code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import sys from functools import partial from typing import Any, Callable, List, Optional, Tuple, cast import numpy as np from numpy.core.numerictypes import ScalarType from sklearn import feature_selection as fs from . import _utils def _get_mi_func(discrete: bool) -> Callable: """ Get mutual information function depending on whether the attribute is discrete Parameters ---------- discrete : bool whether the attribute is discrete Returns ------- Callable mutual information function handle """ RANDOM_STATE = getattr(sys.modules[__name__.split(".")[0]], "RANDOM_STATE") return partial( fs.mutual_info_classif if discrete else fs.mutual_info_regression, random_state=RANDOM_STATE, ) def _latent_attr_mutual_info( z: np.ndarray, a: np.ndarray, discrete: bool = False ) -> np.ndarray: """ Calculate mutual information between latent vectors and a target attribute. Parameters ---------- z : np.ndarray, (n_samples, n_features) a batch of latent vectors a : np.ndarray, (n_samples,) a batch of one attribute discrete : bool, optional whether the attribute is discrete, by default False Returns ------- np.ndarray, (n_features,) mutual information between each latent vector dimension and the attribute """ return _get_mi_func(discrete)(z, a) def _attr_latent_mutual_info( z: np.ndarray, a: np.ndarray, discrete: bool = False ) -> np.ndarray: """ Calculate mutual information between latent vectors and a target attribute. Parameters ---------- z : np.ndarray, (n_samples,) a batch of a latent vector a : np.ndarray, (n_samples, n_attr) a batch of attributes discrete : bool, optional whether the attribute is discrete, by default False Returns ------- np.ndarray, (n_attr,) mutual information between each latent vector dimension and the attribute """ return np.concatenate( [_get_mi_func(discrete)(z[:, None], a[:, i]) for i in range(a.shape[1])] ) def _single_mutual_info(a: np.ndarray, b: np.ndarray, discrete: bool) -> float: """ Calculate mutual information between two variables Parameters ---------- a : np.ndarray, (n_samples,) a batch of a feature variable b : np.ndarray, (n_samples,) a batch of a target variable discrete : bool, optional whether the target variable is discrete, by default False Returns ------- float mutual information between the variables """ return _get_mi_func(discrete)(a[:, None], b)[0] def _entropy(a: np.ndarray, discrete: bool = False) -> float: """ Calculate entropy of a variable Parameters ---------- a : np.ndarray, (n_samples,) a batch of the variable discrete : bool, optional whether the variable is discrete, by default False Returns ------- float entropy of the variable """ return _single_mutual_info(a, a, discrete) def _conditional_entropy( ai: np.ndarray, aj: np.ndarray, discrete: bool = False ) -> float: """ Calculate conditional entropy of a variable given another variable. .. math:: \mathcal{H}(a_i|a_j) = \mathcal{H}(a_i) - \mathcal{I}(a_i, a_j), where :math:`\mathcal{I}(\cdot,\cdot)` is mutual information, and :math:`\mathcal{H}(\cdot)` is entropy. Parameters ---------- ai : np.ndarray, (n_samples,) a batch of the first variable aj : np.ndarray, (n_samples,) a batch of the conditioning variable discrete : bool, optional whether the variables are discrete, by default False Returns ------- float conditional entropy of `ai` given `aj`. """ return _entropy(ai, discrete) - _single_mutual_info(ai, aj, discrete) def _xgap(mi: np.ndarray, zi: int, reg_dim: List) -> Tuple[np.ndarray, Optional[int]]: # TODO: merge this function with utils._top2gap mizi = mi[zi] mi = np.delete(mi, reg_dim) mi_sort = np.sort(mi) mi_argsort = np.argsort(mi) return (mizi - mi_sort[-1]), mi_argsort[-1] + len(reg_dim) def mig( z: np.ndarray, a: np.ndarray, reg_dim: Optional[List[int]] = None, discrete: bool = False, fill_reg_dim: bool = False, ) -> np.ndarray: """ Calculate Mutual Information Gap (MIG) between latent vectors and attributes. Mutual Information Gap measures the degree of disentanglement. For each attribute, MIG is calculated by difference in the mutual informations between that of the attribute and its most informative latent dimension, and that of the attribute and its second-most informative latent dimension. Mathematically, MIG is given by .. math:: \operatorname{MIG}(a_i, \mathbf{z}) = \dfrac{\mathcal{I}(a_i, z_j)-\mathcal{I}(a_i, z_k)}{\mathcal{H}(a_i)}, where :math:`j=\operatorname{arg}\max_n \mathcal{I}(a_i, z_n)`, :math:`k=\operatorname{arg}\max_{n≠j} \mathcal{I}(a_i, z_n)`, :math:`\mathcal{I}(\cdot,\cdot)` is mutual information, and :math:`\mathcal{H}(\cdot)` is entropy. If `reg_dim` is specified, :math:`j` is instead overwritten to `reg_dim[i]`, while :math:`k=\operatorname{arg}\max_{n≠j} \mathcal{I}(a_i, z_n)` as usual. MIG is best applied for independent attributes. Parameters ---------- z : np.ndarray, (n_samples, n_features) a batch of latent vectors a : np.ndarray, (n_samples, n_attributes) or (n_samples,) a batch of attribute(s) reg_dim : Optional[List], optional regularized dimensions, by default None Attribute `a[:, i]` is regularized by `z[:, reg_dim[i]]`. If `reg_dim` is provided, the first mutual information is always taken between the regularized dimension and the attribute, and MIG may be negative. discrete : bool, optional Whether the attributes are discrete, by default False fill_reg_dim : bool, optional Whether to automatically fill `reg_dim` with `range(n_attributes)`, by default False. If `fill_reg_dim` is True, the `reg_dim` behavior is the same as the dependency-aware family. This option is mainly used for compatibility with the dependency-aware family in a bundle. Returns ------- np.ndarray, (n_attributes,) MIG for each attribute See Also -------- .dmig : Dependency-Aware Mutual Information Gap .xmig : Dependency-Blind Mutual Information Gap .dlig : Dependency-Aware Latent Information Gap References ---------- .. [1] <NAME>, <NAME>, <NAME>, and <NAME>, “Isolating sources of disentanglement in variational autoencoders”, in Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018. """ z, a, reg_dim = _utils._validate_za_shape(z, a, reg_dim, fill_reg_dim=fill_reg_dim) _, n_attr = a.shape ret = np.zeros((n_attr,)) for i in range(n_attr): ai = a[:, i] zi = reg_dim[i] if reg_dim is not None else None en = _entropy(ai, discrete) mi = _latent_attr_mutual_info(z, ai, discrete) gap, _ = _utils._top2gap(mi, zi) ret[i] = gap / en return ret def dmig( z: np.ndarray, a: np.ndarray, reg_dim: Optional[List[int]] = None, discrete: bool = False, ) -> np.ndarray: """ Calculate Dependency-Aware Mutual Information Gap (DMIG) between latent vectors and attributes Dependency-Aware Mutual Information Gap (DMIG) is a dependency-aware version of MIG that accounts for attribute interdependence observed in real-world data. Mathematically, DMIG is given by .. math:: \operatorname{DMIG}(a_i, \mathbf{z}) = \dfrac{\mathcal{I}(a_i, z_j)-\mathcal{I}(a_i, z_k)}{\mathcal{H}(a_i|a_l)}, where :math:`j=\operatorname{arg}\max_n \mathcal{I}(a_i, z_n)`, :math:`k=\operatorname{arg}\max_{n≠j} \mathcal{I}(a_i, z_n)`, :math:`\mathcal{I}(\cdot,\cdot)` is mutual information, :math:`\mathcal{H}(\cdot|\cdot)` is conditional entropy, and :math:`a_l` is the attribute regularized by :math:`z_k`. If :math:`z_k` is not regularizing any attribute, DMIG reduces to the usual MIG. DMIG compensates for the reduced maximum possible value of the numerator due to attribute interdependence. If `reg_dim` is specified, :math:`j` is instead overwritten to `reg_dim[i]`, while :math:`k=\operatorname{arg}\max_{n≠j} \mathcal{I}(a_i, z_n)` as usual. Parameters ---------- z : np.ndarray, (n_samples, n_features) a batch of latent vectors a : np.ndarray, (n_samples, n_attributes) or (n_samples,) a batch of attribute(s) reg_dim : Optional[List], optional regularized dimensions, by default None Attribute `a[:, i]` is regularized by `z[:, reg_dim[i]]`. If `None`, `a[:, i]` is assumed to be regularized by `z[:, i]`. discrete : bool, optional Whether the attributes are discrete, by default False Returns ------- np.ndarray, (n_attributes,) DMIG for each attribute See Also -------- .mig : Mutual Information Gap .xmig : Dependency-Blind Mutual Information Gap .dlig : Dependency-Aware Latent Information Gap References ---------- .. [1] <NAME> and <NAME>, “Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes”, in Extended Abstracts of the Late-Breaking Demo Session of the 22nd International Society for Music Information Retrieval Conference, 2021. .. [2] <NAME>, “Controllable Music: Supervised Learning of Disentangled Representations for Music Generation”, 2021. """ z, a, reg_dim = _utils._validate_za_shape(z, a, reg_dim, fill_reg_dim=True) reg_dim = cast(List[int], reg_dim) # make the type checker happy _, n_attr = a.shape ret = np.zeros((n_attr,)) for i in range(n_attr): ai = a[:, i] zi = reg_dim[i] mi = _latent_attr_mutual_info(z, ai, discrete) gap, zj = _utils._top2gap(mi, zi) if zj in reg_dim: cen = _conditional_entropy(ai, a[:, reg_dim.index(zj)], discrete) else: cen = _entropy(ai, discrete) ret[i] = gap / cen return ret def dlig( z: np.ndarray, a: np.ndarray, reg_dim: Optional[List[int]] = None, discrete: bool = False, ): """ Calculate Dependency-Aware Latent Information Gap (DLIG) between latent vectors and attributes Dependency-aware Latent Information Gap (DLIG) is a latent-centric counterpart to DMIG. DLIG evaluates disentanglement of a set of semantic attributes :math:`\{a_i\}` with respect to a latent dimension :math:`z_d` such that .. math:: \operatorname{DLIG}(\{a_i\}, z_d) = \dfrac{\mathcal{I}(a_j, z_d)-\mathcal{I}(a_k, z_d)}{\mathcal{H}(a_j|a_k)}, where :math:`j=\operatorname{arg}\max_i \mathcal{I}(a_i, z_d)`, :math:`k=\operatorname{arg}\max_{i≠j} \mathcal{I}(a_i, z_d)`, :math:`\mathcal{I}(\cdot,\cdot)` is mutual information, and :math:`\mathcal{H}(\cdot|\cdot)` is conditional entropy. If `reg_dim` is specified, :math:`j` is instead overwritten to `reg_dim[i]`, while :math:`k=\operatorname{arg}\max_{i≠j} \mathcal{I}(a_i, z_d)` as usual. Parameters ---------- z : np.ndarray, (n_samples, n_features) a batch of latent vectors a : np.ndarray, (n_samples, n_attributes) a batch of at least two attributes reg_dim : Optional[List], optional regularized dimensions, by default None Attribute `a[:, i]` is regularized by `z[:, reg_dim[i]]`. If `None`, `a[:, i]` is assumed to be regularized by `z[:, i]`. discrete : bool, optional Whether the attributes are discrete, by default False Returns ------- np.ndarray, (n_attributes,) DLIG for each attribute-regularizing latent dimension See Also -------- .mig : Mutual Information Gap .dmig : Dependency-Aware Mutual Information Gap .xmig : Dependency-Blind Mutual Information Gap ..modularity.modularity : Modularity References ---------- .. [1] <NAME>, “Controllable Music: Supervised Learning of Disentangled Representations for Music Generation”, 2021. """ z, a, reg_dim = _utils._validate_za_shape(z, a, reg_dim, fill_reg_dim=True) reg_dim = cast(List[int], reg_dim) # make the type checker happy _, n_attr = a.shape # same as len(reg_dim) assert n_attr > 1, "DLIG requires at least two attributes" ret = np.zeros((n_attr,)) for i, zi in enumerate(reg_dim): mi = _attr_latent_mutual_info(z[:, zi], a, discrete) gap, j = _utils._top2gap(mi, i) cen = _conditional_entropy(a[:, i], a[:, j], discrete) ret[i] = gap / cen return ret def xmig( z: np.ndarray, a: np.ndarray, reg_dim: Optional[List[int]] = None, discrete: bool = False, ): """ Calculate Dependency-Blind Mutual Information Gap (XMIG) between latent vectors and attributes Dependency-blind Mutual Information Gap (XMIG) is a complementary metric to MIG and DMIG that measures the gap in mutual information with the subtrahend restricted to dimensions which do not regularize any attribute. XMIG is given by .. math:: \operatorname{XMIG}(a_i, \mathbf{z}) = \dfrac{\mathcal{I}(a_i, z_j)-\mathcal{I}(a_i, z_k)}{\mathcal{H}(a_i)}, where :math:`j=\operatorname{arg}\max_d \mathcal{I}(a_i, z_d)`, :math:`k=\operatorname{arg}\max_{d∉\mathcal{D}} \mathcal{I}(a_i, z_d)`, :math:`\mathcal{I}(\cdot,\cdot)` is mutual information, :math:`\mathcal{H}(\cdot)` is entropy, and :math:`\mathcal{D}` is a set of latent indices which do not regularize any attribute. XMIG allows monitoring of latent disentanglement exclusively against attribute-unregularized latent dimensions. If `reg_dim` is specified, :math:`j` is instead overwritten to `reg_dim[i]`, while :math:`k=\operatorname{arg}\max_{d∉\mathcal{D}} \mathcal{I}(a_i, z_d)` as usual. Parameters ---------- z : np.ndarray, (n_samples, n_features) a batch of latent vectors a : np.ndarray, (n_samples, n_attributes) or (n_samples,) a batch of attribute(s) reg_dim : Optional[List], optional regularized dimensions, by default None Attribute `a[:, i]` is regularized by `z[:, reg_dim[i]]`. If `None`, `a[:, i]` is assumed to be regularized by `z[:, i]`. discrete : bool, optional Whether the attributes are discrete, by default False Returns ------- np.ndarray, (n_attributes,) XMIG for each attribute See Also -------- .mig : Mutual Information Gap .dmig : Dependency-Aware Mutual Information Gap .dlig : Dependency-Aware Latent Information Gap References ---------- .. [1] <NAME>, “Controllable Music: Supervised Learning of Disentangled Representations for Music Generation”, 2021. """ z, a, reg_dim = _utils._validate_za_shape(z, a, reg_dim, fill_reg_dim=True) reg_dim = cast(List[int], reg_dim) # make the type checker happy _, n_features = z.shape _, n_attr = a.shape assert n_features > n_attr ret = np.zeros((n_attr,)) for i in range(n_attr): ai = a[:, i] zi = reg_dim[i] en = _entropy(ai, discrete) mi = _latent_attr_mutual_info(z, ai, discrete) gap, _ = _xgap(mi, zi, reg_dim) ret[i] = gap / en return ret
[ "functools.partial", "typing.cast", "numpy.zeros", "numpy.argsort", "numpy.sort", "numpy.delete" ]
[((651, 756), 'functools.partial', 'partial', (['(fs.mutual_info_classif if discrete else fs.mutual_info_regression)'], {'random_state': 'RANDOM_STATE'}), '(fs.mutual_info_classif if discrete else fs.mutual_info_regression,\n random_state=RANDOM_STATE)\n', (658, 756), False, 'from functools import partial\n'), ((4085, 4107), 'numpy.delete', 'np.delete', (['mi', 'reg_dim'], {}), '(mi, reg_dim)\n', (4094, 4107), True, 'import numpy as np\n'), ((4122, 4133), 'numpy.sort', 'np.sort', (['mi'], {}), '(mi)\n', (4129, 4133), True, 'import numpy as np\n'), ((4151, 4165), 'numpy.argsort', 'np.argsort', (['mi'], {}), '(mi)\n', (4161, 4165), True, 'import numpy as np\n'), ((6977, 6996), 'numpy.zeros', 'np.zeros', (['(n_attr,)'], {}), '((n_attr,))\n', (6985, 6996), True, 'import numpy as np\n'), ((9810, 9834), 'typing.cast', 'cast', (['List[int]', 'reg_dim'], {}), '(List[int], reg_dim)\n', (9814, 9834), False, 'from typing import Any, Callable, List, Optional, Tuple, cast\n'), ((9902, 9921), 'numpy.zeros', 'np.zeros', (['(n_attr,)'], {}), '((n_attr,))\n', (9910, 9921), True, 'import numpy as np\n'), ((12393, 12417), 'typing.cast', 'cast', (['List[int]', 'reg_dim'], {}), '(List[int], reg_dim)\n', (12397, 12417), False, 'from typing import Any, Callable, List, Optional, Tuple, cast\n'), ((12573, 12592), 'numpy.zeros', 'np.zeros', (['(n_attr,)'], {}), '((n_attr,))\n', (12581, 12592), True, 'import numpy as np\n'), ((15081, 15105), 'typing.cast', 'cast', (['List[int]', 'reg_dim'], {}), '(List[int], reg_dim)\n', (15085, 15105), False, 'from typing import Any, Callable, List, Optional, Tuple, cast\n'), ((15233, 15252), 'numpy.zeros', 'np.zeros', (['(n_attr,)'], {}), '((n_attr,))\n', (15241, 15252), True, 'import numpy as np\n')]
import numpy as np import autodisc as ad from autodisc.systems.lenia import LeniaStatistics from goalrepresent.datasets import LENIADataset from goalrepresent.helper.randomhelper import set_seed from goalrepresent.models import PCAModel EPS = 0.0001 def calc_static_statistics(final_obs): '''Calculates the final statistics for lenia last observation''' feature_vector = np.zeros(17) cur_idx = 0 size_y = final_obs.shape[0] size_x = final_obs.shape[1] num_of_cells = size_y * size_x # calc initial center of mass and use it as a reference point to "center" the world around it mid_y = (size_y - 1) / 2 mid_x = (size_x - 1) / 2 mid = np.array([mid_y, mid_x]) activation_center_of_mass = np.array(LeniaStatistics.center_of_mass(final_obs)) activation_shift_to_center = mid - activation_center_of_mass activation = final_obs centered_activation = np.roll(activation, activation_shift_to_center.astype(int), (0, 1)) # calculate the image moments activation_moments = ad.helper.statistics.calc_image_moments(centered_activation) # activation mass activation_mass = activation_moments.m00 activation_mass_data = activation_mass / num_of_cells # activation is number of acitvated cells divided by the number of cells feature_vector[cur_idx] = activation_mass_data cur_idx += 1 # activation volume activation_volume = np.sum(activation > EPS) activation_volume_data = activation_volume / num_of_cells feature_vector[cur_idx] = activation_volume_data cur_idx += 1 # activation density if activation_volume == 0: activation_density_data = 0 else: activation_density_data = activation_mass / activation_volume feature_vector[cur_idx] = activation_density_data cur_idx += 1 # mass distribution around the center distance_weight_matrix = LeniaStatistics.calc_distance_matrix(final_obs.shape[0], final_obs.shape[1]) if activation_mass <= EPS: activation_mass_distribution = 1.0 else: activation_mass_distribution = np.sum(distance_weight_matrix * centered_activation) / np.sum( centered_activation) activation_mass_distribution_data = activation_mass_distribution feature_vector[cur_idx] = activation_mass_distribution_data cur_idx += 1 # activation moments activation_hu1_data = activation_moments.hu1 feature_vector[cur_idx] = activation_hu1_data cur_idx += 1 activation_hu2_data = activation_moments.hu2 feature_vector[cur_idx] = activation_hu2_data cur_idx += 1 activation_hu3_data = activation_moments.hu3 feature_vector[cur_idx] = activation_hu3_data cur_idx += 1 activation_hu4_data= activation_moments.hu4 feature_vector[cur_idx] = activation_hu4_data cur_idx += 1 activation_hu5_data = activation_moments.hu5 feature_vector[cur_idx] = activation_hu5_data cur_idx += 1 activation_hu6_data = activation_moments.hu6 feature_vector[cur_idx] = activation_hu6_data cur_idx += 1 activation_hu7_data = activation_moments.hu7 feature_vector[cur_idx] = activation_hu7_data cur_idx += 1 activation_hu8_data = activation_moments.hu8 feature_vector[cur_idx] = activation_hu8_data cur_idx += 1 activation_flusser9_data = activation_moments.flusser9 feature_vector[cur_idx] = activation_flusser9_data cur_idx += 1 activation_flusser10_data = activation_moments.flusser10 feature_vector[cur_idx] = activation_flusser10_data cur_idx += 1 activation_flusser11_data = activation_moments.flusser11 feature_vector[cur_idx] = activation_flusser11_data cur_idx += 1 activation_flusser12_data = activation_moments.flusser12 feature_vector[cur_idx] = activation_flusser12_data cur_idx += 1 activation_flusser13_data = activation_moments.flusser13 feature_vector[cur_idx] = activation_flusser13_data cur_idx += 1 return feature_vector if __name__ == '__main__': set_seed(0) n_features_BC = 8 n_statistics = 17 dataset_config = LENIADataset.default_config() dataset_config.data_root = '/gpfswork/rech/zaj/ucf28eq/data/lenia_datasets/data_005/' dataset_config.split = 'train' dataset = LENIADataset(config=dataset_config) # create fourier descriptors and save statistics coefficients = np.zeros((dataset.n_images, n_statistics)) for idx in range(dataset.n_images): im = dataset.get_image(idx).squeeze().numpy() coeffs = calc_static_statistics(im) coefficients[idx] = coeffs # do PCA to keep only principal components according to reference dataset pca_model = PCAModel(n_features=n_statistics, n_latents=n_features_BC) X_all = coefficients.reshape(coefficients.shape[0], -1) z_all = pca_model.fit(X_all) pca_model.save_checkpoint('reference_dataset_pca_lenia_statistics_descriptors_model.pickle') np.savez('reference_dataset_pca_lenia_statistics_descriptors_range.npz', low=np.percentile(z_all, 0.01, axis=0), high=np.percentile(z_all, 99.9, axis=0)) print('pca explained variance: {}'.format(pca_model.algorithm.explained_variance_ratio_.sum())) print( 'analytic_space_range: {} - {}'.format(np.percentile(z_all, 0.01, axis=0), np.percentile(z_all, 99.9, axis=0))) np.savez('reference_dataset_pca_lenia_statistics_descriptors_statistics.npz', descriptors=coefficients, pca_explained_variance=pca_model.algorithm.explained_variance_ratio_) np.savez('reference_dataset_pca_lenia_statistics_descriptors_values.npz',z=z_all)
[ "numpy.sum", "goalrepresent.datasets.LENIADataset", "autodisc.helper.statistics.calc_image_moments", "numpy.zeros", "numpy.percentile", "autodisc.systems.lenia.LeniaStatistics.calc_distance_matrix", "goalrepresent.helper.randomhelper.set_seed", "numpy.array", "numpy.savez", "goalrepresent.datasets.LENIADataset.default_config", "goalrepresent.models.PCAModel", "autodisc.systems.lenia.LeniaStatistics.center_of_mass" ]
[((384, 396), 'numpy.zeros', 'np.zeros', (['(17)'], {}), '(17)\n', (392, 396), True, 'import numpy as np\n'), ((680, 704), 'numpy.array', 'np.array', (['[mid_y, mid_x]'], {}), '([mid_y, mid_x])\n', (688, 704), True, 'import numpy as np\n'), ((1038, 1098), 'autodisc.helper.statistics.calc_image_moments', 'ad.helper.statistics.calc_image_moments', (['centered_activation'], {}), '(centered_activation)\n', (1077, 1098), True, 'import autodisc as ad\n'), ((1416, 1440), 'numpy.sum', 'np.sum', (['(activation > EPS)'], {}), '(activation > EPS)\n', (1422, 1440), True, 'import numpy as np\n'), ((1889, 1965), 'autodisc.systems.lenia.LeniaStatistics.calc_distance_matrix', 'LeniaStatistics.calc_distance_matrix', (['final_obs.shape[0]', 'final_obs.shape[1]'], {}), '(final_obs.shape[0], final_obs.shape[1])\n', (1925, 1965), False, 'from autodisc.systems.lenia import LeniaStatistics\n'), ((4095, 4106), 'goalrepresent.helper.randomhelper.set_seed', 'set_seed', (['(0)'], {}), '(0)\n', (4103, 4106), False, 'from goalrepresent.helper.randomhelper import set_seed\n'), ((4174, 4203), 'goalrepresent.datasets.LENIADataset.default_config', 'LENIADataset.default_config', ([], {}), '()\n', (4201, 4203), False, 'from goalrepresent.datasets import LENIADataset\n'), ((4343, 4378), 'goalrepresent.datasets.LENIADataset', 'LENIADataset', ([], {'config': 'dataset_config'}), '(config=dataset_config)\n', (4355, 4378), False, 'from goalrepresent.datasets import LENIADataset\n'), ((4452, 4494), 'numpy.zeros', 'np.zeros', (['(dataset.n_images, n_statistics)'], {}), '((dataset.n_images, n_statistics))\n', (4460, 4494), True, 'import numpy as np\n'), ((4764, 4822), 'goalrepresent.models.PCAModel', 'PCAModel', ([], {'n_features': 'n_statistics', 'n_latents': 'n_features_BC'}), '(n_features=n_statistics, n_latents=n_features_BC)\n', (4772, 4822), False, 'from goalrepresent.models import PCAModel\n'), ((5422, 5604), 'numpy.savez', 'np.savez', (['"""reference_dataset_pca_lenia_statistics_descriptors_statistics.npz"""'], {'descriptors': 'coefficients', 'pca_explained_variance': 'pca_model.algorithm.explained_variance_ratio_'}), "('reference_dataset_pca_lenia_statistics_descriptors_statistics.npz',\n descriptors=coefficients, pca_explained_variance=pca_model.algorithm.\n explained_variance_ratio_)\n", (5430, 5604), True, 'import numpy as np\n'), ((5615, 5702), 'numpy.savez', 'np.savez', (['"""reference_dataset_pca_lenia_statistics_descriptors_values.npz"""'], {'z': 'z_all'}), "('reference_dataset_pca_lenia_statistics_descriptors_values.npz', z\n =z_all)\n", (5623, 5702), True, 'import numpy as np\n'), ((747, 788), 'autodisc.systems.lenia.LeniaStatistics.center_of_mass', 'LeniaStatistics.center_of_mass', (['final_obs'], {}), '(final_obs)\n', (777, 788), False, 'from autodisc.systems.lenia import LeniaStatistics\n'), ((2155, 2207), 'numpy.sum', 'np.sum', (['(distance_weight_matrix * centered_activation)'], {}), '(distance_weight_matrix * centered_activation)\n', (2161, 2207), True, 'import numpy as np\n'), ((2210, 2237), 'numpy.sum', 'np.sum', (['centered_activation'], {}), '(centered_activation)\n', (2216, 2237), True, 'import numpy as np\n'), ((5108, 5142), 'numpy.percentile', 'np.percentile', (['z_all', '(0.01)'], {'axis': '(0)'}), '(z_all, 0.01, axis=0)\n', (5121, 5142), True, 'import numpy as np\n'), ((5149, 5183), 'numpy.percentile', 'np.percentile', (['z_all', '(99.9)'], {'axis': '(0)'}), '(z_all, 99.9, axis=0)\n', (5162, 5183), True, 'import numpy as np\n'), ((5344, 5378), 'numpy.percentile', 'np.percentile', (['z_all', '(0.01)'], {'axis': '(0)'}), '(z_all, 0.01, axis=0)\n', (5357, 5378), True, 'import numpy as np\n'), ((5380, 5414), 'numpy.percentile', 'np.percentile', (['z_all', '(99.9)'], {'axis': '(0)'}), '(z_all, 99.9, axis=0)\n', (5393, 5414), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Sun Mar 10 11:31:48 2019 @author: <NAME> """ import numpy as np from .stagData import StagData, StagCartesianGeometry, StagYinYangGeometry from .stagData import SliceData, CartesianSliceData, YinYangSliceData from .stagData import InterpolatedSliceData from .stagError import GridInterpolationError from scipy.interpolate import griddata from time import time def im(textMessage,pName,verbose): """Print verbose internal message. This function depends on the argument of self.verbose. If self.verbose == True then the message will be displayed on the terminal. <i> : textMessage = str, message to display pName = str, name of the subprogram verbose = bool, condition for the verbose output """ if verbose == True: print('>> '+pName+'| '+textMessage) def regularSphericalGrid(radius,spacing=1): """Return a regular spherical grid for a single depth. The regularity is guaranted on longitude and latitude. e.g: For a spacing parameter in input of 1, the regular grid produced in return will have 1 point per deg in lon and in lat and the same radius to the center of the sphere. <i> : spacing = int, number of degree in longitude and latitude between each point of the grid <o> : ((x,y,z),(R,Lon,Lat)) where (x,y,z) car the cartesian coordinates of points in the new grid and (R,Lon,Lat) the spherical coordinates of points in the new grid.""" #First, creation of point in spherical coordinates nbinLon = int(361/spacing) nbinLat = int((181)/spacing) nbinR = 1 lon = np.linspace(0,360,nbinLon)*np.pi/180 lat = np.linspace(-90,90,nbinLat)*np.pi/180 r = [radius]*nbinR #2. Mesh grid (Lon,Lat,R) = np.meshgrid(lon,lat,r,indexing='ij') #3. Projection on cartesian coordinates x = R*np.cos(Lat)*np.cos(Lon) y = R*np.cos(Lat)*np.sin(Lon) z = R*np.sin(Lat) return ((x,y,z),(R,Lon,Lat)) def sliceInterpolator(sliceData,interpGeom='rgS',spacing=1,interpMethod='nearest',deg=False,verbose=True): """ Interpolates a stagData.YinYangSliceData object in an other grid. <i> : sliceData = stagData.YinYangSliceDat object interpGeom = str, indicates the type of geometry used for the new grid. (in {rgS}) spacing = int, parameter of the interpGeom interpMethod = str, method used for the interpolation. In ('nearest' 'linear', 'cubic'). Default = 'nearest' deg = bool, for interpGeom == 'rgS' only ! if deg is True, then the x,y,z on output will be lon,lat,r repsectivelly verbose = bool, controls inhibition of the internal message <o> : Return a stagData.InterpolatedSliceData objet """ time0 = time() #Init time for log message if verbose: print() pName = 'sliceInterpolator' #1. Creation of the new grid im('Creation of interpGeom Grid',pName,verbose) if interpGeom == 'rgS': #Regular Grid - Spherical 1: ((x,y,z),(r,lon,lat)) = regularSphericalGrid(radius=sliceData.r[0],spacing=spacing) npx, npy, npz = x.shape[0], x.shape[1], x.shape[2] Xrg = x.reshape(x.shape[0]*x.shape[1]*x.shape[2]) Yrg = y.reshape(y.shape[0]*y.shape[1]*y.shape[2]) Zrg = z.reshape(z.shape[0]*z.shape[1]*z.shape[2]) else: raise GridInterpolationError(interpGeom) im(' - Spacing for grid : '+str(spacing),pName,verbose) im(' - Number of Points : '+str(len(Xrg)),pName,verbose) #2. Preparation of the interpolation: im('Interpolation of the slice:',pName,verbose) X = sliceData.x Y = sliceData.y Z = sliceData.z im(' - Slice layer index : '+str(sliceData.layer),pName,verbose) im(' - Corresponding depth : '+str(sliceData.depth),pName,verbose) im(' - Number of Points in the slice: '+str(len(X)),pName,verbose) points = np.array([(X[i],Y[i],Z[i]) for i in range(len(X))]) # Stores all in an stagData.InterpolatedSliceData object isd = InterpolatedSliceData() isd.sliceInheritance(sliceData) isd.nxi, isd.nyi, isd.nzi = npx, npy, npz isd.interpGeom = interpGeom isd.spacing = spacing isd.interpMethod = interpMethod isd.deg = deg # Scalar or Vectorial if sliceData.fieldNature == 'Scalar': im(' - Interpolation of a Sclar field',pName,verbose) values = np.array(sliceData.v) isd.v = griddata(points, values, (Xrg, Yrg, Zrg), method=interpMethod) im('Interpolation done for the slice !',pName,verbose) im(' - Duration of interpolation: '+str(time()-time0)[0:5]+' s',pName,verbose) if deg: y = lat*180/np.pi x = lon*180/np.pi z = r Xrg = x.reshape(x.shape[0]*x.shape[1]*x.shape[2]) Yrg = y.reshape(y.shape[0]*y.shape[1]*y.shape[2]) Zrg = z.reshape(z.shape[0]*z.shape[1]*z.shape[2]) else: #Vectorial field im(' - Interpolation of a Vectorial field: can take time',pName,verbose) values_vx = np.array(sliceData.vx) values_vy = np.array(sliceData.vy) values_vz = np.array(sliceData.vz) values_P = np.array(sliceData.P) values_vtheta = np.array(sliceData.vtheta) values_vphi = np.array(sliceData.vphi) values_vr = np.array(sliceData.vr) values_v = np.array(sliceData.v) isd.vx = griddata(points, values_vx, (Xrg, Yrg, Zrg), method=interpMethod) isd.vy = griddata(points, values_vy, (Xrg, Yrg, Zrg), method=interpMethod) isd.vz = griddata(points, values_vz, (Xrg, Yrg, Zrg), method=interpMethod) isd.P = griddata(points, values_P, (Xrg, Yrg, Zrg), method=interpMethod) isd.vtheta = griddata(points, values_vtheta, (Xrg, Yrg, Zrg), method=interpMethod) isd.vphi = griddata(points, values_vphi, (Xrg, Yrg, Zrg), method=interpMethod) isd.vr = griddata(points, values_vr, (Xrg, Yrg, Zrg), method=interpMethod) isd.v = griddata(points, values_v, (Xrg, Yrg, Zrg), method=interpMethod) im('Interpolation done for the slice !',pName,verbose) im(' - Duration of interpolation: '+str(time()-time0)[0:5]+' s',pName,verbose) if deg: im('Requested: Conversion of the grid into degree',pName,verbose) y = lat*180/np.pi x = lon*180/np.pi z = r Xrg = x.reshape(x.shape[0]*x.shape[1]*x.shape[2]) Yrg = y.reshape(y.shape[0]*y.shape[1]*y.shape[2]) Zrg = z.reshape(z.shape[0]*z.shape[1]*z.shape[2]) isd.x = Xrg isd.y = Yrg isd.z = Zrg return isd
[ "numpy.meshgrid", "scipy.interpolate.griddata", "time.time", "numpy.sin", "numpy.array", "numpy.cos", "numpy.linspace" ]
[((1801, 1840), 'numpy.meshgrid', 'np.meshgrid', (['lon', 'lat', 'r'], {'indexing': '"""ij"""'}), "(lon, lat, r, indexing='ij')\n", (1812, 1840), True, 'import numpy as np\n'), ((2853, 2859), 'time.time', 'time', ([], {}), '()\n', (2857, 2859), False, 'from time import time\n'), ((1904, 1915), 'numpy.cos', 'np.cos', (['Lon'], {}), '(Lon)\n', (1910, 1915), True, 'import numpy as np\n'), ((1938, 1949), 'numpy.sin', 'np.sin', (['Lon'], {}), '(Lon)\n', (1944, 1949), True, 'import numpy as np\n'), ((1960, 1971), 'numpy.sin', 'np.sin', (['Lat'], {}), '(Lat)\n', (1966, 1971), True, 'import numpy as np\n'), ((4526, 4547), 'numpy.array', 'np.array', (['sliceData.v'], {}), '(sliceData.v)\n', (4534, 4547), True, 'import numpy as np\n'), ((4564, 4626), 'scipy.interpolate.griddata', 'griddata', (['points', 'values', '(Xrg, Yrg, Zrg)'], {'method': 'interpMethod'}), '(points, values, (Xrg, Yrg, Zrg), method=interpMethod)\n', (4572, 4626), False, 'from scipy.interpolate import griddata\n'), ((5191, 5213), 'numpy.array', 'np.array', (['sliceData.vx'], {}), '(sliceData.vx)\n', (5199, 5213), True, 'import numpy as np\n'), ((5234, 5256), 'numpy.array', 'np.array', (['sliceData.vy'], {}), '(sliceData.vy)\n', (5242, 5256), True, 'import numpy as np\n'), ((5277, 5299), 'numpy.array', 'np.array', (['sliceData.vz'], {}), '(sliceData.vz)\n', (5285, 5299), True, 'import numpy as np\n'), ((5319, 5340), 'numpy.array', 'np.array', (['sliceData.P'], {}), '(sliceData.P)\n', (5327, 5340), True, 'import numpy as np\n'), ((5365, 5391), 'numpy.array', 'np.array', (['sliceData.vtheta'], {}), '(sliceData.vtheta)\n', (5373, 5391), True, 'import numpy as np\n'), ((5414, 5438), 'numpy.array', 'np.array', (['sliceData.vphi'], {}), '(sliceData.vphi)\n', (5422, 5438), True, 'import numpy as np\n'), ((5459, 5481), 'numpy.array', 'np.array', (['sliceData.vr'], {}), '(sliceData.vr)\n', (5467, 5481), True, 'import numpy as np\n'), ((5502, 5523), 'numpy.array', 'np.array', (['sliceData.v'], {}), '(sliceData.v)\n', (5510, 5523), True, 'import numpy as np\n'), ((5541, 5606), 'scipy.interpolate.griddata', 'griddata', (['points', 'values_vx', '(Xrg, Yrg, Zrg)'], {'method': 'interpMethod'}), '(points, values_vx, (Xrg, Yrg, Zrg), method=interpMethod)\n', (5549, 5606), False, 'from scipy.interpolate import griddata\n'), ((5624, 5689), 'scipy.interpolate.griddata', 'griddata', (['points', 'values_vy', '(Xrg, Yrg, Zrg)'], {'method': 'interpMethod'}), '(points, values_vy, (Xrg, Yrg, Zrg), method=interpMethod)\n', (5632, 5689), False, 'from scipy.interpolate import griddata\n'), ((5707, 5772), 'scipy.interpolate.griddata', 'griddata', (['points', 'values_vz', '(Xrg, Yrg, Zrg)'], {'method': 'interpMethod'}), '(points, values_vz, (Xrg, Yrg, Zrg), method=interpMethod)\n', (5715, 5772), False, 'from scipy.interpolate import griddata\n'), ((5789, 5853), 'scipy.interpolate.griddata', 'griddata', (['points', 'values_P', '(Xrg, Yrg, Zrg)'], {'method': 'interpMethod'}), '(points, values_P, (Xrg, Yrg, Zrg), method=interpMethod)\n', (5797, 5853), False, 'from scipy.interpolate import griddata\n'), ((5875, 5944), 'scipy.interpolate.griddata', 'griddata', (['points', 'values_vtheta', '(Xrg, Yrg, Zrg)'], {'method': 'interpMethod'}), '(points, values_vtheta, (Xrg, Yrg, Zrg), method=interpMethod)\n', (5883, 5944), False, 'from scipy.interpolate import griddata\n'), ((5964, 6031), 'scipy.interpolate.griddata', 'griddata', (['points', 'values_vphi', '(Xrg, Yrg, Zrg)'], {'method': 'interpMethod'}), '(points, values_vphi, (Xrg, Yrg, Zrg), method=interpMethod)\n', (5972, 6031), False, 'from scipy.interpolate import griddata\n'), ((6049, 6114), 'scipy.interpolate.griddata', 'griddata', (['points', 'values_vr', '(Xrg, Yrg, Zrg)'], {'method': 'interpMethod'}), '(points, values_vr, (Xrg, Yrg, Zrg), method=interpMethod)\n', (6057, 6114), False, 'from scipy.interpolate import griddata\n'), ((6131, 6195), 'scipy.interpolate.griddata', 'griddata', (['points', 'values_v', '(Xrg, Yrg, Zrg)'], {'method': 'interpMethod'}), '(points, values_v, (Xrg, Yrg, Zrg), method=interpMethod)\n', (6139, 6195), False, 'from scipy.interpolate import griddata\n'), ((1655, 1683), 'numpy.linspace', 'np.linspace', (['(0)', '(360)', 'nbinLon'], {}), '(0, 360, nbinLon)\n', (1666, 1683), True, 'import numpy as np\n'), ((1702, 1731), 'numpy.linspace', 'np.linspace', (['(-90)', '(90)', 'nbinLat'], {}), '(-90, 90, nbinLat)\n', (1713, 1731), True, 'import numpy as np\n'), ((1892, 1903), 'numpy.cos', 'np.cos', (['Lat'], {}), '(Lat)\n', (1898, 1903), True, 'import numpy as np\n'), ((1926, 1937), 'numpy.cos', 'np.cos', (['Lat'], {}), '(Lat)\n', (1932, 1937), True, 'import numpy as np\n'), ((4741, 4747), 'time.time', 'time', ([], {}), '()\n', (4745, 4747), False, 'from time import time\n'), ((6310, 6316), 'time.time', 'time', ([], {}), '()\n', (6314, 6316), False, 'from time import time\n')]
""" Created on Mon Mar 14 09:30:44 2016 @author: rmc84 <NAME> Purpose: calcualtes the GMPE values for a given IM & earthquake Based on CompareGMPEs_.m (version 1.0 8 March 2010, Brendon Bradley) All variable and function names have been retained wherever possible All the redundant parts of the code to plot the GMPE on the IM plot have been removed. This function is mostly just to put the variables from the parms into the class (matlab structures) siteprop and faultproperties. Other GMPEs can be called from this function with the same format. Issues: Verification: Matches matlab code to 9sig fig (IM_Rscaling, Rrupval, sigma_IM_Rscaling) """ import numpy as np #from Bradley_2010_Sa import Bradley_2010_Sa from geoNet.gmpe.Bradley_2010_Sa import Bradley_2010_Sa class siteProperties: #Class of site properties. initialize all attributes to None period=None # '(-1),(0),(real variable)' period of vibration =-1->PGV; =0->PGA; >0->SA Rrup=None # closest distance coseismic rupture (km) Rjb=None # ??? Rx=None #distance measured perpendicular to fault strike from surface projection of updip edge of the fault rupture (+ve in downdip dir) (km) Rtvz=None # source-to-site distance in the Taupo volcanic zone (TVZ) (km) V30measured=None # yes =1 (i.e. from Vs tests); no=0 (i.e. estimated from geology) V30=None # shear wave velocity at 30m depth (m/s) Z1pt0=None # depth to the 1.0km/s shear wave velocity horizon (optional, uses default relationship otherwise g=None # gravity (cm s^-2) class faultProperties(): #Class of fault properties. initialize all attributes to None Mw=None # moment tensor magnitude rake=None # rake angle (degrees) dip=None # dip angle (degrees) Ztor=None # depth to top of coseismic rupture (km) class set_faultprop(object): def __init__(self,Mw=None, rake=None, dip=None, Ztor=None): """ In one line set the fault parameters """ #self.faultprop=faultProperties() #self.faultprop.Mw=Mw #self.faultprop.rake=rake #self.faultprop.dip=dip #self.faultprop.Ztor=Ztor self.Mw=Mw self.rake=rake self.dip=dip self.Ztor=Ztor return class set_siteprop(object): def __init__(self,faultprop, period=None, Rrup=None, Rjb=None, Rx=None, Rtvz=None, V30measured=None, V30=None, Z1pt0=None, g=981): """ g in cm/s^2 Period = -1 for PGV, 0 for PGA, actual numerical value for PSA Default choice in Richard's code used is V30=250. #site 'D' classification """ # self.siteprop=siteProperties() # self.siteprop.period=period # self.siteprop.g=g # self.siteprop.Rtvz=Rtvz # self.siteprop.V30measured=V30measured # #self.siteprop.V30=250. #site 'D' classification # self.siteprop.V30=V30 # self.siteprop.Rrup=Rrup # #Definition used below by Richard does not match Rjb definition # self.siteprop.Rjb=np.sqrt(np.max((0,Rrup**2-faultprop.Ztor**2))) # #We leave Rjb unchanged to match Ricard's code # #self.siteprop.Rjb=Rjb # self.siteprop.Rx=-self.siteprop.Rjb # self.period=period self.Z1pt0=Z1pt0 self.g=g self.Rtvz=Rtvz self.V30measured=V30measured #self.V30=250. #site 'D' classification self.V30=V30 self.Rrup=Rrup #Definition used below by Richard does not match Rjb definition self.Rjb=np.sqrt(np.max((0,Rrup**2-faultprop.Ztor**2))) #We leave Rjb unchanged to match Ricard's code #self.Rjb=Rjb self.Rx=-self.Rjb return def calculateGMPE(parms,ImName,period): ##need to pass the ImName and the period as we loop over these #Do some error checking to make sure that the model is valid if parms.plotGMPE.model!=1: print ('Error: The selected GMPE (model %d) is not supported. Only Model=1 Bradley_2010 is supported.') %(parms.plotGMPE.model) print ('Not calculating the GMPE. Returning from function') raise ValueError return #For the model, check that the IM is supported if not((ImName=='PGA')|(ImName=='PGV')|(ImName=='pSA')): print ('Error: The selected GMPE (model %d) does not support IM name %s') %(parms.plotGMPE.model,ImName) print ('Not calculating the GMPE for %s. Returning from function') %ImName raise ValueError return #set up the class faultprop. Same structure as the matlab code faultprop=faultProperties() faultprop.Mw=parms.plotGMPE.Mw faultprop.rake=parms.plotGMPE.rake faultprop.dip=parms.plotGMPE.dip faultprop.Ztor=parms.plotGMPE.Ztor #set up the class siteprop. Same structure as the matlab code siteprop=siteProperties() if ImName=='PGA': siteprop.period=0 elif ImName=='PGV': siteprop.period=-1 elif ImName=='pSA': siteprop.period=period siteprop.g=parms.calcIM.g siteprop.Rtvz=parms.plotGMPE.Rtvz siteprop.V30measured=parms.plotGMPE.V30measured #Rrup values used for the GMPE calculation Rrupval=np.exp(np.linspace(np.log(parms.plotGMPE.DistMin),np.log(parms.plotGMPE.DistMax),parms.plotGMPE.nVal)) Vs30=[] #The list of Vs30 values we are going to calculate the GMPE for for i in range(len(parms.plotGMPE.SiteClassForPrediction)): if parms.plotGMPE.SiteClassForPrediction[i]=='A': Vs30.append(parms.plotGMPE.Vs30[0]) elif parms.plotGMPE.SiteClassForPrediction[i]=='B': Vs30.append(parms.plotGMPE.Vs30[1]) elif parms.plotGMPE.SiteClassForPrediction[i]=='C': Vs30.append(parms.plotGMPE.Vs30[2]) elif parms.plotGMPE.SiteClassForPrediction[i]=='D': Vs30.append(parms.plotGMPE.Vs30[3]) elif parms.plotGMPE.SiteClassForPrediction[i]=='E': Vs30.append(parms.plotGMPE.Vs30[4]) else: print (parms.plotGMPE.SiteClassForPrediction[i], 'is an invalid siteClass for Prediciton. Must be A, B, C, D, E.') #initialise the outputs as arrays of zeros IM_Rscaling=np.zeros((len(Vs30),parms.plotGMPE.nVal)) sigma_IM_Rscaling=np.zeros((len(Vs30),parms.plotGMPE.nVal,3)) for j in range(len(Vs30)): #loop over the different Vs30 values chosen siteprop.V30=Vs30[j] for i in range(len(Rrupval)): #loop over the different rupture distances siteprop.Rrup=Rrupval[i] siteprop.Rjb=np.sqrt(np.max((0,Rrupval[i]**2-faultprop.Ztor**2))) siteprop.Rx=-siteprop.Rjb if parms.plotGMPE.model==1: #Bradley2010 NZ-specific. No error checking here as we check at start of file IM_Rscaling[j,i], sigma_IM_Rscaling[j,i,:]=Bradley_2010_Sa(siteprop,faultprop) return Rrupval, Vs30, IM_Rscaling, sigma_IM_Rscaling
[ "numpy.max", "numpy.log", "geoNet.gmpe.Bradley_2010_Sa.Bradley_2010_Sa" ]
[((3754, 3798), 'numpy.max', 'np.max', (['(0, Rrup ** 2 - faultprop.Ztor ** 2)'], {}), '((0, Rrup ** 2 - faultprop.Ztor ** 2))\n', (3760, 3798), True, 'import numpy as np\n'), ((5427, 5457), 'numpy.log', 'np.log', (['parms.plotGMPE.DistMin'], {}), '(parms.plotGMPE.DistMin)\n', (5433, 5457), True, 'import numpy as np\n'), ((5458, 5488), 'numpy.log', 'np.log', (['parms.plotGMPE.DistMax'], {}), '(parms.plotGMPE.DistMax)\n', (5464, 5488), True, 'import numpy as np\n'), ((6776, 6826), 'numpy.max', 'np.max', (['(0, Rrupval[i] ** 2 - faultprop.Ztor ** 2)'], {}), '((0, Rrupval[i] ** 2 - faultprop.Ztor ** 2))\n', (6782, 6826), True, 'import numpy as np\n'), ((7068, 7104), 'geoNet.gmpe.Bradley_2010_Sa.Bradley_2010_Sa', 'Bradley_2010_Sa', (['siteprop', 'faultprop'], {}), '(siteprop, faultprop)\n', (7083, 7104), False, 'from geoNet.gmpe.Bradley_2010_Sa import Bradley_2010_Sa\n')]
""" PTC --- Data handling for turn-by-turn measurement files from the ``PTC`` code, which can be obtained by performing particle tracking of your machine through the ``MAD-X PTC`` interface. The files are very close in structure to **TFS** files, with the difference that the data part is split into "segments" relating containing data for a given observation point. """ import copy import logging from collections import namedtuple from datetime import datetime from pathlib import Path from typing import Any, Dict, List, Sequence, Tuple, Union import numpy as np import pandas as pd from dateutil import tz from turn_by_turn.constants import ( COLPARTICLE, COLTURN, COLX, COLY, DATE, HEADER, NAMES, PLANES, SEGMENT_MARKER, SEGMENTS, TIME, TIME_FORMAT, TYPES, ) from turn_by_turn.errors import PTCFormatError from turn_by_turn.structures import TbtData, TransverseData LOGGER = logging.getLogger() Segment = namedtuple("Segment", ["number", "turns", "particles", "element", "name"]) def read_tbt(file_path: Union[str, Path]) -> TbtData: """ Reads turn-by-turn data from the ``PTC`` **trackone** format file. Args: file_path (Union[str, Path]): path to the turn-by-turn measurement file. Returns: A ``TbTData`` object with the loaded data. """ file_path = Path(file_path) LOGGER.debug(f"Reading PTC trackone file at path: '{file_path.absolute()}'") lines: List[str] = file_path.read_text().splitlines() LOGGER.debug("Reading header from file") date, header_length = _read_header(lines) lines = lines[header_length:] # parameters bpms, particles, column_indices, n_turns, n_particles = _read_from_first_turn(lines) # read into dict first for speed then convert to DFs matrices = [{p: {bpm: np.zeros(n_turns) for bpm in bpms} for p in PLANES} for _ in range(n_particles)] matrices = _read_data(lines, matrices, column_indices) for bunch in range(n_particles): matrices[bunch] = TransverseData( X=pd.DataFrame(matrices[bunch]["X"]).transpose(), Y=pd.DataFrame(matrices[bunch]["Y"]).transpose(), ) LOGGER.debug(f"Read Tbt matrices from: '{file_path.absolute()}'") return TbtData(matrices=matrices, date=date, bunch_ids=particles, nturns=n_turns) def _read_header(lines: Sequence[str]) -> Tuple[datetime, int]: """Reads header length and datetime from header.""" idx_line = 0 date_str = {k: None for k in [DATE, TIME]} for idx_line, line in enumerate(lines): parts = line.strip().split() if len(parts) == 0: continue if parts[0] != HEADER: break if parts[1] in date_str.keys(): date_str[parts[1]] = parts[-1].strip("'\" ") if any(datestring is None for datestring in date_str.values()): LOGGER.warning("No date found in file, defaulting to today") return datetime.today().replace(tzinfo=tz.tzutc()), idx_line return datetime.strptime(f"{date_str[DATE]} {date_str[TIME]}", TIME_FORMAT), idx_line def _read_from_first_turn( lines: Sequence[str], ) -> Tuple[List[str], List[int], Dict[Any, Any], int, int]: """ Reads the BPMs, particles, column indices and number of turns and particles from the matrices of the first turn. """ LOGGER.debug("Reading first turn to define boundary parameters.") bpms = [] particles = [] column_indices = None n_turns = 0 n_particles = 0 first_segment = True for line in lines: parts = line.strip().split() if len(parts) == 0 or parts[0] in [HEADER, TYPES]: continue if parts[0] == NAMES: # read column names if column_indices is not None: raise KeyError(f"{NAMES} are defined twice in tbt file!") column_indices = _parse_column_names_to_indices(parts[1:]) continue if parts[0] == SEGMENTS: # read segments, append to bunch_id segment = Segment(*parts[1:]) if segment.name == SEGMENT_MARKER[0]: # start of first segment n_turns = int(segment.turns) - 1 n_particles = int(segment.particles) elif segment.name == SEGMENT_MARKER[1]: # end of first segment break else: first_segment = False bpms.append(segment.name) elif first_segment: if column_indices is None: LOGGER.error("Columns not defined in Tbt file") raise PTCFormatError new_data = _parse_data(column_indices, parts) particle = int(float(new_data[COLPARTICLE])) particles.append(particle) if len(particles) == 0: LOGGER.error("No matrices found in TbT file") raise PTCFormatError return bpms, particles, column_indices, n_turns, n_particles def _read_data( lines: Sequence[str], matrices: Dict[str, Dict[str, np.ndarray]], column_indices: dict ) -> Dict[str, Dict[str, np.ndarray]]: """Read the matrices into the matrices.""" LOGGER.debug("Reading matrices.") matrices = copy.deepcopy(matrices) segment = None column_map = {"X": COLX, "Y": COLY} for line in lines: parts = line.strip().split() if len(parts) == 0 or parts[0] in (HEADER, TYPES, NAMES): continue if parts[0] == SEGMENTS: # start of a new segment segment = Segment(*parts[1:]) continue if segment is None: LOGGER.error("Data written before Segment definition") raise PTCFormatError if segment.name in SEGMENT_MARKER: continue data = _parse_data(column_indices, parts) part_id = int(float(data[COLPARTICLE])) - 1 turn_nr = int(float(data[COLTURN])) - 1 for plane in PLANES: matrices[part_id][plane][segment.name][turn_nr] = float(data[column_map[plane]]) return matrices def _parse_data(column_indices, parts: Sequence[str]) -> dict: """ Converts the ``parts`` (split elements of a data line) into a dictionary based on the indices in ``column_indices``. """ return {col: parts[col_idx] for col, col_idx in column_indices.items()} def _parse_column_names_to_indices(parts: Sequence[str]) -> dict: """Parses the column names from the line into a dictionary with indices.""" col_idx = {k: None for k in [COLX, COLY, COLTURN, COLPARTICLE]} LOGGER.debug("Setting column names.") for idx, column_name in enumerate(parts): if column_name not in col_idx: LOGGER.debug(f"Column '{column_name}' will be ignored.") continue if col_idx[column_name] is not None: raise KeyError(f"'{column_name}' is defined twice.") col_idx[column_name] = idx missing = [c for c in col_idx.values() if c is None] if any(missing): raise ValueError(f"The following columns are missing in ptc file: '{str(missing)}'") return col_idx
[ "pandas.DataFrame", "copy.deepcopy", "datetime.datetime.today", "numpy.zeros", "dateutil.tz.tzutc", "pathlib.Path", "turn_by_turn.structures.TbtData", "datetime.datetime.strptime", "collections.namedtuple", "logging.getLogger" ]
[((936, 955), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (953, 955), False, 'import logging\n'), ((966, 1040), 'collections.namedtuple', 'namedtuple', (['"""Segment"""', "['number', 'turns', 'particles', 'element', 'name']"], {}), "('Segment', ['number', 'turns', 'particles', 'element', 'name'])\n", (976, 1040), False, 'from collections import namedtuple\n'), ((1357, 1372), 'pathlib.Path', 'Path', (['file_path'], {}), '(file_path)\n', (1361, 1372), False, 'from pathlib import Path\n'), ((2264, 2338), 'turn_by_turn.structures.TbtData', 'TbtData', ([], {'matrices': 'matrices', 'date': 'date', 'bunch_ids': 'particles', 'nturns': 'n_turns'}), '(matrices=matrices, date=date, bunch_ids=particles, nturns=n_turns)\n', (2271, 2338), False, 'from turn_by_turn.structures import TbtData, TransverseData\n'), ((5183, 5206), 'copy.deepcopy', 'copy.deepcopy', (['matrices'], {}), '(matrices)\n', (5196, 5206), False, 'import copy\n'), ((3022, 3090), 'datetime.datetime.strptime', 'datetime.strptime', (['f"""{date_str[DATE]} {date_str[TIME]}"""', 'TIME_FORMAT'], {}), "(f'{date_str[DATE]} {date_str[TIME]}', TIME_FORMAT)\n", (3039, 3090), False, 'from datetime import datetime\n'), ((1829, 1846), 'numpy.zeros', 'np.zeros', (['n_turns'], {}), '(n_turns)\n', (1837, 1846), True, 'import numpy as np\n'), ((2956, 2972), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (2970, 2972), False, 'from datetime import datetime\n'), ((2988, 2998), 'dateutil.tz.tzutc', 'tz.tzutc', ([], {}), '()\n', (2996, 2998), False, 'from dateutil import tz\n'), ((2062, 2096), 'pandas.DataFrame', 'pd.DataFrame', (["matrices[bunch]['X']"], {}), "(matrices[bunch]['X'])\n", (2074, 2096), True, 'import pandas as pd\n'), ((2124, 2158), 'pandas.DataFrame', 'pd.DataFrame', (["matrices[bunch]['Y']"], {}), "(matrices[bunch]['Y'])\n", (2136, 2158), True, 'import pandas as pd\n')]
import torchvision import skimage import torch from torchvision import transforms import numpy as np from PIL import Image IMG_MEAN = (0.4914, 0.4822, 0.4465) IMG_STD = (0.2023, 0.1994, 0.2010) NORM = [transforms.ToTensor(), transforms.Normalize(IMG_MEAN, IMG_STD)] class MapTransform(object): def __init__(self, transforms, pil_convert=True): self.transforms = transforms self.pil_convert = pil_convert def __call__(self, vid): if isinstance(vid, Image.Image): return np.stack([self.transforms(vid)]) if isinstance(vid, torch.Tensor): vid = vid.numpy() if self.pil_convert: x = np.stack([np.asarray(self.transforms(Image.fromarray(v))) for v in vid]) return x else: return np.stack([self.transforms(v) for v in vid]) def n_patches(x, n, transform, shape=(64, 64, 3), scale=[0.2, 0.8]): ''' unused ''' if shape[-1] == 0: shape = np.random.uniform(64, 128) shape = (shape, shape, 3) crop = transforms.Compose([ lambda x: Image.fromarray(x) if not 'PIL' in str(type(x)) else x, transforms.RandomResizedCrop(shape[0], scale=scale) ]) if torch.is_tensor(x): x = x.numpy().transpose(1,2, 0) P = [] for _ in range(n): xx = transform(crop(x)) P.append(xx) return torch.cat(P, dim=0) def patch_grid(transform, shape=(64, 64, 3), stride=[0.5, 0.5]): stride = np.random.random() * (stride[1] - stride[0]) + stride[0] stride = [int(shape[0]*stride), int(shape[1]*stride), shape[2]] spatial_jitter = transforms.Compose([ lambda x: Image.fromarray(x), transforms.RandomResizedCrop(shape[0], scale=(0.7, 0.9)) ]) def aug(x): if torch.is_tensor(x): x = x.numpy().transpose(1, 2, 0) elif 'PIL' in str(type(x)): x = np.array(x)#.transpose(2, 0, 1) winds = skimage.util.view_as_windows(x, shape, step=stride) winds = winds.reshape(-1, *winds.shape[-3:]) P = [transform(spatial_jitter(w)) for w in winds] return torch.cat(P, dim=0) return aug def get_frame_aug(frame_aug, patch_size): train_transform = [] if 'cj' in frame_aug: _cj = 0.1 train_transform += [ #transforms.RandomGrayscale(p=0.2), transforms.ColorJitter(_cj, _cj, _cj, 0), ] if 'flip' in frame_aug: train_transform += [transforms.RandomHorizontalFlip()] train_transform += NORM train_transform = transforms.Compose(train_transform) print('Frame augs:', train_transform, frame_aug) if 'grid' in frame_aug: aug = patch_grid(train_transform, shape=np.array(patch_size)) else: aug = train_transform return aug def get_frame_transform(frame_transform_str, img_size): tt = [] fts = frame_transform_str norm_size = torchvision.transforms.Resize((img_size, img_size)) if 'crop' in fts: tt.append(torchvision.transforms.RandomResizedCrop( img_size, scale=(0.8, 0.95), ratio=(0.7, 1.3), interpolation=2),) else: tt.append(norm_size) if 'cj' in fts: _cj = 0.1 # tt += [#transforms.RandomGrayscale(p=0.2),] tt += [transforms.ColorJitter(_cj, _cj, _cj, 0),] if 'flip' in fts: tt.append(torchvision.transforms.RandomHorizontalFlip()) print('Frame transforms:', tt, fts) return tt def get_train_transforms(args): norm_size = torchvision.transforms.Resize((args.img_size, args.img_size)) frame_transform = get_frame_transform(args.frame_transforms, args.img_size) frame_aug = get_frame_aug(args.frame_aug, args.patch_size) frame_aug = [frame_aug] if args.frame_aug != '' else NORM transform = frame_transform + frame_aug train_transform = MapTransform( torchvision.transforms.Compose(transform) ) plain = torchvision.transforms.Compose([ torchvision.transforms.ToPILImage(), norm_size, *NORM, ]) def with_orig(x): x = train_transform(x), \ plain(x[0]) if 'numpy' in str(type(x[0])) else plain(x[0].permute(2, 0, 1)) return x return with_orig
[ "torchvision.transforms.ColorJitter", "numpy.random.uniform", "torchvision.transforms.RandomHorizontalFlip", "torchvision.transforms.Resize", "skimage.util.view_as_windows", "torchvision.transforms.ToPILImage", "torch.cat", "torchvision.transforms.RandomResizedCrop", "torchvision.transforms.Compose", "numpy.random.random", "numpy.array", "PIL.Image.fromarray", "torchvision.transforms.Normalize", "torch.is_tensor", "torchvision.transforms.ToTensor" ]
[((206, 227), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (225, 227), False, 'from torchvision import transforms\n'), ((238, 277), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['IMG_MEAN', 'IMG_STD'], {}), '(IMG_MEAN, IMG_STD)\n', (258, 277), False, 'from torchvision import transforms\n'), ((1239, 1257), 'torch.is_tensor', 'torch.is_tensor', (['x'], {}), '(x)\n', (1254, 1257), False, 'import torch\n'), ((1403, 1422), 'torch.cat', 'torch.cat', (['P'], {'dim': '(0)'}), '(P, dim=0)\n', (1412, 1422), False, 'import torch\n'), ((2599, 2634), 'torchvision.transforms.Compose', 'transforms.Compose', (['train_transform'], {}), '(train_transform)\n', (2617, 2634), False, 'from torchvision import transforms\n'), ((2960, 3011), 'torchvision.transforms.Resize', 'torchvision.transforms.Resize', (['(img_size, img_size)'], {}), '((img_size, img_size))\n', (2989, 3011), False, 'import torchvision\n'), ((3556, 3617), 'torchvision.transforms.Resize', 'torchvision.transforms.Resize', (['(args.img_size, args.img_size)'], {}), '((args.img_size, args.img_size))\n', (3585, 3617), False, 'import torchvision\n'), ((992, 1018), 'numpy.random.uniform', 'np.random.uniform', (['(64)', '(128)'], {}), '(64, 128)\n', (1009, 1018), True, 'import numpy as np\n'), ((1813, 1831), 'torch.is_tensor', 'torch.is_tensor', (['x'], {}), '(x)\n', (1828, 1831), False, 'import torch\n'), ((1987, 2038), 'skimage.util.view_as_windows', 'skimage.util.view_as_windows', (['x', 'shape'], {'step': 'stride'}), '(x, shape, step=stride)\n', (2015, 2038), False, 'import skimage\n'), ((2166, 2185), 'torch.cat', 'torch.cat', (['P'], {'dim': '(0)'}), '(P, dim=0)\n', (2175, 2185), False, 'import torch\n'), ((3922, 3963), 'torchvision.transforms.Compose', 'torchvision.transforms.Compose', (['transform'], {}), '(transform)\n', (3952, 3963), False, 'import torchvision\n'), ((1168, 1219), 'torchvision.transforms.RandomResizedCrop', 'transforms.RandomResizedCrop', (['shape[0]'], {'scale': 'scale'}), '(shape[0], scale=scale)\n', (1196, 1219), False, 'from torchvision import transforms\n'), ((1503, 1521), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (1519, 1521), True, 'import numpy as np\n'), ((1721, 1777), 'torchvision.transforms.RandomResizedCrop', 'transforms.RandomResizedCrop', (['shape[0]'], {'scale': '(0.7, 0.9)'}), '(shape[0], scale=(0.7, 0.9))\n', (1749, 1777), False, 'from torchvision import transforms\n'), ((2405, 2445), 'torchvision.transforms.ColorJitter', 'transforms.ColorJitter', (['_cj', '_cj', '_cj', '(0)'], {}), '(_cj, _cj, _cj, 0)\n', (2427, 2445), False, 'from torchvision import transforms\n'), ((2513, 2546), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {}), '()\n', (2544, 2546), False, 'from torchvision import transforms\n'), ((3053, 3162), 'torchvision.transforms.RandomResizedCrop', 'torchvision.transforms.RandomResizedCrop', (['img_size'], {'scale': '(0.8, 0.95)', 'ratio': '(0.7, 1.3)', 'interpolation': '(2)'}), '(img_size, scale=(0.8, 0.95), ratio\n =(0.7, 1.3), interpolation=2)\n', (3093, 3162), False, 'import torchvision\n'), ((3320, 3360), 'torchvision.transforms.ColorJitter', 'transforms.ColorJitter', (['_cj', '_cj', '_cj', '(0)'], {}), '(_cj, _cj, _cj, 0)\n', (3342, 3360), False, 'from torchvision import transforms\n'), ((3404, 3449), 'torchvision.transforms.RandomHorizontalFlip', 'torchvision.transforms.RandomHorizontalFlip', ([], {}), '()\n', (3447, 3449), False, 'import torchvision\n'), ((4028, 4063), 'torchvision.transforms.ToPILImage', 'torchvision.transforms.ToPILImage', ([], {}), '()\n', (4061, 4063), False, 'import torchvision\n'), ((1693, 1711), 'PIL.Image.fromarray', 'Image.fromarray', (['x'], {}), '(x)\n', (1708, 1711), False, 'from PIL import Image\n'), ((1930, 1941), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (1938, 1941), True, 'import numpy as np\n'), ((2766, 2786), 'numpy.array', 'np.array', (['patch_size'], {}), '(patch_size)\n', (2774, 2786), True, 'import numpy as np\n'), ((1104, 1122), 'PIL.Image.fromarray', 'Image.fromarray', (['x'], {}), '(x)\n', (1119, 1122), False, 'from PIL import Image\n'), ((726, 744), 'PIL.Image.fromarray', 'Image.fromarray', (['v'], {}), '(v)\n', (741, 744), False, 'from PIL import Image\n')]
import logging import pytest import uuid from pygame.math import Vector2 import pygame import random import numpy as np import cv2 import time from .base_render import BaseRender from gobigger.utils import Colors, BLACK, YELLOW, GREEN from gobigger.utils import PLAYER_COLORS, FOOD_COLOR, THORNS_COLOR, SPORE_COLOR from gobigger.utils import precision_algorithm, Border class EnvRender(BaseRender): ''' Overview: No need to use a new window, giving a global view and the view that each player can see ''' def __init__(self, width, height, background=(255,255,255), padding=(0,0), cell_size=10, scale_up_ratio=1.5, vision_x_min=100, vision_y_min=100, only_render=True, use_spatial=True): super(EnvRender, self).__init__(width, height, background=background, padding=padding, cell_size=cell_size, only_render=only_render) self.scale_up_ratio = scale_up_ratio self.vision_x_min = vision_x_min self.vision_y_min = vision_y_min self.use_spatial = use_spatial def fill_all(self, screen, food_balls, thorns_balls, spore_balls, players, ): font = pygame.font.SysFont('Menlo', 12, True) # render all balls for ball in food_balls: pygame.draw.circle(screen, FOOD_COLOR, ball.position, ball.radius) for ball in thorns_balls: pygame.draw.circle(screen, THORNS_COLOR, ball.position, ball.radius) for ball in spore_balls: pygame.draw.circle(screen, SPORE_COLOR, ball.position, ball.radius) for index, player in enumerate(players): for ball in player.get_balls(): pygame.draw.circle(screen, PLAYER_COLORS[int(ball.owner)], ball.position, ball.radius) screen_data = pygame.surfarray.array3d(screen) return screen_data def get_clip_screen(self, screen_data, rectangle): if len(screen_data.shape) == 3: screen_data_clip = screen_data[rectangle[0]:rectangle[2], rectangle[1]:rectangle[3], :] else: screen_data_clip = screen_data[rectangle[0]:rectangle[2], rectangle[1]:rectangle[3]] return screen_data_clip def get_rectangle_by_player(self, player): ''' Multiples of the circumscribed matrix of the centroid ''' centroid = player.cal_centroid() xs_max = 0 ys_max = 0 for ball in player.get_balls(): direction_center = centroid - ball.position if abs(direction_center.x) + ball.radius > xs_max: xs_max = abs(direction_center.x) + ball.radius if abs(direction_center.y) + ball.radius > ys_max: ys_max = abs(direction_center.y) + ball.radius xs_max = max(xs_max, self.vision_x_min) ys_max = max(ys_max, self.vision_y_min) scale_up_len = max(xs_max, ys_max) left_top_x = min(max(int(centroid.x - scale_up_len * self.scale_up_ratio), 0), max(int(self.width_full - scale_up_len * self.scale_up_ratio * 2), 0)) left_top_y = min(max(int(centroid.y - scale_up_len * self.scale_up_ratio), 0), max(int(self.height_full - scale_up_len * self.scale_up_ratio * 2), 0)) right_bottom_x = min(int(left_top_x + scale_up_len * self.scale_up_ratio * 2), self.width_full) right_bottom_y = min(int(left_top_y + scale_up_len * self.scale_up_ratio * 2), self.height_full) rectangle = (left_top_x, left_top_y, right_bottom_x, right_bottom_y) return rectangle def get_overlap(self, rectangle, food_balls, thorns_balls, spore_balls, player): def food_generator(rectangle, food_balls): for ball in food_balls: if ball.judge_in_rectangle(rectangle): yield({'position': tuple(ball.position), 'radius': ball.radius}) def thorns_generator(rectangle, thorns_balls): for ball in thorns_balls: if ball.judge_in_rectangle(rectangle): yield({'position': tuple(ball.position), 'radius': ball.radius}) def spore_generator(rectangle, spore_balls): for ball in spore_balls: if ball.judge_in_rectangle(rectangle): yield({'position': tuple(ball.position), 'radius': ball.radius}) def player_generator(rectangle, player): for ball in player.get_balls(): if ball.judge_in_rectangle(rectangle): yield({'position': tuple(ball.position), 'radius': ball.radius, 'player': player.name, 'team': player.team_name}) return {'food': food_generator(rectangle, food_balls), 'thorns': thorns_generator(rectangle, thorns_balls), 'spore': spore_generator(rectangle, spore_balls), 'clone': player_generator(rectangle, player)} def update_all(self, food_balls, thorns_balls, spore_balls, players): screen_data_all = None feature_layers = None if self.use_spatial: screen_all = pygame.Surface((self.width, self.height)) screen_all.fill(self.background) screen_data_all = self.fill_all(screen_all, food_balls, thorns_balls, spore_balls, players) screen_data_players = {} # food_balls = precision_algorithm(Border(0, 0, 1000, 1000), food_balls) for player in players: rectangle = self.get_rectangle_by_player(player) if self.use_spatial: screen_data_player = self.get_clip_screen(screen_data_all, rectangle=rectangle) screen_data_player = cv2.cvtColor(screen_data_player, cv2.COLOR_RGB2BGR) screen_data_player = np.fliplr(screen_data_player) screen_data_player = np.rot90(screen_data_player) feature_layers = self.transfer_rgb_to_features(screen_data_player, player_num=len(players)) overlap = self.get_overlap(rectangle, food_balls, thorns_balls, spore_balls, player) # overlap = self.get_overlap(rectangle, food_balls.solve(rectangle[0], rectangle[1],rectangle[2], rectangle[3), thorns_balls, spore_balls, player) screen_data_players[player.name] = { 'feature_layers': feature_layers, 'rectangle': rectangle, 'overlap': overlap, 'team_name': player.team_name, } return screen_data_all, screen_data_players def get_tick_all_colorful(self, food_balls, thorns_balls, spore_balls, players, partial_size=300): screen_all = pygame.Surface((self.width, self.height)) screen_all.fill(self.background) font = pygame.font.SysFont('Menlo', 12, True) # render all balls for ball in food_balls: pygame.draw.circle(screen_all, BLACK, ball.position, ball.radius) for ball in thorns_balls: pygame.draw.circle(screen_all, GREEN, ball.position, ball.radius) for ball in spore_balls: pygame.draw.circle(screen_all, YELLOW, ball.position, ball.radius) for index, player in enumerate(players): for ball in player.get_balls(): pygame.draw.circle(screen_all, Colors[int(ball.owner)], ball.position, ball.radius) screen_data_all = pygame.surfarray.array3d(screen_all) screen_data_players = {} for player in players: rectangle = self.get_rectangle_by_player(player) screen_data_player = self.get_clip_screen(screen_data_all, rectangle=rectangle) screen_data_player = np.resize(np.rot90(np.fliplr(cv2.cvtColor(screen_data_player, cv2.COLOR_RGB2BGR))), (partial_size, partial_size, 3)) screen_data_players[player.name] = screen_data_player screen_data_all = np.rot90(np.fliplr(cv2.cvtColor(screen_data_all, cv2.COLOR_RGB2BGR))) return screen_data_all, screen_data_players def transfer_rgb_to_features(self, rgb, player_num=12): ''' Overview: 12 player + food + spore + thorns ''' features = [] h, w = rgb.shape[0:2] tmp_rgb = rgb[:,:,0] assert len(tmp_rgb.shape) == 2 for i in range(player_num): features.append((tmp_rgb==PLAYER_COLORS[i][0]).astype(int)) features.append((tmp_rgb==FOOD_COLOR[0]).astype(int)) features.append((tmp_rgb==SPORE_COLOR[0]).astype(int)) features.append((tmp_rgb==THORNS_COLOR[0]).astype(int)) return features def show(self): raise NotImplementedError def close(self): pygame.quit()
[ "pygame.quit", "pygame.draw.circle", "pygame.Surface", "pygame.font.SysFont", "cv2.cvtColor", "numpy.fliplr", "numpy.rot90", "pygame.surfarray.array3d" ]
[((1177, 1215), 'pygame.font.SysFont', 'pygame.font.SysFont', (['"""Menlo"""', '(12)', '(True)'], {}), "('Menlo', 12, True)\n", (1196, 1215), False, 'import pygame\n'), ((1800, 1832), 'pygame.surfarray.array3d', 'pygame.surfarray.array3d', (['screen'], {}), '(screen)\n', (1824, 1832), False, 'import pygame\n'), ((6726, 6767), 'pygame.Surface', 'pygame.Surface', (['(self.width, self.height)'], {}), '((self.width, self.height))\n', (6740, 6767), False, 'import pygame\n'), ((6824, 6862), 'pygame.font.SysFont', 'pygame.font.SysFont', (['"""Menlo"""', '(12)', '(True)'], {}), "('Menlo', 12, True)\n", (6843, 6862), False, 'import pygame\n'), ((7443, 7479), 'pygame.surfarray.array3d', 'pygame.surfarray.array3d', (['screen_all'], {}), '(screen_all)\n', (7467, 7479), False, 'import pygame\n'), ((8736, 8749), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (8747, 8749), False, 'import pygame\n'), ((1287, 1353), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', 'FOOD_COLOR', 'ball.position', 'ball.radius'], {}), '(screen, FOOD_COLOR, ball.position, ball.radius)\n', (1305, 1353), False, 'import pygame\n'), ((1400, 1468), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', 'THORNS_COLOR', 'ball.position', 'ball.radius'], {}), '(screen, THORNS_COLOR, ball.position, ball.radius)\n', (1418, 1468), False, 'import pygame\n'), ((1514, 1581), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', 'SPORE_COLOR', 'ball.position', 'ball.radius'], {}), '(screen, SPORE_COLOR, ball.position, ball.radius)\n', (1532, 1581), False, 'import pygame\n'), ((5198, 5239), 'pygame.Surface', 'pygame.Surface', (['(self.width, self.height)'], {}), '((self.width, self.height))\n', (5212, 5239), False, 'import pygame\n'), ((6934, 6999), 'pygame.draw.circle', 'pygame.draw.circle', (['screen_all', 'BLACK', 'ball.position', 'ball.radius'], {}), '(screen_all, BLACK, ball.position, ball.radius)\n', (6952, 6999), False, 'import pygame\n'), ((7046, 7111), 'pygame.draw.circle', 'pygame.draw.circle', (['screen_all', 'GREEN', 'ball.position', 'ball.radius'], {}), '(screen_all, GREEN, ball.position, ball.radius)\n', (7064, 7111), False, 'import pygame\n'), ((7157, 7223), 'pygame.draw.circle', 'pygame.draw.circle', (['screen_all', 'YELLOW', 'ball.position', 'ball.radius'], {}), '(screen_all, YELLOW, ball.position, ball.radius)\n', (7175, 7223), False, 'import pygame\n'), ((5762, 5813), 'cv2.cvtColor', 'cv2.cvtColor', (['screen_data_player', 'cv2.COLOR_RGB2BGR'], {}), '(screen_data_player, cv2.COLOR_RGB2BGR)\n', (5774, 5813), False, 'import cv2\n'), ((5851, 5880), 'numpy.fliplr', 'np.fliplr', (['screen_data_player'], {}), '(screen_data_player)\n', (5860, 5880), True, 'import numpy as np\n'), ((5918, 5946), 'numpy.rot90', 'np.rot90', (['screen_data_player'], {}), '(screen_data_player)\n', (5926, 5946), True, 'import numpy as np\n'), ((7958, 8006), 'cv2.cvtColor', 'cv2.cvtColor', (['screen_data_all', 'cv2.COLOR_RGB2BGR'], {}), '(screen_data_all, cv2.COLOR_RGB2BGR)\n', (7970, 8006), False, 'import cv2\n'), ((7759, 7810), 'cv2.cvtColor', 'cv2.cvtColor', (['screen_data_player', 'cv2.COLOR_RGB2BGR'], {}), '(screen_data_player, cv2.COLOR_RGB2BGR)\n', (7771, 7810), False, 'import cv2\n')]
# -*- coding: utf-8 -*- """ @author: <NAME> """ # A script to produce a finishing ability metric based on the *concept* of post-shot xG based on the phyiscal properties of # a shot once taken # see https://www.opengoalapp.com/finishing-ability for full write-up of the method import pandas as pd from pandas.io.json import json_normalize import numpy as np from GetMatchDates import GetMatchDates from PrepareIO import PrepareIO from sklearn.model_selection import train_test_split from sklearn.calibration import calibration_curve from sklearn.metrics import log_loss import xgboost as xgb import matplotlib.pyplot as plt # load in StatsBomb shot data from a snapshot file - you can also load in from the API as well with split=True # then just combine the shot dataframes from each match into a single frame afterwards e.g: #------------- #grouped_event_list = [] #for match_id in match_ids: #grouped_events = sb.events(match_id=match_id, split=True) #grouped_event_list.append(grouped_events) #select the event group required and a list of dataframes will be returned #shots_frames = [i["shots"] for i in grouped_event_list] #------------- shots = pd.read_pickle('data\shot_data.pkl') ############################################################################################## # PRE-PROCESSING # ############################################################################################## #expand out the nested json values within shots into new dataframe expanded_shots = json_normalize(shots['shot']) # expanded shot is produced for each shot in order, so can reset index and append shots.id onto expanded_shots shots = shots.reset_index(drop=True) expanded_shots = expanded_shots.reset_index(drop=True) #concat along the columns axis as data is in order expanded_shots = pd.concat([shots, expanded_shots], axis = 1) #expad location data into own columns expanded_shots[['loc_x','loc_y']] = pd.DataFrame(expanded_shots.location.tolist(), index= expanded_shots.index) expanded_shots[['endloc_x', 'endloc_y', 'endloc_z']] = pd.DataFrame(expanded_shots.end_location.tolist(), index= expanded_shots.index) #lookup the date of the match for each shot in the set match_date = GetMatchDates() expanded_shots = expanded_shots.merge(match_date) # get date of all shots #select some players for evaluation - note for this set there is only a handful of players with >100 shots. player_list = ['<NAME>', '<NAME>', '<NAME>'] #create a dictionary for the shot data of the evaluation players eval_dict = {} for player in player_list: eval_dict[player] = expanded_shots.loc[expanded_shots['player'].isin([player])].sort_values(by = ['match_date', 'index']) # strip out eval players shots and sort into order shots were taken #drop this data from the main set to be used for model training and test expanded_shots = expanded_shots.loc[~expanded_shots['player'].isin(player_list)] #generate IO for models - the output is common for both main_psxg_input, main_xg_input, main_output = PrepareIO(expanded_shots) #get eval player data into format that can be plugged into model as well eval_data = {} for player in eval_dict: eval_data[player] = PrepareIO(eval_dict[player]) ############################################################################################## # MODELS # ############################################################################################## #----------psxG model---------------------------------------------- #generate train and test split for single run X_train, X_test, y_train, y_test = train_test_split(main_psxg_input, main_output, test_size=0.3, random_state=42) #define xgboost model - params have been chosen following a small amount of experimentation i.e. NOT optimised psxg_model = xgb.XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=5, min_child_weight=1, missing=None, n_estimators=180, n_jobs=1, nthread=None, objective='binary:logistic', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=None, subsample=1, verbosity=1) #fit model psxg_model.fit(X_train, y_train) #generate predictions from test data y_pred = psxg_model.predict_proba(X_test) #calculate log loss on test data, using p(Goal = 1) i.e. the second value in the array ll_model = log_loss(y_test, y_pred[:,1]) #plot calibration curve ccurve = calibration_curve(y_test, y_pred[:,1], n_bins = 15) # returns true proportion [0] and average predicted prob [1] plt.scatter(ccurve[1],ccurve[0]) plt.title('psxG Calibration Curve') plt.xlabel('Average of model predicted psxG') plt.ylabel('Average of actual goal outcome') x = [0,1] y = [0,1] plt.plot(x,y, '--') plt.show() #------------------------------------------------------------------ #----------xG model---------------------------------------------- #generate train and test split for single run X_train, X_test, y_train, y_test = train_test_split(main_xg_input, main_output, test_size=0.3, random_state=42) #define xgboost model - params have been chosen following a small amount of experimentation i.e. NOT optimised xg_model = xgb.XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=5, min_child_weight=1, missing=None, n_estimators=180, n_jobs=1, nthread=None, objective='binary:logistic', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=None, subsample=1, verbosity=1) #fit model xg_model.fit(X_train, y_train) #generate predictions from test data y_pred = xg_model.predict_proba(X_test) #calculate log loss on test data, using p(Goal = 1) i.e. the second value in the array ll_model = log_loss(y_test, y_pred[:,1]) #plot calibration curve ccurve = calibration_curve(y_test, y_pred[:,1], n_bins = 15) # returns true proportion [0] and average predicted prob [1] plt.scatter(ccurve[1],ccurve[0]) plt.title('xG Calibration Curve') plt.xlabel('Average of model predicted xG') plt.ylabel('Average of actual goal outcome') x = [0,1] y = [0,1] plt.plot(x,y, '--') plt.show() ############################################################################################## # EVALUATION # ############################################################################################## # Generate confidence intervals on eval player set window = 30 # number of shots to use as window for rolling average #initialise an empty dictionary for player results to go in player_eval = {} for player in player_list: player_eval[player] = {} player_eval[player]['psxG_preds'] = [] player_eval[player]['xG_preds'] = [] num_sims = 1000 # set number of runs of model fitting to perform - EACH SIM TAKES 2 SECONDS ON MY MID-SPEC MACHINE = 2000 SECS TOTAL #run the model fits and add predition results to dictionary for i in range(num_sims): X_train_psxG, X_test_psxG, y_train, y_test = train_test_split(main_psxg_input, main_output, test_size=0.3) X_train_xG = X_train_psxG.drop(['angle', 'elev', 'vel'], axis = 1) X_test_xG = X_test_psxG.drop(['angle', 'elev', 'vel'], axis = 1) psxg_model.fit(X_train_psxG, y_train) psxg_pred = psxg_model.predict_proba(X_test_psxG) xg_model.fit(X_train_xG, y_train) xg_pred = xg_model.predict_proba(X_test_xG) ll_psxg = log_loss(y_test, psxg_pred[:,1]) ll_xg = log_loss(y_test, xg_pred[:,1]) print('psxG = '+ str(ll_psxg)) # print progress LL for each run as we go to show it is doing something more than anything print('xG = '+ str(ll_xg)) for player in player_list: player_eval[player]['psxG_preds'].append(psxg_model.predict_proba(eval_data[player][0])[:,1]) player_eval[player]['xG_preds'].append(xg_model.predict_proba(eval_data[player][1])[:,1]) #manipulate and perform relative % calculation for player in player_eval: player_eval[player]['p'] = np.array(player_eval[player]['psxG_preds']) player_eval[player]['q'] = np.array(player_eval[player]['xG_preds']) p = player_eval[player]['p'] q = player_eval[player]['q'] player_eval[player]['overperf_mult'] = (p-q) / q player_eval[player]['overperf_mult'] = player_eval[player]['overperf_mult'].T player_eval[player]['overperf_mult'] = pd.DataFrame(player_eval[player]['overperf_mult']) player_eval[player]['ma_overperf_mult'] = player_eval[player]['overperf_mult'].rolling(window = window).mean() #calculate relavent percentiles for mean and CI of choice - here we have 95% CI player_eval[player]['ma_overperf_mult_97'] = np.percentile(player_eval[player]['ma_overperf_mult'], q = 97.5, axis = 1) player_eval[player]['ma_overperf_mult_2'] = np.percentile(player_eval[player]['ma_overperf_mult'], q = 2.5, axis = 1) player_eval[player]['ma_overperf_mult_50'] = np.percentile(player_eval[player]['ma_overperf_mult'], q = 50, axis = 1) ############################################################################################## # PLOTTING # ############################################################################################## player = '<NAME>' plt.figure(figsize=(12,6)) plt.plot(player_eval[player]['ma_overperf_mult_50']*100, label = 'psxG - xG', color = 'purple', linewidth = 5) plt.plot(player_eval[player]['ma_overperf_mult_97']*100, '--', color = 'purple', label = '95% CI') plt.plot(player_eval[player]['ma_overperf_mult_2']*100, '--', color = 'purple') date_labels = eval_dict[player]['match_date'] plt.title('Relative psxG overperformance - '+str(window)+ ' shot rolling average'+'\n'+ player) plt.xlabel('Date') plt.ylabel('Relative overperformance %') plt.legend(loc="upper right") ticks = np.floor(np.linspace(0,len(date_labels)-1,num = 7)) plt.xticks(ticks = ticks, labels = date_labels.take(ticks)) plt.grid(b=True) plt.xlim(window, len(date_labels)) plt.ylim(-40,80) plt.fill_between(x = list(range(0,len(date_labels))), y1 = player_eval[player]['ma_overperf_mult_97']*100, y2 = player_eval[player]['ma_overperf_mult_2']*100, alpha = 0.3, color = 'purple') plt.show()
[ "matplotlib.pyplot.title", "sklearn.model_selection.train_test_split", "matplotlib.pyplot.figure", "GetMatchDates.GetMatchDates", "pandas.DataFrame", "sklearn.metrics.log_loss", "xgboost.XGBClassifier", "pandas.concat", "sklearn.calibration.calibration_curve", "matplotlib.pyplot.show", "matplotlib.pyplot.ylim", "pandas.io.json.json_normalize", "matplotlib.pyplot.legend", "PrepareIO.PrepareIO", "numpy.percentile", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.grid", "matplotlib.pyplot.plot", "matplotlib.pyplot.scatter", "numpy.array", "pandas.read_pickle", "matplotlib.pyplot.xlabel" ]
[((1194, 1231), 'pandas.read_pickle', 'pd.read_pickle', (['"""data\\\\shot_data.pkl"""'], {}), "('data\\\\shot_data.pkl')\n", (1208, 1231), True, 'import pandas as pd\n'), ((1573, 1602), 'pandas.io.json.json_normalize', 'json_normalize', (["shots['shot']"], {}), "(shots['shot'])\n", (1587, 1602), False, 'from pandas.io.json import json_normalize\n'), ((1876, 1918), 'pandas.concat', 'pd.concat', (['[shots, expanded_shots]'], {'axis': '(1)'}), '([shots, expanded_shots], axis=1)\n', (1885, 1918), True, 'import pandas as pd\n'), ((2277, 2292), 'GetMatchDates.GetMatchDates', 'GetMatchDates', ([], {}), '()\n', (2290, 2292), False, 'from GetMatchDates import GetMatchDates\n'), ((3086, 3111), 'PrepareIO.PrepareIO', 'PrepareIO', (['expanded_shots'], {}), '(expanded_shots)\n', (3095, 3111), False, 'from PrepareIO import PrepareIO\n'), ((3685, 3763), 'sklearn.model_selection.train_test_split', 'train_test_split', (['main_psxg_input', 'main_output'], {'test_size': '(0.3)', 'random_state': '(42)'}), '(main_psxg_input, main_output, test_size=0.3, random_state=42)\n', (3701, 3763), False, 'from sklearn.model_selection import train_test_split\n'), ((3910, 4320), 'xgboost.XGBClassifier', 'xgb.XGBClassifier', ([], {'base_score': '(0.5)', 'booster': '"""gbtree"""', 'colsample_bylevel': '(1)', 'colsample_bynode': '(1)', 'colsample_bytree': '(1)', 'gamma': '(0)', 'learning_rate': '(0.1)', 'max_delta_step': '(0)', 'max_depth': '(5)', 'min_child_weight': '(1)', 'missing': 'None', 'n_estimators': '(180)', 'n_jobs': '(1)', 'nthread': 'None', 'objective': '"""binary:logistic"""', 'random_state': '(0)', 'reg_alpha': '(0)', 'reg_lambda': '(1)', 'scale_pos_weight': '(1)', 'seed': 'None', 'silent': 'None', 'subsample': '(1)', 'verbosity': '(1)'}), "(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1,\n max_delta_step=0, max_depth=5, min_child_weight=1, missing=None,\n n_estimators=180, n_jobs=1, nthread=None, objective='binary:logistic',\n random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=\n None, silent=None, subsample=1, verbosity=1)\n", (3927, 4320), True, 'import xgboost as xgb\n'), ((4636, 4666), 'sklearn.metrics.log_loss', 'log_loss', (['y_test', 'y_pred[:, 1]'], {}), '(y_test, y_pred[:, 1])\n', (4644, 4666), False, 'from sklearn.metrics import log_loss\n'), ((4701, 4751), 'sklearn.calibration.calibration_curve', 'calibration_curve', (['y_test', 'y_pred[:, 1]'], {'n_bins': '(15)'}), '(y_test, y_pred[:, 1], n_bins=15)\n', (4718, 4751), False, 'from sklearn.calibration import calibration_curve\n'), ((4814, 4847), 'matplotlib.pyplot.scatter', 'plt.scatter', (['ccurve[1]', 'ccurve[0]'], {}), '(ccurve[1], ccurve[0])\n', (4825, 4847), True, 'import matplotlib.pyplot as plt\n'), ((4847, 4882), 'matplotlib.pyplot.title', 'plt.title', (['"""psxG Calibration Curve"""'], {}), "('psxG Calibration Curve')\n", (4856, 4882), True, 'import matplotlib.pyplot as plt\n'), ((4883, 4928), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Average of model predicted psxG"""'], {}), "('Average of model predicted psxG')\n", (4893, 4928), True, 'import matplotlib.pyplot as plt\n'), ((4929, 4973), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Average of actual goal outcome"""'], {}), "('Average of actual goal outcome')\n", (4939, 4973), True, 'import matplotlib.pyplot as plt\n'), ((4994, 5014), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""--"""'], {}), "(x, y, '--')\n", (5002, 5014), True, 'import matplotlib.pyplot as plt\n'), ((5014, 5024), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5022, 5024), True, 'import matplotlib.pyplot as plt\n'), ((5242, 5318), 'sklearn.model_selection.train_test_split', 'train_test_split', (['main_xg_input', 'main_output'], {'test_size': '(0.3)', 'random_state': '(42)'}), '(main_xg_input, main_output, test_size=0.3, random_state=42)\n', (5258, 5318), False, 'from sklearn.model_selection import train_test_split\n'), ((5442, 5852), 'xgboost.XGBClassifier', 'xgb.XGBClassifier', ([], {'base_score': '(0.5)', 'booster': '"""gbtree"""', 'colsample_bylevel': '(1)', 'colsample_bynode': '(1)', 'colsample_bytree': '(1)', 'gamma': '(0)', 'learning_rate': '(0.1)', 'max_delta_step': '(0)', 'max_depth': '(5)', 'min_child_weight': '(1)', 'missing': 'None', 'n_estimators': '(180)', 'n_jobs': '(1)', 'nthread': 'None', 'objective': '"""binary:logistic"""', 'random_state': '(0)', 'reg_alpha': '(0)', 'reg_lambda': '(1)', 'scale_pos_weight': '(1)', 'seed': 'None', 'silent': 'None', 'subsample': '(1)', 'verbosity': '(1)'}), "(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1,\n max_delta_step=0, max_depth=5, min_child_weight=1, missing=None,\n n_estimators=180, n_jobs=1, nthread=None, objective='binary:logistic',\n random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=\n None, silent=None, subsample=1, verbosity=1)\n", (5459, 5852), True, 'import xgboost as xgb\n'), ((6138, 6168), 'sklearn.metrics.log_loss', 'log_loss', (['y_test', 'y_pred[:, 1]'], {}), '(y_test, y_pred[:, 1])\n', (6146, 6168), False, 'from sklearn.metrics import log_loss\n'), ((6206, 6256), 'sklearn.calibration.calibration_curve', 'calibration_curve', (['y_test', 'y_pred[:, 1]'], {'n_bins': '(15)'}), '(y_test, y_pred[:, 1], n_bins=15)\n', (6223, 6256), False, 'from sklearn.calibration import calibration_curve\n'), ((6319, 6352), 'matplotlib.pyplot.scatter', 'plt.scatter', (['ccurve[1]', 'ccurve[0]'], {}), '(ccurve[1], ccurve[0])\n', (6330, 6352), True, 'import matplotlib.pyplot as plt\n'), ((6352, 6385), 'matplotlib.pyplot.title', 'plt.title', (['"""xG Calibration Curve"""'], {}), "('xG Calibration Curve')\n", (6361, 6385), True, 'import matplotlib.pyplot as plt\n'), ((6386, 6429), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Average of model predicted xG"""'], {}), "('Average of model predicted xG')\n", (6396, 6429), True, 'import matplotlib.pyplot as plt\n'), ((6430, 6474), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Average of actual goal outcome"""'], {}), "('Average of actual goal outcome')\n", (6440, 6474), True, 'import matplotlib.pyplot as plt\n'), ((6495, 6515), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""--"""'], {}), "(x, y, '--')\n", (6503, 6515), True, 'import matplotlib.pyplot as plt\n'), ((6515, 6525), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6523, 6525), True, 'import matplotlib.pyplot as plt\n'), ((9651, 9678), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 6)'}), '(figsize=(12, 6))\n', (9661, 9678), True, 'import matplotlib.pyplot as plt\n'), ((9678, 9789), 'matplotlib.pyplot.plot', 'plt.plot', (["(player_eval[player]['ma_overperf_mult_50'] * 100)"], {'label': '"""psxG - xG"""', 'color': '"""purple"""', 'linewidth': '(5)'}), "(player_eval[player]['ma_overperf_mult_50'] * 100, label=\n 'psxG - xG', color='purple', linewidth=5)\n", (9686, 9789), True, 'import matplotlib.pyplot as plt\n'), ((9789, 9890), 'matplotlib.pyplot.plot', 'plt.plot', (["(player_eval[player]['ma_overperf_mult_97'] * 100)", '"""--"""'], {'color': '"""purple"""', 'label': '"""95% CI"""'}), "(player_eval[player]['ma_overperf_mult_97'] * 100, '--', color=\n 'purple', label='95% CI')\n", (9797, 9890), True, 'import matplotlib.pyplot as plt\n'), ((9888, 9967), 'matplotlib.pyplot.plot', 'plt.plot', (["(player_eval[player]['ma_overperf_mult_2'] * 100)", '"""--"""'], {'color': '"""purple"""'}), "(player_eval[player]['ma_overperf_mult_2'] * 100, '--', color='purple')\n", (9896, 9967), True, 'import matplotlib.pyplot as plt\n'), ((10111, 10129), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Date"""'], {}), "('Date')\n", (10121, 10129), True, 'import matplotlib.pyplot as plt\n'), ((10130, 10170), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Relative overperformance %"""'], {}), "('Relative overperformance %')\n", (10140, 10170), True, 'import matplotlib.pyplot as plt\n'), ((10171, 10200), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (10181, 10200), True, 'import matplotlib.pyplot as plt\n'), ((10321, 10337), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'b': '(True)'}), '(b=True)\n', (10329, 10337), True, 'import matplotlib.pyplot as plt\n'), ((10373, 10390), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-40)', '(80)'], {}), '(-40, 80)\n', (10381, 10390), True, 'import matplotlib.pyplot as plt\n'), ((10632, 10642), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10640, 10642), True, 'import matplotlib.pyplot as plt\n'), ((3250, 3278), 'PrepareIO.PrepareIO', 'PrepareIO', (['eval_dict[player]'], {}), '(eval_dict[player])\n', (3259, 3278), False, 'from PrepareIO import PrepareIO\n'), ((7374, 7435), 'sklearn.model_selection.train_test_split', 'train_test_split', (['main_psxg_input', 'main_output'], {'test_size': '(0.3)'}), '(main_psxg_input, main_output, test_size=0.3)\n', (7390, 7435), False, 'from sklearn.model_selection import train_test_split\n'), ((7789, 7822), 'sklearn.metrics.log_loss', 'log_loss', (['y_test', 'psxg_pred[:, 1]'], {}), '(y_test, psxg_pred[:, 1])\n', (7797, 7822), False, 'from sklearn.metrics import log_loss\n'), ((7835, 7866), 'sklearn.metrics.log_loss', 'log_loss', (['y_test', 'xg_pred[:, 1]'], {}), '(y_test, xg_pred[:, 1])\n', (7843, 7866), False, 'from sklearn.metrics import log_loss\n'), ((8380, 8423), 'numpy.array', 'np.array', (["player_eval[player]['psxG_preds']"], {}), "(player_eval[player]['psxG_preds'])\n", (8388, 8423), True, 'import numpy as np\n'), ((8455, 8496), 'numpy.array', 'np.array', (["player_eval[player]['xG_preds']"], {}), "(player_eval[player]['xG_preds'])\n", (8463, 8496), True, 'import numpy as np\n'), ((8751, 8801), 'pandas.DataFrame', 'pd.DataFrame', (["player_eval[player]['overperf_mult']"], {}), "(player_eval[player]['overperf_mult'])\n", (8763, 8801), True, 'import pandas as pd\n'), ((9061, 9131), 'numpy.percentile', 'np.percentile', (["player_eval[player]['ma_overperf_mult']"], {'q': '(97.5)', 'axis': '(1)'}), "(player_eval[player]['ma_overperf_mult'], q=97.5, axis=1)\n", (9074, 9131), True, 'import numpy as np\n'), ((9184, 9253), 'numpy.percentile', 'np.percentile', (["player_eval[player]['ma_overperf_mult']"], {'q': '(2.5)', 'axis': '(1)'}), "(player_eval[player]['ma_overperf_mult'], q=2.5, axis=1)\n", (9197, 9253), True, 'import numpy as np\n'), ((9307, 9375), 'numpy.percentile', 'np.percentile', (["player_eval[player]['ma_overperf_mult']"], {'q': '(50)', 'axis': '(1)'}), "(player_eval[player]['ma_overperf_mult'], q=50, axis=1)\n", (9320, 9375), True, 'import numpy as np\n')]
import numpy as np from .dt import DecisionTree from .losses import MSELoss, CrossEntropyLoss def to_one_hot(labels, n_classes=None): if labels.ndim > 1: raise ValueError("labels must have dimension 1, but got {}".format(labels.ndim)) N = labels.size n_cols = np.max(labels) + 1 if n_classes is None else n_classes one_hot = np.zeros((N, n_cols)) one_hot[np.arange(N), labels] = 1.0 return one_hot class GradientBoostedDecisionTree: def __init__( self, n_iter, max_depth=None, classifier=True, learning_rate=1, loss="crossentropy", step_size="constant", ): """ A gradient boosted ensemble of decision trees. Notes ----- Gradient boosted machines (GBMs) fit an ensemble of `m` weak learners such that: .. math:: f_m(X) = b(X) + \eta w_1 g_1 + \ldots + \eta w_m g_m where `b` is a fixed initial estimate for the targets, :math:`\eta` is a learning rate parameter, and :math:`w_{\cdot}` and :math:`g_{\cdot}` denote the weights and learner predictions for subsequent fits. We fit each `w` and `g` iteratively using a greedy strategy so that at each iteration `i`, .. math:: w_i, g_i = \\arg \min_{w_i, g_i} L(Y, f_{i-1}(X) + w_i g_i) On each iteration we fit a new weak learner to predict the negative gradient of the loss with respect to the previous prediction, :math:`f_{i-1}(X)`. We then use the element-wise product of the predictions of this weak learner, :math:`g_i`, with a weight, :math:`w_i`, to compute the amount to adjust the predictions of our model at the previous iteration, :math:`f_{i-1}(X)`: .. math:: f_i(X) := f_{i-1}(X) + w_i g_i Parameters ---------- n_iter : int The number of iterations / weak estimators to use when fitting each dimension / class of `Y`. max_depth : int The maximum depth of each decision tree weak estimator. Default is None. classifier : bool Whether `Y` contains class labels or real-valued targets. Default is True. learning_rate : float Value in [0, 1] controlling the amount each weak estimator contributes to the overall model prediction. Sometimes known as the `shrinkage parameter` in the GBM literature. Default is 1. loss : {'crossentropy', 'mse'} The loss to optimize for the GBM. Default is 'crossentropy'. step_size : {"constant", "adaptive"} How to choose the weight for each weak learner. If "constant", use a fixed weight of 1 for each learner. If "adaptive", use a step size computed via line-search on the current iteration's loss. Default is 'constant'. """ self.loss = loss self.weights = None self.learners = None self.out_dims = None self.n_iter = n_iter self.base_estimator = None self.max_depth = max_depth self.step_size = step_size self.classifier = classifier self.learning_rate = learning_rate def fit(self, X, Y): """ Fit the gradient boosted decision trees on a dataset. Parameters ---------- X : :py:class:`ndarray <numpy.ndarray>` of shape (N, M) The training data of `N` examples, each with `M` features Y : :py:class:`ndarray <numpy.ndarray>` of shape (N,) An array of integer class labels for each example in `X` if ``self.classifier = True``, otherwise the set of target values for each example in `X`. """ if self.loss == "mse": loss = MSELoss() elif self.loss == "crossentropy": loss = CrossEntropyLoss() # convert Y to one_hot if not already if self.classifier: Y = to_one_hot(Y.flatten()) else: Y = Y.reshape(-1, 1) if len(Y.shape) == 1 else Y N, M = X.shape self.out_dims = Y.shape[1] self.learners = np.empty((self.n_iter, self.out_dims), dtype=object) self.weights = np.ones((self.n_iter, self.out_dims)) self.weights[1:, :] *= self.learning_rate # fit the base estimator Y_pred = np.zeros((N, self.out_dims)) for k in range(self.out_dims): t = loss.base_estimator() t.fit(X, Y[:, k]) Y_pred[:, k] += t.predict(X) self.learners[0, k] = t # incrementally fit each learner on the negative gradient of the loss # wrt the previous fit (pseudo-residuals) for i in range(1, self.n_iter): for k in range(self.out_dims): y, y_pred = Y[:, k], Y_pred[:, k] neg_grad = -1 * loss.grad(y, y_pred) # use MSE as the surrogate loss when fitting to negative gradients t = DecisionTree( classifier=False, max_depth=self.max_depth, criterion="mse" ) # fit current learner to negative gradients t.fit(X, neg_grad) self.learners[i, k] = t # compute step size and weight for the current learner step = 1.0 h_pred = t.predict(X) if self.step_size == "adaptive": step = loss.line_search(y, y_pred, h_pred) # update weights and our overall prediction for Y self.weights[i, k] *= step Y_pred[:, k] += self.weights[i, k] * h_pred def predict(self, X): """ Use the trained model to classify or predict the examples in `X`. Parameters ---------- X : :py:class:`ndarray <numpy.ndarray>` of shape `(N, M)` The training data of `N` examples, each with `M` features Returns ------- preds : :py:class:`ndarray <numpy.ndarray>` of shape `(N,)` The integer class labels predicted for each example in `X` if ``self.classifier = True``, otherwise the predicted target values. """ Y_pred = np.zeros((X.shape[0], self.out_dims)) for i in range(self.n_iter): for k in range(self.out_dims): Y_pred[:, k] += self.weights[i, k] * self.learners[i, k].predict(X) if self.classifier: Y_pred = Y_pred.argmax(axis=1) return Y_pred
[ "numpy.empty", "numpy.zeros", "numpy.ones", "numpy.max", "numpy.arange" ]
[((353, 374), 'numpy.zeros', 'np.zeros', (['(N, n_cols)'], {}), '((N, n_cols))\n', (361, 374), True, 'import numpy as np\n'), ((4220, 4272), 'numpy.empty', 'np.empty', (['(self.n_iter, self.out_dims)'], {'dtype': 'object'}), '((self.n_iter, self.out_dims), dtype=object)\n', (4228, 4272), True, 'import numpy as np\n'), ((4296, 4333), 'numpy.ones', 'np.ones', (['(self.n_iter, self.out_dims)'], {}), '((self.n_iter, self.out_dims))\n', (4303, 4333), True, 'import numpy as np\n'), ((4435, 4463), 'numpy.zeros', 'np.zeros', (['(N, self.out_dims)'], {}), '((N, self.out_dims))\n', (4443, 4463), True, 'import numpy as np\n'), ((6305, 6342), 'numpy.zeros', 'np.zeros', (['(X.shape[0], self.out_dims)'], {}), '((X.shape[0], self.out_dims))\n', (6313, 6342), True, 'import numpy as np\n'), ((284, 298), 'numpy.max', 'np.max', (['labels'], {}), '(labels)\n', (290, 298), True, 'import numpy as np\n'), ((387, 399), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (396, 399), True, 'import numpy as np\n')]
# Import modules import matplotlib.pyplot as plt import numpy as np from scripts.dwt_windowed import do_transform def py_closest(data, value): return np.argmin(np.abs(data - value)) def py_cumvar_n(data): return np.cumsum(data**2) / np.sum(data**2) ## RANDOM INPUT # Generate test signal sig = np.random.random([2**16]) plt.figure(); plt.plot(sig) # Apply DWT dwt = do_transform(sig) cols= dwt.columns FIG = plt.figure() ax1 = FIG.add_subplot(611); ax1.plot(dwt[cols[0]]) ax2 = FIG.add_subplot(612); ax2.plot(dwt[cols[1]]) ax3 = FIG.add_subplot(613); ax3.plot(dwt[cols[2]]) ax4 = FIG.add_subplot(614); ax4.plot(dwt[cols[3]]) ax5 = FIG.add_subplot(615); ax5.plot(dwt[cols[4]]) ax6 = FIG.add_subplot(616); ax6.plot(dwt[cols[5]]) ## TRAILING PULSE # Generate test signal sig = np.zeros([2**16]) sig[-1] = 1 plt.figure(); plt.plot(sig) # Apply DWT nlv = 10 dwt = do_transform(sig, wtype='sym2', nlevels=nlv) cols= dwt.columns FIG = plt.figure() AX = [] for il in range(nlv): if nlv<6: AX += [FIG.add_subplot(nlv+1, 1, il+1)]; AX[il].plot(dwt[cols[il]]); AX[il].set_xlim([2**16-120, 2**16]) AX[il].set_xticks([]) else: AX += [FIG.add_subplot(5, 2, il+1)]; AX[il].plot(dwt[cols[il]]); AX[il].set_xlim([2**16-240, 2 ** 16]); AX[il].set_title(cols[il]) AX[il].set_xticks([]) AX[-2].set_xticks([2**16-240, 2**16-120, 2**16]) AX[-2].set_xticklabels(['-4', '-2', '0']) AX[-2].set_xlabel('Time (h)') AX[-1].set_xticks([2**16-240, 2**16-120, 2**16]) AX[-1].set_xticklabels(['-4', '-2', '0']) AX[-1].set_xlabel('Time (h)') # Check variance threshold thresh = [0.05, 0.1, 0.15, 0.2] scale = list( range(10) ) TABLE = np.zeros([10, len(thresh)]) for ix, it in enumerate(thresh): for isc in scale: TABLE[isc, ix] = 2**16 - py_closest( py_cumvar_n(dwt[cols[isc]]), it ) p1 = plt.bar(range(10), TABLE[:,0], 0.35) p2 = plt.bar(range(10), TABLE[:,1]-TABLE[:,0], 0.35, bottom=TABLE[:,0]) p3 = plt.bar(range(10), TABLE[:,2]-TABLE[:,1], 0.35, bottom=TABLE[:,1]) p4 = plt.bar(range(10), TABLE[:,3]-TABLE[:,2], 0.35, bottom=TABLE[:,2]) plt.ylabel('edge effect duration (min)') plt.title('Effects of wavelet scale and variance threshold') plt.xticks(range(10), cols[:-1]) plt.legend( (p1[0], p2[0], p3[0], p4[0]), ('5% threshold', '10%', '15%', '20%') ) plt.show() plt.plot([-0.5, 9.5], [30, 30], '--r') plt.plot([-0.5, 9.5], [60, 60], '--r') plt.xlim([-0.5, 9.5]) plt.text(1, 32, '30 minutes', color='r') plt.text(2, 62, '60 minutes', color='r')
[ "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "matplotlib.pyplot.show", "numpy.abs", "matplotlib.pyplot.plot", "numpy.sum", "matplotlib.pyplot.legend", "numpy.zeros", "scripts.dwt_windowed.do_transform", "matplotlib.pyplot.text", "matplotlib.pyplot.figure", "numpy.random.random", "numpy.cumsum", "matplotlib.pyplot.ylabel" ]
[((309, 336), 'numpy.random.random', 'np.random.random', (['[2 ** 16]'], {}), '([2 ** 16])\n', (325, 336), True, 'import numpy as np\n'), ((335, 347), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (345, 347), True, 'import matplotlib.pyplot as plt\n'), ((349, 362), 'matplotlib.pyplot.plot', 'plt.plot', (['sig'], {}), '(sig)\n', (357, 362), True, 'import matplotlib.pyplot as plt\n'), ((384, 401), 'scripts.dwt_windowed.do_transform', 'do_transform', (['sig'], {}), '(sig)\n', (396, 401), False, 'from scripts.dwt_windowed import do_transform\n'), ((430, 442), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (440, 442), True, 'import matplotlib.pyplot as plt\n'), ((811, 830), 'numpy.zeros', 'np.zeros', (['[2 ** 16]'], {}), '([2 ** 16])\n', (819, 830), True, 'import numpy as np\n'), ((841, 853), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (851, 853), True, 'import matplotlib.pyplot as plt\n'), ((855, 868), 'matplotlib.pyplot.plot', 'plt.plot', (['sig'], {}), '(sig)\n', (863, 868), True, 'import matplotlib.pyplot as plt\n'), ((901, 945), 'scripts.dwt_windowed.do_transform', 'do_transform', (['sig'], {'wtype': '"""sym2"""', 'nlevels': 'nlv'}), "(sig, wtype='sym2', nlevels=nlv)\n", (913, 945), False, 'from scripts.dwt_windowed import do_transform\n'), ((974, 986), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (984, 986), True, 'import matplotlib.pyplot as plt\n'), ((2185, 2225), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""edge effect duration (min)"""'], {}), "('edge effect duration (min)')\n", (2195, 2225), True, 'import matplotlib.pyplot as plt\n'), ((2226, 2286), 'matplotlib.pyplot.title', 'plt.title', (['"""Effects of wavelet scale and variance threshold"""'], {}), "('Effects of wavelet scale and variance threshold')\n", (2235, 2286), True, 'import matplotlib.pyplot as plt\n'), ((2320, 2399), 'matplotlib.pyplot.legend', 'plt.legend', (['(p1[0], p2[0], p3[0], p4[0])', "('5% threshold', '10%', '15%', '20%')"], {}), "((p1[0], p2[0], p3[0], p4[0]), ('5% threshold', '10%', '15%', '20%'))\n", (2330, 2399), True, 'import matplotlib.pyplot as plt\n'), ((2402, 2412), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2410, 2412), True, 'import matplotlib.pyplot as plt\n'), ((2413, 2451), 'matplotlib.pyplot.plot', 'plt.plot', (['[-0.5, 9.5]', '[30, 30]', '"""--r"""'], {}), "([-0.5, 9.5], [30, 30], '--r')\n", (2421, 2451), True, 'import matplotlib.pyplot as plt\n'), ((2452, 2490), 'matplotlib.pyplot.plot', 'plt.plot', (['[-0.5, 9.5]', '[60, 60]', '"""--r"""'], {}), "([-0.5, 9.5], [60, 60], '--r')\n", (2460, 2490), True, 'import matplotlib.pyplot as plt\n'), ((2491, 2512), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-0.5, 9.5]'], {}), '([-0.5, 9.5])\n', (2499, 2512), True, 'import matplotlib.pyplot as plt\n'), ((2513, 2553), 'matplotlib.pyplot.text', 'plt.text', (['(1)', '(32)', '"""30 minutes"""'], {'color': '"""r"""'}), "(1, 32, '30 minutes', color='r')\n", (2521, 2553), True, 'import matplotlib.pyplot as plt\n'), ((2554, 2594), 'matplotlib.pyplot.text', 'plt.text', (['(2)', '(62)', '"""60 minutes"""'], {'color': '"""r"""'}), "(2, 62, '60 minutes', color='r')\n", (2562, 2594), True, 'import matplotlib.pyplot as plt\n'), ((166, 186), 'numpy.abs', 'np.abs', (['(data - value)'], {}), '(data - value)\n', (172, 186), True, 'import numpy as np\n'), ((224, 244), 'numpy.cumsum', 'np.cumsum', (['(data ** 2)'], {}), '(data ** 2)\n', (233, 244), True, 'import numpy as np\n'), ((245, 262), 'numpy.sum', 'np.sum', (['(data ** 2)'], {}), '(data ** 2)\n', (251, 262), True, 'import numpy as np\n')]
# ------------------------------------------------------------------------ # MIT License # # Copyright (c) [2021] [<NAME>] # # This code is part of the library PyDL <https://github.com/nash911/PyDL> # This code is licensed under MIT license (see LICENSE.txt for details) # ------------------------------------------------------------------------ import numpy as np from pydl.nn.layers import FC from pydl.nn.rnn import RNN from pydl.nn.nn import NN from pydl.training.sgd import SGD from pydl import conf np.random.seed(11421111) def get_data(file_path, seq_len): data = open(file_path, 'r').read() unique_chars = list(set(data)) K = len(unique_chars) X = np.zeros((1, K), dtype=conf.dtype) return data, X, K def main(): seq_len = 50 weight_scale = 1e-2 data, X, K = get_data('data/paulgraham_essays.txt', seq_len) print("X.shape: ", X.shape) print("K: ", K) l1 = RNN(X, num_neurons=200, bias=True, seq_len=seq_len, weight_scale=weight_scale, xavier=True, activation_fn='Sigmoid', tune_internal_states=True, name="RNN-1") l2 = FC(l1, num_neurons=K, bias=True, weight_scale=weight_scale, xavier=True, activation_fn='SoftMax', name="Output-Layer") layers = [l1, l2] nn = NN(None, layers) sgd = SGD(nn, step_size=1e-1, reg_lambda=0, train_size=90, test_size=10) sgd.train_recurrent(data, batch_size=seq_len, epochs=10000, sample_length=1000, temperature=0.5, log_freq=1, plot='Character-RNN - SGD - Tune Hidden') input("Press Enter to continue...") if __name__ == '__main__': main()
[ "pydl.nn.nn.NN", "numpy.random.seed", "pydl.nn.rnn.RNN", "pydl.training.sgd.SGD", "numpy.zeros", "pydl.nn.layers.FC" ]
[((508, 532), 'numpy.random.seed', 'np.random.seed', (['(11421111)'], {}), '(11421111)\n', (522, 532), True, 'import numpy as np\n'), ((677, 711), 'numpy.zeros', 'np.zeros', (['(1, K)'], {'dtype': 'conf.dtype'}), '((1, K), dtype=conf.dtype)\n', (685, 711), True, 'import numpy as np\n'), ((919, 1085), 'pydl.nn.rnn.RNN', 'RNN', (['X'], {'num_neurons': '(200)', 'bias': '(True)', 'seq_len': 'seq_len', 'weight_scale': 'weight_scale', 'xavier': '(True)', 'activation_fn': '"""Sigmoid"""', 'tune_internal_states': '(True)', 'name': '"""RNN-1"""'}), "(X, num_neurons=200, bias=True, seq_len=seq_len, weight_scale=\n weight_scale, xavier=True, activation_fn='Sigmoid',\n tune_internal_states=True, name='RNN-1')\n", (922, 1085), False, 'from pydl.nn.rnn import RNN\n'), ((1099, 1221), 'pydl.nn.layers.FC', 'FC', (['l1'], {'num_neurons': 'K', 'bias': '(True)', 'weight_scale': 'weight_scale', 'xavier': '(True)', 'activation_fn': '"""SoftMax"""', 'name': '"""Output-Layer"""'}), "(l1, num_neurons=K, bias=True, weight_scale=weight_scale, xavier=True,\n activation_fn='SoftMax', name='Output-Layer')\n", (1101, 1221), False, 'from pydl.nn.layers import FC\n'), ((1262, 1278), 'pydl.nn.nn.NN', 'NN', (['None', 'layers'], {}), '(None, layers)\n', (1264, 1278), False, 'from pydl.nn.nn import NN\n'), ((1290, 1355), 'pydl.training.sgd.SGD', 'SGD', (['nn'], {'step_size': '(0.1)', 'reg_lambda': '(0)', 'train_size': '(90)', 'test_size': '(10)'}), '(nn, step_size=0.1, reg_lambda=0, train_size=90, test_size=10)\n', (1293, 1355), False, 'from pydl.training.sgd import SGD\n')]
""" FinetuneTransformer =================== """ from ..utils.misc import suppress_stdout, get_file_md5 from .base_model import BaseModel from ..utils.transformers_helpers import mask_tokens, rotate_checkpoints, set_seed, download_vocab_files_for_tokenizer from torch.utils.data import DataLoader, IterableDataset from torch.utils.data.sampler import RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from torch.utils.data import Dataset from tqdm import tqdm, trange import pandas as pd import logging import os import numpy as np import torch from transformers import ( AdamW, AutoConfig, AutoModelWithLMHead, AutoTokenizer, get_linear_schedule_with_warmup, ) from tokenizers import BertWordPieceTokenizer import urllib import itertools logger = logging.getLogger(__name__) class FinetuneTransformer(BaseModel): def __init__(self): super().__init__() def init(self, config): # Paths self.name = config.name self.train_data = config.train_data self.test_data = config.get('test_data', None) self.other_path = config.other_path self.output_path = config.output_path self.tmp_path = config.tmp_path self.model_name = config.get('model', 'bert') self.model_type = config.get('model_type', 'bert-base-uncased') self.model_path = os.path.join(self.other_path, self.model_name) self.overwrite = config.get('overwrite', False) self.load_data_into_memory = config.get('load_data_into_memory', False) self.num_workers_batch_loading = config.get('num_workers_batch_loading', 50) # only used when load_data_into_memory is False self.evaluate_during_training = config.get('evaluate_during_training', True) # config self.mlm = self.model_name in ["bert", "roberta", "distilbert", "camembert"] # is masked LM self.mlm_probability = config.get('mlm_probability', 0.15) self.save_steps = config.get('save_steps', 500) # save every n steps self.num_checkpoints = config.get('num_checkpoints', 1) # save n last checkpoints (set to 1 due to large model files) # hyperparams self.max_seq_length = config.get('max_seq_length', 128) self.train_batch_size = config.get('train_batch_size', 16) self.test_batch_size = config.get('test_batch_size', 16) self.learning_rate = config.get('learning_rate', 5e-5) self.num_epochs = config.get('num_epochs', 1) self.warmup_steps = config.get('warmup_steps', 100) self.max_train_steps = config.get('max_train_steps', None) self.no_cuda = config.get('no_cuda', False) self.on_memory = config.get('on_memory', True) self.do_lower_case = 'uncased' in self.model_type self.local_rank = config.get('local_rank', -1) self.seed = config.get('seed', np.random.randint(1e4)) self.gradient_accumulation_steps = config.get('gradient_accumulation_steps', 1) self.fp16 = config.get('fp16', False) self.loss_scale = config.get('loss_scale', 0.0) # set seed set_seed(self.seed, no_cuda=self.no_cuda) # GPU config if self.local_rank == -1 or self.no_cuda: self.device = torch.device("cuda" if torch.cuda.is_available() and not self.no_cuda else "cpu") self.n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(self.local_rank) self.device = torch.device("cuda", self.local_rank) self.n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') if self.no_cuda: self.n_gpu = 0 logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(self.device, self.n_gpu, bool(self.local_rank != -1), self.fp16)) if self.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(self.gradient_accumulation_steps)) self.train_batch_size = self.train_batch_size // self.gradient_accumulation_steps def train(self): # Model initialization tokenizer = AutoTokenizer.from_pretrained(self.model_type, cache_dir=self.model_path) vocab_files = download_vocab_files_for_tokenizer(tokenizer, self.model_type, self.output_path) fast_tokenizer = BertWordPieceTokenizer(vocab_files.get('vocab_file'), vocab_files.get('merges_file'), lowercase=self.do_lower_case) fast_tokenizer.enable_padding(max_length=self.max_seq_length) num_train_optimization_steps = None logger.debug(f'Loading Train Dataset {self.train_data}...') if self.load_data_into_memory: train_dataset = TextDataset(self.train_data, fast_tokenizer, max_seq_length=self.max_seq_length) else: train_dataset = TextIterableDataset(self.train_data, fast_tokenizer, max_seq_length=self.max_seq_length) logger.info(f'Loaded {len(train_dataset):,} examples...') num_train_optimization_steps = int(len(train_dataset) / self.train_batch_size / self.gradient_accumulation_steps) * self.num_epochs if self.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size() config = AutoConfig.from_pretrained(self.model_type, cache_dir=self.model_path) model = AutoModelWithLMHead.from_pretrained( self.model_type, from_tf=bool(".ckpt" in self.model_type), config=config, cache_dir=self.model_path) if self.fp16: model.half() model.to(self.device) if self.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") model = DDP(model) elif self.n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] if self.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") optimizer = FusedAdam(optimizer_grouped_parameters, lr=self.learning_rate, bias_correction=False, max_grad_norm=1.0) if self.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=self.loss_scale) else: optimizer = AdamW(optimizer_grouped_parameters, lr=self.learning_rate) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=self.warmup_steps, num_training_steps=num_train_optimization_steps) # Run training global_step = 0 logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Batch size = %d", self.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) if self.load_data_into_memory: if self.local_rank == -1: train_sampler = RandomSampler(train_dataset) else: train_sampler = DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=self.train_batch_size) total_batches = len(train_dataloader) else: # no sampling supported for iterative data loading train_dataloader = DataLoader(train_dataset, batch_size=self.train_batch_size, num_workers=self.num_workers_batch_loading) # len doesn't work for iterator datasets total_batches = int(len(train_dataloader)/self.train_batch_size) set_seed(self.seed, no_cuda=self.no_cuda) # Added here for reproducibility for _ in trange(int(self.num_epochs), desc="Epoch"): model.train() tr_loss = 0 epoch_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 pbar = tqdm(train_dataloader, total=total_batches) for step, batch in enumerate(pbar): inputs, labels = mask_tokens(batch, tokenizer, mlm_probability=self.mlm_probability) if self.mlm else (batch, batch) inputs = inputs.to(self.device) labels = labels.to(self.device) model.train() outputs = model(inputs, masked_lm_labels=labels) if self.mlm else model(inputs, labels=labels) loss = outputs[0] if self.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if self.gradient_accumulation_steps > 1: loss = loss / self.gradient_accumulation_steps if self.fp16: optimizer.backward(loss) else: loss.backward() tr_loss += loss.item() nb_tr_examples += labels.size(0) nb_tr_steps += 1 epoch_loss += loss if step > 0: pbar.set_description("Loss: {:8.4f} | Average loss/it: {:8.4f}".format(tr_loss, epoch_loss/step)) if (step + 1) % self.gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() scheduler.step() optimizer.zero_grad() global_step += 1 if self.save_steps > 0 and global_step % self.save_steps == 0: output_dir = os.path.join(self.output_path, f'checkpoint-{global_step}') os.makedirs(output_dir, exist_ok=True) # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, 'module') else model model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) logger.info(f'Saving model checkpoint to {output_dir}') rotate_checkpoints(self.output_path, save_total_limit=self.num_checkpoints) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info(f'Saving optimizer and scheduler states to {output_dir}') if self.evaluate_during_training: logger.info('Evaluate...') self.test(model=model, tokenizer=tokenizer, fast_tokenizer=fast_tokenizer, output_dir=output_dir) if self.max_train_steps is not None and step > self.max_train_steps: logger.info(f'Reached max number of training steps {self.max_train_steps:,}') break if step >= total_batches: # finished epoch break if self.max_train_steps is not None and step > self.max_train_steps: break # Save a trained model logger.info("** ** * Saving fine - tuned model ** ** * ") model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self model_to_save.save_pretrained(self.output_path) tokenizer.save_pretrained(self.output_path) self.add_to_config(self.output_path, vars(self)) def test(self, model=None, tokenizer=None, fast_tokenizer=None, output_dir=None): # TODO: Rewrite with a single config arg if self.test_data is None: logger.warning('No test data provided. Aborting.') return if output_dir is None: output_dir = self.output_path if tokenizer is None: tokenizer = AutoTokenizer.from_pretrained(output_dir) if fast_tokenizer is None: vocab_files = self.download_vocab_files_for_tokenizer(tokenizer) fast_tokenizer = BertWordPieceTokenizer(vocab_files.get('vocab_file'), vocab_files.get('merges_file'), lowercase=self.do_lower_case) fast_tokenizer.enable_padding(max_length=self.max_seq_length) logger.debug(f'Loading test dataset {self.test_data}...') if self.load_data_into_memory: test_dataset = TextDataset(self.test_data, fast_totenizer, max_seq_length=self.max_seq_length) else: test_dataset = TextIterableDataset(self.test_data, fast_tokenizer, max_seq_length=self.max_seq_length) logger.info(f'Loaded {len(test_dataset):,} examples...') if model is None: config = AutoConfig.from_pretrained(output_dir) model = AutoModelWithLMHead.from_pretrained(output_dir, config=config) model.to(self.device) if self.n_gpu > 1: model = torch.nn.DataParallel(model) # evaluate logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(test_dataset)) logger.info(" Batch size = %d", self.test_batch_size) eval_loss = 0.0 nb_eval_steps = 0 model.eval() if self.load_data_into_memory: eval_sampler = SequentialSampler(test_dataset) test_dataloader = DataLoader(test_dataset, sampler=eval_sampler, batch_size=self.test_batch_size) total_batches = len(test_dataloader) else: # no sampling supported for iterative data loading test_dataloader = DataLoader(test_dataset, batch_size=self.test_batch_size, num_workers=self.num_workers_batch_loading) # len doesn't work for iterator datasets total_batches = int(len(test_dataloader)/self.test_batch_size) for batch in tqdm(test_dataloader, desc="Evaluating", total=total_batches): inputs, labels = mask_tokens(batch, tokenizer, mlm_probability=self.mlm_probability) if self.mlm else (batch, batch) inputs = inputs.to(self.device) labels = labels.to(self.device) with torch.no_grad(): outputs = model(inputs, masked_lm_labels=labels) if self.mlm else model(inputs, labels=labels) lm_loss = outputs[0] eval_loss += lm_loss.mean().item() nb_eval_steps += 1 if nb_eval_steps >= total_batches: break eval_loss = eval_loss / nb_eval_steps perplexity = float(torch.exp(torch.tensor(eval_loss))) logger.info(f'Eval perplexity: {perplexity}') return {'perplexity': perplexity} def prepare_input_data(self, min_tokens=3): """DEPRECATED: method used for NSP/SOP tasks""" import en_core_web_sm logger.info('Generating file hash...') file_hash = get_file_md5(self.train_data) input_data_path = os.path.join(self.tmp_path, 'fine_tune', 'finetune_transformer', f'{file_hash}.txt') if os.path.exists(input_data_path): logger.info('Found pre-existing input data file.') return input_data_path if not os.path.isdir(os.path.dirname(input_data_path)): os.makedirs(os.path.dirname(input_data_path)) logger.info('Reading input data...') df = pd.read_csv(self.train_data, usecols=['text']) nlp = en_core_web_sm.load() logger.info('Generating input data...') with open(input_data_path, 'w') as f: for i, text in tqdm(enumerate(df['text']), total=len(df)): sentence_was_found = False doc = nlp(text, disable=['entity', 'tagger']) sentences = [sent.string.strip() for sent in doc.sents] for sentence in sentences: try: num_tokens = len(doc) except: logger.error('error with sentence: "{}"'.format(sentence)) continue if num_tokens > min_tokens: f.write(sentence + '\n') sentence_was_found = True if sentence_was_found: # add new line after sentences f.write('\n') return input_data_path class TextDataset(Dataset): """Load dataset in memory""" def __init__(self, file_path, tokenizer, max_seq_length=512): assert os.path.isfile(file_path) logger.info('Reading file...') with open(file_path, encoding="utf-8") as f: lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] logger.info('Tokenizing...') lines = tokenizer.encode_batch(lines) self.examples = [l.ids[:max_seq_length] for l in lines] logger.info('... done') def __len__(self): return len(self.examples) def __getitem__(self, i): return torch.tensor(self.examples[i], dtype=torch.long) class TextIterableDataset(IterableDataset): """Load dataset iteratively and tokenize with tokenizer library on the fly""" def __init__(self, file_path, tokenizer, max_seq_length=512): assert os.path.isfile(file_path) self.f_name = file_path self.tokenizer = tokenizer self.max_seq_length = max_seq_length self.num_lines = sum(1 for line in open(self.f_name, 'r') if len(line.strip()) > 0) def parse_and_tokenize(self): worker_info = torch.utils.data.get_worker_info() if worker_info is None: # single-process data loading with open(self.f_name, 'r') as f: for line in f: if len(line.strip()) > 0: encoding = self.tokenizer.encode(line) encoding.truncate(self.max_seq_length) yield torch.tensor(encoding.ids, dtype=torch.long) else: per_worker = int(self.num_lines/float(worker_info.num_workers)) worker_id = worker_info.id iter_start = worker_id * per_worker iter_end = min(iter_start + per_worker, self.num_lines) logger.info(f'Start batching worker {worker_id}, start: {iter_start:,}, end: {iter_end:,} (of total {self.num_lines:,} lines)') with open(self.f_name, 'r') as f: for i, line in enumerate(f): if i > iter_start and i < iter_end: if len(line.strip()) > 0: encoding = self.tokenizer.encode(line) encoding.truncate(self.max_seq_length) yield torch.tensor(encoding.ids, dtype=torch.long) def __iter__(self): return itertools.cycle(self.parse_and_tokenize()) def __len__(self): return self.num_lines
[ "pandas.read_csv", "logging.getLogger", "torch.cuda.device_count", "os.path.isfile", "numpy.random.randint", "torch.distributed.get_world_size", "torch.device", "torch.no_grad", "os.path.join", "torch.utils.data.DataLoader", "os.path.dirname", "os.path.exists", "apex.optimizers.FusedAdam", "apex.optimizers.FP16_Optimizer", "torch.utils.data.distributed.DistributedSampler", "torch.cuda.set_device", "tqdm.tqdm", "torch.utils.data.get_worker_info", "transformers.AutoTokenizer.from_pretrained", "torch.utils.data.sampler.RandomSampler", "transformers.get_linear_schedule_with_warmup", "transformers.AdamW", "apex.parallel.DistributedDataParallel", "torch.cuda.is_available", "en_core_web_sm.load", "transformers.AutoConfig.from_pretrained", "torch.distributed.init_process_group", "os.makedirs", "transformers.AutoModelWithLMHead.from_pretrained", "torch.utils.data.sampler.SequentialSampler", "torch.nn.DataParallel", "torch.tensor" ]
[((812, 839), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (829, 839), False, 'import logging\n'), ((1389, 1435), 'os.path.join', 'os.path.join', (['self.other_path', 'self.model_name'], {}), '(self.other_path, self.model_name)\n', (1401, 1435), False, 'import os\n'), ((4304, 4377), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['self.model_type'], {'cache_dir': 'self.model_path'}), '(self.model_type, cache_dir=self.model_path)\n', (4333, 4377), False, 'from transformers import AdamW, AutoConfig, AutoModelWithLMHead, AutoTokenizer, get_linear_schedule_with_warmup\n'), ((5450, 5520), 'transformers.AutoConfig.from_pretrained', 'AutoConfig.from_pretrained', (['self.model_type'], {'cache_dir': 'self.model_path'}), '(self.model_type, cache_dir=self.model_path)\n', (5476, 5520), False, 'from transformers import AdamW, AutoConfig, AutoModelWithLMHead, AutoTokenizer, get_linear_schedule_with_warmup\n'), ((14793, 14854), 'tqdm.tqdm', 'tqdm', (['test_dataloader'], {'desc': '"""Evaluating"""', 'total': 'total_batches'}), "(test_dataloader, desc='Evaluating', total=total_batches)\n", (14797, 14854), False, 'from tqdm import tqdm, trange\n'), ((15869, 15957), 'os.path.join', 'os.path.join', (['self.tmp_path', '"""fine_tune"""', '"""finetune_transformer"""', 'f"""{file_hash}.txt"""'], {}), "(self.tmp_path, 'fine_tune', 'finetune_transformer',\n f'{file_hash}.txt')\n", (15881, 15957), False, 'import os\n'), ((15965, 15996), 'os.path.exists', 'os.path.exists', (['input_data_path'], {}), '(input_data_path)\n', (15979, 15996), False, 'import os\n'), ((16276, 16322), 'pandas.read_csv', 'pd.read_csv', (['self.train_data'], {'usecols': "['text']"}), "(self.train_data, usecols=['text'])\n", (16287, 16322), True, 'import pandas as pd\n'), ((16337, 16358), 'en_core_web_sm.load', 'en_core_web_sm.load', ([], {}), '()\n', (16356, 16358), False, 'import en_core_web_sm\n'), ((17404, 17429), 'os.path.isfile', 'os.path.isfile', (['file_path'], {}), '(file_path)\n', (17418, 17429), False, 'import os\n'), ((17908, 17956), 'torch.tensor', 'torch.tensor', (['self.examples[i]'], {'dtype': 'torch.long'}), '(self.examples[i], dtype=torch.long)\n', (17920, 17956), False, 'import torch\n'), ((18165, 18190), 'os.path.isfile', 'os.path.isfile', (['file_path'], {}), '(file_path)\n', (18179, 18190), False, 'import os\n'), ((18453, 18487), 'torch.utils.data.get_worker_info', 'torch.utils.data.get_worker_info', ([], {}), '()\n', (18485, 18487), False, 'import torch\n'), ((2903, 2929), 'numpy.random.randint', 'np.random.randint', (['(10000.0)'], {}), '(10000.0)\n', (2920, 2929), True, 'import numpy as np\n'), ((3392, 3417), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (3415, 3417), False, 'import torch\n'), ((3444, 3482), 'torch.cuda.set_device', 'torch.cuda.set_device', (['self.local_rank'], {}), '(self.local_rank)\n', (3465, 3482), False, 'import torch\n'), ((3509, 3546), 'torch.device', 'torch.device', (['"""cuda"""', 'self.local_rank'], {}), "('cuda', self.local_rank)\n", (3521, 3546), False, 'import torch\n'), ((3684, 3736), 'torch.distributed.init_process_group', 'torch.distributed.init_process_group', ([], {'backend': '"""nccl"""'}), "(backend='nccl')\n", (3720, 3736), False, 'import torch\n'), ((6112, 6122), 'apex.parallel.DistributedDataParallel', 'DDP', (['model'], {}), '(model)\n', (6115, 6122), True, 'from apex.parallel import DistributedDataParallel as DDP\n'), ((6981, 7089), 'apex.optimizers.FusedAdam', 'FusedAdam', (['optimizer_grouped_parameters'], {'lr': 'self.learning_rate', 'bias_correction': '(False)', 'max_grad_norm': '(1.0)'}), '(optimizer_grouped_parameters, lr=self.learning_rate,\n bias_correction=False, max_grad_norm=1.0)\n', (6990, 7089), False, 'from apex.optimizers import FusedAdam\n'), ((7449, 7507), 'transformers.AdamW', 'AdamW', (['optimizer_grouped_parameters'], {'lr': 'self.learning_rate'}), '(optimizer_grouped_parameters, lr=self.learning_rate)\n', (7454, 7507), False, 'from transformers import AdamW, AutoConfig, AutoModelWithLMHead, AutoTokenizer, get_linear_schedule_with_warmup\n'), ((7532, 7664), 'transformers.get_linear_schedule_with_warmup', 'get_linear_schedule_with_warmup', (['optimizer'], {'num_warmup_steps': 'self.warmup_steps', 'num_training_steps': 'num_train_optimization_steps'}), '(optimizer, num_warmup_steps=self.\n warmup_steps, num_training_steps=num_train_optimization_steps)\n', (7563, 7664), False, 'from transformers import AdamW, AutoConfig, AutoModelWithLMHead, AutoTokenizer, get_linear_schedule_with_warmup\n'), ((8210, 8297), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'sampler': 'train_sampler', 'batch_size': 'self.train_batch_size'}), '(train_dataset, sampler=train_sampler, batch_size=self.\n train_batch_size)\n', (8220, 8297), False, 'from torch.utils.data import DataLoader, IterableDataset\n'), ((8451, 8559), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'batch_size': 'self.train_batch_size', 'num_workers': 'self.num_workers_batch_loading'}), '(train_dataset, batch_size=self.train_batch_size, num_workers=\n self.num_workers_batch_loading)\n', (8461, 8559), False, 'from torch.utils.data import DataLoader, IterableDataset\n'), ((8972, 9015), 'tqdm.tqdm', 'tqdm', (['train_dataloader'], {'total': 'total_batches'}), '(train_dataloader, total=total_batches)\n', (8976, 9015), False, 'from tqdm import tqdm, trange\n'), ((12850, 12891), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['output_dir'], {}), '(output_dir)\n', (12879, 12891), False, 'from transformers import AdamW, AutoConfig, AutoModelWithLMHead, AutoTokenizer, get_linear_schedule_with_warmup\n'), ((13676, 13714), 'transformers.AutoConfig.from_pretrained', 'AutoConfig.from_pretrained', (['output_dir'], {}), '(output_dir)\n', (13702, 13714), False, 'from transformers import AdamW, AutoConfig, AutoModelWithLMHead, AutoTokenizer, get_linear_schedule_with_warmup\n'), ((13735, 13797), 'transformers.AutoModelWithLMHead.from_pretrained', 'AutoModelWithLMHead.from_pretrained', (['output_dir'], {'config': 'config'}), '(output_dir, config=config)\n', (13770, 13797), False, 'from transformers import AdamW, AutoConfig, AutoModelWithLMHead, AutoTokenizer, get_linear_schedule_with_warmup\n'), ((13880, 13908), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model'], {}), '(model)\n', (13901, 13908), False, 'import torch\n'), ((14244, 14275), 'torch.utils.data.sampler.SequentialSampler', 'SequentialSampler', (['test_dataset'], {}), '(test_dataset)\n', (14261, 14275), False, 'from torch.utils.data.sampler import RandomSampler, SequentialSampler\n'), ((14306, 14385), 'torch.utils.data.DataLoader', 'DataLoader', (['test_dataset'], {'sampler': 'eval_sampler', 'batch_size': 'self.test_batch_size'}), '(test_dataset, sampler=eval_sampler, batch_size=self.test_batch_size)\n', (14316, 14385), False, 'from torch.utils.data import DataLoader, IterableDataset\n'), ((14542, 14648), 'torch.utils.data.DataLoader', 'DataLoader', (['test_dataset'], {'batch_size': 'self.test_batch_size', 'num_workers': 'self.num_workers_batch_loading'}), '(test_dataset, batch_size=self.test_batch_size, num_workers=self.\n num_workers_batch_loading)\n', (14552, 14648), False, 'from torch.utils.data import DataLoader, IterableDataset\n'), ((5398, 5432), 'torch.distributed.get_world_size', 'torch.distributed.get_world_size', ([], {}), '()\n', (5430, 5432), False, 'import torch\n'), ((6172, 6200), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model'], {}), '(model)\n', (6193, 6200), False, 'import torch\n'), ((7253, 7303), 'apex.optimizers.FP16_Optimizer', 'FP16_Optimizer', (['optimizer'], {'dynamic_loss_scale': '(True)'}), '(optimizer, dynamic_loss_scale=True)\n', (7267, 7303), False, 'from apex.optimizers import FP16_Optimizer\n'), ((7350, 7410), 'apex.optimizers.FP16_Optimizer', 'FP16_Optimizer', (['optimizer'], {'static_loss_scale': 'self.loss_scale'}), '(optimizer, static_loss_scale=self.loss_scale)\n', (7364, 7410), False, 'from apex.optimizers import FP16_Optimizer\n'), ((8066, 8094), 'torch.utils.data.sampler.RandomSampler', 'RandomSampler', (['train_dataset'], {}), '(train_dataset)\n', (8079, 8094), False, 'from torch.utils.data.sampler import RandomSampler, SequentialSampler\n'), ((8145, 8178), 'torch.utils.data.distributed.DistributedSampler', 'DistributedSampler', (['train_dataset'], {}), '(train_dataset)\n', (8163, 8178), False, 'from torch.utils.data.distributed import DistributedSampler\n'), ((15090, 15105), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (15103, 15105), False, 'import torch\n'), ((15489, 15512), 'torch.tensor', 'torch.tensor', (['eval_loss'], {}), '(eval_loss)\n', (15501, 15512), False, 'import torch\n'), ((16125, 16157), 'os.path.dirname', 'os.path.dirname', (['input_data_path'], {}), '(input_data_path)\n', (16140, 16157), False, 'import os\n'), ((16184, 16216), 'os.path.dirname', 'os.path.dirname', (['input_data_path'], {}), '(input_data_path)\n', (16199, 16216), False, 'import os\n'), ((3308, 3333), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3331, 3333), False, 'import torch\n'), ((10556, 10615), 'os.path.join', 'os.path.join', (['self.output_path', 'f"""checkpoint-{global_step}"""'], {}), "(self.output_path, f'checkpoint-{global_step}')\n", (10568, 10615), False, 'import os\n'), ((10640, 10678), 'os.makedirs', 'os.makedirs', (['output_dir'], {'exist_ok': '(True)'}), '(output_dir, exist_ok=True)\n', (10651, 10678), False, 'import os\n'), ((11207, 11247), 'os.path.join', 'os.path.join', (['output_dir', '"""optimizer.pt"""'], {}), "(output_dir, 'optimizer.pt')\n", (11219, 11247), False, 'import os\n'), ((11308, 11348), 'os.path.join', 'os.path.join', (['output_dir', '"""scheduler.pt"""'], {}), "(output_dir, 'scheduler.pt')\n", (11320, 11348), False, 'import os\n'), ((18841, 18885), 'torch.tensor', 'torch.tensor', (['encoding.ids'], {'dtype': 'torch.long'}), '(encoding.ids, dtype=torch.long)\n', (18853, 18885), False, 'import torch\n'), ((19636, 19680), 'torch.tensor', 'torch.tensor', (['encoding.ids'], {'dtype': 'torch.long'}), '(encoding.ids, dtype=torch.long)\n', (19648, 19680), False, 'import torch\n')]
import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model data_full = [[ 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100., 110., 120., 130., 140., 150., 160., 170., 180., 190., 200., 210., 220., 230., 240., 250., 260., 270., 280., 290., 300., 310., 320., 330., 340., 350., 360., 370., 380., 390., 400., 410., 420., 430., 440., 450., 460., 470., 480., 490., 500., 510., 520., 530., 540., 550., 560., 570., 580., 590., 600., 610., 620., 630., 640., 650., 660., 670., 680., 690., 700., 710., 720., 730., 740., 750., 760., 770., 780., 790., 800.], [ 0., 3., 7., 10., 13., 16., 19., 23., 26., 29., 32., 35., 38., 41., 43., 46., 49., 52., 55., 58., 60., 63., 66., 68., 71., 74., 76., 79., 81., 84., 86., 89., 91., 94., 96., 99., 101., 103., 106., 108., 110., 112., 115., 117., 119., 121., 124., 126., 128., 130., 132., 134., 136., 138., 140., 142., 144., 146., 148., 150., 152., 154., 156., 158., 160., 162., 164., 165., 167., 169., 171., 173., 174., 176., 178., 180., 181., 255., 255., 255., 255.]] data = np.array(data_full) limt = 76 def linear_reg(arr): x = np.expand_dims(arr[0,:],axis=1)# 81,1 #x = [email protected]([1,2]) y= np.expand_dims(arr[1,:],axis=1) linreg = linear_model.Lasso() model = linreg.fit(x,y) y_ = model.predict(x) MSE = np.abs(y[:,0]-y_).mean() print('MSE = {}'.format(MSE)) print(model.coef_) print(linreg.intercept_) plt.plot(x[:,0],y,'r*') plt.plot(x[:,0],y_,'b-') plt.show() def linear_reg2(arr): x0 = np.expand_dims(arr[0,:],axis=1)# 81,1 x1 = x0*x0 #x2 = x1*x0 x = np.concatenate([x0,x1],axis=1) #x = [email protected]([1,2]) y= np.expand_dims(arr[1,:],axis=1) linreg = linear_model.Lasso() model = linreg.fit(x,y) y_ = model.predict(x) y_2 = [email protected]_.T + model.intercept_ MSE = np.abs(y[:,0]-y_) print(y_ ) print(y_2) print('MSE = {}'.format(MSE.mean())) print(model.coef_) print(linreg.intercept_) plt.plot(data[0, :], data[1, :], 'b+',label = 'control points') plt.plot(x[:,0],y_,'r-',label = 'fitted') plt.ylabel('gray(1)') plt.xlabel('distances(m)') plt.legend() if __name__ == '__main__': linear_reg2(data[:,:limt]) plt.show()
[ "matplotlib.pyplot.show", "numpy.concatenate", "matplotlib.pyplot.plot", "numpy.abs", "matplotlib.pyplot.legend", "numpy.expand_dims", "numpy.array", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "sklearn.linear_model.Lasso" ]
[((1223, 1242), 'numpy.array', 'np.array', (['data_full'], {}), '(data_full)\n', (1231, 1242), True, 'import numpy as np\n'), ((1290, 1323), 'numpy.expand_dims', 'np.expand_dims', (['arr[0, :]'], {'axis': '(1)'}), '(arr[0, :], axis=1)\n', (1304, 1323), True, 'import numpy as np\n'), ((1371, 1404), 'numpy.expand_dims', 'np.expand_dims', (['arr[1, :]'], {'axis': '(1)'}), '(arr[1, :], axis=1)\n', (1385, 1404), True, 'import numpy as np\n'), ((1420, 1440), 'sklearn.linear_model.Lasso', 'linear_model.Lasso', ([], {}), '()\n', (1438, 1440), False, 'from sklearn import linear_model\n'), ((1654, 1680), 'matplotlib.pyplot.plot', 'plt.plot', (['x[:, 0]', 'y', '"""r*"""'], {}), "(x[:, 0], y, 'r*')\n", (1662, 1680), True, 'import matplotlib.pyplot as plt\n'), ((1686, 1713), 'matplotlib.pyplot.plot', 'plt.plot', (['x[:, 0]', 'y_', '"""b-"""'], {}), "(x[:, 0], y_, 'b-')\n", (1694, 1713), True, 'import matplotlib.pyplot as plt\n'), ((1719, 1729), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1727, 1729), True, 'import matplotlib.pyplot as plt\n'), ((1770, 1803), 'numpy.expand_dims', 'np.expand_dims', (['arr[0, :]'], {'axis': '(1)'}), '(arr[0, :], axis=1)\n', (1784, 1803), True, 'import numpy as np\n'), ((1859, 1891), 'numpy.concatenate', 'np.concatenate', (['[x0, x1]'], {'axis': '(1)'}), '([x0, x1], axis=1)\n', (1873, 1891), True, 'import numpy as np\n'), ((1933, 1966), 'numpy.expand_dims', 'np.expand_dims', (['arr[1, :]'], {'axis': '(1)'}), '(arr[1, :], axis=1)\n', (1947, 1966), True, 'import numpy as np\n'), ((1982, 2002), 'sklearn.linear_model.Lasso', 'linear_model.Lasso', ([], {}), '()\n', (2000, 2002), False, 'from sklearn import linear_model\n'), ((2132, 2152), 'numpy.abs', 'np.abs', (['(y[:, 0] - y_)'], {}), '(y[:, 0] - y_)\n', (2138, 2152), True, 'import numpy as np\n'), ((2301, 2363), 'matplotlib.pyplot.plot', 'plt.plot', (['data[0, :]', 'data[1, :]', '"""b+"""'], {'label': '"""control points"""'}), "(data[0, :], data[1, :], 'b+', label='control points')\n", (2309, 2363), True, 'import matplotlib.pyplot as plt\n'), ((2375, 2418), 'matplotlib.pyplot.plot', 'plt.plot', (['x[:, 0]', 'y_', '"""r-"""'], {'label': '"""fitted"""'}), "(x[:, 0], y_, 'r-', label='fitted')\n", (2383, 2418), True, 'import matplotlib.pyplot as plt\n'), ((2425, 2446), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""gray(1)"""'], {}), "('gray(1)')\n", (2435, 2446), True, 'import matplotlib.pyplot as plt\n'), ((2455, 2481), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""distances(m)"""'], {}), "('distances(m)')\n", (2465, 2481), True, 'import matplotlib.pyplot as plt\n'), ((2490, 2502), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2500, 2502), True, 'import matplotlib.pyplot as plt\n'), ((2570, 2580), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2578, 2580), True, 'import matplotlib.pyplot as plt\n'), ((1521, 1541), 'numpy.abs', 'np.abs', (['(y[:, 0] - y_)'], {}), '(y[:, 0] - y_)\n', (1527, 1541), True, 'import numpy as np\n')]
import numpy as np def im2col(input_data, filter_h, filter_w, stride, pad): """ (function) im2col ----------------- - Convert the shape of the data from image to column Parameter --------- - input_data : input data - filter_h : filter height - filter_w : filter width - stride : sliding interval - pad : boundary padding length Return ------ - reshaped column data """ # Calculate result resolution information N, C, H, W = input_data.shape out_h = (H + 2 * pad - filter_h) // stride + 1 out_w = (W + 2 * pad - filter_w) // stride + 1 # Do padding on the input data img = np.pad(input_data, [(0, 0), (0, 0), (pad, pad), (pad, pad)], 'constant') col = np.zeros((N, C, filter_h, filter_w, out_h, out_w)) # Generate the column data for y in range(filter_h): y_max = y + stride * out_h for x in range(filter_w): x_max = x + stride * out_w col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride] col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N * out_h * out_w, -1) return col # Convert column to image def col2im(col, input_shape, filter_h, filter_w, stride, pad): """ (function) col2im ----------------- - Convert the shape of the data from column to image Parameter --------- - col : column data - input_shape : original shape on the input - filter_h : filter height - filter_w : filter width - stride : sliding interval - pad : boundary padding length Return ------ - reshaped image data """ # Calculate result resolution information N, C, H, W = input_shape out_h = (H + 2 * pad - filter_h) // stride + 1 out_w = (W + 2 * pad - filter_w) // stride + 1 col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(0, 3, 4, 5, 1, 2) # Generate the image data img = np.zeros((N, C, H + 2 * pad + stride - 1, W + 2 * pad + stride - 1)) for y in range(filter_h): y_max = y + stride * out_h for x in range(filter_w): x_max = x + stride * out_w img[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :] return img[:, :, pad:H + pad, pad:W + pad]
[ "numpy.pad", "numpy.zeros" ]
[((660, 732), 'numpy.pad', 'np.pad', (['input_data', '[(0, 0), (0, 0), (pad, pad), (pad, pad)]', '"""constant"""'], {}), "(input_data, [(0, 0), (0, 0), (pad, pad), (pad, pad)], 'constant')\n", (666, 732), True, 'import numpy as np\n'), ((743, 793), 'numpy.zeros', 'np.zeros', (['(N, C, filter_h, filter_w, out_h, out_w)'], {}), '((N, C, filter_h, filter_w, out_h, out_w))\n', (751, 793), True, 'import numpy as np\n'), ((1929, 1997), 'numpy.zeros', 'np.zeros', (['(N, C, H + 2 * pad + stride - 1, W + 2 * pad + stride - 1)'], {}), '((N, C, H + 2 * pad + stride - 1, W + 2 * pad + stride - 1))\n', (1937, 1997), True, 'import numpy as np\n')]
""" Source: https://github.com/yanxinzju/CSS-VQA/blob/0e2bfa68232f346adc9ad61e90e97ee38ad59f96/language_model.py#L31 """ import torch import torch.nn as nn import numpy as np from torch.autograd import Variable from torch.nn.utils.weight_norm import weight_norm __all__ = ['WordEmbedding', 'QuestionEmbedding', 'FCNet', 'SimpleClassifier'] class WordEmbedding(nn.Module): """Word Embedding The ntoken-th dim is used for padding_idx, which agrees *implicitly* with the definition in Dictionary. """ def __init__(self, ntoken, emb_dim, dropout): super().__init__() self.emb = nn.Embedding(ntoken+1, emb_dim, padding_idx=ntoken) self.dropout = nn.Dropout(dropout) self.ntoken = ntoken self.emb_dim = emb_dim def init_embedding(self, np_file): weight_init = torch.from_numpy(np.load(np_file)) assert weight_init.shape == (self.ntoken, self.emb_dim) self.emb.weight.data[:self.ntoken] = weight_init def forward(self, x): emb = self.emb(x) emb = self.dropout(emb) return emb class QuestionEmbedding(nn.Module): def __init__(self, in_dim, num_hid, nlayers, bidirect, dropout, rnn_type='GRU' ) -> None: """Module for question embedding """ super().__init__() assert rnn_type == 'LSTM' or rnn_type == 'GRU' rnn_cls = nn.LSTM if rnn_type == 'LSTM' else nn.GRU self.rnn = rnn_cls( in_dim, num_hid, nlayers, bidirectional=bidirect, dropout=dropout, batch_first=True) self.in_dim = in_dim self.num_hid = num_hid self.nlayers = nlayers self.rnn_type = rnn_type self.ndirections = 1 + int(bidirect) def init_hidden(self, batch): # just to get the type of tensor weight = next(self.parameters()).data hid_shape = (self.nlayers * self.ndirections, batch, self.num_hid) if self.rnn_type == 'LSTM': return (Variable(weight.new(*hid_shape).zero_()), Variable(weight.new(*hid_shape).zero_())) else: return Variable(weight.new(*hid_shape).zero_()) def forward(self, x): # x: [batch, sequence, in_dim] batch = x.size(0) hidden = self.init_hidden(batch) self.rnn.flatten_parameters() output, hidden = self.rnn(x, hidden) if self.ndirections == 1: return output[:, -1] forward_ = output[:, -1, :self.num_hid] backward = output[:, 0, self.num_hid:] return torch.cat((forward_, backward), dim=1) def forward_all(self, x): # x: [batch, sequence, in_dim] batch = x.size(0) hidden = self.init_hidden(batch) self.rnn.flatten_parameters() output, hidden = self.rnn(x, hidden) return output class FCNet(nn.Module): """Simple class for non-linear fully connect network """ def __init__(self, dims): super(FCNet, self).__init__() layers = [] for i in range(len(dims)-2): in_dim = dims[i] out_dim = dims[i+1] layers.append(weight_norm(nn.Linear(in_dim, out_dim), dim=None)) layers.append(nn.ReLU()) layers.append(weight_norm(nn.Linear(dims[-2], dims[-1]), dim=None)) layers.append(nn.ReLU()) self.main = nn.Sequential(*layers) def forward(self, x): return self.main(x) class SimpleClassifier(nn.Module): def __init__(self, in_dim, hid_dim, out_dim, dropout): super(SimpleClassifier, self).__init__() layers = [ weight_norm(nn.Linear(in_dim, hid_dim), dim=None), nn.ReLU(), nn.Dropout(dropout), weight_norm(nn.Linear(hid_dim, out_dim), dim=None) ] self.main = nn.Sequential(*layers) def forward(self, x): logits = self.main(x) return logits
[ "torch.nn.Dropout", "numpy.load", "torch.nn.ReLU", "torch.nn.Sequential", "torch.nn.Embedding", "torch.cat", "torch.nn.Linear" ]
[((615, 668), 'torch.nn.Embedding', 'nn.Embedding', (['(ntoken + 1)', 'emb_dim'], {'padding_idx': 'ntoken'}), '(ntoken + 1, emb_dim, padding_idx=ntoken)\n', (627, 668), True, 'import torch.nn as nn\n'), ((690, 709), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (700, 709), True, 'import torch.nn as nn\n'), ((2696, 2734), 'torch.cat', 'torch.cat', (['(forward_, backward)'], {'dim': '(1)'}), '((forward_, backward), dim=1)\n', (2705, 2734), False, 'import torch\n'), ((3498, 3520), 'torch.nn.Sequential', 'nn.Sequential', (['*layers'], {}), '(*layers)\n', (3511, 3520), True, 'import torch.nn as nn\n'), ((3951, 3973), 'torch.nn.Sequential', 'nn.Sequential', (['*layers'], {}), '(*layers)\n', (3964, 3973), True, 'import torch.nn as nn\n'), ((849, 865), 'numpy.load', 'np.load', (['np_file'], {}), '(np_file)\n', (856, 865), True, 'import numpy as np\n'), ((3466, 3475), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3473, 3475), True, 'import torch.nn as nn\n'), ((3814, 3823), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3821, 3823), True, 'import torch.nn as nn\n'), ((3837, 3856), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (3847, 3856), True, 'import torch.nn as nn\n'), ((3357, 3366), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3364, 3366), True, 'import torch.nn as nn\n'), ((3402, 3431), 'torch.nn.Linear', 'nn.Linear', (['dims[-2]', 'dims[-1]'], {}), '(dims[-2], dims[-1])\n', (3411, 3431), True, 'import torch.nn as nn\n'), ((3763, 3789), 'torch.nn.Linear', 'nn.Linear', (['in_dim', 'hid_dim'], {}), '(in_dim, hid_dim)\n', (3772, 3789), True, 'import torch.nn as nn\n'), ((3882, 3909), 'torch.nn.Linear', 'nn.Linear', (['hid_dim', 'out_dim'], {}), '(hid_dim, out_dim)\n', (3891, 3909), True, 'import torch.nn as nn\n'), ((3292, 3318), 'torch.nn.Linear', 'nn.Linear', (['in_dim', 'out_dim'], {}), '(in_dim, out_dim)\n', (3301, 3318), True, 'import torch.nn as nn\n')]
#!/usr/bin/env python # -*- coding:UTF-8 -*- # File Name : preprocess.py # Purpose : # Creation Date : 10-12-2017 # Last Modified : Thu 18 Jan 2018 05:34:42 PM CST # Created By : <NAME> [jeasinema[at]gmail[dot]com] import os import multiprocessing import numpy as np from config import cfg data_dir = 'velodyne' def process_pointcloud(point_cloud, cls=cfg.DETECT_OBJ): # Input: # (N, 4) # Output: # voxel_dict if cls == 'Car': scene_size = np.array([4, 80, 70.4], dtype=np.float32) voxel_size = np.array([0.4, 0.2, 0.2], dtype=np.float32) grid_size = np.array([10, 400, 352], dtype=np.int64) lidar_coord = np.array([0, 40, 3], dtype=np.float32) max_point_number = 35 else: scene_size = np.array([4, 40, 48], dtype=np.float32) voxel_size = np.array([0.4, 0.2, 0.2], dtype=np.float32) grid_size = np.array([10, 200, 240], dtype=np.int64) lidar_coord = np.array([0, 20, 3], dtype=np.float32) max_point_number = 45 np.random.shuffle(point_cloud) shifted_coord = point_cloud[:, :3] + lidar_coord # reverse the point cloud coordinate (X, Y, Z) -> (Z, Y, X) voxel_index = np.floor( shifted_coord[:, ::-1] / voxel_size).astype(np.int) bound_x = np.logical_and( voxel_index[:, 2] >= 0, voxel_index[:, 2] < grid_size[2]) bound_y = np.logical_and( voxel_index[:, 1] >= 0, voxel_index[:, 1] < grid_size[1]) bound_z = np.logical_and( voxel_index[:, 0] >= 0, voxel_index[:, 0] < grid_size[0]) bound_box = np.logical_and(np.logical_and(bound_x, bound_y), bound_z) point_cloud = point_cloud[bound_box] voxel_index = voxel_index[bound_box] # [K, 3] coordinate buffer as described in the paper coordinate_buffer = np.unique(voxel_index, axis=0) K = len(coordinate_buffer) T = max_point_number # [K, 1] store number of points in each voxel grid number_buffer = np.zeros(shape=(K), dtype=np.int64) # [K, T, 7] feature buffer as described in the paper feature_buffer = np.zeros(shape=(K, T, 7), dtype=np.float32) # build a reverse index for coordinate buffer index_buffer = {} for i in range(K): index_buffer[tuple(coordinate_buffer[i])] = i for voxel, point in zip(voxel_index, point_cloud): index = index_buffer[tuple(voxel)] number = number_buffer[index] if number < T: feature_buffer[index, number, :4] = point number_buffer[index] += 1 feature_buffer[:, :, -3:] = feature_buffer[:, :, :3] - \ feature_buffer[:, :, :3].sum(axis=1, keepdims=True)/number_buffer.reshape(K, 1, 1) voxel_dict = {'feature_buffer': feature_buffer, 'coordinate_buffer': coordinate_buffer, 'number_buffer': number_buffer} return voxel_dict def worker(filelist): for file in filelist: point_cloud = np.fromfile( os.path.join(data_dir, file), dtype=np.float32).reshape(-1, 4) name, extension = os.path.splitext(file) voxel_dict = process_pointcloud(point_cloud) output_dir = 'voxel' if cfg.DETECT_OBJ == 'Car' else 'voxel_ped' np.savez_compressed(os.path.join(output_dir, name), **voxel_dict) if __name__ == '__main__': filelist = [f for f in os.listdir(data_dir) if f.endswith('bin')] num_worker = 8 for sublist in np.array_split(filelist, num_worker): p = multiprocessing.Process(target=worker, args=(sublist,)) p.start()
[ "numpy.random.shuffle", "numpy.logical_and", "numpy.floor", "numpy.zeros", "numpy.array", "os.path.splitext", "numpy.array_split", "multiprocessing.Process", "os.path.join", "os.listdir", "numpy.unique" ]
[((1029, 1059), 'numpy.random.shuffle', 'np.random.shuffle', (['point_cloud'], {}), '(point_cloud)\n', (1046, 1059), True, 'import numpy as np\n'), ((1281, 1353), 'numpy.logical_and', 'np.logical_and', (['(voxel_index[:, 2] >= 0)', '(voxel_index[:, 2] < grid_size[2])'], {}), '(voxel_index[:, 2] >= 0, voxel_index[:, 2] < grid_size[2])\n', (1295, 1353), True, 'import numpy as np\n'), ((1377, 1449), 'numpy.logical_and', 'np.logical_and', (['(voxel_index[:, 1] >= 0)', '(voxel_index[:, 1] < grid_size[1])'], {}), '(voxel_index[:, 1] >= 0, voxel_index[:, 1] < grid_size[1])\n', (1391, 1449), True, 'import numpy as np\n'), ((1473, 1545), 'numpy.logical_and', 'np.logical_and', (['(voxel_index[:, 0] >= 0)', '(voxel_index[:, 0] < grid_size[0])'], {}), '(voxel_index[:, 0] >= 0, voxel_index[:, 0] < grid_size[0])\n', (1487, 1545), True, 'import numpy as np\n'), ((1795, 1825), 'numpy.unique', 'np.unique', (['voxel_index'], {'axis': '(0)'}), '(voxel_index, axis=0)\n', (1804, 1825), True, 'import numpy as np\n'), ((1959, 1992), 'numpy.zeros', 'np.zeros', ([], {'shape': 'K', 'dtype': 'np.int64'}), '(shape=K, dtype=np.int64)\n', (1967, 1992), True, 'import numpy as np\n'), ((2074, 2117), 'numpy.zeros', 'np.zeros', ([], {'shape': '(K, T, 7)', 'dtype': 'np.float32'}), '(shape=(K, T, 7), dtype=np.float32)\n', (2082, 2117), True, 'import numpy as np\n'), ((3403, 3439), 'numpy.array_split', 'np.array_split', (['filelist', 'num_worker'], {}), '(filelist, num_worker)\n', (3417, 3439), True, 'import numpy as np\n'), ((477, 518), 'numpy.array', 'np.array', (['[4, 80, 70.4]'], {'dtype': 'np.float32'}), '([4, 80, 70.4], dtype=np.float32)\n', (485, 518), True, 'import numpy as np\n'), ((540, 583), 'numpy.array', 'np.array', (['[0.4, 0.2, 0.2]'], {'dtype': 'np.float32'}), '([0.4, 0.2, 0.2], dtype=np.float32)\n', (548, 583), True, 'import numpy as np\n'), ((604, 644), 'numpy.array', 'np.array', (['[10, 400, 352]'], {'dtype': 'np.int64'}), '([10, 400, 352], dtype=np.int64)\n', (612, 644), True, 'import numpy as np\n'), ((667, 705), 'numpy.array', 'np.array', (['[0, 40, 3]'], {'dtype': 'np.float32'}), '([0, 40, 3], dtype=np.float32)\n', (675, 705), True, 'import numpy as np\n'), ((767, 806), 'numpy.array', 'np.array', (['[4, 40, 48]'], {'dtype': 'np.float32'}), '([4, 40, 48], dtype=np.float32)\n', (775, 806), True, 'import numpy as np\n'), ((828, 871), 'numpy.array', 'np.array', (['[0.4, 0.2, 0.2]'], {'dtype': 'np.float32'}), '([0.4, 0.2, 0.2], dtype=np.float32)\n', (836, 871), True, 'import numpy as np\n'), ((892, 932), 'numpy.array', 'np.array', (['[10, 200, 240]'], {'dtype': 'np.int64'}), '([10, 200, 240], dtype=np.int64)\n', (900, 932), True, 'import numpy as np\n'), ((955, 993), 'numpy.array', 'np.array', (['[0, 20, 3]'], {'dtype': 'np.float32'}), '([0, 20, 3], dtype=np.float32)\n', (963, 993), True, 'import numpy as np\n'), ((1587, 1619), 'numpy.logical_and', 'np.logical_and', (['bound_x', 'bound_y'], {}), '(bound_x, bound_y)\n', (1601, 1619), True, 'import numpy as np\n'), ((3043, 3065), 'os.path.splitext', 'os.path.splitext', (['file'], {}), '(file)\n', (3059, 3065), False, 'import os\n'), ((3453, 3508), 'multiprocessing.Process', 'multiprocessing.Process', ([], {'target': 'worker', 'args': '(sublist,)'}), '(target=worker, args=(sublist,))\n', (3476, 3508), False, 'import multiprocessing\n'), ((1196, 1241), 'numpy.floor', 'np.floor', (['(shifted_coord[:, ::-1] / voxel_size)'], {}), '(shifted_coord[:, ::-1] / voxel_size)\n', (1204, 1241), True, 'import numpy as np\n'), ((3220, 3250), 'os.path.join', 'os.path.join', (['output_dir', 'name'], {}), '(output_dir, name)\n', (3232, 3250), False, 'import os\n'), ((3322, 3342), 'os.listdir', 'os.listdir', (['data_dir'], {}), '(data_dir)\n', (3332, 3342), False, 'import os\n'), ((2953, 2981), 'os.path.join', 'os.path.join', (['data_dir', 'file'], {}), '(data_dir, file)\n', (2965, 2981), False, 'import os\n')]
from typing import Dict import numpy as np import math import cv2 from nxs_types.model import NxsModel class AttrDict(dict): __getattr__ = dict.__getitem__ __setattr__ = dict.__setitem__ class Config: search_size = 255 exemplar_size = 127 base_size = 8 stride = 8 score_size = (search_size - exemplar_size) // stride + base_size + 1 penalty_k = 0.04 window_influence = 0.4 lr = 1.0 windowing = "cosine" context_amount = 0.5 # Anchors. anchor = AttrDict( { "stride": 8, "ratios": [0.33, 0.5, 1, 2, 3], "scales": [8], "num_anchors": 5, } ) def generate_anchors(cfg): anchors = np.zeros((cfg.num_anchors, 4), dtype=np.float32) size = cfg.stride * cfg.stride count = 0 for r in cfg.ratios: ws = int(math.sqrt(size * 1.0 / r)) hs = int(ws * r) for s in cfg.scales: w = ws * s h = hs * s anchors[count] = 0.5 * np.array([-w, -h, w, h]) count += 1 return anchors def prepare_anchors(anchor, cfg): x1, y1, x2, y2 = anchor[:, 0], anchor[:, 1], anchor[:, 2], anchor[:, 3] anchor = np.stack([(x1 + x2) * 0.5, (y1 + y2) * 0.5, x2 - x1, y2 - y1], 1) total_stride = cfg.stride anchor_num = anchor.shape[0] anchor = np.tile(anchor, cfg.score_size * cfg.score_size).reshape((-1, 4)) b = -(cfg.score_size // 2) * total_stride xx, yy = np.meshgrid( [b + total_stride * dx for dx in range(cfg.score_size)], [b + total_stride * dy for dy in range(cfg.score_size)], ) xx, yy = ( np.tile(xx.flatten(), (anchor_num, 1)).flatten(), np.tile(yy.flatten(), (anchor_num, 1)).flatten(), ) anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32) return anchor def init_anchors(cfg): anchors = generate_anchors(cfg.anchor) anchors = prepare_anchors(anchors, cfg) return anchors def tracking_init(cfg): anchors = init_anchors(cfg) window = np.outer(np.hanning(cfg.score_size), np.hanning(cfg.score_size)) window = np.tile(window.flatten(), cfg.anchor.num_anchors) return anchors, window def _create_polygon(loc, size): loc = np.array( [ [loc[0] - size[0] // 2, loc[1] - size[1] // 2], [loc[0] - size[0] // 2, loc[1] + size[1] // 2], [loc[0] + size[0] // 2, loc[1] + size[1] // 2], [loc[0] + size[0] // 2, loc[1] - size[1] // 2], ], dtype=np.int32, ) loc = loc.reshape(-1, 1, 2) return loc def softmax(x): adjusted_x = x - np.amax(x, axis=-1, keepdims=-1) numerator = np.exp(adjusted_x) denominator = np.sum(numerator, axis=-1, keepdims=-1) return numerator / denominator def update_bounding_box( image, scores, bboxes, anchors, window, target_pos, target_size, search_scale, cfg, ): bboxes = np.transpose(bboxes, [3, 1, 2, 0]).reshape(4, -1) scores = softmax(np.transpose(scores, [3, 1, 2, 0]).reshape(2, -1).T)[:, 1] bboxes[0, :] = bboxes[0, :] * anchors[:, 2] + anchors[:, 0] bboxes[1, :] = bboxes[1, :] * anchors[:, 3] + anchors[:, 1] bboxes[2, :] = np.exp(bboxes[2, :]) * anchors[:, 2] bboxes[3, :] = np.exp(bboxes[3, :]) * anchors[:, 3] def change(r): return np.maximum(r, 1.0 / r) def sz(w, h): pad = (w + h) * 0.5 sz2 = (w + pad) * (h + pad) return np.sqrt(sz2) def sz_wh(wh): pad = (wh[0] + wh[1]) * 0.5 sz2 = (wh[0] + pad) * (wh[1] + pad) return np.sqrt(sz2) # size penalty target_sz_in_crop = target_size * search_scale s_c = change(sz(bboxes[2, :], bboxes[3, :]) / (sz_wh(target_sz_in_crop))) r_c = change( (target_sz_in_crop[0] / target_sz_in_crop[1]) / (bboxes[2, :] / bboxes[3, :]) ) penalty = np.exp(-(r_c * s_c - 1) * cfg.penalty_k) pscore = penalty * scores # cos window (motion model) pscore = ( pscore * (1 - cfg.window_influence) + window * cfg.window_influence ) best_pscore_id = np.argmax(pscore) pred_in_crop = bboxes[:, best_pscore_id] / search_scale lr = penalty[best_pscore_id] * scores[best_pscore_id] * cfg.lr # print(lr, pred_in_crop) res_x = pred_in_crop[0] + target_pos[0] res_y = pred_in_crop[1] + target_pos[1] res_w = target_size[0] * (1 - lr) + pred_in_crop[2] * lr res_h = target_size[1] * (1 - lr) + pred_in_crop[3] * lr target_pos = np.array([res_x, res_y]) target_size = np.array([res_w, res_h]) h, w, _ = image.shape if len(image.shape) == 3 else image[0].shape target_pos[0] = max(0, min(w, target_pos[0])) target_pos[1] = max(0, min(h, target_pos[1])) target_size[0] = max(10, min(w, target_size[0])) target_size[1] = max(10, min(h, target_size[1])) return target_pos, target_size, np.max(pscore) # create global vars cfg = Config() anchors, window = tracking_init(cfg) def postprocessing( data, postproc_params, component_model: NxsModel, metadata: Dict = {} ): bbox = data["BBox/Head/conv2d_1/BiasAdd"] score = data["Score/Head/conv2d_1/BiasAdd"] cur_img = metadata.pop("cur_img") h, w = cur_img.shape[:2] target_pos1 = metadata.pop("target_pos1") target_size1 = metadata.pop("target_size1") search1_scale = metadata.pop("search1_scale") target_pos1, target_size1, best_score1 = update_bounding_box( cur_img, np.expand_dims(score, axis=0), np.expand_dims(np.array(bbox), axis=0), anchors, window, target_pos1, target_size1, search1_scale, cfg, ) polygon = _create_polygon(target_pos1, target_size1) polygon = polygon.reshape((-1, 2)) left, top, right, bottom = ( polygon[0][0], polygon[0][1], polygon[2][0], polygon[2][1], ) left = max(0, left) top = max(0, top) right = max(0, right) bottom = max(0, bottom) return { "detections": [ { "class_name": "track", "class_id": int(0), "score": float(best_score1), "rel_bbox": { "left": float(left) / w, "top": float(top) / h, "right": float(right) / w, "bottom": float(bottom) / h, }, "bbox": { "left": left, "top": top, "right": right, "bottom": bottom, }, } ] }
[ "numpy.stack", "numpy.sum", "numpy.maximum", "math.sqrt", "numpy.argmax", "numpy.zeros", "numpy.expand_dims", "numpy.transpose", "numpy.amax", "numpy.max", "numpy.array", "numpy.exp", "numpy.tile", "numpy.hanning", "numpy.sqrt" ]
[((712, 760), 'numpy.zeros', 'np.zeros', (['(cfg.num_anchors, 4)'], {'dtype': 'np.float32'}), '((cfg.num_anchors, 4), dtype=np.float32)\n', (720, 760), True, 'import numpy as np\n'), ((1211, 1276), 'numpy.stack', 'np.stack', (['[(x1 + x2) * 0.5, (y1 + y2) * 0.5, x2 - x1, y2 - y1]', '(1)'], {}), '([(x1 + x2) * 0.5, (y1 + y2) * 0.5, x2 - x1, y2 - y1], 1)\n', (1219, 1276), True, 'import numpy as np\n'), ((2263, 2490), 'numpy.array', 'np.array', (['[[loc[0] - size[0] // 2, loc[1] - size[1] // 2], [loc[0] - size[0] // 2, \n loc[1] + size[1] // 2], [loc[0] + size[0] // 2, loc[1] + size[1] // 2],\n [loc[0] + size[0] // 2, loc[1] - size[1] // 2]]'], {'dtype': 'np.int32'}), '([[loc[0] - size[0] // 2, loc[1] - size[1] // 2], [loc[0] - size[0] //\n 2, loc[1] + size[1] // 2], [loc[0] + size[0] // 2, loc[1] + size[1] // \n 2], [loc[0] + size[0] // 2, loc[1] - size[1] // 2]], dtype=np.int32)\n', (2271, 2490), True, 'import numpy as np\n'), ((2699, 2717), 'numpy.exp', 'np.exp', (['adjusted_x'], {}), '(adjusted_x)\n', (2705, 2717), True, 'import numpy as np\n'), ((2736, 2775), 'numpy.sum', 'np.sum', (['numerator'], {'axis': '(-1)', 'keepdims': '(-1)'}), '(numerator, axis=-1, keepdims=-1)\n', (2742, 2775), True, 'import numpy as np\n'), ((3925, 3965), 'numpy.exp', 'np.exp', (['(-(r_c * s_c - 1) * cfg.penalty_k)'], {}), '(-(r_c * s_c - 1) * cfg.penalty_k)\n', (3931, 3965), True, 'import numpy as np\n'), ((4147, 4164), 'numpy.argmax', 'np.argmax', (['pscore'], {}), '(pscore)\n', (4156, 4164), True, 'import numpy as np\n'), ((4552, 4576), 'numpy.array', 'np.array', (['[res_x, res_y]'], {}), '([res_x, res_y])\n', (4560, 4576), True, 'import numpy as np\n'), ((4595, 4619), 'numpy.array', 'np.array', (['[res_w, res_h]'], {}), '([res_w, res_h])\n', (4603, 4619), True, 'import numpy as np\n'), ((2073, 2099), 'numpy.hanning', 'np.hanning', (['cfg.score_size'], {}), '(cfg.score_size)\n', (2083, 2099), True, 'import numpy as np\n'), ((2101, 2127), 'numpy.hanning', 'np.hanning', (['cfg.score_size'], {}), '(cfg.score_size)\n', (2111, 2127), True, 'import numpy as np\n'), ((2650, 2682), 'numpy.amax', 'np.amax', (['x'], {'axis': '(-1)', 'keepdims': '(-1)'}), '(x, axis=-1, keepdims=-1)\n', (2657, 2682), True, 'import numpy as np\n'), ((3252, 3272), 'numpy.exp', 'np.exp', (['bboxes[2, :]'], {}), '(bboxes[2, :])\n', (3258, 3272), True, 'import numpy as np\n'), ((3308, 3328), 'numpy.exp', 'np.exp', (['bboxes[3, :]'], {}), '(bboxes[3, :])\n', (3314, 3328), True, 'import numpy as np\n'), ((3380, 3402), 'numpy.maximum', 'np.maximum', (['r', '(1.0 / r)'], {}), '(r, 1.0 / r)\n', (3390, 3402), True, 'import numpy as np\n'), ((3501, 3513), 'numpy.sqrt', 'np.sqrt', (['sz2'], {}), '(sz2)\n', (3508, 3513), True, 'import numpy as np\n'), ((3629, 3641), 'numpy.sqrt', 'np.sqrt', (['sz2'], {}), '(sz2)\n', (3636, 3641), True, 'import numpy as np\n'), ((4936, 4950), 'numpy.max', 'np.max', (['pscore'], {}), '(pscore)\n', (4942, 4950), True, 'import numpy as np\n'), ((5523, 5552), 'numpy.expand_dims', 'np.expand_dims', (['score'], {'axis': '(0)'}), '(score, axis=0)\n', (5537, 5552), True, 'import numpy as np\n'), ((854, 879), 'math.sqrt', 'math.sqrt', (['(size * 1.0 / r)'], {}), '(size * 1.0 / r)\n', (863, 879), False, 'import math\n'), ((1355, 1403), 'numpy.tile', 'np.tile', (['anchor', '(cfg.score_size * cfg.score_size)'], {}), '(anchor, cfg.score_size * cfg.score_size)\n', (1362, 1403), True, 'import numpy as np\n'), ((2974, 3008), 'numpy.transpose', 'np.transpose', (['bboxes', '[3, 1, 2, 0]'], {}), '(bboxes, [3, 1, 2, 0])\n', (2986, 3008), True, 'import numpy as np\n'), ((5577, 5591), 'numpy.array', 'np.array', (['bbox'], {}), '(bbox)\n', (5585, 5591), True, 'import numpy as np\n'), ((1018, 1042), 'numpy.array', 'np.array', (['[-w, -h, w, h]'], {}), '([-w, -h, w, h])\n', (1026, 1042), True, 'import numpy as np\n'), ((3045, 3079), 'numpy.transpose', 'np.transpose', (['scores', '[3, 1, 2, 0]'], {}), '(scores, [3, 1, 2, 0])\n', (3057, 3079), True, 'import numpy as np\n')]
from torchfm.dataset.criteo import CriteoDataset dataset = CriteoDataset() import json import numpy as np n_items = 4096 total_items = 500 input_data = [] for i in range(3): x = dataset[i][0] tiled_x = np.tile(x,n_items) tiled_x = tiled_x.reshape(n_items,-1) tiled_x[:,-1] = np.random.choice(range(total_items), n_items, replace=True) inp_x = tiled_x.flatten().tolist() input_data.append({'INPUT0__0':inp_x}) test_data = {'data':input_data} out_file = 'data_'+str(n_items)+'.json' with open(out_file, 'w') as f: json.dump(test_data, f)
[ "json.dump", "numpy.tile", "torchfm.dataset.criteo.CriteoDataset" ]
[((59, 74), 'torchfm.dataset.criteo.CriteoDataset', 'CriteoDataset', ([], {}), '()\n', (72, 74), False, 'from torchfm.dataset.criteo import CriteoDataset\n'), ((212, 231), 'numpy.tile', 'np.tile', (['x', 'n_items'], {}), '(x, n_items)\n', (219, 231), True, 'import numpy as np\n'), ((543, 566), 'json.dump', 'json.dump', (['test_data', 'f'], {}), '(test_data, f)\n', (552, 566), False, 'import json\n')]
#!/usr/bin/python # -*- encoding: utf-8 -*- import os import cv2 import numpy as np from tqdm import tqdm import glob def calculate_mean_std(path): # folder = os.listdir(path) folder = glob.glob(path, recursive=False) mean = [] std = [] R_mean = 0.0 G_mean = 0.0 B_mean = 0.0 # for img_name in tqdm(folder, desc="calculate_mean_std"): # image = cv2.imread(os.path.join(path+img_name))/255. for img_name in tqdm(folder, desc="calculate_mean_std"): image = cv2.imread(img_name)/255. R_mean += np.mean(image[:,:,2]) G_mean += np.mean(image[:,:,1]) B_mean += np.mean(image[:,:,0]) R_mean = R_mean / len(folder) G_mean = G_mean / len(folder) B_mean = B_mean / len(folder) mean.extend([R_mean, G_mean, B_mean]) #print(mean) R_std = 0.0 G_std = 0.0 B_std = 0.0 # for img_name in tqdm(folder, desc="calculate_mean_std"): # image = cv2.imread(os.path.join(path+img_name))/255. for img_name in tqdm(folder, desc="calculate_mean_std"): image = cv2.imread(img_name)/255. image_size = image.shape[0]*image.shape[1] R_std += np.sum(np.power(image[:,:,2] - R_mean, 2)) / image_size G_std += np.sum(np.power(image[:,:,1] - G_mean, 2)) / image_size B_std += np.sum(np.power(image[:,:,0] - B_mean, 2)) / image_size R_std = np.sqrt(R_std / len(folder)) G_std = np.sqrt(G_std / len(folder)) B_std = np.sqrt(B_std / len(folder)) std.extend([R_std, G_std, B_std]) #print(std) return mean, std if __name__ == "__main__": image_path = "./dataset/carla/data*/CameraRGB/*.png" # glob.iglob(img_path)>>dataABC,dataD mean, std = calculate_mean_std(path=image_path) print('mean={}\nstd={}\n#value=[R,G,B]'.format(mean,std)) # mean=[0.35245398366625774, 0.3581336873774504, 0.35212403845792456] # std=[0.26050246625763057, 0.2570952503100638, 0.2654258674345489] # value=[R,G,B]
[ "tqdm.tqdm", "numpy.power", "cv2.imread", "numpy.mean", "glob.glob" ]
[((196, 228), 'glob.glob', 'glob.glob', (['path'], {'recursive': '(False)'}), '(path, recursive=False)\n', (205, 228), False, 'import glob\n'), ((455, 494), 'tqdm.tqdm', 'tqdm', (['folder'], {'desc': '"""calculate_mean_std"""'}), "(folder, desc='calculate_mean_std')\n", (459, 494), False, 'from tqdm import tqdm\n'), ((1014, 1053), 'tqdm.tqdm', 'tqdm', (['folder'], {'desc': '"""calculate_mean_std"""'}), "(folder, desc='calculate_mean_std')\n", (1018, 1053), False, 'from tqdm import tqdm\n'), ((556, 579), 'numpy.mean', 'np.mean', (['image[:, :, 2]'], {}), '(image[:, :, 2])\n', (563, 579), True, 'import numpy as np\n'), ((596, 619), 'numpy.mean', 'np.mean', (['image[:, :, 1]'], {}), '(image[:, :, 1])\n', (603, 619), True, 'import numpy as np\n'), ((636, 659), 'numpy.mean', 'np.mean', (['image[:, :, 0]'], {}), '(image[:, :, 0])\n', (643, 659), True, 'import numpy as np\n'), ((512, 532), 'cv2.imread', 'cv2.imread', (['img_name'], {}), '(img_name)\n', (522, 532), False, 'import cv2\n'), ((1071, 1091), 'cv2.imread', 'cv2.imread', (['img_name'], {}), '(img_name)\n', (1081, 1091), False, 'import cv2\n'), ((1172, 1208), 'numpy.power', 'np.power', (['(image[:, :, 2] - R_mean)', '(2)'], {}), '(image[:, :, 2] - R_mean, 2)\n', (1180, 1208), True, 'import numpy as np\n'), ((1245, 1281), 'numpy.power', 'np.power', (['(image[:, :, 1] - G_mean)', '(2)'], {}), '(image[:, :, 1] - G_mean, 2)\n', (1253, 1281), True, 'import numpy as np\n'), ((1318, 1354), 'numpy.power', 'np.power', (['(image[:, :, 0] - B_mean)', '(2)'], {}), '(image[:, :, 0] - B_mean, 2)\n', (1326, 1354), True, 'import numpy as np\n')]
import numpy as np from napari.layers.utils.color_manager_utils import ( guess_continuous, is_color_mapped, ) def test_guess_continuous(): continuous_annotation = np.array([1, 2, 3], dtype=np.float32) assert guess_continuous(continuous_annotation) categorical_annotation_1 = np.array([True, False], dtype=bool) assert not guess_continuous(categorical_annotation_1) categorical_annotation_2 = np.array([1, 2, 3], dtype=int) assert not guess_continuous(categorical_annotation_2) def test_is_colormapped_string(): color = 'hello' properties = { 'hello': np.array([1, 1, 1, 1]), 'hi': np.array([1, 0, 0, 1]), } assert is_color_mapped(color, properties) assert not is_color_mapped('red', properties) def test_is_colormapped_dict(): """Colors passed as dicts are treated as colormapped""" color = {0: np.array([1, 1, 1, 1]), 1: np.array([1, 1, 0, 1])} properties = { 'hello': np.array([1, 1, 1, 1]), 'hi': np.array([1, 0, 0, 1]), } assert is_color_mapped(color, properties) def test_is_colormapped_array(): """Colors passed as list/array are treated as not colormapped""" color_list = [[1, 1, 1, 1], [1, 1, 0, 1]] properties = { 'hello': np.array([1, 1, 1, 1]), 'hi': np.array([1, 0, 0, 1]), } assert not is_color_mapped(color_list, properties) color_array = np.array(color_list) assert not is_color_mapped(color_array, properties)
[ "napari.layers.utils.color_manager_utils.guess_continuous", "numpy.array", "napari.layers.utils.color_manager_utils.is_color_mapped" ]
[((178, 215), 'numpy.array', 'np.array', (['[1, 2, 3]'], {'dtype': 'np.float32'}), '([1, 2, 3], dtype=np.float32)\n', (186, 215), True, 'import numpy as np\n'), ((227, 266), 'napari.layers.utils.color_manager_utils.guess_continuous', 'guess_continuous', (['continuous_annotation'], {}), '(continuous_annotation)\n', (243, 266), False, 'from napari.layers.utils.color_manager_utils import guess_continuous, is_color_mapped\n'), ((299, 334), 'numpy.array', 'np.array', (['[True, False]'], {'dtype': 'bool'}), '([True, False], dtype=bool)\n', (307, 334), True, 'import numpy as np\n'), ((425, 455), 'numpy.array', 'np.array', (['[1, 2, 3]'], {'dtype': 'int'}), '([1, 2, 3], dtype=int)\n', (433, 455), True, 'import numpy as np\n'), ((685, 719), 'napari.layers.utils.color_manager_utils.is_color_mapped', 'is_color_mapped', (['color', 'properties'], {}), '(color, properties)\n', (700, 719), False, 'from napari.layers.utils.color_manager_utils import guess_continuous, is_color_mapped\n'), ((1046, 1080), 'napari.layers.utils.color_manager_utils.is_color_mapped', 'is_color_mapped', (['color', 'properties'], {}), '(color, properties)\n', (1061, 1080), False, 'from napari.layers.utils.color_manager_utils import guess_continuous, is_color_mapped\n'), ((1409, 1429), 'numpy.array', 'np.array', (['color_list'], {}), '(color_list)\n', (1417, 1429), True, 'import numpy as np\n'), ((350, 392), 'napari.layers.utils.color_manager_utils.guess_continuous', 'guess_continuous', (['categorical_annotation_1'], {}), '(categorical_annotation_1)\n', (366, 392), False, 'from napari.layers.utils.color_manager_utils import guess_continuous, is_color_mapped\n'), ((471, 513), 'napari.layers.utils.color_manager_utils.guess_continuous', 'guess_continuous', (['categorical_annotation_2'], {}), '(categorical_annotation_2)\n', (487, 513), False, 'from napari.layers.utils.color_manager_utils import guess_continuous, is_color_mapped\n'), ((606, 628), 'numpy.array', 'np.array', (['[1, 1, 1, 1]'], {}), '([1, 1, 1, 1])\n', (614, 628), True, 'import numpy as np\n'), ((644, 666), 'numpy.array', 'np.array', (['[1, 0, 0, 1]'], {}), '([1, 0, 0, 1])\n', (652, 666), True, 'import numpy as np\n'), ((735, 769), 'napari.layers.utils.color_manager_utils.is_color_mapped', 'is_color_mapped', (['"""red"""', 'properties'], {}), "('red', properties)\n", (750, 769), False, 'from napari.layers.utils.color_manager_utils import guess_continuous, is_color_mapped\n'), ((880, 902), 'numpy.array', 'np.array', (['[1, 1, 1, 1]'], {}), '([1, 1, 1, 1])\n', (888, 902), True, 'import numpy as np\n'), ((907, 929), 'numpy.array', 'np.array', (['[1, 1, 0, 1]'], {}), '([1, 1, 0, 1])\n', (915, 929), True, 'import numpy as np\n'), ((967, 989), 'numpy.array', 'np.array', (['[1, 1, 1, 1]'], {}), '([1, 1, 1, 1])\n', (975, 989), True, 'import numpy as np\n'), ((1005, 1027), 'numpy.array', 'np.array', (['[1, 0, 0, 1]'], {}), '([1, 0, 0, 1])\n', (1013, 1027), True, 'import numpy as np\n'), ((1267, 1289), 'numpy.array', 'np.array', (['[1, 1, 1, 1]'], {}), '([1, 1, 1, 1])\n', (1275, 1289), True, 'import numpy as np\n'), ((1305, 1327), 'numpy.array', 'np.array', (['[1, 0, 0, 1]'], {}), '([1, 0, 0, 1])\n', (1313, 1327), True, 'import numpy as np\n'), ((1350, 1389), 'napari.layers.utils.color_manager_utils.is_color_mapped', 'is_color_mapped', (['color_list', 'properties'], {}), '(color_list, properties)\n', (1365, 1389), False, 'from napari.layers.utils.color_manager_utils import guess_continuous, is_color_mapped\n'), ((1445, 1485), 'napari.layers.utils.color_manager_utils.is_color_mapped', 'is_color_mapped', (['color_array', 'properties'], {}), '(color_array, properties)\n', (1460, 1485), False, 'from napari.layers.utils.color_manager_utils import guess_continuous, is_color_mapped\n')]
# DIRECTORY: ~/kpyreb/eSims/MSims/integrate.py # # Integrates using whfast by default. This can be set by the user as an optional # keyword. Auto calculates the timestep to be 1/1000 of the shortest orbit # (Rein & Tamayo 2015). Sympletic corrector can be used if set by the user. # # This is the worker of the simulation. It runs the simulation and records the # output in simResults. # # ARGUMENTS: # sim = Rebound simulation structure that is ran/integrated. Global variable # astroInputs = Astronomical parameters such as partical masses and mirror orbit configurations # rebInputs = REBOUND parameters that are the settings for the simulation, # for example, what symplectic correcter to use and what integrator. # simResults = The results of the simulation are saved to this. This includes # particle coordinates, velocites, and accelerations. These results # are plotted in plotSim.py and output to .csv files in outputSim.py. # energy = Recording of the total energy of the simulation at each timestep. # Total energy is calculated using REBOUND's energy method. # plotTypes = See plotSim.py to see what each plotType is. This is used to # determine if energy should be returned. # # Called by runSim.py # Author KCT # # HISTORY: # 3 Jul 2017 Created # 6 Jul 2017 Cleaned up # 5 Mar 2017 Exact finish time and output points changable in INFILE.py # 10 Sep 2017 Added functionality to break if the mirror hits the planet # or reaches escape velocity # 18 Jan 2018 Change to exact_finish_time to 1 <---- to correct time issue with ias15 # save the suggested end time and integrated end time to simResults # 19 Feb 2018 Changed 'x2', 'y2' to 'RRFx', 'RRFy'. Altered input for rotTransform. # 21 Mar 2018 Cleaned up with more comments # 28 Mar 2018 Integrate saves the point where it escapes. (Prevents 0 size array errors) # 18 Jun 2018 Fixed bug where if there was no star integrate would crash # 20 Jun 2018 Fixed bug where timesteps were inconsistent with the step # size we wanted to suggest. Don't compare any # tests prior to this fix to tests made after. # returns energy (if specified in plotTypes) over time and the number of timesteps # 20 Jan 2020 SS implemented collision detection using Rebound features # 9 Feb 2020 SJF added megno calculation (but it doesn't do what we want) # 18 Feb 2020 SS fixed RRF z coordinate output def integrate(sim, astroInputs, rebInputs, simResults, energy, plotTypes, file_dir): # Import packages and methods from other classes import numpy as np import rebound #import matplotlib.pyplot as plt import math from .Energy import Energy from .rotTransform import rotTransform from .outputSim import outputSim, outputSim_new # Assign the sim particles to variable p. p = sim.particles #fresult=simResults.SimResults_new # The amount of steps in the simulation. Noutputs = int(rebInputs.outputPoints*rebInputs.orbits) # The length of the simulation in seconds. simlength = rebInputs.orbits*simResults.torbMirror # Creates all the time steps of the simulation. Used mainly for plotting in plotSims.py. times = np.linspace(0, simlength, Noutputs + 1) # Fixed bug here, used to not have + 1 #debug #print(f"Times: length = {len(times)}") #return times # Record at what point the simulation ends. Also, records the timestamp for each # integration loop. integrateEndTime=0 # Record the timesteps of the simulation to properly index the recorded data # in simResults.py. ts = 0 megno=-1 #quick test of #sim.N_active=2 # Define a minimum distance for collision. Used for collision detection. minDist = astroInputs.planetRadius + astroInputs.atmos sim.exit_min_distance = minDist # Creates a loop that iterates Noutputs + 1's amount for integrating. print('last input time : ',times[-1]) sim.status() # SIMARCHIVE # REQUIRES REBOUND v3.12.X #archivefilename = logfile.replace("output-", "archive-").replace(".log", ".bin") #archive_step_interval = 100*int(math.sqrt(Noutputs))#int(Noutputs/10) #narchives_total = int(Noutputs/archive_step_interval) #narchives_total = 20 ##sim.automateSimulationArchive(archivefilename, step=archive_step_interval #archive_counter = 0 #archive_steps = np.linspace(0, simlength, narchives_total + 1) # save interval [timesteps] save_interval = 100 # number of timesteps between each save current_index = 0 nsaves = 0 withRRF = False for i,time in enumerate(times): #if (True): # Uncomment to remove crash detection # Do the integration. Uses exactFinishTime parameter specified in # the infile. try: sim.integrate( time, exact_finish_time = rebInputs.exactFinishTime ) except rebound.Encounter as error: print("ENCOUNTER OCCURS") print(error) # SimArchive #if time >= archive_steps[archive_counter]: # sim.simulationarchive_snapshot(archivefilename) # archive_counter += 1 print(f"energy values: {energy}") integrateEndTime=sim.t # Update integration time. if rebInputs.outputMegno: megno=sim.calculate_megno() simResults.newResults.append(p,sim.dt,sim.t,time,megno) if astroInputs.starType == None: # If there is no star, update only mirror and planet coord & vel coordTempPlanet = [p[0].x, p[0].y, p[0].z] velTempPlanet = [p[0].vx, p[0].vy, p[0].vz] accelTempPlanet = [p[0].ax, p[0].ay, p[0].az] # Need both if statements because we created a dummy particle # thus the indexes are off. # TODO Perhaps add the dummy particle first so we can # keep the indexes the same and we just need one if statement # adding the star and then outside the if statement we # add the planet and mirror coordinates because the indexes # will be the same regardless of if there is a star or not. coordTempMirror = [p[2].x, p[2].y, p[2].z] velTempMirror = [p[2].vx, p[2].vy, p[2].vz] accelTempMirror = [p[2].ax, p[2].ay, p[2].az] if astroInputs.starType != None: # If there is a star, update all three particles. coordTempStar = [p[0].x, p[0].y, p[0].z] velTempStar = [p[0].vx, p[0].vy, p[0].vz] accelTempStar = [p[0].ax, p[0].ay, p[0].az] coordTempPlanet = [p[1].x, p[1].y, p[1].z] velTempPlanet = [p[1].vx, p[1].vy, p[1].vz] accelTempPlanet = [p[1].ax, p[1].ay, p[1].az] coordTempMirror = [p[2].x, p[2].y, p[2].z] velTempMirror = [p[2].vx, p[2].vy, p[2].vz] accelTempMirror = [p[2].ax, p[2].ay, p[2].az] # Calculate and save the current simulation energy. energyTemp = sim.calculate_energy() energy.saveEnergy(energyTemp) # Update the number of timesteps. ts = ts + 1 # Saves particle conditions if astroInputs.starType == None: # If there is no star, only record the planet/mirror info simResults.saveData(None, None, None, coordTempPlanet, velTempPlanet, accelTempPlanet, coordTempMirror, velTempMirror, accelTempMirror, time,integrateEndTime, sim.dt) #if astroInputs.starType != None: # If there is a star, record the star info too. else: simResults.saveData(coordTempStar, velTempStar, accelTempStar, coordTempPlanet, velTempPlanet, accelTempPlanet, coordTempMirror, velTempMirror, accelTempMirror, time,integrateEndTime, sim.dt) # EDIT: 10/21/2019 Moved this block from before integrating to here to fix bug where # an extra point was output after a crash. # time is equivalent to times[i] # If the mirror gets within the radius of the planet, stop. if astroInputs.starType != None: dist = math.sqrt((p[2].x-p[1].x)**2 + (p[2].y-p[1].y)**2 + (p[2].z-p[1].z)**2) mirrorVel = math.sqrt((p[2].vx-p[1].vx)**2 + (p[2].vy-p[1].vy)**2 + (p[2].vz-p[1].vz)**2) if astroInputs.starType == None: dist = math.sqrt((p[2].x-p[0].x)**2 + (p[2].y-p[0].y)**2 + (p[2].z-p[0].z)**2) mirrorVel = math.sqrt((p[2].vx-p[0].vx)**2 + (p[2].vy-p[0].vy)**2 + (p[2].vz-p[0].vz)**2) # Calculate the mirror's escape velocty escVel = math.sqrt((2*sim.G*astroInputs.planetMass)/dist) ### # debugging #print("-"*len("no. suggested end times: ")) #print(f"iteration no. {i}") #print(f"no. actual end times: {len(simResults.actualEndTime)}") #print(f"no. suggested end times: {len(simResults.suggestedEndTime)}") #print(f"no. mirror coords: {len(simResults.coordMirror)}") #### ENERGY ### ## Extracting object velocities from sim results for KE calculations. ## It sets the velocities for the planet, mirror, and star by iterating ## through simResult's coordinates. #pVX = np.array([x[0] for x in simResults.velPlanet]) # Planet #pVY = np.array([y[1] for y in simResults.velPlanet]) #pVZ = np.array([z[2] for z in simResults.velPlanet]) #mVX = np.array([x[0] for x in simResults.velMirror]) # Mirror #mVY = np.array([y[1] for y in simResults.velMirror]) #mVZ = np.array([z[2] for z in simResults.velMirror]) #if astroInputs.starType != None: # If there's a star, grab its vels too # sVX = np.array([x[0] for x in simResults.velStar]) # Star # sVY = np.array([y[1] for y in simResults.velStar]) # sVZ = np.array([z[2] for z in simResults.velStar]) ## Calculating distances between objects to be used in GPE calculations. #energy.mDistP = np.sqrt((mX-pX)**2 + (mY-pY)**2 + (mZ-pZ)**2) # Mirror distance from planet. #if astroInputs.starType != None: # energy.pDistS = np.sqrt((sX-pX)**2 + (sY-pY)**2 + (sZ-pZ)**2) # Distance between planet and star. # energy.mDistS = np.sqrt((sX-mX)**2 + (sY-mY)**2 + (sZ-mZ)**2) # Distance between mirror and star. ## Calculating total velocities of objects #velP = np.sqrt((pVX)**2 + (pVY)**2 + (pVZ)**2) # Resultant velocity of planet. #velM = np.sqrt((mVX)**2 + (mVY)**2 + (mVZ)**2) # Resultant velocity of mirror. #velMToP = np.sqrt((mVX-pVX)**2 + (mVY-pVY)**2 + (mVZ-pVZ)**2) # Resultant velocity relative to planet of mirror. #if astroInputs.starType != None: # If there is a star... # velS = np.sqrt((sVX)**2 + (sVY)**2 + (sVZ)**2) # Resultant velocity of star. ## Calculate the KE of the mirror and planet (do these first incase there is ## no star) ## KE of planet & mirror = .5mv**2 #energy.mirrorKE = .5*astroInputs.mirrorMass*velM**2 # Output in individualEnergiesDF.csv #energy.mirrorKEToP = .5*astroInputs.mirrorMass*velMToP**2 # Output in individualEnergiesDF.csv #energy.planetKE = .5*astroInputs.planetMass*velP**2 # Output in individualEnergiesDF.csv # ## Calculate the GPE of the mirror and planet ## GPE = GMm/r (for planet & mirror) #energy.planetMirrorGPE = -(sim.G*astroInputs.planetMass*astroInputs.mirrorMass)/energy.mDistP # Output in individualEnergiesDF.csv # #if astroInputs.starType != None: # Calculating energies that involve the star # # KE # energy.starKE = .5*astroInputs.starMass*velS**2 # Output in individualEnergiesDF.csv # energy.totalKE = energy.starKE + energy.planetKE + energy.mirrorKE # Output in totalEnergy.csv # # GPE # energy.starPlanetGPE = -(sim.G*astroInputs.starMass*astroInputs.planetMass)/energy.pDistS # energy.starMirrorGPE = -(sim.G*astroInputs.starMass*astroInputs.mirrorMass)/energy.mDistS # # Total Energies (Output in totalEnergy.csv) # energy.totalGPE = energy.starPlanetGPE + energy.planetMirrorGPE + energy.starMirrorGPE # energy.mirrorEnergy = energy.mirrorKE + energy.planetMirrorGPE + energy.starMirrorGPE # # Energy of the mirror relative to the planet. Should be constant for sims with no # # additional forces. # energy.mirrorEnergyToP = energy.mirrorKEToP + energy.planetMirrorGPE + energy.starMirrorGPE ### if i % save_interval == 0 and i != 0 and withRRF: # ---Transform the Coordinates to a Rotating Reference Frame--- # Create arrays for new rotating reference frame coordinates. # Adjusted to transform for one timestep planetRRFx = np.zeros(save_interval+1)#np.zeros(1)#ts) #np.zeros(Noutputs + 1) planetRRFy = np.zeros(save_interval+1)# np.zeros(1)#ts) #np.zeros(Noutputs + 1) mirrorRRFx = np.zeros(save_interval+1)#(1)#ts) #np.zeros(Noutputs + 1) mirrorRRFy = np.zeros(save_interval+1)#(1)#ts) #np.zeros(Noutputs + 1) # Finding XY coordinates. Don't need Z because the planet orbits in the XY plane. pX = np.array([x[0] for x in simResults.coordPlanet[current_index:current_index + save_interval+1]])#[simResults.coordPlanet[-1][0]])#np.array([x[0] for x in simResults.coordPlanet]) pY = np.array([y[1] for y in simResults.coordPlanet[current_index:current_index + save_interval+1]])#[simResults.coordPlanet[-1][1]])#np.array([y[1] for y in simResults.coordPlanet]) pZ = np.array([z[2] for z in simResults.coordPlanet[current_index:current_index + save_interval+1]])#[simResults.coordPlanet[-1][2]])#np.array([z[2] for z in simResults.coordPlanet]) #added z info mX = np.array([x[0] for x in simResults.coordMirror[current_index:current_index+save_interval+1]])#[simResults.coordMirror[-1][0]])#np.array([x[0] for x in simResults.coordMirror]) mY = np.array([y[1] for y in simResults.coordMirror[current_index:current_index+save_interval+1]])#[simResults.coordMirror[-1][1]])#np.array([y[1] for y in simResults.coordMirror]) mZ = np.array([z[2] for z in simResults.coordMirror[current_index:current_index+save_interval+1]])#[simResults.coordMirror[-1][2]])#np.array([z[2] for z in simResults.coordMirror]) #added z info print(f"no. pX entries: {len(pX)}") print(f"no. pY entries: {len(pY)}") print(f"no. pZ entries: {len(pZ)}") print(f"no. mX entries: {len(mX)}") print(f"no. mY entries: {len(mY)}") print(f"no. mZ entries: {len(mZ)}") if astroInputs.starType != None: # If there is a star, calculate the star coordinates too. sX = np.array([x[0] for x in simResults.coordStar[current_index:current_index+save_interval+1]])#[simResults.coordStar[-1][0]])#np.array([x[0] for x in simResults.coordStar]) sY = np.array([y[1] for y in simResults.coordStar[current_index:current_index+save_interval+1]])#[simResults.coordStar[-1][1]])#np.array([y[1] for y in simResults.coordStar]) sZ = np.array([z[2] for z in simResults.coordStar[current_index:current_index+save_interval+1]])#[simResults.coordStar[-1][2]])#np.array([z[2] for z in simResults.coordStar]) #added z info # Finding theta (angle of Earth in its orbit). print(f"no. sX entries: {len(sX)}") print(f"no. sY entries: {len(sY)}") print(f"no. sZ entries: {len(sZ)}") theta = np.arctan2(pY-sY,pX-sX) # Translate the planet because the star may move. print(f"no. theta values: {len(theta)}") for t in range(len(theta)): #for t in range(save_interval + 1):#current_index, current_index + save_interval + 1):#save_interval+1):#+1):#current_index,current_index + save_interval + 1): # Do the transformation and save the rotating reference frame (RRF) coord. planetxRRFy = rotTransform(pX[t]-sX[t],pY[t]-sY[t], theta[t]) planetRRFx[t] = planetxRRFy[0] planetRRFy[t] = planetxRRFy[1] mirrorxRRFy = rotTransform(mX[t]-sX[t],mY[t]-sY[t],theta[t]) mirrorRRFx[t] = mirrorxRRFy[0] mirrorRRFy[t] = mirrorxRRFy[1] coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], pZ[t]-sZ[t]] coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], mZ[t]-sZ[t]] coordRRFTempStar = [0, 0, 0] # 14 June 2018 changed x,y from None to 0. # Save the transformed coordinates to the simResults object to be used # in plotSim.py for graphing. simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) #t = -1#ts - 1#-1 # use to index the last element of the array #planetxRRFy = rotTransform(pX[t] - sX[t], pY[t] - sY[t], theta[t]) #planetRRFx[t] = planetxRRFy[0] #planetRRFy[t] = planetxRRFy[1] #mirrorxRRFy = rotTransform(mX[t] - sX[t], mY[t] - sY[t], theta[t]) #mirrorRRFx[t] = mirrorxRRFy[0] #mirrorRRFy[t] = mirrorxRRFy[1] #coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], pZ[t] - sZ[t]] #coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], mZ[t] - sZ[t]] #coordRRFTempStar = [0, 0, 0] #simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) #for t in range(0,ts): # # Do the transformation and save the rotating reference frame (RRF) coord. # planetxRRFy = rotTransform(pX[t]-sX[t],pY[t]-sY[t], theta[t]) # planetRRFx[t] = planetxRRFy[0] # planetRRFy[t] = planetxRRFy[1] # mirrorxRRFy = rotTransform(mX[t]-sX[t],mY[t]-sY[t],theta[t]) # mirrorRRFx[t] = mirrorxRRFy[0] # mirrorRRFy[t] = mirrorxRRFy[1] # coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], pZ[t]-sZ[t]] # coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], mZ[t]-sZ[t]] # coordRRFTempStar = [0, 0, 0] # 14 June 2018 changed x,y from None to 0. # # Save the transformed coordinates to the simResults object to be used # # in plotSim.py for graphing. # simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) else: theta = np.arctan2(pY,pX) # No need to translate the planet if it's at the origin print(f"no. theta values: {len(theta)}") for t in range(len(theta)): #for t in range(save_interval + 1):#current_index, current_index + save_interval + 1):#save_interval+1):# + 1):#0,ts): # Do the transformation and save the rotating reference frame (RRF) coord. planetxRRFy = rotTransform(pX[t],pY[t], theta[t]) planetRRFx[t] = planetxRRFy[0] planetRRFy[t] = planetxRRFy[1] mirrorxRRFy = rotTransform(mX[t],mY[t],theta[t]) mirrorRRFx[t] = mirrorxRRFy[0] mirrorRRFy[t] = mirrorxRRFy[1] coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], 0] coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], 0] coordRRFTempStar = [0, 0, 0] # 14 June 2018 changed x,y from None to 0. # Save the transformed coordinates to the simResults object to be used # in plotSim.py for graphing. simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) #t = -1 # use to index the last element of the array #planetxRRFy = rotTransform(pX[t], pY[t], theta[t]) #planetRRFx[t] = planetxRRFy[0] #planetRRFy[t] = planetxRRFy[1] #mirrorxRRFy = rotTransform(mX[t], mY[t], theta[t]) #mirrorRRFx[t] = mirrorRRFy[0] #mirrorRRFy[t] = mirrorxRRFy[1] #coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], 0] #coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], 0] #coordRRFTempStar = [0, 0, 0] #simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) #for t in range(0,ts): # # Do the transformation and save the rotating reference frame (RRF) coord. # planetxRRFy = rotTransform(pX[t],pY[t], theta[t]) # planetRRFx[t] = planetxRRFy[0] # planetRRFy[t] = planetxRRFy[1] # mirrorxRRFy = rotTransform(mX[t],mY[t],theta[t]) # mirrorRRFx[t] = mirrorxRRFy[0] # mirrorRRFy[t] = mirrorxRRFy[1] # coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], 0] # coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], 0] # coordRRFTempStar = [0, 0, 0] # 14 June 2018 changed x,y from None to 0. # # Save the transformed coordinates to the simResults object to be used # # in plotSim.py for graphing. # simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) # debug print(f"\nno. of RRF coordinate entries: {len(simResults.coordRRFMirror)}\n") print(f"attempting save no. {nsaves}") outputSim(astroInputs, simResults, energy, file_dir, plotTypes) nsaves += 1 current_index += save_interval #+ 1 elif i % save_interval == 0 and i != 0 and not withRRF: outputSim(astroInputs, simResults, energy, file_dir, plotTypes, RRF=False) nsaves += 1 else: outputSim(astroInputs, simResults, energy, file_dir, plotTypes, RRF=False) nsaves += 1 # If the mirror crashed or escaped orbit, stop the simulation. # Considered a collision if within a certain distance of planet surface if (dist < minDist or mirrorVel > escVel): if (dist <= astroInputs.planetRadius + astroInputs.atmos): print("Collision with planet.") if (mirrorVel >= escVel): print("Mirror reached escape velocity.") # If the simulation stopped for any other reason, tell the user # the current stats. print("Sim stopped before specified orbit.") print("Distance from planet (m) - Planet Radius + Atmosphere (m): ") print(" ", dist, " - ", astroInputs.planetRadius + astroInputs.atmos) print("Mirror Vel (m/s) - Mirror Escape Vel (m/s): ") print(" ", mirrorVel, " - ", escVel) # Breaks the integration. break #outputSim_new(astroInputs, simResults, file_dir) print ('simulation end time - ',sim.t) ######################################### # ATTENTION # # # # The below code is now deprecated # # since all transforms are now done # # iteratively each timestep # # # ######################################### # ---Transform the Coordinates to a Rotating Reference Frame--- # Create arrays for new rotating reference frame coordinates. planetRRFx = np.zeros(Noutputs + 1) planetRRFy = np.zeros(Noutputs + 1) mirrorRRFx = np.zeros(Noutputs + 1) mirrorRRFy = np.zeros(Noutputs + 1) # Finding XY coordinates. Don't need Z because the planet orbits in the XY plane. pX = np.array([x[0] for x in simResults.coordPlanet]) pY = np.array([y[1] for y in simResults.coordPlanet]) pZ = np.array([z[2] for z in simResults.coordPlanet]) #added z info mX = np.array([x[0] for x in simResults.coordMirror]) mY = np.array([y[1] for y in simResults.coordMirror]) mZ = np.array([z[2] for z in simResults.coordMirror]) #added z info if astroInputs.starType != None: # If there is a star, calculate the star coordinates too. sX = np.array([x[0] for x in simResults.coordStar]) sY = np.array([y[1] for y in simResults.coordStar]) sZ = np.array([z[2] for z in simResults.coordStar]) #added z info # Finding theta (angle of Earth in its orbit). theta = np.arctan2(pY-sY,pX-sX) # Translate the planet because the star may move. for t in range(0,ts): # Do the transformation and save the rotating reference frame (RRF) coord. planetxRRFy = rotTransform(pX[t]-sX[t],pY[t]-sY[t], theta[t]) planetRRFx[t] = planetxRRFy[0] planetRRFy[t] = planetxRRFy[1] mirrorxRRFy = rotTransform(mX[t]-sX[t],mY[t]-sY[t],theta[t]) mirrorRRFx[t] = mirrorxRRFy[0] mirrorRRFy[t] = mirrorxRRFy[1] coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], pZ[t]-sZ[t]] coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], mZ[t]-sZ[t]] # coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], 0] # coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], 0] coordRRFTempStar = [0, 0, 0] # 14 June 2018 changed x,y from None to 0. # Save the transformed coordinates to the simResults object to be used # in plotSim.py for graphing. simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) else: theta = np.arctan2(pY,pX) # No need to translate the planet if it's at the origin for t in range(0,ts): # Do the transformation and save the rotating reference frame (RRF) coord. planetxRRFy = rotTransform(pX[t],pY[t], theta[t]) planetRRFx[t] = planetxRRFy[0] planetRRFy[t] = planetxRRFy[1] mirrorxRRFy = rotTransform(mX[t],mY[t],theta[t]) mirrorRRFx[t] = mirrorxRRFy[0] mirrorRRFy[t] = mirrorxRRFy[1] coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], 0] coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], 0] coordRRFTempStar = [0, 0, 0] # 14 June 2018 changed x,y from None to 0. # Save the transformed coordinates to the simResults object to be used # in plotSim.py for graphing. simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) if withRRF: # save any remaining unsaved data points nremaining = len(simResults.coordMirror) - nsaves remaining_indices = [] for idx in range(nremaining): remaining_indices.append(nsaves + idx) #for idx in remaining_indices: # ---Transform the Coordinates to a Rotating Reference Frame--- # Create arrays for new rotating reference frame coordinates. # Adjusted to transform for one timestep planetRRFx = np.zeros(save_interval)#np.zeros(1)#ts) #np.zeros(Noutputs + 1) planetRRFy = np.zeros(save_interval)# np.zeros(1)#ts) #np.zeros(Noutputs + 1) mirrorRRFx = np.zeros(save_interval)#(1)#ts) #np.zeros(Noutputs + 1) mirrorRRFy = np.zeros(save_interval)#(1)#ts) #np.zeros(Noutputs + 1) # Finding XY coordinates. Don't need Z because the planet orbits in the XY plane. pX = np.array([x[0] for x in simResults.coordPlanet[remaining_indices[0]:]])#current_index:current_index + save_interval]])#[simResults.coordPlanet[-1][0]])#np.array([x[0] for x in simResults.coordPlanet]) pY = np.array([y[1] for y in simResults.coordPlanet[remaining_indices[0]:]])#current_index:current_index + save_interval]])#[simResults.coordPlanet[-1][1]])#np.array([y[1] for y in simResults.coordPlanet]) pZ = np.array([z[2] for z in simResults.coordPlanet[remaining_indices[0]:]])#current_index:current_index + save_interval]])#[simResults.coordPlanet[-1][2]])#np.array([z[2] for z in simResults.coordPlanet]) #added z info mX = np.array([x[0] for x in simResults.coordMirror[remaining_indices[0]:]])#current_index:current_index+save_interval]])#[simResults.coordMirror[-1][0]])#np.array([x[0] for x in simResults.coordMirror]) mY = np.array([y[1] for y in simResults.coordMirror[remaining_indices[0]:]])#current_index:current_index+save_interval]])#[simResults.coordMirror[-1][1]])#np.array([y[1] for y in simResults.coordMirror]) mZ = np.array([z[2] for z in simResults.coordMirror[remaining_indices[0]:]])#current_index:current_index+save_interval]])#[simResults.coordMirror[-1][2]])#np.array([z[2] for z in simResults.coordMirror]) #added z info if astroInputs.starType != None: # If there is a star, calculate the star coordinates too. sX = np.array([x[0] for x in simResults.coordStar[remaining_indices[0]:]])#current_index:current_index+save_interval]])#[simResults.coordStar[-1][0]])#np.array([x[0] for x in simResults.coordStar]) sY = np.array([y[1] for y in simResults.coordStar[remaining_indices[0]:]])#current_index:current_index+save_interval]])#[simResults.coordStar[-1][1]])#np.array([y[1] for y in simResults.coordStar]) sZ = np.array([z[2] for z in simResults.coordStar[remaining_indices[0]:]])#current_index:current_index+save_interval]])#[simResults.coordStar[-1][2]])#np.array([z[2] for z in simResults.coordStar]) #added z info # Finding theta (angle of Earth in its orbit). theta = np.arctan2(pY-sY,pX-sX) # Translate the planet because the star may move. for t in range(len(remaining_indices)):#current_index,current_index + save_interval + 1): # Do the transformation and save the rotating reference frame (RRF) coord. planetxRRFy = rotTransform(pX[t]-sX[t],pY[t]-sY[t], theta[t]) planetRRFx[t] = planetxRRFy[0] planetRRFy[t] = planetxRRFy[1] mirrorxRRFy = rotTransform(mX[t]-sX[t],mY[t]-sY[t],theta[t]) mirrorRRFx[t] = mirrorxRRFy[0] mirrorRRFy[t] = mirrorxRRFy[1] coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], pZ[t]-sZ[t]] coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], mZ[t]-sZ[t]] coordRRFTempStar = [0, 0, 0] # 14 June 2018 changed x,y from None to 0. # Save the transformed coordinates to the simResults object to be used # in plotSim.py for graphing. simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) #t = -1#ts - 1#-1 # use to index the last element of the array #planetxRRFy = rotTransform(pX[t] - sX[t], pY[t] - sY[t], theta[t]) #planetRRFx[t] = planetxRRFy[0] #planetRRFy[t] = planetxRRFy[1] #mirrorxRRFy = rotTransform(mX[t] - sX[t], mY[t] - sY[t], theta[t]) #mirrorRRFx[t] = mirrorxRRFy[0] #mirrorRRFy[t] = mirrorxRRFy[1] #coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], pZ[t] - sZ[t]] #coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], mZ[t] - sZ[t]] #coordRRFTempStar = [0, 0, 0] #simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) #for t in range(0,ts): # # Do the transformation and save the rotating reference frame (RRF) coord. # planetxRRFy = rotTransform(pX[t]-sX[t],pY[t]-sY[t], theta[t]) # planetRRFx[t] = planetxRRFy[0] # planetRRFy[t] = planetxRRFy[1] # mirrorxRRFy = rotTransform(mX[t]-sX[t],mY[t]-sY[t],theta[t]) # mirrorRRFx[t] = mirrorxRRFy[0] # mirrorRRFy[t] = mirrorxRRFy[1] # coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], pZ[t]-sZ[t]] # coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], mZ[t]-sZ[t]] # coordRRFTempStar = [0, 0, 0] # 14 June 2018 changed x,y from None to 0. # # Save the transformed coordinates to the simResults object to be used # # in plotSim.py for graphing. # simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) else: theta = np.arctan2(pY,pX) # No need to translate the planet if it's at the origin for t in range(len(remaining_indices)):#save_interval)#0,ts): # Do the transformation and save the rotating reference frame (RRF) coord. planetxRRFy = rotTransform(pX[t],pY[t], theta[t]) planetRRFx[t] = planetxRRFy[0] planetRRFy[t] = planetxRRFy[1] mirrorxRRFy = rotTransform(mX[t],mY[t],theta[t]) mirrorRRFx[t] = mirrorxRRFy[0] mirrorRRFy[t] = mirrorxRRFy[1] coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], 0] coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], 0] coordRRFTempStar = [0, 0, 0] # 14 June 2018 changed x,y from None to 0. # Save the transformed coordinates to the simResults object to be used # in plotSim.py for graphing. simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) #t = -1 # use to index the last element of the array #planetxRRFy = rotTransform(pX[t], pY[t], theta[t]) #planetRRFx[t] = planetxRRFy[0] #planetRRFy[t] = planetxRRFy[1] #mirrorxRRFy = rotTransform(mX[t], mY[t], theta[t]) #mirrorRRFx[t] = mirrorRRFy[0] #mirrorRRFy[t] = mirrorxRRFy[1] #coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], 0] #coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], 0] #coordRRFTempStar = [0, 0, 0] #simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) #for t in range(0,ts): # # Do the transformation and save the rotating reference frame (RRF) coord. # planetxRRFy = rotTransform(pX[t],pY[t], theta[t]) # planetRRFx[t] = planetxRRFy[0] # planetRRFy[t] = planetxRRFy[1] # mirrorxRRFy = rotTransform(mX[t],mY[t],theta[t]) # mirrorRRFx[t] = mirrorxRRFy[0] # mirrorRRFy[t] = mirrorxRRFy[1] # coordRRFTempPlanet = [planetRRFx[t], planetRRFy[t], 0] # coordRRFTempMirror = [mirrorRRFx[t], mirrorRRFy[t], 0] # coordRRFTempStar = [0, 0, 0] # 14 June 2018 changed x,y from None to 0. # # Save the transformed coordinates to the simResults object to be used # # in plotSim.py for graphing. # simResults.saveTransform(coordRRFTempStar, coordRRFTempPlanet, coordRRFTempMirror) outputSim(astroInputs, simResults, energy, file_dir, plotTypes) if 'energy' in plotTypes: # If we care about energy, return it. return [energy, ts] else: # If we don't care about energy, just return the number of timesteps. return ts
[ "numpy.arctan2", "math.sqrt", "numpy.zeros", "numpy.array", "numpy.linspace" ]
[((3395, 3434), 'numpy.linspace', 'np.linspace', (['(0)', 'simlength', '(Noutputs + 1)'], {}), '(0, simlength, Noutputs + 1)\n', (3406, 3434), True, 'import numpy as np\n'), ((24428, 24450), 'numpy.zeros', 'np.zeros', (['(Noutputs + 1)'], {}), '(Noutputs + 1)\n', (24436, 24450), True, 'import numpy as np\n'), ((24468, 24490), 'numpy.zeros', 'np.zeros', (['(Noutputs + 1)'], {}), '(Noutputs + 1)\n', (24476, 24490), True, 'import numpy as np\n'), ((24508, 24530), 'numpy.zeros', 'np.zeros', (['(Noutputs + 1)'], {}), '(Noutputs + 1)\n', (24516, 24530), True, 'import numpy as np\n'), ((24548, 24570), 'numpy.zeros', 'np.zeros', (['(Noutputs + 1)'], {}), '(Noutputs + 1)\n', (24556, 24570), True, 'import numpy as np\n'), ((24666, 24714), 'numpy.array', 'np.array', (['[x[0] for x in simResults.coordPlanet]'], {}), '([x[0] for x in simResults.coordPlanet])\n', (24674, 24714), True, 'import numpy as np\n'), ((24724, 24772), 'numpy.array', 'np.array', (['[y[1] for y in simResults.coordPlanet]'], {}), '([y[1] for y in simResults.coordPlanet])\n', (24732, 24772), True, 'import numpy as np\n'), ((24782, 24830), 'numpy.array', 'np.array', (['[z[2] for z in simResults.coordPlanet]'], {}), '([z[2] for z in simResults.coordPlanet])\n', (24790, 24830), True, 'import numpy as np\n'), ((24855, 24903), 'numpy.array', 'np.array', (['[x[0] for x in simResults.coordMirror]'], {}), '([x[0] for x in simResults.coordMirror])\n', (24863, 24903), True, 'import numpy as np\n'), ((24913, 24961), 'numpy.array', 'np.array', (['[y[1] for y in simResults.coordMirror]'], {}), '([y[1] for y in simResults.coordMirror])\n', (24921, 24961), True, 'import numpy as np\n'), ((24971, 25019), 'numpy.array', 'np.array', (['[z[2] for z in simResults.coordMirror]'], {}), '([z[2] for z in simResults.coordMirror])\n', (24979, 25019), True, 'import numpy as np\n'), ((9005, 9057), 'math.sqrt', 'math.sqrt', (['(2 * sim.G * astroInputs.planetMass / dist)'], {}), '(2 * sim.G * astroInputs.planetMass / dist)\n', (9014, 9057), False, 'import math\n'), ((25143, 25189), 'numpy.array', 'np.array', (['[x[0] for x in simResults.coordStar]'], {}), '([x[0] for x in simResults.coordStar])\n', (25151, 25189), True, 'import numpy as np\n'), ((25203, 25249), 'numpy.array', 'np.array', (['[y[1] for y in simResults.coordStar]'], {}), '([y[1] for y in simResults.coordStar])\n', (25211, 25249), True, 'import numpy as np\n'), ((25263, 25309), 'numpy.array', 'np.array', (['[z[2] for z in simResults.coordStar]'], {}), '([z[2] for z in simResults.coordStar])\n', (25271, 25309), True, 'import numpy as np\n'), ((25396, 25424), 'numpy.arctan2', 'np.arctan2', (['(pY - sY)', '(pX - sX)'], {}), '(pY - sY, pX - sX)\n', (25406, 25424), True, 'import numpy as np\n'), ((26527, 26545), 'numpy.arctan2', 'np.arctan2', (['pY', 'pX'], {}), '(pY, pX)\n', (26537, 26545), True, 'import numpy as np\n'), ((28016, 28039), 'numpy.zeros', 'np.zeros', (['save_interval'], {}), '(save_interval)\n', (28024, 28039), True, 'import numpy as np\n'), ((28103, 28126), 'numpy.zeros', 'np.zeros', (['save_interval'], {}), '(save_interval)\n', (28111, 28126), True, 'import numpy as np\n'), ((28191, 28214), 'numpy.zeros', 'np.zeros', (['save_interval'], {}), '(save_interval)\n', (28199, 28214), True, 'import numpy as np\n'), ((28270, 28293), 'numpy.zeros', 'np.zeros', (['save_interval'], {}), '(save_interval)\n', (28278, 28293), True, 'import numpy as np\n'), ((28431, 28502), 'numpy.array', 'np.array', (['[x[0] for x in simResults.coordPlanet[remaining_indices[0]:]]'], {}), '([x[0] for x in simResults.coordPlanet[remaining_indices[0]:]])\n', (28439, 28502), True, 'import numpy as np\n'), ((28645, 28716), 'numpy.array', 'np.array', (['[y[1] for y in simResults.coordPlanet[remaining_indices[0]:]]'], {}), '([y[1] for y in simResults.coordPlanet[remaining_indices[0]:]])\n', (28653, 28716), True, 'import numpy as np\n'), ((28859, 28930), 'numpy.array', 'np.array', (['[z[2] for z in simResults.coordPlanet[remaining_indices[0]:]]'], {}), '([z[2] for z in simResults.coordPlanet[remaining_indices[0]:]])\n', (28867, 28930), True, 'import numpy as np\n'), ((29088, 29159), 'numpy.array', 'np.array', (['[x[0] for x in simResults.coordMirror[remaining_indices[0]:]]'], {}), '([x[0] for x in simResults.coordMirror[remaining_indices[0]:]])\n', (29096, 29159), True, 'import numpy as np\n'), ((29300, 29371), 'numpy.array', 'np.array', (['[y[1] for y in simResults.coordMirror[remaining_indices[0]:]]'], {}), '([y[1] for y in simResults.coordMirror[remaining_indices[0]:]])\n', (29308, 29371), True, 'import numpy as np\n'), ((29512, 29583), 'numpy.array', 'np.array', (['[z[2] for z in simResults.coordMirror[remaining_indices[0]:]]'], {}), '([z[2] for z in simResults.coordMirror[remaining_indices[0]:]])\n', (29520, 29583), True, 'import numpy as np\n'), ((8532, 8620), 'math.sqrt', 'math.sqrt', (['((p[2].x - p[1].x) ** 2 + (p[2].y - p[1].y) ** 2 + (p[2].z - p[1].z) ** 2)'], {}), '((p[2].x - p[1].x) ** 2 + (p[2].y - p[1].y) ** 2 + (p[2].z - p[1].\n z) ** 2)\n', (8541, 8620), False, 'import math\n'), ((8628, 8721), 'math.sqrt', 'math.sqrt', (['((p[2].vx - p[1].vx) ** 2 + (p[2].vy - p[1].vy) ** 2 + (p[2].vz - p[1].vz) ** 2\n )'], {}), '((p[2].vx - p[1].vx) ** 2 + (p[2].vy - p[1].vy) ** 2 + (p[2].vz -\n p[1].vz) ** 2)\n', (8637, 8721), False, 'import math\n'), ((8766, 8854), 'math.sqrt', 'math.sqrt', (['((p[2].x - p[0].x) ** 2 + (p[2].y - p[0].y) ** 2 + (p[2].z - p[0].z) ** 2)'], {}), '((p[2].x - p[0].x) ** 2 + (p[2].y - p[0].y) ** 2 + (p[2].z - p[0].\n z) ** 2)\n', (8775, 8854), False, 'import math\n'), ((8862, 8955), 'math.sqrt', 'math.sqrt', (['((p[2].vx - p[0].vx) ** 2 + (p[2].vy - p[0].vy) ** 2 + (p[2].vz - p[0].vz) ** 2\n )'], {}), '((p[2].vx - p[0].vx) ** 2 + (p[2].vy - p[0].vy) ** 2 + (p[2].vz -\n p[0].vz) ** 2)\n', (8871, 8955), False, 'import math\n'), ((13315, 13342), 'numpy.zeros', 'np.zeros', (['(save_interval + 1)'], {}), '(save_interval + 1)\n', (13323, 13342), True, 'import numpy as np\n'), ((13408, 13435), 'numpy.zeros', 'np.zeros', (['(save_interval + 1)'], {}), '(save_interval + 1)\n', (13416, 13435), True, 'import numpy as np\n'), ((13502, 13529), 'numpy.zeros', 'np.zeros', (['(save_interval + 1)'], {}), '(save_interval + 1)\n', (13510, 13529), True, 'import numpy as np\n'), ((13587, 13614), 'numpy.zeros', 'np.zeros', (['(save_interval + 1)'], {}), '(save_interval + 1)\n', (13595, 13614), True, 'import numpy as np\n'), ((13758, 13859), 'numpy.array', 'np.array', (['[x[0] for x in simResults.coordPlanet[current_index:current_index +\n save_interval + 1]]'], {}), '([x[0] for x in simResults.coordPlanet[current_index:current_index +\n save_interval + 1]])\n', (13766, 13859), True, 'import numpy as np\n'), ((13953, 14054), 'numpy.array', 'np.array', (['[y[1] for y in simResults.coordPlanet[current_index:current_index +\n save_interval + 1]]'], {}), '([y[1] for y in simResults.coordPlanet[current_index:current_index +\n save_interval + 1]])\n', (13961, 14054), True, 'import numpy as np\n'), ((14148, 14249), 'numpy.array', 'np.array', (['[z[2] for z in simResults.coordPlanet[current_index:current_index +\n save_interval + 1]]'], {}), '([z[2] for z in simResults.coordPlanet[current_index:current_index +\n save_interval + 1]])\n', (14156, 14249), True, 'import numpy as np\n'), ((14358, 14459), 'numpy.array', 'np.array', (['[x[0] for x in simResults.coordMirror[current_index:current_index +\n save_interval + 1]]'], {}), '([x[0] for x in simResults.coordMirror[current_index:current_index +\n save_interval + 1]])\n', (14366, 14459), True, 'import numpy as np\n'), ((14551, 14652), 'numpy.array', 'np.array', (['[y[1] for y in simResults.coordMirror[current_index:current_index +\n save_interval + 1]]'], {}), '([y[1] for y in simResults.coordMirror[current_index:current_index +\n save_interval + 1]])\n', (14559, 14652), True, 'import numpy as np\n'), ((14744, 14845), 'numpy.array', 'np.array', (['[z[2] for z in simResults.coordMirror[current_index:current_index +\n save_interval + 1]]'], {}), '([z[2] for z in simResults.coordMirror[current_index:current_index +\n save_interval + 1]])\n', (14752, 14845), True, 'import numpy as np\n'), ((29842, 29911), 'numpy.array', 'np.array', (['[x[0] for x in simResults.coordStar[remaining_indices[0]:]]'], {}), '([x[0] for x in simResults.coordStar[remaining_indices[0]:]])\n', (29850, 29911), True, 'import numpy as np\n'), ((30052, 30121), 'numpy.array', 'np.array', (['[y[1] for y in simResults.coordStar[remaining_indices[0]:]]'], {}), '([y[1] for y in simResults.coordStar[remaining_indices[0]:]])\n', (30060, 30121), True, 'import numpy as np\n'), ((30262, 30331), 'numpy.array', 'np.array', (['[z[2] for z in simResults.coordStar[remaining_indices[0]:]]'], {}), '([z[2] for z in simResults.coordStar[remaining_indices[0]:]])\n', (30270, 30331), True, 'import numpy as np\n'), ((30549, 30577), 'numpy.arctan2', 'np.arctan2', (['(pY - sY)', '(pX - sX)'], {}), '(pY - sY, pX - sX)\n', (30559, 30577), True, 'import numpy as np\n'), ((33363, 33381), 'numpy.arctan2', 'np.arctan2', (['pY', 'pX'], {}), '(pY, pX)\n', (33373, 33381), True, 'import numpy as np\n'), ((15347, 15446), 'numpy.array', 'np.array', (['[x[0] for x in simResults.coordStar[current_index:current_index +\n save_interval + 1]]'], {}), '([x[0] for x in simResults.coordStar[current_index:current_index +\n save_interval + 1]])\n', (15355, 15446), True, 'import numpy as np\n'), ((15538, 15637), 'numpy.array', 'np.array', (['[y[1] for y in simResults.coordStar[current_index:current_index +\n save_interval + 1]]'], {}), '([y[1] for y in simResults.coordStar[current_index:current_index +\n save_interval + 1]])\n', (15546, 15637), True, 'import numpy as np\n'), ((15729, 15828), 'numpy.array', 'np.array', (['[z[2] for z in simResults.coordStar[current_index:current_index +\n save_interval + 1]]'], {}), '([z[2] for z in simResults.coordStar[current_index:current_index +\n save_interval + 1]])\n', (15737, 15828), True, 'import numpy as np\n'), ((16157, 16185), 'numpy.arctan2', 'np.arctan2', (['(pY - sY)', '(pX - sX)'], {}), '(pY - sY, pX - sX)\n', (16167, 16185), True, 'import numpy as np\n'), ((19310, 19328), 'numpy.arctan2', 'np.arctan2', (['pY', 'pX'], {}), '(pY, pX)\n', (19320, 19328), True, 'import numpy as np\n')]
from functools import lru_cache import torch import numpy as np from nltk.tokenize import word_tokenize from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction class Evaluator: def __init__(self, corpus, n_ref, sample_params=None, blue_span=(2, 5), blue_smooth='epsilon'): self.corpus = corpus self.n_ref = n_ref self.sample_params = sample_params or {} # BLEU self.blue_weights = [ (i, np.array([1 / i] * i + [0] * (blue_span[1] - i))) for i in range(blue_span[0], blue_span[1] + 1) ] if blue_smooth == 'epsilon': # Adds epsilon to zero counts self.blue_smooth = SmoothingFunction().method1 else: self.blue_smooth = SmoothingFunction().method0 # Preload some modes, it may require some time... for mode in ('train', 'val', 'test'): self._get_reference(mode) def bleu(self, model, n_hypot, split): """Calculating similarity metric, higher is better""" references = self._get_reference(split) hypotheses = self._get_hypotheses(model, n_hypot) result = {} for i, w in self.blue_weights: result[f'{i}-gram'] = np.mean([ sentence_bleu(references, h, weights=w, smoothing_function=self.blue_smooth) for h in hypotheses ]) return result def self_bleu(self, model=None, n_hypot=None, split=None): """Calculating diversity metric, lower is better""" if model is not None and n_hypot is not None: hypotheses = self._get_hypotheses(model, n_hypot or self.n_ref) else: hypotheses = self._get_reference(split) result = {} for i, w in self.blue_weights: result[f'{i}-gram'] = np.mean([ sentence_bleu(hypotheses[:j] + hypotheses[j + 1:], hypotheses[j], weights=w, smoothing_function=self.blue_smooth) for j in range(len(hypotheses)) ]) return result def perplexity(self, model, split): ppl = [] batcher = self.corpus.batcher(split, 'unlabeled') for x in batcher: ppl.append(model.perplexity(x, use_c_prior=True)) return torch.stack(ppl).mean().item() @lru_cache(maxsize=None) def _get_reference(self, split): batcher = self.corpus.batcher(split, 'unlabeled', n_batch=1, device=torch.device('cpu')) vocab = self.corpus.vocab('x') result = [] for x in batcher: if len(result) == self.n_ref: break result.append([vocab.itos[i] for i in x[0] if i != vocab.stoi['<pad>']]) return result def _get_hypotheses(self, model, n_hypot): vocab = self.corpus.vocab('x') hypotheses = [ [vocab.itos[i] for i in sent if i != vocab.stoi['<pad>']] for sent in model.sample_sentence(n_hypot, **self.sample_params)[2] ] return hypotheses
[ "torch.stack", "nltk.translate.bleu_score.sentence_bleu", "numpy.array", "torch.device", "nltk.translate.bleu_score.SmoothingFunction", "functools.lru_cache" ]
[((2420, 2443), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': 'None'}), '(maxsize=None)\n', (2429, 2443), False, 'from functools import lru_cache\n'), ((479, 527), 'numpy.array', 'np.array', (['([1 / i] * i + [0] * (blue_span[1] - i))'], {}), '([1 / i] * i + [0] * (blue_span[1] - i))\n', (487, 527), True, 'import numpy as np\n'), ((708, 727), 'nltk.translate.bleu_score.SmoothingFunction', 'SmoothingFunction', ([], {}), '()\n', (725, 727), False, 'from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction\n'), ((781, 800), 'nltk.translate.bleu_score.SmoothingFunction', 'SmoothingFunction', ([], {}), '()\n', (798, 800), False, 'from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction\n'), ((2595, 2614), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (2607, 2614), False, 'import torch\n'), ((1284, 1360), 'nltk.translate.bleu_score.sentence_bleu', 'sentence_bleu', (['references', 'h'], {'weights': 'w', 'smoothing_function': 'self.blue_smooth'}), '(references, h, weights=w, smoothing_function=self.blue_smooth)\n', (1297, 1360), False, 'from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction\n'), ((1905, 2022), 'nltk.translate.bleu_score.sentence_bleu', 'sentence_bleu', (['(hypotheses[:j] + hypotheses[j + 1:])', 'hypotheses[j]'], {'weights': 'w', 'smoothing_function': 'self.blue_smooth'}), '(hypotheses[:j] + hypotheses[j + 1:], hypotheses[j], weights=w,\n smoothing_function=self.blue_smooth)\n', (1918, 2022), False, 'from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction\n'), ((2383, 2399), 'torch.stack', 'torch.stack', (['ppl'], {}), '(ppl)\n', (2394, 2399), False, 'import torch\n')]
# -*- coding: utf-8 -*- """ Created on Tue Sep 3 21:22:35 2019 @author: Reuben The persist module helps the user save and load Box instances. It is able to be extended for use with any handler. The module instantiates a Manager class and copies its load and save methods to the module level, for easier usage by client code. """ import json import zlib import numpy as np from .box import Box from . import adapters, variable, constants def serialise_vars(box): ''' Turn all the variables in a Box into a list of strings ''' keys = box.keys(dependent=True, independent=True) lst = [k.to_str() for k in keys if isinstance(k, variable.Variable)] lst.sort() return lst def deserialise_vars(lst): ''' Turn a list of Variable strings into a dictionary of Variables ''' variables = [variable.Variable.from_str(s) for s in lst] return {v.key: v for v in variables} def make_pack(box): ''' Prepare a box for persistance by including Variable data ''' return {'data': list(box), 'vars': serialise_vars(box)} def unpack(pack): ''' Recreate a box from persistance, including Variables as keys ''' box_data = pack['data'] if 'vars' not in pack: pack['vars'] = [] var_dict = deserialise_vars(pack['vars']) aliases = variable.Aliases(var_dict) return aliases.translate(box_data) class Manager(): ''' The manager looks after different classes that can process Box data. It provides two key methods - load and save. ''' default_handler = 'cbox' def __init__(self, default_enabled=True): self.handlers = {'box': JSON(), 'cbox': CJSON(), 'npz': NPZ()} self.specified = None self.default_enabled = True def add_handler(self, key, handler): ''' Add a handler Args: key (str): The unique name of the handler. handler (Handler): A Handler subclass. ''' self.handlers[key] = handler def del_handler(self, key): ''' Delete a handler Args: key (str): The unique name of the handler ''' def specify(self, key): ''' Specify the handler to use Args: key (str): The unique name of the handler. ''' self.specified = key def _load(self, source, handler=None, **kwargs): h = handler if handler is not None else None if h is None and self.specified is not None: h = self.specified if h is None: for name, handler in self.handlers.items(): if handler.suitable(source, **kwargs): h = name if h is None and self.default_enabled: h = self.default_handler source += '.cbox' if h is None: raise ValueError('No valid handler found for source: ' + str(source)) return self.handlers[h].load(source, **kwargs) def load(self, source, handler=None, as_box=True, **kwargs): ''' Return a new Box by reading the source Args: source (str): The source to load from handler (str): Optional key specifying which handler to use as_box (bool): If true (the default), return a Box, otherwise return just the raw data. kwargs: Other keyword arguments passed to the handler. ''' pack = self._load(source, handler, **kwargs) ret = unpack(pack) if as_box: return Box(ret) else: return ret def save(self, box, target, handler=None, **kwargs): ''' Save the Box data to the target Args: box (Box): The Box instance. target (str): A string specifying the target handler (str): Optional key specifying which handler to use kwargs: Other keyword arguments passed to the handler. ''' pack = make_pack(box) h = handler if handler is not None else None if h is None and self.specified is not None: h = self.specified if h is None: for name, handler in self.handlers.items(): if handler.suitable(target, **kwargs): h = name if h is None and self.default_enabled: h = self.default_handler target += '.cbox' if h is None: raise ValueError('No valid handler found for target: ' + str(target)) return self.handlers[h].save(pack, target, **kwargs) class Handler(): ''' A handler that can load or save Box data ''' def suitable(self, s, **kwargs): ''' Return true the handler suits the target/source string, s ''' raise NotImplementedError def save(self, box, fname, **kwargs): ''' Save the box ''' raise NotImplementedError def load(self, fname, **kwargs): ''' Load a box Returns: list: The raw data for the Box ''' raise NotImplementedError class JSONEncoder(json.JSONEncoder): ''' A custom encoder to encode numpy arrays ''' def default(self, obj): if isinstance(obj, np.ndarray): return {'__ndarray__': obj.tolist(), 'dtype': str(obj.dtype)} # Let the base class default method raise the TypeError return json.JSONEncoder.default(self, obj) def np_decode(dct): ''' A custom decoder to handle numpy arrays ''' if '__ndarray__' in dct: return np.array(dct['__ndarray__'], dtype=dct['dtype']) return dct class JSON(Handler): ''' Load and save in JSON format ''' def suitable(self, fname, **kwargs): if fname.endswith('.box'): return True def save(self, box, fname, **kwargs): ''' Save a Box to a file Args: box (Box): The Box instance. fname (str): A string specifying the full filename ''' jsn = json.dumps(box, cls=JSONEncoder) with open(fname, mode='w') as f: f.write(jsn) def load(self, fname, **kwargs): ''' Return box data by reading the source Args: fname (str): The file to load from Returns: list: A list of box data ''' with open(fname, mode='r') as f: jsn = f.read() lst = json.loads(jsn, object_hook=np_decode) return lst class CJSON(Handler): ''' Load and save in compressed JSON format ''' def suitable(self, fname, **kwargs): if fname.endswith('.cbox'): return True def save(self, box, fname, **kwargs): ''' Save a Box to a file Args: box (Box): The Box instance. fname (str): A string specifying the full filename ''' jsn = json.dumps(box, cls=JSONEncoder) compressed = zlib.compress(jsn.encode(), level=9) with open(fname, mode='wb') as f: f.write(compressed) def load(self, fname, **kwargs): ''' Return box data by reading the source Args: fname (str): The file to load from Returns: list: A list of box data ''' with open(fname, mode='rb') as f: compressed = f.read() jsn = zlib.decompress(compressed).decode() lst = json.loads(jsn, object_hook=np_decode) return lst class NPZ(Handler): ''' Load and save in compressed JSON format ''' def suitable(self, fname, **kwargs): if fname.endswith('.npz'): return True def save(self, box, fname, **kwargs): ''' Save a Box to a file Args: box (Box): The Box instance. fname (str): A string specifying the full filename ''' flat = adapters.flat_dict(box) np.savez_compressed(fname, **flat, **kwargs) def load(self, fname, **kwargs): ''' Return box data by reading the source Args: fname (str): The file to load from Returns: list: A list of box data ''' def itemise_scalars(obj): if obj.ndim==0: return obj.item() return obj flat = {} with np.load(fname, **kwargs) as data: for key in list(data.keys()): flat[key] = itemise_scalars(data[key]) composed = adapters.compose(flat) for row in composed['data']: for k in [constants.DEP, constants.INDEP]: if k not in row: row[k] = {} return composed manager = Manager() load = manager.load save = manager.save
[ "numpy.load", "json.loads", "json.dumps", "numpy.savez_compressed", "numpy.array", "zlib.decompress", "json.JSONEncoder.default" ]
[((5526, 5561), 'json.JSONEncoder.default', 'json.JSONEncoder.default', (['self', 'obj'], {}), '(self, obj)\n', (5550, 5561), False, 'import json\n'), ((5679, 5727), 'numpy.array', 'np.array', (["dct['__ndarray__']"], {'dtype': "dct['dtype']"}), "(dct['__ndarray__'], dtype=dct['dtype'])\n", (5687, 5727), True, 'import numpy as np\n'), ((6149, 6181), 'json.dumps', 'json.dumps', (['box'], {'cls': 'JSONEncoder'}), '(box, cls=JSONEncoder)\n', (6159, 6181), False, 'import json\n'), ((6572, 6610), 'json.loads', 'json.loads', (['jsn'], {'object_hook': 'np_decode'}), '(jsn, object_hook=np_decode)\n', (6582, 6610), False, 'import json\n'), ((7045, 7077), 'json.dumps', 'json.dumps', (['box'], {'cls': 'JSONEncoder'}), '(box, cls=JSONEncoder)\n', (7055, 7077), False, 'import json\n'), ((7593, 7631), 'json.loads', 'json.loads', (['jsn'], {'object_hook': 'np_decode'}), '(jsn, object_hook=np_decode)\n', (7603, 7631), False, 'import json\n'), ((8096, 8140), 'numpy.savez_compressed', 'np.savez_compressed', (['fname'], {}), '(fname, **flat, **kwargs)\n', (8115, 8140), True, 'import numpy as np\n'), ((8542, 8566), 'numpy.load', 'np.load', (['fname'], {}), '(fname, **kwargs)\n', (8549, 8566), True, 'import numpy as np\n'), ((7542, 7569), 'zlib.decompress', 'zlib.decompress', (['compressed'], {}), '(compressed)\n', (7557, 7569), False, 'import zlib\n')]
import torch from model.base_model import BaseModel from model.networks import base_function, external_function import model.networks as network from util import task, util import itertools import data as Dataset import numpy as np from itertools import islice import random import os import matplotlib.pyplot as plt from collections import OrderedDict import glob import cv2 class Face(BaseModel): """ Face Image Animation using edge image """ def name(self): return "Face Image Animation" @staticmethod def modify_options(parser, is_train=True): """Add new options and rewrite default values for existing options""" parser.add_argument('--attn_layer', action=util.StoreList, metavar="VAL1,VAL2...") parser.add_argument('--kernel_size', action=util.StoreDictKeyPair, metavar="KEY1=VAL1,KEY2=VAL2...") parser.add_argument('--layers', type=int, default=3, help='number of layers in G') parser.add_argument('--netG', type=str, default='face', help='The name of net Generator') parser.add_argument('--netD', type=str, default='res', help='The name of net Discriminator') parser.add_argument('--netD_V', type=str, default='res', help='The name of net Discriminator') parser.add_argument('--init_type', type=str, default='orthogonal', help='Initial type') # if is_train: parser.add_argument('--ratio_g2d', type=float, default=0.1, help='learning rate ratio G to D') parser.add_argument('--lambda_rec', type=float, default=5.0, help='weight for image reconstruction loss') parser.add_argument('--lambda_g', type=float, default=2.0, help='weight for generation loss') parser.add_argument('--lambda_correct', type=float, default=5.0, help='weight for Sampling Correctness loss') parser.add_argument('--lambda_style', type=float, default=500.0, help='weight for the VGG19 style loss') parser.add_argument('--lambda_content', type=float, default=0.5, help='weight for the VGG19 content loss') parser.add_argument('--lambda_regularization', type=float, default=0.0025, help='weight for the affine regularization loss') parser.add_argument('--frames_D_V', type=int, default=3, help='number of frames of D_V') parser.add_argument('--use_spect_g', action='store_false') parser.add_argument('--use_spect_d', action='store_false') parser.set_defaults(use_spect_g=False) parser.set_defaults(use_spect_d=True) parser.set_defaults(display_freq=100) parser.set_defaults(eval_iters_freq=1000) parser.set_defaults(print_freq=100) parser.set_defaults(save_latest_freq=1000) parser.set_defaults(save_iters_freq=10000) return parser def __init__(self, opt): BaseModel.__init__(self, opt) self.loss_names = ['app_gen','correctness_p', 'correctness_r','content_gen','style_gen', 'regularization_p', 'regularization_r', 'ad_gen','dis_img_gen', 'ad_gen_v', 'dis_img_gen_v'] self.visual_names = ['P_reference','BP_reference', 'P_frame_step','BP_frame_step','img_gen', 'flow_fields', 'masks'] self.model_names = ['G','D','D_V'] self.FloatTensor = torch.cuda.FloatTensor if len(self.gpu_ids)>0 \ else torch.FloatTensor self.ByteTensor = torch.cuda.ByteTensor if len(self.gpu_ids)>0 \ else torch.ByteTensor # define the Animation model self.net_G = network.define_g(opt, image_nc=opt.image_nc, structure_nc=opt.structure_nc, ngf=64, img_f=512, layers=opt.layers, num_blocks=2, use_spect=opt.use_spect_g, attn_layer=opt.attn_layer, norm='instance', activation='LeakyReLU', extractor_kz=opt.kernel_size) if len(opt.gpu_ids) > 1: self.net_G = torch.nn.DataParallel(self.net_G, device_ids=self.gpu_ids) self.flow2color = util.flow2color() self.net_D = network.define_d(opt, ndf=32, img_f=128, layers=4, use_spect=opt.use_spect_d) if len(opt.gpu_ids) > 1: self.net_D = torch.nn.DataParallel(self.net_D, device_ids=self.gpu_ids) input_nc = (opt.frames_D_V-1) * opt.image_nc self.net_D_V = network.define_d(opt, input_nc=input_nc, ndf=32, img_f=128, layers=4, use_spect=opt.use_spect_d) if len(opt.gpu_ids) > 1: self.net_D_V = torch.nn.DataParallel(self.net_D_V, device_ids=self.gpu_ids) if self.isTrain: # define the loss functions self.GANloss = external_function.AdversarialLoss(opt.gan_mode).to(opt.device) self.L1loss = torch.nn.L1Loss() self.L2loss = torch.nn.MSELoss() self.Correctness = external_function.PerceptualCorrectness().to(opt.device) self.Regularization = external_function.MultiAffineRegularizationLoss(kz_dic=opt.kernel_size).to(opt.device) self.Vggloss = external_function.VGGLoss().to(opt.device) # define the optimizer self.optimizer_G = torch.optim.Adam(itertools.chain( filter(lambda p: p.requires_grad, self.net_G.parameters())), lr=opt.lr, betas=(0.0, 0.999)) self.optimizers.append(self.optimizer_G) self.optimizer_D = torch.optim.Adam(itertools.chain( filter(lambda p: p.requires_grad, self.net_D.parameters()), filter(lambda p: p.requires_grad, self.net_D_V.parameters())), lr=opt.lr*opt.ratio_g2d, betas=(0.0, 0.999)) self.optimizers.append(self.optimizer_D) else: self.results_dir_base = self.opt.results_dir self.setup(opt) def set_input(self, data): # move to GPU and change data types opt = self.opt _, n_frames_total, self.height, self.width = data['P'].size() # self.n_frames_total = n_frames_total // opt.image_nc n_frames_load = opt.max_frames_per_gpu # number of total frames loaded into GPU at a time for each batch self.n_frames_load = min(n_frames_load, self.n_frames_total) if self.isTrain: self.P_reference = data['P'][:,:opt.image_nc, ...].cuda() self.BP_reference = data['BP'][:, :opt.structure_nc, ...].cuda() self.P_previous = None self.BP_previous = None self.P_images = data['P'] self.BP_structures = data['BP'] self.image_paths = [path[0] for path in data['P_path']] self.change_seq=data['change_seq'] if not self.isTrain: assert self.opt.batchSize == 1 if data['frame_idx'] == self.opt.start_frame + self.opt.n_frames_pre_load_test: self.P_previous = None self.BP_previous = None self.P_reference = data['P'][:,:opt.image_nc, ...].cuda() self.BP_reference = data['BP'][:, :opt.structure_nc, ...].cuda() # else: # self.P_previous = self.test_generated # self.BP_previous = self.test_BP_previous self.opt.results_dir = os.path.join(self.results_dir_base, self.image_paths[0].split('/')[-2]) def write2video(self, name_list): images=[] for name in name_list: images.append(sorted(glob.glob(self.opt.results_dir+'/*_'+name+'.png'))) image_array=[] for i in range(len(images[0])): cat_im=None for image_list in images: im = cv2.imread(image_list[i]) if cat_im is not None: cat_im = np.concatenate((cat_im, im), axis=1) else: cat_im = im image_array.append(cat_im) res='' for name in name_list: res += (name +'_') out_name = self.opt.results_dir+'_'+res+'.mp4' print('write video %s'%out_name) height, width, layers = cat_im.shape size = (width,height) out = cv2.VideoWriter(out_name, cv2.VideoWriter_fourcc(*'mp4v'), 15, size) for i in range(len(image_array)): out.write(image_array[i]) out.release() def get_current_visuals(self): """Return visualization images""" visual_ret = OrderedDict() for name in self.visual_names: if isinstance(name, str): value = getattr(self, name) if 'frame_step' in name: value = value[0] list_value=[] for i in range(value.size(0)): list_value.append(value[i].unsqueeze(0)) value=list_value if 'flow_field' in name or 'masks' in name: list_value = [item for sub_list in value for item in sub_list] value = list_value if isinstance(value, list): # visual multi-scale ouputs for i in range(len(value)): visual_ret[name + str(i)] = self.convert2im(value[i], name) # visual_ret[name] = util.tensor2im(value[-1].data) else: visual_ret[name] =self.convert2im(value, name) return visual_ret def test(self, save_features=False, save_all=False, generate_edge=True): """Forward function used in test time""" # img_gen, flow_fields, masks = self.net_G(self.input_P1, self.input_BP1, self.input_BP2) height, width = self.height, self.width image_nc, structure_nc = self.opt.image_nc, self.opt.structure_nc n_frames_pre_load = self.opt.n_frames_pre_load_test self.BP_frame_step = self.BP_structures.view(-1, n_frames_pre_load, structure_nc, height, width).cuda() self.test_generated, self.flow_fields, self.masks, _ = self.net_G(self.BP_frame_step, self.P_reference, self.BP_reference, self.P_previous, self.BP_previous) self.P_previous = self.test_generated[-1] self.BP_previous = self.BP_frame_step[:,-1,... ] self.test_generated = torch.cat(self.test_generated, 0) self.save_results(self.test_generated, data_name='vis', data_ext='png') if generate_edge: value = self.BP_frame_step[:,:,0:1,...][0] value = (1-value)*2-1 self.save_results(value, data_name='edge', data_ext='png') if self.change_seq: name_list=[] if not generate_edge else ['edge'] name_list.append('vis') print(self.opt.results_dir) self.write2video(name_list) def update(self): """Run forward processing to get the inputs""" image_nc, structure_nc = self.opt.image_nc, self.opt.structure_nc n_frames_total, n_frames_load = self.n_frames_total, self.n_frames_load height, width = self.height, self.width for i in range(0, n_frames_total, n_frames_load): self.P_frame_step = self.P_images[:, i*image_nc:(i+n_frames_load)*image_nc].cuda() self.BP_frame_step = self.BP_structures[:, i*structure_nc:(i+n_frames_load)*structure_nc].cuda() self.P_frame_step = self.P_frame_step.view(-1, n_frames_load, image_nc, height, width) self.BP_frame_step = self.BP_frame_step.view(-1, n_frames_load, structure_nc, height, width) self.img_gen, self.flow_fields, self.masks, self.P_previous_recoder = self.net_G(self.BP_frame_step, self.P_reference, self.BP_reference, self.P_previous, self.BP_previous) self.optimizer_D.zero_grad() self.backward_D() self.optimizer_D.step() self.optimizer_G.zero_grad() self.backward_G() self.optimizer_G.step() self.P_previous = self.img_gen[-1].detach() self.BP_previous = self.BP_frame_step[:,-1,...].detach() def backward_D_basic(self, netD, real, fake): """Calculate GAN loss for the discriminator""" # Real D_real = netD(real) D_real_loss = self.GANloss(D_real, True, True) # fake D_fake = netD(fake.detach()) D_fake_loss = self.GANloss(D_fake, False, True) # loss for discriminator D_loss = (D_real_loss + D_fake_loss) * 0.5 # if print_loss: # print(D_real_loss) # print(D_fake_loss) # gradient penalty for wgan-gp if self.opt.gan_mode == 'wgangp': gradient_penalty, gradients = external_function.cal_gradient_penalty(netD, real, fake.detach()) D_loss += gradient_penalty D_loss.backward() return D_loss def backward_D(self): """Calculate the GAN loss for the discriminators""" base_function._unfreeze(self.net_D) i = np.random.randint(len(self.img_gen)) fake = self.img_gen[i] real = self.P_frame_step[:,i,...] self.loss_dis_img_gen = self.backward_D_basic(self.net_D, real, fake) base_function._unfreeze(self.net_D_V) i = np.random.randint(len(self.img_gen)-self.opt.frames_D_V+1) # fake = [self.img_gen[i]] # real = [self.P_frame_step[:,i,...]] fake = [] real = [] for frame in range(self.opt.frames_D_V-1): fake.append(self.img_gen[i+frame]-self.img_gen[i+frame+1]) real.append(self.P_frame_step[:,i+frame,...] -self.P_frame_step[:,i+frame+1,...]) fake = torch.cat(fake, dim=1) real = torch.cat(real, dim=1) self.loss_dis_img_gen_v = self.backward_D_basic(self.net_D_V, real, fake) def backward_G(self): """Calculate training loss for the generator""" # gen_tensor = torch.cat([v.unsqueeze(1) for v in self.img_gen], 1) loss_style_gen, loss_content_gen, loss_app_gen=0,0,0 for i in range(len(self.img_gen)): gen = self.img_gen[i] gt = self.P_frame_step[:,i,...] loss_app_gen += self.L1loss(gen, gt) content_gen, style_gen = self.Vggloss(gen, gt) loss_style_gen += style_gen loss_content_gen += content_gen self.loss_style_gen = loss_style_gen * self.opt.lambda_style self.loss_content_gen = loss_content_gen * self.opt.lambda_content self.loss_app_gen = loss_app_gen * self.opt.lambda_rec loss_correctness_p, loss_regularization_p=0, 0 loss_correctness_r, loss_regularization_r=0, 0 for i in range(len(self.flow_fields)): flow_field_i = self.flow_fields[i] flow_p, flow_r=[],[] for j in range(0, len(flow_field_i), 2): flow_p.append(flow_field_i[j]) flow_r.append(flow_field_i[j+1]) correctness_r = self.Correctness(self.P_frame_step[:,i,...], self.P_reference, flow_r, self.opt.attn_layer) correctness_p = self.Correctness(self.P_frame_step[:,i,...], self.P_previous_recoder[i].detach(), flow_p, self.opt.attn_layer) loss_correctness_p += correctness_p loss_correctness_r += correctness_r loss_regularization_p += self.Regularization(flow_p) loss_regularization_r += self.Regularization(flow_r) self.loss_correctness_p = loss_correctness_p * self.opt.lambda_correct self.loss_correctness_r = loss_correctness_r * self.opt.lambda_correct self.loss_regularization_p = loss_regularization_p * self.opt.lambda_regularization self.loss_regularization_r = loss_regularization_r * self.opt.lambda_regularization # rec loss fake base_function._freeze(self.net_D) i = np.random.randint(len(self.img_gen)) fake = self.img_gen[i] D_fake = self.net_D(fake) self.loss_ad_gen = self.GANloss(D_fake, True, False) * self.opt.lambda_g ########################################################################## base_function._freeze(self.net_D_V) i = np.random.randint(len(self.img_gen)-self.opt.frames_D_V+1) # fake = [self.img_gen[i]] fake = [] for frame in range(self.opt.frames_D_V-1): fake.append(self.img_gen[i+frame]-self.img_gen[i+frame+1]) fake = torch.cat(fake, dim=1) D_fake = self.net_D_V(fake) self.loss_ad_gen_v = self.GANloss(D_fake, True, False) * self.opt.lambda_g ########################################################################## total_loss = 0 for name in self.loss_names: if name != 'dis_img_gen_v' and name != 'dis_img_gen': total_loss += getattr(self, "loss_" + name) total_loss.backward() def optimize_parameters(self): self.update()
[ "cv2.VideoWriter_fourcc", "torch.cat", "util.util.flow2color", "model.networks.external_function.PerceptualCorrectness", "model.networks.base_function._freeze", "glob.glob", "torch.nn.MSELoss", "model.networks.define_g", "model.networks.base_function._unfreeze", "model.networks.external_function.AdversarialLoss", "model.networks.external_function.MultiAffineRegularizationLoss", "model.networks.external_function.VGGLoss", "numpy.concatenate", "model.networks.define_d", "torch.nn.L1Loss", "model.base_model.BaseModel.__init__", "cv2.imread", "collections.OrderedDict", "torch.nn.DataParallel" ]
[((2812, 2841), 'model.base_model.BaseModel.__init__', 'BaseModel.__init__', (['self', 'opt'], {}), '(self, opt)\n', (2830, 2841), False, 'from model.base_model import BaseModel\n'), ((3570, 3836), 'model.networks.define_g', 'network.define_g', (['opt'], {'image_nc': 'opt.image_nc', 'structure_nc': 'opt.structure_nc', 'ngf': '(64)', 'img_f': '(512)', 'layers': 'opt.layers', 'num_blocks': '(2)', 'use_spect': 'opt.use_spect_g', 'attn_layer': 'opt.attn_layer', 'norm': '"""instance"""', 'activation': '"""LeakyReLU"""', 'extractor_kz': 'opt.kernel_size'}), "(opt, image_nc=opt.image_nc, structure_nc=opt.structure_nc,\n ngf=64, img_f=512, layers=opt.layers, num_blocks=2, use_spect=opt.\n use_spect_g, attn_layer=opt.attn_layer, norm='instance', activation=\n 'LeakyReLU', extractor_kz=opt.kernel_size)\n", (3586, 3836), True, 'import model.networks as network\n'), ((4044, 4061), 'util.util.flow2color', 'util.flow2color', ([], {}), '()\n', (4059, 4061), False, 'from util import task, util\n'), ((4084, 4161), 'model.networks.define_d', 'network.define_d', (['opt'], {'ndf': '(32)', 'img_f': '(128)', 'layers': '(4)', 'use_spect': 'opt.use_spect_d'}), '(opt, ndf=32, img_f=128, layers=4, use_spect=opt.use_spect_d)\n', (4100, 4161), True, 'import model.networks as network\n'), ((4356, 4456), 'model.networks.define_d', 'network.define_d', (['opt'], {'input_nc': 'input_nc', 'ndf': '(32)', 'img_f': '(128)', 'layers': '(4)', 'use_spect': 'opt.use_spect_d'}), '(opt, input_nc=input_nc, ndf=32, img_f=128, layers=4,\n use_spect=opt.use_spect_d)\n', (4372, 4456), True, 'import model.networks as network\n'), ((8600, 8613), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (8611, 8613), False, 'from collections import OrderedDict\n'), ((10706, 10739), 'torch.cat', 'torch.cat', (['self.test_generated', '(0)'], {}), '(self.test_generated, 0)\n', (10715, 10739), False, 'import torch\n'), ((13630, 13665), 'model.networks.base_function._unfreeze', 'base_function._unfreeze', (['self.net_D'], {}), '(self.net_D)\n', (13653, 13665), False, 'from model.networks import base_function, external_function\n'), ((13875, 13912), 'model.networks.base_function._unfreeze', 'base_function._unfreeze', (['self.net_D_V'], {}), '(self.net_D_V)\n', (13898, 13912), False, 'from model.networks import base_function, external_function\n'), ((14363, 14385), 'torch.cat', 'torch.cat', (['fake'], {'dim': '(1)'}), '(fake, dim=1)\n', (14372, 14385), False, 'import torch\n'), ((14401, 14423), 'torch.cat', 'torch.cat', (['real'], {'dim': '(1)'}), '(real, dim=1)\n', (14410, 14423), False, 'import torch\n'), ((16630, 16663), 'model.networks.base_function._freeze', 'base_function._freeze', (['self.net_D'], {}), '(self.net_D)\n', (16651, 16663), False, 'from model.networks import base_function, external_function\n'), ((16951, 16986), 'model.networks.base_function._freeze', 'base_function._freeze', (['self.net_D_V'], {}), '(self.net_D_V)\n', (16972, 16986), False, 'from model.networks import base_function, external_function\n'), ((17248, 17270), 'torch.cat', 'torch.cat', (['fake'], {'dim': '(1)'}), '(fake, dim=1)\n', (17257, 17270), False, 'import torch\n'), ((3958, 4016), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['self.net_G'], {'device_ids': 'self.gpu_ids'}), '(self.net_G, device_ids=self.gpu_ids)\n', (3979, 4016), False, 'import torch\n'), ((4220, 4278), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['self.net_D'], {'device_ids': 'self.gpu_ids'}), '(self.net_D, device_ids=self.gpu_ids)\n', (4241, 4278), False, 'import torch\n'), ((4513, 4573), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['self.net_D_V'], {'device_ids': 'self.gpu_ids'}), '(self.net_D_V, device_ids=self.gpu_ids)\n', (4534, 4573), False, 'import torch\n'), ((4772, 4789), 'torch.nn.L1Loss', 'torch.nn.L1Loss', ([], {}), '()\n', (4787, 4789), False, 'import torch\n'), ((4816, 4834), 'torch.nn.MSELoss', 'torch.nn.MSELoss', ([], {}), '()\n', (4832, 4834), False, 'import torch\n'), ((8354, 8385), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'mp4v'"], {}), "(*'mp4v')\n", (8376, 8385), False, 'import cv2\n'), ((7837, 7862), 'cv2.imread', 'cv2.imread', (['image_list[i]'], {}), '(image_list[i])\n', (7847, 7862), False, 'import cv2\n'), ((4683, 4730), 'model.networks.external_function.AdversarialLoss', 'external_function.AdversarialLoss', (['opt.gan_mode'], {}), '(opt.gan_mode)\n', (4716, 4730), False, 'from model.networks import base_function, external_function\n'), ((4866, 4907), 'model.networks.external_function.PerceptualCorrectness', 'external_function.PerceptualCorrectness', ([], {}), '()\n', (4905, 4907), False, 'from model.networks import base_function, external_function\n'), ((4957, 5028), 'model.networks.external_function.MultiAffineRegularizationLoss', 'external_function.MultiAffineRegularizationLoss', ([], {'kz_dic': 'opt.kernel_size'}), '(kz_dic=opt.kernel_size)\n', (5004, 5028), False, 'from model.networks import base_function, external_function\n'), ((5071, 5098), 'model.networks.external_function.VGGLoss', 'external_function.VGGLoss', ([], {}), '()\n', (5096, 5098), False, 'from model.networks import base_function, external_function\n'), ((7638, 7693), 'glob.glob', 'glob.glob', (["(self.opt.results_dir + '/*_' + name + '.png')"], {}), "(self.opt.results_dir + '/*_' + name + '.png')\n", (7647, 7693), False, 'import glob\n'), ((7931, 7967), 'numpy.concatenate', 'np.concatenate', (['(cat_im, im)'], {'axis': '(1)'}), '((cat_im, im), axis=1)\n', (7945, 7967), True, 'import numpy as np\n')]
import numpy as np import time import argparse import warnings import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader, WeightedRandomSampler from torch.utils.data.sampler import SubsetRandomSampler from torchvision import transforms import csv from sklearn.metrics import roc_auc_score import copy import cv2 import gc import heapq import matplotlib.pyplot as plt import seaborn as sns from matplotlib import cm from matplotlib.backends.backend_pdf import PdfPages from datetime import datetime from utils import set_seed from utils import str2bool from utils import choose_optimizer from dataset import trainset from dataset import testset from scorecam import scorecam class baseCNN(nn.Module): # Inherit from `nn.Module`, define `__init__` & `forward` def __init__(self,args,device,mz_range=18000,num_neuron=64,kernel_size=5,drop_p1=0.5,drop_p2=0.5,poolingSize=5): # Always call the init function of the parent class `nn.Module` # so that magics can be set up. super().__init__() self.device=device channels=args.channels ReLUFlag=args.ReLUFlag poolingFlag=args.poolingFlag self.conv1 = nn.Conv1d(in_channels=1, out_channels=channels, kernel_size=kernel_size) self.conv2 = nn.Conv1d(in_channels=channels, out_channels=channels, kernel_size=kernel_size) self.conv3 = nn.Conv1d(in_channels=channels, out_channels=channels, kernel_size=kernel_size) self.conv4 = nn.Conv1d(in_channels=channels, out_channels=channels, kernel_size=kernel_size) self.globalpooling = nn.AdaptiveMaxPool1d(1) self.poolingFlag=poolingFlag self.ReLUFlag=ReLUFlag self.drop1=nn.Dropout(p=drop_p1) self.drop2=nn.Dropout(p=drop_p2) pooling=nn.AvgPool1d(poolingSize,stride=2,padding=poolingSize//2) self.pooling=nn.AvgPool1d(poolingSize,stride=2,padding=poolingSize//2) if ReLUFlag: activation=nn.ReLU() else: activation=nn.Tanh() self.conv_layers = nn.Sequential( #self.in1, self.conv1, nn.BatchNorm1d(channels), activation, pooling, self.conv2, nn.BatchNorm1d(channels), activation, pooling, self.conv3, nn.BatchNorm1d(channels), activation, pooling, ) x = torch.randn(1,mz_range).view(-1,1,mz_range) self._to_linear = None self.convs(x) self.fc1 = nn.Linear(self._to_linear, num_neuron) #flattening. self.classifier = nn.Sequential( #nn.Linear(256, 32), nn.Linear(num_neuron, 1), nn.Sigmoid(), ) # This is achieved by defining the shapes of the multiple layers in the network. def convs(self,x): if self.poolingFlag == True: x=self.pooling(x) x=self.conv_layers(x) if self._to_linear is None: self._to_linear = x[0].shape[0]*x[0].shape[1] return x def forward(self, x): # Define the network architecture. # This is achieved by defining how the network forward propagates your inputs # input 64 * 101 *4 # Input image size: 28 x 28, input channel: 1, batch size (training): 64 #print(x.size()) # Input (64 x 4 x 101) -> Conv1 (64 x 16 x 78) -> Max Pooling (64 x 16 x 26) -> ReLU -> ... x = self.convs(x) x = x.view(-1, self._to_linear) # .view is reshape ... this flattens X before x=self.drop1(x) x = F.relu(self.fc1(x)) #x=self.fc1(x) x=self.drop2(x) #print(x.size()) #x = self.fc2(x) # bc this is our output layer. No activation here. x = self.classifier(x) #print(x.size()) return x def train(model, train_loader, optimizer, criterion, epoch): print("Epoch {:d}".format(epoch)) model.train() correct = 0 all_label = [] all_pred = [] for (data, target) in train_loader: data=data.view(-1, 1,data.shape[-1]).float() data, target = data.to(model.device), target.to(model.device) target = target.float() optimizer.zero_grad() output = model(data) pred = output>0.5 correct += pred.eq(target.view_as(pred)).sum().item() all_label.extend(target.reshape(-1).tolist()) all_pred.extend((output[:]).reshape(-1).tolist()) output = output.reshape(-1) loss = criterion(output, target) loss.backward() optimizer.step() # print("Epoch %d\nTraining acc: %.2f"%(epoch, 100. * correct/len(train_loader.dataset))+"%") print("Train AUC score: {:.4f}".format(roc_auc_score(np.array(all_label), np.array(all_pred)))) def test(model, test_loader, criterion,predPath=None, data_type='Test', arch=None): model.eval() correct = 0 tp, tn, fp, fn = 0, 0, 0, 0 all_label = [] all_pred = [] for batch_idx, (data, target) in enumerate(test_loader): data=data.view(-1, 1,data.shape[-1]).float() data, target = data.to(model.device), target.to(model.device) target = target.float() output = model(data) pred = output>0.5 correct += pred.eq(target.view_as(pred)).sum().item() for p, t in zip(pred, target.view_as(pred)): if p.eq(t) and p.item()==1: tp += 1 elif p.eq(t) and p.item()==0: tn += 1 elif p.item()==1: fp += 1 else: fn += 1 all_label.extend(target.reshape(-1).tolist()) all_pred.extend((output[:]).reshape(-1).tolist()) accuracy=0 Specificity=0 Sensitivity=0 if data_type=='Test': accuracy=100. * (tp+tn) / len(all_label) Specificity=100. * tn / (tn+fp) Sensitivity=100. * tp / (tp+fn) print("false negatives: {} ({:.2f}%)".format(fn, 100. * fn / len(all_label))) print("false positives: {} ({:.2f}%)".format(fp, 100. * fp / len(all_label))) print("true positives: {} ({:.2f}%)".format(tp, 100. * tp / len(all_label))) print("true negatives: {} ({:.2f}%) \n".format(tn, 100. * tn / len(all_label))) print("accuracy: ({:.2f}%)".format( accuracy)) print("Specificity: ({:.2f}%)".format( Specificity)) print("Sensitivity: ({:.2f}%)".format( Sensitivity)) pred_res = np.concatenate((np.array(all_label), np.array(all_pred)),axis=0).reshape(2,-1).T if predPath: np.savetxt(predPath, pred_res, delimiter=",",fmt='%.6f') print("{} AUC score: {:.4f}".format(data_type, roc_auc_score(np.array(all_label), np.array(all_pred)))) return roc_auc_score(np.array(all_label), np.array(all_pred)),accuracy,Specificity,Sensitivity def main(): parser = argparse.ArgumentParser() parser.add_argument('--trainData', default='/volume/tsungting/MALDI-TOF/MALDI-TOF/20210414/Linkou_EF_Data_round_off_dim_18000.npy', type=str,help="training data path") parser.add_argument('--trainLabel', default='/volume/tsungting/MALDI-TOF/MALDI-TOF/20210414/Linkou_EF_Data_labels.csv', type=str,help="training label path") parser.add_argument('--testData', default='/volume/tsungting/MALDI-TOF/MALDI-TOF/20210414/Kaohsiung_EF_Data_round_off_dim_18000.npy', type=str,help="testing data path") parser.add_argument('--testLabel', default='/volume/tsungting/MALDI-TOF/MALDI-TOF/20210414/Kaohsiung_EF_Data_labels.csv', type=str,help="testing label path") parser.add_argument('--savePath', help='Model path to save') parser.add_argument('--predPath', help="prediction result in test data to save") parser.add_argument('--batch_size', type=int, default=32, help='batch size') parser.add_argument('--optimizer', type=str, default='adam', choices=['sgd', 'adam', 'adagrad'], help='choose optimizer: [sgd, adam, adagrad]') parser.add_argument('--seed',help='seed number',type=int,default=0) parser.add_argument('--poolingFlag',default=True,type=str2bool,help="whether add pooling layer at first layer in model architecture or not") parser.add_argument('--ReLUFlag',default=True,type=str2bool,help="determine activation: Yes=> ReLU() , No=>Tanh()") parser.add_argument('--showPosImportance',default=True,type=str2bool,help="if True,will show mz range importance in test data") parser.add_argument('--channels',default=64,type=int,help="channels") parser.add_argument('--cuda', type=int, default=0,help="cuda") parser.add_argument('--learning_rate', type=float, default=0.0001, help='learning rate') parser.add_argument('--epochs', type=int, default=30, help='num of training epochs') parser.add_argument('--splitRatio', type=float, default=0.2, help='In training process,we need to split Training data into training and validation parts by splitRatio to determine parameters') args = parser.parse_args() print(args) seed_num=args.seed set_seed(seed_num) train_data = trainset(args.trainData,args.trainLabel) test_data = testset(args.testData,args.testLabel) dataset_size = len(train_data) print(dataset_size) indices = list(range(dataset_size)) split = int(np.floor(args.splitRatio * dataset_size)) np.random.shuffle(indices) train_indices, val_indices = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_indices) valid_sampler = SubsetRandomSampler(val_indices) batch_size = args.batch_size epochs = args.epochs learning_rate = args.learning_rate train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, sampler=train_sampler, pin_memory=True, num_workers=2) valid_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, sampler=valid_sampler, pin_memory=True, num_workers=2) test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=2) device = 'cpu' if args.cuda==-1 else 'cuda:%d'%args.cuda model = baseCNN(args,device=device) model = model.to(device) print(model) print("model size: %d"%sum(p.numel() for p in model.parameters())) criterion = nn.BCELoss() criterion = criterion.to(device) #optimizer = torch.optim.SGD(model.parameters(), lr= learning_rate) optimizer = choose_optimizer(args.optimizer, model, learning_rate) #epochs=1000 best_auc=0 best_epoch=0 model_check_epoch = copy.deepcopy(model) #optimizer_check_epoch = torch.optim.SGD(model_check_epoch.parameters(), lr= learning_rate) optimizer_check_epoch = choose_optimizer(args.optimizer, model_check_epoch, learning_rate) criterion_check = nn.BCELoss() criterion_check = criterion_check.to(device) for epoch in range(1, epochs): train(model_check_epoch, train_loader, optimizer_check_epoch, criterion_check, epoch) auc,accuracy,Specificity,Sensitivity=test(model_check_epoch, valid_loader, criterion_check,args.predPath, data_type='valid') if auc > best_auc: best_auc=auc best_epoch=epoch print("best_epoch",best_epoch) print("valid_auc:",best_auc) if best_epoch==1: best_epoch=2 for epoch in range(1, best_epoch): train(model, train_loader, optimizer, criterion, epoch) train(model, valid_loader, optimizer, criterion, epoch) auc,accuracy,Specificity,Sensitivity=test(model, test_loader, criterion,args.predPath) print(auc) if args.savePath: torch.save(model,args.savePath) if args.showPosImportance: out_mask=scorecam(model,model.pooling,test_data) np.save('model_avgpool_score_cam.npy'.format(seed_num), out_mask) return auc,accuracy,Specificity,Sensitivity if __name__ == '__main__': start=datetime.now() auc,accuracy,Specificity,Sensitivity=main() end=datetime.now() print("total seconds:",end-start) print("{} {} {} {}".format(auc,accuracy,Specificity,Sensitivity))
[ "torch.nn.Dropout", "argparse.ArgumentParser", "utils.set_seed", "numpy.floor", "torch.nn.AdaptiveMaxPool1d", "torch.randn", "dataset.testset", "dataset.trainset", "torch.nn.BCELoss", "torch.utils.data.DataLoader", "torch.nn.Conv1d", "numpy.savetxt", "torch.nn.Linear", "torch.nn.AvgPool1d", "datetime.datetime.now", "numpy.random.shuffle", "copy.deepcopy", "torch.nn.Tanh", "torch.nn.BatchNorm1d", "scorecam.scorecam", "utils.choose_optimizer", "torch.nn.Sigmoid", "torch.utils.data.sampler.SubsetRandomSampler", "torch.nn.ReLU", "torch.save", "numpy.array" ]
[((7018, 7043), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (7041, 7043), False, 'import argparse\n'), ((9163, 9181), 'utils.set_seed', 'set_seed', (['seed_num'], {}), '(seed_num)\n', (9171, 9181), False, 'from utils import set_seed\n'), ((9204, 9245), 'dataset.trainset', 'trainset', (['args.trainData', 'args.trainLabel'], {}), '(args.trainData, args.trainLabel)\n', (9212, 9245), False, 'from dataset import trainset\n'), ((9261, 9299), 'dataset.testset', 'testset', (['args.testData', 'args.testLabel'], {}), '(args.testData, args.testLabel)\n', (9268, 9299), False, 'from dataset import testset\n'), ((9461, 9487), 'numpy.random.shuffle', 'np.random.shuffle', (['indices'], {}), '(indices)\n', (9478, 9487), True, 'import numpy as np\n'), ((9576, 9610), 'torch.utils.data.sampler.SubsetRandomSampler', 'SubsetRandomSampler', (['train_indices'], {}), '(train_indices)\n', (9595, 9610), False, 'from torch.utils.data.sampler import SubsetRandomSampler\n'), ((9631, 9663), 'torch.utils.data.sampler.SubsetRandomSampler', 'SubsetRandomSampler', (['val_indices'], {}), '(val_indices)\n', (9650, 9663), False, 'from torch.utils.data.sampler import SubsetRandomSampler\n'), ((9781, 9903), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['train_data'], {'batch_size': 'batch_size', 'sampler': 'train_sampler', 'pin_memory': '(True)', 'num_workers': '(2)'}), '(train_data, batch_size=batch_size, sampler=\n train_sampler, pin_memory=True, num_workers=2)\n', (9808, 9903), False, 'import torch\n'), ((9918, 10040), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['train_data'], {'batch_size': 'batch_size', 'sampler': 'valid_sampler', 'pin_memory': '(True)', 'num_workers': '(2)'}), '(train_data, batch_size=batch_size, sampler=\n valid_sampler, pin_memory=True, num_workers=2)\n', (9945, 10040), False, 'import torch\n'), ((10054, 10130), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['test_data'], {'batch_size': 'batch_size', 'num_workers': '(2)'}), '(test_data, batch_size=batch_size, num_workers=2)\n', (10081, 10130), False, 'import torch\n'), ((10370, 10382), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (10380, 10382), True, 'import torch.nn as nn\n'), ((10508, 10562), 'utils.choose_optimizer', 'choose_optimizer', (['args.optimizer', 'model', 'learning_rate'], {}), '(args.optimizer, model, learning_rate)\n', (10524, 10562), False, 'from utils import choose_optimizer\n'), ((10638, 10658), 'copy.deepcopy', 'copy.deepcopy', (['model'], {}), '(model)\n', (10651, 10658), False, 'import copy\n'), ((10783, 10849), 'utils.choose_optimizer', 'choose_optimizer', (['args.optimizer', 'model_check_epoch', 'learning_rate'], {}), '(args.optimizer, model_check_epoch, learning_rate)\n', (10799, 10849), False, 'from utils import choose_optimizer\n'), ((10872, 10884), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (10882, 10884), True, 'import torch.nn as nn\n'), ((11982, 11996), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (11994, 11996), False, 'from datetime import datetime\n'), ((12053, 12067), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (12065, 12067), False, 'from datetime import datetime\n'), ((1222, 1294), 'torch.nn.Conv1d', 'nn.Conv1d', ([], {'in_channels': '(1)', 'out_channels': 'channels', 'kernel_size': 'kernel_size'}), '(in_channels=1, out_channels=channels, kernel_size=kernel_size)\n', (1231, 1294), True, 'import torch.nn as nn\n'), ((1316, 1395), 'torch.nn.Conv1d', 'nn.Conv1d', ([], {'in_channels': 'channels', 'out_channels': 'channels', 'kernel_size': 'kernel_size'}), '(in_channels=channels, out_channels=channels, kernel_size=kernel_size)\n', (1325, 1395), True, 'import torch.nn as nn\n'), ((1417, 1496), 'torch.nn.Conv1d', 'nn.Conv1d', ([], {'in_channels': 'channels', 'out_channels': 'channels', 'kernel_size': 'kernel_size'}), '(in_channels=channels, out_channels=channels, kernel_size=kernel_size)\n', (1426, 1496), True, 'import torch.nn as nn\n'), ((1518, 1597), 'torch.nn.Conv1d', 'nn.Conv1d', ([], {'in_channels': 'channels', 'out_channels': 'channels', 'kernel_size': 'kernel_size'}), '(in_channels=channels, out_channels=channels, kernel_size=kernel_size)\n', (1527, 1597), True, 'import torch.nn as nn\n'), ((1636, 1659), 'torch.nn.AdaptiveMaxPool1d', 'nn.AdaptiveMaxPool1d', (['(1)'], {}), '(1)\n', (1656, 1659), True, 'import torch.nn as nn\n'), ((1749, 1770), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'drop_p1'}), '(p=drop_p1)\n', (1759, 1770), True, 'import torch.nn as nn\n'), ((1790, 1811), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'drop_p2'}), '(p=drop_p2)\n', (1800, 1811), True, 'import torch.nn as nn\n'), ((1829, 1890), 'torch.nn.AvgPool1d', 'nn.AvgPool1d', (['poolingSize'], {'stride': '(2)', 'padding': '(poolingSize // 2)'}), '(poolingSize, stride=2, padding=poolingSize // 2)\n', (1841, 1890), True, 'import torch.nn as nn\n'), ((1908, 1969), 'torch.nn.AvgPool1d', 'nn.AvgPool1d', (['poolingSize'], {'stride': '(2)', 'padding': '(poolingSize // 2)'}), '(poolingSize, stride=2, padding=poolingSize // 2)\n', (1920, 1969), True, 'import torch.nn as nn\n'), ((2613, 2651), 'torch.nn.Linear', 'nn.Linear', (['self._to_linear', 'num_neuron'], {}), '(self._to_linear, num_neuron)\n', (2622, 2651), True, 'import torch.nn as nn\n'), ((9415, 9455), 'numpy.floor', 'np.floor', (['(args.splitRatio * dataset_size)'], {}), '(args.splitRatio * dataset_size)\n', (9423, 9455), True, 'import numpy as np\n'), ((11699, 11731), 'torch.save', 'torch.save', (['model', 'args.savePath'], {}), '(model, args.savePath)\n', (11709, 11731), False, 'import torch\n'), ((11780, 11821), 'scorecam.scorecam', 'scorecam', (['model', 'model.pooling', 'test_data'], {}), '(model, model.pooling, test_data)\n', (11788, 11821), False, 'from scorecam import scorecam\n'), ((2020, 2029), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2027, 2029), True, 'import torch.nn as nn\n'), ((2067, 2076), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (2074, 2076), True, 'import torch.nn as nn\n'), ((2179, 2203), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['channels'], {}), '(channels)\n', (2193, 2203), True, 'import torch.nn as nn\n'), ((2286, 2310), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['channels'], {}), '(channels)\n', (2300, 2310), True, 'import torch.nn as nn\n'), ((2393, 2417), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['channels'], {}), '(channels)\n', (2407, 2417), True, 'import torch.nn as nn\n'), ((2742, 2766), 'torch.nn.Linear', 'nn.Linear', (['num_neuron', '(1)'], {}), '(num_neuron, 1)\n', (2751, 2766), True, 'import torch.nn as nn\n'), ((2771, 2783), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (2781, 2783), True, 'import torch.nn as nn\n'), ((6719, 6776), 'numpy.savetxt', 'np.savetxt', (['predPath', 'pred_res'], {'delimiter': '""","""', 'fmt': '"""%.6f"""'}), "(predPath, pred_res, delimiter=',', fmt='%.6f')\n", (6729, 6776), True, 'import numpy as np\n'), ((6915, 6934), 'numpy.array', 'np.array', (['all_label'], {}), '(all_label)\n', (6923, 6934), True, 'import numpy as np\n'), ((6936, 6954), 'numpy.array', 'np.array', (['all_pred'], {}), '(all_pred)\n', (6944, 6954), True, 'import numpy as np\n'), ((2487, 2511), 'torch.randn', 'torch.randn', (['(1)', 'mz_range'], {}), '(1, mz_range)\n', (2498, 2511), False, 'import torch\n'), ((4881, 4900), 'numpy.array', 'np.array', (['all_label'], {}), '(all_label)\n', (4889, 4900), True, 'import numpy as np\n'), ((4902, 4920), 'numpy.array', 'np.array', (['all_pred'], {}), '(all_pred)\n', (4910, 4920), True, 'import numpy as np\n'), ((6847, 6866), 'numpy.array', 'np.array', (['all_label'], {}), '(all_label)\n', (6855, 6866), True, 'import numpy as np\n'), ((6868, 6886), 'numpy.array', 'np.array', (['all_pred'], {}), '(all_pred)\n', (6876, 6886), True, 'import numpy as np\n'), ((6621, 6640), 'numpy.array', 'np.array', (['all_label'], {}), '(all_label)\n', (6629, 6640), True, 'import numpy as np\n'), ((6642, 6660), 'numpy.array', 'np.array', (['all_pred'], {}), '(all_pred)\n', (6650, 6660), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Fri Feb 12 14:22:31 2016 @author: <NAME> """ import collections import matplotlib.pyplot as plt import numpy as np from abc import ABCMeta, abstractmethod from .. import gui from .. import helpers as hp from .. import traces as tc from ..evaluate import signal as sn from ..graph import GraphMember from ..picklable import InteractiveAttributes class GraphicalMod(object): """ This class's subclasses should implement `_figure()` and `_update_fig()`, which return and update a matplotlib figure, respectively. The figure can be accessed by `self.figure`. Parameters ---------- figure modification : Modification """ def __init__(self, modification=None, **kwargs): # Register the modification which should be graphically adjusted self.modification = modification # Initialize figure to None, which effectively disables # `self.update_fig()` and Co. and prevent them from throwing an error self._fig = None def _set_plot_params(self, plot_params=None): if plot_params is None: plot_params = {} gui.set_plot_params(plot_params=plot_params) def display(self, plot_params=None): self.init_fig(plot_params=plot_params) def init_fig(self, show=True, plot_params=None): """ This method calls self._figure() to create an interactive figure and interact with the user to determine the parameters necessary to calculate the modification (see self._recalculate()). and self._close_fig() to release all references to the actors of the figure. `self._figure()` and self._close_fig() should be (over)written by subclasses. """ # Only create a figure, if the function `self._figure()` is implemented if not hasattr(self, '_figure'): return # close the figure # nbagg backend needs to have the figure closed and recreated # whenever the code of the cell displaying the figure is executed. # A simple update of the figure would let it disappear. Even a # self.figure.show() wouldn't work anymore. # For backends this just means a bit of extra calculation. # Therefore, close the figure first before replotting it. self.close_fig() # set default plot parameters, can be recalled / overwritten in # `self._figure()` self._set_plot_params(plot_params=plot_params) # create the figure self.figure = self._figure() # update the figure self.update_fig() # show the figure if show: self.figure.show() def update(self, **kwargs): self.update_fig(**kwargs) def update_fig(self, **kwargs): if self._fig is not None: self._update_fig(**kwargs) self._figure_canvas_draw() def _update_fig(self, **kwargs): pass def close_fig(self): if self._fig is not None: self._pre_close_fig() self._close_fig() self._post_close_fig() def _pre_close_fig(self): """ Method to be overwritten by subclasses. """ pass def _close_fig(self): # force redraw of the figure self._figure_canvas_draw() # close the figure plt.close(self.figure) # release memory self.figure = None def _post_close_fig(self): """ Method to be overwritten by subclasses. """ pass def _figure_canvas_draw(self): # Some matplotlib backends will throw an error when trying to draw the # canvas. Simply ignoring the error that could happen here will prevent # the figure from not beeing closed, left open, and preventing the next # figure to be drawn. Even though the "except: pass" clause is # considered bad, here the worst thing that could happen is that the # figure produced by the matplotlib backend upon closing is not # updated. Therefore, "except: pass" should be considered as an # acceptable workaround for this case. try: # redraw the figure, before closing it self.figure.canvas.draw() except: pass @property def figure(self): """ The matplotlib figure that represents and/or adjusts the parameters of `self.modification`. """ # Automatically initialize a figure if self._fig is None: self.init_fig(show=False) # Return a previously initialized figure return self._fig @figure.setter def figure(self, figure): self._fig = figure class Modification(GraphMember, metaclass=ABCMeta): """ Modification is an abstract class, that implements methods to modify the data of a `View` (`view_apply`) and adjust the parameters which control the behaviour of the modifications applied. Whenever one of the parameters needed to calculate the modification is changed, the view, this modification is applied to, is informed. `self.set_changed()` Has to be called upon any change of the modification that influences the behaviour of `self.modify()`. In essence, these are all parameters that are used to determine the modification. Therefore, this should be called by all setters of the parameters/attributes. Every subclass of Modification has to implement a constructor method `self.__init__(self, **kwargs)`, which calls the superclasses' constructor and sets the traces, the modification is applied to with the keyword parameter `traces_apply`. An example could be: super().__init__(traces_apply=['psdX', 'psdZ'], **kwargs) """ # set a graphical modification, which will, per default, do nothing GRAPHICALMOD = GraphicalMod def __init__(self, traces_apply=None, view_apply=None, view_based=None, automatic_switch=False, datapoints=-1, **kwargs): # Call the constructor of the superclass `GraphMember` and set the # maximum allowed number of parents (`view_based`) and childs # (`view_apply`) to one. super().__init__(max_children=1, max_parents=1, **kwargs) # A `Modification` has to be applied to a `View`! if view_apply is None: raise TypeError("Modification missing required positional argument" " `view_apply`.") # Set the view, from where the parameters for the modification are # calculated from if view_based is not None: self.view_based = view_based # Set the view, whose data is going to be modified self.view_apply = view_apply # Set the traces, which are modified by this `Modification` self.traces_apply = traces_apply # Initialize InteractiveAttributes object, which will hold all the # parameters that the user should interact with. self.iattributes = InteractiveAttributes() # A checkbox to switch on/off the automatic determination of the # parameters that are used to calculate the modification in the method # `self.recalculate()`. The attribute `self.automatic` is checked in # the method `self.recalculate()`. If `automatic` is True, the # parameters are recalculated, otherwise the parameters are left # unchanged. Whenever `automatic` is changed (by the user or # automatically), `self.evaluate()` is called. if automatic_switch: self.add_iattribute('automatic', description='Automatic mode', value=True, unset_automatic=False, set_changed=False, callback_functions=[self.evaluate]) # A checkbox to de-/activate this `Modification`. This attribute gets # evaluated by `self.modify()`. If the `Modification` is active, it # modifies data, otherwise not, i.e. modify() returns modified or # unmodified original data, respectively. desc = "".join((self.__class__.__name__, " active")) self.add_iattribute('active', description=desc, value=True, unset_automatic=False) # Datapoints is used to calculate and/or present modification. The # attribute `datapoints` is used to calculate a decimating factor and # speed up the calculations and/or plot commands. if datapoints > 0: desc = "Datapoints to calculate/visualize modification" self.add_iattribute('datapoints', description=desc, value=datapoints, unset_automatic=False) # Add a Button to manually call the method `self.evaluate()`. self.add_iattribute('evaluate', description='Evaluate', unset_automatic=False, set_changed=False, callback_functions=[self.evaluate]) def add_iattribute(self, key, description=None, value=None, unset_automatic=True, set_changed=True, callback_functions=None, **kwargs): """ Add logic for automatic checkbox. Register widget with unset_automatic=True (-> Upon change of widget, unset automatic mode). Change default behaviour by setting kwarg: unset_automatic = False Add logic for triggering changed (calling self.set_changed). Register widget with set_changed=True. """ if callback_functions is None: callback_functions = [] if unset_automatic: callback_functions.append(self._unset_automatic) if set_changed: callback_functions.append(self.set_changed) self.iattributes.add(key, description=description, value=value, callback_functions=callback_functions, **kwargs) def _unset_automatic(self, leave_automatic=False, **kwargs): """ Add the logic for the automatic checkbox. If the value of an attribute is changed and the attribute was created with `unset_automatic=True`, deactivate the automatic mode (see `self.add_iattribute()`). To temporarily leave the automatic mode status untouched when changing the value of an attribute, i.e. not unset the automatic mode, set the value of the attribute with the keyword argument `leave_automatic=True` (see method `self.iattributes.set_value()`) """ if not leave_automatic: self.iattributes.set_value('automatic', False, callback=False) def evaluate(self): """ Implement the (re)calculation for the values necessary to calculate the modification in the subclass and call recalculate() of the superclass (this class). """ if self.updated: # This method makes sure the modification is calculated with the # current values of the View this modification is based on. It is # called by self.modify(). # When a View requests data, it calls modify(), which in turn calls # recalculate(). Recalculate(), if necessary, calls # get_data_modified() from the View it is based on, which again # triggers a call of modify() and a subsequent recalcaulte() of all # modifications associated with this View. # Modification need update, because view, this mod is based on, # was changed. # self._view_based.evaluate()is not needed, it is called via: # recalculate() -> get_data_based() -> _view_based.get_data() -> # get_modified_data() -> super().evaluate() return # Recalculate and print info of recalculated values if in automatic # mode if self.recalculate(): self.print_info() # Update figure after recalculation has taken place self.graphicalmod.update() def recalculate(self): # Check if recalculation of parameters is necessary if self.updated: return False # Check the attribute self.automatic, whether the parameters needed for # the calculation of the modification should be determined # automatically or not. If values are set manually, no recalculation is # necessary, and `self` is therefore up to date. if not self.automatic: self.updated = True return True # Recalculate the parameters, inform the view this `Modification` # is applied to about the change, and set `self` to be updated. self._recalculate() self.set_changed(updated=True) return True def _recalculate(self): """ This method should be overwritten by subclasses and perform the recalculation necessary to determine the parameters used by this Modification to modify the data in `self._modify()`. """ pass def print_info(self): print("Values for Modification of class %s:" % self.__class__.__name__) if not self.automatic: print(" Parameters set manually!") for key, widget in self.iattributes._widgets.items(): if hasattr(widget, 'value'): if isinstance(widget.value, float): print(" %s: %.5f" % (widget.description, widget.value)) if isinstance(widget.value, collections.Iterable): print(" %s: %s" % (widget.description, widget.value)) self._print_info() def _print_info(self): """ This method should be overwritten by subclasses, which want to print extra info additionally to the info of the calculated paremeters. """ pass def modify(self, data, samples, traces_idx): """ Modifies data and returns the modified array. Parameters ---------- data : 2D numpy.ndarray of type float `data` holds the data to be modified samples : index array or slice `samples` is the index of the samples that was used to get the `data` traces : index array or slice `traces` is the index of the traces that was used to get the `data` """ # Modification is active. if self.active: # Check if traces contained in data are modified by this # modification. data_traces = self.view_apply.idx_to_traces(traces_idx) mod_traces = self.traces_apply # Calculate the indices of traces contained in data and # modification. First, calculate indices of modification traces. mod_index = hp.overlap_index(mod_traces, data_traces) if len(mod_index) > 0: # At least one trace exists in both data and modification. # Therefore, the data needs to be modified... mod_index = hp.slicify(mod_index) # Calculate indices of traces of the data in such a way that # `data[:, data_index]` indexes the same traces as # `self.traces_apply[mod_index]` data_index = np.array([data_traces.index(trace) for trace in np.array(mod_traces)[mod_index]]) data_index = hp.slicify(data_index) # Trigger a recalculation of the parameters for the # modification (if necessary) before modifying the data. self.evaluate() # Modify and return the modified data return self._modify(data=data, samples=samples, data_traces=data_traces, data_index=data_index, mod_index=mod_index) # Return unmodified data return data @abstractmethod def _modify(self, data, samples, data_traces, data_index, mod_index): """ Is called by self.modify() whenever data is requested and needs to be modified. Parameters ---------- data : 2D numpy.array() Contains the data, indexed by samples and data_traces samples : slice or 1D numpy.array() Is the index of the samples contained in data, which was given/asked by the user/process who called _get_data(). data_traces : list of str Contains a list of traces (str) existent in data, which was given/asked by the user/process who called _get_data(). data_index : slice or 1D numpy.array() data[:, data_index] gives the data, which is modified by this modification mod_index : slice or 1D numpy.array() np.array(self.traces_apply)[mod_index] gives the traces, which are existent in data and also modified by this modfication. Returns ------- 2D numpy.array() The modified data. """ # modify data here, like so: # data[:,data_index] -= modification[:,mod_index] return data @property def updated(self): return self._updated @updated.setter def updated(self, value): """ Gets set to True, after all `Views`, this `Modification` is based on, have been updated and after this `Modification` has been recalculated. This is automatically taken care of by `self.evaluate()` -> `self.recalculate()`. Gets called by a `View`, this `Modification` is based on, whenever the `View` (a `Modification` of the `View`) has been changed. It automatically informs its own `View`, that there was a change, by calling `self.set_changed()`. """ self._updated = value def member_changed(self, ancestor=True, calledfromself=False, index_shift=None, **kwargs): # If a change of an ancestor View or a MultiRegion was triggered by an # index_shift, the modification needs to recalculate itself, i.e. # the modification will alter its changeing behaviour. Because an # index_shift change is only transmitted to `level=1`, inform the # descendants of the change itself. A change of descendants is ignored. if index_shift is not None and not calledfromself and ancestor: self.set_changed(includeself=False) # Update update status super().member_changed(ancestor=ancestor, calledfromself=calledfromself, **kwargs) def _get_data(self, based=True, samples=None, traces=None, window=False, decimate=False, copy=True): if based: view = self.view_based else: view = self.view_apply if not isinstance(window, bool) and isinstance(window, int): window = window elif window: window = self.decimate else: window = 1 if not isinstance(decimate, bool) and isinstance(decimate, int): decimate = decimate elif decimate: decimate = self.decimate else: decimate = 1 if not based: old_active = self.iattributes.active self.iattributes.set_value('active', False, callback=False) data = view.get_data(traces=traces, samples=samples, moving_filter='mean', window=window, decimate=decimate, copy=copy) if not based: self.iattributes.set_value('active', old_active, callback=False) return data def _get_data_based(self, samples=None, traces=None, window=False, decimate=False, copy=True): """ decimate is False per default. If decimate is True, it only gets used, if samples are set to None (step information in samples precedes over decimate). """ return self._get_data(based=True, samples=samples, traces=traces, window=window, decimate=decimate, copy=copy) def _get_data_apply(self, samples=None, traces=None, window=False, decimate=False, copy=True): """ Get data of view apply with all modifications applied, except self. This is achieved by setting the self.__active flag to False. self.__active is intentionally set directly by accessing the attribute and not using the property/set_active() method, to prevent firing the self.set_changed() method within the set_active() method. decimate is False per default. If decimate is True, it only gets used, if samples are set to None (step information in samples precedes over decimate). """ return self._get_data(based=False, samples=samples, traces=traces, window=window, decimate=decimate, copy=copy) def calculate_bin_means(self, data=None, traces=None, bins=None, datapoints_per_bin=None, sorttrace=0): """ Calculates binned means based on the data to be fitted. The binned means are usually used by data fitting routines. Parameters ---------- data : 2D numpy.ndarray of type float, optional Defaults to `self._get_data_based(traces=traces, decimate=True)`. traces : str or list of str, optional Defaults to `self.traces_apply`. bins : int, optional Number of bins that contain the datapoints to be averaged. If possible, it defaults to (`self.iattributes.datapoints` / `datapoints_per_bin`), otherwise bins defaults to (`self.view_based.datapoints` / `datapoints_per_bin`). datapoints_per_bin : int, optional Average number of datapoints to be averaged in one bin. Defaults to 25. sorttrace : int, optional Trace (column) of `data` that acts as sorting index upon binning for the rest of the data. Defaults to the first trace of the data. Returns ------- 1D numpy.ndarray of type float The averaged bin values. float The size of one bin. """ # Bin data and average bins to prevent arbitrary weighting of bins with # more datapoints if bins is None: bins = self._bins(datapoints_per_bin=datapoints_per_bin) # get the traces to retrieve data from if traces is None: traces = self.traces_apply # get the data to bin if data is None: data = self._get_data_based(traces=traces, decimate=True) # create the bins based on one trace of the data minimum = np.min(data[:, sorttrace]) maximum = np.max(data[:, sorttrace]) edges = np.linspace(minimum, maximum, bins + 1) # Get the indices of the bins to which each value in input array # belongs. bin_idx = np.digitize(data[:, sorttrace], edges) # Find which points are on the rightmost edge. on_edge = data[:, sorttrace] == edges[-1] # Shift these points one bin to the left. bin_idx[on_edge] -= 1 # fill the bins with the means of the data contained in each bin bin_means = np.array([data[bin_idx == i].mean(axis=0) for i in range(1, bins + 1) if np.any(bin_idx == i)]) bin_width = edges[1] - edges[0] return bin_means, bin_width def _bins(self, datapoints_per_bin=None): # On average 25 datapoints per bin datapoints_per_bin = datapoints_per_bin or 25 if 'datapoints' in self.iattributes: bins = self.iattributes.datapoints / datapoints_per_bin else: bins = self.view_based.datapoints / datapoints_per_bin bins = max(1, int(np.round(bins))) return bins _NAME = { 'position': ['positionX', 'positionY'], 'psd': ['psdX', 'psdY'], 'axis': ['X', 'Y'] } def _excited(self, traces=None): traces = traces or ['positionX', 'positionY'] data = self._get_data_based(traces=traces, copy=False) return sn.get_excited_signal(data) def interact(self): self.recalculate() self.iattributes.display() self.graphicalmod.display() @property def graphicalmod(self): # ZODB volatile if not hasattr(self, '_v_graphicalmod'): self._v_graphicalmod \ = self.__class__.GRAPHICALMOD(modification=self) return self._v_graphicalmod @property def active(self): active = False if 'active' in self.iattributes: active = self.iattributes.active return active @active.setter def active(self, active=True): if 'active' in self.iattributes: self.iattributes.active = active @property def automatic(self): # Does the modification automatically calculate its parameters automatic = True if 'automatic' in self.iattributes: automatic = self.iattributes.automatic return automatic @property def datapoints(self): if 'datapoints' in self.iattributes: return self.iattributes.datapoints else: return self.view_based.datapoints @property def decimate(self): if 'datapoints' in self.iattributes: return max(1, int(np.round(self.view_based.datapoints / self.datapoints))) else: return 1 @property def view_based(self): return self.parent @property def view_apply(self): return self.child @view_based.setter def view_based(self, view): self.set_parent(view) @view_apply.setter def view_apply(self, view): self.set_child(view) def lia(self, trace): """ Return the local index of trace in traces_apply """ return self.traces_apply.index(trace) @property def traces_apply(self): # return a copy to protect local copy return self._traces_apply.copy() @traces_apply.setter def traces_apply(self, traces): if traces is None: traces_apply = [] else: traces_apply = tc.normalize(traces) self._traces_apply = traces_apply
[ "matplotlib.pyplot.close", "numpy.any", "numpy.min", "numpy.max", "numpy.array", "numpy.linspace", "numpy.digitize", "numpy.round" ]
[((3383, 3405), 'matplotlib.pyplot.close', 'plt.close', (['self.figure'], {}), '(self.figure)\n', (3392, 3405), True, 'import matplotlib.pyplot as plt\n'), ((23139, 23165), 'numpy.min', 'np.min', (['data[:, sorttrace]'], {}), '(data[:, sorttrace])\n', (23145, 23165), True, 'import numpy as np\n'), ((23184, 23210), 'numpy.max', 'np.max', (['data[:, sorttrace]'], {}), '(data[:, sorttrace])\n', (23190, 23210), True, 'import numpy as np\n'), ((23227, 23266), 'numpy.linspace', 'np.linspace', (['minimum', 'maximum', '(bins + 1)'], {}), '(minimum, maximum, bins + 1)\n', (23238, 23266), True, 'import numpy as np\n'), ((23378, 23416), 'numpy.digitize', 'np.digitize', (['data[:, sorttrace]', 'edges'], {}), '(data[:, sorttrace], edges)\n', (23389, 23416), True, 'import numpy as np\n'), ((24295, 24309), 'numpy.round', 'np.round', (['bins'], {}), '(bins)\n', (24303, 24309), True, 'import numpy as np\n'), ((23830, 23850), 'numpy.any', 'np.any', (['(bin_idx == i)'], {}), '(bin_idx == i)\n', (23836, 23850), True, 'import numpy as np\n'), ((25906, 25960), 'numpy.round', 'np.round', (['(self.view_based.datapoints / self.datapoints)'], {}), '(self.view_based.datapoints / self.datapoints)\n', (25914, 25960), True, 'import numpy as np\n'), ((15533, 15553), 'numpy.array', 'np.array', (['mod_traces'], {}), '(mod_traces)\n', (15541, 15553), True, 'import numpy as np\n')]
# example 5-1 Modeling CSV data with multilayer perceptron networks import tensorflow.python.platform import tensorflow as tf import pandas as pd import numpy as np import os from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Input, Dense from matplotlib import pyplot print("Example 5.1 with TensorFlow version: {}".format(tf.__version__)) print("Eager execution: {}".format(tf.executing_eagerly())) path_prefix = os.path.join("data", "classification-simdata") # filenameTrain = os.path.join(path_prefix, "saturn_data_train.csv") # filenameTest = os.path.join(path_prefix, "saturn_data_eval.csv") filenameTrain = "saturn_data_train.csv" filenameTest = "saturn_data_eval.csv" # Data by Dr. <NAME> (http://www.jasonbaldridge.com) to test neural network frameworks. # Read "https://github.com/jasonbaldridge/try-tf/tree/master/simdata" and copy # to data/classification-simdata if not os.path.isdir(path_prefix): print("Missing Saturn simulation data!") printf("Downloading from https://github.com/jasonbaldridge/try-tf/tree/master/simdata") fd = open(os.path.join(path_prefix, filenameTrain)) for i in range(5): print(fd.readline()) fd.close() # Extract tf.data.Dataset representations of labels and features in CSV files # given data in the format of label, feat[0], feat[1]. feat[2], etc.. def get_dataset(file_path, plotDataset=False): tf.keras.backend.set_floatx('float64') # The raw data from the file is easily loaded as a Pandas DataFrame df = pd.read_csv(file_path, header=None) # The first column is the column of classification labels. Peel off the column of labels as a # vector of 64 bit floating point values. labels = df.pop(0).astype(np.float64) dataset_length = len(labels) # The remainder of the values are the features feat = df.values if plotDataset: pyplot.figure() # There are only two labels in this dataset 0 or 1 idx = labels > 0.5 pyplot.scatter(feat[idx, 0], feat[idx, 1], marker='+', c='#ff0000') idx = labels <= 0.5 pyplot.scatter(feat[idx, 0], feat[idx, 1], marker='o', c='#00ff00') pyplot.show() # Assuming that a value of zero is a label, the number of labels it the maximum integer in the array, plus 1 NUM_LABELS = np.max(labels) + 1 # Convert the integer lables into a one hot encoding matrix labels_onehot = (np.arange(NUM_LABELS) == labels[:, None]).astype(np.float64) # A tf.data.Dataset represents a sequence of elements, where each element consists of the data and the data label. # See: https://www.tensorflow.org/guide/data # As one-hot encoded data... dataset = tf.data.Dataset.from_tensor_slices((feat, labels_onehot)) # The Dataset object is Python iterable. return dataset, dataset_length # Load the training data set raw_train_data, raw_train_data_length = get_dataset(os.path.join(path_prefix, filenameTrain), plotDataset=True) print("\n\nTraining data set.") for feat, targ in raw_train_data.take(5): print ('Features: {}, Target: {}'.format(feat, targ)) # Load the test/evaluation data set raw_test_data, raw_test_data_length = get_dataset(os.path.join(path_prefix, filenameTest)) print("\n\nTesting data set.") for feat, targ in raw_test_data.take(5): print ('Features: {}, Target: {}'.format(feat, targ)) print("\n\n") seed = 123 LEARNING_RATE = 0.005 BATCH_SIZE = 50 NUM_EPOCHS = 30 # Number of epochs, full passes of the data NUM_INPUTS = 2 NUM_OUTPUTS = 2 NUM_HIDDEN_NODES = 20 # Build the model. For this example, the model has two layers. The input layer is # an multilayer perceptron network with an RELU activation function and the output # layer is is a softmax activation function with a negative log likelihood loss function. # # The weight initializer in the Deep Learning book is Xavier model = Sequential([ tf.keras.layers.Dense(NUM_HIDDEN_NODES, activation='relu'), tf.keras.layers.Dense(NUM_OUTPUTS, activation='softmax') ]) # For this example, we need to calcualte the negative log likelihood of the model given the data # To do this with Keras, we need to create a class that inhertis from the tf.keras.losses.Loss class # and implement the following two methods: # __init__(self) —Accept parameters to pass during the call of your loss function # call(self, y_true, y_pred) —Use the targets (y_true) and the model predictions (y_pred) to compute the model's loss # # See: class NegLogLikelihood(tf.keras.losses.Loss): """Loss class calcuates the negative log likelihood of the model, given the data. Arguments: model -- The Keras neural network model reduction -- Type of tf.keras.losses.Reduction to apply to loss. name -- Name of the loss function. """ def __init__(self, model, reduction=tf.keras.losses.Reduction.AUTO, name='nll_gausian'): super().__init__(reduction=reduction, name=name) self.model = model """Need to convert the loss function below to a loss function suitable to the above input parameters. Likelihood is the probability that the calculated parameters produced the known data. Probability of the parameters (model) given the data. Likelihood: L = Product i=1..N p(x(i) | theta) NLL: NLL = Sum i=1..N -log(p(x(i) | theta)) where, p(x(i) | theta) is the gausian probability density function """ def call(self, y_true, y_pred): print("y_true:", y_true, ", y_pred:", y_pred) y_pred_mean = tf.math.reduce_mean(y_pred, axis=-1) y_pred_sd = tf.math.reduce_std(y_pred, axis=-1) print("mean:", y_pred_mean, ", sd:", y_pred_sd) ## element wise square square = tf.square(y_pred_mean - y_true)## preserve the same shape as y_pred.shape ms = tf.add(tf.divide(square,y_pred_sd), tf.math.log(y_pred_sd)) ## axis = -1 means that we take mean across the last dimension ## the output keeps all but the last dimension ## ms = tf.reduce_mean(ms,axis=-1) ## return scalar ms = tf.reduce_mean(ms) print("ms:", ms) return(ms) # To train using the Dataset, we should shuffle and batch the data training_batches = raw_train_data.shuffle(raw_train_data_length).batch(BATCH_SIZE) # Optimizer is Adam, loss function is mean squared error # model.compile(loss = tf.losses.MeanSquaredError(), optimizer = tf.optimizers.Adam(), metrics=['accuracy']) # Optimizer is stochastic gradient descent (sgd), loss function is negative log likelihood model.compile(optimizer='sgd', loss=NegLogLikelihood(model), metrics=['accuracy']) history = model.fit(training_batches, epochs=NUM_EPOCHS, verbose=1) model.summary() # plot history pyplot.plot(history.history['loss'], label='loss') pyplot.plot(history.history['accuracy'], label='accuracy') pyplot.title('Training loss and accuracy') pyplot.legend() pyplot.show() # Run against the test set. Final evaluation of the model testing_batches = raw_test_data.shuffle(raw_test_data_length).batch(BATCH_SIZE) scores = model.evaluate(testing_batches, verbose=0) print("Test set analysis accuracy: %.2f%%" % (scores[1]*100))
[ "matplotlib.pyplot.title", "tensorflow.keras.layers.Dense", "pandas.read_csv", "tensorflow.math.reduce_std", "tensorflow.executing_eagerly", "matplotlib.pyplot.figure", "tensorflow.divide", "numpy.arange", "os.path.join", "tensorflow.math.log", "numpy.max", "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "tensorflow.reduce_mean", "tensorflow.math.reduce_mean", "matplotlib.pyplot.plot", "os.path.isdir", "matplotlib.pyplot.scatter", "tensorflow.data.Dataset.from_tensor_slices", "tensorflow.square", "tensorflow.keras.backend.set_floatx" ]
[((464, 510), 'os.path.join', 'os.path.join', (['"""data"""', '"""classification-simdata"""'], {}), "('data', 'classification-simdata')\n", (476, 510), False, 'import os\n'), ((6927, 6977), 'matplotlib.pyplot.plot', 'pyplot.plot', (["history.history['loss']"], {'label': '"""loss"""'}), "(history.history['loss'], label='loss')\n", (6938, 6977), False, 'from matplotlib import pyplot\n'), ((6979, 7037), 'matplotlib.pyplot.plot', 'pyplot.plot', (["history.history['accuracy']"], {'label': '"""accuracy"""'}), "(history.history['accuracy'], label='accuracy')\n", (6990, 7037), False, 'from matplotlib import pyplot\n'), ((7039, 7081), 'matplotlib.pyplot.title', 'pyplot.title', (['"""Training loss and accuracy"""'], {}), "('Training loss and accuracy')\n", (7051, 7081), False, 'from matplotlib import pyplot\n'), ((7083, 7098), 'matplotlib.pyplot.legend', 'pyplot.legend', ([], {}), '()\n', (7096, 7098), False, 'from matplotlib import pyplot\n'), ((7100, 7113), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (7111, 7113), False, 'from matplotlib import pyplot\n'), ((942, 968), 'os.path.isdir', 'os.path.isdir', (['path_prefix'], {}), '(path_prefix)\n', (955, 968), False, 'import os\n'), ((1124, 1164), 'os.path.join', 'os.path.join', (['path_prefix', 'filenameTrain'], {}), '(path_prefix, filenameTrain)\n', (1136, 1164), False, 'import os\n'), ((1429, 1467), 'tensorflow.keras.backend.set_floatx', 'tf.keras.backend.set_floatx', (['"""float64"""'], {}), "('float64')\n", (1456, 1467), True, 'import tensorflow as tf\n'), ((1553, 1588), 'pandas.read_csv', 'pd.read_csv', (['file_path'], {'header': 'None'}), '(file_path, header=None)\n', (1564, 1588), True, 'import pandas as pd\n'), ((2763, 2820), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(feat, labels_onehot)'], {}), '((feat, labels_onehot))\n', (2797, 2820), True, 'import tensorflow as tf\n'), ((2992, 3032), 'os.path.join', 'os.path.join', (['path_prefix', 'filenameTrain'], {}), '(path_prefix, filenameTrain)\n', (3004, 3032), False, 'import os\n'), ((3279, 3318), 'os.path.join', 'os.path.join', (['path_prefix', 'filenameTest'], {}), '(path_prefix, filenameTest)\n', (3291, 3318), False, 'import os\n'), ((422, 444), 'tensorflow.executing_eagerly', 'tf.executing_eagerly', ([], {}), '()\n', (442, 444), True, 'import tensorflow as tf\n'), ((1925, 1940), 'matplotlib.pyplot.figure', 'pyplot.figure', ([], {}), '()\n', (1938, 1940), False, 'from matplotlib import pyplot\n'), ((2038, 2105), 'matplotlib.pyplot.scatter', 'pyplot.scatter', (['feat[idx, 0]', 'feat[idx, 1]'], {'marker': '"""+"""', 'c': '"""#ff0000"""'}), "(feat[idx, 0], feat[idx, 1], marker='+', c='#ff0000')\n", (2052, 2105), False, 'from matplotlib import pyplot\n'), ((2144, 2211), 'matplotlib.pyplot.scatter', 'pyplot.scatter', (['feat[idx, 0]', 'feat[idx, 1]'], {'marker': '"""o"""', 'c': '"""#00ff00"""'}), "(feat[idx, 0], feat[idx, 1], marker='o', c='#00ff00')\n", (2158, 2211), False, 'from matplotlib import pyplot\n'), ((2221, 2234), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (2232, 2234), False, 'from matplotlib import pyplot\n'), ((2369, 2383), 'numpy.max', 'np.max', (['labels'], {}), '(labels)\n', (2375, 2383), True, 'import numpy as np\n'), ((3999, 4057), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['NUM_HIDDEN_NODES'], {'activation': '"""relu"""'}), "(NUM_HIDDEN_NODES, activation='relu')\n", (4020, 4057), True, 'import tensorflow as tf\n'), ((4064, 4120), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['NUM_OUTPUTS'], {'activation': '"""softmax"""'}), "(NUM_OUTPUTS, activation='softmax')\n", (4085, 4120), True, 'import tensorflow as tf\n'), ((5687, 5723), 'tensorflow.math.reduce_mean', 'tf.math.reduce_mean', (['y_pred'], {'axis': '(-1)'}), '(y_pred, axis=-1)\n', (5706, 5723), True, 'import tensorflow as tf\n'), ((5745, 5780), 'tensorflow.math.reduce_std', 'tf.math.reduce_std', (['y_pred'], {'axis': '(-1)'}), '(y_pred, axis=-1)\n', (5763, 5780), True, 'import tensorflow as tf\n'), ((5892, 5923), 'tensorflow.square', 'tf.square', (['(y_pred_mean - y_true)'], {}), '(y_pred_mean - y_true)\n', (5901, 5923), True, 'import tensorflow as tf\n'), ((6253, 6271), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['ms'], {}), '(ms)\n', (6267, 6271), True, 'import tensorflow as tf\n'), ((5987, 6015), 'tensorflow.divide', 'tf.divide', (['square', 'y_pred_sd'], {}), '(square, y_pred_sd)\n', (5996, 6015), True, 'import tensorflow as tf\n'), ((6016, 6038), 'tensorflow.math.log', 'tf.math.log', (['y_pred_sd'], {}), '(y_pred_sd)\n', (6027, 6038), True, 'import tensorflow as tf\n'), ((2477, 2498), 'numpy.arange', 'np.arange', (['NUM_LABELS'], {}), '(NUM_LABELS)\n', (2486, 2498), True, 'import numpy as np\n')]
"""Doomsday fuel. """ def solution(m): import numpy as np import fractions if len(m) == 1: return [1, 1] n_states = len(m) mask = [False if mi == [0] * n_states else True for mi in m] idx = np.concatenate([np.arange(n_states)[mask], np.arange(n_states)[np.logical_not(mask)]]) M = np.array(m) M = M[idx, :] M = M[:, idx] # Convert to probabilities M = [np.array(mi)/np.sum(mi).astype(float) if np.sum(mi) > 0 else mi for mi in M] # The two test cases are both already sorted, so to test we can just use # them as-is. Eventually we'll have to sort, though. M = np.array(M) n_transient = sum(mask) # Will need to figure this out Q = M[0:n_transient, 0:n_transient] R = M[0:n_transient, n_transient:] N = np.linalg.inv(np.eye(n_transient) - Q) B = np.matmul(N, R) # Convert the solution into a fraction frac = [fractions.Fraction(si).limit_denominator(1000) for si in B[0, :]] numerator = [f.numerator for f in frac] denominator = [f.denominator for f in frac] d = int(np.lcm.reduce(denominator)) numerator = [int(ni * d / di) for ni, di in zip(numerator, denominator)] return numerator + [d] if __name__ == '__main__': m = [ [0, 1, 0, 0, 0, 1], # s0, the initial state, goes to s1 and s5 with equal probability [0, 0, 0, 0, 0, 0], # s2 is terminal, and unreachable (never observed in practice) [0, 0, 0, 0, 0, 0], # s3 is terminal [0, 0, 0, 0, 0, 0], # s4 is terminal [0, 0, 0, 0, 0, 0], # s5 is terminal [4, 0, 0, 3, 2, 0], # s1 can become s0, s3, or s4, but with different probabilities ] expected_result = [9, 0, 3, 2, 14] result = solution(m) print('\n') print(expected_result) print(result) # print(f'Result: {result}, Expected: {expected_result}') m = [ [0, 1, 0, 0, 0, 1], # s0, the initial state, goes to s1 and s5 with equal probability [4, 0, 0, 3, 2, 0], # s1 can become s0, s3, or s4, but with different probabilities [0, 0, 0, 0, 0, 0], # s2 is terminal, and unreachable (never observed in practice) [0, 0, 0, 0, 0, 0], # s3 is terminal [0, 0, 0, 0, 0, 0], # s4 is terminal [0, 0, 0, 0, 0, 0], # s5 is terminal ] expected_result = [0, 3, 2, 9, 14] result = solution(m) print('\n') print(expected_result) print(result) m = [ [0, 2, 1, 0, 0], [0, 0, 0, 3, 4], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0] ] expected_result = [7, 6, 8, 21] result = solution(m) print('\n') print(expected_result) print(result) m = [ [1] ] expected_result = [1, 1] result = solution(m) print('\n') print(expected_result) print(result)
[ "numpy.sum", "numpy.logical_not", "numpy.lcm.reduce", "numpy.array", "numpy.arange", "numpy.matmul", "numpy.eye", "fractions.Fraction" ]
[((323, 334), 'numpy.array', 'np.array', (['m'], {}), '(m)\n', (331, 334), True, 'import numpy as np\n'), ((633, 644), 'numpy.array', 'np.array', (['M'], {}), '(M)\n', (641, 644), True, 'import numpy as np\n'), ((839, 854), 'numpy.matmul', 'np.matmul', (['N', 'R'], {}), '(N, R)\n', (848, 854), True, 'import numpy as np\n'), ((1081, 1107), 'numpy.lcm.reduce', 'np.lcm.reduce', (['denominator'], {}), '(denominator)\n', (1094, 1107), True, 'import numpy as np\n'), ((806, 825), 'numpy.eye', 'np.eye', (['n_transient'], {}), '(n_transient)\n', (812, 825), True, 'import numpy as np\n'), ((244, 263), 'numpy.arange', 'np.arange', (['n_states'], {}), '(n_states)\n', (253, 263), True, 'import numpy as np\n'), ((271, 290), 'numpy.arange', 'np.arange', (['n_states'], {}), '(n_states)\n', (280, 290), True, 'import numpy as np\n'), ((291, 311), 'numpy.logical_not', 'np.logical_not', (['mask'], {}), '(mask)\n', (305, 311), True, 'import numpy as np\n'), ((453, 463), 'numpy.sum', 'np.sum', (['mi'], {}), '(mi)\n', (459, 463), True, 'import numpy as np\n'), ((412, 424), 'numpy.array', 'np.array', (['mi'], {}), '(mi)\n', (420, 424), True, 'import numpy as np\n'), ((911, 933), 'fractions.Fraction', 'fractions.Fraction', (['si'], {}), '(si)\n', (929, 933), False, 'import fractions\n'), ((425, 435), 'numpy.sum', 'np.sum', (['mi'], {}), '(mi)\n', (431, 435), True, 'import numpy as np\n')]
from os import cpu_count from bfio import BioReader, BioWriter, OmeXml import argparse, logging import numpy as np from pathlib import Path from cellpose import dynamics, utils import torch from concurrent.futures import ThreadPoolExecutor, wait, Future import typing """ Plugin Constants """ TILE_SIZE = 2048 # Largest chunk of an image to process TILE_OVERLAP = 256 # Amount of overlap between tiles NITER = 200 # Number of iterations to run flow dynamics # Use a gpu if it's available USE_GPU = torch.cuda.is_available() if USE_GPU: DEV = torch.device("cuda") else: DEV = torch.device("cpu") # Initialize the logger logging.basicConfig(format='%(asctime)s - %(name)-8s - %(levelname)-8s - %(message)s', datefmt='%d-%b-%y %H:%M:%S') logger = logging.getLogger("main") logger.setLevel(logging.INFO) def overlap(previous_values: np.ndarray, current_values: np.ndarray, tile: np.ndarray ) -> typing.Tuple[np.ndarray,list,list]: """Resolve label values between tiles This function takes a row/column from the previous tile and a row/column from the current tile and finds labels that that likely match. If labels in the current tile should be replaced with labels from the previous tile, the pixels in the current tile are removed from ``tile`` and the label value and pixel coordinates of the label are stored in ``labels`` and ``indices`` respectively. Args: previous_values (np.ndarray): Previous tile edge values current_values (np.ndarray): Current tile edge values tile (np.ndarray): Current tile pixel values, flattened Returns: typing.Tuple[np.ndarray,np.ndarray,np.ndarray]: Returns the modified tile with overlapping labels removed, a list of new labels, and a list of indices associated with the new labels. """ # Get a list of unique values in the previous and current tiles previous_labels = np.unique(previous_values) if previous_values[0] == 0: previous_labels = previous_values[1:] current_labels = np.unique(current_values) if current_labels[0] == 0: current_labels = current_labels[1:] # Initialize outputs indices = [] labels = [] if previous_labels.size != 0 and current_labels.size != 0: # Find overlapping indices for label in current_labels: new_labels,counts = np.unique(previous_values[current_values==label],return_counts=True) if new_labels.size == 0: continue if new_labels[0] == 0: new_labels = new_labels[1:] counts = counts[1:] if new_labels.size == 0: continue # Get the most frequently occuring overlapping label labels.append(new_labels[np.argmax(counts)]) # Add indices to output, remove pixel values from the tile indices.append(np.argwhere(tile==label)) tile[indices[-1]] = 0 return tile, labels, indices def mask_thread(coords: typing.Tuple[int,int,int], file_path: Path, bw: BioWriter, cellprob_threshold: float, flow_threshold: float, dependency1: typing.Optional[Future], dependency2: typing.Optional[Future] ) -> typing.Tuple[np.ndarray,np.ndarray,np.uint32]: """[summary] Args: coords: x,y,z starting coordinates of the tile to process file_path: Vector field file path bw: Output file cellprob_threshold: Cell probability threshold flow_threshold: Flow field threshold dependency1: Tile future to the left of the current tile dependency2: Tile future above the current tile Returns: typing.Tuple[np.ndarray,np.ndarray,list]: Returns the right column of the processed tile, bottom row of the processed tile, and largest label value. """ # Calculate indice for the tile x,y,z = coords with BioReader(file_path) as br: image_X = br.X image_Y = br.Y x_min = max([0, x - TILE_OVERLAP]) x_max = min([image_X, x + TILE_SIZE + TILE_OVERLAP]) y_min = max([0, y - TILE_OVERLAP]) y_max = min([image_Y, y + TILE_SIZE + TILE_OVERLAP]) tile = br[y_min:y_max, x_min:x_max, z:z + 1, :3, 0] logger.debug('Calculating flows and masks for tile [{}:{},{}:{},{}:{}]'.format(y, y_max, x, x_max, z, z + 1)) # Get flows and probabilities cellprob = tile[:,:,0,0].squeeze() dP = tile[:,:,0,1:].squeeze().transpose(2,0,1) # Compute flows for the tile p = dynamics.follow_flows(-1 * dP * (cellprob > cellprob_threshold) / 5., niter=NITER, interp=True, use_gpu=USE_GPU,device=DEV) mask = dynamics.get_masks(p, iscell=(cellprob>cellprob_threshold), flows=dP, threshold=flow_threshold, use_gpu=USE_GPU,device=DEV) mask = utils.fill_holes_and_remove_small_masks(mask, min_size=15) # reshape mask based on tile x_overlap = x - x_min x_min = x x_max = min([image_X, x + TILE_SIZE]) y_overlap = y - y_min y_min = y y_max = min([image_Y, y + TILE_SIZE]) mask = mask[y_overlap:y_max - y_min + y_overlap, x_overlap:x_max - x_min + x_overlap, np.newaxis, np.newaxis, np.newaxis].astype(np.uint32) """ Fix tile conflicts if image is large enough to require tiling """ # Get previously processed tiles if they exist dependency1 = None if dependency1 is None else dependency1.result() dependency2 = None if dependency2 is None else dependency2.result() # Get offset to make labels consistent between tiles offset = 0 if dependency1 is None else dependency1[2] current_x = mask[:,0].squeeze() current_y = mask[0,:].squeeze() shape = mask.shape mask = mask.reshape(-1) # Resolve label conflicts along the left border if x > 0: mask, labels_x, indices_x = overlap(dependency1[0].squeeze(),current_x,mask) if y > 0: mask, labels_y, indices_y = overlap(dependency2[1].squeeze(),current_y,mask) _, image = np.unique(mask, return_inverse=True) image = image.astype(np.uint32) image[image>0] = image[image>0] + offset if x > 0: for label,ind in zip(labels_x,indices_x): if ind.size==0: continue image[ind] = label if y > 0: for label,ind in zip(labels_y,indices_y): if ind.size==0: continue image[ind] = label image = image.reshape(shape) bw[y_min:y_max, x_min:x_max, z:z + 1, 0, 0] = image return image[:,-1],image[-1,:],image.max() def close_thread(dependency: Future, bw: BioWriter): """ Close an image once the final tile is written Args: dependency (Future): The final tile thread bw (BioWriter): The BioWriter to clsoe Returns: Returns True when completed """ dependency.result() bw.close() return True def main(inpDir: Path, cellprob_threshold: float, flow_threshold: float, outDir: Path ) -> None: # Get the list of files in path files = [p for p in Path(inpDir).iterdir() if p.name.endswith('_flow.ome.zarr')] num_threads = max([cpu_count()//2,1]) logger.info(f'Processing tiles with {num_threads} threads using {DEV}') if len(files) == 0: logger.critical('No flow files detected.') quit() processes = [] with ThreadPoolExecutor(num_threads) as executor: # Loop through files in inpDir image collection and process for ind,fpath in enumerate(files): br = BioReader(fpath) threads = np.empty((br.shape[:3]),dtype=object) logger.debug( 'Processing image ({}/{}): {}'.format(ind, len(files), fpath)) # TODO: Hard coding to ome.tif for now, this should be changed later. path = Path(outDir).joinpath(fpath.name.replace('_flow.ome.zarr','.ome.tif')) bw = BioWriter(file_path=Path(path), metadata=br.metadata) bw.dtype=np.dtype(np.uint32) bw.C = 1 bw.channel_names = ['label'] for z in range(0, br.Z, 1): y_ind = None dependency1 = None for y in range(0, br.Y, TILE_SIZE): for x in range(0, br.X, TILE_SIZE): dependency2 = None if y_ind is None else threads[y_ind,x//TILE_SIZE,z] processes.append(executor.submit(mask_thread, (x,y,z), fpath,bw, cellprob_threshold,flow_threshold, dependency1,dependency2)) dependency1 = processes[-1] threads[y//TILE_SIZE,x//TILE_SIZE,z] = dependency1 y_ind = y//TILE_SIZE executor.submit(close_thread,dependency1,bw) done, not_done = wait(processes, 0) logger.info(f'Percent complete: {100 * len(done) / len(processes):6.3f}%') while len(not_done) > 0: for r in done: r.result() done, not_done = wait(processes, 15) logger.info(f'Percent complete: {100 * len(done) / len(processes):6.3f}%') if __name__ == '__main__': ''' Argument parsing ''' logger.info("Parsing arguments...") parser = argparse.ArgumentParser(prog='main', description='Cellpose parameters') # Input arguments parser.add_argument('--inpDir', dest='inpDir', type=str, help='Input image collection to be processed by this plugin', required=True) parser.add_argument('--flowThreshold', required=False, default=0.8, type=float, help='flow error threshold, 0 turns off this optional QC step') parser.add_argument('--cellprobThreshold', required=False, default=0.0, type=float, help='cell probability threshold, centered at 0.0') # Output arguments parser.add_argument('--outDir', dest='outDir', type=str, help='Output collection', required=True) # Parse the arguments args = parser.parse_args() inpDir = Path(args.inpDir) logger.info('inpDir = {}'.format(inpDir)) outDir = args.outDir logger.info('outDir = {}'.format(outDir)) cellprob_threshold = args.cellprobThreshold logger.info('cellprobThreshold = {}'.format(cellprob_threshold)) flow_threshold= args.flowThreshold logger.info('flowThreshold = {}'.format(flow_threshold)) main(inpDir, cellprob_threshold, flow_threshold, outDir)
[ "argparse.ArgumentParser", "logging.basicConfig", "numpy.argmax", "numpy.empty", "numpy.dtype", "logging.getLogger", "numpy.argwhere", "bfio.BioReader", "os.cpu_count", "cellpose.utils.fill_holes_and_remove_small_masks", "pathlib.Path", "torch.cuda.is_available", "cellpose.dynamics.get_masks", "torch.device", "concurrent.futures.wait", "concurrent.futures.ThreadPoolExecutor", "cellpose.dynamics.follow_flows", "numpy.unique" ]
[((512, 537), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (535, 537), False, 'import torch\n'), ((642, 767), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s - %(name)-8s - %(levelname)-8s - %(message)s"""', 'datefmt': '"""%d-%b-%y %H:%M:%S"""'}), "(format=\n '%(asctime)s - %(name)-8s - %(levelname)-8s - %(message)s', datefmt=\n '%d-%b-%y %H:%M:%S')\n", (661, 767), False, 'import argparse, logging\n'), ((787, 812), 'logging.getLogger', 'logging.getLogger', (['"""main"""'], {}), "('main')\n", (804, 812), False, 'import argparse, logging\n'), ((560, 580), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (572, 580), False, 'import torch\n'), ((597, 616), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (609, 616), False, 'import torch\n'), ((1999, 2025), 'numpy.unique', 'np.unique', (['previous_values'], {}), '(previous_values)\n', (2008, 2025), True, 'import numpy as np\n'), ((2130, 2155), 'numpy.unique', 'np.unique', (['current_values'], {}), '(current_values)\n', (2139, 2155), True, 'import numpy as np\n'), ((4882, 5011), 'cellpose.dynamics.follow_flows', 'dynamics.follow_flows', (['(-1 * dP * (cellprob > cellprob_threshold) / 5.0)'], {'niter': 'NITER', 'interp': '(True)', 'use_gpu': 'USE_GPU', 'device': 'DEV'}), '(-1 * dP * (cellprob > cellprob_threshold) / 5.0,\n niter=NITER, interp=True, use_gpu=USE_GPU, device=DEV)\n', (4903, 5011), False, 'from cellpose import dynamics, utils\n'), ((5082, 5210), 'cellpose.dynamics.get_masks', 'dynamics.get_masks', (['p'], {'iscell': '(cellprob > cellprob_threshold)', 'flows': 'dP', 'threshold': 'flow_threshold', 'use_gpu': 'USE_GPU', 'device': 'DEV'}), '(p, iscell=cellprob > cellprob_threshold, flows=dP,\n threshold=flow_threshold, use_gpu=USE_GPU, device=DEV)\n', (5100, 5210), False, 'from cellpose import dynamics, utils\n'), ((5277, 5335), 'cellpose.utils.fill_holes_and_remove_small_masks', 'utils.fill_holes_and_remove_small_masks', (['mask'], {'min_size': '(15)'}), '(mask, min_size=15)\n', (5316, 5335), False, 'from cellpose import dynamics, utils\n'), ((6536, 6572), 'numpy.unique', 'np.unique', (['mask'], {'return_inverse': '(True)'}), '(mask, return_inverse=True)\n', (6545, 6572), True, 'import numpy as np\n'), ((10282, 10353), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""main"""', 'description': '"""Cellpose parameters"""'}), "(prog='main', description='Cellpose parameters')\n", (10305, 10353), False, 'import argparse, logging\n'), ((11108, 11125), 'pathlib.Path', 'Path', (['args.inpDir'], {}), '(args.inpDir)\n', (11112, 11125), False, 'from pathlib import Path\n'), ((4220, 4240), 'bfio.BioReader', 'BioReader', (['file_path'], {}), '(file_path)\n', (4229, 4240), False, 'from bfio import BioReader, BioWriter, OmeXml\n'), ((7987, 8018), 'concurrent.futures.ThreadPoolExecutor', 'ThreadPoolExecutor', (['num_threads'], {}), '(num_threads)\n', (8005, 8018), False, 'from concurrent.futures import ThreadPoolExecutor, wait, Future\n'), ((9840, 9858), 'concurrent.futures.wait', 'wait', (['processes', '(0)'], {}), '(processes, 0)\n', (9844, 9858), False, 'from concurrent.futures import ThreadPoolExecutor, wait, Future\n'), ((2484, 2555), 'numpy.unique', 'np.unique', (['previous_values[current_values == label]'], {'return_counts': '(True)'}), '(previous_values[current_values == label], return_counts=True)\n', (2493, 2555), True, 'import numpy as np\n'), ((8170, 8186), 'bfio.BioReader', 'BioReader', (['fpath'], {}), '(fpath)\n', (8179, 8186), False, 'from bfio import BioReader, BioWriter, OmeXml\n'), ((8226, 8262), 'numpy.empty', 'np.empty', (['br.shape[:3]'], {'dtype': 'object'}), '(br.shape[:3], dtype=object)\n', (8234, 8262), True, 'import numpy as np\n'), ((8718, 8737), 'numpy.dtype', 'np.dtype', (['np.uint32'], {}), '(np.uint32)\n', (8726, 8737), True, 'import numpy as np\n'), ((10060, 10079), 'concurrent.futures.wait', 'wait', (['processes', '(15)'], {}), '(processes, 15)\n', (10064, 10079), False, 'from concurrent.futures import ThreadPoolExecutor, wait, Future\n'), ((3085, 3111), 'numpy.argwhere', 'np.argwhere', (['(tile == label)'], {}), '(tile == label)\n', (3096, 3111), True, 'import numpy as np\n'), ((7764, 7775), 'os.cpu_count', 'cpu_count', ([], {}), '()\n', (7773, 7775), False, 'from os import cpu_count\n'), ((2954, 2971), 'numpy.argmax', 'np.argmax', (['counts'], {}), '(counts)\n', (2963, 2971), True, 'import numpy as np\n'), ((7675, 7687), 'pathlib.Path', 'Path', (['inpDir'], {}), '(inpDir)\n', (7679, 7687), False, 'from pathlib import Path\n'), ((8554, 8566), 'pathlib.Path', 'Path', (['outDir'], {}), '(outDir)\n', (8558, 8566), False, 'from pathlib import Path\n'), ((8663, 8673), 'pathlib.Path', 'Path', (['path'], {}), '(path)\n', (8667, 8673), False, 'from pathlib import Path\n')]
import cv2 from numpy import pi, cos, sin from pprint import pprint from statistics import median from sys import exit def hough_transform(edges, img=None, thresh=110): """Get contour lines of the receipt in polar coords(r, t) using a thresh for the hough accumulator and calculate cartesian coords(x, y). """ lines = cv2.HoughLines(edges, 1, pi/180, thresh) for x in range(0, len(lines)): for rho, theta in lines[x]: a = cos(theta) b = sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + 1000*(-b)) y1 = int(y0 + 1000*(a)) x2 = int(x0 - 1000*(-b)) y2 = int(y0 - 1000*(a)) # Draw the line if the img parameter is given if img is not None: cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2) return lines def get_median_lines(intersections, width, height, img): """Calculate the median lines from intersections lines sorting the intersections list in 4 groups for x(x1,..,x4) and 4 groups for y(y1,..,y4). """ jmp_val = 50 # value used to differentiate groups first = second = first_p = second_p = third_p = forth_p = None intersections.sort(key = lambda x: x[1]) pprint(intersections) for i, x in enumerate(intersections): if i+1<len(intersections): if intersections[i][0]>width or intersections[i][1]>height: continue if (intersections[i][1] + jmp_val) <= intersections[i+1][1]: first = intersections[:i+1] second = intersections[i+1:] if first is None or second is None: print('Error: must adjust jmp_val or thresh from hough_transform') exit() first.sort(key = lambda x: x[0]) for i, x in enumerate(first): if i+1<len(first): if (first[i][0] + jmp_val) <= first[i+1][0]: first_p = first[:i+1] second_p = first[i+1:] second.sort(key = lambda x: x[0]) for i, x in enumerate(second): if i+1<len(second): if (second[i][0] + jmp_val) <= second[i+1][0]: third_p = second[:i+1] forth_p = second[i+1:] if all([first_p, second_p, third_p, forth_p]) is False: print('Error: must adjust jmp_val or thresh from hough_transform') exit() x1 = int(median([p[0] for p in first_p])) x2 = int(median([p[0] for p in second_p])) x3 = int(median([p[0] for p in third_p])) x4 = int(median([p[0] for p in forth_p])) # print(x1, x2, x3, x4) first.sort(key = lambda x: x[1]) for i, x in enumerate(first): if i+1<len(first): if (first[i][0] + jmp_val) <= first[i+1][0]: first_p = first[:i+1] second_p = first[i+1:] second.sort(key = lambda x: x[1]) for i, x in enumerate(second): if i+1<len(second): if (second[i][1] + jmp_val) <= second[i+1][1]: third_p = second[:i+1] forth_p = second[i+1:] y1 = int(median([p[1] for p in first_p])) y2 = int(median([p[1] for p in second_p])) y3 = int(median([p[1] for p in third_p])) y4 = int(median([p[1] for p in forth_p])) # print(y1, y2, y3, y4) img[int(y1), int(x1)] = [0, 255, 0] img[int(y2), int(x2)] = [0, 255, 0] img[int(y3), int(x3)] = [0, 255, 0] img[int(y4), int(x4)] = [0, 255, 0] cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0), 2) cv2.line(img, (x1, y1), (x3, y3), (255, 0, 0), 2) cv2.line(img, (x2, y2), (x4, y4), (255, 0, 0), 2) cv2.line(img, (x3, y3), (x4, y4), (255, 0, 0), 2)
[ "cv2.line", "statistics.median", "numpy.sin", "cv2.HoughLines", "pprint.pprint", "numpy.cos", "sys.exit" ]
[((337, 379), 'cv2.HoughLines', 'cv2.HoughLines', (['edges', '(1)', '(pi / 180)', 'thresh'], {}), '(edges, 1, pi / 180, thresh)\n', (351, 379), False, 'import cv2\n'), ((1266, 1287), 'pprint.pprint', 'pprint', (['intersections'], {}), '(intersections)\n', (1272, 1287), False, 'from pprint import pprint\n'), ((3448, 3497), 'cv2.line', 'cv2.line', (['img', '(x1, y1)', '(x2, y2)', '(255, 0, 0)', '(2)'], {}), '(img, (x1, y1), (x2, y2), (255, 0, 0), 2)\n', (3456, 3497), False, 'import cv2\n'), ((3502, 3551), 'cv2.line', 'cv2.line', (['img', '(x1, y1)', '(x3, y3)', '(255, 0, 0)', '(2)'], {}), '(img, (x1, y1), (x3, y3), (255, 0, 0), 2)\n', (3510, 3551), False, 'import cv2\n'), ((3556, 3605), 'cv2.line', 'cv2.line', (['img', '(x2, y2)', '(x4, y4)', '(255, 0, 0)', '(2)'], {}), '(img, (x2, y2), (x4, y4), (255, 0, 0), 2)\n', (3564, 3605), False, 'import cv2\n'), ((3610, 3659), 'cv2.line', 'cv2.line', (['img', '(x3, y3)', '(x4, y4)', '(255, 0, 0)', '(2)'], {}), '(img, (x3, y3), (x4, y4), (255, 0, 0), 2)\n', (3618, 3659), False, 'import cv2\n'), ((1749, 1755), 'sys.exit', 'exit', ([], {}), '()\n', (1753, 1755), False, 'from sys import exit\n'), ((2372, 2378), 'sys.exit', 'exit', ([], {}), '()\n', (2376, 2378), False, 'from sys import exit\n'), ((2393, 2424), 'statistics.median', 'median', (['[p[0] for p in first_p]'], {}), '([p[0] for p in first_p])\n', (2399, 2424), False, 'from statistics import median\n'), ((2439, 2471), 'statistics.median', 'median', (['[p[0] for p in second_p]'], {}), '([p[0] for p in second_p])\n', (2445, 2471), False, 'from statistics import median\n'), ((2486, 2517), 'statistics.median', 'median', (['[p[0] for p in third_p]'], {}), '([p[0] for p in third_p])\n', (2492, 2517), False, 'from statistics import median\n'), ((2532, 2563), 'statistics.median', 'median', (['[p[0] for p in forth_p]'], {}), '([p[0] for p in forth_p])\n', (2538, 2563), False, 'from statistics import median\n'), ((3080, 3111), 'statistics.median', 'median', (['[p[1] for p in first_p]'], {}), '([p[1] for p in first_p])\n', (3086, 3111), False, 'from statistics import median\n'), ((3126, 3158), 'statistics.median', 'median', (['[p[1] for p in second_p]'], {}), '([p[1] for p in second_p])\n', (3132, 3158), False, 'from statistics import median\n'), ((3173, 3204), 'statistics.median', 'median', (['[p[1] for p in third_p]'], {}), '([p[1] for p in third_p])\n', (3179, 3204), False, 'from statistics import median\n'), ((3219, 3250), 'statistics.median', 'median', (['[p[1] for p in forth_p]'], {}), '([p[1] for p in forth_p])\n', (3225, 3250), False, 'from statistics import median\n'), ((466, 476), 'numpy.cos', 'cos', (['theta'], {}), '(theta)\n', (469, 476), False, 'from numpy import pi, cos, sin\n'), ((493, 503), 'numpy.sin', 'sin', (['theta'], {}), '(theta)\n', (496, 503), False, 'from numpy import pi, cos, sin\n'), ((803, 852), 'cv2.line', 'cv2.line', (['img', '(x1, y1)', '(x2, y2)', '(0, 0, 255)', '(2)'], {}), '(img, (x1, y1), (x2, y2), (0, 0, 255), 2)\n', (811, 852), False, 'import cv2\n')]
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import numpy as np from sklearn.model_selection import train_test_split def create_validation_split(X, y, grouplabels, test_size, random_seed=45): """ :param X: Features matrix :param y: label matrix (column vector) :param grouplabels: numpy array denoting a groups index for each sample point :param test_size: proportion of each groups (and thus overall data) to be witheld for validation :param random_seed: random state for sklearns train/test split :return: X_train, X_test, y_train, y_test, grouplabels_train, grouplabels_test To create the validation data, we need an even split from each of the groups. We will create an individual matrix of features and labels (X and y) for each of the groups individually and perform a train/test split on them. After we have the train/test component of each groups's data, we can simply concatenate (vertically stack) the feature matrices for each groups and the label matrices for each groups giving us a balanced train/test split across the entire dataset. We also recompute groups labels array to match reconcatened split. """ num_group_types = grouplabels.shape[0] # Default, single groups type case if num_group_types == 1: grouplabels = grouplabels[0] numgroups = np.size(np.unique(grouplabels)) # Each of these 'pieces' is the training or testing portion of a specific groups to be combined later X_train_pieces = [] y_train_pieces = [] X_test_pieces = [] y_test_pieces = [] grouplabels_train = [] grouplabels_test = [] # Create an array to store the index arrays for each groups so we do not have to contiunally recompute index = [np.array([]) for _ in range(numgroups)] for g in range(0, numgroups): index[g] = np.where(grouplabels == g) for g in range(numgroups): # Perform the train test split of the desired size on this particular groups X_train_curr, X_test_curr, y_train_curr, y_test_curr = \ train_test_split(X[index[g]], y[index[g]], test_size=test_size, random_state=random_seed) # Append the matrix portions for this groups onto the appropriate python lists X_train_pieces.append(X_train_curr) X_test_pieces.append(X_test_curr) y_train_pieces.append(y_train_curr) y_test_pieces.append(y_test_curr) # Assert that we have the same number of rows for X and y assert X_train_curr.shape[0] == y_train_curr.shape[0] assert X_test_curr.shape[0] == y_test_curr.shape[0] # Add the appropriate grouplabels in preparation for the matrices that will be constructed (groups in order) grouplabels_train.extend([g] * X_train_curr.shape[0]) # python short-hand to add many `g`s to the list grouplabels_test.extend([g] * X_test_curr.shape[0]) # python short-hand to add many `g`s to the list # Once we have all the pieces off the 4 matrices, all we have left to do is vertically stack them X_train = np.concatenate(X_train_pieces, axis=0) X_test = np.concatenate(X_test_pieces, axis=0) y_train = np.concatenate(y_train_pieces, axis=0) y_test = np.concatenate(y_test_pieces, axis=0) # Assert that we still have the same number of features assert X_train.shape[1] == X.shape[1] assert X_test.shape[1] == X.shape[1] grouplabels_train = np.expand_dims(np.array(grouplabels_train), axis=0) grouplabels_test = np.expand_dims(np.array(grouplabels_test), axis=0) return X_train, X_test, y_train, y_test, grouplabels_train, grouplabels_test # Multi groups split else: # Return a random split over the training data X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=test_size, random_state=random_seed) grouplabels_train_T, grouplabels_test_T = \ train_test_split(grouplabels.T, test_size=test_size, random_state=random_seed) # print(grouplabels_train_T.T) # print(grouplabels_train_T.T.shape) # print(grouplabels_test_T.T) # print(grouplabels_test_T.T.shape) # Ensure that taking the transpose worked out fine assert grouplabels_train_T.T.shape[0] == grouplabels_test_T.T.shape[0] == grouplabels.shape[0] assert grouplabels_train_T.T.shape[1] + grouplabels_test_T.T.shape[1] == grouplabels.shape[1] return X_train, X_test, y_train, y_test, grouplabels_train_T.T, grouplabels_test_T.T
[ "numpy.concatenate", "sklearn.model_selection.train_test_split", "numpy.where", "numpy.array", "numpy.unique" ]
[((3235, 3273), 'numpy.concatenate', 'np.concatenate', (['X_train_pieces'], {'axis': '(0)'}), '(X_train_pieces, axis=0)\n', (3249, 3273), True, 'import numpy as np\n'), ((3291, 3328), 'numpy.concatenate', 'np.concatenate', (['X_test_pieces'], {'axis': '(0)'}), '(X_test_pieces, axis=0)\n', (3305, 3328), True, 'import numpy as np\n'), ((3347, 3385), 'numpy.concatenate', 'np.concatenate', (['y_train_pieces'], {'axis': '(0)'}), '(y_train_pieces, axis=0)\n', (3361, 3385), True, 'import numpy as np\n'), ((3403, 3440), 'numpy.concatenate', 'np.concatenate', (['y_test_pieces'], {'axis': '(0)'}), '(y_test_pieces, axis=0)\n', (3417, 3440), True, 'import numpy as np\n'), ((3990, 4059), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': 'test_size', 'random_state': 'random_seed'}), '(X, y, test_size=test_size, random_state=random_seed)\n', (4006, 4059), False, 'from sklearn.model_selection import train_test_split\n'), ((4124, 4202), 'sklearn.model_selection.train_test_split', 'train_test_split', (['grouplabels.T'], {'test_size': 'test_size', 'random_state': 'random_seed'}), '(grouplabels.T, test_size=test_size, random_state=random_seed)\n', (4140, 4202), False, 'from sklearn.model_selection import train_test_split\n'), ((1417, 1439), 'numpy.unique', 'np.unique', (['grouplabels'], {}), '(grouplabels)\n', (1426, 1439), True, 'import numpy as np\n'), ((1851, 1863), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (1859, 1863), True, 'import numpy as np\n'), ((1952, 1978), 'numpy.where', 'np.where', (['(grouplabels == g)'], {}), '(grouplabels == g)\n', (1960, 1978), True, 'import numpy as np\n'), ((2189, 2282), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X[index[g]]', 'y[index[g]]'], {'test_size': 'test_size', 'random_state': 'random_seed'}), '(X[index[g]], y[index[g]], test_size=test_size,\n random_state=random_seed)\n', (2205, 2282), False, 'from sklearn.model_selection import train_test_split\n'), ((3641, 3668), 'numpy.array', 'np.array', (['grouplabels_train'], {}), '(grouplabels_train)\n', (3649, 3668), True, 'import numpy as np\n'), ((3720, 3746), 'numpy.array', 'np.array', (['grouplabels_test'], {}), '(grouplabels_test)\n', (3728, 3746), True, 'import numpy as np\n')]
#!/usr/bin/env python # encoding: utf-8 """An asymmetric SOM. This type of SOM doesn't use a grid, but the nodes are freely positioned on a plane. """ from collections import UserList from math import exp import random from random import choice from scipy.spatial import Voronoi, voronoi_plot_2d from .som import SOM, Topology, Node, normalize import numpy as np import matplotlib.pyplot as plt class ASOM(SOM): def __init__(self, data, width, height, topology_kwargs={}, **kwargs): """Initializes a new ASOM object. :data: should be a list of numerical vectors :width and :height: should be the dimensions of the initial grid :init_variance: the initial variance of the gaussian distribution of the neighbourhood function. :toroidal: whether to use a torus or a plane For other parameters, check the SOM documentation. """ toroidal = topology_kwargs.pop('toroidal', False) codebook_class = Torus if toroidal else Plane codebook = codebook_class(data, width, height, **topology_kwargs) super().__init__(data, codebook, **kwargs) def voronoi_plot(self): """Shows a representation of the SOM where the location of the nodes are marked and a Voronoi tesselation is made with this points.""" centroids, voronoi = self.codebook.voronoi voronoi_plot_2d(voronoi) for node in self.codebook: plt.text(node.x, node.y, '%.1f,%.1f,%.1f' % tuple(node.vector), horizontalalignment='center', verticalalignment='center') plt.title('Voronoi plot') plt.show() def color_plot(self): """Same as voronoi_plot, but assuming that the data is 3-dimensional, gives the regions the color corresponding to the weight vectors. """ assert self.data_vector_size == 3 centroids, vor = self.codebook.voronoi regions, vertices = voronoi_finite_polygons(vor) for node, region in zip(self.codebook, regions): polygon = vertices[region] plt.fill(*zip(*polygon), color=node.vector) plt.plot([x[0] for x in centroids], [x[1] for x in centroids], 'ko') plt.axis('equal') plt.xlim(vor.min_bound[0] - 0.1, vor.max_bound[0] + 0.1) plt.ylim(vor.min_bound[1] - 0.1, vor.max_bound[1] + 0.1) plt.title('Color plot') plt.show() def label_plot(self): """Some as voronoi plot, but if there are class labels available for the data, we plot the SOM with labels on the nodes where this class is the most frequent. """ assert self.labels is not None centroids, vor = self.codebook.voronoi regions, vertices = voronoi_finite_polygons(vor) normalized_codebook = normalize(node.vector for node in self.codebook) for codebook_vector, region in zip(normalized_codebook, regions): polygon = vertices[region] plt.fill(*zip(*polygon), color=codebook_vector[:3] + [.6]) xs, ys = zip(*centroids) plt.plot(xs, ys, 'ko', ms=1) plt.axis('equal') plt.xlim(vor.min_bound[0] - 0.1, vor.max_bound[0] + 0.1) plt.ylim(vor.min_bound[1] - 0.1, vor.max_bound[1] + 0.1) for label in set(self.labels) - set([None]): class_node = max(self.codebook, key=lambda node: node.labels[label]) plt.text(class_node.x, class_node.y, label, horizontalalignment='center', verticalalignment='center') plt.title('Voronoi label plot') plt.show() class PlaneNode(Node): """A node on the plane.""" def __init__(self, x, y, vector, push=.2, inhibition=15, **kwargs): super().__init__(vector, **kwargs) self.x, self.y = x, y self.push = push self.inhibition = inhibition def update(self, learning_rate, influence, input_vector, bmu): """The update rule is extended to also influence the position of the node on the plane. We only want this after a certain while though. """ super().update(learning_rate, influence, input_vector, bmu) self.update_position(learning_rate, influence, bmu) def update_position(self, learning_rate, influence, bmu): """Updates the position of the node on the plane.""" factor = learning_rate * (influence - self.push) / self.inhibition self.x = self.x + factor * (bmu.x - self.x) self.y = self.y + factor * (bmu.y - self.y) def location(self): """Returns the coordinates of the node on the plane as a tuple.""" return (self.x, self.y) def __repr__(self): """Representation: 'x,y (vector)'""" return '%f,%f (%s)' % (self.x, self.y, self.vector) class Plane(Topology, UserList): """A 2D topology where the coordinates of the nodes are not bound to a grid. """ NODE_CLASS = PlaneNode def __init__(self, data, width, height, init_variance=.5, **kwargs): """`width * height` nodes are generated.""" def new_node(x, y): return self.NODE_CLASS(x, y, choice(data), **kwargs) real_list = list(self._generate_nodes(width * height, new_node)) super().__init__(real_list) self.init_variance = init_variance self._voronoi = None def _generate_nodes(self, n, new_node): """Generates nodes randomly distributed in a circle with radius .5 around (.5, .5). """ i = 0 while i < n: x, y = random.random(), random.random() if (x - .5) ** 2 + (y - .5) ** 2 < .5 ** 2: yield new_node(x, y) i += 1 def __iter__(self): return iter(self.data) def neighbourhood(self, node1, node2, t): """Calculates the neighbourhood influence using a Gaussian distribution. """ return self._gaussian(node1, node2, t) # M-SOM # return max(0, 1 - self.plane_distance_squared(node1, node2)) def _gaussian(self, node1, node2, t): """Calculates the neighbourhood influence using a Gaussian distribution. """ dist_sq = self.plane_distance_squared(node1, node2) variance = self._gaussian_variance(t) return exp(-dist_sq / (2 * variance * variance)) def _gaussian_variance(self, t): """A decreasing function for the variance of the gaussian distribution. """ # return self.init_variance * (1 - t) return self.init_variance / (1 + t) # return self.init_variance ** (-t + 1) # return self.init_variance * (.001 / self.init_variance) ** t def plane_distance_squared(self, node1, node2): """Calculates the distance between two nodes on the plane.""" return (node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2 @property def voronoi(self): """Wrapper around self._voronoi to make sure we don't calculate it multiple times unnecessarily. """ if self._voronoi is None: self._calculate_voronoi() return self._voronoi[:2] def _calculate_voronoi(self): """Calculates the Voronoi tesselation of the nodes.""" centroids = [node.location() for node in self] vor = Voronoi(centroids) self._voronoi = (centroids, vor, voronoi_finite_polygons(vor)) def are_neighbours(self, node1, node2): """Checks whether two nodes are neighbouring in the Voronoi tesselation. """ # Calculate the finite regions of the nodes in the voronoi tesselation self._calculate_voronoi() regions, _ = self._voronoi[2] nodes = list(self) region1 = regions[nodes.index(node1)] region2 = regions[nodes.index(node2)] # Check if regions have borders in common def ridges(region): n = len(region) ridges = {(region[i], region[(i + 1) % n]) for i in range(n)} return ridges | {(y, x) for x, y in ridges} ridges_in_common = ridges(region1) & ridges(region2) return len(ridges_in_common) > 0 class TorusNode(PlaneNode): """A Node implementation for the Torus topology.""" def update_position(self, learning_rate, influence, bmu): """Updates the position of the node on the torus.""" factor = learning_rate * (influence - self.push) / self.inhibition self.x = self.lin_comb(self.x, bmu.x, factor) self.y = self.lin_comb(self.y, bmu.y, factor) @staticmethod def lin_comb(a, b, factor): if b < a: a, b = b, a factor = 1 - factor if abs(a - b) > abs(a + 1 - b): a += 1 c = ((1 - factor) * a + factor * b) % 1 return c class Torus(Plane): """An extension of the plane using a torus.""" NODE_CLASS = TorusNode def plane_distance_squared(self, node1, node2): dx = abs(node1.x - node2.x) dy = abs(node1.y - node2.y) return min(dx, 1 - dx) ** 2 + min(dy, 1 - dy) ** 2 # Adapted from common code of <NAME> # (https://gist.github.com/pv/8036995) def voronoi_finite_polygons(vor, radius=None): """Reconstruct infinite voronoi regions in a 2D diagram to finite regions. :vor: Voronoi diagram :radius: (optional) distance to 'points at infinity' Returns :regions: Indices of vertices in each revised Voronoi regions :vertices: Coordinates for revised Voronoi vertices. Same as coordinates of input vertices, with 'points at infinity' appended to the end. """ if vor.points.shape[1] != 2: raise ValueError("Requires 2D input") new_regions = [] new_vertices = vor.vertices.tolist() center = vor.points.mean(axis=0) if radius is None: radius = vor.points.ptp().max() * 2 # Construct a map containing all ridges for a given point all_ridges = {} for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices): all_ridges.setdefault(p1, []).append((p2, v1, v2)) all_ridges.setdefault(p2, []).append((p1, v1, v2)) # Reconstruct infinite regions for p1, region in enumerate(vor.point_region): vertices = vor.regions[region] if all(v >= 0 for v in vertices): # Finite region new_regions.append(vertices) continue # Reconstruct a non-finite region ridges = all_ridges[p1] new_region = [v for v in vertices if v >= 0] for p2, v1, v2 in ridges: if v2 < 0: v1, v2 = v2, v1 if v1 >= 0: # Finite ridge: already in the region continue # Compute the missing endpoint of an infinite ridge t = vor.points[p2] - vor.points[p1] # tangent t /= np.linalg.norm(t) n = np.array([-t[1], t[0]]) # normal midpoint = vor.points[[p1, p2]].mean(axis=0) direction = np.sign(np.dot(midpoint - center, n)) * n far_point = vor.vertices[v2] + direction * radius new_region.append(len(new_vertices)) new_vertices.append(far_point.tolist()) # Sort region counterclockwise vs = np.asarray([new_vertices[v] for v in new_region]) c = vs.mean(axis=0) angles = np.arctan2(vs[:, 1] - c[1], vs[:, 0] - c[0]) new_region = np.array(new_region)[np.argsort(angles)] # Finish new_regions.append(new_region.tolist()) return new_regions, np.asarray(new_vertices)
[ "matplotlib.pyplot.title", "scipy.spatial.voronoi_plot_2d", "matplotlib.pyplot.xlim", "math.exp", "matplotlib.pyplot.show", "numpy.arctan2", "matplotlib.pyplot.plot", "matplotlib.pyplot.ylim", "numpy.asarray", "matplotlib.pyplot.axis", "scipy.spatial.Voronoi", "random.choice", "matplotlib.pyplot.text", "numpy.argsort", "random.random", "numpy.linalg.norm", "numpy.array", "numpy.dot" ]
[((1379, 1403), 'scipy.spatial.voronoi_plot_2d', 'voronoi_plot_2d', (['voronoi'], {}), '(voronoi)\n', (1394, 1403), False, 'from scipy.spatial import Voronoi, voronoi_plot_2d\n'), ((1604, 1629), 'matplotlib.pyplot.title', 'plt.title', (['"""Voronoi plot"""'], {}), "('Voronoi plot')\n", (1613, 1629), True, 'import matplotlib.pyplot as plt\n'), ((1638, 1648), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1646, 1648), True, 'import matplotlib.pyplot as plt\n'), ((2147, 2215), 'matplotlib.pyplot.plot', 'plt.plot', (['[x[0] for x in centroids]', '[x[1] for x in centroids]', '"""ko"""'], {}), "([x[0] for x in centroids], [x[1] for x in centroids], 'ko')\n", (2155, 2215), True, 'import matplotlib.pyplot as plt\n'), ((2224, 2241), 'matplotlib.pyplot.axis', 'plt.axis', (['"""equal"""'], {}), "('equal')\n", (2232, 2241), True, 'import matplotlib.pyplot as plt\n'), ((2250, 2306), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(vor.min_bound[0] - 0.1)', '(vor.max_bound[0] + 0.1)'], {}), '(vor.min_bound[0] - 0.1, vor.max_bound[0] + 0.1)\n', (2258, 2306), True, 'import matplotlib.pyplot as plt\n'), ((2315, 2371), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(vor.min_bound[1] - 0.1)', '(vor.max_bound[1] + 0.1)'], {}), '(vor.min_bound[1] - 0.1, vor.max_bound[1] + 0.1)\n', (2323, 2371), True, 'import matplotlib.pyplot as plt\n'), ((2381, 2404), 'matplotlib.pyplot.title', 'plt.title', (['"""Color plot"""'], {}), "('Color plot')\n", (2390, 2404), True, 'import matplotlib.pyplot as plt\n'), ((2413, 2423), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2421, 2423), True, 'import matplotlib.pyplot as plt\n'), ((3095, 3123), 'matplotlib.pyplot.plot', 'plt.plot', (['xs', 'ys', '"""ko"""'], {'ms': '(1)'}), "(xs, ys, 'ko', ms=1)\n", (3103, 3123), True, 'import matplotlib.pyplot as plt\n'), ((3132, 3149), 'matplotlib.pyplot.axis', 'plt.axis', (['"""equal"""'], {}), "('equal')\n", (3140, 3149), True, 'import matplotlib.pyplot as plt\n'), ((3158, 3214), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(vor.min_bound[0] - 0.1)', '(vor.max_bound[0] + 0.1)'], {}), '(vor.min_bound[0] - 0.1, vor.max_bound[0] + 0.1)\n', (3166, 3214), True, 'import matplotlib.pyplot as plt\n'), ((3223, 3279), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(vor.min_bound[1] - 0.1)', '(vor.max_bound[1] + 0.1)'], {}), '(vor.min_bound[1] - 0.1, vor.max_bound[1] + 0.1)\n', (3231, 3279), True, 'import matplotlib.pyplot as plt\n'), ((3559, 3590), 'matplotlib.pyplot.title', 'plt.title', (['"""Voronoi label plot"""'], {}), "('Voronoi label plot')\n", (3568, 3590), True, 'import matplotlib.pyplot as plt\n'), ((3599, 3609), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3607, 3609), True, 'import matplotlib.pyplot as plt\n'), ((6318, 6359), 'math.exp', 'exp', (['(-dist_sq / (2 * variance * variance))'], {}), '(-dist_sq / (2 * variance * variance))\n', (6321, 6359), False, 'from math import exp\n'), ((7324, 7342), 'scipy.spatial.Voronoi', 'Voronoi', (['centroids'], {}), '(centroids)\n', (7331, 7342), False, 'from scipy.spatial import Voronoi, voronoi_plot_2d\n'), ((11280, 11329), 'numpy.asarray', 'np.asarray', (['[new_vertices[v] for v in new_region]'], {}), '([new_vertices[v] for v in new_region])\n', (11290, 11329), True, 'import numpy as np\n'), ((11375, 11419), 'numpy.arctan2', 'np.arctan2', (['(vs[:, 1] - c[1])', '(vs[:, 0] - c[0])'], {}), '(vs[:, 1] - c[1], vs[:, 0] - c[0])\n', (11385, 11419), True, 'import numpy as np\n'), ((11573, 11597), 'numpy.asarray', 'np.asarray', (['new_vertices'], {}), '(new_vertices)\n', (11583, 11597), True, 'import numpy as np\n'), ((3427, 3532), 'matplotlib.pyplot.text', 'plt.text', (['class_node.x', 'class_node.y', 'label'], {'horizontalalignment': '"""center"""', 'verticalalignment': '"""center"""'}), "(class_node.x, class_node.y, label, horizontalalignment='center',\n verticalalignment='center')\n", (3435, 3532), True, 'import matplotlib.pyplot as plt\n'), ((10871, 10888), 'numpy.linalg.norm', 'np.linalg.norm', (['t'], {}), '(t)\n', (10885, 10888), True, 'import numpy as np\n'), ((10905, 10928), 'numpy.array', 'np.array', (['[-t[1], t[0]]'], {}), '([-t[1], t[0]])\n', (10913, 10928), True, 'import numpy as np\n'), ((11441, 11461), 'numpy.array', 'np.array', (['new_region'], {}), '(new_region)\n', (11449, 11461), True, 'import numpy as np\n'), ((11462, 11480), 'numpy.argsort', 'np.argsort', (['angles'], {}), '(angles)\n', (11472, 11480), True, 'import numpy as np\n'), ((5150, 5162), 'random.choice', 'choice', (['data'], {}), '(data)\n', (5156, 5162), False, 'from random import choice\n'), ((5566, 5581), 'random.random', 'random.random', ([], {}), '()\n', (5579, 5581), False, 'import random\n'), ((5583, 5598), 'random.random', 'random.random', ([], {}), '()\n', (5596, 5598), False, 'import random\n'), ((11029, 11057), 'numpy.dot', 'np.dot', (['(midpoint - center)', 'n'], {}), '(midpoint - center, n)\n', (11035, 11057), True, 'import numpy as np\n')]
import collections import numpy as np import tensorflow as tf from tensorflow.python.ops.rnn import dynamic_rnn from tensorflow.contrib.rnn import BasicLSTMCell from helpers import FileLogger from ml_utils import create_adam_optimizer from ml_utils import create_weight_variable from phased_lstm import PhasedLSTMCell from sanitycheck.constants import * from sanitycheck.data_reader import next_batch def get_placeholders(): return tf.placeholder('float32', [BATCH_SIZE, SEQUENCE_LENGTH, 2 if ADD_TIME_INPUTS else 1]), tf.placeholder( 'float32', [BATCH_SIZE, 1]) def run_experiment(init_session=None, placeholder_def_func=get_placeholders): batch_size = BATCH_SIZE hidden_size = HIDDEN_STATES learning_rate = 3e-4 momentum = 0.9 file_logger = FileLogger('log.tsv', ['step', 'training_loss', 'benchmark_loss']) x, y = placeholder_def_func() if ADD_TIME_INPUTS: lstm = PhasedLSTMCell(hidden_size) print('Using PhasedLSTMCell impl.') else: lstm = BasicLSTMCell(hidden_size) print('Using BasicLSTMCell impl.') initial_state = (tf.random_normal([batch_size, hidden_size], stddev=0.1), tf.random_normal([batch_size, hidden_size], stddev=0.1)) outputs, state = dynamic_rnn(lstm, x, initial_state=initial_state, dtype=tf.float32) rnn_out = tf.squeeze(tf.slice(outputs, begin=[0, tf.shape(outputs)[1] - 1, 0], size=[-1, -1, -1])) # _, final_hidden = state fc0_w = create_weight_variable('fc0_w', [hidden_size, 1]) fc0_b = tf.get_variable('fc0_b', [1]) out = tf.matmul(rnn_out, fc0_w) + fc0_b loss = tf.reduce_mean(tf.square(out - y)) optimizer = create_adam_optimizer(learning_rate, momentum) trainable = tf.trainable_variables() grad_update = optimizer.minimize(loss, var_list=trainable) if init_session is not None: sess = init_session else: sess = tf.Session(config=tf.ConfigProto(log_device_placement=False)) init = tf.global_variables_initializer() sess.run(init) # lstm.__call__(x[:, 0, :], initial_state, scope=None) d = collections.deque(maxlen=10) benchmark_d = collections.deque(maxlen=10) max_steps = int(1e6) for step in range(1, max_steps): if step % 10 == 0: print('step {}/{}'.format(step, max_steps)) x_s, y_s = next_batch(batch_size) loss_value, _, pred_value = sess.run([loss, grad_update, out], feed_dict={x: x_s, y: y_s}) # The mean converges to 0.5 for IID U(0,1) random variables. Good benchmark. benchmark_d.append(np.mean(np.square(0.5 - y_s))) d.append(loss_value) mean_loss = np.mean(d) benchmark_mean_loss = np.mean(benchmark_d) file_logger.write([step, mean_loss, benchmark_mean_loss]) file_logger.close() if __name__ == '__main__': run_experiment()
[ "tensorflow.trainable_variables", "phased_lstm.PhasedLSTMCell", "tensorflow.matmul", "tensorflow.ConfigProto", "numpy.mean", "collections.deque", "tensorflow.get_variable", "tensorflow.placeholder", "ml_utils.create_weight_variable", "ml_utils.create_adam_optimizer", "tensorflow.global_variables_initializer", "numpy.square", "tensorflow.contrib.rnn.BasicLSTMCell", "sanitycheck.data_reader.next_batch", "tensorflow.random_normal", "helpers.FileLogger", "tensorflow.python.ops.rnn.dynamic_rnn", "tensorflow.shape", "tensorflow.square" ]
[((781, 847), 'helpers.FileLogger', 'FileLogger', (['"""log.tsv"""', "['step', 'training_loss', 'benchmark_loss']"], {}), "('log.tsv', ['step', 'training_loss', 'benchmark_loss'])\n", (791, 847), False, 'from helpers import FileLogger\n'), ((1268, 1335), 'tensorflow.python.ops.rnn.dynamic_rnn', 'dynamic_rnn', (['lstm', 'x'], {'initial_state': 'initial_state', 'dtype': 'tf.float32'}), '(lstm, x, initial_state=initial_state, dtype=tf.float32)\n', (1279, 1335), False, 'from tensorflow.python.ops.rnn import dynamic_rnn\n'), ((1482, 1531), 'ml_utils.create_weight_variable', 'create_weight_variable', (['"""fc0_w"""', '[hidden_size, 1]'], {}), "('fc0_w', [hidden_size, 1])\n", (1504, 1531), False, 'from ml_utils import create_weight_variable\n'), ((1544, 1573), 'tensorflow.get_variable', 'tf.get_variable', (['"""fc0_b"""', '[1]'], {}), "('fc0_b', [1])\n", (1559, 1573), True, 'import tensorflow as tf\n'), ((1681, 1727), 'ml_utils.create_adam_optimizer', 'create_adam_optimizer', (['learning_rate', 'momentum'], {}), '(learning_rate, momentum)\n', (1702, 1727), False, 'from ml_utils import create_adam_optimizer\n'), ((1744, 1768), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (1766, 1768), True, 'import tensorflow as tf\n'), ((1992, 2025), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2023, 2025), True, 'import tensorflow as tf\n'), ((2114, 2142), 'collections.deque', 'collections.deque', ([], {'maxlen': '(10)'}), '(maxlen=10)\n', (2131, 2142), False, 'import collections\n'), ((2161, 2189), 'collections.deque', 'collections.deque', ([], {'maxlen': '(10)'}), '(maxlen=10)\n', (2178, 2189), False, 'import collections\n'), ((439, 528), 'tensorflow.placeholder', 'tf.placeholder', (['"""float32"""', '[BATCH_SIZE, SEQUENCE_LENGTH, 2 if ADD_TIME_INPUTS else 1]'], {}), "('float32', [BATCH_SIZE, SEQUENCE_LENGTH, 2 if\n ADD_TIME_INPUTS else 1])\n", (453, 528), True, 'import tensorflow as tf\n'), ((526, 568), 'tensorflow.placeholder', 'tf.placeholder', (['"""float32"""', '[BATCH_SIZE, 1]'], {}), "('float32', [BATCH_SIZE, 1])\n", (540, 568), True, 'import tensorflow as tf\n'), ((922, 949), 'phased_lstm.PhasedLSTMCell', 'PhasedLSTMCell', (['hidden_size'], {}), '(hidden_size)\n', (936, 949), False, 'from phased_lstm import PhasedLSTMCell\n'), ((1019, 1045), 'tensorflow.contrib.rnn.BasicLSTMCell', 'BasicLSTMCell', (['hidden_size'], {}), '(hidden_size)\n', (1032, 1045), False, 'from tensorflow.contrib.rnn import BasicLSTMCell\n'), ((1111, 1166), 'tensorflow.random_normal', 'tf.random_normal', (['[batch_size, hidden_size]'], {'stddev': '(0.1)'}), '([batch_size, hidden_size], stddev=0.1)\n', (1127, 1166), True, 'import tensorflow as tf\n'), ((1189, 1244), 'tensorflow.random_normal', 'tf.random_normal', (['[batch_size, hidden_size]'], {'stddev': '(0.1)'}), '([batch_size, hidden_size], stddev=0.1)\n', (1205, 1244), True, 'import tensorflow as tf\n'), ((1584, 1609), 'tensorflow.matmul', 'tf.matmul', (['rnn_out', 'fc0_w'], {}), '(rnn_out, fc0_w)\n', (1593, 1609), True, 'import tensorflow as tf\n'), ((1645, 1663), 'tensorflow.square', 'tf.square', (['(out - y)'], {}), '(out - y)\n', (1654, 1663), True, 'import tensorflow as tf\n'), ((2357, 2379), 'sanitycheck.data_reader.next_batch', 'next_batch', (['batch_size'], {}), '(batch_size)\n', (2367, 2379), False, 'from sanitycheck.data_reader import next_batch\n'), ((2671, 2681), 'numpy.mean', 'np.mean', (['d'], {}), '(d)\n', (2678, 2681), True, 'import numpy as np\n'), ((2712, 2732), 'numpy.mean', 'np.mean', (['benchmark_d'], {}), '(benchmark_d)\n', (2719, 2732), True, 'import numpy as np\n'), ((1937, 1979), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'log_device_placement': '(False)'}), '(log_device_placement=False)\n', (1951, 1979), True, 'import tensorflow as tf\n'), ((2599, 2619), 'numpy.square', 'np.square', (['(0.5 - y_s)'], {}), '(0.5 - y_s)\n', (2608, 2619), True, 'import numpy as np\n'), ((1389, 1406), 'tensorflow.shape', 'tf.shape', (['outputs'], {}), '(outputs)\n', (1397, 1406), True, 'import tensorflow as tf\n')]
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: token_features Author : <NAME> date: 2019/8/20 ------------------------------------------------- """ __author__ = '<NAME>' # 获取token features,即每一个字符的向量,可以用cls作为句子向量,也可以用每一个字符的向量 import os import sys curPath = os.path.abspath(os.path.dirname(__file__)) rootPath = os.path.split(curPath)[0] sys.path.append(rootPath) print(sys.path) import tensorflow as tf import tokenization import modeling import numpy as np import h5py # 配置文件 # data_root是模型文件,可以用预训练的,也可以用在分类任务上微调过的模型 data_root = '../chinese_wwm_ext_L-12_H-768_A-12/' bert_config_file = data_root + 'bert_config.json' bert_config = modeling.BertConfig.from_json_file(bert_config_file) # init_checkpoint = data_root + 'bert_model.ckpt' # 这样的话,就是使用在具体任务上微调过的模型来做词向量 # init_checkpoint = '../model/legal_fine_tune/model.ckpt-4153' init_checkpoint = '../model/cnews_fine_tune/model.ckpt-18674' bert_vocab_file = data_root + 'vocab.txt' # 经过处理的输入文件路径 # file_input_x_c_train = '../data/legal_domain/train_x_c.txt' # file_input_x_c_val = '../data/legal_domain/val_x_c.txt' # file_input_x_c_test = '../data/legal_domain/test_x_c.txt' # embedding存放路径 # emb_file_dir = '../data/legal_domain/emb_fine_tune.h5' # graph input_ids = tf.placeholder(tf.int32, shape=[None, None], name='input_ids') input_mask = tf.placeholder(tf.int32, shape=[None, None], name='input_masks') segment_ids = tf.placeholder(tf.int32, shape=[None, None], name='segment_ids') BATCH_SIZE = 16 SEQ_LEN = 510 def batch_iter(x, batch_size=64, shuffle=False): """生成批次数据,一个batch一个batch地产生句子向量""" data_len = len(x) num_batch = int((data_len - 1) / batch_size) + 1 if shuffle: indices = np.random.permutation(np.arange(data_len)) x_shuffle = np.array(x)[indices] else: x_shuffle = x[:] word_mask = [[1] * (SEQ_LEN + 2) for i in range(data_len)] word_segment_ids = [[0] * (SEQ_LEN + 2) for i in range(data_len)] for i in range(num_batch): start_id = i * batch_size end_id = min((i + 1) * batch_size, data_len) yield x_shuffle[start_id:end_id], word_mask[start_id:end_id], word_segment_ids[start_id:end_id] def read_input(file_dir): # 从文件中读到所有需要转化的句子 # 这里需要做统一长度为510 # input_list = [] with open(file_dir, 'r', encoding='utf-8') as f: input_list = f.readlines() # input_list是输入list,每一个元素是一个str,代表输入文本 # 现在需要转化成id_list word_id_list = [] for query in input_list: quert_str = ''.join(query.strip().split()) split_tokens = token.tokenize(quert_str) if len(split_tokens) > SEQ_LEN: split_tokens = split_tokens[:SEQ_LEN] else: while len(split_tokens) < SEQ_LEN: split_tokens.append('[PAD]') # **************************************************** # 如果是需要用到句向量,需要用这个方法 # 加个CLS头,加个SEP尾 tokens = [] tokens.append("[CLS]") for i_token in split_tokens: tokens.append(i_token) tokens.append("[SEP]") # **************************************************** word_ids = token.convert_tokens_to_ids(tokens) word_id_list.append(word_ids) return word_id_list # 初始化BERT model = modeling.BertModel( config=bert_config, is_training=False, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=False ) # 加载BERT模型 tvars = tf.trainable_variables() (assignment, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) tf.train.init_from_checkpoint(init_checkpoint, assignment) # 获取最后一层和倒数第二层 encoder_last_layer = model.get_sequence_output() encoder_last2_layer = model.all_encoder_layers[-2] # 读取数据 token = tokenization.FullTokenizer(vocab_file=bert_vocab_file) # input_train_data = read_input(file_dir='../data/legal_domain/train_x_c.txt') input_train_data = read_input(file_dir='../data/cnews/train_x.txt') # input_val_data = read_input(file_dir='../data/legal_domain/val_x_c.txt') input_val_data = read_input(file_dir='../data/cnews/val_x.txt') # input_test_data = read_input(file_dir='../data/legal_domain/test_x_c.txt') input_test_data = read_input(file_dir='../data/cnews/test_x.txt') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) save_file = h5py.File('../downstream/emb_fine_tune_cnews.h5', 'w') emb_train = [] train_batches = batch_iter(input_train_data, batch_size=BATCH_SIZE, shuffle=False) for word_id, mask, segment in train_batches: feed_data = {input_ids: word_id, input_mask: mask, segment_ids: segment} last2 = sess.run(encoder_last2_layer, feed_dict=feed_data) # print(last2.shape) for sub_array in last2: emb_train.append(sub_array) # 可以保存了 emb_train_array = np.asarray(emb_train) save_file.create_dataset('train', data=emb_train_array) # val emb_val = [] val_batches = batch_iter(input_val_data, batch_size=BATCH_SIZE, shuffle=False) for word_id, mask, segment in val_batches: feed_data = {input_ids: word_id, input_mask: mask, segment_ids: segment} last2 = sess.run(encoder_last2_layer, feed_dict=feed_data) # print(last2.shape) for sub_array in last2: emb_val.append(sub_array) # 可以保存了 emb_val_array = np.asarray(emb_val) save_file.create_dataset('val', data=emb_val_array) # test emb_test = [] test_batches = batch_iter(input_test_data, batch_size=BATCH_SIZE, shuffle=False) for word_id, mask, segment in test_batches: feed_data = {input_ids: word_id, input_mask: mask, segment_ids: segment} last2 = sess.run(encoder_last2_layer, feed_dict=feed_data) # print(last2.shape) for sub_array in last2: emb_test.append(sub_array) # 可以保存了 emb_test_array = np.asarray(emb_test) save_file.create_dataset('test', data=emb_test_array) save_file.close() print(emb_train_array.shape) print(emb_val_array.shape) print(emb_test_array.shape) # 这边目标是接下游CNN任务,因此先写入所有token的embedding,768维 # 写入shape直接是(N, max_seq_len + 2, 768) # 下游需要选用的时候,如果卷积,则去掉头尾使用,如果全连接,则直接使用头部 # 这里直接设定max_seq_len=510,加上[cls]和[sep],得到512 # 写入(n, 512, 768) ndarray到文件,需要用的时候再读出来,就直接舍弃embedding层
[ "sys.path.append", "h5py.File", "tensorflow.trainable_variables", "modeling.BertModel", "tensorflow.global_variables_initializer", "tokenization.FullTokenizer", "os.path.dirname", "tensorflow.Session", "numpy.asarray", "tensorflow.placeholder", "tensorflow.train.init_from_checkpoint", "numpy.arange", "modeling.BertConfig.from_json_file", "numpy.array", "os.path.split", "modeling.get_assignment_map_from_checkpoint" ]
[((408, 433), 'sys.path.append', 'sys.path.append', (['rootPath'], {}), '(rootPath)\n', (423, 433), False, 'import sys\n'), ((707, 759), 'modeling.BertConfig.from_json_file', 'modeling.BertConfig.from_json_file', (['bert_config_file'], {}), '(bert_config_file)\n', (741, 759), False, 'import modeling\n'), ((1296, 1358), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, None]', 'name': '"""input_ids"""'}), "(tf.int32, shape=[None, None], name='input_ids')\n", (1310, 1358), True, 'import tensorflow as tf\n'), ((1372, 1436), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, None]', 'name': '"""input_masks"""'}), "(tf.int32, shape=[None, None], name='input_masks')\n", (1386, 1436), True, 'import tensorflow as tf\n'), ((1451, 1515), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, None]', 'name': '"""segment_ids"""'}), "(tf.int32, shape=[None, None], name='segment_ids')\n", (1465, 1515), True, 'import tensorflow as tf\n'), ((3285, 3453), 'modeling.BertModel', 'modeling.BertModel', ([], {'config': 'bert_config', 'is_training': '(False)', 'input_ids': 'input_ids', 'input_mask': 'input_mask', 'token_type_ids': 'segment_ids', 'use_one_hot_embeddings': '(False)'}), '(config=bert_config, is_training=False, input_ids=\n input_ids, input_mask=input_mask, token_type_ids=segment_ids,\n use_one_hot_embeddings=False)\n', (3303, 3453), False, 'import modeling\n'), ((3491, 3515), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (3513, 3515), True, 'import tensorflow as tf\n'), ((3559, 3626), 'modeling.get_assignment_map_from_checkpoint', 'modeling.get_assignment_map_from_checkpoint', (['tvars', 'init_checkpoint'], {}), '(tvars, init_checkpoint)\n', (3602, 3626), False, 'import modeling\n'), ((3627, 3685), 'tensorflow.train.init_from_checkpoint', 'tf.train.init_from_checkpoint', (['init_checkpoint', 'assignment'], {}), '(init_checkpoint, assignment)\n', (3656, 3685), True, 'import tensorflow as tf\n'), ((3817, 3871), 'tokenization.FullTokenizer', 'tokenization.FullTokenizer', ([], {'vocab_file': 'bert_vocab_file'}), '(vocab_file=bert_vocab_file)\n', (3843, 3871), False, 'import tokenization\n'), ((344, 369), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (359, 369), False, 'import os\n'), ((382, 404), 'os.path.split', 'os.path.split', (['curPath'], {}), '(curPath)\n', (395, 404), False, 'import os\n'), ((4308, 4320), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (4318, 4320), True, 'import tensorflow as tf\n'), ((4394, 4448), 'h5py.File', 'h5py.File', (['"""../downstream/emb_fine_tune_cnews.h5"""', '"""w"""'], {}), "('../downstream/emb_fine_tune_cnews.h5', 'w')\n", (4403, 4448), False, 'import h5py\n'), ((4887, 4908), 'numpy.asarray', 'np.asarray', (['emb_train'], {}), '(emb_train)\n', (4897, 4908), True, 'import numpy as np\n'), ((5406, 5425), 'numpy.asarray', 'np.asarray', (['emb_val'], {}), '(emb_val)\n', (5416, 5425), True, 'import numpy as np\n'), ((5926, 5946), 'numpy.asarray', 'np.asarray', (['emb_test'], {}), '(emb_test)\n', (5936, 5946), True, 'import numpy as np\n'), ((4343, 4376), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (4374, 4376), True, 'import tensorflow as tf\n'), ((1769, 1788), 'numpy.arange', 'np.arange', (['data_len'], {}), '(data_len)\n', (1778, 1788), True, 'import numpy as np\n'), ((1810, 1821), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (1818, 1821), True, 'import numpy as np\n')]
#!/usr/bin/env python # inst: university of bristol # auth: <NAME> # mail: <EMAIL> / <EMAIL> import sys import subprocess import configparser import getopt import numpy as np import pandas as pd import gdalutils from lfptools import shapefile from lfptools import misc_utils from osgeo import osr def getwidths_shell(argv): myhelp = ''' LFPtools v0.1 Name ---- getwidths Description ----------- Retrieve river widths from a data set Usage ----- >> lfp-getwidths -i config.txt Content in config.txt --------------------- [getwidths] thresh = Searching window threshold in same units as input data set output = Shapefile output file path recf = `Rec` file path netf = Target mask file path proj = Output projection in Proj4 format fwidth = Source width file path GDAL format ''' try: opts, args = getopt.getopt(argv, "i:") for o, a in opts: if o == "-i": inifile = a except: print(myhelp) sys.exit(0) config = configparser.SafeConfigParser() config.read(inifile) recf = str(config.get('getwidths', 'recf')) netf = str(config.get('getwidths', 'netf')) proj = str(config.get('getwidths', 'proj')) fwidth = str(config.get('getwidths', 'fwidth')) output = str(config.get('getwidths', 'output')) thresh = np.float64(config.get('getwidths', 'thresh')) getwidths(recf, netf, proj, fwidth, output, thresh) def getwidths(recf, netf, proj, fwidth, output, thresh): print(" running getwidths.py...") w = shapefile.Writer(shapefile.POINT) w.field('x') w.field('y') w.field('width') # Reading XXX_rec.csv file rec = pd.read_csv(recf) # Get nearest width from datasource # Uses Euclidean distance to find nearest point in source # `try` included since it may happen that the width database doesn't # contains data in the basin if that is the case all values are assigned # a 30 m width width = [] for x, y in zip(rec['lon'], rec['lat']): xmin = x - thresh ymin = y - thresh xmax = x + thresh ymax = y + thresh dat, geo = gdalutils.clip_raster(fwidth, xmin, ymin, xmax, ymax) iy, ix = np.where(dat > 30) xdat = geo[8][ix] ydat = geo[9][iy] try: dis, ind = misc_utils.near_euc(xdat, ydat, (x, y)) val = dat[iy[ind], ix[ind]] width.append(val) except ValueError: width.append(np.nan) rec['width'] = width # Group river network per link # If there are more NaN than real values, all values in link are equal to 30 # Otherwise, interpolate real values to fill NaNs def check_width(a): b = a.copy() c = b.isnull() falses = c.sum() trues = c.count() - falses if trues >= falses: return a.interpolate(limit_direction='both') else: b.loc[:] = 30 return b rec.loc[:, 'width'] = rec.groupby('link').width.apply(check_width) # Writing .shp resulting file for x, y, width in zip(rec['lon'], rec['lat'], rec['width']): w.point(x, y) w.record(x, y, width) w.save("%s.shp" % output) # write .prj file prj = open("%s.prj" % output, "w") srs = osr.SpatialReference() srs.ImportFromProj4(proj) prj.write(srs.ExportToWkt()) prj.close() geo = gdalutils.get_geo(netf) fmt = "GTiff" nodata = -9999 name1 = output+".shp" name2 = output+".tif" subprocess.call(["gdal_rasterize", "-a_nodata", str(nodata), "-of", fmt, "-tr", str(geo[6]), str(geo[7]), "-a", "width", "-a_srs", proj, "-te", str(geo[0]), str(geo[1]), str(geo[2]), str(geo[3]), name1, name2]) if __name__ == '__main__': getwidths_shell(sys.argv[1:])
[ "gdalutils.get_geo", "lfptools.misc_utils.near_euc", "getopt.getopt", "pandas.read_csv", "lfptools.shapefile.Writer", "numpy.where", "configparser.SafeConfigParser", "sys.exit", "gdalutils.clip_raster", "osgeo.osr.SpatialReference" ]
[((1001, 1032), 'configparser.SafeConfigParser', 'configparser.SafeConfigParser', ([], {}), '()\n', (1030, 1032), False, 'import configparser\n'), ((1533, 1566), 'lfptools.shapefile.Writer', 'shapefile.Writer', (['shapefile.POINT'], {}), '(shapefile.POINT)\n', (1549, 1566), False, 'from lfptools import shapefile\n'), ((1664, 1681), 'pandas.read_csv', 'pd.read_csv', (['recf'], {}), '(recf)\n', (1675, 1681), True, 'import pandas as pd\n'), ((3284, 3306), 'osgeo.osr.SpatialReference', 'osr.SpatialReference', ([], {}), '()\n', (3304, 3306), False, 'from osgeo import osr\n'), ((3397, 3420), 'gdalutils.get_geo', 'gdalutils.get_geo', (['netf'], {}), '(netf)\n', (3414, 3420), False, 'import gdalutils\n'), ((827, 852), 'getopt.getopt', 'getopt.getopt', (['argv', '"""i:"""'], {}), "(argv, 'i:')\n", (840, 852), False, 'import getopt\n'), ((2139, 2192), 'gdalutils.clip_raster', 'gdalutils.clip_raster', (['fwidth', 'xmin', 'ymin', 'xmax', 'ymax'], {}), '(fwidth, xmin, ymin, xmax, ymax)\n', (2160, 2192), False, 'import gdalutils\n'), ((2210, 2228), 'numpy.where', 'np.where', (['(dat > 30)'], {}), '(dat > 30)\n', (2218, 2228), True, 'import numpy as np\n'), ((975, 986), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (983, 986), False, 'import sys\n'), ((2318, 2357), 'lfptools.misc_utils.near_euc', 'misc_utils.near_euc', (['xdat', 'ydat', '(x, y)'], {}), '(xdat, ydat, (x, y))\n', (2337, 2357), False, 'from lfptools import misc_utils\n')]
from .experiment import Experiment import numpy as np class XenonSimple(Experiment): detector_name = 'Xe_simple' target_material = 'Xe' exposure_tonne_year = 5 energy_threshold_kev = 10 cut_efficiency = 0.8 detection_efficiency = 0.5 interaction_type = 'SI' location = 'XENON' def __init__(self, n_energy_bins=10, e_min_kev=0, e_max_kev=100, ): super().__init__(n_energy_bins=n_energy_bins, e_min_kev=e_min_kev, e_max_kev=e_max_kev) def resolution(self, energies_in_kev): """Simple square root dependency of the energy resolution""" return 0.6 * np.sqrt(energies_in_kev) def background_function(self, energies_in_kev): """Assume background free detector""" return np.zeros(len(energies_in_kev)) class GermaniumSimple(Experiment): detector_name = 'Ge_simple' target_material = 'Ge' exposure_tonne_year = 3 energy_threshold_kev = 10 cut_efficiency = 0.8 detection_efficiency = 0.9 interaction_type = 'SI' location = 'SUF' def __init__(self, n_energy_bins=10, e_min_kev=0, e_max_kev=100, ): super().__init__(n_energy_bins=n_energy_bins, e_min_kev=e_min_kev, e_max_kev=e_max_kev) def resolution(self, energies_in_kev): """Simple resolution model""" return np.sqrt(0.3 ** 2 + (0.06 ** 2) * energies_in_kev) def background_function(self, energies_in_kev): """Assume background free detector""" return np.zeros(len(energies_in_kev)) class ArgonSimple(Experiment): detector_name = 'Ar_simple' target_material = 'Ar' exposure_tonne_year = 10 energy_threshold_kev = 30 cut_efficiency = 0.8 detection_efficiency = 0.8 interaction_type = 'SI' location = 'XENON' # Assume also located at LNGS def __init__(self, n_energy_bins=10, e_min_kev=0, e_max_kev=100, ): super().__init__(n_energy_bins=n_energy_bins, e_min_kev=e_min_kev, e_max_kev=e_max_kev) def resolution(self, energies_in_kev): """Simple square root dependency of the energy resolution""" return 0.7 * np.sqrt(energies_in_kev) def background_function(self, energies_in_kev): """Assume background free detector""" return np.zeros(len(energies_in_kev))
[ "numpy.sqrt" ]
[((1309, 1356), 'numpy.sqrt', 'np.sqrt', (['(0.3 ** 2 + 0.06 ** 2 * energies_in_kev)'], {}), '(0.3 ** 2 + 0.06 ** 2 * energies_in_kev)\n', (1316, 1356), True, 'import numpy as np\n'), ((614, 638), 'numpy.sqrt', 'np.sqrt', (['energies_in_kev'], {}), '(energies_in_kev)\n', (621, 638), True, 'import numpy as np\n'), ((2096, 2120), 'numpy.sqrt', 'np.sqrt', (['energies_in_kev'], {}), '(energies_in_kev)\n', (2103, 2120), True, 'import numpy as np\n')]
import os import unittest import cv2 import sys import numpy as np from src.models.storage.frame import Frame from src.models.storage.batch import FrameBatch from src.udfs.depth_estimation.depth_estimator import DepthEstimator from src.utils.frame_filter_util import FrameFilter class DepthEstimatorTest(unittest.TestCase): """ unit test class for depth estimation model Arguments: unittest.TestCase """ def __init__(self, *args, **kwargs): """ method to initialize the class object Arguments: args kwargs """ super().__init__(*args, **kwargs) self.base_path = os.path.dirname(os.path.abspath(__file__)) def _load_image(self, path): """ method to load the image from a given input path Arguments: path : path where image file is located """ img = cv2.imread(path) return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) def test_should_return_batches_equivalent_to_number_of_frames(self): """ Unit test method which creates a batch of frames, sends it for model prediction. It then checks if the returned object size is as expected. """ # create two frames from kitti car dataset frame_1 = Frame(1, self._load_image( os.path.join(self.base_path, 'data', 'kitti_car_1.png')), None) frame_2 = Frame(1, self._load_image( os.path.join(self.base_path, 'data', 'kitti_car_2.png')), None) # create a batch of 2 frames frame_batch = FrameBatch([frame_1, frame_2], None) # process the batch frames for depth and segmentation prediction estimator = DepthEstimator('ExpKITTI_joint.ckpt') result = estimator.classify(frame_batch) # assert if result size is same as the batch size self.assertEqual(len(result), 2) # assert if frame in result object is same as original frame self.assertTrue(np.array_equal(result[0].frame.data, frame_1.data)) self.assertTrue(np.array_equal(result[1].frame.data, frame_2.data)) # assert that depth and segmentation results should not be null assert result[0].depth is not None assert result[0].segm is not None assert result[1].depth is not None assert result[1].segm is not None @unittest.skip("need correction in depth mask initialization") def test_frame_filtering_for_depth_estimation(self): """ Unit test method to test frame filtering functionality. it loops over frames and sends them over to frame filtering object's apply_filter method. Finally it verifies that depth mask is applied to the frames except every fifth one. """ # create two frames from kitti car dataset frame_1 = Frame(1, self._load_image( os.path.join(self.base_path, 'data', 'kitti_car_1.png')), None) frame_2 = Frame(1, self._load_image( os.path.join(self.base_path, 'data', 'kitti_car_2.png')), None) # create a batch of 2 frames frame_batch = FrameBatch([frame_1, frame_2], None) frames = frame_batch.frames_as_numpy_array() # initialize the frame filtering class object frame_filter = FrameFilter() # create a random depth mask array depth_mask = np.random.rand( frames[0].shape[0], frames[0].shape[1], frames[0].shape[2]) # iterate over frames in the batch for i, img in enumerate(frames): # apply frame filter on each frame img = frame_filter.apply_filter(img, depth_mask) # For every fifth frame the mask should not be applied. Hence, the # frame returned by apply_filter method should be same as original # frame if i % 5 == 0: self.assertTrue(np.array_equal(img, frames[0])) else: # Every other frame should be transformed after applying depth # mask self.assertTrue(np.array_equal( img, frames[i] * depth_mask[:, :, None]))
[ "os.path.abspath", "numpy.array_equal", "src.utils.frame_filter_util.FrameFilter", "cv2.cvtColor", "numpy.random.rand", "unittest.skip", "cv2.imread", "src.udfs.depth_estimation.depth_estimator.DepthEstimator", "os.path.join", "src.models.storage.batch.FrameBatch" ]
[((2565, 2626), 'unittest.skip', 'unittest.skip', (['"""need correction in depth mask initialization"""'], {}), "('need correction in depth mask initialization')\n", (2578, 2626), False, 'import unittest\n'), ((1029, 1045), 'cv2.imread', 'cv2.imread', (['path'], {}), '(path)\n', (1039, 1045), False, 'import cv2\n'), ((1062, 1098), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2RGB'], {}), '(img, cv2.COLOR_BGR2RGB)\n', (1074, 1098), False, 'import cv2\n'), ((1757, 1793), 'src.models.storage.batch.FrameBatch', 'FrameBatch', (['[frame_1, frame_2]', 'None'], {}), '([frame_1, frame_2], None)\n', (1767, 1793), False, 'from src.models.storage.batch import FrameBatch\n'), ((1891, 1928), 'src.udfs.depth_estimation.depth_estimator.DepthEstimator', 'DepthEstimator', (['"""ExpKITTI_joint.ckpt"""'], {}), "('ExpKITTI_joint.ckpt')\n", (1905, 1928), False, 'from src.udfs.depth_estimation.depth_estimator import DepthEstimator\n'), ((3372, 3408), 'src.models.storage.batch.FrameBatch', 'FrameBatch', (['[frame_1, frame_2]', 'None'], {}), '([frame_1, frame_2], None)\n', (3382, 3408), False, 'from src.models.storage.batch import FrameBatch\n'), ((3546, 3559), 'src.utils.frame_filter_util.FrameFilter', 'FrameFilter', ([], {}), '()\n', (3557, 3559), False, 'from src.utils.frame_filter_util import FrameFilter\n'), ((3628, 3702), 'numpy.random.rand', 'np.random.rand', (['frames[0].shape[0]', 'frames[0].shape[1]', 'frames[0].shape[2]'], {}), '(frames[0].shape[0], frames[0].shape[1], frames[0].shape[2])\n', (3642, 3702), True, 'import numpy as np\n'), ((773, 798), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (788, 798), False, 'import os\n'), ((2179, 2229), 'numpy.array_equal', 'np.array_equal', (['result[0].frame.data', 'frame_1.data'], {}), '(result[0].frame.data, frame_1.data)\n', (2193, 2229), True, 'import numpy as np\n'), ((2256, 2306), 'numpy.array_equal', 'np.array_equal', (['result[1].frame.data', 'frame_2.data'], {}), '(result[1].frame.data, frame_2.data)\n', (2270, 2306), True, 'import numpy as np\n'), ((1507, 1562), 'os.path.join', 'os.path.join', (['self.base_path', '"""data"""', '"""kitti_car_1.png"""'], {}), "(self.base_path, 'data', 'kitti_car_1.png')\n", (1519, 1562), False, 'import os\n'), ((1630, 1685), 'os.path.join', 'os.path.join', (['self.base_path', '"""data"""', '"""kitti_car_2.png"""'], {}), "(self.base_path, 'data', 'kitti_car_2.png')\n", (1642, 1685), False, 'import os\n'), ((3122, 3177), 'os.path.join', 'os.path.join', (['self.base_path', '"""data"""', '"""kitti_car_1.png"""'], {}), "(self.base_path, 'data', 'kitti_car_1.png')\n", (3134, 3177), False, 'import os\n'), ((3245, 3300), 'os.path.join', 'os.path.join', (['self.base_path', '"""data"""', '"""kitti_car_2.png"""'], {}), "(self.base_path, 'data', 'kitti_car_2.png')\n", (3257, 3300), False, 'import os\n'), ((4187, 4217), 'numpy.array_equal', 'np.array_equal', (['img', 'frames[0]'], {}), '(img, frames[0])\n', (4201, 4217), True, 'import numpy as np\n'), ((4375, 4430), 'numpy.array_equal', 'np.array_equal', (['img', '(frames[i] * depth_mask[:, :, None])'], {}), '(img, frames[i] * depth_mask[:, :, None])\n', (4389, 4430), True, 'import numpy as np\n')]
from __future__ import print_function, division import os import torch import numpy as np from torch.utils.data import Dataset, DataLoader import Options import cv2 import shutil config = Options.Config() def find_classes(dir, config=config): classes = [str(d) for d in range(config.label_size)] class_to_idx = {classes[i]: i for i in range(len(classes))} return classes, class_to_idx def make_dataset(dir, class_to_idx, mode, config=config): videos = [] dir = os.path.expanduser(dir) classes = [str(d) for d in range(config.label_size)] for target in classes: d = os.path.join(dir, target) if not os.path.isdir(d): continue listd = sorted(os.listdir(d)) #if mode == 'val': #listd = random.sample(listd, 10) for fnames in listd: path = os.path.join(d, fnames) if os.path.isdir(os.path.join(d, fnames)): if os.path.exists(path): item = (path, class_to_idx[target]) videos.append(item) return videos def lip_reading_loader(path, config=config, mode='train', random_crop=True, ini='fan'): loader = {} pair = np.arange(2, 27) im_pth = [] video_block = np.zeros((25, config.image_size, config.image_size, config.image_channel_size)) mfcc_block = np.zeros(( 25, 1, config.mfcc_length, config.mfcc_width, )) blinkdata_block = np.zeros((25, config.blinkdata_width)) if os.path.isdir(path): for block in (os.listdir(path)): block_dir = os.path.join(path, block) crop_x = 2 crop_y = 2 if mode == 'train': flip = np.random.randint(0, 2) if random_crop: crop_x = np.random.randint(0, 5) crop_y = np.random.randint(0, 5) else: flip = 0 if os.path.isdir(block_dir): if block == config.image_block_name: k1 = 0 for image_num in pair: image_path = os.path.join(block_dir, str(image_num) + '.jpg') im_pth.append(image_path) if os.path.exists(image_path): image = cv2.imread(image_path) if flip == 1: image = np.fliplr(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if ini == 'fan': image = image / 255 video_block[k1] = image[crop_x:crop_x + config.image_size, crop_y:crop_y + config.image_size] else: print("video_block = 0") shutil.rmtree(path) break k1 += 1 if block == 'mfcc20': if config.require_audio: k4 = 0 for mfcc_num in pair: # for s in range(-1,2): mfcc_path = os.path.join(block_dir, str(mfcc_num) + '.bin') if os.path.exists(mfcc_path): mfcc = np.fromfile(mfcc_path) mfcc = mfcc.reshape(20, 12) mfcc_block[k4, 0, :, :] = mfcc k4 += 1 else: raise ("mfccs = 0") if block == config.blink_block_name: blinkdata_path = os.path.join(block_dir, 'd.txt') blinkdatas = np.loadtxt(blinkdata_path) k3hjq = 0 for b_num in pair: if (config.blinkdata_width-1) % 2 != 0: print("WIDTH ERROR INIT BLINKDATA!!! Not and odd number. This may cause errors. HJQERR") b_expand = config.blinkdata_width // 2 blinkdata_block[k3hjq] = blinkdatas[b_num - b_expand:b_num + b_expand + 1] k3hjq += 1 video_block = video_block.transpose((0, 3, 1, 2)) loader['video'] = video_block loader['mfcc20'] = mfcc_block loader['blinkdata'] = blinkdata_block loader['A_path'] = im_pth[0] loader['B_path'] = im_pth[1:] # loader['label_map'] = label_map_block[:, 1:, :, :] if not np.abs(np.mean(mfcc_block)) < 1e5: print(np.mean(mfcc_block)) print(im_pth) #shutil.rmtree(path) return loader class VideoFolder(Dataset): def __init__(self, root, config=config, transform=None, target_transform=None, loader=lip_reading_loader, mode='train'): classes, class_to_idx = find_classes(root,config=config) videos = make_dataset(root, class_to_idx, mode, config=config) if len(videos) == 0: raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n")) self.root = root self.vids = videos self.classes = classes self.class_to_idx = class_to_idx self.transform = transform self.target_transform = target_transform self.loader = loader self.config = config self.mode = mode def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ path, target = self.vids[index] vid = self.loader(path, config=self.config, mode=self.mode) return vid, target def __len__(self): return len(self.vids)
[ "os.path.join", "Options.Config", "os.path.isdir", "cv2.cvtColor", "numpy.fromfile", "numpy.zeros", "os.path.exists", "cv2.imread", "numpy.fliplr", "numpy.random.randint", "numpy.arange", "numpy.mean", "numpy.loadtxt", "shutil.rmtree", "os.path.expanduser", "os.listdir" ]
[((188, 204), 'Options.Config', 'Options.Config', ([], {}), '()\n', (202, 204), False, 'import Options\n'), ((485, 508), 'os.path.expanduser', 'os.path.expanduser', (['dir'], {}), '(dir)\n', (503, 508), False, 'import os\n'), ((1219, 1235), 'numpy.arange', 'np.arange', (['(2)', '(27)'], {}), '(2, 27)\n', (1228, 1235), True, 'import numpy as np\n'), ((1270, 1349), 'numpy.zeros', 'np.zeros', (['(25, config.image_size, config.image_size, config.image_channel_size)'], {}), '((25, config.image_size, config.image_size, config.image_channel_size))\n', (1278, 1349), True, 'import numpy as np\n'), ((1451, 1507), 'numpy.zeros', 'np.zeros', (['(25, 1, config.mfcc_length, config.mfcc_width)'], {}), '((25, 1, config.mfcc_length, config.mfcc_width))\n', (1459, 1507), True, 'import numpy as np\n'), ((1617, 1655), 'numpy.zeros', 'np.zeros', (['(25, config.blinkdata_width)'], {}), '((25, config.blinkdata_width))\n', (1625, 1655), True, 'import numpy as np\n'), ((1692, 1711), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (1705, 1711), False, 'import os\n'), ((605, 630), 'os.path.join', 'os.path.join', (['dir', 'target'], {}), '(dir, target)\n', (617, 630), False, 'import os\n'), ((1735, 1751), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (1745, 1751), False, 'import os\n'), ((647, 663), 'os.path.isdir', 'os.path.isdir', (['d'], {}), '(d)\n', (660, 663), False, 'import os\n'), ((709, 722), 'os.listdir', 'os.listdir', (['d'], {}), '(d)\n', (719, 722), False, 'import os\n'), ((845, 868), 'os.path.join', 'os.path.join', (['d', 'fnames'], {}), '(d, fnames)\n', (857, 868), False, 'import os\n'), ((1778, 1803), 'os.path.join', 'os.path.join', (['path', 'block'], {}), '(path, block)\n', (1790, 1803), False, 'import os\n'), ((2126, 2150), 'os.path.isdir', 'os.path.isdir', (['block_dir'], {}), '(block_dir)\n', (2139, 2150), False, 'import os\n'), ((898, 921), 'os.path.join', 'os.path.join', (['d', 'fnames'], {}), '(d, fnames)\n', (910, 921), False, 'import os\n'), ((943, 963), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (957, 963), False, 'import os\n'), ((1905, 1928), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2)'], {}), '(0, 2)\n', (1922, 1928), True, 'import numpy as np\n'), ((4806, 4825), 'numpy.mean', 'np.mean', (['mfcc_block'], {}), '(mfcc_block)\n', (4813, 4825), True, 'import numpy as np\n'), ((1990, 2013), 'numpy.random.randint', 'np.random.randint', (['(0)', '(5)'], {}), '(0, 5)\n', (2007, 2013), True, 'import numpy as np\n'), ((2043, 2066), 'numpy.random.randint', 'np.random.randint', (['(0)', '(5)'], {}), '(0, 5)\n', (2060, 2066), True, 'import numpy as np\n'), ((3880, 3912), 'os.path.join', 'os.path.join', (['block_dir', '"""d.txt"""'], {}), "(block_dir, 'd.txt')\n", (3892, 3912), False, 'import os\n'), ((3946, 3972), 'numpy.loadtxt', 'np.loadtxt', (['blinkdata_path'], {}), '(blinkdata_path)\n', (3956, 3972), True, 'import numpy as np\n'), ((4760, 4779), 'numpy.mean', 'np.mean', (['mfcc_block'], {}), '(mfcc_block)\n', (4767, 4779), True, 'import numpy as np\n'), ((2438, 2464), 'os.path.exists', 'os.path.exists', (['image_path'], {}), '(image_path)\n', (2452, 2464), False, 'import os\n'), ((2502, 2524), 'cv2.imread', 'cv2.imread', (['image_path'], {}), '(image_path)\n', (2512, 2524), False, 'import cv2\n'), ((2661, 2699), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (2673, 2699), False, 'import cv2\n'), ((3031, 3050), 'shutil.rmtree', 'shutil.rmtree', (['path'], {}), '(path)\n', (3044, 3050), False, 'import shutil\n'), ((3449, 3474), 'os.path.exists', 'os.path.exists', (['mfcc_path'], {}), '(mfcc_path)\n', (3463, 3474), False, 'import os\n'), ((2607, 2623), 'numpy.fliplr', 'np.fliplr', (['image'], {}), '(image)\n', (2616, 2623), True, 'import numpy as np\n'), ((3515, 3537), 'numpy.fromfile', 'np.fromfile', (['mfcc_path'], {}), '(mfcc_path)\n', (3526, 3537), True, 'import numpy as np\n')]
from concurrent import futures from copy import deepcopy import nifty.tools as nt import numpy as np import torch from tqdm import tqdm from ..transform.raw import standardize def _load_block(input_, offset, block_shape, halo, padding_mode="reflect", with_channels=False): shape = input_.shape if with_channels: shape = shape[1:] starts = [off - ha for off, ha in zip(offset, halo)] stops = [off + bs + ha for off, bs, ha in zip(offset, block_shape, halo)] # we pad the input volume if necessary pad_left = None pad_right = None # check for padding to the left if any(start < 0 for start in starts): pad_left = tuple(abs(start) if start < 0 else 0 for start in starts) starts = [max(0, start) for start in starts] # check for padding to the right if any(stop > shape[i] for i, stop in enumerate(stops)): pad_right = tuple(stop - shape[i] if stop > shape[i] else 0 for i, stop in enumerate(stops)) stops = [min(shape[i], stop) for i, stop in enumerate(stops)] bb = tuple(slice(start, stop) for start, stop in zip(starts, stops)) if with_channels: data = input_[(slice(None),) + bb] else: data = input_[bb] ndim = len(shape) # pad if necessary if pad_left is not None or pad_right is not None: pad_left = (0,) * ndim if pad_left is None else pad_left pad_right = (0,) * ndim if pad_right is None else pad_right pad_width = tuple((pl, pr) for pl, pr in zip(pad_left, pad_right)) if with_channels: pad_width = ((0, 0),) + pad_width data = np.pad(data, pad_width, mode=padding_mode) # extend the bounding box for downstream bb = tuple( slice(b.start - pl, b.stop + pr) for b, pl, pr in zip(bb, pad_left, pad_right) ) return data, bb # TODO half precision prediction def predict_with_halo( input_, model, gpu_ids, block_shape, halo, output=None, preprocess=standardize, postprocess=None, with_channels=False, skip_block=None, ): """ Run block-wise network prediction with halo. Arguments: input_ [arraylike] - the input data, can be a numpy array, a hdf5/zarr/z5py dataset or similar model [nn.Module] - the network gpu_ids [list[int or string]] - list of gpus id used for prediction block_shape [tuple] - shape of inner block used for prediction halo [tuple] - shape of halo used for prediction output [arraylike or list[tuple[arraylike, slice]]] - output data, will be allocated if None is passed. Instead of a single output, this can also be a list of outputs and the corresponding channels. (default: None) preprocess [callable] - function to preprocess input data before passing it to the network. (default: standardize) postprocess [callable] - function to postprocess the network predictions (default: None) with_channels [bool] - whether the input has a channel axis (default: False) skip_block [callable] - function to evaluate wheter a given input block should be skipped (default: None) """ devices = [torch.device(gpu) for gpu in gpu_ids] models = [ (model if next(model.parameters()).device == device else deepcopy(model).to(device), device) for device in devices ] n_workers = len(gpu_ids) shape = input_.shape if with_channels: shape = shape[1:] ndim = len(shape) assert len(block_shape) == len(halo) == ndim blocking = nt.blocking([0] * ndim, shape, block_shape) if output is None: n_out = models[0][0].out_channels output = np.zeros((n_out,) + shape, dtype="float32") def predict_block(block_id): worker_id = block_id % n_workers net, device = models[worker_id] with torch.no_grad(): block = blocking.getBlock(block_id) offset = [beg for beg in block.begin] inp, _ = _load_block(input_, offset, block_shape, halo, with_channels=with_channels) if skip_block is not None and skip_block(inp): return if preprocess is not None: inp = preprocess(inp) # add (channel) and batch axis expand_dims = np.s_[None] if with_channels else np.s_[None, None] inp = torch.from_numpy(inp[expand_dims]).to(device) prediction = net(inp) # allow for list of tensors try: prediction = prediction.cpu().numpy().squeeze(0) except AttributeError: prediction = prediction[0] prediction = prediction.cpu().numpy().squeeze(0) if postprocess is not None: prediction = postprocess(prediction) inner_bb = tuple(slice(ha, ha + bs) for ha, bs in zip(halo, block.shape)) if prediction.ndim == ndim + 1: inner_bb = (slice(None),) + inner_bb prediction = prediction[inner_bb] bb = tuple(slice(beg, end) for beg, end in zip(block.begin, block.end)) if isinstance(output, list): # we have multiple outputs and split the prediction channels for out, channel_slice in output: this_bb = bb if out.ndim == ndim else (slice(None),) + bb out[this_bb] = prediction[channel_slice] else: # we only have a single output array if output.ndim == ndim + 1: bb = (slice(None),) + bb output[bb] = prediction n_blocks = blocking.numberOfBlocks with futures.ThreadPoolExecutor(n_workers) as tp: list(tqdm(tp.map(predict_block, range(n_blocks)), total=n_blocks)) return output
[ "numpy.pad", "copy.deepcopy", "numpy.zeros", "nifty.tools.blocking", "torch.device", "concurrent.futures.ThreadPoolExecutor", "torch.no_grad", "torch.from_numpy" ]
[((3601, 3644), 'nifty.tools.blocking', 'nt.blocking', (['([0] * ndim)', 'shape', 'block_shape'], {}), '([0] * ndim, shape, block_shape)\n', (3612, 3644), True, 'import nifty.tools as nt\n'), ((1621, 1663), 'numpy.pad', 'np.pad', (['data', 'pad_width'], {'mode': 'padding_mode'}), '(data, pad_width, mode=padding_mode)\n', (1627, 1663), True, 'import numpy as np\n'), ((3222, 3239), 'torch.device', 'torch.device', (['gpu'], {}), '(gpu)\n', (3234, 3239), False, 'import torch\n'), ((3728, 3771), 'numpy.zeros', 'np.zeros', (['((n_out,) + shape)'], {'dtype': '"""float32"""'}), "((n_out,) + shape, dtype='float32')\n", (3736, 3771), True, 'import numpy as np\n'), ((5695, 5732), 'concurrent.futures.ThreadPoolExecutor', 'futures.ThreadPoolExecutor', (['n_workers'], {}), '(n_workers)\n', (5721, 5732), False, 'from concurrent import futures\n'), ((3901, 3916), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3914, 3916), False, 'import torch\n'), ((4414, 4448), 'torch.from_numpy', 'torch.from_numpy', (['inp[expand_dims]'], {}), '(inp[expand_dims])\n', (4430, 4448), False, 'import torch\n'), ((3340, 3355), 'copy.deepcopy', 'deepcopy', (['model'], {}), '(model)\n', (3348, 3355), False, 'from copy import deepcopy\n')]
# -*- coding: utf-8 -*- """ Created on Fri Sep 1 19:11:52 2017 @author: mariapanteli """ import pytest import numpy as np import os import scripts.OPMellin as OPMellin opm = OPMellin.OPMellin() TEST_AUDIO_FILE = os.path.join(os.path.dirname(__file__), 'data', 'mel_1_2_1.wav') def test_load_audiofile(): audiofile = TEST_AUDIO_FILE opm.load_audiofile(audiofile, segment=False) assert opm.y is not None and opm.sr is not None def test_mel_spectrogram(): audiofile = TEST_AUDIO_FILE opm.load_audiofile(audiofile, segment=False) opm.mel_spectrogram(y=opm.y, sr=opm.sr) # assume 40 mel bands assert opm.melspec.shape[0] == 40 def test_post_process_spec(): audiofile = TEST_AUDIO_FILE opm.load_audiofile(audiofile, segment=False) opm.mel_spectrogram(y=opm.y, sr=opm.sr) melspec = opm.melspec opm.post_process_spec(melspec=melspec) proc_melspec = opm.melspec assert melspec.shape == proc_melspec.shape def test_onset_patterns_n_frames(): audiofile = TEST_AUDIO_FILE opm.load_audiofile(audiofile, segment=False) opm.mel_spectrogram(y=opm.y, sr=opm.sr) opm.onset_patterns(melspec=opm.melspec, melsr=opm.melsr) assert opm.op.shape[2] == np.round(((opm.melspec.shape[1] / opm.melsr) - opm.win2sec) * 2.) def test_onset_patterns_n_bins(): audiofile = TEST_AUDIO_FILE opm.load_audiofile(audiofile, segment=False) opm.mel_spectrogram(y=opm.y, sr=opm.sr) opm.onset_patterns(melspec=opm.melspec, melsr=opm.melsr) assert opm.op.shape[0] == 40 def test_post_process_op(): audiofile = TEST_AUDIO_FILE opm.load_audiofile(audiofile, segment=False) opm.mel_spectrogram(y=opm.y, sr=opm.sr) opm.onset_patterns(melspec=opm.melspec, melsr=opm.melsr) op = opm.op opm.post_process_op() proc_op = opm.op assert op.shape == proc_op.shape
[ "os.path.dirname", "numpy.round", "scripts.OPMellin.OPMellin" ]
[((181, 200), 'scripts.OPMellin.OPMellin', 'OPMellin.OPMellin', ([], {}), '()\n', (198, 200), True, 'import scripts.OPMellin as OPMellin\n'), ((232, 257), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (247, 257), False, 'import os\n'), ((1222, 1286), 'numpy.round', 'np.round', (['((opm.melspec.shape[1] / opm.melsr - opm.win2sec) * 2.0)'], {}), '((opm.melspec.shape[1] / opm.melsr - opm.win2sec) * 2.0)\n', (1230, 1286), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # Copyright (c) 2021-2021 the DerivX authors # All rights reserved. # # The project sponsor and lead author is <NAME>. # E-mail: <EMAIL>, QQ: 277195007, WeChat: xrd_ustc # See the contributors file for names of other contributors. # # Commercial use of this code in source and binary forms is # governed by a LGPL v3 license. You may get a copy from the # root directory. Or else you should get a specific written # permission from the project author. # # Individual and educational use of this code in source and # binary forms is governed by a 3-clause BSD license. You may # get a copy from the root directory. Certainly welcome you # to contribute code of all sorts. # # Be sure to retain the above copyright notice and conditions. import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import derivx g_uoc_dop = 1 # 向上敲出看涨,向下敲出看跌,双鲨 class Config(object): def __init__(self): self.rand_rows = 0 # 随机数据行数 # InitRand self.rand_cols = 0 # 随机数据列数 # InitRand self.rand_quasi = False # 随机数据类型 # InitRand # 目前 quasi 随机数据只能使用单核处理 self.rand_seed = np.array([]) # 随机数据种子 # InitRand # 非负整数,有效位数不超逻辑处理器数量,目前 quasi 仅第一位有效 self.dual_smooth = True # 对偶平滑路径 # InitPath self.runs_size = 0 # 模拟路径数量 # InitPath self.runs_step = 0 # 价格变动步数 # InitPath self.year_days = 0 # 年交易日数量 # InitPath self.sigma = 0.0 # 波动率 # InitPath self.risk_free_rate = 0.0 # 无风险利率 # InitPath self.basis_rate = 0.0 # 股息或贴水 # InitPath self.price_limit_ratio = 0.0 # 涨跌停限制幅度 # InitPath self.price_limit_style = 0 # 涨跌停限制方式,0 不限制,1 超限部分移至下日,2 超限部分直接削掉 # InitPath self.s = 0.0 # 标的价格 self.h_l = 0.0 # 障碍价格,低 self.h_h = 0.0 # 障碍价格,高 self.k_l = 0.0 # 行权价格,低 self.k_h = 0.0 # 行权价格,高 self.x = 0.0 # 敲出后需支付的资金 self.v = 0.0 # 波动率 # 双鲨未用 self.r = 0.0 # 无风险利率 # 双鲨未用 self.q = 0.0 # 年化分红率 # 双鲨未用 self.t = 0.0 # 年化到期期限 # 双鲨未用 self.p = 0.0 # 参与率,未敲出情况下客户对收益的占比要求 self.is_kop_delay = False # 敲出后是立即还是延期支付资金 self.barrier_type = 0 # 障碍类型 self.trade_long = True # 交易方向 self.price_rate = 0.0 # 价格比率 self.calc_price = np.array([]) # 计算价格序列 self.run_from = 0 # 起始天数,第一天为零 self.run_days = 0 # 运行天数 def ToArgs(self): return self.__dict__ def FigureResult(config, result): figure = plt.figure() ax = Axes3D(figure) #ax = Axes3D(figure, auto_add_to_figure = False) #figure.add_axes(ax) x = np.arange(0, config.runs_step, 1) y = config.calc_price X, Y = np.meshgrid(x, y) ax.plot_surface(X, Y, result, rstride = 1, cstride = 1, cmap = plt.get_cmap("rainbow")) plt.show() def ExportResult(config, result, file_path): export_days = config.run_days if export_days > 255: # Excel 最大 256 列,首列显示价格,剩余可用 255 列 export_days = 255 print("提示:Excel 最大 256 列,剩余 %d 列数据未作导出!" % (config.run_days - 255)) df_result = pd.DataFrame(result[:, config.run_from : (config.run_from + export_days)]).iloc[::-1] # 上下倒下顺序 df_result.index = config.calc_price[::-1] df_result.columns = ["day_%d" % (days + 1) for days in np.arange(config.run_from, config.run_from + export_days, 1)] df_result.to_excel(file_path, sheet_name = "result") print("导出结果:%s" % file_path) def Test_Barrier_Double(): config = Config() config.rand_rows = 50000 # 随机数据行数 # InitRand config.rand_cols = 250 # 随机数据列数 # InitRand config.rand_quasi = False # 随机数据类型 # InitRand # 目前 quasi 随机数据只能使用单核处理 config.rand_seed = np.array([0, 1, 2, 3, 4, 5, 6, 7]) # 随机数据种子 # InitRand # 非负整数,有效位数不超逻辑处理器数量,目前 quasi 仅第一位有效 config.dual_smooth = True # 对偶平滑路径 # InitPath config.runs_size = 100000 # 模拟路径数量 # InitPath config.runs_step = 244 # 价格变动步数 # InitPath config.year_days = 244 # 年交易日数量 # InitPath config.sigma = 0.16 # 波动率 # InitPath config.risk_free_rate = 0.03 # 无风险利率 # InitPath config.basis_rate = 0.06 # 股息或贴水 # InitPath config.price_limit_ratio = 0.1 # 涨跌停限制幅度 # InitPath config.price_limit_style = 0 # 涨跌停限制方式,0 不限制,1 超限部分移至下日,2 超限部分直接削掉 # InitPath config.s = 100.0 # 标的价格 config.h_l = 95.0 # 障碍价格,低 config.h_h = 105.0 # 障碍价格,高 config.k_l = 99.0 # 行权价格,低 config.k_h = 101.0 # 行权价格,高 config.x = 3.5 # 敲出后需支付的资金 # config.v = 0.16 # 波动率 # 双鲨未用 # config.r = 0.03 # 无风险利率 # 双鲨未用 # config.q = 0.06 # 年化分红率 # 双鲨未用 # config.t = 1.0 # 年化到期期限 # 双鲨未用 config.p = 1.0 # 参与率,未敲出情况下客户对收益的占比要求 config.is_kop_delay = True # 敲出后是立即还是延期支付资金 config.barrier_type = g_uoc_dop # 障碍类型 config.trade_long = False # 交易方向 config.price_rate = 0.035 # 价格比率 calc_price_u = 110.0 # 价格点上界 calc_price_d = 90.0 # 价格点下界 calc_price_g = 1.0 # 价格点间隔 #config.calc_price = np.array([65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0, 105.0]) # 计算价格序列 config.calc_price = np.arange(calc_price_d, calc_price_u + calc_price_g, calc_price_g) # 含价格点上下界 config.run_from = 0 # 起始天数,第一天为零 config.run_days = 1 # 运行天数 ret_cols = config.runs_step ret_rows = len(config.calc_price) barrier = derivx.Barrier("Double") if barrier.InitArgs(config.ToArgs()) < 0: print(barrier.GetError()) return if barrier.InitRand() < 0: print(barrier.GetError()) return # 除非电脑性能较差,否则不推荐使用 SaveRand() 和 LoadRand() 了 # 最好将影响随机数据的参数都包含在文件名中,避免导入的随机数据与所设参数不一致 #rand_file = "./rand_data_%d_%d_%d.rand" % (config.rand_rows, config.rand_cols, config.rand_seed[0]) #if barrier.SaveRand(rand_file) < 0: # print(barrier.GetError()) # return #if barrier.LoadRand(rand_file) < 0: # print(barrier.GetError()) # return if barrier.InitPath() < 0: print(barrier.GetError()) return # 除非电脑性能较差,否则不推荐使用 SavePath() 和 LoadPath() 了 # 最好将影响路径数据的参数都包含在文件名中,避免导入的路径数据与所设参数不一致 #path_file = "./path_data_%d_%d_%d_%d_%.3f_%.3f_%.3f_%.3f_%d.path" % \ # (config.dual_smooth, config.runs_size, config.runs_step, config.year_days, # config.sigma, config.risk_free_rate, config.basis_rate, config.price_limit_ratio, config.price_limit_style) #if barrier.SavePath(path_file) < 0: # print(barrier.GetError()) # return #if barrier.LoadPath(path_file) < 0: # print(barrier.GetError()) # return #print("price:", barrier.CalcPrice()) #print("payoff:", barrier.CalcPayoff()) greek_flags = {"delta":"d"} #greek_flags = {"delta":"d", "gamma":"g", "vega":"v", "theta":"t", "rho":"r"} for name, flag in greek_flags.items(): result = np.zeros((ret_rows, ret_cols)) barrier.CalcGreeks(flag, result) FigureResult(config, result) ExportResult(config, result, "/export_greeks_%s.xls" % name) if __name__ == "__main__": Test_Barrier_Double()
[ "pandas.DataFrame", "numpy.meshgrid", "matplotlib.pyplot.show", "mpl_toolkits.mplot3d.Axes3D", "matplotlib.pyplot.get_cmap", "numpy.zeros", "derivx.Barrier", "matplotlib.pyplot.figure", "numpy.arange", "numpy.array" ]
[((2501, 2513), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2511, 2513), True, 'import matplotlib.pyplot as plt\n'), ((2523, 2537), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['figure'], {}), '(figure)\n', (2529, 2537), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((2624, 2657), 'numpy.arange', 'np.arange', (['(0)', 'config.runs_step', '(1)'], {}), '(0, config.runs_step, 1)\n', (2633, 2657), True, 'import numpy as np\n'), ((2695, 2712), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), '(x, y)\n', (2706, 2712), True, 'import numpy as np\n'), ((2809, 2819), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2817, 2819), True, 'import matplotlib.pyplot as plt\n'), ((3674, 3708), 'numpy.array', 'np.array', (['[0, 1, 2, 3, 4, 5, 6, 7]'], {}), '([0, 1, 2, 3, 4, 5, 6, 7])\n', (3682, 3708), True, 'import numpy as np\n'), ((5013, 5079), 'numpy.arange', 'np.arange', (['calc_price_d', '(calc_price_u + calc_price_g)', 'calc_price_g'], {}), '(calc_price_d, calc_price_u + calc_price_g, calc_price_g)\n', (5022, 5079), True, 'import numpy as np\n'), ((5257, 5281), 'derivx.Barrier', 'derivx.Barrier', (['"""Double"""'], {}), "('Double')\n", (5271, 5281), False, 'import derivx\n'), ((1166, 1178), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (1174, 1178), True, 'import numpy as np\n'), ((2307, 2319), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (2315, 2319), True, 'import numpy as np\n'), ((6761, 6791), 'numpy.zeros', 'np.zeros', (['(ret_rows, ret_cols)'], {}), '((ret_rows, ret_cols))\n', (6769, 6791), True, 'import numpy as np\n'), ((2780, 2803), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""rainbow"""'], {}), "('rainbow')\n", (2792, 2803), True, 'import matplotlib.pyplot as plt\n'), ((3079, 3149), 'pandas.DataFrame', 'pd.DataFrame', (['result[:, config.run_from:config.run_from + export_days]'], {}), '(result[:, config.run_from:config.run_from + export_days])\n', (3091, 3149), True, 'import pandas as pd\n'), ((3279, 3339), 'numpy.arange', 'np.arange', (['config.run_from', '(config.run_from + export_days)', '(1)'], {}), '(config.run_from, config.run_from + export_days, 1)\n', (3288, 3339), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import cv_bridge from jsk_topic_tools import ConnectionBasedTransport import rospy from sensor_msgs.msg import Image class ImageToLabel(ConnectionBasedTransport): def __init__(self): super(ImageToLabel, self).__init__() self._pub = self.advertise('~output', Image, queue_size=1) def subscribe(self): self._sub = rospy.Subscriber('~input', Image, self._convert) def unsubscribe(self): self._sub.unregister() def _convert(self, msg): bridge = cv_bridge.CvBridge() img = bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8') label = np.ones(img.shape[:2], dtype=np.int32) label_msg = bridge.cv2_to_imgmsg(label, encoding='32SC1') label_msg.header = msg.header self._pub.publish(label_msg) if __name__ == '__main__': rospy.init_node('image_to_label') img2label = ImageToLabel() rospy.spin()
[ "cv_bridge.CvBridge", "rospy.Subscriber", "numpy.ones", "rospy.init_node", "rospy.spin" ]
[((884, 917), 'rospy.init_node', 'rospy.init_node', (['"""image_to_label"""'], {}), "('image_to_label')\n", (899, 917), False, 'import rospy\n'), ((953, 965), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (963, 965), False, 'import rospy\n'), ((414, 462), 'rospy.Subscriber', 'rospy.Subscriber', (['"""~input"""', 'Image', 'self._convert'], {}), "('~input', Image, self._convert)\n", (430, 462), False, 'import rospy\n'), ((569, 589), 'cv_bridge.CvBridge', 'cv_bridge.CvBridge', ([], {}), '()\n', (587, 589), False, 'import cv_bridge\n'), ((671, 709), 'numpy.ones', 'np.ones', (['img.shape[:2]'], {'dtype': 'np.int32'}), '(img.shape[:2], dtype=np.int32)\n', (678, 709), True, 'import numpy as np\n')]
import numpy as np from sgmrfmix import sGMRFmix def check_model() -> None: m = sGMRFmix(K=5, rho=0.8) train = np.genfromtxt('../Examples/Data/train.csv', delimiter=',', skip_header=True)[:, 1:] test = np.genfromtxt('../Examples/Data/test.csv', delimiter=',', skip_header=True)[:, 1:] print(m) # def test_model(self): print(train.shape, test.shape) m.fit(train) m.show_model_params() results = m.compute_anomaly(test) print("Anomaly score:") print(results) m.save('test_model.pkl') m.load('test_model.pkl') results2 = m.compute_anomaly(test) print(np.allclose(results, results2)) # # print([r.shape for r in results]) # plt.plot(results[:,0]) # plt.show() check_model()
[ "numpy.allclose", "numpy.genfromtxt", "sgmrfmix.sGMRFmix" ]
[((86, 108), 'sgmrfmix.sGMRFmix', 'sGMRFmix', ([], {'K': '(5)', 'rho': '(0.8)'}), '(K=5, rho=0.8)\n', (94, 108), False, 'from sgmrfmix import sGMRFmix\n'), ((121, 197), 'numpy.genfromtxt', 'np.genfromtxt', (['"""../Examples/Data/train.csv"""'], {'delimiter': '""","""', 'skip_header': '(True)'}), "('../Examples/Data/train.csv', delimiter=',', skip_header=True)\n", (134, 197), True, 'import numpy as np\n'), ((216, 291), 'numpy.genfromtxt', 'np.genfromtxt', (['"""../Examples/Data/test.csv"""'], {'delimiter': '""","""', 'skip_header': '(True)'}), "('../Examples/Data/test.csv', delimiter=',', skip_header=True)\n", (229, 291), True, 'import numpy as np\n'), ((609, 639), 'numpy.allclose', 'np.allclose', (['results', 'results2'], {}), '(results, results2)\n', (620, 639), True, 'import numpy as np\n')]
# The MIT License (MIT) # # Copyright (c) snkas # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from networkload import * import unittest import numpy as np class TestBaseTopology(unittest.TestCase): def test_construction_valid(self): plus_grid(11, 3) leaf_spine(6, 7) fat_tree_asymmetric(6) fat_tree_symmetric(4) extend_tors_with_servers(plus_grid(11, 3), 2) extend_tors_with_servers(leaf_spine(5, 5), 3) extend_tors_with_servers(fat_tree_asymmetric(6), 1) extend_tors_with_servers(fat_tree_symmetric(4), 70) def test_str(self): self.assertEqual( str(extend_tors_with_servers(leaf_spine(5, 7), 11)), "Topology(#nodes=67 (12 switches (of which 5 are ToRs), 55 servers), #edges=90)" ) def test_construction_invalid(self): Topology( 4, [(0, 1), (1, 2), (1, 3)], [0, 1, 2], [1], [3] ) # Duplicate edge I try: Topology( 4, [(0, 1), (1, 2), (1, 3), (1, 3)], [0, 1, 2], [1], [3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Duplicate edge II try: Topology( 4, [(0, 1), (1, 2), (1, 3), (2, 1)], [0, 1, 2], [1], [3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Invalid endpoints I try: Topology( 4, [(0, 1), (1, 2), (1, 4)], [0, 1, 2], [1], [3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Invalid endpoints II try: Topology( 4, [(0, 1), (1, 2), (-1, 3)], [0, 1, 2], [1], [3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Duplicate switches try: Topology( 4, [(0, 1), (1, 2), (1, 3)], [0, 1, 2, 1], [1], [3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Duplicate switches which are ToRs try: Topology( 4, [(0, 1), (1, 2), (1, 3)], [0, 1, 2], [1, 1], [3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Duplicate servers try: Topology( 4, [(0, 1), (1, 2), (1, 3)], [0, 1, 2], [1], [3, 3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Not valid switch id try: Topology( 4, [(0, 1), (1, 2), (1, 3)], [0, 1, 2, -1], [1], [3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Not valid ToR id try: Topology( 4, [(0, 1), (1, 2), (1, 3)], [0, 1, 2], [1, -5], [3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Not valid server id try: Topology( 4, [(0, 1), (1, 2), (1, 3)], [0, 1, 2], [1], [3, -1] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Servers and switches not distinct try: Topology( 4, [(0, 1), (1, 2), (1, 3)], [0, 1, 2], [1], [3, 0] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Servers and switches do not cover all nodes try: Topology( 5, [(0, 1), (1, 2), (1, 3)], [0, 1, 2], [1], [3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Server is a ToR try: Topology( 4, [(0, 1), (1, 2), (1, 3)], [0, 1, 2], [1, 3], [3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Server is connected to two ToRs try: Topology( 4, [(0, 1), (1, 2), (1, 3), (3, 0)], [0, 1, 2], [0, 1], [3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Server edge to non-ToR try: Topology( 4, [(0, 1), (1, 2), (3, 0)], [0, 1, 2], [1], [3] ) self.assertTrue(False) except ValueError: self.assertTrue(True) # Server edge to non-ToR try: Topology( 4, [(1, 2), (2, 3), (0, 3)], [1, 2, 3], [2], [0] ) self.assertTrue(False) except ValueError: self.assertTrue(True) def test_matrix_to_list(self): # Good matrix a = np.zeros((3, 3)) a[0][1] = 1 a[1][0] = 1 self.assertEqual([(0, 1)], adjacency_matrix_to_undirected_edges_list(3, a)) # Not bi-directional try: a = np.zeros((3, 3)) a[0][1] = 1 adjacency_matrix_to_undirected_edges_list(3, a) self.assertTrue(False) except ValueError: self.assertTrue(True) # Self-edge try: a = np.zeros((3, 3)) a[1][1] = 1 adjacency_matrix_to_undirected_edges_list(3, a) self.assertTrue(False) except ValueError: self.assertTrue(True) # Wrong shape try: a = np.zeros((3, 3)) a[0][1] = 1 a[1][0] = 1 adjacency_matrix_to_undirected_edges_list(4, a) self.assertTrue(False) except ValueError: self.assertTrue(True)
[ "numpy.zeros" ]
[((7051, 7067), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (7059, 7067), True, 'import numpy as np\n'), ((7251, 7267), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (7259, 7267), True, 'import numpy as np\n'), ((7498, 7514), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (7506, 7514), True, 'import numpy as np\n'), ((7747, 7763), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (7755, 7763), True, 'import numpy as np\n')]
# Copyright (c) 2017 Sony Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import numpy as np import nnabla.functions as F from nbla_test_utils import list_context ctxs = list_context('INQAffine') def quantize(x, max_absval, num_bits): y = x # get maximum/minimum exponent n1 = np.floor(np.log2(max_absval)) + (np.log2(max_absval) - np.floor(np.log2(max_absval)) >= np.log2(1.5)) n2 = n1 + 1 - 2 ** (num_bits - 2) pruning_threshold = 2 ** (n2 - 1) # prune all small values y[np.abs(x) < pruning_threshold] = 0.0 # quantize remaining values to powers of two _i = y != 0 _s = np.sign(y[_i]) _b = np.log2(np.abs(y[_i])) _d = np.log2(1.5) # quantization threshold # _d = 0.5 use geometric mean # _d = np.log2(1.5) use arithmetic mean _e = np.floor(_b) + (_b - np.floor(_b) >= _d) _e = np.maximum(n2, np.minimum(n1, _e)) y[_i] = _s * 2 ** (_e) return y def ref_inq_affine(x, w, i, b, base_axis, num_bits, inq_iterations, selection_algorithm, seed): if inq_iterations[-1] == 0: # last element in `inq_iterations`, quantize all weights i = np.ones_like(i) elif 0 in inq_iterations: # only `largest_abs` is deterministic and currently tested assert(selection_algorithm == 'largest_abs') idx_var = np.flatnonzero(i == 0) idx_newfix = idx_var[np.argsort( np.abs(w.ravel()[idx_var]))[-(len(idx_var) // 2):]] i.ravel()[idx_newfix] = 1 shape = list(x.shape[:base_axis]) shape += [-1] out_shape = w.shape[1:] # quantize weights (0 ... learnable, 1 ... fixed) wq = np.copy(w) if np.any(i == 1): wq[i == 1] = quantize(w[i == 1], np.max(np.abs(w)), num_bits) wq = wq.reshape(w.shape[0], -1) y = np.dot(x.reshape(*shape), wq) if b is not None: y += b.reshape((1,) * (len(shape) - 1) + (-1,)) return y.reshape(tuple(shape[:-1]) + tuple(out_shape)) def ref_grad_inq_affine(x, w, i, b, dy, base_axis, num_bits, inq_iterations, selection_algorithm, seed): shape = list(x.shape[:base_axis]) if inq_iterations[-1] == 0: # last element in `inq_iterations`, quantize all weights i = np.ones_like(i) elif 0 in inq_iterations: # only `largest_abs` is deterministic assert(selection_algorithm == 'largest_abs') idx_var = np.flatnonzero(i == 0) idx_newfix = idx_var[np.argsort( np.abs(w.ravel()[idx_var]))[-(len(idx_var) // 2):]] i.ravel()[idx_newfix] = 1 x_ = x.reshape(np.prod(shape), -1) wq_ = np.copy(w) if np.any(i == 1): wq_[i == 1] = quantize(w[i == 1], np.max(np.abs(w)), num_bits) wq_ = wq_.reshape(w.shape[0], -1) dy_ = dy.reshape(np.prod(shape), -1) dx = np.dot(dy_, np.transpose(wq_)) dw = np.dot(np.transpose(x_), dy_) if b is not None: db = np.sum(dy_, 0) else: db = np.empty(0) return np.concatenate([dx.flatten(), dw.flatten(), db.flatten()]) @pytest.mark.parametrize("ctx, func_name", ctxs) @pytest.mark.parametrize("seed", [313]) @pytest.mark.parametrize("base_axis, weight_shape, num_bits", [(1, (12, 2, 3), 2), (2, (4, 4), 4)]) @pytest.mark.parametrize("bias", [True, False]) @pytest.mark.parametrize("inq_iterations", [(10, 20), (0,), (0, 10)]) def test_inq_affine_forward_backward(seed, base_axis, weight_shape, num_bits, bias, inq_iterations, ctx, func_name): from nbla_test_utils import function_tester rng = np.random.RandomState(seed) # Input inputs = [rng.randn(2, 3, 4).astype(np.float32)] # Weights inputs += [rng.randn(*weight_shape).astype(np.float32)] # Indices inputs += [np.random.randint(2, size=weight_shape)] # Bias if bias: inputs += [rng.randn(*weight_shape[1:]).astype(np.float32)] else: inputs += [None] selection_algorithm = 'largest_abs' function_tester(rng, F.inq_affine, ref_inq_affine, inputs, func_args=[base_axis, num_bits, inq_iterations, selection_algorithm, seed], atol_b=1e-2, backward=[True, True, False, True], ctx=ctx, func_name=func_name, ref_grad=ref_grad_inq_affine)
[ "numpy.minimum", "numpy.abs", "numpy.ones_like", "numpy.copy", "numpy.sum", "numpy.log2", "numpy.floor", "numpy.empty", "numpy.transpose", "numpy.flatnonzero", "numpy.random.RandomState", "numpy.any", "nbla_test_utils.list_context", "nbla_test_utils.function_tester", "numpy.random.randint", "numpy.sign", "pytest.mark.parametrize", "numpy.prod" ]
[((718, 743), 'nbla_test_utils.list_context', 'list_context', (['"""INQAffine"""'], {}), "('INQAffine')\n", (730, 743), False, 'from nbla_test_utils import list_context\n'), ((3687, 3734), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""ctx, func_name"""', 'ctxs'], {}), "('ctx, func_name', ctxs)\n", (3710, 3734), False, 'import pytest\n'), ((3736, 3774), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', '[313]'], {}), "('seed', [313])\n", (3759, 3774), False, 'import pytest\n'), ((3776, 3879), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""base_axis, weight_shape, num_bits"""', '[(1, (12, 2, 3), 2), (2, (4, 4), 4)]'], {}), "('base_axis, weight_shape, num_bits', [(1, (12, 2, 3\n ), 2), (2, (4, 4), 4)])\n", (3799, 3879), False, 'import pytest\n'), ((3901, 3947), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""bias"""', '[True, False]'], {}), "('bias', [True, False])\n", (3924, 3947), False, 'import pytest\n'), ((3949, 4017), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""inq_iterations"""', '[(10, 20), (0,), (0, 10)]'], {}), "('inq_iterations', [(10, 20), (0,), (0, 10)])\n", (3972, 4017), False, 'import pytest\n'), ((1209, 1223), 'numpy.sign', 'np.sign', (['y[_i]'], {}), '(y[_i])\n', (1216, 1223), True, 'import numpy as np\n'), ((1265, 1277), 'numpy.log2', 'np.log2', (['(1.5)'], {}), '(1.5)\n', (1272, 1277), True, 'import numpy as np\n'), ((2237, 2247), 'numpy.copy', 'np.copy', (['w'], {}), '(w)\n', (2244, 2247), True, 'import numpy as np\n'), ((2255, 2269), 'numpy.any', 'np.any', (['(i == 1)'], {}), '(i == 1)\n', (2261, 2269), True, 'import numpy as np\n'), ((3208, 3218), 'numpy.copy', 'np.copy', (['w'], {}), '(w)\n', (3215, 3218), True, 'import numpy as np\n'), ((3226, 3240), 'numpy.any', 'np.any', (['(i == 1)'], {}), '(i == 1)\n', (3232, 3240), True, 'import numpy as np\n'), ((4230, 4257), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (4251, 4257), True, 'import numpy as np\n'), ((4640, 4897), 'nbla_test_utils.function_tester', 'function_tester', (['rng', 'F.inq_affine', 'ref_inq_affine', 'inputs'], {'func_args': '[base_axis, num_bits, inq_iterations, selection_algorithm, seed]', 'atol_b': '(0.01)', 'backward': '[True, True, False, True]', 'ctx': 'ctx', 'func_name': 'func_name', 'ref_grad': 'ref_grad_inq_affine'}), '(rng, F.inq_affine, ref_inq_affine, inputs, func_args=[\n base_axis, num_bits, inq_iterations, selection_algorithm, seed], atol_b\n =0.01, backward=[True, True, False, True], ctx=ctx, func_name=func_name,\n ref_grad=ref_grad_inq_affine)\n', (4655, 4897), False, 'from nbla_test_utils import function_tester\n'), ((1241, 1254), 'numpy.abs', 'np.abs', (['y[_i]'], {}), '(y[_i])\n', (1247, 1254), True, 'import numpy as np\n'), ((1391, 1403), 'numpy.floor', 'np.floor', (['_b'], {}), '(_b)\n', (1399, 1403), True, 'import numpy as np\n'), ((1456, 1474), 'numpy.minimum', 'np.minimum', (['n1', '_e'], {}), '(n1, _e)\n', (1466, 1474), True, 'import numpy as np\n'), ((1742, 1757), 'numpy.ones_like', 'np.ones_like', (['i'], {}), '(i)\n', (1754, 1757), True, 'import numpy as np\n'), ((2832, 2847), 'numpy.ones_like', 'np.ones_like', (['i'], {}), '(i)\n', (2844, 2847), True, 'import numpy as np\n'), ((3177, 3191), 'numpy.prod', 'np.prod', (['shape'], {}), '(shape)\n', (3184, 3191), True, 'import numpy as np\n'), ((3373, 3387), 'numpy.prod', 'np.prod', (['shape'], {}), '(shape)\n', (3380, 3387), True, 'import numpy as np\n'), ((3415, 3432), 'numpy.transpose', 'np.transpose', (['wq_'], {}), '(wq_)\n', (3427, 3432), True, 'import numpy as np\n'), ((3450, 3466), 'numpy.transpose', 'np.transpose', (['x_'], {}), '(x_)\n', (3462, 3466), True, 'import numpy as np\n'), ((3509, 3523), 'numpy.sum', 'np.sum', (['dy_', '(0)'], {}), '(dy_, 0)\n', (3515, 3523), True, 'import numpy as np\n'), ((3547, 3558), 'numpy.empty', 'np.empty', (['(0)'], {}), '(0)\n', (3555, 3558), True, 'import numpy as np\n'), ((4426, 4465), 'numpy.random.randint', 'np.random.randint', (['(2)'], {'size': 'weight_shape'}), '(2, size=weight_shape)\n', (4443, 4465), True, 'import numpy as np\n'), ((849, 868), 'numpy.log2', 'np.log2', (['max_absval'], {}), '(max_absval)\n', (856, 868), True, 'import numpy as np\n'), ((970, 982), 'numpy.log2', 'np.log2', (['(1.5)'], {}), '(1.5)\n', (977, 982), True, 'import numpy as np\n'), ((1097, 1106), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (1103, 1106), True, 'import numpy as np\n'), ((1926, 1948), 'numpy.flatnonzero', 'np.flatnonzero', (['(i == 0)'], {}), '(i == 0)\n', (1940, 1948), True, 'import numpy as np\n'), ((2995, 3017), 'numpy.flatnonzero', 'np.flatnonzero', (['(i == 0)'], {}), '(i == 0)\n', (3009, 3017), True, 'import numpy as np\n'), ((873, 892), 'numpy.log2', 'np.log2', (['max_absval'], {}), '(max_absval)\n', (880, 892), True, 'import numpy as np\n'), ((1412, 1424), 'numpy.floor', 'np.floor', (['_b'], {}), '(_b)\n', (1420, 1424), True, 'import numpy as np\n'), ((2319, 2328), 'numpy.abs', 'np.abs', (['w'], {}), '(w)\n', (2325, 2328), True, 'import numpy as np\n'), ((3291, 3300), 'numpy.abs', 'np.abs', (['w'], {}), '(w)\n', (3297, 3300), True, 'import numpy as np\n'), ((946, 965), 'numpy.log2', 'np.log2', (['max_absval'], {}), '(max_absval)\n', (953, 965), True, 'import numpy as np\n')]
# Created by <NAME> (<EMAIL>) from collections.abc import Iterable import numpy as np from .cost import Cost class SumCost(Cost): def __init__(self, system, costs): """ A cost which is the sum of other cost terms. It can be created by combining other Cost objects with the `+` operator Parameters ---------- system : System System for the cost object. costs : List of Costs Cost objects to be summed. """ super().__init__(system) self._costs = costs @property def costs(self): return self._costs[:] def get_cost_matrices(self): if self.is_quad: Q = np.zeros((self.system.obs_dim, self.system.obs_dim)) F = np.zeros((self.system.obs_dim, self.system.obs_dim)) R = np.zeros((self.system.ctrl_dim, self.system.ctrl_dim)) for cost in self._costs: Q_, R_, F_ = cost.get_cost_matrices() Q += Q_ R += R_ F += F_ return Q, R, F else: raise NotImplementedError def get_goal(self): if self.has_goal: return self.costs[0] def _sum_results(self, arg, attr): results = [getattr(cost, attr)(arg) for cost in self.costs] if isinstance(results[0], Iterable): return [sum(vals) for vals in zip(*results)] else: return sum(results) def eval_obs_cost(self, obs): return self._sum_results(obs, "eval_obs_cost") def eval_obs_cost_diff(self, obs): return self._sum_results(obs, "eval_obs_cost_diff") def eval_obs_cost_hess(self, obs): return self._sum_results(obs, "eval_obs_cost_hess") def eval_ctrl_cost(self, ctrl): return self._sum_results(ctrl, "eval_ctrl_cost") def eval_ctrl_cost_diff(self, ctrl): return self._sum_results(ctrl, "eval_ctrl_cost_diff") def eval_ctrl_cost_hess(self, ctrl): return self._sum_results(ctrl, "eval_ctrl_cost_hess") def eval_term_obs_cost(self, obs): return self._sum_results(obs, "eval_term_obs_cost") def eval_term_obs_cost_diff(self, obs): return self._sum_results(obs, "eval_term_obs_cost_diff") def eval_term_obs_cost_hess(self, obs): return self._sum_results(obs, "eval_term_obs_cost_hess") @property def is_quad(self): if not self.costs[0].is_quad: return False goal = self.costs[0].get_goal() for cost in self.costs[1:]: if not cost.is_quad: return False if not (goal == cost.get_goal()).all(): return False return True @property def is_convex(self): for cost in self.costs: if not cost.is_convex: return False return True @property def is_diff(self): for cost in self.costs: if not cost.is_diff: return False return True @property def is_twice_diff(self): for cost in self.costs: if not cost.is_diff: return False return True @property def has_goal(self): if not self.costs[0].has_goal: return False goal = self.costs[0].get_goal() for cost in self.costs[1:]: if not cost.has_goal: return False if not (goal == cost.get_goal()).all(): return False return True def __add__(self, other): if isinstance(other, SumCost): return SumCost(self.system, [*self.costs, *other.costs]) else: return SumCost(self.system, [*self.costs, other]) def __radd__(self, other): if isinstance(other, SumCost): return SumCost(self.system, [*other.costs, *self.costs]) else: return SumCost(self.system, [other, *self.costs])
[ "numpy.zeros" ]
[((705, 757), 'numpy.zeros', 'np.zeros', (['(self.system.obs_dim, self.system.obs_dim)'], {}), '((self.system.obs_dim, self.system.obs_dim))\n', (713, 757), True, 'import numpy as np\n'), ((774, 826), 'numpy.zeros', 'np.zeros', (['(self.system.obs_dim, self.system.obs_dim)'], {}), '((self.system.obs_dim, self.system.obs_dim))\n', (782, 826), True, 'import numpy as np\n'), ((843, 897), 'numpy.zeros', 'np.zeros', (['(self.system.ctrl_dim, self.system.ctrl_dim)'], {}), '((self.system.ctrl_dim, self.system.ctrl_dim))\n', (851, 897), True, 'import numpy as np\n')]
# ~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~ # MIT License # # Copyright (c) 2021 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~ import logging from typing import Callable from typing import List from typing import Optional from typing import Sequence from typing import Tuple from typing import Union import numpy as np import pytorch_lightning as pl import torch # TODO: wandb and matplotlib are not in requirements import matplotlib.pyplot as plt import wandb import disent.util.strings.colors as c from disent.dataset import DisentDataset from disent.dataset.data import GroundTruthData from disent.frameworks.ae import Ae from disent.frameworks.vae import Vae from disent.util.function import wrapped_partial from disent.util.iters import chunked from disent.util.lightning.callbacks._callbacks_base import BaseCallbackPeriodic from disent.util.lightning.callbacks._helper import _get_dataset_and_ae_like from disent.util.lightning.logger_util import wb_log_metrics from disent.util.profiling import Timer from disent.util.seeds import TempNumpySeed from disent.util.visualize.plot import plt_subplots_imshow log = logging.getLogger(__name__) # ========================================================================= # # Helper Functions # # ========================================================================= # # helper def _to_dmat( size: int, i_a: np.ndarray, i_b: np.ndarray, dists: Union[torch.Tensor, np.ndarray], ) -> np.ndarray: if isinstance(dists, torch.Tensor): dists = dists.detach().cpu().numpy() # checks assert i_a.ndim == 1 assert i_a.shape == i_b.shape assert i_a.shape == dists.shape # compute dmat = np.zeros([size, size], dtype='float32') dmat[i_a, i_b] = dists dmat[i_b, i_a] = dists return dmat _AE_DIST_NAMES = ('x', 'z', 'x_recon') _VAE_DIST_NAMES = ('x', 'z', 'kl', 'x_recon') @torch.no_grad() def _get_dists_ae(ae: Ae, x_a: torch.Tensor, x_b: torch.Tensor): # feed forware z_a, z_b = ae.encode(x_a), ae.encode(x_b) r_a, r_b = ae.decode(z_a), ae.decode(z_b) # distances return [ ae.recon_handler.compute_pairwise_loss(x_a, x_b), torch.norm(z_a - z_b, p=2, dim=-1), # l2 dist ae.recon_handler.compute_pairwise_loss(r_a, r_b), ] @torch.no_grad() def _get_dists_vae(vae: Vae, x_a: torch.Tensor, x_b: torch.Tensor): from torch.distributions import kl_divergence # feed forward (z_post_a, z_prior_a), (z_post_b, z_prior_b) = vae.encode_dists(x_a), vae.encode_dists(x_b) z_a, z_b = z_post_a.mean, z_post_b.mean r_a, r_b = vae.decode(z_a), vae.decode(z_b) # dists kl_ab = 0.5 * kl_divergence(z_post_a, z_post_b) + 0.5 * kl_divergence(z_post_b, z_post_a) # distances return [ vae.recon_handler.compute_pairwise_loss(x_a, x_b), torch.norm(z_a - z_b, p=2, dim=-1), # l2 dist vae.recon_handler._pairwise_reduce(kl_ab), vae.recon_handler.compute_pairwise_loss(r_a, r_b), ] def _get_dists_fn(model: Ae) -> Tuple[Optional[Tuple[str, ...]], Optional[Callable[[object, object], Sequence[Sequence[float]]]]]: # get aggregate function if isinstance(model, Vae): dists_names, dists_fn = _VAE_DIST_NAMES, wrapped_partial(_get_dists_vae, model) elif isinstance(model, Ae): dists_names, dists_fn = _AE_DIST_NAMES, wrapped_partial(_get_dists_ae, model) else: dists_names, dists_fn = None, None return dists_names, dists_fn @torch.no_grad() def _collect_dists_subbatches(dists_fn: Callable[[object, object], Sequence[Sequence[float]]], batch: torch.Tensor, i_a: np.ndarray, i_b: np.ndarray, batch_size: int = 64): # feed forward results = [] for idxs in chunked(np.stack([i_a, i_b], axis=-1), chunk_size=batch_size): ia, ib = idxs.T x_a, x_b = batch[ia], batch[ib] # feed forward data = dists_fn(x_a, x_b) results.append(data) return [torch.cat(r, dim=0) for r in zip(*results)] def _compute_and_collect_dists( dataset: DisentDataset, dists_fn, dists_names: Sequence[str], traversal_repeats: int = 100, batch_size: int = 32, include_gt_factor_dists: bool = True, transform_batch: Callable[[object], object] = None, data_mode: str = 'input', ) -> Tuple[Tuple[str, ...], List[List[np.ndarray]]]: assert traversal_repeats > 0 gt_data = dataset.gt_data # generate f_grid = [] # generate for f_idx, f_size in enumerate(gt_data.factor_sizes): # save for the current factor (traversal_repeats, len(names), len(i_a)) f_dists = [] # upper triangle excluding diagonal i_a, i_b = np.triu_indices(f_size, k=1) # repeat over random traversals for i in range(traversal_repeats): # get random factor traversal factors = gt_data.sample_random_factor_traversal(f_idx=f_idx) indices = gt_data.pos_to_idx(factors) # load data batch = dataset.dataset_batch_from_indices(indices, data_mode) if transform_batch is not None: batch = transform_batch(batch) # feed forward & compute dists -- (len(names), len(i_a)) dists = _collect_dists_subbatches(dists_fn=dists_fn, batch=batch, i_a=i_a, i_b=i_b, batch_size=batch_size) assert len(dists) == len(dists_names) # distances f_dists.append(dists) # aggregate all dists into distances matrices for current factor f_dmats = [ _to_dmat(size=f_size, i_a=i_a, i_b=i_b, dists=torch.stack(dists, dim=0).mean(dim=0)) for dists in zip(*f_dists) ] # handle factors if include_gt_factor_dists: i_dmat = _to_dmat(size=f_size, i_a=i_a, i_b=i_b, dists=np.abs(factors[i_a] - factors[i_b]).sum(axis=-1)) f_dmats = [i_dmat, *f_dmats] # append data f_grid.append(f_dmats) # handle factors if include_gt_factor_dists: dists_names = ('factors', *dists_names) # done return tuple(dists_names), f_grid def compute_factor_distances( dataset: DisentDataset, dists_fn, dists_names: Sequence[str], traversal_repeats: int = 100, batch_size: int = 32, include_gt_factor_dists: bool = True, transform_batch: Callable[[object], object] = None, seed: Optional[int] = 777, data_mode: str = 'input', ) -> Tuple[Tuple[str, ...], List[List[np.ndarray]]]: # log this callback gt_data = dataset.gt_data log.info(f'| {gt_data.name} - computing factor distances...') # compute various distances matrices for each factor with Timer() as timer, TempNumpySeed(seed): dists_names, f_grid = _compute_and_collect_dists( dataset=dataset, dists_fn=dists_fn, dists_names=dists_names, traversal_repeats=traversal_repeats, batch_size=batch_size, include_gt_factor_dists=include_gt_factor_dists, transform_batch=transform_batch, data_mode=data_mode, ) # log this callback! log.info(f'| {gt_data.name} - computed factor distances! time{c.GRY}={c.lYLW}{timer.pretty:<9}{c.RST}') return dists_names, f_grid def plt_factor_distances( gt_data: GroundTruthData, f_grid: List[List[np.ndarray]], dists_names: Sequence[str], title: str, plt_block_size: float = 1.25, plt_transpose: bool = False, plt_cmap='Blues', ): # plot information imshow_kwargs = dict(cmap=plt_cmap) figsize = (plt_block_size*len(f_grid[0]), plt_block_size * gt_data.num_factors) # plot! if not plt_transpose: fig, axs = plt_subplots_imshow(grid=f_grid, col_labels=dists_names, row_labels=gt_data.factor_names, figsize=figsize, title=title, imshow_kwargs=imshow_kwargs) else: fig, axs = plt_subplots_imshow(grid=list(zip(*f_grid)), col_labels=gt_data.factor_names, row_labels=dists_names, figsize=figsize[::-1], title=title, imshow_kwargs=imshow_kwargs) # done return fig, axs # ========================================================================= # # Data Dists Visualisation Callback # # ========================================================================= # class VaeGtDistsLoggingCallback(BaseCallbackPeriodic): def __init__( self, seed: Optional[int] = 7777, every_n_steps: Optional[int] = None, traversal_repeats: int = 100, begin_first_step: bool = False, plt_block_size: float = 1.25, plt_show: bool = False, plt_transpose: bool = False, log_wandb: bool = True, # TODO: detect this automatically? batch_size: int = 128, include_factor_dists: bool = True, ): assert traversal_repeats > 0 self._traversal_repeats = traversal_repeats self._seed = seed self._plt_block_size = plt_block_size self._plt_show = plt_show self._log_wandb = log_wandb self._include_gt_factor_dists = include_factor_dists self._transpose_plot = plt_transpose self._batch_size = batch_size super().__init__(every_n_steps, begin_first_step) @torch.no_grad() def do_step(self, trainer: pl.Trainer, pl_module: pl.LightningModule): # exit early if not (self._plt_show or self._log_wandb): log.warning(f'skipping {self.__class__.__name__} neither `plt_show` or `log_wandb` is `True`!') return # get dataset and vae framework from trainer and module dataset, vae = _get_dataset_and_ae_like(trainer, pl_module, unwrap_groundtruth=True) # exit early if not dataset.is_ground_truth: log.warning(f'cannot run {self.__class__.__name__} over non-ground-truth data, skipping!') return # get aggregate function dists_names, dists_fn = _get_dists_fn(vae) if (dists_names is None) or (dists_fn is None): log.warning(f'cannot run {self.__class__.__name__}, unsupported model type: {type(vae)}, must be {Ae.__name__} or {Vae.__name__}') return # compute various distances matrices for each factor dists_names, f_grid = compute_factor_distances( dataset=dataset, dists_fn=dists_fn, dists_names=dists_names, traversal_repeats=self._traversal_repeats, batch_size=self._batch_size, include_gt_factor_dists=self._include_gt_factor_dists, transform_batch=lambda batch: batch.to(vae.device), seed=self._seed, data_mode='input', ) # plot these results fig, axs = plt_factor_distances( gt_data=dataset.gt_data, f_grid=f_grid, dists_names=dists_names, title=f'{vae.__class__.__name__}: {dataset.gt_data.name.capitalize()} Distances', plt_block_size=self._plt_block_size, plt_transpose=self._transpose_plot, plt_cmap='Blues', ) # show the plot if self._plt_show: plt.show() # log the plot to wandb if self._log_wandb: wb_log_metrics(trainer.logger, { 'factor_distances': wandb.Image(fig) }) # ========================================================================= # # END # # ========================================================================= #
[ "numpy.stack", "matplotlib.pyplot.show", "torch.stack", "numpy.abs", "disent.util.lightning.callbacks._helper._get_dataset_and_ae_like", "torch.norm", "disent.util.visualize.plot.plt_subplots_imshow", "numpy.zeros", "torch.cat", "numpy.triu_indices", "torch.distributions.kl_divergence", "disent.util.profiling.Timer", "wandb.Image", "disent.util.seeds.TempNumpySeed", "disent.util.function.wrapped_partial", "torch.no_grad", "logging.getLogger" ]
[((2277, 2304), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2294, 2304), False, 'import logging\n'), ((3102, 3117), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3115, 3117), False, 'import torch\n'), ((3503, 3518), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3516, 3518), False, 'import torch\n'), ((4697, 4712), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4710, 4712), False, 'import torch\n'), ((2902, 2941), 'numpy.zeros', 'np.zeros', (['[size, size]'], {'dtype': '"""float32"""'}), "([size, size], dtype='float32')\n", (2910, 2941), True, 'import numpy as np\n'), ((10503, 10518), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10516, 10518), False, 'import torch\n'), ((3389, 3423), 'torch.norm', 'torch.norm', (['(z_a - z_b)'], {'p': '(2)', 'dim': '(-1)'}), '(z_a - z_b, p=2, dim=-1)\n', (3399, 3423), False, 'import torch\n'), ((4046, 4080), 'torch.norm', 'torch.norm', (['(z_a - z_b)'], {'p': '(2)', 'dim': '(-1)'}), '(z_a - z_b, p=2, dim=-1)\n', (4056, 4080), False, 'import torch\n'), ((4946, 4975), 'numpy.stack', 'np.stack', (['[i_a, i_b]'], {'axis': '(-1)'}), '([i_a, i_b], axis=-1)\n', (4954, 4975), True, 'import numpy as np\n'), ((5163, 5182), 'torch.cat', 'torch.cat', (['r'], {'dim': '(0)'}), '(r, dim=0)\n', (5172, 5182), False, 'import torch\n'), ((5887, 5915), 'numpy.triu_indices', 'np.triu_indices', (['f_size'], {'k': '(1)'}), '(f_size, k=1)\n', (5902, 5915), True, 'import numpy as np\n'), ((7876, 7883), 'disent.util.profiling.Timer', 'Timer', ([], {}), '()\n', (7881, 7883), False, 'from disent.util.profiling import Timer\n'), ((7894, 7913), 'disent.util.seeds.TempNumpySeed', 'TempNumpySeed', (['seed'], {}), '(seed)\n', (7907, 7913), False, 'from disent.util.seeds import TempNumpySeed\n'), ((8911, 9064), 'disent.util.visualize.plot.plt_subplots_imshow', 'plt_subplots_imshow', ([], {'grid': 'f_grid', 'col_labels': 'dists_names', 'row_labels': 'gt_data.factor_names', 'figsize': 'figsize', 'title': 'title', 'imshow_kwargs': 'imshow_kwargs'}), '(grid=f_grid, col_labels=dists_names, row_labels=gt_data\n .factor_names, figsize=figsize, title=title, imshow_kwargs=imshow_kwargs)\n', (8930, 9064), False, 'from disent.util.visualize.plot import plt_subplots_imshow\n'), ((10881, 10950), 'disent.util.lightning.callbacks._helper._get_dataset_and_ae_like', '_get_dataset_and_ae_like', (['trainer', 'pl_module'], {'unwrap_groundtruth': '(True)'}), '(trainer, pl_module, unwrap_groundtruth=True)\n', (10905, 10950), False, 'from disent.util.lightning.callbacks._helper import _get_dataset_and_ae_like\n'), ((3874, 3907), 'torch.distributions.kl_divergence', 'kl_divergence', (['z_post_a', 'z_post_b'], {}), '(z_post_a, z_post_b)\n', (3887, 3907), False, 'from torch.distributions import kl_divergence\n'), ((3916, 3949), 'torch.distributions.kl_divergence', 'kl_divergence', (['z_post_b', 'z_post_a'], {}), '(z_post_b, z_post_a)\n', (3929, 3949), False, 'from torch.distributions import kl_divergence\n'), ((4451, 4489), 'disent.util.function.wrapped_partial', 'wrapped_partial', (['_get_dists_vae', 'model'], {}), '(_get_dists_vae, model)\n', (4466, 4489), False, 'from disent.util.function import wrapped_partial\n'), ((12412, 12422), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12420, 12422), True, 'import matplotlib.pyplot as plt\n'), ((4570, 4607), 'disent.util.function.wrapped_partial', 'wrapped_partial', (['_get_dists_ae', 'model'], {}), '(_get_dists_ae, model)\n', (4585, 4607), False, 'from disent.util.function import wrapped_partial\n'), ((12564, 12580), 'wandb.Image', 'wandb.Image', (['fig'], {}), '(fig)\n', (12575, 12580), False, 'import wandb\n'), ((6802, 6827), 'torch.stack', 'torch.stack', (['dists'], {'dim': '(0)'}), '(dists, dim=0)\n', (6813, 6827), False, 'import torch\n'), ((7018, 7053), 'numpy.abs', 'np.abs', (['(factors[i_a] - factors[i_b])'], {}), '(factors[i_a] - factors[i_b])\n', (7024, 7053), True, 'import numpy as np\n')]
import numpy as np from analysisdatalink import datalink from collections import defaultdict class AnalysisDataLinkExt(datalink.AnalysisDataLink): def __init__(self, dataset_name, materialization_version=None, sqlalchemy_database_uri=None, verbose=True, annotation_endpoint=None): super().__init__(dataset_name, materialization_version, sqlalchemy_database_uri, verbose=verbose, annotation_endpoint=annotation_endpoint) def query_synapses(self, synapse_table, pre_ids=None, post_ids=None, compartment_include_filter=None, include_autapses=False, compartment_table=None, return_sql=False, fix_wkb=True, fix_decimal=True, import_via_buffer=True, n_threads=None): """Query a synapse table and return a dataframe Parameters ---------- synapse_table : str Table name with a synapse schema pre_ids : collection of ints, optional Object ids for presynaptic neurons, by default None post_ids : collection of ints, optional Object ids for postsynaptic neurons, by default None compartment_include_filter : None, optional Not currently implemented. By default None include_autapses : bool, optional Include synapses whose pre- and post-synaptic objects are the same, by default False compartment_table : str, optional Not currently implemented. Would be a table name for synapse compartments. By default None return_sql : bool, optional Return the sqlalchemy query object instead of the data itself, by default False fix_wkb : bool, optional Convert wkb-formatted spatial location columns to numpy 3-vectors. Setting to False can be much faster, but spatial information is not easy to parse. These columns can be parsed after the fact with analysisdatalink.fix_wkb_column. Optional, by default True fix_decimal : bool, optional Convert Decimal columns to ints. Not used if import_via_buffer is True. By default True import_via_buffer : bool, optional Flag to determine whether to use a fast csv and tempfile based SQL import (if True) or the pandas native read_sql import (if False). If column formatting is odd, try setting to False. Optional, by default True. n_threads : int or None, optional Number of threads to use when parsing columns to convert wkb. Unused if fix_wkb is False. If set to 1, multiprocessing is not used and slower numpy vectorization is used instead. If None, uses the number of cpus available on the device. By default None Returns ------- pandas.DataFrame DataFrame representation of the query results. """ filter_in_dict = defaultdict(dict) filter_equal_dict = defaultdict(dict) if pre_ids is not None: filter_in_dict[synapse_table]["pre_pt_root_id"] = [int(pid) for pid in pre_ids] if post_ids is not None: filter_in_dict[synapse_table]["post_pt_root_id"] = [int(pid) for pid in post_ids] if not include_autapses: filter_equal_dict[synapse_table]["valid"] = True if compartment_table is not None: tables = [[synapse_table, "id"], [compartment_table, "synapse_id"]] if compartment_include_filter is not None: filter_in_dict[compartment_table]['label'] = compartment_include_filter else: tables = [synapse_table] df = self.specific_query(tables, filter_in_dict=filter_in_dict, filter_equal_dict=filter_equal_dict, return_sql=return_sql, fix_wkb=fix_wkb, fix_decimal=fix_decimal, import_via_buffer=import_via_buffer, n_threads=n_threads) return df def query_cell_types(self, cell_type_table, cell_type_include_filter=None, cell_type_exclude_filter=None, return_only_ids=False, exclude_zero_root_ids=False, fix_wkb=True, fix_decimal=True, return_sql=False, import_via_buffer=True, n_threads=None): """Query a synapse table and return a dataframe Parameters ---------- cell_type_table : str Table name with a cell_type schema cell_type_include_filter : collection of str, optional Cell types to include cell_type_exclude_filter : collection of str, optional Cell types to exclude return_only_ids : bool, optional Process to include only root ids matching the query. exclude_zero_root_ids : bool, optional Fitler out points with a null segmentation id. return_sql : bool, optional Return the sqlalchemy query object instead of the data itself, by default False fix_wkb : bool, optional Convert wkb-formatted spatial location columns to numpy 3-vectors. Setting to False can be much faster, but spatial information is not easy to parse. These columns can be parsed after the fact with analysisdatalink.fix_wkb_column. Optional, by default True fix_decimal : bool, optional Convert Decimal columns to ints. Not used if import_via_buffer is True. By default True import_via_buffer : bool, optional Flag to determine whether to use a fast csv and tempfile based SQL import (if True) or the pandas native read_sql import (if False). If column formatting is odd, try setting to False. Optional, by default True. n_threads : int or None, optional Number of threads to use when parsing columns to convert wkb. Unused if fix_wkb is False. If set to 1, multiprocessing is not used and slower numpy vectorization is used instead. If None, uses the number of cpus available on the device. By default None Returns ------- pandas.DataFrame DataFrame representation of the query results. """ filter_in_dict = defaultdict(dict) if cell_type_include_filter is not None: filter_in_dict[cell_type_table]["cell_type"] = cell_type_include_filter filter_notin_dict = defaultdict(dict) if exclude_zero_root_ids: filter_notin_dict[cell_type_table]["pt_root_id"] = [0] if cell_type_exclude_filter is not None: filter_notin_dict[cell_type_table]['cell_type'] = cell_type_exclude_filter if return_only_ids: select_columns = ["pt_root_id"] else: select_columns = None df = self.specific_query(tables=[cell_type_table], filter_in_dict=filter_in_dict, filter_notin_dict=filter_notin_dict, select_columns=select_columns, fix_wkb=fix_wkb, fix_decimal=fix_decimal, return_sql=return_sql, import_via_buffer=import_via_buffer, n_threads=n_threads) if return_only_ids: return np.array(df, dtype = np.uint64).squeeze() else: return df def query_cell_ids(self, cell_id_table, cell_id_filter=None, cell_id_exclude_filter=None, return_only_ids=False, exclude_zero_root_ids=False, fix_wkb=True, fix_decimal=True, return_sql=False, import_via_buffer=True, n_threads=None): """ Query cell id tables Parameters ---------- cell_id_table : str Table name for a microns_functional_coregistration table cell_id_filter : list of uint64s, optional List of root ids to include. Default is None. cell_id_exclude_filter : list of uint64s, optional List of root ids to exclude. Default is None. return_only_ids : bool, optional Process to include only root ids matching the query. Default is False. exclude_zero_root_ids : bool, optional Fitler out points with a null segmentation id. Default is False. return_sql : bool, optional Return the sqlalchemy query object instead of the data itself, by default False fix_wkb : bool, optional Convert wkb-formatted spatial location columns to numpy 3-vectors. Setting to False can be much faster, but spatial information is not easy to parse. These columns can be parsed after the fact with analysisdatalink.fix_wkb_column. Optional, by default True fix_decimal : bool, optional Convert Decimal columns to ints. Not used if import_via_buffer is True. By default True import_via_buffer : bool, optional Flag to determine whether to use a fast csv and tempfile based SQL import (if True) or the pandas native read_sql import (if False). If column formatting is odd, try setting to False. Optional, by default True. n_threads : int or None, optional Number of threads to use when parsing columns to convert wkb. Unused if fix_wkb is False. If set to 1, multiprocessing is not used and slower numpy vectorization is used instead. If None, uses the number of cpus available on the device. By default None Returns ------- pandas.DataFrame DataFrame representation of the query results. """ filter_in_dict = defaultdict(dict) if cell_id_filter is not None: filter_in_dict[cell_id_table]['func_id'] = [int(pid) for pid in cell_id_filter] filter_notin_dict = defaultdict(dict) if cell_id_exclude_filter is not None: filter_notin_dict[cell_id_table]['func_id'] = [int(pid) for pid in cell_id_exclude_filter] if exclude_zero_root_ids is not None: filter_notin_dict[cell_id_table]['pt_root_id'] = [0] if return_only_ids: select_columns = ['pt_root_id'] else: select_columns = None df = self.specific_query(tables=[cell_id_table], filter_in_dict=filter_in_dict, filter_notin_dict=filter_notin_dict, select_columns=select_columns, fix_wkb=fix_wkb, fix_decimal=fix_decimal, return_sql=return_sql, import_via_buffer=import_via_buffer, n_threads=n_threads) if return_only_ids: return np.array(df, dtype=np.uint64).squeeze() else: return df def query_coreg(self, coreg_table, cell_id_filter=None, cell_id_exclude_filter=None, return_only_mapping=False, exclude_zero_root_ids=False, fix_wkb=True, fix_decimal=True, return_sql=False, import_via_buffer=True, n_threads=None): """ Query cell id tables Parameters ---------- coreg_table : str Table name for a microns_functional_coregistration table cell_id_filter : list of uint64s, optional List of root ids to include. Default is None. cell_id_exclude_filter : list of uint64s, optional List of root ids to exclude. Default is None. return_only_ids : bool, optional Process to include only root ids matching the query. Default is False. exclude_zero_root_ids : bool, optional Fitler out points with a null segmentation id. Default is False. return_sql : bool, optional Return the sqlalchemy query object instead of the data itself, by default False fix_wkb : bool, optional Convert wkb-formatted spatial location columns to numpy 3-vectors. Setting to False can be much faster, but spatial information is not easy to parse. These columns can be parsed after the fact with analysisdatalink.fix_wkb_column. Optional, by default True fix_decimal : bool, optional Convert Decimal columns to ints. Not used if import_via_buffer is True. By default True import_via_buffer : bool, optional Flag to determine whether to use a fast csv and tempfile based SQL import (if True) or the pandas native read_sql import (if False). If column formatting is odd, try setting to False. Optional, by default True. n_threads : int or None, optional Number of threads to use when parsing columns to convert wkb. Unused if fix_wkb is False. If set to 1, multiprocessing is not used and slower numpy vectorization is used instead. If None, uses the number of cpus available on the device. By default None Returns ------- pandas.DataFrame DataFrame representation of the query results. """ filter_in_dict = defaultdict(dict) if cell_id_filter is not None: filter_in_dict[coreg_table]['func_id'] = [int(pid) for pid in cell_id_filter] filter_notin_dict = defaultdict(dict) if cell_id_exclude_filter is not None: filter_notin_dict[coreg_table]['func_id'] = [int(pid) for pid in cell_id_exclude_filter] if exclude_zero_root_ids is not None: filter_notin_dict[coreg_table]['pt_root_id'] = [0] if return_only_mapping: select_columns = ['pt_root_id', 'func_id'] else: select_columns = None df = self.specific_query(tables=[coreg_table], filter_in_dict=filter_in_dict, filter_notin_dict=filter_notin_dict, select_columns=select_columns, fix_wkb=fix_wkb, fix_decimal=fix_decimal, return_sql=return_sql, import_via_buffer=import_via_buffer, n_threads=n_threads) if return_only_mapping: return np.array(df, dtype=np.uint64).squeeze() else: return df
[ "collections.defaultdict", "numpy.array" ]
[((3052, 3069), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (3063, 3069), False, 'from collections import defaultdict\n'), ((3098, 3115), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (3109, 3115), False, 'from collections import defaultdict\n'), ((6529, 6546), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (6540, 6546), False, 'from collections import defaultdict\n'), ((6709, 6726), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (6720, 6726), False, 'from collections import defaultdict\n'), ((10087, 10104), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (10098, 10104), False, 'from collections import defaultdict\n'), ((10265, 10282), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (10276, 10282), False, 'from collections import defaultdict\n'), ((13628, 13645), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (13639, 13645), False, 'from collections import defaultdict\n'), ((13804, 13821), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (13815, 13821), False, 'from collections import defaultdict\n'), ((7688, 7717), 'numpy.array', 'np.array', (['df'], {'dtype': 'np.uint64'}), '(df, dtype=np.uint64)\n', (7696, 7717), True, 'import numpy as np\n'), ((11224, 11253), 'numpy.array', 'np.array', (['df'], {'dtype': 'np.uint64'}), '(df, dtype=np.uint64)\n', (11232, 11253), True, 'import numpy as np\n'), ((14776, 14805), 'numpy.array', 'np.array', (['df'], {'dtype': 'np.uint64'}), '(df, dtype=np.uint64)\n', (14784, 14805), True, 'import numpy as np\n')]
import cv2 import numpy as np import imutils from text_recognition import text_name import pytesseract def auto_canny(image, sigma=0.55): # compute the median of the single channel pixel intensities v = np.median(image) # apply automatic Canny edge detection using the computed median lower = int(max(0, (1.0 - sigma) * v)) upper = int(min(255, (1.0 + sigma) * v)) edged = cv2.Canny(image, lower, upper) # return the edged image return edged ''' def id_text(): img2 = cv2.imread("images/Name007.png", -1) cv2.imshow('',img2) text=pytesseract.image_to_string(dark, config="-l tessdata/spa --oem 1 --psm 13") print("Detected Number is:",text) ''' def id_detection(): cap = cv2.VideoCapture(0) while(True): ret, img = cap.read() #img = cv2.imread("card_06.jpeg", -1) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.medianBlur(gray,13) #ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_TRIANGLE) thresh=cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,11,2) kernel = np.ones((3,3),np.uint8) opening = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel) edged = auto_canny(opening) cv2.imshow('edge',edged) cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:30] number_plate = [] peri = cv2.arcLength(cnts[0], True) approx = cv2.approxPolyDP(cnts[0], 0.018 * peri, True) number_plate.append(approx) if len(approx) == 4: # compute the bounding box of the contour and use the # bounding box to compute the aspect ratio (x, y, w, h) = cv2.boundingRect(approx) ar = w / float(h) if ar>1.4 and ar<1.6: print('rectagle', str(ar)) print('aprox', str(approx)) cv2.drawContours(img, number_plate, -1, (0,255,0), 3) cv2.imshow('square',img) point1=approx[0][0][0] print('point'+str(point1)) x1=approx[0][0][0] y1=approx[0][0][1] x2 = approx[1][0][0] y2=approx[1][0][1] x3=approx[2][0][0] y3= approx[2][0][1] x4 =approx[3][0][0] y4= approx[3][0][1] top_left_x = min(x1,x2,x3,x4) top_left_y = min([y1,y2,y3,y4]) bot_right_x = max([x1,x2,x3,x4]) bot_right_y = max([y1,y2,y3,y4]) crop=img[top_left_y:bot_right_y+1, top_left_x:bot_right_x+1] cv2.imshow('crop',crop) name=crop[75:160,120:270] #cv2.imshow('name',name) dark= cv2.cvtColor(name, cv2.COLOR_BGR2GRAY) thresh=cv2.adaptiveThreshold(dark,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,11,2) kernel = np.ones((3,3),np.uint8) dark = cv2.morphologyEx(dark, cv2.MORPH_OPEN, kernel) dark = auto_canny(dark) #cv2.imshow('dark',dark) string_name=text_name() print(string_name) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows() return string_name,crop
[ "cv2.boundingRect", "cv2.Canny", "text_recognition.text_name", "cv2.medianBlur", "numpy.median", "cv2.cvtColor", "cv2.morphologyEx", "cv2.arcLength", "cv2.imshow", "numpy.ones", "cv2.adaptiveThreshold", "cv2.approxPolyDP", "cv2.VideoCapture", "cv2.waitKey", "imutils.grab_contours", "cv2.drawContours", "cv2.destroyAllWindows" ]
[((212, 228), 'numpy.median', 'np.median', (['image'], {}), '(image)\n', (221, 228), True, 'import numpy as np\n'), ((400, 430), 'cv2.Canny', 'cv2.Canny', (['image', 'lower', 'upper'], {}), '(image, lower, upper)\n', (409, 430), False, 'import cv2\n'), ((729, 748), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (745, 748), False, 'import cv2\n'), ((3560, 3583), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3581, 3583), False, 'import cv2\n'), ((859, 896), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2GRAY'], {}), '(img, cv2.COLOR_BGR2GRAY)\n', (871, 896), False, 'import cv2\n'), ((913, 937), 'cv2.medianBlur', 'cv2.medianBlur', (['gray', '(13)'], {}), '(gray, 13)\n', (927, 937), False, 'import cv2\n'), ((1022, 1117), 'cv2.adaptiveThreshold', 'cv2.adaptiveThreshold', (['gray', '(255)', 'cv2.ADAPTIVE_THRESH_GAUSSIAN_C', 'cv2.THRESH_BINARY', '(11)', '(2)'], {}), '(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.\n THRESH_BINARY, 11, 2)\n', (1043, 1117), False, 'import cv2\n'), ((1148, 1173), 'numpy.ones', 'np.ones', (['(3, 3)', 'np.uint8'], {}), '((3, 3), np.uint8)\n', (1155, 1173), True, 'import numpy as np\n'), ((1190, 1236), 'cv2.morphologyEx', 'cv2.morphologyEx', (['gray', 'cv2.MORPH_OPEN', 'kernel'], {}), '(gray, cv2.MORPH_OPEN, kernel)\n', (1206, 1236), False, 'import cv2\n'), ((1291, 1316), 'cv2.imshow', 'cv2.imshow', (['"""edge"""', 'edged'], {}), "('edge', edged)\n", (1301, 1316), False, 'import cv2\n'), ((1423, 1450), 'imutils.grab_contours', 'imutils.grab_contours', (['cnts'], {}), '(cnts)\n', (1444, 1450), False, 'import imutils\n'), ((1561, 1589), 'cv2.arcLength', 'cv2.arcLength', (['cnts[0]', '(True)'], {}), '(cnts[0], True)\n', (1574, 1589), False, 'import cv2\n'), ((1607, 1652), 'cv2.approxPolyDP', 'cv2.approxPolyDP', (['cnts[0]', '(0.018 * peri)', '(True)'], {}), '(cnts[0], 0.018 * peri, True)\n', (1623, 1652), False, 'import cv2\n'), ((1867, 1891), 'cv2.boundingRect', 'cv2.boundingRect', (['approx'], {}), '(approx)\n', (1883, 1891), False, 'import cv2\n'), ((2068, 2123), 'cv2.drawContours', 'cv2.drawContours', (['img', 'number_plate', '(-1)', '(0, 255, 0)', '(3)'], {}), '(img, number_plate, -1, (0, 255, 0), 3)\n', (2084, 2123), False, 'import cv2\n'), ((2139, 2164), 'cv2.imshow', 'cv2.imshow', (['"""square"""', 'img'], {}), "('square', img)\n", (2149, 2164), False, 'import cv2\n'), ((2835, 2859), 'cv2.imshow', 'cv2.imshow', (['"""crop"""', 'crop'], {}), "('crop', crop)\n", (2845, 2859), False, 'import cv2\n'), ((2966, 3004), 'cv2.cvtColor', 'cv2.cvtColor', (['name', 'cv2.COLOR_BGR2GRAY'], {}), '(name, cv2.COLOR_BGR2GRAY)\n', (2978, 3004), False, 'import cv2\n'), ((3029, 3124), 'cv2.adaptiveThreshold', 'cv2.adaptiveThreshold', (['dark', '(255)', 'cv2.ADAPTIVE_THRESH_GAUSSIAN_C', 'cv2.THRESH_BINARY', '(11)', '(2)'], {}), '(dark, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.\n THRESH_BINARY, 11, 2)\n', (3050, 3124), False, 'import cv2\n'), ((3163, 3188), 'numpy.ones', 'np.ones', (['(3, 3)', 'np.uint8'], {}), '((3, 3), np.uint8)\n', (3170, 3188), True, 'import numpy as np\n'), ((3210, 3256), 'cv2.morphologyEx', 'cv2.morphologyEx', (['dark', 'cv2.MORPH_OPEN', 'kernel'], {}), '(dark, cv2.MORPH_OPEN, kernel)\n', (3226, 3256), False, 'import cv2\n'), ((3376, 3387), 'text_recognition.text_name', 'text_name', ([], {}), '()\n', (3385, 3387), False, 'from text_recognition import text_name\n'), ((3436, 3450), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (3447, 3450), False, 'import cv2\n')]
__all__ = ['checkEquivalentApprox'] import copy import logging import numpy as np from LevelSetPy.Utilities import * logger = logging.getLogger(__name__) def checkEquivalentApprox(approx1, approx2,bound): """ checkEquivalentApprox: Checks two derivative approximations for equivalence. [ relError, absError ] = checkEquivalentApprox(approx1, approx2, bound) Checks two derivative approximations for equivalence. A warning is generated if either of these conditions holds: 1) The approximation magnitude > bound and the maximum relative error > bound. 2) The approximation magnitude < bound and the maximum absolute error > bound. Normally, the return values are ignored (the whole point is the warning checks). parameters: approx1 An array containing one approximation. approx2 An array containing the other approximation. bound The bound above which warnings are generated. relError The relative error at each point in the array where the magnitude > bound (NaN otherwise). absError The absolute error at each point in the array. Copyright 2004 <NAME> (<EMAIL>). This software is used, copied and distributed under the licensing agreement contained in the file LICENSE in the top directory of the distribution. <NAME>, 1/23/04 """ # Approximate magnitude of the solution magnitude = 0.5 * np.abs(approx1 + approx2) # Which nodes deserve relative treatment, and which absolute treatment? useRelative = np.nonzero(magnitude > bound) useAbsolute = np.nonzero(magnitude <= bound) absError = np.abs(approx1 - approx2) # Be careful not to divide by too small a number. relError = ones(size(absError)) relError.fill(np.nan) relError[useRelative] = np.divide(absError[useRelative], magnitude[useRelative]) # Check that bounds are respected. if(max(relError[useRelative]) > bound): logger.warn(f'exceeded relative bound. Error in supposedly' 'equivalent derivative approximations' '{max(relError[useRelative])}, {bound}') if(max(absError[useAbsolute]) > bound): logger.warn(f'exceeded absolute bound. Error in supposedly' 'equivalent derivative approximations' '{max(relError[useAbsolute])}, {bound}') return relError, absError
[ "numpy.nonzero", "numpy.divide", "numpy.abs", "logging.getLogger" ]
[((127, 154), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (144, 154), False, 'import logging\n'), ((1616, 1645), 'numpy.nonzero', 'np.nonzero', (['(magnitude > bound)'], {}), '(magnitude > bound)\n', (1626, 1645), True, 'import numpy as np\n'), ((1664, 1694), 'numpy.nonzero', 'np.nonzero', (['(magnitude <= bound)'], {}), '(magnitude <= bound)\n', (1674, 1694), True, 'import numpy as np\n'), ((1711, 1736), 'numpy.abs', 'np.abs', (['(approx1 - approx2)'], {}), '(approx1 - approx2)\n', (1717, 1736), True, 'import numpy as np\n'), ((1882, 1938), 'numpy.divide', 'np.divide', (['absError[useRelative]', 'magnitude[useRelative]'], {}), '(absError[useRelative], magnitude[useRelative])\n', (1891, 1938), True, 'import numpy as np\n'), ((1495, 1520), 'numpy.abs', 'np.abs', (['(approx1 + approx2)'], {}), '(approx1 + approx2)\n', (1501, 1520), True, 'import numpy as np\n')]
import torch from torch.utils.data import Dataset, DataLoader from torch.utils.data.sampler import SubsetRandomSampler import numpy as np import json import os from random import shuffle import math PATH = os.path.join(os.getcwd(), "data4.0") SPACEGROUP_FILE = { 0: "Triclinic.txt", 1: "Monoclinic.txt", 2: "Orthorhombic.txt", 3: "Tetragonal.txt", 4: "Trigonal.txt", 5: "Hexagonal.txt", 6: "Cubic.txt" } SPACEGROUP_LABEL_OFFSET = { 0: 1, 1: 3, 2: 16, 3: 75, 4: 143, 5: 168, 6: 195 } SPACEGROUP_SHAPE = { 0: 2, 1: 13, 2: 59, 3: 68, 4: 25, 5: 27, 6: 36 } class Cs2Sg(Dataset): def __init__(self, crystal_system, valid_size): print("Preparing dataset") data_input_valid = [] data_label_valid = [] data_input_train = [] data_label_train = [] with open(SPACEGROUP_FILE[crystal_system], "r") as f: path_list = f.readlines() shuffle(path_list) valid_len = math.floor(len(path_list) * valid_size) for i, path in enumerate(path_list): data_path = os.path.join(PATH, path.rstrip()) with open(data_path, "r") as f: data = json.load(f) data_input = np.array(data["bands"]).T data_label = np.array([data["number"]]) - SPACEGROUP_LABEL_OFFSET[crystal_system] if i < valid_len: data_input_valid.append(torch.from_numpy(data_input).float()) data_label_valid.append(torch.from_numpy(data_label).long()) else: data_input_train.append(torch.from_numpy(data_input).float()) data_label_train.append(torch.from_numpy(data_label).long()) print("valid length:", len(data_input_valid)) print("train length:", len(data_input_train)) self.data_inputs = data_input_valid + data_input_train self.data_labels = data_label_valid + data_label_train self.length = len(self.data_labels) self.valid_size = valid_len def __len__(self): return self.length def __getitem__(self, item): return self.data_inputs[item], self.data_labels[item] def get_valid_train_loader(dataset, batch_size): num = len(dataset) indices = [i for i in range(num)] split = dataset.valid_size valid_idx, train_idx = indices[:split], indices[split:] valid_sampler = SubsetRandomSampler(valid_idx) train_sampler = SubsetRandomSampler(train_idx) valid_loader = DataLoader(dataset, batch_size=batch_size, sampler=valid_sampler) train_loader = DataLoader(dataset, batch_size=batch_size, sampler=train_sampler) return train_loader, valid_loader
[ "torch.utils.data.sampler.SubsetRandomSampler", "json.load", "torch.utils.data.DataLoader", "os.getcwd", "random.shuffle", "numpy.array", "torch.from_numpy" ]
[((231, 242), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (240, 242), False, 'import os\n'), ((2619, 2649), 'torch.utils.data.sampler.SubsetRandomSampler', 'SubsetRandomSampler', (['valid_idx'], {}), '(valid_idx)\n', (2638, 2649), False, 'from torch.utils.data.sampler import SubsetRandomSampler\n'), ((2671, 2701), 'torch.utils.data.sampler.SubsetRandomSampler', 'SubsetRandomSampler', (['train_idx'], {}), '(train_idx)\n', (2690, 2701), False, 'from torch.utils.data.sampler import SubsetRandomSampler\n'), ((2724, 2789), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': 'batch_size', 'sampler': 'valid_sampler'}), '(dataset, batch_size=batch_size, sampler=valid_sampler)\n', (2734, 2789), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((2810, 2875), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': 'batch_size', 'sampler': 'train_sampler'}), '(dataset, batch_size=batch_size, sampler=train_sampler)\n', (2820, 2875), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((1091, 1109), 'random.shuffle', 'shuffle', (['path_list'], {}), '(path_list)\n', (1098, 1109), False, 'from random import shuffle\n'), ((1347, 1359), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1356, 1359), False, 'import json\n'), ((1390, 1413), 'numpy.array', 'np.array', (["data['bands']"], {}), "(data['bands'])\n", (1398, 1413), True, 'import numpy as np\n'), ((1446, 1472), 'numpy.array', 'np.array', (["[data['number']]"], {}), "([data['number']])\n", (1454, 1472), True, 'import numpy as np\n'), ((1597, 1625), 'torch.from_numpy', 'torch.from_numpy', (['data_input'], {}), '(data_input)\n', (1613, 1625), False, 'import torch\n'), ((1680, 1708), 'torch.from_numpy', 'torch.from_numpy', (['data_label'], {}), '(data_label)\n', (1696, 1708), False, 'import torch\n'), ((1787, 1815), 'torch.from_numpy', 'torch.from_numpy', (['data_input'], {}), '(data_input)\n', (1803, 1815), False, 'import torch\n'), ((1870, 1898), 'torch.from_numpy', 'torch.from_numpy', (['data_label'], {}), '(data_label)\n', (1886, 1898), False, 'import torch\n')]
import os, sys import time import argparse import shutil import numpy as np import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data # import video_transforms # import models # import datasets import traceback import logging from functools import partial import distiller import distiller.apputils as apputils import parser import os import numpy as np from ptq_lapq import image_classifier_ptq_lapq import image_classifier as classifier # Logger handle msglogger = logging.getLogger() def main(): # Parse arguments args = parser.add_cmdline_args(classifier.init_classifier_compression_arg_parser(True)).parse_args() app = ActionRecognizerCompressor(args, script_dir=os.path.dirname(__file__)) if app.handle_subapps(): return # init_knowledge_distillation(app.args, app.model, app.compression_scheduler) app.run_training_loop() # Finally run results on the test set return app.test() def handle_subapps(model, criterion, optimizer, compression_scheduler, pylogger, args): def load_test_data(args): test_loader = classifier.load_data(args, load_train=False, load_val=False, load_test=True) return test_loader do_exit = False if args.greedy: greedy(model, criterion, optimizer, pylogger, args) do_exit = True elif args.summary: # This sample application can be invoked to produce various summary reports for summary in args.summary: distiller.model_summary(model, summary, args.dataset) do_exit = True elif args.export_onnx is not None: distiller.export_img_classifier_to_onnx(model, os.path.join(msglogger.logdir, args.export_onnx), args.dataset, add_softmax=True, verbose=False) do_exit = True elif args.qe_calibration and not (args.evaluate and args.quantize_eval): classifier.acts_quant_stats_collection(model, criterion, pylogger, args, save_to_file=True) do_exit = True elif args.activation_histograms: classifier.acts_histogram_collection(model, criterion, pylogger, args) do_exit = True elif args.sensitivity is not None: test_loader = load_test_data(args) sensitivities = np.arange(*args.sensitivity_range) sensitivity_analysis(model, criterion, test_loader, pylogger, args, sensitivities) do_exit = True elif args.evaluate: if args.quantize_eval and args.qe_lapq: image_classifier_ptq_lapq(model, criterion, pylogger, args) else: test_loader = load_test_data(args) classifier.evaluate_model(test_loader, model, criterion, pylogger, classifier.create_activation_stats_collectors(model, *args.activation_stats), args, scheduler=compression_scheduler) do_exit = True elif args.thinnify: assert args.resumed_checkpoint_path is not None, \ "You must use --resume-from to provide a checkpoint file to thinnify" distiller.contract_model(model, compression_scheduler.zeros_mask_dict, args.arch, args.dataset, optimizer=None) apputils.save_checkpoint(0, args.arch, model, optimizer=None, scheduler=compression_scheduler, name="{}_thinned".format(args.resumed_checkpoint_path.replace(".pth.tar", "")), dir=msglogger.logdir) msglogger.info("Note: if your model collapsed to random inference, you may want to fine-tune") do_exit = True return do_exit # def init_knowledge_distillation(args, model, compression_scheduler): # args.kd_policy = None # if args.kd_teacher: # teacher = create_model(args.kd_pretrained, args.dataset, args.kd_teacher, device_ids=args.gpus) # if args.kd_resume: # teacher = apputils.load_lean_checkpoint(teacher, args.kd_resume) # dlw = distiller.DistillationLossWeights(args.kd_distill_wt, args.kd_student_wt, args.kd_teacher_wt) # args.kd_policy = distiller.KnowledgeDistillationPolicy(model, teacher, args.kd_temp, dlw) # compression_scheduler.add_policy(args.kd_policy, starting_epoch=args.kd_start_epoch, ending_epoch=args.epochs, # frequency=1) # msglogger.info('\nStudent-Teacher knowledge distillation enabled:') # msglogger.info('\tTeacher Model: %s', args.kd_teacher) # msglogger.info('\tTemperature: %s', args.kd_temp) # msglogger.info('\tLoss Weights (distillation | student | teacher): %s', # ' | '.join(['{:.2f}'.format(val) for val in dlw])) # msglogger.info('\tStarting from Epoch: %s', args.kd_start_epoch) # def early_exit_init(args): # if not args.earlyexit_thresholds: # return # args.num_exits = len(args.earlyexit_thresholds) + 1 # args.loss_exits = [0] * args.num_exits # args.losses_exits = [] # args.exiterrors = [] # msglogger.info('=> using early-exit threshold values of %s', args.earlyexit_thresholds) class ActionRecognizerCompressor(classifier.ClassifierCompressor): def __init__(self, args, script_dir): super().__init__(args, script_dir) # early_exit_init(self.args) # Save the randomly-initialized model before training (useful for lottery-ticket method) if args.save_untrained_model: ckpt_name = '_'.join((self.args.name or "", "untrained")) apputils.save_checkpoint(0, self.args.arch, self.model, name=ckpt_name, dir=msglogger.logdir) def handle_subapps(self): return handle_subapps(self.model, self.criterion, self.optimizer, self.compression_scheduler, self.pylogger, self.args) if __name__ == '__main__': try: main() except KeyboardInterrupt: print("\n-- KeyboardInterrupt --") except Exception as e: if msglogger is not None: # We catch unhandled exceptions here in order to log them to the log file # However, using the msglogger as-is to do that means we get the trace twice in stdout - once from the # logging operation and once from re-raising the exception. So we remove the stdout logging handler # before logging the exception handlers_bak = msglogger.handlers msglogger.handlers = [h for h in msglogger.handlers if type(h) != logging.StreamHandler] msglogger.error(traceback.format_exc()) msglogger.handlers = handlers_bak raise finally: if msglogger is not None and hasattr(msglogger, 'log_filename'): msglogger.info('') msglogger.info('Log file for this run: ' + os.path.realpath(msglogger.log_filename))
[ "ptq_lapq.image_classifier_ptq_lapq", "image_classifier.init_classifier_compression_arg_parser", "image_classifier.create_activation_stats_collectors", "image_classifier.load_data", "os.path.dirname", "os.path.realpath", "logging.getLogger", "distiller.model_summary", "numpy.arange", "traceback.format_exc", "image_classifier.acts_histogram_collection", "distiller.contract_model", "os.path.join", "distiller.apputils.save_checkpoint", "image_classifier.acts_quant_stats_collection" ]
[((554, 573), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (571, 573), False, 'import logging\n'), ((1154, 1230), 'image_classifier.load_data', 'classifier.load_data', (['args'], {'load_train': '(False)', 'load_val': '(False)', 'load_test': '(True)'}), '(args, load_train=False, load_val=False, load_test=True)\n', (1174, 1230), True, 'import image_classifier as classifier\n'), ((768, 793), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (783, 793), False, 'import os\n'), ((5589, 5687), 'distiller.apputils.save_checkpoint', 'apputils.save_checkpoint', (['(0)', 'self.args.arch', 'self.model'], {'name': 'ckpt_name', 'dir': 'msglogger.logdir'}), '(0, self.args.arch, self.model, name=ckpt_name, dir\n =msglogger.logdir)\n', (5613, 5687), True, 'import distiller.apputils as apputils\n'), ((644, 699), 'image_classifier.init_classifier_compression_arg_parser', 'classifier.init_classifier_compression_arg_parser', (['(True)'], {}), '(True)\n', (693, 699), True, 'import image_classifier as classifier\n'), ((1538, 1591), 'distiller.model_summary', 'distiller.model_summary', (['model', 'summary', 'args.dataset'], {}), '(model, summary, args.dataset)\n', (1561, 1591), False, 'import distiller\n'), ((1757, 1805), 'os.path.join', 'os.path.join', (['msglogger.logdir', 'args.export_onnx'], {}), '(msglogger.logdir, args.export_onnx)\n', (1769, 1805), False, 'import os\n'), ((2010, 2105), 'image_classifier.acts_quant_stats_collection', 'classifier.acts_quant_stats_collection', (['model', 'criterion', 'pylogger', 'args'], {'save_to_file': '(True)'}), '(model, criterion, pylogger, args,\n save_to_file=True)\n', (2048, 2105), True, 'import image_classifier as classifier\n'), ((6628, 6650), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (6648, 6650), False, 'import traceback\n'), ((6884, 6924), 'os.path.realpath', 'os.path.realpath', (['msglogger.log_filename'], {}), '(msglogger.log_filename)\n', (6900, 6924), False, 'import os\n'), ((2170, 2240), 'image_classifier.acts_histogram_collection', 'classifier.acts_histogram_collection', (['model', 'criterion', 'pylogger', 'args'], {}), '(model, criterion, pylogger, args)\n', (2206, 2240), True, 'import image_classifier as classifier\n'), ((2370, 2404), 'numpy.arange', 'np.arange', (['*args.sensitivity_range'], {}), '(*args.sensitivity_range)\n', (2379, 2404), True, 'import numpy as np\n'), ((2603, 2662), 'ptq_lapq.image_classifier_ptq_lapq', 'image_classifier_ptq_lapq', (['model', 'criterion', 'pylogger', 'args'], {}), '(model, criterion, pylogger, args)\n', (2628, 2662), False, 'from ptq_lapq import image_classifier_ptq_lapq\n'), ((3148, 3264), 'distiller.contract_model', 'distiller.contract_model', (['model', 'compression_scheduler.zeros_mask_dict', 'args.arch', 'args.dataset'], {'optimizer': 'None'}), '(model, compression_scheduler.zeros_mask_dict, args\n .arch, args.dataset, optimizer=None)\n', (3172, 3264), False, 'import distiller\n'), ((2819, 2895), 'image_classifier.create_activation_stats_collectors', 'classifier.create_activation_stats_collectors', (['model', '*args.activation_stats'], {}), '(model, *args.activation_stats)\n', (2864, 2895), True, 'import image_classifier as classifier\n')]
import policy as policy_module import env_rna import torch import numpy as np import torch.nn.functional as F import matplotlib.pyplot as mlp import arc_diagram from torch.distributions import Categorical env = env_rna.EnvRNA() class Reinforce: running_reward = 0 MAX_ITER = 1000 exploration_eps = 10 N = 10 alpha = .90 correct_predictions = 0 sum_iterations_done = 0 number_episodes = 100; policy = policy_module.Policy(N) optimizer = torch.optim.Adam(policy.parameters(), lr=1e-6) weights_dir = "./Weights/" def select_action(self,state, policy): probs = policy.forward(state) m = Categorical(probs) action = m.sample() policy.saved_probs.append(m.log_prob(action)) item = action.item() return (int(item/self.N),item%self.N) class MonteCarloReinforceTrainer(Reinforce): def train(self): for i_episode in range(self.number_episodes): if i_episode%10 == 0 : print("Episode : ", i_episode) seq = generate_random_sequence(self.N) env.reset(seq) state = env.rna.structure_representation ep_reward = 0 rewards = [] bestState = env.rna.structure_representation_dot.copy() bestReward = 0 for t in range(self.MAX_ITER): exploration = np.random.uniform(0,1) if exploration > 0.3 or i_episode > self.exploration_eps or t == 0:#.9 * 1/(i_episode+1): action = self.select_action(convert_to_tensor(state, seq), self.policy) state, reward, done, _ = env.step(action,self.N) rewards.append(reward) else: action = np.random.randint(0,self.N,2) action = (action[0],action[1]) state, reward, done, _ = env.step(action, self.N) rewards.append(reward) ep_reward += reward if ep_reward > bestReward: bestState = env.rna.structure_representation_dot.copy() bestReward = ep_reward if done: if i_episode > self.exploration_eps: self.correct_predictions +=1 self.sum_iterations_done += t print("Done ", i_episode, " iteration ", t) title = str(i_episode) + " Done at iteration " + str(t) if i_episode >= 2090: mlp.show(arc_diagram.arc_diagram( arc_diagram.phrantheses_to_pairing_list(env.rna.structure_representation_dot),seq, title)) break if (t+1)%100 == 0 and i_episode >= 2090: mlp.show(arc_diagram.arc_diagram(arc_diagram.phrantheses_to_pairing_list(env.rna.structure_representation_dot),seq,i_episode)) self.running_reward = self.running_reward * self.alpha + ep_reward * (1-self.alpha) if i_episode >= 2000: mlp.show( arc_diagram.arc_diagram(arc_diagram.phrantheses_to_pairing_list(bestState), seq, "Best State Achieved")) self.finish_episode(rewards) self.policy.save_weights(self.weights_dir+ "monte_carlo_reinforce"+str(self.number_episodes)) def finish_episode(self, rewards): R = 0 DISCOUNT_FACTOR = 0.99 policy_loss = [] returns = [] for r in rewards[::-1]: R = r+DISCOUNT_FACTOR*R returns.insert(0, R) returns = torch.tensor(returns) returns = (returns - returns.mean()) for log_prob, R in zip(self.policy.saved_probs, returns): loss = -log_prob * R policy_loss.append(loss.unsqueeze(0)) self.optimizer.zero_grad() policy_loss = torch.stack(policy_loss).sum() policy_loss.backward() self.optimizer.step() del self.policy.saved_probs[:] class TemporalDifferenceReinforceTrainer(Reinforce): def train(self): for i_episode in range(self.number_episodes): seq = generate_random_sequence(self.N) env.reset(seq) state = env.rna.structure_representation ep_reward = 0 rewards = [] bestState = env.rna.structure_representation_dot.copy() bestReward = 0 for t in range(self.MAX_ITER): exploration = np.random.uniform(0,1) if exploration > 0.3 or i_episode > 100 or t == 0: action = self.select_action(convert_to_tensor(state, seq), self.policy) state, reward, done, _ = env.step(action,self.N) rewards.append(reward) self.update_policy(reward) else: action = np.random.randint(0,self.N,2) action = (action[0],action[1]) state, reward, done, _ = env.step(action, self.N) rewards.append(reward) ep_reward += reward if ep_reward > bestReward: bestState = env.rna.structure_representation_dot.copy() bestReward = ep_reward if done: if i_episode > self.exploration_eps: self.correct_predictions +=1 self.sum_iterations_done += t print("Done ", i_episode, " iteration ", t) title = str(i_episode) + " Done at iteration " + str(t) if i_episode >= 3000: mlp.show(arc_diagram.arc_diagram( arc_diagram.phrantheses_to_pairing_list(env.rna.structure_representation_dot), seq, title)) break if (t + 1) % 100 == 0 and i_episode >= 3000: mlp.show(arc_diagram.arc_diagram( arc_diagram.phrantheses_to_pairing_list(env.rna.structure_representation_dot), seq, i_episode)) self.running_reward = self.running_reward * self.alpha + ep_reward * (1 - self.alpha) if i_episode >= 3000: mlp.show( arc_diagram.arc_diagram(arc_diagram.phrantheses_to_pairing_list(bestState), seq, "Best State Achieved")) self.finish_episode() self.policy.save_weights(self.weights_dir+"td_reinforce"+str(self.number_episodes)) def update_policy(self,reward): R = 0 DISCOUNT_FACTOR = 0.99 policy_loss = [] returns = [] R = reward loss = -self.policy.saved_probs[-1] * R policy_loss.append(loss.unsqueeze(0)) self.optimizer.zero_grad() policy_loss = F.smooth_l1_loss(2,loss) policy_loss.backward() self.optimizer.step() def finish_episode(self): del self.policy.saved_probs[:] def convert_to_tensor(list,sequence): #TODO Change to NxN tensor n = len(sequence) tensor = torch.tensor(np.zeros((1,1,8,n)),dtype=torch.double) base_index = 0 for base in sequence: position = 0 if base == 'A': position = 0 elif base == 'U': position = 2 elif base == 'G' : position = 4 else : position = 6 if len([ (x,y) for x, y in list if x == base_index or y == base_index ]) != 0: tensor[0][0][position+1][base_index] = 1 else: tensor[0][0][position][base_index] = 1 base_index +=1 return tensor def generate_random_sequence(N): sequence = "" for i in range (N): epsilon = np.random.uniform(0,1) if epsilon <= 0.25: sequence += "A" elif epsilon <= 0.5: sequence += "U" elif epsilon <= 0.75: sequence+= "G" else: sequence+= "C" return sequence
[ "numpy.random.uniform", "torch.distributions.Categorical", "torch.stack", "numpy.zeros", "env_rna.EnvRNA", "numpy.random.randint", "policy.Policy", "arc_diagram.phrantheses_to_pairing_list", "torch.nn.functional.smooth_l1_loss", "torch.tensor" ]
[((212, 228), 'env_rna.EnvRNA', 'env_rna.EnvRNA', ([], {}), '()\n', (226, 228), False, 'import env_rna\n'), ((440, 463), 'policy.Policy', 'policy_module.Policy', (['N'], {}), '(N)\n', (460, 463), True, 'import policy as policy_module\n'), ((651, 669), 'torch.distributions.Categorical', 'Categorical', (['probs'], {}), '(probs)\n', (662, 669), False, 'from torch.distributions import Categorical\n'), ((3659, 3680), 'torch.tensor', 'torch.tensor', (['returns'], {}), '(returns)\n', (3671, 3680), False, 'import torch\n'), ((6904, 6929), 'torch.nn.functional.smooth_l1_loss', 'F.smooth_l1_loss', (['(2)', 'loss'], {}), '(2, loss)\n', (6920, 6929), True, 'import torch.nn.functional as F\n'), ((7181, 7203), 'numpy.zeros', 'np.zeros', (['(1, 1, 8, n)'], {}), '((1, 1, 8, n))\n', (7189, 7203), True, 'import numpy as np\n'), ((7775, 7798), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (7792, 7798), True, 'import numpy as np\n'), ((1383, 1406), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (1400, 1406), True, 'import numpy as np\n'), ((3932, 3956), 'torch.stack', 'torch.stack', (['policy_loss'], {}), '(policy_loss)\n', (3943, 3956), False, 'import torch\n'), ((4549, 4572), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (4566, 4572), True, 'import numpy as np\n'), ((1767, 1798), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.N', '(2)'], {}), '(0, self.N, 2)\n', (1784, 1798), True, 'import numpy as np\n'), ((4941, 4972), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.N', '(2)'], {}), '(0, self.N, 2)\n', (4958, 4972), True, 'import numpy as np\n'), ((3139, 3189), 'arc_diagram.phrantheses_to_pairing_list', 'arc_diagram.phrantheses_to_pairing_list', (['bestState'], {}), '(bestState)\n', (3178, 3189), False, 'import arc_diagram\n'), ((6354, 6404), 'arc_diagram.phrantheses_to_pairing_list', 'arc_diagram.phrantheses_to_pairing_list', (['bestState'], {}), '(bestState)\n', (6393, 6404), False, 'import arc_diagram\n'), ((2844, 2921), 'arc_diagram.phrantheses_to_pairing_list', 'arc_diagram.phrantheses_to_pairing_list', (['env.rna.structure_representation_dot'], {}), '(env.rna.structure_representation_dot)\n', (2883, 2921), False, 'import arc_diagram\n'), ((6051, 6128), 'arc_diagram.phrantheses_to_pairing_list', 'arc_diagram.phrantheses_to_pairing_list', (['env.rna.structure_representation_dot'], {}), '(env.rna.structure_representation_dot)\n', (6090, 6128), False, 'import arc_diagram\n'), ((2617, 2694), 'arc_diagram.phrantheses_to_pairing_list', 'arc_diagram.phrantheses_to_pairing_list', (['env.rna.structure_representation_dot'], {}), '(env.rna.structure_representation_dot)\n', (2656, 2694), False, 'import arc_diagram\n'), ((5792, 5869), 'arc_diagram.phrantheses_to_pairing_list', 'arc_diagram.phrantheses_to_pairing_list', (['env.rna.structure_representation_dot'], {}), '(env.rna.structure_representation_dot)\n', (5831, 5869), False, 'import arc_diagram\n')]
import numpy as np from astropy.io import fits def calc_erro(arquivo_1, arquivo_2, arquivo_3): #Define a funcao que calcula a soma quadratica dos erros dos 3 arquivos hdul_1 = fits.open(arquivo_1) #Abre o arquivo Header Data Unit List, formado por um header e um data hdul_2 = fits.open(arquivo_2) hdul_3 = fits.open(arquivo_3) error_1 = hdul_1[0].data #Selecionamos a parte data e transormamos em um array numpy error_2 = hdul_2[0].data error_3 = hdul_3[0].data erro_lcg = np.sqrt(error_1**2 + error_2**2 + error_3**2) / 3 #Calculamos o erro return(erro_lcg) #Retornamos o resultado grupo = int(input("ID do grupo: ")) extensoes = int(input("Quantidade de extensões: ")) for i in range(2,extensoes+1): arquivo_1 = str('error_LCG' + str(grupo) + '_1_' + str(i) + '.fits') arquivo_2 = str('error_LCG' + str(grupo) + '_2_' + str(i) + '.fits') arquivo_3 = str('error_LCG' + str(grupo) + '_3_' + str(i) + '.fits') erro_lcg = calc_erro(arquivo_1, arquivo_2, arquivo_3) #Chama a funcao hdu = fits.PrimaryHDU(erro_lcg) #Transforma de array numpy para HDUL novamente output = str('ERROR_LCG' + str(grupo) + '_' + str(i) + '.fits') hdu.writeto(output)
[ "astropy.io.fits.PrimaryHDU", "astropy.io.fits.open", "numpy.sqrt" ]
[((181, 201), 'astropy.io.fits.open', 'fits.open', (['arquivo_1'], {}), '(arquivo_1)\n', (190, 201), False, 'from astropy.io import fits\n'), ((286, 306), 'astropy.io.fits.open', 'fits.open', (['arquivo_2'], {}), '(arquivo_2)\n', (295, 306), False, 'from astropy.io import fits\n'), ((320, 340), 'astropy.io.fits.open', 'fits.open', (['arquivo_3'], {}), '(arquivo_3)\n', (329, 340), False, 'from astropy.io import fits\n'), ((1044, 1069), 'astropy.io.fits.PrimaryHDU', 'fits.PrimaryHDU', (['erro_lcg'], {}), '(erro_lcg)\n', (1059, 1069), False, 'from astropy.io import fits\n'), ((503, 554), 'numpy.sqrt', 'np.sqrt', (['(error_1 ** 2 + error_2 ** 2 + error_3 ** 2)'], {}), '(error_1 ** 2 + error_2 ** 2 + error_3 ** 2)\n', (510, 554), True, 'import numpy as np\n')]
""" Trains End 2 End VarNet """ import argparse import os from pathlib import Path import random import numpy as np import torch import torch.distributed as dist from torch.optim import Adam, lr_scheduler from torch.utils.data import DataLoader, DistributedSampler from torch.utils import tensorboard import fastmri from fastmri.data.mri_data import SliceDataset from fastmri.data.subsample import create_mask_for_mask_type from fastmri.data.transforms import VarNetDataTransform from fastmri.models import VarNet def get_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser(description="Train E2E VarNet") parser.add_argument( "--training-dir", type=( lambda x: x if Path(x).is_dir() else parser.error("Invalid training directory") ), required=True, help="Path to training directory", ) parser.add_argument( "--validation-dir", type=( lambda x: x if Path(x).is_dir() else parser.error("Invalid validation directory") ), required=True, help="Path to validation directory", ) parser.add_argument( "--challenge", type=str, choices=["singlecoil", "multicoil"], default="multicoil", help="One of singlecoil or multicoil", ) parser.add_argument( "--mask-type", type=str, choices=["equispaced", "equispaced_fraction", "magic", "magic_fraction"], default="equispaced_fraction", ) parser.add_argument( "--center-fractions", type=float, nargs="+", default=[0.08], ) parser.add_argument( "--accelerations", type=int, nargs="+", default=[4], ) parser.add_argument("--batch-size", type=int, default=1) parser.add_argument("--num-workers", type=int, default=4) parser.add_argument("--lr", type=float, default=3e-4, help="learning rate") parser.add_argument("--weight-decay", type=float, default=0.0) parser.add_argument("--lr-step-size", type=int, default=40) parser.add_argument("--lr-gamma", type=float, default=0.1) parser.add_argument("--epochs", type=int, default=50) parser.add_argument("--seed", type=int, default=42, help="Random seed") parser.add_argument( "--init-method", default="tcp://127.0.0.1:3456", type=str, help="" ) parser.add_argument("--dist-backend", default="gloo", type=str, help="") parser.add_argument("--world-size", default=1, type=int, help="") parser.add_argument("--distributed", action="store_true", help="") parser.add_argument("--logdir", type=str, default="./log", help="") parser.add_argument("--epochs-per-val", type=int, default=5) return parser def init_ddp_process_group(args: argparse.Namespace) -> int: ngpus = torch.cuda.device_count() local_rank = os.environ.get("SLURM_LOCALID") node_id = os.environ.get("SLURM_NODEID") assert local_rank is not None and node_id is not None rank = int(node_id) * ngpus + int(local_rank) current_device = int(local_rank) torch.cuda.set_device(current_device) dist.init_process_group( backend=args.dist_backend, init_method=args.init_method, world_size=args.world_size, rank=rank, ) return current_device def main(): args = get_parser().parse_args() current_device = init_ddp_process_group(args) log_dir = args.log_dir os.makedirs(log_dir, exist_ok=True) writer = tensorboard.writer.SummaryWriter(log_dir=log_dir) for seed in (torch.manual_seed, np.random.seed, random.seed): seed(args.seed) mask = create_mask_for_mask_type( mask_type_str=args.mask_type, center_fractions=args.center_fractions, accelerations=args.accelerations, ) train_transform = VarNetDataTransform(mask_func=mask, use_seed=False) val_transform = VarNetDataTransform(mask_func=mask) train_dataset = SliceDataset( root=args.training_dir, challenge=args.challenge, transform=train_transform, use_dataset_cache=True, ) val_dataset = SliceDataset( root=args.validation_dir, challenge=args.challenge, transform=val_transform, use_dataset_cache=True, ) model = VarNet().cuda() model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[current_device] ) train_sampler = DistributedSampler(train_dataset) val_sampler = DistributedSampler(val_dataset) train_loader = DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.num_workers, sampler=train_sampler, ) val_loader = DataLoader( val_dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, sampler=val_sampler ) criterion = fastmri.SSIMLoss() optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) scheduler = lr_scheduler.StepLR(optimizer, args.lr_step_size, args.lr_gamma) for epoch in args.epochs: epoch_loss = [] for x in train_loader: reconstructed_image = model(x) loss = criterion(x, reconstructed_image) loss.backward() optimizer.step() epoch_loss.append(loss.item()) scheduler.step() writer.add_scalar("Train loss", np.mean(epoch_loss)) if epoch % args.epochs_per_val == 0: model.eval() with torch.no_grad(): val_loss = [] for x in val_loader: reconstructed_image = model(x) loss = criterion(x, reconstructed_image) loss.backward() val_loss.append(loss.item()) writer.add_scalar("Validation loss", np.mean(val_loss))
[ "torch.optim.lr_scheduler.StepLR", "argparse.ArgumentParser", "fastmri.models.VarNet", "fastmri.data.transforms.VarNetDataTransform", "torch.cuda.device_count", "pathlib.Path", "numpy.mean", "fastmri.data.mri_data.SliceDataset", "torch.no_grad", "torch.utils.data.DataLoader", "torch.nn.parallel.DistributedDataParallel", "torch.utils.tensorboard.writer.SummaryWriter", "fastmri.SSIMLoss", "torch.cuda.set_device", "fastmri.data.subsample.create_mask_for_mask_type", "torch.distributed.init_process_group", "os.makedirs", "os.environ.get", "torch.utils.data.DistributedSampler" ]
[((576, 631), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Train E2E VarNet"""'}), "(description='Train E2E VarNet')\n", (599, 631), False, 'import argparse\n'), ((2888, 2913), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (2911, 2913), False, 'import torch\n'), ((2932, 2963), 'os.environ.get', 'os.environ.get', (['"""SLURM_LOCALID"""'], {}), "('SLURM_LOCALID')\n", (2946, 2963), False, 'import os\n'), ((2978, 3008), 'os.environ.get', 'os.environ.get', (['"""SLURM_NODEID"""'], {}), "('SLURM_NODEID')\n", (2992, 3008), False, 'import os\n'), ((3159, 3196), 'torch.cuda.set_device', 'torch.cuda.set_device', (['current_device'], {}), '(current_device)\n', (3180, 3196), False, 'import torch\n'), ((3202, 3326), 'torch.distributed.init_process_group', 'dist.init_process_group', ([], {'backend': 'args.dist_backend', 'init_method': 'args.init_method', 'world_size': 'args.world_size', 'rank': 'rank'}), '(backend=args.dist_backend, init_method=args.\n init_method, world_size=args.world_size, rank=rank)\n', (3225, 3326), True, 'import torch.distributed as dist\n'), ((3519, 3554), 'os.makedirs', 'os.makedirs', (['log_dir'], {'exist_ok': '(True)'}), '(log_dir, exist_ok=True)\n', (3530, 3554), False, 'import os\n'), ((3568, 3617), 'torch.utils.tensorboard.writer.SummaryWriter', 'tensorboard.writer.SummaryWriter', ([], {'log_dir': 'log_dir'}), '(log_dir=log_dir)\n', (3600, 3617), False, 'from torch.utils import tensorboard\n'), ((3721, 3855), 'fastmri.data.subsample.create_mask_for_mask_type', 'create_mask_for_mask_type', ([], {'mask_type_str': 'args.mask_type', 'center_fractions': 'args.center_fractions', 'accelerations': 'args.accelerations'}), '(mask_type_str=args.mask_type, center_fractions=\n args.center_fractions, accelerations=args.accelerations)\n', (3746, 3855), False, 'from fastmri.data.subsample import create_mask_for_mask_type\n'), ((3905, 3956), 'fastmri.data.transforms.VarNetDataTransform', 'VarNetDataTransform', ([], {'mask_func': 'mask', 'use_seed': '(False)'}), '(mask_func=mask, use_seed=False)\n', (3924, 3956), False, 'from fastmri.data.transforms import VarNetDataTransform\n'), ((3977, 4012), 'fastmri.data.transforms.VarNetDataTransform', 'VarNetDataTransform', ([], {'mask_func': 'mask'}), '(mask_func=mask)\n', (3996, 4012), False, 'from fastmri.data.transforms import VarNetDataTransform\n'), ((4034, 4152), 'fastmri.data.mri_data.SliceDataset', 'SliceDataset', ([], {'root': 'args.training_dir', 'challenge': 'args.challenge', 'transform': 'train_transform', 'use_dataset_cache': '(True)'}), '(root=args.training_dir, challenge=args.challenge, transform=\n train_transform, use_dataset_cache=True)\n', (4046, 4152), False, 'from fastmri.data.mri_data import SliceDataset\n'), ((4206, 4324), 'fastmri.data.mri_data.SliceDataset', 'SliceDataset', ([], {'root': 'args.validation_dir', 'challenge': 'args.challenge', 'transform': 'val_transform', 'use_dataset_cache': '(True)'}), '(root=args.validation_dir, challenge=args.challenge, transform=\n val_transform, use_dataset_cache=True)\n', (4218, 4324), False, 'from fastmri.data.mri_data import SliceDataset\n'), ((4400, 4477), 'torch.nn.parallel.DistributedDataParallel', 'torch.nn.parallel.DistributedDataParallel', (['model'], {'device_ids': '[current_device]'}), '(model, device_ids=[current_device])\n', (4441, 4477), False, 'import torch\n'), ((4513, 4546), 'torch.utils.data.DistributedSampler', 'DistributedSampler', (['train_dataset'], {}), '(train_dataset)\n', (4531, 4546), False, 'from torch.utils.data import DataLoader, DistributedSampler\n'), ((4565, 4596), 'torch.utils.data.DistributedSampler', 'DistributedSampler', (['val_dataset'], {}), '(val_dataset)\n', (4583, 4596), False, 'from torch.utils.data import DataLoader, DistributedSampler\n'), ((4617, 4758), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'batch_size': 'args.batch_size', 'shuffle': '(train_sampler is None)', 'num_workers': 'args.num_workers', 'sampler': 'train_sampler'}), '(train_dataset, batch_size=args.batch_size, shuffle=train_sampler is\n None, num_workers=args.num_workers, sampler=train_sampler)\n', (4627, 4758), False, 'from torch.utils.data import DataLoader, DistributedSampler\n'), ((4822, 4930), 'torch.utils.data.DataLoader', 'DataLoader', (['val_dataset'], {'batch_size': '(1)', 'shuffle': '(False)', 'num_workers': 'args.num_workers', 'sampler': 'val_sampler'}), '(val_dataset, batch_size=1, shuffle=False, num_workers=args.\n num_workers, sampler=val_sampler)\n', (4832, 4930), False, 'from torch.utils.data import DataLoader, DistributedSampler\n'), ((4989, 5007), 'fastmri.SSIMLoss', 'fastmri.SSIMLoss', ([], {}), '()\n', (5005, 5007), False, 'import fastmri\n'), ((5109, 5173), 'torch.optim.lr_scheduler.StepLR', 'lr_scheduler.StepLR', (['optimizer', 'args.lr_step_size', 'args.lr_gamma'], {}), '(optimizer, args.lr_step_size, args.lr_gamma)\n', (5128, 5173), False, 'from torch.optim import Adam, lr_scheduler\n'), ((4372, 4380), 'fastmri.models.VarNet', 'VarNet', ([], {}), '()\n', (4378, 4380), False, 'from fastmri.models import VarNet\n'), ((5522, 5541), 'numpy.mean', 'np.mean', (['epoch_loss'], {}), '(epoch_loss)\n', (5529, 5541), True, 'import numpy as np\n'), ((5631, 5646), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5644, 5646), False, 'import torch\n'), ((5965, 5982), 'numpy.mean', 'np.mean', (['val_loss'], {}), '(val_loss)\n', (5972, 5982), True, 'import numpy as np\n'), ((738, 745), 'pathlib.Path', 'Path', (['x'], {}), '(x)\n', (742, 745), False, 'from pathlib import Path\n'), ((1006, 1013), 'pathlib.Path', 'Path', (['x'], {}), '(x)\n', (1010, 1013), False, 'from pathlib import Path\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import os import numpy as np import cv2 import unittest from random import randint from ocr.classify import Classifier from tempfile import NamedTemporaryFile PARENT_DIR = os.path.dirname(__file__) DATA_DIR = os.path.join(os.path.dirname(PARENT_DIR), "data") SEED = 1 class TestDigits(unittest.TestCase): """Test case for classifying handwritten digits.""" TRHESH = 0.85 SAVE_FILE = "TestDigitsClassifier.p" DIGITS_FILE = os.path.join(DATA_DIR, "digits.png") @classmethod def setUpClass(cls): # Load digits cls.__X, cls.__y = cls.load_digits() # Train classifier clf = Classifier(random_state=SEED) clf.train(cls.__X, cls.__y) cls.__clf = clf def test_save(self): """Test save""" results = self.__test_digits(self.__X, self.__y, self.__clf) clf = self.__clf clf.save(self.SAVE_FILE) clf = Classifier.from_pickle(self.SAVE_FILE) self.assertEqual(results, self.__test_digits(self.__X, self.__y, clf)) def __test_digits(self, X, y, clf): """Test that the digits are classified correctly by a classifier.""" self.assertEqual(len(X), len(y)) correct = 0 for i in xrange(len(y)): expected = y[i] prediction = clf.classify([X[i]])[0] if expected == prediction: correct += 1 self.assertGreaterEqual(correct, self.TRHESH * len(y)) return correct @staticmethod def imgfile_to_grayscale(filename): """Load an image as grayscale.""" img = cv2.imread(filename) return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) @classmethod def load_digits(cls): """Load training data from digits.png""" gray = cls.imgfile_to_grayscale(cls.DIGITS_FILE) # Now we split the image to 5000 cells, each 20x20 size cells = [np.hsplit(row, 100) for row in np.vsplit(gray, 50)] # Make it into a Numpy array. It size will be (50,100,20,20) x = np.array(cells) # Training data X = [np.reshape(x[y][x_], (400, )).astype(np.float32) / 256 for x_ in xrange(100) for y in xrange(50)] # Expected y = [y for y in xrange(10) for x_ in xrange(len(X) / 10)] assert len(X) == len(y) return X, y if __name__ == "__main__": unittest.main()
[ "unittest.main", "numpy.vsplit", "ocr.classify.Classifier", "ocr.classify.Classifier.from_pickle", "cv2.cvtColor", "os.path.dirname", "numpy.hsplit", "cv2.imread", "numpy.array", "numpy.reshape", "os.path.join" ]
[((261, 286), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (276, 286), False, 'import os\n'), ((311, 338), 'os.path.dirname', 'os.path.dirname', (['PARENT_DIR'], {}), '(PARENT_DIR)\n', (326, 338), False, 'import os\n'), ((530, 566), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""digits.png"""'], {}), "(DATA_DIR, 'digits.png')\n", (542, 566), False, 'import os\n'), ((2453, 2468), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2466, 2468), False, 'import unittest\n'), ((719, 748), 'ocr.classify.Classifier', 'Classifier', ([], {'random_state': 'SEED'}), '(random_state=SEED)\n', (729, 748), False, 'from ocr.classify import Classifier\n'), ((1000, 1038), 'ocr.classify.Classifier.from_pickle', 'Classifier.from_pickle', (['self.SAVE_FILE'], {}), '(self.SAVE_FILE)\n', (1022, 1038), False, 'from ocr.classify import Classifier\n'), ((1677, 1697), 'cv2.imread', 'cv2.imread', (['filename'], {}), '(filename)\n', (1687, 1697), False, 'import cv2\n'), ((1713, 1750), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2GRAY'], {}), '(img, cv2.COLOR_BGR2GRAY)\n', (1725, 1750), False, 'import cv2\n'), ((2117, 2132), 'numpy.array', 'np.array', (['cells'], {}), '(cells)\n', (2125, 2132), True, 'import numpy as np\n'), ((1983, 2002), 'numpy.hsplit', 'np.hsplit', (['row', '(100)'], {}), '(row, 100)\n', (1992, 2002), True, 'import numpy as np\n'), ((2014, 2033), 'numpy.vsplit', 'np.vsplit', (['gray', '(50)'], {}), '(gray, 50)\n', (2023, 2033), True, 'import numpy as np\n'), ((2171, 2199), 'numpy.reshape', 'np.reshape', (['x[y][x_]', '(400,)'], {}), '(x[y][x_], (400,))\n', (2181, 2199), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt def create_gratings(n_spf, n_ori, n_phase, input_shape, x_train_mean, plot=False, output_path=''): # create various grating stimuli grating_all = np.zeros((n_spf * n_ori * n_phase, ) + input_shape[:-1] + (3, )) for s in range(n_spf): spf = np.pi / (input_shape[0] / 2 + 4) * (s + 1) for o in range(n_ori): ori = np.pi / n_ori * o for p in range(n_phase): phase = 2 * np.pi / n_phase * p # create a gray-scale grating gray_grating = create_grating(ori, phase, spf, input_shape[0], input_shape[1]) # standardize the grating into [0, 1] gray_grating = (gray_grating - np.min(gray_grating)) / \ (np.max(gray_grating) - np.min(gray_grating)) grating = np.zeros(input_shape[:-1] + (3,)) for ch in range(3): grating[:, :, ch] = gray_grating grating_all[(s * n_ori + o) * n_phase + p, :, :, :] = grating - x_train_mean # shuffled gratings ctrl_grating_all = grating_all[np.random.permutation(len(grating_all))] # plot if plot: for p in range(n_phase): fig = plt.figure(figsize=(10, 10)) for s in range(n_spf): for o in range(n_ori): ax = plt.subplot(n_spf, n_ori, s * n_ori + o + 1) img = grating_all[(s * n_ori + o) * n_phase + p] ax.imshow((img - np.min(img)) / (np.max(img) - np.min(img))) plt.axis('off') plt.savefig(output_path + 'stims/grating_phase' + str(p) + '.png') plt.savefig(output_path + 'stims/grating_phase' + str(p) + '.pdf') plt.close() for p in range(n_phase): fig = plt.figure(figsize=(10, 10)) for s in range(n_spf): for o in range(n_ori): ax = plt.subplot(n_spf, n_ori, s * n_ori + o + 1) img = ctrl_grating_all[(s * n_ori + o) * n_phase + p] ax.imshow((img - np.min(img)) / (np.max(img) - np.min(img))) plt.axis('off') plt.savefig(output_path + 'stims/grating_shuffled_phase' + str(p) + '.png') plt.savefig(output_path + 'stims/grating_shuffled_phase' + str(p) + '.pdf') plt.close() return grating_all, ctrl_grating_all def create_grating(phi, tau, k, h, w): """ phi, tau, k: Gabor parameters (ori, phase, SPF) h, w: shape parameters """ gx, gy = np.ogrid[0:h, 0:w] gx -= h // 2 gy -= w // 2 rot = np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]]) k_rot = np.dot(np.transpose(rot), np.array([k, 0])) grating = np.cos((k_rot[1] * gx + k_rot[0] * gy) + tau) return grating
[ "matplotlib.pyplot.subplot", "matplotlib.pyplot.close", "numpy.transpose", "numpy.zeros", "matplotlib.pyplot.axis", "matplotlib.pyplot.figure", "numpy.sin", "numpy.array", "numpy.min", "numpy.cos", "numpy.max" ]
[((226, 288), 'numpy.zeros', 'np.zeros', (['((n_spf * n_ori * n_phase,) + input_shape[:-1] + (3,))'], {}), '((n_spf * n_ori * n_phase,) + input_shape[:-1] + (3,))\n', (234, 288), True, 'import numpy as np\n'), ((2844, 2887), 'numpy.cos', 'np.cos', (['(k_rot[1] * gx + k_rot[0] * gy + tau)'], {}), '(k_rot[1] * gx + k_rot[0] * gy + tau)\n', (2850, 2887), True, 'import numpy as np\n'), ((2793, 2810), 'numpy.transpose', 'np.transpose', (['rot'], {}), '(rot)\n', (2805, 2810), True, 'import numpy as np\n'), ((2812, 2828), 'numpy.array', 'np.array', (['[k, 0]'], {}), '([k, 0])\n', (2820, 2828), True, 'import numpy as np\n'), ((1294, 1322), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (1304, 1322), True, 'import matplotlib.pyplot as plt\n'), ((1823, 1834), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1832, 1834), True, 'import matplotlib.pyplot as plt\n'), ((1887, 1915), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (1897, 1915), True, 'import matplotlib.pyplot as plt\n'), ((2439, 2450), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2448, 2450), True, 'import matplotlib.pyplot as plt\n'), ((900, 933), 'numpy.zeros', 'np.zeros', (['(input_shape[:-1] + (3,))'], {}), '(input_shape[:-1] + (3,))\n', (908, 933), True, 'import numpy as np\n'), ((2717, 2728), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (2723, 2728), True, 'import numpy as np\n'), ((2746, 2757), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (2752, 2757), True, 'import numpy as np\n'), ((2759, 2770), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (2765, 2770), True, 'import numpy as np\n'), ((1422, 1466), 'matplotlib.pyplot.subplot', 'plt.subplot', (['n_spf', 'n_ori', '(s * n_ori + o + 1)'], {}), '(n_spf, n_ori, s * n_ori + o + 1)\n', (1433, 1466), True, 'import matplotlib.pyplot as plt\n'), ((1637, 1652), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1645, 1652), True, 'import matplotlib.pyplot as plt\n'), ((2015, 2059), 'matplotlib.pyplot.subplot', 'plt.subplot', (['n_spf', 'n_ori', '(s * n_ori + o + 1)'], {}), '(n_spf, n_ori, s * n_ori + o + 1)\n', (2026, 2059), True, 'import matplotlib.pyplot as plt\n'), ((2235, 2250), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (2243, 2250), True, 'import matplotlib.pyplot as plt\n'), ((2731, 2742), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (2737, 2742), True, 'import numpy as np\n'), ((771, 791), 'numpy.min', 'np.min', (['gray_grating'], {}), '(gray_grating)\n', (777, 791), True, 'import numpy as np\n'), ((829, 849), 'numpy.max', 'np.max', (['gray_grating'], {}), '(gray_grating)\n', (835, 849), True, 'import numpy as np\n'), ((852, 872), 'numpy.min', 'np.min', (['gray_grating'], {}), '(gray_grating)\n', (858, 872), True, 'import numpy as np\n'), ((1573, 1584), 'numpy.min', 'np.min', (['img'], {}), '(img)\n', (1579, 1584), True, 'import numpy as np\n'), ((1589, 1600), 'numpy.max', 'np.max', (['img'], {}), '(img)\n', (1595, 1600), True, 'import numpy as np\n'), ((1603, 1614), 'numpy.min', 'np.min', (['img'], {}), '(img)\n', (1609, 1614), True, 'import numpy as np\n'), ((2171, 2182), 'numpy.min', 'np.min', (['img'], {}), '(img)\n', (2177, 2182), True, 'import numpy as np\n'), ((2187, 2198), 'numpy.max', 'np.max', (['img'], {}), '(img)\n', (2193, 2198), True, 'import numpy as np\n'), ((2201, 2212), 'numpy.min', 'np.min', (['img'], {}), '(img)\n', (2207, 2212), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ """ import numpy as np import pytest from motmot._queue import Queue pytestmark = pytest.mark.order(3) def test(): self = Queue(10) assert not self for i in range(7): self.append(i) assert len(self) == 7 assert self assert np.all(self.queue[:7] == np.arange(7)) assert np.all(self.in_waiting == np.arange(7)) assert self.consume() == 0 assert self.consume() == 1 assert self.consume() == 2 assert self.consume_index == 3 assert np.array_equal(self.in_waiting, np.arange(3, 7)) assert repr(self) == "Queue [ - - - 3 4 5 6 - - - ]" assert len(self) == 4 self.appends(np.arange(7, 12) % self.max_size) assert self.in_waiting.tolist() == [3, 4, 5, 6, 7, 8, 9, 0, 1] assert repr(self) == "Queue [ 0 1 - 3 4 5 6 7 8 9 ]" assert len(self) == 9 def test_add(): self = Queue(6) self.add(4) assert self.in_waiting.tolist() == [4] self.add(4) assert self.in_waiting.tolist() == [4] self.add(5) assert self.in_waiting.tolist() == [4, 5] self.add(4) assert self.in_waiting.tolist() == [4, 5] self.consume() assert self.in_waiting.tolist() == [5] self.add(4) assert self.in_waiting.tolist() == [5, 4]
[ "pytest.mark.order", "motmot._queue.Queue", "numpy.arange" ]
[((113, 133), 'pytest.mark.order', 'pytest.mark.order', (['(3)'], {}), '(3)\n', (130, 133), False, 'import pytest\n'), ((159, 168), 'motmot._queue.Queue', 'Queue', (['(10)'], {}), '(10)\n', (164, 168), False, 'from motmot._queue import Queue\n'), ((885, 893), 'motmot._queue.Queue', 'Queue', (['(6)'], {}), '(6)\n', (890, 893), False, 'from motmot._queue import Queue\n'), ((553, 568), 'numpy.arange', 'np.arange', (['(3)', '(7)'], {}), '(3, 7)\n', (562, 568), True, 'import numpy as np\n'), ((315, 327), 'numpy.arange', 'np.arange', (['(7)'], {}), '(7)\n', (324, 327), True, 'import numpy as np\n'), ((366, 378), 'numpy.arange', 'np.arange', (['(7)'], {}), '(7)\n', (375, 378), True, 'import numpy as np\n'), ((671, 687), 'numpy.arange', 'np.arange', (['(7)', '(12)'], {}), '(7, 12)\n', (680, 687), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- #This is from https://github.com/weixsong vocoder implementation, please see LICENSE-weixsong import librosa import librosa.filters import numpy as np from scipy import signal from params import hparams def preemphasis(x): return signal.lfilter([1, -hparams.preemphasis], [1], x) def spectrogram(y): D = _stft(preemphasis(y)) S = _amp_to_db(np.abs(D)) - hparams.ref_level_db return _normalize(S) def melspectrogram(y): D = _stft(preemphasis(y)) S = _amp_to_db(_linear_to_mel(np.abs(D))) - hparams.ref_level_db mel_spec = _normalize(S) return mel_spec.T def _stft(y): n_fft, hop_length, win_length = _stft_parameters() return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length) def _stft_parameters(): n_fft = hparams.n_fft hop_length = hparams.hop_length win_length = hparams.win_length return n_fft, hop_length, win_length def _amp_to_db(x): return 20 * np.log10(np.maximum(1e-5, x)) _mel_basis = None def _linear_to_mel(spectrogram): global _mel_basis if _mel_basis is None: _mel_basis = _build_mel_basis() return np.dot(_mel_basis, spectrogram) def _build_mel_basis(): n_fft = hparams.n_fft return librosa.filters.mel(hparams.sample_rate, n_fft, n_mels=hparams.num_mels) def _normalize(S): return np.clip((S - hparams.min_level_db) / -hparams.min_level_db, 0, 1)
[ "numpy.abs", "numpy.maximum", "scipy.signal.lfilter", "numpy.clip", "librosa.filters.mel", "numpy.dot", "librosa.stft" ]
[((262, 311), 'scipy.signal.lfilter', 'signal.lfilter', (['[1, -hparams.preemphasis]', '[1]', 'x'], {}), '([1, -hparams.preemphasis], [1], x)\n', (276, 311), False, 'from scipy import signal\n'), ((699, 775), 'librosa.stft', 'librosa.stft', ([], {'y': 'y', 'n_fft': 'n_fft', 'hop_length': 'hop_length', 'win_length': 'win_length'}), '(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length)\n', (711, 775), False, 'import librosa\n'), ((1163, 1194), 'numpy.dot', 'np.dot', (['_mel_basis', 'spectrogram'], {}), '(_mel_basis, spectrogram)\n', (1169, 1194), True, 'import numpy as np\n'), ((1258, 1330), 'librosa.filters.mel', 'librosa.filters.mel', (['hparams.sample_rate', 'n_fft'], {'n_mels': 'hparams.num_mels'}), '(hparams.sample_rate, n_fft, n_mels=hparams.num_mels)\n', (1277, 1330), False, 'import librosa\n'), ((1363, 1428), 'numpy.clip', 'np.clip', (['((S - hparams.min_level_db) / -hparams.min_level_db)', '(0)', '(1)'], {}), '((S - hparams.min_level_db) / -hparams.min_level_db, 0, 1)\n', (1370, 1428), True, 'import numpy as np\n'), ((383, 392), 'numpy.abs', 'np.abs', (['D'], {}), '(D)\n', (389, 392), True, 'import numpy as np\n'), ((987, 1007), 'numpy.maximum', 'np.maximum', (['(1e-05)', 'x'], {}), '(1e-05, x)\n', (997, 1007), True, 'import numpy as np\n'), ((531, 540), 'numpy.abs', 'np.abs', (['D'], {}), '(D)\n', (537, 540), True, 'import numpy as np\n')]
import pandas as pd import numpy as np from tqdm import tqdm, trange data = pd.read_csv("result.csv", encoding="latin1").fillna(method="ffill") print(data.tail(10)) class SentenceGetter(object): def __init__(self, data): self.n_sent = 1 self.data = data self.empty = False agg_func = lambda s: [(w, p, t) for w, p, t in zip(s["Word"].values.tolist(), s["POS"].values.tolist(), s["Tag"].values.tolist())] self.grouped = self.data.groupby("Sentence #").apply(agg_func) self.sentences = [s for s in self.grouped] def get_next(self): try: s = self.grouped["Sentence: {}".format(self.n_sent)] self.n_sent += 1 return s except: return None getter = SentenceGetter(data) sentences = [[word[0] for word in sentence] for sentence in getter.sentences] print(sentences[0]) labels = [[s[2] for s in sentence] for sentence in getter.sentences] print(labels[0]) tag_values = list(set(data["Tag"].values)) tag_values.append("PAD") tag_values.sort() tag2idx = {t: i for i, t in enumerate(tag_values)} print(tag_values) print(tag2idx) #Apply Bert import torch from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from transformers import BertTokenizer, BertConfig, BertModel from keras.preprocessing.sequence import pad_sequences from sklearn.model_selection import train_test_split print(torch.__version__) MAX_LEN = 75 bs = 32 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() print(torch.cuda.get_device_name(0)) tokenizer = BertTokenizer.from_pretrained('bert-base-cased', do_lower_case=False) def tokenize_and_preserve_labels(sentence, text_labels): tokenized_sentence = [] labels = [] for word, label in zip(sentence, text_labels): # Tokenize the word and count # of subwords the word is broken into tokenized_word = tokenizer.tokenize(word) n_subwords = len(tokenized_word) # Add the tokenized word to the final tokenized word list tokenized_sentence.extend(tokenized_word) # Add the same label to the new list of labels `n_subwords` times labels.extend([label] * n_subwords) return tokenized_sentence, labels tokenized_texts_and_labels = [ tokenize_and_preserve_labels(sent, labs) for sent, labs in zip(sentences, labels) ] tokenized_texts = [token_label_pair[0] for token_label_pair in tokenized_texts_and_labels] labels = [token_label_pair[1] for token_label_pair in tokenized_texts_and_labels] input_ids = pad_sequences([tokenizer.convert_tokens_to_ids(txt) for txt in tokenized_texts], maxlen=MAX_LEN, dtype="long", value=0.0, truncating="post", padding="post") tags = pad_sequences([[tag2idx.get(l) for l in lab] for lab in labels], maxlen=MAX_LEN, value=tag2idx["PAD"], padding="post", dtype="long", truncating="post") attention_masks = [[float(i != 0.0) for i in ii] for ii in input_ids] tr_inputs, val_inputs, tr_tags, val_tags = train_test_split(input_ids, tags, random_state=2018, test_size=0.1) tr_masks, val_masks, _, _ = train_test_split(attention_masks, input_ids, random_state=2018, test_size=0.1) tr_inputs = torch.tensor(tr_inputs) val_inputs = torch.tensor(val_inputs) tr_tags = torch.tensor(tr_tags) val_tags = torch.tensor(val_tags) tr_masks = torch.tensor(tr_masks) val_masks = torch.tensor(val_masks) train_data = TensorDataset(tr_inputs, tr_masks, tr_tags) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=bs) valid_data = TensorDataset(val_inputs, val_masks, val_tags) valid_sampler = SequentialSampler(valid_data) valid_dataloader = DataLoader(valid_data, sampler=valid_sampler, batch_size=bs) import transformers from transformers import BertForTokenClassification, AdamW print(transformers.__version__) model = BertForTokenClassification.from_pretrained( "bert-base-cased", num_labels=len(tag2idx), output_attentions = False, output_hidden_states = False ) model.cuda(); FULL_FINETUNING = True if FULL_FINETUNING: param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'gamma', 'beta'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0} ] else: param_optimizer = list(model.classifier.named_parameters()) optimizer_grouped_parameters = [{"params": [p for n, p in param_optimizer]}] optimizer = AdamW( optimizer_grouped_parameters, lr=3e-5, eps=1e-8 ) from transformers import get_linear_schedule_with_warmup epochs = 3 max_grad_norm = 1.0 # Total number of training steps is number of batches * number of epochs. total_steps = len(train_dataloader) * epochs # Create the learning rate scheduler. scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=0, num_training_steps=total_steps ) #Fit BERT for named entity recognition from seqeval.metrics import f1_score, accuracy_score ## Store the average loss after each epoch so we can plot them. loss_values, validation_loss_values = [], [] for _ in trange(epochs, desc="Epoch"): # ======================================== # Training # ======================================== # Perform one full pass over the training set. # Put the model into training mode. model.train() # Reset the total loss for this epoch. total_loss = 0 # Training loop for step, batch in enumerate(train_dataloader): # add batch to gpu batch = tuple(t.to(device) for t in batch) b_input_ids, b_input_mask, b_labels = batch # Always clear any previously calculated gradients before performing a backward pass. model.zero_grad() # forward pass # This will return the loss (rather than the model output) # because we have provided the `labels`. outputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels) # get the loss loss = outputs[0] # Perform a backward pass to calculate the gradients. loss.backward() # track train loss total_loss += loss.item() # Clip the norm of the gradient # This is to help prevent the "exploding gradients" problem. torch.nn.utils.clip_grad_norm_(parameters=model.parameters(), max_norm=max_grad_norm) # update parameters optimizer.step() # Update the learning rate. scheduler.step() # Calculate the average loss over the training data. avg_train_loss = total_loss / len(train_dataloader) print("Average train loss: {}".format(avg_train_loss)) # Store the loss value for plotting the learning curve. loss_values.append(avg_train_loss) # ======================================== # Validation # ======================================== # After the completion of each training epoch, measure our performance on # our validation set. # Put the model into evaluation mode model.eval() # Reset the validation loss for this epoch. eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 predictions , true_labels = [], [] for batch in valid_dataloader: batch = tuple(t.to(device) for t in batch) b_input_ids, b_input_mask, b_labels = batch # Telling the model not to compute or store gradients, # saving memory and speeding up validation with torch.no_grad(): # Forward pass, calculate logit predictions. # This will return the logits rather than the loss because we have not provided labels. outputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels) # Move logits and labels to CPU logits = outputs[1].detach().cpu().numpy() label_ids = b_labels.to('cpu').numpy() # Calculate the accuracy for this batch of test sentences. eval_loss += outputs[0].mean().item() predictions.extend([list(p) for p in np.argmax(logits, axis=2)]) true_labels.extend(label_ids) eval_loss = eval_loss / len(valid_dataloader) validation_loss_values.append(eval_loss) print("Validation loss: {}".format(eval_loss)) pred_tags = [tag_values[p_i] for p, l in zip(predictions, true_labels) for p_i, l_i in zip(p, l) if tag_values[l_i] != "PAD"] valid_tags = [tag_values[l_i] for l in true_labels for l_i in l if tag_values[l_i] != "PAD"] print("Validation Accuracy: {}".format(accuracy_score(pred_tags, valid_tags))) #print("Validation F1-Score: {}".format(f1_score(pred_tags, valid_tags))) print() # save the model to disk import joblib filename = 'finalized_model.sav' joblib.dump(model, filename) model = joblib.load(filename) model.to(device) test_sentence = """ Ousted WeWork founder <NAME> lists his Manhattan penthouse for $37.5 million. """ tokenized_sentence = tokenizer.encode(test_sentence) input_ids = torch.tensor([tokenized_sentence]).cuda() with torch.no_grad(): output = model(input_ids) label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2) # join bpe split tokens tokens = tokenizer.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0]) new_tokens, new_labels = [], [] for token, label_idx in zip(tokens, label_indices[0]): if token.startswith("##"): new_tokens[-1] = new_tokens[-1] + token[2:] else: new_labels.append(tag_values[label_idx]) new_tokens.append(token) for token, label in zip(new_tokens, new_labels): print("{}\t{}".format(label, token))
[ "seqeval.metrics.accuracy_score", "torch.utils.data.RandomSampler", "numpy.argmax", "pandas.read_csv", "sklearn.model_selection.train_test_split", "joblib.dump", "torch.cuda.device_count", "torch.utils.data.TensorDataset", "torch.no_grad", "torch.utils.data.DataLoader", "torch.utils.data.SequentialSampler", "torch.cuda.get_device_name", "tqdm.trange", "transformers.BertTokenizer.from_pretrained", "transformers.AdamW", "transformers.get_linear_schedule_with_warmup", "torch.cuda.is_available", "joblib.load", "torch.tensor" ]
[((1670, 1695), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (1693, 1695), False, 'import torch\n'), ((1745, 1814), 'transformers.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['"""bert-base-cased"""'], {'do_lower_case': '(False)'}), "('bert-base-cased', do_lower_case=False)\n", (1774, 1814), False, 'from transformers import BertTokenizer, BertConfig, BertModel\n'), ((3242, 3309), 'sklearn.model_selection.train_test_split', 'train_test_split', (['input_ids', 'tags'], {'random_state': '(2018)', 'test_size': '(0.1)'}), '(input_ids, tags, random_state=2018, test_size=0.1)\n', (3258, 3309), False, 'from sklearn.model_selection import train_test_split\n'), ((3398, 3476), 'sklearn.model_selection.train_test_split', 'train_test_split', (['attention_masks', 'input_ids'], {'random_state': '(2018)', 'test_size': '(0.1)'}), '(attention_masks, input_ids, random_state=2018, test_size=0.1)\n', (3414, 3476), False, 'from sklearn.model_selection import train_test_split\n'), ((3534, 3557), 'torch.tensor', 'torch.tensor', (['tr_inputs'], {}), '(tr_inputs)\n', (3546, 3557), False, 'import torch\n'), ((3571, 3595), 'torch.tensor', 'torch.tensor', (['val_inputs'], {}), '(val_inputs)\n', (3583, 3595), False, 'import torch\n'), ((3606, 3627), 'torch.tensor', 'torch.tensor', (['tr_tags'], {}), '(tr_tags)\n', (3618, 3627), False, 'import torch\n'), ((3639, 3661), 'torch.tensor', 'torch.tensor', (['val_tags'], {}), '(val_tags)\n', (3651, 3661), False, 'import torch\n'), ((3673, 3695), 'torch.tensor', 'torch.tensor', (['tr_masks'], {}), '(tr_masks)\n', (3685, 3695), False, 'import torch\n'), ((3708, 3731), 'torch.tensor', 'torch.tensor', (['val_masks'], {}), '(val_masks)\n', (3720, 3731), False, 'import torch\n'), ((3745, 3788), 'torch.utils.data.TensorDataset', 'TensorDataset', (['tr_inputs', 'tr_masks', 'tr_tags'], {}), '(tr_inputs, tr_masks, tr_tags)\n', (3758, 3788), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((3805, 3830), 'torch.utils.data.RandomSampler', 'RandomSampler', (['train_data'], {}), '(train_data)\n', (3818, 3830), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((3850, 3910), 'torch.utils.data.DataLoader', 'DataLoader', (['train_data'], {'sampler': 'train_sampler', 'batch_size': 'bs'}), '(train_data, sampler=train_sampler, batch_size=bs)\n', (3860, 3910), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((3925, 3971), 'torch.utils.data.TensorDataset', 'TensorDataset', (['val_inputs', 'val_masks', 'val_tags'], {}), '(val_inputs, val_masks, val_tags)\n', (3938, 3971), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((3988, 4017), 'torch.utils.data.SequentialSampler', 'SequentialSampler', (['valid_data'], {}), '(valid_data)\n', (4005, 4017), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((4037, 4097), 'torch.utils.data.DataLoader', 'DataLoader', (['valid_data'], {'sampler': 'valid_sampler', 'batch_size': 'bs'}), '(valid_data, sampler=valid_sampler, batch_size=bs)\n', (4047, 4097), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((4988, 5044), 'transformers.AdamW', 'AdamW', (['optimizer_grouped_parameters'], {'lr': '(3e-05)', 'eps': '(1e-08)'}), '(optimizer_grouped_parameters, lr=3e-05, eps=1e-08)\n', (4993, 5044), False, 'from transformers import BertForTokenClassification, AdamW\n'), ((5317, 5415), 'transformers.get_linear_schedule_with_warmup', 'get_linear_schedule_with_warmup', (['optimizer'], {'num_warmup_steps': '(0)', 'num_training_steps': 'total_steps'}), '(optimizer, num_warmup_steps=0,\n num_training_steps=total_steps)\n', (5348, 5415), False, 'from transformers import get_linear_schedule_with_warmup\n'), ((5638, 5666), 'tqdm.trange', 'trange', (['epochs'], {'desc': '"""Epoch"""'}), "(epochs, desc='Epoch')\n", (5644, 5666), False, 'from tqdm import tqdm, trange\n'), ((9420, 9448), 'joblib.dump', 'joblib.dump', (['model', 'filename'], {}), '(model, filename)\n', (9431, 9448), False, 'import joblib\n'), ((9457, 9478), 'joblib.load', 'joblib.load', (['filename'], {}), '(filename)\n', (9468, 9478), False, 'import joblib\n'), ((1702, 1731), 'torch.cuda.get_device_name', 'torch.cuda.get_device_name', (['(0)'], {}), '(0)\n', (1728, 1731), False, 'import torch\n'), ((9711, 9726), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (9724, 9726), False, 'import torch\n'), ((77, 121), 'pandas.read_csv', 'pd.read_csv', (['"""result.csv"""'], {'encoding': '"""latin1"""'}), "('result.csv', encoding='latin1')\n", (88, 121), True, 'import pandas as pd\n'), ((1624, 1649), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1647, 1649), False, 'import torch\n'), ((9664, 9698), 'torch.tensor', 'torch.tensor', (['[tokenized_sentence]'], {}), '([tokenized_sentence])\n', (9676, 9698), False, 'import torch\n'), ((8061, 8076), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8074, 8076), False, 'import torch\n'), ((9218, 9255), 'seqeval.metrics.accuracy_score', 'accuracy_score', (['pred_tags', 'valid_tags'], {}), '(pred_tags, valid_tags)\n', (9232, 9255), False, 'from seqeval.metrics import f1_score, accuracy_score\n'), ((8668, 8693), 'numpy.argmax', 'np.argmax', (['logits'], {'axis': '(2)'}), '(logits, axis=2)\n', (8677, 8693), True, 'import numpy as np\n')]
import unittest import subprocess import sys from jaxdax import core from absl import logging from absl.testing import absltest, parameterized from jax._src import test_util as jtu from jax._src.util import partial import jax.numpy as jnp import numpy as np import jax import builtins def f(x, lib=core): y = lib.sin(x) * 2.0 z = - y + x return z class BasicTest(jtu.JaxTestCase): def check(self, f1, f2, *args, **kws): jval = f1(*args, **kws) nval = f2(*args, **kws) logging.info('jval: %s nval: %s', jval, nval) self.assertAllClose(jval, nval) def test_basic(self): logging.info('info') self.assertEqual(1, 1) fnp = partial(f, lib=jnp) self.check(f, fnp, 3.0) self.check(core.vmap(f, (0,)), jax.vmap(fnp, (0,)), np.arange(3)) class BackendsTest(jtu.JaxTestCase): @unittest.skipIf(not sys.executable, "test requires sys.executable") @jtu.skip_on_devices("gpu", "tpu") def test_cpu_warning_suppression(self): warning_expected = ( "import jax; " "jax.numpy.arange(10)") warning_not_expected = ( "import jax; " "jax.config.update('jax_platform_name', 'cpu'); " "jax.numpy.arange(10)") result = subprocess.run([sys.executable, '-c', warning_expected], check=True, capture_output=True) assert "No GPU/TPU found" in result.stderr.decode() result = subprocess.run([sys.executable, '-c', warning_not_expected], check=True, capture_output=True) assert "No GPU/TPU found" not in result.stderr.decode() if __name__ == '__main__': builtins.__stdout__ = sys.__stdout__ builtins.__stderr__ = sys.__stderr__ logging.set_verbosity('DEBUG') #logging.get_absl_handler().python_handler.stream = sys.__stdout__ logging.use_absl_handler() absltest.main(testLoader=jtu.JaxTestLoader())
[ "unittest.skipIf", "subprocess.run", "jax.vmap", "absl.logging.use_absl_handler", "jax._src.util.partial", "jaxdax.core.vmap", "absl.logging.info", "numpy.arange", "jax._src.test_util.JaxTestLoader", "jax._src.test_util.skip_on_devices", "absl.logging.set_verbosity" ]
[((871, 938), 'unittest.skipIf', 'unittest.skipIf', (['(not sys.executable)', '"""test requires sys.executable"""'], {}), "(not sys.executable, 'test requires sys.executable')\n", (886, 938), False, 'import unittest\n'), ((942, 975), 'jax._src.test_util.skip_on_devices', 'jtu.skip_on_devices', (['"""gpu"""', '"""tpu"""'], {}), "('gpu', 'tpu')\n", (961, 975), True, 'from jax._src import test_util as jtu\n'), ((1729, 1759), 'absl.logging.set_verbosity', 'logging.set_verbosity', (['"""DEBUG"""'], {}), "('DEBUG')\n", (1750, 1759), False, 'from absl import logging\n'), ((1835, 1861), 'absl.logging.use_absl_handler', 'logging.use_absl_handler', ([], {}), '()\n', (1859, 1861), False, 'from absl import logging\n'), ((514, 559), 'absl.logging.info', 'logging.info', (['"""jval: %s nval: %s"""', 'jval', 'nval'], {}), "('jval: %s nval: %s', jval, nval)\n", (526, 559), False, 'from absl import logging\n'), ((635, 655), 'absl.logging.info', 'logging.info', (['"""info"""'], {}), "('info')\n", (647, 655), False, 'from absl import logging\n'), ((701, 720), 'jax._src.util.partial', 'partial', (['f'], {'lib': 'jnp'}), '(f, lib=jnp)\n', (708, 720), False, 'from jax._src.util import partial\n'), ((1244, 1337), 'subprocess.run', 'subprocess.run', (["[sys.executable, '-c', warning_expected]"], {'check': '(True)', 'capture_output': '(True)'}), "([sys.executable, '-c', warning_expected], check=True,\n capture_output=True)\n", (1258, 1337), False, 'import subprocess\n'), ((1432, 1529), 'subprocess.run', 'subprocess.run', (["[sys.executable, '-c', warning_not_expected]"], {'check': '(True)', 'capture_output': '(True)'}), "([sys.executable, '-c', warning_not_expected], check=True,\n capture_output=True)\n", (1446, 1529), False, 'import subprocess\n'), ((772, 790), 'jaxdax.core.vmap', 'core.vmap', (['f', '(0,)'], {}), '(f, (0,))\n', (781, 790), False, 'from jaxdax import core\n'), ((792, 811), 'jax.vmap', 'jax.vmap', (['fnp', '(0,)'], {}), '(fnp, (0,))\n', (800, 811), False, 'import jax\n'), ((813, 825), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (822, 825), True, 'import numpy as np\n'), ((1891, 1910), 'jax._src.test_util.JaxTestLoader', 'jtu.JaxTestLoader', ([], {}), '()\n', (1908, 1910), True, 'from jax._src import test_util as jtu\n')]
# -*- coding: utf-8 -*- """ #------------------------------------------------------------------------------# # # # Project Name : Atmosphere&Ocean # # # # File Name : data_read.py # # # # Version : 0.0.1 # # # # Contributor : D.CW # # # # Start Date : 2020-04-01 09:15:09 # # # # Last Update : 2020-07-17 23:08:57 # # # # Email : <EMAIL> # # # #------------------------------------------------------------------------------# # Introduction: # # Provides data reading function for linear grid netcdf files, HDF files # # and WRF-ouput. # # # #-----------------------------------------------------------------------------*# # Functions: # #******************************* class: WrfData *******************************# # # # # #******************************* class: NcData ********************************# # set_rng -- Set the value range. # # get_var -- Get the value of the specified variable. # # # #******************************* class: HdfData *******************************# # set_rng -- Set the value range. # # get_var -- Get the value of the specified variable. # # # #------------------------------------------------------------------------------# """ # Standard libraries from __future__ import (absolute_import, division, print_function) from datetime import datetime from glob import glob from os import remove # Third-party libraries from netCDF4 import Dataset, MFDataset, MFTime from xarray import open_mfdataset, DataArray import numpy as np import pyresample import wrf # Local libraries from .decorator import is_none from .util import path2nc, extra_same_elem, get_dims, adjust_dim, \ cnv_ls2slice,get_time class WrfData(object): def __init__(self): pass def read(self, wrf_fpaths, var_name, lev_seq, lat_seq, lon_seq, interp_ena=False): nc_ls = path2nc(wrf_fpaths) var = wrf.getvar(nc_ls, var_name, method='join') if interp_ena: var = self._interp(wrf_fpaths, var, lev_seq, lat_seq, lon_seq) return var def pvo(self, wrf_fpaths, lev_seq, lat_seq, lon_seq, interp_ena=False): nc_ls = path2nc(wrf_fpaths) U = wrf.getvar(nc_ls, "U", method='join') V = wrf.getvar(nc_ls, "V", method='join') THETA = wrf.getvar(nc_ls, "T", method='join') P = wrf.getvar(nc_ls, "P", method='join') PB = wrf.getvar(nc_ls, "PB", method='join') MSFU = wrf.getvar(nc_ls, "MAPFAC_U", method='join') MSFV = wrf.getvar(nc_ls, "MAPFAC_V", method='join') MSFM = wrf.getvar(nc_ls, "MAPFAC_M", method='join') COR = wrf.getvar(nc_ls, "F", method='join') DX = nc_ls[0].DX DY = nc_ls[0].DY # 数据处理 THETA = THETA + 300 P = P + PB PV = wrf.pvo(U, V, THETA, P, MSFU, MSFV, MSFM, COR, DX, DY) if interp_ena: PV = self._interp(wrf_fpaths, PV, lev_seq, lat_seq, lon_seq) return PV def _interp(self, wrf_fpaths, var, lev_seq, lat_seq, lon_seq): lev_num = np.size(lev_seq) lat_num = np.size(lat_seq) lon_num = np.size(lon_seq) nc_ls = path2nc(wrf_fpaths) lon_curv = wrf.getvar(nc_ls, "XLONG") lat_curv = wrf.getvar(nc_ls, "XLAT") p = wrf.getvar(nc_ls, "pressure", method='join') orig_shp = np.shape(p) wrf_var = np.ones([orig_shp[0], lev_num, lat_num, lon_num]) lon2d_inter, lat2d_inter = np.meshgrid(lon_seq, lat_seq) orig_def = pyresample.geometry.SwathDefinition( lons=lon_curv, lats=lat_curv) targ_def = pyresample.geometry.SwathDefinition( lons=lon2d_inter, lats=lat2d_inter) var = self.eliminate_stagger(var) for i in range(0, orig_shp[0]): var_vert_interp = wrf.to_np( wrf.interplevel(var[i], p[i], lev_seq, False)) for j in range(0, lev_num): wrf_var[i, j, :, :] = pyresample.kd_tree.resample_nearest( orig_def, var_vert_interp[j], targ_def, radius_of_influence=500000, fill_value=None) return wrf_var @staticmethod def eliminate_stagger(var: DataArray): """Interpolate stagger grid to regular grid :param var: class:xarray.DataArray, The variable of wrf-output with stagger dimension :return: class:xarray.DataArray, The variable of wrf-output with normal dimensions ------------------------------------------------------------------ Examples: """ dims = var.dims # 插值到需要的层次、区域,同时也将域坐标转换为了经纬坐标 for i in range(np.size(dims)): if "stag" in dims[i]: var = wrf.destagger(var, i, meta=True) return var class NcData(object): """Read linear grid file in netCDF Created date: 2020-06-03 19:03:06 Last modified date: 2020-06-06 17:46:21 Contributor: D.CW Email: <EMAIL> """ time = None lev = None lat = None lon = None _rng = None dims = None def __init__(self, fnames: str, engine: str = "netcdf", group: str = None, concat_dim: str = "time", **kwargs): engines = ["netcdf", "xarray"] if engine not in engines: raise ValueError( "unrecognized engine for open_dataset: {}\n" "must be one of: {}".format(engine, engines) ) fname_ls = glob(fnames) if engine == "xarray": self.data_obj = open_mfdataset(fname_ls, group=group, concat_dim=concat_dim, combine='by_coords', **kwargs) engine = 0 elif engine == "netcdf": if len(fname_ls) == 1: self.data_obj = Dataset(fname_ls[0], **kwargs) else: self.data_obj = MFDataset(fname_ls, aggdim=concat_dim, **kwargs) if hasattr(self.data_obj['time'], 'calendar'): cal = self.data_obj['time'].calendar else: cal = 'standard' self._orig_time = MFTime(self.data_obj['time'], calendar=cal) engine = 1 self.engine = engine def set_rng(self, time_rng: tuple = None, lev_rng: tuple = None, lat_rng: tuple = None, lon_rng: tuple = None): """Set the value range. :param time_rng: class:tuple, time range :param lev_rng: class:tuple, level or height range :param lat_rng: class:tuple, latitude range :param lon_rng: class:tuple, longitude range :return: class: list, valid limited range, which is prepared for extracting the values of specified variable ------------------------------------------------------------------ Examples: """ self._rng = [] self.dims = [] dims = get_dims(self.data_obj) for dim in dims: if dim.upper() in ['TIME', 'TIMES']: orig_time_exist = hasattr(self, '_orig_time') if orig_time_exist: trgt_time_rng = cnv_ls2slice( self._get_multi_rng(var=self._orig_time, boundary=time_rng, pos=0)) self.time = self._engine_sel( self._orig_time, trgt_time_rng) else: trgt_time_rng = cnv_ls2slice( self._get_multi_rng(var=self.data_obj[dim], boundary=time_rng, pos=0)) self.time = self._engine_sel(self.data_obj[dim], trgt_time_rng) self._rng.append(trgt_time_rng) if self.engine: if orig_time_exist: time = get_time(self._orig_time) else: time = get_time(self.data_obj[dim]) self.time.values = time[trgt_time_rng] self.dims.append(dim) elif dim.upper() in ['LEV', 'LEVEL', 'LEVELS', 'EXPVER']: lev_trgt_rng = cnv_ls2slice( self._get_multi_rng(var=self.data_obj[dim], boundary=lev_rng, pos=1)) self._rng.append(lev_trgt_rng) self.lev = self._engine_sel(self.data_obj[dim], lev_trgt_rng) self.dims.append(dim) elif dim.upper() in ['LAT', 'LATITUDE', 'LATITUDES']: lat_trgt_rng = cnv_ls2slice( self._get_multi_rng(var=self.data_obj[dim], boundary=lat_rng, pos=2)) self._rng.append(lat_trgt_rng) self.lat = self._engine_sel(self.data_obj[dim], lat_trgt_rng) self.dims.append(dim) elif dim.upper() in ['LON', 'LONGITUDE', 'LONGITUDES']: lon_trgt_rng = cnv_ls2slice( self._get_multi_rng(var=self.data_obj[dim], boundary=lon_rng, pos=3)) self._rng.append(lon_trgt_rng) self.lon = self._engine_sel(self.data_obj[dim], lon_trgt_rng) self.dims.append(dim) return self._rng def get_var(self, var_name: str): """Extract specified variable values in a limited area. :param var_name: class:str, the name of variable :return: class:xarray.Dataset, class:xarray.Variable, dataset with attributes ------------------------------------------------------------------ Examples: """ var = self.data_obj[var_name] self._rng, self.dims = adjust_dim(self._rng, self.dims, get_dims(var)) rslt = self._engine_sel(var, tuple(self._rng)) return rslt.squeeze() def _engine_sel(self, var_obj, rng: tuple or list): if self.engine: rslt = DataArray(data=var_obj[rng], dims=get_dims(var_obj), attrs=var_obj.__dict__) else: rslt = var_obj[rng] return rslt @is_none def _get_multi_rng(self, **kwargs): rslt = [] if np.size(np.shape(kwargs['boundary'])) > 1: for bdry in kwargs['boundary']: if kwargs['pos'] == 1: rslt.extend( self._get_lev_rng(var=kwargs['var'], boundary=bdry)) elif kwargs['pos'] == 2: rslt.extend( self._get_lat_rng(var=kwargs['var'], boundary=bdry)) elif kwargs['pos'] == 3: rslt.extend( self._get_lon_rng(var=kwargs['var'], boundary=bdry)) else: rslt.extend( self._get_time_rng(var=kwargs['var'], boundary=bdry)) else: if kwargs['pos'] == 1: return self._get_lev_rng(var=kwargs['var'], boundary=kwargs['boundary']) elif kwargs['pos'] == 2: return self._get_lat_rng(var=kwargs['var'], boundary=kwargs['boundary']) elif kwargs['pos'] == 3: return self._get_lon_rng(var=kwargs['var'], boundary=kwargs['boundary']) else: return self._get_time_rng(var=kwargs['var'], boundary=kwargs['boundary']) return rslt def _get_lon_rng(self, **kwargs): lon = kwargs['var'][:] min_bdry = kwargs['boundary'][0] max_bdry = kwargs['boundary'][-1] if min_bdry < -180 or max_bdry > 180: raise ValueError("Longitude range is [-180,180]") if max_bdry < min_bdry: raise ValueError("In the setting of longitude range, the value " "on the left needs to be smaller than the value " "on the right.") if not len(np.where(lon < 0)[0]): if min_bdry < 0: min_bdry = 360 + min_bdry if max_bdry < 0: max_bdry = 360 + max_bdry ind = np.where(lon >= min_bdry)[0] ind2 = np.where(lon <= max_bdry)[0] rslt = extra_same_elem(ind, ind2) if not len(rslt): raise ValueError("Due to the longitude resolution, the " "longitude range you set is too fine, " "please expand your setting range.") return rslt def _get_lat_rng(self, **kwargs): lat = kwargs['var'][:] min_bdry = kwargs['boundary'][0] max_bdry = kwargs['boundary'][-1] if min_bdry < -90 or max_bdry > 90: raise ValueError("Longitude range is [-90,90]") if max_bdry < min_bdry: raise ValueError("In the latitude range setting, the value " "on the left needs to be smaller than " "the value on the right.") ind = np.where(lat >= min_bdry)[0] ind2 = np.where(lat <= max_bdry)[0] rslt = extra_same_elem(ind, ind2) if not len(rslt): raise ValueError("Due to latitude resolution, the " "latitude range you set is too fine, " "please expand your setting range.") return rslt def _get_lev_rng(self, **kwargs): lev = kwargs['var'][:] min_bdry = kwargs['boundary'][0] max_bdry = kwargs['boundary'][-1] if max_bdry < min_bdry: raise ValueError("In the height range setting, the value " "on the left needs to be smaller than " "the value on the right.") ind = np.where(lev >= min_bdry)[0] ind2 = np.where(lev <= max_bdry)[0] rslt = extra_same_elem(ind, ind2) if not len(rslt): raise ValueError("Due to the height resolution, the height range " "you set is too fine, please expand your setting " "range.") return rslt def _get_time_rng(self, **kwargs): min_bdry = kwargs['boundary'][0] max_bdry = kwargs['boundary'][-1] var = kwargs['var'] min_bdry = datetime.strptime(min_bdry, '%Y-%m-%d %H:%M:%S') max_bdry = datetime.strptime(max_bdry, '%Y-%m-%d %H:%M:%S') if max_bdry < min_bdry: raise ValueError("In the time setting, the value on the left " "precedes the value on the right.") if self.engine: time = get_time(var) ind = np.where(time >= min_bdry)[0] ind2 = np.where(time <= max_bdry)[0] else: min_bdry = np.datetime64(min_bdry) max_bdry = np.datetime64(max_bdry) ind = np.where(var >= min_bdry)[0] ind2 = np.where(var <= max_bdry)[0] rslt = extra_same_elem(ind, ind2) if not len(rslt): raise ValueError("Due to time resolution, the time range you set " "is too fine, please expand your setting range.") return rslt class HdfData(object): """HDF file reading Created date: 2020-06-05 12:54:13 Last modified date: 2020-06-05 16:09:26 Contributor: D.CW Email: <EMAIL> """ time = None lev = None lat = None lon = None def __init__(self, fnames: str, group: str = "Merged", concat_dim: str = "time", engine: str = 'xarray', **kwargs): engines = ["netcdf", "xarray"] if engine not in engines: raise ValueError( "unrecognized engine for open_dataset: {}\n" "must be one of: {}".format(engine, engines) ) if engine == "xarray": self.nc_obj = NcData(fnames, group=group, concat_dim=concat_dim, engine=engine, **kwargs) elif engine == "netcdf": fname_ls = glob(fnames) xd = open_mfdataset(fname_ls, group=group, concat_dim=concat_dim, combine="by_coords", **kwargs) self.tmp_fname = ''.join( [datetime.now().strftime("%Y%m%d%H%M%S%f"), '.nc']) xd.to_netcdf(self.tmp_fname) self.nc_obj = NcData(self.tmp_fname, concat_dim=concat_dim, **kwargs) def set_rng(self, time_rng: tuple = None, lev_rng: tuple = None, lat_rng: tuple = None, lon_rng: tuple = None): """Set the value range. :param time_rng: class:tuple, time range :param lev_rng: class:tuple, level or height range :param lat_rng: class:tuple, latitude range :param lon_rng: class:tuple, longitude range :return: class: list, valid limited range, which is prepared for extracting the values of specified variable ------------------------------------------------------------------ Examples: """ rng = self.nc_obj.set_rng(time_rng=time_rng, lev_rng=lev_rng, lat_rng=lat_rng, lon_rng=lon_rng) self.time = self.nc_obj.time self.lev = self.nc_obj.lev self.lat = self.nc_obj.lat self.lon = self.nc_obj.lon return rng def get_var(self, var_name: str): """Extract specified variable values in a limited area. :param var_name: class:str, the name of variable :return: class:xarray.Dataset, class:xarray.Variable, dataset with attributes ------------------------------------------------------------------ Examples: """ return self.nc_obj.get_var(var_name) def __del__(self): if self.nc_obj.engine: self.nc_obj.data_obj.close() remove(self.tmp_fname)
[ "os.remove", "wrf.pvo", "numpy.ones", "numpy.shape", "pyresample.geometry.SwathDefinition", "glob.glob", "netCDF4.Dataset", "numpy.meshgrid", "wrf.getvar", "netCDF4.MFDataset", "datetime.datetime.now", "numpy.size", "netCDF4.MFTime", "datetime.datetime.strptime", "wrf.interplevel", "xarray.open_mfdataset", "numpy.datetime64", "pyresample.kd_tree.resample_nearest", "numpy.where", "wrf.destagger" ]
[((3536, 3578), 'wrf.getvar', 'wrf.getvar', (['nc_ls', 'var_name'], {'method': '"""join"""'}), "(nc_ls, var_name, method='join')\n", (3546, 3578), False, 'import wrf\n'), ((3823, 3860), 'wrf.getvar', 'wrf.getvar', (['nc_ls', '"""U"""'], {'method': '"""join"""'}), "(nc_ls, 'U', method='join')\n", (3833, 3860), False, 'import wrf\n'), ((3873, 3910), 'wrf.getvar', 'wrf.getvar', (['nc_ls', '"""V"""'], {'method': '"""join"""'}), "(nc_ls, 'V', method='join')\n", (3883, 3910), False, 'import wrf\n'), ((3927, 3964), 'wrf.getvar', 'wrf.getvar', (['nc_ls', '"""T"""'], {'method': '"""join"""'}), "(nc_ls, 'T', method='join')\n", (3937, 3964), False, 'import wrf\n'), ((3977, 4014), 'wrf.getvar', 'wrf.getvar', (['nc_ls', '"""P"""'], {'method': '"""join"""'}), "(nc_ls, 'P', method='join')\n", (3987, 4014), False, 'import wrf\n'), ((4028, 4066), 'wrf.getvar', 'wrf.getvar', (['nc_ls', '"""PB"""'], {'method': '"""join"""'}), "(nc_ls, 'PB', method='join')\n", (4038, 4066), False, 'import wrf\n'), ((4082, 4126), 'wrf.getvar', 'wrf.getvar', (['nc_ls', '"""MAPFAC_U"""'], {'method': '"""join"""'}), "(nc_ls, 'MAPFAC_U', method='join')\n", (4092, 4126), False, 'import wrf\n'), ((4142, 4186), 'wrf.getvar', 'wrf.getvar', (['nc_ls', '"""MAPFAC_V"""'], {'method': '"""join"""'}), "(nc_ls, 'MAPFAC_V', method='join')\n", (4152, 4186), False, 'import wrf\n'), ((4202, 4246), 'wrf.getvar', 'wrf.getvar', (['nc_ls', '"""MAPFAC_M"""'], {'method': '"""join"""'}), "(nc_ls, 'MAPFAC_M', method='join')\n", (4212, 4246), False, 'import wrf\n'), ((4261, 4298), 'wrf.getvar', 'wrf.getvar', (['nc_ls', '"""F"""'], {'method': '"""join"""'}), "(nc_ls, 'F', method='join')\n", (4271, 4298), False, 'import wrf\n'), ((4424, 4478), 'wrf.pvo', 'wrf.pvo', (['U', 'V', 'THETA', 'P', 'MSFU', 'MSFV', 'MSFM', 'COR', 'DX', 'DY'], {}), '(U, V, THETA, P, MSFU, MSFV, MSFM, COR, DX, DY)\n', (4431, 4478), False, 'import wrf\n'), ((4680, 4696), 'numpy.size', 'np.size', (['lev_seq'], {}), '(lev_seq)\n', (4687, 4696), True, 'import numpy as np\n'), ((4715, 4731), 'numpy.size', 'np.size', (['lat_seq'], {}), '(lat_seq)\n', (4722, 4731), True, 'import numpy as np\n'), ((4750, 4766), 'numpy.size', 'np.size', (['lon_seq'], {}), '(lon_seq)\n', (4757, 4766), True, 'import numpy as np\n'), ((4822, 4848), 'wrf.getvar', 'wrf.getvar', (['nc_ls', '"""XLONG"""'], {}), "(nc_ls, 'XLONG')\n", (4832, 4848), False, 'import wrf\n'), ((4868, 4893), 'wrf.getvar', 'wrf.getvar', (['nc_ls', '"""XLAT"""'], {}), "(nc_ls, 'XLAT')\n", (4878, 4893), False, 'import wrf\n'), ((4906, 4950), 'wrf.getvar', 'wrf.getvar', (['nc_ls', '"""pressure"""'], {'method': '"""join"""'}), "(nc_ls, 'pressure', method='join')\n", (4916, 4950), False, 'import wrf\n'), ((4971, 4982), 'numpy.shape', 'np.shape', (['p'], {}), '(p)\n', (4979, 4982), True, 'import numpy as np\n'), ((5001, 5050), 'numpy.ones', 'np.ones', (['[orig_shp[0], lev_num, lat_num, lon_num]'], {}), '([orig_shp[0], lev_num, lat_num, lon_num])\n', (5008, 5050), True, 'import numpy as np\n'), ((5086, 5115), 'numpy.meshgrid', 'np.meshgrid', (['lon_seq', 'lat_seq'], {}), '(lon_seq, lat_seq)\n', (5097, 5115), True, 'import numpy as np\n'), ((5135, 5200), 'pyresample.geometry.SwathDefinition', 'pyresample.geometry.SwathDefinition', ([], {'lons': 'lon_curv', 'lats': 'lat_curv'}), '(lons=lon_curv, lats=lat_curv)\n', (5170, 5200), False, 'import pyresample\n'), ((5233, 5304), 'pyresample.geometry.SwathDefinition', 'pyresample.geometry.SwathDefinition', ([], {'lons': 'lon2d_inter', 'lats': 'lat2d_inter'}), '(lons=lon2d_inter, lats=lat2d_inter)\n', (5268, 5304), False, 'import pyresample\n'), ((7083, 7095), 'glob.glob', 'glob', (['fnames'], {}), '(fnames)\n', (7087, 7095), False, 'from glob import glob\n'), ((16167, 16215), 'datetime.datetime.strptime', 'datetime.strptime', (['min_bdry', '"""%Y-%m-%d %H:%M:%S"""'], {}), "(min_bdry, '%Y-%m-%d %H:%M:%S')\n", (16184, 16215), False, 'from datetime import datetime\n'), ((16235, 16283), 'datetime.datetime.strptime', 'datetime.strptime', (['max_bdry', '"""%Y-%m-%d %H:%M:%S"""'], {}), "(max_bdry, '%Y-%m-%d %H:%M:%S')\n", (16252, 16283), False, 'from datetime import datetime\n'), ((6275, 6288), 'numpy.size', 'np.size', (['dims'], {}), '(dims)\n', (6282, 6288), True, 'import numpy as np\n'), ((7155, 7251), 'xarray.open_mfdataset', 'open_mfdataset', (['fname_ls'], {'group': 'group', 'concat_dim': 'concat_dim', 'combine': '"""by_coords"""'}), "(fname_ls, group=group, concat_dim=concat_dim, combine=\n 'by_coords', **kwargs)\n", (7169, 7251), False, 'from xarray import open_mfdataset, DataArray\n'), ((14014, 14039), 'numpy.where', 'np.where', (['(lon >= min_bdry)'], {}), '(lon >= min_bdry)\n', (14022, 14039), True, 'import numpy as np\n'), ((14058, 14083), 'numpy.where', 'np.where', (['(lon <= max_bdry)'], {}), '(lon <= max_bdry)\n', (14066, 14083), True, 'import numpy as np\n'), ((14881, 14906), 'numpy.where', 'np.where', (['(lat >= min_bdry)'], {}), '(lat >= min_bdry)\n', (14889, 14906), True, 'import numpy as np\n'), ((14925, 14950), 'numpy.where', 'np.where', (['(lat <= max_bdry)'], {}), '(lat <= max_bdry)\n', (14933, 14950), True, 'import numpy as np\n'), ((15637, 15662), 'numpy.where', 'np.where', (['(lev >= min_bdry)'], {}), '(lev >= min_bdry)\n', (15645, 15662), True, 'import numpy as np\n'), ((15681, 15706), 'numpy.where', 'np.where', (['(lev <= max_bdry)'], {}), '(lev <= max_bdry)\n', (15689, 15706), True, 'import numpy as np\n'), ((16648, 16671), 'numpy.datetime64', 'np.datetime64', (['min_bdry'], {}), '(min_bdry)\n', (16661, 16671), True, 'import numpy as np\n'), ((16695, 16718), 'numpy.datetime64', 'np.datetime64', (['max_bdry'], {}), '(max_bdry)\n', (16708, 16718), True, 'import numpy as np\n'), ((19774, 19796), 'os.remove', 'remove', (['self.tmp_fname'], {}), '(self.tmp_fname)\n', (19780, 19796), False, 'from os import remove\n'), ((5458, 5503), 'wrf.interplevel', 'wrf.interplevel', (['var[i]', 'p[i]', 'lev_seq', '(False)'], {}), '(var[i], p[i], lev_seq, False)\n', (5473, 5503), False, 'import wrf\n'), ((5583, 5707), 'pyresample.kd_tree.resample_nearest', 'pyresample.kd_tree.resample_nearest', (['orig_def', 'var_vert_interp[j]', 'targ_def'], {'radius_of_influence': '(500000)', 'fill_value': 'None'}), '(orig_def, var_vert_interp[j], targ_def,\n radius_of_influence=500000, fill_value=None)\n', (5618, 5707), False, 'import pyresample\n'), ((6347, 6379), 'wrf.destagger', 'wrf.destagger', (['var', 'i'], {'meta': '(True)'}), '(var, i, meta=True)\n', (6360, 6379), False, 'import wrf\n'), ((11971, 11999), 'numpy.shape', 'np.shape', (["kwargs['boundary']"], {}), "(kwargs['boundary'])\n", (11979, 11999), True, 'import numpy as np\n'), ((16532, 16558), 'numpy.where', 'np.where', (['(time >= min_bdry)'], {}), '(time >= min_bdry)\n', (16540, 16558), True, 'import numpy as np\n'), ((16581, 16607), 'numpy.where', 'np.where', (['(time <= max_bdry)'], {}), '(time <= max_bdry)\n', (16589, 16607), True, 'import numpy as np\n'), ((16737, 16762), 'numpy.where', 'np.where', (['(var >= min_bdry)'], {}), '(var >= min_bdry)\n', (16745, 16762), True, 'import numpy as np\n'), ((16785, 16810), 'numpy.where', 'np.where', (['(var <= max_bdry)'], {}), '(var <= max_bdry)\n', (16793, 16810), True, 'import numpy as np\n'), ((17903, 17915), 'glob.glob', 'glob', (['fnames'], {}), '(fnames)\n', (17907, 17915), False, 'from glob import glob\n'), ((17933, 18029), 'xarray.open_mfdataset', 'open_mfdataset', (['fname_ls'], {'group': 'group', 'concat_dim': 'concat_dim', 'combine': '"""by_coords"""'}), "(fname_ls, group=group, concat_dim=concat_dim, combine=\n 'by_coords', **kwargs)\n", (17947, 18029), False, 'from xarray import open_mfdataset, DataArray\n'), ((7456, 7486), 'netCDF4.Dataset', 'Dataset', (['fname_ls[0]'], {}), '(fname_ls[0], **kwargs)\n', (7463, 7486), False, 'from netCDF4 import Dataset, MFDataset, MFTime\n'), ((7537, 7585), 'netCDF4.MFDataset', 'MFDataset', (['fname_ls'], {'aggdim': 'concat_dim'}), '(fname_ls, aggdim=concat_dim, **kwargs)\n', (7546, 7585), False, 'from netCDF4 import Dataset, MFDataset, MFTime\n'), ((7841, 7884), 'netCDF4.MFTime', 'MFTime', (["self.data_obj['time']"], {'calendar': 'cal'}), "(self.data_obj['time'], calendar=cal)\n", (7847, 7884), False, 'from netCDF4 import Dataset, MFDataset, MFTime\n'), ((13834, 13851), 'numpy.where', 'np.where', (['(lon < 0)'], {}), '(lon < 0)\n', (13842, 13851), True, 'import numpy as np\n'), ((18144, 18158), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (18156, 18158), False, 'from datetime import datetime\n')]
""" @author: <NAME>, UvA Aim: apply Random Forest for classifying segments into given vegetation classes Input: path of polygon with segment related features + label Output: accuracy report, feature importance, classified shapefile Example usage (from command line): ToDo: 1. automatize feature_list definition """ import sys import argparse import numpy as np import pandas as pd import geopandas as gpd from geopandas.tools import sjoin from sklearn.ensemble import RandomForestClassifier from sklearn.cross_validation import train_test_split from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score,precision_score,recall_score from sklearn.metrics import classification_report from collections import Counter from imblearn.under_sampling import RandomUnderSampler import matplotlib.pyplot as plt import seaborn as sns def cohenkappa_calc(cm): """ Cohen Kappa calculator. Input: confusion_matrix function from sklearn results Output: cohen kappa """ import numpy as np sum_diag=sum(cm.diagonal()) sum_rows=np.ones((1,len(cm))) sum_cols=np.ones((len(cm)+1,1)) bychance=np.ones((1,len(cm))) for k in range(0,len(cm)): sum_rows[0,k]=sum(cm[:,k]) for h in range(0,len(cm)): sum_cols[h,0]=sum(cm[h,:]) sum_cols[len(cm),0]=sum(sum_cols)-1 for j in range(0,len(cm)): bychance[0,j]=(sum_rows[0,j]/sum_cols[len(cm),0])*sum_cols[j,0] sum_bychance=sum(bychance[0,:]) cohenkappa=(sum_diag-sum_bychance)/((sum_cols[len(cm),0])-sum_bychance) sumsum=np.concatenate((cm, sum_rows), axis=0) sumsum2=np.concatenate((sumsum, sum_cols), axis=1) return cohenkappa parser = argparse.ArgumentParser() parser.add_argument('path', help='where the files are located') parser.add_argument('segments', help='polygon shape file with features and classes') args = parser.parse_args() # Import and define feature and label print("------ Import data and re-organize------ ") segments = gpd.GeoDataFrame.from_file(args.path+args.segments) #segments=segments[segments['Highestid']!='Open water'] #segments=segments[segments['Highestid']!='Bos'] segments['Highestid']=segments['Highestid'].replace(['Landriet, structuurarm', 'Landriet, structuurrijk','Waterriet'], 'Riet') segments['Highestid']=segments['Highestid'].replace(['Riet','Struweel','Grasland'], 'Non-water') # pre-organize the data #feature_list=['mean_echo_','mean_Plana','mean_Curva','mean_kurto','mean_sigma','mean_media','mean_Spher'] #feature_list=['mean_echo_','mean_Plana','mean_Curva','mean_kurto','mean_sigma','mean_mean_','mean_media','std_echo_r','std_Planar','std_Curvat','std_kurto_','std_sigma_'] #feature_list=['mean_Plana','mean_Curva','mean_kurto','mean_Spher'] feature_list=segments.columns[7:35] segments_whighprob=segments[(segments['Prob']>0.4)&(segments['poly_area']>0)] feature=segments_whighprob[feature_list].values feature_all=segments[feature_list].values fea_list_forvis=np.array(feature_list) label=segments_whighprob['Highestid'].values # Under-sampling -- get equal number of samples per class + split training and testing rus = RandomUnderSampler(random_state=0) feature_resampled, label_resampled = rus.fit_sample(feature, label) #print(sorted(Counter(label_resampled).items())) mytrain, mytest, mytrainlabel, mytestlabel = train_test_split(feature_resampled, label_resampled,train_size = 0.6) # Random Forest print("------ Apply Random Forest ------ ") n_estimators=30 criterion='gini' max_depth=30 min_samples_split=5 min_samples_leaf=5 max_features='auto' max_leaf_nodes=None bootstrap=True oob_score=True n_jobs=1 random_state=None verbose=0 class_weight='balanced' forest = RandomForestClassifier(n_estimators=n_estimators, criterion=criterion, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose,class_weight=class_weight) RF_classifier = forest.fit(mytrain, mytrainlabel) # Validation print("------ Validation ------ ") mypredtest=RF_classifier.predict(mytest) print(classification_report(mytestlabel, mypredtest)) print(confusion_matrix(mytestlabel, mypredtest)) mypred=RF_classifier.predict(feature_all) segments['pred_class']=mypred segments.to_file(args.path+args.segments+"_RFclass.shp", driver='ESRI Shapefile') importances=RF_classifier.feature_importances_ indices = np.argsort(importances)[::-1] # Plot the feature importances of the forest print("------ Export ------ ") plt.figure() plt.title("Feature importances") plt.bar(range(mytrain.shape[1]), importances[indices], color="r", align="center") plt.xticks(range(mytrain.shape[1]), fea_list_forvis[indices],rotation=45,horizontalalignment='right') plt.xlim([-1, mytrain.shape[1]]) plt.tight_layout() #plt.show() plt.savefig(args.path+args.segments+"_RFclass_feaimp.png") # Export classification report with open(args.path+args.segments+"_RFclass_acc.txt", 'w') as f: f.write(np.array2string(confusion_matrix(mytestlabel, mypredtest), separator=', ')) f.write(classification_report(mytestlabel, mypredtest)) f.write(np.array2string(cohenkappa_calc(confusion_matrix(mytestlabel, mypredtest)))) f.write(np.array2string(importances[indices])) f.write(np.array2string(feature_list[indices]))
[ "imblearn.under_sampling.RandomUnderSampler", "sklearn.cross_validation.train_test_split", "sklearn.ensemble.RandomForestClassifier", "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "argparse.ArgumentParser", "numpy.concatenate", "numpy.array2string", "sklearn.metrics.classification_report", "numpy.argsort", "geopandas.GeoDataFrame.from_file", "matplotlib.pyplot.figure", "numpy.array", "sklearn.metrics.confusion_matrix", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.savefig" ]
[((1710, 1735), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1733, 1735), False, 'import argparse\n'), ((2015, 2068), 'geopandas.GeoDataFrame.from_file', 'gpd.GeoDataFrame.from_file', (['(args.path + args.segments)'], {}), '(args.path + args.segments)\n', (2041, 2068), True, 'import geopandas as gpd\n'), ((2994, 3016), 'numpy.array', 'np.array', (['feature_list'], {}), '(feature_list)\n', (3002, 3016), True, 'import numpy as np\n'), ((3158, 3192), 'imblearn.under_sampling.RandomUnderSampler', 'RandomUnderSampler', ([], {'random_state': '(0)'}), '(random_state=0)\n', (3176, 3192), False, 'from imblearn.under_sampling import RandomUnderSampler\n'), ((3356, 3424), 'sklearn.cross_validation.train_test_split', 'train_test_split', (['feature_resampled', 'label_resampled'], {'train_size': '(0.6)'}), '(feature_resampled, label_resampled, train_size=0.6)\n', (3372, 3424), False, 'from sklearn.cross_validation import train_test_split\n'), ((3716, 4086), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'n_estimators': 'n_estimators', 'criterion': 'criterion', 'max_depth': 'max_depth', 'min_samples_split': 'min_samples_split', 'min_samples_leaf': 'min_samples_leaf', 'max_features': 'max_features', 'max_leaf_nodes': 'max_leaf_nodes', 'bootstrap': 'bootstrap', 'oob_score': 'oob_score', 'n_jobs': 'n_jobs', 'random_state': 'random_state', 'verbose': 'verbose', 'class_weight': 'class_weight'}), '(n_estimators=n_estimators, criterion=criterion,\n max_depth=max_depth, min_samples_split=min_samples_split,\n min_samples_leaf=min_samples_leaf, max_features=max_features,\n max_leaf_nodes=max_leaf_nodes, bootstrap=bootstrap, oob_score=oob_score,\n n_jobs=n_jobs, random_state=random_state, verbose=verbose, class_weight\n =class_weight)\n', (3738, 4086), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((4724, 4736), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4734, 4736), True, 'import matplotlib.pyplot as plt\n'), ((4737, 4769), 'matplotlib.pyplot.title', 'plt.title', (['"""Feature importances"""'], {}), "('Feature importances')\n", (4746, 4769), True, 'import matplotlib.pyplot as plt\n'), ((4961, 4993), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-1, mytrain.shape[1]]'], {}), '([-1, mytrain.shape[1]])\n', (4969, 4993), True, 'import matplotlib.pyplot as plt\n'), ((4994, 5012), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5010, 5012), True, 'import matplotlib.pyplot as plt\n'), ((5025, 5087), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(args.path + args.segments + '_RFclass_feaimp.png')"], {}), "(args.path + args.segments + '_RFclass_feaimp.png')\n", (5036, 5087), True, 'import matplotlib.pyplot as plt\n'), ((1583, 1621), 'numpy.concatenate', 'np.concatenate', (['(cm, sum_rows)'], {'axis': '(0)'}), '((cm, sum_rows), axis=0)\n', (1597, 1621), True, 'import numpy as np\n'), ((1634, 1676), 'numpy.concatenate', 'np.concatenate', (['(sumsum, sum_cols)'], {'axis': '(1)'}), '((sumsum, sum_cols), axis=1)\n', (1648, 1676), True, 'import numpy as np\n'), ((4302, 4348), 'sklearn.metrics.classification_report', 'classification_report', (['mytestlabel', 'mypredtest'], {}), '(mytestlabel, mypredtest)\n', (4323, 4348), False, 'from sklearn.metrics import classification_report\n'), ((4357, 4398), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['mytestlabel', 'mypredtest'], {}), '(mytestlabel, mypredtest)\n', (4373, 4398), False, 'from sklearn.metrics import confusion_matrix\n'), ((4615, 4638), 'numpy.argsort', 'np.argsort', (['importances'], {}), '(importances)\n', (4625, 4638), True, 'import numpy as np\n'), ((5276, 5322), 'sklearn.metrics.classification_report', 'classification_report', (['mytestlabel', 'mypredtest'], {}), '(mytestlabel, mypredtest)\n', (5297, 5322), False, 'from sklearn.metrics import classification_report\n'), ((5419, 5456), 'numpy.array2string', 'np.array2string', (['importances[indices]'], {}), '(importances[indices])\n', (5434, 5456), True, 'import numpy as np\n'), ((5467, 5505), 'numpy.array2string', 'np.array2string', (['feature_list[indices]'], {}), '(feature_list[indices])\n', (5482, 5505), True, 'import numpy as np\n'), ((5207, 5248), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['mytestlabel', 'mypredtest'], {}), '(mytestlabel, mypredtest)\n', (5223, 5248), False, 'from sklearn.metrics import confusion_matrix\n'), ((5365, 5406), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['mytestlabel', 'mypredtest'], {}), '(mytestlabel, mypredtest)\n', (5381, 5406), False, 'from sklearn.metrics import confusion_matrix\n')]
import numpy as onp import scipy.sparse import scipy.sparse.linalg as spalg from veros import logger, veros_kernel, veros_routine, distributed, runtime_state as rst from veros.variables import allocate from veros.core.operators import update, at, numpy as npx from veros.core.external.solvers.base import LinearSolver from veros.core.external.poisson_matrix import assemble_poisson_matrix class SciPySolver(LinearSolver): @veros_routine( local_variables=( "hu", "hv", "hvr", "hur", "dxu", "dxt", "dyu", "dyt", "cosu", "cost", "isle_boundary_mask", "maskT", ), dist_safe=False, ) def __init__(self, state): self._matrix, self._boundary_mask = self._assemble_poisson_matrix(state) jacobi_precon = self._jacobi_preconditioner(state, self._matrix) self._matrix = jacobi_precon * self._matrix self._rhs_scale = jacobi_precon.diagonal() self._extra_args = {} logger.info("Computing ILU preconditioner...") ilu_preconditioner = spalg.spilu(self._matrix.tocsc(), drop_tol=1e-6, fill_factor=100) self._extra_args["M"] = spalg.LinearOperator(self._matrix.shape, ilu_preconditioner.solve) def _scipy_solver(self, state, rhs, x0, boundary_val): orig_shape = x0.shape orig_dtype = x0.dtype rhs = npx.where(self._boundary_mask, rhs, boundary_val) # set right hand side on boundaries rhs = onp.asarray(rhs.reshape(-1) * self._rhs_scale, dtype="float64") x0 = onp.asarray(x0.reshape(-1), dtype="float64") linear_solution, info = spalg.bicgstab( self._matrix, rhs, x0=x0, atol=1e-8, tol=0, maxiter=1000, **self._extra_args, ) if info > 0: logger.warning("Streamfunction solver did not converge after {} iterations", info) return npx.asarray(linear_solution, dtype=orig_dtype).reshape(orig_shape) def solve(self, state, rhs, x0, boundary_val=None): """ Main solver for streamfunction. Solves a 2D Poisson equation. Uses scipy.sparse.linalg linear solvers. Arguments: rhs: Right-hand side vector x0: Initial guess boundary_val: Array containing values to set on boundary elements. Defaults to `x0`. """ rhs_global, x0_global, boundary_val = gather_variables(state, rhs, x0, boundary_val) if rst.proc_rank == 0: linear_solution = self._scipy_solver(state, rhs_global, x0_global, boundary_val=boundary_val) else: linear_solution = npx.empty_like(rhs) return scatter_variables(state, linear_solution) @staticmethod def _jacobi_preconditioner(state, matrix): """ Construct a simple Jacobi preconditioner """ settings = state.settings eps = 1e-20 precon = allocate(state.dimensions, ("xu", "yu"), fill=1, local=False) diag = npx.reshape(matrix.diagonal().copy(), (settings.nx + 4, settings.ny + 4))[2:-2, 2:-2] precon = update(precon, at[2:-2, 2:-2], npx.where(npx.abs(diag) > eps, 1.0 / (diag + eps), 1.0)) precon = onp.asarray(precon) return scipy.sparse.dia_matrix((precon.reshape(-1), 0), shape=(precon.size, precon.size)).tocsr() @staticmethod def _assemble_poisson_matrix(state): settings = state.settings diags, offsets, boundary_mask = assemble_poisson_matrix(state) # flatten offsets (as expected by scipy.sparse) offsets = tuple(-dx * diags[0].shape[1] - dy for dx, dy in offsets) if settings.enable_cyclic_x: # add cyclic boundary conditions as additional matrix diagonals # (only works in single-process mode) wrap_diag_east, wrap_diag_west = (allocate(state.dimensions, ("xu", "yu"), local=False) for _ in range(2)) wrap_diag_east = update(wrap_diag_east, at[2, 2:-2], diags[2][2, 2:-2] * boundary_mask[2, 2:-2]) wrap_diag_west = update(wrap_diag_west, at[-3, 2:-2], diags[1][-3, 2:-2] * boundary_mask[-3, 2:-2]) diags[2] = update(diags[2], at[2, 2:-2], 0.0) diags[1] = update(diags[1], at[-3, 2:-2], 0.0) offsets += (-diags[0].shape[1] * (settings.nx - 1), diags[0].shape[1] * (settings.nx - 1)) diags += (wrap_diag_east, wrap_diag_west) diags = tuple(onp.asarray(diag.reshape(-1)) for diag in (diags)) matrix = scipy.sparse.dia_matrix( (diags, offsets), shape=(diags[0].size, diags[0].size), dtype="float64", ).T.tocsr() return matrix, boundary_mask @veros_kernel def gather_variables(state, rhs, x0, boundary_val): rhs_global = distributed.gather(rhs, state.dimensions, ("xt", "yt")) x0_global = distributed.gather(x0, state.dimensions, ("xt", "yt")) if boundary_val is None: boundary_val = x0_global else: boundary_val = distributed.gather(boundary_val, state.dimensions, ("xt", "yt")) return rhs_global, x0_global, boundary_val @veros_kernel def scatter_variables(state, linear_solution): return distributed.scatter(linear_solution, state.dimensions, ("xt", "yt"))
[ "veros.variables.allocate", "veros.core.operators.numpy.where", "veros.distributed.scatter", "veros.core.external.poisson_matrix.assemble_poisson_matrix", "numpy.asarray", "veros.core.operators.numpy.empty_like", "scipy.sparse.linalg.bicgstab", "veros.logger.warning", "scipy.sparse.linalg.LinearOperator", "veros.core.operators.numpy.asarray", "veros.veros_routine", "veros.core.operators.numpy.abs", "veros.core.operators.update", "veros.logger.info", "veros.distributed.gather" ]
[((430, 588), 'veros.veros_routine', 'veros_routine', ([], {'local_variables': "('hu', 'hv', 'hvr', 'hur', 'dxu', 'dxt', 'dyu', 'dyt', 'cosu', 'cost',\n 'isle_boundary_mask', 'maskT')", 'dist_safe': '(False)'}), "(local_variables=('hu', 'hv', 'hvr', 'hur', 'dxu', 'dxt',\n 'dyu', 'dyt', 'cosu', 'cost', 'isle_boundary_mask', 'maskT'), dist_safe\n =False)\n", (443, 588), False, 'from veros import logger, veros_kernel, veros_routine, distributed, runtime_state as rst\n'), ((4917, 4972), 'veros.distributed.gather', 'distributed.gather', (['rhs', 'state.dimensions', "('xt', 'yt')"], {}), "(rhs, state.dimensions, ('xt', 'yt'))\n", (4935, 4972), False, 'from veros import logger, veros_kernel, veros_routine, distributed, runtime_state as rst\n'), ((4989, 5043), 'veros.distributed.gather', 'distributed.gather', (['x0', 'state.dimensions', "('xt', 'yt')"], {}), "(x0, state.dimensions, ('xt', 'yt'))\n", (5007, 5043), False, 'from veros import logger, veros_kernel, veros_routine, distributed, runtime_state as rst\n'), ((5327, 5395), 'veros.distributed.scatter', 'distributed.scatter', (['linear_solution', 'state.dimensions', "('xt', 'yt')"], {}), "(linear_solution, state.dimensions, ('xt', 'yt'))\n", (5346, 5395), False, 'from veros import logger, veros_kernel, veros_routine, distributed, runtime_state as rst\n'), ((1086, 1132), 'veros.logger.info', 'logger.info', (['"""Computing ILU preconditioner..."""'], {}), "('Computing ILU preconditioner...')\n", (1097, 1132), False, 'from veros import logger, veros_kernel, veros_routine, distributed, runtime_state as rst\n'), ((1260, 1326), 'scipy.sparse.linalg.LinearOperator', 'spalg.LinearOperator', (['self._matrix.shape', 'ilu_preconditioner.solve'], {}), '(self._matrix.shape, ilu_preconditioner.solve)\n', (1280, 1326), True, 'import scipy.sparse.linalg as spalg\n'), ((1462, 1511), 'veros.core.operators.numpy.where', 'npx.where', (['self._boundary_mask', 'rhs', 'boundary_val'], {}), '(self._boundary_mask, rhs, boundary_val)\n', (1471, 1511), True, 'from veros.core.operators import update, at, numpy as npx\n'), ((1719, 1816), 'scipy.sparse.linalg.bicgstab', 'spalg.bicgstab', (['self._matrix', 'rhs'], {'x0': 'x0', 'atol': '(1e-08)', 'tol': '(0)', 'maxiter': '(1000)'}), '(self._matrix, rhs, x0=x0, atol=1e-08, tol=0, maxiter=1000,\n **self._extra_args)\n', (1733, 1816), True, 'import scipy.sparse.linalg as spalg\n'), ((3059, 3120), 'veros.variables.allocate', 'allocate', (['state.dimensions', "('xu', 'yu')"], {'fill': '(1)', 'local': '(False)'}), "(state.dimensions, ('xu', 'yu'), fill=1, local=False)\n", (3067, 3120), False, 'from veros.variables import allocate\n'), ((3344, 3363), 'numpy.asarray', 'onp.asarray', (['precon'], {}), '(precon)\n', (3355, 3363), True, 'import numpy as onp\n'), ((3605, 3635), 'veros.core.external.poisson_matrix.assemble_poisson_matrix', 'assemble_poisson_matrix', (['state'], {}), '(state)\n', (3628, 3635), False, 'from veros.core.external.poisson_matrix import assemble_poisson_matrix\n'), ((5140, 5204), 'veros.distributed.gather', 'distributed.gather', (['boundary_val', 'state.dimensions', "('xt', 'yt')"], {}), "(boundary_val, state.dimensions, ('xt', 'yt'))\n", (5158, 5204), False, 'from veros import logger, veros_kernel, veros_routine, distributed, runtime_state as rst\n'), ((1941, 2027), 'veros.logger.warning', 'logger.warning', (['"""Streamfunction solver did not converge after {} iterations"""', 'info'], {}), "('Streamfunction solver did not converge after {} iterations',\n info)\n", (1955, 2027), False, 'from veros import logger, veros_kernel, veros_routine, distributed, runtime_state as rst\n'), ((2770, 2789), 'veros.core.operators.numpy.empty_like', 'npx.empty_like', (['rhs'], {}), '(rhs)\n', (2784, 2789), True, 'from veros.core.operators import update, at, numpy as npx\n'), ((4081, 4160), 'veros.core.operators.update', 'update', (['wrap_diag_east', 'at[2, 2:-2]', '(diags[2][2, 2:-2] * boundary_mask[2, 2:-2])'], {}), '(wrap_diag_east, at[2, 2:-2], diags[2][2, 2:-2] * boundary_mask[2, 2:-2])\n', (4087, 4160), False, 'from veros.core.operators import update, at, numpy as npx\n'), ((4190, 4276), 'veros.core.operators.update', 'update', (['wrap_diag_west', 'at[-3, 2:-2]', '(diags[1][-3, 2:-2] * boundary_mask[-3, 2:-2])'], {}), '(wrap_diag_west, at[-3, 2:-2], diags[1][-3, 2:-2] * boundary_mask[-3,\n 2:-2])\n', (4196, 4276), False, 'from veros.core.operators import update, at, numpy as npx\n'), ((4296, 4330), 'veros.core.operators.update', 'update', (['diags[2]', 'at[2, 2:-2]', '(0.0)'], {}), '(diags[2], at[2, 2:-2], 0.0)\n', (4302, 4330), False, 'from veros.core.operators import update, at, numpy as npx\n'), ((4354, 4389), 'veros.core.operators.update', 'update', (['diags[1]', 'at[-3, 2:-2]', '(0.0)'], {}), '(diags[1], at[-3, 2:-2], 0.0)\n', (4360, 4389), False, 'from veros.core.operators import update, at, numpy as npx\n'), ((2040, 2086), 'veros.core.operators.numpy.asarray', 'npx.asarray', (['linear_solution'], {'dtype': 'orig_dtype'}), '(linear_solution, dtype=orig_dtype)\n', (2051, 2086), True, 'from veros.core.operators import update, at, numpy as npx\n'), ((3979, 4032), 'veros.variables.allocate', 'allocate', (['state.dimensions', "('xu', 'yu')"], {'local': '(False)'}), "(state.dimensions, ('xu', 'yu'), local=False)\n", (3987, 4032), False, 'from veros.variables import allocate\n'), ((3280, 3293), 'veros.core.operators.numpy.abs', 'npx.abs', (['diag'], {}), '(diag)\n', (3287, 3293), True, 'from veros.core.operators import update, at, numpy as npx\n')]
import glob import os import numpy as np from PIL import Image import torch import torch.utils.data as data from configuration.base_config import BaseConfig, DataMode class SmartSegmentationLoader(data.Dataset): def __init__(self, config, img_files, mask_files, transforms): super().__init__() self._img_files = img_files self._mask_files = mask_files self._config = config self._transforms = transforms def __len__(self): assert len(self._img_files) == len(self._mask_files), "Num masks and num images should be equal" return len(self._img_files) def __getitem__(self, item): img = self._img_files[item] mask = self._mask_files[item] img = np.array(Image.open(img)) mask = np.array(Image.open(mask)) mask = (mask < 128).astype(np.uint8) image_crop, mask_crop = self._crop(img, mask) image, mask, _ = self._transforms(image_crop, mask_crop.copy(), mask_crop.copy()) return image, mask def _crop(self, image, mask): rand_row, rand_col = self._get_random_crop(image.shape, self._config.crop_size) image_crop = np.copy(image[rand_row: rand_row + self._config.crop_size[0], rand_col: rand_col + self._config.crop_size[1], :]) mask_crop = np.copy(mask[rand_row: rand_row + self._config.crop_size[0], rand_col: rand_col + self._config.crop_size[1]]) return image_crop, mask_crop @staticmethod def _get_random_crop(image_size, crop_size): rand_row = torch.randint(low=0, high=image_size[0] - crop_size[0], size=[1]) rand_col = torch.randint(low=0, high=image_size[1] - crop_size[1], size=[1]) return rand_row.item(), rand_col.item() def get_data_loaders(config: BaseConfig): images = sorted(glob.glob(os.path.join(config.path[DataMode.train], "*"))) masks = sorted(glob.glob(os.path.join(config.mask_path[DataMode.train], "*"))) images_val = sorted(glob.glob(os.path.join(config.path[DataMode.eval], "*"))) masks_val = sorted(glob.glob(os.path.join(config.mask_path[DataMode.eval], "*"))) data_loader = data.DataLoader( SmartSegmentationLoader(config=config, img_files=images, mask_files=masks, transforms=config.augmentation), batch_size=config.batch_size, num_workers=config.num_workers) data_loader_val = data.DataLoader( SmartSegmentationLoader(config=config, img_files=images_val, mask_files=masks_val, transforms=config.val_augmentation), batch_size=1, num_workers=2) return { DataMode.eval: data_loader_val, DataMode.train: data_loader }
[ "torch.randint", "os.path.join", "numpy.copy", "PIL.Image.open" ]
[((1169, 1285), 'numpy.copy', 'np.copy', (['image[rand_row:rand_row + self._config.crop_size[0], rand_col:rand_col +\n self._config.crop_size[1], :]'], {}), '(image[rand_row:rand_row + self._config.crop_size[0], rand_col:\n rand_col + self._config.crop_size[1], :])\n', (1176, 1285), True, 'import numpy as np\n'), ((1338, 1450), 'numpy.copy', 'np.copy', (['mask[rand_row:rand_row + self._config.crop_size[0], rand_col:rand_col +\n self._config.crop_size[1]]'], {}), '(mask[rand_row:rand_row + self._config.crop_size[0], rand_col:\n rand_col + self._config.crop_size[1]])\n', (1345, 1450), True, 'import numpy as np\n'), ((1607, 1672), 'torch.randint', 'torch.randint', ([], {'low': '(0)', 'high': '(image_size[0] - crop_size[0])', 'size': '[1]'}), '(low=0, high=image_size[0] - crop_size[0], size=[1])\n', (1620, 1672), False, 'import torch\n'), ((1692, 1757), 'torch.randint', 'torch.randint', ([], {'low': '(0)', 'high': '(image_size[1] - crop_size[1])', 'size': '[1]'}), '(low=0, high=image_size[1] - crop_size[1], size=[1])\n', (1705, 1757), False, 'import torch\n'), ((749, 764), 'PIL.Image.open', 'Image.open', (['img'], {}), '(img)\n', (759, 764), False, 'from PIL import Image\n'), ((790, 806), 'PIL.Image.open', 'Image.open', (['mask'], {}), '(mask)\n', (800, 806), False, 'from PIL import Image\n'), ((1880, 1926), 'os.path.join', 'os.path.join', (['config.path[DataMode.train]', '"""*"""'], {}), "(config.path[DataMode.train], '*')\n", (1892, 1926), False, 'import os\n'), ((1958, 2009), 'os.path.join', 'os.path.join', (['config.mask_path[DataMode.train]', '"""*"""'], {}), "(config.mask_path[DataMode.train], '*')\n", (1970, 2009), False, 'import os\n'), ((2046, 2091), 'os.path.join', 'os.path.join', (['config.path[DataMode.eval]', '"""*"""'], {}), "(config.path[DataMode.eval], '*')\n", (2058, 2091), False, 'import os\n'), ((2127, 2177), 'os.path.join', 'os.path.join', (['config.mask_path[DataMode.eval]', '"""*"""'], {}), "(config.mask_path[DataMode.eval], '*')\n", (2139, 2177), False, 'import os\n')]
import numpy as np import matplotlib.pyplot as plt import sys, os from scipy.special import erf from scipy.optimize import minimize_scalar from math import isnan from math import isinf from dispsol import Jpole8, Jpole12 from dispsol import ES1d plt.rc('font', family='serif') plt.rc('xtick', labelsize=7) plt.rc('ytick', labelsize=7) plt.rc('axes', labelsize=9) fig = plt.figure(figsize=(3.54, 4.0)) #single column fig #fig = plt.figure(figsize=(7.48, 4.0)) #two column figure gs = plt.GridSpec(2, 1, hspace=0.15) axs = [] axs.append( plt.subplot(gs[0,0]) ) axs.append( plt.subplot(gs[1,0]) ) for ax in axs: ax.minorticks_on() #ax.set_xlabel(r'$k \lambda_D$') ax.set_xlabel(r'$\hat{k}$') ax.set_xlim((0.0, 0.55)) axs[0].set_ylabel(r'Re{ $\omega/\omega_p$ }') axs[1].set_ylabel(r'-Im{ $\omega/\omega_p$ }') axs[0].set_ylim((0.9, 1.50)) #axs[1].set_ylim((0.02, -0.16)) #axs[1].set_ylim((-0.16, 0.02)) #logscale growth rates axs[1].set_ylim((1.0e-6, 1.0e0)) axs[1].set_yscale('log') #Langmuir wave Landau damping qs = np.array([1.0]) ms = np.array([1.0]) ns0 = np.array([1.0]) Ts = np.array([1.0]) vs0 = np.array([0.0]) wps = np.sqrt(ns0 * qs**2.0 / ms) #plasma frequency vts = np.sqrt(2.0*Ts/ms) #thermal speed lDeb = np.sqrt(Ts / (ns0 * qs**2.0)) #Debye length kDeb = 1.0/lDeb #Debye length print("vth= ", vts) print("ldeB=", lDeb) print("kDeb=", kDeb) print("wps= ", wps) print("vs0= ", vs0) lDebTot = np.sqrt(1.0/np.sum(ns0/Ts)) print("lDebtot:", lDebTot) print("vs/vth:", vs0/vts) ################################################## # testing J-Pole expansion #bj, cj = Jpole8() bj, cj = Jpole12() J = len(bj) #number of pole expansion S = len(ns0) #number of species print("sum bj : ", np.sum(bj)) print("sum bj*cj : ", np.sum(bj*cj)) print("sum bj*cj^2: ", np.sum(bj*cj**2.0)) # visualize Langmuir wave dispersion relation params = {'vts': vts, 'vs0': vs0, 'lDeb': lDeb, 'S':S, 'J':J} karr = np.linspace(0.01, 0.55, 100) warr = np.zeros((len(karr), S*J), np.complex) for i,k in enumerate(karr): w = ES1d(k, params) warr[i,:] = w[:] ms = 1.0 Nsol = 1 for nsol in range(Nsol): axs[0].plot(karr, np.abs(np.real(warr[:,nsol])), 'k-', markersize=ms) #axs[1].plot(karr, np.zeros(len(karr)), "r--") for nsol in range(Nsol): axs[1].plot(karr, -np.imag(warr[:,nsol]), 'k-', markersize=ms) # for printing karrp = [0.0496729413289805, #mode1 0.099345882657961, #2 0.1490188239869415, #3 0.198691765315922, #4 0.2483647066449025, #5 0.298037647973883, #6 0.3477105893028635, #7 0.397383530631844, #8 0.4470564719608245, #9 0.496729413289805, #10 ] for i,k in enumerate(karrp): w = ES1d(k, params) print("mode=",i+1) print("khat=",k) print("omeg=",w[1]) print() wr = np.abs(np.real(w[0])) wi = np.abs(np.imag(w[0])) print(wi) axs[0].plot( k, wr, "r.") axs[1].plot( k, wi, "r.") plt.subplots_adjust(left=0.18, bottom=0.09, right=0.98, top=0.95, wspace=0.0, hspace=0.0) plt.savefig('landau.pdf')
[ "matplotlib.pyplot.subplot", "numpy.sum", "matplotlib.pyplot.subplots_adjust", "dispsol.ES1d", "matplotlib.pyplot.figure", "numpy.imag", "numpy.array", "matplotlib.pyplot.rc", "matplotlib.pyplot.GridSpec", "dispsol.Jpole12", "numpy.linspace", "numpy.real", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((252, 282), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'family': '"""serif"""'}), "('font', family='serif')\n", (258, 282), True, 'import matplotlib.pyplot as plt\n'), ((283, 311), 'matplotlib.pyplot.rc', 'plt.rc', (['"""xtick"""'], {'labelsize': '(7)'}), "('xtick', labelsize=7)\n", (289, 311), True, 'import matplotlib.pyplot as plt\n'), ((312, 340), 'matplotlib.pyplot.rc', 'plt.rc', (['"""ytick"""'], {'labelsize': '(7)'}), "('ytick', labelsize=7)\n", (318, 340), True, 'import matplotlib.pyplot as plt\n'), ((341, 368), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'labelsize': '(9)'}), "('axes', labelsize=9)\n", (347, 368), True, 'import matplotlib.pyplot as plt\n'), ((376, 407), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(3.54, 4.0)'}), '(figsize=(3.54, 4.0))\n', (386, 407), True, 'import matplotlib.pyplot as plt\n'), ((491, 522), 'matplotlib.pyplot.GridSpec', 'plt.GridSpec', (['(2)', '(1)'], {'hspace': '(0.15)'}), '(2, 1, hspace=0.15)\n', (503, 522), True, 'import matplotlib.pyplot as plt\n'), ((1051, 1066), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (1059, 1066), True, 'import numpy as np\n'), ((1073, 1088), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (1081, 1088), True, 'import numpy as np\n'), ((1095, 1110), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (1103, 1110), True, 'import numpy as np\n'), ((1117, 1132), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (1125, 1132), True, 'import numpy as np\n'), ((1139, 1154), 'numpy.array', 'np.array', (['[0.0]'], {}), '([0.0])\n', (1147, 1154), True, 'import numpy as np\n'), ((1164, 1193), 'numpy.sqrt', 'np.sqrt', (['(ns0 * qs ** 2.0 / ms)'], {}), '(ns0 * qs ** 2.0 / ms)\n', (1171, 1193), True, 'import numpy as np\n'), ((1219, 1241), 'numpy.sqrt', 'np.sqrt', (['(2.0 * Ts / ms)'], {}), '(2.0 * Ts / ms)\n', (1226, 1241), True, 'import numpy as np\n'), ((1271, 1302), 'numpy.sqrt', 'np.sqrt', (['(Ts / (ns0 * qs ** 2.0))'], {}), '(Ts / (ns0 * qs ** 2.0))\n', (1278, 1302), True, 'import numpy as np\n'), ((1671, 1680), 'dispsol.Jpole12', 'Jpole12', ([], {}), '()\n', (1678, 1680), False, 'from dispsol import Jpole8, Jpole12\n'), ((2033, 2061), 'numpy.linspace', 'np.linspace', (['(0.01)', '(0.55)', '(100)'], {}), '(0.01, 0.55, 100)\n', (2044, 2061), True, 'import numpy as np\n'), ((3071, 3165), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.18)', 'bottom': '(0.09)', 'right': '(0.98)', 'top': '(0.95)', 'wspace': '(0.0)', 'hspace': '(0.0)'}), '(left=0.18, bottom=0.09, right=0.98, top=0.95, wspace=\n 0.0, hspace=0.0)\n', (3090, 3165), True, 'import matplotlib.pyplot as plt\n'), ((3161, 3186), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""landau.pdf"""'], {}), "('landau.pdf')\n", (3172, 3186), True, 'import matplotlib.pyplot as plt\n'), ((546, 567), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs[0, 0]'], {}), '(gs[0, 0])\n', (557, 567), True, 'import matplotlib.pyplot as plt\n'), ((581, 602), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs[1, 0]'], {}), '(gs[1, 0])\n', (592, 602), True, 'import matplotlib.pyplot as plt\n'), ((1777, 1787), 'numpy.sum', 'np.sum', (['bj'], {}), '(bj)\n', (1783, 1787), True, 'import numpy as np\n'), ((1812, 1827), 'numpy.sum', 'np.sum', (['(bj * cj)'], {}), '(bj * cj)\n', (1818, 1827), True, 'import numpy as np\n'), ((1850, 1872), 'numpy.sum', 'np.sum', (['(bj * cj ** 2.0)'], {}), '(bj * cj ** 2.0)\n', (1856, 1872), True, 'import numpy as np\n'), ((2145, 2160), 'dispsol.ES1d', 'ES1d', (['k', 'params'], {}), '(k, params)\n', (2149, 2160), False, 'from dispsol import ES1d\n'), ((2832, 2847), 'dispsol.ES1d', 'ES1d', (['k', 'params'], {}), '(k, params)\n', (2836, 2847), False, 'from dispsol import ES1d\n'), ((1493, 1509), 'numpy.sum', 'np.sum', (['(ns0 / Ts)'], {}), '(ns0 / Ts)\n', (1499, 1509), True, 'import numpy as np\n'), ((2947, 2960), 'numpy.real', 'np.real', (['w[0]'], {}), '(w[0])\n', (2954, 2960), True, 'import numpy as np\n'), ((2979, 2992), 'numpy.imag', 'np.imag', (['w[0]'], {}), '(w[0])\n', (2986, 2992), True, 'import numpy as np\n'), ((2256, 2278), 'numpy.real', 'np.real', (['warr[:, nsol]'], {}), '(warr[:, nsol])\n', (2263, 2278), True, 'import numpy as np\n'), ((2397, 2419), 'numpy.imag', 'np.imag', (['warr[:, nsol]'], {}), '(warr[:, nsol])\n', (2404, 2419), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Code for reading and working with calibration data. Author <NAME>, 2019 Author <NAME>, 2019 """ import cv2 import numpy as np import os from typing import Tuple, List from enum import Enum import yaml import functools from libartipy.dataset import Constants, get_logger from libartipy.dataset import CameraType logger = get_logger() def deprecated(func): """This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted when the function is used.""" @functools.wraps(func) def new_func(*args, **kwargs): logger.warning('Call to deprecated function {}'.format(func.__name__)) return func(*args, **kwargs) return new_func class DistortionModel(Enum): Pinhole = 'Pinhole' Equidistant = 'Equidistant' @staticmethod def get_all_types() -> list: return [DistortionModel.Pinhole, DistortionModel.Equidistant] LEFT_CAM_PROJ_MAT = "P1" RIGHT_CAM_PROJ_MAT = "P2" LEFT_CAM_ROT_MAT = "R1" RIGHT_CAM_ROT_MAT = "R2" DISP_DEPTH_MAP_MAT = "Q" class CameraCalibration(object): """ This class contains the information written in the calibration files. """ def __init__(self, distortion_model: DistortionModel, calib_mat: np.ndarray, distortion_params: List[float], img_dims: List[int], cropped_img_dims: List[int]): """ :param distortion_model: :param calib_mat: 3x3 :param distortion_params: distortion parameters as list :param img_dims: :param cropped_img_dims: """ assert calib_mat.shape == (3, 3) assert len(distortion_params) >= 4 assert len(img_dims) == 2 assert len(cropped_img_dims) == 2 try: self.distortion_model = DistortionModel(distortion_model) except: logger.error('Distortion model not supported. Supported models: {}'.format(DistortionModel.get_all_types())) # parse calibration file self.calib_mat = calib_mat self.distortion_params = distortion_params self.img_dims = img_dims self.cropped_img_dims = cropped_img_dims class CalibrationFactory(object): @staticmethod def get_single_cam_info(curr_cam_yaml) -> Tuple[DistortionModel, np.ndarray, np.ndarray, tuple]: """ :param curr_cam_yaml: :return: """ DIST_MODELS = {'equidistant': DistortionModel.Equidistant, 'pinhole': DistortionModel.Pinhole, 'none': DistortionModel.Pinhole} # 1. parse distortion model dist_model = DIST_MODELS[curr_cam_yaml['distortion_model'].lower()] # 2. parse intrinsics intrinsic_params = curr_cam_yaml['intrinsics'] assert len(intrinsic_params) >= 4 calib_mat = np.eye(3) calib_mat[0, 0] = intrinsic_params[0] calib_mat[1, 1] = intrinsic_params[1] calib_mat[0, 2] = intrinsic_params[2] calib_mat[1, 2] = intrinsic_params[3] # 3. parse distortion coeffs dist_params = curr_cam_yaml['distortion_coeffs'] assert len(dist_params) >= 4 dist_params = np.array(dist_params) # 4. parse image info, resolution resolution = curr_cam_yaml['resolution'] assert len(resolution) == 2 resolution = tuple(resolution) return dist_model, calib_mat, dist_params, resolution @staticmethod def get_stereo_cam_info(curr_cam_yaml: dict) -> np.ndarray: """ Parse stereo transformation :param curr_cam_yaml: :return: 4x4 """ STEREO_FIELD = 'T_cn_cnm1' stereo_trans = [] for field in curr_cam_yaml[STEREO_FIELD]: stereo_trans.append(field) stereo_trans = np.array(stereo_trans) assert stereo_trans.shape == (4, 4) return stereo_trans @staticmethod @deprecated def create_from_txt_files(calib_folder_path: str, distorted: bool, constants_calib: Constants) -> \ Tuple[CameraCalibration, CameraCalibration, np.ndarray]: """ Parse calibration from txt files. :param calib_folder_path: :param distorted: :param constants_calib: :return: Left camera calibration, right camera calibration and stereo calibration as transformation matrix """ if distorted: calib_0_path = os.path.join(calib_folder_path, constants_calib.CALIBRATION_DIST_CAMERA_0) calib_1_path = os.path.join(calib_folder_path, constants_calib.CALIBRATION_DIST_CAMERA_1) calib_stereo_path = os.path.join(calib_folder_path, constants_calib.CALIBRATION_DIST_STEREO) else: calib_0_path = os.path.join(calib_folder_path, constants_calib.CALIBRATION_UNDIST_CAMERA_0) calib_1_path = os.path.join(calib_folder_path, constants_calib.CALIBRATION_UNDIST_CAMERA_1) calib_stereo_path = os.path.join(calib_folder_path, constants_calib.CALIBRATION_UNDIST_STEREO) assert os.path.exists(calib_0_path), 'Calibration file for left camera {} does not exist.'.format(calib_0_path) assert os.path.exists(calib_1_path), 'Calibration file for right camera{} does not exist.'.format(calib_1_path) assert os.path.exists(calib_stereo_path), 'Calibration for stereo {} does not exist.'.format(calib_stereo_path) calib_0 = CalibrationFactory.read_calibration_from_file(fpath=calib_0_path) calib_1 = CalibrationFactory.read_calibration_from_file(fpath=calib_1_path) calib_stereo_mat = np.loadtxt(fname=calib_stereo_path, delimiter=' ') assert calib_stereo_mat.shape == (4, 4) return calib_0, calib_1, calib_stereo_mat @staticmethod def create_from_yaml(calib_folder_path: str, distorted: bool, constants_calib: Constants) -> \ Tuple[CameraCalibration, CameraCalibration, np.ndarray]: """ Parse calibration from yaml files. :param calib_folder_path: :param distorted: :param constants_calib: :return: Left camera calibration, right camera calibration and stereo calibration as transformation matrix """ assert distorted, 'So far undistorted not supported' yaml_file_name = os.path.join(calib_folder_path, constants_calib.CALIBRATION_YAML) assert os.path.exists(yaml_file_name), '{}'.format(yaml_file_name) with open(yaml_file_name, 'r') as yaml_file: # contain 2 cameras and extrinsic calibration yaml_entries = yaml.load(yaml_file, Loader=yaml.Loader) # hardcode 2 cameras assert 'cam0' in yaml_entries.keys() and 'cam1' in yaml_entries.keys(), '{}'.format(yaml_entries.keys()) calibrations = [] for ind in range(2): dist_model, calib_mat, dist_params, resolution = CalibrationFactory.get_single_cam_info( yaml_entries['cam' + str(ind)]) camera = CameraCalibration(dist_model, calib_mat, dist_params, resolution, cropped_img_dims=resolution) calibrations.append(camera) # TODO(Dmytro) parse extrinsics into dictionary and provide generic getters # Note: we do not parse extrinscis to mount right now calib_stereo_mat = CalibrationFactory.get_stereo_cam_info(yaml_entries['cam1']) return calibrations[0], calibrations[1], calib_stereo_mat @staticmethod def read_calibration_from_file(fpath: str) -> CameraCalibration: """ This method reads calibration files and extracts the relevant information. :param fpath: filepath to calibration information :return: camera calibration object """ with open(fpath, 'r') as calib_file: lines = calib_file.readlines() # parse first line containing distortion mode, calibration matrix and distortion parameter distortion_model = lines[0].split()[0] fx, fy, cx, cy, k1, k2, k3, k4 = list(map(float, lines[0].split(' ')[1:])) # parse second line containing image dimensions img_width, img_height = list(map(int, lines[1].split(' '))) # parse fourth line containing image dimensions of cropped image c_img_width, c_img_height = list(map(int, lines[3].split(' '))) calib_mat = np.eye(3) calib_mat[0, 0] = fx calib_mat[1, 1] = fy calib_mat[0, 2] = cx calib_mat[1, 2] = cy distortion_params = np.array([k1, k2, k3, k4]) img_dims = (img_width, img_height) cropped_img_dims = (c_img_width, c_img_height) return CameraCalibration(distortion_model, calib_mat, distortion_params, img_dims, cropped_img_dims) class Calibration(object): """ This class contains all calibration data captured for one sensor kit. """ def __init__(self, calib_folder_path: str, distorted: bool = True): self.constants_calib = Constants() try: self.calib_0, self.calib_1, self.calib_stereo_mat = CalibrationFactory.create_from_yaml( calib_folder_path, distorted, self.constants_calib) except Exception as e: logger.warning("Did not succeed parsing from yaml file in {0} distorted {1} due to {2}". format(calib_folder_path, distorted, str(e))) self.calib_0, self.calib_1, self.calib_stereo_mat = CalibrationFactory.create_from_txt_files(calib_folder_path, distorted, self.constants_calib) assert self.calib_stereo_mat is not None assert self.calib_0.distortion_model == self.calib_1.distortion_model, 'Camera distortion models differ!' assert self.calib_0.img_dims == self.calib_1.img_dims, 'Image dimensions differ!' self.img_dims = self.calib_0.img_dims self.distortion_model = self.calib_0.distortion_model assert self.distortion_model in [DistortionModel.Equidistant, DistortionModel.Pinhole], \ 'Only {} model are implemented so far, not {}'.format([DistortionModel.Equidistant, DistortionModel.Pinhole], self.distortion_model) self.map0_x, self.map0_y = None, None self.map1_x, self.map1_y = None, None self.K0_optimized, self.K1_optimized = None, None self.rect_trans = None if self.distortion_model == DistortionModel.Equidistant: self._get_undistortion_to_distortion_map() elif self.distortion_model == DistortionModel.Pinhole: assert (self.calib_0.distortion_params == np.zeros(4)).all(), \ 'Calib1: Distortion parameters of Pinhole model are non-zero.' assert (self.calib_1.distortion_params == np.zeros(4)).all(), \ 'Calib2: Distortion parameters of Pinhole model are non-zero.' self._adapt_pinhole_parameters_to_equidistant_output() else: raise AssertionError def _get_undistortion_to_distortion_map(self) -> None: """ This method performs stereo rectification and undistortion and calculates optimized calibration data as well as remaps that map from rectified to distorted image. :return: """ # perform stereo rectification # https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereorectify # The function computes the rotation matrices for each camera that (virtually) make both camera image planes # the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies the dense # stereo correspondence problem. The function takes the matrices computed by stereoCalibrate() as input. # As output, it provides two rotation matrices and also two projection matrices in the new coordinates. # The function distinguishes the following two cases: Horizontal stereo and Vertical STereo # CALIB_ZERO_DISPARITY: the function makes the principal points of each camera have # the same pixel coordinates in the rectified views. R1, R2, P1, P2, Q = cv2.fisheye.stereoRectify(K1=self.calib_0.calib_mat, D1=self.calib_0.distortion_params, K2=self.calib_1.calib_mat, D2=self.calib_1.distortion_params, imageSize=self.img_dims, R=self.calib_stereo_mat[:3, :3], tvec=self.calib_stereo_mat[:3, 3], flags=cv2.CALIB_ZERO_DISPARITY) self.rect_trans = {LEFT_CAM_ROT_MAT: R1, # Output 3x3 rectification transform (rotation matrix) for the first camera. # Output 3x3 rectification transform (rotation matrix) for the second camera. RIGHT_CAM_ROT_MAT: R2, # Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera. LEFT_CAM_PROJ_MAT: P1, RIGHT_CAM_PROJ_MAT: P2, DISP_DEPTH_MAP_MAT: Q} # Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ) # generates maps from rectified image to distorted image self.map0_x, self.map0_y = cv2.fisheye.initUndistortRectifyMap(K=self.calib_0.calib_mat, D=self.calib_0.distortion_params, R=R1, P=P1, size=self.img_dims, m1type=cv2.CV_32FC1) self.map1_x, self.map1_y = cv2.fisheye.initUndistortRectifyMap(K=self.calib_1.calib_mat, D=self.calib_1.distortion_params, R=R2, P=P2, size=self.img_dims, m1type=cv2.CV_32FC1) self.K0_optimized = P1[:3, :3] self.K1_optimized = P2[:3, :3] def _adapt_pinhole_parameters_to_equidistant_output(self): self.rect_trans = dict() self.rect_trans[LEFT_CAM_PROJ_MAT] = np.zeros((3, 4)) # projection matrix of first camera # projection matrix of second camera (incl. baseline [in pixel] scaled by focal length) self.rect_trans[RIGHT_CAM_PROJ_MAT] = np.zeros((3, 4)) self.rect_trans[LEFT_CAM_ROT_MAT] = np.eye(3) # Identity when as no rectificatio necessary self.rect_trans[RIGHT_CAM_ROT_MAT] = np.eye(3) # Identity when as no rectificatio necessary self.rect_trans[DISP_DEPTH_MAP_MAT] = np.eye(4) # disparity to depth mapping, maps from ucd1 to XYZ1 # update optimized K1 and K2 self.K0_optimized = self.calib_0.calib_mat self.K1_optimized = self.calib_1.calib_mat focal_length_x = self.K0_optimized[0, 0] cx = self.K0_optimized[0, 2] cy = self.K0_optimized[1, 2] # update P1 and P2 baseline = self.calib_stereo_mat[0, 3] self.rect_trans[LEFT_CAM_PROJ_MAT][:3, :3] = self.K0_optimized self.rect_trans[RIGHT_CAM_PROJ_MAT][:3, :3] = self.K1_optimized self.rect_trans[RIGHT_CAM_PROJ_MAT][0, 3] = self.K1_optimized[0, 0] * baseline # update Q: mapping from [u, v, disp, 1] to [X, Y, Z, 1] self.rect_trans[DISP_DEPTH_MAP_MAT][2, 2] = 0 self.rect_trans[DISP_DEPTH_MAP_MAT][3, 3] = 0 self.rect_trans[DISP_DEPTH_MAP_MAT][0, 3] = -cx self.rect_trans[DISP_DEPTH_MAP_MAT][1, 3] = -cy self.rect_trans[DISP_DEPTH_MAP_MAT][2, 3] = focal_length_x self.rect_trans[DISP_DEPTH_MAP_MAT][3, 2] = 1 / np.abs(baseline) # update maps 1 and 2 x and y self.map0_x = None self.map0_y = None self.map1_x = None self.map1_y = None class DistortionMapper(object): """ This function contains all calibration parameters and can transform images or pixel coordinates from rectified to distorted space. """ def __init__(self, calib_data: Calibration): self.calib = calib_data assert self.calib.distortion_model == DistortionModel.Equidistant,\ 'DistorionMapper requires Equidistant distortion model.' def remap_rectified_image_to_distorted_image(self, rectified_image: np.ndarray, camera_position: CameraType = CameraType.LEFT, interpolation=None) -> (np.ndarray, np.ndarray, np.ndarray): """ This method remaps a rectified image to the corresponding distorted image. :param rectified_image: :param camera_position: :param interpolation: :return: """ assert interpolation is None, 'No Interpolation implemented' # select correct image maps dependent on selected camera map_column = self.calib.map0_x if camera_position == CameraType.LEFT else self.calib.map1_x map_row = self.calib.map0_y if camera_position == CameraType.LEFT else self.calib.map1_y assert rectified_image.shape == map_column.shape, 'Image size and x/column-map size do not match.' assert rectified_image.shape == map_row.shape, 'Image size and y/row-map size do not match' # initialize distorted image with zeros distorted_image = np.zeros_like(rectified_image) # use zero image to retrieve a list of all pixel indices rectified_row_coords, rectified_column_coords = np.where(distorted_image == 0) # generate positions in distorted image using the precomputed maps rows, cols = self.remap_rectified_coordinates_to_distorted_coordinates(coords_row=rectified_row_coords, coords_column=rectified_column_coords, image_dims=rectified_image.shape, camera_position=camera_position) # check if transformed coordinates are still on canvas on_canvas_mask = (0 < rows) & (rows < rectified_image.shape[0]) & \ (0 < cols) & (cols < rectified_image.shape[1]) rows, cols = rows[on_canvas_mask], cols[on_canvas_mask] rectified_row_coords = rectified_row_coords[on_canvas_mask] rectified_column_coords = rectified_column_coords[on_canvas_mask] # transfer value of rectified image to respective position in distorted image # TODO: integer casting of values not optimal. Implement interpolation mechanisms! distorted_image[np.floor(rows).astype(np.int), np.floor(cols).astype(np.int)] = \ rectified_image[rectified_row_coords, rectified_column_coords] return distorted_image, rows, cols # TODO: may use fisheye::distortPoints def remap_rectified_coordinates_to_distorted_coordinates(self, coords_row: np.ndarray, coords_column: np.ndarray, image_dims: Tuple, camera_position: CameraType = CameraType.LEFT) -> (np.ndarray, np.ndarray): """ This function distorts the rectified coordinates and generates the respective coordinates in the distorted image :param coords_row: [N] :param coords_column: [N] :param image_dims: (H, W) :param camera_position: :return: """ assert coords_column.size == coords_row.size # select correct image maps dependent on selected camera map_row = self.calib.map0_y if camera_position == CameraType.LEFT else self.calib.map1_y map_column = self.calib.map0_x if camera_position == CameraType.LEFT else self.calib.map1_x assert image_dims == map_row.shape, 'Image size and y/rows-map size do not match' assert image_dims == map_column.shape, 'Image size and x/column-map size do not match.' # get corresponding coordinates in distorted image result = map_row[coords_row, coords_column], map_column[coords_row, coords_column] return result def undistort_image(self, dist_image: np.ndarray, camera_position: CameraType = CameraType.LEFT, interpolation=cv2.INTER_LINEAR) -> np.ndarray: """ This method remaps a distorted image to the corresponding rectified image. :param dist_image: :param camera_position: :param interpolation: :return: """ map1 = self.calib.map0_x if camera_position == CameraType.LEFT else self.calib.map1_x map2 = self.calib.map0_y if camera_position == CameraType.LEFT else self.calib.map1_y undist_image = cv2.remap(dist_image, map1=map1, map2=map2, interpolation=interpolation) return undist_image def undistort_coordinates(self, dist_coords: np.ndarray, camera_position: CameraType = CameraType.LEFT) -> np.ndarray: """ This function rectify the distorted coordinates and generates the respective coordinates in the rectified image :param dist_coords: [N x 2] :param camera_position: :return: v, v, u, u """ # select correct parameters for the left/right camera camera_matrix = self.calib.calib_0.calib_mat if camera_position == CameraType.LEFT else self.calib.calib_1.calib_mat dist_coeffs = self.calib.calib_0.distortion_params if camera_position == CameraType.LEFT else self.calib.calib_1.distortion_params R = self.calib.rect_trans[LEFT_CAM_ROT_MAT] if camera_position == CameraType.LEFT else self.calib.rect_trans[RIGHT_CAM_ROT_MAT] P = self.calib.rect_trans[LEFT_CAM_PROJ_MAT] if camera_position == CameraType.LEFT else self.calib.rect_trans[RIGHT_CAM_PROJ_MAT] # transfer (row column) to (x, y) and match the input format dist_coords = np.array([dist_coords[1], dist_coords[0]], dtype=np.float32) dist_coords = np.transpose(dist_coords) dist_coords = np.expand_dims(dist_coords, axis=1) # calculate the coordinates undist_coords = cv2.fisheye.undistortPoints(dist_coords, K=camera_matrix, D=dist_coeffs, R=R, P=P) # transfer (x, y) to (row column) and match the output format undist_coords = undist_coords.squeeze() undist_coords = np.array([undist_coords[:, 1], undist_coords[:, 0]]) return np.array(undist_coords)
[ "yaml.load", "numpy.abs", "numpy.floor", "cv2.remap", "os.path.join", "numpy.zeros_like", "os.path.exists", "numpy.transpose", "numpy.loadtxt", "libartipy.dataset.Constants", "functools.wraps", "cv2.fisheye.stereoRectify", "cv2.fisheye.initUndistortRectifyMap", "libartipy.dataset.get_logger", "numpy.zeros", "numpy.expand_dims", "numpy.where", "numpy.array", "cv2.fisheye.undistortPoints", "numpy.eye" ]
[((381, 393), 'libartipy.dataset.get_logger', 'get_logger', ([], {}), '()\n', (391, 393), False, 'from libartipy.dataset import Constants, get_logger\n'), ((581, 602), 'functools.wraps', 'functools.wraps', (['func'], {}), '(func)\n', (596, 602), False, 'import functools\n'), ((2896, 2905), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (2902, 2905), True, 'import numpy as np\n'), ((3244, 3265), 'numpy.array', 'np.array', (['dist_params'], {}), '(dist_params)\n', (3252, 3265), True, 'import numpy as np\n'), ((3865, 3887), 'numpy.array', 'np.array', (['stereo_trans'], {}), '(stereo_trans)\n', (3873, 3887), True, 'import numpy as np\n'), ((5118, 5146), 'os.path.exists', 'os.path.exists', (['calib_0_path'], {}), '(calib_0_path)\n', (5132, 5146), False, 'import os\n'), ((5238, 5266), 'os.path.exists', 'os.path.exists', (['calib_1_path'], {}), '(calib_1_path)\n', (5252, 5266), False, 'import os\n'), ((5358, 5391), 'os.path.exists', 'os.path.exists', (['calib_stereo_path'], {}), '(calib_stereo_path)\n', (5372, 5391), False, 'import os\n'), ((5659, 5709), 'numpy.loadtxt', 'np.loadtxt', ([], {'fname': 'calib_stereo_path', 'delimiter': '""" """'}), "(fname=calib_stereo_path, delimiter=' ')\n", (5669, 5709), True, 'import numpy as np\n'), ((6357, 6422), 'os.path.join', 'os.path.join', (['calib_folder_path', 'constants_calib.CALIBRATION_YAML'], {}), '(calib_folder_path, constants_calib.CALIBRATION_YAML)\n', (6369, 6422), False, 'import os\n'), ((6439, 6469), 'os.path.exists', 'os.path.exists', (['yaml_file_name'], {}), '(yaml_file_name)\n', (6453, 6469), False, 'import os\n'), ((8418, 8427), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (8424, 8427), True, 'import numpy as np\n'), ((8573, 8599), 'numpy.array', 'np.array', (['[k1, k2, k3, k4]'], {}), '([k1, k2, k3, k4])\n', (8581, 8599), True, 'import numpy as np\n'), ((9032, 9043), 'libartipy.dataset.Constants', 'Constants', ([], {}), '()\n', (9041, 9043), False, 'from libartipy.dataset import Constants, get_logger\n'), ((12333, 12621), 'cv2.fisheye.stereoRectify', 'cv2.fisheye.stereoRectify', ([], {'K1': 'self.calib_0.calib_mat', 'D1': 'self.calib_0.distortion_params', 'K2': 'self.calib_1.calib_mat', 'D2': 'self.calib_1.distortion_params', 'imageSize': 'self.img_dims', 'R': 'self.calib_stereo_mat[:3, :3]', 'tvec': 'self.calib_stereo_mat[:3, 3]', 'flags': 'cv2.CALIB_ZERO_DISPARITY'}), '(K1=self.calib_0.calib_mat, D1=self.calib_0.\n distortion_params, K2=self.calib_1.calib_mat, D2=self.calib_1.\n distortion_params, imageSize=self.img_dims, R=self.calib_stereo_mat[:3,\n :3], tvec=self.calib_stereo_mat[:3, 3], flags=cv2.CALIB_ZERO_DISPARITY)\n', (12358, 12621), False, 'import cv2\n'), ((13622, 13780), 'cv2.fisheye.initUndistortRectifyMap', 'cv2.fisheye.initUndistortRectifyMap', ([], {'K': 'self.calib_0.calib_mat', 'D': 'self.calib_0.distortion_params', 'R': 'R1', 'P': 'P1', 'size': 'self.img_dims', 'm1type': 'cv2.CV_32FC1'}), '(K=self.calib_0.calib_mat, D=self.\n calib_0.distortion_params, R=R1, P=P1, size=self.img_dims, m1type=cv2.\n CV_32FC1)\n', (13657, 13780), False, 'import cv2\n'), ((14020, 14178), 'cv2.fisheye.initUndistortRectifyMap', 'cv2.fisheye.initUndistortRectifyMap', ([], {'K': 'self.calib_1.calib_mat', 'D': 'self.calib_1.distortion_params', 'R': 'R2', 'P': 'P2', 'size': 'self.img_dims', 'm1type': 'cv2.CV_32FC1'}), '(K=self.calib_1.calib_mat, D=self.\n calib_1.distortion_params, R=R2, P=P2, size=self.img_dims, m1type=cv2.\n CV_32FC1)\n', (14055, 14178), False, 'import cv2\n'), ((14604, 14620), 'numpy.zeros', 'np.zeros', (['(3, 4)'], {}), '((3, 4))\n', (14612, 14620), True, 'import numpy as np\n'), ((14800, 14816), 'numpy.zeros', 'np.zeros', (['(3, 4)'], {}), '((3, 4))\n', (14808, 14816), True, 'import numpy as np\n'), ((14861, 14870), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (14867, 14870), True, 'import numpy as np\n'), ((14962, 14971), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (14968, 14971), True, 'import numpy as np\n'), ((15064, 15073), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (15070, 15073), True, 'import numpy as np\n'), ((17810, 17840), 'numpy.zeros_like', 'np.zeros_like', (['rectified_image'], {}), '(rectified_image)\n', (17823, 17840), True, 'import numpy as np\n'), ((17963, 17993), 'numpy.where', 'np.where', (['(distorted_image == 0)'], {}), '(distorted_image == 0)\n', (17971, 17993), True, 'import numpy as np\n'), ((21363, 21435), 'cv2.remap', 'cv2.remap', (['dist_image'], {'map1': 'map1', 'map2': 'map2', 'interpolation': 'interpolation'}), '(dist_image, map1=map1, map2=map2, interpolation=interpolation)\n', (21372, 21435), False, 'import cv2\n'), ((22551, 22611), 'numpy.array', 'np.array', (['[dist_coords[1], dist_coords[0]]'], {'dtype': 'np.float32'}), '([dist_coords[1], dist_coords[0]], dtype=np.float32)\n', (22559, 22611), True, 'import numpy as np\n'), ((22634, 22659), 'numpy.transpose', 'np.transpose', (['dist_coords'], {}), '(dist_coords)\n', (22646, 22659), True, 'import numpy as np\n'), ((22682, 22717), 'numpy.expand_dims', 'np.expand_dims', (['dist_coords'], {'axis': '(1)'}), '(dist_coords, axis=1)\n', (22696, 22717), True, 'import numpy as np\n'), ((22779, 22866), 'cv2.fisheye.undistortPoints', 'cv2.fisheye.undistortPoints', (['dist_coords'], {'K': 'camera_matrix', 'D': 'dist_coeffs', 'R': 'R', 'P': 'P'}), '(dist_coords, K=camera_matrix, D=dist_coeffs, R=\n R, P=P)\n', (22806, 22866), False, 'import cv2\n'), ((23005, 23057), 'numpy.array', 'np.array', (['[undist_coords[:, 1], undist_coords[:, 0]]'], {}), '([undist_coords[:, 1], undist_coords[:, 0]])\n', (23013, 23057), True, 'import numpy as np\n'), ((23074, 23097), 'numpy.array', 'np.array', (['undist_coords'], {}), '(undist_coords)\n', (23082, 23097), True, 'import numpy as np\n'), ((4491, 4565), 'os.path.join', 'os.path.join', (['calib_folder_path', 'constants_calib.CALIBRATION_DIST_CAMERA_0'], {}), '(calib_folder_path, constants_calib.CALIBRATION_DIST_CAMERA_0)\n', (4503, 4565), False, 'import os\n'), ((4593, 4667), 'os.path.join', 'os.path.join', (['calib_folder_path', 'constants_calib.CALIBRATION_DIST_CAMERA_1'], {}), '(calib_folder_path, constants_calib.CALIBRATION_DIST_CAMERA_1)\n', (4605, 4667), False, 'import os\n'), ((4700, 4772), 'os.path.join', 'os.path.join', (['calib_folder_path', 'constants_calib.CALIBRATION_DIST_STEREO'], {}), '(calib_folder_path, constants_calib.CALIBRATION_DIST_STEREO)\n', (4712, 4772), False, 'import os\n'), ((4814, 4890), 'os.path.join', 'os.path.join', (['calib_folder_path', 'constants_calib.CALIBRATION_UNDIST_CAMERA_0'], {}), '(calib_folder_path, constants_calib.CALIBRATION_UNDIST_CAMERA_0)\n', (4826, 4890), False, 'import os\n'), ((4918, 4994), 'os.path.join', 'os.path.join', (['calib_folder_path', 'constants_calib.CALIBRATION_UNDIST_CAMERA_1'], {}), '(calib_folder_path, constants_calib.CALIBRATION_UNDIST_CAMERA_1)\n', (4930, 4994), False, 'import os\n'), ((5027, 5101), 'os.path.join', 'os.path.join', (['calib_folder_path', 'constants_calib.CALIBRATION_UNDIST_STEREO'], {}), '(calib_folder_path, constants_calib.CALIBRATION_UNDIST_STEREO)\n', (5039, 5101), False, 'import os\n'), ((6638, 6678), 'yaml.load', 'yaml.load', (['yaml_file'], {'Loader': 'yaml.Loader'}), '(yaml_file, Loader=yaml.Loader)\n', (6647, 6678), False, 'import yaml\n'), ((16105, 16121), 'numpy.abs', 'np.abs', (['baseline'], {}), '(baseline)\n', (16111, 16121), True, 'import numpy as np\n'), ((19146, 19160), 'numpy.floor', 'np.floor', (['rows'], {}), '(rows)\n', (19154, 19160), True, 'import numpy as np\n'), ((19177, 19191), 'numpy.floor', 'np.floor', (['cols'], {}), '(cols)\n', (19185, 19191), True, 'import numpy as np\n'), ((10788, 10799), 'numpy.zeros', 'np.zeros', (['(4)'], {}), '(4)\n', (10796, 10799), True, 'import numpy as np\n'), ((10943, 10954), 'numpy.zeros', 'np.zeros', (['(4)'], {}), '(4)\n', (10951, 10954), True, 'import numpy as np\n')]
""" ========================= Fit exotic Hawkes kernels ========================= This learner assumes Hawkes kernels are linear combinations of a given number of kernel basis. Here it is run on a an exotic data set generated with mixtures of two cosinus functions. We observe that we can correctly retrieve the kernels and the two cosinus basis functions which have generated the kernels. This experiment is run on toy datasets in the `original paper`_. It could have been more precise if end_time or kernel_size was increased. .. _original paper: http://jmlr.org/proceedings/papers/v28/zhou13.html """ import itertools import numpy as np import matplotlib.pyplot as plt from tick.plot import plot_basis_kernels, plot_hawkes_kernels from tick.hawkes import SimuHawkes, HawkesKernelTimeFunc, HawkesBasisKernels end_time = 1e9 C = 1e-3 kernel_size = 40 max_iter = 100 # We first simulate a similar Hawkes process def g1(t): return np.cos(np.pi * t / 10) + 1.1 def g2(t): return np.cos(np.pi * (t / 10 + 1)) + 1.1 t_values = np.linspace(0, 20, 1000) u_values = [(0.007061, 0.001711), (0.005445, 0.003645), (0.003645, 0.005445), (0.001790, 0.007390)] hawkes = SimuHawkes(baseline=[1e-5, 1e-5], seed=1093, verbose=False) for i, j in itertools.product(range(2), repeat=2): u1, u2 = u_values[2 * i + j] y_values = g1(t_values) * u1 + g2(t_values) * u2 kernel = HawkesKernelTimeFunc(t_values=t_values, y_values=y_values) hawkes.set_kernel(i, j, kernel) hawkes.end_time = end_time hawkes.simulate() ticks = hawkes.timestamps # And then perform estimation with two basis kernels kernel_support = 20 n_basis = 2 em = HawkesBasisKernels(kernel_support, n_basis=n_basis, kernel_size=kernel_size, C=C, n_threads=4, max_iter=max_iter, verbose=False, ode_tol=1e-5) em.fit(ticks) fig = plot_hawkes_kernels(em, hawkes=hawkes, support=19.9, show=False) for ax in fig.axes: ax.set_ylim([0, 0.025]) fig = plot_basis_kernels(em, basis_kernels=[g2, g1], show=False) for ax in fig.axes: ax.set_ylim([0, 0.5]) plt.show()
[ "tick.hawkes.HawkesBasisKernels", "tick.hawkes.SimuHawkes", "matplotlib.pyplot.show", "numpy.linspace", "numpy.cos", "tick.hawkes.HawkesKernelTimeFunc", "tick.plot.plot_hawkes_kernels", "tick.plot.plot_basis_kernels" ]
[((1044, 1068), 'numpy.linspace', 'np.linspace', (['(0)', '(20)', '(1000)'], {}), '(0, 20, 1000)\n', (1055, 1068), True, 'import numpy as np\n'), ((1215, 1276), 'tick.hawkes.SimuHawkes', 'SimuHawkes', ([], {'baseline': '[1e-05, 1e-05]', 'seed': '(1093)', 'verbose': '(False)'}), '(baseline=[1e-05, 1e-05], seed=1093, verbose=False)\n', (1225, 1276), False, 'from tick.hawkes import SimuHawkes, HawkesKernelTimeFunc, HawkesBasisKernels\n'), ((1684, 1831), 'tick.hawkes.HawkesBasisKernels', 'HawkesBasisKernels', (['kernel_support'], {'n_basis': 'n_basis', 'kernel_size': 'kernel_size', 'C': 'C', 'n_threads': '(4)', 'max_iter': 'max_iter', 'verbose': '(False)', 'ode_tol': '(1e-05)'}), '(kernel_support, n_basis=n_basis, kernel_size=kernel_size,\n C=C, n_threads=4, max_iter=max_iter, verbose=False, ode_tol=1e-05)\n', (1702, 1831), False, 'from tick.hawkes import SimuHawkes, HawkesKernelTimeFunc, HawkesBasisKernels\n'), ((1920, 1984), 'tick.plot.plot_hawkes_kernels', 'plot_hawkes_kernels', (['em'], {'hawkes': 'hawkes', 'support': '(19.9)', 'show': '(False)'}), '(em, hawkes=hawkes, support=19.9, show=False)\n', (1939, 1984), False, 'from tick.plot import plot_basis_kernels, plot_hawkes_kernels\n'), ((2040, 2098), 'tick.plot.plot_basis_kernels', 'plot_basis_kernels', (['em'], {'basis_kernels': '[g2, g1]', 'show': '(False)'}), '(em, basis_kernels=[g2, g1], show=False)\n', (2058, 2098), False, 'from tick.plot import plot_basis_kernels, plot_hawkes_kernels\n'), ((2146, 2156), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2154, 2156), True, 'import matplotlib.pyplot as plt\n'), ((1425, 1483), 'tick.hawkes.HawkesKernelTimeFunc', 'HawkesKernelTimeFunc', ([], {'t_values': 't_values', 'y_values': 'y_values'}), '(t_values=t_values, y_values=y_values)\n', (1445, 1483), False, 'from tick.hawkes import SimuHawkes, HawkesKernelTimeFunc, HawkesBasisKernels\n'), ((943, 965), 'numpy.cos', 'np.cos', (['(np.pi * t / 10)'], {}), '(np.pi * t / 10)\n', (949, 965), True, 'import numpy as np\n'), ((996, 1024), 'numpy.cos', 'np.cos', (['(np.pi * (t / 10 + 1))'], {}), '(np.pi * (t / 10 + 1))\n', (1002, 1024), True, 'import numpy as np\n')]
import numpy as np import scipy from scipy import interpolate from scipy.interpolate import interp1d #configure paremeter K = 64 # number of OFDM subcarriers CP = K//4 # length of the cyclic prefix: 25% of the block P = 8 # number of pilot carriers per OFDM block pilotValue = 3+3j # The known value each pilot transmits allCarriers = np.arange(K) # indices of all subcarriers ([0, 1, ... K-1]) paddingCarriers = allCarriers[::K//P] # pad empty for real channel pilotCarriers = allCarriers[::K//P] # Pilots is every (K/P)th carrier. # For convenience of channel estimation, let's make the last carriers also be a pilot pilotCarriers = np.hstack([pilotCarriers, np.array([allCarriers[-1]])]) P = P+1 # data carriers are all remaining carriers dataCarriers = np.delete(allCarriers, pilotCarriers) mu = 4 # bits per symbol (i.e. 16QAM) payloadBits_per_OFDM = len(dataCarriers)*mu # number of payload bits per OFDM symbol mapping_table = { (0,0,0,0) : -3-3j, (0,0,0,1) : -3-1j, (0,0,1,0) : -3+3j, (0,0,1,1) : -3+1j, (0,1,0,0) : -1-3j, (0,1,0,1) : -1-1j, (0,1,1,0) : -1+3j, (0,1,1,1) : -1+1j, (1,0,0,0) : 3-3j, (1,0,0,1) : 3-1j, (1,0,1,0) : 3+3j, (1,0,1,1) : 3+1j, (1,1,0,0) : 1-3j, (1,1,0,1) : 1-1j, (1,1,1,0) : 1+3j, (1,1,1,1) : 1+1j } demapping_table = {v : k for k, v in mapping_table.items()} channelResponse = np.array([1, 0, 0.3+0.3j]) # the impulse response of the wireless channel H_exact = np.fft.fft(channelResponse, K) SNRdb = 25 # signal to noise-ratio in dB at the receiver def SP(bits): return bits.reshape((len(dataCarriers), mu)) def Mapping(bits): return np.array([mapping_table[tuple(b)] for b in bits]) def OFDM_symbol(QAM_payload): symbol = np.zeros(K, dtype=complex) # the overall K subcarriers symbol[pilotCarriers] = pilotValue # allocate the pilot subcarriers symbol[dataCarriers] = QAM_payload # allocate the pilot subcarriers return symbol def RealizeIDFT(OFDM_data): conj_data = np.conjugate(OFDM_data) rev_data = conj_data[::-1] app_data = np.append([0.0+0.j], rev_data) app_data = np.append(app_data, OFDM_data) ifft_data = np.fft.ifft(app_data) return ifft_data.real def IDFT(OFDM_data): return np.fft.ifft(OFDM_data) def addCP(OFDM_time): cp = OFDM_time[-CP:] # take the last CP samples ... return np.hstack([cp, OFDM_time]) # ... and add them to the beginning def channel(signal): convolved = np.convolve(signal, channelResponse) signal_power = np.mean(abs(convolved**2)) sigma2 = signal_power * 10**(-SNRdb/10) # calculate noise power based on signal power and SNR print ("RX Signal power: %.4f. Noise power: %.4f" % (signal_power, sigma2)) # Generate complex noise with given variance noise = np.sqrt(sigma2/2) * (np.random.randn(*convolved.shape)+1j*np.random.randn(*convolved.shape)) return convolved + noise def removeCP(signal): return signal[CP:(CP+2*K+1)] def DFT(OFDM_RX): return np.fft.fft(OFDM_RX) def RealizeDFT(OFDM_RX): fft_data = np.fft.fft(OFDM_RX) app_data = fft_data[K+1:2*K+1] return app_data def channelEstimate(OFDM_demod): pilots = OFDM_demod[pilotCarriers] # extract the pilot values from the RX signal Hest_at_pilots = pilots / pilotValue # divide by the transmitted pilot values # Perform interpolation between the pilot carriers to get an estimate # of the channel in the data carriers. Here, we interpolate absolute value and phase # separately Hest_abs = scipy.interpolate.interp1d(pilotCarriers, abs(Hest_at_pilots), kind='linear')(allCarriers) Hest_phase = scipy.interpolate.interp1d(pilotCarriers, np.angle(Hest_at_pilots), kind='linear')(allCarriers) Hest = Hest_abs * np.exp(1j*Hest_phase) return Hest, Hest_at_pilots def equalize(OFDM_demod, Hest): return OFDM_demod / Hest def get_payload(equalized): return equalized[dataCarriers] def Demapping(QAM): # array of possible constellation points constellation = np.array([x for x in demapping_table.keys()]) # calculate distance of each RX point to each possible point dists = abs(QAM.reshape((-1,1)) - constellation.reshape((1,-1))) # for each element in QAM, choose the index in constellation # that belongs to the nearest constellation point const_index = dists.argmin(axis=1) # get back the real constellation point hardDecision = constellation[const_index] # transform the constellation point into the bit groups return np.vstack([demapping_table[C] for C in hardDecision]), hardDecision def PS(bits): return bits.reshape((-1,)) #Over Sample def OverSample(data, rate = 1/2): #y = data y = np.hstack([data, np.array([0])]) x = np.arange(len(y)) f = interpolate.interp1d(x, y) f2 = interpolate.interp1d(x, y, kind='cubic') xOverSample = np.arange(0, len(y)-1, rate) yOverSample = f(xOverSample) # use interpolation function returned by `interp1d` return yOverSample def Sample(data, rate = 1/2): K = len(data) P = int(K*rate) allIndexs= np.arange(K) sampleIndexs= allIndexs[::K//P] ySample = data[sampleIndexs] xSample = np.arange(len(ySample)) return ySample # bits shoud be length of payloadBits_per_OFDM def ofdm_encode(bits): #bits = np.random.binomial(n=1, p=0.5, size=(payloadBits_per_OFDM, )) bitsLen = len(bits) if(bitsLen >= payloadBits_per_OFDM): fullBits = bits[:payloadBits_per_OFDM] else: bPadding = np.random.binomial(n=1, p=0.5, size=(payloadBits_per_OFDM - bitsLen, )) fullBits = np.hstack([bits, bPadding]) bits_SP = SP(fullBits) QAM = Mapping(bits_SP) OFDM_data = OFDM_symbol(QAM) OFDM_time = RealizeIDFT(OFDM_data) OFDM_withCP = addCP(OFDM_time) OFDM_TX = OverSample(OFDM_withCP) #float to int16 symbol = (np.array(OFDM_TX)*0x3FFF).astype(np.int16) return symbol def ofdm_decode(symbol): #sampling OFDM_RX_Sampled = Sample(symbol) #int16 to float #OFDM_RX = np.array(OFDM_RX_Sampled)/0x3FFF OFDM_RX= OFDM_RX_Sampled OFDM_RX_noCP = removeCP(OFDM_RX) OFDM_demod = RealizeDFT(OFDM_RX_noCP) Hest, Hest_at_pilots = channelEstimate(OFDM_demod) #plt.savefig("channelEstimate.png") equalized_Hest = equalize(OFDM_demod, Hest) QAM_est = get_payload(equalized_Hest) PS_est, hardDecision = Demapping(QAM_est) bits_est = PS(PS_est) return bits_est
[ "numpy.fft.ifft", "numpy.random.binomial", "numpy.random.randn", "numpy.fft.fft", "numpy.angle", "numpy.zeros", "numpy.hstack", "numpy.append", "scipy.interpolate.interp1d", "numpy.array", "numpy.arange", "numpy.exp", "numpy.convolve", "numpy.conjugate", "numpy.delete", "numpy.vstack", "numpy.sqrt" ]
[((338, 350), 'numpy.arange', 'np.arange', (['K'], {}), '(K)\n', (347, 350), True, 'import numpy as np\n'), ((764, 801), 'numpy.delete', 'np.delete', (['allCarriers', 'pilotCarriers'], {}), '(allCarriers, pilotCarriers)\n', (773, 801), True, 'import numpy as np\n'), ((1394, 1422), 'numpy.array', 'np.array', (['[1, 0, 0.3 + 0.3j]'], {}), '([1, 0, 0.3 + 0.3j])\n', (1402, 1422), True, 'import numpy as np\n'), ((1479, 1509), 'numpy.fft.fft', 'np.fft.fft', (['channelResponse', 'K'], {}), '(channelResponse, K)\n', (1489, 1509), True, 'import numpy as np\n'), ((1758, 1784), 'numpy.zeros', 'np.zeros', (['K'], {'dtype': 'complex'}), '(K, dtype=complex)\n', (1766, 1784), True, 'import numpy as np\n'), ((2022, 2045), 'numpy.conjugate', 'np.conjugate', (['OFDM_data'], {}), '(OFDM_data)\n', (2034, 2045), True, 'import numpy as np\n'), ((2092, 2125), 'numpy.append', 'np.append', (['[0.0 + 0.0j]', 'rev_data'], {}), '([0.0 + 0.0j], rev_data)\n', (2101, 2125), True, 'import numpy as np\n'), ((2138, 2168), 'numpy.append', 'np.append', (['app_data', 'OFDM_data'], {}), '(app_data, OFDM_data)\n', (2147, 2168), True, 'import numpy as np\n'), ((2185, 2206), 'numpy.fft.ifft', 'np.fft.ifft', (['app_data'], {}), '(app_data)\n', (2196, 2206), True, 'import numpy as np\n'), ((2266, 2288), 'numpy.fft.ifft', 'np.fft.ifft', (['OFDM_data'], {}), '(OFDM_data)\n', (2277, 2288), True, 'import numpy as np\n'), ((2394, 2420), 'numpy.hstack', 'np.hstack', (['[cp, OFDM_time]'], {}), '([cp, OFDM_time])\n', (2403, 2420), True, 'import numpy as np\n'), ((2496, 2532), 'numpy.convolve', 'np.convolve', (['signal', 'channelResponse'], {}), '(signal, channelResponse)\n', (2507, 2532), True, 'import numpy as np\n'), ((3037, 3056), 'numpy.fft.fft', 'np.fft.fft', (['OFDM_RX'], {}), '(OFDM_RX)\n', (3047, 3056), True, 'import numpy as np\n'), ((3098, 3117), 'numpy.fft.fft', 'np.fft.fft', (['OFDM_RX'], {}), '(OFDM_RX)\n', (3108, 3117), True, 'import numpy as np\n'), ((4817, 4843), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['x', 'y'], {}), '(x, y)\n', (4837, 4843), False, 'from scipy import interpolate\n'), ((4853, 4893), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['x', 'y'], {'kind': '"""cubic"""'}), "(x, y, kind='cubic')\n", (4873, 4893), False, 'from scipy import interpolate\n'), ((5138, 5150), 'numpy.arange', 'np.arange', (['K'], {}), '(K)\n', (5147, 5150), True, 'import numpy as np\n'), ((667, 694), 'numpy.array', 'np.array', (['[allCarriers[-1]]'], {}), '([allCarriers[-1]])\n', (675, 694), True, 'import numpy as np\n'), ((2829, 2848), 'numpy.sqrt', 'np.sqrt', (['(sigma2 / 2)'], {}), '(sigma2 / 2)\n', (2836, 2848), True, 'import numpy as np\n'), ((3797, 3822), 'numpy.exp', 'np.exp', (['(1.0j * Hest_phase)'], {}), '(1.0j * Hest_phase)\n', (3803, 3822), True, 'import numpy as np\n'), ((4566, 4619), 'numpy.vstack', 'np.vstack', (['[demapping_table[C] for C in hardDecision]'], {}), '([demapping_table[C] for C in hardDecision])\n', (4575, 4619), True, 'import numpy as np\n'), ((5565, 5635), 'numpy.random.binomial', 'np.random.binomial', ([], {'n': '(1)', 'p': '(0.5)', 'size': '(payloadBits_per_OFDM - bitsLen,)'}), '(n=1, p=0.5, size=(payloadBits_per_OFDM - bitsLen,))\n', (5583, 5635), True, 'import numpy as np\n'), ((5656, 5683), 'numpy.hstack', 'np.hstack', (['[bits, bPadding]'], {}), '([bits, bPadding])\n', (5665, 5683), True, 'import numpy as np\n'), ((2850, 2883), 'numpy.random.randn', 'np.random.randn', (['*convolved.shape'], {}), '(*convolved.shape)\n', (2865, 2883), True, 'import numpy as np\n'), ((3721, 3745), 'numpy.angle', 'np.angle', (['Hest_at_pilots'], {}), '(Hest_at_pilots)\n', (3729, 3745), True, 'import numpy as np\n'), ((4767, 4780), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (4775, 4780), True, 'import numpy as np\n'), ((2887, 2920), 'numpy.random.randn', 'np.random.randn', (['*convolved.shape'], {}), '(*convolved.shape)\n', (2902, 2920), True, 'import numpy as np\n'), ((5928, 5945), 'numpy.array', 'np.array', (['OFDM_TX'], {}), '(OFDM_TX)\n', (5936, 5945), True, 'import numpy as np\n')]
import functools import pickle import torch import numpy as np def get_labels_stats(labels): labels_set = torch.unique(labels).numpy().tolist() num_labels = len(labels_set) n_sample_per_label = labels.shape[0] // num_labels return num_labels, n_sample_per_label def data_subset(data, labels, n_way, ways=None): # WARNING: ASSUME CONTIGUOUS LABELS IN EQUAL NUMBER num_labels, n_sample_per_label = get_labels_stats(labels) if ways is None: ways = np.random.choice(range(num_labels), n_way, replace=False) subset_data = [] subset_labels = [] for new_l, l in enumerate(ways): start_sample, end_sample = l*n_sample_per_label, (l+1)*n_sample_per_label subset_data.append(data[start_sample : end_sample]) subset_labels.append(torch.LongTensor([new_l]*n_sample_per_label)) subset_data = torch.cat(subset_data, dim=0) subset_labels = torch.cat(subset_labels, dim=0) return subset_data, subset_labels def extract_from_slice(cur_data_slice, select_train, select_test, train_set, test_set): cur_train = cur_data_slice[select_train] cur_test = cur_data_slice[select_test] train_set.append(cur_train) test_set.append(cur_test) def split_train_test(data, labels, n_shot, n_val): num_labels, n_sample_per_label = get_labels_stats(labels) assert n_shot + n_val <= n_sample_per_label train_set, test_set = [], [] train_labels, test_labels = [], [] for l in range(num_labels): select_elems = np.random.choice(range(n_sample_per_label), n_shot + n_val, replace=False) select_train = select_elems[:n_shot] select_test = select_elems[n_shot:] start_sample = l * n_sample_per_label end_sample = start_sample + n_sample_per_label extract_from_slice(data[start_sample:end_sample], select_train, select_test, train_set, test_set) extract_from_slice(labels[start_sample:end_sample], select_train, select_test, train_labels, test_labels) train_set = torch.cat(train_set, dim=0) test_set = torch.cat(test_set, dim=0) train_labels = torch.cat(train_labels, dim=0) test_labels = torch.cat(test_labels, dim=0) return train_set, train_labels, test_set, test_labels def load_pickle(file): with open(file, 'rb') as f: data = pickle.load(f) labels = [np.full(shape=len(data[key]), fill_value=key) for key in data] data = [features for key in data for features in data[key]] dataset = dict() dataset['data'] = torch.FloatTensor(np.stack(data, axis=0)) dataset['labels'] = torch.LongTensor(np.concatenate(labels)) return dataset @functools.lru_cache() def get_dataset_from_datapath(data_path): original_data = [] original_labels = [] paths = data_path.split('&') assert len(paths) == 1 or 'densenet-t' not in data_path, 'Not available for TieredImageNet' for path in paths: if data_path.endswith('.plk') or data_path.endswith('.pkl'): dataset = load_pickle(path) elif data_path.endswith('.pt'): dataset = torch.load(path) else: assert False original_data.append(dataset['data']) cur_num_labels = len(set(dataset['labels'].numpy().tolist())) if len(paths) == 1 or cur_num_labels == 64: delta = 0 elif cur_num_labels == 16: delta += 64 elif cur_num_labels == 20: delta += 16+64 else: raise ValueError original_labels.append(delta+dataset['labels']) original_data = torch.cat(original_data) original_labels = torch.cat(original_labels) return original_data, original_labels def get_train_test_datasets(data_path, n_way, n_shot, n_val): original_data, original_labels = get_dataset_from_datapath(data_path) data, labels = data_subset(original_data, original_labels, n_way) return split_train_test(data, labels, n_shot, n_val) def get_train_test_datasets_labels(data_path, n_way, n_shot, n_val, ways=None): original_data, original_labels = get_dataset_from_datapath(data_path) num_labels, n_sample_per_label = get_labels_stats(original_labels) if ways is None: ways = np.random.choice(range(num_labels), n_way, replace=False) selected_labels = [int(original_labels[i*n_sample_per_label]) for i in ways] data, labels = data_subset(original_data, original_labels, n_way, ways=ways) return split_train_test(data, labels, n_shot, n_val), selected_labels def get_all_pairs_datasets(data_path, n_way, crop, parts=None): assert n_way == 2 original_data, original_labels = get_dataset_from_datapath(data_path) num_labels, n_sample_per_label = get_labels_stats(original_labels) if parts is None: start_i = 0 yield int(num_labels) * int(num_labels-1) // 2 else: start_i = parts yield parts * (num_labels - parts) for i in range(start_i, num_labels): if crop and i == 5: break end_j = parts if parts is not None else i for j in range(0, end_j): ways = np.array([i, j]) label_a = int(original_labels[i*n_sample_per_label]) label_b = int(original_labels[j*n_sample_per_label]) data, labels = data_subset(original_data, original_labels, n_way, ways) yield data, labels, label_a, label_b, 0, 1
[ "numpy.stack", "torch.unique", "torch.LongTensor", "torch.load", "torch.cat", "pickle.load", "numpy.array", "functools.lru_cache", "numpy.concatenate" ]
[((2656, 2677), 'functools.lru_cache', 'functools.lru_cache', ([], {}), '()\n', (2675, 2677), False, 'import functools\n'), ((858, 887), 'torch.cat', 'torch.cat', (['subset_data'], {'dim': '(0)'}), '(subset_data, dim=0)\n', (867, 887), False, 'import torch\n'), ((908, 939), 'torch.cat', 'torch.cat', (['subset_labels'], {'dim': '(0)'}), '(subset_labels, dim=0)\n', (917, 939), False, 'import torch\n'), ((2008, 2035), 'torch.cat', 'torch.cat', (['train_set'], {'dim': '(0)'}), '(train_set, dim=0)\n', (2017, 2035), False, 'import torch\n'), ((2051, 2077), 'torch.cat', 'torch.cat', (['test_set'], {'dim': '(0)'}), '(test_set, dim=0)\n', (2060, 2077), False, 'import torch\n'), ((2097, 2127), 'torch.cat', 'torch.cat', (['train_labels'], {'dim': '(0)'}), '(train_labels, dim=0)\n', (2106, 2127), False, 'import torch\n'), ((2146, 2175), 'torch.cat', 'torch.cat', (['test_labels'], {'dim': '(0)'}), '(test_labels, dim=0)\n', (2155, 2175), False, 'import torch\n'), ((3577, 3601), 'torch.cat', 'torch.cat', (['original_data'], {}), '(original_data)\n', (3586, 3601), False, 'import torch\n'), ((3624, 3650), 'torch.cat', 'torch.cat', (['original_labels'], {}), '(original_labels)\n', (3633, 3650), False, 'import torch\n'), ((2305, 2319), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2316, 2319), False, 'import pickle\n'), ((794, 840), 'torch.LongTensor', 'torch.LongTensor', (['([new_l] * n_sample_per_label)'], {}), '([new_l] * n_sample_per_label)\n', (810, 840), False, 'import torch\n'), ((2538, 2560), 'numpy.stack', 'np.stack', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (2546, 2560), True, 'import numpy as np\n'), ((2607, 2629), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (2621, 2629), True, 'import numpy as np\n'), ((5109, 5125), 'numpy.array', 'np.array', (['[i, j]'], {}), '([i, j])\n', (5117, 5125), True, 'import numpy as np\n'), ((3091, 3107), 'torch.load', 'torch.load', (['path'], {}), '(path)\n', (3101, 3107), False, 'import torch\n'), ((112, 132), 'torch.unique', 'torch.unique', (['labels'], {}), '(labels)\n', (124, 132), False, 'import torch\n')]
"""Image 3D to vector / scalar conv net""" import numpy as np from micro_dl.networks.base_image_to_vector_net import BaseImageToVectorNet class Image3DToVectorNet(BaseImageToVectorNet): """Uses 3D images as input""" def __init__(self, network_config, predict=False): """Init :param dict network_config: dict with all network associated parameters """ super().__init__(network_config, predict) if not predict and self.config['num_dims'] == 3 and \ 'num_initial_filters' in self.config: depth = self.config['depth'] assert(np.mod(np.log2(network_config['depth']), 1) <= 0), \ 'Input image dimensions has to be in powers of 2 as the' \ 'receptive field is the entire image' assert network_config['width'] == network_config['depth'], \ 'Expecting an isotropic shape' @property def _get_input_shape(self): """Return shape of input""" if self.config['data_format'] == 'channels_first': shape = (self.config['num_input_channels'], self.config['depth'], self.config['height'], self.config['width']) else: shape = (self.config['depth'], self.config['height'], self.config['width'], self.config['num_input_channels']) return shape
[ "numpy.log2" ]
[((622, 654), 'numpy.log2', 'np.log2', (["network_config['depth']"], {}), "(network_config['depth'])\n", (629, 654), True, 'import numpy as np\n')]
"""Defines the class for OVR (one-versus-rest) classification.""" import functools import numpy as np from .predictors import Classifier class OVRClassifier(Classifier): """Multiclass classification by solving a binary problem for each class. "OVR" stands for "one-versus-rest", meaning that for each class label, the binary classification problem of whether or not data belongs to that label is solved. The label with the highest estimated probability of being the true label is the one predicted for each sample. """ # List of Classifier estimators corresponding to each class label. # For a particular class, the corresponding estimator estimates the # probability that an input belongs to that class. _estimators = None def __init__(self, base: type, *args, **kwargs): """Initialize an OVR classifier by specifying how to create the underlying binary classifier. Parameters ---------- base : type A subclass of Classifier. Used to create binary classifiers for each class label. args : sequence, optional Positional arguments for the binary classifier constructor. kwargs : dict, optional Keyword arguments for the binary classifier constructor. """ if not issubclass(base, Classifier): raise TypeError( "Parameter 'base' must be a classifier type.") self.base = functools.partial(base, *args, **kwargs) def fit(self, x, y, *args, **kwargs): """Fit the OVR classifier. Parameters ---------- x : array-like Explanatory variable. y : array-like Categorical response variable vector. args : sequence, optional Positional arguments to pass to the underlying binary classifier's fit() method. kwargs : dict, optional Keyword arguments to pass to the underlying binary classifier's fit() method. Returns ------- This OVRClassifier instance. """ y = self._preprocess_classes(y, max_classes=None) self._estimators = [] for i in range(len(self.classes)): clf = self.base() clf.fit(x, (y == i), *args, **kwargs) self._estimators.append(clf) return self def predict_prob(self, x, *args, **kwargs): """Predict probability of each class for each input. These probabilities themselves are useless, because they are always 0 or 1. Parameters ---------- x : array-like Explanatory variable. args : sequence, optional Positional arguments to pass to each class label estimator's `predict_prob` method. kwargs : dict, optional Keyword arguments to pass to each class label estimator's `predict_prob` method. """ q = self.predict(x, *args, **kwargs) p = np.zeros((len(x), len(self.classes))) for i in range(len(x)): j = np.where(self.classes == q[i])[0] p[i, j] = 1 return p def predict(self, x, *args, **kwargs): """Classify input samples according to their probability estimates. Parameters ---------- x : array-like Explanatory variable. args : sequence, optional Positional arguments to pass to each class label estimator's `predict_prob` method. kwargs : dict, optional Keyword arguments to pass to each class label estimator's `predict_prob` method. Returns ------- Vector of predicted class labels. """ p = [c.predict_prob(x, *args, **kwargs)[:, 1] for c in self._estimators] return self.classes[np.argmax(p, axis=0)]
[ "functools.partial", "numpy.where", "numpy.argmax" ]
[((1477, 1517), 'functools.partial', 'functools.partial', (['base', '*args'], {}), '(base, *args, **kwargs)\n', (1494, 1517), False, 'import functools\n'), ((3890, 3910), 'numpy.argmax', 'np.argmax', (['p'], {'axis': '(0)'}), '(p, axis=0)\n', (3899, 3910), True, 'import numpy as np\n'), ((3126, 3156), 'numpy.where', 'np.where', (['(self.classes == q[i])'], {}), '(self.classes == q[i])\n', (3134, 3156), True, 'import numpy as np\n')]
"""Tools helping with the TIMIT dataset. Based on the version from: https://www.kaggle.com/mfekadu/darpa-timit-acousticphonetic-continuous-speech """ import re from os.path import join, splitext, dirname from pathlib import Path import numpy as np import pandas as pd import soundfile as sf from audio_loader.ground_truth.challenge import Challenge PHON = ['b', 'd', 'g', 'p', 't', 'k', 'dx', 'q', # Stops 'bcl', 'dcl', 'gcl', 'kcl', 'pcl', 'tcl', # Closure 'jh', 'ch', # Affricates 's', 'sh', 'z', 'zh', 'f', 'th', 'v', 'dh', # Fricatives 'm', 'n', 'ng', 'em', 'en', 'eng', 'nx', # Nasals 'l', 'r', 'w', 'y', 'hh', 'hv', 'el', # Semivowels and Glides 'iy', 'ih', 'eh', 'ey', 'ae', 'aa', 'aw', 'ay', # Vowels 'ah', 'ao', 'oy', 'ow', 'uh', 'uw', 'ux', 'er', 'ax', 'ix', 'axr', 'ax-h', 'pau', 'h#', 'epi' # Non-speech event ] SILENCES = ['pau', 'epi', 'h#'] CLOSURES = ['bcl', 'vcl', 'dcl', 'gcl', 'kcl', 'pcl', 'tcl'] DF_PHON = pd.read_csv(join(dirname(__file__), 'timit_map.csv'), names=["original", "phon_class1", "phon_class2", "phon_class3"]) class TimitGroundTruth(Challenge): """Ground truth getter for TIMIT like datasets.""" def __init__(self, timit_like_root_folderpath, datapath="data", gtpath="data", gt_grouped_file=None, with_silences=True, phon_class="original", fuse_closures=True, return_original_gt=False): """Compatible with the TIMIT DARPA dataset available on kaggle. To use the TIMIT DARPA dataset leave the default arguments as is. """ super().__init__(timit_like_root_folderpath, datapath, gtpath) self.with_silences = with_silences self.phon_class = phon_class self.fuse_closures = fuse_closures self.return_original_gt = return_original_gt if gt_grouped_file is None: df_train = pd.read_csv(join(self.root_folderpath, "train_data.csv")) df_train = df_train[pd.notnull(df_train['path_from_data_dir'])] df_test = pd.read_csv(join(self.root_folderpath, "test_data.csv")) df_test = df_test[pd.notnull(df_test['path_from_data_dir'])] self.df_all = df_train.append(df_test, ignore_index=True) else: self.df_all = pd.read_csv(join(self.root_folderpath, gt_grouped_file)) self.df_all = self.df_all[pd.notnull(self.df_all['path_from_data_dir'])] # create the is_audio column if not present if "is_audio" not in self.df_all.keys(): self.df_all["is_audio"] = self.df_all["path_from_data_dir"].str.match( ".*.wav", flags=re.IGNORECASE ) if "is_converted_audio" in self.df_all.keys(): self.df_all = self.df_all[np.logical_and(self.df_all["is_audio"], self.df_all["is_converted_audio"])] else: self.df_all = self.df_all[self.df_all["is_audio"]] if self.phon_class == "original": self.phon2index = {phon:index for index, phon in enumerate(PHON)} self.index2phn = PHON self.silences = SILENCES else: self.index2phn = DF_PHON[self.phon_class].unique() # put silence at last self.index2phn = np.append(np.delete(self.index2phn, np.where(self.index2phn == "sil")), "sil") tmp_phon2index = {phon:index for index, phon in enumerate(self.index2phn)} # from original label to desired label self.phon2index = {phon:tmp_phon2index[DF_PHON.loc[DF_PHON["original"] == phon][self.phon_class].values[0]] for phon in DF_PHON["original"].unique()} self.silences = ["sil"] self.index2speaker_id = pd.unique(self.df_all["speaker_id"]) self.speaker_id2index = {speaker_id:index for index, speaker_id in enumerate(self.index2speaker_id)} self.dict_gt = get_dict_gt(join(self.root_folderpath, self.gtpath), self.df_all) self.set_gt_format() @property def number_of_speakers(self): """Return the number of speakers in the Timit challenge.""" return len(self.index2speaker_id) @property def training_set(self): """Return array of filepaths from training test.""" return self.df_all[self.df_all["test_or_train"] == "TRAIN"]["path_from_data_dir"].values @property def testing_set(self): """Return array of filepaths from testing test.""" return self.df_all[self.df_all["test_or_train"] == "TEST"]["path_from_data_dir"].values @property def gt_size(self): """Return the size of the ground_truth.""" size = 0 if self.phonetic: size += self.phon_size if self.word: raise Exception("Word not yet implemented.") if self.speaker_id: size += 1 return size @property def phon_size(self): if self.with_silences: return len(self.index2phn) return len(self.index2phn) - len(self.silences) @property def speaker_id_size(self): return 1 def get_phonem_from(self, index): """Return the phoneme corresponding to the given index.""" return self.index2phn[index] def get_index_from(self, phn): """Return the index corresponding to the given phoneme.""" return self.phon2index[phn] def set_gt_format(self, phonetic=True, word=False, speaker_id=False): """Select the ground truth to show""" self.phonetic = phonetic self.word = word self.speaker_id = speaker_id def get_samples_time_in(self, filepath): """Return a list of tuples corresponding to the start and end times of each sample. Parameters: ----------- filepath: str Filepath of the audio file we want to get the ground truth times. """ audio_id = self.get_id(filepath) df_file, speaker_id = self.dict_gt[audio_id] res_list = [] for row in df_file.iterrows(): res_list.append((row[1][0], row[1][1])) return res_list def get_gt_for(self, filepath): """Get tuples corresponding to the start, end times of each sample and the ground truth expected. Parameters: ----------- filepath: str Filepath of the audio file we want to get the ground truth. """ audio_id = self.get_id(filepath) df_file, speaker_id = self.dict_gt[audio_id] ys = np.zeros((len(df_file.index), self.gt_size)) res_list = [] i = 0 if self.fuse_closures: previous_label = None previous_sample_begin = None for row in df_file.iterrows(): sample_begin, sample_end = row[1][0], row[1][1] self._fill_output(audio_id, sample_begin, sample_end, ys[i]) # other way to get gt label gt_label = row[1][2] if gt_label in CLOSURES: previous_label = gt_label previous_sample_begin = sample_begin else: if previous_label is not None and previous_label[0] == gt_label: sample_begin = previous_sample_begin if self.with_silences or np.sum(ys[i]) > 0: if self.return_original_gt: res_list.append((sample_begin, sample_end, (ys[i], gt_label))) else: res_list.append((sample_begin, sample_end, ys[i])) previous_label = None previous_sample_begin = None i += 1 else: for row in df_file.iterrows(): sample_begin, sample_end = row[1][0], row[1][1] self._fill_output(audio_id, sample_begin, sample_end, ys[i]) if self.with_silences or np.sum(ys[i]) > 0: res_list.append((sample_begin, sample_end, ys[i])) i += 1 return res_list def _fill_output(self, id_audio, sample_begin, sample_end, output): """Tool to fill an output array. Parameters ---------- id_audio: str id of the audio file sample_begin: integer > 0 sample_end: integer > 0 output: np.array Array to fill with ground truth (supposed zeros). """ if self.phonetic: self._fill_phon_output(id_audio, sample_begin, sample_end, output[:self.phon_size]) if self.word: raise Exception("Word not yet implemented.") if self.speaker_id: output[-self.speaker_id_size] = self._get_speaker_id(id_audio) def get_majority_gt_at_sample(self, filepath, sample_begin, sample_end): """Return an integer that represent the majority class for a specific sample.""" output = [] if self.phonetic: output += self._phon_majority(self.get_id(filepath), sample_begin, sample_end) if self.word: raise Exception("Word not yet implemented.") if self.speaker_id: output += self._get_speaker_id(self.get_id(filepath)) return output def get_output_description(self): """Return a list that describe the output.""" output = [] if self.phonetic: output += PHON if self.word: raise Exception("Word not yet implemented.") if self.speaker_id: output += "Speaker Id" return output def _phon_majority(self, id_audio, sample_begin, sample_end): df_file, speaker_id = self.dict_gt[id_audio] df_corresponding_time = df_file[np.logical_and(df_file["start_time"] < sample_end, df_file["end_time"] >= sample_begin)] if len(df_corresponding_time) > 1: raise Exception("phon majority does not handle multiple labels") return df_corresponding_time["phn"].values def _fill_phon_output(self, id_audio, sample_begin, sample_end, output): """Tool to fill an output array. Parameters ---------- id_audio: str Id of the audio file. sample_begin: integer > 0 sample_end: integer > 0 output: np.array Array to modify/fill with ground truth. """ df_file, speaker_id = self.dict_gt[id_audio] df_corresponding_time = df_file[np.logical_and(df_file["start_time"] <= sample_end, df_file["end_time"] >= sample_begin)] total_samples = sample_end - sample_begin for row in df_corresponding_time.iterrows(): start_frame = max(row[1][0], sample_begin) end_frame = min(row[1][1], sample_end) if self.with_silences or self.phon2index[row[1][2]] < len(output): output[self.phon2index[row[1][2]]] += (end_frame - start_frame) / total_samples def _get_speaker_id(self, id_audio): """Tool to fill an output array. Parameters ---------- id_audio: str Id of the audio file. output: np.array Array to modify/fill with ground truth. """ _, speaker_id = self.dict_gt[id_audio] return self.speaker_id2index[speaker_id] def get_dict_gt(gt_folderpath, df_data): """Get dataframe corresponding to the gt.""" if gt_folderpath[-1] != "/": gt_folderpath += "/" dic = {} for filename in Path(gt_folderpath).glob('**/*.PHN'): id_fn = splitext(str(filename).replace(gt_folderpath, ""))[0] speaker_id = df_data[df_data["path_from_data_dir"].str.contains(id_fn, regex=False)]["speaker_id"].iloc[0] df_file = pd.read_csv(filename, names=["start_time", "end_time", "phn"], delimiter=" ") dic[id_fn] = df_file, speaker_id return dic
[ "numpy.sum", "numpy.logical_and", "pandas.read_csv", "os.path.dirname", "pandas.unique", "pandas.notnull", "pathlib.Path", "numpy.where", "os.path.join" ]
[((1131, 1148), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (1138, 1148), False, 'from os.path import join, splitext, dirname\n'), ((3867, 3903), 'pandas.unique', 'pd.unique', (["self.df_all['speaker_id']"], {}), "(self.df_all['speaker_id'])\n", (3876, 3903), True, 'import pandas as pd\n'), ((12022, 12099), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'names': "['start_time', 'end_time', 'phn']", 'delimiter': '""" """'}), "(filename, names=['start_time', 'end_time', 'phn'], delimiter=' ')\n", (12033, 12099), True, 'import pandas as pd\n'), ((4049, 4088), 'os.path.join', 'join', (['self.root_folderpath', 'self.gtpath'], {}), '(self.root_folderpath, self.gtpath)\n', (4053, 4088), False, 'from os.path import join, splitext, dirname\n'), ((9920, 10011), 'numpy.logical_and', 'np.logical_and', (["(df_file['start_time'] < sample_end)", "(df_file['end_time'] >= sample_begin)"], {}), "(df_file['start_time'] < sample_end, df_file['end_time'] >=\n sample_begin)\n", (9934, 10011), True, 'import numpy as np\n'), ((10701, 10793), 'numpy.logical_and', 'np.logical_and', (["(df_file['start_time'] <= sample_end)", "(df_file['end_time'] >= sample_begin)"], {}), "(df_file['start_time'] <= sample_end, df_file['end_time'] >=\n sample_begin)\n", (10715, 10793), True, 'import numpy as np\n'), ((11781, 11800), 'pathlib.Path', 'Path', (['gt_folderpath'], {}), '(gt_folderpath)\n', (11785, 11800), False, 'from pathlib import Path\n'), ((1999, 2043), 'os.path.join', 'join', (['self.root_folderpath', '"""train_data.csv"""'], {}), "(self.root_folderpath, 'train_data.csv')\n", (2003, 2043), False, 'from os.path import join, splitext, dirname\n'), ((2077, 2119), 'pandas.notnull', 'pd.notnull', (["df_train['path_from_data_dir']"], {}), "(df_train['path_from_data_dir'])\n", (2087, 2119), True, 'import pandas as pd\n'), ((2155, 2198), 'os.path.join', 'join', (['self.root_folderpath', '"""test_data.csv"""'], {}), "(self.root_folderpath, 'test_data.csv')\n", (2159, 2198), False, 'from os.path import join, splitext, dirname\n'), ((2230, 2271), 'pandas.notnull', 'pd.notnull', (["df_test['path_from_data_dir']"], {}), "(df_test['path_from_data_dir'])\n", (2240, 2271), True, 'import pandas as pd\n'), ((2395, 2438), 'os.path.join', 'join', (['self.root_folderpath', 'gt_grouped_file'], {}), '(self.root_folderpath, gt_grouped_file)\n', (2399, 2438), False, 'from os.path import join, splitext, dirname\n'), ((2478, 2523), 'pandas.notnull', 'pd.notnull', (["self.df_all['path_from_data_dir']"], {}), "(self.df_all['path_from_data_dir'])\n", (2488, 2523), True, 'import pandas as pd\n'), ((2880, 2954), 'numpy.logical_and', 'np.logical_and', (["self.df_all['is_audio']", "self.df_all['is_converted_audio']"], {}), "(self.df_all['is_audio'], self.df_all['is_converted_audio'])\n", (2894, 2954), True, 'import numpy as np\n'), ((3454, 3487), 'numpy.where', 'np.where', (["(self.index2phn == 'sil')"], {}), "(self.index2phn == 'sil')\n", (3462, 3487), True, 'import numpy as np\n'), ((8102, 8115), 'numpy.sum', 'np.sum', (['ys[i]'], {}), '(ys[i])\n', (8108, 8115), True, 'import numpy as np\n'), ((7475, 7488), 'numpy.sum', 'np.sum', (['ys[i]'], {}), '(ys[i])\n', (7481, 7488), True, 'import numpy as np\n')]
import os from collections import defaultdict import sqlite3 import numpy as np import pandas as pd import lsst.afw.table as afw_table import lsst.daf.persistence as dp import lsst.geom import desc.sims_ci_pipe as scp def make_SourceCatalog(df): bands = 'ugrizy' schema = afw_table.SourceTable.makeMinimalSchema() for band in bands: schema.addField(f'flux_{band}', type=float, doc=f'{band} flux in nJy') src_cat = afw_table.SourceCatalog(schema) for iloc in range(len(df)): row = df.iloc[iloc] new_rec = src_cat.addNew() new_rec.set('id', int(row['id'])) new_rec.set('coord_ra', lsst.geom.Angle(row.ra, lsst.geom.degrees)) new_rec.set('coord_dec', lsst.geom.Angle(row.dec, lsst.geom.degrees)) for band in bands: colname = f'flux_{band}' new_rec.set(colname, row[colname]) return src_cat def get_point_sources(butler, visit, flux_type='base_PsfFlux'): datarefs = butler.subset('src', visit=visit) dfs = [] for dataref in list(datarefs): print(dataref.dataId) src = scp.get_point_sources(dataref.get('src')) calexp = dataref.get('calexp') calib = calexp.getPhotoCalib() flux, fluxerr = calib.instFluxToNanojansky(src, flux_type).transpose() dfs.append(pd.DataFrame(data=dict(ra=np.degrees(src.get('coord_ra')), dec=np.degrees(src.get('coord_dec')), flux=flux, fluxerr=fluxerr))) return pd.concat(dfs) def match_meas_fluxes(butler, visit, star_truth_summary_file, flux_type='base_PsfFlux', max_offset=0.1): flux_col = f'{flux_type}_instFlux' conn = sqlite3.connect(star_truth_summary_file) radius = lsst.geom.Angle(max_offset, lsst.geom.arcseconds) dfs = [] datarefs = butler.subset('src', visit=visit) for i, dataref in enumerate(list(datarefs)): print(i) calib = dataref.get('calexp').getPhotoCalib() src = scp.get_point_sources(dataref.get('src')) ras = np.degrees(src.get('coord_ra')) decs = np.degrees(src.get('coord_dec')) ra_min, ra_max = min(ras), max(ras) dec_min, dec_max = min(decs), max(decs) query = f'''select * from truth_summary where {ra_min} <= ra and ra <= {ra_max} and {dec_min} <= dec and dec <= {dec_max}''' truth_df = pd.read_sql(query, conn) truth_cat = make_SourceCatalog(truth_df) matches = afw_table.matchRaDec(truth_cat, src, radius) num_matches = len(matches) ids = np.zeros(num_matches, dtype=np.int) offsets = np.zeros(num_matches, dtype=np.float) true_fluxes = np.zeros(num_matches, dtype=np.float) meas_fluxes = np.zeros(num_matches, dtype=np.float) meas_fluxerrs = np.zeros(num_matches, dtype=np.float) for i, match in enumerate(matches): ids[i] = match.first['id'] offsets[i] = np.degrees(match.distance)*3600*1000. true_fluxes[i] = match.first[f'flux_{band}'] meas_fluxes[i] = calib.instFluxToNanojansky(match.second[flux_col]) meas_fluxerrs[i] \ = calib.instFluxToNanojansky(match.second[flux_col + 'Err']) dfs.append(pd.DataFrame(data=dict(id=ids, offset=offsets, true_flux=true_fluxes, meas_flux=meas_fluxes, meas_fluxerr=meas_fluxerrs))) df = pd.concat(dfs) return df def compute_delta_fluxes(stars_db_file, ids, mjd): import desc.sims_truthcatalog as stc lc_factory = stc.StellarLightCurveFactory(stars_db_file) mjds = [mjd] delta_fluxes = defaultdict(dict) for obj_id in ids: dm, m0 = lc_factory.create(obj_id, mjds) for band in dm: delta_fluxes[obj_id][band] \ = (10.**((8.9 - (m0[band] + dm[band]))/2.5) - 10.**((8.9 - m0[band])/2.5))*1e9 return delta_fluxes if __name__ == '__main__': star_truth_summary_file = '/global/cscratch1/sd/descim/star_truth/star_truth_summary.db' repo = 'repo_lensed_sne' butler = dp.Butler(repo) visit = 906935 band = 'i' outfile = f'src_truth_match_v{visit}-{band}.pkl' if not os.path.isfile(outfile): df = match_meas_fluxes(butler, visit, star_truth_summary_file) df.to_pickle(outfile) else: df = pd.read_pickle(outfile)
[ "lsst.afw.table.matchRaDec", "lsst.daf.persistence.Butler", "numpy.degrees", "desc.sims_truthcatalog.StellarLightCurveFactory", "lsst.afw.table.SourceTable.makeMinimalSchema", "numpy.zeros", "collections.defaultdict", "os.path.isfile", "sqlite3.connect", "pandas.read_sql", "pandas.read_pickle", "lsst.afw.table.SourceCatalog", "pandas.concat" ]
[((282, 323), 'lsst.afw.table.SourceTable.makeMinimalSchema', 'afw_table.SourceTable.makeMinimalSchema', ([], {}), '()\n', (321, 323), True, 'import lsst.afw.table as afw_table\n'), ((440, 471), 'lsst.afw.table.SourceCatalog', 'afw_table.SourceCatalog', (['schema'], {}), '(schema)\n', (463, 471), True, 'import lsst.afw.table as afw_table\n'), ((1541, 1555), 'pandas.concat', 'pd.concat', (['dfs'], {}), '(dfs)\n', (1550, 1555), True, 'import pandas as pd\n'), ((1735, 1775), 'sqlite3.connect', 'sqlite3.connect', (['star_truth_summary_file'], {}), '(star_truth_summary_file)\n', (1750, 1775), False, 'import sqlite3\n'), ((3587, 3601), 'pandas.concat', 'pd.concat', (['dfs'], {}), '(dfs)\n', (3596, 3601), True, 'import pandas as pd\n'), ((3727, 3770), 'desc.sims_truthcatalog.StellarLightCurveFactory', 'stc.StellarLightCurveFactory', (['stars_db_file'], {}), '(stars_db_file)\n', (3755, 3770), True, 'import desc.sims_truthcatalog as stc\n'), ((3807, 3824), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (3818, 3824), False, 'from collections import defaultdict\n'), ((4265, 4280), 'lsst.daf.persistence.Butler', 'dp.Butler', (['repo'], {}), '(repo)\n', (4274, 4280), True, 'import lsst.daf.persistence as dp\n'), ((2455, 2479), 'pandas.read_sql', 'pd.read_sql', (['query', 'conn'], {}), '(query, conn)\n', (2466, 2479), True, 'import pandas as pd\n'), ((2548, 2592), 'lsst.afw.table.matchRaDec', 'afw_table.matchRaDec', (['truth_cat', 'src', 'radius'], {}), '(truth_cat, src, radius)\n', (2568, 2592), True, 'import lsst.afw.table as afw_table\n'), ((2643, 2678), 'numpy.zeros', 'np.zeros', (['num_matches'], {'dtype': 'np.int'}), '(num_matches, dtype=np.int)\n', (2651, 2678), True, 'import numpy as np\n'), ((2697, 2734), 'numpy.zeros', 'np.zeros', (['num_matches'], {'dtype': 'np.float'}), '(num_matches, dtype=np.float)\n', (2705, 2734), True, 'import numpy as np\n'), ((2757, 2794), 'numpy.zeros', 'np.zeros', (['num_matches'], {'dtype': 'np.float'}), '(num_matches, dtype=np.float)\n', (2765, 2794), True, 'import numpy as np\n'), ((2817, 2854), 'numpy.zeros', 'np.zeros', (['num_matches'], {'dtype': 'np.float'}), '(num_matches, dtype=np.float)\n', (2825, 2854), True, 'import numpy as np\n'), ((2879, 2916), 'numpy.zeros', 'np.zeros', (['num_matches'], {'dtype': 'np.float'}), '(num_matches, dtype=np.float)\n', (2887, 2916), True, 'import numpy as np\n'), ((4381, 4404), 'os.path.isfile', 'os.path.isfile', (['outfile'], {}), '(outfile)\n', (4395, 4404), False, 'import os\n'), ((4530, 4553), 'pandas.read_pickle', 'pd.read_pickle', (['outfile'], {}), '(outfile)\n', (4544, 4553), True, 'import pandas as pd\n'), ((3026, 3052), 'numpy.degrees', 'np.degrees', (['match.distance'], {}), '(match.distance)\n', (3036, 3052), True, 'import numpy as np\n')]
import math import copy import cv2 import numpy as np from .connected_component import ConnectedComponentData from typing import List __sw_median_max_ratio = 2 __height_max_ratio = 1.5 __max_chain_height = 150 __max_distance_multiplier = 3 __min_chain_size = 3 __max_average_gray_diff = 3 __gray_variance_coefficient = 1.25 __max_char_width_to_heigh_ratio = 1 # Produce the final set of letter chains and get their bounding boxes def run(cc_data_filtered: List[ConnectedComponentData]): chains = populate_pairs(cc_data_filtered) # Get rid of chains if component height ratio > 2 chains = remove_if_pair_area_too_different(chains) chains = remove_if_heights_too_different(chains) chains = remove_if_grays_dissimilar(chains) chains = remove_if_stroke_widths_too_different(chains) # This is Daniel's idea, any it only works well for some images # chains = filter_by_chain_gray_variance(chains) if len(chains) > 0: __max_chain_height = max([chain.get_height() for chain in chains]) chains = lengthen_chains(chains) chains = remove_short_chains(chains) chains = filter_chains_by_height(chains) chains = filter_height_to_width_ratio(chains) # chains = filter_by_expected_width_given_height_and_num_components(chains) return chains # Check each pair of connected components and produce a tuple of sufficicently close letter candidates def populate_pairs(cc_data_filtered: List[ConnectedComponentData]): # Only need to check each pair of elements once chains = [] for i in range(len(cc_data_filtered)): for j in range(i + 1, len(cc_data_filtered)): # If the two components are close enough together, add them together in a chain if is_within_relative_distance(cc_data_filtered[i], cc_data_filtered[j]): chains.append(build_chain(cc_data_filtered[i], cc_data_filtered[j])) return chains def is_within_relative_distance(cc_1: ConnectedComponentData, cc_2: ConnectedComponentData): # Ensure one letter candidate is not floating above the other if cc_1.row_min >= cc_2.row_max or cc_2.row_min >= cc_1.row_max: return False # Computing distance from bottom_corner right corner to bottom_corner left because this should not change much # Euclidean distance dist = math.sqrt((cc_2.row_max - cc_1.row_max) ** 2 + (cc_2.col_min - cc_1.col_max) ** 2) largest_width = max(cc_1.col_max - cc_1.col_min, cc_2.col_max - cc_2.col_min) return dist <= largest_width * __max_distance_multiplier class Chain: def __init__(self): self.chain = [] self.row_min = -1 self.row_max = -1 self.col_min = -1 self.col_max = -1 # Returns the coordinates for the bounding box: [top-left, top-right, bottom-right, bottom-left] def get_bounding_box(self): return [ [self.row_min, self.col_min], # Top-left [self.row_min, self.col_max], # Top-right [self.row_max, self.col_max], # Bottom-right [self.row_max, self.col_min] # Bottom-left ] def get_height(self): return self.row_max - self.row_min def get_width(self): return self.col_max - self.col_min # python does not allow multiple constructors.... def build_chain(cc_1: ConnectedComponentData, cc_2: ConnectedComponentData): chain = Chain() chain.row_min = min(cc_1.row_min, cc_2.row_min) chain.row_max = max(cc_1.row_max, cc_2.row_max) chain.col_min = min(cc_1.col_min, cc_2.col_min) chain.col_max = max(cc_1.col_max, cc_2.col_max) chain.chain = [cc_1, cc_2] return chain def build_chain_from_merge(row_min: int, row_max: int, col_min: int, col_max: int, ccs: List[ConnectedComponentData]): chain = Chain() chain.row_min = row_min chain.row_max = row_max chain.col_min = col_min chain.col_max = col_max chain.chain = ccs return chain def merge_chains(c1: Chain, c2: Chain): c1.row_min = min(c1.row_min, c2.row_min) c1.row_max = max(c1.row_max, c2.row_max) c1.col_min = min(c1.col_min, c2.col_min) c1.col_max = max(c1.col_max, c2.col_max) c1.chain = list(set().union(c1.chain, c2.chain)) return c1 def remove_if_heights_too_different(chains: List[Chain]): filtered_chains = [] for chain in chains: cc_0 = chain.chain[0] cc_1 = chain.chain[1] height_0 = cc_0.row_max - cc_0.row_min height_1 = cc_1.row_max - cc_1.row_min # heights are non-zero from the component filtering step if height_0 / height_1 <= __height_max_ratio or height_1 / height_0 <= __height_max_ratio: filtered_chains.append(chain) return filtered_chains def remove_if_stroke_widths_too_different(chains: List[Chain]): filtered_chains = [] for chain in chains: sw_median_0 = chain.chain[0].get_median_stroke_width() sw_median_1 = chain.chain[1].get_median_stroke_width() # see paper for reason for this magic number if sw_median_0 / sw_median_1 <= __sw_median_max_ratio or sw_median_1 / sw_median_0 <= __sw_median_max_ratio: filtered_chains.append(chain) return filtered_chains def filter_height_to_width_ratio(chains: List[Chain]): filtered_chains = [] for chain in chains: if chain.get_height()/chain.get_width() <= 0.66: filtered_chains.append(chain) return filtered_chains def remove_if_pair_area_too_different(chains: List[Chain]): filtered_chains = [] for chain in chains: cc_1 = chain.chain[0] cc_2 = chain.chain[1] if cc_1.area / cc_2.area <= 5 or cc_2.area / cc_1.area <= 5: filtered_chains.append(chain) return filtered_chains def remove_if_grays_dissimilar(chains: List[Chain]): filtered_chains = [] for chain in chains: avg_gray_0 = chain.chain[0].get_mean_gray() avg_gray_1 = chain.chain[1].get_mean_gray() if abs(avg_gray_1 - avg_gray_0) < __max_average_gray_diff: filtered_chains.append(chain) return filtered_chains # return true if they share a connected component, false otherwise def contain_new_chain_link(chain_1: Chain, chain_2: Chain): # if their bounding boxes do not over lap, then they cannot contain the same element. if too slow, implement # cycle through all cc elements to see if they contain the same cc if chain_1 is chain_2: return False for cc_1 in chain_1.chain: for cc_2 in chain_2.chain: if cc_1 is cc_2: return True return False # TODO: build a doubly linked list implementation to reduce time complexity to n^2 def lengthen_chains(chains: List[Chain]): chains_copy = list.copy(chains) lengthened_chains = [] i = 0 while i < len(chains_copy): altered = False lengthened_chain = chains_copy[i] j = i + 1 while j < len(chains_copy): if contain_new_chain_link(chains_copy[i], chains_copy[j]): altered = True # Make a new larger chain that is he union of the 2 lengthened_chain = merge_chains(lengthened_chain, chains_copy[j]) # This ensures we will catch all relations of near by components chains_copy[j] = lengthened_chain j += 1 if not altered: i += 1 lengthened_chains.append(lengthened_chain) else: chains_copy[i] = lengthened_chain # Return unique elements return list(set(lengthened_chains)) # This is a function <NAME> thought would be good def filter_by_chain_gray_variance(chains: List[Chain]): filtered_chains = [] gray_variances = [] areas = [] for i in range(len(chains)): chain = chains[i] count = 0 average_gray = 0 area = 0 for cc in chain.chain: count += len(cc.grays) area += cc.area for g in cc.grays: average_gray += g average_gray = average_gray/count variance_gray = 0 for cc in chain.chain: for g in cc.grays: variance_gray += (g - average_gray)**2 variance_gray = variance_gray/count gray_variances.append(variance_gray) areas.append(area) print((variance_gray, area)) max_gray_variance = np.average(gray_variances)*__gray_variance_coefficient for i in range(len(chains)): # if gray_variances[i] <= max_gray_variance: if gray_variances[i]/areas[i] < 0.5: # This might be a better filter? filtered_chains.append(chains[i]) return filtered_chains def filter_chains_by_height(chains: List[Chain]): filtered_chains = [] for chain in chains: if chain.row_max - chain.row_min <= __max_chain_height: filtered_chains.append(chain) return filtered_chains def remove_short_chains(chains: List[Chain]): long_chains = [] for chain in chains: if len(chain.chain) >= __min_chain_size: long_chains.append(chain) return long_chains def filter_by_expected_width_given_height_and_num_components(chains: List[Chain]): filtered_chains = [] for chain in chains: num_cc = len(chain.chain) expected_width_upperbound = num_cc * __max_char_width_to_heigh_ratio*chain.get_height() if chain.get_width() <= expected_width_upperbound: filtered_chains.append(chain) return filtered_chains # Default color is red def make_image_with_bounding_boxes(img, chains: List[Chain], color=(0, 0, 255)): img_drawn = copy.deepcopy(img) for chain in chains: # Bounding-box top-left clockwise bb = chain.get_bounding_box() top_left = (bb[0][1], bb[0][0]) bottom_right = (bb[2][1], bb[2][0]) cv2.rectangle(img_drawn, top_left, bottom_right, color, 2) return img_drawn
[ "copy.deepcopy", "numpy.average", "math.sqrt", "cv2.rectangle" ]
[((2325, 2412), 'math.sqrt', 'math.sqrt', (['((cc_2.row_max - cc_1.row_max) ** 2 + (cc_2.col_min - cc_1.col_max) ** 2)'], {}), '((cc_2.row_max - cc_1.row_max) ** 2 + (cc_2.col_min - cc_1.col_max\n ) ** 2)\n', (2334, 2412), False, 'import math\n'), ((9658, 9676), 'copy.deepcopy', 'copy.deepcopy', (['img'], {}), '(img)\n', (9671, 9676), False, 'import copy\n'), ((8407, 8433), 'numpy.average', 'np.average', (['gray_variances'], {}), '(gray_variances)\n', (8417, 8433), True, 'import numpy as np\n'), ((9874, 9932), 'cv2.rectangle', 'cv2.rectangle', (['img_drawn', 'top_left', 'bottom_right', 'color', '(2)'], {}), '(img_drawn, top_left, bottom_right, color, 2)\n', (9887, 9932), False, 'import cv2\n')]
import collections import numpy __all__ = [ "Output", ] Output = collections.namedtuple("Output", ["type", "format", "time", "labels", "data"]) def to_output(file_type, file_format, labels_order, headers, times, labels, variables): """Create an Output namedtuple.""" outputs = [ Output( file_type, file_format, time, numpy.array(label), {k: v for k, v in zip(headers, numpy.transpose(variable))}, ) for time, label, variable in zip(times, labels, variables) ] return ( [reorder_labels(out, labels_order) for out in outputs] if labels_order is not None and file_type == "element" else outputs ) def reorder_labels(data, labels): """Reorder output or save cell data according to input labels.""" if len(data.labels) != len(labels): raise ValueError() mapper = {k: v for v, k in enumerate(data.labels)} idx = [mapper[label] for label in labels] data.labels[:] = data.labels[idx] for k, v in data.data.items(): data.data[k] = v[idx] return data
[ "numpy.transpose", "numpy.array", "collections.namedtuple" ]
[((73, 151), 'collections.namedtuple', 'collections.namedtuple', (['"""Output"""', "['type', 'format', 'time', 'labels', 'data']"], {}), "('Output', ['type', 'format', 'time', 'labels', 'data'])\n", (95, 151), False, 'import collections\n'), ((391, 409), 'numpy.array', 'numpy.array', (['label'], {}), '(label)\n', (402, 409), False, 'import numpy\n'), ((454, 479), 'numpy.transpose', 'numpy.transpose', (['variable'], {}), '(variable)\n', (469, 479), False, 'import numpy\n')]
import numpy as np x = 1.0 y = 2.0 #exponents and logarithms print(np.exp(x)) #e^x print(np.log(x)) #ln x print(np.log10(x)) #log_10 x print(np.log2(x)) #log_2 x #min/max/misc print(np.fabs(x)) #absolute cal as a float print(np.fmin(x,y)) #min of x and y print(np.fmax(x,y)) #max of x and y #populate arrays n = 100 z = np.arange(n,dtype=float) #make an array z *= 2.0*np.pi / float(n-1) #z=[0.2*pi] sin_z = np.sin(z) #an array of sin(z) #interpolation print(np.interp(0.75,z,sin_z)) print(np.sin(0.75)) print(z) print(sin_z)
[ "numpy.fmin", "numpy.fmax", "numpy.log", "numpy.log2", "numpy.sin", "numpy.arange", "numpy.exp", "numpy.fabs", "numpy.interp", "numpy.log10" ]
[((327, 352), 'numpy.arange', 'np.arange', (['n'], {'dtype': 'float'}), '(n, dtype=float)\n', (336, 352), True, 'import numpy as np\n'), ((416, 425), 'numpy.sin', 'np.sin', (['z'], {}), '(z)\n', (422, 425), True, 'import numpy as np\n'), ((69, 78), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (75, 78), True, 'import numpy as np\n'), ((91, 100), 'numpy.log', 'np.log', (['x'], {}), '(x)\n', (97, 100), True, 'import numpy as np\n'), ((114, 125), 'numpy.log10', 'np.log10', (['x'], {}), '(x)\n', (122, 125), True, 'import numpy as np\n'), ((143, 153), 'numpy.log2', 'np.log2', (['x'], {}), '(x)\n', (150, 153), True, 'import numpy as np\n'), ((185, 195), 'numpy.fabs', 'np.fabs', (['x'], {}), '(x)\n', (192, 195), True, 'import numpy as np\n'), ((229, 242), 'numpy.fmin', 'np.fmin', (['x', 'y'], {}), '(x, y)\n', (236, 242), True, 'import numpy as np\n'), ((266, 279), 'numpy.fmax', 'np.fmax', (['x', 'y'], {}), '(x, y)\n', (273, 279), True, 'import numpy as np\n'), ((471, 496), 'numpy.interp', 'np.interp', (['(0.75)', 'z', 'sin_z'], {}), '(0.75, z, sin_z)\n', (480, 496), True, 'import numpy as np\n'), ((502, 514), 'numpy.sin', 'np.sin', (['(0.75)'], {}), '(0.75)\n', (508, 514), True, 'import numpy as np\n')]
# congklak game environment # version 1.0.0 import numpy as np import random class congklak_board: def __init__(self): # array to save the score, also function as the big holes' stone counter self.score = np.full(shape=2, fill_value=0, dtype=np.int) # array to save the state of the board (small holes' stone counter) self.state = None # board size self.N = None # starting hole self.starting_hole = None # turn player marker (0 or 1, the player who goes first is 0 and the other one is 1) self.turn = None # the state of the game (if the game is finished, done = True) self.done = False # the ruleset being used for the game self.ruleset = None # logging variables self.turns_count = None self.games_count = None self.log = None def setup(self, board_size, max_iter, rule='original'): # set up the board state and the marker for turn player self.ruleset = rule self.N = board_size self.state = np.full(shape=int(2*self.N), fill_value=self.N, dtype=np.int) self.turn = 0 self.turns_count = 0 self.games_count = 0 self.log = None self.max_iter = max_iter def reset(self): # reset the board if self.N == None: return print("Setup the board first.") else: self.state = np.full(shape=int(2*self.N), fill_value=self.N, dtype=np.int) self.score = np.full(shape=2, fill_value=0, dtype=np.int) self.done = False self.turn = 0 self.turns_count = 0 def observation_space(self): if self.N == None: return print("Setup the board first.") else: return (2*self.N)**2 def action_space(self): if self.N == None: return print("Setup the board first.") else: return self.N def step(self, action): # update the state of the board and score if self.N == None: return print("Setup the board first.") else: # check if the action is legal if self.is_legal(action): # do the rotation last_hole, scoring = self.rotation() # if the last hole is the turn player's big hole, scoring = True --> wait for the new selection of the starting hole # but if the last hole is not big hole, scoring = False --> then... if scoring == False: # if the last hole's stones = 1 --> 2 scenarios if self.state[last_hole] == 1: # if the last hole is the turn player's hole --> shooting --> end turn if int(last_hole/self.N) == self.turn: # the shooting function here is already modified. # if the hole across of the last hole is NOT empty --> do the shooting # else --> do nothing self.shooting(last_hole) self.end_turn() # if the last hole is the opponent's hole --> end turn else: self.end_turn() # if the last hole's stones > 1 else: # if the ruleset being used is the original ruleset if self.ruleset == 'original': # action's range is [0,N-1], last hole's range is [0, 2N-1], self.state's range is [0, 2N-1]. # Action needs to be increased by self.turn*self.N to match the self.state's range. # The last hole needs to be reduced by self.turn*self.N to match the action's range. # repeat the rotation with starting_hole = last_hole self.step(last_hole - self.turn*self.N) # if the ruleset being used is the ruleset suggested by Kasim elif self.ruleset == 'kasim2016': # if the last hole is the turn player's hole --> same as in the original ruleset # repeat the rotation with starting_hole = last_hole if int(last_hole/self.N) == self.turn: self.step(last_hole - self.turn*self.N) # if the last hole is the opponent's hole --> end turn (rule revision by Kasim) else: self.end_turn() else: #return print("The move is illegal.") pass def rotation(self): scoring = False hole = int(self.starting_hole + self.turn*self.N) stones = self.state[hole] self.state[hole] = 0 while stones > 0: hole += 1 if int(hole - self.turn*self.N) == self.N: self.score[self.turn] += 1 scoring = True stones -= 1 if stones > 0: hole = hole%(2*self.N) self.state[hole] += 1 scoring = False stones -= 1 return hole, scoring def shooting(self, last_hole): d = abs(last_hole - ((self.N-1) + self.turn)) hole_across = (self.N-1) + int(not(self.turn)) - d*(2*self.turn - 1) # if the hole across of the last hole is empty --> do nothing if self.state[hole_across] == 0: pass # if the hole across of the last hole is NOT empty --> do the shooting else: self.score[self.turn] += self.state[last_hole] + self.state[hole_across] self.state[last_hole] = 0 self.state[hole_across] = 0 #print(N-1, int(not(self.turn)), d*(2*self.turn - 1)) def end_turn(self): # check for the winner, if there is a winner --> done = True (end the game) if self.score[self.turn] > self.N**2: self.done = True self.games_count += 1 # if both player's score is equal to N**2 --> draw --> done = True (end the game) elif self.score[self.turn] == self.score[int(not(self.turn))] and self.score[self.turn] == self.N**2: self.done = True self.games_count += 1 # else --> continue the game, pass the turn to the opponent else: self.turn = int(not(self.turn)) self.turns_count += 1 def is_legal(self, action): # check whether the move is legal/valid or not self.starting_hole = action hole = int(self.starting_hole + self.turn*self.N) if self.state[hole] == 0: return False else: return True def whose_turn(self): # check whose turn now if self.N == None: return print("Setup the board first.") else: return self.turn def possible_action(self): # take a random sample of possible/valid action pa = np.array([], dtype=np.int) for i in range (len(self.state[(0+self.turn*self.N):(self.N+self.turn*self.N)])): if self.state[(0+self.turn*self.N):(self.N+self.turn*self.N)][i] != 0: pa = np.append(pa, i) return pa def one_hot_state(self): # convert board state to one-hot-encoded board state input_units = np.zeros(((2*self.N)**2,)) for i in range (len(self.state)): if self.state[i] > (2*self.N-1): input_units[i*2*self.N + 2*self.N-1] = self.state[i] - (2*self.N-1) else: input_units[i*2*self.N + self.state[i]] = 1 return input_units def logging(self, score): # log the score new_log = np.concatenate((score, 0.0, 0.0, self.turns_count), axis=None).reshape(1,-1) if self.log is None: self.log = new_log else: self.log = np.append(self.log, new_log, axis=0) if len(self.log) >= self.max_iter*0.2: self.log[-1, 2] = np.average(self.log[int(len(self.log)-0.2*self.max_iter):len(self.log), 0]) self.log[-1, 3] = np.average(self.log[int(len(self.log)-0.2*self.max_iter):len(self.log), 1]) def log_to_txt(self, fdir): # saving the log to txt file np.savetxt(fdir + ".txt", self.log) print("Log score to text file")
[ "numpy.full", "numpy.savetxt", "numpy.zeros", "numpy.append", "numpy.array", "numpy.concatenate" ]
[((227, 271), 'numpy.full', 'np.full', ([], {'shape': '(2)', 'fill_value': '(0)', 'dtype': 'np.int'}), '(shape=2, fill_value=0, dtype=np.int)\n', (234, 271), True, 'import numpy as np\n'), ((7282, 7308), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.int'}), '([], dtype=np.int)\n', (7290, 7308), True, 'import numpy as np\n'), ((7651, 7681), 'numpy.zeros', 'np.zeros', (['((2 * self.N) ** 2,)'], {}), '(((2 * self.N) ** 2,))\n', (7659, 7681), True, 'import numpy as np\n'), ((8581, 8616), 'numpy.savetxt', 'np.savetxt', (["(fdir + '.txt')", 'self.log'], {}), "(fdir + '.txt', self.log)\n", (8591, 8616), True, 'import numpy as np\n'), ((1604, 1648), 'numpy.full', 'np.full', ([], {'shape': '(2)', 'fill_value': '(0)', 'dtype': 'np.int'}), '(shape=2, fill_value=0, dtype=np.int)\n', (1611, 1648), True, 'import numpy as np\n'), ((8203, 8239), 'numpy.append', 'np.append', (['self.log', 'new_log'], {'axis': '(0)'}), '(self.log, new_log, axis=0)\n', (8212, 8239), True, 'import numpy as np\n'), ((7503, 7519), 'numpy.append', 'np.append', (['pa', 'i'], {}), '(pa, i)\n', (7512, 7519), True, 'import numpy as np\n'), ((8029, 8091), 'numpy.concatenate', 'np.concatenate', (['(score, 0.0, 0.0, self.turns_count)'], {'axis': 'None'}), '((score, 0.0, 0.0, self.turns_count), axis=None)\n', (8043, 8091), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Sat Oct 12 11:56:46 2019 @author: <NAME> Assignment 1: - Convert a RAW rgb image to a YUV format then Reconstruct the RGB channels. - Compute the PSNR between the source rgb image and the Reconstructed RGB using 4:4:4, 4:2:2 and 4:1:1 format. - You may select to use the average or the median, you shall show the different resultant images. - Remember to normalize the pixel values by 128. - You may use any three of the RAW images provided under the class Moodle account. - You can use any language, however, a low level language is recommended. Report is due on October 18, 2019. """ # In[1]: Import Packages ## Importing OpenCV(cv2) module import cv2 import math import numpy as np from scipy import misc # In[2]: def Read_Image(Image_Path): ## Read RGB image img = cv2.imread(Image_Path) return(img) def Display_Image(Name,Image): ## Output img with window name as 'image' cv2.imshow(Name, Image) ## Save Image cv2.imwrite(Name+'.png',Image) ## Maintain output window utill, user presses a key cv2.waitKey(2000) ## Destroying present windows on screen cv2.destroyAllWindows() return(1) # In[2-1]: Set Height and Width W = 512 H = 512 # In[2-2]: Read Image and Reshape img = np.fromfile("Lena Gray Raw Image.txt", dtype='uint8', sep="") img = np.reshape(img, (W, H)) '''Please remove # below to proceed with barbara_gray and comment at the previous two lines''' #img = misc.imread('barbara_gray.bmp', flatten= 1) Display_Image("Original Image", img) Image = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB) #Convert to 3D Image # In[3]: def Normalize(Image): return (Image / 128) def RGB_To_YUV(RGB_Image): RGB_Image = Normalize(RGB_Image) Coeff = np.array([[0.299, -0.14713, 0.615], [0.587, -0.28886, -0.51499], [0.114, 0.436, -0.10001]]) YUV_Image = RGB_Image.dot(Coeff) YUV_Image = YUV_Image*128 YUV_Image = YUV_Image.astype(np.uint8) YUV_Image[:,:,1] += 128 #b1 YUV_Image[:,:,2] += 128 #b2 return(YUV_Image) # In[3-1]: 4:4:4 means no downsampling of the chroma channels. yuv_444 = RGB_To_YUV(Image) Display_Image("YUV Image 444", yuv_444) # In[4]: def YUV_To_RGB(YUV_Image): Coeff = np.array([[1, 1, 1], [0, -0.39465, 2.03211], [1.13983, -0.58060, 0]]) RGB_Image = YUV_Image.dot(Coeff) RGB_Image = RGB_Image.astype(np.uint8) RGB_Image[:,:,0] -= 128 #b0 RGB_Image[:,:,1] -= 128 #b1 return(RGB_Image) # In[4-1]: Recover_rgb_444 = YUV_To_RGB(yuv_444) Display_Image("Recover RGB Image 444", Recover_rgb_444) # In[5]: def Compute_MSE(OriginalImage,RecoveriedImage): err = 0.0 w = np.shape(OriginalImage)[0] #Width h = np.shape(OriginalImage)[1] #Hight err = np.sum((OriginalImage - RecoveriedImage)** 2) err /= (w * h) return(err) def Compute_PSNR(Computed_MSE): if (Computed_MSE == 0): return 100 else: PIXEL_MAX = 255 PSNR = 20 * math.log10(PIXEL_MAX / math.sqrt(Computed_MSE)) return(PSNR) # In[5-1]: mse_1 = Compute_MSE(Image,Recover_rgb_444) psnr_1 = Compute_PSNR(mse_1) # In[6]: def Filter(Array2D,SamplingType): W = np.shape(Array2D)[0] H = np.shape(Array2D)[1] for Row in range(0,W,2): for Col in range(0,H,2): Temp = Array2D[Row:Row+2, Col:Col+2] if(SamplingType == '422'): Temp[:,1] = Temp[:,0] elif(SamplingType == '411'): Temp[:,:] = Temp[0,0] elif(SamplingType == 'Mean'): Temp = np.mean(Temp.ravel()) else: return(0) Array2D[Row:Row+2, Col:Col+2] = Temp return(Array2D) # In[7]: ## 4:2:2 means 2:1 horizontal downsampling, with no vertical downsampling. ## Every scan line contains four Y samples for every two U or V samples. def Get_422_Partitioning(YUVImage): Y = YUVImage[:,:,0] U = Filter(YUVImage[:,:,1],'422') V = Filter(YUVImage[:,:,2],'422') New_Image = cv2.merge((Y,U,V)) return (New_Image) # In[7-1]: yuv_422 = Get_422_Partitioning(yuv_444) rgb_422 = YUV_To_RGB(yuv_422) Display_Image("Recover RGB Image 422", rgb_422) mse_2 = Compute_MSE(Image,rgb_422) psnr_2 = Compute_PSNR(mse_2) # In[8]: ## 4:1:1 means 4:1 horizontal downsampling, with no vertical downsampling. ## Every scan line contains four Y samples for each U and V sample. def Get_411_Partitioning(YUVImage): Y = YUVImage[:,:,0] U = Filter(YUVImage[:,:,1],'411') V = Filter(YUVImage[:,:,2],'411') New_Image = cv2.merge((Y,U,V)) return (New_Image) # In[8-1]: yuv_411 = Get_411_Partitioning(yuv_444) rgb_411 = YUV_To_RGB(yuv_411) Display_Image("Recover RGB Image 411", rgb_411) mse_3 = Compute_MSE(Image,rgb_411) psnr_3 = Compute_PSNR(mse_3) # In[9]: def Get_Mean_Partitioning(YUVImage): Y = YUVImage[:,:,0] U = Filter(YUVImage[:,:,1],'Mean') V = Filter(YUVImage[:,:,2],'Mean') New_Image = cv2.merge((Y,U,V)) return (New_Image) # In[9-1]: yuv_Mean = Get_Mean_Partitioning(yuv_444) rgb_Mean = YUV_To_RGB(yuv_Mean) Display_Image("Recover RGB Image Mean", rgb_Mean) mse_4 = Compute_MSE(Image,rgb_Mean) psnr_4 = Compute_PSNR(mse_4) # In[10]: print("\n") print("At 444 Format,the MSE= ",mse_1,"and PSNR= ",psnr_1) print("At 422 Format,the MSE= ",mse_2,"and PSNR= ",psnr_2) print("At 411 Format,the MSE= ",mse_3,"and PSNR= ",psnr_3) print("At Mean Format,the MSE= ",mse_4,"and PSNR= ",psnr_4) # In[10]: def CV2_Library(Image_Path): img_yuv = cv2.cvtColor(Image_Path, cv2.COLOR_BGR2YUV) Display_Image("BGR2YUV",img_yuv) img_bgr =cv2.cvtColor(img_yuv,cv2.COLOR_YUV2BGR) Display_Image("YUV2BGR",img_bgr) return(0) #CV2_Library(Image)
[ "numpy.sum", "math.sqrt", "numpy.fromfile", "cv2.cvtColor", "cv2.imwrite", "cv2.waitKey", "cv2.destroyAllWindows", "numpy.shape", "cv2.imread", "numpy.array", "numpy.reshape", "cv2.merge", "cv2.imshow" ]
[((1307, 1368), 'numpy.fromfile', 'np.fromfile', (['"""Lena Gray Raw Image.txt"""'], {'dtype': '"""uint8"""', 'sep': '""""""'}), "('Lena Gray Raw Image.txt', dtype='uint8', sep='')\n", (1318, 1368), True, 'import numpy as np\n'), ((1375, 1398), 'numpy.reshape', 'np.reshape', (['img', '(W, H)'], {}), '(img, (W, H))\n', (1385, 1398), True, 'import numpy as np\n'), ((1592, 1629), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_GRAY2RGB'], {}), '(img, cv2.COLOR_GRAY2RGB)\n', (1604, 1629), False, 'import cv2\n'), ((828, 850), 'cv2.imread', 'cv2.imread', (['Image_Path'], {}), '(Image_Path)\n', (838, 850), False, 'import cv2\n'), ((954, 977), 'cv2.imshow', 'cv2.imshow', (['Name', 'Image'], {}), '(Name, Image)\n', (964, 977), False, 'import cv2\n'), ((1004, 1037), 'cv2.imwrite', 'cv2.imwrite', (["(Name + '.png')", 'Image'], {}), "(Name + '.png', Image)\n", (1015, 1037), False, 'import cv2\n'), ((1097, 1114), 'cv2.waitKey', 'cv2.waitKey', (['(2000)'], {}), '(2000)\n', (1108, 1114), False, 'import cv2\n'), ((1175, 1198), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1196, 1198), False, 'import cv2\n'), ((1805, 1901), 'numpy.array', 'np.array', (['[[0.299, -0.14713, 0.615], [0.587, -0.28886, -0.51499], [0.114, 0.436, -\n 0.10001]]'], {}), '([[0.299, -0.14713, 0.615], [0.587, -0.28886, -0.51499], [0.114, \n 0.436, -0.10001]])\n', (1813, 1901), True, 'import numpy as np\n'), ((2357, 2425), 'numpy.array', 'np.array', (['[[1, 1, 1], [0, -0.39465, 2.03211], [1.13983, -0.5806, 0]]'], {}), '([[1, 1, 1], [0, -0.39465, 2.03211], [1.13983, -0.5806, 0]])\n', (2365, 2425), True, 'import numpy as np\n'), ((2943, 2989), 'numpy.sum', 'np.sum', (['((OriginalImage - RecoveriedImage) ** 2)'], {}), '((OriginalImage - RecoveriedImage) ** 2)\n', (2949, 2989), True, 'import numpy as np\n'), ((4282, 4302), 'cv2.merge', 'cv2.merge', (['(Y, U, V)'], {}), '((Y, U, V))\n', (4291, 4302), False, 'import cv2\n'), ((4838, 4858), 'cv2.merge', 'cv2.merge', (['(Y, U, V)'], {}), '((Y, U, V))\n', (4847, 4858), False, 'import cv2\n'), ((5255, 5275), 'cv2.merge', 'cv2.merge', (['(Y, U, V)'], {}), '((Y, U, V))\n', (5264, 5275), False, 'import cv2\n'), ((5825, 5868), 'cv2.cvtColor', 'cv2.cvtColor', (['Image_Path', 'cv2.COLOR_BGR2YUV'], {}), '(Image_Path, cv2.COLOR_BGR2YUV)\n', (5837, 5868), False, 'import cv2\n'), ((5921, 5961), 'cv2.cvtColor', 'cv2.cvtColor', (['img_yuv', 'cv2.COLOR_YUV2BGR'], {}), '(img_yuv, cv2.COLOR_YUV2BGR)\n', (5933, 5961), False, 'import cv2\n'), ((2850, 2873), 'numpy.shape', 'np.shape', (['OriginalImage'], {}), '(OriginalImage)\n', (2858, 2873), True, 'import numpy as np\n'), ((2893, 2916), 'numpy.shape', 'np.shape', (['OriginalImage'], {}), '(OriginalImage)\n', (2901, 2916), True, 'import numpy as np\n'), ((3391, 3408), 'numpy.shape', 'np.shape', (['Array2D'], {}), '(Array2D)\n', (3399, 3408), True, 'import numpy as np\n'), ((3420, 3437), 'numpy.shape', 'np.shape', (['Array2D'], {}), '(Array2D)\n', (3428, 3437), True, 'import numpy as np\n'), ((3192, 3215), 'math.sqrt', 'math.sqrt', (['Computed_MSE'], {}), '(Computed_MSE)\n', (3201, 3215), False, 'import math\n')]
import math import numpy as np import scipy as s import scipy.integrate as q import matplotlib.pyplot as plt #Constants H0 = 2.19507453e-18 #using 67.74 Wm = 0.279 Wq = 1 - Wm w = -1 #Basic Functions def H(a): return H0*np.sqrt(Wm*a**(-3) + Wq*a**(-3*(1+w))) def dH(a): return (H0**2/(2*H(a)))*(-3*Wm*a**(-4) - 3*(1 + w)*Wq*a**(-3*w -4)) def Dplus(a): def integrand(x): return (x*H(x))**(-3) [y,err] = q.quad(integrand,0,a) return 2.5*H0**2*Wm*H(a)*y def fplus(a): h = H(a) dh = dH(a) d = Dplus(a) return (a/d)*((dh*d/h) + 2.5*H0**2*Wm/(h**2*a**3)) def fminus(a): return dH(a)*a/H(a) #Primary Functions #Code to call values of n = 2 def z2(y,a): fp = fplus(a) fm = fminus(a) return [fp/a*(2 + y[1] - 2*y[0]) , fp/a*((2/3) + (fm*fp**(-2))*(y[1] - y[0]) - y[1])] def y2(x): a = np.linspace(a0,x,N) sol = q.odeint(z2,y20,a) return [sol[-1,0], sol[-1,1]] #Let y = [nu,mu], z = dy/dt #This is code for n = 3 def z3(y,a): [nu2,mu2] = y2(a) fp = fplus(a) fm = fminus(a) return [fp/a*(y[1] - 3*y[0] + 3*(nu2 + mu2)), fp/a*(-2*y[1] + (fm*fp**(-2))*(y[1] - y[0]) + 2*mu2)] #Main Code #Initial conditions - Using EdS values y20 = [34/21,26/21] y30 = [682/189, 142/63] #Integration a0 = 0.01 N = 10000 a = np.linspace(a0,1,N) soln = q.odeint(z3,y30,a) nuads = [] muads = [] for i in range(0,N): nuads.append(y30[0]) muads.append(y30[1]) #Plotting plt.figure(1) plt.subplot(111) plt.plot((1-a)/a,soln[:,0], 'k', label = r'$\nu_3$') plt.plot((1-a)/a, nuads, '--r', label = r'$\nu_{EdS}$') plt.title(r'$\nu_3$ as a function of redshift', fontsize=20) plt.xlabel(r'$z$', fontsize=20) plt.ylabel(r'$\nu_3$', fontsize=20) plt.legend(fontsize=15) plt.xlim([0,3]) plt.figure(2) plt.subplot(111) plt.plot((1-a)/a,soln[:,1], 'k', label=r'$\mu_3$') plt.plot((1-a)/a, muads, '--r', label=r'$\mu_{EdS}$') plt.title(r'$\mu_3$ as a function of redshift', fontsize=20) plt.xlabel(r'$z$', fontsize=20) plt.ylabel(r'$\mu_3$', fontsize=20) plt.legend(fontsize=15) plt.xlim([0,3]) plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "matplotlib.pyplot.xlim", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "scipy.integrate.quad", "scipy.integrate.odeint", "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "numpy.linspace", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "numpy.sqrt" ]
[((1292, 1313), 'numpy.linspace', 'np.linspace', (['a0', '(1)', 'N'], {}), '(a0, 1, N)\n', (1303, 1313), True, 'import numpy as np\n'), ((1319, 1339), 'scipy.integrate.odeint', 'q.odeint', (['z3', 'y30', 'a'], {}), '(z3, y30, a)\n', (1327, 1339), True, 'import scipy.integrate as q\n'), ((1443, 1456), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (1453, 1456), True, 'import matplotlib.pyplot as plt\n'), ((1457, 1473), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (1468, 1473), True, 'import matplotlib.pyplot as plt\n'), ((1474, 1530), 'matplotlib.pyplot.plot', 'plt.plot', (['((1 - a) / a)', 'soln[:, 0]', '"""k"""'], {'label': '"""$\\\\nu_3$"""'}), "((1 - a) / a, soln[:, 0], 'k', label='$\\\\nu_3$')\n", (1482, 1530), True, 'import matplotlib.pyplot as plt\n'), ((1527, 1584), 'matplotlib.pyplot.plot', 'plt.plot', (['((1 - a) / a)', 'nuads', '"""--r"""'], {'label': '"""$\\\\nu_{EdS}$"""'}), "((1 - a) / a, nuads, '--r', label='$\\\\nu_{EdS}$')\n", (1535, 1584), True, 'import matplotlib.pyplot as plt\n'), ((1583, 1643), 'matplotlib.pyplot.title', 'plt.title', (['"""$\\\\nu_3$ as a function of redshift"""'], {'fontsize': '(20)'}), "('$\\\\nu_3$ as a function of redshift', fontsize=20)\n", (1592, 1643), True, 'import matplotlib.pyplot as plt\n'), ((1644, 1674), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$z$"""'], {'fontsize': '(20)'}), "('$z$', fontsize=20)\n", (1654, 1674), True, 'import matplotlib.pyplot as plt\n'), ((1676, 1711), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\nu_3$"""'], {'fontsize': '(20)'}), "('$\\\\nu_3$', fontsize=20)\n", (1686, 1711), True, 'import matplotlib.pyplot as plt\n'), ((1712, 1735), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'fontsize': '(15)'}), '(fontsize=15)\n', (1722, 1735), True, 'import matplotlib.pyplot as plt\n'), ((1736, 1752), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0, 3]'], {}), '([0, 3])\n', (1744, 1752), True, 'import matplotlib.pyplot as plt\n'), ((1753, 1766), 'matplotlib.pyplot.figure', 'plt.figure', (['(2)'], {}), '(2)\n', (1763, 1766), True, 'import matplotlib.pyplot as plt\n'), ((1767, 1783), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (1778, 1783), True, 'import matplotlib.pyplot as plt\n'), ((1784, 1840), 'matplotlib.pyplot.plot', 'plt.plot', (['((1 - a) / a)', 'soln[:, 1]', '"""k"""'], {'label': '"""$\\\\mu_3$"""'}), "((1 - a) / a, soln[:, 1], 'k', label='$\\\\mu_3$')\n", (1792, 1840), True, 'import matplotlib.pyplot as plt\n'), ((1835, 1892), 'matplotlib.pyplot.plot', 'plt.plot', (['((1 - a) / a)', 'muads', '"""--r"""'], {'label': '"""$\\\\mu_{EdS}$"""'}), "((1 - a) / a, muads, '--r', label='$\\\\mu_{EdS}$')\n", (1843, 1892), True, 'import matplotlib.pyplot as plt\n'), ((1889, 1949), 'matplotlib.pyplot.title', 'plt.title', (['"""$\\\\mu_3$ as a function of redshift"""'], {'fontsize': '(20)'}), "('$\\\\mu_3$ as a function of redshift', fontsize=20)\n", (1898, 1949), True, 'import matplotlib.pyplot as plt\n'), ((1950, 1980), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$z$"""'], {'fontsize': '(20)'}), "('$z$', fontsize=20)\n", (1960, 1980), True, 'import matplotlib.pyplot as plt\n'), ((1982, 2017), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\mu_3$"""'], {'fontsize': '(20)'}), "('$\\\\mu_3$', fontsize=20)\n", (1992, 2017), True, 'import matplotlib.pyplot as plt\n'), ((2018, 2041), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'fontsize': '(15)'}), '(fontsize=15)\n', (2028, 2041), True, 'import matplotlib.pyplot as plt\n'), ((2042, 2058), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0, 3]'], {}), '([0, 3])\n', (2050, 2058), True, 'import matplotlib.pyplot as plt\n'), ((2059, 2069), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2067, 2069), True, 'import matplotlib.pyplot as plt\n'), ((429, 452), 'scipy.integrate.quad', 'q.quad', (['integrand', '(0)', 'a'], {}), '(integrand, 0, a)\n', (435, 452), True, 'import scipy.integrate as q\n'), ((847, 868), 'numpy.linspace', 'np.linspace', (['a0', 'x', 'N'], {}), '(a0, x, N)\n', (858, 868), True, 'import numpy as np\n'), ((877, 897), 'scipy.integrate.odeint', 'q.odeint', (['z2', 'y20', 'a'], {}), '(z2, y20, a)\n', (885, 897), True, 'import scipy.integrate as q\n'), ((225, 273), 'numpy.sqrt', 'np.sqrt', (['(Wm * a ** -3 + Wq * a ** (-3 * (1 + w)))'], {}), '(Wm * a ** -3 + Wq * a ** (-3 * (1 + w)))\n', (232, 273), True, 'import numpy as np\n')]
import os import numpy as np import pandas as pd from scipy.io import loadmat, savemat import matplotlib.pyplot as plt import seaborn as sns def match_strings(strings, path, any_or_all='any'): if any_or_all == 'any': return any([string in path for string in strings]) elif any_or_all == 'all': return all([string in path for string in strings]) def fix(datum, path): ## hopefully vestigial code used previously used in load_data to fix a massive diagonal EV matrix. if datum['EV_vec'].shape[0] > 1: print('fixing EV_vec') print(datum['EV_vec'].shape) print(path) datum['EV_vec'] = np.diag(datum['EV_vec']) savemat(path, datum, appendmat=False) return datum def load_data(mani_dir, exclude=[]): # takes a directory and loads all the .mat files from batch_manifold_analysis.m # return paths and data paths = np.sort(np.array(os.listdir(mani_dir))) if len(exclude)>0: paths = [path for path in paths if not match_strings(exclude, path)] data = [] for path in paths: datum = loadmat(mani_dir+path) if 'EV_vec' in datum.keys(): #datum = fix(datum, mani_dir+path) pass data.append(datum) return paths, np.array(data) #def load_data(mani_dir, exclude=[]): # # takes a directory and loads all the .mat files from batch_manifold_analysis.m # # return paths and data # paths = np.sort(np.array(os.listdir(mani_dir))) # if len(exclude)>0: # paths = [path for path in paths if not match_strings(exclude, path)] # data = np.array([loadmat(mani_dir+path) for path in paths]) # return paths, data def get_layer_type(path, types): for t in types: if t in path: return t def mi_outliers(data_vec): for i in range(len(data_vec)): row_mean = data_vec[i].mean() row_std = data_vec[i].std() for j in range(len(data_vec[i])): if np.abs(data_vec[i][j] - row_mean) > row_std*2: data_vec[i][j] = row_mean return data_vec def fill_input_features(df, input_features=3072): df['featnum'] = df['featnum'].fillna(value=input_features) def frame_constructor(paths, data, key, tag=None, mean=False, verbose=False, rm_outliers=True): perm_seed = [catch(path, 'seed') for path in paths] featnum = [catch(path, 'featnum') for path in paths] acc = [catch(path, 'acc') for path in paths] arch = [catch(path, 'arch') for path in paths] RP = [catch(path, 'RP') for path in paths] lnum = [path.split('-')[3].split('_')[1] for path in paths] coding = [path.split('-')[3].split('_')[0] for path in paths] epochs = np.array([int(path.split('-')[1].split('_')[1]) for path in paths]) image_set = np.array([path.split('-')[0] for path in paths]) data_vec = np.array([np.squeeze(datum[key]) for datum in data]) if mean: if rm_outliers: mi_outliers(data_vec) data_vec = np.mean(data_vec,axis=1) data_vec = np.atleast_2d(data_vec) if verbose: print('data_vec.shape: ', data_vec.shape) if data_vec.shape[0]<data_vec.shape[1]: data_vec = data_vec.T df = pd.DataFrame( columns=[ 'path', 'imageset', 'epoch', 'layer number', 'coding', 'seed', 'featnum', 'acc', 'arch', 'RP', 'value', 'measure', 'tag' ], data=np.array([ np.repeat([paths],data_vec.shape[-1],axis=0).T.reshape(-1), np.repeat([image_set],data_vec.shape[-1],axis=0).T.reshape(-1), np.repeat([epochs],data_vec.shape[-1],axis=0).T.reshape(-1), np.repeat([lnum],data_vec.shape[-1],axis=0).T.reshape(-1), np.repeat([coding],data_vec.shape[-1],axis=0).T.reshape(-1), np.repeat([perm_seed],data_vec.shape[-1],axis=0).T.reshape(-1), np.repeat([featnum],data_vec.shape[-1],axis=0).T.reshape(-1), np.repeat([acc],data_vec.shape[-1],axis=0).T.reshape(-1), np.repeat([arch],data_vec.shape[-1],axis=0).T.reshape(-1), np.repeat([RP],data_vec.shape[-1],axis=0).T.reshape(-1), data_vec.reshape(-1), np.repeat(key,data_vec.size), np.repeat(tag,data_vec.size) ]).T ) types = ['input', 'AvgPool2d', 'MaxPool2d', 'Conv2d', 'ReLU', 'Sequential', 'Linear', 'BatchNorm2d', 'Softmax'] df['type'] = df.path.apply(lambda x: get_layer_type(x, types)) df['value'] = pd.to_numeric(df['value'], errors='coerce') df['acc'] = pd.to_numeric(df['acc'], errors='coerce') df['epoch'] = pd.to_numeric(df['epoch'], errors='coerce') df['seed'] = pd.to_numeric(df['seed'], errors='coerce') df['featnum'] = pd.to_numeric(df['featnum'], errors='coerce') df['layer number'] = pd.to_numeric(df['layer number'], errors='coerce') df['layer number og'] = pd.to_numeric(df['layer number'], errors='coerce') df['layer name'] = df['coding'].values + '.'+ df['layer number og'].astype('str').values df.loc[df['coding']=='features', 'layer number'] += 1 df.loc[df['coding']=='classifier', 'layer number'] = df.loc[ df['coding']=='classifier', 'layer number'] + df[ (df['coding']=='features') & (df['imageset']=='train') & (df['epoch']==epochs.max()) # this breaks if epoch 1 is not in the mix.. ].shape[0] + 1 df.round(2) return df def compile_info(mani_dir, path): mani_dir.replace('manifold_', '-') info = path.replace('.h5', '') info += '-seed_'+catch(mani_dir, 'seed', ind=1) info += '-arch_'+catch(mani_dir, 'arch') info += '-RP_'+catch(mani_dir, 'RP') return info def multi_frame_constructor(mani_dirs, tags, measures, exclude=[], verbose=False): df = None for i, mani_dir in enumerate(mani_dirs): paths, data = load_data(mani_dir, exclude=exclude) paths_info = [compile_info(mani_dir, path) for path in paths] for measure in measures: mean = True single = ['CCcorr', 'pr', 'K0', 'S_vec', 'D_pr', 'D_expvar', 'D_feature_ds', 'asim0_g', 'asim0_m', 'Nc0_g', 'Nc0_m',] if measure in single: mean = False if type(df) == type(None): df = frame_constructor(paths_info, data, measure, tag=tags[i], mean=mean, verbose=verbose) else: df = df.append(frame_constructor(paths_info, data, measure, tag=tags[i], mean=mean)) return df def make_contiguous(a): return np.arange(len(a)) def display(df, x, y, measure, coding, title, opts={'sortby':[], 'hue':'tag', 'fix_legend':False, 'dims': (12,7)}): unique_tags = np.unique(df.tag.values) data = df[ (df['measure']==measure) # &(df['coding']==coding) ].sort_values(by=['layer number']).copy() for unique_tag in unique_tags: contiguous_layer_num = make_contiguous(data[data['tag']==unique_tag]['layer number'].values) data.loc[data['tag']==unique_tag, 'layer number'] = contiguous_layer_num # re sort by layer number, as everything will be shifted if one set was not contiguous data = data.sort_values(by=['layer number']) layer_types = data['type'].values[::len(unique_tags)] layer_features = data['featnum'].values[::len(unique_tags)] xlabels = [layer_types[i]+' ({})'.format(layer_features[i]) for i in range(len(layer_types))] if len(opts['sortby'])>0: data = data.sort_values(by=opts['sortby']) fig, ax = plt.subplots(figsize=opts['dims']) p = sns.cubehelix_palette(len(unique_tags), start=1, rot=0, dark=.20, light=.80) sns.set_palette('Reds') with sns.color_palette("PuBuGn_d"): ax = sns.scatterplot(x=x, y=y, # units="tag", # size=opts['hue'], sizes=(150,150), ax=ax, hue=opts['hue'], palette=p, legend='brief', data=data) if opts['fix_legend']: handles, labels = ax.get_legend_handles_labels() l = plt.legend(handles[0:1+len(unique_tags)], labels[0:1+len(unique_tags)], bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) else: plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_title(title) ax.set_ylabel(names[measure]) ax.set_xticks(ticks=range(len(data.type)/len(unique_tags))) ax.set_xticklabels(xlabels,rotation=90) ax.set_xlabel('layer type') return data, ax names = { 'D_pr': 'Total Data PR', 'D_expvar': 'Total Data EV Dimension', 'CCcorr': 'Mean Manifold Center Correlation', 'D_S_vec': 'Mean Category EV Dimension', 'Dpr_S_vec': 'Mean Category PR', 'R_S_vec': 'Mean Category Radius', 'D_M_vec': 'Mean Dichotomy Dimension', 'R_M_vec': 'Mean Dichotomy Radius', 'a_Mfull_vec': 'Mean Dichotomy Capacity', } def get_losses(log, epochs=300, accuracy=False): f = open(log) val_loss = np.array([float(line.split(' ')[3]) for line in f if " * Prec@1" in line]) f = open(log) train_loss = np.array([float(line.split(" ")[8]) for line in f if ("Prec@1" in line) & ("Epoch" in line)]) step_num = len(train_loss)/epochs train_loss = np.array([train_loss[i*step_num:i*step_num+step_num].mean() for i in range(epochs)]) if not accuracy: val_loss = 100-val_loss train_loss = 100-train_loss return train_loss, val_loss def add_loss(df, loss_df): df['loss'] = df.apply(lambda x : loss_df[(loss_df['epoch']==x['epoch'])& (loss_df['seed']==x['seed'])& (loss_df['arch']==x['arch'])& (loss_df['imageset']==x['imageset'])]['loss'].values[0], axis=1) df['trainacc'] = df.apply(lambda x : 100-loss_df[(loss_df['epoch']==x['epoch'])& (loss_df['seed']==x['seed'])& (loss_df['arch']==x['arch'])& (loss_df['imageset']=='train')]['loss'].values[0], axis=1) df['valacc'] = df.apply(lambda x : 100-loss_df[(loss_df['epoch']==x['epoch'])& (loss_df['seed']==x['seed'])& (loss_df['arch']==x['arch'])& (loss_df['imageset']=='val')]['loss'].values[0], axis=1) return df def delta_data(df): layer_nums = np.unique(df['layer number']) measure_id = df.loc[df['type']=='input', 'measure'].values initial = np.zeros([2, measure_id.shape[0]]).astype('object') initial[0,:] = measure_id deltas = np.zeros([layer_nums.shape[0], measure_id.shape[0]]).astype('object') deltas[0,:] = measure_id for n in layer_nums: if n == 0: initial[1,:] = df.loc[df['layer number']==n, 'value'].values else: deltas[n,:] = df.loc[df['layer number']==n, 'value'].values - df.loc[df['layer number']==n-1, 'value'].values return deltas.T, initial.T def get_delta_frame(dir_template, ep, seeds=[0,10], expand_input_files=False, measures=[], skip=[], exclude=[], length=0, verbose=False): success = [] for seed in range(*seeds): if seed in skip: pass else: mani_dirs = [dir_template.format(seed)] tags = ["seed_{}".format(seed)] if expand_input_files: expand_input(mani_dirs) df = multi_frame_constructor(mani_dirs, tags, measures, exclude=exclude) if df.shape[0] < length: pass else: if verbose: print('try seed:', seed) df = add_volume(df) df = df[(df['imageset']=='train')&(df['epoch']==ep)] data, initial = delta_data(df) columns = (df.sort_values(by=['layer number'])['type']+'_'+df.sort_values(by=['layer number'])['layer number'].astype('str')).unique() columns[0] = 'measure' #print(columns) #print(data) if seed == seeds[0]: delta_df = pd.DataFrame(columns=columns, data=data) initial_df = pd.DataFrame(columns=['measure','initial'], data=initial) else: delta_df = delta_df.append(pd.DataFrame(columns=columns, data=data)) initial_df = initial_df.append(pd.DataFrame(columns=['measure','initial'], data=initial)) if verbose: print('success') success.append(seed) print('success for seeds:', success) return delta_df, initial_df def plot_losses(log): train_loss, val_loss = get_losses(log) ax = pd.DataFrame(columns=['training error', 'validation error'], data=np.array([train_loss, val_loss]).T).plot() ax.set_xlabel('Epoch number') ax.set_ylabel('Error (%)') ax.set_title('Training curves') def delta_plot(delta_df, x, y, name, minmax=True, hline=[-0.5,0.5], vline=[-3,3]): xy_df = delta_df[delta_df['measure']==x].melt('measure') y_df = delta_df[delta_df['measure']==y].melt('measure') xy_df['value2'] = y_df['value'].values xy_df['type'] = xy_df['variable'].apply(lambda x : x.split('_')[0]) xy_df['depth'] = xy_df['variable'].apply(lambda x : float(x.split('_')[1])).astype('float') xy_df['depth'] = xy_df['variable'].apply(lambda x : float(x.split('_')[1])).astype('float') sns.reset_defaults() # unique_tags = xy_df['variable'].unique() # p = sns.cubehelix_palette(len(unique_tags), light=.8, start=.5, rot=-.75) # ax = sns.scatterplot(x='value', y='value2', hue='variable', style='type', palette=p, data=xy_df) ax = sns.scatterplot(x='value', y='value2', hue='depth', style='type', legend='brief', data=xy_df) ax.set_xlabel('delta '+x.replace('_vec','')) ax.set_ylabel('delta '+y.replace('_vec','')) if minmax: ax.hlines(0,xy_df['value'].min()-.01,xy_df['value'].max()+.01) ax.set_ylim(xy_df['value'].min()-.01,xy_df['value'].max()+.01) ax.vlines(0,xy_df['value2'].min()-.01,xy_df['value2'].max()+.01) ax.set_ylim(xy_df['value2'].min()-.01,xy_df['value2'].max()+.01) else: ax.hlines(0,*hline) ax.set_xlim(*hline) ax.vlines(0,*vline) ax.set_ylim(*vline) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_title('{}, d{} vs d{}'.format(name, x, y)) return xy_df, ax #def delta_plot(delta_df, x, y, name, minmax=True, hline=[-0.5,0.5], vline=[-3,3]): # xy_df = delta_df[delta_df['measure']==x].melt('measure') # y_df = delta_df[delta_df['measure']==y].melt('measure') # xy_df['value2'] = y_df['value'].values # # ax = sns.scatterplot(x='value', y='value2', hue='variable', data=xy_df) # ax.set_xlabel('delta '+x.replace('_vec','')) # ax.set_ylabel('delta '+y.replace('_vec','')) # if minmax: # ax.hlines(0,xy_df['value'].min()-.01,xy_df['value'].max()+.01) # ax.set_ylim(xy_df['value'].min()-.01,xy_df['value'].max()+.01) # ax.vlines(0,xy_df['value2'].min()-.01,xy_df['value2'].max()+.01) # ax.set_ylim(xy_df['value2'].min()-.01,xy_df['value2'].max()+.01) # else: # ax.hlines(0,*hline) # ax.set_xlim(*hline) # ax.vlines(0,*vline) # ax.set_ylim(*vline) # plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # ax.set_title('{}, d{} vs d{}'.format(name, x, y)) # return ax def catch(filepath, target, ind=1, verbose=False): parts = filepath.split('-') match = [part for part in parts if target in part] if len(match) == 1: return match[0].split('_')[ind] else: if verbose: print('target {} not found in filepath {}'.format(target,filepath)) return None def get_meta_dict(filepath,targets): """get_meta_dict(fs, ['seed', 'drop', 'imageset'])""" meta_dict = {} for target in targets: meta_dict[target] = catch(filepath,target) return meta_dict def add_meta(df,targets): for target in targets: df[target] = df['log'].apply(lambda x : catch(x,target)) def add_volume(df): v_df = df.loc[df['measure']=='D_M_vec'].copy() v_df['measure'] = 'Rm*sqrt(Dm)' v_df['value'] = np.sqrt(df.loc[df['measure']=='D_M_vec', 'value'].values)*df.loc[df['measure']=='R_M_vec', 'value'].values return df.append(v_df) def expand_input(mani_dirs): from shutil import copyfile for md in mani_dirs: files = os.listdir(md) eps = np.unique([catch(p, 'ep_') for p in files if not match_strings(['input'], p)]) inputs = [p for p in files if match_strings(['-input'], p)] template = files[0] for og_file in inputs: for ep in eps: og_file_path = os.path.join(md, og_file) dest = og_file.replace('-', '-ep_{}-'.format(ep)).replace('input', 'acc_0-layer_0-type_input-features_3072') dest = os.path.join(md, dest) copyfile(og_file_path, dest) os.remove(og_file_path)
[ "os.remove", "numpy.abs", "scipy.io.loadmat", "numpy.mean", "numpy.diag", "os.path.join", "numpy.unique", "numpy.atleast_2d", "pandas.DataFrame", "seaborn.reset_defaults", "shutil.copyfile", "matplotlib.pyplot.subplots", "numpy.repeat", "seaborn.scatterplot", "matplotlib.pyplot.legend", "numpy.squeeze", "seaborn.set_palette", "os.listdir", "pandas.to_numeric", "numpy.zeros", "scipy.io.savemat", "numpy.array", "seaborn.color_palette", "numpy.sqrt" ]
[((3043, 3066), 'numpy.atleast_2d', 'np.atleast_2d', (['data_vec'], {}), '(data_vec)\n', (3056, 3066), True, 'import numpy as np\n'), ((4643, 4686), 'pandas.to_numeric', 'pd.to_numeric', (["df['value']"], {'errors': '"""coerce"""'}), "(df['value'], errors='coerce')\n", (4656, 4686), True, 'import pandas as pd\n'), ((4703, 4744), 'pandas.to_numeric', 'pd.to_numeric', (["df['acc']"], {'errors': '"""coerce"""'}), "(df['acc'], errors='coerce')\n", (4716, 4744), True, 'import pandas as pd\n'), ((4763, 4806), 'pandas.to_numeric', 'pd.to_numeric', (["df['epoch']"], {'errors': '"""coerce"""'}), "(df['epoch'], errors='coerce')\n", (4776, 4806), True, 'import pandas as pd\n'), ((4824, 4866), 'pandas.to_numeric', 'pd.to_numeric', (["df['seed']"], {'errors': '"""coerce"""'}), "(df['seed'], errors='coerce')\n", (4837, 4866), True, 'import pandas as pd\n'), ((4887, 4932), 'pandas.to_numeric', 'pd.to_numeric', (["df['featnum']"], {'errors': '"""coerce"""'}), "(df['featnum'], errors='coerce')\n", (4900, 4932), True, 'import pandas as pd\n'), ((4958, 5008), 'pandas.to_numeric', 'pd.to_numeric', (["df['layer number']"], {'errors': '"""coerce"""'}), "(df['layer number'], errors='coerce')\n", (4971, 5008), True, 'import pandas as pd\n'), ((5037, 5087), 'pandas.to_numeric', 'pd.to_numeric', (["df['layer number']"], {'errors': '"""coerce"""'}), "(df['layer number'], errors='coerce')\n", (5050, 5087), True, 'import pandas as pd\n'), ((6803, 6827), 'numpy.unique', 'np.unique', (['df.tag.values'], {}), '(df.tag.values)\n', (6812, 6827), True, 'import numpy as np\n'), ((7644, 7678), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': "opts['dims']"}), "(figsize=opts['dims'])\n", (7656, 7678), True, 'import matplotlib.pyplot as plt\n'), ((7768, 7791), 'seaborn.set_palette', 'sns.set_palette', (['"""Reds"""'], {}), "('Reds')\n", (7783, 7791), True, 'import seaborn as sns\n'), ((10623, 10652), 'numpy.unique', 'np.unique', (["df['layer number']"], {}), "(df['layer number'])\n", (10632, 10652), True, 'import numpy as np\n'), ((13738, 13758), 'seaborn.reset_defaults', 'sns.reset_defaults', ([], {}), '()\n', (13756, 13758), True, 'import seaborn as sns\n'), ((14000, 14098), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'x': '"""value"""', 'y': '"""value2"""', 'hue': '"""depth"""', 'style': '"""type"""', 'legend': '"""brief"""', 'data': 'xy_df'}), "(x='value', y='value2', hue='depth', style='type', legend=\n 'brief', data=xy_df)\n", (14015, 14098), True, 'import seaborn as sns\n'), ((14629, 14691), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'bbox_to_anchor': '(1.05, 1)', 'loc': '(2)', 'borderaxespad': '(0.0)'}), '(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0)\n', (14639, 14691), True, 'import matplotlib.pyplot as plt\n'), ((648, 672), 'numpy.diag', 'np.diag', (["datum['EV_vec']"], {}), "(datum['EV_vec'])\n", (655, 672), True, 'import numpy as np\n'), ((681, 718), 'scipy.io.savemat', 'savemat', (['path', 'datum'], {'appendmat': '(False)'}), '(path, datum, appendmat=False)\n', (688, 718), False, 'from scipy.io import loadmat, savemat\n'), ((1092, 1116), 'scipy.io.loadmat', 'loadmat', (['(mani_dir + path)'], {}), '(mani_dir + path)\n', (1099, 1116), False, 'from scipy.io import loadmat, savemat\n'), ((1270, 1284), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (1278, 1284), True, 'import numpy as np\n'), ((3002, 3027), 'numpy.mean', 'np.mean', (['data_vec'], {'axis': '(1)'}), '(data_vec, axis=1)\n', (3009, 3027), True, 'import numpy as np\n'), ((7801, 7830), 'seaborn.color_palette', 'sns.color_palette', (['"""PuBuGn_d"""'], {}), "('PuBuGn_d')\n", (7818, 7830), True, 'import seaborn as sns\n'), ((7845, 7955), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'x': 'x', 'y': 'y', 'sizes': '(150, 150)', 'ax': 'ax', 'hue': "opts['hue']", 'palette': 'p', 'legend': '"""brief"""', 'data': 'data'}), "(x=x, y=y, sizes=(150, 150), ax=ax, hue=opts['hue'], palette\n =p, legend='brief', data=data)\n", (7860, 7955), True, 'import seaborn as sns\n'), ((8450, 8512), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'bbox_to_anchor': '(1.05, 1)', 'loc': '(2)', 'borderaxespad': '(0.0)'}), '(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0)\n', (8460, 8512), True, 'import matplotlib.pyplot as plt\n'), ((16589, 16648), 'numpy.sqrt', 'np.sqrt', (["df.loc[df['measure'] == 'D_M_vec', 'value'].values"], {}), "(df.loc[df['measure'] == 'D_M_vec', 'value'].values)\n", (16596, 16648), True, 'import numpy as np\n'), ((16828, 16842), 'os.listdir', 'os.listdir', (['md'], {}), '(md)\n', (16838, 16842), False, 'import os\n'), ((915, 935), 'os.listdir', 'os.listdir', (['mani_dir'], {}), '(mani_dir)\n', (925, 935), False, 'import os\n'), ((2859, 2881), 'numpy.squeeze', 'np.squeeze', (['datum[key]'], {}), '(datum[key])\n', (2869, 2881), True, 'import numpy as np\n'), ((10730, 10764), 'numpy.zeros', 'np.zeros', (['[2, measure_id.shape[0]]'], {}), '([2, measure_id.shape[0]])\n', (10738, 10764), True, 'import numpy as np\n'), ((10825, 10877), 'numpy.zeros', 'np.zeros', (['[layer_nums.shape[0], measure_id.shape[0]]'], {}), '([layer_nums.shape[0], measure_id.shape[0]])\n', (10833, 10877), True, 'import numpy as np\n'), ((17376, 17399), 'os.remove', 'os.remove', (['og_file_path'], {}), '(og_file_path)\n', (17385, 17399), False, 'import os\n'), ((1978, 2011), 'numpy.abs', 'np.abs', (['(data_vec[i][j] - row_mean)'], {}), '(data_vec[i][j] - row_mean)\n', (1984, 2011), True, 'import numpy as np\n'), ((17122, 17147), 'os.path.join', 'os.path.join', (['md', 'og_file'], {}), '(md, og_file)\n', (17134, 17147), False, 'import os\n'), ((17296, 17318), 'os.path.join', 'os.path.join', (['md', 'dest'], {}), '(md, dest)\n', (17308, 17318), False, 'import os\n'), ((17335, 17363), 'shutil.copyfile', 'copyfile', (['og_file_path', 'dest'], {}), '(og_file_path, dest)\n', (17343, 17363), False, 'from shutil import copyfile\n'), ((12352, 12392), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': 'columns', 'data': 'data'}), '(columns=columns, data=data)\n', (12364, 12392), True, 'import pandas as pd\n'), ((12426, 12484), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['measure', 'initial']", 'data': 'initial'}), "(columns=['measure', 'initial'], data=initial)\n", (12438, 12484), True, 'import pandas as pd\n'), ((4352, 4381), 'numpy.repeat', 'np.repeat', (['key', 'data_vec.size'], {}), '(key, data_vec.size)\n', (4361, 4381), True, 'import numpy as np\n'), ((4394, 4423), 'numpy.repeat', 'np.repeat', (['tag', 'data_vec.size'], {}), '(tag, data_vec.size)\n', (4403, 4423), True, 'import numpy as np\n'), ((12553, 12593), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': 'columns', 'data': 'data'}), '(columns=columns, data=data)\n', (12565, 12593), True, 'import pandas as pd\n'), ((12646, 12704), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['measure', 'initial']", 'data': 'initial'}), "(columns=['measure', 'initial'], data=initial)\n", (12658, 12704), True, 'import pandas as pd\n'), ((13061, 13093), 'numpy.array', 'np.array', (['[train_loss, val_loss]'], {}), '([train_loss, val_loss])\n', (13069, 13093), True, 'import numpy as np\n'), ((3593, 3639), 'numpy.repeat', 'np.repeat', (['[paths]', 'data_vec.shape[-1]'], {'axis': '(0)'}), '([paths], data_vec.shape[-1], axis=0)\n', (3602, 3639), True, 'import numpy as np\n'), ((3665, 3715), 'numpy.repeat', 'np.repeat', (['[image_set]', 'data_vec.shape[-1]'], {'axis': '(0)'}), '([image_set], data_vec.shape[-1], axis=0)\n', (3674, 3715), True, 'import numpy as np\n'), ((3741, 3788), 'numpy.repeat', 'np.repeat', (['[epochs]', 'data_vec.shape[-1]'], {'axis': '(0)'}), '([epochs], data_vec.shape[-1], axis=0)\n', (3750, 3788), True, 'import numpy as np\n'), ((3814, 3859), 'numpy.repeat', 'np.repeat', (['[lnum]', 'data_vec.shape[-1]'], {'axis': '(0)'}), '([lnum], data_vec.shape[-1], axis=0)\n', (3823, 3859), True, 'import numpy as np\n'), ((3885, 3932), 'numpy.repeat', 'np.repeat', (['[coding]', 'data_vec.shape[-1]'], {'axis': '(0)'}), '([coding], data_vec.shape[-1], axis=0)\n', (3894, 3932), True, 'import numpy as np\n'), ((3958, 4008), 'numpy.repeat', 'np.repeat', (['[perm_seed]', 'data_vec.shape[-1]'], {'axis': '(0)'}), '([perm_seed], data_vec.shape[-1], axis=0)\n', (3967, 4008), True, 'import numpy as np\n'), ((4034, 4082), 'numpy.repeat', 'np.repeat', (['[featnum]', 'data_vec.shape[-1]'], {'axis': '(0)'}), '([featnum], data_vec.shape[-1], axis=0)\n', (4043, 4082), True, 'import numpy as np\n'), ((4108, 4152), 'numpy.repeat', 'np.repeat', (['[acc]', 'data_vec.shape[-1]'], {'axis': '(0)'}), '([acc], data_vec.shape[-1], axis=0)\n', (4117, 4152), True, 'import numpy as np\n'), ((4178, 4223), 'numpy.repeat', 'np.repeat', (['[arch]', 'data_vec.shape[-1]'], {'axis': '(0)'}), '([arch], data_vec.shape[-1], axis=0)\n', (4187, 4223), True, 'import numpy as np\n'), ((4249, 4292), 'numpy.repeat', 'np.repeat', (['[RP]', 'data_vec.shape[-1]'], {'axis': '(0)'}), '([RP], data_vec.shape[-1], axis=0)\n', (4258, 4292), True, 'import numpy as np\n')]
#!/usr/bin/env python # # // SPDX-License-Identifier: BSD-3-CLAUSE # # (C) Copyright 2018, Xilinx, Inc. # import os import json import argparse from collections import OrderedDict import h5py import ntpath import cv2 import numpy as np from xfdnn.rt.xdnn_util import literal_eval from ext.PyTurboJPEG import imread as _imread class image_preprocessing(object): def __init__(self, resize=[], crop=[], pxlscale=[], meansub=[], chtranspose=None, chswap=None, plot=None): self.resize = resize self.crop = crop self.pxlscale = pxlscale self.meansub = meansub self.chtranspose = chtranspose self.chswap = chswap def max_batch_size(x): maxb = 16 if int(x) > maxb: print ("Limiting batch size to %d" % maxb) x = min( int(x), maxb) return x def extant_file(x): """ 'Type' for argparse - checks that file exists but does not open. """ if x == "-": # skip file check and allow empty string return "" if not os.path.exists(x): # Argparse uses the ArgumentTypeError to give a rejection message like: # error: argument input: x does not exist raise argparse.ArgumentTypeError("{0} does not exist".format(x)) return x def default_parser_args(): parser = argparse.ArgumentParser(description='pyXDNN') parser.add_argument('--xclbin', help='.xclbin file', required=True, type=extant_file, metavar="FILE") parser.add_argument('--batch_sz', type=max_batch_size, default=-1, help='batch size') parser.add_argument('--dsp', type=int, default=28, help="xclbin's DSP array width") parser.add_argument('--netcfg', help='FPGA instructions generated by compiler for the network', required=True, type=extant_file, metavar="FILE") parser.add_argument('--quantizecfg', help="Network's quantization parameters file", required=True, type=extant_file, metavar="FILE") parser.add_argument('--net_def', help='prototxt file for caffe', type=extant_file, metavar="FILE") parser.add_argument('--net_weights', help="caffe model file", type=extant_file, metavar="FILE") parser.add_argument('--xlnxlib', help='FPGA xfDNN lib .so (deprecated)', type=extant_file, metavar="FILE") parser.add_argument('--outsz', type=int, default=1000, help='size of last layer\'s output blob') parser.add_argument('--weights', help="Folder path to network parameters/weights", required=True, type=extant_file, metavar="FILE") parser.add_argument('--labels', help='result -> labels translation file', type=extant_file, metavar="FILE") parser.add_argument('--golden', help='file idx -> expected label file', type=extant_file, metavar="FILE") parser.add_argument('--jsoncfg', help='json file with nets, data and PEs to use', type=extant_file, metavar="FILE") parser.add_argument('--images', nargs='*', help='directory or raw image files to use as input', required=True, type=extant_file, metavar="FILE") parser.add_argument('--scaleA', type=int, default=10000, help='weights scaling value') parser.add_argument('--scaleB', type=int, default=30, help='activation scaling value ') parser.add_argument('--img_raw_scale', type=float, default=255.0, help='image raw scale value ') parser.add_argument('--img_mean', type=int, nargs=3, default=[104.007,116.669,122.679], # BGR for Caffe help='image mean values ') parser.add_argument('--img_input_scale', type=float, default=1.0, help='image input scale value ') parser.add_argument('--zmqpub', default=False, action='store_true', help='publish predictions to zmq port 5555') parser.add_argument('--perpetual', default=False, action='store_true', help='loop over input images forever') parser.add_argument('--PE', nargs='?', type=int, default=-1, help='preferred PE to run the classification on. Default is auto-select') parser.add_argument('--endLayerName', default="", help='layer name till the network should be run, helpful for debugging') parser.add_argument('--diffStartLayer', type=int, default=0, help="if 1 then we can run from any given layer ignoring the X's of first layers") parser.add_argument('--v2WeightsFormat', type=bool, default=False, help="Weights File specified as KernSizex KernSizey instead of only KernSize, supporting rectangle kernels") parser.add_argument('--layerName', default="", help='layername until which pyfpga should run, if left default, would run the entire model') parser.add_argument('--binaryFormatWeights', type=bool, default=False, help="Binary Format Weights Files") return parser def default_xdnn_arg_parser_compiled(base='TF'): parser = argparse.ArgumentParser(description='XDLF_compiled') parser.add_argument("--base", type=str, default="TF") parser.add_argument("--compilerjson", type=str, default=None) parser.add_argument("--weights", type=str, default=None) parser.add_argument("--data_format", type=str, default='NCHW') parser.add_argument("--input_shape", type=str, default=None) parser.add_argument("--labels", type=str, default=None) parser.add_argument("--image_path", type=str, default=None) parser.add_argument('--images', type=extant_file, metavar='FILE', nargs='*', help='directory or raw image files to use as input') parser.add_argument("--image", type=str, default=None) parser.add_argument('--batch_sz', type=max_batch_size, default=-1, help='batch size') parser.add_argument("--image_transforms", nargs='+', type=str, help="""None if no preprocessing is needed. <name> if using prespecified reprocessings; . list of preprocesses.""") parser.add_argument("--val", type=str, default=None) parser.add_argument("--num_batches", type=int, default=-1) parser.add_argument("--batch", type=int, default=4) parser.add_argument("--xclbin", type=str, default='') parser.add_argument('--netcfg', type=extant_file, metavar='FILE', help="""FPGA instructions generated by compiler for the network""") parser.add_argument('--jsoncfg', type=extant_file, metavar='FILE', help='json file with nets, data and PEs to use') parser.add_argument('--quantizecfg', type=extant_file, metavar='FILE', help="""Network's quantization parameters file""") parser.add_argument('--outsz', type=int, default=1000, help='size of last layer\'s output blob') parser.add_argument('--datadir', type=extant_file, metavar='FILE', help='Folder path to network parameters/weights') parser.add_argument("--xdnnv3", action='store_true', default=False) parser.add_argument("--usedeephi", action='store_true', default=False) parser.add_argument("--device", type=str, default='CPU') parser.add_argument("--quant_cfgfile", type=str, default=None) parser.add_argument("--quant_recipe", type=str, default=None) parser.add_argument("--fpga_recipe", type=str, default=None) parser.add_argument("--save", type=str, default=None) parser.add_argument("--verify_dir", type=str, default=None) parser.add_argument('--save2modeldir', action='store_true', default=False, help="""store network partitions and compiler outpults at model directory (not at script's directory.)""") parser.add_argument('--scaleA', type=int, default=10000, help='weights scaling value') parser.add_argument('--scaleB', type=int, default=30, help='activation scaling value ') parser.add_argument('--img_raw_scale',type=float, default=255.0, help='image raw scale value ') parser.add_argument('--img_mean', type=int, nargs=3, default=[104.007,116.669,122.679], # BGR for Caffe help='image mean values ') parser.add_argument('--img_input_scale', type=float, default=1.0, help='image input scale value ') parser.add_argument('--zmqpub', action='store_true', default=False, help='publish predictions to zmq port 5555') parser.add_argument('--perpetual', action='store_true', default=False, help='loop over input images forever') parser.add_argument('--PE', type=int, nargs='?', default=-1, help='preferred PE to run the classification on. Default is auto-select') parser.add_argument('--endLayerName', type=str, default='', help='layer name till the network should be run, helpful for debugging') parser.add_argument('--diffStartLayer', type=int, default=0, help="if 1 then we can run from any given layer ignoring the X's of first layers") parser.add_argument('--v2WeightsFormat', action='store_true', default=False, help="Weights File specified as KernSizex KernSizey instead of only KernSize, supporting rectangle kernels") parser.add_argument('--layerName', type=str, default='', help='layername until which pyfpga should run, if left default, would run the entire model') parser.add_argument('--binaryFormatWeights', action='store_true', default=False, help="Binary Format Weights Files") return parser def default_xdnn_arg_parser(base='TF'): if base.lower() == 'tf': ## FIXME: Hack to by pass caffe and tensorflow co-existance issues from xfdnn.tools.compile.bin.xfdnn_compiler_tensorflow import default_compiler_arg_parser as default_TF_compiler_arg_parser parser = default_TF_compiler_arg_parser() elif base.lower() == 'caffe': ## FIXME: Hack to by pass caffe and tensorflow co-existance issues from xfdnn.tools.compile.bin.xfdnn_compiler_caffe import default_compiler_arg_parser as default_CAFFE_compiler_arg_parser parser = default_CAFFE_compiler_arg_parser() else: raise AttributeError('unsupported paltform') parser.add_argument("--base", type=str, default="TF") parser.add_argument("--data_format", type=str, default='NCHW') parser.add_argument("--input_shape", type=str, default=None) parser.add_argument('--golden', type=extant_file, metavar='FILE', help='file idx -> expected label file') parser.add_argument("--labels", type=str, default=None) parser.add_argument("--image_path", type=str, default=None) parser.add_argument('--images', type=extant_file, metavar='FILE', nargs='*', help='directory or raw image files to use as input') parser.add_argument("--image", type=str, default=None) parser.add_argument('--batch_sz', type=max_batch_size, default=-1, help='batch size') parser.add_argument("--image_transforms", nargs='+', type=str, help="""None if no preprocessing is needed. <name> if using prespecified reprocessings; . list of preprocesses.""") parser.add_argument("--val", type=str, default=None) parser.add_argument("--num_batches", type=int, default=-1) parser.add_argument("--batch", type=int, default=4) parser.add_argument("--xclbin", type=str, default='') parser.add_argument('--netcfg', type=extant_file, metavar='FILE', help="""FPGA instructions generated by compiler for the network""") parser.add_argument('--jsoncfg', type=extant_file, metavar='FILE', help='json file with nets, data and PEs to use') parser.add_argument('--quantizecfg', type=extant_file, metavar='FILE', help="""Network's quantization parameters file""") parser.add_argument('--outsz', type=int, default=1000, help='size of last layer\'s output blob') parser.add_argument('--datadir', type=extant_file, metavar='FILE', help='Folder path to network parameters/weights') parser.add_argument("--xdnnv3", action='store_true', default=False) parser.add_argument("--device", type=str, default='CPU') parser.add_argument("--quant_recipe", type=str, default=None) parser.add_argument("--fpga_recipe", type=str, default=None) parser.add_argument("--save", type=str, default=None) parser.add_argument("--verify_dir", type=str, default=None) parser.add_argument('--save2modeldir', action='store_true', default=False, help="""store network partitions and compiler outpults at model directory (not at script's directory.)""") parser.add_argument('--scaleA', type=int, default=10000, help='weights scaling value') parser.add_argument('--scaleB', type=int, default=30, help='activation scaling value ') parser.add_argument('--img_raw_scale',type=float, default=255.0, help='image raw scale value ') parser.add_argument('--img_mean', type=int, nargs=3, default=[104.007,116.669,122.679], # BGR for Caffe help='image mean values ') parser.add_argument('--img_input_scale', type=float, default=1.0, help='image input scale value ') parser.add_argument('--zmqpub', action='store_true', default=False, help='publish predictions to zmq port 5555') parser.add_argument('--perpetual', action='store_true', default=False, help='loop over input images forever') parser.add_argument('--PE', type=int, nargs='?', default=-1, help='preferred PE to run the classification on. Default is auto-select') parser.add_argument('--endLayerName', type=str, default='', help='layer name till the network should be run, helpful for debugging') parser.add_argument('--diffStartLayer', type=int, default=0, help="if 1 then we can run from any given layer ignoring the X's of first layers") parser.add_argument('--v2WeightsFormat', action='store_true', default=False, help="Weights File specified as KernSizex KernSizey instead of only KernSize, supporting rectangle kernels") parser.add_argument('--layerName', type=str, default='', help='layername until which pyfpga should run, if left default, would run the entire model') parser.add_argument('--binaryFormatWeights', action='store_true', default=False, help="Binary Format Weights Files") return parser def make_dict_args(args): def find_all_images(input_dict): if 'images' in input_dict and input_dict['images'] is not None: inputFiles = [] for dir_or_image in literal_eval(str(input_dict['images'])): if os.path.isdir(dir_or_image): inputFiles += [os.path.join(dir_or_image, f) for f in os.listdir(dir_or_image) if os.path.isfile(os.path.join(dir_or_image, f))] else: inputFiles += [dir_or_image] input_dict['images'] = inputFiles def eval_string(input_dict): for key, val in list(input_dict.items()): try: input_dict[key] = literal_eval(str(val)) except: pass #if val and str(val).isdigit(): # input_dict[key] = int(val) def ingest_xclbin_json_config(input_dict): fname = input_dict['xclbin'] + ".json" with open(fname) as data: xclbinJson = json.load(data) input_dict['overlaycfg'] = xclbinJson isV3 = False if 'XDNN_VERSION_MAJOR' in xclbinJson \ and xclbinJson['XDNN_VERSION_MAJOR'] == "3": isV3 = True if isV3: input_dict['xdnnv3'] = True libPath = os.environ['LIBXDNN_PATH'] + ".v3" if os.path.isfile(libPath): os.environ['LIBXDNN_PATH'] = libPath if 'XDNN_CSR_BASE' in xclbinJson and input_dict['batch_sz'] == -1: csrAddrs = xclbinJson['XDNN_CSR_BASE'].split(",") input_dict['batch_sz'] = len(csrAddrs) if not isV3: input_dict['batch_sz'] *= 2 try: args_dict = vars(args) except: args_dict = args find_all_images(args_dict) eval_string(args_dict) ingest_xclbin_json_config(args_dict) jsoncfg_exists = args_dict.get('jsoncfg') if jsoncfg_exists: with open(args_dict['jsoncfg']) as jsoncfgFile: jsoncfgs = json.load(jsoncfgFile)['confs'] for jsoncfg in jsoncfgs: find_all_images(jsoncfg) eval_string(jsoncfg) # include all args not in args_dict['jsoncfg'] from original args_dict for key, value in list(args_dict.items()): if key not in jsoncfg: jsoncfg[key] = value args_dict['jsoncfg'] = jsoncfgs return args_dict def processCommandLine(argv=None, base='TF'): """ Invoke command line parser for command line deployment flows. """ #parser = default_xdnn_arg_parser(base=base) parser = default_parser_args() args = parser.parse_args(argv) return make_dict_args(args) # Generic list of image manipulation functions for simplifying preprocess code def loadImageBlobFromFileScriptBase(imgFile, cmdSeq): if isinstance(imgFile, str): img = _imread(imgFile) else: img = imgFile orig_shape = img.shape for (cmd,param) in cmdSeq: #print "command:",cmd,"param:",param #print "imshape:",img.shape if cmd == 'resize': img = cv2.resize(img, (param[0], param[1])) elif cmd == 'resize2mindim': height, width, __ = img.shape newdim = min(height, width) scalew = float(width) / newdim scaleh = float(height) / newdim mindim = min(param[0], param[1]) neww = int(mindim * scalew) newh = int(mindim * scaleh) img = cv2.resize(img, (neww, newh)) elif cmd == 'resize2maxdim': # Currently doesn't work for rectangular output dimensions... height, width, __ = img.shape newdim = max(height, width) scalew = float(width) / newdim scaleh = float(height) / newdim maxdim = max(param) neww = int(maxdim * scalew) newh = int(maxdim * scaleh) img = cv2.resize(img, (neww, newh)) elif cmd == 'crop_letterbox': height, width, channels = img.shape newdim = max(height, width) letter_image = np.zeros((newdim, newdim, channels)) letter_image[:, :, :] = param if newdim == width: letter_image[(newdim-height)/2:((newdim-height)/2+height),0:width] = img else: letter_image[0:height,(newdim-width)/2:((newdim-width)/2+width)] = img img = letter_image elif cmd == 'crop_center': size_x = img.shape[0] size_y = img.shape[1] ll_x = size_x//2 - param[0]//2 ll_y = size_y//2 - param[1]//2 img = img[ll_x:ll_x+param[0],ll_y:ll_y+param[1]] elif cmd == 'plot': toshow = img.astype(np.uint8) if param is not None: toshow = np.transpose(toshow, (param[0], param[1], param[2])) plt.imshow(toshow, cmap = 'gray', interpolation = 'bicubic') plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis plt.show() elif cmd == 'pxlscale': if img.dtype != np.float32: img = img.astype(np.float32, order='C') if param != 1.0: img = img * param elif cmd == 'meansub': if img.dtype != np.float32: img = img.astype(np.float32, order='C') if isinstance(param, np.ndarray): img -= param else: img -= np.array(param, dtype = np.float32, order='C') elif cmd == 'chtranspose': # HWC->CWH = 2,0,1 # CWH->HWC = 1,2,0 img = np.transpose(img, (param[0], param[1], param[2])) elif cmd == 'chswap': # BGR->RGB = 2,1,0 # RGB->BGR = 2,1,0 ch = 3*[None] if img.shape[0] == 3: ch[0] = img[0,:,:] ch[1] = img[1,:,:] ch[2] = img[2,:,:] img = np.stack((ch[param[0]],ch[param[1]],ch[param[2]]), axis=0) else: ch[0] = img[:,:,0] ch[1] = img[:,:,1] ch[2] = img[:,:,2] img = np.stack((ch[param[0]],ch[param[1]],ch[param[2]]), axis=2) else: raise NotImplementedError(cmd) # print "final imshape:",img.shape return img, orig_shape # This runs image manipulation script def loadImageBlobFromFile(imgFile, raw_scale, mean, input_scale, img_h, img_w): # Direct resize only cmdseqResize = [ ('resize',(img_w,img_h)), ('pxlscale',float(raw_scale)/255), ('meansub', mean), ('pxlscale', input_scale), ('chtranspose',(2,0,1)) ] img, orig_shape = loadImageBlobFromFileScriptBase(imgFile, cmdseqResize) # Change initial resize to match network training (shown as {alpha x 256 or 256 x alpha}->224,224, # alpha being at least 256 such that the original aspect ratio is maintained) #cmdseqCenterCrop = [ # ('resize2mindim',(256,256)), # ('crop_center',(img_h,img_w)), # ('pxlscale',float(raw_scale)/255), # ('meansub', mean), # ('pxlscale', input_scale), # ('chtranspose',(2,0,1)) # ] #img, orig_shape = loadImageBlobFromFileScriptBase(imgFile, cmdseqCenterCrop) img = img[ np.newaxis, ...] np.ascontiguousarray(img, dtype=np.float32) return img, None def loadYoloImageBlobFromFile(imgFile, img_h, img_w): # This first loads the image # letterboxes/resizes # divides by 255 to create values from 0.0 to 1.0 # Letter boxing # When given a rectangular image # If the network expects a square input # Reshape the image such that its longer dimension fits exactly in the square # i.e. # ---------- # |--------| # | IMAGE | # |--------| # ---------- cmdseqYolov2 = [ ('resize2maxdim',(img_w,img_h)), ('pxlscale',(1.0/255.0)), ('crop_letterbox',(0.5)), ('chtranspose',(2,0,1)), ('chswap',(2,1,0)) ] img, orig_shape = loadImageBlobFromFileScriptBase(imgFile, cmdseqYolov2) img = img[ np.newaxis, ...] np.ascontiguousarray(img, dtype=np.float32) return img, orig_shape def getFilePaths(paths_list): ext = (".jpg",".jpeg",".JPG",".JPEG") img_paths = [] for p in paths_list: if os.path.isfile(p) and p.endswith(ext): img_paths.append( os.path.abspath(p) ) else: for dirpath,_,filenames in os.walk(p): for f in filenames: if f.endswith(ext): img_paths.append( os.path.abspath(os.path.join(dirpath, f))) return img_paths def getTopK(output, labels, topK): output = output.flatten() topKIdx = np.argsort(output)[-topK:] topKVals = [output[ti] for ti in topKIdx] topKList = zip( topKVals, topKIdx ) topKList.reverse() return [(topKList[j][0], labels[topKList[j][1]]) for j in range(topK)] def getGoldenMap(goldenFile): goldenMap = OrderedDict() with open(goldenFile, 'r') as f: for line in f: fname = line[:line.rfind(' ')] goldenIdx = int(line[line.rfind(' ')+1:]) goldenMap[fname] = goldenIdx return goldenMap def isTopK ( out, goldenMap, fileName, labels, topK = 5): f = ntpath.basename(fileName) topKs = getTopK(out, labels, topK) for (_, label) in topKs: if ( label == labels[goldenMap[f]]): return True return False def get_labels (label_file): labels = None if (label_file): with open(label_file, 'r') as f: labels = [line.strip() for line in f] return labels def printClassification(output, img_paths, labels, topK = 5): if labels is not None: print ( getClassification ( output, img_paths, labels, topK)) def getClassification(output, img_paths, labels, topK = 5, zmqPub = False): """ Print the result of classification given class scores, and a synset labels file. :param output: Class scores, typically the output of the softmax layer. :type output: numpy.ndarray. :param img_paths: list of path(s) to image(s) :param label_file: path to label file :type args: dict. """ ret = "" if not isinstance(img_paths, list): img_paths = [img_paths] for i,p in enumerate(img_paths): topXs = getTopK(output[i,...], labels, topK) inputImage = "for {:s} ".format(p if isinstance(p, str) else 'raw_input') if zmqPub : ret += (img_paths[i] + '\n') else : ret += "---------- Prediction {:d}/{:d} {:s}----------\n".format(i+1, output.shape[0], inputImage) for (prob, label) in topXs: ret += ("{:.4f} \"{:s}\"\n".format(prob, label)) return ret def getNearFileMatchWithPrefix(path, prefix, index = 0): nearMatches = [f for f in os.listdir(path) if f.startswith(prefix)] nearMatches.sort() if len(nearMatches) > 0: return "%s/%s" % (path, nearMatches[index]) return None def loadFCWeightsBias(arg, index = 0): data_dir = arg['weights'] if ".h5" in data_dir: with h5py.File(data_dir,'r') as f: #keys = f.keys() #print (keys) key = list(f.keys())[0] weight = list(np.array(f.get(key)).flatten()) key = list(f.keys())[1] bias = list(np.array(f.get(key)).flatten()) else: fname = "%s/fc" % data_dir if not os.path.exists(fname): nearMatch = getNearFileMatchWithPrefix(data_dir, "fc", index) if nearMatch: fname = nearMatch if os.path.exists(fname): with open(fname, 'r') as f: line = f.read() vals = line.strip().split(' ') weight = [float(v) for v in vals] else: print("No FC layers found in {:s}".format(data_dir)) return (None, None) fname = "%s/fc_bias" % data_dir if not os.path.exists(fname): nearMatch = getNearFileMatchWithPrefix(data_dir, "fc_bias", index) if nearMatch: fname = nearMatch with open(fname, 'r') as f: line = f.read() vals = line.strip().split(' ') bias = [float(v) for v in vals] return (np.asarray(weight, dtype=np.float32), np.asarray(bias, dtype=np.float32))
[ "argparse.ArgumentParser", "xfdnn.tools.compile.bin.xfdnn_compiler_caffe.default_compiler_arg_parser", "os.walk", "numpy.argsort", "os.path.isfile", "os.path.join", "os.path.abspath", "os.path.exists", "numpy.transpose", "cv2.resize", "numpy.stack", "h5py.File", "numpy.asarray", "xfdnn.tools.compile.bin.xfdnn_compiler_tensorflow.default_compiler_arg_parser", "os.listdir", "json.load", "ntpath.basename", "os.path.isdir", "ext.PyTurboJPEG.imread", "numpy.zeros", "numpy.array", "collections.OrderedDict", "numpy.ascontiguousarray" ]
[((1306, 1351), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""pyXDNN"""'}), "(description='pyXDNN')\n", (1329, 1351), False, 'import argparse\n'), ((4937, 4989), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""XDLF_compiled"""'}), "(description='XDLF_compiled')\n", (4960, 4989), False, 'import argparse\n'), ((21562, 21605), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['img'], {'dtype': 'np.float32'}), '(img, dtype=np.float32)\n', (21582, 21605), True, 'import numpy as np\n'), ((22407, 22450), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['img'], {'dtype': 'np.float32'}), '(img, dtype=np.float32)\n', (22427, 22450), True, 'import numpy as np\n'), ((23284, 23297), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (23295, 23297), False, 'from collections import OrderedDict\n'), ((23585, 23610), 'ntpath.basename', 'ntpath.basename', (['fileName'], {}), '(fileName)\n', (23600, 23610), False, 'import ntpath\n'), ((1030, 1047), 'os.path.exists', 'os.path.exists', (['x'], {}), '(x)\n', (1044, 1047), False, 'import os\n'), ((9613, 9645), 'xfdnn.tools.compile.bin.xfdnn_compiler_tensorflow.default_compiler_arg_parser', 'default_TF_compiler_arg_parser', ([], {}), '()\n', (9643, 9645), True, 'from xfdnn.tools.compile.bin.xfdnn_compiler_tensorflow import default_compiler_arg_parser as default_TF_compiler_arg_parser\n'), ((17043, 17059), 'ext.PyTurboJPEG.imread', '_imread', (['imgFile'], {}), '(imgFile)\n', (17050, 17059), True, 'from ext.PyTurboJPEG import imread as _imread\n'), ((23026, 23044), 'numpy.argsort', 'np.argsort', (['output'], {}), '(output)\n', (23036, 23044), True, 'import numpy as np\n'), ((25760, 25781), 'os.path.exists', 'os.path.exists', (['fname'], {}), '(fname)\n', (25774, 25781), False, 'import os\n'), ((26349, 26385), 'numpy.asarray', 'np.asarray', (['weight'], {'dtype': 'np.float32'}), '(weight, dtype=np.float32)\n', (26359, 26385), True, 'import numpy as np\n'), ((26387, 26421), 'numpy.asarray', 'np.asarray', (['bias'], {'dtype': 'np.float32'}), '(bias, dtype=np.float32)\n', (26397, 26421), True, 'import numpy as np\n'), ((9888, 9923), 'xfdnn.tools.compile.bin.xfdnn_compiler_caffe.default_compiler_arg_parser', 'default_CAFFE_compiler_arg_parser', ([], {}), '()\n', (9921, 9923), True, 'from xfdnn.tools.compile.bin.xfdnn_compiler_caffe import default_compiler_arg_parser as default_CAFFE_compiler_arg_parser\n'), ((15155, 15170), 'json.load', 'json.load', (['data'], {}), '(data)\n', (15164, 15170), False, 'import json\n'), ((17279, 17316), 'cv2.resize', 'cv2.resize', (['img', '(param[0], param[1])'], {}), '(img, (param[0], param[1]))\n', (17289, 17316), False, 'import cv2\n'), ((22607, 22624), 'os.path.isfile', 'os.path.isfile', (['p'], {}), '(p)\n', (22621, 22624), False, 'import os\n'), ((22750, 22760), 'os.walk', 'os.walk', (['p'], {}), '(p)\n', (22757, 22760), False, 'import os\n'), ((25066, 25082), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (25076, 25082), False, 'import os\n'), ((25331, 25355), 'h5py.File', 'h5py.File', (['data_dir', '"""r"""'], {}), "(data_dir, 'r')\n", (25340, 25355), False, 'import h5py\n'), ((25616, 25637), 'os.path.exists', 'os.path.exists', (['fname'], {}), '(fname)\n', (25630, 25637), False, 'import os\n'), ((26066, 26087), 'os.path.exists', 'os.path.exists', (['fname'], {}), '(fname)\n', (26080, 26087), False, 'import os\n'), ((14427, 14454), 'os.path.isdir', 'os.path.isdir', (['dir_or_image'], {}), '(dir_or_image)\n', (14440, 14454), False, 'import os\n'), ((15488, 15511), 'os.path.isfile', 'os.path.isfile', (['libPath'], {}), '(libPath)\n', (15502, 15511), False, 'import os\n'), ((16133, 16155), 'json.load', 'json.load', (['jsoncfgFile'], {}), '(jsoncfgFile)\n', (16142, 16155), False, 'import json\n'), ((17674, 17703), 'cv2.resize', 'cv2.resize', (['img', '(neww, newh)'], {}), '(img, (neww, newh))\n', (17684, 17703), False, 'import cv2\n'), ((22676, 22694), 'os.path.abspath', 'os.path.abspath', (['p'], {}), '(p)\n', (22691, 22694), False, 'import os\n'), ((18122, 18151), 'cv2.resize', 'cv2.resize', (['img', '(neww, newh)'], {}), '(img, (neww, newh))\n', (18132, 18151), False, 'import cv2\n'), ((14491, 14520), 'os.path.join', 'os.path.join', (['dir_or_image', 'f'], {}), '(dir_or_image, f)\n', (14503, 14520), False, 'import os\n'), ((18305, 18341), 'numpy.zeros', 'np.zeros', (['(newdim, newdim, channels)'], {}), '((newdim, newdim, channels))\n', (18313, 18341), True, 'import numpy as np\n'), ((14530, 14554), 'os.listdir', 'os.listdir', (['dir_or_image'], {}), '(dir_or_image)\n', (14540, 14554), False, 'import os\n'), ((14573, 14602), 'os.path.join', 'os.path.join', (['dir_or_image', 'f'], {}), '(dir_or_image, f)\n', (14585, 14602), False, 'import os\n'), ((22896, 22920), 'os.path.join', 'os.path.join', (['dirpath', 'f'], {}), '(dirpath, f)\n', (22908, 22920), False, 'import os\n'), ((19027, 19079), 'numpy.transpose', 'np.transpose', (['toshow', '(param[0], param[1], param[2])'], {}), '(toshow, (param[0], param[1], param[2]))\n', (19039, 19079), True, 'import numpy as np\n'), ((19692, 19736), 'numpy.array', 'np.array', (['param'], {'dtype': 'np.float32', 'order': '"""C"""'}), "(param, dtype=np.float32, order='C')\n", (19700, 19736), True, 'import numpy as np\n'), ((19854, 19903), 'numpy.transpose', 'np.transpose', (['img', '(param[0], param[1], param[2])'], {}), '(img, (param[0], param[1], param[2]))\n', (19866, 19903), True, 'import numpy as np\n'), ((20185, 20245), 'numpy.stack', 'np.stack', (['(ch[param[0]], ch[param[1]], ch[param[2]])'], {'axis': '(0)'}), '((ch[param[0]], ch[param[1]], ch[param[2]]), axis=0)\n', (20193, 20245), True, 'import numpy as np\n'), ((20391, 20451), 'numpy.stack', 'np.stack', (['(ch[param[0]], ch[param[1]], ch[param[2]])'], {'axis': '(2)'}), '((ch[param[0]], ch[param[1]], ch[param[2]]), axis=2)\n', (20399, 20451), True, 'import numpy as np\n')]
from PIL import Image from torchvision import transforms import torch from torch.utils import data import torch.nn.functional as F import numpy as np import pandas as pd import json import copy from sklearn import metrics import sys, getopt import os import glob import random import collections import time from tqdm import tqdm import torch.nn as nn sys.path.append('../utils/') from Models import StudentModel from Data_Generator import Dataset_WSI import argparse import argparse print( torch.cuda.current_device()) print( torch.cuda.device_count()) parser = argparse.ArgumentParser(description='TMA patches extractor') parser.add_argument('-v','--VARIANT', type=str, default='train', help='student training variant to use (I,II,III,baseline)') parser.add_argument('-a','--APPROACH', type=str, default='ssl', help='teacher/student approach: ssl (semi-supervised), swsl (semi-weakly supervised)') parser.add_argument('-s','--SUBSET', type=int, default='19', help='subset of pseudo-labels to use 19=1000, 0=20000 pseudo labels per class') parser.add_argument('-n','--N_EXP', type=int, default=0, help='number experiment') parser.add_argument('-b','--BATCH_SIZE', type=int, default=32, help='batch size') parser.add_argument('-t','--THRESHOLD', type=int, default=500, help='patches to select') args = parser.parse_args() THRESHOLD = args.THRESHOLD MEDICAL_SOURCE = 'TCGA' #MEDICAL_SOURCE = 'panda' def create_dir(directory): if not os.path.isdir(directory): try: os.mkdir(directory) except OSError: print ("Creation of the directory %s failed" % directory) else: print ("Successfully created the directory %s " % directory) if (args.APPROACH=='ssl'): approach = 'Semi_Supervised' elif (args.APPROACH=='swsl'): approach = 'Semi_Weakly_Supervised' models_folder = 'LOCAL/PATH/../Teacher_Student_models/models_weights/' create_dir(models_folder) models_path = models_folder+approach+'/' create_dir(models_path) models_path = models_path+'Student_model/' create_dir(models_path) if (args.VARIANT!='baseline'): models_path = models_path+'student_variant_'+args.VARIANT+'/' create_dir(models_path) models_path = models_path+'perc_'+str(args.SUBSET)+'/' create_dir(models_path) else: models_path = models_path+'fully_supervised/' create_dir(models_path) models_path = models_path+'N_EXP_'+str(args.N_EXP)+'/' create_dir(models_path) checkpoint_path = models_path+'checkpoints/' create_dir(checkpoint_path) model_weights = models_path+'student_model.pt' model = torch.load(model_weights) #load testing data test_dir = 'LOCAL/PATH/../Teacher_Student_models/WSI_patches/test_densely/' csv_test = test_dir+'csv_test_densely.csv' data_test = pd.read_csv(csv_test,header=None).values data_test_paths = data_test[:,0] data_test_labels = data_test[:,1:] data_test_labels = data_test_labels.astype('int64') print(data_test.shape) print(data_test_paths.shape) print(data_test_labels.shape) array_probs = [] device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #device = torch.device('cpu') #DATA NORMALIZATION preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) #model.eval() model.to(device) def create_dir(directory): if not os.path.isdir(directory): try: os.mkdir(directory) except OSError: print ("Creation of the directory %s failed" % directory) batch_size = args.BATCH_SIZE num_workers = 32 params_test = {'batch_size': batch_size, #'shuffle': True, #'sampler': ImbalancedDatasetSampler(test_dataset), 'num_workers': num_workers} def find_first_two(array): x = np.copy(array) max_1 = np.argmax(x) max_val1 = x[max_1] x[max_1]=-1 max_2 = np.argmax(x) max_val2 = x[max_2] if (MEDICAL_SOURCE=='TCGA'): if(max_1==0 or max_2==0): max_1 = max(max_1,max_2) max_2 = max(max_1,max_2) if (max_val1>(2*max_val2)): max_2 = max_1 return max_1,max_2 def majority_voting(array): majority = [0,0,0,0] for i in range(array.shape[0]): #print(prob) idx = np.argmax(array[i]) majority[idx] = majority[idx]+1 if (MEDICAL_SOURCE=='TCGA'): majority[0]=0 pgp, sgp = find_first_two(majority) return pgp, sgp, majority def load_and_evaluate(list_f,elems,directory_histograms): testing_set = Dataset_WSI(list_f) testing_generator = data.DataLoader(testing_set, **params_test) array_probs = [] local_filenames = [] with torch.no_grad(): j = 0 for inputs, filenames in testing_generator: inputs = inputs.to(device) # zero the parameter gradients #optimizer.zero_grad() # forward + backward + optimize try: outputs = model(inputs) except: outputs = model.module(inputs) probs = F.softmax(outputs) #print(probs) #accumulate values probs = probs.cpu().data.numpy() array_probs = np.append(array_probs,probs) local_filenames = np.append(local_filenames,filenames) array_probs = np.reshape(array_probs,(elems,4)) #array_probs = np.squeeze(array_probs) #majority voting pgp,sgp, histogram = majority_voting(array_probs) y_preds.append([pgp,sgp]) #add pgp,sgp to y_preds def gleason_score(primary,secondary): array = [] if (MEDICAL_SOURCE=='panda'): for i in range(len(primary)): gs = primary[i]+secondary[i] if (gs==3 and primary[i]==2): gs = 3 elif (gs==3 and primary[i]==1): gs = 2 elif (gs==4): gs = 4 elif (gs>4): gs = 5 array.append(gs) elif (MEDICAL_SOURCE=='TCGA'): for i in range(len(primary)): a = primary[i] b = secondary[i] gs = a+b-2 if (a==1 and b==2): gs = 1 elif (a==2 and b==1): gs = 2 elif (gs==2): gs = 3 elif (gs>2): gs = 4 array.append(gs) return array def predict_metrics(y_pred,y_true,metric): if(metric=='primary'): #primary gleason pattern y_true = y_true[:,0] y_pred = y_pred[:,0] k_score_primary = metrics.cohen_kappa_score(y_true,y_pred, weights='quadratic') print("k_score_primary " + str(k_score_primary)) return k_score_primary elif(metric=='secondary'): #secondary gleason pattern y_true = y_true[:,1] y_pred = y_pred[:,1] k_score_secondary = metrics.cohen_kappa_score(y_true,y_pred, weights='quadratic') print("k_score_secondary " + str(k_score_secondary)) return k_score_secondary else: #gleason score #y_true = y_true[:,0]+y_true[:,1] #y_pred = y_pred[:,0]+y_pred[:,1] y_true = gleason_score(y_true[:,0],y_true[:,1]) y_pred = gleason_score(y_pred[:,0],y_pred[:,1]) #print(y_pred) k_score_score = metrics.cohen_kappa_score(y_true,y_pred, weights='quadratic') print("k_score_score " + str(k_score_score)) return k_score_score y_preds = [] filenames_array = [] histo_preds = [] histo_true = [] for p in data_test_paths: d = os.path.split(p)[1] directory = test_dir+d #csv_file = directory+'/'+d+'_densely.csv' csv_file = directory+'/'+d+'_densely_sorted_br_patches.csv' directory_histograms = directory+'/histograms/' create_dir(directory_histograms) local_csv = pd.read_csv(csv_file,header=None).values[:THRESHOLD,0] load_and_evaluate(local_csv,len(local_csv),directory_histograms) filenames_array.append(d) #METRICS y_preds = np.array(y_preds) y_true = data_test_labels y_preds = y_preds.astype('int64') """ for i in range(len(y_preds)): print(y_preds[i],y_true[i]) """ kappa_score_primary = predict_metrics(y_preds,y_true,'primary') kappa_score_secondary = predict_metrics(y_preds,y_true,'secondary') kappa_score_score = predict_metrics(y_preds,y_true,'score') kappa_score_best_PGP_filename = checkpoint_path+'kappa_score_PGP.csv' kappa_score_best_SGP_filename = checkpoint_path+'kappa_score_SGP.csv' kappa_score_best_GS_filename = checkpoint_path+'kappa_score_GS.csv' kappas = [kappa_score_primary] File = {'val':kappas} df = pd.DataFrame(File,columns=['val']) np.savetxt(kappa_score_best_PGP_filename, df.values, fmt='%s',delimiter=',') kappas = [kappa_score_secondary] File = {'val':kappas} df = pd.DataFrame(File,columns=['val']) np.savetxt(kappa_score_best_SGP_filename, df.values, fmt='%s',delimiter=',') kappas = [kappa_score_score] File = {'val':kappas} df = pd.DataFrame(File,columns=['val']) np.savetxt(kappa_score_best_GS_filename, df.values, fmt='%s',delimiter=',')
[ "os.mkdir", "argparse.ArgumentParser", "numpy.argmax", "pandas.read_csv", "torch.cuda.device_count", "torch.cuda.current_device", "torchvision.transforms.Normalize", "torch.no_grad", "sys.path.append", "pandas.DataFrame", "numpy.copy", "Data_Generator.Dataset_WSI", "torch.utils.data.DataLoader", "torch.load", "numpy.savetxt", "numpy.append", "numpy.reshape", "sklearn.metrics.cohen_kappa_score", "torch.cuda.is_available", "os.path.isdir", "torch.nn.functional.softmax", "numpy.array", "os.path.split", "torchvision.transforms.ToTensor" ]
[((354, 382), 'sys.path.append', 'sys.path.append', (['"""../utils/"""'], {}), "('../utils/')\n", (369, 382), False, 'import sys, getopt\n'), ((568, 628), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""TMA patches extractor"""'}), "(description='TMA patches extractor')\n", (591, 628), False, 'import argparse\n'), ((2572, 2597), 'torch.load', 'torch.load', (['model_weights'], {}), '(model_weights)\n', (2582, 2597), False, 'import torch\n'), ((8116, 8133), 'numpy.array', 'np.array', (['y_preds'], {}), '(y_preds)\n', (8124, 8133), True, 'import numpy as np\n'), ((8732, 8767), 'pandas.DataFrame', 'pd.DataFrame', (['File'], {'columns': "['val']"}), "(File, columns=['val'])\n", (8744, 8767), True, 'import pandas as pd\n'), ((8767, 8844), 'numpy.savetxt', 'np.savetxt', (['kappa_score_best_PGP_filename', 'df.values'], {'fmt': '"""%s"""', 'delimiter': '""","""'}), "(kappa_score_best_PGP_filename, df.values, fmt='%s', delimiter=',')\n", (8777, 8844), True, 'import numpy as np\n'), ((8906, 8941), 'pandas.DataFrame', 'pd.DataFrame', (['File'], {'columns': "['val']"}), "(File, columns=['val'])\n", (8918, 8941), True, 'import pandas as pd\n'), ((8941, 9018), 'numpy.savetxt', 'np.savetxt', (['kappa_score_best_SGP_filename', 'df.values'], {'fmt': '"""%s"""', 'delimiter': '""","""'}), "(kappa_score_best_SGP_filename, df.values, fmt='%s', delimiter=',')\n", (8951, 9018), True, 'import numpy as np\n'), ((9076, 9111), 'pandas.DataFrame', 'pd.DataFrame', (['File'], {'columns': "['val']"}), "(File, columns=['val'])\n", (9088, 9111), True, 'import pandas as pd\n'), ((9111, 9187), 'numpy.savetxt', 'np.savetxt', (['kappa_score_best_GS_filename', 'df.values'], {'fmt': '"""%s"""', 'delimiter': '""","""'}), "(kappa_score_best_GS_filename, df.values, fmt='%s', delimiter=',')\n", (9121, 9187), True, 'import numpy as np\n'), ((495, 522), 'torch.cuda.current_device', 'torch.cuda.current_device', ([], {}), '()\n', (520, 522), False, 'import torch\n'), ((531, 556), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (554, 556), False, 'import torch\n'), ((2750, 2784), 'pandas.read_csv', 'pd.read_csv', (['csv_test'], {'header': 'None'}), '(csv_test, header=None)\n', (2761, 2784), True, 'import pandas as pd\n'), ((3769, 3783), 'numpy.copy', 'np.copy', (['array'], {}), '(array)\n', (3776, 3783), True, 'import numpy as np\n'), ((3796, 3808), 'numpy.argmax', 'np.argmax', (['x'], {}), '(x)\n', (3805, 3808), True, 'import numpy as np\n'), ((3861, 3873), 'numpy.argmax', 'np.argmax', (['x'], {}), '(x)\n', (3870, 3873), True, 'import numpy as np\n'), ((4519, 4538), 'Data_Generator.Dataset_WSI', 'Dataset_WSI', (['list_f'], {}), '(list_f)\n', (4530, 4538), False, 'from Data_Generator import Dataset_WSI\n'), ((4563, 4606), 'torch.utils.data.DataLoader', 'data.DataLoader', (['testing_set'], {}), '(testing_set, **params_test)\n', (4578, 4606), False, 'from torch.utils import data\n'), ((5316, 5351), 'numpy.reshape', 'np.reshape', (['array_probs', '(elems, 4)'], {}), '(array_probs, (elems, 4))\n', (5326, 5351), True, 'import numpy as np\n'), ((1447, 1471), 'os.path.isdir', 'os.path.isdir', (['directory'], {}), '(directory)\n', (1460, 1471), False, 'import os\n'), ((3045, 3070), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3068, 3070), False, 'import torch\n'), ((3173, 3194), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (3192, 3194), False, 'from torchvision import transforms\n'), ((3200, 3275), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n', (3220, 3275), False, 'from torchvision import transforms\n'), ((3351, 3375), 'os.path.isdir', 'os.path.isdir', (['directory'], {}), '(directory)\n', (3364, 3375), False, 'import os\n'), ((4256, 4275), 'numpy.argmax', 'np.argmax', (['array[i]'], {}), '(array[i])\n', (4265, 4275), True, 'import numpy as np\n'), ((4664, 4679), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4677, 4679), False, 'import torch\n'), ((6601, 6663), 'sklearn.metrics.cohen_kappa_score', 'metrics.cohen_kappa_score', (['y_true', 'y_pred'], {'weights': '"""quadratic"""'}), "(y_true, y_pred, weights='quadratic')\n", (6626, 6663), False, 'from sklearn import metrics\n'), ((7673, 7689), 'os.path.split', 'os.path.split', (['p'], {}), '(p)\n', (7686, 7689), False, 'import os\n'), ((1498, 1517), 'os.mkdir', 'os.mkdir', (['directory'], {}), '(directory)\n', (1506, 1517), False, 'import os\n'), ((3402, 3421), 'os.mkdir', 'os.mkdir', (['directory'], {}), '(directory)\n', (3410, 3421), False, 'import os\n'), ((5053, 5071), 'torch.nn.functional.softmax', 'F.softmax', (['outputs'], {}), '(outputs)\n', (5062, 5071), True, 'import torch.nn.functional as F\n'), ((5201, 5230), 'numpy.append', 'np.append', (['array_probs', 'probs'], {}), '(array_probs, probs)\n', (5210, 5230), True, 'import numpy as np\n'), ((5260, 5297), 'numpy.append', 'np.append', (['local_filenames', 'filenames'], {}), '(local_filenames, filenames)\n', (5269, 5297), True, 'import numpy as np\n'), ((6930, 6992), 'sklearn.metrics.cohen_kappa_score', 'metrics.cohen_kappa_score', (['y_true', 'y_pred'], {'weights': '"""quadratic"""'}), "(y_true, y_pred, weights='quadratic')\n", (6955, 6992), False, 'from sklearn import metrics\n'), ((7399, 7461), 'sklearn.metrics.cohen_kappa_score', 'metrics.cohen_kappa_score', (['y_true', 'y_pred'], {'weights': '"""quadratic"""'}), "(y_true, y_pred, weights='quadratic')\n", (7424, 7461), False, 'from sklearn import metrics\n'), ((7939, 7973), 'pandas.read_csv', 'pd.read_csv', (['csv_file'], {'header': 'None'}), '(csv_file, header=None)\n', (7950, 7973), True, 'import pandas as pd\n')]
from abc import ABC, abstractmethod import numpy as np class User(ABC): """ User in the typing environment. Can be simulated or a real user. :param input_dim: (Tuple(int)) The dimensionality of the inputs this users produces. """ def __init__(self, input_dim, n_samples, baseline_temp, boltzmann_exploration): self.env = None self.input_dim = input_dim self.n_samples = n_samples self.model = None self.baseline_temp = baseline_temp self.boltzmann_exploration = boltzmann_exploration def setup(self, env): """ Sets up the environment with the user. Must be called before running the user. """ self.env = env def setup_model(self, model): """ Sets up the predictive model. Should be called by the model during initialization. """ self.model = model @abstractmethod def run(self, total_timesteps, callback, tb_log_name, mode, disable_learning): """ Runs the user with the typing environment. """ pass def predict(self, obs): """ Returns the predictive model's distribution over actions given inputs. """ with self.model.sess.as_default(): obs = np.array(obs)[None] pred = self.model.act(obs, self.env.targets) pred = np.squeeze(pred) return pred def reset(self): pass @abstractmethod def get_input(self): """ Gets the input at the current timestep """ pass @abstractmethod def baseline(self, obs): """ Baseline predictive method """ pass @abstractmethod def get_next_action_index(self): """ Gets the next desired action index according to the user's goal. """ pass @staticmethod def softmax(x): unnormalized = np.exp(x) return unnormalized / np.sum(unnormalized)
[ "numpy.squeeze", "numpy.sum", "numpy.exp", "numpy.array" ]
[((1370, 1386), 'numpy.squeeze', 'np.squeeze', (['pred'], {}), '(pred)\n', (1380, 1386), True, 'import numpy as np\n'), ((1924, 1933), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (1930, 1933), True, 'import numpy as np\n'), ((1964, 1984), 'numpy.sum', 'np.sum', (['unnormalized'], {}), '(unnormalized)\n', (1970, 1984), True, 'import numpy as np\n'), ((1278, 1291), 'numpy.array', 'np.array', (['obs'], {}), '(obs)\n', (1286, 1291), True, 'import numpy as np\n')]
from __future__ import absolute_import from __future__ import print_function import numpy as np import random from keras.utils import np_utils from keras.datasets import mnist from keras.models import Model,Sequential from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add from keras.optimizers import RMSprop from keras import backend as K import os from keras.callbacks import TensorBoard num_classes = 74 epochs = 10 os.environ['CUDA_VISIBLE_DEVICES'] = '0' def euclidean_distance(vects): x, y = vects return K.sqrt(K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon())) # return 1 def eucl_dist_output_shape(shapes): shape1, shape2 = shapes return (shape1[0], 1) def contrastive_loss(y_true, y_pred): '''Contrastive loss from Hadsell-et-al.'06 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf ''' margin = 1 return K.mean(y_true * K.square(y_pred) + (1 - y_true) * K.square(K.maximum(margin - y_pred, 0))) # def create_pairs(x, digit_indices): '''Positive and negative pair creation. Alternates between positive and negative pairs. ''' def create_pairs(x, y): print(np.array(x).shape) pairs = [] labels = [] # nums = len(x) nums = 100 for i in range(nums): for j in range(i, nums): # print (x) # print (np.array(ran1)) z1, z2 = x[i], x[j] # print (z1) pairs +=[[z1, z2]] if y[i] == y[j]: labels += [0] else: labels += [1] # ran1 = [] # ran2 = [] # for k in range(0,90): # ran1.append(random.random()*random.random()*1000.0) # ran2.append(random.random()*random.random()*400.0) # z1, z2 = np.array(ran1), np.array(ran2) # # print (z1) # pairs +=[[z1, z2]] # labels += [random.randint(0,1)] # # n = min([len(digit_indices[d]) for d in range(num_classes)]) - 1 # for d in range(num_classes): # print (len(digit_indices[d])) # n = -1 # # print (n) # for d in range(num_classes): # for i in range(n): # z1, z2 = digit_indices[d][i], digit_indices[d][i + 1] # pairs += [[x[z1], x[z2]]] # inc = random.randrange(1, num_classes) # dn = (d + inc) % num_classes # z1, z2 = digit_indices[d][i], digit_indices[dn][i] # pairs += [[x[z1], x[z2]]] # labels += [1, 0] return np.array(pairs), np.array(labels) def create_pairs_2(x1, x2, y1, y2): # print(np.array(xs).shape) pairs = [] labels = [] for i in range(len(x2)): for j in range(len(x1)): # print (x) # print (np.array(ran1)) z1, z2 = x2[i], x1[j] # print (z1) pairs +=[[z1, z2]] if y2[i] == y1[j]: labels += [0] else: labels += [1] # ran1 = [] # ran2 = [] # for k in range(0,90): # ran1.append(random.random()*random.random()*1000.0) # ran2.append(random.random()*random.random()*400.0) # z1, z2 = np.array(ran1), np.array(ran2) # # print (z1) # pairs +=[[z1, z2]] # labels += [random.randint(0,1)] # # n = min([len(digit_indices[d]) for d in range(num_classes)]) - 1 # for d in range(num_classes): # print (len(digit_indices[d])) # n = -1 # # print (n) # for d in range(num_classes): # for i in range(n): # z1, z2 = digit_indices[d][i], digit_indices[d][i + 1] # pairs += [[x[z1], x[z2]]] # inc = random.randrange(1, num_classes) # dn = (d + inc) % num_classes # z1, z2 = digit_indices[d][i], digit_indices[dn][i] # pairs += [[x[z1], x[z2]]] # labels += [1, 0] return np.array(pairs), np.array(labels) def create_base_network(input_shape): '''Base network to be shared (eq. to feature extraction). # ''' # print (input_shape) input = Input(shape=input_shape) # x = Flatten()(input) # print (input) x = Dense(400, activation ='relu',name='l1')(input) x = Dropout(0.2,name='d1')(x) x = Dense(300, activation ='relu',name='l2')(x) x = Dropout(0.2,name='d2')(x) x = Dense(200, activation='relu', name='l3')(x) x = Dropout(0.2,name='d3')(x) x = Dense(200, activation='relu', name='l4')(x) x = Dropout(0.2, name='d4')(x) # model.add(Dense(num_classes, activation = 'softmax')) # x = Dense(128, activation='relu')(x) # x = Dropout(0.1)(x) # x = Dense(128, activation='relu')(x) # x = Dropout(0.1)(x) # x = Dense(128, activation='relu')(x) return Model(input, x) def compute_accuracy(y_true, y_pred): '''Compute classification accuracy with a fixed threshold on distances. ''' pred = y_pred.ravel() < 0.5 # print(pred) return np.mean(pred == y_true) def accuracy(y_true, y_pred): '''Compute classification accuracy with a fixed threshold on distances. ''' return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype))) # the data, split between train and test sets # (x_train, y_train), (x_test, y_test) = mnist.load_data() # x_train = x_train.astype('float32') # x_test = x_test.astype('float32') # x_train /= 255 # x_test /= 255 def get_name(filename): name_list = os.listdir(filename) return name_list def readfile(filename): with open(filename) as file: data = file.read() return data def get_data(path, x, y, label): name_list = get_name(path) data1 = readfile(os.path.join(path, name_list[0])) data1 = data1.split(",") # print data data1.pop() ori = len(data1) # print (ori) for each in name_list: if each == ".DS_Store": continue data = readfile(os.path.join(path, each)) data = data.split(",") # print data data.pop() # if len(data) >= 33: # data.pop(33) l = len(data) # print (data) # print(np.array(data).shape) for k in range(0, len(data)): data[k] = float(data[k]) # trainx.append() if l == ori: # print (data) x.append(data) a = each.split("_")[1] y.append([label[a]]) path_train = './trainingfeature' path_test = './testingfeature' x_test = [] y_test = [] x_train = [] y_train = [] label = dict() name_list = get_name(path_train) p = 0 for i in range(0,len(name_list)): if name_list[i] == ".DS_Store": continue a = name_list[i].split("_")[1] if a in label.keys(): continue label[a] = p p += 1 # print(len(label.keys())) # print (p) # print len(label) get_data(path_train, x_train, y_train, label) get_data(path_test, x_test, y_test, label) # print (y_test) # num_classes = 74 x_train = np.array(x_train) x_test = np.array(x_test) # y_train = np_utils.to_categorical(y_train,74) # y_test = np_utils.to_categorical(y_test,74) y_train = np.array(y_train) y_test = np.array(y_test) # print (y_test) # print (y_train) input_shape = x_train.shape[1:] # input_shape = (1090,) # create training+test positive and negative pairs digit_indices = [np.where(y_train == i)[0] for i in range(num_classes)] # print(digit_indices) # tr_pairs, tr_y = create_pairs(x_train, digit_indices) tr_pairs, tr_y = create_pairs(x_train, y_train) print (tr_pairs.shape) digit_indices = [np.where(y_test == i)[0] for i in range(num_classes)] # te_pairs, te_y = create_pairs_2(x_test, x_train, y_test, y_train) te_pairs, te_y = create_pairs(x_test, y_test) print (te_pairs.shape) te_y = np_utils.to_categorical(te_y,2) tr_y = np_utils.to_categorical(tr_y,2) # for i in range(len(te_)) # tr_y = np_utils.to_categorical(tr_y,2) # te_y = np_utils.to_categorical(te_y,2) # print (tr_pairs) # print (te_y) # network definition base_network = create_base_network(input_shape) base_network.load_weights("./weights/base_model.hdf5", by_name = True) input_a = Input(shape=input_shape) input_b = Input(shape=input_shape) # because we re-use the same instance `base_network`, # the weights of the network # will be shared across the two branches processed_a = base_network(input_a) # processed_a.load_weights("./weights/base_model.hdf5", by_name = True) processed_b = base_network(input_b) # processed_b.load_weights("./weights/base_model.hdf5", by_name = True) distance = Lambda(euclidean_distance, output_shape=eucl_dist_output_shape)([processed_a, processed_b]) # print(distance) # model = Model([input_a, input_b], distance) # model = Model([input_a, input_b]) # model = Sequential() # x = merge([processed_a, processed_b],mode='concat') # x = Dense(3000, activation ='relu')(x) # x = Dropout(0.2)(x) # x = Dense(2000, activation='relu')(x) # x = Dropout(0.2)(x) # x = Dense(2000, activation='relu')(x) # x = Dropout(0.2)(x) # x = Dense(2, activation='softmax')(x) # model = Model([input_a, input_b],x) added = concatenate([processed_a, processed_b]) # equivalent to added = keras.layers.add([x1, x2]) print (processed_a.shape) out = Dense(400,activation ='relu')(added) out = Dropout(0.2)(out) out = Dense(200,activation ='relu')(out) out = Dropout(0.2)(out) out = Dense(2,activation ='softmax')(out) model = Model(inputs=[input_a, input_b], outputs=out) model.summary() # model.add(Add()([processed_a, processed_b])) # model.add(400, activation ='relu') # model.add(Dropout(0.2)) # model.add(200, activation ='relu') # model.add(Dropout(0.2)) # model.add(Dense(2, activation='softmax')) # train rms = RMSprop() tensorboard = TensorBoard(log_dir='log', histogram_freq=0,write_graph=True,write_images=True) # model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy]) # model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y, # batch_size=100, # validation_split=0.2,epochs=epochs,callbacks=[tensorboard]) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y, validation_split=0.2, epochs=epochs, batch_size=32, verbose=2, callbacks=[tensorboard]) scores = model.evaluate([te_pairs[:, 0], te_pairs[:, 1]], te_y,verbose=0) # print (scores) # compute final accuracy on training and test sets y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]]) tr_acc = compute_accuracy(tr_y, y_pred) # print (te_pairs[:,0]) # print(np.array([tr_pairs[:, 0], tr_pairs[:, 1]]).shape) # print (x_train) # print(len(x_train[1])) # for i in range(len(x_test)): # min_pro = 0.0 # index = 0 # for j in range(len(x_train)): # # print(x_test) # # print(x_test[i,:]) # # print() # z1, z2 = x_test[i], x_train[j] # # print(len(z1)) # # print((np.array([np.array([z1]), np.array([z2])]).shape)) # pre = model.predict([np.array([z1]), np.array([z2])]) # if pre[0][0] > min_pro: # min_pro = pre[0][0] # print (min_pro) # print (pre) y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]]) # print (np.array(y_pred).shape) print (model.predict([te_pairs[:, 0], te_pairs[:, 1]])) te_acc = compute_accuracy(te_y, y_pred) print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc)) print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))
[ "keras.layers.Dropout", "keras.backend.epsilon", "keras.models.Model", "keras.backend.square", "keras.optimizers.RMSprop", "keras.utils.np_utils.to_categorical", "keras.callbacks.TensorBoard", "numpy.array", "numpy.mean", "keras.layers.Lambda", "keras.layers.Dense", "keras.layers.Input", "numpy.where", "keras.layers.concatenate", "keras.backend.cast", "os.path.join", "os.listdir", "keras.backend.maximum" ]
[((7099, 7116), 'numpy.array', 'np.array', (['x_train'], {}), '(x_train)\n', (7107, 7116), True, 'import numpy as np\n'), ((7126, 7142), 'numpy.array', 'np.array', (['x_test'], {}), '(x_test)\n', (7134, 7142), True, 'import numpy as np\n'), ((7248, 7265), 'numpy.array', 'np.array', (['y_train'], {}), '(y_train)\n', (7256, 7265), True, 'import numpy as np\n'), ((7275, 7291), 'numpy.array', 'np.array', (['y_test'], {}), '(y_test)\n', (7283, 7291), True, 'import numpy as np\n'), ((7877, 7909), 'keras.utils.np_utils.to_categorical', 'np_utils.to_categorical', (['te_y', '(2)'], {}), '(te_y, 2)\n', (7900, 7909), False, 'from keras.utils import np_utils\n'), ((7916, 7948), 'keras.utils.np_utils.to_categorical', 'np_utils.to_categorical', (['tr_y', '(2)'], {}), '(tr_y, 2)\n', (7939, 7948), False, 'from keras.utils import np_utils\n'), ((8243, 8267), 'keras.layers.Input', 'Input', ([], {'shape': 'input_shape'}), '(shape=input_shape)\n', (8248, 8267), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((8278, 8302), 'keras.layers.Input', 'Input', ([], {'shape': 'input_shape'}), '(shape=input_shape)\n', (8283, 8302), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((9216, 9255), 'keras.layers.concatenate', 'concatenate', (['[processed_a, processed_b]'], {}), '([processed_a, processed_b])\n', (9227, 9255), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((9516, 9561), 'keras.models.Model', 'Model', ([], {'inputs': '[input_a, input_b]', 'outputs': 'out'}), '(inputs=[input_a, input_b], outputs=out)\n', (9521, 9561), False, 'from keras.models import Model, Sequential\n'), ((9810, 9819), 'keras.optimizers.RMSprop', 'RMSprop', ([], {}), '()\n', (9817, 9819), False, 'from keras.optimizers import RMSprop\n'), ((9834, 9920), 'keras.callbacks.TensorBoard', 'TensorBoard', ([], {'log_dir': '"""log"""', 'histogram_freq': '(0)', 'write_graph': '(True)', 'write_images': '(True)'}), "(log_dir='log', histogram_freq=0, write_graph=True, write_images\n =True)\n", (9845, 9920), False, 'from keras.callbacks import TensorBoard\n'), ((4243, 4267), 'keras.layers.Input', 'Input', ([], {'shape': 'input_shape'}), '(shape=input_shape)\n', (4248, 4267), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((4917, 4932), 'keras.models.Model', 'Model', (['input', 'x'], {}), '(input, x)\n', (4922, 4932), False, 'from keras.models import Model, Sequential\n'), ((5118, 5141), 'numpy.mean', 'np.mean', (['(pred == y_true)'], {}), '(pred == y_true)\n', (5125, 5141), True, 'import numpy as np\n'), ((5583, 5603), 'os.listdir', 'os.listdir', (['filename'], {}), '(filename)\n', (5593, 5603), False, 'import os\n'), ((8656, 8719), 'keras.layers.Lambda', 'Lambda', (['euclidean_distance'], {'output_shape': 'eucl_dist_output_shape'}), '(euclidean_distance, output_shape=eucl_dist_output_shape)\n', (8662, 8719), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((9340, 9369), 'keras.layers.Dense', 'Dense', (['(400)'], {'activation': '"""relu"""'}), "(400, activation='relu')\n", (9345, 9369), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((9383, 9395), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (9390, 9395), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((9407, 9436), 'keras.layers.Dense', 'Dense', (['(200)'], {'activation': '"""relu"""'}), "(200, activation='relu')\n", (9412, 9436), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((9448, 9460), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (9455, 9460), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((9472, 9502), 'keras.layers.Dense', 'Dense', (['(2)'], {'activation': '"""softmax"""'}), "(2, activation='softmax')\n", (9477, 9502), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((2608, 2623), 'numpy.array', 'np.array', (['pairs'], {}), '(pairs)\n', (2616, 2623), True, 'import numpy as np\n'), ((2625, 2641), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (2633, 2641), True, 'import numpy as np\n'), ((4059, 4074), 'numpy.array', 'np.array', (['pairs'], {}), '(pairs)\n', (4067, 4074), True, 'import numpy as np\n'), ((4076, 4092), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (4084, 4092), True, 'import numpy as np\n'), ((4323, 4363), 'keras.layers.Dense', 'Dense', (['(400)'], {'activation': '"""relu"""', 'name': '"""l1"""'}), "(400, activation='relu', name='l1')\n", (4328, 4363), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((4379, 4402), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {'name': '"""d1"""'}), "(0.2, name='d1')\n", (4386, 4402), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((4413, 4453), 'keras.layers.Dense', 'Dense', (['(300)'], {'activation': '"""relu"""', 'name': '"""l2"""'}), "(300, activation='relu', name='l2')\n", (4418, 4453), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((4465, 4488), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {'name': '"""d2"""'}), "(0.2, name='d2')\n", (4472, 4488), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((4499, 4539), 'keras.layers.Dense', 'Dense', (['(200)'], {'activation': '"""relu"""', 'name': '"""l3"""'}), "(200, activation='relu', name='l3')\n", (4504, 4539), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((4551, 4574), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {'name': '"""d3"""'}), "(0.2, name='d3')\n", (4558, 4574), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((4585, 4625), 'keras.layers.Dense', 'Dense', (['(200)'], {'activation': '"""relu"""', 'name': '"""l4"""'}), "(200, activation='relu', name='l4')\n", (4590, 4625), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((4637, 4660), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {'name': '"""d4"""'}), "(0.2, name='d4')\n", (4644, 4660), False, 'from keras.layers import Input, Flatten, Dense, Dropout, Lambda, concatenate, Add\n'), ((5812, 5844), 'os.path.join', 'os.path.join', (['path', 'name_list[0]'], {}), '(path, name_list[0])\n', (5824, 5844), False, 'import os\n'), ((7455, 7477), 'numpy.where', 'np.where', (['(y_train == i)'], {}), '(y_train == i)\n', (7463, 7477), True, 'import numpy as np\n'), ((7678, 7699), 'numpy.where', 'np.where', (['(y_test == i)'], {}), '(y_test == i)\n', (7686, 7699), True, 'import numpy as np\n'), ((614, 625), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (623, 625), True, 'from keras import backend as K\n'), ((1213, 1224), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (1221, 1224), True, 'import numpy as np\n'), ((5292, 5326), 'keras.backend.cast', 'K.cast', (['(y_pred < 0.5)', 'y_true.dtype'], {}), '(y_pred < 0.5, y_true.dtype)\n', (5298, 5326), True, 'from keras import backend as K\n'), ((6051, 6075), 'os.path.join', 'os.path.join', (['path', 'each'], {}), '(path, each)\n', (6063, 6075), False, 'import os\n'), ((573, 588), 'keras.backend.square', 'K.square', (['(x - y)'], {}), '(x - y)\n', (581, 588), True, 'from keras import backend as K\n'), ((942, 958), 'keras.backend.square', 'K.square', (['y_pred'], {}), '(y_pred)\n', (950, 958), True, 'from keras import backend as K\n'), ((1003, 1032), 'keras.backend.maximum', 'K.maximum', (['(margin - y_pred)', '(0)'], {}), '(margin - y_pred, 0)\n', (1012, 1032), True, 'from keras import backend as K\n')]
import gym import numpy as np import pygame from pygame.locals import * import time import sys sys.path.append('../') ENV_NAME = 'PlaygroundNavigationHuman-v1' from src.playground_env.reward_function import sample_descriptions_from_state, get_reward_from_state from src.playground_env.descriptions import generate_all_descriptions from src.playground_env.env_params import get_env_params """ Playing script. Control the agent with the arrows, close the gripper with the space bar. """ env = gym.make(ENV_NAME, reward_screen=False, viz_data_collection=True) pygame.init() env_params = get_env_params() train_descriptions, test_descriptions, extra_descriptions = generate_all_descriptions(env_params) all_descriptions = train_descriptions + test_descriptions # Select the goal to generate the scene. goal_str = np.random.choice(all_descriptions) env.reset() env.unwrapped.reset_with_goal(goal_str) while True: # init_render action = np.zeros([3]) for event in pygame.event.get(): if hasattr(event, 'key'): # J1 if (event.key == K_DOWN): action[1] = -1 elif event.key == K_UP: action[1] = 1 # J2 elif (event.key == K_LEFT): action[0] = -1 elif event.key == K_RIGHT: action[0] = 1 # J3 elif event.key == K_SPACE: action[2] = 1 elif event.key == K_q: stop = True if action.sum() != 0: time.sleep(0.05) break out = env.step(action) env.render() # Sample descriptions of the current state train_descr, test_descr, extra_descr = sample_descriptions_from_state(out[0], env.unwrapped.params) descr = train_descr + test_descr print(descr) # assert that the reward function works, should give positive rewards for descriptions sampled, negative for others. for d in descr: assert get_reward_from_state(out[0], d, env_params) for d in np.random.choice(list(set(all_descriptions) - set(descr)), size=20): assert not get_reward_from_state(out[0], d, env_params)
[ "sys.path.append", "src.playground_env.reward_function.get_reward_from_state", "gym.make", "src.playground_env.reward_function.sample_descriptions_from_state", "pygame.event.get", "numpy.zeros", "pygame.init", "src.playground_env.descriptions.generate_all_descriptions", "time.sleep", "numpy.random.choice", "src.playground_env.env_params.get_env_params" ]
[((96, 118), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (111, 118), False, 'import sys\n'), ((494, 559), 'gym.make', 'gym.make', (['ENV_NAME'], {'reward_screen': '(False)', 'viz_data_collection': '(True)'}), '(ENV_NAME, reward_screen=False, viz_data_collection=True)\n', (502, 559), False, 'import gym\n'), ((560, 573), 'pygame.init', 'pygame.init', ([], {}), '()\n', (571, 573), False, 'import pygame\n'), ((588, 604), 'src.playground_env.env_params.get_env_params', 'get_env_params', ([], {}), '()\n', (602, 604), False, 'from src.playground_env.env_params import get_env_params\n'), ((665, 702), 'src.playground_env.descriptions.generate_all_descriptions', 'generate_all_descriptions', (['env_params'], {}), '(env_params)\n', (690, 702), False, 'from src.playground_env.descriptions import generate_all_descriptions\n'), ((815, 849), 'numpy.random.choice', 'np.random.choice', (['all_descriptions'], {}), '(all_descriptions)\n', (831, 849), True, 'import numpy as np\n'), ((948, 961), 'numpy.zeros', 'np.zeros', (['[3]'], {}), '([3])\n', (956, 961), True, 'import numpy as np\n'), ((979, 997), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (995, 997), False, 'import pygame\n'), ((1717, 1777), 'src.playground_env.reward_function.sample_descriptions_from_state', 'sample_descriptions_from_state', (['out[0]', 'env.unwrapped.params'], {}), '(out[0], env.unwrapped.params)\n', (1747, 1777), False, 'from src.playground_env.reward_function import sample_descriptions_from_state, get_reward_from_state\n'), ((1989, 2033), 'src.playground_env.reward_function.get_reward_from_state', 'get_reward_from_state', (['out[0]', 'd', 'env_params'], {}), '(out[0], d, env_params)\n', (2010, 2033), False, 'from src.playground_env.reward_function import sample_descriptions_from_state, get_reward_from_state\n'), ((2135, 2179), 'src.playground_env.reward_function.get_reward_from_state', 'get_reward_from_state', (['out[0]', 'd', 'env_params'], {}), '(out[0], d, env_params)\n', (2156, 2179), False, 'from src.playground_env.reward_function import sample_descriptions_from_state, get_reward_from_state\n'), ((1542, 1558), 'time.sleep', 'time.sleep', (['(0.05)'], {}), '(0.05)\n', (1552, 1558), False, 'import time\n')]
# -- coding: utf-8 -- import numpy as np from sklearn.model_selection import train_test_split def load_data(file_path='/data/u.data'): """ 加载movielens评分数据 :param file_path: ratings数据存储位置 :return: 评分对(uid, mid, rating)数组,用户数量,电影数量 """ data = [] for line in open(file_path, 'r'): arr = line.split() uid = int(arr[0]) mid = int(arr[1]) rating = int(arr[2]) data.append([uid, mid, rating]) data = np.array(data) n_users = np.max(data[:, 0]) + 1 n_movies = len(np.unique(data[:, 1])) + 1 return np.array(data), n_users, n_movies def split_data(data, test_size=0.2): """ 分割数据集为训练集和测试集 :param data: 原始评分数据 :param test_size: 划分的比例 :return: 训练集和数据集array train_data, test_data """ return train_test_split(data, test_size)
[ "sklearn.model_selection.train_test_split", "numpy.max", "numpy.array", "numpy.unique" ]
[((467, 481), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (475, 481), True, 'import numpy as np\n'), ((795, 828), 'sklearn.model_selection.train_test_split', 'train_test_split', (['data', 'test_size'], {}), '(data, test_size)\n', (811, 828), False, 'from sklearn.model_selection import train_test_split\n'), ((496, 514), 'numpy.max', 'np.max', (['data[:, 0]'], {}), '(data[:, 0])\n', (502, 514), True, 'import numpy as np\n'), ((577, 591), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (585, 591), True, 'import numpy as np\n'), ((538, 559), 'numpy.unique', 'np.unique', (['data[:, 1]'], {}), '(data[:, 1])\n', (547, 559), True, 'import numpy as np\n')]
import numpy as np def get_1d_gauss_kernel(sigma, extent=3): """Build a 1-dimensional Gaussian kernel. Parameters ---------- sigma : int or float The standard deviation of the Gaussian function. extent : int, optional How many times sigma to consider on each side of the mean. 3 x sigma would cover >99% of the values in a Gaussian. This parameter defines the length of the returned kernel, i.e. = (2 * extent) + 1. Returns ------- out : 1d array The Gaussian kernel. """ n = np.ceil(sigma * extent) kernel = np.exp(-(np.arange(-n, n + 1) ** 2) / (2 * (sigma ** 2))) kernel = kernel / np.sum(kernel) # Normalize return kernel def get_1d_LoG_kernel(sigma, extent=3, return_threshold_factor=False): """Build a 1-dimensional Laplacian of Gaussian (LoG) kernel. Parameters ---------- sigma : int or float The standard deviation of the Gaussian function. extent : int, optional How many times sigma to consider on each side of the mean. 3 x sigma would cover >99% of the values in a Gaussian. This parameter defines the length of the returned kernel, i.e. = (2 * extent) + 1. return_threshold_factor: bool, optional Whether or not to return the threshold factor. Returns ------- out : 1d array The Laplacian of Gaussian kernel. """ kernel = get_1d_gauss_kernel(sigma, extent) kernel_len = np.int32(len(kernel)) kernel_half_len = kernel_len // 2 # Compute the Laplacian of the above Gaussian. # The first (sigma ** 2) below is the normalising factor to render the # outputs scale-invariant. The rest is the 2nd derivative of the Gaussian. kernel = (sigma ** 2) * \ (-1 / (sigma ** 4)) * kernel * \ ((np.arange(-kernel_half_len, kernel_half_len + 1) ** 2) - (sigma ** 2)) # Sum of the points within one-sigma of mean threshold_factor = np.sum(kernel) - ( 2 * np.sum(kernel[0:np.ceil(2 * sigma).astype(np.int)])) # Note: Doing this before removal of DC (below) because it undesirably # lowers the threshold for larger sigma. # Normalize, in order to set the convolution outputs to be closer to # putative blobs' original SNRs. kernel /= threshold_factor # Remove DC # kernel -= np.mean(kernel) # Not really necessary if return_threshold_factor: return kernel, threshold_factor else: return kernel def first_true(bool_mask, invalid_val=-1): """Get the index of the first True value in the numpy 1D array 'bool_mask'. Returns 'invalid_val' if a True value can not be found. Based on - https://stackoverflow.com/a/47269413""" if len(bool_mask) == 0: return invalid_val return np.where(bool_mask.any(), bool_mask.argmax(), invalid_val) def last_true(bool_mask, invalid_val=-1): """Get the index of the last True value in the numpy 1D array 'bool_mask'. Returns 'invalid_val' if a True value can not be found. Based on - https://stackoverflow.com/a/47269413""" if len(bool_mask) == 0: return invalid_val val = bool_mask.shape[0] - np.flip(bool_mask, axis=0).argmax() - 1 return np.where(bool_mask.any(), val, invalid_val)
[ "numpy.arange", "numpy.sum", "numpy.ceil", "numpy.flip" ]
[((561, 584), 'numpy.ceil', 'np.ceil', (['(sigma * extent)'], {}), '(sigma * extent)\n', (568, 584), True, 'import numpy as np\n'), ((678, 692), 'numpy.sum', 'np.sum', (['kernel'], {}), '(kernel)\n', (684, 692), True, 'import numpy as np\n'), ((1998, 2012), 'numpy.sum', 'np.sum', (['kernel'], {}), '(kernel)\n', (2004, 2012), True, 'import numpy as np\n'), ((1840, 1888), 'numpy.arange', 'np.arange', (['(-kernel_half_len)', '(kernel_half_len + 1)'], {}), '(-kernel_half_len, kernel_half_len + 1)\n', (1849, 1888), True, 'import numpy as np\n'), ((607, 627), 'numpy.arange', 'np.arange', (['(-n)', '(n + 1)'], {}), '(-n, n + 1)\n', (616, 627), True, 'import numpy as np\n'), ((3211, 3237), 'numpy.flip', 'np.flip', (['bool_mask'], {'axis': '(0)'}), '(bool_mask, axis=0)\n', (3218, 3237), True, 'import numpy as np\n'), ((2045, 2063), 'numpy.ceil', 'np.ceil', (['(2 * sigma)'], {}), '(2 * sigma)\n', (2052, 2063), True, 'import numpy as np\n')]
"""Plotting functions for visualizing distributions.""" from __future__ import division import numpy as np from scipy import stats import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import warnings try: import statsmodels.nonparametric.api as smnp _has_statsmodels = True except ImportError: _has_statsmodels = False from .utils import set_hls_values, iqr, _kde_support from .palettes import color_palette, blend_palette from .axisgrid import JointGrid def _freedman_diaconis_bins(a): """Calculate number of hist bins using Freedman-Diaconis rule.""" # From http://stats.stackexchange.com/questions/798/ a = np.asarray(a) h = 2 * iqr(a) / (len(a) ** (1 / 3)) # fall back to 10 bins if iqr is 0 if h == 0: return 10. else: return np.ceil((a.max() - a.min()) / h) def distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None): """Flexibly plot a distribution of observations. Parameters ---------- a : (squeezable to) 1d array Observed data. bins : argument for matplotlib hist(), or None, optional Specification of hist bins, or None to use Freedman-Diaconis rule. hist : bool, optional Whether to plot a (normed) histogram. kde : bool, optional Whether to plot a gaussian kernel density estimate. rug : bool, optional Whether to draw a rugplot on the support axis. fit : random variable object, optional An object with `fit` method, returning a tuple that can be passed to a `pdf` method a positional arguments following an grid of values to evaluate the pdf on. {hist, kde, rug, fit}_kws : dictionaries, optional Keyword arguments for underlying plotting functions. color : matplotlib color, optional Color to plot everything but the fitted curve in. vertical : bool, optional If True, oberved values are on y-axis. norm_hist : bool, otional If True, the histogram height shows a density rather than a count. This is implied if a KDE or fitted density is plotted. axlabel : string, False, or None, optional Name for the support axis label. If None, will try to get it from a.namel if False, do not set a label. label : string, optional Legend label for the relevent component of the plot ax : matplotlib axis, optional if provided, plot on this axis Returns ------- ax : matplotlib axis """ if ax is None: ax = plt.gca() # Intelligently label the support axis label_ax = bool(axlabel) if axlabel is None and hasattr(a, "name"): axlabel = a.name if axlabel is not None: label_ax = True # Make a a 1-d array a = np.asarray(a).squeeze() # Decide if the hist is normed norm_hist = norm_hist or kde or (fit is not None) # Handle dictionary defaults if hist_kws is None: hist_kws = dict() if kde_kws is None: kde_kws = dict() if rug_kws is None: rug_kws = dict() if fit_kws is None: fit_kws = dict() # Get the color from the current color cycle if color is None: if vertical: line, = ax.plot(0, a.mean()) else: line, = ax.plot(a.mean(), 0) color = line.get_color() line.remove() # Plug the label into the right kwarg dictionary if label is not None: if hist: hist_kws["label"] = label elif kde: kde_kws["label"] = label elif rug: rug_kws["label"] = label elif fit: fit_kws["label"] = label if hist: if bins is None: bins = _freedman_diaconis_bins(a) hist_kws.setdefault("alpha", 0.4) hist_kws.setdefault("normed", norm_hist) orientation = "horizontal" if vertical else "vertical" hist_color = hist_kws.pop("color", color) ax.hist(a, bins, orientation=orientation, color=hist_color, **hist_kws) if hist_color != color: hist_kws["color"] = hist_color if kde: kde_color = kde_kws.pop("color", color) kdeplot(a, vertical=vertical, ax=ax, color=kde_color, **kde_kws) if kde_color != color: kde_kws["color"] = kde_color if rug: rug_color = rug_kws.pop("color", color) axis = "y" if vertical else "x" rugplot(a, axis=axis, ax=ax, color=rug_color, **rug_kws) if rug_color != color: rug_kws["color"] = rug_color if fit is not None: fit_color = fit_kws.pop("color", "#282828") gridsize = fit_kws.pop("gridsize", 200) cut = fit_kws.pop("cut", 3) clip = fit_kws.pop("clip", (-np.inf, np.inf)) bw = stats.gaussian_kde(a).scotts_factor() * a.std(ddof=1) x = _kde_support(a, bw, gridsize, cut, clip) params = fit.fit(a) pdf = lambda x: fit.pdf(x, *params) y = pdf(x) if vertical: x, y = y, x ax.plot(x, y, color=fit_color, **fit_kws) if fit_color != "#282828": fit_kws["color"] = fit_color if label_ax: if vertical: ax.set_ylabel(axlabel) else: ax.set_xlabel(axlabel) return ax def _univariate_kdeplot(data, shade, vertical, kernel, bw, gridsize, cut, clip, legend, ax, cumulative=False, **kwargs): """Plot a univariate kernel density estimate on one of the axes.""" # Sort out the clipping if clip is None: clip = (-np.inf, np.inf) # Calculate the KDE if _has_statsmodels: # Prefer using statsmodels for kernel flexibility x, y = _statsmodels_univariate_kde(data, kernel, bw, gridsize, cut, clip, cumulative=cumulative) else: # Fall back to scipy if missing statsmodels if kernel != "gau": kernel = "gau" msg = "Kernel other than `gau` requires statsmodels." warnings.warn(msg, UserWarning) if cumulative: raise ImportError("Cumulative distributions are currently" "only implemented in statsmodels." "Please install statsmodels.") x, y = _scipy_univariate_kde(data, bw, gridsize, cut, clip) # Make sure the density is nonnegative y = np.amax(np.c_[np.zeros_like(y), y], axis=1) # Flip the data if the plot should be on the y axis if vertical: x, y = y, x # Check if a label was specified in the call label = kwargs.pop("label", None) # Otherwise check if the data object has a name if label is None and hasattr(data, "name"): label = data.name # Decide if we're going to add a legend legend = label is not None and legend label = "_nolegend_" if label is None else label # Use the active color cycle to find the plot color line, = ax.plot(x, y, **kwargs) color = line.get_color() line.remove() kwargs.pop("color", None) # Draw the KDE plot and, optionally, shade ax.plot(x, y, color=color, label=label, **kwargs) alpha = kwargs.get("alpha", 0.25) if shade: if vertical: ax.fill_betweenx(y, 1e-12, x, color=color, alpha=alpha) else: ax.fill_between(x, 1e-12, y, color=color, alpha=alpha) # Draw the legend here if legend: ax.legend(loc="best") return ax def _statsmodels_univariate_kde(data, kernel, bw, gridsize, cut, clip, cumulative=False): """Compute a univariate kernel density estimate using statsmodels.""" fft = kernel == "gau" kde = smnp.KDEUnivariate(data) kde.fit(kernel, bw, fft, gridsize=gridsize, cut=cut, clip=clip) if cumulative: grid, y = kde.support, kde.cdf else: grid, y = kde.support, kde.density return grid, y def _scipy_univariate_kde(data, bw, gridsize, cut, clip): """Compute a univariate kernel density estimate using scipy.""" try: kde = stats.gaussian_kde(data, bw_method=bw) except TypeError: kde = stats.gaussian_kde(data) if bw != "scott": # scipy default msg = ("Ignoring bandwidth choice, " "please upgrade scipy to use a different bandwidth.") warnings.warn(msg, UserWarning) if isinstance(bw, str): bw = "scotts" if bw == "scott" else bw bw = getattr(kde, "%s_factor" % bw)() grid = _kde_support(data, bw, gridsize, cut, clip) y = kde(grid) return grid, y def _bivariate_kdeplot(x, y, filled, kernel, bw, gridsize, cut, clip, axlabel, ax, **kwargs): """Plot a joint KDE estimate as a bivariate contour plot.""" # Determine the clipping if clip is None: clip = [(-np.inf, np.inf), (-np.inf, np.inf)] elif np.ndim(clip) == 1: clip = [clip, clip] # Calculate the KDE if _has_statsmodels: xx, yy, z = _statsmodels_bivariate_kde(x, y, bw, gridsize, cut, clip) else: xx, yy, z = _scipy_bivariate_kde(x, y, bw, gridsize, cut, clip) # Plot the contours n_levels = kwargs.pop("n_levels", 10) cmap = kwargs.get("cmap", "BuGn" if filled else "BuGn_d") if isinstance(cmap, str): if cmap.endswith("_d"): pal = ["#333333"] pal.extend(color_palette(cmap.replace("_d", "_r"), 2)) cmap = blend_palette(pal, as_cmap=True) kwargs["cmap"] = cmap contour_func = ax.contourf if filled else ax.contour contour_func(xx, yy, z, n_levels, **kwargs) kwargs["n_levels"] = n_levels # Label the axes if hasattr(x, "name") and axlabel: ax.set_xlabel(x.name) if hasattr(y, "name") and axlabel: ax.set_ylabel(y.name) return ax def _statsmodels_bivariate_kde(x, y, bw, gridsize, cut, clip): """Compute a bivariate kde using statsmodels.""" if isinstance(bw, str): bw_func = getattr(smnp.bandwidths, "bw_" + bw) x_bw = bw_func(x) y_bw = bw_func(y) bw = [x_bw, y_bw] elif np.isscalar(bw): bw = [bw, bw] if isinstance(x, pd.Series): x = x.values if isinstance(y, pd.Series): y = y.values kde = smnp.KDEMultivariate([x, y], "cc", bw) x_support = _kde_support(x, kde.bw[0], gridsize, cut, clip[0]) y_support = _kde_support(y, kde.bw[1], gridsize, cut, clip[1]) xx, yy = np.meshgrid(x_support, y_support) z = kde.pdf([xx.ravel(), yy.ravel()]).reshape(xx.shape) return xx, yy, z def _scipy_bivariate_kde(x, y, bw, gridsize, cut, clip): """Compute a bivariate kde using scipy.""" data = np.c_[x, y] kde = stats.gaussian_kde(data.T) data_std = data.std(axis=0, ddof=1) if isinstance(bw, str): bw = "scotts" if bw == "scott" else bw bw_x = getattr(kde, "%s_factor" % bw)() * data_std[0] bw_y = getattr(kde, "%s_factor" % bw)() * data_std[1] elif np.isscalar(bw): bw_x, bw_y = bw, bw else: msg = ("Cannot specify a different bandwidth for each dimension " "with the scipy backend. You should install statsmodels.") raise ValueError(msg) x_support = _kde_support(data[:, 0], bw_x, gridsize, cut, clip[0]) y_support = _kde_support(data[:, 1], bw_y, gridsize, cut, clip[1]) xx, yy = np.meshgrid(x_support, y_support) z = kde([xx.ravel(), yy.ravel()]).reshape(xx.shape) return xx, yy, z def kdeplot(data, data2=None, shade=False, vertical=False, kernel="gau", bw="scott", gridsize=100, cut=3, clip=None, legend=True, ax=None, cumulative=False, **kwargs): """Fit and plot a univariate or bivarate kernel density estimate. Parameters ---------- data : 1d or 2d array-like Input data. If two-dimensional, assumed to be shaped (n_unit x n_var), and a bivariate contour plot will be drawn. data2: 1d array-like Second input data. If provided `data` must be one-dimensional, and a bivariate plot is produced. shade : bool, optional If true, shade in the area under the KDE curve (or draw with filled contours when data is bivariate). vertical : bool If True, density is on x-axis. kernel : {'gau' | 'cos' | 'biw' | 'epa' | 'tri' | 'triw' }, optional Code for shape of kernel to fit with. Bivariate KDE can only use gaussian kernel. bw : {'scott' | 'silverman' | scalar | pair of scalars }, optional Name of reference method to determine kernel size, scalar factor, or scalar for each dimension of the bivariate plot. gridsize : int, optional Number of discrete points in the evaluation grid. cut : scalar, optional Draw the estimate to cut * bw from the extreme data points. clip : pair of scalars, or pair of pair of scalars, optional Lower and upper bounds for datapoints used to fit KDE. Can provide a pair of (low, high) bounds for bivariate plots. legend : bool, optoinal If True, add a legend or label the axes when possible. ax : matplotlib axis, optional Axis to plot on, otherwise uses current axis. cumulative : bool If draw, draw the cumulative distribution estimated by the kde. kwargs : other keyword arguments for plot() Returns ------- ax : matplotlib axis Axis with plot. """ if ax is None: ax = plt.gca() data = data.astype(np.float64) if data2 is not None: data2 = data2.astype(np.float64) bivariate = False if isinstance(data, np.ndarray) and np.ndim(data) > 1: bivariate = True x, y = data.T elif isinstance(data, pd.DataFrame) and np.ndim(data) > 1: bivariate = True x = data.iloc[:, 0].values y = data.iloc[:, 1].values elif data2 is not None: bivariate = True x = data y = data2 if bivariate and cumulative: raise TypeError("Cumulative distribution plots are not" "supported for bivariate distributions.") if bivariate: ax = _bivariate_kdeplot(x, y, shade, kernel, bw, gridsize, cut, clip, legend, ax, **kwargs) else: ax = _univariate_kdeplot(data, shade, vertical, kernel, bw, gridsize, cut, clip, legend, ax, cumulative=cumulative, **kwargs) return ax def rugplot(a, height=None, axis="x", ax=None, **kwargs): """Plot datapoints in an array as sticks on an axis. Parameters ---------- a : vector 1D array of datapoints. height : scalar, optional Height of ticks, if None draw at 5% of axis range. axis : {'x' | 'y'}, optional Axis to draw rugplot on. ax : matplotlib axis Axis to draw plot into; otherwise grabs current axis. kwargs : other keyword arguments for plt.plot() Returns ------- ax : matplotlib axis Axis with rugplot. """ if ax is None: ax = plt.gca() a = np.asarray(a) vertical = kwargs.pop("vertical", None) if vertical is not None: axis = "y" if vertical else "x" other_axis = dict(x="y", y="x")[axis] min, max = getattr(ax, "get_%slim" % other_axis)() if height is None: range = max - min height = range * .05 if axis == "x": ax.plot([a, a], [min, min + height], **kwargs) else: ax.plot([min, min + height], [a, a], **kwargs) return ax def jointplot(x, y, data=None, kind="scatter", stat_func=stats.pearsonr, color=None, size=6, ratio=5, space=.2, dropna=True, xlim=None, ylim=None, joint_kws=None, marginal_kws=None, annot_kws=None): """Draw a plot of two variables with bivariate and univariate graphs. Parameters ---------- x, y : strings or vectors Data or names of variables in `data`. data : DataFrame, optional DataFrame when `x` and `y` are variable names. kind : { "scatter" | "reg" | "resid" | "kde" | "hex" }, optional Kind of plot to draw. stat_func : callable or None Function used to calculate a statistic about the relationship and annotate the plot. Should map `x` and `y` either to a single value or to a (value, p) tuple. Set to ``None`` if you don't want to annotate the plot. color : matplotlib color, optional Color used for the plot elements. size : numeric, optional Size of the figure (it will be square). ratio : numeric, optional Ratio of joint axes size to marginal axes height. space : numeric, optional Space between the joint and marginal axes dropna : bool, optional If True, remove observations that are missing from `x` and `y`. {x, y}lim : two-tuples, optional Axis limits to set before plotting. {joint, marginal, annot}_kws : dicts Additional keyword arguments for the plot components. Returns ------- grid : JointGrid JointGrid object with the plot on it. See Also -------- JointGrid : The Grid class used for drawing this plot. Use it directly if you need more flexibility. """ # Set up empty default kwarg dicts if joint_kws is None: joint_kws = {} if marginal_kws is None: marginal_kws = {} if annot_kws is None: annot_kws = {} # Make a colormap based off the plot color if color is None: color = color_palette()[0] color_rgb = mpl.colors.colorConverter.to_rgb(color) colors = [set_hls_values(color_rgb, l=l) for l in np.linspace(1, 0, 12)] cmap = blend_palette(colors, as_cmap=True) # Initialize the JointGrid object grid = JointGrid(x, y, data, dropna=dropna, size=size, ratio=ratio, space=space, xlim=xlim, ylim=ylim) # Plot the data using the grid if kind == "scatter": joint_kws.setdefault("color", color) grid.plot_joint(plt.scatter, **joint_kws) marginal_kws.setdefault("kde", False) marginal_kws.setdefault("color", color) grid.plot_marginals(distplot, **marginal_kws) elif kind.startswith("hex"): x_bins = _freedman_diaconis_bins(grid.x) y_bins = _freedman_diaconis_bins(grid.y) gridsize = int(np.mean([x_bins, y_bins])) joint_kws.setdefault("gridsize", gridsize) joint_kws.setdefault("cmap", cmap) grid.plot_joint(plt.hexbin, **joint_kws) marginal_kws.setdefault("kde", False) marginal_kws.setdefault("color", color) grid.plot_marginals(distplot, **marginal_kws) elif kind.startswith("kde"): joint_kws.setdefault("shade", True) joint_kws.setdefault("cmap", cmap) grid.plot_joint(kdeplot, **joint_kws) marginal_kws.setdefault("shade", True) marginal_kws.setdefault("color", color) grid.plot_marginals(kdeplot, **marginal_kws) elif kind.startswith("reg"): from .linearmodels import regplot marginal_kws.setdefault("color", color) grid.plot_marginals(distplot, **marginal_kws) joint_kws.setdefault("color", color) grid.plot_joint(regplot, **joint_kws) elif kind.startswith("resid"): from .linearmodels import residplot joint_kws.setdefault("color", color) grid.plot_joint(residplot, **joint_kws) x, y = grid.ax_joint.collections[0].get_offsets().T marginal_kws.setdefault("color", color) marginal_kws.setdefault("kde", False) distplot(x, ax=grid.ax_marg_x, **marginal_kws) distplot(y, vertical=True, fit=stats.norm, ax=grid.ax_marg_y, **marginal_kws) stat_func = None else: msg = "kind must be either 'scatter', 'reg', 'resid', 'kde', or 'hex'" raise ValueError(msg) if stat_func is not None: grid.annotate(stat_func, **annot_kws) return grid
[ "numpy.meshgrid", "numpy.zeros_like", "matplotlib.colors.colorConverter.to_rgb", "numpy.isscalar", "numpy.asarray", "scipy.stats.gaussian_kde", "numpy.ndim", "statsmodels.nonparametric.api.KDEMultivariate", "numpy.mean", "numpy.linspace", "matplotlib.pyplot.gca", "warnings.warn", "statsmodels.nonparametric.api.KDEUnivariate" ]
[((662, 675), 'numpy.asarray', 'np.asarray', (['a'], {}), '(a)\n', (672, 675), True, 'import numpy as np\n'), ((7970, 7994), 'statsmodels.nonparametric.api.KDEUnivariate', 'smnp.KDEUnivariate', (['data'], {}), '(data)\n', (7988, 7994), True, 'import statsmodels.nonparametric.api as smnp\n'), ((10549, 10587), 'statsmodels.nonparametric.api.KDEMultivariate', 'smnp.KDEMultivariate', (['[x, y]', '"""cc"""', 'bw'], {}), "([x, y], 'cc', bw)\n", (10569, 10587), True, 'import statsmodels.nonparametric.api as smnp\n'), ((10735, 10768), 'numpy.meshgrid', 'np.meshgrid', (['x_support', 'y_support'], {}), '(x_support, y_support)\n', (10746, 10768), True, 'import numpy as np\n'), ((10989, 11015), 'scipy.stats.gaussian_kde', 'stats.gaussian_kde', (['data.T'], {}), '(data.T)\n', (11007, 11015), False, 'from scipy import stats\n'), ((11652, 11685), 'numpy.meshgrid', 'np.meshgrid', (['x_support', 'y_support'], {}), '(x_support, y_support)\n', (11663, 11685), True, 'import numpy as np\n'), ((15407, 15420), 'numpy.asarray', 'np.asarray', (['a'], {}), '(a)\n', (15417, 15420), True, 'import numpy as np\n'), ((17924, 17963), 'matplotlib.colors.colorConverter.to_rgb', 'mpl.colors.colorConverter.to_rgb', (['color'], {}), '(color)\n', (17956, 17963), True, 'import matplotlib as mpl\n'), ((2715, 2724), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2722, 2724), True, 'import matplotlib.pyplot as plt\n'), ((8344, 8382), 'scipy.stats.gaussian_kde', 'stats.gaussian_kde', (['data'], {'bw_method': 'bw'}), '(data, bw_method=bw)\n', (8362, 8382), False, 'from scipy import stats\n'), ((10390, 10405), 'numpy.isscalar', 'np.isscalar', (['bw'], {}), '(bw)\n', (10401, 10405), True, 'import numpy as np\n'), ((11264, 11279), 'numpy.isscalar', 'np.isscalar', (['bw'], {}), '(bw)\n', (11275, 11279), True, 'import numpy as np\n'), ((13755, 13764), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (13762, 13764), True, 'import matplotlib.pyplot as plt\n'), ((15389, 15398), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (15396, 15398), True, 'import matplotlib.pyplot as plt\n'), ((2964, 2977), 'numpy.asarray', 'np.asarray', (['a'], {}), '(a)\n', (2974, 2977), True, 'import numpy as np\n'), ((6289, 6320), 'warnings.warn', 'warnings.warn', (['msg', 'UserWarning'], {}), '(msg, UserWarning)\n', (6302, 6320), False, 'import warnings\n'), ((8419, 8443), 'scipy.stats.gaussian_kde', 'stats.gaussian_kde', (['data'], {}), '(data)\n', (8437, 8443), False, 'from scipy import stats\n'), ((9164, 9177), 'numpy.ndim', 'np.ndim', (['clip'], {}), '(clip)\n', (9171, 9177), True, 'import numpy as np\n'), ((13931, 13944), 'numpy.ndim', 'np.ndim', (['data'], {}), '(data)\n', (13938, 13944), True, 'import numpy as np\n'), ((18018, 18039), 'numpy.linspace', 'np.linspace', (['(1)', '(0)', '(12)'], {}), '(1, 0, 12)\n', (18029, 18039), True, 'import numpy as np\n'), ((6675, 6691), 'numpy.zeros_like', 'np.zeros_like', (['y'], {}), '(y)\n', (6688, 6691), True, 'import numpy as np\n'), ((8621, 8652), 'warnings.warn', 'warnings.warn', (['msg', 'UserWarning'], {}), '(msg, UserWarning)\n', (8634, 8652), False, 'import warnings\n'), ((14041, 14054), 'numpy.ndim', 'np.ndim', (['data'], {}), '(data)\n', (14048, 14054), True, 'import numpy as np\n'), ((18739, 18764), 'numpy.mean', 'np.mean', (['[x_bins, y_bins]'], {}), '([x_bins, y_bins])\n', (18746, 18764), True, 'import numpy as np\n'), ((4986, 5007), 'scipy.stats.gaussian_kde', 'stats.gaussian_kde', (['a'], {}), '(a)\n', (5004, 5007), False, 'from scipy import stats\n')]
# -*- coding: utf-8 -*- """ Created on Sat Aug 29 22:49:48 2020 @author: adwait """ from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel,\ QComboBox,QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox # from PyQt5.QtCore import Qt from PyQt5.QtGui import QFont import matplotlib matplotlib.use('Qt5Agg') # import matplotlib.pyplot as plt from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar ##from sympy import * import sympy as sp import numpy as np from scipy.optimize import curve_fit from source.analysis.plot2widget import PlotWidget import logging class MathTextLabel(QWidget): def __init__(self, mathText, parent=None, **kwargs): super(QWidget, self).__init__(parent, **kwargs) _l=QVBoxLayout(self) _l.setContentsMargins(0,0,0,0) _r,_g,_b,_a=self.palette().base().color().getRgbF() self._figure=Figure(edgecolor=(_r,_g,_b), facecolor=(_r,_g,_b)) self._canvas=FigureCanvas(self._figure) _l.addWidget(self._canvas) self.drawFigure(mathText) def drawFigure(self, mathText): self._figure.clear() _text=self._figure.suptitle(mathText, x=0.0, y=1.0, horizontalalignment='left', verticalalignment='top', size=QFont().pointSize()*2 ) self._canvas.draw() (_x0,_y0),(_x1,_y1)=_text.get_window_extent().get_points() _w=_x1-_x0; _h=_y1-_y0 self._figure.set_size_inches(_w/80, _h/80) self.setFixedSize(_w,_h) # if __name__=='__main__': # from sys import argv, exit class FitDataWindow(QWidget): def __init__(self, *args, **kwargs): ## super(QWidget, self).__init__(*args, **kwargs) super().__init__() self.setGeometry(100, 100, 1000, 500) self.setWindowTitle("Data Fitting") self.home() def home(self): # startFitLabel = QLabel("Start (%):") # endFitLabel = QLabel("End (%):") # self.fitStart = QDoubleSpinBox(self) #fitting range start # self.fitStart.setValue(0) # self.fitStart.setSingleStep(1) # self.fitStart.setRange(0, 100) # self.fitStop = QDoubleSpinBox(self) #fitting range end # self.fitStop.setValue(100) # self.fitStop.setSingleStep(1) # self.fitStop.setRange(0, 100) params_list = ["Index", "Time", "Vertical piezo", "Lateral piezo", "Deformation", "Vertical force", "Lateral force"] xPlotLabel = QLabel("X Axis:", self) self.xPlot = QComboBox(self) #x param self.xPlot.addItems(params_list) self.xPlot.setCurrentIndex(0) self.xPlot.currentIndexChanged.connect(self.plotSequence) self.enableFitting = QCheckBox("Enable", self) self.enableFitting.stateChanged.connect(lambda: self.fitData(True)) xFitLabel = QLabel("X Parameter:", self) yFitLabel = QLabel("Y Parameter:", self) self.xFit = QComboBox(self) #x param self.xFit.addItems(params_list) self.xFit.setCurrentIndex(4) self.xFit.currentIndexChanged.connect(self.plotSequence) self.yFit = QComboBox(self) #x param self.yFit.addItems(params_list) self.yFit.setCurrentIndex(5) self.yFit.currentIndexChanged.connect(self.plotSequence) # self.xDict = {'Vertical piezo':None, # 'Lateral piezo':None, # 'Deformation':None, # 'Time':None, # 'Index':None} # self.yDict = {'Vertical force':None, # 'Lateral force':None} self.fileDataDict = {} fitparamLabel = QLabel("Fit Parameters:", self) self.fittingParams = QLineEdit(self) self.fittingParams.setText('m,c') self.fittingParams.textChanged.connect(self.updateTEX) self.params_old = self.fittingParams.text().split(',') guessValLabel = QLabel("Initial Guess:", self) self.guessValues = QLineEdit(self) self.guessValues.setText('0,0') lowBoundLabel = QLabel("Lower Bouond:", self) self.lowBound = QLineEdit(self) self.lowBound.setText(',') upBoundLabel = QLabel("Upper Bouond:", self) self.upBound = QLineEdit(self) self.upBound.setText(',') constantsLabel = QLabel("Constants:", self) self.constantParams = QLineEdit(self) self.constantParams.setText('p=1,q=2,r=3') self.constantParams.textChanged.connect(self.updateTEX) self.constants_old = [_x.split('=')[0] for _x in self.constantParams.text().split(',')] fitfunctionLabel = QLabel("Fitting Function:", self) self.fittingFunctionType = QComboBox(self) self.fittingFunctionType.addItem("Linear") self.fittingFunctionType.addItem("Quadratic") self.fittingFunctionType.addItem("Custom") self.fittingFunctionType.currentIndexChanged.connect(self.updateFitFunction) #standard functions: equation, params, guess, l_bound, u_bound self.functionDict = {'Linear': ['m*x+c', 'm,c', '0,0', ',', ','], 'Quadratic': ['a*x**2+b*x+c', 'a,b,c', '0,0,0', ',,', ',,'], 'Custom': ['a*x', 'a', '0', '', '']} self.fittingFunctionText = QTextEdit(self) self.fittingFunctionText.setText('m*x+c') self.fittingFunctionText.textChanged.connect(self.updateTEX) self.generateFunction() self.fittingFunctionTEX = MathTextLabel(self.mathText, self) self.applyFitBtn = QPushButton("Fit!", self) # self.applyFitBtn.clicked.connect(lambda: self.fitData(True)) self.fitResult = QTextEdit(self) self.fitResult.setText("Result:\n") self.fitResult.setReadOnly(True) # self.fitResult.setStyleSheet("QLabel { font-weight: bold; font-size: 16px;} ") self.plotInitialize() plot = PlotWidget(self.fig, cursor1_init = self.axes.get_xbound()[0], cursor2_init = self.axes.get_xbound()[1]) self.plotWidget = plot.wid # plotToolbar = NavigationToolbar(self.plotWidget, self) # self.fitPosLabel = QLabel("Fit Position\n(x,y):", self) #fit eq. position # self.fitPos = QLineEdit(self) # self.fitPos.setText('0.5,0.5') # self.showFitEq = QCheckBox('Show Slope', self) #display equation on plot paramGroupBox = QGroupBox() paramlayout=QGridLayout() paramGroupBox.setLayout(paramlayout) paramlayout.addWidget(xPlotLabel, 0, 0, 1, 1) paramlayout.addWidget(self.xPlot, 0, 1, 1, 1) paramlayout.addWidget(self.enableFitting, 0, 3, 1, 1) paramlayout.addWidget(xFitLabel, 1, 0, 1, 1) paramlayout.addWidget(self.xFit, 1, 1, 1, 1) paramlayout.addWidget(yFitLabel, 1, 2, 1, 1) paramlayout.addWidget(self.yFit, 1, 3, 1, 1) paramlayout.addWidget(fitparamLabel, 2, 0, 1, 1) paramlayout.addWidget(self.fittingParams, 2, 1, 1, 1) paramlayout.addWidget(guessValLabel, 2, 2, 1, 1) paramlayout.addWidget(self.guessValues, 2, 3, 1, 1) paramlayout.addWidget(lowBoundLabel, 3, 0, 1, 1) paramlayout.addWidget(self.lowBound, 3, 1, 1, 1) paramlayout.addWidget(upBoundLabel, 3, 2, 1, 1) paramlayout.addWidget(self.upBound, 3, 3, 1, 1) paramlayout.addWidget(constantsLabel, 4, 0, 1, 1) paramlayout.addWidget(self.constantParams, 4, 1, 1, 1) paramlayout.addWidget(fitfunctionLabel, 4, 2, 1, 1) paramlayout.addWidget(self.fittingFunctionType, 4, 3, 1, 1) paramlayout.addWidget(self.fittingFunctionText, 5, 0, 1, 4) paramlayout.addWidget(self.fittingFunctionTEX, 6, 0, 3, 4) paramlayout.addWidget(self.fitResult, 9,0, 1, 4) paramlayout.addWidget(self.applyFitBtn, 10, 1, 1, 2) # layout.addWidget(plotToolbar, 0, 4, 1, 6) # layout.addWidget(self.plotWidget, 1, 4, 9, 6) # plotGroupBox = QGroupBox() # plotlayout=QGridLayout() # plotGroupBox.setLayout(plotlayout) # plotlayout.addWidget(plot, 0, 0, 1, 1) # plotlayout.addWidget(plotToolbar, 0, 0, 1, 1) # plotlayout.addWidget(self.plotWidget, 1, 0, 1, 1) layout=QGridLayout() layout.addWidget(paramGroupBox, 0, 0, 1, 1) layout.addWidget(plot, 0, 1, 1, 1) self.setLayout(layout) # self.show() def updateFitFunction(self): logging.debug('test0') _key = self.fittingFunctionType.currentText() self.fittingFunctionText.blockSignals(True) self.fittingFunctionText.setText(self.functionDict[_key][0]) self.fittingFunctionText.blockSignals(False) logging.debug('test') self.fittingParams.blockSignals(True) self.fittingParams.setText(self.functionDict[_key][1]) self.fittingParams.blockSignals(False) logging.debug('test2') self.guessValues.setText(self.functionDict[_key][2]) self.lowBound.setText(self.functionDict[_key][3]) self.upBound.setText(self.functionDict[_key][4]) self.updateTEX() def updateTEX(self): #delete old variables for _x in self.params_old: if _x != '': exec('del ' + _x, globals()) for _x in self.constants_old: if _x != '': exec('del ' + _x, globals()) #update function self.generateFunction() self.params_old = self.fittingParams.text().split(',') self.constants_old = [_x.split('=')[0] for _x in self.constantParams.text().split(',')] #draw equation if self.mathText != None: self.fittingFunctionTEX.drawFigure(self.mathText) #below optional, remove later: CHECK! # self.plotRawData() # self.plotWidget.cursor1.set_ydata(self.axes.get_ybound()) #CHECK # self.plotWidget.cursor2.set_ydata(self.axes.get_ybound()) #CHECK ## self.plotWidget.add_cursors() # self.fitData(False) # self.updatePlot() #create fitting function and TEX format for display def generateFunction(self): try: math_functions = ['re','im','sign','Abs','arg','conjugate', 'polar_lift','periodic_argument', 'principal_branch','sin','cos','tan', 'cot','sec','csc','sinc','asin','acos', 'atan','acot','asec','acsc','atan2', 'sinh','cosh','tanh','coth','sech', 'csch','asinh','acosh','atanh','acoth', 'asech','acsch','ceiling','floor','frac', 'exp','LambertW','log','exp_polar','Min', 'Max','root','sqrt','cbrt','real_root','pi'] x_param = 'x' y_param = 'y' fit_params = self.fittingParams.text() constants = self.constantParams.text() # constant_vals = '1,2,3' equation_fit = self.fittingFunctionText.toPlainText() variables = x_param + ',' + fit_params global var var = sp.symbols(variables.replace(',',' ')) exec(variables + ' = var', globals()) for _x in constants.split(','): exec(_x, globals()) ## print(p+q) for item in math_functions: equation_fit = equation_fit.replace(item,'sp.'+item) self.mathText = r'$' + y_param + '=' + sp.latex(eval(equation_fit), ln_notation = True) + '$' self.func = sp.lambdify(list(var),eval(equation_fit)) logging.debug(self.mathText) except Exception as e: logging.error(str(e)) self.mathText = None def plotInitialize(self): self.fig = Figure(figsize=(5, 4), dpi=100) self.axes = self.fig.add_subplot(111) self.ax_raw = None # self.ax_norm = None self.ax_constr = None # #generate random data (for testing) xdata = np.linspace(0, 4, 50) self.fileDataDict[self.xFit.currentText()] = xdata self.fileDataDict[self.xPlot.currentText()] = xdata y = self.func(xdata, 2.5, 1.3) np.random.seed(1729) y_noise = 0.2 * np.random.normal(size=xdata.size) self.fileDataDict[self.yFit.currentText()] = y + y_noise self.plotRawData() self.updatePlot() self.fit_range = [None,None] def plotRawData(self): self.plotxdata= self.fileDataDict[self.xPlot.currentText()] self.xdata = self.fileDataDict[self.xFit.currentText()] self.ydata = self.fileDataDict[self.yFit.currentText()] if self.ax_raw != None: #check self.axes.lines.remove(self.ax_raw) # if self.xdata != None and self.ydata != None: self.ax_raw, = self.axes.plot(self.plotxdata, self.ydata, 'ro', linewidth=1, markersize=1) self.axes.relim() self.axes.autoscale() self.axes.set_xlabel(self.xPlot.currentText()) self.axes.set_ylabel(self.yFit.currentText()) # self.updatePlot() # self.plotWidget.cursor1.set_xdata(self.axes.get_xbound()[0]) #CHECK # self.plotWidget.cursor2.set_xdata(self.axes.get_xbound()[1]) #CHECK def updatePlot(self): self.axes.relim() self.axes.autoscale() self.fig.tight_layout() self.fig.canvas.draw() def plotSequence(self): self.plotRawData() self.update_cursor() self.fitData(False) # self.updatePlot() def update_cursor(self): if self.fit_range == [None,None]: self.fit_range[:] = [0,len(self.plotxdata)-1] if self.plotWidget.cursor1 != None: # x = self.plotxdata.min() x = self.plotxdata[self.fit_range[0]] y = [self.ydata.min(), self.ydata.max()] self.plotWidget.cursor1.set_xdata([x,x]) self.plotWidget.cursor1.set_ydata(y) #CHECK if self.plotWidget.cursor2 != None: # x = self.plotxdata.max() x = self.plotxdata[self.fit_range[1]-1] y = [self.ydata.min(), self.ydata.max()] self.plotWidget.cursor2.set_xdata([x,x]) self.plotWidget.cursor2.set_ydata(y) #CHECK # self.axes.relim() # self.axes.autoscale() self.updatePlot() self.plotWidget.draw_idle() # data fitting def fitData(self, update_slice = True): logging.debug("fit data") if self.enableFitting.isChecked() == True: self.generateFunction() #draw equation # if self.mathText != None: # self.fittingFunctionTEX.drawFigure(self.mathText) # self.updateTEX() if update_slice == True: xlim1 = min([self.plotWidget.cursor1.get_xdata()[0], self.plotWidget.cursor2.get_xdata()[0]]) xlim2 = max([self.plotWidget.cursor1.get_xdata()[0], self.plotWidget.cursor2.get_xdata()[0]]) self.fit_range[:] = [np.searchsorted(self.plotxdata, [xlim1])[0], np.searchsorted(self.plotxdata, [xlim2])[0]+1] logging.debug("inside") fit_slice = slice(*self.fit_range) logging.debug('%s', fit_slice) guess_vals = self.guessValues.text() l_bounds = self.lowBound.text() u_bounds = self.upBound.text() l_bounds_val = [float(_x) if _x != '' else -np.inf \ for _x in l_bounds.split(',')] \ if l_bounds != '' else -np.inf u_bounds_val = [float(_x) if _x != '' else np.inf \ for _x in u_bounds.split(',')] \ if u_bounds != '' else np.inf labeltext = self.fittingParams.text().replace(',', '=%5.3f, ') + \ '=%5.3f' # if self.ax_norm != None: # self.axes.lines.remove(self.ax_norm) if self.ax_constr != None: self.axes.lines.remove(self.ax_constr) try: logging.debug("test") #normal fit # popt, pcov = curve_fit(self.func, self.xdata[fit_slice], # self.ydata[fit_slice], # [float(x) for x in guess_vals.split(',')]) # print("normal", popt) # self.ax_norm, = self.axes.plot(self.xdata[fit_slice], # self.func(self.xdata[fit_slice], *popt), 'b-', # label= labeltext % tuple(popt)) #contrained fit popt, pcov = curve_fit(self.func, self.xdata[fit_slice], self.ydata[fit_slice], [float(_x) for _x in guess_vals.split(',')], bounds=(l_bounds_val,u_bounds_val)) logging.debug('%s, %s', "constrained", popt) self.fit_ydata = self.func(self.xdata[fit_slice], *popt) fit_label = labeltext % tuple(popt) self.ax_constr, = self.axes.plot(self.plotxdata[fit_slice], self.fit_ydata, 'g--', label= fit_label) error_label = 'Std. Dev. Error:\n' + labeltext % tuple(np.sqrt(np.diag(pcov))) self.fitResult.setText('Fit values:\n' + fit_label + '\n' + error_label) self.fitParams = dict(zip(self.fittingParams.text().split(','), popt)) logging.debug('%s', self.fitParams) except Exception as e: #on fitting failure logging.error(str(e)) self.fitResult.setText(str(e)) # self.ax_norm = None self.ax_constr = None # self.plotWidget.cursor1.set_ydata(self.axes.get_ybound()) #CHECK # self.plotWidget.cursor2.set_ydata(self.axes.get_ybound()) #CHECK self.axes.legend() # self.axes.text(1, 1, "Test", picker=5) ## self.fig.canvas.draw() else: if self.ax_constr != None: self.axes.get_legend().remove() self.axes.lines.remove(self.ax_constr) self.ax_constr = None self.fitParams = {} self.fitResult.setText('Fit values:\n') self.updatePlot() ## plt.show() # _a=QApplication(argv) # _w=FitDataWindow() # # _w.show() # _w.raise_() # _a.exec_() # QApplication.exit()
[ "numpy.random.seed", "PyQt5.QtWidgets.QGridLayout", "PyQt5.QtWidgets.QPushButton", "PyQt5.QtWidgets.QVBoxLayout", "numpy.random.normal", "numpy.diag", "PyQt5.QtWidgets.QLabel", "matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg", "PyQt5.QtWidgets.QCheckBox", "matplotlib.figure.Figure", "numpy.linspace", "PyQt5.QtWidgets.QComboBox", "PyQt5.QtWidgets.QTextEdit", "PyQt5.QtWidgets.QGroupBox", "matplotlib.use", "logging.debug", "PyQt5.QtWidgets.QLineEdit", "numpy.searchsorted", "PyQt5.QtGui.QFont" ]
[((318, 342), 'matplotlib.use', 'matplotlib.use', (['"""Qt5Agg"""'], {}), "('Qt5Agg')\n", (332, 342), False, 'import matplotlib\n'), ((919, 936), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', (['self'], {}), '(self)\n', (930, 936), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((1064, 1118), 'matplotlib.figure.Figure', 'Figure', ([], {'edgecolor': '(_r, _g, _b)', 'facecolor': '(_r, _g, _b)'}), '(edgecolor=(_r, _g, _b), facecolor=(_r, _g, _b))\n', (1070, 1118), False, 'from matplotlib.figure import Figure\n'), ((1137, 1163), 'matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg', 'FigureCanvas', (['self._figure'], {}), '(self._figure)\n', (1149, 1163), True, 'from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas\n'), ((2935, 2958), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""X Axis:"""', 'self'], {}), "('X Axis:', self)\n", (2941, 2958), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((2981, 2996), 'PyQt5.QtWidgets.QComboBox', 'QComboBox', (['self'], {}), '(self)\n', (2990, 2996), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((3194, 3219), 'PyQt5.QtWidgets.QCheckBox', 'QCheckBox', (['"""Enable"""', 'self'], {}), "('Enable', self)\n", (3203, 3219), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((3328, 3356), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""X Parameter:"""', 'self'], {}), "('X Parameter:', self)\n", (3334, 3356), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((3378, 3406), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Y Parameter:"""', 'self'], {}), "('Y Parameter:', self)\n", (3384, 3406), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((3430, 3445), 'PyQt5.QtWidgets.QComboBox', 'QComboBox', (['self'], {}), '(self)\n', (3439, 3445), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((3623, 3638), 'PyQt5.QtWidgets.QComboBox', 'QComboBox', (['self'], {}), '(self)\n', (3632, 3638), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((4161, 4192), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Fit Parameters:"""', 'self'], {}), "('Fit Parameters:', self)\n", (4167, 4192), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((4223, 4238), 'PyQt5.QtWidgets.QLineEdit', 'QLineEdit', (['self'], {}), '(self)\n', (4232, 4238), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((4445, 4475), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Initial Guess:"""', 'self'], {}), "('Initial Guess:', self)\n", (4451, 4475), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((4504, 4519), 'PyQt5.QtWidgets.QLineEdit', 'QLineEdit', (['self'], {}), '(self)\n', (4513, 4519), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((4596, 4625), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Lower Bouond:"""', 'self'], {}), "('Lower Bouond:', self)\n", (4602, 4625), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((4651, 4666), 'PyQt5.QtWidgets.QLineEdit', 'QLineEdit', (['self'], {}), '(self)\n', (4660, 4666), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((4737, 4766), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Upper Bouond:"""', 'self'], {}), "('Upper Bouond:', self)\n", (4743, 4766), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((4791, 4806), 'PyQt5.QtWidgets.QLineEdit', 'QLineEdit', (['self'], {}), '(self)\n', (4800, 4806), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((4878, 4904), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Constants:"""', 'self'], {}), "('Constants:', self)\n", (4884, 4904), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((4936, 4951), 'PyQt5.QtWidgets.QLineEdit', 'QLineEdit', (['self'], {}), '(self)\n', (4945, 4951), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((5204, 5237), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Fitting Function:"""', 'self'], {}), "('Fitting Function:', self)\n", (5210, 5237), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((5274, 5289), 'PyQt5.QtWidgets.QComboBox', 'QComboBox', (['self'], {}), '(self)\n', (5283, 5289), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((5888, 5903), 'PyQt5.QtWidgets.QTextEdit', 'QTextEdit', (['self'], {}), '(self)\n', (5897, 5903), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((6186, 6211), 'PyQt5.QtWidgets.QPushButton', 'QPushButton', (['"""Fit!"""', 'self'], {}), "('Fit!', self)\n", (6197, 6211), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((6312, 6327), 'PyQt5.QtWidgets.QTextEdit', 'QTextEdit', (['self'], {}), '(self)\n', (6321, 6327), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((7124, 7135), 'PyQt5.QtWidgets.QGroupBox', 'QGroupBox', ([], {}), '()\n', (7133, 7135), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((7157, 7170), 'PyQt5.QtWidgets.QGridLayout', 'QGridLayout', ([], {}), '()\n', (7168, 7170), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((9030, 9043), 'PyQt5.QtWidgets.QGridLayout', 'QGridLayout', ([], {}), '()\n', (9041, 9043), False, 'from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QComboBox, QLineEdit, QTextEdit, QCheckBox, QPushButton, QGroupBox\n'), ((9271, 9293), 'logging.debug', 'logging.debug', (['"""test0"""'], {}), "('test0')\n", (9284, 9293), False, 'import logging\n'), ((9535, 9556), 'logging.debug', 'logging.debug', (['"""test"""'], {}), "('test')\n", (9548, 9556), False, 'import logging\n'), ((9725, 9747), 'logging.debug', 'logging.debug', (['"""test2"""'], {}), "('test2')\n", (9738, 9747), False, 'import logging\n'), ((12922, 12953), 'matplotlib.figure.Figure', 'Figure', ([], {'figsize': '(5, 4)', 'dpi': '(100)'}), '(figsize=(5, 4), dpi=100)\n', (12928, 12953), False, 'from matplotlib.figure import Figure\n'), ((13157, 13178), 'numpy.linspace', 'np.linspace', (['(0)', '(4)', '(50)'], {}), '(0, 4, 50)\n', (13168, 13178), True, 'import numpy as np\n'), ((13349, 13369), 'numpy.random.seed', 'np.random.seed', (['(1729)'], {}), '(1729)\n', (13363, 13369), True, 'import numpy as np\n'), ((15798, 15823), 'logging.debug', 'logging.debug', (['"""fit data"""'], {}), "('fit data')\n", (15811, 15823), False, 'import logging\n'), ((12737, 12765), 'logging.debug', 'logging.debug', (['self.mathText'], {}), '(self.mathText)\n', (12750, 12765), False, 'import logging\n'), ((13395, 13428), 'numpy.random.normal', 'np.random.normal', ([], {'size': 'xdata.size'}), '(size=xdata.size)\n', (13411, 13428), True, 'import numpy as np\n'), ((16708, 16738), 'logging.debug', 'logging.debug', (['"""%s"""', 'fit_slice'], {}), "('%s', fit_slice)\n", (16721, 16738), False, 'import logging\n'), ((16609, 16632), 'logging.debug', 'logging.debug', (['"""inside"""'], {}), "('inside')\n", (16622, 16632), False, 'import logging\n'), ((17683, 17704), 'logging.debug', 'logging.debug', (['"""test"""'], {}), "('test')\n", (17696, 17704), False, 'import logging\n'), ((18633, 18677), 'logging.debug', 'logging.debug', (['"""%s, %s"""', '"""constrained"""', 'popt'], {}), "('%s, %s', 'constrained', popt)\n", (18646, 18677), False, 'import logging\n'), ((19375, 19410), 'logging.debug', 'logging.debug', (['"""%s"""', 'self.fitParams'], {}), "('%s', self.fitParams)\n", (19388, 19410), False, 'import logging\n'), ((16465, 16505), 'numpy.searchsorted', 'np.searchsorted', (['self.plotxdata', '[xlim1]'], {}), '(self.plotxdata, [xlim1])\n', (16480, 16505), True, 'import numpy as np\n'), ((1616, 1623), 'PyQt5.QtGui.QFont', 'QFont', ([], {}), '()\n', (1621, 1623), False, 'from PyQt5.QtGui import QFont\n'), ((16545, 16585), 'numpy.searchsorted', 'np.searchsorted', (['self.plotxdata', '[xlim2]'], {}), '(self.plotxdata, [xlim2])\n', (16560, 16585), True, 'import numpy as np\n'), ((19121, 19134), 'numpy.diag', 'np.diag', (['pcov'], {}), '(pcov)\n', (19128, 19134), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt def estimate_pi(n, plot=False): pts = np.random.random((n, 2)) norm = np.linalg.norm(pts, axis=-1) frac_in_circle = np.average(norm <= 1) pi_est = frac_in_circle * 4 if plot: plt.plot(pts[:, 0], pts[:, 1], ',') x = np.linspace(0, 1, 100) y = np.sqrt(1-x**2) plt.plot(x, y, 'g-') plt.fill_between(x, 0, y, facecolor='g', alpha=0.2) plt.title("Monte Carlo Estimate of Pi with {} points: {}".format(n, pi_est)) plt.axis('equal') plt.tight_layout() plt.show() return pi_est if __name__ == "__main__": n = int(input("Input a number of points to sample: ")) estimate_pi(n, plot=True)
[ "numpy.average", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.axis", "numpy.random.random", "numpy.linalg.norm", "numpy.linspace", "matplotlib.pyplot.fill_between", "matplotlib.pyplot.tight_layout", "numpy.sqrt" ]
[((98, 122), 'numpy.random.random', 'np.random.random', (['(n, 2)'], {}), '((n, 2))\n', (114, 122), True, 'import numpy as np\n'), ((137, 165), 'numpy.linalg.norm', 'np.linalg.norm', (['pts'], {'axis': '(-1)'}), '(pts, axis=-1)\n', (151, 165), True, 'import numpy as np\n'), ((188, 209), 'numpy.average', 'np.average', (['(norm <= 1)'], {}), '(norm <= 1)\n', (198, 209), True, 'import numpy as np\n'), ((272, 307), 'matplotlib.pyplot.plot', 'plt.plot', (['pts[:, 0]', 'pts[:, 1]', '""","""'], {}), "(pts[:, 0], pts[:, 1], ',')\n", (280, 307), True, 'import matplotlib.pyplot as plt\n'), ((331, 353), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (342, 353), True, 'import numpy as np\n'), ((367, 386), 'numpy.sqrt', 'np.sqrt', (['(1 - x ** 2)'], {}), '(1 - x ** 2)\n', (374, 386), True, 'import numpy as np\n'), ((392, 412), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""g-"""'], {}), "(x, y, 'g-')\n", (400, 412), True, 'import matplotlib.pyplot as plt\n'), ((422, 473), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['x', '(0)', 'y'], {'facecolor': '"""g"""', 'alpha': '(0.2)'}), "(x, 0, y, facecolor='g', alpha=0.2)\n", (438, 473), True, 'import matplotlib.pyplot as plt\n'), ((579, 596), 'matplotlib.pyplot.axis', 'plt.axis', (['"""equal"""'], {}), "('equal')\n", (587, 596), True, 'import matplotlib.pyplot as plt\n'), ((606, 624), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (622, 624), True, 'import matplotlib.pyplot as plt\n'), ((634, 644), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (642, 644), True, 'import matplotlib.pyplot as plt\n')]
import numpy from sklearn.feature_extraction import DictVectorizer from sklearn.pipeline import Pipeline from newsgac.nlp_tools.transformers import ExtractSentimentFeatures def test_sentiment_features(): text = 'Dit is een willekeurige tekst waar wat sentiment features uitgehaald worden. Dit is de tweede zin.' pipeline = Pipeline([ ('ExtractSentimentFeatures', ExtractSentimentFeatures()), ('DictVectorizer', DictVectorizer()), ]) expected_features = numpy.array(['polarity', 'subjectivity']) result = pipeline.fit_transform([text]) if not result.shape == (1, 2): raise AssertionError() if not (pipeline.steps[1][1].get_feature_names() == expected_features).all(): raise AssertionError()
[ "newsgac.nlp_tools.transformers.ExtractSentimentFeatures", "numpy.array", "sklearn.feature_extraction.DictVectorizer" ]
[((490, 531), 'numpy.array', 'numpy.array', (["['polarity', 'subjectivity']"], {}), "(['polarity', 'subjectivity'])\n", (501, 531), False, 'import numpy\n'), ((383, 409), 'newsgac.nlp_tools.transformers.ExtractSentimentFeatures', 'ExtractSentimentFeatures', ([], {}), '()\n', (407, 409), False, 'from newsgac.nlp_tools.transformers import ExtractSentimentFeatures\n'), ((439, 455), 'sklearn.feature_extraction.DictVectorizer', 'DictVectorizer', ([], {}), '()\n', (453, 455), False, 'from sklearn.feature_extraction import DictVectorizer\n')]
from . import unittest, numpy from shapely.geometry import LineString, MultiLineString, asMultiLineString from shapely.geometry.base import dump_coords class MultiLineStringTestCase(unittest.TestCase): def test_multipoint(self): # From coordinate tuples geom = MultiLineString((((1.0, 2.0), (3.0, 4.0)),)) self.assertIsInstance(geom, MultiLineString) self.assertEqual(len(geom.geoms), 1) self.assertEqual(dump_coords(geom), [[(1.0, 2.0), (3.0, 4.0)]]) # From lines a = LineString(((1.0, 2.0), (3.0, 4.0))) ml = MultiLineString([a]) self.assertEqual(len(ml.geoms), 1) self.assertEqual(dump_coords(ml), [[(1.0, 2.0), (3.0, 4.0)]]) # From another multi-line ml2 = MultiLineString(ml) self.assertEqual(len(ml2.geoms), 1) self.assertEqual(dump_coords(ml2), [[(1.0, 2.0), (3.0, 4.0)]]) # Sub-geometry Access geom = MultiLineString([(((0.0, 0.0), (1.0, 2.0)))]) self.assertIsInstance(geom[0], LineString) self.assertEqual(dump_coords(geom[0]), [(0.0, 0.0), (1.0, 2.0)]) with self.assertRaises(IndexError): # index out of range geom.geoms[1] # Geo interface self.assertEqual(geom.__geo_interface__, {'type': 'MultiLineString', 'coordinates': (((0.0, 0.0), (1.0, 2.0)),)}) @unittest.skipIf(not numpy, 'Numpy required') def test_numpy(self): from numpy import array from numpy.testing import assert_array_equal # Construct from a numpy array geom = MultiLineString([array(((0.0, 0.0), (1.0, 2.0)))]) self.assertIsInstance(geom, MultiLineString) self.assertEqual(len(geom.geoms), 1) self.assertEqual(dump_coords(geom), [[(0.0, 0.0), (1.0, 2.0)]]) # Adapt a sequence of Numpy arrays to a multilinestring a = [array(((1.0, 2.0), (3.0, 4.0)))] geoma = asMultiLineString(a) assert_array_equal(geoma.context, [array([[1., 2.], [3., 4.]])]) self.assertEqual(dump_coords(geoma), [[(1.0, 2.0), (3.0, 4.0)]]) # TODO: is there an inverse? def test_suite(): return unittest.TestLoader().loadTestsFromTestCase(MultiLineStringTestCase)
[ "shapely.geometry.MultiLineString", "shapely.geometry.asMultiLineString", "shapely.geometry.base.dump_coords", "shapely.geometry.LineString", "numpy.array" ]
[((285, 329), 'shapely.geometry.MultiLineString', 'MultiLineString', (['(((1.0, 2.0), (3.0, 4.0)),)'], {}), '((((1.0, 2.0), (3.0, 4.0)),))\n', (300, 329), False, 'from shapely.geometry import LineString, MultiLineString, asMultiLineString\n'), ((534, 570), 'shapely.geometry.LineString', 'LineString', (['((1.0, 2.0), (3.0, 4.0))'], {}), '(((1.0, 2.0), (3.0, 4.0)))\n', (544, 570), False, 'from shapely.geometry import LineString, MultiLineString, asMultiLineString\n'), ((584, 604), 'shapely.geometry.MultiLineString', 'MultiLineString', (['[a]'], {}), '([a])\n', (599, 604), False, 'from shapely.geometry import LineString, MultiLineString, asMultiLineString\n'), ((767, 786), 'shapely.geometry.MultiLineString', 'MultiLineString', (['ml'], {}), '(ml)\n', (782, 786), False, 'from shapely.geometry import LineString, MultiLineString, asMultiLineString\n'), ((948, 991), 'shapely.geometry.MultiLineString', 'MultiLineString', (['[((0.0, 0.0), (1.0, 2.0))]'], {}), '([((0.0, 0.0), (1.0, 2.0))])\n', (963, 991), False, 'from shapely.geometry import LineString, MultiLineString, asMultiLineString\n'), ((1974, 1994), 'shapely.geometry.asMultiLineString', 'asMultiLineString', (['a'], {}), '(a)\n', (1991, 1994), False, 'from shapely.geometry import LineString, MultiLineString, asMultiLineString\n'), ((453, 470), 'shapely.geometry.base.dump_coords', 'dump_coords', (['geom'], {}), '(geom)\n', (464, 470), False, 'from shapely.geometry.base import dump_coords\n'), ((673, 688), 'shapely.geometry.base.dump_coords', 'dump_coords', (['ml'], {}), '(ml)\n', (684, 688), False, 'from shapely.geometry.base import dump_coords\n'), ((856, 872), 'shapely.geometry.base.dump_coords', 'dump_coords', (['ml2'], {}), '(ml2)\n', (867, 872), False, 'from shapely.geometry.base import dump_coords\n'), ((1070, 1090), 'shapely.geometry.base.dump_coords', 'dump_coords', (['geom[0]'], {}), '(geom[0])\n', (1081, 1090), False, 'from shapely.geometry.base import dump_coords\n'), ((1800, 1817), 'shapely.geometry.base.dump_coords', 'dump_coords', (['geom'], {}), '(geom)\n', (1811, 1817), False, 'from shapely.geometry.base import dump_coords\n'), ((1925, 1956), 'numpy.array', 'array', (['((1.0, 2.0), (3.0, 4.0))'], {}), '(((1.0, 2.0), (3.0, 4.0)))\n', (1930, 1956), False, 'from numpy import array\n'), ((2093, 2111), 'shapely.geometry.base.dump_coords', 'dump_coords', (['geoma'], {}), '(geoma)\n', (2104, 2111), False, 'from shapely.geometry.base import dump_coords\n'), ((1643, 1674), 'numpy.array', 'array', (['((0.0, 0.0), (1.0, 2.0))'], {}), '(((0.0, 0.0), (1.0, 2.0)))\n', (1648, 1674), False, 'from numpy import array\n'), ((2038, 2069), 'numpy.array', 'array', (['[[1.0, 2.0], [3.0, 4.0]]'], {}), '([[1.0, 2.0], [3.0, 4.0]])\n', (2043, 2069), False, 'from numpy import array\n')]
import sys import os import numpy as np from typing import Union from PIL import Image, ImageDraw, ImageFont from weblogo import colorscheme from weblogo.color import Color from weblogo.seq import protein_alphabet try: import bokeh as bk from bokeh.plotting import figure, show from bokeh.core.properties import value # for visualization in jupyter notebook from bokeh.io import output_notebook output_notebook() except ImportError: print( "Warning: cannot import Bokeh, so the interactive alignment viewer is disabled.", file=sys.stderr, ) from .alphabets import gap_letter # revised from chemistry_extended: removed neutral and moved N and Q to polar aa_chemistry_simple = colorscheme.ColorScheme( [ colorscheme.SymbolColor("GSTYCNQ", "green", "polar"), colorscheme.SymbolColor("KRH", "blue", "basic"), colorscheme.SymbolColor("DE", "red", "acidic"), colorscheme.SymbolColor("PAWFLIMV", "black", "hydrophobic"), colorscheme.SymbolColor("X", "gray", "unknown"), ], alphabet=protein_alphabet, ) # from makelogo aa_chemistry_extended = colorscheme.ColorScheme( [ colorscheme.SymbolColor("GSTYC", "green", "polar"), colorscheme.SymbolColor("NQ", "purple", "neutral"), colorscheme.SymbolColor("KRH", "blue", "basic"), colorscheme.SymbolColor("DE", "red", "acidic"), colorscheme.SymbolColor("PAWFLIMV", "black", "hydrophobic"), colorscheme.SymbolColor("X", "gray", "unknown"), ], alphabet=protein_alphabet, ) aa_dssp_color = colorscheme.ColorScheme( [ colorscheme.SymbolColor("EB", "red", "strand"), colorscheme.SymbolColor("HGI", "blue", "helix"), colorscheme.SymbolColor("TSC-", "light gray", "coil"), ], alphabet=protein_alphabet, ) nt_simple = colorscheme.ColorScheme( [ colorscheme.SymbolColor("G", "orange"), colorscheme.SymbolColor("TU", "red"), colorscheme.SymbolColor("C", "blue"), colorscheme.SymbolColor("A", "green"), ], ) def convert_weblogo_color(color: Color, color_format: str) -> Union[tuple, str]: """Convert weblogo Color to Bokeh color object Note: Weblogo colors are RGB but fractional [0, 1], whereas Bokeh and draw_alignment are [0, 255] :sa: https://github.com/WebLogo/weblogo/blob/master/weblogo/color.py :param color: A weblogo Color object. :param color_format: Either "rgb" or "hex". :returns: Either an RGB tuple (for "rgb") or hexadecimal string (for "hex"). """ assert color_format in ["rgb", "hex"] rgb_tuple = int(255 * color.red), int(255 * color.green), int(255 * color.blue) hex_str = f"#{rgb_tuple[0]:02X}{rgb_tuple[1]:02X}{rgb_tuple[2]:02X}" if color_format == "rgb": return rgb_tuple else: return hex_str def convert_colorscheme_to_color_map(color_scheme: colorscheme.ColorScheme, color_format: str) -> dict: """Convert weblogo ColorScheme into bokeh color map :param color_scheme: a weblogo ColorScheme object :param color_format: 'hex' or 'rgb' for hex string or RGB tuple, respectively :returns: a dict of bokeh colors indexed by letter """ # return a Bokeh color object or simple RGB tuple (for draw_alignment) # convert SymbolColor to bokeh color object color_dict = dict() for rule in color_scheme.rules: color_dict[rule.symbols] = convert_weblogo_color(rule.color, color_format) # default for spaces (white) color_dict["-*"] = convert_weblogo_color(Color.from_string("white"), color_format) # expand letter strings so that dict maps to single letters expanded_color_dict = dict() for letters, color in color_dict.items(): expanded_color_dict.update(dict((l, color) for l in letters)) return expanded_color_dict def apply_matching_colorscheme(letter, ref_letter, color_format: str): """Apply a match/mismatch color scheme to sequence letters :param letter: letter from target sequence :param ref_letter: letter from reference sequence (for match/mismatch) :param color_format: 'hex' or 'rgb' for hex string or RGB tuple, respectively :returns: an RGB hex string (for Bokeh) or simple RGB tuple (for vizqes) """ # gap match if letter == gap_letter and letter == ref_letter: return convert_weblogo_color(Color.from_string("lightblue"), color_format) # gap elif letter == gap_letter: return convert_weblogo_color(Color.from_string("white"), color_format) # match elif letter == ref_letter: return convert_weblogo_color(Color.from_string("limegreen"), color_format) # mismatch else: return convert_weblogo_color(Color.from_string("darkred"), color_format) def find_font(size, fontpath=None): """Find and scale font based on fontpath. Helper function for draw_alignment. :param size: desired font size :param fontpath: optional search path for font file (.ttf) :returns: PIL.ImageFont object :sa: vizqes (https://pypi.python.org/pypi/vizqes) """ if fontpath: font_searchpath = fontpath else: font_searchpath = os.path.join(os.path.dirname(__file__), "FreeMono.ttf") try: font = ImageFont.truetype(font_searchpath, size=size) sys.stdout.write("Found font in {}\n".format(str(font_searchpath))) except IOError as e: sys.stderr.write(str(e)) sys.stderr.write("could not find font in {}\nUsing default\n".format(str(font_searchpath))) font = ImageFont.load_default() return font def draw_alignment( aligned, colorscheme=aa_chemistry_simple, boxwidth=2, boxheight=12, label_width=100, show_ids=False, show_names=False, show_descriptions=False, show_grouping=False, ): """Generate a colored figure from an alignment :param aligned: MultipleSeqAlignment object :param colorscheme: a weblogo ColorScheme object :param boxwidth: column width of alignment :param boxheight: row height of alignment :param label_width: maximum length of row label; if None, extend to maximum label length :param show_ids: if True, show SeqRecord ID for each row :param show_names: if True, show SeqRecord name for each row :param show_descriptions: if True, show SeqRecord description for each row :param show_grouping: if True, highlight changes from reference in red against green background, instead of using the residue colorscheme :returns: PIL Image object :note: based on vizqespkg.vizqes_main.draw :sa: vizqespkg.vizqes_main.draw :sa: http://www.bioinformatics.nl/~berndb/aacolour.html """ if show_names or show_ids or show_descriptions: font = find_font(boxheight) offset = -1 if show_names: offset += font.getsize(max([m.name[None:label_width] for m in aligned], key=len))[0] + 1 if show_ids: offset += font.getsize(max([m.id[None:label_width] for m in aligned], key=len))[0] + 1 if show_descriptions: offset += font.getsize(max([m.description[None:label_width] for m in aligned], key=len))[0] + 1 else: font, offset = None, 0 height = len(aligned) * boxheight width = aligned.get_alignment_length() * boxwidth + offset img = Image.new("RGB", (width, height), "white") draw = ImageDraw.Draw(img) yd = None color_dict = convert_colorscheme_to_color_map(colorscheme, color_format="rgb") refseq = aligned[0].seq for y, member in enumerate(aligned): y *= boxheight for x, xs in enumerate(member.seq): if show_grouping: color = apply_matching_colorscheme(xs, refseq[x], color_format="rgb") else: color = color_dict[xs] x *= boxwidth for i in range(0, boxwidth): xd = x + i + offset for j in range(0, boxheight): yd = y + j draw.point((xd, yd), fill=color) if show_names or show_ids or show_descriptions: text = "" if show_names: text += member.name[None:label_width] + " " if show_ids: text += member.id[None:label_width] + " " if show_descriptions: text += member.description[None:label_width] + " " # clip last ' ' from text draw.text((0, yd - boxheight), text[:-1], font=font, fill=(0, 0, 0)) return img def view_alignment( aligned, fontsize="9pt", show_N=100, colorscheme=aa_chemistry_simple, boxwidth=9, boxheight=15, label_width=None, show_descriptions=False, show_grouping=False, ): """Bokeh sequence alignment view for protein and nucleic acid sequences :sa: https://dmnfarrell.github.io/bioinformatics/bokeh-sequence-aligner :param aligned: MultipleSeqAlignment object :param fontsize: font size for text labels :param show_N: size of sequence window (in number of sequence letters) :param colorscheme: a weblogo ColorScheme object :param boxwidth: column width of alignment :param boxheight: row height of alignment :param label_width: maximum length of row label; if None, extend to maximum label length :param show_descriptions: if True, show SeqRecord description for each row :param show_grouping: if True, highlight changes from reference in red against green background, instead of using the residue colorscheme :returns: A Bokeh plot of the Multiple Sequence Alignment. """ def get_colors(seqs, color_scheme): """make colors for letters in sequence :param seqs: A string sequence. :param color_scheme: A string. :returns: a sequence of colors for each letter in seqs. """ # get colors color_dict = convert_colorscheme_to_color_map(color_scheme, color_format="hex") # assign colors to sequences text = [i for s in list(seqs) for i in s] return [color_dict[a] for a in text] def get_colors_for_matching(seqs): """match/mismatch color scheme for show_grouping :param seqs: Sequences for which colors need to be matched. :returns: a list of colors (strings) """ refseq = seqs[0] colors = list() for seq in list(seqs): for xs, ref_s in zip(seq, refseq): colors.append(apply_matching_colorscheme(xs, ref_s, color_format="hex")) return colors # make sequence and id lists from the aligned object seqs = [rec.seq for rec in (aligned)] if show_descriptions: labels = [f"{row} - {rec.description} ({rec.id})" for (row, rec) in enumerate(aligned)] else: labels = [f"{row} - {rec.id}" for (row, rec) in enumerate(aligned)] if label_width: labels = [label[:label_width] for label in labels] else: label_width = max(len(label) for label in labels) text = [i for s in list(seqs) for i in s] if show_grouping: colors = get_colors_for_matching(seqs) else: colors = get_colors(seqs, colorscheme) N = len(seqs[0]) S = len(seqs) x = np.arange(1, N + 1) # need to reverse y so that sequences are plotted top-to-bottom y = np.arange(S - 1, -1, -1) # creates a 2D grid of coords from the 1D arrays xx, yy = np.meshgrid(x, y) # flattens the arrays gx = xx.ravel() gy = yy.flatten() # use recty for rect coords with an offset recty = gy + 0.5 # now we can create the ColumnDataSource with all the arrays source = bk.models.ColumnDataSource(dict(x=gx, y=gy, recty=recty, text=text, colors=colors)) plot_height = len(seqs) * boxheight + 50 x_range = bk.models.Range1d(0, N + 1, bounds="auto") viewlen = min(show_N, N) # view_range is for the close up view view_range = (0, viewlen) tools = "xpan,xwheel_zoom,reset,save" # plot_width combines length of text labels and number of letters in sequence view window # note: this part requires additional tuning; 5 pixel average width of y-axis labels is a guess plot_width = int(5 * label_width) + boxwidth * viewlen + 40 # entire sequence view (no text, with zoom) p = figure( title=None, plot_width=plot_width, plot_height=50, x_range=x_range, y_range=(0, S), tools=tools, min_border=0, toolbar_location="below", ) rects = bk.models.glyphs.Rect( x="x", y="recty", width=1, height=1, fill_color="colors", line_color=None, fill_alpha=0.6, ) p.add_glyph(source, rects) p.yaxis.visible = False p.grid.visible = False # sequence text view with ability to scroll along x axis p1 = figure( title=None, plot_width=plot_width, plot_height=plot_height, x_range=view_range, y_range=labels[::-1], tools="xpan,reset,save", min_border=0, toolbar_location="below", ) # , lod_factor=1) glyph = bk.models.glyphs.Text( x="x", y="y", text="text", text_align="center", text_color="black", text_font=value("monospace"), text_font_size=fontsize, ) rects = bk.models.glyphs.Rect( x="x", y="recty", width=1, height=1, fill_color="colors", line_color=None, fill_alpha=0.4, ) p1.add_glyph(source, glyph) p1.add_glyph(source, rects) p1.grid.visible = False p1.xaxis.major_label_text_font_style = "bold" p1.yaxis.minor_tick_line_width = 0 p1.yaxis.major_tick_line_width = 0 p = bk.layouts.gridplot([[p], [p1]], toolbar_location="below") show(p) return p
[ "PIL.Image.new", "bokeh.io.output_notebook", "numpy.meshgrid", "bokeh.plotting.figure", "PIL.ImageFont.load_default", "weblogo.color.Color.from_string", "os.path.dirname", "bokeh.models.Range1d", "weblogo.colorscheme.SymbolColor", "PIL.ImageFont.truetype", "numpy.arange", "bokeh.plotting.show", "bokeh.models.glyphs.Rect", "bokeh.core.properties.value", "PIL.ImageDraw.Draw", "bokeh.layouts.gridplot" ]
[((423, 440), 'bokeh.io.output_notebook', 'output_notebook', ([], {}), '()\n', (438, 440), False, 'from bokeh.io import output_notebook\n'), ((7357, 7399), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(width, height)', '"""white"""'], {}), "('RGB', (width, height), 'white')\n", (7366, 7399), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((7411, 7430), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['img'], {}), '(img)\n', (7425, 7430), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((11262, 11281), 'numpy.arange', 'np.arange', (['(1)', '(N + 1)'], {}), '(1, N + 1)\n', (11271, 11281), True, 'import numpy as np\n'), ((11358, 11382), 'numpy.arange', 'np.arange', (['(S - 1)', '(-1)', '(-1)'], {}), '(S - 1, -1, -1)\n', (11367, 11382), True, 'import numpy as np\n'), ((11449, 11466), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), '(x, y)\n', (11460, 11466), True, 'import numpy as np\n'), ((11824, 11866), 'bokeh.models.Range1d', 'bk.models.Range1d', (['(0)', '(N + 1)'], {'bounds': '"""auto"""'}), "(0, N + 1, bounds='auto')\n", (11841, 11866), True, 'import bokeh as bk\n'), ((12326, 12473), 'bokeh.plotting.figure', 'figure', ([], {'title': 'None', 'plot_width': 'plot_width', 'plot_height': '(50)', 'x_range': 'x_range', 'y_range': '(0, S)', 'tools': 'tools', 'min_border': '(0)', 'toolbar_location': '"""below"""'}), "(title=None, plot_width=plot_width, plot_height=50, x_range=x_range,\n y_range=(0, S), tools=tools, min_border=0, toolbar_location='below')\n", (12332, 12473), False, 'from bokeh.plotting import figure, show\n'), ((12553, 12670), 'bokeh.models.glyphs.Rect', 'bk.models.glyphs.Rect', ([], {'x': '"""x"""', 'y': '"""recty"""', 'width': '(1)', 'height': '(1)', 'fill_color': '"""colors"""', 'line_color': 'None', 'fill_alpha': '(0.6)'}), "(x='x', y='recty', width=1, height=1, fill_color=\n 'colors', line_color=None, fill_alpha=0.6)\n", (12574, 12670), True, 'import bokeh as bk\n'), ((12886, 13068), 'bokeh.plotting.figure', 'figure', ([], {'title': 'None', 'plot_width': 'plot_width', 'plot_height': 'plot_height', 'x_range': 'view_range', 'y_range': 'labels[::-1]', 'tools': '"""xpan,reset,save"""', 'min_border': '(0)', 'toolbar_location': '"""below"""'}), "(title=None, plot_width=plot_width, plot_height=plot_height, x_range=\n view_range, y_range=labels[::-1], tools='xpan,reset,save', min_border=0,\n toolbar_location='below')\n", (12892, 13068), False, 'from bokeh.plotting import figure, show\n'), ((13382, 13499), 'bokeh.models.glyphs.Rect', 'bk.models.glyphs.Rect', ([], {'x': '"""x"""', 'y': '"""recty"""', 'width': '(1)', 'height': '(1)', 'fill_color': '"""colors"""', 'line_color': 'None', 'fill_alpha': '(0.4)'}), "(x='x', y='recty', width=1, height=1, fill_color=\n 'colors', line_color=None, fill_alpha=0.4)\n", (13403, 13499), True, 'import bokeh as bk\n'), ((13788, 13846), 'bokeh.layouts.gridplot', 'bk.layouts.gridplot', (['[[p], [p1]]'], {'toolbar_location': '"""below"""'}), "([[p], [p1]], toolbar_location='below')\n", (13807, 13846), True, 'import bokeh as bk\n'), ((13851, 13858), 'bokeh.plotting.show', 'show', (['p'], {}), '(p)\n', (13855, 13858), False, 'from bokeh.plotting import figure, show\n'), ((769, 821), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""GSTYCNQ"""', '"""green"""', '"""polar"""'], {}), "('GSTYCNQ', 'green', 'polar')\n", (792, 821), False, 'from weblogo import colorscheme\n'), ((831, 878), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""KRH"""', '"""blue"""', '"""basic"""'], {}), "('KRH', 'blue', 'basic')\n", (854, 878), False, 'from weblogo import colorscheme\n'), ((888, 934), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""DE"""', '"""red"""', '"""acidic"""'], {}), "('DE', 'red', 'acidic')\n", (911, 934), False, 'from weblogo import colorscheme\n'), ((944, 1003), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""PAWFLIMV"""', '"""black"""', '"""hydrophobic"""'], {}), "('PAWFLIMV', 'black', 'hydrophobic')\n", (967, 1003), False, 'from weblogo import colorscheme\n'), ((1013, 1060), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""X"""', '"""gray"""', '"""unknown"""'], {}), "('X', 'gray', 'unknown')\n", (1036, 1060), False, 'from weblogo import colorscheme\n'), ((1182, 1232), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""GSTYC"""', '"""green"""', '"""polar"""'], {}), "('GSTYC', 'green', 'polar')\n", (1205, 1232), False, 'from weblogo import colorscheme\n'), ((1242, 1292), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""NQ"""', '"""purple"""', '"""neutral"""'], {}), "('NQ', 'purple', 'neutral')\n", (1265, 1292), False, 'from weblogo import colorscheme\n'), ((1302, 1349), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""KRH"""', '"""blue"""', '"""basic"""'], {}), "('KRH', 'blue', 'basic')\n", (1325, 1349), False, 'from weblogo import colorscheme\n'), ((1359, 1405), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""DE"""', '"""red"""', '"""acidic"""'], {}), "('DE', 'red', 'acidic')\n", (1382, 1405), False, 'from weblogo import colorscheme\n'), ((1415, 1474), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""PAWFLIMV"""', '"""black"""', '"""hydrophobic"""'], {}), "('PAWFLIMV', 'black', 'hydrophobic')\n", (1438, 1474), False, 'from weblogo import colorscheme\n'), ((1484, 1531), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""X"""', '"""gray"""', '"""unknown"""'], {}), "('X', 'gray', 'unknown')\n", (1507, 1531), False, 'from weblogo import colorscheme\n'), ((1629, 1675), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""EB"""', '"""red"""', '"""strand"""'], {}), "('EB', 'red', 'strand')\n", (1652, 1675), False, 'from weblogo import colorscheme\n'), ((1685, 1732), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""HGI"""', '"""blue"""', '"""helix"""'], {}), "('HGI', 'blue', 'helix')\n", (1708, 1732), False, 'from weblogo import colorscheme\n'), ((1742, 1795), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""TSC-"""', '"""light gray"""', '"""coil"""'], {}), "('TSC-', 'light gray', 'coil')\n", (1765, 1795), False, 'from weblogo import colorscheme\n'), ((1889, 1927), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""G"""', '"""orange"""'], {}), "('G', 'orange')\n", (1912, 1927), False, 'from weblogo import colorscheme\n'), ((1937, 1973), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""TU"""', '"""red"""'], {}), "('TU', 'red')\n", (1960, 1973), False, 'from weblogo import colorscheme\n'), ((1983, 2019), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""C"""', '"""blue"""'], {}), "('C', 'blue')\n", (2006, 2019), False, 'from weblogo import colorscheme\n'), ((2029, 2066), 'weblogo.colorscheme.SymbolColor', 'colorscheme.SymbolColor', (['"""A"""', '"""green"""'], {}), "('A', 'green')\n", (2052, 2066), False, 'from weblogo import colorscheme\n'), ((3567, 3593), 'weblogo.color.Color.from_string', 'Color.from_string', (['"""white"""'], {}), "('white')\n", (3584, 3593), False, 'from weblogo.color import Color\n'), ((5273, 5319), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['font_searchpath'], {'size': 'size'}), '(font_searchpath, size=size)\n', (5291, 5319), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((4385, 4415), 'weblogo.color.Color.from_string', 'Color.from_string', (['"""lightblue"""'], {}), "('lightblue')\n", (4402, 4415), False, 'from weblogo.color import Color\n'), ((5206, 5231), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (5221, 5231), False, 'import os\n'), ((5569, 5593), 'PIL.ImageFont.load_default', 'ImageFont.load_default', ([], {}), '()\n', (5591, 5593), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((13311, 13329), 'bokeh.core.properties.value', 'value', (['"""monospace"""'], {}), "('monospace')\n", (13316, 13329), False, 'from bokeh.core.properties import value\n'), ((4509, 4535), 'weblogo.color.Color.from_string', 'Color.from_string', (['"""white"""'], {}), "('white')\n", (4526, 4535), False, 'from weblogo.color import Color\n'), ((4631, 4661), 'weblogo.color.Color.from_string', 'Color.from_string', (['"""limegreen"""'], {}), "('limegreen')\n", (4648, 4661), False, 'from weblogo.color import Color\n'), ((4739, 4767), 'weblogo.color.Color.from_string', 'Color.from_string', (['"""darkred"""'], {}), "('darkred')\n", (4756, 4767), False, 'from weblogo.color import Color\n')]
from math import floor, ceil import numpy as np import matplotlib.pyplot as plt import datetime import folium import random import seaborn as sns import pandas as pd import plotly.express as px import geopandas as gpd # import movingpandas as mpd # from statistics import mean from shapely.geometry import Polygon, MultiPoint import json from branca.colormap import linear # from copy import copy from sklearn.cluster import DBSCAN from geopy.distance import great_circle class Visualiser(): def __init__(self): print("Initializing visualisation class") # do we need anything? def st_cube_simple(self, points): """ To plot a space-time cube of one trajectory. Checks for the start time and calculates seconds passed from it for every next point Keyword Arguments: points {dataframe} -- A Pandas dataframe of a trajectory Returns: No Return """ def seconds_from_start(x, start): date_time_obj = datetime.datetime.strptime(x, '%Y-%m-%dT%H:%M:%S') seconds = (date_time_obj-start).total_seconds() return int(seconds) points['lat'] = points['geometry'].apply(lambda coord: coord.y) points['lng'] = points['geometry'].apply(lambda coord: coord.x) start_time = datetime.datetime.strptime( points.time.iloc[0], '%Y-%m-%dT%H:%M:%S') points['time_seconds'] = np.vectorize(seconds_from_start)( np.array(points.time.values.tolist()), start_time) # plot the space-time cube fig = plt.figure() ax = fig.gca(projection='3d') ax.plot(points['lng'], points['lat'], points['time_seconds']) ax.set_xlabel('Longitude') ax.set_ylabel('Latitude') ax.set_zlabel('Seconds since start') fig.canvas.set_window_title('Space-Time Cube') plt.show() def plot_full_correlation(self, points_df): """ To plot a correlation matrix for all columns that contain word '.value' in their name Keyword Arguments: points_df {dataframe} -- A Pandas dataframe of a trajectory Returns: No Return """ value_names = [s for s in points_df.columns if '.value' in s] value_columns = [np.array( points_df[column].values.tolist()) for column in value_names] values_transposed = np.transpose(value_columns) values_df = pd.DataFrame(values_transposed) values_df.columns = value_names f, ax = plt.subplots(figsize=(10, 8)) corr = values_df.corr() sns.heatmap(corr, mask=np.zeros_like(corr, dtype=np.bool), cmap=sns.diverging_palette(220, 10, as_cmap=True), square=True, ax=ax) def plot_pair_correlation(self, points_df, column_1, column_2, sort_by='id', regression=False): """ To plot a pairwise relationship in a dataset. Special case for the Acceleration values to see difference (if any) between accelerating and braking. Keyword Arguments: points_df {dataframe} -- A Pandas dataframe of a trajectory column_1, column_2 {string} -- names of 2 columns to analyse sort_by {string} -- 'id' or 'temperature' regression {boolean} -- defines which kind of plot to plot Returns: No Return """ if (sort_by == 'temperature'): bins = [-10, 0, 5, 10, 20, 30, 40] copied = points_df.copy() copied['Intake Temperature.value'] = \ copied['Intake Temperature.value'].astype(int) copied['binned_temp'] = pd.cut(copied['Intake Temperature.value'], bins) if (column_2 == "Acceleration.value" or column_1 == "Acceleration.value"): df1 = copied[copied["Acceleration.value"] > 0] df2 = copied[copied["Acceleration.value"] < 0] if (regression): sns.lmplot(x=column_1, y=column_2, hue='binned_temp', data=df1, palette="viridis") sns.lmplot(x=column_1, y=column_2, hue='binned_temp', data=df2, palette="viridis") else: sns.pairplot(df1, vars=[column_1, column_2], hue="binned_temp") sns.pairplot(df2, vars=[column_1, column_2], hue="binned_temp") else: if (regression): sns.lmplot(x=column_1, y=column_2, hue='binned_temp', data=copied) else: sns.pairplot(copied, vars=[column_1, column_2], hue="binned_temp") else: if (column_2 == "Acceleration.value" or column_1 == "Acceleration.value"): df1 = points_df[points_df["Acceleration.value"] > 0] df2 = points_df[points_df["Acceleration.value"] < 0] if (regression): sns.lmplot(x=column_1, y=column_2, hue='track.id', data=df1, palette="viridis") sns.lmplot(x=column_1, y=column_2, hue='track.id', data=df2, palette="viridis") else: sns.pairplot(df1, vars=[column_1, column_2], hue="track.id") sns.pairplot(df2, vars=[column_1, column_2], hue="track.id") else: if (regression): sns.lmplot(x=column_1, y=column_2, hue='track.id', data=points_df, palette="viridis") else: sns.pairplot(points_df, vars=[column_1, column_2], hue="track.id") def plot_distribution(self, points, column): fig, (ax1, ax2, ax3) = plt.subplots( 1, 3, figsize=(15, 5), gridspec_kw={'width_ratios': [5, 5, 5]}) sns.boxplot(x=points[column], ax=ax1) ax1.set_title('Boxplot') sns.kdeplot(points[column], shade=True, color="r", ax=ax2) ax2.set_title('Gaussian kernel density estimate') sns.distplot(points[column], kde=False, ax=ax3) ax3.set_title('Histogram') fig.tight_layout() plt.show() def create_map(self, trajectories): """ To create a Folium Map object (in case its not already available) Keyword Arguments: trajectories {mpd trajectory collection} -- A Moving Pandas Trajectory Collection Returns: map {folium map} -- Newly created map object """ map_zoom_point = [] map_zoom_point.append(trajectories[0].df['geometry'][0].y) map_zoom_point.append(trajectories[0].df['geometry'][0].x) map = folium.Map(location=[map_zoom_point[0], map_zoom_point[1]], zoom_start=12, tiles='cartodbpositron') return map def plot_flows(self, flows, flow_map): """ To plot provided aggregated flows over the provided map Keyword Arguments: flows {mpd aggregated flows} -- A Moving Pandas Aggreagtion function output flow_map {folium map} -- Map over which trajectories are to be plotted Returns: No Return """ index = 0 # to extract coordiantes from "FLOWS" for row in range(0, len(flows)): my_poylyline = [] mylng = flows.loc[index, 'geometry'].coords[0][0] mylat = flows.loc[index, 'geometry'].coords[0][1] my_poylyline.append([mylat, mylng]) mylng = flows.loc[index, 'geometry'].coords[1][0] mylat = flows.loc[index, 'geometry'].coords[1][1] my_poylyline.append([mylat, mylng]) # to plot point's coordinates over the map as polyline based on # weight myweight = int(flows.loc[index, 'weight']) my_line = folium.PolyLine(locations=my_poylyline, weight=round((myweight/2))) # as minimize very big weight number flow_map.add_child(my_line) index += 1 def plot_point_values(self, points, value): """ To show points on a map Keyword Arguments: points {GeoDataFrame} -- points input value {string} -- column value to use for colouriing Returns: No Return """ points['lat'] = points['geometry'].apply(lambda coord: coord.y) points['lng'] = points['geometry'].apply(lambda coord: coord.x) # Visualizing points by the desired value fig = px.scatter_mapbox(points, lat="lat", lon="lng", color=value, title=value + " visualisation", zoom=8) fig.update_layout(mapbox_style="open-street-map", margin={"r": 5, "t": 50, "l": 10, "b": 5}) fig.show() def plot_region(self, region, region_map, region_color, label): """ To plot provided regions over the provided map Keyword Arguments: region {shapely Polygon} -- A shapely based Polygon region_map {folium map} -- Map over which trajectories are to be plotted region_color {string} -- Name of the Color in String label {String} -- Label for popup Returns: No Return """ region_coords = [] # to extract coordiantes from provided region index = 0 for value in range(0, len(region.exterior.coords)): temp = [] temp.append(region.exterior.coords[index][1]) temp.append(region.exterior.coords[index][0]) region_coords.append(temp) index += 1 # to plot point's coordinates over the map as polygon region_plot = folium.Polygon(locations=region_coords, color=region_color, popup=label) region_map.add_child(region_plot) def plot_weeks_trajectory(self, weekwise_trajectory_collection, trajectory_map, marker_radius): """ To iterate over list with weekwise trajectory collection and plot each over provided folium map object Keyword Arguments: weekwise_trajectory_collection {list of mpd trajectory collection} -- 7 indices respective of each day of the week trajectory_map {folium map} -- Map over which trajectories are to be plotted marker_radius {integer} -- Radius of each point marker (circle) Returns: No Return """ # Dictionary to assign color based on a week day colors = {0: "crimson", 1: "blue", 2: "purple", 3: "yellow", 4: "orange", 5: "black", 6: "green"} day = 0 for traj_day in weekwise_trajectory_collection: track_id = -1 # to store track id of each track for Pop Up trajectory_points = [] # to store coordiante points for each track traj_row = 0 # if trajectory collection has atleast a single trajectory if(len(traj_day.trajectories) > 0): for traj in traj_day.trajectories: point_row = 0 track_id = traj.df['track.id'][0] for point in range(len(traj_day.trajectories[ traj_row].df)): temp = [] temp.append(traj.df['geometry'][point_row].y) temp.append(traj.df['geometry'][point_row].x) trajectory_points.append(temp) point_row += 1 traj_row += 1 # Plotting day wise point's coordinate plot with a single # color and track id as popup for row in trajectory_points: folium.Circle(radius=marker_radius, location=row, color=colors[day], popup=track_id).add_to( trajectory_map) day += 1 def get_trajectories_coords(self, trajectories): """ To iterate over trajectory collection and return individual track points Keyword Arguments: trajectories {mpd trajectory collection} -- A Moving Pandas Trajectory Collection Returns: trajectory_list -- A list of two elements at each index, track_id & array of associated point's coordinates """ trajectory_list = [] for traj in trajectories: track_points = [] # Extracting Point's coordinate for each trajectory for i in range(len(traj.df)): temp = [] temp.append(traj.df['geometry'][i].y) temp.append(traj.df['geometry'][i].x) track_points.append(temp) # Extracting Track_Id for each trajectory track_id = [] track_id.append(traj.df['track.id'][0]) # Creating a list with [id,coordinates] for each individual # trajectory traj_temp = [track_id, track_points] trajectory_list.append(traj_temp) return trajectory_list def plot_trajectories(self, trajectory_collection, trajectory_map, marker_radius): """ To iterate over trajectory collection and plot each over provided folium map object Keyword Arguments: trajectory_collection {mpd trajectory collection} -- A Moving Pandas Trajectory Collection trajectory_map {folium map} -- Map over which trajectories are to be plotted marker_radius {integer} -- Radius of each point marker (circle) Returns: No Return """ # Function to get random hexcode to assign unique color to each # trajectory def get_hexcode_color(): random_number = random.randint(0, 16777215) hex_number = str(hex(random_number)) hex_number = '#' + hex_number[2:] return hex_number # Call to function to iterate over trajectory collection # and return individual track points traj_list = self.get_trajectories_coords(trajectory_collection) traj_index = 0 for traj in traj_list: # Extracting Track_Id and Point's coordinate for each trajectory track_id = traj[0] track_points = traj[1] # Call to function to random color for this trajectory track_color = get_hexcode_color() # Plotting points of each trajectory with a single color point_index = 0 for row in track_points: # Pop-Up will contain Track Id folium.Circle(radius=marker_radius, location=row, color=track_color, popup=track_id).add_to( trajectory_map) point_index += 1 traj_index += 1 ################################## # RELATED TO WEEK WISE BAR GRAPH # def extract_daywise_lengths(self, weekly_trajectories): """ To iterate over list with weekwise trajectory collection and extract point's coordinates for day wise trajectories Keyword Arguments: weekly_trajectories {list of mpd trajectory collection} -- 7 indices respective of each day of the week Returns: day_length {list} -- list with total length for each day """ days = {0: "Monday", 1: "Tuesday", 2: "Wednesday", 3: "Thursday", 4: "Friday", 5: "Saturday", 6: "Sunday"} day_length = [] # to store total length for each day at each index day = 0 for traj_day in range(len(weekly_trajectories)): temp = [] # if trajectory collection has atleast a single trajectory if(len(weekly_trajectories[day].trajectories) > 0): traj_row = 0 length_sum = 0 # to store total sum of track length for each # day's collection for traj in range(len(weekly_trajectories[day].trajectories)): length_sum += round(weekly_trajectories[day].trajectories[ traj_row].df['track.length'][0], 2) traj_row += 1 temp.append(days[day]) # storing weekday name like Monday, # Tuesday etc at first index of list temp.append(length_sum) # storing assocaited total length # at second index of list day_length.append(temp) else: temp.append(days[day]) temp.append(0) day_length.append(temp) day += 1 return day_length def extract_barplot_info(self, day_length): """ To extract information for matplotlib plot Keyword Arguments: day_length {list} -- list with total length for each day Returns: day, height, highest, highest_index, average {strings/integers} -- attributes required for plots """ day = [] height = [] highest = 0 highest_index = -1 total = 0 index = 0 for row in day_length: day.append(row[0][:3]) # extracting name of day of the week # in form of Mon, Tue etc. track_length = round(row[1], 2) # extracting total length # associated with each day rounded to 2 decimals height.append(track_length) # extracting the highest value out of 'total lengths' from all # weekdays if(track_length > highest): highest = track_length highest_index = index total += track_length index += 1 average_value = total/7 # extracting average value out of # 'total lengths' from all weekdays average = [] for row in day: average.append(average_value) # a list of same value at each # index, just to plot a horizontal line in plot return day, height, highest, highest_index, average def plot_daywise_track(self, week_trajectories): """ To plot bar graphy of week day vs total length of that day (all tracks combined) Keyword Arguments: weekly_trajectories {list of mpd trajectory collection} -- 7 indices respective of each day of the week Returns: No Return """ # Call to function to extract daywise lengths daywise_length = self.extract_daywise_lengths(week_trajectories) # Call to function to extract attributes for plot day, height, highest, highest_index, average = \ self.extract_barplot_info(daywise_length) bar_plot = plt.bar(day, height, color=(0.1, 0.1, 0.1, 0.1), edgecolor='blue') bar_plot[highest_index].set_edgecolor('r') plt.ylabel('Total Distance Travelled (Km)') axes2 = plt.twinx() axes2.set_ylim(0, highest+1) axes2.plot(day, average, color='b', label='Average Distance') plt.suptitle('Which day has a different movement pattern than others?') plt.legend() plt.show() def aggregateByGrid(df, field, summary, gridSize): """ Aggregates the specified field with chosen summary type and user defined grid size. returns aggregated grids with summary Parameters ---------- df : geopandas dataframe field : string field to be summarized. summary : string type of summary to be sumarized. eg. min, max,sum, median gridSize : float the size of grid on same unit as geodataframe coordinates. Returns ------- geodataframe Aggregated grids with summary on it """ def round_down(num, divisor): return floor(num / divisor) * divisor def round_up(num, divisor): return ceil(num / divisor) * divisor # Get crs from data sourceCRS = df.crs targetCRS = {"init": "EPSG:3857"} # Reproject to Mercator\ df = df.to_crs(targetCRS) # Get bounds xmin, ymin, xmax, ymax = df.total_bounds print(xmin, ymin, xmax, ymax) height, width = gridSize, gridSize top, left = round_up(ymax, height), round_down(xmin, width) bottom, right = round_down(ymin, height), round_up(xmax, width) rows = int((top - bottom) / height)+1 cols = int((right - left) / width)+1 XleftOrigin = left XrightOrigin = left + width YtopOrigin = top YbottomOrigin = top - height polygons = [] for i in range(cols): Ytop = YtopOrigin Ybottom = YbottomOrigin for j in range(rows): polygons.append(Polygon([(XleftOrigin, Ytop), (XrightOrigin, Ytop), (XrightOrigin, Ybottom), (XleftOrigin, Ybottom)])) Ytop = Ytop - height Ybottom = Ybottom - height XleftOrigin = XleftOrigin + width XrightOrigin = XrightOrigin + width grid = gpd.GeoDataFrame({'geometry': polygons}) grid.crs = df.crs # Assign gridid numGrid = len(grid) grid['gridId'] = list(range(numGrid)) # Identify gridId for each point points_identified = gpd.sjoin(df, grid, op='within') # group points by gridid and calculate mean Easting, # store it as dataframe # delete if field already exists if field in grid.columns: del grid[field] grouped = points_identified.groupby('gridId')[field].agg(summary) grouped_df = pd.DataFrame(grouped) new_grid = grid.join(grouped_df, on='gridId').fillna(0) grid = new_grid.to_crs(sourceCRS) summarized_field = summary+"_"+field final_grid = grid.rename(columns={field: summarized_field}) final_grid = final_grid[final_grid[summarized_field] > 0].sort_values( by=summarized_field, ascending=False) final_grid[summarized_field] = round(final_grid[summarized_field], 1) final_grid['x_centroid'], final_grid['y_centroid'] = \ final_grid.geometry.centroid.x, final_grid.geometry.centroid.y return final_grid def plotAggregate(grid, field): """ Plots the aggregated data on grid. Please call aggregateByGrid function before this step. Parameters ---------- grid :polygon geodataframe The grid geodataframe with grid and aggregated data in a column. Grid shoud have grid id or equivalent unique ids field : string Fieldname with aggregated data Returns ------- m : folium map object Folium map with openstreetmap as base. """ # Prepare for grid plotting using folium grid.columns = [cols.replace('.', '_') for cols in grid.columns] field = field.replace('.', '_') # Convert grid id to string grid['gridId'] = grid['gridId'].astype(str) # Convert data to geojson and csv atts = pd.DataFrame(grid) grid.to_file("grids.geojson", driver='GeoJSON') atts.to_csv("attributes.csv", index=False) # load spatial and non-spatial data data_geojson_source = "grids.geojson" # data_geojson=gpd.read_file(data_geojson_source) data_geojson = json.load(open(data_geojson_source)) # Get coordiantes for map centre lat = grid.geometry.centroid.y.mean() lon = grid.geometry.centroid.x.mean() # Intialize a new folium map object m = folium.Map(location=[lat, lon], zoom_start=10, tiles='OpenStreetMap') # Configure geojson layer folium.GeoJson(data_geojson, lambda feature: {'lineOpacity': 0.4, 'color': 'black', 'fillColor': None, 'weight': 0.5, 'fillOpacity': 0}).add_to(m) # add attribute data attribute_pd = pd.read_csv("attributes.csv") attribute = pd.DataFrame(attribute_pd) # Convert gridId to string to ensure it matches with gridId attribute['gridId'] = attribute['gridId'].astype(str) # construct color map minvalue = attribute[field].min() maxvalue = attribute[field].max() colormap_rn = linear.YlOrRd_09.scale(minvalue, maxvalue) # Create Dictionary for colormap population_dict_rn = attribute.set_index('gridId')[field] # create map folium.GeoJson( data_geojson, name='Choropleth map', style_function=lambda feature: { 'lineOpacity': 0, 'color': 'green', 'fillColor': colormap_rn( population_dict_rn[feature['properties']['gridId']]), 'weight': 0, 'fillOpacity': 0.6 }, highlight_function=lambda feature: {'weight': 3, 'color': 'black', 'fillOpacity': 1}, tooltip=folium.features.GeoJsonTooltip(fields=[field], aliases=[field]) ).add_to(m) # format legend field = field.replace("_", " ") # add a legend colormap_rn.caption = '{value} per grid'.format(value=field) colormap_rn.add_to(m) # add a layer control folium.LayerControl().add_to(m) return m def spatioTemporalAggregation(df, field, summary, gridSize): """ Aggregates the given field on hour and weekday basis. Prepares data for mosaic plot Parameters ---------- df : geopandas dataframe field : string field to be summarized. summary : string type of summary to be sumarized. eg. min, max,sum, median gridSize : float the size of grid on same unit as geodataframe coordinates. Returns ------- geodataframes: one each for larger grid and other for subgrids (for visualization purpose only) Aggregated grids with summary on it """ def round_down(num, divisor): return floor(num / divisor) * divisor def round_up(num, divisor): return ceil(num / divisor) * divisor # Get crs from data sourceCRS = df.crs targetCRS = {'init': "epsg:3857"} # Reproject to Mercator\ df = df.to_crs(targetCRS) # Get bounds xmin, ymin, xmax, ymax = df.total_bounds height, width = gridSize, gridSize top, left = round_up(ymax, height), round_down(xmin, width) bottom, right = round_down(ymin, height), round_up(xmax, width) rows = int((top - bottom) / height)+1 cols = int((right - left) / width)+1 XleftOrigin = left XrightOrigin = left + width YtopOrigin = top YbottomOrigin = top - height polygons = [] for i in range(cols): Ytop = YtopOrigin Ybottom = YbottomOrigin for j in range(rows): polygons.append(Polygon( [(XleftOrigin, Ytop), (XrightOrigin, Ytop), (XrightOrigin, Ybottom), (XleftOrigin, Ybottom)])) Ytop = Ytop - height Ybottom = Ybottom - height XleftOrigin = XleftOrigin + width XrightOrigin = XrightOrigin + width grid = gpd.GeoDataFrame({'geometry': polygons}) grid.crs = (targetCRS) # Assign gridid numGrid = len(grid) grid['gridId'] = list(range(numGrid)) # Identify gridId for each point df['hour'] = df['time'].apply( lambda x: datetime.datetime.strptime( x, '%Y-%m-%dT%H:%M:%S')).dt.hour df['weekday'] = df['time'].apply( lambda x: datetime.datetime.strptime( x, '%Y-%m-%dT%H:%M:%S')).dt.dayofweek points_identified = gpd.sjoin(df, grid, op='within') # group points by gridid and calculate mean Easting, # store it as dataframe # delete if field already exists if field in grid.columns: del grid[field] # Aggregate by weekday, hour and grid grouped = points_identified.groupby( ['gridId', 'weekday', 'hour']).agg({field: [summary]}) grouped = grouped.reset_index() grouped.columns = grouped.columns.map("_".join) modified_fieldname = field+"_"+summary # Create Subgrids subgrid, mainGrid, rowNum, columnNum, value = [], [], [], [], [] unikGrid = grouped['gridId_'].unique() for currentGrid in unikGrid: dataframe = grid[grid['gridId'] == currentGrid] xmin, ymin, xmax, ymax = dataframe.total_bounds xminn, xmaxx, yminn, ymaxx = xmin + \ (xmax-xmin)*0.05, xmax-(xmax-xmin)*0.05, ymin + \ (ymax-ymin)*0.05, ymax-(ymax-ymin)*0.05 rowOffset = (ymaxx-yminn)/24.0 colOffset = (xmaxx - xminn)/7.0 for i in range(7): for j in range(24): topy, bottomy, leftx, rightx = ymaxx-j*rowOffset, ymaxx - \ (j+1)*rowOffset, xminn+i * \ colOffset, xminn+(i+1)*colOffset subgrid.append( Polygon([(leftx, topy), (rightx, topy), (rightx, bottomy), (leftx, bottomy)])) mainGrid.append(currentGrid) rowNum.append(j) columnNum.append(i) if len(grouped[(grouped['gridId_'] == currentGrid) & (grouped['weekday_'] == i) & (grouped['hour_'] == j)]) != 0: this_value = grouped[ (grouped['gridId_'] == currentGrid) & (grouped['weekday_'] == i) & (grouped['hour_'] == j)].iloc[0][ modified_fieldname] value.append(this_value) else: value.append(np.nan) subgrid_gpd = gpd.GeoDataFrame({'geometry': subgrid}) subgrid_gpd.crs = targetCRS # Reproject to Mercator\ subgrid_gpd = subgrid_gpd.to_crs(sourceCRS) subgrid_gpd['gridId'] = mainGrid subgrid_gpd['Weekday'] = columnNum subgrid_gpd['hour'] = rowNum subgrid_gpd['gridId'] = subgrid_gpd.apply(lambda x: str( x['gridId'])+"_"+str(x['Weekday'])+"_"+str(x['hour']), axis=1) subgrid_gpd[modified_fieldname] = value subgrid_gpd = subgrid_gpd.dropna() grid = grid.to_crs(sourceCRS) grid = grid[grid['gridId'].isin(unikGrid)] return grid, subgrid_gpd # final_subgrid=subgrid_gpd[subgrid_gpd['value'].notnull()] # return final_subgrid def MosaicPlot(mainGrid, grid, field): """ Performs spatio temporal aggregation of data on weekday and hour, and prepares mosaicplot. Parameters ---------- mainGrid :polygon geodataframe The grid geodataframe with grid and aggregated data in a column. Grid shoud have grid id or equivalent unique ids grid: Small subgrids, prepared for visualization purpose only represents an hour of a weekday field : string Fieldname with aggregated data Returns ------- m : folium map object Folium map with openstreetmap as base. """ # Prepare for grid plotting using folium grid.columns = [cols.replace('.', '_') for cols in grid.columns] field = field.replace('.', '_') # Convert grid id to string grid['gridId'] = grid['gridId'].astype(str) # Convert maingrid,subgrid to geojson and csv mainGrid.to_file("mainGrids.geojson", driver='GeoJSON') atts = pd.DataFrame(grid) grid.to_file("grids.geojson", driver='GeoJSON') atts.to_csv("attributes.csv", index=False) # load spatial and non-spatial data data_geojson_source = "grids.geojson" # data_geojson=gpd.read_file(data_geojson_source) data_geojson = json.load(open(data_geojson_source)) # load spatial and non-spatial data grid_geojson_source = "mainGrids.geojson" mainGrid_geojson = json.load(open(grid_geojson_source)) # Get coordiantes for map centre lat = grid.geometry.centroid.y.mean() lon = grid.geometry.centroid.x.mean() # Intialize a new folium map object m = folium.Map(location=[lat, lon], zoom_start=10, tiles='Stamen Toner') # Configure geojson layer # style = {'fillColor': '#f5f5f5', 'lineColor': '#ffffbf'} # polygon = folium.GeoJson(gjson, style_function = \ # lambda x: style).add_to(m) # def style_function(): # return {'fillColor': '#00FFFFFF', 'lineColor': '#00FFFFFF'} # folium.GeoJson(data_geojson).add_to(m) folium.GeoJson(mainGrid_geojson, lambda feature: {'lineOpacity': 0.4, 'color': '#00ddbb', 'fillColor': None, 'weight': 2, 'fillOpacity': 0}).add_to(m) # add attribute data attribute_pd = pd.read_csv("attributes.csv") attribute = pd.DataFrame(attribute_pd) # Convert gridId to string to ensure it matches with gridId attribute['gridId'] = attribute['gridId'].astype(str) # construct color map minvalue = attribute[field].min() maxvalue = attribute[field].max() colormap_rn = linear.YlOrRd_09.scale(minvalue, maxvalue) # Create Dictionary for colormap population_dict_rn = attribute.set_index('gridId')[field] # create map folium.GeoJson( data_geojson, name='Choropleth map', style_function=lambda feature: { 'lineOpacity': 0, 'color': 'green', 'fillColor': colormap_rn(population_dict_rn[ feature['properties']['gridId']]), 'weight': 0, 'fillOpacity': 0.9 }, highlight_function=lambda feature: { 'weight': 3, 'color': 'black', 'fillOpacity': 1}, tooltip=folium.features.GeoJsonTooltip(fields=['Weekday', 'hour', field])).add_to(m) # format legend field = field.replace("_", " ") # add a legend colormap_rn.caption = '{value} per grid by weekday and hour'.format( value=field) colormap_rn.add_to(m) # add a layer control folium.LayerControl().add_to(m) return m # Aggregate data by weekday and hour def aggregateHourly(df, field, summary): """ Aggregates the whole data by weekday and hour as preparation step for mosaic plot Parameters ---------- df : GeoDataFrame The dataset of points to be summarized field : STRING The field in input dataframe to be summarized summary : String The type of aggregation to be used.eg. mean, median, Returns ------- dayhourAggregate : dataframe Aggregated Data by weekday and time """ # extract date and time from timestamp df['hour'] = df['time'].apply( lambda x: datetime.datetime.strptime( x, '%Y-%m-%dT%H:%M:%S')).dt.hour df['weekday'] = df['time'].apply( lambda x: datetime.datetime.strptime( x, '%Y-%m-%dT%H:%M:%S')).dt.dayofweek # Aggregate by weekday and hour dayhourAggregate = df.groupby( ['weekday', 'hour']).agg({field: [summary]}) dayhourAggregate = dayhourAggregate.reset_index() dayhourAggregate.columns = dayhourAggregate.columns.map("_".join) return dayhourAggregate def OriginAndDestination(df): """ Return dataframe for origin and destinations for tracks by their trackid Parameters ---------- df : TYPE DESCRIPTION. Returns ------- origin : TYPE DESCRIPTION. destination : TYPE DESCRIPTION. """ track_list = list(df['track.id'].unique()) origin, destination = gpd.GeoDataFrame(), gpd.GeoDataFrame() for track in track_list: selected_tracks = df[df['track.id'] == track] current_origin = selected_tracks[selected_tracks['time'] == selected_tracks['time'].min()] current_destination = selected_tracks[selected_tracks['time'] == selected_tracks[ 'time'].max()] origin = origin.append(current_origin) destination = destination.append(current_destination) return origin, destination def getClusters(positions, distanceKM, min_samples=5): """ Returns the clusters from the points based on provided data to no. of clusters based on DBScan Algorithm Parameters ---------- positions : Geodataframe object Geodataframe with positions to be clustered distanceKM : Float Epsilon parameters fo dbscan algorithm in km. or, distance for clustering of points min_samples : Integer, optional DESCRIPTION. Minimum no. of points required to form cluster. If 1 is set,each individual will form their own cluster The default is 5. Returns ------- Dataframe The dataframe with cluster centres co-ordinates and no. of points on the cluster. """ def get_centermost_point(cluster): centroid = (MultiPoint(cluster).centroid.x, MultiPoint(cluster).centroid.y) centermost_point = min( cluster, key=lambda point: great_circle(point, centroid).m) return tuple(centermost_point) df = positions.to_crs({'init': 'epsg:4326'}) lon = df.geometry.x lat = df.geometry.y origin_pt = pd.DataFrame() # Populate lat lon to dataframe origin_pt['lat'] = lat origin_pt['lon'] = lon # add index to data coords = origin_pt.to_numpy() origin_pt.index = [i for i in range(len(lat))] # # Convert Data to projected and perform clustering kms_per_radian = 6371.0088 epsilon = distanceKM / kms_per_radian db = DBSCAN(eps=epsilon, min_samples=min_samples, algorithm='ball_tree', metric='haversine').fit( np.radians(coords)) cluster_labels = db.labels_ validClusters = [] for cluster in cluster_labels: if cluster != -1: validClusters.append(cluster) num_clusters = len(set(validClusters)) clusters = pd.Series([coords[cluster_labels == n] for n in range(num_clusters)]) # Assigining clusterId to each point origin_pt['clusterId'] = cluster_labels # Identify cluster Centres centermost_points = clusters.map(get_centermost_point) # Create Geodataframe with attributes for cluster centroids clusterId = [i for i in range(len(centermost_points))] centroidLat = [centermost_points[i][0] for i in range(len(centermost_points))] centroidLon = [centermost_points[i][1] for i in range(len(centermost_points))] clusterSize = [len(origin_pt[origin_pt['clusterId'] == i]) for i in range(len(centermost_points))] # Create dataframe for cluster centers clusterCentres_df = pd.DataFrame( {'clusterId': clusterId, 'clusterLat': centroidLat, 'clusterLon': centroidLon, 'clusterSize': clusterSize}) clusterCentres = gpd.GeoDataFrame(clusterCentres_df, geometry=gpd.points_from_xy( clusterCentres_df.clusterLon, clusterCentres_df.clusterLat)) return clusterCentres def showClusters(clusterCentres, track): """ Shows the cluster of the datasets along with original tracks Parameters ---------- clusterCentres : Geodataframe The geodataframe object with details of clusterCenters. Obtained as processing by getClusters fucntion track : Geodataframe The points geodataframe to be shown on map alongwith clusters. For visualization only Returns ------- m : folium map-type object The map with source data and clusters overlaid """ # Make an empty map lat = clusterCentres.geometry.y.mean() lon = clusterCentres.geometry.x.mean() clusterList = list(clusterCentres['clusterSize']) m = folium.Map(location=[lat, lon], tiles="openstreetmap", zoom_start=12) # add points from track for i in range(0, len(track)): lat = track.iloc[i].geometry.y lon = track.iloc[i].geometry.x folium.Circle( location=[lat, lon], radius=0.05, color='black', weight=2, fill=True, opacity=0.5, fill_color='black', ).add_to(m) # add marker one by one on the map for i in range(0, len(clusterCentres)): folium.Circle( location=[clusterCentres.iloc[i]['clusterLat'], clusterCentres.iloc[i]['clusterLon']], popup=clusterList[i], radius=clusterList[i]*10, color='red', weight=2, fill=True, fill_color='red' ).add_to(m) return m
[ "seaborn.kdeplot", "matplotlib.pyplot.suptitle", "plotly.express.scatter_mapbox", "matplotlib.pyplot.bar", "geopandas.sjoin", "pandas.read_csv", "geopy.distance.great_circle", "matplotlib.pyplot.figure", "folium.Map", "seaborn.pairplot", "folium.Polygon", "branca.colormap.linear.YlOrRd_09.scale", "sklearn.cluster.DBSCAN", "pandas.DataFrame", "numpy.zeros_like", "shapely.geometry.MultiPoint", "random.randint", "shapely.geometry.Polygon", "numpy.transpose", "geopandas.GeoDataFrame", "folium.GeoJson", "matplotlib.pyplot.subplots", "numpy.radians", "matplotlib.pyplot.show", "numpy.vectorize", "matplotlib.pyplot.twinx", "math.ceil", "matplotlib.pyplot.legend", "pandas.cut", "datetime.datetime.strptime", "seaborn.boxplot", "matplotlib.pyplot.ylabel", "seaborn.lmplot", "folium.features.GeoJsonTooltip", "math.floor", "folium.Circle", "geopandas.points_from_xy", "seaborn.distplot", "folium.LayerControl", "seaborn.diverging_palette" ]
[((1315, 1383), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['points.time.iloc[0]', '"""%Y-%m-%dT%H:%M:%S"""'], {}), "(points.time.iloc[0], '%Y-%m-%dT%H:%M:%S')\n", (1341, 1383), False, 'import datetime\n'), ((1578, 1590), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1588, 1590), True, 'import matplotlib.pyplot as plt\n'), ((1876, 1886), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1884, 1886), True, 'import matplotlib.pyplot as plt\n'), ((2442, 2469), 'numpy.transpose', 'np.transpose', (['value_columns'], {}), '(value_columns)\n', (2454, 2469), True, 'import numpy as np\n'), ((2491, 2522), 'pandas.DataFrame', 'pd.DataFrame', (['values_transposed'], {}), '(values_transposed)\n', (2503, 2522), True, 'import pandas as pd\n'), ((2580, 2609), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(10, 8)'}), '(figsize=(10, 8))\n', (2592, 2609), True, 'import matplotlib.pyplot as plt\n'), ((6165, 6241), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(15, 5)', 'gridspec_kw': "{'width_ratios': [5, 5, 5]}"}), "(1, 3, figsize=(15, 5), gridspec_kw={'width_ratios': [5, 5, 5]})\n", (6177, 6241), True, 'import matplotlib.pyplot as plt\n'), ((6264, 6301), 'seaborn.boxplot', 'sns.boxplot', ([], {'x': 'points[column]', 'ax': 'ax1'}), '(x=points[column], ax=ax1)\n', (6275, 6301), True, 'import seaborn as sns\n'), ((6343, 6401), 'seaborn.kdeplot', 'sns.kdeplot', (['points[column]'], {'shade': '(True)', 'color': '"""r"""', 'ax': 'ax2'}), "(points[column], shade=True, color='r', ax=ax2)\n", (6354, 6401), True, 'import seaborn as sns\n'), ((6468, 6515), 'seaborn.distplot', 'sns.distplot', (['points[column]'], {'kde': '(False)', 'ax': 'ax3'}), '(points[column], kde=False, ax=ax3)\n', (6480, 6515), True, 'import seaborn as sns\n'), ((6587, 6597), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6595, 6597), True, 'import matplotlib.pyplot as plt\n'), ((7114, 7217), 'folium.Map', 'folium.Map', ([], {'location': '[map_zoom_point[0], map_zoom_point[1]]', 'zoom_start': '(12)', 'tiles': '"""cartodbpositron"""'}), "(location=[map_zoom_point[0], map_zoom_point[1]], zoom_start=12,\n tiles='cartodbpositron')\n", (7124, 7217), False, 'import folium\n'), ((9016, 9120), 'plotly.express.scatter_mapbox', 'px.scatter_mapbox', (['points'], {'lat': '"""lat"""', 'lon': '"""lng"""', 'color': 'value', 'title': "(value + ' visualisation')", 'zoom': '(8)'}), "(points, lat='lat', lon='lng', color=value, title=value +\n ' visualisation', zoom=8)\n", (9033, 9120), True, 'import plotly.express as px\n'), ((10223, 10295), 'folium.Polygon', 'folium.Polygon', ([], {'locations': 'region_coords', 'color': 'region_color', 'popup': 'label'}), '(locations=region_coords, color=region_color, popup=label)\n', (10237, 10295), False, 'import folium\n'), ((19481, 19547), 'matplotlib.pyplot.bar', 'plt.bar', (['day', 'height'], {'color': '(0.1, 0.1, 0.1, 0.1)', 'edgecolor': '"""blue"""'}), "(day, height, color=(0.1, 0.1, 0.1, 0.1), edgecolor='blue')\n", (19488, 19547), True, 'import matplotlib.pyplot as plt\n'), ((19634, 19677), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Total Distance Travelled (Km)"""'], {}), "('Total Distance Travelled (Km)')\n", (19644, 19677), True, 'import matplotlib.pyplot as plt\n'), ((19695, 19706), 'matplotlib.pyplot.twinx', 'plt.twinx', ([], {}), '()\n', (19704, 19706), True, 'import matplotlib.pyplot as plt\n'), ((19823, 19894), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['"""Which day has a different movement pattern than others?"""'], {}), "('Which day has a different movement pattern than others?')\n", (19835, 19894), True, 'import matplotlib.pyplot as plt\n'), ((19903, 19915), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (19913, 19915), True, 'import matplotlib.pyplot as plt\n'), ((19924, 19934), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (19932, 19934), True, 'import matplotlib.pyplot as plt\n'), ((22030, 22070), 'geopandas.GeoDataFrame', 'gpd.GeoDataFrame', (["{'geometry': polygons}"], {}), "({'geometry': polygons})\n", (22046, 22070), True, 'import geopandas as gpd\n'), ((22266, 22298), 'geopandas.sjoin', 'gpd.sjoin', (['df', 'grid'], {'op': '"""within"""'}), "(df, grid, op='within')\n", (22275, 22298), True, 'import geopandas as gpd\n'), ((22591, 22612), 'pandas.DataFrame', 'pd.DataFrame', (['grouped'], {}), '(grouped)\n', (22603, 22612), True, 'import pandas as pd\n'), ((24076, 24094), 'pandas.DataFrame', 'pd.DataFrame', (['grid'], {}), '(grid)\n', (24088, 24094), True, 'import pandas as pd\n'), ((24601, 24670), 'folium.Map', 'folium.Map', ([], {'location': '[lat, lon]', 'zoom_start': '(10)', 'tiles': '"""OpenStreetMap"""'}), "(location=[lat, lon], zoom_start=10, tiles='OpenStreetMap')\n", (24611, 24670), False, 'import folium\n'), ((25120, 25149), 'pandas.read_csv', 'pd.read_csv', (['"""attributes.csv"""'], {}), "('attributes.csv')\n", (25131, 25149), True, 'import pandas as pd\n'), ((25170, 25196), 'pandas.DataFrame', 'pd.DataFrame', (['attribute_pd'], {}), '(attribute_pd)\n', (25182, 25196), True, 'import pandas as pd\n'), ((25464, 25506), 'branca.colormap.linear.YlOrRd_09.scale', 'linear.YlOrRd_09.scale', (['minvalue', 'maxvalue'], {}), '(minvalue, maxvalue)\n', (25486, 25506), False, 'from branca.colormap import linear\n'), ((28647, 28687), 'geopandas.GeoDataFrame', 'gpd.GeoDataFrame', (["{'geometry': polygons}"], {}), "({'geometry': polygons})\n", (28663, 28687), True, 'import geopandas as gpd\n'), ((29173, 29205), 'geopandas.sjoin', 'gpd.sjoin', (['df', 'grid'], {'op': '"""within"""'}), "(df, grid, op='within')\n", (29182, 29205), True, 'import geopandas as gpd\n'), ((31436, 31475), 'geopandas.GeoDataFrame', 'gpd.GeoDataFrame', (["{'geometry': subgrid}"], {}), "({'geometry': subgrid})\n", (31452, 31475), True, 'import geopandas as gpd\n'), ((33240, 33258), 'pandas.DataFrame', 'pd.DataFrame', (['grid'], {}), '(grid)\n', (33252, 33258), True, 'import pandas as pd\n'), ((33924, 33992), 'folium.Map', 'folium.Map', ([], {'location': '[lat, lon]', 'zoom_start': '(10)', 'tiles': '"""Stamen Toner"""'}), "(location=[lat, lon], zoom_start=10, tiles='Stamen Toner')\n", (33934, 33992), False, 'import folium\n'), ((34762, 34791), 'pandas.read_csv', 'pd.read_csv', (['"""attributes.csv"""'], {}), "('attributes.csv')\n", (34773, 34791), True, 'import pandas as pd\n'), ((34812, 34838), 'pandas.DataFrame', 'pd.DataFrame', (['attribute_pd'], {}), '(attribute_pd)\n', (34824, 34838), True, 'import pandas as pd\n'), ((35106, 35148), 'branca.colormap.linear.YlOrRd_09.scale', 'linear.YlOrRd_09.scale', (['minvalue', 'maxvalue'], {}), '(minvalue, maxvalue)\n', (35128, 35148), False, 'from branca.colormap import linear\n'), ((39898, 39912), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (39910, 39912), True, 'import pandas as pd\n'), ((41548, 41672), 'pandas.DataFrame', 'pd.DataFrame', (["{'clusterId': clusterId, 'clusterLat': centroidLat, 'clusterLon':\n centroidLon, 'clusterSize': clusterSize}"], {}), "({'clusterId': clusterId, 'clusterLat': centroidLat,\n 'clusterLon': centroidLon, 'clusterSize': clusterSize})\n", (41560, 41672), True, 'import pandas as pd\n'), ((42812, 42881), 'folium.Map', 'folium.Map', ([], {'location': '[lat, lon]', 'tiles': '"""openstreetmap"""', 'zoom_start': '(12)'}), "(location=[lat, lon], tiles='openstreetmap', zoom_start=12)\n", (42822, 42881), False, 'import folium\n'), ((1006, 1056), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['x', '"""%Y-%m-%dT%H:%M:%S"""'], {}), "(x, '%Y-%m-%dT%H:%M:%S')\n", (1032, 1056), False, 'import datetime\n'), ((1431, 1463), 'numpy.vectorize', 'np.vectorize', (['seconds_from_start'], {}), '(seconds_from_start)\n', (1443, 1463), True, 'import numpy as np\n'), ((3751, 3799), 'pandas.cut', 'pd.cut', (["copied['Intake Temperature.value']", 'bins'], {}), "(copied['Intake Temperature.value'], bins)\n", (3757, 3799), True, 'import pandas as pd\n'), ((14462, 14489), 'random.randint', 'random.randint', (['(0)', '(16777215)'], {}), '(0, 16777215)\n', (14476, 14489), False, 'import random\n'), ((37953, 37971), 'geopandas.GeoDataFrame', 'gpd.GeoDataFrame', ([], {}), '()\n', (37969, 37971), True, 'import geopandas as gpd\n'), ((37973, 37991), 'geopandas.GeoDataFrame', 'gpd.GeoDataFrame', ([], {}), '()\n', (37989, 37991), True, 'import geopandas as gpd\n'), ((40436, 40454), 'numpy.radians', 'np.radians', (['coords'], {}), '(coords)\n', (40446, 40454), True, 'import numpy as np\n'), ((2673, 2707), 'numpy.zeros_like', 'np.zeros_like', (['corr'], {'dtype': 'np.bool'}), '(corr, dtype=np.bool)\n', (2686, 2707), True, 'import numpy as np\n'), ((2734, 2778), 'seaborn.diverging_palette', 'sns.diverging_palette', (['(220)', '(10)'], {'as_cmap': '(True)'}), '(220, 10, as_cmap=True)\n', (2755, 2778), True, 'import seaborn as sns\n'), ((20639, 20659), 'math.floor', 'floor', (['(num / divisor)'], {}), '(num / divisor)\n', (20644, 20659), False, 'from math import floor, ceil\n'), ((20726, 20745), 'math.ceil', 'ceil', (['(num / divisor)'], {}), '(num / divisor)\n', (20730, 20745), False, 'from math import floor, ceil\n'), ((24737, 24877), 'folium.GeoJson', 'folium.GeoJson', (['data_geojson', "(lambda feature: {'lineOpacity': 0.4, 'color': 'black', 'fillColor': None,\n 'weight': 0.5, 'fillOpacity': 0})"], {}), "(data_geojson, lambda feature: {'lineOpacity': 0.4, 'color':\n 'black', 'fillColor': None, 'weight': 0.5, 'fillOpacity': 0})\n", (24751, 24877), False, 'import folium\n'), ((26557, 26578), 'folium.LayerControl', 'folium.LayerControl', ([], {}), '()\n', (26576, 26578), False, 'import folium\n'), ((27373, 27393), 'math.floor', 'floor', (['(num / divisor)'], {}), '(num / divisor)\n', (27378, 27393), False, 'from math import floor, ceil\n'), ((27460, 27479), 'math.ceil', 'ceil', (['(num / divisor)'], {}), '(num / divisor)\n', (27464, 27479), False, 'from math import floor, ceil\n'), ((34375, 34519), 'folium.GeoJson', 'folium.GeoJson', (['mainGrid_geojson', "(lambda feature: {'lineOpacity': 0.4, 'color': '#00ddbb', 'fillColor': None,\n 'weight': 2, 'fillOpacity': 0})"], {}), "(mainGrid_geojson, lambda feature: {'lineOpacity': 0.4,\n 'color': '#00ddbb', 'fillColor': None, 'weight': 2, 'fillOpacity': 0})\n", (34389, 34519), False, 'import folium\n'), ((36202, 36223), 'folium.LayerControl', 'folium.LayerControl', ([], {}), '()\n', (36221, 36223), False, 'import folium\n'), ((40299, 40391), 'sklearn.cluster.DBSCAN', 'DBSCAN', ([], {'eps': 'epsilon', 'min_samples': 'min_samples', 'algorithm': '"""ball_tree"""', 'metric': '"""haversine"""'}), "(eps=epsilon, min_samples=min_samples, algorithm='ball_tree', metric=\n 'haversine')\n", (40305, 40391), False, 'from sklearn.cluster import DBSCAN\n'), ((41807, 41885), 'geopandas.points_from_xy', 'gpd.points_from_xy', (['clusterCentres_df.clusterLon', 'clusterCentres_df.clusterLat'], {}), '(clusterCentres_df.clusterLon, clusterCentres_df.clusterLat)\n', (41825, 41885), True, 'import geopandas as gpd\n'), ((4131, 4218), 'seaborn.lmplot', 'sns.lmplot', ([], {'x': 'column_1', 'y': 'column_2', 'hue': '"""binned_temp"""', 'data': 'df1', 'palette': '"""viridis"""'}), "(x=column_1, y=column_2, hue='binned_temp', data=df1, palette=\n 'viridis')\n", (4141, 4218), True, 'import seaborn as sns\n'), ((4265, 4352), 'seaborn.lmplot', 'sns.lmplot', ([], {'x': 'column_1', 'y': 'column_2', 'hue': '"""binned_temp"""', 'data': 'df2', 'palette': '"""viridis"""'}), "(x=column_1, y=column_2, hue='binned_temp', data=df2, palette=\n 'viridis')\n", (4275, 4352), True, 'import seaborn as sns\n'), ((4421, 4484), 'seaborn.pairplot', 'sns.pairplot', (['df1'], {'vars': '[column_1, column_2]', 'hue': '"""binned_temp"""'}), "(df1, vars=[column_1, column_2], hue='binned_temp')\n", (4433, 4484), True, 'import seaborn as sns\n'), ((4538, 4601), 'seaborn.pairplot', 'sns.pairplot', (['df2'], {'vars': '[column_1, column_2]', 'hue': '"""binned_temp"""'}), "(df2, vars=[column_1, column_2], hue='binned_temp')\n", (4550, 4601), True, 'import seaborn as sns\n'), ((4707, 4773), 'seaborn.lmplot', 'sns.lmplot', ([], {'x': 'column_1', 'y': 'column_2', 'hue': '"""binned_temp"""', 'data': 'copied'}), "(x=column_1, y=column_2, hue='binned_temp', data=copied)\n", (4717, 4773), True, 'import seaborn as sns\n'), ((4847, 4913), 'seaborn.pairplot', 'sns.pairplot', (['copied'], {'vars': '[column_1, column_2]', 'hue': '"""binned_temp"""'}), "(copied, vars=[column_1, column_2], hue='binned_temp')\n", (4859, 4913), True, 'import seaborn as sns\n'), ((5261, 5340), 'seaborn.lmplot', 'sns.lmplot', ([], {'x': 'column_1', 'y': 'column_2', 'hue': '"""track.id"""', 'data': 'df1', 'palette': '"""viridis"""'}), "(x=column_1, y=column_2, hue='track.id', data=df1, palette='viridis')\n", (5271, 5340), True, 'import seaborn as sns\n'), ((5392, 5471), 'seaborn.lmplot', 'sns.lmplot', ([], {'x': 'column_1', 'y': 'column_2', 'hue': '"""track.id"""', 'data': 'df2', 'palette': '"""viridis"""'}), "(x=column_1, y=column_2, hue='track.id', data=df2, palette='viridis')\n", (5402, 5471), True, 'import seaborn as sns\n'), ((5545, 5605), 'seaborn.pairplot', 'sns.pairplot', (['df1'], {'vars': '[column_1, column_2]', 'hue': '"""track.id"""'}), "(df1, vars=[column_1, column_2], hue='track.id')\n", (5557, 5605), True, 'import seaborn as sns\n'), ((5659, 5719), 'seaborn.pairplot', 'sns.pairplot', (['df2'], {'vars': '[column_1, column_2]', 'hue': '"""track.id"""'}), "(df2, vars=[column_1, column_2], hue='track.id')\n", (5671, 5719), True, 'import seaborn as sns\n'), ((5825, 5915), 'seaborn.lmplot', 'sns.lmplot', ([], {'x': 'column_1', 'y': 'column_2', 'hue': '"""track.id"""', 'data': 'points_df', 'palette': '"""viridis"""'}), "(x=column_1, y=column_2, hue='track.id', data=points_df, palette=\n 'viridis')\n", (5835, 5915), True, 'import seaborn as sns\n'), ((5984, 6050), 'seaborn.pairplot', 'sns.pairplot', (['points_df'], {'vars': '[column_1, column_2]', 'hue': '"""track.id"""'}), "(points_df, vars=[column_1, column_2], hue='track.id')\n", (5996, 6050), True, 'import seaborn as sns\n'), ((21614, 21719), 'shapely.geometry.Polygon', 'Polygon', (['[(XleftOrigin, Ytop), (XrightOrigin, Ytop), (XrightOrigin, Ybottom), (\n XleftOrigin, Ybottom)]'], {}), '([(XleftOrigin, Ytop), (XrightOrigin, Ytop), (XrightOrigin, Ybottom),\n (XleftOrigin, Ybottom)])\n', (21621, 21719), False, 'from shapely.geometry import Polygon, MultiPoint\n'), ((28312, 28417), 'shapely.geometry.Polygon', 'Polygon', (['[(XleftOrigin, Ytop), (XrightOrigin, Ytop), (XrightOrigin, Ybottom), (\n XleftOrigin, Ybottom)]'], {}), '([(XleftOrigin, Ytop), (XrightOrigin, Ytop), (XrightOrigin, Ybottom),\n (XleftOrigin, Ybottom)])\n', (28319, 28417), False, 'from shapely.geometry import Polygon, MultiPoint\n'), ((43075, 43195), 'folium.Circle', 'folium.Circle', ([], {'location': '[lat, lon]', 'radius': '(0.05)', 'color': '"""black"""', 'weight': '(2)', 'fill': '(True)', 'opacity': '(0.5)', 'fill_color': '"""black"""'}), "(location=[lat, lon], radius=0.05, color='black', weight=2,\n fill=True, opacity=0.5, fill_color='black')\n", (43088, 43195), False, 'import folium\n'), ((43421, 43632), 'folium.Circle', 'folium.Circle', ([], {'location': "[clusterCentres.iloc[i]['clusterLat'], clusterCentres.iloc[i]['clusterLon']]", 'popup': 'clusterList[i]', 'radius': '(clusterList[i] * 10)', 'color': '"""red"""', 'weight': '(2)', 'fill': '(True)', 'fill_color': '"""red"""'}), "(location=[clusterCentres.iloc[i]['clusterLat'],\n clusterCentres.iloc[i]['clusterLon']], popup=clusterList[i], radius=\n clusterList[i] * 10, color='red', weight=2, fill=True, fill_color='red')\n", (43434, 43632), False, 'import folium\n'), ((15308, 15397), 'folium.Circle', 'folium.Circle', ([], {'radius': 'marker_radius', 'location': 'row', 'color': 'track_color', 'popup': 'track_id'}), '(radius=marker_radius, location=row, color=track_color, popup=\n track_id)\n', (15321, 15397), False, 'import folium\n'), ((26196, 26259), 'folium.features.GeoJsonTooltip', 'folium.features.GeoJsonTooltip', ([], {'fields': '[field]', 'aliases': '[field]'}), '(fields=[field], aliases=[field])\n', (26226, 26259), False, 'import folium\n'), ((28922, 28972), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['x', '"""%Y-%m-%dT%H:%M:%S"""'], {}), "(x, '%Y-%m-%dT%H:%M:%S')\n", (28948, 28972), False, 'import datetime\n'), ((29063, 29113), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['x', '"""%Y-%m-%dT%H:%M:%S"""'], {}), "(x, '%Y-%m-%dT%H:%M:%S')\n", (29089, 29113), False, 'import datetime\n'), ((30585, 30662), 'shapely.geometry.Polygon', 'Polygon', (['[(leftx, topy), (rightx, topy), (rightx, bottomy), (leftx, bottomy)]'], {}), '([(leftx, topy), (rightx, topy), (rightx, bottomy), (leftx, bottomy)])\n', (30592, 30662), False, 'from shapely.geometry import Polygon, MultiPoint\n'), ((35807, 35872), 'folium.features.GeoJsonTooltip', 'folium.features.GeoJsonTooltip', ([], {'fields': "['Weekday', 'hour', field]"}), "(fields=['Weekday', 'hour', field])\n", (35837, 35872), False, 'import folium\n'), ((36982, 37032), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['x', '"""%Y-%m-%dT%H:%M:%S"""'], {}), "(x, '%Y-%m-%dT%H:%M:%S')\n", (37008, 37032), False, 'import datetime\n'), ((37123, 37173), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['x', '"""%Y-%m-%dT%H:%M:%S"""'], {}), "(x, '%Y-%m-%dT%H:%M:%S')\n", (37149, 37173), False, 'import datetime\n'), ((39526, 39545), 'shapely.geometry.MultiPoint', 'MultiPoint', (['cluster'], {}), '(cluster)\n', (39536, 39545), False, 'from shapely.geometry import Polygon, MultiPoint\n'), ((39582, 39601), 'shapely.geometry.MultiPoint', 'MultiPoint', (['cluster'], {}), '(cluster)\n', (39592, 39601), False, 'from shapely.geometry import Polygon, MultiPoint\n'), ((12328, 12417), 'folium.Circle', 'folium.Circle', ([], {'radius': 'marker_radius', 'location': 'row', 'color': 'colors[day]', 'popup': 'track_id'}), '(radius=marker_radius, location=row, color=colors[day], popup=\n track_id)\n', (12341, 12417), False, 'import folium\n'), ((39693, 39722), 'geopy.distance.great_circle', 'great_circle', (['point', 'centroid'], {}), '(point, centroid)\n', (39705, 39722), False, 'from geopy.distance import great_circle\n')]
import numpy as np from deepobs.pytorch.runners import StandardRunner from deepobs.tuner import GridSearch from torch.optim import SGD from probprec import Preconditioner from sorunner import SORunner optimizer_class = Preconditioner hyperparams = {"lr": {"type": float}, "est_rank": {"type": int}} # The discrete values to construct a grid for. grid = {'lr': np.logspace(-5, 2, 10), 'est_rank': [2,3]} # Make sure to set the amount of ressources to the grid size. For grid search, this is just a sanity check. tuner = GridSearch(optimizer_class, hyperparams, grid, runner=SORunner, ressources=20) # Tune (i.e. evaluate every grid point) and rerun the best setting with 10 different seeds. # tuner.tune('quadratic_deep', rerun_best_setting=True, num_epochs=2, output_dir='./grid_search') # Optionally, generate commands for a parallelized execution tuner.generate_commands_script('mnist_vae', run_script='/home/bald/pre_fmnist/runscript.py', output_dir='./grid_search', generation_dir='./grid_search_commands')
[ "numpy.logspace", "deepobs.tuner.GridSearch" ]
[((542, 620), 'deepobs.tuner.GridSearch', 'GridSearch', (['optimizer_class', 'hyperparams', 'grid'], {'runner': 'SORunner', 'ressources': '(20)'}), '(optimizer_class, hyperparams, grid, runner=SORunner, ressources=20)\n', (552, 620), False, 'from deepobs.tuner import GridSearch\n'), ((374, 396), 'numpy.logspace', 'np.logspace', (['(-5)', '(2)', '(10)'], {}), '(-5, 2, 10)\n', (385, 396), True, 'import numpy as np\n')]
import logging import typhon import netCDF4 import numpy as np from scipy.interpolate import interp1d from copy import copy from konrad import constants from konrad import utils from konrad.component import Component __all__ = [ 'Atmosphere', ] logger = logging.getLogger(__name__) class Atmosphere(Component): """Atmosphere component. Attributes: atmosphere_variables (list[str]): Atmospheric variables defined by the ``Atmosphere`` component. pmin (float): Minimum pressure used as threshold between upper and lower atmosphere [Pa]. Methods like ``get_cold_point_index`` or ``get_triple_point_index`` are looking for levels with higher pressure (closer to the surface) only. """ atmosphere_variables = [ 'T', 'H2O', 'N2O', 'O3', 'O2', 'CO2', 'CO', 'CH4', 'CFC11', 'CFC12', 'CFC22', 'CCl4', ] pmin = 10e2 def __init__(self, phlev): """Initialise atmosphere component. Parameters: phlev (``np.ndarray``): Atmospheric pressure at half-levels (surface to top) [Pa]. """ super().__init__() plev = utils.plev_from_phlev(phlev) self.coords = { 'time': np.array([]), # time dimension 'plev': plev, # pressure at full-levels 'phlev': phlev, # pressure at half-levels } for varname in self.atmosphere_variables: self.create_variable(varname, np.zeros_like(plev)) # TODO: Combine with ``tracegases_rcemip``? self.create_variable( name='T', data=utils.standard_atmosphere(plev, coordinates='pressure'), ) self.update_height() self.tracegases_rcemip() @classmethod def from_atm_fields_compact(cls, atm_fields_compact): """Convert an ARTS atm_fields_compact [0] into an atmosphere. [0] http://arts.mi.uni-hamburg.de/docserver-trunk/variables/atm_fields_compact Parameters: atm_fields_compact (typhon.arts.types.GriddedField4): Compact set of atmospheric fields. """ def _extract_profile(atmfield, species): try: arts_key = constants.variable_description[species]['arts_name'] except KeyError: logger.warning(f'No variabel description for "{species}".') else: return atmfield.get(arts_key, keep_dims=False) datadict = {var: _extract_profile(atm_fields_compact, var) for var in cls.atmosphere_variables} datadict['plev'] = atm_fields_compact.grids[1] return cls.from_dict(datadict) @classmethod def from_xml(cls, xmlfile): """Read atmosphere from XML file containing an ARTS atm_fields_compact. Parameters: xmlfile (str): Path to XML file. """ # Read the content of given XML file. griddedfield = typhon.arts.xml.load(xmlfile) # Check if the XML file contains an atm_fields_compact (GriddedField4). arts_type = typhon.arts.utils.get_arts_typename(griddedfield) if arts_type != 'GriddedField4': raise TypeError( 'XML file contains "{}". Expected "GriddedField4".'.format( arts_type) ) return cls.from_atm_fields_compact(griddedfield, **kwargs) @classmethod def from_dict(cls, dictionary): """Create an atmosphere model from dictionary values. Parameters: dictionary (dict): Dictionary containing ndarrays. """ # TODO: Currently working for good-natured dictionaries. # Consider a more flexible user interface. # Create a Dataset with time and pressure dimension. d = cls(phlev=dictionary['phlev']) for var in cls.atmosphere_variables: val = dictionary.get(var) if val is not None: # Prevent variables, that are not stored in the netCDF file, # to be overwritten with ``None``. d.create_variable(var, val) # Calculate the geopotential height. d.update_height() return d @classmethod def from_netcdf(cls, ncfile, timestep=-1): """Create an atmosphere model from a netCDF file. Parameters: ncfile (str): Path to netCDF file. timestep (int): Timestep to read (default is last timestep). """ def _return_profile(ds, var, ts): return (ds[var][ts, :] if 'time' in ds[var].dimensions else ds[var][:]) with netCDF4.Dataset(ncfile) as root: if 'atmosphere' in root.groups: dataset = root['atmosphere'] else: dataset = root datadict = {var: np.array(_return_profile(dataset, var, timestep)) for var in cls.atmosphere_variables if var in dataset.variables } datadict['phlev'] = np.array(root['phlev'][:]) return cls.from_dict(datadict) def to_atm_fields_compact(self): """Convert an atmosphere into an ARTS atm_fields_compact.""" # Store all atmosphere variables including geopotential height. variables = self.atmosphere_variables + ['z'] # Get ARTS variable name from variable description. species = [constants.variable_description[var].get('arts_name') for var in variables] # Create a GriddedField4. atmfield = typhon.arts.types.GriddedField4() # Set grids and their names. atmfield.gridnames = ['Species', 'Pressure', 'Longitude', 'Latitude'] atmfield.grids = [ species, self['plev'], np.array([]), np.array([]) ] # The profiles have to be passed in "stacked" form, as an ndarray of # dimensions [species, pressure, lat, lon]. atmfield.data = np.vstack( [self[var].reshape(1, self['plev'].size, 1, 1) for var in variables] ) atmfield.dataname = 'Data' # Perform a consistency check of the passed grids and data tensor. atmfield.check_dimension() return atmfield def hash_attributes(self): """Create hash based on some basic characteristics""" return hash(( self['plev'].min(), # Pressure at top of the atmosphere self['plev'].max(), # Surface pressure self['plev'].size, # Number of pressure layers np.round(self['CO2'][0] / 1e-6), # CO2 ppmv np.round(self['T'][-1, 0], 3), # Surface temperature )) def refine_plev(self, phlev, **kwargs): """Refine the pressure grid of an atmosphere object. Note: This method returns a **new** object, the original object is maintained! Parameters: phlev (ndarray): New half-level-pressure grid [Pa]. **kwargs: Additional keyword arguments are collected and passed to :func:`scipy.interpolate.interp1d` Returns: Atmosphere: A **new** atmosphere object. """ # Initialize an empty directory to fill it with interpolated data. # The dictionary is later used to create a new object using the # Atmosphere.from_dict() classmethod. This allows to circumvent the # fixed dimension size in xarray.DataArrays. datadict = dict() # Store new pressure grid. datadict['phlev'] = phlev plev = utils.plev_from_phlev(phlev) # Loop over all atmospheric variables... for variable in self.atmosphere_variables: # and create an interpolation function using the original data. f = interp1d(self['plev'], self[variable], axis=-1, fill_value='extrapolate', **kwargs) # Store the interpolated new data in the data directory. datadict[variable] = f(plev).ravel() # Create a new atmosphere object from the filled data directory. # This method also calculates the new phlev coordinates. new_atmosphere = type(self).from_dict(datadict) # Keep attributes of original atmosphere object. # This is **extremely** important because references to e.g. the # convection scheme or the humidity handling are stored as attributes! new_atmosphere.attrs.update({**self.attrs}) # Calculate the geopotential height. new_atmosphere.update_height() return new_atmosphere def copy(self): """Create a copy of the atmosphere. Returns: konrad.atmosphere: copy of the atmosphere """ datadict = dict() datadict['phlev'] = copy(self['phlev']) # Copy pressure grid. # Create copies (and not references) of all atmospheric variables. for variable in self.atmosphere_variables: datadict[variable] = copy(self[variable]).ravel() # Create a new atmosphere object from the filled data directory. new_atmosphere = type(self).from_dict(datadict) return new_atmosphere def calculate_height(self): """Calculate the geopotential height.""" g = constants.earth_standard_gravity plev = self['plev'] # Air pressure at full-levels. phlev = self['phlev'] # Air pressure at half-levels. T = self['T'] # Air temperature at full-levels. rho = typhon.physics.density(plev, T) dp = np.hstack((np.array([plev[0] - phlev[0]]), np.diff(plev))) # Use the hydrostatic equation to calculate geopotential height from # given pressure, density and gravity. return np.cumsum(-dp / (rho * g)) def update_height(self): """Update the value for height.""" z = self.calculate_height() # If height is already in Dataset, update its values. if 'z' in self.data_vars: self.set('z', z) # Otherwise create the DataArray. else: self.create_variable('z', z) def get_cold_point_index(self): """Return the model level index at the cold point. Returns: int: Model level index at the cold point. """ plev = self['plev'][:] T = self['T'][-1, :] return np.argmin(T[plev > self.pmin]) def get_cold_point_plev(self): """Return the cold point pressure. Returns: float: Pressure at the cold point [Pa]. """ return self['plev'][self.get_cold_point_index()] def get_triple_point_index(self): """Return the model level index at the triple point. The triple point is taken at the temperature closest to 0 C. Returns: int: Model level index at the triple point. """ plev = self['plev'] T = self['T'][0, :] return np.argmin(np.abs(T[np.where(plev > self.pmin)] - 273.15)) def get_triple_point_plev(self): """ Return the pressure at the triple point. The triple point is taken at the temperature closest to 0 C. Returns: float: Pressure at the triple point [Pa]. """ return self['plev'][self.get_triple_point_index()] def get_lapse_rates(self): """Calculate the temperature lapse rate at each level.""" return np.gradient(self['T'][0, :], self['z'][0, :]) def get_potential_temperature(self, p0=1000e2): r"""Calculate the potential temperature. .. math:: \theta = T \cdot \left(\frac{p_0}{P}\right)^\frac{2}{7} Parameters: p0 (float): Pressure at reference level [Pa]. Returns: ndarray: Potential temperature [K]. """ # Get view on temperature and pressure arrays. T = self['T'][0, :] p = self['plev'] # Calculate the potential temperature. return T * (p0 / p) ** (2 / 7) def get_static_stability(self): r"""Calculate the static stability. .. math:: \sigma = - \frac{T}{\Theta} \frac{\partial\Theta}{\partial p} Returns: ndarray: Static stability [K/Pa]. """ # Get view on temperature and pressure arrays. t = self['T'][0, :] p = self['plev'] # Calculate potential temperature and its vertical derivative. theta = self.get_potential_temperature() dtheta = np.gradient(theta, p) return -(t / theta) * dtheta def get_diabatic_subsidence(self, radiative_cooling): """Calculate the diabatic subsidence. Parameters: radiative_cooling (ndarray): Radiative cooling rates. Positive values for heating, negative values for cooling! Returns: ndarray: Diabatic subsidence [Pa/day]. """ sigma = self.get_static_stability() return -radiative_cooling / sigma def get_subsidence_convergence_max_index(self, radiative_cooling): """Return index of maximum subsidence convergence. Parameters: radiative_cooling (ndarray): Radiative cooling rates. Positive values for heating, negative values for cooling! Returns: int: Level index of maximum subsidence divergence. """ plev = self['plev'] omega = self.get_diabatic_subsidence(radiative_cooling) domega = np.gradient(omega, plev) max_index = np.argmax(domega[plev > self.pmin]) self.create_variable('diabatic_convergence_max_index', [max_index]) return max_index def get_subsidence_convergence_max_plev(self, radiative_cooling): """Return pressure of maximum subsidence convergence. Parameters: radiative_cooling (ndarray): Radiative cooling rates. Positive values for heating, negative values for cooling! Returns: float: Pressure of maximum subsidence divergence [Pa]. """ max_idx = self.get_subsidence_convergence_max_index(radiative_cooling) max_plev = self['plev'][max_idx] self.create_variable('diabatic_convergence_max_plev', [max_plev]) return max_plev def get_heat_capacity(self): r"""Calculate specific heat capacity at constant pressure of moist air .. math:: c_p = X \cdot (c_{p,v} - c_{p,d}) + c_{p,d} Returns: ndarray: Heat capacity [J/K/kg]. """ cpd = constants.isobaric_mass_heat_capacity_dry_air cpv = constants.isobaric_mass_heat_capacity_water_vapor x = self['H2O'][-1] return x * (cpv - cpd) + cpd def tracegases_rcemip(self): """Set trace gas concentrations according to the RCE-MIP configuration. The volume mixing ratios are following the values for the RCE-MIP (Wing et al. 2017) and constant throughout the atmosphere. """ self.update_height() concentrations = { 'H2O': utils.humidity_profile_rcemip(self.get('z')), 'CO2': 348e-6, 'CH4': 1650e-9, 'N2O': 306e-9, 'CO': 0, 'O3': utils.ozone_profile_rcemip(self.get('plev')), 'CFC11': 0, 'CFC12': 0, 'CFC22': 0, 'CCl4': 0, } for gas, vmr in concentrations.items(): self.set(gas, vmr)
[ "numpy.argmax", "typhon.arts.types.GriddedField4", "numpy.argmin", "logging.getLogger", "scipy.interpolate.interp1d", "numpy.round", "netCDF4.Dataset", "numpy.zeros_like", "typhon.arts.utils.get_arts_typename", "numpy.cumsum", "konrad.utils.standard_atmosphere", "typhon.arts.xml.load", "konrad.utils.plev_from_phlev", "typhon.physics.density", "copy.copy", "numpy.diff", "numpy.array", "numpy.where", "numpy.gradient" ]
[((262, 289), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (279, 289), False, 'import logging\n'), ((1261, 1289), 'konrad.utils.plev_from_phlev', 'utils.plev_from_phlev', (['phlev'], {}), '(phlev)\n', (1282, 1289), False, 'from konrad import utils\n'), ((3065, 3094), 'typhon.arts.xml.load', 'typhon.arts.xml.load', (['xmlfile'], {}), '(xmlfile)\n', (3085, 3094), False, 'import typhon\n'), ((3196, 3245), 'typhon.arts.utils.get_arts_typename', 'typhon.arts.utils.get_arts_typename', (['griddedfield'], {}), '(griddedfield)\n', (3231, 3245), False, 'import typhon\n'), ((5703, 5736), 'typhon.arts.types.GriddedField4', 'typhon.arts.types.GriddedField4', ([], {}), '()\n', (5734, 5736), False, 'import typhon\n'), ((7734, 7762), 'konrad.utils.plev_from_phlev', 'utils.plev_from_phlev', (['phlev'], {}), '(phlev)\n', (7755, 7762), False, 'from konrad import utils\n'), ((8960, 8979), 'copy.copy', 'copy', (["self['phlev']"], {}), "(self['phlev'])\n", (8964, 8979), False, 'from copy import copy\n'), ((9675, 9706), 'typhon.physics.density', 'typhon.physics.density', (['plev', 'T'], {}), '(plev, T)\n', (9697, 9706), False, 'import typhon\n'), ((9919, 9945), 'numpy.cumsum', 'np.cumsum', (['(-dp / (rho * g))'], {}), '(-dp / (rho * g))\n', (9928, 9945), True, 'import numpy as np\n'), ((10533, 10563), 'numpy.argmin', 'np.argmin', (['T[plev > self.pmin]'], {}), '(T[plev > self.pmin])\n', (10542, 10563), True, 'import numpy as np\n'), ((11593, 11638), 'numpy.gradient', 'np.gradient', (["self['T'][0, :]", "self['z'][0, :]"], {}), "(self['T'][0, :], self['z'][0, :])\n", (11604, 11638), True, 'import numpy as np\n'), ((12682, 12703), 'numpy.gradient', 'np.gradient', (['theta', 'p'], {}), '(theta, p)\n', (12693, 12703), True, 'import numpy as np\n'), ((13674, 13698), 'numpy.gradient', 'np.gradient', (['omega', 'plev'], {}), '(omega, plev)\n', (13685, 13698), True, 'import numpy as np\n'), ((13720, 13755), 'numpy.argmax', 'np.argmax', (['domega[plev > self.pmin]'], {}), '(domega[plev > self.pmin])\n', (13729, 13755), True, 'import numpy as np\n'), ((1335, 1347), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (1343, 1347), True, 'import numpy as np\n'), ((4754, 4777), 'netCDF4.Dataset', 'netCDF4.Dataset', (['ncfile'], {}), '(ncfile)\n', (4769, 4777), False, 'import netCDF4\n'), ((5175, 5201), 'numpy.array', 'np.array', (["root['phlev'][:]"], {}), "(root['phlev'][:])\n", (5183, 5201), True, 'import numpy as np\n'), ((5915, 5927), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (5923, 5927), True, 'import numpy as np\n'), ((5929, 5941), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (5937, 5941), True, 'import numpy as np\n'), ((7956, 8043), 'scipy.interpolate.interp1d', 'interp1d', (["self['plev']", 'self[variable]'], {'axis': '(-1)', 'fill_value': '"""extrapolate"""'}), "(self['plev'], self[variable], axis=-1, fill_value='extrapolate',\n **kwargs)\n", (7964, 8043), False, 'from scipy.interpolate import interp1d\n'), ((1578, 1597), 'numpy.zeros_like', 'np.zeros_like', (['plev'], {}), '(plev)\n', (1591, 1597), True, 'import numpy as np\n'), ((1721, 1776), 'konrad.utils.standard_atmosphere', 'utils.standard_atmosphere', (['plev'], {'coordinates': '"""pressure"""'}), "(plev, coordinates='pressure')\n", (1746, 1776), False, 'from konrad import utils\n'), ((6701, 6733), 'numpy.round', 'np.round', (["(self['CO2'][0] / 1e-06)"], {}), "(self['CO2'][0] / 1e-06)\n", (6709, 6733), True, 'import numpy as np\n'), ((6758, 6787), 'numpy.round', 'np.round', (["self['T'][-1, 0]", '(3)'], {}), "(self['T'][-1, 0], 3)\n", (6766, 6787), True, 'import numpy as np\n'), ((9731, 9761), 'numpy.array', 'np.array', (['[plev[0] - phlev[0]]'], {}), '([plev[0] - phlev[0]])\n', (9739, 9761), True, 'import numpy as np\n'), ((9763, 9776), 'numpy.diff', 'np.diff', (['plev'], {}), '(plev)\n', (9770, 9776), True, 'import numpy as np\n'), ((9163, 9183), 'copy.copy', 'copy', (['self[variable]'], {}), '(self[variable])\n', (9167, 9183), False, 'from copy import copy\n'), ((11129, 11155), 'numpy.where', 'np.where', (['(plev > self.pmin)'], {}), '(plev > self.pmin)\n', (11137, 11155), True, 'import numpy as np\n')]
# This file is part of the pyMOR project (http://www.pymor.org). # Copyright Holders: <NAME>, <NAME>, <NAME> # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) from __future__ import absolute_import, division, print_function from itertools import izip import numpy as np from pymor.core.interfaces import ImmutableInterface from pymor.la.basic import induced_norm from pymor.la.numpyvectorarray import NumpyVectorArray from pymor.operators.constructions import LincombOperator from pymor.reductors.basic import reduce_generic_rb from pymor.operators.numpy import NumpyMatrixOperator def reduce_stationary_affine_linear(discretization, RB, error_product=None, coercivity_estimator=None, disable_caching=True, extends=None): """Reductor for linear |StationaryDiscretizations| whose with affinely decomposed operator and rhs. This reductor uses :meth:`~pymor.reductors.basic.reduce_generic_rb` for the actual RB-projection. The only addition is an error estimator. The estimator evaluates the norm of the residual with respect to a given inner product. Parameters ---------- discretization The |Discretization| which is to be reduced. RB |VectorArray| containing the reduced basis on which to project. error_product Scalar product given as an |Operator| used to calculate Riesz representative of the residual. If `None`, the Euclidean product is used. coercivity_estimator `None` or a |Parameterfunctional| returning a lower bound for the coercivity constant of the given problem. disable_caching If `True`, caching of solutions is disabled for the reduced |Discretization|. extends Set by :meth:`~pymor.algorithms.greedy.greedy` to the result of the last reduction in case the basis extension was `hierarchic`. Used to prevent re-computation of Riesz representatives already obtained from previous reductions. Returns ------- rd The reduced |Discretization|. rc The reconstructor providing a `reconstruct(U)` method which reconstructs high-dimensional solutions from solutions `U` of the reduced |Discretization|. reduction_data Additional data produced by the reduction process. In this case the computed Riesz representatives. (Compare the `extends` parameter.) """ # assert isinstance(discretization, StationaryDiscretization) assert discretization.linear assert isinstance(discretization.operator, LincombOperator) assert all(not op.parametric for op in discretization.operator.operators) if discretization.rhs.parametric: assert isinstance(discretization.rhs, LincombOperator) assert all(not op.parametric for op in discretization.rhs.operators) assert extends is None or len(extends) == 3 d = discretization rd, rc, data = reduce_generic_rb(d, RB, disable_caching=disable_caching, extends=extends) if extends: old_data = extends[2] old_RB_size = len(extends[1].RB) else: old_RB_size = 0 # compute data for estimator space = d.operator.source # compute the Riesz representative of (U, .)_L2 with respect to error_product def riesz_representative(U): if error_product is None: return U.copy() else: return error_product.apply_inverse(U) def append_vector(U, R, RR): RR.append(riesz_representative(U), remove_from_other=True) R.append(U, remove_from_other=True) # compute all components of the residual if RB is None: RB = discretization.solution_space.empty() if extends: R_R, RR_R = old_data['R_R'], old_data['RR_R'] elif not d.rhs.parametric: R_R = space.empty(reserve=1) RR_R = space.empty(reserve=1) append_vector(d.rhs.as_vector(), R_R, RR_R) else: R_R = space.empty(reserve=len(d.rhs.operators)) RR_R = space.empty(reserve=len(d.rhs.operators)) for op in d.rhs.operators: append_vector(op.as_vector(), R_R, RR_R) if len(RB) == 0: R_Os = [space.empty()] RR_Os = [space.empty()] elif not d.operator.parametric: R_Os = [space.empty(reserve=len(RB))] RR_Os = [space.empty(reserve=len(RB))] for i in xrange(len(RB)): append_vector(-d.operator.apply(RB, ind=i), R_Os[0], RR_Os[0]) else: R_Os = [space.empty(reserve=len(RB)) for _ in xrange(len(d.operator.operators))] RR_Os = [space.empty(reserve=len(RB)) for _ in xrange(len(d.operator.operators))] if old_RB_size > 0: for op, R_O, RR_O, old_R_O, old_RR_O in izip(d.operator.operators, R_Os, RR_Os, old_data['R_Os'], old_data['RR_Os']): R_O.append(old_R_O) RR_O.append(old_RR_O) for op, R_O, RR_O in izip(d.operator.operators, R_Os, RR_Os): for i in xrange(old_RB_size, len(RB)): append_vector(-op.apply(RB, [i]), R_O, RR_O) # compute Gram matrix of the residuals R_RR = RR_R.dot(R_R, pairwise=False) R_RO = np.hstack([RR_R.dot(R_O, pairwise=False) for R_O in R_Os]) R_OO = np.vstack([np.hstack([RR_O.dot(R_O, pairwise=False) for R_O in R_Os]) for RR_O in RR_Os]) estimator_matrix = np.empty((len(R_RR) + len(R_OO),) * 2) estimator_matrix[:len(R_RR), :len(R_RR)] = R_RR estimator_matrix[len(R_RR):, len(R_RR):] = R_OO estimator_matrix[:len(R_RR), len(R_RR):] = R_RO estimator_matrix[len(R_RR):, :len(R_RR)] = R_RO.T estimator_matrix = NumpyMatrixOperator(estimator_matrix) estimator = StationaryAffineLinearReducedEstimator(estimator_matrix, coercivity_estimator) rd = rd.with_(estimator=estimator) data.update(R_R=R_R, RR_R=RR_R, R_Os=R_Os, RR_Os=RR_Os) return rd, rc, data class StationaryAffineLinearReducedEstimator(ImmutableInterface): """Instatiated by :meth:`reduce_stationary_affine_linear`. Not to be used directly. """ def __init__(self, estimator_matrix, coercivity_estimator): self.estimator_matrix = estimator_matrix self.coercivity_estimator = coercivity_estimator self.norm = induced_norm(estimator_matrix) def estimate(self, U, mu, discretization): d = discretization if len(U) > 1: raise NotImplementedError if not d.rhs.parametric: CR = np.ones(1) else: CR = d.rhs.evaluate_coefficients(mu) if not d.operator.parametric: CO = np.ones(1) else: CO = d.operator.evaluate_coefficients(mu) C = np.hstack((CR, np.dot(CO[..., np.newaxis], U.data).ravel())) est = self.norm(NumpyVectorArray(C)) if self.coercivity_estimator: est /= self.coercivity_estimator(mu) return est def restricted_to_subbasis(self, dim, discretization): d = discretization cr = 1 if not d.rhs.parametric else len(d.rhs.operators) co = 1 if not d.operator.parametric else len(d.operator.operators) old_dim = d.operator.source.dim indices = np.concatenate((np.arange(cr), ((np.arange(co)*old_dim)[..., np.newaxis] + np.arange(dim)).ravel() + cr)) matrix = self.estimator_matrix._matrix[indices, :][:, indices] return StationaryAffineLinearReducedEstimator(NumpyMatrixOperator(matrix), self.coercivity_estimator)
[ "pymor.operators.numpy.NumpyMatrixOperator", "pymor.la.basic.induced_norm", "pymor.la.numpyvectorarray.NumpyVectorArray", "numpy.ones", "pymor.reductors.basic.reduce_generic_rb", "numpy.arange", "itertools.izip", "numpy.dot" ]
[((2949, 3023), 'pymor.reductors.basic.reduce_generic_rb', 'reduce_generic_rb', (['d', 'RB'], {'disable_caching': 'disable_caching', 'extends': 'extends'}), '(d, RB, disable_caching=disable_caching, extends=extends)\n', (2966, 3023), False, 'from pymor.reductors.basic import reduce_generic_rb\n'), ((5688, 5725), 'pymor.operators.numpy.NumpyMatrixOperator', 'NumpyMatrixOperator', (['estimator_matrix'], {}), '(estimator_matrix)\n', (5707, 5725), False, 'from pymor.operators.numpy import NumpyMatrixOperator\n'), ((6306, 6336), 'pymor.la.basic.induced_norm', 'induced_norm', (['estimator_matrix'], {}), '(estimator_matrix)\n', (6318, 6336), False, 'from pymor.la.basic import induced_norm\n'), ((4982, 5021), 'itertools.izip', 'izip', (['d.operator.operators', 'R_Os', 'RR_Os'], {}), '(d.operator.operators, R_Os, RR_Os)\n', (4986, 5021), False, 'from itertools import izip\n'), ((6523, 6533), 'numpy.ones', 'np.ones', (['(1)'], {}), '(1)\n', (6530, 6533), True, 'import numpy as np\n'), ((6653, 6663), 'numpy.ones', 'np.ones', (['(1)'], {}), '(1)\n', (6660, 6663), True, 'import numpy as np\n'), ((6831, 6850), 'pymor.la.numpyvectorarray.NumpyVectorArray', 'NumpyVectorArray', (['C'], {}), '(C)\n', (6847, 6850), False, 'from pymor.la.numpyvectorarray import NumpyVectorArray\n'), ((7510, 7537), 'pymor.operators.numpy.NumpyMatrixOperator', 'NumpyMatrixOperator', (['matrix'], {}), '(matrix)\n', (7529, 7537), False, 'from pymor.operators.numpy import NumpyMatrixOperator\n'), ((4744, 4820), 'itertools.izip', 'izip', (['d.operator.operators', 'R_Os', 'RR_Os', "old_data['R_Os']", "old_data['RR_Os']"], {}), "(d.operator.operators, R_Os, RR_Os, old_data['R_Os'], old_data['RR_Os'])\n", (4748, 4820), False, 'from itertools import izip\n'), ((7261, 7274), 'numpy.arange', 'np.arange', (['cr'], {}), '(cr)\n', (7270, 7274), True, 'import numpy as np\n'), ((6760, 6795), 'numpy.dot', 'np.dot', (['CO[..., np.newaxis]', 'U.data'], {}), '(CO[..., np.newaxis], U.data)\n', (6766, 6795), True, 'import numpy as np\n'), ((7353, 7367), 'numpy.arange', 'np.arange', (['dim'], {}), '(dim)\n', (7362, 7367), True, 'import numpy as np\n'), ((7311, 7324), 'numpy.arange', 'np.arange', (['co'], {}), '(co)\n', (7320, 7324), True, 'import numpy as np\n')]
import os import json import shutil import cv2 import sys import math # import tensorflow as tf import numpy as np # import align.detect_face # import facenet import requests import tempfile import _pickle as pickle import urllib.request as request from collections import namedtuple from google_images_download import google_images_download DATA_DIR = '/app/data' TMP_DOWNLOAD_DIR = '/tmp/google_img_download' if not os.path.exists(TMP_DOWNLOAD_DIR): os.makedirs(TMP_DOWNLOAD_DIR) IMG_CACHE_DIR = '/app/data/google_images' if not os.path.exists(IMG_CACHE_DIR): os.makedirs(IMG_CACHE_DIR) BoundingBox = namedtuple('BoundingBox', ['x1', 'x2', 'y1', 'y2']) KB = 1024 def file_size(filename): st = os.stat(filename) return st.st_size def fetch_images(name, outdir=IMG_CACHE_DIR, n=25, query_extras=None, force=False): """Fetch images from Google""" out_subdir = os.path.join(outdir, name) if os.path.exists(out_subdir): if not force: print('Using cached', out_subdir) return out_subdir else: shutil.rmtree(out_subdir) query = '"%s"' % name if query_extras: query += ' %s' % query_extras response = google_images_download.googleimagesdownload() response.download({ 'keywords': query, 'limit': n, 'output_directory': TMP_DOWNLOAD_DIR, 'format': 'jpg', 'size': 'medium' }) tmp_dir = os.path.join(TMP_DOWNLOAD_DIR, query) for ent in os.listdir(tmp_dir): img_path = os.path.join(tmp_dir, ent) im = cv2.imread(img_path) if im is None: os.remove(img_path) shutil.move(tmp_dir, out_subdir) return out_subdir MODEL_SERVER_PORT = 9999 MODEL_SERVER_URL = 'http://localhost:{}/'.format(MODEL_SERVER_PORT) def detect_faces_in_images(dir_path): faces = requests.get(MODEL_SERVER_URL + 'face-detect', params={'path': dir_path}).json() result = {} for img_path, bboxes in faces.items(): result[img_path] = [] for bbox in bboxes: x1 = int(bbox['x1']) x2 = int(bbox['x2']) y1 = int(bbox['y1']) y2 = int(bbox['y2']) img = cv2.imread(img_path) cropped_image = img[y1:y2, x1:x2, :] if cropped_image.size > 0: result[img_path].append(cropped_image) return result def detect_faces(input_path): faces = requests.get(MODEL_SERVER_URL + 'face-detect', params={'path': input_path}).json() result = [] for img_path, bboxes in faces.items(): height, width, _ = cv2.imread(img_path).shape for bbox in bboxes: x1 = bbox['x1'] / width x2 = bbox['x2'] / width y1 = bbox['y1'] / height y2 = bbox['y2'] / height if y2 > y1 and x2 > x1: result.append(( img_path, BoundingBox(x1=x1, x2=x2, y1=y1, y2=y2) )) return result def embed_images(images): embs = [] for img in images: emb = requests.post( MODEL_SERVER_URL + 'face-embed', params={'height': img.shape[0], 'width': img.shape[1]}, data=img.tostring() ).json() embs.append(np.array(emb)) if len(embs) == 0: raise RuntimeError('No embeddings were created') return embs def embed_directory(dir_path, one_face_per_img=True): """Compute a mean embedding of all of the images in the directory""" faces = requests.get(MODEL_SERVER_URL + 'face-detect', params={'path': dir_path}).json() embeddings = [] for img_path, bboxes in faces.items(): if one_face_per_img and len(bboxes) > 1: continue for bbox in bboxes: emb = requests.get(MODEL_SERVER_URL + 'face-embed', params={'path': img_path, **bbox}).json() embeddings.append(np.array(emb)) return np.mean(embeddings, axis=0) def name_to_embedding(name, n=25, cache=True, one_face_per_img=True): """Go directly from a name to face embedding""" if cache: google_imgs_dir = fetch_images(name, outdir=IMG_CACHE_DIR, n=n, query_extras='', force=False) return embed_directory(google_imgs_dir, one_face_per_img) else: tmp_dir = tempfile.mkdtemp('img_download') try: google_imgs_dir = fetch_images(name, outdir=tmp_dir, n=n, query_extras='', force=True) return embed_directory(google_imgs_dir, one_face_per_img) finally: if os.path.exists(tmp_dir): shutil.rmtree(tmp_dir) def urls_to_embedding(urls): """Fetch images at the urls and embed faces""" tmp_dir = tempfile.mkdtemp('img_download') try: for i, url in enumerate(urls): img_path = os.path.join(tmp_dir, '{}.jpg'.format(i)) request.urlretrieve(url, img_path) return embed_directory(tmp_dir) finally: if os.path.exists(tmp_dir): shutil.rmtree(tmp_dir)
[ "os.remove", "os.makedirs", "os.stat", "os.path.exists", "google_images_download.google_images_download.googleimagesdownload", "cv2.imread", "numpy.mean", "tempfile.mkdtemp", "collections.namedtuple", "shutil.move", "requests.get", "numpy.array", "shutil.rmtree", "urllib.request.urlretrieve", "os.path.join", "os.listdir" ]
[((616, 667), 'collections.namedtuple', 'namedtuple', (['"""BoundingBox"""', "['x1', 'x2', 'y1', 'y2']"], {}), "('BoundingBox', ['x1', 'x2', 'y1', 'y2'])\n", (626, 667), False, 'from collections import namedtuple\n'), ((420, 452), 'os.path.exists', 'os.path.exists', (['TMP_DOWNLOAD_DIR'], {}), '(TMP_DOWNLOAD_DIR)\n', (434, 452), False, 'import os\n'), ((458, 487), 'os.makedirs', 'os.makedirs', (['TMP_DOWNLOAD_DIR'], {}), '(TMP_DOWNLOAD_DIR)\n', (469, 487), False, 'import os\n'), ((538, 567), 'os.path.exists', 'os.path.exists', (['IMG_CACHE_DIR'], {}), '(IMG_CACHE_DIR)\n', (552, 567), False, 'import os\n'), ((573, 599), 'os.makedirs', 'os.makedirs', (['IMG_CACHE_DIR'], {}), '(IMG_CACHE_DIR)\n', (584, 599), False, 'import os\n'), ((715, 732), 'os.stat', 'os.stat', (['filename'], {}), '(filename)\n', (722, 732), False, 'import os\n'), ((911, 937), 'os.path.join', 'os.path.join', (['outdir', 'name'], {}), '(outdir, name)\n', (923, 937), False, 'import os\n'), ((945, 971), 'os.path.exists', 'os.path.exists', (['out_subdir'], {}), '(out_subdir)\n', (959, 971), False, 'import os\n'), ((1225, 1270), 'google_images_download.google_images_download.googleimagesdownload', 'google_images_download.googleimagesdownload', ([], {}), '()\n', (1268, 1270), False, 'from google_images_download import google_images_download\n'), ((1436, 1473), 'os.path.join', 'os.path.join', (['TMP_DOWNLOAD_DIR', 'query'], {}), '(TMP_DOWNLOAD_DIR, query)\n', (1448, 1473), False, 'import os\n'), ((1489, 1508), 'os.listdir', 'os.listdir', (['tmp_dir'], {}), '(tmp_dir)\n', (1499, 1508), False, 'import os\n'), ((1650, 1682), 'shutil.move', 'shutil.move', (['tmp_dir', 'out_subdir'], {}), '(tmp_dir, out_subdir)\n', (1661, 1682), False, 'import shutil\n'), ((3957, 3984), 'numpy.mean', 'np.mean', (['embeddings'], {'axis': '(0)'}), '(embeddings, axis=0)\n', (3964, 3984), True, 'import numpy as np\n'), ((4808, 4840), 'tempfile.mkdtemp', 'tempfile.mkdtemp', (['"""img_download"""'], {}), "('img_download')\n", (4824, 4840), False, 'import tempfile\n'), ((1529, 1555), 'os.path.join', 'os.path.join', (['tmp_dir', 'ent'], {}), '(tmp_dir, ent)\n', (1541, 1555), False, 'import os\n'), ((1569, 1589), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (1579, 1589), False, 'import cv2\n'), ((4358, 4390), 'tempfile.mkdtemp', 'tempfile.mkdtemp', (['"""img_download"""'], {}), "('img_download')\n", (4374, 4390), False, 'import tempfile\n'), ((5065, 5088), 'os.path.exists', 'os.path.exists', (['tmp_dir'], {}), '(tmp_dir)\n', (5079, 5088), False, 'import os\n'), ((1097, 1122), 'shutil.rmtree', 'shutil.rmtree', (['out_subdir'], {}), '(out_subdir)\n', (1110, 1122), False, 'import shutil\n'), ((1625, 1644), 'os.remove', 'os.remove', (['img_path'], {}), '(img_path)\n', (1634, 1644), False, 'import os\n'), ((1852, 1925), 'requests.get', 'requests.get', (["(MODEL_SERVER_URL + 'face-detect')"], {'params': "{'path': dir_path}"}), "(MODEL_SERVER_URL + 'face-detect', params={'path': dir_path})\n", (1864, 1925), False, 'import requests\n'), ((2200, 2220), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (2210, 2220), False, 'import cv2\n'), ((2428, 2503), 'requests.get', 'requests.get', (["(MODEL_SERVER_URL + 'face-detect')"], {'params': "{'path': input_path}"}), "(MODEL_SERVER_URL + 'face-detect', params={'path': input_path})\n", (2440, 2503), False, 'import requests\n'), ((2623, 2643), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (2633, 2643), False, 'import cv2\n'), ((3301, 3314), 'numpy.array', 'np.array', (['emb'], {}), '(emb)\n', (3309, 3314), True, 'import numpy as np\n'), ((3553, 3626), 'requests.get', 'requests.get', (["(MODEL_SERVER_URL + 'face-detect')"], {'params': "{'path': dir_path}"}), "(MODEL_SERVER_URL + 'face-detect', params={'path': dir_path})\n", (3565, 3626), False, 'import requests\n'), ((4648, 4671), 'os.path.exists', 'os.path.exists', (['tmp_dir'], {}), '(tmp_dir)\n', (4662, 4671), False, 'import os\n'), ((4966, 5000), 'urllib.request.urlretrieve', 'request.urlretrieve', (['url', 'img_path'], {}), '(url, img_path)\n', (4985, 5000), True, 'import urllib.request as request\n'), ((5102, 5124), 'shutil.rmtree', 'shutil.rmtree', (['tmp_dir'], {}), '(tmp_dir)\n', (5115, 5124), False, 'import shutil\n'), ((3931, 3944), 'numpy.array', 'np.array', (['emb'], {}), '(emb)\n', (3939, 3944), True, 'import numpy as np\n'), ((4689, 4711), 'shutil.rmtree', 'shutil.rmtree', (['tmp_dir'], {}), '(tmp_dir)\n', (4702, 4711), False, 'import shutil\n'), ((3813, 3898), 'requests.get', 'requests.get', (["(MODEL_SERVER_URL + 'face-embed')"], {'params': "{'path': img_path, **bbox}"}), "(MODEL_SERVER_URL + 'face-embed', params={'path': img_path, **bbox}\n )\n", (3825, 3898), False, 'import requests\n')]
import os import re import numpy as np import pandas as pd import ujson as json import json as js import sys import argparse class UCIDataset: def __init__(self, window, source_dataset, output_json, imputing_columns): self.read_dataset(source_dataset) self.window = window self.set_ids() self.imputing_columns = imputing_columns self.data_frame = pd.get_dummies(self.data_frame) self.columns = self.data_frame.shape[1] self.mean = np.asarray(list(self.data_frame.mean(axis=0))) self.std = np.asarray(list(self.data_frame.std(axis=0, skipna=True))) ### modify the std to 1 self.std[self.std == 0.] = 1 self.fs = open(output_json, 'w') def read_dataset(self, source_dataset): raw_df = pd.read_csv(source_dataset) ### todo(aoqian): seperate time and main body self.timestamp = raw_df[['timestamp']] self.data_frame = raw_df.drop('timestamp', axis=1) def set_ids(self): """ the id of sub sequences :return: """ self.ids = range(0, self.data_frame.shape[0] / self.window) ### todo(aoqian): might be removed then, since no need to get the label def get_label(self, id_): return 0 def update_evals(self, evals, id_): return evals def read_data(self, id_): frame = self.data_frame.loc[id_ * self.window: (id_+1) * self.window - 1, :] evals = [] for i in range(self.window): evals.append(list(frame.iloc[i, :])) evals = (np.array(evals) - self.mean) / self.std return evals def __del__(self): print("destroy UCI dataset") if not isinstance(self.mean, list): self.mean = self.mean.tolist() if not isinstance(self.std, list): self.std = self.std.tolist() data = { "SEQ_LEN": self.window, "COLUMNS": self.columns, "JsonFile": self.fs.name, "mean": self.mean, "std": self.std, "imputing_columns": self.imputing_columns } with open('../models/settings.txt', 'w') as outfile: js.dump(data, outfile) self.fs.close() def parse_delta(masks, window, columns, dir_): """ todo(aoqian): 1. do not normalize time column; 2. compute the correct delta matrix, may follow GURI-GAN compute the delta matrix: the time gaps, but should focus :param masks: :param window: :param columns: :param dir_: :return: """ if dir_ == 'backward': masks = masks[::-1] deltas = [] for h in range(window): if h == 0: deltas.append(np.ones(columns)) else: deltas.append(np.ones(columns) + (1 - masks[h]) * deltas[-1]) return np.array(deltas) def parse_rec(values, masks, evals, eval_masks, window, columns, dir_): deltas = parse_delta(masks, window, columns, dir_) # only used in GRU-D forwards = pd.DataFrame(values).fillna(method='ffill').fillna(0.0).as_matrix() rec = {} rec['values'] = np.nan_to_num(values).tolist() rec['masks'] = masks.astype('int32').tolist() # imputation ground-truth rec['evals'] = np.nan_to_num(evals).tolist() rec['eval_masks'] = eval_masks.astype('int32').tolist() rec['forwards'] = forwards.tolist() rec['deltas'] = deltas.tolist() return rec def parse_id(id_, ds, index): evals = ds.read_data(id_) shp = evals.shape evals = evals.reshape(-1) # 5 flattens the data in a 1d list # randomly eliminate 10% values as the imputation ground-truth indices = np.where(~np.isnan(evals))[0].tolist() # 6 getting indices of the flat evals list that are not nan # find all indices on the imputing columns indices = list(filter(lambda x: (x % ds.columns in ds.imputing_columns), indices)) indices = [indices[index]] values = evals.copy() values[indices] = np.nan # 8 setting 10 percent indices to nan in the new list values which has been copied from evals masks = ~np.isnan(values) # 9 bool matrix which is true for not nan indices of values # for the indices that we randomly selected, eval_masks is true in those indices, others are all false eval_masks = (~np.isnan(values)) ^ (~np.isnan(evals)) evals = ds.update_evals(evals, id_) evals = evals.reshape(shp) values = values.reshape(shp) masks = masks.reshape(shp) eval_masks = eval_masks.reshape(shp) # 10 reshaping everything to its original shape label = ds.get_label(id_) rec = {'label': label} # prepare the model for both directions rec['forward'] = parse_rec(values, masks, evals, eval_masks, ds.window, ds.columns, dir_='forward') rec['backward'] = parse_rec(values[::-1], masks[::-1], evals[::-1], eval_masks[::-1], ds.window, ds.columns, dir_='backward') rec = json.dumps(rec) ds.fs.write(rec + '\n') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--window', type=int, default=50) parser.add_argument('--percent', type=int, default=10) parser.add_argument('--imputing', type=int, default=1) parser.add_argument('--index', type=int, default=0) args = parser.parse_args() window = args.window imputing = args.imputing percent = args.percent # index = args.index raw_fpath = '../raw/air_100.csv' df = pd.read_csv(raw_fpath) df_dummy = pd.get_dummies(df.drop('timestamp', axis=1)) # make it integer nrow = window # target_cols = [0, 1, 2, 3] ### debug, ### in theroy, only one will be detected and imputed target_cols = [0] nrow = 1 for col in target_cols: for index in range(nrow): dataset = UCIDataset(window, raw_fpath, '../json/jsonAir100_process', [col]) for id_ in dataset.ids: print('Processing sub series {}'.format(id_)) try: parse_id(id_, dataset, index) except Exception as e: print(e) continue
[ "pandas.DataFrame", "json.dump", "argparse.ArgumentParser", "numpy.nan_to_num", "pandas.read_csv", "pandas.get_dummies", "numpy.ones", "numpy.isnan", "numpy.array", "ujson.dumps" ]
[((2823, 2839), 'numpy.array', 'np.array', (['deltas'], {}), '(deltas)\n', (2831, 2839), True, 'import numpy as np\n'), ((4918, 4933), 'ujson.dumps', 'json.dumps', (['rec'], {}), '(rec)\n', (4928, 4933), True, 'import ujson as json\n'), ((5005, 5030), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (5028, 5030), False, 'import argparse\n'), ((5448, 5470), 'pandas.read_csv', 'pd.read_csv', (['raw_fpath'], {}), '(raw_fpath)\n', (5459, 5470), True, 'import pandas as pd\n'), ((393, 424), 'pandas.get_dummies', 'pd.get_dummies', (['self.data_frame'], {}), '(self.data_frame)\n', (407, 424), True, 'import pandas as pd\n'), ((793, 820), 'pandas.read_csv', 'pd.read_csv', (['source_dataset'], {}), '(source_dataset)\n', (804, 820), True, 'import pandas as pd\n'), ((4096, 4112), 'numpy.isnan', 'np.isnan', (['values'], {}), '(values)\n', (4104, 4112), True, 'import numpy as np\n'), ((2190, 2212), 'json.dump', 'js.dump', (['data', 'outfile'], {}), '(data, outfile)\n', (2197, 2212), True, 'import json as js\n'), ((3113, 3134), 'numpy.nan_to_num', 'np.nan_to_num', (['values'], {}), '(values)\n', (3126, 3134), True, 'import numpy as np\n'), ((3243, 3263), 'numpy.nan_to_num', 'np.nan_to_num', (['evals'], {}), '(evals)\n', (3256, 3263), True, 'import numpy as np\n'), ((4301, 4317), 'numpy.isnan', 'np.isnan', (['values'], {}), '(values)\n', (4309, 4317), True, 'import numpy as np\n'), ((4323, 4338), 'numpy.isnan', 'np.isnan', (['evals'], {}), '(evals)\n', (4331, 4338), True, 'import numpy as np\n'), ((1571, 1586), 'numpy.array', 'np.array', (['evals'], {}), '(evals)\n', (1579, 1586), True, 'import numpy as np\n'), ((2705, 2721), 'numpy.ones', 'np.ones', (['columns'], {}), '(columns)\n', (2712, 2721), True, 'import numpy as np\n'), ((2763, 2779), 'numpy.ones', 'np.ones', (['columns'], {}), '(columns)\n', (2770, 2779), True, 'import numpy as np\n'), ((3672, 3687), 'numpy.isnan', 'np.isnan', (['evals'], {}), '(evals)\n', (3680, 3687), True, 'import numpy as np\n'), ((3010, 3030), 'pandas.DataFrame', 'pd.DataFrame', (['values'], {}), '(values)\n', (3022, 3030), True, 'import pandas as pd\n')]