concatenated (c.f. X_local) t: float time Returns ------- g: ndarray Residual of the holonomic constraint function """ x = X_local + u_local x1 = x[:2] x2 = x[2:4] x3 = x[-2:] # Three points are collinear if and only if the determinant of the matrix # A here is zero. A = np.hstack((np.vstack((x1, x2, x3)), np.ones((3, 1)))) return np.array([np.linalg.det(A)], ndmin=1) # **2 def B(self, X_local, u_local, t): """ Jacobian of constraint-function w.r.t. displacements u Parameters ---------- X_local: numpy.array X-Coords in reference Domain for three points just concatenated but only for 2 dimensions e.g. x and y [x1 y1 x2 y2 x3 y3] or y and z [y1 z1 y2 z2 y3 z3] u_local: numpy.array current displacements for three points just concatenated (c.f. X_local) t: float time Returns ------- B: ndarray Partial derivative of constraint function g w.r.t. displacements u """ dofs_per_node = len(u_local) // 3 x = X_local + u_local x1 = x[:dofs_per_node] x2 = x[dofs_per_node:2 * dofs_per_node] x3 = x[-dofs_per_node:] # A = np.hstack((np.vstack((x1,x2,x3)), np.ones((3,1)))) # det_A = np.linalg.det(A) a1 = x1[0] b1 = x1[1] a2 = x2[0] b2 = x2[1] a3 = x3[0] b3 = x3[1] b = np.array([ b2 - b3, # 2*(b2 - b3)*(det_A), -a2 + a3, # -2*(a2 - a3)*(det_A), # -b1 + b3, # -2*(b1 - b3)*(det_A), # a1 - a3, # 2*(a1 - a3)*(det_A), # b1 - b2, # 2*(b1 - b2)*(det_A), # -a1 + a2, # -2*(a1 - a2)*(det_A), # ]) return b def b(self, X, u, t): """ Partial Derivative of holonomic constraint function g w.r.t. time t Parameters ---------- X: ndarray local node coordinates of dofs in reference domain u: ndarray local displacements t: float time Returns ------- b: ndarray Partial derivative of the constraint function g w.r.t. time t """ return np.array([0.0], dtype=float, ndmin=1) def a(self, X, u, du, t): r""" It computes the inhomogeneous part on acceleration level .. math:: \frac{\partial B(u, t)}{\partial u} \cdot \dot{u}^2 + \ \frac{\partial B(u, t)}{\partial t} \cdot \dot{u} + \frac{\partial b(u, t)}{\partial u} \dot{u} + \ \frac{\partial b(u, t)}{\partial t} \\ Parameters ---------- X: numpy.array Empty numpy array because dirichlet constraints do not need information about node coordinates u: numpy.array current displacements for the dofs that shall be constrained du: numpy.array current velocities for the dofs that schall be constrained t: float time Returns ------- a: numpy.array The above described entity (inhomogeneous part of acceleration level constraint) """ raise NotImplementedError('The a entity has not been implemented for the fixed distance to line' 'constraint yet') class EqualDisplacementConstraint(HolonomicConstraintBase): """ Class to define a fixed distance between two nodes. """ NO_OF_CONSTRAINTS = 1 def __init__(self): super().__init__() return def g(self, X_local, u_local, t): """ Return residual of constraint function for an equal displacement constraint between two nodes. Parameters ---------- X_local: numpy.array not needed for this constraint u_local: numpy.array current displacements for both dofs t: float time Returns ------- g : numpy.array Residual of constraint function """ return np.array([u_local[1] - u_local[0]], dtype=float, ndmin=1) def B(self, X_local, u_local, t): """ Return derivative for an equal displacement constraint Parameters ---------- X_local: numpy.array not needed for this constraint u_local: numpy.array current displacements for the dofs that shall be constrained t: float time Returns ------- B: ndarray Partial derivative of constraint function g w.r.t. displacements u """ return np.array([-1.0, 1.0], dtype=float) def b(self, X, u, t): """ Partial Derivative of holonomic constraint function g w.r.t. time t Parameters ---------- X: ndarray local node coordinates of dofs in reference domain u: ndarray local displacements t: float time Returns ------- b: ndarray Partial derivative of the constraint function g w.r.t. time t """ return np.array([0.0], dtype=float, ndmin=1) def a(self, X, u, du, t): r""" It computes the inhomogeneous part on acceleration level .. math:: \frac{\partial B(u, t)}{\partial u} \cdot \dot{u}^2 + \ \frac{\partial B(u, t)}{\partial t} \cdot \dot{u} + \frac{\partial b(u, t)}{\partial u} \dot{u} + \ \frac{\partial b(u, t)}{\partial t} \\ Parameters ---------- X: numpy.array Empty numpy array because dirichlet constraints do not need information about node coordinates u: numpy.array current displacements for the dofs that shall be constrained du: numpy.array current velocities for the dofs that schall be constrained t: float time Returns ------- a: numpy.array The above described entity (inhomogeneous part of acceleration level constraint) """ return np.array([0.0], ndmin=1) class FixedDistanceToPlaneConstraint(HolonomicConstraintBase): """ Class to define a fixed distance to plane constraint where three nodes define the plane and one node has a fixed distance to it. """ NO_OF_CONSTRAINTS = 1 def __init__(self): super().__init__() raise NotImplementedError('Theano is not compatible anymore, the constraint must be reimplemented') def g(self, X_local, u_local, t): """ Return residual of constraint function for a fixed distance to plane constraint. Parameters ---------- X_local: numpy.array X-Coords in reference Domain for four points just concatenated The first three points define the plane, the fourth point shall have fixed distance e.g. [x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4] u_local: numpy.array current displacements for all four points just concatenated (c.f. X_local) t: float time Returns ------- g : numpy.array Residual of constraint function """ x = X_local + u_local x1 = x[:3] x2 = x[3:2 * 3] x3 = x[2 * 3:3 * 3] x4 = x[-3:] plane_vector_1 = x2 - x1 plane_vector_2 = x3 - x1 plane_normal = np.cross(plane_vector_1, plane_vector_2) plane_normal = plane_normal / (np.linalg.norm(plane_normal)) x4_vector = x4 - x1 X1 = X_local[:3] X2 = X_local[3:2 * 3] X3 = X_local[2 * 3:3 * 3] X4 = X_local[-3:] initial_vector_1 = X2 - X1 initial_vector_2 = X3 - X1 ini_plane_normal = np.cross(initial_vector_1, initial_vector_2) ini_plane_normal = ini_plane_normal / (np.linalg.norm(ini_plane_normal)) X4_vector = X4 - X1 return np.array([np.dot(x4_vector, plane_normal) - np.dot(X4_vector, ini_plane_normal) ], dtype=float, ndmin=1) def B(self, X_local, u_local, t): """ Return derivative of c_equation with respect to u for a Fixed Distance constraint. Parameters ---------- X_local: numpy.array X-Coords in reference Domain for degrees of freedom e.g. [x1 x2 y3 y4 z5] if x-direction of node 1 and 2, y-direction node 3 and 4 and z-direction of node 5 is constrained u_local: numpy.array current displacements for the dofs that shall be constrained t: float time Returns ------- B: ndarray Partial derivative of constraint function g w.r.t. displacements u """ raise NotImplementedError('Theano is not compatible to AMfe anymore. This constraint is not implemented' 'for now') def b(self, X, u, t): """ Partial Derivative of holonomic constraint function g w.r.t. time t Parameters ---------- X: ndarray local node coordinates of dofs in reference domain u: ndarray local displacements t: float time Returns ------- b: ndarray Partial derivative of the constraint function g w.r.t. time t """ return np.array([0.0], dtype=float, ndmin=1) def a(self, X, u, du, t): raise NotImplementedError('The a entity has not been implemented for the fixed distance to' 'plane constraint yet.') class NodesCoplanarConstraint(HolonomicConstraintBase): """ Class to define a nodes coplanar constraint between four nodes. """ NO_OF_CONSTRAINTS = 1 def __init__(self): super().__init__() return def g(self, X_local, u_local, t): """ Return residual of constraint function for a nodes coplanar constraint between four nodes. Parameters ---------- X_local: numpy.array X-Coords in reference Domain for four points just concatenated e.g. [x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4] u_local: numpy.array current displacements for all four nodes just concatenated (c.f. X_local) t: float time Returns ------- g : numpy.array Residual of constraint function """ x = X_local + u_local x1 = x[:3] x2 = x[3:2 * 3] x3 = x[2 * 3:3 * 3] x4 = x[-3:] # x1, x2, x3 and x4 are coplanar if the determinant of A is 0 A = np.hstack((x1.T - x4.T, x2.T - x4.T, x3.T - x4.T)).reshape((3, 3)) return np.array([np.linalg.det(A)], ndmin=1) def B(self, X_local, u_local, t): """ Return derivative of c_equation with respect to u for a Fixed Distance constraint. Parameters ---------- X_local: numpy.array X-Coords in reference Domain for four points just concatenated e.g. [x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4] u_local: numpy.array current displacements for the dofs that shall be constrained t: float time Returns ------- B: ndarray Partial derivative of constraint function g w.r.t. displacements u """ x = X_local + u_local x1 = x[:3] x2 = x[3:2*3] x3 = x[2*3:3*3] x4 = x[-3:] a1, b1, c1 = x1 a2, b2, c2 = x2 a3, b3, c3 = x3 a4, b4, c4 = x4 b = np.array([ b2*c3 - b2*c4 - b3*c2 + b3*c4 + b4*c2 - b4*c3, # a1 -a2*c3 + a2*c4 + a3*c2 - a3*c4 - a4*c2 + a4*c3, # b1 a2*b3 - a2*b4 - a3*b2 + a3*b4 + a4*b2 - a4*b3, # c1 -b1*c3 + b1*c4 + b3*c1 - b3*c4 - b4*c1 + b4*c3, # a2 a1*c3 - a1*c4 - a3*c1 + a3*c4 + a4*c1 - a4*c3, # b2 -a1*b3 + a1*b4 + a3*b1 - a3*b4 - a4*b1 + a4*b3, # c2 b1*c2 - b1*c4 - b2*c1 + b2*c4 + b4*c1 - b4*c2, # a3 -a1*c2 + a1*c4 + a2*c1 - a2*c4 - a4*c1 + a4*c2, # b3 a1*b2 - a1*b4 - a2*b1 + a2*b4 + a4*b1 - a4*b2, # c3 -b1*c2 + b1*c3 + b2*c1 - b2*c3 - b3*c1 + b3*c2, # a4 a1*c2 - a1*c3 - a2*c1 + a2*c3 + a3*c1 - a3*c2, # b4 -a1*b2 + a1*b3 + a2*b1 - a2*b3 - a3*b1 + a3*b2, # c4 ]) # Checked that this is the same as in the thesis by Gruber. But only first two rows have been checked by Meyer return b def b(self, X, u, t): """ Partial Derivative of holonomic constraint function g w.r.t. time t Parameters ---------- X: ndarray local node coordinates of dofs in reference domain u: ndarray local displacements t: float time Returns ------- b: ndarray Partial derivative of the constraint function g w.r.t. time t """ return np.array([0.0], dtype=float, ndmin=1) def a(self, X, u, du, t): r""" It computes the inhomogeneous part on acceleration level .. math:: \frac{\partial B(u, t)}{\partial u} \cdot \dot{u}^2 + \ \frac{\partial B(u, t)}{\partial t} \cdot \dot{u} + \frac{\partial b(u, t)}{\partial u} \dot{u} + \ \frac{\partial b(u, t)}{\partial t} \\ Parameters ---------- X: numpy.array Empty numpy array because dirichlet constraints do not need information about node coordinates u: numpy.array current displacements for the dofs that shall be constrained du: numpy.array current velocities for the dofs that schall be constrained t: float time Returns ------- a: numpy.array The above described entity (inhomogeneous part of acceleration level constraint) """ # a consists of four terms: # 1. partial derivative dB/du * du^2 raise NotImplementedError('The a entity has not been implemented for the coplanar constraint yet.')
[ "numpy.zeros", "numpy.cross", "numpy.ones", "numpy.hstack", "numpy.linalg.det", "numpy.linalg.norm", "numpy.array", "numpy.dot", "numpy.vstack", "numpy.concatenate" ]
[((10657, 10683), 'numpy.array', 'np.array', (['[1]'], {'dtype': 'float'}), '([1], dtype=float)\n', (10665, 10683), True, 'import numpy as np\n'), ((15100, 15137), 'numpy.array', 'np.array', (['[0.0]'], {'dtype': 'float', 'ndmin': '(1)'}), '([0.0], dtype=float, ndmin=1)\n', (15108, 15137), True, 'import numpy as np\n'), ((16220, 16245), 'numpy.zeros', 'np.zeros', (['(1, no_of_dofs)'], {}), '((1, no_of_dofs))\n', (16228, 16245), True, 'import numpy as np\n'), ((27951, 27988), 'numpy.array', 'np.array', (['[0.0]'], {'dtype': 'float', 'ndmin': '(1)'}), '([0.0], dtype=float, ndmin=1)\n', (27959, 27988), True, 'import numpy as np\n'), ((31819, 31886), 'numpy.array', 'np.array', (['[b2 - b3, -a2 + a3, -b1 + b3, a1 - a3, b1 - b2, -a1 + a2]'], {}), '([b2 - b3, -a2 + a3, -b1 + b3, a1 - a3, b1 - b2, -a1 + a2])\n', (31827, 31886), True, 'import numpy as np\n'), ((32618, 32655), 'numpy.array', 'np.array', (['[0.0]'], {'dtype': 'float', 'ndmin': '(1)'}), '([0.0], dtype=float, ndmin=1)\n', (32626, 32655), True, 'import numpy as np\n'), ((34459, 34516), 'numpy.array', 'np.array', (['[u_local[1] - u_local[0]]'], {'dtype': 'float', 'ndmin': '(1)'}), '([u_local[1] - u_local[0]], dtype=float, ndmin=1)\n', (34467, 34516), True, 'import numpy as np\n'), ((35036, 35070), 'numpy.array', 'np.array', (['[-1.0, 1.0]'], {'dtype': 'float'}), '([-1.0, 1.0], dtype=float)\n', (35044, 35070), True, 'import numpy as np\n'), ((35545, 35582), 'numpy.array', 'np.array', (['[0.0]'], {'dtype': 'float', 'ndmin': '(1)'}), '([0.0], dtype=float, ndmin=1)\n', (35553, 35582), True, 'import numpy as np\n'), ((36513, 36537), 'numpy.array', 'np.array', (['[0.0]'], {'ndmin': '(1)'}), '([0.0], ndmin=1)\n', (36521, 36537), True, 'import numpy as np\n'), ((37852, 37892), 'numpy.cross', 'np.cross', (['plane_vector_1', 'plane_vector_2'], {}), '(plane_vector_1, plane_vector_2)\n', (37860, 37892), True, 'import numpy as np\n'), ((38204, 38248), 'numpy.cross', 'np.cross', (['initial_vector_1', 'initial_vector_2'], {}), '(initial_vector_1, initial_vector_2)\n', (38212, 38248), True, 'import numpy as np\n'), ((39833, 39870), 'numpy.array', 'np.array', (['[0.0]'], {'dtype': 'float', 'ndmin': '(1)'}), '([0.0], dtype=float, ndmin=1)\n', (39841, 39870), True, 'import numpy as np\n'), ((42075, 42836), 'numpy.array', 'np.array', (['[b2 * c3 - b2 * c4 - b3 * c2 + b3 * c4 + b4 * c2 - b4 * c3, -a2 * c3 + a2 *\n c4 + a3 * c2 - a3 * c4 - a4 * c2 + a4 * c3, a2 * b3 - a2 * b4 - a3 * b2 +\n a3 * b4 + a4 * b2 - a4 * b3, -b1 * c3 + b1 * c4 + b3 * c1 - b3 * c4 - \n b4 * c1 + b4 * c3, a1 * c3 - a1 * c4 - a3 * c1 + a3 * c4 + a4 * c1 - a4 *\n c3, -a1 * b3 + a1 * b4 + a3 * b1 - a3 * b4 - a4 * b1 + a4 * b3, b1 * c2 -\n b1 * c4 - b2 * c1 + b2 * c4 + b4 * c1 - b4 * c2, -a1 * c2 + a1 * c4 + \n a2 * c1 - a2 * c4 - a4 * c1 + a4 * c2, a1 * b2 - a1 * b4 - a2 * b1 + a2 *\n b4 + a4 * b1 - a4 * b2, -b1 * c2 + b1 * c3 + b2 * c1 - b2 * c3 - b3 *\n c1 + b3 * c2, a1 * c2 - a1 * c3 - a2 * c1 + a2 * c3 + a3 * c1 - a3 * c2,\n -a1 * b2 + a1 * b3 + a2 * b1 - a2 * b3 - a3 * b1 + a3 * b2]'], {}), '([b2 * c3 - b2 * c4 - b3 * c2 + b3 * c4 + b4 * c2 - b4 * c3, -a2 *\n c3 + a2 * c4 + a3 * c2 - a3 * c4 - a4 * c2 + a4 * c3, a2 * b3 - a2 * b4 -\n a3 * b2 + a3 * b4 + a4 * b2 - a4 * b3, -b1 * c3 + b1 * c4 + b3 * c1 - \n b3 * c4 - b4 * c1 + b4 * c3, a1 * c3 - a1 * c4 - a3 * c1 + a3 * c4 + a4 *\n c1 - a4 * c3, -a1 * b3 + a1 * b4 + a3 * b1 - a3 * b4 - a4 * b1 + a4 *\n b3, b1 * c2 - b1 * c4 - b2 * c1 + b2 * c4 + b4 * c1 - b4 * c2, -a1 * c2 +\n a1 * c4 + a2 * c1 - a2 * c4 - a4 * c1 + a4 * c2, a1 * b2 - a1 * b4 - a2 *\n b1 + a2 * b4 + a4 * b1 - a4 * b2, -b1 * c2 + b1 * c3 + b2 * c1 - b2 *\n c3 - b3 * c1 + b3 * c2, a1 * c2 - a1 * c3 - a2 * c1 + a2 * c3 + a3 * c1 -\n a3 * c2, -a1 * b2 + a1 * b3 + a2 * b1 - a2 * b3 - a3 * b1 + a3 * b2])\n', (42083, 42836), True, 'import numpy as np\n'), ((43645, 43682), 'numpy.array', 'np.array', (['[0.0]'], {'dtype': 'float', 'ndmin': '(1)'}), '([0.0], dtype=float, ndmin=1)\n', (43653, 43682), True, 'import numpy as np\n'), ((14538, 14629), 'numpy.concatenate', 'np.concatenate', (['(-(x2 - x1) / (l_current * scaling), (x2 - x1) / (l_current * scaling))'], {}), '((-(x2 - x1) / (l_current * scaling), (x2 - x1) / (l_current *\n scaling)))\n', (14552, 14629), True, 'import numpy as np\n'), ((24567, 24598), 'numpy.concatenate', 'np.concatenate', (['(bx1, bx2, bx3)'], {}), '((bx1, bx2, bx3))\n', (24581, 24598), True, 'import numpy as np\n'), ((27429, 27460), 'numpy.concatenate', 'np.concatenate', (['(bx1, bx2, bx3)'], {}), '((bx1, bx2, bx3))\n', (27443, 27460), True, 'import numpy as np\n'), ((37932, 37960), 'numpy.linalg.norm', 'np.linalg.norm', (['plane_normal'], {}), '(plane_normal)\n', (37946, 37960), True, 'import numpy as np\n'), ((38296, 38328), 'numpy.linalg.norm', 'np.linalg.norm', (['ini_plane_normal'], {}), '(ini_plane_normal)\n', (38310, 38328), True, 'import numpy as np\n'), ((23353, 23375), 'numpy.array', 'np.array', (['[coef, 0, 0]'], {}), '([coef, 0, 0])\n', (23361, 23375), True, 'import numpy as np\n'), ((23462, 23484), 'numpy.array', 'np.array', (['[0, coef, 0]'], {}), '([0, coef, 0])\n', (23470, 23484), True, 'import numpy as np\n'), ((23572, 23594), 'numpy.array', 'np.array', (['[0, 0, coef]'], {}), '([0, 0, coef])\n', (23580, 23594), True, 'import numpy as np\n'), ((23636, 23658), 'numpy.array', 'np.array', (['[coef, 0, 0]'], {}), '([coef, 0, 0])\n', (23644, 23658), True, 'import numpy as np\n'), ((23700, 23722), 'numpy.array', 'np.array', (['[0, coef, 0]'], {}), '([0, coef, 0])\n', (23708, 23722), True, 'import numpy as np\n'), ((23764, 23786), 'numpy.array', 'np.array', (['[0, 0, coef]'], {}), '([0, 0, coef])\n', (23772, 23786), True, 'import numpy as np\n'), ((23810, 23829), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (23818, 23829), True, 'import numpy as np\n'), ((23867, 23886), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (23875, 23886), True, 'import numpy as np\n'), ((23924, 23943), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (23932, 23943), True, 'import numpy as np\n'), ((26627, 26646), 'numpy.array', 'np.array', (['[coef, 0]'], {}), '([coef, 0])\n', (26635, 26646), True, 'import numpy as np\n'), ((26706, 26725), 'numpy.array', 'np.array', (['[0, coef]'], {}), '([0, coef])\n', (26714, 26725), True, 'import numpy as np\n'), ((26767, 26786), 'numpy.array', 'np.array', (['[coef, 0]'], {}), '([coef, 0])\n', (26775, 26786), True, 'import numpy as np\n'), ((26828, 26847), 'numpy.array', 'np.array', (['[0, coef]'], {}), '([0, coef])\n', (26836, 26847), True, 'import numpy as np\n'), ((26871, 26887), 'numpy.array', 'np.array', (['[1, 0]'], {}), '([1, 0])\n', (26879, 26887), True, 'import numpy as np\n'), ((26926, 26942), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (26934, 26942), True, 'import numpy as np\n'), ((30640, 30663), 'numpy.vstack', 'np.vstack', (['(x1, x2, x3)'], {}), '((x1, x2, x3))\n', (30649, 30663), True, 'import numpy as np\n'), ((30665, 30680), 'numpy.ones', 'np.ones', (['(3, 1)'], {}), '((3, 1))\n', (30672, 30680), True, 'import numpy as np\n'), ((30709, 30725), 'numpy.linalg.det', 'np.linalg.det', (['A'], {}), '(A)\n', (30722, 30725), True, 'import numpy as np\n'), ((41111, 41161), 'numpy.hstack', 'np.hstack', (['(x1.T - x4.T, x2.T - x4.T, x3.T - x4.T)'], {}), '((x1.T - x4.T, x2.T - x4.T, x3.T - x4.T))\n', (41120, 41161), True, 'import numpy as np\n'), ((41203, 41219), 'numpy.linalg.det', 'np.linalg.det', (['A'], {}), '(A)\n', (41216, 41219), True, 'import numpy as np\n'), ((23290, 23310), 'numpy.array', 'np.array', (['[-1, 0, 0]'], {}), '([-1, 0, 0])\n', (23298, 23310), True, 'import numpy as np\n'), ((23399, 23419), 'numpy.array', 'np.array', (['[0, -1, 0]'], {}), '([0, -1, 0])\n', (23407, 23419), True, 'import numpy as np\n'), ((23509, 23529), 'numpy.array', 'np.array', (['[0, 0, -1]'], {}), '([0, 0, -1])\n', (23517, 23529), True, 'import numpy as np\n'), ((26591, 26608), 'numpy.array', 'np.array', (['[-1, 0]'], {}), '([-1, 0])\n', (26599, 26608), True, 'import numpy as np\n'), ((26670, 26687), 'numpy.array', 'np.array', (['[0, -1]'], {}), '([0, -1])\n', (26678, 26687), True, 'import numpy as np\n'), ((38384, 38415), 'numpy.dot', 'np.dot', (['x4_vector', 'plane_normal'], {}), '(x4_vector, plane_normal)\n', (38390, 38415), True, 'import numpy as np\n'), ((38443, 38478), 'numpy.dot', 'np.dot', (['X4_vector', 'ini_plane_normal'], {}), '(X4_vector, ini_plane_normal)\n', (38449, 38478), True, 'import numpy as np\n'), ((19026, 19050), 'numpy.linalg.norm', 'np.linalg.norm', (['line_dir'], {}), '(line_dir)\n', (19040, 19050), True, 'import numpy as np\n'), ((19308, 19335), 'numpy.linalg.norm', 'np.linalg.norm', (['initial_dir'], {}), '(initial_dir)\n', (19322, 19335), True, 'import numpy as np\n'), ((22179, 22198), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (22187, 22198), True, 'import numpy as np\n'), ((22358, 22377), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (22366, 22377), True, 'import numpy as np\n'), ((22537, 22556), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (22545, 22556), True, 'import numpy as np\n'), ((22707, 22726), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (22715, 22726), True, 'import numpy as np\n'), ((22801, 22820), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (22809, 22820), True, 'import numpy as np\n'), ((22895, 22914), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (22903, 22914), True, 'import numpy as np\n'), ((25700, 25716), 'numpy.array', 'np.array', (['[1, 0]'], {}), '([1, 0])\n', (25708, 25716), True, 'import numpy as np\n'), ((26077, 26093), 'numpy.array', 'np.array', (['[1, 0]'], {}), '([1, 0])\n', (26085, 26093), True, 'import numpy as np\n'), ((26168, 26184), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (26176, 26184), True, 'import numpy as np\n'), ((21429, 21449), 'numpy.array', 'np.array', (['[-1, 0, 0]'], {}), '([-1, 0, 0])\n', (21437, 21449), True, 'import numpy as np\n'), ((21511, 21531), 'numpy.array', 'np.array', (['[-1, 0, 0]'], {}), '([-1, 0, 0])\n', (21519, 21531), True, 'import numpy as np\n'), ((21656, 21676), 'numpy.array', 'np.array', (['[0, -1, 0]'], {}), '([0, -1, 0])\n', (21664, 21676), True, 'import numpy as np\n'), ((21742, 21762), 'numpy.array', 'np.array', (['[0, -1, 0]'], {}), '([0, -1, 0])\n', (21750, 21762), True, 'import numpy as np\n'), ((21913, 21933), 'numpy.array', 'np.array', (['[0, 0, -1]'], {}), '([0, 0, -1])\n', (21921, 21933), True, 'import numpy as np\n'), ((21999, 22019), 'numpy.array', 'np.array', (['[0, 0, -1]'], {}), '([0, 0, -1])\n', (22007, 22019), True, 'import numpy as np\n'), ((25228, 25245), 'numpy.array', 'np.array', (['[-1, 0]'], {}), '([-1, 0])\n', (25236, 25245), True, 'import numpy as np\n'), ((25308, 25325), 'numpy.array', 'np.array', (['[-1, 0]'], {}), '([-1, 0])\n', (25316, 25325), True, 'import numpy as np\n'), ((25451, 25468), 'numpy.array', 'np.array', (['[0, -1]'], {}), '([0, -1])\n', (25459, 25468), True, 'import numpy as np\n'), ((25534, 25551), 'numpy.array', 'np.array', (['[0, -1]'], {}), '([0, -1])\n', (25542, 25551), True, 'import numpy as np\n'), ((25856, 25872), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (25864, 25872), True, 'import numpy as np\n'), ((25935, 25951), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (25943, 25951), True, 'import numpy as np\n')]
"""Provides a class to allow for lazy transposing and slicing operations on h5py datasets and zarr arrays ## Usage: from lazy_ops import DatasetView # h5py # import h5py dsetview = DatasetView(dataset) # dataset is an instance of h5py.Dataset view1 = dsetview.lazy_slice[1:40:2,:,0:50:5].lazy_transpose([2,0,1]).lazy_slice[8,5:10] # zarr # import zarr zarrview = DatasetView(zarray) # dataset is an instance of zarr.core.Array view1 = zview.lazy_slice[1:10:2,:,5:10].lazy_transpose([0,2,1]).lazy_slice[0:3,1:4] # reading from view on either h5py or zarr A = view1[:] # Brackets on DataSetView call the h5py or zarr slicing method, returning the data B = view1.dsetread() # same as view1[:] # iterating on either h5yy or zarr for ib in view.lazy_iter(axis=1): print(ib[0]) """ import numpy as np from abc import ABCMeta, abstractmethod from typing import Union import h5py installed_dataset_types = h5py.Dataset class DatasetView(metaclass=ABCMeta): def __new__(cls, dataset: installed_dataset_types = None, slice_index=(np.index_exp[:],()), axis_order=None): """ Args: dataset: the underlying dataset slice_index: the aggregate slice and int indices after multiple lazy calls axis_order: the aggregate axis_order after multiple transpositions Returns: lazy object """ if cls == DatasetView: if isinstance(dataset,h5py.Dataset): return DatasetViewh5py(dataset=dataset) elif HAVE_ZARR: if isinstance(dataset,zarr.core.Array): return DatasetViewzarr(dataset=dataset) elif str(z1).find("zarr") != -1: raise TypeError("To use DatasetView with a zarr array install zarr: \n pip install zarr\n") raise TypeError("DatasetView requires either an h5py dataset or a zarr array as first argument") else: return super().__new__(cls) def __init__(self, dataset: installed_dataset_types = None, slice_index=(np.index_exp[:],()), axis_order=None): """ Args: dataset: the underlying dataset slice_index: the aggregate slice and int indices after multiple lazy calls axis_order: the aggregate axis_order after multiple transpositions """ if axis_order is None: self._axis_order = tuple(range(len(dataset.shape))) else: self._axis_order = axis_order self._lazy_slice_call = False self._dataset = dataset self._shape, self._key, self._int_index, self._axis_order = self._slice_shape(slice_index) @property def lazy_slice(self): """ Indicator for lazy_slice calls """ self._lazy_slice_call = True return self @property def dataset(self): return self._dataset @property def shape(self): return self._shape def __len__(self): return self.len() def len(self): return self.shape[0] @property def key(self): """ The self.key slice is passed to the lazy instance """ return self._key @property def axis_order(self): return self._axis_order def _slice_tuple(self, key): """ Allows single slice and int function calls Args: key: A slice object, or int Returns: The slice object tuple """ if isinstance(key, (slice,int,np.ndarray)): key = key, else: key = *key, return key def _slice_shape(self, slice_): """ For an slice returned by _slice_composition function, finds the shape Args: slice_: The slice and int_index object Returns: slice_shape: Shape of the slice object slice_key: An equivalent slice tuple with positive starts and stops int_index: a nested tuple, int_index records the information needed by dsetread to access data Each element of int_index, denoted ind is given by: ind[2] is the dataset axis at which the integer index operates ind[1] is the value of the integer index entered by the user ind[0] is the lazy_axis at which the integer index operates ,the lazy_axis is the axis number had the operations been carried out by h5py instead of lazy_ops axis_order: removes the elements of current axis_order where integer indexing has been applied """ int_ind = slice_[1] slice_ = self._slice_tuple(slice_[0]) # converting the slice to regular slices that only contain integers slice_regindices = [slice(*slice_[i].indices(self.dataset.shape[self.axis_order[i]])) if isinstance(slice_[i],slice) else slice_[i] for i in range(len(slice_))] slice_shape = () int_index = () axis_order = () for i in range(len(slice_)): if isinstance(slice_[i],slice): slice_start, slice_stop, slice_step = slice_regindices[i].start, slice_regindices[i].stop, slice_regindices[i].step if slice_step < 1: raise ValueError("Slice step parameter must be positive") if slice_stop < slice_start: slice_start = slice_stop slice_regindices[i] = slice(slice_start, slice_stop, slice_step) slice_shape += (1 + (slice_stop - slice_start -1 )//slice_step if slice_stop != slice_start else 0,) axis_order += (self.axis_order[i],) elif isinstance(slice_[i],int): int_index += ((i,slice_[i],self.axis_order[i]),) else: # slice_[i] is an iterator of integers slice_shape += (len(slice_[i]),) axis_order += (self.axis_order[i],) slice_regindices = tuple(el for el in slice_regindices if not isinstance(el,int)) axis_order += tuple(self.axis_order[len(axis_order)+len(int_index)::]) int_index += int_ind slice_shape += self.dataset.shape[len(slice_shape)+len(int_index)::] return slice_shape, slice_regindices, int_index, axis_order def __getitem__(self, new_slice): """ supports python's colon slicing syntax Args: new_slice: the new slice to compose with the lazy instance's self.key slice Returns: lazy object """ key_reinit = self._slice_composition(new_slice) if self._lazy_slice_call: self._lazy_slice_call = False return DatasetView(self.dataset, (key_reinit, self._int_index), self.axis_order) return DatasetView(self.dataset, (key_reinit, self._int_index), self.axis_order).dsetread() def lazy_iter(self, axis=0): """ lazy iterator over the first axis Modifications to the items are not stored """ for i in range(self._shape[axis]): yield self.lazy_slice[(*np.index_exp[:]*axis,i)] def __call__(self, new_slice): """ allows lazy_slice function calls with slice objects as input""" return self.__getitem__(new_slice) def dsetread(self): """ Returns the data Returns: numpy array """ # Note: Directly calling regionref with slices with a zero dimension does not # retain shape information of the other dimensions lazy_axis_order = self.axis_order lazy_key = self.key for ind in self._int_index: lazy_axis_order = lazy_axis_order[:ind[0]] + (ind[2],) + lazy_axis_order[ind[0]:] lazy_key = lazy_key[:ind[0]] + (ind[1],) + lazy_key[ind[0]:] reversed_axis_order = sorted(range(len(lazy_axis_order)), key=lambda i: lazy_axis_order[i]) reversed_slice_key = tuple(lazy_key[i] for i in reversed_axis_order if i < len(lazy_key)) # this is equivalent to reducing the values in the self.axis_order to account for # dimensions dropped by int indexing reversed_axis_order_read = sorted(range(len(self.axis_order)), key=lambda i: self.axis_order[i]) axis_order_read = sorted(range(len(self.axis_order)), key=lambda i: reversed_axis_order_read[i]) return self.dataset[reversed_slice_key].transpose(axis_order_read) def _slice_composition(self, new_slice): """ composes a new_slice with the self.key slice Args: new_slice: The new slice Returns: merged slice object """ new_slice = self._slice_tuple(new_slice) new_slice = self._ellipsis_slices(new_slice) slice_result = () # Iterating over the new slicing tuple to change the merged dataset slice. for i in range(len(new_slice)): if isinstance(new_slice[i],slice): if i < len(self.key): # converting new_slice slice to regular slices, # newkey_start, newkey_stop, newkey_step only contains positive or zero integers newkey_start, newkey_stop, newkey_step = new_slice[i].indices(self._shape[i]) if newkey_step < 1: # regionref requires step>=1 for dataset data calls raise ValueError("Slice step parameter must be positive") if newkey_stop < newkey_start: newkey_start = newkey_stop if isinstance(self.key[i],slice): slice_result += (slice(min(self.key[i].start + self.key[i].step * newkey_start, self.key[i].stop), min(self.key[i].start + self.key[i].step * newkey_stop, self.key[i].stop), newkey_step * self.key[i].step),) else: # self.key[i] is an iterator of integers slice_result += (self.key[i][new_slice[i]],) else: slice_result += (slice(*new_slice[i].indices(self.dataset.shape[self.axis_order[i]])),) elif isinstance(new_slice[i],int): if i < len(self.key): if new_slice[i] >= self._shape[i] or new_slice[i] <= ~self._shape[i]: raise IndexError("Index %d out of range, dim %d of size %d" % (new_slice[i],i,self._shape[i])) if isinstance(self.key[i],slice): int_index = self.key[i].start + self.key[i].step*(new_slice[i]%self._shape[i]) slice_result += (int_index,) else: # self.key[i] is an iterator of integers slice_result += (self.key[i][new_slice[i]],) else: slice_result += (new_slice[i],) else: try: if not all(isinstance(el,int) for el in new_slice[i]): if new_slice[i].dtype.kind != 'b': raise ValueError("Indices must be either integers or booleans") else: # boolean indexing if len(new_slice[i]) != self.shape[i]: raise IndexError("Length of boolean index $d must be equal to size %d in dim %d" % (len(new_slice[i]),self.shape[i],i)) new_slice_i = new_slice[i].nonzero()[0] else: new_slice_i = new_slice[i] if i < len(self.key): if any(el >= self._shape[i] or el <= ~self._shape[i] for el in new_slice_i): raise IndexError("Index %s out of range, dim %d of size %d" % (str(new_slice_i),i,self._shape[i])) if isinstance(self.key[i],slice): slice_result += (tuple(self.key[i].start + self.key[i].step*(ind%self._shape[i]) for ind in new_slice_i),) else: # self.key[i] is an iterator of integers slice_result += (tuple(self.key[i][ind] for ind in new_slice_i),) else: slice_result += (new_slice_i,) except: raise IndexError("Indices must be either integers, iterators of integers, slice objects, or numpy boolean arrays") slice_result += self.key[len(new_slice):] return slice_result @property def T(self): """ Same as lazy_transpose() """ return self.lazy_transpose() def lazy_transpose(self, axis_order=None): """ Array lazy transposition, no axis_order reverses the order of dimensions Args: axis_order: permutation order for transpose Returns: lazy object """ if axis_order is None: axis_order = tuple(reversed(range(len(self.axis_order)))) axis_order_reinit = tuple(self.axis_order[i] if i < len(self.axis_order) else i for i in axis_order) key_reinit = tuple(self.key[i] if i < len(self.key) else np.s_[:] for i in axis_order) key_reinit += tuple(self.key[i] for i in self.axis_order if i not in axis_order_reinit) axis_order_reinit += tuple(i for i in self.axis_order if i not in axis_order_reinit) return DatasetView(self.dataset, (key_reinit, self._int_index), axis_order_reinit) def __array__(self): """ Convert to numpy array """ return np.atleast_1d(self.dsetread()) def _ellipsis_slices(self, new_slice): """ Change Ellipsis dimensions to slices Args: new_slice: The new slice Returns: equivalent slices with Ellipsis expanded """ ellipsis_count = sum(s==Ellipsis for s in new_slice if not isinstance(s,np.ndarray)) if ellipsis_count == 1: ellipsis_index = new_slice.index(Ellipsis) if ellipsis_index == len(new_slice)-1: new_slice = new_slice[:-1] else: num_ellipsis_dims = len(self.shape) - (len(new_slice) - 1) new_slice = new_slice[:ellipsis_index] + np.index_exp[:]*num_ellipsis_dims + new_slice[ellipsis_index+1:] elif ellipsis_count > 0: raise IndexError("Only a single Ellipsis is allowed") return new_slice def read_direct(self, dest, source_sel=None, dest_sel=None): """ Using dataset.read_direct, reads data into an existing array Args: dest: C-contiguous as required by Dataset.read_direct source_sel: new selection slice dest_sel: output selection slice Returns: numpy array """ if source_sel is None: new_key, new_int_index, new_axis_order = self.key, self._int_index, self.axis_order else: key_reinit = self._slice_composition(source_sel) _, new_key, new_int_index, new_axis_order = self._slice_shape(key_reinit) axis_order_slices = new_axis_order for ind in new_int_index: new_axis_order = new_axis_order[:ind[0]] + (ind[2],) + new_axis_order[ind[0]:] new_key = new_key[:ind[0]] + (ind[1],) + new_key[ind[0]:] reversed_axis_order = sorted(range(len(new_axis_order)), key=lambda i: new_axis_order[i]) reversed_slice_key = tuple(new_key[i] for i in reversed_axis_order if i < len(new_key)) # this is equivalent to reducing the values in the self.axis_order to account for # dimensions dropped by int indexing reversed_axis_order_read = sorted(range(len(axis_order_slices)), key=lambda i: axis_order_slices[i]) axis_order_read = sorted(range(len(axis_order_slices)), key=lambda i: reversed_axis_order_read[i]) reversed_dest_shape = tuple(dest.shape[i] for i in reversed_axis_order_read if i < len(dest.shape)) reversed_dest = np.empty(shape=reversed_dest_shape, dtype=dest.dtype) if dest_sel is None: reversed_dest_sel = dest_sel else: reversed_dest_sel = tuple(dest_sel[i] for i in reversed_axis_order if i < len(dest_sel)) self.dataset.read_direct(reversed_dest, source_sel=reversed_slice_key, dest_sel=reversed_dest_sel) np.copyto(dest, reversed_dest.transpose(axis_order_read)) def lazy_transpose(dset: installed_dataset_types, axes=None): """ Array lazy transposition, not passing axis argument reverses the order of dimensions Args: dset: h5py dataset axes: permutation order for transpose Returns: lazy transposed DatasetView object """ if axes is None: axes = tuple(reversed(range(len(dset.shape)))) return DatasetView(dset).lazy_transpose(axis_order=axes) class DatasetViewh5py(DatasetView, h5py.Dataset): def __new__(cls,dataset): _self = super().__new__(cls) h5py.Dataset.__init__(_self, dataset.id) return _self try: import zarr from .lazy_loading_zarr import DatasetViewzarr installed_dataset_types = Union[installed_dataset_types,zarr.core.Array] HAVE_ZARR = True except ImportError: HAVE_ZARR = False DatasetViewzarr = None
[ "numpy.empty", "h5py.Dataset.__init__" ]
[((16211, 16264), 'numpy.empty', 'np.empty', ([], {'shape': 'reversed_dest_shape', 'dtype': 'dest.dtype'}), '(shape=reversed_dest_shape, dtype=dest.dtype)\n', (16219, 16264), True, 'import numpy as np\n'), ((17188, 17228), 'h5py.Dataset.__init__', 'h5py.Dataset.__init__', (['_self', 'dataset.id'], {}), '(_self, dataset.id)\n', (17209, 17228), False, 'import h5py\n')]
import io import pytest import os import h5py import tempfile import warnings from contextlib import contextmanager import numpy as np from numpy.testing import assert_allclose from numpy.testing import assert_raises from keras import backend as K from keras.models import Model, Sequential from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed from keras.layers import Bidirectional, GRU, LSTM from keras.layers import Conv2D, Flatten, Activation from keras.layers import Input, InputLayer from keras.initializers import Constant from keras import optimizers from keras import losses from keras import metrics from keras.models import save_model, load_model try: from unittest.mock import patch except: from mock import patch skipif_no_tf_gpu = True def test_sequential_model_saving(): model = Sequential() model.add(Dense(2, input_shape=(3,))) model.add(RepeatVector(3)) model.add(TimeDistributed(Dense(3))) model.compile(loss=losses.MeanSquaredError(), optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy], sample_weight_mode='temporal') x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) new_model = load_model(fname) os.remove(fname) x2 = np.random.random((1, 3)) y2 = np.random.random((1, 3, 3)) model.train_on_batch(x2, y2) out_2 = model.predict(x2) new_out = new_model.predict(x) assert_allclose(out, new_out, atol=1e-05) # test that new updates are the same with both models new_model.train_on_batch(x2, y2) new_out_2 = new_model.predict(x2) assert_allclose(out_2, new_out_2, atol=1e-05) def test_sequential_model_saving_2(): # test with custom optimizer, loss custom_opt = optimizers.RMSprop custom_loss = losses.mse model = Sequential() model.add(Dense(2, input_shape=(3,))) model.add(Dense(3)) model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc']) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) load_kwargs = {'custom_objects': {'custom_opt': custom_opt, 'custom_loss': custom_loss}} _, fname = tempfile.mkstemp('.h5') save_model(model, fname) new_model = load_model(fname, **load_kwargs) os.remove(fname) new_out = new_model.predict(x) assert_allclose(out, new_out, atol=1e-05) def _get_sample_model_and_input(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) return model, x def test_functional_model_saving(): model, x = _get_sample_model_and_input() out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) new_model = load_model(fname) os.remove(fname) new_out = new_model.predict(x) assert_allclose(out, new_out, atol=1e-05) def DISABLED_test_model_saving_to_pre_created_h5py_file(): model, x = _get_sample_model_and_input() out = model.predict(x) _, fname = tempfile.mkstemp('.h5') with h5py.File(fname, mode='r+') as h5file: save_model(model, h5file) loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05) # test non-default options in h5 with h5py.File('does not matter', driver='core', backing_store=False) as h5file: save_model(model, h5file) loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05) with h5py.File(fname, mode='r+') as h5file: g = h5file.create_group('model') save_model(model, g) loaded_model = load_model(g) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05) @contextmanager def temp_filename(filename): """Context that returns a temporary filename and deletes the file on exit if it still exists (so that this is not forgotten). """ _, temp_fname = tempfile.mkstemp(filename) yield temp_fname if os.path.exists(temp_fname): os.remove(temp_fname) def DISABLED_test_model_saving_to_binary_stream(): model, x = _get_sample_model_and_input() out = model.predict(x) with temp_filename('h5') as fname: # save directly to binary file with open(fname, 'wb') as raw_file: save_model(model, raw_file) # Load the data the usual way, and make sure the model is intact. with h5py.File(fname, mode='r') as h5file: loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05) def DISABLED_test_model_loading_from_binary_stream(): model, x = _get_sample_model_and_input() out = model.predict(x) with temp_filename('h5') as fname: # save the model the usual way with h5py.File(fname, mode='w') as h5file: save_model(model, h5file) # Load the data binary, and make sure the model is intact. with open(fname, 'rb') as raw_file: loaded_model = load_model(raw_file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05) def DISABLED_test_model_save_load_binary_in_memory(): model, x = _get_sample_model_and_input() out = model.predict(x) stream = io.BytesIO() save_model(model, stream) stream.seek(0) loaded_model = load_model(stream) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05) def test_saving_multiple_metrics_outputs(): inputs = Input(shape=(5,)) x = Dense(5)(inputs) output1 = Dense(1, name='output1')(x) output2 = Dense(1, name='output2')(x) model = Model(inputs=inputs, outputs=[output1, output2]) metrics = {'output1': ['mse', 'binary_accuracy'], 'output2': ['mse', 'binary_accuracy'] } loss = {'output1': 'mse', 'output2': 'mse'} model.compile(loss=loss, optimizer='sgd', metrics=metrics) # assure that model is working x = np.array([[1, 1, 1, 1, 1]]) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05) def test_saving_without_compilation(): """Test saving model without compiling. """ model = Sequential() model.add(Dense(2, input_shape=(3,))) model.add(Dense(3)) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) def test_saving_right_after_compilation(): model = Sequential() model.add(Dense(2, input_shape=(3,))) model.add(Dense(3)) model.compile(loss='mse', optimizer='sgd', metrics=['acc']) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) def test_saving_unused_layers_is_ok(): a = Input(shape=(256, 512, 6)) b = Input(shape=(256, 512, 1)) c = Lambda(lambda x: x[:, :, :, :1])(a) model = Model(inputs=[a, b], outputs=c) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) load_model(fname) os.remove(fname) def test_loading_weights_by_name_2(): """ test loading model weights by name on: - both sequential and functional api models - different architecture with shared names """ custom_loss = losses.mse # sequential model model = Sequential() model.add(Dense(2, input_shape=(3,), name='rick')) model.add(Dense(3, name='morty')) model.compile(loss=custom_loss, optimizer='rmsprop', metrics=['acc']) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) old_weights = [layer.get_weights() for layer in model.layers] _, fname = tempfile.mkstemp('.h5') model.save_weights(fname) # delete and recreate model using Functional API del(model) data = Input(shape=(3,)) rick = Dense(2, name='rick')(data) jerry = Dense(3, name='jerry')(rick) # add 2 layers (but maintain shapes) jessica = Dense(2, name='jessica')(jerry) morty = Dense(3, name='morty')(jessica) model = Model(inputs=[data], outputs=[morty]) model.compile(loss=custom_loss, optimizer='rmsprop', metrics=['acc']) # load weights from first model model.load_weights(fname, by_name=True) os.remove(fname) out2 = model.predict(x) assert np.max(np.abs(out - out2)) > 1e-05 rick = model.layers[1].get_weights() jerry = model.layers[2].get_weights() jessica = model.layers[3].get_weights() morty = model.layers[4].get_weights() assert_allclose(old_weights[0][0], rick[0], atol=1e-05) assert_allclose(old_weights[0][1], rick[1], atol=1e-05) assert_allclose(old_weights[1][0], morty[0], atol=1e-05) assert_allclose(old_weights[1][1], morty[1], atol=1e-05) assert_allclose(np.zeros_like(jerry[1]), jerry[1]) # biases init to 0 assert_allclose(np.zeros_like(jessica[1]), jessica[1]) # biases init to 0 def test_loading_weights_by_name_skip_mismatch(): """ test skipping layers while loading model weights by name on: - sequential model """ # test with custom optimizer, loss custom_loss = losses.mse # sequential model model = Sequential() model.add(Dense(2, input_shape=(3,), name='rick')) model.add(Dense(3, name='morty')) model.compile(loss=custom_loss, optimizer='rmsprop', metrics=['acc']) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) old_weights = [layer.get_weights() for layer in model.layers] _, fname = tempfile.mkstemp('.h5') model.save_weights(fname) # delete and recreate model del(model) model = Sequential() model.add(Dense(2, input_shape=(3,), name='rick')) model.add(Dense(4, name='morty')) # different shape w.r.t. previous model model.compile(loss=custom_loss, optimizer='rmsprop', metrics=['acc']) # load weights from first model model.load_weights(fname, by_name=True, skip_mismatch=True) os.remove(fname) # assert layers 'rick' are equal for old, new in zip(old_weights[0], model.layers[0].get_weights()): assert_allclose(old, new, atol=1e-05) # assert layers 'morty' are not equal, since we skipped loading this layer for old, new in zip(old_weights[1], model.layers[1].get_weights()): assert_raises(AssertionError, assert_allclose, old, new, atol=1e-05) # a function to be called from the Lambda layer def square_fn(x): return x * x def test_saving_lambda_custom_objects(): inputs = Input(shape=(3,)) x = Lambda(lambda x: square_fn(x), output_shape=(3,))(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname, custom_objects={'square_fn': square_fn}) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05) def test_saving_lambda_numpy_array_arguments(): mean = np.random.random((4, 2, 3)) std = np.abs(np.random.random((4, 2, 3))) + 1e-5 inputs = Input(shape=(4, 2, 3)) outputs = Lambda(lambda image, mu, std: (image - mu) / std, arguments={'mu': mean, 'std': std})(inputs) model = Model(inputs, outputs) model.compile(loss='mse', optimizer='sgd', metrics=['acc']) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) assert_allclose(mean, model.layers[1].arguments['mu']) assert_allclose(std, model.layers[1].arguments['std']) def test_saving_custom_activation_function(): x = Input(shape=(3,)) output = Dense(3, activation=K.cos)(x) model = Model(x, output) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname, custom_objects={'cos': K.cos}) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05) def test_saving_model_with_long_layer_names(): # This layer name will make the `layers_name` HDF5 attribute blow # out of proportion. Note that it fits into the internal HDF5 # attribute memory limit on its own but because h5py converts # the list of layer names into numpy array, which uses the same # amout of memory for every item, it increases the memory # requirements substantially. x = Input(shape=(2,), name='input_' + ('x' * (2**15))) f = x for i in range(4): f = Dense(2, name='dense_%d' % (i,))(f) model = Model(inputs=[x], outputs=[f]) model.compile(loss='mse', optimizer='adam', metrics=['acc']) x = np.random.random((1, 2)) y = np.random.random((1, 2)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) # Check that the HDF5 files contains chunked array # of layer names. with h5py.File(fname, 'r') as h5file: n_layer_names_arrays = len([attr for attr in h5file['model_weights'].attrs if attr.startswith('layer_names')]) os.remove(fname) # The chunking of layer names array should have happened. assert n_layer_names_arrays > 0 out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05) def test_saving_model_with_long_weights_names(): x = Input(shape=(2,), name='nested_model_input') f = x for i in range(4): f = Dense(2, name='nested_model_dense_%d' % (i,))(f) f = Dense(2, name='nested_model_dense_4', trainable=False)(f) # This layer name will make the `weights_name` # HDF5 attribute blow out of proportion. f = Dense(2, name='nested_model_output' + ('x' * (2**15)))(f) nested_model = Model(inputs=[x], outputs=[f], name='nested_model') x = Input(shape=(2,), name='outer_model_input') f = nested_model(x) f = Dense(2, name='outer_model_output')(f) model = Model(inputs=[x], outputs=[f]) model.compile(loss='mse', optimizer='adam', metrics=['acc']) x = np.random.random((1, 2)) y = np.random.random((1, 2)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) # Check that the HDF5 files contains chunked array # of weight names. with h5py.File(fname, 'r') as h5file: attrs = [attr for attr in h5file['model_weights']['nested_model'].attrs if attr.startswith('weight_names')] n_weight_names_arrays = len(attrs) os.remove(fname) # The chunking of layer names array should have happened. assert n_weight_names_arrays > 0 out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05) def test_saving_recurrent_layer_with_init_state(): vector_size = 8 input_length = 20 input_initial_state = Input(shape=(vector_size,)) input_x = Input(shape=(input_length, vector_size)) lstm = LSTM(vector_size, return_sequences=True)( input_x, initial_state=[input_initial_state, input_initial_state]) model = Model(inputs=[input_x, input_initial_state], outputs=[lstm]) _, fname = tempfile.mkstemp('.h5') model.save(fname) loaded_model = load_model(fname) os.remove(fname) def test_saving_recurrent_layer_without_bias(): vector_size = 8 input_length = 20 input_x = Input(shape=(input_length, vector_size)) lstm = LSTM(vector_size, use_bias=False)(input_x) model = Model(inputs=[input_x], outputs=[lstm]) _, fname = tempfile.mkstemp('.h5') model.save(fname) loaded_model = load_model(fname) os.remove(fname) def test_loop_model_saving(): model = Sequential() model.add(Dense(2, input_shape=(3,))) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 2)) _, fname = tempfile.mkstemp('.h5') for _ in range(3): model.train_on_batch(x, y) save_model(model, fname, overwrite=True) out = model.predict(x) new_model = load_model(fname) os.remove(fname) out2 = new_model.predict(x) assert_allclose(out, out2, atol=1e-05) def test_saving_constant_initializer_with_numpy(): """Test saving and loading model of constant initializer with numpy inputs. """ model = Sequential() model.add(Dense(2, input_shape=(3,), kernel_initializer=Constant(np.ones((3, 2))))) model.add(Dense(3)) model.compile(loss='mse', optimizer='sgd', metrics=['acc']) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) def test_saving_group_naming_h5py(tmpdir): """Test saving model with layer which name is prefix to a previous layer name """ input_layer = Input((None, None, 3), name='test_input') x = Conv2D(1, 1, name='conv1/conv')(input_layer) x = Activation('relu', name='conv1')(x) model = Model(inputs=input_layer, outputs=x) p = tmpdir.mkdir("test").join("test.h5") model.save_weights(p) model.load_weights(p) def _make_nested_model(input_shape, layer, level=1, model_type='func'): # example: make_nested_seq_model((1,), Dense(10), level=2).summary() def make_nested_seq_model(input_shape, layer, level=1): model = layer for i in range(1, level + 1): layers = [InputLayer(input_shape), model] if (i == 1) else [model] model = Sequential(layers) return model # example: make_nested_func_model((1,), Dense(10), level=2).summary() def make_nested_func_model(input_shape, layer, level=1): input = Input(input_shape) model = layer for i in range(level): model = Model(input, model(input)) return model if model_type == 'func': return make_nested_func_model(input_shape, layer, level) elif model_type == 'seq': return make_nested_seq_model(input_shape, layer, level) def _convert_model_weights(source_model, target_model): _, fname = tempfile.mkstemp('.h5') source_model.save_weights(fname) target_model.load_weights(fname) os.remove(fname) def test_model_saving_with_rnn_initial_state_and_args(): class CustomRNN(LSTM): def call(self, inputs, arg=1, mask=None, training=None, initial_state=None): if isinstance(inputs, list): inputs = inputs[:] shape = K.int_shape(inputs[0]) inputs[0] *= arg inputs[0]._keras_shape = shape # for theano backend else: shape = K.int_shape(inputs) inputs *= arg inputs._keras_shape = shape # for theano backend return super(CustomRNN, self).call(inputs, mask, training, initial_state) inp = Input((3, 2)) rnn_out, h, c = CustomRNN(2, return_state=True, return_sequences=True)(inp) assert hasattr(rnn_out, '_keras_history') assert hasattr(h, '_keras_history') assert hasattr(c, '_keras_history') rnn2_out = CustomRNN(2)(rnn_out, arg=2, initial_state=[h, c]) assert hasattr(rnn2_out, '_keras_history') model = Model(inputs=inp, outputs=rnn2_out) x = np.random.random((2, 3, 2)) y1 = model.predict(x) _, fname = tempfile.mkstemp('.h5') with warnings.catch_warnings(): warnings.filterwarnings('error') model.save(fname) model2 = load_model(fname, custom_objects={'CustomRNN': CustomRNN}) y2 = model2.predict(x) assert_allclose(y1, y2, atol=1e-5) os.remove(fname) if __name__ == '__main__': pytest.main([__file__])
[ "keras.models.load_model", "os.remove", "numpy.abs", "numpy.ones", "keras.models.Model", "pytest.main", "keras.layers.Input", "numpy.zeros_like", "os.path.exists", "warnings.catch_warnings", "numpy.testing.assert_allclose", "keras.losses.MeanSquaredError", "io.BytesIO", "h5py.File", "numpy.testing.assert_raises", "keras.optimizers.Adam", "keras.layers.Conv2D", "keras.models.save_model", "keras.backend.int_shape", "keras.layers.RepeatVector", "keras.optimizers.RMSprop", "tempfile.mkstemp", "keras.layers.Activation", "warnings.filterwarnings", "keras.layers.LSTM", "numpy.random.random", "numpy.array", "keras.layers.Dense", "keras.layers.Lambda", "keras.layers.InputLayer", "keras.models.Sequential" ]
[((828, 840), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (838, 840), False, 'from keras.models import Model, Sequential\n'), ((1179, 1203), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (1195, 1203), True, 'import numpy as np\n'), ((1212, 1239), 'numpy.random.random', 'np.random.random', (['(1, 3, 3)'], {}), '((1, 3, 3))\n', (1228, 1239), True, 'import numpy as np\n'), ((1315, 1338), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (1331, 1338), False, 'import tempfile\n'), ((1343, 1367), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (1353, 1367), False, 'from keras.models import save_model, load_model\n'), ((1384, 1401), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (1394, 1401), False, 'from keras.models import save_model, load_model\n'), ((1406, 1422), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (1415, 1422), False, 'import os\n'), ((1433, 1457), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (1449, 1457), True, 'import numpy as np\n'), ((1467, 1494), 'numpy.random.random', 'np.random.random', (['(1, 3, 3)'], {}), '((1, 3, 3))\n', (1483, 1494), True, 'import numpy as np\n'), ((1598, 1639), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'new_out'], {'atol': '(1e-05)'}), '(out, new_out, atol=1e-05)\n', (1613, 1639), False, 'from numpy.testing import assert_allclose\n'), ((1777, 1822), 'numpy.testing.assert_allclose', 'assert_allclose', (['out_2', 'new_out_2'], {'atol': '(1e-05)'}), '(out_2, new_out_2, atol=1e-05)\n', (1792, 1822), False, 'from numpy.testing import assert_allclose\n'), ((1979, 1991), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1989, 1991), False, 'from keras.models import Model, Sequential\n'), ((2144, 2168), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (2160, 2168), True, 'import numpy as np\n'), ((2177, 2201), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (2193, 2201), True, 'import numpy as np\n'), ((2407, 2430), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (2423, 2430), False, 'import tempfile\n'), ((2435, 2459), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (2445, 2459), False, 'from keras.models import save_model, load_model\n'), ((2476, 2508), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname, **load_kwargs)\n', (2486, 2508), False, 'from keras.models import save_model, load_model\n'), ((2513, 2529), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (2522, 2529), False, 'import os\n'), ((2570, 2611), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'new_out'], {'atol': '(1e-05)'}), '(out, new_out, atol=1e-05)\n', (2585, 2611), False, 'from numpy.testing import assert_allclose\n'), ((2662, 2679), 'keras.layers.Input', 'Input', ([], {'shape': '(3,)'}), '(shape=(3,))\n', (2667, 2679), False, 'from keras.layers import Input, InputLayer\n'), ((2744, 2766), 'keras.models.Model', 'Model', (['inputs', 'outputs'], {}), '(inputs, outputs)\n', (2749, 2766), False, 'from keras.models import Model, Sequential\n'), ((2915, 2939), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (2931, 2939), True, 'import numpy as np\n'), ((2948, 2972), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (2964, 2972), True, 'import numpy as np\n'), ((3150, 3173), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (3166, 3173), False, 'import tempfile\n'), ((3178, 3202), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (3188, 3202), False, 'from keras.models import save_model, load_model\n'), ((3219, 3236), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (3229, 3236), False, 'from keras.models import save_model, load_model\n'), ((3241, 3257), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (3250, 3257), False, 'import os\n'), ((3298, 3339), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'new_out'], {'atol': '(1e-05)'}), '(out, new_out, atol=1e-05)\n', (3313, 3339), False, 'from numpy.testing import assert_allclose\n'), ((3489, 3512), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (3505, 3512), False, 'import tempfile\n'), ((3680, 3718), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'out2'], {'atol': '(1e-05)'}), '(out, out2, atol=1e-05)\n', (3695, 3718), False, 'from numpy.testing import assert_allclose\n'), ((3980, 4018), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'out2'], {'atol': '(1e-05)'}), '(out, out2, atol=1e-05)\n', (3995, 4018), False, 'from numpy.testing import assert_allclose\n'), ((4218, 4256), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'out2'], {'atol': '(1e-05)'}), '(out, out2, atol=1e-05)\n', (4233, 4256), False, 'from numpy.testing import assert_allclose\n'), ((4466, 4492), 'tempfile.mkstemp', 'tempfile.mkstemp', (['filename'], {}), '(filename)\n', (4482, 4492), False, 'import tempfile\n'), ((4521, 4547), 'os.path.exists', 'os.path.exists', (['temp_fname'], {}), '(temp_fname)\n', (4535, 4547), False, 'import os\n'), ((5077, 5115), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'out2'], {'atol': '(1e-05)'}), '(out, out2, atol=1e-05)\n', (5092, 5115), False, 'from numpy.testing import assert_allclose\n'), ((5610, 5648), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'out2'], {'atol': '(1e-05)'}), '(out, out2, atol=1e-05)\n', (5625, 5648), False, 'from numpy.testing import assert_allclose\n'), ((5791, 5803), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (5801, 5803), False, 'import io\n'), ((5808, 5833), 'keras.models.save_model', 'save_model', (['model', 'stream'], {}), '(model, stream)\n', (5818, 5833), False, 'from keras.models import save_model, load_model\n'), ((5872, 5890), 'keras.models.load_model', 'load_model', (['stream'], {}), '(stream)\n', (5882, 5890), False, 'from keras.models import save_model, load_model\n'), ((5930, 5968), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'out2'], {'atol': '(1e-05)'}), '(out, out2, atol=1e-05)\n', (5945, 5968), False, 'from numpy.testing import assert_allclose\n'), ((6028, 6045), 'keras.layers.Input', 'Input', ([], {'shape': '(5,)'}), '(shape=(5,))\n', (6033, 6045), False, 'from keras.layers import Input, InputLayer\n'), ((6168, 6216), 'keras.models.Model', 'Model', ([], {'inputs': 'inputs', 'outputs': '[output1, output2]'}), '(inputs=inputs, outputs=[output1, output2])\n', (6173, 6216), False, 'from keras.models import Model, Sequential\n'), ((6498, 6525), 'numpy.array', 'np.array', (['[[1, 1, 1, 1, 1]]'], {}), '([[1, 1, 1, 1, 1]])\n', (6506, 6525), True, 'import numpy as np\n'), ((6568, 6591), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (6584, 6591), False, 'import tempfile\n'), ((6596, 6620), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (6606, 6620), False, 'from keras.models import save_model, load_model\n'), ((6634, 6651), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (6644, 6651), False, 'from keras.models import save_model, load_model\n'), ((6656, 6672), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (6665, 6672), False, 'import os\n'), ((6706, 6744), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'out2'], {'atol': '(1e-05)'}), '(out, out2, atol=1e-05)\n', (6721, 6744), False, 'from numpy.testing import assert_allclose\n'), ((6850, 6862), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (6860, 6862), False, 'from keras.models import Model, Sequential\n'), ((6945, 6968), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (6961, 6968), False, 'import tempfile\n'), ((6973, 6997), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (6983, 6997), False, 'from keras.models import save_model, load_model\n'), ((7010, 7027), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (7020, 7027), False, 'from keras.models import save_model, load_model\n'), ((7032, 7048), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (7041, 7048), False, 'import os\n'), ((7106, 7118), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (7116, 7118), False, 'from keras.models import Model, Sequential\n'), ((7265, 7288), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (7281, 7288), False, 'import tempfile\n'), ((7293, 7317), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (7303, 7317), False, 'from keras.models import save_model, load_model\n'), ((7330, 7347), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (7340, 7347), False, 'from keras.models import save_model, load_model\n'), ((7352, 7368), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (7361, 7368), False, 'import os\n'), ((7418, 7444), 'keras.layers.Input', 'Input', ([], {'shape': '(256, 512, 6)'}), '(shape=(256, 512, 6))\n', (7423, 7444), False, 'from keras.layers import Input, InputLayer\n'), ((7453, 7479), 'keras.layers.Input', 'Input', ([], {'shape': '(256, 512, 1)'}), '(shape=(256, 512, 1))\n', (7458, 7479), False, 'from keras.layers import Input, InputLayer\n'), ((7537, 7568), 'keras.models.Model', 'Model', ([], {'inputs': '[a, b]', 'outputs': 'c'}), '(inputs=[a, b], outputs=c)\n', (7542, 7568), False, 'from keras.models import Model, Sequential\n'), ((7585, 7608), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (7601, 7608), False, 'import tempfile\n'), ((7613, 7637), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (7623, 7637), False, 'from keras.models import save_model, load_model\n'), ((7642, 7659), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (7652, 7659), False, 'from keras.models import save_model, load_model\n'), ((7664, 7680), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (7673, 7680), False, 'import os\n'), ((7948, 7960), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (7958, 7960), False, 'from keras.models import Model, Sequential\n'), ((8137, 8161), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (8153, 8161), True, 'import numpy as np\n'), ((8170, 8194), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (8186, 8194), True, 'import numpy as np\n'), ((8335, 8358), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (8351, 8358), False, 'import tempfile\n'), ((8470, 8487), 'keras.layers.Input', 'Input', ([], {'shape': '(3,)'}), '(shape=(3,))\n', (8475, 8487), False, 'from keras.layers import Input, InputLayer\n'), ((8709, 8746), 'keras.models.Model', 'Model', ([], {'inputs': '[data]', 'outputs': '[morty]'}), '(inputs=[data], outputs=[morty])\n', (8714, 8746), False, 'from keras.models import Model, Sequential\n'), ((8906, 8922), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (8915, 8922), False, 'import os\n'), ((9173, 9228), 'numpy.testing.assert_allclose', 'assert_allclose', (['old_weights[0][0]', 'rick[0]'], {'atol': '(1e-05)'}), '(old_weights[0][0], rick[0], atol=1e-05)\n', (9188, 9228), False, 'from numpy.testing import assert_allclose\n'), ((9233, 9288), 'numpy.testing.assert_allclose', 'assert_allclose', (['old_weights[0][1]', 'rick[1]'], {'atol': '(1e-05)'}), '(old_weights[0][1], rick[1], atol=1e-05)\n', (9248, 9288), False, 'from numpy.testing import assert_allclose\n'), ((9293, 9349), 'numpy.testing.assert_allclose', 'assert_allclose', (['old_weights[1][0]', 'morty[0]'], {'atol': '(1e-05)'}), '(old_weights[1][0], morty[0], atol=1e-05)\n', (9308, 9349), False, 'from numpy.testing import assert_allclose\n'), ((9354, 9410), 'numpy.testing.assert_allclose', 'assert_allclose', (['old_weights[1][1]', 'morty[1]'], {'atol': '(1e-05)'}), '(old_weights[1][1], morty[1], atol=1e-05)\n', (9369, 9410), False, 'from numpy.testing import assert_allclose\n'), ((9830, 9842), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (9840, 9842), False, 'from keras.models import Model, Sequential\n'), ((10019, 10043), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (10035, 10043), True, 'import numpy as np\n'), ((10052, 10076), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (10068, 10076), True, 'import numpy as np\n'), ((10217, 10240), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (10233, 10240), False, 'import tempfile\n'), ((10332, 10344), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (10342, 10344), False, 'from keras.models import Model, Sequential\n'), ((10658, 10674), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (10667, 10674), False, 'import os\n'), ((11201, 11218), 'keras.layers.Input', 'Input', ([], {'shape': '(3,)'}), '(shape=(3,))\n', (11206, 11218), False, 'from keras.layers import Input, InputLayer\n'), ((11324, 11346), 'keras.models.Model', 'Model', (['inputs', 'outputs'], {}), '(inputs, outputs)\n', (11329, 11346), False, 'from keras.models import Model, Sequential\n'), ((11507, 11531), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (11523, 11531), True, 'import numpy as np\n'), ((11540, 11564), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (11556, 11564), True, 'import numpy as np\n'), ((11639, 11662), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (11655, 11662), False, 'import tempfile\n'), ((11667, 11691), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (11677, 11691), False, 'from keras.models import save_model, load_model\n'), ((11705, 11763), 'keras.models.load_model', 'load_model', (['fname'], {'custom_objects': "{'square_fn': square_fn}"}), "(fname, custom_objects={'square_fn': square_fn})\n", (11715, 11763), False, 'from keras.models import save_model, load_model\n'), ((11768, 11784), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (11777, 11784), False, 'import os\n'), ((11818, 11856), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'out2'], {'atol': '(1e-05)'}), '(out, out2, atol=1e-05)\n', (11833, 11856), False, 'from numpy.testing import assert_allclose\n'), ((11918, 11945), 'numpy.random.random', 'np.random.random', (['(4, 2, 3)'], {}), '((4, 2, 3))\n', (11934, 11945), True, 'import numpy as np\n'), ((12012, 12034), 'keras.layers.Input', 'Input', ([], {'shape': '(4, 2, 3)'}), '(shape=(4, 2, 3))\n', (12017, 12034), False, 'from keras.layers import Input, InputLayer\n'), ((12176, 12198), 'keras.models.Model', 'Model', (['inputs', 'outputs'], {}), '(inputs, outputs)\n', (12181, 12198), False, 'from keras.models import Model, Sequential\n'), ((12279, 12302), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (12295, 12302), False, 'import tempfile\n'), ((12307, 12331), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (12317, 12331), False, 'from keras.models import save_model, load_model\n'), ((12345, 12362), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (12355, 12362), False, 'from keras.models import save_model, load_model\n'), ((12367, 12383), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (12376, 12383), False, 'import os\n'), ((12389, 12443), 'numpy.testing.assert_allclose', 'assert_allclose', (['mean', "model.layers[1].arguments['mu']"], {}), "(mean, model.layers[1].arguments['mu'])\n", (12404, 12443), False, 'from numpy.testing import assert_allclose\n'), ((12448, 12502), 'numpy.testing.assert_allclose', 'assert_allclose', (['std', "model.layers[1].arguments['std']"], {}), "(std, model.layers[1].arguments['std'])\n", (12463, 12502), False, 'from numpy.testing import assert_allclose\n'), ((12559, 12576), 'keras.layers.Input', 'Input', ([], {'shape': '(3,)'}), '(shape=(3,))\n', (12564, 12576), False, 'from keras.layers import Input, InputLayer\n'), ((12633, 12649), 'keras.models.Model', 'Model', (['x', 'output'], {}), '(x, output)\n', (12638, 12649), False, 'from keras.models import Model, Sequential\n'), ((12810, 12834), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (12826, 12834), True, 'import numpy as np\n'), ((12843, 12867), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (12859, 12867), True, 'import numpy as np\n'), ((12942, 12965), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (12958, 12965), False, 'import tempfile\n'), ((12970, 12994), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (12980, 12994), False, 'from keras.models import save_model, load_model\n'), ((13008, 13056), 'keras.models.load_model', 'load_model', (['fname'], {'custom_objects': "{'cos': K.cos}"}), "(fname, custom_objects={'cos': K.cos})\n", (13018, 13056), False, 'from keras.models import save_model, load_model\n'), ((13061, 13077), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (13070, 13077), False, 'import os\n'), ((13111, 13149), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'out2'], {'atol': '(1e-05)'}), '(out, out2, atol=1e-05)\n', (13126, 13149), False, 'from numpy.testing import assert_allclose\n'), ((13573, 13621), 'keras.layers.Input', 'Input', ([], {'shape': '(2,)', 'name': "('input_' + 'x' * 2 ** 15)"}), "(shape=(2,), name='input_' + 'x' * 2 ** 15)\n", (13578, 13621), False, 'from keras.layers import Input, InputLayer\n'), ((13718, 13748), 'keras.models.Model', 'Model', ([], {'inputs': '[x]', 'outputs': '[f]'}), '(inputs=[x], outputs=[f])\n', (13723, 13748), False, 'from keras.models import Model, Sequential\n'), ((13824, 13848), 'numpy.random.random', 'np.random.random', (['(1, 2)'], {}), '((1, 2))\n', (13840, 13848), True, 'import numpy as np\n'), ((13857, 13881), 'numpy.random.random', 'np.random.random', (['(1, 2)'], {}), '((1, 2))\n', (13873, 13881), True, 'import numpy as np\n'), ((13957, 13980), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (13973, 13980), False, 'import tempfile\n'), ((13985, 14009), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (13995, 14009), False, 'from keras.models import save_model, load_model\n'), ((14023, 14040), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (14033, 14040), False, 'from keras.models import save_model, load_model\n'), ((14321, 14337), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (14330, 14337), False, 'import os\n'), ((14470, 14508), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'out2'], {'atol': '(1e-05)'}), '(out, out2, atol=1e-05)\n', (14485, 14508), False, 'from numpy.testing import assert_allclose\n'), ((14568, 14612), 'keras.layers.Input', 'Input', ([], {'shape': '(2,)', 'name': '"""nested_model_input"""'}), "(shape=(2,), name='nested_model_input')\n", (14573, 14612), False, 'from keras.layers import Input, InputLayer\n'), ((14954, 15005), 'keras.models.Model', 'Model', ([], {'inputs': '[x]', 'outputs': '[f]', 'name': '"""nested_model"""'}), "(inputs=[x], outputs=[f], name='nested_model')\n", (14959, 15005), False, 'from keras.models import Model, Sequential\n'), ((15015, 15058), 'keras.layers.Input', 'Input', ([], {'shape': '(2,)', 'name': '"""outer_model_input"""'}), "(shape=(2,), name='outer_model_input')\n", (15020, 15058), False, 'from keras.layers import Input, InputLayer\n'), ((15143, 15173), 'keras.models.Model', 'Model', ([], {'inputs': '[x]', 'outputs': '[f]'}), '(inputs=[x], outputs=[f])\n', (15148, 15173), False, 'from keras.models import Model, Sequential\n'), ((15249, 15273), 'numpy.random.random', 'np.random.random', (['(1, 2)'], {}), '((1, 2))\n', (15265, 15273), True, 'import numpy as np\n'), ((15282, 15306), 'numpy.random.random', 'np.random.random', (['(1, 2)'], {}), '((1, 2))\n', (15298, 15306), True, 'import numpy as np\n'), ((15382, 15405), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (15398, 15405), False, 'import tempfile\n'), ((15410, 15434), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (15420, 15434), False, 'from keras.models import save_model, load_model\n'), ((15448, 15465), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (15458, 15465), False, 'from keras.models import save_model, load_model\n'), ((15768, 15784), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (15777, 15784), False, 'import os\n'), ((15918, 15956), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'out2'], {'atol': '(1e-05)'}), '(out, out2, atol=1e-05)\n', (15933, 15956), False, 'from numpy.testing import assert_allclose\n'), ((16079, 16106), 'keras.layers.Input', 'Input', ([], {'shape': '(vector_size,)'}), '(shape=(vector_size,))\n', (16084, 16106), False, 'from keras.layers import Input, InputLayer\n'), ((16121, 16161), 'keras.layers.Input', 'Input', ([], {'shape': '(input_length, vector_size)'}), '(shape=(input_length, vector_size))\n', (16126, 16161), False, 'from keras.layers import Input, InputLayer\n'), ((16304, 16364), 'keras.models.Model', 'Model', ([], {'inputs': '[input_x, input_initial_state]', 'outputs': '[lstm]'}), '(inputs=[input_x, input_initial_state], outputs=[lstm])\n', (16309, 16364), False, 'from keras.models import Model, Sequential\n'), ((16381, 16404), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (16397, 16404), False, 'import tempfile\n'), ((16447, 16464), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (16457, 16464), False, 'from keras.models import save_model, load_model\n'), ((16469, 16485), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (16478, 16485), False, 'import os\n'), ((16593, 16633), 'keras.layers.Input', 'Input', ([], {'shape': '(input_length, vector_size)'}), '(shape=(input_length, vector_size))\n', (16598, 16633), False, 'from keras.layers import Input, InputLayer\n'), ((16700, 16739), 'keras.models.Model', 'Model', ([], {'inputs': '[input_x]', 'outputs': '[lstm]'}), '(inputs=[input_x], outputs=[lstm])\n', (16705, 16739), False, 'from keras.models import Model, Sequential\n'), ((16756, 16779), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (16772, 16779), False, 'import tempfile\n'), ((16822, 16839), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (16832, 16839), False, 'from keras.models import save_model, load_model\n'), ((16844, 16860), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (16853, 16860), False, 'import os\n'), ((16905, 16917), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (16915, 16917), False, 'from keras.models import Model, Sequential\n'), ((17121, 17145), 'numpy.random.random', 'np.random.random', (['(1, 3)'], {}), '((1, 3))\n', (17137, 17145), True, 'import numpy as np\n'), ((17154, 17178), 'numpy.random.random', 'np.random.random', (['(1, 2)'], {}), '((1, 2))\n', (17170, 17178), True, 'import numpy as np\n'), ((17194, 17217), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (17210, 17217), False, 'import tempfile\n'), ((17374, 17391), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (17384, 17391), False, 'from keras.models import save_model, load_model\n'), ((17396, 17412), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (17405, 17412), False, 'import os\n'), ((17450, 17488), 'numpy.testing.assert_allclose', 'assert_allclose', (['out', 'out2'], {'atol': '(1e-05)'}), '(out, out2, atol=1e-05)\n', (17465, 17488), False, 'from numpy.testing import assert_allclose\n'), ((17642, 17654), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (17652, 17654), False, 'from keras.models import Model, Sequential\n'), ((17867, 17890), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (17883, 17890), False, 'import tempfile\n'), ((17895, 17919), 'keras.models.save_model', 'save_model', (['model', 'fname'], {}), '(model, fname)\n', (17905, 17919), False, 'from keras.models import save_model, load_model\n'), ((17932, 17949), 'keras.models.load_model', 'load_model', (['fname'], {}), '(fname)\n', (17942, 17949), False, 'from keras.models import save_model, load_model\n'), ((17954, 17970), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (17963, 17970), False, 'import os\n'), ((18129, 18170), 'keras.layers.Input', 'Input', (['(None, None, 3)'], {'name': '"""test_input"""'}), "((None, None, 3), name='test_input')\n", (18134, 18170), False, 'from keras.layers import Input, InputLayer\n'), ((18281, 18317), 'keras.models.Model', 'Model', ([], {'inputs': 'input_layer', 'outputs': 'x'}), '(inputs=input_layer, outputs=x)\n', (18286, 18317), False, 'from keras.models import Model, Sequential\n'), ((19375, 19398), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (19391, 19398), False, 'import tempfile\n'), ((19477, 19493), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (19486, 19493), False, 'import os\n'), ((20145, 20158), 'keras.layers.Input', 'Input', (['(3, 2)'], {}), '((3, 2))\n', (20150, 20158), False, 'from keras.layers import Input, InputLayer\n'), ((20490, 20525), 'keras.models.Model', 'Model', ([], {'inputs': 'inp', 'outputs': 'rnn2_out'}), '(inputs=inp, outputs=rnn2_out)\n', (20495, 20525), False, 'from keras.models import Model, Sequential\n'), ((20534, 20561), 'numpy.random.random', 'np.random.random', (['(2, 3, 2)'], {}), '((2, 3, 2))\n', (20550, 20561), True, 'import numpy as np\n'), ((20603, 20626), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (20619, 20626), False, 'import tempfile\n'), ((20743, 20801), 'keras.models.load_model', 'load_model', (['fname'], {'custom_objects': "{'CustomRNN': CustomRNN}"}), "(fname, custom_objects={'CustomRNN': CustomRNN})\n", (20753, 20801), False, 'from keras.models import save_model, load_model\n'), ((20833, 20868), 'numpy.testing.assert_allclose', 'assert_allclose', (['y1', 'y2'], {'atol': '(1e-05)'}), '(y1, y2, atol=1e-05)\n', (20848, 20868), False, 'from numpy.testing import assert_allclose\n'), ((20872, 20888), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (20881, 20888), False, 'import os\n'), ((20922, 20945), 'pytest.main', 'pytest.main', (['[__file__]'], {}), '([__file__])\n', (20933, 20945), False, 'import pytest\n'), ((855, 881), 'keras.layers.Dense', 'Dense', (['(2)'], {'input_shape': '(3,)'}), '(2, input_shape=(3,))\n', (860, 881), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((897, 912), 'keras.layers.RepeatVector', 'RepeatVector', (['(3)'], {}), '(3)\n', (909, 912), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((2006, 2032), 'keras.layers.Dense', 'Dense', (['(2)'], {'input_shape': '(3,)'}), '(2, input_shape=(3,))\n', (2011, 2032), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((2048, 2056), 'keras.layers.Dense', 'Dense', (['(3)'], {}), '(3)\n', (2053, 2056), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((2688, 2696), 'keras.layers.Dense', 'Dense', (['(2)'], {}), '(2)\n', (2693, 2696), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((2719, 2727), 'keras.layers.Dense', 'Dense', (['(3)'], {}), '(3)\n', (2724, 2727), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((3522, 3549), 'h5py.File', 'h5py.File', (['fname'], {'mode': '"""r+"""'}), "(fname, mode='r+')\n", (3531, 3549), False, 'import h5py\n'), ((3569, 3594), 'keras.models.save_model', 'save_model', (['model', 'h5file'], {}), '(model, h5file)\n', (3579, 3594), False, 'from keras.models import save_model, load_model\n'), ((3618, 3636), 'keras.models.load_model', 'load_model', (['h5file'], {}), '(h5file)\n', (3628, 3636), False, 'from keras.models import save_model, load_model\n'), ((3766, 3830), 'h5py.File', 'h5py.File', (['"""does not matter"""'], {'driver': '"""core"""', 'backing_store': '(False)'}), "('does not matter', driver='core', backing_store=False)\n", (3775, 3830), False, 'import h5py\n'), ((3869, 3894), 'keras.models.save_model', 'save_model', (['model', 'h5file'], {}), '(model, h5file)\n', (3879, 3894), False, 'from keras.models import save_model, load_model\n'), ((3918, 3936), 'keras.models.load_model', 'load_model', (['h5file'], {}), '(h5file)\n', (3928, 3936), False, 'from keras.models import save_model, load_model\n'), ((4029, 4056), 'h5py.File', 'h5py.File', (['fname'], {'mode': '"""r+"""'}), "(fname, mode='r+')\n", (4038, 4056), False, 'import h5py\n'), ((4117, 4137), 'keras.models.save_model', 'save_model', (['model', 'g'], {}), '(model, g)\n', (4127, 4137), False, 'from keras.models import save_model, load_model\n'), ((4161, 4174), 'keras.models.load_model', 'load_model', (['g'], {}), '(g)\n', (4171, 4174), False, 'from keras.models import save_model, load_model\n'), ((4557, 4578), 'os.remove', 'os.remove', (['temp_fname'], {}), '(temp_fname)\n', (4566, 4578), False, 'import os\n'), ((6054, 6062), 'keras.layers.Dense', 'Dense', (['(5)'], {}), '(5)\n', (6059, 6062), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((6085, 6109), 'keras.layers.Dense', 'Dense', (['(1)'], {'name': '"""output1"""'}), "(1, name='output1')\n", (6090, 6109), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((6127, 6151), 'keras.layers.Dense', 'Dense', (['(1)'], {'name': '"""output2"""'}), "(1, name='output2')\n", (6132, 6151), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((6877, 6903), 'keras.layers.Dense', 'Dense', (['(2)'], {'input_shape': '(3,)'}), '(2, input_shape=(3,))\n', (6882, 6903), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((6919, 6927), 'keras.layers.Dense', 'Dense', (['(3)'], {}), '(3)\n', (6924, 6927), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((7133, 7159), 'keras.layers.Dense', 'Dense', (['(2)'], {'input_shape': '(3,)'}), '(2, input_shape=(3,))\n', (7138, 7159), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((7175, 7183), 'keras.layers.Dense', 'Dense', (['(3)'], {}), '(3)\n', (7180, 7183), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((7488, 7520), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x[:, :, :, :1])'], {}), '(lambda x: x[:, :, :, :1])\n', (7494, 7520), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((7975, 8014), 'keras.layers.Dense', 'Dense', (['(2)'], {'input_shape': '(3,)', 'name': '"""rick"""'}), "(2, input_shape=(3,), name='rick')\n", (7980, 8014), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((8030, 8052), 'keras.layers.Dense', 'Dense', (['(3)'], {'name': '"""morty"""'}), "(3, name='morty')\n", (8035, 8052), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((8499, 8520), 'keras.layers.Dense', 'Dense', (['(2)'], {'name': '"""rick"""'}), "(2, name='rick')\n", (8504, 8520), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((8539, 8561), 'keras.layers.Dense', 'Dense', (['(3)'], {'name': '"""jerry"""'}), "(3, name='jerry')\n", (8544, 8561), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((8620, 8644), 'keras.layers.Dense', 'Dense', (['(2)'], {'name': '"""jessica"""'}), "(2, name='jessica')\n", (8625, 8644), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((8664, 8686), 'keras.layers.Dense', 'Dense', (['(3)'], {'name': '"""morty"""'}), "(3, name='morty')\n", (8669, 8686), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((9431, 9454), 'numpy.zeros_like', 'np.zeros_like', (['jerry[1]'], {}), '(jerry[1])\n', (9444, 9454), True, 'import numpy as np\n'), ((9506, 9531), 'numpy.zeros_like', 'np.zeros_like', (['jessica[1]'], {}), '(jessica[1])\n', (9519, 9531), True, 'import numpy as np\n'), ((9857, 9896), 'keras.layers.Dense', 'Dense', (['(2)'], {'input_shape': '(3,)', 'name': '"""rick"""'}), "(2, input_shape=(3,), name='rick')\n", (9862, 9896), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((9912, 9934), 'keras.layers.Dense', 'Dense', (['(3)'], {'name': '"""morty"""'}), "(3, name='morty')\n", (9917, 9934), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((10359, 10398), 'keras.layers.Dense', 'Dense', (['(2)'], {'input_shape': '(3,)', 'name': '"""rick"""'}), "(2, input_shape=(3,), name='rick')\n", (10364, 10398), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((10414, 10436), 'keras.layers.Dense', 'Dense', (['(4)'], {'name': '"""morty"""'}), "(4, name='morty')\n", (10419, 10436), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((10793, 10830), 'numpy.testing.assert_allclose', 'assert_allclose', (['old', 'new'], {'atol': '(1e-05)'}), '(old, new, atol=1e-05)\n', (10808, 10830), False, 'from numpy.testing import assert_allclose\n'), ((10991, 11059), 'numpy.testing.assert_raises', 'assert_raises', (['AssertionError', 'assert_allclose', 'old', 'new'], {'atol': '(1e-05)'}), '(AssertionError, assert_allclose, old, new, atol=1e-05)\n', (11004, 11059), False, 'from numpy.testing import assert_raises\n'), ((11299, 11307), 'keras.layers.Dense', 'Dense', (['(3)'], {}), '(3)\n', (11304, 11307), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((12049, 12138), 'keras.layers.Lambda', 'Lambda', (['(lambda image, mu, std: (image - mu) / std)'], {'arguments': "{'mu': mean, 'std': std}"}), "(lambda image, mu, std: (image - mu) / std, arguments={'mu': mean,\n 'std': std})\n", (12055, 12138), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((12590, 12616), 'keras.layers.Dense', 'Dense', (['(3)'], {'activation': 'K.cos'}), '(3, activation=K.cos)\n', (12595, 12616), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((14128, 14149), 'h5py.File', 'h5py.File', (['fname', '"""r"""'], {}), "(fname, 'r')\n", (14137, 14149), False, 'import h5py\n'), ((14715, 14769), 'keras.layers.Dense', 'Dense', (['(2)'], {'name': '"""nested_model_dense_4"""', 'trainable': '(False)'}), "(2, name='nested_model_dense_4', trainable=False)\n", (14720, 14769), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((14877, 14929), 'keras.layers.Dense', 'Dense', (['(2)'], {'name': "('nested_model_output' + 'x' * 2 ** 15)"}), "(2, name='nested_model_output' + 'x' * 2 ** 15)\n", (14882, 14929), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((15091, 15126), 'keras.layers.Dense', 'Dense', (['(2)'], {'name': '"""outer_model_output"""'}), "(2, name='outer_model_output')\n", (15096, 15126), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((15554, 15575), 'h5py.File', 'h5py.File', (['fname', '"""r"""'], {}), "(fname, 'r')\n", (15563, 15575), False, 'import h5py\n'), ((16174, 16214), 'keras.layers.LSTM', 'LSTM', (['vector_size'], {'return_sequences': '(True)'}), '(vector_size, return_sequences=True)\n', (16178, 16214), False, 'from keras.layers import Bidirectional, GRU, LSTM\n'), ((16645, 16678), 'keras.layers.LSTM', 'LSTM', (['vector_size'], {'use_bias': '(False)'}), '(vector_size, use_bias=False)\n', (16649, 16678), False, 'from keras.layers import Bidirectional, GRU, LSTM\n'), ((16932, 16958), 'keras.layers.Dense', 'Dense', (['(2)'], {'input_shape': '(3,)'}), '(2, input_shape=(3,))\n', (16937, 16958), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((17285, 17325), 'keras.models.save_model', 'save_model', (['model', 'fname'], {'overwrite': '(True)'}), '(model, fname, overwrite=True)\n', (17295, 17325), False, 'from keras.models import save_model, load_model\n'), ((17777, 17785), 'keras.layers.Dense', 'Dense', (['(3)'], {}), '(3)\n', (17782, 17785), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((18179, 18210), 'keras.layers.Conv2D', 'Conv2D', (['(1)', '(1)'], {'name': '"""conv1/conv"""'}), "(1, 1, name='conv1/conv')\n", (18185, 18210), False, 'from keras.layers import Conv2D, Flatten, Activation\n'), ((18232, 18264), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {'name': '"""conv1"""'}), "('relu', name='conv1')\n", (18242, 18264), False, 'from keras.layers import Conv2D, Flatten, Activation\n'), ((18973, 18991), 'keras.layers.Input', 'Input', (['input_shape'], {}), '(input_shape)\n', (18978, 18991), False, 'from keras.layers import Input, InputLayer\n'), ((20636, 20661), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (20659, 20661), False, 'import warnings\n'), ((20671, 20703), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""error"""'], {}), "('error')\n", (20694, 20703), False, 'import warnings\n'), ((944, 952), 'keras.layers.Dense', 'Dense', (['(3)'], {}), '(3)\n', (949, 952), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((978, 1003), 'keras.losses.MeanSquaredError', 'losses.MeanSquaredError', ([], {}), '()\n', (1001, 1003), False, 'from keras import losses\n'), ((1033, 1062), 'keras.optimizers.RMSprop', 'optimizers.RMSprop', ([], {'lr': '(0.0001)'}), '(lr=0.0001)\n', (1051, 1062), False, 'from keras import optimizers\n'), ((2830, 2847), 'keras.optimizers.Adam', 'optimizers.Adam', ([], {}), '()\n', (2845, 2847), False, 'from keras import optimizers\n'), ((4839, 4866), 'keras.models.save_model', 'save_model', (['model', 'raw_file'], {}), '(model, raw_file)\n', (4849, 4866), False, 'from keras.models import save_model, load_model\n'), ((4954, 4980), 'h5py.File', 'h5py.File', (['fname'], {'mode': '"""r"""'}), "(fname, mode='r')\n", (4963, 4980), False, 'import h5py\n'), ((5019, 5037), 'keras.models.load_model', 'load_model', (['h5file'], {}), '(h5file)\n', (5029, 5037), False, 'from keras.models import save_model, load_model\n'), ((5336, 5362), 'h5py.File', 'h5py.File', (['fname'], {'mode': '"""w"""'}), "(fname, mode='w')\n", (5345, 5362), False, 'import h5py\n'), ((5386, 5411), 'keras.models.save_model', 'save_model', (['model', 'h5file'], {}), '(model, h5file)\n', (5396, 5411), False, 'from keras.models import save_model, load_model\n'), ((5550, 5570), 'keras.models.load_model', 'load_model', (['raw_file'], {}), '(raw_file)\n', (5560, 5570), False, 'from keras.models import save_model, load_model\n'), ((8970, 8988), 'numpy.abs', 'np.abs', (['(out - out2)'], {}), '(out - out2)\n', (8976, 8988), True, 'import numpy as np\n'), ((11410, 11439), 'keras.optimizers.RMSprop', 'optimizers.RMSprop', ([], {'lr': '(0.0001)'}), '(lr=0.0001)\n', (11428, 11439), False, 'from keras import optimizers\n'), ((11963, 11990), 'numpy.random.random', 'np.random.random', (['(4, 2, 3)'], {}), '((4, 2, 3))\n', (11979, 11990), True, 'import numpy as np\n'), ((12713, 12742), 'keras.optimizers.RMSprop', 'optimizers.RMSprop', ([], {'lr': '(0.0001)'}), '(lr=0.0001)\n', (12731, 12742), False, 'from keras import optimizers\n'), ((13669, 13701), 'keras.layers.Dense', 'Dense', (['(2)'], {'name': "('dense_%d' % (i,))"}), "(2, name='dense_%d' % (i,))\n", (13674, 13701), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((14658, 14703), 'keras.layers.Dense', 'Dense', (['(2)'], {'name': "('nested_model_dense_%d' % (i,))"}), "(2, name='nested_model_dense_%d' % (i,))\n", (14663, 14703), False, 'from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed\n'), ((17023, 17052), 'keras.optimizers.RMSprop', 'optimizers.RMSprop', ([], {'lr': '(0.0001)'}), '(lr=0.0001)\n', (17041, 17052), False, 'from keras import optimizers\n'), ((18781, 18799), 'keras.models.Sequential', 'Sequential', (['layers'], {}), '(layers)\n', (18791, 18799), False, 'from keras.models import Model, Sequential\n'), ((19765, 19787), 'keras.backend.int_shape', 'K.int_shape', (['inputs[0]'], {}), '(inputs[0])\n', (19776, 19787), True, 'from keras import backend as K\n'), ((19932, 19951), 'keras.backend.int_shape', 'K.int_shape', (['inputs'], {}), '(inputs)\n', (19943, 19951), True, 'from keras import backend as K\n'), ((17744, 17759), 'numpy.ones', 'np.ones', (['(3, 2)'], {}), '((3, 2))\n', (17751, 17759), True, 'import numpy as np\n'), ((18704, 18727), 'keras.layers.InputLayer', 'InputLayer', (['input_shape'], {}), '(input_shape)\n', (18714, 18727), False, 'from keras.layers import Input, InputLayer\n')]