code
stringlengths 31
1.05M
| apis
list | extract_api
stringlengths 97
1.91M
|
---|---|---|
#!/usr/bin/env python3
import argparse
import sys
import math
from typing import List
import random
import numpy
import soundfile
import samplerate as libsamplerate
import progressbar
def divide_sound_file(data: numpy.ndarray, samples_per_chunk: int):
return [
data[i * samples_per_chunk:(i + 1) * samples_per_chunk]
for i in range(0, math.ceil(len(data) / samples_per_chunk))
]
def stretch_palette(chunks: List[numpy.ndarray], num_chunks: int):
# print([sqrt_hlen - math.fabs(sqrt_hlen - math.sqrt(i)) for i in range(0, len(chunks))])
n = math.floor(math.log2(num_chunks))
excess = len(chunks) - num_chunks
if excess > 0:
snip = excess // 2
print(snip)
chunks = chunks[snip:len(chunks)-snip]
hlen = len(chunks) / 2
weights = [math.sqrt(hlen - math.fabs(hlen - i) + 1) for i in range(0, len(chunks))]
return random.choices(chunks, weights=weights, k=num_chunks)
def main():
parser = argparse.ArgumentParser('Rearrange a sound file to match another')
parser.add_argument('target', type=str, help='the sound file to recreate')
parser.add_argument('palette', type=str, help='the sound file to recreate it from')
parser.add_argument('out', type=str, help='the sound file to output')
parser.add_argument('--chunk-length', type=int, help='the length of each chunk the sound files are divided in',
default=5)
parser.add_argument('--seed', type=int, help='the seed of the random number generator')
parser.add_argument('--max-swap-fails', type=int, default=250,
help='the maximum number of failed attempts to improve the quality')
args = parser.parse_args(sys.argv[1:])
random.seed(args.seed)
target_data, target_samplerate = soundfile.read(args.target, always_2d=True, dtype='float32')
palette_data, palette_samplerate = soundfile.read(args.palette, always_2d=True, dtype='float32')
if palette_samplerate != target_samplerate:
print('Resampling palette...')
progress_bar = progressbar.ProgressBarThread()
progress_bar.start()
resampler = libsamplerate.Resampler(libsamplerate.converters.ConverterType.sinc_best, channels=2)
palette_data = resampler.process(palette_data, target_samplerate / palette_samplerate)
progress_bar.stop()
sample_rate = target_samplerate
del target_samplerate
del palette_samplerate
print('Chopping up sound files...')
progress_bar = progressbar.ProgressBarThread()
progress_bar.start()
samples_per_chunk = sample_rate * args.chunk_length // 1000
target_chunks = divide_sound_file(target_data, samples_per_chunk)
palette_chunks = divide_sound_file(palette_data, samples_per_chunk)
progress_bar.stop()
print('Moulding palette...')
progress_bar = progressbar.ProgressBarThread()
progress_bar.start()
# occ = {}
result_chunks = stretch_palette(palette_chunks, len(target_chunks))
assert len(result_chunks) == len(target_chunks)
progress_bar.stop()
print('Normalizing chunks...')
progress_bar = progressbar.ProgressBarThread(2 * len(target_chunks))
for i, chunk in enumerate(target_chunks):
length, num_channels = chunk.shape
if length < samples_per_chunk:
target_chunks[i] = numpy.append(chunk, [[0, 0]] * (samples_per_chunk - length), axis=0)
assert target_chunks[i].shape == (samples_per_chunk, 2)
progress_bar.progress(i)
for i, chunk in enumerate(result_chunks):
length, num_channels = chunk.shape
if length < samples_per_chunk:
result_chunks[i] = numpy.append(chunk, [[0, 0]] * (samples_per_chunk - length), axis=0)
assert result_chunks[i].shape == (samples_per_chunk, 2)
progress_bar.progress(i)
progress_bar.stop()
print('Maximizing sound quality...')
progress_bar = progressbar.ProgressBarThread(args.max_swap_fails)
progress_bar.start()
num_failed_swaps = 0
num_failed_swaps_hist = [num_failed_swaps]
total_swaps = 0
total_iters = 0
while num_failed_swaps < args.max_swap_fails:
i, k = random.sample(range(0, len(target_chunks)), k=2)
cdiff_i = ((result_chunks[i] - target_chunks[i]) ** 2).mean()
cdiff_k = ((result_chunks[k] - target_chunks[k]) ** 2).mean()
cdiff = cdiff_i + cdiff_k
ndiff_i = ((result_chunks[k] - target_chunks[i]) ** 2).mean()
ndiff_k = ((result_chunks[i] - target_chunks[k]) ** 2).mean()
ndiff = ndiff_i + ndiff_k
if ndiff < cdiff:
num_failed_swaps_hist = num_failed_swaps_hist[-args.max_swap_fails:]
num_failed_swaps_hist.append(num_failed_swaps)
num_failed_swaps = 0
total_swaps += 1
result_chunks[i], result_chunks[k] = result_chunks[k], result_chunks[i]
else:
num_failed_swaps += 1
progress_bar.progress(numpy.average(num_failed_swaps_hist), 's: {}, t: {}'.format(total_swaps, total_iters))
total_iters += 1
progress_bar.stop()
soundfile.write(args.out, numpy.concatenate(result_chunks), sample_rate)
if __name__ == '__main__':
main()
|
[
"samplerate.Resampler",
"soundfile.read",
"numpy.average",
"argparse.ArgumentParser",
"math.fabs",
"random.choices",
"numpy.append",
"random.seed",
"math.log2",
"numpy.concatenate",
"progressbar.ProgressBarThread"
] |
[((892, 945), 'random.choices', 'random.choices', (['chunks'], {'weights': 'weights', 'k': 'num_chunks'}), '(chunks, weights=weights, k=num_chunks)\n', (906, 945), False, 'import random\n'), ((973, 1039), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Rearrange a sound file to match another"""'], {}), "('Rearrange a sound file to match another')\n", (996, 1039), False, 'import argparse\n'), ((1732, 1754), 'random.seed', 'random.seed', (['args.seed'], {}), '(args.seed)\n', (1743, 1754), False, 'import random\n'), ((1793, 1853), 'soundfile.read', 'soundfile.read', (['args.target'], {'always_2d': '(True)', 'dtype': '"""float32"""'}), "(args.target, always_2d=True, dtype='float32')\n", (1807, 1853), False, 'import soundfile\n'), ((1893, 1954), 'soundfile.read', 'soundfile.read', (['args.palette'], {'always_2d': '(True)', 'dtype': '"""float32"""'}), "(args.palette, always_2d=True, dtype='float32')\n", (1907, 1954), False, 'import soundfile\n'), ((2508, 2539), 'progressbar.ProgressBarThread', 'progressbar.ProgressBarThread', ([], {}), '()\n', (2537, 2539), False, 'import progressbar\n'), ((2850, 2881), 'progressbar.ProgressBarThread', 'progressbar.ProgressBarThread', ([], {}), '()\n', (2879, 2881), False, 'import progressbar\n'), ((3927, 3977), 'progressbar.ProgressBarThread', 'progressbar.ProgressBarThread', (['args.max_swap_fails'], {}), '(args.max_swap_fails)\n', (3956, 3977), False, 'import progressbar\n'), ((589, 610), 'math.log2', 'math.log2', (['num_chunks'], {}), '(num_chunks)\n', (598, 610), False, 'import math\n'), ((2066, 2097), 'progressbar.ProgressBarThread', 'progressbar.ProgressBarThread', ([], {}), '()\n', (2095, 2097), False, 'import progressbar\n'), ((2148, 2237), 'samplerate.Resampler', 'libsamplerate.Resampler', (['libsamplerate.converters.ConverterType.sinc_best'], {'channels': '(2)'}), '(libsamplerate.converters.ConverterType.sinc_best,\n channels=2)\n', (2171, 2237), True, 'import samplerate as libsamplerate\n'), ((5136, 5168), 'numpy.concatenate', 'numpy.concatenate', (['result_chunks'], {}), '(result_chunks)\n', (5153, 5168), False, 'import numpy\n'), ((3341, 3409), 'numpy.append', 'numpy.append', (['chunk', '([[0, 0]] * (samples_per_chunk - length))'], {'axis': '(0)'}), '(chunk, [[0, 0]] * (samples_per_chunk - length), axis=0)\n', (3353, 3409), False, 'import numpy\n'), ((3671, 3739), 'numpy.append', 'numpy.append', (['chunk', '([[0, 0]] * (samples_per_chunk - length))'], {'axis': '(0)'}), '(chunk, [[0, 0]] * (samples_per_chunk - length), axis=0)\n', (3683, 3739), False, 'import numpy\n'), ((4968, 5004), 'numpy.average', 'numpy.average', (['num_failed_swaps_hist'], {}), '(num_failed_swaps_hist)\n', (4981, 5004), False, 'import numpy\n'), ((824, 843), 'math.fabs', 'math.fabs', (['(hlen - i)'], {}), '(hlen - i)\n', (833, 843), False, 'import math\n')]
|
import glob
import time
import cv2
import math
import numpy as np
from Modules.foregroundExtraction import readyFrame, frameDifferencing, morphologicalOperations, natural_sort
from Modules.ballDetection import findContours, sizeDetection, playerProximityDetection, regionDetection, courtBoundaryDetection
startTimeReadingFrames = time.time()
datasetName= "Dataset1"
# Location of dataset
filenames = glob.glob(datasetName+"/*.jpg")
# Reading each frame and storing it in a list
frameList = [cv2.imread(frame) for frame in natural_sort(filenames)]
endTimeReadingFrames = time.time()
print("Reading Frames--- %s seconds ---" %
(endTimeReadingFrames - startTimeReadingFrames))
# Parsing through the frames
ballCandidatesPreviousFrame = list()
meas=[]
pred = []
mp = np.array((2, 1), np.float32) # measurement
tp = np.zeros((2, 1), np.float32) # tracked / prediction
kalman = cv2.KalmanFilter(4,2)
kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32)
kalman.processNoiseCov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) * 0.009
kalman.measurementNoiseCov = np.array([[1,0],[0,1]],np.float32) * 0.00003
i = 0
while i < (len(frameList)-2):
# cv2.imshow("Frame {}".format(i),frameList[i])
# Storing three frames
previousFrame = frameList[i]
currFrame = frameList[i+1]
nextFrame = frameList[i + 2]
#
#
# FOREGROUND EXTRACTION
#
#
startTimeForeGroundExtraction = time.time()
# Readying the frames
previousFrameGray, currFrameGray, nextFrameGray = readyFrame(
previousFrame, currFrame, nextFrame)
# Performing frame differencing
threshFrameDifferencing = frameDifferencing(
previousFrameGray, currFrameGray, nextFrameGray)
# Performing morphological operations
img_erosion = morphologicalOperations(threshFrameDifferencing, 4, 4)
startTimeBlurringBinary = time.time()
# Blurring the binary image to get smooth shapes of objects
final_image = cv2.medianBlur(img_erosion, 7)
endTimeBlurringBinary = time.time()
print("Final Blur--- %s seconds ---" %
(endTimeBlurringBinary - startTimeBlurringBinary))
endTimeForegroundExtraction=time.time()
print("Foreground Extraction--- %s seconds ---" % (endTimeForegroundExtraction - startTimeForeGroundExtraction))
#
#
# BALL DETECTION
#
#
startTimeBallDetection =time.time()
# Making a copy of pre-processed image frame
final_image_copy = final_image.copy()
# Finding contours in the frame
contours, hier = findContours(final_image_copy)
# Separating candidates based on size
ballCandidates, playerCadidates, incompletePlayerCandidates = sizeDetection(contours, currFrame,i)
# Removing candidates outside the Court Boundary in Dataset2
if (datasetName == 'Dataset2'):
ballCandidates, playerCadidates, incompletePlayerCandidates = courtBoundaryDetection(ballCandidates,playerCadidates,incompletePlayerCandidates,currFrame)
# Removing Candidates that are close to the Players
ballCandidatesFiltered = playerProximityDetection(ballCandidates, playerCadidates, incompletePlayerCandidates, currFrame)
# Removing candidates that are not in their expected region after motion
ballCandidatesFilteredProximity, ballCandidatesPreviousFrame =regionDetection(ballCandidatesFiltered,ballCandidatesPreviousFrame,currFrame)
endTimeBallDetection = time.time()
print("Ball Detection--- %s seconds ---" % (endTimeBallDetection - startTimeBallDetection))
print(kalman.gain)
if (i + 1 == 1):
x = ballCandidatesFilteredProximity[0][0]
y = ballCandidatesFilteredProximity[0][1]
mp = np.array([[np.float32(x)], [np.float32(y)]])
initstate = [mp[0], mp[1]]
tp[0] = initstate[0]
tp[1] = initstate[1]
pred.append((int(tp[0]), int(tp[1])))
cv2.circle(currFrame, (tp[0], tp[1]), 10, (0, 0, 255), -1)
else:
tp = kalman.predict()
tp[0] = tp[0] + initstate[0]
tp[1] = tp[1] + initstate[1]
pred.append((int(tp[0]), int(tp[1])))
print("prediction: ")
print(tp)
cv2.circle(currFrame,(tp[0],tp[1]), 10, (0,0,255), -1)
# cv2.putText(currFrame, str(tp[0]) + "," + str(tp[1]), (tp[0], tp[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
if (len(ballCandidatesFilteredProximity) == 1):
for cand in ballCandidatesFilteredProximity:
x = cand[0]
y = cand[1]
x = x - initstate[0]
y = y - initstate[1]
mp = np.array([[np.float32(x)], [np.float32(y)]])
print("measurement: ")
print(mp)
meas.append((x, y))
corrected = kalman.correct(mp)
corrected[0] = corrected[0] + initstate[0]
corrected[1] = corrected[1] + initstate[1]
print("correction: ")
print(kalman.correct(mp))
cv2.circle(currFrame,(corrected[0],corrected[1]), 10, (0,255,0), -1)
# cv2.putText(currFrame, str(corrected[0]) + "," + str(corrected[1]), (corrected[0], corrected[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
distncePredAct = math.sqrt(math.pow((cand[0] - tp[0]), 2) + math.pow((cand[1] - tp[1]), 2))
# if (distncePredAct < 50):
# cv2.circle(currFrame, (corrected[0], corrected[1]), 10, (0, 255, 0), -1)
# else:
# cv2.circle(currFrame,(tp[0],tp[1]), 10, (0,0,255), -1)
cv2.line(currFrame, (int(cand[0]), int(cand[1])), (int(tp[0]), int(tp[1])), (255, 0, 0), 2)
xmidPoint = (cand[0]+tp[0])*0.5
ymidPoint = (cand[1]+tp[1])*0.5
cv2.putText(currFrame, str(round(distncePredAct,2)), (int(xmidPoint)-50, int(
ymidPoint)-50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.drawContours(currFrame, [cand[3]], -1, (255, 0,), 2)
cv2.putText(currFrame, str(cand[0]) + "," + str(cand[1]), (cand[0] + 1, cand[1] + 1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
cv2.imshow('Candidate image', currFrame)
elif(len(ballCandidatesFilteredProximity) > 1):
print(meas)
r = 1
minDistObject = 1000
minDistXcoord = 0
minDistYcoord = 0
for cand in ballCandidatesFilteredProximity:
r=r+20
distncePredAct = math.sqrt(math.pow((cand[0] - tp[0]), 2) + math.pow((cand[1] - tp[1]), 2))
# if (distncePredAct < 50):
# if (distncePredAct < minDistObject):
# minDistObject = distncePredAct
# minDistXcoord = cand[0]
# minDistYcoord = cand[1]
# if (minDistObject == 1000):
# cv2.circle(currFrame, (tp[0], tp[1]), 10, (0, 0, 255), -1)
# else:
# x = minDistXcoord
# y = minDistYcoord
# x = x - initstate[0]
# y = y - initstate[1]
# mp = np.array([[np.float32(x)], [np.float32(y)]])
# print("measurement: ")
# print(mp)
# meas.append((x, y))
# corrected = kalman.correct(mp)
# corrected[0] = corrected[0] + initstate[0]
# corrected[1] = corrected[1] + initstate[1]
# print("correction: ")
# print(kalman.correct(mp))
# cv2.circle(currFrame, (corrected[0], corrected[1]), 10, (0, 255, 0), -1)
cv2.line(currFrame, (int(cand[0]), int(cand[1])), (int(tp[0]), int(tp[1])), (255, 0, 0), 2)
xmidPoint = (cand[0]+tp[0])*0.5
ymidPoint = (cand[1]+tp[1])*0.5
cv2.putText(currFrame, str(round(distncePredAct,2)), (int(xmidPoint)+r, int(
ymidPoint+r)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.drawContours(currFrame, [cand[3]], -1, (255, 0,), 2)
# cv2.putText(currFrame, str(cand[0]) + "," + str(cand[1]), (cand[0] + 1, cand[1] + 1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
cv2.imshow('Candidate image', currFrame)
else:
print(meas)
cv2.circle(currFrame,(tp[0],tp[1]), 10, (0,0,255), -1)
cv2.imshow('Candidate image', currFrame)
i += 1 # increments the loop
# Exits the loop when Esc is pressed, goes to previous frame when space pressed and goes to next frame when any other key is pressed
k = cv2.waitKey(0)
if k == 27:
break
elif k == 32:
i -= 2
else:
continue
|
[
"cv2.medianBlur",
"Modules.foregroundExtraction.morphologicalOperations",
"Modules.foregroundExtraction.readyFrame",
"Modules.ballDetection.findContours",
"Modules.ballDetection.regionDetection",
"glob.glob",
"cv2.imshow",
"Modules.foregroundExtraction.natural_sort",
"math.pow",
"cv2.drawContours",
"Modules.ballDetection.sizeDetection",
"cv2.circle",
"cv2.waitKey",
"Modules.ballDetection.courtBoundaryDetection",
"Modules.ballDetection.playerProximityDetection",
"cv2.KalmanFilter",
"numpy.float32",
"Modules.foregroundExtraction.frameDifferencing",
"numpy.zeros",
"time.time",
"cv2.imread",
"numpy.array"
] |
[((331, 342), 'time.time', 'time.time', ([], {}), '()\n', (340, 342), False, 'import time\n'), ((401, 434), 'glob.glob', 'glob.glob', (["(datasetName + '/*.jpg')"], {}), "(datasetName + '/*.jpg')\n", (410, 434), False, 'import glob\n'), ((572, 583), 'time.time', 'time.time', ([], {}), '()\n', (581, 583), False, 'import time\n'), ((772, 800), 'numpy.array', 'np.array', (['(2, 1)', 'np.float32'], {}), '((2, 1), np.float32)\n', (780, 800), True, 'import numpy as np\n'), ((821, 849), 'numpy.zeros', 'np.zeros', (['(2, 1)', 'np.float32'], {}), '((2, 1), np.float32)\n', (829, 849), True, 'import numpy as np\n'), ((883, 905), 'cv2.KalmanFilter', 'cv2.KalmanFilter', (['(4)', '(2)'], {}), '(4, 2)\n', (899, 905), False, 'import cv2\n'), ((932, 982), 'numpy.array', 'np.array', (['[[1, 0, 0, 0], [0, 1, 0, 0]]', 'np.float32'], {}), '([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)\n', (940, 982), True, 'import numpy as np\n'), ((1009, 1087), 'numpy.array', 'np.array', (['[[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]]', 'np.float32'], {}), '([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)\n', (1017, 1087), True, 'import numpy as np\n'), ((493, 510), 'cv2.imread', 'cv2.imread', (['frame'], {}), '(frame)\n', (503, 510), False, 'import cv2\n'), ((1097, 1175), 'numpy.array', 'np.array', (['[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]', 'np.float32'], {}), '([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)\n', (1105, 1175), True, 'import numpy as np\n'), ((1213, 1251), 'numpy.array', 'np.array', (['[[1, 0], [0, 1]]', 'np.float32'], {}), '([[1, 0], [0, 1]], np.float32)\n', (1221, 1251), True, 'import numpy as np\n'), ((1565, 1576), 'time.time', 'time.time', ([], {}), '()\n', (1574, 1576), False, 'import time\n'), ((1658, 1705), 'Modules.foregroundExtraction.readyFrame', 'readyFrame', (['previousFrame', 'currFrame', 'nextFrame'], {}), '(previousFrame, currFrame, nextFrame)\n', (1668, 1705), False, 'from Modules.foregroundExtraction import readyFrame, frameDifferencing, morphologicalOperations, natural_sort\n'), ((1782, 1848), 'Modules.foregroundExtraction.frameDifferencing', 'frameDifferencing', (['previousFrameGray', 'currFrameGray', 'nextFrameGray'], {}), '(previousFrameGray, currFrameGray, nextFrameGray)\n', (1799, 1848), False, 'from Modules.foregroundExtraction import readyFrame, frameDifferencing, morphologicalOperations, natural_sort\n'), ((1919, 1973), 'Modules.foregroundExtraction.morphologicalOperations', 'morphologicalOperations', (['threshFrameDifferencing', '(4)', '(4)'], {}), '(threshFrameDifferencing, 4, 4)\n', (1942, 1973), False, 'from Modules.foregroundExtraction import readyFrame, frameDifferencing, morphologicalOperations, natural_sort\n'), ((2005, 2016), 'time.time', 'time.time', ([], {}), '()\n', (2014, 2016), False, 'import time\n'), ((2099, 2129), 'cv2.medianBlur', 'cv2.medianBlur', (['img_erosion', '(7)'], {}), '(img_erosion, 7)\n', (2113, 2129), False, 'import cv2\n'), ((2158, 2169), 'time.time', 'time.time', ([], {}), '()\n', (2167, 2169), False, 'import time\n'), ((2307, 2318), 'time.time', 'time.time', ([], {}), '()\n', (2316, 2318), False, 'import time\n'), ((2510, 2521), 'time.time', 'time.time', ([], {}), '()\n', (2519, 2521), False, 'import time\n'), ((2672, 2702), 'Modules.ballDetection.findContours', 'findContours', (['final_image_copy'], {}), '(final_image_copy)\n', (2684, 2702), False, 'from Modules.ballDetection import findContours, sizeDetection, playerProximityDetection, regionDetection, courtBoundaryDetection\n'), ((2812, 2849), 'Modules.ballDetection.sizeDetection', 'sizeDetection', (['contours', 'currFrame', 'i'], {}), '(contours, currFrame, i)\n', (2825, 2849), False, 'from Modules.ballDetection import findContours, sizeDetection, playerProximityDetection, regionDetection, courtBoundaryDetection\n'), ((3204, 3304), 'Modules.ballDetection.playerProximityDetection', 'playerProximityDetection', (['ballCandidates', 'playerCadidates', 'incompletePlayerCandidates', 'currFrame'], {}), '(ballCandidates, playerCadidates,\n incompletePlayerCandidates, currFrame)\n', (3228, 3304), False, 'from Modules.ballDetection import findContours, sizeDetection, playerProximityDetection, regionDetection, courtBoundaryDetection\n'), ((3445, 3524), 'Modules.ballDetection.regionDetection', 'regionDetection', (['ballCandidatesFiltered', 'ballCandidatesPreviousFrame', 'currFrame'], {}), '(ballCandidatesFiltered, ballCandidatesPreviousFrame, currFrame)\n', (3460, 3524), False, 'from Modules.ballDetection import findContours, sizeDetection, playerProximityDetection, regionDetection, courtBoundaryDetection\n'), ((3555, 3566), 'time.time', 'time.time', ([], {}), '()\n', (3564, 3566), False, 'import time\n'), ((8842, 8856), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (8853, 8856), False, 'import cv2\n'), ((524, 547), 'Modules.foregroundExtraction.natural_sort', 'natural_sort', (['filenames'], {}), '(filenames)\n', (536, 547), False, 'from Modules.foregroundExtraction import readyFrame, frameDifferencing, morphologicalOperations, natural_sort\n'), ((3022, 3120), 'Modules.ballDetection.courtBoundaryDetection', 'courtBoundaryDetection', (['ballCandidates', 'playerCadidates', 'incompletePlayerCandidates', 'currFrame'], {}), '(ballCandidates, playerCadidates,\n incompletePlayerCandidates, currFrame)\n', (3044, 3120), False, 'from Modules.ballDetection import findContours, sizeDetection, playerProximityDetection, regionDetection, courtBoundaryDetection\n'), ((4014, 4072), 'cv2.circle', 'cv2.circle', (['currFrame', '(tp[0], tp[1])', '(10)', '(0, 0, 255)', '(-1)'], {}), '(currFrame, (tp[0], tp[1]), 10, (0, 0, 255), -1)\n', (4024, 4072), False, 'import cv2\n'), ((4289, 4347), 'cv2.circle', 'cv2.circle', (['currFrame', '(tp[0], tp[1])', '(10)', '(0, 0, 255)', '(-1)'], {}), '(currFrame, (tp[0], tp[1]), 10, (0, 0, 255), -1)\n', (4299, 4347), False, 'import cv2\n'), ((5147, 5219), 'cv2.circle', 'cv2.circle', (['currFrame', '(corrected[0], corrected[1])', '(10)', '(0, 255, 0)', '(-1)'], {}), '(currFrame, (corrected[0], corrected[1]), 10, (0, 255, 0), -1)\n', (5157, 5219), False, 'import cv2\n'), ((6124, 6179), 'cv2.drawContours', 'cv2.drawContours', (['currFrame', '[cand[3]]', '(-1)', '(255, 0)', '(2)'], {}), '(currFrame, [cand[3]], -1, (255, 0), 2)\n', (6140, 6179), False, 'import cv2\n'), ((6350, 6390), 'cv2.imshow', 'cv2.imshow', (['"""Candidate image"""', 'currFrame'], {}), "('Candidate image', currFrame)\n", (6360, 6390), False, 'import cv2\n'), ((8553, 8611), 'cv2.circle', 'cv2.circle', (['currFrame', '(tp[0], tp[1])', '(10)', '(0, 0, 255)', '(-1)'], {}), '(currFrame, (tp[0], tp[1]), 10, (0, 0, 255), -1)\n', (8563, 8611), False, 'import cv2\n'), ((8620, 8660), 'cv2.imshow', 'cv2.imshow', (['"""Candidate image"""', 'currFrame'], {}), "('Candidate image', currFrame)\n", (8630, 8660), False, 'import cv2\n'), ((3833, 3846), 'numpy.float32', 'np.float32', (['x'], {}), '(x)\n', (3843, 3846), True, 'import numpy as np\n'), ((3850, 3863), 'numpy.float32', 'np.float32', (['y'], {}), '(y)\n', (3860, 3863), True, 'import numpy as np\n'), ((8234, 8289), 'cv2.drawContours', 'cv2.drawContours', (['currFrame', '[cand[3]]', '(-1)', '(255, 0)', '(2)'], {}), '(currFrame, [cand[3]], -1, (255, 0), 2)\n', (8250, 8289), False, 'import cv2\n'), ((8462, 8502), 'cv2.imshow', 'cv2.imshow', (['"""Candidate image"""', 'currFrame'], {}), "('Candidate image', currFrame)\n", (8472, 8502), False, 'import cv2\n'), ((5426, 5454), 'math.pow', 'math.pow', (['(cand[0] - tp[0])', '(2)'], {}), '(cand[0] - tp[0], 2)\n', (5434, 5454), False, 'import math\n'), ((5459, 5487), 'math.pow', 'math.pow', (['(cand[1] - tp[1])', '(2)'], {}), '(cand[1] - tp[1], 2)\n', (5467, 5487), False, 'import math\n'), ((4751, 4764), 'numpy.float32', 'np.float32', (['x'], {}), '(x)\n', (4761, 4764), True, 'import numpy as np\n'), ((4768, 4781), 'numpy.float32', 'np.float32', (['y'], {}), '(y)\n', (4778, 4781), True, 'import numpy as np\n'), ((6706, 6734), 'math.pow', 'math.pow', (['(cand[0] - tp[0])', '(2)'], {}), '(cand[0] - tp[0], 2)\n', (6714, 6734), False, 'import math\n'), ((6739, 6767), 'math.pow', 'math.pow', (['(cand[1] - tp[1])', '(2)'], {}), '(cand[1] - tp[1], 2)\n', (6747, 6767), False, 'import math\n')]
|
from mushroom_rl.core import Serializable
import torch
import numpy as np
from mushroom_rl.utils.parameters import Parameter
class TestClass(Serializable):
def __init__(self, value):
# Create some different types of variables
self._primitive_variable = value # Primitive python variable
self._numpy_vector = np.array([1, 2, 3]*value) # Numpy array
self._dictionary = dict(some='random', keywords=2, fill='the dictionary') # A dictionary
# Building a torch object
data_array = np.ones(3)*value
data_tensor = torch.from_numpy(data_array)
self._torch_object = torch.nn.Parameter(data_tensor)
# Some variables that implement the Serializable interface
self._mushroom_parameter = Parameter(2.0*value)
self._list_of_objects = [Parameter(i) for i in range(value)] # This is a list!
# A variable that is not important e.g. a buffer
self.not_important = np.zeros(10000)
# A variable that contains a reference to another variable
self._list_reference = [self._dictionary]
# Superclass constructor
super().__init__()
# Here we specify how to save each component
self._add_save_attr(
_primitive_variable='primitive',
_numpy_vector='numpy',
_dictionary='pickle',
_torch_object='torch',
_mushroom_parameter='mushroom',
# List of mushroom objects can also be saved with the 'mushroom' mode
_list_of_objects='mushroom',
# The '!' is to specify that we save the variable only if full_save is True
not_important='numpy!',
)
def _post_load(self):
if self.not_important is None:
self.not_important = np.zeros(10000)
self._list_reference = [self._dictionary]
def print_variables(obj):
for label, var in vars(obj).items():
if label != '_save_attributes':
if isinstance(var, Parameter):
print(f'{label}: Parameter({var()})')
elif isinstance(var, list) and isinstance(var[0], Parameter):
new_list = [f'Parameter({item()})' for item in var]
print(f'{label}: {new_list}')
else:
print(label, ': ', var)
if __name__ == '__main__':
# Create test object and print its variables
test_object = TestClass(1)
print('###########################################################################################################')
print('The test object contains the following:')
print('-----------------------------------------------------------------------------------------------------------')
print_variables(test_object)
# Changing the buffer
test_object.not_important[0] = 1
# Save the object on disk
test_object.save('test.msh')
# Create another test object
test_object = TestClass(2)
print('###########################################################################################################')
print('After overwriting the test object:')
print('-----------------------------------------------------------------------------------------------------------')
print_variables(test_object)
# Changing the buffer again
test_object.not_important[0] = 1
# Save the other test object, this time remember buffer
test_object.save('test_full.msh', full_save=True)
# Load first test object and print its variables
print('###########################################################################################################')
test_object = TestClass.load('test.msh')
print('Loading previous test object:')
print('-----------------------------------------------------------------------------------------------------------')
print_variables(test_object)
# Load second test object and print its variables
print('###########################################################################################################')
test_object = TestClass.load('test_full.msh')
print('Loading previous test object:')
print('-----------------------------------------------------------------------------------------------------------')
print_variables(test_object)
|
[
"torch.nn.Parameter",
"mushroom_rl.utils.parameters.Parameter",
"numpy.zeros",
"numpy.ones",
"numpy.array",
"torch.from_numpy"
] |
[((341, 368), 'numpy.array', 'np.array', (['([1, 2, 3] * value)'], {}), '([1, 2, 3] * value)\n', (349, 368), True, 'import numpy as np\n'), ((575, 603), 'torch.from_numpy', 'torch.from_numpy', (['data_array'], {}), '(data_array)\n', (591, 603), False, 'import torch\n'), ((633, 664), 'torch.nn.Parameter', 'torch.nn.Parameter', (['data_tensor'], {}), '(data_tensor)\n', (651, 664), False, 'import torch\n'), ((768, 790), 'mushroom_rl.utils.parameters.Parameter', 'Parameter', (['(2.0 * value)'], {}), '(2.0 * value)\n', (777, 790), False, 'from mushroom_rl.utils.parameters import Parameter\n'), ((964, 979), 'numpy.zeros', 'np.zeros', (['(10000)'], {}), '(10000)\n', (972, 979), True, 'import numpy as np\n'), ((536, 546), 'numpy.ones', 'np.ones', (['(3)'], {}), '(3)\n', (543, 546), True, 'import numpy as np\n'), ((822, 834), 'mushroom_rl.utils.parameters.Parameter', 'Parameter', (['i'], {}), '(i)\n', (831, 834), False, 'from mushroom_rl.utils.parameters import Parameter\n'), ((1791, 1806), 'numpy.zeros', 'np.zeros', (['(10000)'], {}), '(10000)\n', (1799, 1806), True, 'import numpy as np\n')]
|
from __future__ import division, print_function
from unittest import TestCase
import numpy as np
from scipy.signal import fftconvolve
import pyroomacoustics as pra
'''
We create a signal, a simple filter and compute their convolution.
Then we test STFT block procesing with and without overlap,
and with and without filtering.
'''
# test parameters
tol = 1e-6
np.random.seed(0)
D = 4
transform = 'numpy' # 'numpy', 'pyfftw', or 'mkl'
# filter to apply
h_len = 99
h = np.ones((h_len, D))
h /= np.linalg.norm(h, axis=0)
# test signal (noise)
x = np.random.randn(100000, D)
# convolved signal
y = np.zeros((x.shape[0] + h_len - 1, x.shape[1]))
for i in range(x.shape[1]):
y[:,i] = fftconvolve(x[:,i], h[:,i])
def no_overlap_no_filter(D):
if D == 1:
x_local = x[:,0]
else:
x_local = x[:,:D]
# parameters
block_size = 512 # make sure the FFT size is a power of 2
hop = block_size # no overlap
# Create the STFT object
stft = pra.realtime.STFT(block_size, hop=hop, channels=D,
transform=transform)
# collect the processed blocks
processed_x = np.zeros(x_local.shape)
# process the signals while full blocks are available
n = 0
while x_local.shape[0] - n > hop:
# go to frequency domain
stft.analysis(x_local[n:n+hop,])
# copy processed block in the output buffer
processed_x[n:n+hop,] = stft.synthesis()
n += hop
error = np.max(np.abs(x_local[:n,] - processed_x[:n,]))
return error
def no_overlap_with_filter(D):
if D == 1:
x_local = x[:,0]
y_local = y[:,0]
h_local = h[:,0]
else:
x_local = x[:,:D]
y_local = y[:,:D]
h_local = h[:,:D]
# parameters
block_size = 512 - h_len + 1 # make sure the FFT size is a power of 2
hop = block_size # no overlap
# Create the STFT object
stft = pra.realtime.STFT(block_size, hop=hop, channels=D,
transform=transform)
# setup the filter
stft.set_filter(h_local, zb=h_len - 1)
# collect the processed blocks
processed_x = np.zeros(x_local.shape)
# process the signals while full blocks are available
n = 0
while x_local.shape[0] - n > hop:
# go to frequency domain
stft.analysis(x_local[n:n+hop,])
stft.process() # apply the filter
# copy processed block in the output buffer
processed_x[n:n+hop,] = stft.synthesis()
n += hop
error = np.max(np.abs(y_local[:n,] - processed_x[:n,]))
return error
def with_half_overlap_no_filter(D):
if D == 1:
x_local = x[:,0]
else:
x_local = x[:,:D]
# parameters
block_size = 512 # make sure the FFT size is a power of 2
hop = block_size // 2 # half overlap
window = pra.hann(block_size) # the analysis window
# Create the STFT object
stft = pra.realtime.STFT(block_size, hop=hop, analysis_window=window,
channels=D, transform=transform)
# collect the processed blocks
processed_x = np.zeros(x_local.shape)
# process the signals while full blocks are available
n = 0
while x_local.shape[0] - n > hop:
# go to frequency domain
stft.analysis(x_local[n:n+hop,])
# copy processed block in the output buffer
processed_x[n:n+hop,] = stft.synthesis()
n += hop
error = np.max(np.abs(x_local[:n-hop,] - processed_x[hop:n,]))
return error
def with_half_overlap_with_filter(D):
if D == 1:
x_local = x[:,0]
y_local = y[:,0]
h_local = h[:,0]
else:
x_local = x[:,:D]
y_local = y[:,:D]
h_local = h[:,:D]
# parameters
block_size = 512 - h_len + 1 # make sure the FFT size is a power of 2
hop = block_size // 2 # half overlap
window = pra.hann(block_size) # the analysis window
# Create the STFT object
stft = pra.realtime.STFT(block_size, hop=hop, analysis_window=window,
channels=D, transform=transform)
# setup the filter
stft.set_filter(h_local, zb=h_len - 1)
# collect the processed blocks
processed_x = np.zeros(x_local.shape)
# process the signals while full blocks are available
n = 0
while x.shape[0] - n > hop:
# go to frequency domain
stft.analysis(x_local[n:n+hop,])
stft.process() # filtering
# copy processed block in the output buffer
processed_x[n:n+hop,] = stft.synthesis()
n += hop
error = np.max(np.abs(y_local[:n-hop,] - processed_x[hop:n,]))
return error
class TestSTFT(TestCase):
def test_no_overlap_no_filter_mono(self):
error = no_overlap_no_filter(1)
self.assertTrue(error < tol)
def test_no_overlap_no_filter_multichannel(self):
error = no_overlap_no_filter(D)
self.assertTrue(error < tol)
def test_no_overlap_with_filter_mono(self):
error = no_overlap_with_filter(1)
self.assertTrue(error < tol)
def test_no_overlap_with_filter_multichannel(self):
error = no_overlap_with_filter(D)
self.assertTrue(error < tol)
def test_with_half_overlap_no_filter_mono(self):
error = with_half_overlap_no_filter(1)
self.assertTrue(error < tol)
def test_with_half_overlap_no_filter_multichannel(self):
error = with_half_overlap_no_filter(D)
self.assertTrue(error < tol)
def test_with_half_overlap_with_filter_mono(self):
error = with_half_overlap_with_filter(1)
self.assertTrue(error < tol)
def test_with_half_overlap_with_filter_multichannel(self):
error = with_half_overlap_with_filter(D)
self.assertTrue(error < tol)
if __name__ == "__main__":
error = no_overlap_no_filter(1)
print('no overlap, no filter, mono:', error)
error = no_overlap_no_filter(D)
print('no overlap, no filter, multichannel:', error)
error = no_overlap_with_filter(1)
print('no overlap, with filter, mono:', error)
error = no_overlap_with_filter(D)
print('no overlap, with filter, multichannel:', error)
error = with_half_overlap_no_filter(1)
print('with half overlap, no filter, mono:', error)
error = with_half_overlap_no_filter(D)
print('with half overlap, no filter, multichannel:', error)
error = with_half_overlap_with_filter(1)
print('with half overlap, with filter, mono:', error)
error = with_half_overlap_with_filter(D)
print('with half overlap, with filter, multichannel:', error)
|
[
"numpy.random.seed",
"pyroomacoustics.realtime.STFT",
"numpy.abs",
"numpy.random.randn",
"numpy.zeros",
"numpy.ones",
"numpy.linalg.norm",
"scipy.signal.fftconvolve",
"pyroomacoustics.hann"
] |
[((364, 381), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (378, 381), True, 'import numpy as np\n'), ((474, 493), 'numpy.ones', 'np.ones', (['(h_len, D)'], {}), '((h_len, D))\n', (481, 493), True, 'import numpy as np\n'), ((499, 524), 'numpy.linalg.norm', 'np.linalg.norm', (['h'], {'axis': '(0)'}), '(h, axis=0)\n', (513, 524), True, 'import numpy as np\n'), ((552, 578), 'numpy.random.randn', 'np.random.randn', (['(100000)', 'D'], {}), '(100000, D)\n', (567, 578), True, 'import numpy as np\n'), ((603, 649), 'numpy.zeros', 'np.zeros', (['(x.shape[0] + h_len - 1, x.shape[1])'], {}), '((x.shape[0] + h_len - 1, x.shape[1]))\n', (611, 649), True, 'import numpy as np\n'), ((691, 720), 'scipy.signal.fftconvolve', 'fftconvolve', (['x[:, i]', 'h[:, i]'], {}), '(x[:, i], h[:, i])\n', (702, 720), False, 'from scipy.signal import fftconvolve\n'), ((983, 1054), 'pyroomacoustics.realtime.STFT', 'pra.realtime.STFT', (['block_size'], {'hop': 'hop', 'channels': 'D', 'transform': 'transform'}), '(block_size, hop=hop, channels=D, transform=transform)\n', (1000, 1054), True, 'import pyroomacoustics as pra\n'), ((1118, 1141), 'numpy.zeros', 'np.zeros', (['x_local.shape'], {}), '(x_local.shape)\n', (1126, 1141), True, 'import numpy as np\n'), ((1904, 1975), 'pyroomacoustics.realtime.STFT', 'pra.realtime.STFT', (['block_size'], {'hop': 'hop', 'channels': 'D', 'transform': 'transform'}), '(block_size, hop=hop, channels=D, transform=transform)\n', (1921, 1975), True, 'import pyroomacoustics as pra\n'), ((2110, 2133), 'numpy.zeros', 'np.zeros', (['x_local.shape'], {}), '(x_local.shape)\n', (2118, 2133), True, 'import numpy as np\n'), ((2810, 2830), 'pyroomacoustics.hann', 'pra.hann', (['block_size'], {}), '(block_size)\n', (2818, 2830), True, 'import pyroomacoustics as pra\n'), ((2895, 2994), 'pyroomacoustics.realtime.STFT', 'pra.realtime.STFT', (['block_size'], {'hop': 'hop', 'analysis_window': 'window', 'channels': 'D', 'transform': 'transform'}), '(block_size, hop=hop, analysis_window=window, channels=D,\n transform=transform)\n', (2912, 2994), True, 'import pyroomacoustics as pra\n'), ((3054, 3077), 'numpy.zeros', 'np.zeros', (['x_local.shape'], {}), '(x_local.shape)\n', (3062, 3077), True, 'import numpy as np\n'), ((3833, 3853), 'pyroomacoustics.hann', 'pra.hann', (['block_size'], {}), '(block_size)\n', (3841, 3853), True, 'import pyroomacoustics as pra\n'), ((3918, 4017), 'pyroomacoustics.realtime.STFT', 'pra.realtime.STFT', (['block_size'], {'hop': 'hop', 'analysis_window': 'window', 'channels': 'D', 'transform': 'transform'}), '(block_size, hop=hop, analysis_window=window, channels=D,\n transform=transform)\n', (3935, 4017), True, 'import pyroomacoustics as pra\n'), ((4144, 4167), 'numpy.zeros', 'np.zeros', (['x_local.shape'], {}), '(x_local.shape)\n', (4152, 4167), True, 'import numpy as np\n'), ((1465, 1504), 'numpy.abs', 'np.abs', (['(x_local[:n,] - processed_x[:n,])'], {}), '(x_local[:n,] - processed_x[:n,])\n', (1471, 1504), True, 'import numpy as np\n'), ((2501, 2540), 'numpy.abs', 'np.abs', (['(y_local[:n,] - processed_x[:n,])'], {}), '(y_local[:n,] - processed_x[:n,])\n', (2507, 2540), True, 'import numpy as np\n'), ((3401, 3449), 'numpy.abs', 'np.abs', (['(x_local[:n - hop,] - processed_x[hop:n,])'], {}), '(x_local[:n - hop,] - processed_x[hop:n,])\n', (3407, 3449), True, 'import numpy as np\n'), ((4522, 4570), 'numpy.abs', 'np.abs', (['(y_local[:n - hop,] - processed_x[hop:n,])'], {}), '(y_local[:n - hop,] - processed_x[hop:n,])\n', (4528, 4570), True, 'import numpy as np\n')]
|
import sys
from matplotlib import path
import numpy as np
#=======================================================================================================
class RTStructFile:
def __init__(self,RTS):
self.Status = True
self.DCM = RTS
self.ROINameList = list()
self.ROIIDList = list()
for ROI in self.DCM.StructureSetROISequence:
self.ROINameList.append(ROI.ROIName)
self.ROIIDList.append(ROI.ROINumber)
#--------------------------------------------------------------------------------------------------------------------------
def DefineROI(self,thisROIID,X0,DirectionX,Y0,DirectionY,Z0,DirectionZ,PixelSpacing,SliceSpacing):
self.Margin = 10
self.i_Start = 'none'
self.j_Start = 'none'
self.k_Start = 'none'
self.Nb_i = 'none'
self.Nb_j = 'none'
self.Nb_k = 'none'
self.GetROIProperties(thisROIID,X0,DirectionX,Y0,DirectionY,Z0,DirectionZ,PixelSpacing,SliceSpacing)
self.ROIVoxelsIndexCoords = list() #liste des index de toutes les voxels de la ROI ([i,j,k],[i,j,k], ... )
self.ROIContourDicomCoords = list() #liste des coord dicom du contour de la ROI ([x1,y1,z1],[x2,y2,z2],......)
self.GetROIVoxelsIndexCoords(thisROIID,X0,DirectionX,Y0,DirectionY,Z0,DirectionZ,PixelSpacing,SliceSpacing,final=0)
#--------------------------------------------------------------------------------------------------------------------------
def DefineFinalROI(self,thisROIID,X0,DirectionX,Y0,DirectionY,Z0,DirectionZ,PixelSpacing,SliceSpacing):
self.Margin = 10
self.i_Start = 'none'
self.j_Start = 'none'
self.k_Start = 'none'
self.Nb_i = 'none'
self.Nb_j = 'none'
self.Nb_k = 'none'
self.GetROIProperties(thisROIID,X0,DirectionX,Y0,DirectionY,Z0,DirectionZ,PixelSpacing,SliceSpacing)
self.ROIVoxelsIndexCoords = list() #liste des index de toutes les voxels de la ROI ([i,j,k],[i,j,k], ... )
self.ROIContourDicomCoords = list() #liste des coord dicom du contour de la ROI ([x1,y1,z1],[x2,y2,z2],......)
self.GetROIVoxelsIndexCoords(thisROIID,X0,DirectionX,Y0,DirectionY,Z0,DirectionZ,PixelSpacing,SliceSpacing,final=1)
#-----------------------------------------------------------------------------------------------------------------------------------
def GetROIProperties(self,thisROIID,X0,DirectionX,Y0,DirectionY,Z0,DirectionZ,PixelSpacing,SliceSpacing): #the main goal of this function is to determine the limits of the coordinates of the ROIs.
self.i_list = list() #Index Coords grille Image dataset
self.j_list = list()
self.k_list = list()
for ROI in self.DCM.ROIContourSequence:
if int(ROI.ReferencedROINumber) == int(thisROIID):
for contour in ROI.ContourSequence:
for p in range(0,contour.NumberofContourPoints):
x=contour.ContourData[3*p] #Dicom coordinates
y=contour.ContourData[3*p+1]
z=contour.ContourData[3*p+2]
i = np.int(np.rint(((x-X0)/(DirectionX*PixelSpacing)))) #Index coordinates
j = np.int(np.rint(((y-Y0)/(DirectionY*PixelSpacing))))
k = np.int(np.rint(((z-Z0)/(DirectionZ*SliceSpacing))))
self.i_list.append(i)
self.j_list.append(j)
self.k_list.append(k)
imin = np.min(self.i_list)
jmin = np.min(self.j_list)
kmin = np.min(self.k_list)
imax = np.max(self.i_list)
jmax = np.max(self.j_list)
kmax = np.max(self.k_list)
self.k_Start = kmin - self.Margin
self.k_Stop = kmax + self.Margin
self.Nb_k = (self.k_Stop-self.k_Start)+1
self.j_Start = jmin - self.Margin
self.j_Stop = jmax + self.Margin
self.Nb_j = (self.j_Stop-self.j_Start)+1
self.i_Start = imin - self.Margin
self.i_Stop = imax + self.Margin
self.Nb_i = (self.i_Stop-self.i_Start)+1
#---------------------------------------------------------------------------------------------------------------------------------------
def GetROIVoxelsIndexCoords(self,thisROIID,X0,DirectionX,Y0,DirectionY,Z0,DirectionZ,PixelSpacing,SliceSpacing,final):
for ROI in self.DCM.ROIContourSequence:
if int(ROI.ReferencedROINumber) == int(thisROIID):
for contour in ROI.ContourSequence:
#Find k indice
thisz = contour.ContourData[2]
k = np.int(np.rint(((thisz-Z0)/(DirectionZ*SliceSpacing))))
thisPath = list()
for p in range(0,contour.NumberofContourPoints):
x=contour.ContourData[3*p]
y=contour.ContourData[3*p+1]
z=contour.ContourData[3*p+2]
i = np.int(np.rint(((x-X0)/(DirectionX*PixelSpacing))))
j = np.int(np.rint(((y-Y0)/(DirectionY*PixelSpacing))))
thisPath.append([i,j])
self.ROIContourDicomCoords.append([x,y,z])
if final==1:
thisPath = path.Path(thisPath)
for j in range(self.j_Start,self.j_Stop):
for i in range(self.i_Start,self.i_Stop):
if thisPath.contains_point([i,j],radius=0.01)== 1:
self.ROIVoxelsIndexCoords.append([i,j,k])
|
[
"matplotlib.path.Path",
"numpy.min",
"numpy.max",
"numpy.rint"
] |
[((3162, 3181), 'numpy.min', 'np.min', (['self.i_list'], {}), '(self.i_list)\n', (3168, 3181), True, 'import numpy as np\n'), ((3191, 3210), 'numpy.min', 'np.min', (['self.j_list'], {}), '(self.j_list)\n', (3197, 3210), True, 'import numpy as np\n'), ((3220, 3239), 'numpy.min', 'np.min', (['self.k_list'], {}), '(self.k_list)\n', (3226, 3239), True, 'import numpy as np\n'), ((3252, 3271), 'numpy.max', 'np.max', (['self.i_list'], {}), '(self.i_list)\n', (3258, 3271), True, 'import numpy as np\n'), ((3281, 3300), 'numpy.max', 'np.max', (['self.j_list'], {}), '(self.j_list)\n', (3287, 3300), True, 'import numpy as np\n'), ((3310, 3329), 'numpy.max', 'np.max', (['self.k_list'], {}), '(self.k_list)\n', (3316, 3329), True, 'import numpy as np\n'), ((4166, 4217), 'numpy.rint', 'np.rint', (['((thisz - Z0) / (DirectionZ * SliceSpacing))'], {}), '((thisz - Z0) / (DirectionZ * SliceSpacing))\n', (4173, 4217), True, 'import numpy as np\n'), ((4658, 4677), 'matplotlib.path.Path', 'path.Path', (['thisPath'], {}), '(thisPath)\n', (4667, 4677), False, 'from matplotlib import path\n'), ((2877, 2924), 'numpy.rint', 'np.rint', (['((x - X0) / (DirectionX * PixelSpacing))'], {}), '((x - X0) / (DirectionX * PixelSpacing))\n', (2884, 2924), True, 'import numpy as np\n'), ((2958, 3005), 'numpy.rint', 'np.rint', (['((y - Y0) / (DirectionY * PixelSpacing))'], {}), '((y - Y0) / (DirectionY * PixelSpacing))\n', (2965, 3005), True, 'import numpy as np\n'), ((3020, 3067), 'numpy.rint', 'np.rint', (['((z - Z0) / (DirectionZ * SliceSpacing))'], {}), '((z - Z0) / (DirectionZ * SliceSpacing))\n', (3027, 3067), True, 'import numpy as np\n'), ((4425, 4472), 'numpy.rint', 'np.rint', (['((x - X0) / (DirectionX * PixelSpacing))'], {}), '((x - X0) / (DirectionX * PixelSpacing))\n', (4432, 4472), True, 'import numpy as np\n'), ((4487, 4534), 'numpy.rint', 'np.rint', (['((y - Y0) / (DirectionY * PixelSpacing))'], {}), '((y - Y0) / (DirectionY * PixelSpacing))\n', (4494, 4534), True, 'import numpy as np\n')]
|
import wave
import pylab as pl
import numpy as np
import speech_features_kit.Volume.Volume as vp
# ============ test the algorithm =============
# read wave file and get parameters.
fw = wave.open('../data/english.wav','rb')
params = fw.getparams()
print(params)
nchannels, sampwidth, framerate, nframes = params[:4]
strData = fw.readframes(nframes)
waveData = np.fromstring(strData, dtype=np.int16)
waveData = waveData*1.0/max(abs(waveData)) # normalization
fw.close()
# calculate volume
frameSize = 256
overLap = 128
volume11 = vp.calVolume(waveData,frameSize,overLap)
volume12 = vp.calVolumeDB(waveData,frameSize,overLap)
# plot the wave
time = np.arange(0, nframes)*(1.0/framerate)
time2 = np.arange(0, len(volume11))*(frameSize-overLap)*1.0/framerate
pl.subplot(311)
pl.plot(time, waveData)
pl.ylabel("Amplitude")
pl.subplot(312)
pl.plot(time2, volume11)
pl.ylabel("absSum")
pl.subplot(313)
pl.plot(time2, volume12, c="g")
pl.ylabel("Decibel(dB)")
pl.xlabel("time (seconds)")
pl.show()
|
[
"wave.open",
"speech_features_kit.Volume.Volume.calVolumeDB",
"pylab.show",
"pylab.ylabel",
"speech_features_kit.Volume.Volume.calVolume",
"pylab.plot",
"pylab.subplot",
"numpy.arange",
"pylab.xlabel",
"numpy.fromstring"
] |
[((188, 226), 'wave.open', 'wave.open', (['"""../data/english.wav"""', '"""rb"""'], {}), "('../data/english.wav', 'rb')\n", (197, 226), False, 'import wave\n'), ((362, 400), 'numpy.fromstring', 'np.fromstring', (['strData'], {'dtype': 'np.int16'}), '(strData, dtype=np.int16)\n', (375, 400), True, 'import numpy as np\n'), ((533, 575), 'speech_features_kit.Volume.Volume.calVolume', 'vp.calVolume', (['waveData', 'frameSize', 'overLap'], {}), '(waveData, frameSize, overLap)\n', (545, 575), True, 'import speech_features_kit.Volume.Volume as vp\n'), ((585, 629), 'speech_features_kit.Volume.Volume.calVolumeDB', 'vp.calVolumeDB', (['waveData', 'frameSize', 'overLap'], {}), '(waveData, frameSize, overLap)\n', (599, 629), True, 'import speech_features_kit.Volume.Volume as vp\n'), ((760, 775), 'pylab.subplot', 'pl.subplot', (['(311)'], {}), '(311)\n', (770, 775), True, 'import pylab as pl\n'), ((776, 799), 'pylab.plot', 'pl.plot', (['time', 'waveData'], {}), '(time, waveData)\n', (783, 799), True, 'import pylab as pl\n'), ((800, 822), 'pylab.ylabel', 'pl.ylabel', (['"""Amplitude"""'], {}), "('Amplitude')\n", (809, 822), True, 'import pylab as pl\n'), ((824, 839), 'pylab.subplot', 'pl.subplot', (['(312)'], {}), '(312)\n', (834, 839), True, 'import pylab as pl\n'), ((840, 864), 'pylab.plot', 'pl.plot', (['time2', 'volume11'], {}), '(time2, volume11)\n', (847, 864), True, 'import pylab as pl\n'), ((865, 884), 'pylab.ylabel', 'pl.ylabel', (['"""absSum"""'], {}), "('absSum')\n", (874, 884), True, 'import pylab as pl\n'), ((886, 901), 'pylab.subplot', 'pl.subplot', (['(313)'], {}), '(313)\n', (896, 901), True, 'import pylab as pl\n'), ((902, 933), 'pylab.plot', 'pl.plot', (['time2', 'volume12'], {'c': '"""g"""'}), "(time2, volume12, c='g')\n", (909, 933), True, 'import pylab as pl\n'), ((934, 958), 'pylab.ylabel', 'pl.ylabel', (['"""Decibel(dB)"""'], {}), "('Decibel(dB)')\n", (943, 958), True, 'import pylab as pl\n'), ((959, 986), 'pylab.xlabel', 'pl.xlabel', (['"""time (seconds)"""'], {}), "('time (seconds)')\n", (968, 986), True, 'import pylab as pl\n'), ((987, 996), 'pylab.show', 'pl.show', ([], {}), '()\n', (994, 996), True, 'import pylab as pl\n'), ((652, 673), 'numpy.arange', 'np.arange', (['(0)', 'nframes'], {}), '(0, nframes)\n', (661, 673), True, 'import numpy as np\n')]
|
import numpy as np
import datetime as dt
import struct
from dateutil.relativedelta import relativedelta
from netCDF4 import Dataset
from os.path import exists
from scipy.interpolate import griddata
from scipy.interpolate.interpnd import _ndim_coords_from_arrays
from scipy.spatial import cKDTree
class Pathfinder():
"""
forcing class for the budget
lets the forcing load efficiently
"""
def __init__(self,ppath,grid=False):
self.name = 'Pathfinder'
self.path = ppath
self.vyear_load = 0
self.vels_loaded = False
if type(grid) == bool:
self.check_grid = False
else:
self.check_grid = True
self.grid = grid
def get_dates(self,time_start,time_end):
"""
returns the all encompassing date list for use with the forcing object
"""
dates =[]
d0 = dt.datetime(1970,1,1)
n_yrs = (time_end.year - time_start.year)+1
for y in range(n_yrs):
yu = time_start.year + y
f_name = 'icemotion_daily_nh_25km_'+str(yu)+'0101_'+str(yu)+'1231_v4.1.nc'
if exists(self.path+f_name):
f_nc = Dataset(self.path+f_name)
[dates.append(d0 + relativedelta(days = d))
for d in f_nc['time'][:]]
f_nc.close()
self.dates = dates
print(self.name+' Found '+str(np.shape(dates)[0])+' dates')
# daily points in yearly files
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_vels(self,dates_u,verbos=False):
d0 = dt.datetime(1970,1,1)
# does dates_u cover one year or more
if (dates_u[-1].year -dates_u[0].year) == 0:
# one year, one file
yu = dates_u[0].year
if ((self.vyear_load != yu) or (not self.vels_loaded)):
print('loading new year of data: '+str(yu))
f_name = 'icemotion_daily_nh_25km_'+str(yu)+'0101_'+str(yu)+'1231_v4.1.nc'
f_nc = Dataset(self.path+f_name)
# print(p0,p1)
self.u = f_nc['u'][:]
self.v = f_nc['v'][:]
self.u[self.u.mask] = np.nan
self.v[self.v.mask] = np.nan
f_nc.close()
self.vyear_load = yu
self.vels_loaded= True
p0 = dates_u[ 0].timetuple().tm_yday -1
p1 = dates_u[-1].timetuple().tm_yday
datau = self.u[p0:p1,:,:].transpose((0,2,1))/100
datav = self.v[p0:p1,:,:].transpose((0,2,1))/100
if self.check_grid:
for n in range(np.shape(datau)[0]):
datau[n][self.grid.lats>88] = np.nanmean
datav[n][self.grid.lats>88] = np.nanmean
return datau,datav
class PIOMAS():
"""
forcing class for the budget
lets the forcing load efficiently
"""
def __init__(self,ppath,time_smooth = 0):
self.name = 'PIOMAS'
self.path = ppath
self.vyear_load = 0
self.hyear_load = 0
self.ayear_load = 0
self.vels_loaded = False
self.hi_loaded = False
self.aice_loaded = False
self.tsmth = time_smooth
def get_dates(self,time_start,time_end):
"""
returns the all encompassing date list for use with the forcing object
PIOMAS is a standardised list so we can just build a list
"""
dates =[]
n_yrs = (time_end.year - time_start.year)-1
if n_yrs>-1:
y0 = dt.datetime(time_start.year,1,1)
ye = dt.datetime(time_start.year,12,31)
data_f = self.path+'uiday.H'+y0.strftime('%Y')
if exists(data_f):
for d in range(time_start.timetuple().tm_yday-1,
ye.timetuple().tm_yday):
dates.append(y0 + relativedelta(days = d))
for y in range(n_yrs):
y0 += relativedelta(years=1)
ye += relativedelta(years=1)
data_f = self.path+'uiday.H'+y0.strftime('%Y')
if exists(data_f):
for d in range(ye.timetuple().tm_yday):
dates.append(y0 + relativedelta(days = d))
y0 += relativedelta(years=1)
ye = time_end
data_f = self.path+'uiday.H'+y0.strftime('%Y')
if exists(data_f):
for d in range(ye.timetuple().tm_yday):
dates.append(y0 + relativedelta(days = d))
else:
y0 = dt.datetime(time_start.year,1,1)
data_f = self.path+'uiday.H'+y0.strftime('%Y')
if exists(data_f):
for d in range(time_start.timetuple().tm_yday-1,
time_end.timetuple().tm_yday):
dates.append(y0 + relativedelta(days = d))
self.dates= dates
print(self.name+' Found '+str(np.shape(dates)[0])+' dates')
# daily points in yearly files
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_vels(self,dates_u,verbos=False):
# does dates_u cover one year or more
if (dates_u[-1].year -dates_u[0].year) == 0:
# one year, one file
yu = dates_u[0].year
if ((self.vyear_load != yu) or (not self.vels_loaded)):
print('loading new year of data: '+str(yu))
data_f = self.path+'uiday.H'+str(yu)
with open(data_f, mode='rb') as file:
filecontent = file.read()
data = struct.unpack("f" * (len(filecontent)// 4), filecontent)
self.vels=np.asarray(data).reshape(365,2,120,360)
self.vyear_load = yu
self.vels_loaded= True
p0 = dates_u[ 0].timetuple().tm_yday -1
p1 = dates_u[-1].timetuple().tm_yday
# print(p0,p1)
if self.tsmth < 1:
datau = self.vels[p0:p1,0,:,:].transpose((0,2,1))
datav = self.vels[p0:p1,1,:,:].transpose((0,2,1))
return datau,datav
elif np.shape(dates_u)[0]>1:
print('time smoothing not compatible with multiple dates')
datau = self.vels[p0:p1,0,:,:].transpose((0,2,1))
datav = self.vels[p0:p1,1,:,:].transpose((0,2,1))
return datau,datav
else:
#### each time slice is the mean of 2*tsmth+1
p0 = np.maximum(p0-self.tsmth,0)
datau = self.vels[p0:p1+self.tsmth,0,:,:].transpose((0,2,1))
datav = self.vels[p0:p1+self.tsmth,1,:,:].transpose((0,2,1))
# print(np.shape(datau))
datau2 = np.expand_dims(np.nanmean(datau,axis=0),0)
datav2 = np.expand_dims(np.nanmean(datav,axis=0),0)
return datau2,datav2
def get_hi(self,dates_u,verbos=False):
# does dates_u cover one year or more
if (dates_u[-1].year -dates_u[0].year) == 0:
# one year, one file
yu = dates_u[0].year
if ((self.hyear_load != yu) or (not self.hi_loaded)):
print('loading new year of data: '+str(yu))
data_f = self.path+'hiday.H'+str(yu)
with open(data_f, mode='rb') as file:
fileContent = file.read()
data = struct.unpack("f" * (len(fileContent)// 4), fileContent)
self.hi=np.asarray(data).reshape(365,120,360)
self.hyear_load = yu
self.hi_loaded = True
p0 = dates_u[ 0].timetuple().tm_yday -1
p1 = dates_u[-1].timetuple().tm_yday
# print(p0,p1)
if self.tsmth < 1:
data = self.hi[p0:p1,:,:].transpose((0,2,1))
return data
elif np.shape(dates_u)[0]>1:
print('Time smoothing not compatible with multiple dates')
data = self.hi[p0:p1,:,:].transpose((0,2,1))
return data
else:
#### each time slice is the mean of 2*tsmth+1
p0 = np.maximum(p0-self.tsmth,0)
data = self.hi[p0:p1+self.tsmth,0,:,:].transpose((0,2,1))
data2 = np.expand_dims(np.nanmean(data,axis=0),0)
return data2
def get_aice(self,dates_u,verbos=False):
# does dates_u cover one year or more
if (dates_u[-1].year -dates_u[0].year) == 0:
# one year, one file
yu = dates_u[0].year
if ((self.ayear_load != yu) or (not self.aice_loaded)):
print('loading new year of data: '+str(yu))
data_f = self.path+'aiday.H'+str(yu)
with open(data_f, mode='rb') as file:
fileContent = file.read()
data = struct.unpack("f" * (len(fileContent)// 4), fileContent)
self.aice=np.asarray(data).reshape(365,120,360)
self.ayear_load = yu
self.aice_loaded= True
p0 = dates_u[ 0].timetuple().tm_yday -1
p1 = dates_u[-1].timetuple().tm_yday
# print(p0,p1)
if self.tsmth < 1:
data = self.aice[p0:p1,:,:].transpose((0,2,1))
return data
elif np.shape(dates_u)[0]>1:
print('Time smoothing not compatible with multiple dates')
data = self.aice[p0:p1,:,:].transpose((0,2,1))
return data
else:
#### each time slice is the mean of 2*tsmth+1
p0 = np.maximum(p0-self.tsmth,0)
data = self.aice[p0:p1+self.tsmth,0,:,:].transpose((0,2,1))
data2 = np.expand_dims(np.nanmean(data,axis=0),0)
return data2
class NSIDC_nt():
"""
forcing class for the budget
lets the forcing load efficiently
"""
def __init__(self,ppath):
self.name = 'NSIDC_n'
self.path = ppath
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_aice(self,dates_u,verbos=False):
# does dates_u cover one year or more
#daily files
dimY = 304
dimX = 448
d_no = np.shape(dates_u)[0]
data = np.empty([d_no, dimX, dimY])
for n,d in enumerate(dates_u):
# infile = self.path+d.strftime('/%Y/')+"nt_"+d.strftime('%Y%m%d')+"_f17_v1.1_n.bin"
if d.year<2020:
# infile = self.path+"/nt_"+d.strftime('%Y%m%d')+"_f17_v1.1_n.bin"
infile = self.path+d.strftime('/%Y/')+"nt_"+d.strftime('%Y%m%d')+"_f17_v1.1_n.bin"
if d.year>2019:
# infile = self.path+"/nt_"+d.strftime('%Y%m%d')+"_f18_nrt_n.bin"
infile = self.path+d.strftime('/%Y/')+"nt_"+d.strftime('%Y%m%d')+"_f18_nrt_n.bin"
# if d.year<2019:
# infile = self.path+"nt_"+d.strftime('%Y%m%d')+"_f17_v1.1_n.bin"
# if d.year>2018:
# infile = self.path+"nt_"+d.strftime('%Y%m%d')+"_f18_nrt_n.bin"
with open(infile, 'rb') as fr:
hdr = fr.read(300)
ice = np.fromfile(fr, dtype=np.uint8)
ice = ice.reshape(dimX,dimY)
ice = np.flipud(ice)
data[n] = ice / 250.
data[data>1.0] = np.nan
return data
def get_dates(self,time_start,time_end):
# does dates_u cover one year or more
#daily files
dates_u = []
d_no = (time_end-time_start).days +3
# make sure we get the bracket points
for dn in range(d_no):
d = time_start+ relativedelta(days = dn - 1)
if d.year<2020:
infile = self.path+d.strftime('/%Y/')+"nt_"+d.strftime('%Y%m%d')+"_f17_v1.1_n.bin"
if d.year>2019:
infile = self.path+d.strftime('/%Y/')+"nt_"+d.strftime('%Y%m%d')+"_f18_nrt_n.bin"
# check infile exists
if exists(infile):
dates_u.append(d)
#if it does append dates_u
self.dates= dates_u
print(self.name+' Found '+str(np.shape(dates_u)[0])+' dates')
class NSIDC_bt():
"""
forcing class for the budget
lets the forcing load efficiently
"""
def __init__(self,ppath):
self.name = 'NSIDC_b'
self.path = ppath
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_aice(self,dates_u,verbos=False):
# does dates_u cover one year or more
#daily files
dimY = 304
dimX = 448
d_no = np.shape(dates_u)[0]
data = np.empty([d_no, dimX, dimY])
for n,d in enumerate(dates_u):
infile = self.path+d.strftime('/%Y/')+"bt_"+d.strftime('%Y%m%d')+"_f17_v3.1_n.bin"
# if d.year<2019:
# infile = self.path+"nt_"+d.strftime('%Y%m%d')+"_f17_v1.1_n.bin"
# if d.year>2018:
# infile = self.path+"nt_"+d.strftime('%Y%m%d')+"_f18_nrt_n.bin"
with open(infile, 'rb') as fr:
hdr = fr.read(0)
ice = np.fromfile(fr, dtype="<i2")
ice = ice.reshape(dimX,dimY)
ice = np.flipud(ice)
data[n] = ice / 1000.
data[data>1.0] = np.nan
return data
def get_dates(self,time_start,time_end):
# does dates_u cover one year or more
#daily files
dates_u = []
d_no = (time_end-time_start).days +3
# make sure we get the bracket points
for dn in range(d_no):
d = time_start+ relativedelta(days = dn - 1)
# if d.year<2019:
infile = self.path+d.strftime('/%Y/')+"bt_"+d.strftime('%Y%m%d')+"_f17_v3.1_n.bin"
# if d.year>2018:
# infile = self.path+"nt_"+d.strftime('%Y%m%d')+"_f18_nrt_n.bin"
# check infile exists
if exists(infile):
dates_u.append(d)
#if it does append dates_u
self.dates= dates_u
print(self.name+' Found '+str(np.shape(dates_u)[0])+' dates')
class AWI_SMOS_daily():
"""
forcing class for the budget
lets the forcing load efficiently
"""
def __init__(self,ppath):
self.name = 'AWI_SMOS_daily'
self.path = ppath
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_hi(self,dates_u,verbos=False):
# does dates_u cover one year or more
#dmonthly
blurb = 'W_XX-ESA,SMOS_CS2,NH_25KM_EASE2_'
dn = np.shape(dates_u)[0]
d = dates_u[0]
if d > dt.datetime(2019,6,1):
blurb2 = '_r_v202_02_l4sit.nc'
else:
blurb2 = '_r_v202_01_l4sit.nc'
t0 = (d - relativedelta(days = 3)).strftime('%Y%m%d_')
t1 = (d + relativedelta(days = 3)).strftime('%Y%m%d')
file = self.path+d.strftime('%Y/%m/')+blurb+t0+t1+blurb2
f_nc = Dataset(file)
hi = f_nc['analysis_sea_ice_thickness'][0]
hi[hi.mask] = np.nan
dx,dy = hi.shape
data = np.empty([dn,dx,dy])
data[0] = hi
f_nc.close()
for n,d in enumerate(dates_u[1:]):
if d > dt.datetime(2019,6,1):
blurb2 = '_r_v202_02_l4sit.nc'
else:
blurb2 = '_r_v202_01_l4sit.nc'
t0 = (d - relativedelta(days = 3)).strftime('%Y%m%d_')
t1 = (d + relativedelta(days = 3)).strftime('%Y%m%d')
file = self.path+d.strftime('%Y/%m/')+blurb+t0+t1+blurb2
f_nc = Dataset(file)
hi = f_nc['analysis_sea_ice_thickness'][0]
hi[hi.mask] = np.nan
data[n+1] = hi
f_nc.close()
#if it does append dates_u
return data
def get_aice(self,dates_u,verbos=False):
# does dates_u cover one year or more
#dmonthly
blurb = 'W_XX-ESA,SMOS_CS2,NH_25KM_EASE2_'
dn = np.shape(dates_u)[0]
d = dates_u[0]
if d > dt.datetime(2019,6,1):
blurb2 = '_r_v202_02_l4sit.nc'
else:
blurb2 = '_r_v202_01_l4sit.nc'
t0 = (d - relativedelta(days = 3)).strftime('%Y%m%d_')
t1 = (d + relativedelta(days = 3)).strftime('%Y%m%d')
file = self.path+d.strftime('/%Y/%m/')+blurb+t0+t1+blurb2
f_nc = Dataset(file)
aice = f_nc['sea_ice_concentration'][0]
aice[aice.mask] = np.nan
dx,dy = aice.shape
data = np.empty([dn,dx,dy])
data[0] = aice/100
f_nc.close()
for n,d in enumerate(dates_u[1:]):
if d > dt.datetime(2019,6,1):
blurb2 = '_r_v202_02_l4sit.nc'
else:
blurb2 = '_r_v202_01_l4sit.nc'
t0 = (d - relativedelta(days = 3)).strftime('%Y%m%d_')
t1 = (d + relativedelta(days = 3)).strftime('%Y%m%d')
file = self.path+d.strftime('%Y/%m/')+blurb+t0+t1+blurb2
f_nc = Dataset(file)
aice = f_nc['sea_ice_concentration'][0]
aice[aice.mask] = np.nan
data[n+1] = aice/100
#if it does append dates_u
f_nc.close()
return data
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_dates(self,time_start,time_end):
# does dates_u cover one year or more
#daily files
blurb = 'W_XX-ESA,SMOS_CS2,NH_25KM_EASE2_'
dates_u = []
dd = (time_end-time_start).days+1
# make sure we get the bracket points
for dn in range(dd):
d = time_start+ relativedelta(days = dn)
if d > dt.datetime(2019,6,1):
blurb2 = '_r_v202_02_l4sit.nc'
else:
blurb2 = '_r_v202_01_l4sit.nc'
t0 = (d - relativedelta(days = 3)).strftime('%Y%m%d_')
t1 = (d + relativedelta(days = 3)).strftime('%Y%m%d')
file = self.path+d.strftime('%Y/%m/')+blurb+t0+t1+blurb2
if exists(file):
dates_u.append(d)
#if it does append dates_u
self.dates= dates_u
print(self.name+' Found '+str(np.shape(dates_u)[0])+' dates')
class AWI_weekly():
"""
forcing class for the budget
lets the forcing load efficiently
"""
def __init__(self,ppath):
self.name = 'AWI_weekly'
self.path = ppath
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_hi(self,dates_u,verbos=False):
# does dates_u cover one year or more
#dmonthly
blurb = 'awi-siral-l3c-sithick-cryosat2-rep-nh_25km_ease2-'
blurb2 = '-fv2p2.nc'
dn = np.shape(dates_u)[0]
d = dates_u[0]
t0 = (d - relativedelta(days = 3)).strftime('%Y%m%d_')
t1 = (d + relativedelta(days = 3)).strftime('%Y%m%d')
file = self.path+d.strftime('%Y/')+blurb+t0+t1+blurb2
f_nc = Dataset(file)
hi = f_nc['analysis_sea_ice_thickness'][0]
hi[hi.mask] = np.nan
dx,dy = hi.shape
data = np.empty([dn,dx,dy])
data[0] = hi
f_nc.close()
for n,d in enumerate(dates_u[1:]):
t0 = (d - relativedelta(days = 3)).strftime('%Y%m%d_')
t1 = (d + relativedelta(days = 3)).strftime('%Y%m%d')
file = self.path+d.strftime('%Y/')+blurb+t0+t1+blurb2
f_nc = Dataset(file)
hi = f_nc['analysis_sea_ice_thickness'][0]
hi[hi.mask] = np.nan
data[n+1] = hi
f_nc.close()
#if it does append dates_u
return data
def get_aice(self,dates_u,verbos=False):
# does dates_u cover one year or more
#dmonthly
blurb = 'awi-siral-l3c-sithick-cryosat2-rep-nh_25km_ease2-'
blurb2 = '-fv2p2.nc'
dn = np.shape(dates_u)[0]
d = dates_u[0]
t0 = (d - relativedelta(days = 3)).strftime('%Y%m%d_')
t1 = (d + relativedelta(days = 3)).strftime('%Y%m%d')
file = self.path+d.strftime('/%Y/')+blurb+t0+t1+blurb2
f_nc = Dataset(file)
aice = f_nc['sea_ice_concentration'][0]
aice[aice.mask] = np.nan
dx,dy = aice.shape
data = np.empty([dn,dx,dy])
data[0] = aice/100
f_nc.close()
for n,d in enumerate(dates_u[1:]):
t0 = (d - relativedelta(days = 3)).strftime('%Y%m%d_')
t1 = (d + relativedelta(days = 3)).strftime('%Y%m%d')
file = self.path+d.strftime('%Y/')+blurb+t0+t1+blurb2
f_nc = Dataset(file)
aice = f_nc['sea_ice_concentration'][0]
aice[aice.mask] = np.nan
data[n+1] = aice/100
#if it does append dates_u
f_nc.close()
return data
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_dates(self,time_start,time_end):
# does dates_u cover one year or more
# awi weekly - first ever week is 20101101 to 20101107
# midpoint of 20101104
w0 = dt.datetime(2010,11,4)
# find first time point before time start
w1 = int((time_start-w0).days/7)
# find first time point after time end
w2 = int((time_end-w0).days/7)+1
print(w1,w2)
#daily files
blurb = 'awi-siral-l3c-sithick-cryosat2-rep-nh_25km_ease2-'
blurb2 = '-fv2p2.nc'
dates_u = []
# make sure we get the bracket points
for w in range(w1,w2):
d = w0+ relativedelta(days = w*7)
t0 = (d - relativedelta(days = 3)).strftime('%Y%m%d_')
t1 = (d + relativedelta(days = 3)).strftime('%Y%m%d')
file = self.path+d.strftime('%Y/')+blurb+t0+t1+blurb2
if exists(file):
dates_u.append(d)
#if it does append dates_u
self.dates= dates_u
print(self.name+' Found '+str(np.shape(dates_u)[0])+' dates')
class AWI_monthly():
"""
forcing class for the budget
lets the forcing load efficiently
"""
def __init__(self,ppath):
self.name = 'AWI_monthly'
self.path = ppath
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_hi(self,dates_u,verbos=False):
# does dates_u cover one year or more
#dmonthly
blurb = 'awi-siral-l3c-sithick-cryosat2-rep-nh_25km_ease2-'
dn = np.shape(dates_u)[0]
d = dates_u[0]
dload = d.replace(day=1)
file = self.path+dload.strftime('/%Y/')+blurb+dload.strftime('%Y%m')+'-fv2p2.nc'
f_nc = Dataset(file)
hi = f_nc['sea_ice_thickness'][0]
dx,dy = hi.shape
data = np.empty([dn,dx,dy])
data[0] = hi
f_nc.close()
for n,d in enumerate(dates_u[1:]):
dload = d.replace(day=1)
file = self.path+dload.strftime('/%Y/')+blurb+dload.strftime('%Y%m')+'-fv2p2.nc'
f_nc = Dataset(file)
hi = f_nc['sea_ice_thickness'][0]
data[n+1] = hi
f_nc.close()
#if it does append dates_u
return data
def get_aice(self,dates_u,verbos=False):
# does dates_u cover one year or more
#dmonthly
blurb = 'awi-siral-l3c-sithick-cryosat2-rep-nh_25km_ease2-'
dn = np.shape(dates_u)[0]
d = dates_u[0]
dload = d.replace(day=1)
file = self.path+dload.strftime('/%Y/')+blurb+dload.strftime('%Y%m')+'-fv2p2.nc'
f_nc = Dataset(file)
aice = f_nc['sea_ice_concentration'][0]
dx,dy = aice.shape
data = np.empty([dn,dx,dy])
data[0] = aice/100
f_nc.close()
for n,d in enumerate(dates_u[1:]):
dload = d.replace(day=1)
file = self.path+dload.strftime('/%Y/')+blurb+dload.strftime('%Y%m')+'-fv2p2.nc'
f_nc = Dataset(file)
aice = f_nc['sea_ice_concentration'][0]
data[n+1] = aice/100
#if it does append dates_u
f_nc.close()
return data
# next function will take a list of dates and return an appropriately orientated arrays
def get_dates(self,time_start,time_end,fill_end_months=False):
# does dates_u cover one year or more
#daily files
blurb = 'awi-siral-l3c-sithick-cryosat2-rep-nh_25km_ease2-'
dates_u = []
dy = time_end.year-time_start.year
dm = time_end.month-time_start.month
m_no = dy*12 + dm +2
# make sure we get the bracket points
ts_m = dt.datetime(time_start.year,time_start.month,1)
for mn in range(m_no):
d = ts_m+ relativedelta(months = mn )
file = self.path+d.strftime('/%Y/')+blurb+d.strftime('%Y%m')+'-fv2p2.nc'
if exists(file):
if d.month==2:
mid_day = 13
else:
mid_day = 14
dates_u.append(d + relativedelta(days=mid_day))
### now work over the date and adjust for summer
### remove all months = [5,6,8,7,9]
### also need hole end points to be at month end not mid
self.dates= []
month_keep = [1,2,3,4,10,11,12]
for d in dates_u:
if d.month in month_keep:
if fill_end_months and d.month == 4:
self.dates.append(d)
d_end = d.replace(day=30)
self.dates.append(d_end)
elif fill_end_months and d.month == 10:
d_start = d.replace(day=1)
self.dates.append(d_start)
self.dates.append(d)
else:
self.dates.append(d)
print(self.name+' Found '+str(np.shape(dates_u)[0])+' dates')
class OSISAF():
"""
forcing class for the budget
lets the forcing load efficiently
"""
def __init__(self,ppath):
self.path = ppath
self.name = 'osisaf'
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_dates(self,time_start,time_end):
# individual drift for each day slice
dates_u = []
d_no = (time_end-time_start).days +3
# make sure we get the bracket points
for dn in range(d_no):
d = time_start+ relativedelta(days = dn - 1)
t1 = (d - relativedelta(hours=12)).strftime('%Y%m%d%H00')
t2 = (d + relativedelta(hours=36)).strftime('%Y%m%d%H00')
# check if were on the last day of the month
next_month = d.replace(day=28) + dt.timedelta(days=4) # this will never fail
next_month.replace(day = 1)
if (next_month - d).days>1:
td = d.strftime('%Y/%m/')
else:
td = (d + relativedelta(months=1)).strftime('%Y/%m/')
f_name = td+'ice_drift_nh_polstere-625_multi-oi_'+t1+'-'+t2+'.nc'
# print(f_name)
if exists(self.path+f_name):
dates_u.append(d)
self.dates= dates_u
print(self.name+' Found '+str(np.shape(dates_u)[0])+' dates')
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_vels(self,dates_u,verbos=False):
# individual drift for each day slice
d_no = np.shape(dates_u)[0]
d = dates_u[0]
# one year, one file
t1 = (d - relativedelta(hours=12)).strftime('%Y%m%d%H00')
t2 = (d + relativedelta(hours=36)).strftime('%Y%m%d%H00')
# check if were on the last day of the month
next_month = d.replace(day=28) + dt.timedelta(days=4)
next_month.replace(day = 1)
if (next_month - d).days>1:
td = d.strftime('%Y/%m/')
else:
td = (d + relativedelta(months=1)).strftime('%Y/%m/')
## extra date check for v component
vmult = -1.0
if d > dt.datetime(2015,9,12): vmult = 1.0
f_name = td+'ice_drift_nh_polstere-625_multi-oi_'+t1+'-'+t2+'.nc'
f_nc = Dataset(self.path+f_name)
unow = np.fliplr(f_nc['dX'][0].T)
vnow = np.fliplr(f_nc['dY'][0].T)
unow[unow.mask] = np.nan
vnow[vnow.mask] = np.nan
dx,dy = np.shape(unow)
data_u = np.zeros([d_no,dx,dy])
data_v = np.zeros([d_no,dx,dy])
# convert km/48hrs to m/s
data_u[0] = unow*1e3/60/60/48
data_v[0] = vmult*vnow*1e3/60/60/48
f_nc.close()
for n,d in enumerate(dates_u[1:]):
# one year, one file
t1 = (d - relativedelta(hours=12)).strftime('%Y%m%d%H00')
t2 = (d + relativedelta(hours=36)).strftime('%Y%m%d%H00')
# check if were on the last day of the month
next_month = d.replace(day=28) + dt.timedelta(days=4)
next_month.replace(day = 1)
if (next_month - d).days>1:
td = d.strftime('%Y/%m/')
else:
td = (d + relativedelta(months=1)).strftime('%Y/%m/')
f_name = td+'ice_drift_nh_polstere-625_multi-oi_'+t1+'-'+t2+'.nc'
f_nc = Dataset(self.path+f_name)
unow = np.fliplr(f_nc['dX'][0].T)
vnow = np.fliplr(f_nc['dY'][0].T)
unow[unow.mask] = np.nan
vnow[vnow.mask] = np.nan
data_u[n+1] = unow*1e3/60/60/48
data_v[n+1] = vmult*vnow*1e3/60/60/48
f_nc.close()
return data_u,data_v
class CPOM_hi:
"""
forcing class for the budget
lets the forcing load efficiently
"""
def __init__(self,ppath,G):
self.name = 'CPOM_monthly'
self.path = ppath
### we need to regrid as we load
### for efficiency we will buffer two months
self.hi1 = 0.0
self.dl1 = None
self.hi2 = 0.0
self.dl2 = None
self.G = G
self.THRESH = np.hypot(np.mean(np.diff(self.G.ypts)),
np.mean(np.diff(self.G.xpts)))/2
# self.edges_x = self.G.xpts[:,int(G.n/2)] - self.G.dxRes/2
# self.edges_y = self.G.ypts[int(G.m/2),:] - self.G.dyRes/2
# self.edges_x = np.append(self.edges_x,2*self.G.xpts[-1,int(G.n/2)] - self.G.xpts[-2,int(G.n/2)])
# self.edges_y = np.append(self.edges_y,2*self.G.ypts[int(G.m/2),-1] - self.G.ypts[int(G.m/2),-2])
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_hi(self,dates_u,verbos=False):
# does dates_u cover one year or more
#dmonthly
reload = [False,False]
d_no = np.shape(dates_u)[0]
if d_no>2:
print('Warning CPOM hi not compatible with tw over 1 month')
return None
### first check if any of the dates in dates_u
### match the preloaded, ddL
### if the first date matches the second
data_u = np.zeros([d_no,self.G.m,self.G.n])
for n,d in enumerate(dates_u):
if d == self.dl1:
### return buffered
data_u[n] = self.hi1
elif d == self.dl2:
### return buffered
data_u[n] = self.hi2
else:
### load and bin
### check dates
### normal month, data on the first
dload = d.replace(day=1)
file = self.path+d.strftime('%Y%m_')+'Thick.map'
if verbos: print(file)
f = np.genfromtxt(file)
hi = f[:,2]
lon = f[:,1]
lat = f[:,0]
xpts,ypts = self.G.mplot(lon,lat)
# print('Binning awkward CPOM data')
# #
# ret = binned_statistic_2d( xpts, ypts, hi,
# statistic='mean', bins=[self.edges_x,self.edges_y])
# data_u[n] = ret.statistic
# ret = binned_statistic_2d( xpts, ypts, [],
# statistic='count', bins=[self.edges_x,self.edges_y])
# data_u[n][ret.statistic<4] = np.nan
print('Regridding awkward CPOM data')
xpts,ypts = self.G.mplot(lon,lat)
xy = np.vstack([xpts,ypts]).T
data_u[n] = griddata(xy, hi, (self.G.xpts, self.G.ypts),method='nearest')
# Construct kd-tree, functionality copied from scipy.interpolate
### this finds empty values on the grid
tree = cKDTree(xy)
xi = _ndim_coords_from_arrays((self.G.xpts, self.G.ypts))
dists, indexes = tree.query(xi)
# Copy original result but mask missing values with NaNs
data_u[n][dists > self.THRESH] = np.nan
reload[n] = True
### update buffered thickness
if d_no == 2:
self.dl1 = dates_u[0]
self.hi1 = data_u[0]
self.dl2 = dates_u[1]
self.hi2 = data_u[1]
else:
self.dl2 = dates_u[0]
self.hi2 = data_u[0]
return data_u
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_dates(self,time_start,time_end,fill_end_months=False):
# does dates_u cover one year or more
#daily files
dates_u = []
dy = time_end.year-time_start.year
dm = time_end.month-time_start.month
m_no = dy*12 + dm +2
# make sure we get the bracket points
ts_m = dt.datetime(time_start.year,time_start.month,1)
for mn in range(m_no):
d = ts_m+ relativedelta(months = mn )
file = self.path+d.strftime('%Y%m_')+'Thick.map'
if exists(file):
if d.month==2:
mid_day = 13
else:
mid_day = 14
dates_u.append(d + relativedelta(days=mid_day))
#if it does append dates_u
### now work over the date and adjust for summer
### remove all months = [5,6,8,7,9]
### also need hole end points to be at month end not mid
self.dates= []
month_keep = [1,2,3,4,10,11,12]
for d in dates_u:
if d.month in month_keep:
if fill_end_months and d.month == 4:
self.dates.append(d)
d_end = d.replace(day=30)
self.dates.append(d_end)
elif fill_end_months and d.month == 10:
d_start = d.replace(day=1)
self.dates.append(d_start)
self.dates.append(d)
else:
self.dates.append(d)
print(self.name+' Found '+str(np.shape(dates_u)[0])+' dates')
class Kimura():
"""
forcing class for the budget
lets the forcing load efficiently
"""
def __init__(self,ppath):
self.name = 'Kimura_drift'
self.path = ppath
def get_dates(self,time_start,time_end):
"""
returns the all encompassing date list for use with the forcing object
"""
dates =[]
d_no = (time_end-time_start).days +3
for dn in range(d_no):
d = time_start+ relativedelta(days = dn - 1)
infile = self.path+d.strftime('%y%m%d')+".amsr36i"
if exists(infile):
dates.append(d)
else:
infile = self.path+d.strftime('%y%m%d')+".amsr18i"
if exists(infile):
dates.append(d)
self.dates = dates
print(self.name+' Found '+str(np.shape(dates)[0])+' dates')
# daily points in yearly files
# next function will take a list of dates and return an appropriately orientated arrays
# give a
def get_vels(self,dates_u,verbos=False):
dimY = 145
dimX = 145
d_no = np.shape(dates_u)[0]
data_u = np.zeros([d_no,dimX,dimY])
data_v = np.zeros([d_no,dimX,dimY])
for n,d in enumerate(dates_u):
infile = self.path+d.strftime('%y%m%d')+".amsr36i"
if not exists(infile):
infile = self.path+d.strftime('%y%m%d')+".amsr18i"
if verbos: print(infile)
# print(d.strftime('%y%m%d'))
with open(infile, 'rb') as fr:
hdr = fr.read(0)
ice = np.fromfile(fr, dtype=np.float32)
ice = ice/100
ice[ice>9] = np.nan
iceG = ice.reshape(dimX,dimY,2)
data_u[n] =-iceG[:,:,1]
data_v[n] = iceG[:,:,0]
return data_u,data_v
class CICE_jas:
def __init__(self,ppath):
self.name = 'CICE_1deg'
self.path = ppath
self.vyear_load = 0
self.hyear_load = 0
self.ayear_load = 0
self.vels_loaded = False
self.hi_loaded = False
self.aice_loaded = False
def get_dates(self,time_start,time_end):
"""
returns the all encompassing date list for use with the forcing object
"""
dates =[]
n_yrs = (time_end.year - time_start.year)+1
for y in range(n_yrs):
yu = time_start.year + y
d0 = dt.datetime(yu,1,1)
f_name = 'cice_daily_'+str(yu)+'.nc'
if exists(self.path+f_name):
f_nc = Dataset(self.path+f_name)
[dates.append(d0 + relativedelta(days = d))
for d in range(f_nc['time'].shape[0])]
f_nc.close()
self.dates = dates
print(self.name+' Found '+str(np.shape(dates)[0])+' dates')
def get_vels(self,dates_u,verbos=False):
d0 = dt.datetime(1970,1,1)
# does dates_u cover one year or more
if (dates_u[-1].year -dates_u[0].year) == 0:
dates = dates_u
single_year = True
else: ## multiple years
dates = [d for d in dates_u if d.year == dates_u[0].year]
single_year = False
# one year, one file
yu = dates_u[0].year
if ((self.vyear_load != yu) or (not self.vels_loaded)):
print('loading new year of data: '+str(yu))
f_name = 'cice_daily_'+str(yu)+'.nc'
f_nc = Dataset(self.path+f_name)
# print(p0,p1)
self.u = f_nc['uvel_d'][:]
self.v = f_nc['vvel_d'][:]
self.u[self.u.mask] = np.nan
self.v[self.v.mask] = np.nan
f_nc.close()
self.vyear_load = yu
self.vels_loaded= True
p0 = dates[ 0].timetuple().tm_yday -1
p1 = dates[-1].timetuple().tm_yday
datau = self.u[p0:p1,:,:].transpose((0,2,1))
datav = self.v[p0:p1,:,:].transpose((0,2,1))
if single_year:
return datau,datav
else: ## multiple years
data1 = datau
dates = [d for d in dates_u if d.year == dates_u[-1].year]
yu = dates[-1].year
print('loading new year of data: '+str(yu))
f_name = 'cice_daily_'+str(yu)+'.nc'
f_nc = Dataset(self.path+f_name)
# print(p0,p1)
self.u = f_nc['uvel_d'][:]
self.v = f_nc['vvel_d'][:]
self.u[self.u.mask] = np.nan
self.v[self.v.mask] = np.nan
f_nc.close()
self.hyear_load = yu
self.hi_loaded= True
p0 = dates[ 0].timetuple().tm_yday -1
p1 = dates[-1].timetuple().tm_yday
datau2= self.u[p0:p1,:,:].transpose((0,2,1))
datav2= self.v[p0:p1,:,:].transpose((0,2,1))
datau = np.vstack([datau,datau2])
datav = np.vstack([datav,datav2])
return datau,datav
def get_aice(self,dates_u,verbos=False):
d0 = dt.datetime(1970,1,1)
# does dates_u cover one year or more
if (dates_u[-1].year -dates_u[0].year) == 0:
dates = dates_u
single_year = True
else: ## multiple years
dates = [d for d in dates_u if d.year == dates_u[0].year]
single_year = False
# one year, one file
yu = dates_u[0].year
if ((self.ayear_load != yu) or (not self.aice_loaded)):
print('loading new year of data: '+str(yu))
f_name = 'cice_daily_'+str(yu)+'.nc'
f_nc = Dataset(self.path+f_name)
# print(p0,p1)
self.a = f_nc['aice_d'][:]
self.a[self.a.mask] = np.nan
f_nc.close()
self.ayear_load = yu
self.aice_loaded= True
p0 = dates[ 0].timetuple().tm_yday -1
p1 = dates[-1].timetuple().tm_yday
datau = self.a[p0:p1,:,:].transpose((0,2,1))
if single_year:
return datau
else: ## multiple years
data1 = datau
dates = [d for d in dates_u if d.year == dates_u[-1].year]
yu = dates[-1].year
print('loading new year of data: '+str(yu))
f_name = 'cice_daily_'+str(yu)+'.nc'
f_nc = Dataset(self.path+f_name)
# print(p0,p1)
self.a = f_nc['aice_d'][:]
self.a[self.a.mask] = np.nan
f_nc.close()
self.ayear_load = yu
self.aice_loaded= True
p0 = dates[ 0].timetuple().tm_yday -1
p1 = dates[-1].timetuple().tm_yday
data2 = self.a[p0:p1,:,:].transpose((0,2,1))
datau = np.vstack([data1,data2])
return datau
def get_hi(self,dates_u,verbos=False):
# does dates_u cover one year or more
if (dates_u[-1].year -dates_u[0].year) == 0:
dates = dates_u
single_year = True
else: ## multiple years
dates = [d for d in dates_u if d.year == dates_u[0].year]
single_year = False
# one year, one file
yu = dates_u[0].year
if ((self.hyear_load != yu) or (not self.hi_loaded)):
print('loading new year of data: '+str(yu))
f_name = 'cice_daily_'+str(yu)+'.nc'
f_nc = Dataset(self.path+f_name)
# print(p0,p1)
self.h = f_nc['hi_d'][:]
self.h[self.h.mask] = np.nan
f_nc.close()
self.hyear_load = yu
self.hi_loaded= True
p0 = dates[ 0].timetuple().tm_yday -1
p1 = dates[-1].timetuple().tm_yday
datau = self.h[p0:p1,:,:].transpose((0,2,1))
if single_year:
return datau
else: ## multiple years
data1 = datau
dates = [d for d in dates_u if d.year == dates_u[-1].year]
yu = dates[-1].year
print('loading new year of data: '+str(yu))
f_name = 'cice_daily_'+str(yu)+'.nc'
f_nc = Dataset(self.path+f_name)
# print(p0,p1)
self.h = f_nc['hi_d'][:]
self.h[self.h.mask] = np.nan
f_nc.close()
self.hyear_load = yu
self.hi_loaded= True
p0 = dates[ 0].timetuple().tm_yday -1
p1 = dates[-1].timetuple().tm_yday
data2 = self.h[p0:p1,:,:].transpose((0,2,1))
datau = np.vstack([data1,data2])
return datau
class Bristol_thickness:
def __init__(self,ppath,var='Sea_Ice_Thickness_incSMOS'):
"""
var can be any of
'Sea_Ice_Thickness'
'Sea_Ice_Thickness_W99'
'Sea_Ice_Thickness_incSMOS'
'Sea_Ice_Volume'
'Sea_Ice_Volume_W99'
'Sea_Ice_Volume_incSMOS'
"""
self.name = 'Bristol_hi'
self.path = ppath
self.hi1 = 0.0
self.dl1 = None
self.hi2 = 0.0
self.dl2 = None
self.var = var
def get_dates(self,time_start,time_end,fill_end_months=False):
"""
returns the all encompassing date list for use with the forcing object
"""
blurb ='ubristol_cryosat2_seaicethickness_nh25km_'
dy = time_end.year-time_start.year
dm = time_end.month-time_start.month
m_no = dy*12 + dm +2
# make sure we get the bracket points
ts_m = dt.datetime(time_start.year,time_start.month,1)
dates_u = []
for mn in range(m_no):
d = ts_m+ relativedelta(months = mn )
file = self.path+blurb+d.strftime('%Y_%m_')+'v1.nc'
if exists(file):
if d.month==2:
mid_day = 13
else:
mid_day = 14
dates_u.append(d + relativedelta(days=mid_day))
#if it does append dates_u
### now work over the date and adjust for summer
### remove all months = [5,6,8,7,9]
### also need hole end points to be at month end not mid
self.dates= []
month_keep = [1,2,3,4,10,11,12]
for d in dates_u:
if d.month in month_keep:
if fill_end_months and d.month == 4:
self.dates.append(d)
d_end = d.replace(day=30)
self.dates.append(d_end)
elif fill_end_months and d.month == 10:
d_start = d.replace(day=1)
self.dates.append(d_start)
self.dates.append(d)
else:
self.dates.append(d)
print(self.name+' Found '+str(np.shape(dates_u)[0])+' dates')
def get_hi(self,dates_u,verbos=False):
# does dates_u cover one year or more
### check dates
### normal month, data on the first
blurb ='ubristol_cryosat2_seaicethickness_nh25km_'
d = dates_u[0]
dn = np.shape(dates_u)[0]
file = self.path+blurb+d.strftime('%Y_%m_')+'v1.nc'
f_nc = Dataset(file)
hi = f_nc[self.var][:]
dx,dy = hi.shape
data = np.empty([dn,dx,dy])
data[0] = hi
f_nc.close()
for n,d in enumerate(dates_u[1:]):
dload = d.replace(day=1)
file = self.path+blurb+d.strftime('%Y_%m_')+'v1.nc'
f_nc = Dataset(file)
hi = f_nc[self.var][:]
data[n+1] = hi
f_nc.close()
#if it does append dates_u
return data
|
[
"numpy.maximum",
"numpy.empty",
"numpy.shape",
"scipy.spatial.cKDTree",
"numpy.nanmean",
"netCDF4.Dataset",
"os.path.exists",
"dateutil.relativedelta.relativedelta",
"numpy.genfromtxt",
"datetime.timedelta",
"scipy.interpolate.griddata",
"numpy.asarray",
"numpy.flipud",
"datetime.datetime",
"numpy.fliplr",
"numpy.vstack",
"numpy.fromfile",
"numpy.zeros",
"scipy.interpolate.interpnd._ndim_coords_from_arrays",
"numpy.diff"
] |
[((897, 920), 'datetime.datetime', 'dt.datetime', (['(1970)', '(1)', '(1)'], {}), '(1970, 1, 1)\n', (908, 920), True, 'import datetime as dt\n'), ((1649, 1672), 'datetime.datetime', 'dt.datetime', (['(1970)', '(1)', '(1)'], {}), '(1970, 1, 1)\n', (1660, 1672), True, 'import datetime as dt\n'), ((10474, 10502), 'numpy.empty', 'np.empty', (['[d_no, dimX, dimY]'], {}), '([d_no, dimX, dimY])\n', (10482, 10502), True, 'import numpy as np\n'), ((12883, 12911), 'numpy.empty', 'np.empty', (['[d_no, dimX, dimY]'], {}), '([d_no, dimX, dimY])\n', (12891, 12911), True, 'import numpy as np\n'), ((15212, 15225), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (15219, 15225), False, 'from netCDF4 import Dataset\n'), ((15347, 15369), 'numpy.empty', 'np.empty', (['[dn, dx, dy]'], {}), '([dn, dx, dy])\n', (15355, 15369), True, 'import numpy as np\n'), ((16604, 16617), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (16611, 16617), False, 'from netCDF4 import Dataset\n'), ((16742, 16764), 'numpy.empty', 'np.empty', (['[dn, dx, dy]'], {}), '([dn, dx, dy])\n', (16750, 16764), True, 'import numpy as np\n'), ((19230, 19243), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (19237, 19243), False, 'from netCDF4 import Dataset\n'), ((19365, 19387), 'numpy.empty', 'np.empty', (['[dn, dx, dy]'], {}), '([dn, dx, dy])\n', (19373, 19387), True, 'import numpy as np\n'), ((20370, 20383), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (20377, 20383), False, 'from netCDF4 import Dataset\n'), ((20508, 20530), 'numpy.empty', 'np.empty', (['[dn, dx, dy]'], {}), '([dn, dx, dy])\n', (20516, 20530), True, 'import numpy as np\n'), ((21364, 21388), 'datetime.datetime', 'dt.datetime', (['(2010)', '(11)', '(4)'], {}), '(2010, 11, 4)\n', (21375, 21388), True, 'import datetime as dt\n'), ((22921, 22934), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (22928, 22934), False, 'from netCDF4 import Dataset\n'), ((23018, 23040), 'numpy.empty', 'np.empty', (['[dn, dx, dy]'], {}), '([dn, dx, dy])\n', (23026, 23040), True, 'import numpy as np\n'), ((23817, 23830), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (23824, 23830), False, 'from netCDF4 import Dataset\n'), ((23922, 23944), 'numpy.empty', 'np.empty', (['[dn, dx, dy]'], {}), '([dn, dx, dy])\n', (23930, 23944), True, 'import numpy as np\n'), ((24861, 24910), 'datetime.datetime', 'dt.datetime', (['time_start.year', 'time_start.month', '(1)'], {}), '(time_start.year, time_start.month, 1)\n', (24872, 24910), True, 'import datetime as dt\n'), ((28384, 28411), 'netCDF4.Dataset', 'Dataset', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (28391, 28411), False, 'from netCDF4 import Dataset\n'), ((28425, 28451), 'numpy.fliplr', 'np.fliplr', (["f_nc['dX'][0].T"], {}), "(f_nc['dX'][0].T)\n", (28434, 28451), True, 'import numpy as np\n'), ((28467, 28493), 'numpy.fliplr', 'np.fliplr', (["f_nc['dY'][0].T"], {}), "(f_nc['dY'][0].T)\n", (28476, 28493), True, 'import numpy as np\n'), ((28576, 28590), 'numpy.shape', 'np.shape', (['unow'], {}), '(unow)\n', (28584, 28590), True, 'import numpy as np\n'), ((28608, 28632), 'numpy.zeros', 'np.zeros', (['[d_no, dx, dy]'], {}), '([d_no, dx, dy])\n', (28616, 28632), True, 'import numpy as np\n'), ((28648, 28672), 'numpy.zeros', 'np.zeros', (['[d_no, dx, dy]'], {}), '([d_no, dx, dy])\n', (28656, 28672), True, 'import numpy as np\n'), ((31229, 31265), 'numpy.zeros', 'np.zeros', (['[d_no, self.G.m, self.G.n]'], {}), '([d_no, self.G.m, self.G.n])\n', (31237, 31265), True, 'import numpy as np\n'), ((33844, 33893), 'datetime.datetime', 'dt.datetime', (['time_start.year', 'time_start.month', '(1)'], {}), '(time_start.year, time_start.month, 1)\n', (33855, 33893), True, 'import datetime as dt\n'), ((36254, 36282), 'numpy.zeros', 'np.zeros', (['[d_no, dimX, dimY]'], {}), '([d_no, dimX, dimY])\n', (36262, 36282), True, 'import numpy as np\n'), ((36298, 36326), 'numpy.zeros', 'np.zeros', (['[d_no, dimX, dimY]'], {}), '([d_no, dimX, dimY])\n', (36306, 36326), True, 'import numpy as np\n'), ((38004, 38027), 'datetime.datetime', 'dt.datetime', (['(1970)', '(1)', '(1)'], {}), '(1970, 1, 1)\n', (38015, 38027), True, 'import datetime as dt\n'), ((40108, 40131), 'datetime.datetime', 'dt.datetime', (['(1970)', '(1)', '(1)'], {}), '(1970, 1, 1)\n', (40119, 40131), True, 'import datetime as dt\n'), ((44478, 44527), 'datetime.datetime', 'dt.datetime', (['time_start.year', 'time_start.month', '(1)'], {}), '(time_start.year, time_start.month, 1)\n', (44489, 44527), True, 'import datetime as dt\n'), ((46096, 46109), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (46103, 46109), False, 'from netCDF4 import Dataset\n'), ((46182, 46204), 'numpy.empty', 'np.empty', (['[dn, dx, dy]'], {}), '([dn, dx, dy])\n', (46190, 46204), True, 'import numpy as np\n'), ((1141, 1167), 'os.path.exists', 'exists', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (1147, 1167), False, 'from os.path import exists\n'), ((3636, 3670), 'datetime.datetime', 'dt.datetime', (['time_start.year', '(1)', '(1)'], {}), '(time_start.year, 1, 1)\n', (3647, 3670), True, 'import datetime as dt\n'), ((3686, 3722), 'datetime.datetime', 'dt.datetime', (['time_start.year', '(12)', '(31)'], {}), '(time_start.year, 12, 31)\n', (3697, 3722), True, 'import datetime as dt\n'), ((3795, 3809), 'os.path.exists', 'exists', (['data_f'], {}), '(data_f)\n', (3801, 3809), False, 'from os.path import exists\n'), ((4365, 4387), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'years': '(1)'}), '(years=1)\n', (4378, 4387), False, 'from dateutil.relativedelta import relativedelta\n'), ((4489, 4503), 'os.path.exists', 'exists', (['data_f'], {}), '(data_f)\n', (4495, 4503), False, 'from os.path import exists\n'), ((4656, 4690), 'datetime.datetime', 'dt.datetime', (['time_start.year', '(1)', '(1)'], {}), '(time_start.year, 1, 1)\n', (4667, 4690), True, 'import datetime as dt\n'), ((4763, 4777), 'os.path.exists', 'exists', (['data_f'], {}), '(data_f)\n', (4769, 4777), False, 'from os.path import exists\n'), ((10437, 10454), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (10445, 10454), True, 'import numpy as np\n'), ((11472, 11486), 'numpy.flipud', 'np.flipud', (['ice'], {}), '(ice)\n', (11481, 11486), True, 'import numpy as np\n'), ((12189, 12203), 'os.path.exists', 'exists', (['infile'], {}), '(infile)\n', (12195, 12203), False, 'from os.path import exists\n'), ((12846, 12863), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (12854, 12863), True, 'import numpy as np\n'), ((13456, 13470), 'numpy.flipud', 'np.flipud', (['ice'], {}), '(ice)\n', (13465, 13470), True, 'import numpy as np\n'), ((14157, 14171), 'os.path.exists', 'exists', (['infile'], {}), '(infile)\n', (14163, 14171), False, 'from os.path import exists\n'), ((14825, 14842), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (14833, 14842), True, 'import numpy as np\n'), ((14884, 14907), 'datetime.datetime', 'dt.datetime', (['(2019)', '(6)', '(1)'], {}), '(2019, 6, 1)\n', (14895, 14907), True, 'import datetime as dt\n'), ((15828, 15841), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (15835, 15841), False, 'from netCDF4 import Dataset\n'), ((16216, 16233), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (16224, 16233), True, 'import numpy as np\n'), ((16275, 16298), 'datetime.datetime', 'dt.datetime', (['(2019)', '(6)', '(1)'], {}), '(2019, 6, 1)\n', (16286, 16298), True, 'import datetime as dt\n'), ((17229, 17242), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (17236, 17242), False, 'from netCDF4 import Dataset\n'), ((18282, 18294), 'os.path.exists', 'exists', (['file'], {}), '(file)\n', (18288, 18294), False, 'from os.path import exists\n'), ((18984, 19001), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (18992, 19001), True, 'import numpy as np\n'), ((19689, 19702), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (19696, 19702), False, 'from netCDF4 import Dataset\n'), ((20123, 20140), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (20131, 20140), True, 'import numpy as np\n'), ((20838, 20851), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (20845, 20851), False, 'from netCDF4 import Dataset\n'), ((22063, 22075), 'os.path.exists', 'exists', (['file'], {}), '(file)\n', (22069, 22075), False, 'from os.path import exists\n'), ((22740, 22757), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (22748, 22757), True, 'import numpy as np\n'), ((23273, 23286), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (23280, 23286), False, 'from netCDF4 import Dataset\n'), ((23636, 23653), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (23644, 23653), True, 'import numpy as np\n'), ((24183, 24196), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (24190, 24196), False, 'from netCDF4 import Dataset\n'), ((25090, 25102), 'os.path.exists', 'exists', (['file'], {}), '(file)\n', (25096, 25102), False, 'from os.path import exists\n'), ((27291, 27317), 'os.path.exists', 'exists', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (27297, 27317), False, 'from os.path import exists\n'), ((27664, 27681), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (27672, 27681), True, 'import numpy as np\n'), ((27967, 27987), 'datetime.timedelta', 'dt.timedelta', ([], {'days': '(4)'}), '(days=4)\n', (27979, 27987), True, 'import datetime as dt\n'), ((28259, 28283), 'datetime.datetime', 'dt.datetime', (['(2015)', '(9)', '(12)'], {}), '(2015, 9, 12)\n', (28270, 28283), True, 'import datetime as dt\n'), ((29456, 29483), 'netCDF4.Dataset', 'Dataset', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (29463, 29483), False, 'from netCDF4 import Dataset\n'), ((29501, 29527), 'numpy.fliplr', 'np.fliplr', (["f_nc['dX'][0].T"], {}), "(f_nc['dX'][0].T)\n", (29510, 29527), True, 'import numpy as np\n'), ((29547, 29573), 'numpy.fliplr', 'np.fliplr', (["f_nc['dY'][0].T"], {}), "(f_nc['dY'][0].T)\n", (29556, 29573), True, 'import numpy as np\n'), ((30933, 30950), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (30941, 30950), True, 'import numpy as np\n'), ((34049, 34061), 'os.path.exists', 'exists', (['file'], {}), '(file)\n', (34055, 34061), False, 'from os.path import exists\n'), ((35676, 35690), 'os.path.exists', 'exists', (['infile'], {}), '(infile)\n', (35682, 35690), False, 'from os.path import exists\n'), ((36216, 36233), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (36224, 36233), True, 'import numpy as np\n'), ((37541, 37562), 'datetime.datetime', 'dt.datetime', (['yu', '(1)', '(1)'], {}), '(yu, 1, 1)\n', (37552, 37562), True, 'import datetime as dt\n'), ((37625, 37651), 'os.path.exists', 'exists', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (37631, 37651), False, 'from os.path import exists\n'), ((38568, 38595), 'netCDF4.Dataset', 'Dataset', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (38575, 38595), False, 'from netCDF4 import Dataset\n'), ((39410, 39437), 'netCDF4.Dataset', 'Dataset', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (39417, 39437), False, 'from netCDF4 import Dataset\n'), ((39946, 39972), 'numpy.vstack', 'np.vstack', (['[datau, datau2]'], {}), '([datau, datau2])\n', (39955, 39972), True, 'import numpy as np\n'), ((39992, 40018), 'numpy.vstack', 'np.vstack', (['[datav, datav2]'], {}), '([datav, datav2])\n', (40001, 40018), True, 'import numpy as np\n'), ((40672, 40699), 'netCDF4.Dataset', 'Dataset', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (40679, 40699), False, 'from netCDF4 import Dataset\n'), ((41375, 41402), 'netCDF4.Dataset', 'Dataset', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (41382, 41402), False, 'from netCDF4 import Dataset\n'), ((41776, 41801), 'numpy.vstack', 'np.vstack', (['[data1, data2]'], {}), '([data1, data2])\n', (41785, 41801), True, 'import numpy as np\n'), ((42410, 42437), 'netCDF4.Dataset', 'Dataset', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (42417, 42437), False, 'from netCDF4 import Dataset\n'), ((43109, 43136), 'netCDF4.Dataset', 'Dataset', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (43116, 43136), False, 'from netCDF4 import Dataset\n'), ((43506, 43531), 'numpy.vstack', 'np.vstack', (['[data1, data2]'], {}), '([data1, data2])\n', (43515, 43531), True, 'import numpy as np\n'), ((44707, 44719), 'os.path.exists', 'exists', (['file'], {}), '(file)\n', (44713, 44719), False, 'from os.path import exists\n'), ((46000, 46017), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (46008, 46017), True, 'import numpy as np\n'), ((46408, 46421), 'netCDF4.Dataset', 'Dataset', (['file'], {}), '(file)\n', (46415, 46421), False, 'from netCDF4 import Dataset\n'), ((1190, 1217), 'netCDF4.Dataset', 'Dataset', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (1197, 1217), False, 'from netCDF4 import Dataset\n'), ((2078, 2105), 'netCDF4.Dataset', 'Dataset', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (2085, 2105), False, 'from netCDF4 import Dataset\n'), ((4053, 4075), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'years': '(1)'}), '(years=1)\n', (4066, 4075), False, 'from dateutil.relativedelta import relativedelta\n'), ((4098, 4120), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'years': '(1)'}), '(years=1)\n', (4111, 4120), False, 'from dateutil.relativedelta import relativedelta\n'), ((4203, 4217), 'os.path.exists', 'exists', (['data_f'], {}), '(data_f)\n', (4209, 4217), False, 'from os.path import exists\n'), ((11380, 11411), 'numpy.fromfile', 'np.fromfile', (['fr'], {'dtype': 'np.uint8'}), '(fr, dtype=np.uint8)\n', (11391, 11411), True, 'import numpy as np\n'), ((11857, 11883), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(dn - 1)'}), '(days=dn - 1)\n', (11870, 11883), False, 'from dateutil.relativedelta import relativedelta\n'), ((13367, 13395), 'numpy.fromfile', 'np.fromfile', (['fr'], {'dtype': '"""<i2"""'}), "(fr, dtype='<i2')\n", (13378, 13395), True, 'import numpy as np\n'), ((13842, 13868), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(dn - 1)'}), '(days=dn - 1)\n', (13855, 13868), False, 'from dateutil.relativedelta import relativedelta\n'), ((15472, 15495), 'datetime.datetime', 'dt.datetime', (['(2019)', '(6)', '(1)'], {}), '(2019, 6, 1)\n', (15483, 15495), True, 'import datetime as dt\n'), ((16873, 16896), 'datetime.datetime', 'dt.datetime', (['(2019)', '(6)', '(1)'], {}), '(2019, 6, 1)\n', (16884, 16896), True, 'import datetime as dt\n'), ((17886, 17908), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': 'dn'}), '(days=dn)\n', (17899, 17908), False, 'from dateutil.relativedelta import relativedelta\n'), ((17930, 17953), 'datetime.datetime', 'dt.datetime', (['(2019)', '(6)', '(1)'], {}), '(2019, 6, 1)\n', (17941, 17953), True, 'import datetime as dt\n'), ((21823, 21848), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(w * 7)'}), '(days=w * 7)\n', (21836, 21848), False, 'from dateutil.relativedelta import relativedelta\n'), ((24962, 24986), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'months': 'mn'}), '(months=mn)\n', (24975, 24986), False, 'from dateutil.relativedelta import relativedelta\n'), ((26644, 26670), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(dn - 1)'}), '(days=dn - 1)\n', (26657, 26670), False, 'from dateutil.relativedelta import relativedelta\n'), ((26915, 26935), 'datetime.timedelta', 'dt.timedelta', ([], {'days': '(4)'}), '(days=4)\n', (26927, 26935), True, 'import datetime as dt\n'), ((29127, 29147), 'datetime.timedelta', 'dt.timedelta', ([], {'days': '(4)'}), '(days=4)\n', (29139, 29147), True, 'import datetime as dt\n'), ((33945, 33969), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'months': 'mn'}), '(months=mn)\n', (33958, 33969), False, 'from dateutil.relativedelta import relativedelta\n'), ((35569, 35595), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(dn - 1)'}), '(days=dn - 1)\n', (35582, 35595), False, 'from dateutil.relativedelta import relativedelta\n'), ((35828, 35842), 'os.path.exists', 'exists', (['infile'], {}), '(infile)\n', (35834, 35842), False, 'from os.path import exists\n'), ((36446, 36460), 'os.path.exists', 'exists', (['infile'], {}), '(infile)\n', (36452, 36460), False, 'from os.path import exists\n'), ((36706, 36739), 'numpy.fromfile', 'np.fromfile', (['fr'], {'dtype': 'np.float32'}), '(fr, dtype=np.float32)\n', (36717, 36739), True, 'import numpy as np\n'), ((37674, 37701), 'netCDF4.Dataset', 'Dataset', (['(self.path + f_name)'], {}), '(self.path + f_name)\n', (37681, 37701), False, 'from netCDF4 import Dataset\n'), ((44600, 44624), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'months': 'mn'}), '(months=mn)\n', (44613, 44624), False, 'from dateutil.relativedelta import relativedelta\n'), ((6639, 6669), 'numpy.maximum', 'np.maximum', (['(p0 - self.tsmth)', '(0)'], {}), '(p0 - self.tsmth, 0)\n', (6649, 6669), True, 'import numpy as np\n'), ((8303, 8333), 'numpy.maximum', 'np.maximum', (['(p0 - self.tsmth)', '(0)'], {}), '(p0 - self.tsmth, 0)\n', (8313, 8333), True, 'import numpy as np\n'), ((9778, 9808), 'numpy.maximum', 'np.maximum', (['(p0 - self.tsmth)', '(0)'], {}), '(p0 - self.tsmth, 0)\n', (9788, 9808), True, 'import numpy as np\n'), ((15025, 15046), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (15038, 15046), False, 'from dateutil.relativedelta import relativedelta\n'), ((15088, 15109), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (15101, 15109), False, 'from dateutil.relativedelta import relativedelta\n'), ((16416, 16437), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (16429, 16437), False, 'from dateutil.relativedelta import relativedelta\n'), ((16479, 16500), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (16492, 16500), False, 'from dateutil.relativedelta import relativedelta\n'), ((19046, 19067), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (19059, 19067), False, 'from dateutil.relativedelta import relativedelta\n'), ((19109, 19130), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (19122, 19130), False, 'from dateutil.relativedelta import relativedelta\n'), ((20185, 20206), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (20198, 20206), False, 'from dateutil.relativedelta import relativedelta\n'), ((20248, 20269), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (20261, 20269), False, 'from dateutil.relativedelta import relativedelta\n'), ((27755, 27778), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'hours': '(12)'}), '(hours=12)\n', (27768, 27778), False, 'from dateutil.relativedelta import relativedelta\n'), ((27821, 27844), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'hours': '(36)'}), '(hours=36)\n', (27834, 27844), False, 'from dateutil.relativedelta import relativedelta\n'), ((30245, 30265), 'numpy.diff', 'np.diff', (['self.G.ypts'], {}), '(self.G.ypts)\n', (30252, 30265), True, 'import numpy as np\n'), ((30307, 30327), 'numpy.diff', 'np.diff', (['self.G.xpts'], {}), '(self.G.xpts)\n', (30314, 30327), True, 'import numpy as np\n'), ((31811, 31830), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {}), '(file)\n', (31824, 31830), True, 'import numpy as np\n'), ((32588, 32650), 'scipy.interpolate.griddata', 'griddata', (['xy', 'hi', '(self.G.xpts, self.G.ypts)'], {'method': '"""nearest"""'}), "(xy, hi, (self.G.xpts, self.G.ypts), method='nearest')\n", (32596, 32650), False, 'from scipy.interpolate import griddata\n'), ((32811, 32822), 'scipy.spatial.cKDTree', 'cKDTree', (['xy'], {}), '(xy)\n', (32818, 32822), False, 'from scipy.spatial import cKDTree\n'), ((32844, 32896), 'scipy.interpolate.interpnd._ndim_coords_from_arrays', '_ndim_coords_from_arrays', (['(self.G.xpts, self.G.ypts)'], {}), '((self.G.xpts, self.G.ypts))\n', (32868, 32896), False, 'from scipy.interpolate.interpnd import _ndim_coords_from_arrays\n'), ((2693, 2708), 'numpy.shape', 'np.shape', (['datau'], {}), '(datau)\n', (2701, 2708), True, 'import numpy as np\n'), ((5811, 5827), 'numpy.asarray', 'np.asarray', (['data'], {}), '(data)\n', (5821, 5827), True, 'import numpy as np\n'), ((6272, 6289), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (6280, 6289), True, 'import numpy as np\n'), ((6902, 6927), 'numpy.nanmean', 'np.nanmean', (['datau'], {'axis': '(0)'}), '(datau, axis=0)\n', (6912, 6927), True, 'import numpy as np\n'), ((6970, 6995), 'numpy.nanmean', 'np.nanmean', (['datav'], {'axis': '(0)'}), '(datav, axis=0)\n', (6980, 6995), True, 'import numpy as np\n'), ((7633, 7649), 'numpy.asarray', 'np.asarray', (['data'], {}), '(data)\n', (7643, 7649), True, 'import numpy as np\n'), ((8014, 8031), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (8022, 8031), True, 'import numpy as np\n'), ((8444, 8468), 'numpy.nanmean', 'np.nanmean', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (8454, 8468), True, 'import numpy as np\n'), ((9104, 9120), 'numpy.asarray', 'np.asarray', (['data'], {}), '(data)\n', (9114, 9120), True, 'import numpy as np\n'), ((9487, 9504), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (9495, 9504), True, 'import numpy as np\n'), ((9921, 9945), 'numpy.nanmean', 'np.nanmean', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (9931, 9945), True, 'import numpy as np\n'), ((15629, 15650), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (15642, 15650), False, 'from dateutil.relativedelta import relativedelta\n'), ((15696, 15717), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (15709, 15717), False, 'from dateutil.relativedelta import relativedelta\n'), ((17030, 17051), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (17043, 17051), False, 'from dateutil.relativedelta import relativedelta\n'), ((17097, 17118), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (17110, 17118), False, 'from dateutil.relativedelta import relativedelta\n'), ((18087, 18108), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (18100, 18108), False, 'from dateutil.relativedelta import relativedelta\n'), ((18154, 18175), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (18167, 18175), False, 'from dateutil.relativedelta import relativedelta\n'), ((19493, 19514), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (19506, 19514), False, 'from dateutil.relativedelta import relativedelta\n'), ((19560, 19581), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (19573, 19581), False, 'from dateutil.relativedelta import relativedelta\n'), ((20642, 20663), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (20655, 20663), False, 'from dateutil.relativedelta import relativedelta\n'), ((20709, 20730), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (20722, 20730), False, 'from dateutil.relativedelta import relativedelta\n'), ((21871, 21892), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (21884, 21892), False, 'from dateutil.relativedelta import relativedelta\n'), ((21938, 21959), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(3)'}), '(days=3)\n', (21951, 21959), False, 'from dateutil.relativedelta import relativedelta\n'), ((25258, 25285), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': 'mid_day'}), '(days=mid_day)\n', (25271, 25285), False, 'from dateutil.relativedelta import relativedelta\n'), ((26695, 26718), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'hours': '(12)'}), '(hours=12)\n', (26708, 26718), False, 'from dateutil.relativedelta import relativedelta\n'), ((26765, 26788), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'hours': '(36)'}), '(hours=36)\n', (26778, 26788), False, 'from dateutil.relativedelta import relativedelta\n'), ((28135, 28158), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'months': '(1)'}), '(months=1)\n', (28148, 28158), False, 'from dateutil.relativedelta import relativedelta\n'), ((28907, 28930), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'hours': '(12)'}), '(hours=12)\n', (28920, 28930), False, 'from dateutil.relativedelta import relativedelta\n'), ((28977, 29000), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'hours': '(36)'}), '(hours=36)\n', (28990, 29000), False, 'from dateutil.relativedelta import relativedelta\n'), ((32535, 32558), 'numpy.vstack', 'np.vstack', (['[xpts, ypts]'], {}), '([xpts, ypts])\n', (32544, 32558), True, 'import numpy as np\n'), ((34217, 34244), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': 'mid_day'}), '(days=mid_day)\n', (34230, 34244), False, 'from dateutil.relativedelta import relativedelta\n'), ((44875, 44902), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': 'mid_day'}), '(days=mid_day)\n', (44888, 44902), False, 'from dateutil.relativedelta import relativedelta\n'), ((1251, 1272), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': 'd'}), '(days=d)\n', (1264, 1272), False, 'from dateutil.relativedelta import relativedelta\n'), ((1418, 1433), 'numpy.shape', 'np.shape', (['dates'], {}), '(dates)\n', (1426, 1433), True, 'import numpy as np\n'), ((3971, 3992), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': 'd'}), '(days=d)\n', (3984, 3992), False, 'from dateutil.relativedelta import relativedelta\n'), ((4600, 4621), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': 'd'}), '(days=d)\n', (4613, 4621), False, 'from dateutil.relativedelta import relativedelta\n'), ((4945, 4966), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': 'd'}), '(days=d)\n', (4958, 4966), False, 'from dateutil.relativedelta import relativedelta\n'), ((5035, 5050), 'numpy.shape', 'np.shape', (['dates'], {}), '(dates)\n', (5043, 5050), True, 'import numpy as np\n'), ((12344, 12361), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (12352, 12361), True, 'import numpy as np\n'), ((14312, 14329), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (14320, 14329), True, 'import numpy as np\n'), ((18435, 18452), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (18443, 18452), True, 'import numpy as np\n'), ((22216, 22233), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (22224, 22233), True, 'import numpy as np\n'), ((26057, 26074), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (26065, 26074), True, 'import numpy as np\n'), ((27126, 27149), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'months': '(1)'}), '(months=1)\n', (27139, 27149), False, 'from dateutil.relativedelta import relativedelta\n'), ((27417, 27434), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (27425, 27434), True, 'import numpy as np\n'), ((29315, 29338), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'months': '(1)'}), '(months=1)\n', (29328, 29338), False, 'from dateutil.relativedelta import relativedelta\n'), ((35055, 35072), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (35063, 35072), True, 'import numpy as np\n'), ((35945, 35960), 'numpy.shape', 'np.shape', (['dates'], {}), '(dates)\n', (35953, 35960), True, 'import numpy as np\n'), ((37735, 37756), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': 'd'}), '(days=d)\n', (37748, 37756), False, 'from dateutil.relativedelta import relativedelta\n'), ((37915, 37930), 'numpy.shape', 'np.shape', (['dates'], {}), '(dates)\n', (37923, 37930), True, 'import numpy as np\n'), ((45713, 45730), 'numpy.shape', 'np.shape', (['dates_u'], {}), '(dates_u)\n', (45721, 45730), True, 'import numpy as np\n'), ((4322, 4343), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': 'd'}), '(days=d)\n', (4335, 4343), False, 'from dateutil.relativedelta import relativedelta\n')]
|
import numpy as np
from anomaly import adm
naive_filter = adm.NaiveFilter()
def _test_fit(filter):
ts = np.random.random(100)
ts_predicted = np.random.random(100)
anomalies = np.random.random(100) > 0.9
anomalies_predicted = anomalies & (np.random.random(100) > 0.9)
filter.fit(ts, ts_predicted, anomalies, anomalies_predicted)
def _test_filter(filter):
ts = np.random.random(50)
ts_predicted = np.random.random(50)
anomalies_predicted = np.random.random(50) > 0.9
anomalies_filtered = filter.filter(ts, ts_predicted, anomalies_predicted)
assert anomalies_filtered.shape == ts.shape
def test_fit_naive():
_test_fit(naive_filter)
def test_predict_naive():
_test_filter(naive_filter)
|
[
"anomaly.adm.NaiveFilter",
"numpy.random.random"
] |
[((59, 76), 'anomaly.adm.NaiveFilter', 'adm.NaiveFilter', ([], {}), '()\n', (74, 76), False, 'from anomaly import adm\n'), ((111, 132), 'numpy.random.random', 'np.random.random', (['(100)'], {}), '(100)\n', (127, 132), True, 'import numpy as np\n'), ((152, 173), 'numpy.random.random', 'np.random.random', (['(100)'], {}), '(100)\n', (168, 173), True, 'import numpy as np\n'), ((388, 408), 'numpy.random.random', 'np.random.random', (['(50)'], {}), '(50)\n', (404, 408), True, 'import numpy as np\n'), ((428, 448), 'numpy.random.random', 'np.random.random', (['(50)'], {}), '(50)\n', (444, 448), True, 'import numpy as np\n'), ((190, 211), 'numpy.random.random', 'np.random.random', (['(100)'], {}), '(100)\n', (206, 211), True, 'import numpy as np\n'), ((475, 495), 'numpy.random.random', 'np.random.random', (['(50)'], {}), '(50)\n', (491, 495), True, 'import numpy as np\n'), ((257, 278), 'numpy.random.random', 'np.random.random', (['(100)'], {}), '(100)\n', (273, 278), True, 'import numpy as np\n')]
|
import torch
from torch import tensor
import numpy as np
from torch.utils.data import TensorDataset, DataLoader, ConcatDataset
import os
def mnist():
path = '/Users/davidipsen/Documents/DTU/3. Semester (MSc)/MLOps/dtu_mlops/data/corruptmnist/'
# exchange with the corrupted mnist dataset
#train = torch.randn(50000, 784)
#test = torch.randn(10000, 784)
# df0 = np.load(path + 'corruptmnist/train_0.npz') # Already normalized to [0, 1]
# df1 = np.load(path + 'corruptmnist/train_1.npz')
# df2 = np.load(path + 'corruptmnist/train_2.npz')
# df3 = np.load(path + 'corruptmnist/train_3.npz')
# df4 = np.load(path + 'corruptmnist/train_4.npz')
# dftest = np.load(path + 'corruptmnist/test.npz') # test data
# trainset0 = TensorDataset(tensor(df0['images']).reshape(-1,1,28,28).double(), tensor(df0['labels']).double()) # (X, y) of df0
# trainset1 = TensorDataset(tensor(df1['images']).reshape(-1,1,28,28).double(), tensor(df1['labels']).double()) # (X, y) of df0
# trainset2 = TensorDataset(tensor(df2['images']).reshape(-1,1,28,28).double(), tensor(df2['labels']).double()) # (X, y) of df0
# trainset3 = TensorDataset(tensor(df3['images']).reshape(-1,1,28,28).double(), tensor(df3['labels']).double()) # (X, y) of df0
# trainset4 = TensorDataset(tensor(df4['images']).reshape(-1,1,28,28).double(), tensor(df4['labels']).double()) # (X, y) of df0
# testset = TensorDataset(tensor(dftest['images']).reshape(-1,1,28,28).double(), tensor(dftest['labels']).double()) # (X, y) of df0
# trainset = ConcatDataset([trainset0, trainset1, trainset2, trainset3, trainset4])
traincontent = []
traindata = []
for i in range(5):
traincontent.append(np.load(f"{path}train_{i}.npz", allow_pickle=True))
traindata = torch.tensor(np.concatenate([c["images"] for c in traincontent])).reshape(
-1, 1, 28, 28
)
traintargets = torch.tensor(np.concatenate([c["labels"] for c in traincontent]))
testcontent = np.load(f"{path}test.npz", allow_pickle=True)
testdata = torch.tensor(testcontent["images"]).reshape(-1, 1, 28, 28)
testtargets = torch.tensor(testcontent["labels"])
trainloader = DataLoader( (traindata, traintargets), batch_size=64, shuffle=True)
testloader = DataLoader( (testdata, traintargets), batch_size=64, shuffle=True)
return trainloader, testloader
if __name__ == '__main__':
mnist()
print('Maiiiin')
|
[
"torch.utils.data.DataLoader",
"numpy.load",
"numpy.concatenate",
"torch.tensor"
] |
[((2006, 2051), 'numpy.load', 'np.load', (['f"""{path}test.npz"""'], {'allow_pickle': '(True)'}), "(f'{path}test.npz', allow_pickle=True)\n", (2013, 2051), True, 'import numpy as np\n'), ((2144, 2179), 'torch.tensor', 'torch.tensor', (["testcontent['labels']"], {}), "(testcontent['labels'])\n", (2156, 2179), False, 'import torch\n'), ((2200, 2266), 'torch.utils.data.DataLoader', 'DataLoader', (['(traindata, traintargets)'], {'batch_size': '(64)', 'shuffle': '(True)'}), '((traindata, traintargets), batch_size=64, shuffle=True)\n', (2210, 2266), False, 'from torch.utils.data import TensorDataset, DataLoader, ConcatDataset\n'), ((2285, 2350), 'torch.utils.data.DataLoader', 'DataLoader', (['(testdata, traintargets)'], {'batch_size': '(64)', 'shuffle': '(True)'}), '((testdata, traintargets), batch_size=64, shuffle=True)\n', (2295, 2350), False, 'from torch.utils.data import TensorDataset, DataLoader, ConcatDataset\n'), ((1934, 1985), 'numpy.concatenate', 'np.concatenate', (["[c['labels'] for c in traincontent]"], {}), "([c['labels'] for c in traincontent])\n", (1948, 1985), True, 'import numpy as np\n'), ((1731, 1781), 'numpy.load', 'np.load', (['f"""{path}train_{i}.npz"""'], {'allow_pickle': '(True)'}), "(f'{path}train_{i}.npz', allow_pickle=True)\n", (1738, 1781), True, 'import numpy as np\n'), ((2067, 2102), 'torch.tensor', 'torch.tensor', (["testcontent['images']"], {}), "(testcontent['images'])\n", (2079, 2102), False, 'import torch\n'), ((1812, 1863), 'numpy.concatenate', 'np.concatenate', (["[c['images'] for c in traincontent]"], {}), "([c['images'] for c in traincontent])\n", (1826, 1863), True, 'import numpy as np\n')]
|
################################################################################################################################
# General setup
################################################################################################################################
# Import libraries
import sys
import numpy as np
from scipy.interpolate import interp1d, interp2d
from scipy.integrate import romb, simpson, dblquad
# Numerical parameters
array_factor_est = 8
tol_residual_rho = 1e-88
dblquad_epsabs = 1e-3
dblquad_epsrel = 1e-3
num_interp_quad_specialized_ignore_yield = int(1e2)
minimum_exponent = np.log(sys.float_info.min)/np.log(10)
################################################################################################################################
# Deformation application class
################################################################################################################################
class deform_network:
############################################################################################################################
# Initialization
############################################################################################################################
def __init__(self, F, deformation_type, total_time_in_seconds, single_chain_model, relaxation_function = None, J_sw = 1, \
max_F_dot = None, max_RAM_usage_in_bytes = None, nondimensional_timestep_suggestion = 1e-2, num_grid_suggestion = 129, \
interp_kind_2D = 'quintic', use_spatial_grid = True, enumerate_full_arrays = True, \
ignore_yield = False, ignore_reforming = False):
# Initialize and retain certain variables
self.csv_initialized = False
self.ignore_yield = ignore_yield
self.ignore_reforming = ignore_reforming
self.use_spatial_grid = use_spatial_grid
self.enumerate_full_arrays = enumerate_full_arrays
self.initialized_single_chain_model = single_chain_model
########################################################################################################################
# Deformation
########################################################################################################################
# Retain certain variables
self.F = F
self.J_sw = J_sw
self.deformation_type = deformation_type
self.total_time_in_seconds = total_time_in_seconds
# Estimate the maximum rate of deformation if not given
if max_F_dot is None:
t_temp = np.linspace(0, total_time_in_seconds, int(1e5))
self.max_F_dot = np.max(np.abs(np.diff(F(t_temp))/np.diff(t_temp)))
else:
self.max_F_dot = max_F_dot
# If gamma_c specified, best method to use may change
if single_chain_model.gamma_c is None:
self.use_specialized = False
else:
self.use_specialized = True
########################################################################################################################
# Spatial discretization or quadrature
########################################################################################################################
# Spatial integration using a grid
if use_spatial_grid is True:
# Retain the 2D interpolation kind
self.interp_kind_2D = interp_kind_2D
# Create the symmetry-conscious spatial grid
self.num_grid = self.adjust_for_romb(num_grid_suggestion)
self.z = np.linspace(0, single_chain_model.gamma_TS, self.num_grid)
self.r = self.z
self.dz = self.z[1] - self.z[0]
self.dr = self.dz
self.Z, self.R = np.meshgrid(self.z, self.r)
ELL = np.sqrt(self.Z*self.Z + self.R*self.R)
# Integration element specialized for stress calculation
self.ELEMENT_stress = self.element_stress(self.Z, self.R, single_chain_model)
# Adjust normalization of P_A_eq on the grid
P_A_eq_ELL_non_normalized = np.nan_to_num(single_chain_model.P_A_eq(ELL), nan = 0)
self.P_A_eq_normalization = self.integral_grid_d_3_xi(P_A_eq_ELL_non_normalized)/single_chain_model.P_A_tot_eq
# Total reverse reaction rate coefficient on the grid
P_A_eq_ELL = np.nan_to_num(single_chain_model.P_A_eq(ELL, normalization = self.P_A_eq_normalization), nan = 0)
self.k_ELL = np.nan_to_num(single_chain_model.k(ELL), nan = 0)
if single_chain_model.gamma_c is None:
self.K_hat = self.integral_grid_d_3_xi(self.k_ELL*P_A_eq_ELL)/single_chain_model.P_B_tot_eq
else:
self.K_hat = single_chain_model.K_hat
# Maximum reverse reaction rate coefficient on the grid
if single_chain_model.gamma_c is None:
self.max_k_rev = np.max(self.k_ELL*P_A_eq_ELL/single_chain_model.P_B_tot_eq)
else:
self.max_k_rev = single_chain_model.max_k_rev
# Spatial integration using quadrature
else:
# Inherit from single_chain_model since will use the same integration scheme
self.P_A_eq_normalization = 1
self.k_0 = single_chain_model.k_0
self.K_hat = single_chain_model.K_hat
self.max_k_rev = single_chain_model.max_k_rev
########################################################################################################################
# Relaxation function related setup
########################################################################################################################
if relaxation_function is None:
self.g_timescale = np.inf
self.g = lambda t, tau: 1 + 0*t + 0*tau
self.d_g_d_tau = lambda t, tau: 0*t + 0*tau
self.g_K_hat = np.exp(minimum_exponent)
else:
self.g_timescale = relaxation_function.timescale
self.g = relaxation_function.g
self.d_g_d_tau = relaxation_function.d_g_d_tau
try:
self.g_K_hat = single_chain_model.P_A_tot_eq/single_chain_model.P_B_tot_eq/self.g_timescale
except AttributeError:
self.g_K_hat = np.exp(minimum_exponent)
########################################################################################################################
# Time discretization
########################################################################################################################
# Estimate timestep based on the smallest timescales
timescales = np.array([1/self.max_F_dot, 1/self.K_hat, 1/self.max_k_rev, self.g_timescale, 1/self.g_K_hat])
estimated_timestep = float(nondimensional_timestep_suggestion*np.min(timescales))
# Enumerating full arrays requires large memory, so have to do it in chunks rather than over the full history
if use_spatial_grid is True:
# Memory considerations
if max_RAM_usage_in_bytes is None:
import psutil
max_RAM_usage_in_bytes = psutil.virtual_memory().available
max_array_numel = max_RAM_usage_in_bytes/8/array_factor_est
if enumerate_full_arrays is True:
max_num_time_chunk = np.floor(np.sqrt(max_array_numel/self.num_grid**2)).astype(int)
else:
max_num_time_chunk = np.floor(max_array_numel/self.num_grid**2).astype(int)
# Chunk history and decrease timestep in order to satisfy memory requirements and Romberg integration
self.num_chunks = 0
self.num_time = 2*max_num_time_chunk
while self.num_time > max_num_time_chunk:
self.num_chunks += 1
self.num_time = self.adjust_for_romb(total_time_in_seconds/estimated_timestep/self.num_chunks)
self.timestep = total_time_in_seconds/self.num_chunks/(self.num_time - 1)
# Enumerate time limits for each chunk
t_lims_all = total_time_in_seconds/self.num_chunks*np.arange(0, self.num_chunks + 1, 1)
self.t_lims = np.zeros((self.num_chunks, 2))
for index_chunk in range(self.num_chunks):
self.t_lims[index_chunk,:] = [t_lims_all[index_chunk], t_lims_all[index_chunk + 1]]
# No memory considerations and corresponding history chunking since will not enumerate full arrays
else:
self.num_time = self.adjust_for_romb(total_time_in_seconds/estimated_timestep)
self.timestep = total_time_in_seconds/(self.num_time - 1)
############################################################################################################################
# Function to solve for results over the applied deformation history
############################################################################################################################
def solve(self, display_progress = True, csv_directory = None, checkpoint_directory = None):
# Methods using a grid for spatial integrals
if self.use_spatial_grid is True:
# Enumerate full arrays to mimimize computation time, chunking time history to satisfy memory requirements
if self.enumerate_full_arrays is True:
# Function to remove an initial point from results
def remove_initial_point(results):
results_out = list(results)
for index in range(len(results)):
results_out[index] = results[index][1:]
return tuple(results_out)
# Allocate results
t = []
F = []
P_A_tot = []
total_rate_break = []
total_rate_reform = []
beta_sigma_over_n = []
# Loop over all chunks in the history
for index_chunk in range(self.num_chunks):
# Display progress if opted
if display_progress is True:
print(' On chunk', index_chunk + 1, 'of', self.num_chunks, end = '\r')
# Equilibrium initial distribution for first chunk, or initial distribution from end of previous chunk
if index_chunk == 0:
results_chunk, P_A_end = self.compute_results_grid_chunky(self.t_lims[index_chunk,:])
else:
results_chunk, P_A_end = self.compute_results_grid_chunky(self.t_lims[index_chunk,:], P_A_0 = P_A_end)
# Remove repeated points in time among chunks
if index_chunk > 0 or self.J_sw != 1 or self.initialized_single_chain_model.gamma_c is not None:
results_chunk = remove_initial_point(results_chunk)
# Collect results
t = np.append(t, results_chunk[0])
F = np.append(F, results_chunk[1])
P_A_tot = np.append(P_A_tot, results_chunk[2])
total_rate_break = np.append(total_rate_break, results_chunk[3])
total_rate_reform = np.append(total_rate_reform, results_chunk[4])
beta_sigma_over_n = np.append(beta_sigma_over_n, results_chunk[5])
results = t, F, P_A_tot, total_rate_break, total_rate_reform, beta_sigma_over_n
# Create a checkpoint .csv if opted after each chunk
if checkpoint_directory is not None:
checkpoint(checkpoint_directory).create(t[-1], P_A_end)
# Refrain from enumerating full arrays but requires no history chunking, takes longer
else:
results, P_A_end = self.compute_results_grid([0, self.total_time_in_seconds])
# Methods using quadrature for spatial integrals
else:
# Efficient method in the special case for when k is constant and the single-chain model is infinitely-extensible
if self.use_specialized is True and self.ignore_yield is True:
results, P_A_end = self.compute_results_quad_specialized_ignore_yield([0, self.total_time_in_seconds])
# Method for the general case
else:
results, P_A_end = self.compute_results_quad([0, self.total_time_in_seconds])
# Append results to the .csv if opted
if csv_directory is not None:
if self.csv_initialized is False:
results_csv_initialized = results_csv(csv_directory)
self.csv_initialized = True
results_csv_initialized.append(0, results)
# Create a checkpoint .csv if opted
if checkpoint_directory is not None:
checkpoint(checkpoint_directory).create(t[-1], P_A_end)
# Return the results
return results
############################################################################################################################
# Function for computing results using spatial quadrature
############################################################################################################################
def compute_results_quad(self, t_span, P_A_0 = None):
# Enumerate the time and relative deformation components
t, F_zz_rel, F_rr_rel = self.enumerate_t_and_F_rel(t_span)
total_time = t_span[-1] - t_span[0]
num_time = len(t)
# Function for the relatively-deformed coordinates
def ell_rel(z, r, index_t, index_tau):
return np.sqrt(z*z*F_zz_rel[index_t, index_tau]**2 + r*r*F_rr_rel[index_t, index_tau]**2)
########################################################################################################################
# Time-dependent quantities for spatial integrals
########################################################################################################################
# Function for the relatively-deformed initial distribution
if P_A_0 is None:
def P_A_0_rel_t(z, r, index_t):
return self.initialized_single_chain_model.P_A_eq(ell_rel(z, r, index_t, 0)/self.J_sw**(1/3), \
normalization = self.P_A_eq_normalization*self.J_sw)
else:
sys.exit('Error: Beginning from a nonequilibrium initial distribution not yet implemented.')
# Function for the relatively-deformed equilibrium distribution
def P_A_eq_rel(z, r, index_t, index_tau):
return self.initialized_single_chain_model.P_A_eq(ell_rel(z, r, index_t, index_tau), \
normalization = self.P_A_eq_normalization)
# Function for the relatively-deformed reaction rate coefficient function
def k_rel(z, r, index_t, index_tau):
return self.initialized_single_chain_model.k(ell_rel(z, r, index_t, index_tau))
# Function for the reaction propagator
def Xi(z, r, index_t, index_tau):
if index_t == index_tau:
return 1 + 0*(z + r)
else:
integrand = np.zeros((index_t + 1 - index_tau))*(z + r)
for index_s in range(index_t + 1 - index_tau):
integrand[:,:,index_s] = k_rel(z, r, index_t, index_s)
return np.exp(-self.integral_ds(integrand))
# Function for the homogeneous solution for P_A
def P_A_h(z, r, index_t):
return np.nan_to_num(P_A_0_rel_t(z, r, index_t)*Xi(z, r, index_t, 0)*self.g(t[index_t], 0), nan = 0)
# Function for the integrand of K
def integrand_K(z, r, index_t, index_tau):
return np.nan_to_num(P_A_eq_rel(z, r, index_t, index_tau)*Xi(z, r, index_t, index_tau)*( \
k_rel(z, r, index_t, index_tau)*self.g(t[index_t], t[index_tau]) \
+ self.d_g_d_tau(t[index_t], t[index_tau])), nan = 0)
########################################################################################################################
# Solve the integral equation
########################################################################################################################
# Amount of initially-intact chains that have been broken
P_B_tot_h = np.zeros(num_time)
for index_t in range(num_time):
P_B_tot_h[index_t] = 1 - self.integral_quad_d_3_xi(lambda z,r: P_A_h(z, r, index_t))
# Integral equation only defined when P_B_tot_eq is nonzero
if self.initialized_single_chain_model.P_B_tot_eq > 0 and self.ignore_reforming is False:
# Kernel K(t,tau) and right-hand side b(t)
b = self.initialized_single_chain_model.P_B_tot_eq*P_B_tot_h
K = np.zeros((num_time, num_time))
for index_t in range(num_time):
for index_tau in range(index_t + 1):
K[index_t, index_tau] = self.integral_quad_d_3_xi( \
lambda z,r: integrand_K(z, r, index_t, index_tau))/self.initialized_single_chain_model.P_B_tot_eq
# Successive approximations to retrieve rho(t)
rho = self.solve_Volterra(K, b, total_time)
# Total probability of broken chains
P_B_tot = self.initialized_single_chain_model.P_B_tot_eq*rho
# Integral equation undefined when P_B_tot_eq = 0; also for rate-independent irreversible breaking
else:
P_B_tot = P_B_tot_h
########################################################################################################################
# Compute and return the results
########################################################################################################################
# Total probability of intact chains
P_A_tot = 1 - P_B_tot
# Distribution at the end of the partition
P_A_end = np.nan
# Total breaking and reforming rates
total_rate_reform = self.K_hat*(1 - P_A_tot)
total_rate_break = np.gradient(P_A_tot)/np.gradient(t) - total_rate_reform
# Nondimensional stress corresponding to applied the deformation
beta_sigma_h_over_n = np.zeros(num_time)
beta_sigma_p_over_n = np.zeros(num_time)
for index_t in range(num_time):
beta_sigma_h_over_n[index_t] = self.integral_quad_d_3_xi(lambda z,r: P_A_h(z, r, index_t), element = 'stress')
if self.initialized_single_chain_model.P_B_tot_eq > 0 and self.ignore_reforming is False:
integrand_beta_sigma_p_over_n = np.zeros(num_time)
for index_tau in range(index_t + 1):
integrand_beta_sigma_p_over_n[index_tau] = rho[index_tau]*self.integral_quad_d_3_xi( \
lambda z,r: integrand_K(z, r, index_t, index_tau), element = 'stress')
beta_sigma_p_over_n[index_t] = self.integral_d_tau(integrand_beta_sigma_p_over_n)
beta_sigma_over_n = beta_sigma_h_over_n + beta_sigma_p_over_n
# Return results
results = t, self.F(t), P_A_tot, total_rate_break, total_rate_reform, beta_sigma_over_n
return results, P_A_end
############################################################################################################################
# Function for computing results on a spatial grid
############################################################################################################################
def compute_results_grid(self, t_span, P_A_0 = None):
# Enumerate the time and relative deformation components
t, F_zz_rel, F_rr_rel = self.enumerate_t_and_F_rel(t_span)
total_time = t_span[-1] - t_span[0]
num_time = len(t)
# Function for the relatively-deformed coordinates
def ell_rel(index_t, index_tau):
return np.sqrt(self.Z*self.Z*F_zz_rel[index_t, index_tau]**2 + self.R*self.R*F_rr_rel[index_t, index_tau]**2)
########################################################################################################################
# Time-dependent quantities for spatial integrals
########################################################################################################################
# Function for the relatively-deformed initial distribution
if P_A_0 is None:
def P_A_0_rel_t(index_t):
return self.initialized_single_chain_model.P_A_eq(ell_rel(index_t, 0)/self.J_sw**(1/3), \
normalization = self.P_A_eq_normalization*self.J_sw)
else:
sys.exit('Error: Beginning from a nonequilibrium initial distribution not yet implemented.')
# Function for the relatively-deformed equilibrium distribution
def P_A_eq_rel(index_t, index_tau):
return self.initialized_single_chain_model.P_A_eq(ell_rel(index_t, index_tau), \
normalization = self.P_A_eq_normalization)
# Function for the relatively-deformed reaction rate coefficient function
def k_rel(index_t, index_tau):
return self.initialized_single_chain_model.k(ell_rel(index_t, index_tau))
# Function for the reaction propagator
def Xi(index_t, index_tau):
if index_t == index_tau:
return np.ones((self.num_grid, self.num_grid))
else:
integrand = np.zeros((self.num_grid, self.num_grid, index_t + 1 - index_tau))
for index_s in range(index_t + 1 - index_tau):
integrand[:,:,index_s] = k_rel(index_t, index_s)
return np.exp(-self.integral_ds(integrand))
# Function for the homogeneous solution for P_A
def P_A_h(index_t):
out = P_A_0_rel_t(index_t)*Xi(index_t, 0)*self.g(t[index_t], 0)
out[np.isnan(out) + np.isinf(out)] = 0
return out
# Function for the integrand of K
def integrand_K(index_t, index_tau):
out = P_A_eq_rel(index_t, index_tau)*Xi(index_t, index_tau)*( \
k_rel(index_t, index_tau)*self.g(t[index_t], t[index_tau]) + self.d_g_d_tau(t[index_t], t[index_tau]))
out[np.isnan(out) + np.isinf(out)] = 0
return out
########################################################################################################################
# Solve the integral equation
########################################################################################################################
# Amount of initially-intact chains that have been broken
P_B_tot_h = np.zeros(num_time)
for index_t in range(num_time):
P_B_tot_h[index_t] = 1 - self.integral_grid_d_3_xi(P_A_h(index_t))
# Integral equation only defined when P_B_tot_eq is nonzero
if self.initialized_single_chain_model.P_B_tot_eq > 0 and self.ignore_reforming is False:
# Kernel K(t,tau) and right-hand side b(t)
b = self.initialized_single_chain_model.P_B_tot_eq*P_B_tot_h
K = np.zeros((num_time, num_time))
for index_t in range(num_time):
for index_tau in range(index_t + 1):
K[index_t, index_tau] = \
self.integral_grid_d_3_xi(integrand_K(index_t,index_tau))/self.initialized_single_chain_model.P_B_tot_eq
# Successive approximations to retrieve rho(t)
rho = self.solve_Volterra(K, b, total_time)
# Total probability of broken chains
P_B_tot = self.initialized_single_chain_model.P_B_tot_eq*rho
# Integral equation undefined when P_B_tot_eq = 0; also for rate-independent irreversible breaking
else:
P_B_tot = P_B_tot_h
########################################################################################################################
# Compute and return the results
########################################################################################################################
# Total probability of intact chains
P_A_tot = 1 - P_B_tot
# Distribution at the end of the partition
P_A_end = np.nan
# Total breaking and reforming rates
total_rate_reform = self.K_hat*(1 - P_A_tot)
total_rate_break = np.gradient(P_A_tot)/np.gradient(t) - total_rate_reform
# Nondimensional stress corresponding to applied the deformation
beta_sigma_h_over_n = np.zeros(num_time)
beta_sigma_p_over_n = np.zeros(num_time)
for index_t in range(num_time):
beta_sigma_h_over_n[index_t] = self.integral_grid_d_3_xi(P_A_h(index_t), element = 'stress')
if self.initialized_single_chain_model.P_B_tot_eq > 0 and self.ignore_reforming is False:
integrand_beta_sigma_p_over_n = np.zeros(num_time)
for index_tau in range(index_t + 1):
integrand_beta_sigma_p_over_n[index_tau] = \
rho[index_tau]*self.integral_grid_d_3_xi(integrand_K(index_t, index_tau), element = 'stress')
beta_sigma_p_over_n[index_t] = self.integral_d_tau(integrand_beta_sigma_p_over_n)
beta_sigma_over_n = beta_sigma_h_over_n + beta_sigma_p_over_n
# Return results
results = t, self.F(t), P_A_tot, total_rate_break, total_rate_reform, beta_sigma_over_n
return results, P_A_end
############################################################################################################################
# Function for computing results on a spatial grid; enumerates full arrays and uses vectorized operations
############################################################################################################################
def compute_results_grid_chunky(self, t_span, P_A_0 = None):
# Enumerate the time and relative deformation components
t, F_zz_rel, F_rr_rel = self.enumerate_t_and_F_rel(t_span)
total_time = t_span[-1] - t_span[0]
num_time = len(t)
Delta_t = t - t[0]
# Enumerate the relatively-deformed coordinates
Z_rel = np.tensordot(self.Z, F_zz_rel, axes = 0)
R_rel = np.tensordot(self.R, F_rr_rel, axes = 0)
ELL_rel = np.sqrt(Z_rel*Z_rel + R_rel*R_rel)
z_rel_t = np.tensordot(self.z, F_zz_rel[:,0], axes = 0)
r_rel_t = np.tensordot(self.r, F_rr_rel[:,0], axes = 0)
# Cleanup
del F_zz_rel, F_rr_rel, Z_rel, R_rel
########################################################################################################################
# Time-dependent quantities for spatial integrals
########################################################################################################################
# Enumerate the relatively-deformed equilibrium distribution
P_A_eq_rel = self.initialized_single_chain_model.P_A_eq(ELL_rel, normalization = self.P_A_eq_normalization)
# Enumerate the relatively-deformed initial distribution
if P_A_0 is None:
P_A_0_rel_t = self.initialized_single_chain_model.P_A_eq(ELL_rel[:,:,:,0]/self.J_sw**(1/3), \
normalization = self.P_A_eq_normalization*self.J_sw)
else:
P_A_0_rel_t = np.zeros((self.num_grid, self.num_grid, num_time))
for index_t in range(num_time):
P_A_0_rel_t[:,:,index_t] = self.interp_fun_2D(z_rel_t[:,index_t], r_rel_t[:,index_t], P_A_0)
# Cleanup
del z_rel_t, r_rel_t
# Enumerate the relatively-deformed reaction rate coefficient function
k_rel = self.initialized_single_chain_model.k(ELL_rel)
# Cleanup
del ELL_rel
# Enumerate the reaction propagator
Xi = np.zeros((self.num_grid, self.num_grid, num_time, num_time))
for index_t in range(num_time):
for index_tau in range(index_t + 1):
Xi[:,:,index_t,index_tau] = \
np.exp(-self.integral_ds(k_rel[:,:,index_t,index_tau:index_t + 1]))
# Enumerate the relaxation function and its derivative
g = np.zeros((num_time, num_time))
d_g_d_tau = np.zeros((num_time, num_time))
for index_t in range(num_time):
for index_tau in range(index_t + 1):
g[index_t, index_tau] = self.g(Delta_t[index_t], Delta_t[index_tau])
d_g_d_tau[index_t, index_tau] = self.d_g_d_tau(Delta_t[index_t], Delta_t[index_tau])
# Homogeneous solution for P_A
P_A_h = Xi[:,:,:,0]*P_A_0_rel_t
# Cleanup
del P_A_0_rel_t
# Integrand of K
if self.initialized_single_chain_model.gamma_c is not None:
k_rel[np.isinf(k_rel)] = 0
integrand_K = P_A_eq_rel*Xi*(k_rel*g[None,None,:,:] + d_g_d_tau[None,None,:,:])
# Cleanup
del Xi, k_rel, P_A_eq_rel
#
P_A_h[np.isnan(P_A_h) + np.isinf(P_A_h)] = 0
integrand_K[np.isnan(integrand_K) + np.isinf(integrand_K)] = 0
########################################################################################################################
# Solve the integral equation
########################################################################################################################
# Amount of initially-intact chains that have been broken
P_B_tot_h = 1 - self.integral_grid_d_3_xi(P_A_h)
# Integral equation only defined when P_B_tot_eq is nonzero
if self.initialized_single_chain_model.P_B_tot_eq > 0 and self.ignore_reforming is False:
# Kernel K(t,tau) and right-hand side b(t)
K = self.integral_grid_d_3_xi(integrand_K)/self.initialized_single_chain_model.P_B_tot_eq
b = P_B_tot_h/self.initialized_single_chain_model.P_B_tot_eq
# Successive approximations to retrieve rho(t)
rho = self.solve_Volterra(K, b, total_time)
# Total probability of broken chains
P_B_tot = self.initialized_single_chain_model.P_B_tot_eq*rho
# Integral equation undefined when P_B_tot_eq = 0; also for rate-independent irreversible breaking
else:
P_B_tot = P_B_tot_h
rho = np.zeros(num_time)
# Integrand of particular solution for P_A
integrand_P_A_p = rho*integrand_K
# Cleanup
del integrand_K
########################################################################################################################
# Compute and return the results
########################################################################################################################
# Total probability of intact chains
P_A_tot = 1 - P_B_tot
# Distribution of intact chains
P_A = P_A_h + self.integral_d_tau(integrand_P_A_p)
# Cleanup
del P_A_h, integrand_P_A_p
# Distribution at the end of the partition
P_A_end = P_A[:,:,-1]
# Total breaking and reforming rates
total_rate_break = -self.integral_grid_d_3_xi(P_A*self.k_ELL[:,:,None])
total_rate_reform = self.K_hat*(1 - P_A_tot)
# Nondimensional stress corresponding to the applied deformation
beta_sigma_over_n = self.integral_grid_d_3_xi(P_A, element = 'stress')
# Return results
results = t, self.F(t), P_A_tot, total_rate_break, total_rate_reform, beta_sigma_over_n
return results, P_A_end
############################################################################################################################
# Function for (one with k0 AND ignores yield)
############################################################################################################################
def compute_results_quad_specialized_ignore_yield(self, t_span):
# Enumerate the time and relative deformation components
t, F_zz_rel, F_rr_rel = self.enumerate_t_and_F_rel(t_span)
# Function for the relatively-deformed coordinates
def ell_rel(z, r, index_t, index_tau):
return np.sqrt(z*z*F_zz_rel[index_t, index_tau]**2 + r*r*F_rr_rel[index_t, index_tau]**2)
########################################################################################################################
# Time-dependent quantities for spatial integrals
########################################################################################################################
# Function for the relatively-deformed equilibrium distribution
def P_A_eq_rel(z, r, index_t, index_tau):
return np.nan_to_num(self.initialized_single_chain_model.P_A_eq(ell_rel(z, r, index_t, index_tau)/self.J_sw**(1/3),\
normalization = self.P_A_eq_normalization*self.J_sw), nan = 0)
# Function for the reaction propagator
def Xi(t, tau):
return np.exp(-self.k_0*(t - tau))
# Function for relative time derivative of the reaction propagator
def d_Xi_d_tau(t, tau):
return Xi(t, tau)*self.k_0
########################################################################################################################
# Compute stress only at unique deformations to interpolate from
########################################################################################################################
# Choose deformation for stress response based on deformation mode
if self.deformation_type == 'uniaxial':
F_use = F_zz_rel
# Store a limited number of unique deformations over the history
F_unique = np.unique(F_use)
indices = np.unique(np.round(np.linspace(0, len(F_unique) - 1, num_interp_quad_specialized_ignore_yield)).astype(int))
F_store = F_unique[indices]
# Compute the stress at these deformations to interpolate from
beta_sigma_h0_over_n = np.zeros(len(F_store))
for index in range(len(F_store)):
index_t, index_tau = np.argwhere(F_store[index] == F_use)[0]
beta_sigma_h0_over_n[index] = \
self.integral_quad_d_3_xi(lambda z,r: P_A_eq_rel(z, r, index_t, index_tau), element = 'stress')
########################################################################################################################
# Compute and return the results
########################################################################################################################
# Function to interpolate from computed stress response
interp_sigma_fun = interp1d(F_store, beta_sigma_h0_over_n, kind = 'cubic', bounds_error = True)
# Homogeneous solution for the nondimensional stress
beta_sigma_h_over_n = self.g(t, 0)*Xi(t, 0)*interp_sigma_fun(F_zz_rel[:,0])
# Particular solution for the nondimensional stress
beta_sigma_p_over_n = np.zeros(self.num_time)
for index_t in range(self.num_time):
integrand = interp_sigma_fun(F_zz_rel[index_t,:index_t + 1])*( \
Xi(t[index_t], t[:index_t + 1])*self.d_g_d_tau(t[index_t], t[:index_t + 1]) \
+ d_Xi_d_tau(t[index_t], t[:index_t + 1])*self.g(t[index_t], t[:index_t + 1]))
beta_sigma_p_over_n[index_t] = self.integral_d_tau(np.append(integrand, np.zeros(self.num_time - 1 - index_t)))
# Return results
beta_sigma_over_n = beta_sigma_h_over_n + beta_sigma_p_over_n
P_A_tot = self.initialized_single_chain_model.P_A_tot_eq*np.ones(self.num_time)
total_rate_reform = self.K_hat*(1 - P_A_tot)
total_rate_break = -total_rate_reform
results = t, self.F(t), P_A_tot, beta_sigma_h_over_n, beta_sigma_p_over_n, beta_sigma_over_n
return results, np.nan
############################################################################################################################
# Function to adjust discretization for Romberg integration
############################################################################################################################
def adjust_for_romb(self, num_discretization, decrease = False):
if ((np.log(num_discretization - 1)/np.log(2)).is_integer()):
return int(round(num_discretization))
else:
n = 0
dos_check = 3
while dos_check >= 2:
n += 1
dos_check = (num_discretization - 1)**(1/n)
if decrease is True and dos_check < 2:
return int(1 + 2**(n - 1))
else:
return int(1 + 2**n)
############################################################################################################################
# Function for integration over the spatial grid
############################################################################################################################
def integral_grid_d_3_xi(self, FUN, element = None):
if element is None:
element = self.R
elif element == 'stress':
element = self.ELEMENT_stress
if FUN.ndim == 2:
return 4*np.pi*romb(romb(FUN*element, dx = self.dr, axis = 0), dx = self.dz, axis = 0)
elif FUN.ndim == 3:
return 4*np.pi*romb(romb(FUN*element[:,:,None], dx = self.dr, axis = 0), dx = self.dz, axis = 0)
elif FUN.ndim == 4:
return 4*np.pi*romb(romb(FUN*element[:,:,None,None], dx = self.dr, axis = 0), dx = self.dz, axis = 0)
############################################################################################################################
# Function for integration over continuous space
############################################################################################################################
def integral_quad_d_3_xi(self, fun, element = None):
if element is None:
def integrand(z, r):
return fun(z, r)*r
elif element == 'stress':
def integrand(z, r):
return fun(z, r)*self.element_stress(z, r, self.initialized_single_chain_model)
if self.initialized_single_chain_model.gamma_c is None:
lim = self.initialized_single_chain_model.gamma_TS
else:
lim = self.initialized_single_chain_model.gamma_c
return 4*np.pi*dblquad(integrand, 0, lim, lambda r: 0, lambda r: np.sqrt(lim**2 - r**2), \
epsabs = dblquad_epsabs, epsrel = dblquad_epsrel)[0]
############################################################################################################################
# Function for integration element specialized for stress calculation
############################################################################################################################
def element_stress(self, z, r, single_chain_model):
ell = np.sqrt(z*z + r*r)
eta = np.nan_to_num(single_chain_model.eta(ell), nan = 0)
if isinstance(z, np.ndarray):
eta_over_ell = np.zeros(z.shape)
eta_over_ell[ell != 0] = eta[ell != 0]/ell[ell != 0]
else:
if ell == 0:
eta_over_ell = 0
else:
eta_over_ell = eta/ell
C = (single_chain_model.N_b + single_chain_model.varsigma*single_chain_model.N_b_H)/self.J_sw
if self.deformation_type == 'uniaxial':
return C*eta_over_ell*r*(z*z - r*r/2)
elif self.deformation_type == 'equibiaxial' or deformation_type == 'simple_shear':
return C*eta_over_ell*r*(r*r/2 - z*z)
############################################################################################################################
# Function to interpolate from a stored 2D function on the spatial grid
############################################################################################################################
def interp_fun_2D(self, z_query, r_query, FUN):
return interp2d(self.z, self.r, FUN, kind = self.interp_kind_2D)(z_query, r_query)
############################################################################################################################
# Functions for integration in time
############################################################################################################################
def integral_ds(self, FUN):
return simpson(FUN, dx = self.timestep, axis = -1, even = 'last')
def integral_d_tau(self, FUN):
return romb(FUN, dx = self.timestep, axis = -1)
############################################################################################################################
# Function to enumerate the time and relative deformation
############################################################################################################################
def enumerate_t_and_F_rel(self, t_span):
# Enumerate the time
t = np.linspace(t_span[0], t_span[-1], self.num_time)
# Relative deformation gradient components
if self.deformation_type == 'uniaxial':
F_zz_rel = np.tensordot(1/self.F(t), self.F(t), axes = 0)
F_rr_rel = np.tensordot(np.sqrt(self.F(t)), 1/np.sqrt(self.F(t)), axes = 0)
elif self.deformation_type == 'equibiaxial':
F_zz_rel = np.tensordot(self.F(t), 1/self.F(t), axes = 0)
F_rr_rel = np.tensordot(1/self.F(t), self.F(t), axes = 0)
elif self.deformation_type == 'simple_shear':
pass
return t, F_zz_rel, F_rr_rel
############################################################################################################################
# Function to solve the Volterra integral equation
############################################################################################################################
def solve_Volterra(self, K, b, total_time):
M = 0
rho = b
residual_bound_rho = 1
while residual_bound_rho > tol_residual_rho:
M += 1
rho = b - self.integral_d_tau(K*rho)
residual_bound_rho = \
(self.K_hat*total_time)**(M + 1)/self.initialized_single_chain_model.P_B_tot_eq/np.math.factorial(M + 1)
return rho
################################################################################################################################
# Checkpoint creation class
################################################################################################################################
class checkpoint:
# Initialization also clears any previous checkpoint
def __init__(self, checkpoint_directory):
self.checkpoint_directory_and_file = checkpoint_directory + 'checkpoint.csv'
open(self.checkpoint_directory_and_file, 'w').close()
# Function to create checkpoints
def create(self, t_end, P_A_end):
f = open(self.checkpoint_directory_and_file, 'a')
f.write("%.8e" % t_end)
for i in range(len(P_A_end[:,0])):
f.write("\n")
for j in range(len(P_A_end[0,:])):
f.write("%.8e\t" % P_A_end[i,j])
f.close()
# Function to read checkpoints
def read(self, existing_checkpoint_directory_and_file):
pass
################################################################################################################################
# Results writing class
################################################################################################################################
class results_csv:
# Initialization also clears any previous results
def __init__(self, csv_directory):
self.csv_directory_and_file = csv_directory + 'results.csv'
open(self.csv_directory_and_file, "w").close()
# Function to append results
def append(self, index_chunk, results):
f = open(self.csv_directory_and_file, "a")
for index_t in range(len(results[0])):
for index_results in range(len(results)):
f.write("%.8e\t" % results[index_results][index_t])
f.write("\n")
f.close()
|
[
"psutil.virtual_memory",
"numpy.floor",
"numpy.ones",
"numpy.isnan",
"numpy.arange",
"numpy.exp",
"scipy.interpolate.interp1d",
"numpy.unique",
"numpy.meshgrid",
"scipy.integrate.romb",
"numpy.append",
"numpy.max",
"numpy.linspace",
"numpy.tensordot",
"numpy.isinf",
"scipy.interpolate.interp2d",
"numpy.min",
"numpy.argwhere",
"scipy.integrate.simpson",
"sys.exit",
"numpy.log",
"numpy.zeros",
"numpy.diff",
"numpy.array",
"numpy.math.factorial",
"numpy.gradient",
"numpy.sqrt"
] |
[((625, 651), 'numpy.log', 'np.log', (['sys.float_info.min'], {}), '(sys.float_info.min)\n', (631, 651), True, 'import numpy as np\n'), ((652, 662), 'numpy.log', 'np.log', (['(10)'], {}), '(10)\n', (658, 662), True, 'import numpy as np\n'), ((6187, 6294), 'numpy.array', 'np.array', (['[1 / self.max_F_dot, 1 / self.K_hat, 1 / self.max_k_rev, self.g_timescale, \n 1 / self.g_K_hat]'], {}), '([1 / self.max_F_dot, 1 / self.K_hat, 1 / self.max_k_rev, self.\n g_timescale, 1 / self.g_K_hat])\n', (6195, 6294), True, 'import numpy as np\n'), ((14706, 14724), 'numpy.zeros', 'np.zeros', (['num_time'], {}), '(num_time)\n', (14714, 14724), True, 'import numpy as np\n'), ((16432, 16450), 'numpy.zeros', 'np.zeros', (['num_time'], {}), '(num_time)\n', (16440, 16450), True, 'import numpy as np\n'), ((16476, 16494), 'numpy.zeros', 'np.zeros', (['num_time'], {}), '(num_time)\n', (16484, 16494), True, 'import numpy as np\n'), ((20449, 20467), 'numpy.zeros', 'np.zeros', (['num_time'], {}), '(num_time)\n', (20457, 20467), True, 'import numpy as np\n'), ((22137, 22155), 'numpy.zeros', 'np.zeros', (['num_time'], {}), '(num_time)\n', (22145, 22155), True, 'import numpy as np\n'), ((22181, 22199), 'numpy.zeros', 'np.zeros', (['num_time'], {}), '(num_time)\n', (22189, 22199), True, 'import numpy as np\n'), ((23667, 23705), 'numpy.tensordot', 'np.tensordot', (['self.Z', 'F_zz_rel'], {'axes': '(0)'}), '(self.Z, F_zz_rel, axes=0)\n', (23679, 23705), True, 'import numpy as np\n'), ((23719, 23757), 'numpy.tensordot', 'np.tensordot', (['self.R', 'F_rr_rel'], {'axes': '(0)'}), '(self.R, F_rr_rel, axes=0)\n', (23731, 23757), True, 'import numpy as np\n'), ((23773, 23811), 'numpy.sqrt', 'np.sqrt', (['(Z_rel * Z_rel + R_rel * R_rel)'], {}), '(Z_rel * Z_rel + R_rel * R_rel)\n', (23780, 23811), True, 'import numpy as np\n'), ((23821, 23865), 'numpy.tensordot', 'np.tensordot', (['self.z', 'F_zz_rel[:, 0]'], {'axes': '(0)'}), '(self.z, F_zz_rel[:, 0], axes=0)\n', (23833, 23865), True, 'import numpy as np\n'), ((23880, 23924), 'numpy.tensordot', 'np.tensordot', (['self.r', 'F_rr_rel[:, 0]'], {'axes': '(0)'}), '(self.r, F_rr_rel[:, 0], axes=0)\n', (23892, 23924), True, 'import numpy as np\n'), ((25166, 25226), 'numpy.zeros', 'np.zeros', (['(self.num_grid, self.num_grid, num_time, num_time)'], {}), '((self.num_grid, self.num_grid, num_time, num_time))\n', (25174, 25226), True, 'import numpy as np\n'), ((25479, 25509), 'numpy.zeros', 'np.zeros', (['(num_time, num_time)'], {}), '((num_time, num_time))\n', (25487, 25509), True, 'import numpy as np\n'), ((25525, 25555), 'numpy.zeros', 'np.zeros', (['(num_time, num_time)'], {}), '((num_time, num_time))\n', (25533, 25555), True, 'import numpy as np\n'), ((30600, 30616), 'numpy.unique', 'np.unique', (['F_use'], {}), '(F_use)\n', (30609, 30616), True, 'import numpy as np\n'), ((31495, 31567), 'scipy.interpolate.interp1d', 'interp1d', (['F_store', 'beta_sigma_h0_over_n'], {'kind': '"""cubic"""', 'bounds_error': '(True)'}), "(F_store, beta_sigma_h0_over_n, kind='cubic', bounds_error=True)\n", (31503, 31567), False, 'from scipy.interpolate import interp1d, interp2d\n'), ((31791, 31814), 'numpy.zeros', 'np.zeros', (['self.num_time'], {}), '(self.num_time)\n', (31799, 31814), True, 'import numpy as np\n'), ((35452, 35474), 'numpy.sqrt', 'np.sqrt', (['(z * z + r * r)'], {}), '(z * z + r * r)\n', (35459, 35474), True, 'import numpy as np\n'), ((36861, 36913), 'scipy.integrate.simpson', 'simpson', (['FUN'], {'dx': 'self.timestep', 'axis': '(-1)', 'even': '"""last"""'}), "(FUN, dx=self.timestep, axis=-1, even='last')\n", (36868, 36913), False, 'from scipy.integrate import romb, simpson, dblquad\n'), ((36965, 37001), 'scipy.integrate.romb', 'romb', (['FUN'], {'dx': 'self.timestep', 'axis': '(-1)'}), '(FUN, dx=self.timestep, axis=-1)\n', (36969, 37001), False, 'from scipy.integrate import romb, simpson, dblquad\n'), ((37400, 37449), 'numpy.linspace', 'np.linspace', (['t_span[0]', 't_span[-1]', 'self.num_time'], {}), '(t_span[0], t_span[-1], self.num_time)\n', (37411, 37449), True, 'import numpy as np\n'), ((3403, 3461), 'numpy.linspace', 'np.linspace', (['(0)', 'single_chain_model.gamma_TS', 'self.num_grid'], {}), '(0, single_chain_model.gamma_TS, self.num_grid)\n', (3414, 3461), True, 'import numpy as np\n'), ((3561, 3588), 'numpy.meshgrid', 'np.meshgrid', (['self.z', 'self.r'], {}), '(self.z, self.r)\n', (3572, 3588), True, 'import numpy as np\n'), ((3599, 3641), 'numpy.sqrt', 'np.sqrt', (['(self.Z * self.Z + self.R * self.R)'], {}), '(self.Z * self.Z + self.R * self.R)\n', (3606, 3641), True, 'import numpy as np\n'), ((5486, 5510), 'numpy.exp', 'np.exp', (['minimum_exponent'], {}), '(minimum_exponent)\n', (5492, 5510), True, 'import numpy as np\n'), ((7527, 7557), 'numpy.zeros', 'np.zeros', (['(self.num_chunks, 2)'], {}), '((self.num_chunks, 2))\n', (7535, 7557), True, 'import numpy as np\n'), ((12247, 12346), 'numpy.sqrt', 'np.sqrt', (['(z * z * F_zz_rel[index_t, index_tau] ** 2 + r * r * F_rr_rel[index_t,\n index_tau] ** 2)'], {}), '(z * z * F_zz_rel[index_t, index_tau] ** 2 + r * r * F_rr_rel[\n index_t, index_tau] ** 2)\n', (12254, 12346), True, 'import numpy as np\n'), ((12928, 13030), 'sys.exit', 'sys.exit', (['"""Error: Beginning from a nonequilibrium initial distribution not yet implemented."""'], {}), "(\n 'Error: Beginning from a nonequilibrium initial distribution not yet implemented.'\n )\n", (12936, 13030), False, 'import sys\n'), ((15129, 15159), 'numpy.zeros', 'np.zeros', (['(num_time, num_time)'], {}), '((num_time, num_time))\n', (15137, 15159), True, 'import numpy as np\n'), ((17954, 18073), 'numpy.sqrt', 'np.sqrt', (['(self.Z * self.Z * F_zz_rel[index_t, index_tau] ** 2 + self.R * self.R * \n F_rr_rel[index_t, index_tau] ** 2)'], {}), '(self.Z * self.Z * F_zz_rel[index_t, index_tau] ** 2 + self.R * self\n .R * F_rr_rel[index_t, index_tau] ** 2)\n', (17961, 18073), True, 'import numpy as np\n'), ((18643, 18745), 'sys.exit', 'sys.exit', (['"""Error: Beginning from a nonequilibrium initial distribution not yet implemented."""'], {}), "(\n 'Error: Beginning from a nonequilibrium initial distribution not yet implemented.'\n )\n", (18651, 18745), False, 'import sys\n'), ((20854, 20884), 'numpy.zeros', 'np.zeros', (['(num_time, num_time)'], {}), '((num_time, num_time))\n', (20862, 20884), True, 'import numpy as np\n'), ((24729, 24779), 'numpy.zeros', 'np.zeros', (['(self.num_grid, self.num_grid, num_time)'], {}), '((self.num_grid, self.num_grid, num_time))\n', (24737, 24779), True, 'import numpy as np\n'), ((27385, 27403), 'numpy.zeros', 'np.zeros', (['num_time'], {}), '(num_time)\n', (27393, 27403), True, 'import numpy as np\n'), ((29141, 29240), 'numpy.sqrt', 'np.sqrt', (['(z * z * F_zz_rel[index_t, index_tau] ** 2 + r * r * F_rr_rel[index_t,\n index_tau] ** 2)'], {}), '(z * z * F_zz_rel[index_t, index_tau] ** 2 + r * r * F_rr_rel[\n index_t, index_tau] ** 2)\n', (29148, 29240), True, 'import numpy as np\n'), ((29904, 29933), 'numpy.exp', 'np.exp', (['(-self.k_0 * (t - tau))'], {}), '(-self.k_0 * (t - tau))\n', (29910, 29933), True, 'import numpy as np\n'), ((32354, 32376), 'numpy.ones', 'np.ones', (['self.num_time'], {}), '(self.num_time)\n', (32361, 32376), True, 'import numpy as np\n'), ((35584, 35601), 'numpy.zeros', 'np.zeros', (['z.shape'], {}), '(z.shape)\n', (35592, 35601), True, 'import numpy as np\n'), ((36448, 36503), 'scipy.interpolate.interp2d', 'interp2d', (['self.z', 'self.r', 'FUN'], {'kind': 'self.interp_kind_2D'}), '(self.z, self.r, FUN, kind=self.interp_kind_2D)\n', (36456, 36503), False, 'from scipy.interpolate import interp1d, interp2d\n'), ((4598, 4661), 'numpy.max', 'np.max', (['(self.k_ELL * P_A_eq_ELL / single_chain_model.P_B_tot_eq)'], {}), '(self.k_ELL * P_A_eq_ELL / single_chain_model.P_B_tot_eq)\n', (4604, 4661), True, 'import numpy as np\n'), ((6347, 6365), 'numpy.min', 'np.min', (['timescales'], {}), '(timescales)\n', (6353, 6365), True, 'import numpy as np\n'), ((7472, 7508), 'numpy.arange', 'np.arange', (['(0)', '(self.num_chunks + 1)', '(1)'], {}), '(0, self.num_chunks + 1, 1)\n', (7481, 7508), True, 'import numpy as np\n'), ((16281, 16301), 'numpy.gradient', 'np.gradient', (['P_A_tot'], {}), '(P_A_tot)\n', (16292, 16301), True, 'import numpy as np\n'), ((16302, 16316), 'numpy.gradient', 'np.gradient', (['t'], {}), '(t)\n', (16313, 16316), True, 'import numpy as np\n'), ((16776, 16794), 'numpy.zeros', 'np.zeros', (['num_time'], {}), '(num_time)\n', (16784, 16794), True, 'import numpy as np\n'), ((19284, 19323), 'numpy.ones', 'np.ones', (['(self.num_grid, self.num_grid)'], {}), '((self.num_grid, self.num_grid))\n', (19291, 19323), True, 'import numpy as np\n'), ((19351, 19416), 'numpy.zeros', 'np.zeros', (['(self.num_grid, self.num_grid, index_t + 1 - index_tau)'], {}), '((self.num_grid, self.num_grid, index_t + 1 - index_tau))\n', (19359, 19416), True, 'import numpy as np\n'), ((21986, 22006), 'numpy.gradient', 'np.gradient', (['P_A_tot'], {}), '(P_A_tot)\n', (21997, 22006), True, 'import numpy as np\n'), ((22007, 22021), 'numpy.gradient', 'np.gradient', (['t'], {}), '(t)\n', (22018, 22021), True, 'import numpy as np\n'), ((22463, 22481), 'numpy.zeros', 'np.zeros', (['num_time'], {}), '(num_time)\n', (22471, 22481), True, 'import numpy as np\n'), ((25996, 26011), 'numpy.isinf', 'np.isinf', (['k_rel'], {}), '(k_rel)\n', (26004, 26011), True, 'import numpy as np\n'), ((26160, 26175), 'numpy.isnan', 'np.isnan', (['P_A_h'], {}), '(P_A_h)\n', (26168, 26175), True, 'import numpy as np\n'), ((26178, 26193), 'numpy.isinf', 'np.isinf', (['P_A_h'], {}), '(P_A_h)\n', (26186, 26193), True, 'import numpy as np\n'), ((26214, 26235), 'numpy.isnan', 'np.isnan', (['integrand_K'], {}), '(integrand_K)\n', (26222, 26235), True, 'import numpy as np\n'), ((26238, 26259), 'numpy.isinf', 'np.isinf', (['integrand_K'], {}), '(integrand_K)\n', (26246, 26259), True, 'import numpy as np\n'), ((30949, 30985), 'numpy.argwhere', 'np.argwhere', (['(F_store[index] == F_use)'], {}), '(F_store[index] == F_use)\n', (30960, 30985), True, 'import numpy as np\n'), ((38562, 38586), 'numpy.math.factorial', 'np.math.factorial', (['(M + 1)'], {}), '(M + 1)\n', (38579, 38586), True, 'import numpy as np\n'), ((5813, 5837), 'numpy.exp', 'np.exp', (['minimum_exponent'], {}), '(minimum_exponent)\n', (5819, 5837), True, 'import numpy as np\n'), ((6632, 6655), 'psutil.virtual_memory', 'psutil.virtual_memory', ([], {}), '()\n', (6653, 6655), False, 'import psutil\n'), ((9873, 9903), 'numpy.append', 'np.append', (['t', 'results_chunk[0]'], {}), '(t, results_chunk[0])\n', (9882, 9903), True, 'import numpy as np\n'), ((9914, 9944), 'numpy.append', 'np.append', (['F', 'results_chunk[1]'], {}), '(F, results_chunk[1])\n', (9923, 9944), True, 'import numpy as np\n'), ((9961, 9997), 'numpy.append', 'np.append', (['P_A_tot', 'results_chunk[2]'], {}), '(P_A_tot, results_chunk[2])\n', (9970, 9997), True, 'import numpy as np\n'), ((10023, 10068), 'numpy.append', 'np.append', (['total_rate_break', 'results_chunk[3]'], {}), '(total_rate_break, results_chunk[3])\n', (10032, 10068), True, 'import numpy as np\n'), ((10095, 10141), 'numpy.append', 'np.append', (['total_rate_reform', 'results_chunk[4]'], {}), '(total_rate_reform, results_chunk[4])\n', (10104, 10141), True, 'import numpy as np\n'), ((10168, 10214), 'numpy.append', 'np.append', (['beta_sigma_over_n', 'results_chunk[5]'], {}), '(beta_sigma_over_n, results_chunk[5])\n', (10177, 10214), True, 'import numpy as np\n'), ((13640, 13673), 'numpy.zeros', 'np.zeros', (['(index_t + 1 - index_tau)'], {}), '(index_t + 1 - index_tau)\n', (13648, 13673), True, 'import numpy as np\n'), ((19725, 19738), 'numpy.isnan', 'np.isnan', (['out'], {}), '(out)\n', (19733, 19738), True, 'import numpy as np\n'), ((19741, 19754), 'numpy.isinf', 'np.isinf', (['out'], {}), '(out)\n', (19749, 19754), True, 'import numpy as np\n'), ((20038, 20051), 'numpy.isnan', 'np.isnan', (['out'], {}), '(out)\n', (20046, 20051), True, 'import numpy as np\n'), ((20054, 20067), 'numpy.isinf', 'np.isinf', (['out'], {}), '(out)\n', (20062, 20067), True, 'import numpy as np\n'), ((32167, 32204), 'numpy.zeros', 'np.zeros', (['(self.num_time - 1 - index_t)'], {}), '(self.num_time - 1 - index_t)\n', (32175, 32204), True, 'import numpy as np\n'), ((32984, 33014), 'numpy.log', 'np.log', (['(num_discretization - 1)'], {}), '(num_discretization - 1)\n', (32990, 33014), True, 'import numpy as np\n'), ((33015, 33024), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (33021, 33024), True, 'import numpy as np\n'), ((33835, 33874), 'scipy.integrate.romb', 'romb', (['(FUN * element)'], {'dx': 'self.dr', 'axis': '(0)'}), '(FUN * element, dx=self.dr, axis=0)\n', (33839, 33874), False, 'from scipy.integrate import romb, simpson, dblquad\n'), ((2598, 2613), 'numpy.diff', 'np.diff', (['t_temp'], {}), '(t_temp)\n', (2605, 2613), True, 'import numpy as np\n'), ((6894, 6940), 'numpy.floor', 'np.floor', (['(max_array_numel / self.num_grid ** 2)'], {}), '(max_array_numel / self.num_grid ** 2)\n', (6902, 6940), True, 'import numpy as np\n'), ((33949, 34000), 'scipy.integrate.romb', 'romb', (['(FUN * element[:, :, None])'], {'dx': 'self.dr', 'axis': '(0)'}), '(FUN * element[:, :, None], dx=self.dr, axis=0)\n', (33953, 34000), False, 'from scipy.integrate import romb, simpson, dblquad\n'), ((34976, 35002), 'numpy.sqrt', 'np.sqrt', (['(lim ** 2 - r ** 2)'], {}), '(lim ** 2 - r ** 2)\n', (34983, 35002), True, 'import numpy as np\n'), ((6803, 6848), 'numpy.sqrt', 'np.sqrt', (['(max_array_numel / self.num_grid ** 2)'], {}), '(max_array_numel / self.num_grid ** 2)\n', (6810, 6848), True, 'import numpy as np\n'), ((34073, 34130), 'scipy.integrate.romb', 'romb', (['(FUN * element[:, :, None, None])'], {'dx': 'self.dr', 'axis': '(0)'}), '(FUN * element[:, :, None, None], dx=self.dr, axis=0)\n', (34077, 34130), False, 'from scipy.integrate import romb, simpson, dblquad\n')]
|
# coding: utf-8
import numpy as np
import re
import copy
import sys
import networkx as nx
#import matplotlib.pyplot as plt
#import operator
#from collections import defaultdict
#from collections import Counter
#from collections import deque
import time
#from itertools import combinations
# number of combinations for nb_adapters 1-separated adapters
def get_nb_comb(nb_adapters, DBG = True):
if nb_adapters==1: return 1
if nb_adapters==2: return 1
if nb_adapters==3: return 2
if nb_adapters==4: return 4
if nb_adapters==5: return 7
print("***",nb_adapters)
return -1
def boom(input_val, DBG = True):
# find chunks of 1-separated adapters, bounded on the left and right by separation of 3
# for each chunk compute number of possibilities
# multiply all that
numbers = np.asarray(input_val, dtype=np.int)
numbers = np.sort(numbers)
numbers = np.append(numbers,max(numbers)+3)
numbers = np.insert(numbers,0,0)
if DBG:print(numbers)
ln = len(numbers)
nb_comb = 1
left_idx = 0
right_idx = 1
while right_idx<ln:
while (numbers[right_idx]-numbers[right_idx-1]==1):
right_idx = right_idx + 1
if DBG:print(numbers[left_idx:right_idx+1],left_idx,right_idx)
nb_adapters = right_idx-left_idx
if DBG:print(nb_adapters)
nbc = get_nb_comb(nb_adapters,DBG)
if DBG:print("nbc",nbc)
nb_comb = nb_comb * nbc
left_idx = right_idx
right_idx = left_idx + 1
if DBG:print(numbers[left_idx:right_idx+1],left_idx,right_idx)
nb_adapters = right_idx-left_idx
if DBG:print(nb_adapters)
nbc = get_nb_comb(nb_adapters,DBG)
if DBG:print("nbc",nbc)
nb_comb = nb_comb * nbc
return (nb_comb)
def test(cc=None, expected=None, DBG = False):
start_millis = int(round(time.time() * 1000))
result = boom(cc,DBG)
stop_millis = int(round(time.time() * 1000))
result = str(result)
expected = str(expected)
flag = (result == expected)
if(expected=="None"):
print("*** "+str(cc) + " *** -> Result = "+str(result))
else:
print("*** "+str(cc) + " *** -> Result = "+str(result)+ " -> success = "+ str(flag) + " -> expected " + expected)
print((stop_millis-start_millis),"ms",int((stop_millis-start_millis)/1000),"s",int((stop_millis-start_millis)/1000/60),"min")
return flag
t1="""16
10
15
5
1
11
7
19
6
12
4"""
tt1 = t1.splitlines()
test(tt1,8,True)
#sys.exit()
t1="""28
33
18
42
31
14
46
20
48
47
24
23
49
45
19
38
39
11
1
32
25
35
8
17
7
9
4
2
34
10
3"""
tt1 = t1.splitlines()
test(tt1,19208,False)
#sys.exit()
INPUT_FILE="input-d10.txt"
f = open(INPUT_FILE, "r")
contents = f.read()
puzzle_input = contents.splitlines()
f.close()
ret = boom(puzzle_input, False)
print(ret)
# part 2 = 3022415986688
|
[
"numpy.sort",
"numpy.asarray",
"time.time",
"numpy.insert"
] |
[((816, 851), 'numpy.asarray', 'np.asarray', (['input_val'], {'dtype': 'np.int'}), '(input_val, dtype=np.int)\n', (826, 851), True, 'import numpy as np\n'), ((866, 882), 'numpy.sort', 'np.sort', (['numbers'], {}), '(numbers)\n', (873, 882), True, 'import numpy as np\n'), ((950, 974), 'numpy.insert', 'np.insert', (['numbers', '(0)', '(0)'], {}), '(numbers, 0, 0)\n', (959, 974), True, 'import numpy as np\n'), ((1853, 1864), 'time.time', 'time.time', ([], {}), '()\n', (1862, 1864), False, 'import time\n'), ((1928, 1939), 'time.time', 'time.time', ([], {}), '()\n', (1937, 1939), False, 'import time\n')]
|
import os
import glob
import scipy
import numpy as np
import nibabel as nib
import tensorflow as tf
from tqdm import tqdm
from scipy.ndimage import zoom
from args import TestArgParser
from util import DiceCoefficient
from model import Model
class Interpolator(object):
def __init__(self, modalities, order=3, mode='reflect'):
self.modalities = modalities
self.order = order
self.mode = mode
def __call__(self, path):
"""Extracts Numpy image and normalizes it to 1 mm^3."""
# Extract raw images from each.
image = []
pixdim = []
affine = []
for name in self.modalities:
file_card = glob.glob(os.path.join(path, '*' + name + '*' + '.nii' + '*'))[0]
img = nib.load(file_card)
image.append(np.array(img.dataobj).astype(np.float32))
pixdim.append(img.header['pixdim'][:4])
affine.append(np.stack([img.header['srow_x'],
img.header['srow_y'],
img.header['srow_z'],
np.array([0., 0., 0., 1.])], axis=0))
# Prepare image.
image = np.stack(image, axis=-1)
self.pixdim = np.mean(pixdim, axis=0, dtype=np.float32)
self.affine = np.mean(affine, axis=0, dtype=np.float32)
# Rescale and interpolate voxels spatially.
if np.any(self.pixdim[:-1] != 1.0):
image = zoom(image, self.pixdim[:-1] + [1.0], order=self.order, mode=self.mode)
# Rescale and interpolate voxels depthwise (along time).
if self.pixdim[-1] != 1.0:
image = zoom(image, [1.0, 1.0, self.pixdim[-1], 1.0], order=self.order, mode=self.mode)
# Mask out background voxels.
mask = np.max(image, axis=-1, keepdims=True)
mask = (mask > 0).astype(np.float32)
return image, mask
def reverse(self, output, path):
"""Reverses the interpolation performed in __call__."""
# Scale back spatial voxel interpolation.
if np.any(self.pixdim[:-1] != 1.0):
output = zoom(output, 1.0 / self.pixdim[:-1], order=self.order, mode=self.mode)
# Scale back depthwise voxel interpolation.
if self.pixdim[-1] != 1.0:
output = zoom(output, [1.0, 1.0, 1.0 / self.pixdim[-1]], order=self.order, mode=self.mode)
# Save file.
nib.save(nib.Nifti1Image(output, self.affine),
os.path.join(path, 'mask.nii'))
return output
class TestTimeAugmentor(object):
"""Handles full inference on input with test-time augmentation."""
def __init__(self,
mean,
std,
model,
model_data_format,
spatial_tta=True,
channel_tta=0,
threshold=0.5):
self.mean = mean
self.std = std
self.model = model
self.model_data_format = model_data_format
self.channel_tta = channel_tta
self.threshold = threshold
self.channel_axis = -1 if self.model_data_format == 'channels_last' else 1
self.spatial_axes = [1, 2, 3] if self.model_data_format == 'channels_last' else [2, 3, 4]
if spatial_tta:
self.augment_axes = [self.spatial_axes, []]
for axis in self.spatial_axes:
pairs = self.spatial_axes.copy()
pairs.remove(axis)
self.augment_axes.append([axis])
self.augment_axes.append(pairs)
else:
self.augment_axes = [[]]
def __call__(self, x, bmask):
# Normalize and prepare input (assumes input data format of 'channels_last').
x = (x - self.mean) / self.std
# Transpose to channels_first data format if required by model.
if self.model_data_format == 'channels_first':
x = tf.transpose(x, (3, 0, 1, 2))
bmask = tf.transpose(bmask, (3, 0, 1, 2))
x = tf.expand_dims(x, axis=0)
bmask = tf.expand_dims(bmask, axis=0)
# Initialize list of inputs to feed model.
y = []
# Create shape for intensity shifting.
shape = [1, 1, 1]
shape.insert(self.channel_axis, x.shape[self.channel_axis])
if self.channel_tta:
_, var = tf.nn.moments(x, axes=self.spatial_axes, keepdims=True)
std = tf.sqrt(var)
# Apply spatial augmentation.
for flip in self.augment_axes:
# Run inference on spatially augmented input.
aug = tf.reverse(x, axis=flip)
aug, *_ = self.model(aug, training=False, inference=True)
y.append(tf.reverse(aug, axis=flip))
for _ in range(self.channel_tta):
shift = tf.random.uniform(shape, -0.1, 0.1)
scale = tf.random.uniform(shape, 0.9, 1.1)
# Run inference on channel augmented input.
aug = (aug + shift * std) * scale
aug = self.model(aug, training=False, inference=True)
aug = tf.reverse(aug, axis=flip)
y.append(aug)
# Aggregate outputs.
y = tf.concat(y, axis=0)
y = tf.reduce_mean(y, axis=0, keepdims=True)
# Mask out zero-valued voxels.
y *= bmask
# Take the argmax to determine label.
# y = tf.argmax(y, axis=self.channel_axis, output_type=tf.int32)
# Transpose back to channels_last data format.
y = tf.squeeze(y, axis=0)
if self.model_data_format == 'channels_first':
y = tf.transpose(y, (1, 2, 3, 0))
return y
def pad_to_spatial_res(res, x, mask):
# Assumes that x and mask are channels_last data format.
res = tf.convert_to_tensor([res])
shape = tf.convert_to_tensor(x.shape[:-1], dtype=tf.int32)
shape = res - (shape % res)
pad = [[0, shape[0]],
[0, shape[1]],
[0, shape[2]],
[0, 0]]
orig_shape = list(x.shape[:-1])
x = tf.pad(x, pad, mode='CONSTANT', constant_values=0.0)
mask = tf.pad(mask, pad, mode='CONSTANT', constant_values=0.0)
return x, mask, orig_shape
def main(args):
in_ch = len(args.modalities)
# Initialize model(s) and load weights / preprocessing stats.
tumor_model = Model(**args.tumor_model_args)
tumor_crop_size = args.tumor_model_args['crop_size']
_ = tumor_model(tf.zeros(shape=[1] + tumor_crop_size + [in_ch] if args.tumor_model_args['data_format'] == 'channels_last' \
else [1, in_ch] + tumor_crop_size, dtype=tf.float32))
tumor_model.load_weights(os.path.join(args.tumor_model, 'chkpt.hdf5'))
tumor_mean = tf.convert_to_tensor(args.tumor_prepro['norm']['mean'], dtype=tf.float32)
tumor_std = tf.convert_to_tensor(args.tumor_prepro['norm']['std'], dtype=tf.float32)
if args.skull_strip:
skull_model = Model(**args.skull_model_args)
skull_crop_size = args.skull_model_args['crop_size']
_ = model(tf.zeros(shape=[1] + skull_crop_size + [in_ch] if args.skull_model_args['data_format'] == 'channels_last' \
else [1, in_ch] + skull_crop_size, dtype=tf.float32))
skull_model.load_weights(os.path.join(args.skull_model, 'chkpt.hdf5'))
skull_mean = tf.convert_to_tensor(args.skull_prepro['norm']['mean'], dtype=tf.float32)
skull_std = tf.convert_to_tensor(args.skull_prepro['norm']['std'], dtype=tf.float32)
# Initialize helper classes for inference and evaluation (optional).
dice_fn = DiceCoefficient(data_format='channels_last')
interpolator = Interpolator(args.modalities, order=args.order, mode=args.mode)
tumor_ttaugmentor = TestTimeAugmentor(
tumor_mean,
tumor_std,
tumor_model,
args.tumor_model_args['data_format'],
spatial_tta=args.spatial_tta,
channel_tta=args.channel_tta,
threshold=args.threshold)
if args.skull_strip:
skull_ttaugmentor = TestTimeAugmentor(
skull_mean,
skull_std,
skull_model,
args.skull_model_args['data_format'],
spatial_tta=args.spatial_tta,
channel_tta=args.channel_tta,
threshold=args.threshold)
for loc in args.in_locs:
for path in tqdm(glob.glob(os.path.join(loc, '*'))):
with tf.device(args.device):
# If data is labeled, extract label.
try:
file_card = glob.glob(os.path.join(path, '*' + args.truth + '*' + '.nii' + '*'))[0]
y = np.array(nib.load(file_card).dataobj).astype(np.float32)
y = tf.expand_dims(y, axis=-1)
except:
y = None
# Rescale and interpolate input image.
x, mask = interpolator(path)
# Strip MRI brain of skull and eye sockets.
if args.skull_strip:
x, pad_mask, pad = pad_to_spatial_res( # Pad to spatial resolution
args.skull_spatial_res,
x,
mask)
skull_mask = skull_ttaugmentor(x, pad_mask) # Inference with test time augmentation.
skull_mask = 1.0 - skull_mask # Convert skull positives into negatives.
x *= skull_mask # Mask out skull voxels.
x = tf.slice(x, # Remove padding.
[0, 0, 0, 0],
pad + [-1])
# Label brain tumor categories per voxel.
x, pad_mask, pad = pad_to_spatial_res( # Pad to spatial resolution.
args.tumor_spatial_res,
x,
mask)
tumor_mask = tumor_ttaugmentor(x, pad_mask) # Inference with test time augmentation.
tumor_mask = tf.slice(tumor_mask, # Remove padding.
[0, 0, 0, 0],
pad + [-1])
tumor_mask += 1 # Convert [0,1,2] to [1,2,3] for label consistency.
tumor_mask = tumor_mask.numpy()
np.place(tumor_mask, tumor_mask >= 3, [4]) # Replace label `3` with `4` for label consistency.
# Reverse interpolation and save as .nii.
y_pred = interpolator.reverse(tumor_mask, path)
# If label is available, score the prediction.
if y is not None:
macro, micro = dice_fn(y, y_pred)
print('{}. Macro: {ma: 1.4f}. Micro: {mi: 1.4f}'
.format(path.split('/')[-1], ma=macro, mi=micro), flush=True)
if __name__ == '__main__':
parser = TestArgParser()
args = parser.parse_args()
print('Test args: {}'.format(args))
main(args)
|
[
"numpy.mean",
"tensorflow.sqrt",
"os.path.join",
"args.TestArgParser",
"tensorflow.random.uniform",
"tensorflow.nn.moments",
"tensorflow.pad",
"tensorflow.concat",
"scipy.ndimage.zoom",
"numpy.place",
"numpy.max",
"tensorflow.squeeze",
"numpy.stack",
"nibabel.Nifti1Image",
"tensorflow.reverse",
"tensorflow.reduce_mean",
"tensorflow.transpose",
"tensorflow.expand_dims",
"nibabel.load",
"tensorflow.convert_to_tensor",
"model.Model",
"tensorflow.device",
"numpy.any",
"tensorflow.zeros",
"numpy.array",
"tensorflow.slice",
"util.DiceCoefficient"
] |
[((5779, 5806), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['[res]'], {}), '([res])\n', (5799, 5806), True, 'import tensorflow as tf\n'), ((5819, 5869), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['x.shape[:-1]'], {'dtype': 'tf.int32'}), '(x.shape[:-1], dtype=tf.int32)\n', (5839, 5869), True, 'import tensorflow as tf\n'), ((6044, 6096), 'tensorflow.pad', 'tf.pad', (['x', 'pad'], {'mode': '"""CONSTANT"""', 'constant_values': '(0.0)'}), "(x, pad, mode='CONSTANT', constant_values=0.0)\n", (6050, 6096), True, 'import tensorflow as tf\n'), ((6108, 6163), 'tensorflow.pad', 'tf.pad', (['mask', 'pad'], {'mode': '"""CONSTANT"""', 'constant_values': '(0.0)'}), "(mask, pad, mode='CONSTANT', constant_values=0.0)\n", (6114, 6163), True, 'import tensorflow as tf\n'), ((6336, 6366), 'model.Model', 'Model', ([], {}), '(**args.tumor_model_args)\n', (6341, 6366), False, 'from model import Model\n'), ((6734, 6807), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (["args.tumor_prepro['norm']['mean']"], {'dtype': 'tf.float32'}), "(args.tumor_prepro['norm']['mean'], dtype=tf.float32)\n", (6754, 6807), True, 'import tensorflow as tf\n'), ((6824, 6896), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (["args.tumor_prepro['norm']['std']"], {'dtype': 'tf.float32'}), "(args.tumor_prepro['norm']['std'], dtype=tf.float32)\n", (6844, 6896), True, 'import tensorflow as tf\n'), ((7608, 7652), 'util.DiceCoefficient', 'DiceCoefficient', ([], {'data_format': '"""channels_last"""'}), "(data_format='channels_last')\n", (7623, 7652), False, 'from util import DiceCoefficient\n'), ((11466, 11481), 'args.TestArgParser', 'TestArgParser', ([], {}), '()\n', (11479, 11481), False, 'from args import TestArgParser\n'), ((1200, 1224), 'numpy.stack', 'np.stack', (['image'], {'axis': '(-1)'}), '(image, axis=-1)\n', (1208, 1224), True, 'import numpy as np\n'), ((1247, 1288), 'numpy.mean', 'np.mean', (['pixdim'], {'axis': '(0)', 'dtype': 'np.float32'}), '(pixdim, axis=0, dtype=np.float32)\n', (1254, 1288), True, 'import numpy as np\n'), ((1311, 1352), 'numpy.mean', 'np.mean', (['affine'], {'axis': '(0)', 'dtype': 'np.float32'}), '(affine, axis=0, dtype=np.float32)\n', (1318, 1352), True, 'import numpy as np\n'), ((1417, 1448), 'numpy.any', 'np.any', (['(self.pixdim[:-1] != 1.0)'], {}), '(self.pixdim[:-1] != 1.0)\n', (1423, 1448), True, 'import numpy as np\n'), ((1805, 1842), 'numpy.max', 'np.max', (['image'], {'axis': '(-1)', 'keepdims': '(True)'}), '(image, axis=-1, keepdims=True)\n', (1811, 1842), True, 'import numpy as np\n'), ((2079, 2110), 'numpy.any', 'np.any', (['(self.pixdim[:-1] != 1.0)'], {}), '(self.pixdim[:-1] != 1.0)\n', (2085, 2110), True, 'import numpy as np\n'), ((4019, 4044), 'tensorflow.expand_dims', 'tf.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (4033, 4044), True, 'import tensorflow as tf\n'), ((4061, 4090), 'tensorflow.expand_dims', 'tf.expand_dims', (['bmask'], {'axis': '(0)'}), '(bmask, axis=0)\n', (4075, 4090), True, 'import tensorflow as tf\n'), ((5206, 5226), 'tensorflow.concat', 'tf.concat', (['y'], {'axis': '(0)'}), '(y, axis=0)\n', (5215, 5226), True, 'import tensorflow as tf\n'), ((5239, 5279), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['y'], {'axis': '(0)', 'keepdims': '(True)'}), '(y, axis=0, keepdims=True)\n', (5253, 5279), True, 'import tensorflow as tf\n'), ((5527, 5548), 'tensorflow.squeeze', 'tf.squeeze', (['y'], {'axis': '(0)'}), '(y, axis=0)\n', (5537, 5548), True, 'import tensorflow as tf\n'), ((6444, 6611), 'tensorflow.zeros', 'tf.zeros', ([], {'shape': "([1] + tumor_crop_size + [in_ch] if args.tumor_model_args['data_format'] ==\n 'channels_last' else [1, in_ch] + tumor_crop_size)", 'dtype': 'tf.float32'}), "(shape=[1] + tumor_crop_size + [in_ch] if args.tumor_model_args[\n 'data_format'] == 'channels_last' else [1, in_ch] + tumor_crop_size,\n dtype=tf.float32)\n", (6452, 6611), True, 'import tensorflow as tf\n'), ((6671, 6715), 'os.path.join', 'os.path.join', (['args.tumor_model', '"""chkpt.hdf5"""'], {}), "(args.tumor_model, 'chkpt.hdf5')\n", (6683, 6715), False, 'import os\n'), ((6945, 6975), 'model.Model', 'Model', ([], {}), '(**args.skull_model_args)\n', (6950, 6975), False, 'from model import Model\n'), ((7353, 7426), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (["args.skull_prepro['norm']['mean']"], {'dtype': 'tf.float32'}), "(args.skull_prepro['norm']['mean'], dtype=tf.float32)\n", (7373, 7426), True, 'import tensorflow as tf\n'), ((7447, 7519), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (["args.skull_prepro['norm']['std']"], {'dtype': 'tf.float32'}), "(args.skull_prepro['norm']['std'], dtype=tf.float32)\n", (7467, 7519), True, 'import tensorflow as tf\n'), ((770, 789), 'nibabel.load', 'nib.load', (['file_card'], {}), '(file_card)\n', (778, 789), True, 'import nibabel as nib\n'), ((1470, 1541), 'scipy.ndimage.zoom', 'zoom', (['image', '(self.pixdim[:-1] + [1.0])'], {'order': 'self.order', 'mode': 'self.mode'}), '(image, self.pixdim[:-1] + [1.0], order=self.order, mode=self.mode)\n', (1474, 1541), False, 'from scipy.ndimage import zoom\n'), ((1671, 1750), 'scipy.ndimage.zoom', 'zoom', (['image', '[1.0, 1.0, self.pixdim[-1], 1.0]'], {'order': 'self.order', 'mode': 'self.mode'}), '(image, [1.0, 1.0, self.pixdim[-1], 1.0], order=self.order, mode=self.mode)\n', (1675, 1750), False, 'from scipy.ndimage import zoom\n'), ((2133, 2203), 'scipy.ndimage.zoom', 'zoom', (['output', '(1.0 / self.pixdim[:-1])'], {'order': 'self.order', 'mode': 'self.mode'}), '(output, 1.0 / self.pixdim[:-1], order=self.order, mode=self.mode)\n', (2137, 2203), False, 'from scipy.ndimage import zoom\n'), ((2313, 2399), 'scipy.ndimage.zoom', 'zoom', (['output', '[1.0, 1.0, 1.0 / self.pixdim[-1]]'], {'order': 'self.order', 'mode': 'self.mode'}), '(output, [1.0, 1.0, 1.0 / self.pixdim[-1]], order=self.order, mode=self\n .mode)\n', (2317, 2399), False, 'from scipy.ndimage import zoom\n'), ((2434, 2470), 'nibabel.Nifti1Image', 'nib.Nifti1Image', (['output', 'self.affine'], {}), '(output, self.affine)\n', (2449, 2470), True, 'import nibabel as nib\n'), ((2492, 2522), 'os.path.join', 'os.path.join', (['path', '"""mask.nii"""'], {}), "(path, 'mask.nii')\n", (2504, 2522), False, 'import os\n'), ((3923, 3952), 'tensorflow.transpose', 'tf.transpose', (['x', '(3, 0, 1, 2)'], {}), '(x, (3, 0, 1, 2))\n', (3935, 3952), True, 'import tensorflow as tf\n'), ((3973, 4006), 'tensorflow.transpose', 'tf.transpose', (['bmask', '(3, 0, 1, 2)'], {}), '(bmask, (3, 0, 1, 2))\n', (3985, 4006), True, 'import tensorflow as tf\n'), ((4351, 4406), 'tensorflow.nn.moments', 'tf.nn.moments', (['x'], {'axes': 'self.spatial_axes', 'keepdims': '(True)'}), '(x, axes=self.spatial_axes, keepdims=True)\n', (4364, 4406), True, 'import tensorflow as tf\n'), ((4425, 4437), 'tensorflow.sqrt', 'tf.sqrt', (['var'], {}), '(var)\n', (4432, 4437), True, 'import tensorflow as tf\n'), ((4593, 4617), 'tensorflow.reverse', 'tf.reverse', (['x'], {'axis': 'flip'}), '(x, axis=flip)\n', (4603, 4617), True, 'import tensorflow as tf\n'), ((5620, 5649), 'tensorflow.transpose', 'tf.transpose', (['y', '(1, 2, 3, 0)'], {}), '(y, (1, 2, 3, 0))\n', (5632, 5649), True, 'import tensorflow as tf\n'), ((7055, 7222), 'tensorflow.zeros', 'tf.zeros', ([], {'shape': "([1] + skull_crop_size + [in_ch] if args.skull_model_args['data_format'] ==\n 'channels_last' else [1, in_ch] + skull_crop_size)", 'dtype': 'tf.float32'}), "(shape=[1] + skull_crop_size + [in_ch] if args.skull_model_args[\n 'data_format'] == 'channels_last' else [1, in_ch] + skull_crop_size,\n dtype=tf.float32)\n", (7063, 7222), True, 'import tensorflow as tf\n'), ((7286, 7330), 'os.path.join', 'os.path.join', (['args.skull_model', '"""chkpt.hdf5"""'], {}), "(args.skull_model, 'chkpt.hdf5')\n", (7298, 7330), False, 'import os\n'), ((4710, 4736), 'tensorflow.reverse', 'tf.reverse', (['aug'], {'axis': 'flip'}), '(aug, axis=flip)\n', (4720, 4736), True, 'import tensorflow as tf\n'), ((4809, 4844), 'tensorflow.random.uniform', 'tf.random.uniform', (['shape', '(-0.1)', '(0.1)'], {}), '(shape, -0.1, 0.1)\n', (4826, 4844), True, 'import tensorflow as tf\n'), ((4869, 4903), 'tensorflow.random.uniform', 'tf.random.uniform', (['shape', '(0.9)', '(1.1)'], {}), '(shape, 0.9, 1.1)\n', (4886, 4903), True, 'import tensorflow as tf\n'), ((5107, 5133), 'tensorflow.reverse', 'tf.reverse', (['aug'], {'axis': 'flip'}), '(aug, axis=flip)\n', (5117, 5133), True, 'import tensorflow as tf\n'), ((8712, 8734), 'os.path.join', 'os.path.join', (['loc', '"""*"""'], {}), "(loc, '*')\n", (8724, 8734), False, 'import os\n'), ((8755, 8777), 'tensorflow.device', 'tf.device', (['args.device'], {}), '(args.device)\n', (8764, 8777), True, 'import tensorflow as tf\n'), ((10527, 10573), 'tensorflow.slice', 'tf.slice', (['tumor_mask', '[0, 0, 0, 0]', '(pad + [-1])'], {}), '(tumor_mask, [0, 0, 0, 0], pad + [-1])\n', (10535, 10573), True, 'import tensorflow as tf\n'), ((10870, 10912), 'numpy.place', 'np.place', (['tumor_mask', '(tumor_mask >= 3)', '[4]'], {}), '(tumor_mask, tumor_mask >= 3, [4])\n', (10878, 10912), True, 'import numpy as np\n'), ((696, 747), 'os.path.join', 'os.path.join', (['path', "('*' + name + '*' + '.nii' + '*')"], {}), "(path, '*' + name + '*' + '.nii' + '*')\n", (708, 747), False, 'import os\n'), ((9062, 9088), 'tensorflow.expand_dims', 'tf.expand_dims', (['y'], {'axis': '(-1)'}), '(y, axis=-1)\n', (9076, 9088), True, 'import tensorflow as tf\n'), ((9926, 9963), 'tensorflow.slice', 'tf.slice', (['x', '[0, 0, 0, 0]', '(pad + [-1])'], {}), '(x, [0, 0, 0, 0], pad + [-1])\n', (9934, 9963), True, 'import tensorflow as tf\n'), ((816, 837), 'numpy.array', 'np.array', (['img.dataobj'], {}), '(img.dataobj)\n', (824, 837), True, 'import numpy as np\n'), ((1120, 1150), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 0.0, 1.0])\n', (1128, 1150), True, 'import numpy as np\n'), ((8895, 8952), 'os.path.join', 'os.path.join', (['path', "('*' + args.truth + '*' + '.nii' + '*')"], {}), "(path, '*' + args.truth + '*' + '.nii' + '*')\n", (8907, 8952), False, 'import os\n'), ((8990, 9009), 'nibabel.load', 'nib.load', (['file_card'], {}), '(file_card)\n', (8998, 9009), True, 'import nibabel as nib\n')]
|
"""
Created on Apr 14, 2017
@author: sgoldsmith
Copyright (c) <NAME>
All rights reserved.
"""
import os, cv2, numpy, detectbase
class motiondet(detectbase.detectbase):
"""Motion detection image processor.
Uses moving average to determine change percent.
"""
def __init__(self, appConfig, image, logger):
"""Init object"""
self.appConfig = appConfig
# Read ignore mask image if set
if appConfig.motion['ignoreMask'] != "":
self.maskImg = cv2.imread(os.path.expanduser(appConfig.motion['ignoreMask']), 0)
logger.info("Using ignore mask: %s" % appConfig.motion['ignoreMask'])
else:
self.maskImg = None
self.movingAvgImg = None
# Set frame information
self.frameInfo(image, appConfig)
logger.info("Image resized to: %dx%d" % (self.frameResizeWidth, self.frameResizeHeight))
self.motionDetected = False
self.logger = logger
def contours(self, image):
"""Return contours"""
# The background (bright) dilates around the black regions of frame
image = cv2.dilate(image, None, iterations=self.appConfig.motion['dilateAmount'])
# The bright areas of the image (the background, apparently), get thinner, whereas the dark zones bigger
image = cv2.erode(image, None, iterations=self.appConfig.motion['erodeAmount']);
# Find contours
contours, _ = cv2.findContours(image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:]
# Add objects with motion
movementLocations = []
for contour in contours:
rect = cv2.boundingRect(contour)
movementLocations.append(rect)
return movementLocations
def detect(self, image, timestamp):
"""Detect motion"""
# Resize image if not the same size as the original
if self.frameResizeWidth != self.frameWidth:
resizeImg = cv2.resize(image, (self.frameResizeWidth, self.frameResizeHeight), interpolation=cv2.INTER_NEAREST)
else:
resizeImg = image
movementLocationsFiltered = []
# Generate work image by blurring
workImg = cv2.blur(resizeImg, self.appConfig.motion['kSize'])
# Generate moving average image if needed
if self.movingAvgImg is None:
self.movingAvgImg = numpy.float32(workImg)
# Generate moving average image
cv2.accumulateWeighted(workImg, self.movingAvgImg, self.appConfig.motion['alpha'])
diffImg = cv2.absdiff(workImg, cv2.convertScaleAbs(self.movingAvgImg))
# Convert to grayscale
grayImg = cv2.cvtColor(diffImg, cv2.COLOR_BGR2GRAY)
# Convert to BW
ret, bwImg = cv2.threshold(grayImg, self.appConfig.motion['blackThreshold'], 255, cv2.THRESH_BINARY)
# Apply ignore mask
if self.maskImg is None:
motionImg = bwImg
else:
motionImg = numpy.bitwise_and(bwImg, self.maskImg)
# Total number of changed motion pixels
height, width, channels = resizeImg.shape
motionPercent = 100.0 * cv2.countNonZero(motionImg) / (width * height)
# Detect if camera is adjusting and reset reference if more than threshold
if motionPercent > self.appConfig.motion['maxChange']:
self.movingAvgImg = numpy.float32(workImg)
self.logger.info("%4.2f%% motion greater than maximum of %4.2f%%, image reset" % (motionPercent, self.appConfig.motion['maxChange']))
# Analyze entire image even if ignore mask used, otherwise the ROI could be partially truncated
movementLocations = self.contours(bwImg)
# Filter out inside rectangles
for ri, r in enumerate(movementLocations):
for qi, q in enumerate(movementLocations):
if ri != qi and self.inside(r, q):
break
else:
rx, ry, rw, rh = r
regPercent = ((rw * rh) / (width * height)) * 100.0
# Toss rectangles >= maxChange percent of total frame
if regPercent < self.appConfig.motion['maxChange'] :
movementLocationsFiltered.append(r)
if self.appConfig.camera['mark']:
# Draw rectangle around found objects
self.markRectSize(image, movementLocationsFiltered, (0, 255, 0), 2)
# Motion start stop events
if self.motionDetected:
if motionPercent <= self.appConfig.motion['stopThreshold']:
self.motionDetected = False
# Let listening objects know motion has stopped
self.notifyObservers(event=self.appConfig.motionStop, motionPercent=motionPercent, timestamp=timestamp)
# Threshold to trigger motionStart
elif motionPercent > self.appConfig.motion['startThreshold'] and motionPercent < self.appConfig.motion['maxChange']:
self.motionDetected = True
# Let listening objects know motion has started
self.notifyObservers(event=self.appConfig.motionStart, motionPercent=motionPercent, timestamp=timestamp)
return resizeImg, grayImg, bwImg, motionPercent, movementLocationsFiltered
|
[
"cv2.resize",
"cv2.dilate",
"cv2.cvtColor",
"cv2.accumulateWeighted",
"cv2.threshold",
"numpy.float32",
"cv2.countNonZero",
"cv2.blur",
"cv2.convertScaleAbs",
"numpy.bitwise_and",
"cv2.erode",
"cv2.boundingRect",
"os.path.expanduser",
"cv2.findContours"
] |
[((1149, 1222), 'cv2.dilate', 'cv2.dilate', (['image', 'None'], {'iterations': "self.appConfig.motion['dilateAmount']"}), "(image, None, iterations=self.appConfig.motion['dilateAmount'])\n", (1159, 1222), False, 'import os, cv2, numpy, detectbase\n'), ((1352, 1423), 'cv2.erode', 'cv2.erode', (['image', 'None'], {'iterations': "self.appConfig.motion['erodeAmount']"}), "(image, None, iterations=self.appConfig.motion['erodeAmount'])\n", (1361, 1423), False, 'import os, cv2, numpy, detectbase\n'), ((2213, 2264), 'cv2.blur', 'cv2.blur', (['resizeImg', "self.appConfig.motion['kSize']"], {}), "(resizeImg, self.appConfig.motion['kSize'])\n", (2221, 2264), False, 'import os, cv2, numpy, detectbase\n'), ((2456, 2543), 'cv2.accumulateWeighted', 'cv2.accumulateWeighted', (['workImg', 'self.movingAvgImg', "self.appConfig.motion['alpha']"], {}), "(workImg, self.movingAvgImg, self.appConfig.motion[\n 'alpha'])\n", (2478, 2543), False, 'import os, cv2, numpy, detectbase\n'), ((2667, 2708), 'cv2.cvtColor', 'cv2.cvtColor', (['diffImg', 'cv2.COLOR_BGR2GRAY'], {}), '(diffImg, cv2.COLOR_BGR2GRAY)\n', (2679, 2708), False, 'import os, cv2, numpy, detectbase\n'), ((2754, 2846), 'cv2.threshold', 'cv2.threshold', (['grayImg', "self.appConfig.motion['blackThreshold']", '(255)', 'cv2.THRESH_BINARY'], {}), "(grayImg, self.appConfig.motion['blackThreshold'], 255, cv2.\n THRESH_BINARY)\n", (2767, 2846), False, 'import os, cv2, numpy, detectbase\n'), ((1472, 1535), 'cv2.findContours', 'cv2.findContours', (['image', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (1488, 1535), False, 'import os, cv2, numpy, detectbase\n'), ((1658, 1683), 'cv2.boundingRect', 'cv2.boundingRect', (['contour'], {}), '(contour)\n', (1674, 1683), False, 'import os, cv2, numpy, detectbase\n'), ((1970, 2073), 'cv2.resize', 'cv2.resize', (['image', '(self.frameResizeWidth, self.frameResizeHeight)'], {'interpolation': 'cv2.INTER_NEAREST'}), '(image, (self.frameResizeWidth, self.frameResizeHeight),\n interpolation=cv2.INTER_NEAREST)\n', (1980, 2073), False, 'import os, cv2, numpy, detectbase\n'), ((2385, 2407), 'numpy.float32', 'numpy.float32', (['workImg'], {}), '(workImg)\n', (2398, 2407), False, 'import os, cv2, numpy, detectbase\n'), ((2578, 2616), 'cv2.convertScaleAbs', 'cv2.convertScaleAbs', (['self.movingAvgImg'], {}), '(self.movingAvgImg)\n', (2597, 2616), False, 'import os, cv2, numpy, detectbase\n'), ((2971, 3009), 'numpy.bitwise_and', 'numpy.bitwise_and', (['bwImg', 'self.maskImg'], {}), '(bwImg, self.maskImg)\n', (2988, 3009), False, 'import os, cv2, numpy, detectbase\n'), ((3370, 3392), 'numpy.float32', 'numpy.float32', (['workImg'], {}), '(workImg)\n', (3383, 3392), False, 'import os, cv2, numpy, detectbase\n'), ((529, 579), 'os.path.expanduser', 'os.path.expanduser', (["appConfig.motion['ignoreMask']"], {}), "(appConfig.motion['ignoreMask'])\n", (547, 579), False, 'import os, cv2, numpy, detectbase\n'), ((3145, 3172), 'cv2.countNonZero', 'cv2.countNonZero', (['motionImg'], {}), '(motionImg)\n', (3161, 3172), False, 'import os, cv2, numpy, detectbase\n')]
|
import numpy as np
from sklearn.cluster import KMeans
from tqdm import tqdm
import matplotlib.pyplot as plt
from preliminaries.embedding import aggregateApiSequences
from utils.file import loadJson, dumpIterable, dumpJson
from utils.manager import PathManager
from baselines.alignment import apiCluster
from utils.timer import StepTimer
from utils.magic import sample, magicSeed, nRandom
from utils.stat import calBeliefeInterval
k = 10
n = 10
qk = 5
N = 20
def findOptK(dict_path, k_range=(2,50)):
mat = np.load(dict_path)
wss = []
for k_ in tqdm(range(k_range[0],k_range[1]+1)):
kmeans = KMeans(n_clusters=k_).fit(mat)
wss.append(kmeans.inertia_)
kaxis = np.arange(k_range[0],k_range[1]+1)
plt.plot(kaxis, wss)
plt.show()
#####################################################
# 将原json文件中的序列根据聚类结果替换为类簇序列,同时使用一个
# 最大长度截断,并保存为npy文件
#####################################################
def makeClusteredData(json_path, cluster_path, word_map_path, dump_path, max_len=1000):
word_map = loadJson(word_map_path)
cluster_map = loadJson(cluster_path)
seqs = aggregateApiSequences(json_path, is_class_dir=True)
mat = []
for seq in seqs:
seq = seq[:max_len]
s = []
for idx in seq:
s.append(cluster_map[str(word_map[idx])])
while len(s) < max_len:
s.append(-1)
mat.append(s)
np.save(dump_path, np.array(mat))
#####################################################
# 给定一个类别中的所有序列,生成该类别的转换矩阵
#####################################################
def makeTranMatrix(seqs, n_cluster, maxlen=1000):
matrix = np.zeros((n_cluster,n_cluster))
for seq in seqs:
for i in range(0,len(seq)-1):
if seq[i+1] == -1:
break
x = seq[i]
y = seq[i+1]
matrix[x][y] += 1
row_sum = matrix.sum(0)
mask = row_sum==0
np.putmask(row_sum,mask,1) # 将行和为0的位置置为1,防止除0错误
normalized_matrix = (matrix.T / row_sum).T
return normalized_matrix
##################################################
# 根据生成的转换矩阵组,根据最大转换值将序列转换为组内类别的
# 序列
##################################################
def traverse(seq, matrices, maxlen=1000):
res_seq = []
for i in range(0, maxlen-1):
if seq[i] == -1:
res_seq.append(-1)
continue
prob = matrices[:,seq[i],seq[i+1]]
res_seq.append(np.argmax(prob)) # 将所有类中该i->i+1状态转移最大的类下标加入
return res_seq
#############################################
# 根据输入序列,在多个类的转换矩阵中进行累计加分,
# 返回该序列在所有类的类转换矩阵中的总得分
#############################################
def scoreSeqOnTranMats(seq, tran_mats):
score = np.zeros((len(tran_mats)))
for i in range(len(seq)-1):
score += tran_mats[:,seq[i],seq[i+1]]
return score
def scoreMarkovEpisode(clustered_data_path, epoch=300, n_cluster=10, maxlen=1000, verbose=True):
acc_hist = []
matrix = np.load(clustered_data_path)
class_pool = list(range(len(matrix) // N))
item_pool = set(range(N))
tm = StepTimer(epoch)
tm.begin()
for i in range(epoch):
if verbose:
print("Epoch", i)
supports = []
queries = []
task_seed = magicSeed()
sampling_seed = magicSeed()
class_seeds = nRandom(n, sampling_seed)
label_space = sample(class_pool, n, task_seed)
for cls,cseed in zip(label_space, class_seeds):
support_idxes = sample(item_pool, k, cseed, return_set=True)
query_idxes = sample(item_pool.difference(support_idxes), qk, cseed, return_set=True)
support_idxes = np.array(list(support_idxes)) + N*cls
query_idxes = np.array(list(query_idxes)) + N*cls
supports += [matrix[i] for i in support_idxes]
queries += [matrix[i] for i in query_idxes]
supports = np.array(supports).reshape(n,k,-1)
queries = np.array(queries).reshape(n,qk,-1)
# 利用原数据的类簇转换序列,生成每个类的类簇转换矩阵
cluster_tran_mats = []
for cls in range(n):
cluster_tran_mats.append(makeTranMatrix(supports[cls], n_cluster=n_cluster,maxlen=maxlen))
cluster_tran_mats = np.stack(cluster_tran_mats, axis=0)
# 利用每个类的类簇转换矩阵,根据其中状态转移的最大值,转换为类别之间的转换序列
class_tran_seqs = []
for cls in range(n):
for support in supports[cls]:
class_tran_seqs.append(traverse(support, cluster_tran_mats, maxlen))
class_tran_seqs = np.stack(class_tran_seqs, axis=0).reshape(n,k,-1)
# 根据类别之间的转换序列,生成每个类的类别转换矩阵
class_tran_mats = []
for cls in range(n):
# 由于是类别之间的转换序列,因此类簇数量等于类别数量
class_tran_mats.append(makeTranMatrix(class_tran_seqs[cls], n_cluster=n, maxlen=maxlen))
class_tran_mats = np.stack(class_tran_mats, axis=0).reshape(n,n,n)
query_class_tran_seqs = []
for cls in range(n):
for query in queries[cls]:
query_class_tran_seqs.append(traverse(query, cluster_tran_mats, maxlen))
acc_count = 0
for qi,query in enumerate(query_class_tran_seqs):
# 返回的总分数最大的一个即为预测结果的类别
predict = np.argmax(scoreSeqOnTranMats(query, class_tran_mats))
acc_count += (predict == (qi//qk))
epoch_acc = acc_count / (qk*n)
if verbose:
print("Acc:", epoch_acc)
tm.step(prt=verbose)
acc_hist.append(epoch_acc)
if verbose:
print("\n")
print("*"*50)
print("Avg acc:", sum(acc_hist)/epoch)
print("95%% belief interval:", calBeliefeInterval(acc_hist))
print("Total consuming time:", tm.step(prt=False,end=True))
return sum(acc_hist)/epoch
def gridSearch(c_values, k_values, per_epoch=200): # 网格搜索聚类类簇数量和截断长度
re = {}
for ci,c_num in enumerate(c_values):
re[c_num] = {}
for ki,k_num in enumerate(k_values):
print(ci*len(k_values)+ki+1, "/", len(c_values)*len(k_values))
mng = PathManager("virushare-20-original")
# findOptK(mng.WordEmbedMatrix(), k_range=(2,100))
apiCluster(mng.WordEmbedMatrix(), mng.DataRoot() + "MarkovClusterMapping.json", cluster_num=c_num)
makeClusteredData(json_path=mng.Folder(),
cluster_path=mng.DataRoot() + "MarkovClusterMapping.json",
word_map_path=mng.WordIndexMap(),
dump_path=mng.DataRoot() + "MarkovClusteredData.npy",
max_len=k_num)
a = scoreMarkovEpisode(clustered_data_path=mng.DataRoot() + "MarkovClusteredData.npy",
epoch=per_epoch,
n_cluster=c_num,
maxlen=k_num,
verbose=False)
re[c_num][k_num] = a
return re
def extractBestParam(re):
best_c = None
best_k = None
best_acc = -1
for ck, cv in re.items():
for kk, kv in cv.items():
if kv > best_acc:
best_acc = kv
best_c = ck
best_k = kk
return best_c, best_k
if __name__ == "__main__":
epoch = 5000
seq_len = 50
n_cluster = 30
n_range = (15,30)
mng = PathManager("HKS-api")
# # # findOptK(mng.WordEmbedMatrix(), k_range=(2,100))
# apiCluster(mng.WordEmbedMatrix(), mng.DataRoot()+"MarkovClusterMapping.json", cluster_num=n_cluster)
# makeClusteredData(json_path=mng.Folder(),
# cluster_path=mng.DataRoot()+"MarkovClusterMapping.json",
# word_map_path=mng.WordIndexMap(),
# dump_path=mng.DataRozot()+"MarkovClusteredData.npy",
# max_len=seq_len)
# scoreMarkovEpisode(clustered_data_path=mng.DataRoot()+"MarkovClusteredData.npy",
# epoch=2000,
# n_cluster=n_cluster,
# maxlen=seq_len)
# re = gridSearch(c_values=list(range(*n_range)),
# k_values=[i*50 for i in range(1,11)],
# per_epoch=1000)
# dumpJson(re, mng.DataRoot()+"GSs/GridSearchResult-%dshot-%dway-virushare20.json"%(k,n))
# re = loadJson(mng.DataRoot()+"GSs/GridSearchResult-%dshot-%dway-virushare20.json"%(k,n))
# n_cluster, seq_len = extractBestParam(re)
# n_cluster = int(n_cluster)
# seq_len = int(seq_len)
apiCluster(mng.WordEmbedMatrix(), mng.DataRoot()+"MarkovClusterMapping.json", cluster_num=n_cluster)
makeClusteredData(json_path=mng.Folder(),
cluster_path=mng.DataRoot()+"MarkovClusterMapping.json",
word_map_path=mng.WordIndexMap(),
dump_path=mng.DataRoot()+"MarkovClusteredData.npy",
max_len=seq_len)
scoreMarkovEpisode(clustered_data_path=mng.DataRoot()+"MarkovClusteredData.npy",
epoch=epoch,
n_cluster=n_cluster,
maxlen=seq_len)
|
[
"numpy.stack",
"numpy.load",
"utils.stat.calBeliefeInterval",
"matplotlib.pyplot.show",
"utils.timer.StepTimer",
"matplotlib.pyplot.plot",
"utils.manager.PathManager",
"utils.magic.nRandom",
"numpy.argmax",
"sklearn.cluster.KMeans",
"numpy.zeros",
"utils.magic.magicSeed",
"numpy.arange",
"preliminaries.embedding.aggregateApiSequences",
"numpy.array",
"numpy.putmask",
"utils.magic.sample",
"utils.file.loadJson"
] |
[((513, 531), 'numpy.load', 'np.load', (['dict_path'], {}), '(dict_path)\n', (520, 531), True, 'import numpy as np\n'), ((695, 732), 'numpy.arange', 'np.arange', (['k_range[0]', '(k_range[1] + 1)'], {}), '(k_range[0], k_range[1] + 1)\n', (704, 732), True, 'import numpy as np\n'), ((735, 755), 'matplotlib.pyplot.plot', 'plt.plot', (['kaxis', 'wss'], {}), '(kaxis, wss)\n', (743, 755), True, 'import matplotlib.pyplot as plt\n'), ((760, 770), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (768, 770), True, 'import matplotlib.pyplot as plt\n'), ((1037, 1060), 'utils.file.loadJson', 'loadJson', (['word_map_path'], {}), '(word_map_path)\n', (1045, 1060), False, 'from utils.file import loadJson, dumpIterable, dumpJson\n'), ((1079, 1101), 'utils.file.loadJson', 'loadJson', (['cluster_path'], {}), '(cluster_path)\n', (1087, 1101), False, 'from utils.file import loadJson, dumpIterable, dumpJson\n'), ((1113, 1164), 'preliminaries.embedding.aggregateApiSequences', 'aggregateApiSequences', (['json_path'], {'is_class_dir': '(True)'}), '(json_path, is_class_dir=True)\n', (1134, 1164), False, 'from preliminaries.embedding import aggregateApiSequences\n'), ((1639, 1671), 'numpy.zeros', 'np.zeros', (['(n_cluster, n_cluster)'], {}), '((n_cluster, n_cluster))\n', (1647, 1671), True, 'import numpy as np\n'), ((1917, 1945), 'numpy.putmask', 'np.putmask', (['row_sum', 'mask', '(1)'], {}), '(row_sum, mask, 1)\n', (1927, 1945), True, 'import numpy as np\n'), ((2947, 2975), 'numpy.load', 'np.load', (['clustered_data_path'], {}), '(clustered_data_path)\n', (2954, 2975), True, 'import numpy as np\n'), ((3062, 3078), 'utils.timer.StepTimer', 'StepTimer', (['epoch'], {}), '(epoch)\n', (3071, 3078), False, 'from utils.timer import StepTimer\n'), ((7312, 7334), 'utils.manager.PathManager', 'PathManager', (['"""HKS-api"""'], {}), "('HKS-api')\n", (7323, 7334), False, 'from utils.manager import PathManager\n'), ((1425, 1438), 'numpy.array', 'np.array', (['mat'], {}), '(mat)\n', (1433, 1438), True, 'import numpy as np\n'), ((3236, 3247), 'utils.magic.magicSeed', 'magicSeed', ([], {}), '()\n', (3245, 3247), False, 'from utils.magic import sample, magicSeed, nRandom\n'), ((3272, 3283), 'utils.magic.magicSeed', 'magicSeed', ([], {}), '()\n', (3281, 3283), False, 'from utils.magic import sample, magicSeed, nRandom\n'), ((3306, 3331), 'utils.magic.nRandom', 'nRandom', (['n', 'sampling_seed'], {}), '(n, sampling_seed)\n', (3313, 3331), False, 'from utils.magic import sample, magicSeed, nRandom\n'), ((3355, 3387), 'utils.magic.sample', 'sample', (['class_pool', 'n', 'task_seed'], {}), '(class_pool, n, task_seed)\n', (3361, 3387), False, 'from utils.magic import sample, magicSeed, nRandom\n'), ((4197, 4232), 'numpy.stack', 'np.stack', (['cluster_tran_mats'], {'axis': '(0)'}), '(cluster_tran_mats, axis=0)\n', (4205, 4232), True, 'import numpy as np\n'), ((2424, 2439), 'numpy.argmax', 'np.argmax', (['prob'], {}), '(prob)\n', (2433, 2439), True, 'import numpy as np\n'), ((3473, 3517), 'utils.magic.sample', 'sample', (['item_pool', 'k', 'cseed'], {'return_set': '(True)'}), '(item_pool, k, cseed, return_set=True)\n', (3479, 3517), False, 'from utils.magic import sample, magicSeed, nRandom\n'), ((5592, 5620), 'utils.stat.calBeliefeInterval', 'calBeliefeInterval', (['acc_hist'], {}), '(acc_hist)\n', (5610, 5620), False, 'from utils.stat import calBeliefeInterval\n'), ((6011, 6047), 'utils.manager.PathManager', 'PathManager', (['"""virushare-20-original"""'], {}), "('virushare-20-original')\n", (6022, 6047), False, 'from utils.manager import PathManager\n'), ((615, 636), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_clusters': 'k_'}), '(n_clusters=k_)\n', (621, 636), False, 'from sklearn.cluster import KMeans\n'), ((3881, 3899), 'numpy.array', 'np.array', (['supports'], {}), '(supports)\n', (3889, 3899), True, 'import numpy as np\n'), ((3934, 3951), 'numpy.array', 'np.array', (['queries'], {}), '(queries)\n', (3942, 3951), True, 'import numpy as np\n'), ((4494, 4527), 'numpy.stack', 'np.stack', (['class_tran_seqs'], {'axis': '(0)'}), '(class_tran_seqs, axis=0)\n', (4502, 4527), True, 'import numpy as np\n'), ((4805, 4838), 'numpy.stack', 'np.stack', (['class_tran_mats'], {'axis': '(0)'}), '(class_tran_mats, axis=0)\n', (4813, 4838), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""
This script works for foam phantom.
"""
import numpy as np
import glob
import dxchange
import matplotlib.pyplot as plt
import scipy.interpolate
import tomopy
from scipy.interpolate import Rbf
from mpl_toolkits.mplot3d.axes3d import Axes3D
from matplotlib import cm
import matplotlib
from project import *
from simulator import *
from sinogram import *
from instrument import *
from sample import *
np.set_printoptions(threshold='infinite')
if __name__ == '__main__':
pad_length = 1024
sino_width = 2048
half_sino_width = int(sino_width / 2)
# scanned_sino_width = 2048 + 1024
trunc_ratio_ls = np.arange(0.1, 1.1, 0.1)
gamma_ps = 0.85
gamma_os = 0.85
fprime_ls = (sino_width * trunc_ratio_ls).astype(int)
mean_count_tomosaic_ls = []
mean_count_local_ls = []
dose_integral_tomosaic_ls = []
dose_integral_local_ls = []
# create reference recon
if os.path.exists(os.path.join('data', 'ref_recon.tiff')):
ref_recon = dxchange.read_tiff(os.path.join('data', 'ref_recon.tiff'))
else:
sino = dxchange.read_tiff(os.path.join('data', 'foam_sino_pad.tiff'))
sino = -np.log(sino)
sino = sino[:, np.newaxis, :]
theta = tomopy.angles(sino.shape[0])
ref_recon = tomopy.recon(sino, theta, center=pad_length+half_sino_width, algorithm='gridrec')
dxchange.write_tiff(ref_recon, 'data/ref_recon', overwrite=True)
ref_recon = np.squeeze(ref_recon)
try:
# raise Exception
mean_count_tomosaic_ls = np.load(os.path.join('data', 'foam_eff_ratio', 'mean_count_tomosaic_ls.npy'))
mean_count_local_ls = np.load(os.path.join('data', 'foam_eff_ratio', 'mean_count_local_ls.npy'))
dose_integral_tomosaic_ls = np.load(os.path.join('data', 'foam_eff_ratio', 'dose_integral_tomosaic_ls.npy'))
dose_integral_local_ls = np.load(os.path.join('data', 'foam_eff_ratio', 'dose_integral_local_ls.npy'))
except:
# do things for PS
for i, fprime in enumerate(fprime_ls):
dirname = 'foam_trunc_{:d}'.format(int(100 * trunc_ratio_ls[i]))
f = int(float(fprime) / gamma_ps)
f2 = int(f / 2)
n_scan = get_nscan_ps(f, gamma_ps, sino_width)
if n_scan == 1:
stage_list = [pad_length + half_sino_width]
else:
stage_begin = pad_length + f2
stage_list = np.arange(stage_begin, stage_begin + fprime * (n_scan - 1) + 1, fprime, dtype=int)
inst = Instrument(f)
inst.add_stage_positions(stage_list)
prj_tomosaic = Project()
prj_tomosaic.add_simuators(os.path.join('data', 'foam_sino_pad.tiff'),
inst,
center=pad_length + half_sino_width,
pixel_size=1)
prj_tomosaic.process_all_tomosaic(save_path=os.path.join('data', 'foam_eff_ratio', dirname),
recon=False)
mean_count = np.mean(prj_tomosaic.simulators[0].sample_counter_tomosaic)
mean_count_tomosaic_ls.append(mean_count)
dose_integral_tomosaic_ls.append(prj_tomosaic.simulators[0].sample_sum_tomosaic)
dxchange.write_tiff(prj_tomosaic.simulators[0].sample_counter_tomosaic, os.path.join('data', 'foam_eff_ratio', dirname, 'sampling_ps'), dtype='float32', overwrite=True)
print('f\' = {}, f = {}, t = {}, n_f = {}, mean_count = {}, dose = {}'.format(fprime, f, trunc_ratio_ls[i], n_scan, mean_count, prj_tomosaic.simulators[0].sample_sum_tomosaic))
print('=====================================')
# do things for OS
for i, fprime in enumerate(fprime_ls):
dirname = 'foam_trunc_{:d}'.format(int(100 * trunc_ratio_ls[i]))
f = int(float(fprime) / gamma_os)
f2 = int(f / 2)
n_scan = get_nscan_os(f, fprime, sino_width)
if n_scan == 1:
center_list = [(pad_length + half_sino_width, pad_length + half_sino_width)]
else:
stage_begin = pad_length + fprime / np.sqrt(8)
stage_list = np.arange(stage_begin, stage_begin + fprime / np.sqrt(2) * (n_scan - 1) + 1, fprime / np.sqrt(2), dtype=int)
center_list = [(y, x) for y in stage_list for x in stage_list]
center_list_excl = []
for y, x in center_list:
if np.linalg.norm(np.array([y, x]) - np.array([pad_length + half_sino_width, pad_length + half_sino_width])) > half_sino_width + fprime / 2:
# print('({}, {}) skipped because it is too far.'.format(y, x))
pass
else:
center_list_excl.append((y, x))
inst = Instrument(f)
print(center_list_excl)
inst.add_center_positions(center_list_excl)
prj_local = Project()
prj_local.add_simuators(os.path.join('data', 'foam_sino_pad.tiff'),
inst,
center=pad_length + half_sino_width,
pixel_size=1)
prj_local.process_all_local(mask_ratio=gamma_os,
save_path=os.path.join('data', 'foam_eff_ratio', dirname),
ref_fname=os.path.join('data', 'ref_recon.tiff'),
allow_read=False,
offset_intensity=True,
recon=False)
mean_count = np.mean(prj_local.simulators[0].sample_counter_local)
mean_count_local_ls.append(mean_count)
dose_integral_local_ls.append(prj_local.simulators[0].sample_sum_local)
dxchange.write_tiff(prj_local.simulators[0].sample_counter_local, os.path.join('data', 'foam_eff_ratio', dirname, 'sampling_os'), dtype='float32', overwrite=True)
print('f\' = {}, f = {}, t = {}, n_f = {}, mean_count = {}, dose = {}'.format(fprime, f, trunc_ratio_ls[i], n_scan, mean_count, prj_local.simulators[0].sample_sum_local))
mean_count_tomosaic_ls = np.array(mean_count_tomosaic_ls)
mean_count_local_ls = np.array(mean_count_local_ls)
dose_integral_tomosaic_ls = np.array(dose_integral_tomosaic_ls)
dose_integral_local_ls = np.array(dose_integral_local_ls)
# save
np.save(os.path.join('data', 'foam_eff_ratio', 'mean_count_tomosaic_ls'), mean_count_tomosaic_ls)
np.save(os.path.join('data', 'foam_eff_ratio', 'mean_count_local_ls'), mean_count_local_ls)
np.save(os.path.join('data', 'foam_eff_ratio', 'dose_integral_tomosaic_ls'), dose_integral_tomosaic_ls)
np.save(os.path.join('data', 'foam_eff_ratio', 'dose_integral_local_ls'), dose_integral_local_ls)
print(mean_count_tomosaic_ls)
print(mean_count_local_ls)
print(dose_integral_tomosaic_ls)
print(dose_integral_local_ls)
# x for tomosaic; y for local
comb_pts = np.array([(x, y) for x in trunc_ratio_ls for y in trunc_ratio_ls])
area_ratio = np.array([float(x) / y for x in mean_count_tomosaic_ls for y in mean_count_local_ls])
dose_ratio = np.array([float(x) / y for x in dose_integral_tomosaic_ls for y in dose_integral_local_ls])
x = comb_pts[:, 0]
y = comb_pts[:, 1]
# print eff_ratio.reshape([len(trunc_ratio_tomosaic_ls), len(trunc_ratio_local_ls)])
t = np.linspace(0.1, 1.0, 50)
xx, yy = np.meshgrid(t, t)
matplotlib.rcParams['pdf.fonttype'] = 'truetype'
fontProperties = {'family': 'serif', 'serif': ['Times New Roman'], 'weight': 'normal', 'size': 9}
plt.rc('font', **fontProperties)
fig = plt.figure(figsize=(8, 7))
zz = scipy.interpolate.griddata(comb_pts, dose_ratio, (xx, yy), method='linear')
# zz = dose_ratio.reshape(xx.shape)
ax = fig.add_subplot(1, 1, 1, projection='3d')
surf = ax.plot_surface(xx, yy, zz, cmap=cm.jet,
linewidth=1, antialiased=True)
ax.view_init(10, -135)
ax.set_xlabel('Truncation ratio of PS')
ax.set_ylabel('Truncation ratio of OS')
ax.set_zlabel('Dose ratio (PS/OS)')
plt.savefig(os.path.join('data', 'dose_ratio_excl_corners.pdf'), format='pdf')
fig = plt.figure(figsize=(8, 7))
zz = scipy.interpolate.griddata(comb_pts, area_ratio, (xx, yy), method='linear')
# zz = area_ratio.reshape(xx.shape)
print(zz)
ax = fig.add_subplot(1, 1, 1, projection='3d')
surf = ax.plot_surface(xx, yy, zz, cmap=cm.jet,
linewidth=1, antialiased=True)
ax.view_init(10, -135)
ax.set_xlabel('Truncation ratio of PS')
ax.set_ylabel('Truncation ratio of OS')
ax.set_zlabel('Area ratio (PS/OS)')
plt.savefig(os.path.join('data', 'area_ratio_excl_corners.pdf'), format='pdf')
plt.show()
|
[
"numpy.set_printoptions",
"numpy.meshgrid",
"matplotlib.pyplot.show",
"tomopy.recon",
"numpy.log",
"dxchange.write_tiff",
"tomopy.angles",
"matplotlib.pyplot.figure",
"numpy.mean",
"numpy.arange",
"numpy.array",
"numpy.linspace",
"matplotlib.pyplot.rc",
"numpy.squeeze",
"numpy.sqrt"
] |
[((429, 470), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': '"""infinite"""'}), "(threshold='infinite')\n", (448, 470), True, 'import numpy as np\n'), ((648, 672), 'numpy.arange', 'np.arange', (['(0.1)', '(1.1)', '(0.1)'], {}), '(0.1, 1.1, 0.1)\n', (657, 672), True, 'import numpy as np\n'), ((1463, 1484), 'numpy.squeeze', 'np.squeeze', (['ref_recon'], {}), '(ref_recon)\n', (1473, 1484), True, 'import numpy as np\n'), ((7144, 7210), 'numpy.array', 'np.array', (['[(x, y) for x in trunc_ratio_ls for y in trunc_ratio_ls]'], {}), '([(x, y) for x in trunc_ratio_ls for y in trunc_ratio_ls])\n', (7152, 7210), True, 'import numpy as np\n'), ((7568, 7593), 'numpy.linspace', 'np.linspace', (['(0.1)', '(1.0)', '(50)'], {}), '(0.1, 1.0, 50)\n', (7579, 7593), True, 'import numpy as np\n'), ((7607, 7624), 'numpy.meshgrid', 'np.meshgrid', (['t', 't'], {}), '(t, t)\n', (7618, 7624), True, 'import numpy as np\n'), ((7784, 7816), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {}), "('font', **fontProperties)\n", (7790, 7816), True, 'import matplotlib.pyplot as plt\n'), ((7828, 7854), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 7)'}), '(figsize=(8, 7))\n', (7838, 7854), True, 'import matplotlib.pyplot as plt\n'), ((8386, 8412), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 7)'}), '(figsize=(8, 7))\n', (8396, 8412), True, 'import matplotlib.pyplot as plt\n'), ((8956, 8966), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8964, 8966), True, 'import matplotlib.pyplot as plt\n'), ((1243, 1271), 'tomopy.angles', 'tomopy.angles', (['sino.shape[0]'], {}), '(sino.shape[0])\n', (1256, 1271), False, 'import tomopy\n'), ((1292, 1380), 'tomopy.recon', 'tomopy.recon', (['sino', 'theta'], {'center': '(pad_length + half_sino_width)', 'algorithm': '"""gridrec"""'}), "(sino, theta, center=pad_length + half_sino_width, algorithm=\n 'gridrec')\n", (1304, 1380), False, 'import tomopy\n'), ((1382, 1446), 'dxchange.write_tiff', 'dxchange.write_tiff', (['ref_recon', '"""data/ref_recon"""'], {'overwrite': '(True)'}), "(ref_recon, 'data/ref_recon', overwrite=True)\n", (1401, 1446), False, 'import dxchange\n'), ((1176, 1188), 'numpy.log', 'np.log', (['sino'], {}), '(sino)\n', (1182, 1188), True, 'import numpy as np\n'), ((6286, 6318), 'numpy.array', 'np.array', (['mean_count_tomosaic_ls'], {}), '(mean_count_tomosaic_ls)\n', (6294, 6318), True, 'import numpy as np\n'), ((6349, 6378), 'numpy.array', 'np.array', (['mean_count_local_ls'], {}), '(mean_count_local_ls)\n', (6357, 6378), True, 'import numpy as np\n'), ((6415, 6450), 'numpy.array', 'np.array', (['dose_integral_tomosaic_ls'], {}), '(dose_integral_tomosaic_ls)\n', (6423, 6450), True, 'import numpy as np\n'), ((6484, 6516), 'numpy.array', 'np.array', (['dose_integral_local_ls'], {}), '(dose_integral_local_ls)\n', (6492, 6516), True, 'import numpy as np\n'), ((3096, 3155), 'numpy.mean', 'np.mean', (['prj_tomosaic.simulators[0].sample_counter_tomosaic'], {}), '(prj_tomosaic.simulators[0].sample_counter_tomosaic)\n', (3103, 3155), True, 'import numpy as np\n'), ((5703, 5756), 'numpy.mean', 'np.mean', (['prj_local.simulators[0].sample_counter_local'], {}), '(prj_local.simulators[0].sample_counter_local)\n', (5710, 5756), True, 'import numpy as np\n'), ((2444, 2530), 'numpy.arange', 'np.arange', (['stage_begin', '(stage_begin + fprime * (n_scan - 1) + 1)', 'fprime'], {'dtype': 'int'}), '(stage_begin, stage_begin + fprime * (n_scan - 1) + 1, fprime,\n dtype=int)\n', (2453, 2530), True, 'import numpy as np\n'), ((4206, 4216), 'numpy.sqrt', 'np.sqrt', (['(8)'], {}), '(8)\n', (4213, 4216), True, 'import numpy as np\n'), ((4332, 4342), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (4339, 4342), True, 'import numpy as np\n'), ((4540, 4556), 'numpy.array', 'np.array', (['[y, x]'], {}), '([y, x])\n', (4548, 4556), True, 'import numpy as np\n'), ((4559, 4629), 'numpy.array', 'np.array', (['[pad_length + half_sino_width, pad_length + half_sino_width]'], {}), '([pad_length + half_sino_width, pad_length + half_sino_width])\n', (4567, 4629), True, 'import numpy as np\n'), ((4292, 4302), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (4299, 4302), True, 'import numpy as np\n')]
|
# (c) <NAME> 2021
# see embedded licence file
# imelt V1.1
import numpy as np
import torch, time
import h5py
import torch.nn.functional as F
from sklearn.metrics import mean_squared_error
class data_loader():
"""custom data loader for batch training
"""
def __init__(self,path_viscosity,path_raman,path_density, path_ri, device, scaling = False):
"""
Inputs
------
path_viscosity : string
path for the viscosity HDF5 dataset
path_raman : string
path for the Raman spectra HDF5 dataset
path_density : string
path for the density HDF5 dataset
path_ri : String
path for the refractive index HDF5 dataset
device : CUDA
scaling : False or True
Scales the input chemical composition.
WARNING : Does not work currently as this is a relic of testing this effect,
but we chose not to scale inputs and Cp are calculated with unscaled values in the network."""
f = h5py.File(path_viscosity, 'r')
# List all groups
self.X_columns = f['X_columns'][()]
# Entropy dataset
X_entropy_train = f["X_entropy_train"][()]
y_entropy_train = f["y_entropy_train"][()]
X_entropy_valid = f["X_entropy_valid"][()]
y_entropy_valid = f["y_entropy_valid"][()]
X_entropy_test = f["X_entropy_test"][()]
y_entropy_test = f["y_entropy_test"][()]
# Viscosity dataset
X_train = f["X_train"][()]
y_train = f["y_train"][()]
X_valid = f["X_valid"][()]
y_valid = f["y_valid"][()]
X_test = f["X_test"][()]
y_test = f["y_test"][()]
# Tg dataset
X_tg_train = f["X_tg_train"][()]
X_tg_valid= f["X_tg_valid"][()]
X_tg_test = f["X_tg_test"][()]
y_tg_train = f["y_tg_train"][()]
y_tg_valid = f["y_tg_valid"][()]
y_tg_test = f["y_tg_test"][()]
f.close()
# Raman dataset
f = h5py.File(path_raman, 'r')
X_raman_train = f["X_raman_train"][()]
y_raman_train = f["y_raman_train"][()]
X_raman_valid = f["X_raman_test"][()]
y_raman_valid = f["y_raman_test"][()]
f.close()
# Density dataset
f = h5py.File(path_density, 'r')
X_density_train = f["X_density_train"][()]
X_density_valid = f["X_density_valid"][()]
X_density_test = f["X_density_test"][()]
y_density_train = f["y_density_train"][()]
y_density_valid = f["y_density_valid"][()]
y_density_test = f["y_density_test"][()]
f.close()
# Refractive Index (ri) dataset
f = h5py.File(path_ri, 'r')
X_ri_train = f["X_ri_train"][()]
X_ri_valid = f["X_ri_valid"][()]
X_ri_test = f["X_ri_test"][()]
lbd_ri_train = f["lbd_ri_train"][()]
lbd_ri_valid = f["lbd_ri_valid"][()]
lbd_ri_test = f["lbd_ri_test"][()]
y_ri_train = f["y_ri_train"][()]
y_ri_valid = f["y_ri_valid"][()]
y_ri_test = f["y_ri_test"][()]
f.close()
# grabbing number of Raman channels
self.nb_channels_raman = y_raman_valid.shape[1]
# preparing data for pytorch
# Scaler
# Warning : this was done for tests and currently will not work,
# as Cp are calculated from unscaled mole fractions...
if scaling == True:
X_scaler_mean = np.mean(X_train[:,0:4], axis=0)
X_scaler_std = np.std(X_train[:,0:4], axis=0)
else:
X_scaler_mean = 0.0
X_scaler_std = 1.0
# The following lines perform scaling (not needed, not active),
# put the data in torch tensors and send them to device (GPU or CPU, as requested)
# viscosity
self.x_visco_train = torch.FloatTensor(self.scaling(X_train[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.T_visco_train = torch.FloatTensor(X_train[:,4].reshape(-1,1)).to(device)
self.y_visco_train = torch.FloatTensor(y_train[:,0].reshape(-1,1)).to(device)
self.x_visco_valid = torch.FloatTensor(self.scaling(X_valid[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.T_visco_valid = torch.FloatTensor(X_valid[:,4].reshape(-1,1)).to(device)
self.y_visco_valid = torch.FloatTensor(y_valid[:,0].reshape(-1,1)).to(device)
self.x_visco_test = torch.FloatTensor(self.scaling(X_test[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.T_visco_test = torch.FloatTensor(X_test[:,4].reshape(-1,1)).to(device)
self.y_visco_test = torch.FloatTensor(y_test[:,0].reshape(-1,1)).to(device)
# entropy
self.x_entro_train = torch.FloatTensor(self.scaling(X_entropy_train[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.y_entro_train = torch.FloatTensor(y_entropy_train[:,0].reshape(-1,1)).to(device)
self.x_entro_valid = torch.FloatTensor(self.scaling(X_entropy_valid[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.y_entro_valid = torch.FloatTensor(y_entropy_valid[:,0].reshape(-1,1)).to(device)
self.x_entro_test = torch.FloatTensor(self.scaling(X_entropy_test[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.y_entro_test = torch.FloatTensor(y_entropy_test[:,0].reshape(-1,1)).to(device)
# tg
self.x_tg_train = torch.FloatTensor(self.scaling(X_tg_train[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.y_tg_train = torch.FloatTensor(y_tg_train.reshape(-1,1)).to(device)
self.x_tg_valid = torch.FloatTensor(self.scaling(X_tg_valid[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.y_tg_valid = torch.FloatTensor(y_tg_valid.reshape(-1,1)).to(device)
self.x_tg_test = torch.FloatTensor(self.scaling(X_tg_test[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.y_tg_test = torch.FloatTensor(y_tg_test.reshape(-1,1)).to(device)
# Density
self.x_density_train = torch.FloatTensor(self.scaling(X_density_train[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.y_density_train = torch.FloatTensor(y_density_train.reshape(-1,1)).to(device)
self.x_density_valid = torch.FloatTensor(self.scaling(X_density_valid[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.y_density_valid = torch.FloatTensor(y_density_valid.reshape(-1,1)).to(device)
self.x_density_test = torch.FloatTensor(self.scaling(X_density_test[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.y_density_test = torch.FloatTensor(y_density_test.reshape(-1,1)).to(device)
# Optical
self.x_ri_train = torch.FloatTensor(self.scaling(X_ri_train[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.lbd_ri_train = torch.FloatTensor(lbd_ri_train.reshape(-1,1)).to(device)
self.y_ri_train = torch.FloatTensor(y_ri_train.reshape(-1,1)).to(device)
self.x_ri_valid = torch.FloatTensor(self.scaling(X_ri_valid[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.lbd_ri_valid = torch.FloatTensor(lbd_ri_valid.reshape(-1,1)).to(device)
self.y_ri_valid = torch.FloatTensor(y_ri_valid.reshape(-1,1)).to(device)
self.x_ri_test = torch.FloatTensor(self.scaling(X_ri_test[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.lbd_ri_test = torch.FloatTensor(lbd_ri_test.reshape(-1,1)).to(device)
self.y_ri_test = torch.FloatTensor(y_ri_test.reshape(-1,1)).to(device)
# Raman
self.x_raman_train = torch.FloatTensor(self.scaling(X_raman_train[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.y_raman_train = torch.FloatTensor(y_raman_train).to(device)
self.x_raman_valid = torch.FloatTensor(self.scaling(X_raman_valid[:,0:4],X_scaler_mean,X_scaler_std)).to(device)
self.y_raman_valid = torch.FloatTensor(y_raman_valid).to(device)
def scaling(self,X,mu,s):
"""perform standard scaling"""
return(X-mu)/s
def print_data(self):
"""print the specifications of the datasets"""
print("################################")
print("#### Dataset specifications ####")
print("################################")
# print splitting
size_train = self.x_visco_train.unique(dim=0).shape[0]
size_valid = self.x_visco_valid.unique(dim=0).shape[0]
size_test = self.x_visco_test.unique(dim=0).shape[0]
size_total = size_train+size_valid+size_test
print("")
print("Number of unique compositions (viscosity): {}".format(size_total))
print("Number of unique compositions in training (viscosity): {}".format(size_train))
print("Dataset separations are {:.2f} in train, {:.2f} in valid, {:.2f} in test".format(size_train/size_total,
size_valid/size_total,
size_test/size_total))
# print splitting
size_train = self.x_entro_train.unique(dim=0).shape[0]
size_valid = self.x_entro_valid.unique(dim=0).shape[0]
size_test = self.x_entro_test.unique(dim=0).shape[0]
size_total = size_train+size_valid+size_test
print("")
print("Number of unique compositions (entropy): {}".format(size_total))
print("Number of unique compositions in training (entropy): {}".format(size_train))
print("Dataset separations are {:.2f} in train, {:.2f} in valid, {:.2f} in test".format(size_train/size_total,
size_valid/size_total,
size_test/size_total))
size_train = self.x_ri_train.unique(dim=0).shape[0]
size_valid = self.x_ri_valid.unique(dim=0).shape[0]
size_test = self.x_ri_test.unique(dim=0).shape[0]
size_total = size_train+size_valid+size_test
print("")
print("Number of unique compositions (refractive index): {}".format(size_total))
print("Number of unique compositions in training (refractive index): {}".format(size_train))
print("Dataset separations are {:.2f} in train, {:.2f} in valid, {:.2f} in test".format(size_train/size_total,
size_valid/size_total,
size_test/size_total))
size_train = self.x_density_train.unique(dim=0).shape[0]
size_valid = self.x_density_valid.unique(dim=0).shape[0]
size_test = self.x_density_test.unique(dim=0).shape[0]
size_total = size_train+size_valid+size_test
print("")
print("Number of unique compositions (density): {}".format(size_total))
print("Number of unique compositions in training (density): {}".format(size_train))
print("Dataset separations are {:.2f} in train, {:.2f} in valid, {:.2f} in test".format(size_train/size_total,
size_valid/size_total,
size_test/size_total))
size_train = self.x_raman_train.unique(dim=0).shape[0]
size_valid = self.x_raman_valid.unique(dim=0).shape[0]
size_total = size_train+size_valid
print("")
print("Number of unique compositions (Raman): {}".format(size_total))
print("Number of unique compositions in training (Raman): {}".format(size_train))
print("Dataset separations are {:.2f} in train, {:.2f} in valid".format(size_train/size_total,
size_valid/size_total))
# training shapes
print("")
print("This is for checking the consistency of the dataset...")
print("Visco train shape")
print(self.x_visco_train.shape)
print(self.T_visco_train.shape)
print(self.y_visco_train.shape)
print("Entropy train shape")
print(self.x_entro_train.shape)
print(self.y_entro_train.shape)
print("Tg train shape")
print(self.x_tg_train.shape)
print(self.y_tg_train.shape)
print("Density train shape")
print(self.x_density_train.shape)
print(self.y_density_train.shape)
print("Refactive Index train shape")
print(self.x_ri_train.shape)
print(self.lbd_ri_train.shape)
print(self.y_ri_train.shape)
print("Raman train shape")
print(self.x_raman_train.shape)
print(self.y_raman_train.shape)
# testing device
print("")
print("Where are the datasets? CPU or GPU?")
print("Visco device")
print(self.x_visco_train.device)
print(self.T_visco_train.device)
print(self.y_visco_train.device)
print("Entropy device")
print(self.x_entro_train.device)
print(self.y_entro_train.device)
print("Tg device")
print(self.x_tg_train.device)
print(self.y_tg_train.device)
print("Density device")
print(self.x_density_train.device)
print(self.y_density_train.device)
print("Refactive Index device")
print(self.x_ri_test.device)
print(self.lbd_ri_test.device)
print(self.y_ri_test.device)
print("Raman device")
print(self.x_raman_train.device)
print(self.y_raman_train.device)
class model(torch.nn.Module):
"""i-MELT model
"""
def __init__(self, input_size, hidden_size, num_layers, nb_channels_raman,p_drop=0.5, activation_function = torch.nn.ReLU()):
"""Initialization of i-MELT model
Parameters
----------
input_size : int
number of input parameters
hidden_size : int
number of hidden units per hidden layer
num_layers : int
number of hidden layers
nb_channels_raman : int
number of Raman spectra channels, typically provided by the dataset
p_drop : float (optinal)
dropout probability, default = 0.5
activation_function : torch.nn activation function
activation function for the hidden units, default = torch.nn.ReLU()
choose here : https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
"""
super(model, self).__init__()
# init parameters
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.nb_channels_raman = nb_channels_raman
# network related torch stuffs
self.activation_function = activation_function
self.dropout = torch.nn.Dropout(p=p_drop)
self.linears = torch.nn.ModuleList([torch.nn.Linear(input_size, self.hidden_size)])
self.linears.extend([torch.nn.Linear(self.hidden_size, self.hidden_size) for i in range(1, self.num_layers)])
self.out_thermo = torch.nn.Linear(self.hidden_size, 17) # Linear output
self.out_raman = torch.nn.Linear(self.hidden_size, self.nb_channels_raman) # Linear output
def output_bias_init(self):
"""bias initialisation for self.out_thermo
positions are Tg, Sconf(Tg), Ae, A_am, density, fragility (MYEGA one)
"""
self.out_thermo.bias = torch.nn.Parameter(data=torch.tensor([np.log(1000.),np.log(10.), # Tg, ScTg
-1.5,-1.5,-1.5, -4.5, # A_AG, A_AM, A_CG, A_TVF
np.log(500.), np.log(100.), np.log(400.), # To_CG, C_CG, C_TVF
np.log(2.3),np.log(25.0), # density, fragility
.90,.20,.98,0.6,0.2,1., # Sellmeier coeffs B1, B2, B3, C1, C2, C3
]))
def forward(self, x):
"""foward pass in core neural network"""
for layer in self.linears: # Feedforward
x = self.dropout(self.activation_function(layer(x)))
return x
def at_gfu(self,x):
"""calculate atom per gram formula unit
assumes rows are sio2 al2o3 na2o k2o
"""
out = 3.0*x[:,0] + 5.0*x[:,1] + 3.0*x[:,2] + 3.0*x[:,3]
return torch.reshape(out, (out.shape[0], 1))
def aCpl(self,x):
"""calculate term a in equation Cpl = aCpl + bCpl*T
"""
out = 81.37*x[:,0] + 27.21*x[:,1] + 100.6*x[:,2] + 50.13*x[:,3] + x[:,0]*(x[:,3]*x[:,3])*151.7
return torch.reshape(out, (out.shape[0], 1))
def b_calc(self,x):
"""calculate term b in equation Cpl = aCpl + b*T
"""
out = 0.09428*x[:,1] + 0.01578*x[:,3]
return torch.reshape(out, (out.shape[0], 1))
def ap_calc(self,x):
"""calculate term ap in equation dS = ap ln(T/Tg) + b(T-Tg)
"""
out = self.aCpl(x) - 3.0*8.314462*self.at_gfu(x)
return torch.reshape(out, (out.shape[0], 1))
def dCp(self,x,T):
out = self.ap_calc(x)*(torch.log(T)-torch.log(self.tg(x))) + self.b_calc(x)*(T-self.tg(x))
return torch.reshape(out, (out.shape[0], 1))
def raman_pred(self,x):
"""Raman predicted spectra"""
return self.out_raman(self.forward(x))
def tg(self,x):
"""glass transition temperature Tg"""
out = torch.exp(self.out_thermo(self.forward(x))[:,0])
return torch.reshape(out, (out.shape[0], 1))
def sctg(self,x):
"""configurational entropy at Tg"""
out = torch.exp(self.out_thermo(self.forward(x))[:,1])
return torch.reshape(out, (out.shape[0], 1))
def ae(self,x):
"""Ae parameter in Adam and Gibbs and MYEGA"""
out = self.out_thermo(self.forward(x))[:,2]
return torch.reshape(out, (out.shape[0], 1))
def a_am(self,x):
"""A parameter for Avramov-Mitchell"""
out = self.out_thermo(self.forward(x))[:,3]
return torch.reshape(out, (out.shape[0], 1))
def a_cg(self,x):
"""A parameter for Free Volume (CG)"""
out = self.out_thermo(self.forward(x))[:,4]
return torch.reshape(out, (out.shape[0], 1))
def a_tvf(self,x):
"""A parameter for Free Volume (CG)"""
out = self.out_thermo(self.forward(x))[:,5]
return torch.reshape(out, (out.shape[0], 1))
def to_cg(self,x):
"""A parameter for Free Volume (CG)"""
out = torch.exp(self.out_thermo(self.forward(x))[:,6])
return torch.reshape(out, (out.shape[0], 1))
def c_cg(self,x):
"""C parameter for Free Volume (CG)"""
out = torch.exp(self.out_thermo(self.forward(x))[:,7])
return torch.reshape(out, (out.shape[0], 1))
def c_tvf(self,x):
"""C parameter for Free Volume (CG)"""
out = torch.exp(self.out_thermo(self.forward(x))[:,8])
return torch.reshape(out, (out.shape[0], 1))
def density(self,x):
"""glass density"""
out = torch.exp(self.out_thermo(self.forward(x))[:,9])
return torch.reshape(out, (out.shape[0], 1))
def fragility(self,x):
"""melt fragility"""
out = torch.exp(self.out_thermo(self.forward(x))[:,10])
return torch.reshape(out, (out.shape[0], 1))
def S_B1(self,x):
"""Sellmeir B1"""
out = self.out_thermo(self.forward(x))[:,11]
return torch.reshape(out, (out.shape[0], 1))
def S_B2(self,x):
"""Sellmeir B1"""
out = self.out_thermo(self.forward(x))[:,12]
return torch.reshape(out, (out.shape[0], 1))
def S_B3(self,x):
"""Sellmeir B1"""
out = self.out_thermo(self.forward(x))[:,13]
return torch.reshape(out, (out.shape[0], 1))
def S_C1(self,x):
"""Sellmeir C1, with proper scaling"""
out = 0.01*self.out_thermo(self.forward(x))[:,14]
return torch.reshape(out, (out.shape[0], 1))
def S_C2(self,x):
"""Sellmeir C2, with proper scaling"""
out = 0.1*self.out_thermo(self.forward(x))[:,15]
return torch.reshape(out, (out.shape[0], 1))
def S_C3(self,x):
"""Sellmeir C3, with proper scaling"""
out = 100*self.out_thermo(self.forward(x))[:,16]
return torch.reshape(out, (out.shape[0], 1))
def b_cg(self, x):
"""B in free volume (CG) equation"""
return 0.5*(12.0 - self.a_cg(x)) * (self.tg(x) - self.to_cg(x) + torch.sqrt( (self.tg(x) - self.to_cg(x))**2 + self.c_cg(x)*self.tg(x)))
def b_tvf(self,x):
return (12.0-self.a_tvf(x))*(self.tg(x)-self.c_tvf(x))
def be(self,x):
"""Be term in Adam-Gibbs eq given Ae, Tg and Scong(Tg)"""
return (12.0-self.ae(x))*(self.tg(x)*self.sctg(x))
def ag(self,x,T):
"""viscosity from the Adam-Gibbs equation, given chemistry X and temperature T
"""
return self.ae(x) + self.be(x) / (T* (self.sctg(x) + self.dCp(x, T)))
def myega(self,x, T):
"""viscosity from the MYEGA equation, given entries X and temperature T
"""
return self.ae(x) + (12.0 - self.ae(x))*(self.tg(x)/T)*torch.exp((self.fragility(x)/(12.0-self.ae(x))-1.0)*(self.tg(x)/T-1.0))
def am(self,x, T):
"""viscosity from the Avramov-Mitchell equation, given entries X and temperature T
"""
return self.a_am(x) + (12.0 - self.a_am(x))*(self.tg(x)/T)**(self.fragility(x)/(12.0 - self.a_am(x)))
def cg(self,x, T):
"""free volume theory viscosity equation, given entries X and temperature T
"""
return self.a_cg(x) + 2.0*self.b_cg(x)/(T - self.to_cg(x) + torch.sqrt( (T-self.to_cg(x))**2 + self.c_cg(x)*T))
def tvf(self,x, T):
"""Tamman-Vogel-Fulscher empirical viscosity, given entries X and temperature T
"""
return self.a_tvf(x) + self.b_tvf(x)/(T - self.c_tvf(x))
def sellmeier(self, x, lbd):
"""Sellmeier equation for refractive index calculation, with lbd in microns
"""
return torch.sqrt( 1.0 + self.S_B1(x)*lbd**2/(lbd**2-self.S_C1(x))
+ self.S_B2(x)*lbd**2/(lbd**2-self.S_C2(x))
+ self.S_B3(x)*lbd**2/(lbd**2-self.S_C3(x)))
class loss_scales():
"""loss scales for everything"""
def __init__(self):
# scaling coefficients for loss function
# viscosity is always one
self.entro = 1.
self.raman = 20.
self.density = 1000.
self.ri = 10000.
self.tg = 0.001
def training(neuralmodel,ds,criterion,optimizer,save_switch=True,save_name="./temp",train_patience = 50,min_delta=0.1,verbose=True, mode="main", max_epochs = 5000):
"""train neuralmodel given a dataset, criterion and optimizer
Parameters
----------
neuralmodel : model
a neuravi model
ds : dataset
dataset from data_loader()
criterion : pytorch criterion
the criterion for goodness of fit
optimizer : pytorch optimizer
the optimizer to use
save_name : string
the path to save the model during training
Options
-------
train_patience : int, default = 50
the number of iterations
min_delta : float, default = 0.1
Minimum decrease in the loss to qualify as an improvement,
a decrease of less than or equal to `min_delta` will count as no improvement.
verbose : bool, default = True
Do you want details during training?
mode : string, default = "main"
"main" or "pretrain"
max_epochs : int
maximum number of epochs to perform. Useful in case of prototyping, etc.
Returns
-------
neuralmodel : model
trained model
record_train_loss : list
training loss (global)
record_valid_loss : list
validation loss (global)
"""
if verbose == True:
time1 = time.time()
if mode == "pretrain":
print("! Pretrain mode...\n")
else:
print("Full training.\n")
# scaling coefficients for loss function
# viscosity is always one
# scaling coefficients for loss function
# viscosity is always one
ls = loss_scales()
entro_scale = ls.entro
raman_scale = ls.raman
density_scale = ls.density
ri_scale = ls.ri
tg_scale = ls.tg
neuralmodel.train()
# for early stopping
epoch = 0
best_epoch = 0
val_ex = 0
# for recording losses
record_train_loss = []
record_valid_loss = []
while val_ex <= train_patience:
optimizer.zero_grad()
# Forward pass on training set
y_ag_pred_train = neuralmodel.ag(ds.x_visco_train,ds.T_visco_train)
y_myega_pred_train = neuralmodel.myega(ds.x_visco_train,ds.T_visco_train)
y_am_pred_train = neuralmodel.am(ds.x_visco_train,ds.T_visco_train)
y_cg_pred_train = neuralmodel.cg(ds.x_visco_train,ds.T_visco_train)
y_tvf_pred_train = neuralmodel.tvf(ds.x_visco_train,ds.T_visco_train)
y_raman_pred_train = neuralmodel.raman_pred(ds.x_raman_train)
y_density_pred_train = neuralmodel.density(ds.x_density_train)
y_entro_pred_train = neuralmodel.sctg(ds.x_entro_train)
y_tg_pred_train = neuralmodel.tg(ds.x_tg_train)
y_ri_pred_train = neuralmodel.sellmeier(ds.x_ri_train, ds.lbd_ri_train)
# on validation set
y_ag_pred_valid = neuralmodel.ag(ds.x_visco_valid,ds.T_visco_valid)
y_myega_pred_valid = neuralmodel.myega(ds.x_visco_valid,ds.T_visco_valid)
y_am_pred_valid = neuralmodel.am(ds.x_visco_valid,ds.T_visco_valid)
y_cg_pred_valid = neuralmodel.cg(ds.x_visco_valid,ds.T_visco_valid)
y_tvf_pred_valid = neuralmodel.tvf(ds.x_visco_valid,ds.T_visco_valid)
y_raman_pred_valid = neuralmodel.raman_pred(ds.x_raman_valid)
y_density_pred_valid = neuralmodel.density(ds.x_density_valid)
y_entro_pred_valid = neuralmodel.sctg(ds.x_entro_valid)
y_tg_pred_valid = neuralmodel.tg(ds.x_tg_valid)
y_ri_pred_valid = neuralmodel.sellmeier(ds.x_ri_valid, ds.lbd_ri_valid)
# Compute Loss
# train
loss_ag = criterion(y_ag_pred_train, ds.y_visco_train)
loss_myega = criterion(y_myega_pred_train, ds.y_visco_train)
loss_am = criterion(y_am_pred_train, ds.y_visco_train)
loss_cg = criterion(y_cg_pred_train, ds.y_visco_train)
loss_tvf = criterion(y_tvf_pred_train, ds.y_visco_train)
loss_raman = raman_scale*criterion(y_raman_pred_train,ds.y_raman_train)
loss_tg = tg_scale*criterion(y_tg_pred_train,ds.y_tg_train)
loss_density = density_scale*criterion(y_density_pred_train,ds.y_density_train)
loss_entro = entro_scale*criterion(y_entro_pred_train,ds.y_entro_train)
loss_ri = ri_scale*criterion(y_ri_pred_train,ds.y_ri_train)
if mode == "pretrain":
loss = loss_tg + loss_raman + loss_density + loss_entro + loss_ri
else:
loss = loss_ag + loss_myega + loss_am + loss_cg + loss_tvf + loss_raman + loss_density + loss_entro + loss_ri
record_train_loss.append(loss.item()) # record global loss
# validation
with torch.set_grad_enabled(False):
loss_ag_v = criterion(y_ag_pred_valid, ds.y_visco_valid)
loss_myega_v = criterion(y_myega_pred_valid, ds.y_visco_valid)
loss_am_v = criterion(y_am_pred_valid, ds.y_visco_valid)
loss_cg_v = criterion(y_cg_pred_valid, ds.y_visco_valid)
loss_tvf_v = criterion(y_tvf_pred_valid, ds.y_visco_valid)
loss_raman_v = raman_scale*criterion(y_raman_pred_valid,ds.y_raman_valid)
loss_tg_v = tg_scale*criterion(y_tg_pred_valid,ds.y_tg_valid)
loss_density_v = density_scale*criterion(y_density_pred_valid,ds.y_density_valid)
loss_entro_v = entro_scale*criterion(y_entro_pred_valid,ds.y_entro_valid)
loss_ri_v = ri_scale*criterion(y_ri_pred_valid,ds.y_ri_valid)
if mode == "pretrain":
loss_v = loss_tg_v + loss_raman_v + loss_density_v + loss_entro_v + loss_ri_v
else:
loss_v = loss_ag_v + loss_myega_v + loss_am_v + loss_cg_v + loss_tvf_v + loss_raman_v + loss_density_v + loss_entro_v + loss_ri
record_valid_loss.append(loss_v.item())
if verbose == True:
if (epoch % 200 == 0):
print('Epoch {} => train loss: {}; valid loss: {}'.format(epoch, loss.item(), loss_v.item()))
###
# calculating ES criterion
###
if epoch == 0:
val_ex = 0
best_loss_v = loss_v.item()
elif loss_v.item() <= best_loss_v - min_delta: # if improvement is significant, this saves the model
val_ex = 0
best_epoch = epoch
best_loss_v = loss_v.item()
if save_switch == True: # save best model
torch.save(neuralmodel.state_dict(), save_name)
else:
val_ex += 1
# Backward pass
loss.backward()
optimizer.step()
epoch += 1
# we test is we are still under a reasonable number of epochs, if not break
if epoch > max_epochs:
break
if verbose == True:
time2 = time.time()
print("Running time in seconds:", time2-time1)
print('Scaled valid loss values are {:.2f}, {:.2f}, {:.2f}, {:.2f}, {:.2f}, {:.2f} for Tg, Raman, density, entropy, ri, viscosity (AG)'.format(
loss_tg_v, loss_raman_v, loss_density_v, loss_entro_v, loss_ri_v, loss_ag_v
))
return neuralmodel, record_train_loss, record_valid_loss
def training2(neuralmodel,ds,criterion,optimizer,
save_switch=True,save_name="./temp",
nb_folds=10,train_patience=50,min_delta=0.1,
verbose=True, mode="main",device='cuda'):
"""train neuralmodel given a dataset, criterion and optimizer
Parameters
----------
neuralmodel : model
a neuravi model
ds : dataset
dataset from data_loader()
criterion : pytorch criterion
the criterion for goodness of fit
optimizer : pytorch optimizer
the optimizer to use
save_name : string
the path to save the model during training
Options
-------
nb_folds : int, default = 10
the number of folds for the K-fold training
train_patience : int, default = 50
the number of iterations
min_delta : float, default = 0.1
Minimum decrease in the loss to qualify as an improvement,
a decrease of less than or equal to `min_delta` will count as no improvement.
verbose : bool, default = True
Do you want details during training?
mode : string, default = "main"
"main" or "pretrain"
device : string, default = "cuda"
the device where the calculations are made during training
Returns
-------
neuralmodel : model
trained model
record_train_loss : list
training loss (global)
record_valid_loss : list
validation loss (global)
"""
if verbose == True:
time1 = time.time()
if mode == "pretrain":
print("! Pretrain mode...\n")
else:
print("Full training.\n")
# scaling coefficients for loss function
# viscosity is always one
ls = loss_scales()
entro_scale = ls.entro
raman_scale = ls.raman
density_scale = ls.density
ri_scale = ls.ri
tg_scale = ls.tg
neuralmodel.train()
# for early stopping
epoch = 0
best_epoch = 0
val_ex = 0
# for recording losses
record_train_loss = []
record_valid_loss = []
# new vectors for the K-fold training (each vector contains slices of data separated)
slices_x_visco_train = [ds.x_visco_train[i::nb_folds] for i in range(nb_folds)]
slices_y_visco_train = [ds.y_visco_train[i::nb_folds] for i in range(nb_folds)]
slices_T_visco_train = [ds.T_visco_train[i::nb_folds] for i in range(nb_folds)]
slices_x_raman_train = [ds.x_raman_train[i::nb_folds] for i in range(nb_folds)]
slices_y_raman_train = [ds.y_raman_train[i::nb_folds] for i in range(nb_folds)]
slices_x_density_train = [ds.x_density_train[i::nb_folds] for i in range(nb_folds)]
slices_y_density_train = [ds.y_density_train[i::nb_folds] for i in range(nb_folds)]
slices_x_entro_train = [ds.x_entro_train[i::nb_folds] for i in range(nb_folds)]
slices_y_entro_train = [ds.y_entro_train[i::nb_folds] for i in range(nb_folds)]
slices_x_tg_train = [ds.x_tg_train[i::nb_folds] for i in range(nb_folds)]
slices_y_tg_train = [ds.y_tg_train[i::nb_folds] for i in range(nb_folds)]
slices_x_ri_train = [ds.x_ri_train[i::nb_folds] for i in range(nb_folds)]
slices_y_ri_train = [ds.y_ri_train[i::nb_folds] for i in range(nb_folds)]
slices_lbd_ri_train = [ds.lbd_ri_train[i::nb_folds] for i in range(nb_folds)]
while val_ex <= train_patience:
#
# TRAINING
#
loss = 0 # initialize the sum of losses of each fold
for i in range(nb_folds): # loop for K-Fold training to reduce memory footprint
# vectors are sent to device
# training dataset is not on device yet and needs to be sent there
x_visco_train = slices_x_visco_train[i]#.to(device)
y_visco_train = slices_y_visco_train[i]#.to(device)
T_visco_train = slices_T_visco_train[i]#.to(device)
x_raman_train = slices_x_raman_train[i]#.to(device)
y_raman_train = slices_y_raman_train[i]#.to(device)
x_density_train = slices_x_density_train[i]#.to(device)
y_density_train = slices_y_density_train[i]#.to(device)
x_entro_train = slices_x_entro_train[i]#.to(device)
y_entro_train = slices_y_entro_train[i]#.to(device)
x_tg_train = slices_x_tg_train[i]#.to(device)
y_tg_train = slices_y_tg_train[i]#.to(device)
x_ri_train = slices_x_ri_train[i]#.to(device)
y_ri_train = slices_y_ri_train[i]#.to(device)
lbd_ri_train = slices_lbd_ri_train[i]#.to(device)
# Forward pass on training set
y_ag_pred_train = neuralmodel.ag(x_visco_train,T_visco_train)
y_myega_pred_train = neuralmodel.myega(x_visco_train,T_visco_train)
y_am_pred_train = neuralmodel.am(x_visco_train,T_visco_train)
y_cg_pred_train = neuralmodel.cg(x_visco_train,T_visco_train)
y_tvf_pred_train = neuralmodel.tvf(x_visco_train,T_visco_train)
y_raman_pred_train = neuralmodel.raman_pred(x_raman_train)
y_density_pred_train = neuralmodel.density(x_density_train)
y_entro_pred_train = neuralmodel.sctg(x_entro_train)
y_tg_pred_train = neuralmodel.tg(x_tg_train)
y_ri_pred_train = neuralmodel.sellmeier(x_ri_train,lbd_ri_train)
# Precisions
precision_visco = 1.0#1/(2*torch.exp(-neuralmodel.log_vars[0]))
precision_raman = raman_scale #1/(2*torch.exp(-neuralmodel.log_vars[1]))
precision_density = density_scale #1/(2*torch.exp(-neuralmodel.log_vars[2]))
precision_entro = entro_scale#1/(2*torch.exp(-neuralmodel.log_vars[3]))
precision_tg = tg_scale#1/(2*torch.exp(-neuralmodel.log_vars[4]))
precision_ri = ri_scale#1/(2*torch.exp(-neuralmodel.log_vars[5]))
# Compute Loss
loss_ag = precision_visco * criterion(y_ag_pred_train, y_visco_train) #+ neuralmodel.log_vars[0]
loss_myega = precision_visco * criterion(y_myega_pred_train, y_visco_train) #+ neuralmodel.log_vars[0]
loss_am = precision_visco * criterion(y_am_pred_train, y_visco_train) #+ neuralmodel.log_vars[0]
loss_cg = precision_visco * criterion(y_cg_pred_train, y_visco_train) #+ neuralmodel.log_vars[0]
loss_tvf = precision_visco * criterion(y_tvf_pred_train, y_visco_train) #+ neuralmodel.log_vars[0]
loss_raman = precision_raman * criterion(y_raman_pred_train,y_raman_train) #+ neuralmodel.log_vars[1]
loss_density = precision_density * criterion(y_density_pred_train,y_density_train) #+ neuralmodel.log_vars[2]
loss_entro = precision_entro * criterion(y_entro_pred_train,y_entro_train) #+ neuralmodel.log_vars[3]
loss_tg = precision_tg * criterion(y_tg_pred_train,y_tg_train) #+ neuralmodel.log_vars[4]
loss_ri = precision_ri * criterion(y_ri_pred_train,y_ri_train) #+ neuralmodel.log_vars[5]
if mode == "pretrain":
loss_fold = loss_tg + loss_raman + loss_density + loss_entro + loss_ri
else:
loss_fold = (loss_ag + loss_myega + loss_am + loss_cg +
loss_tvf + loss_raman + loss_density + loss_entro + loss_ri)
optimizer.zero_grad() # initialise gradient
loss_fold.backward() # backward gradient determination
optimizer.step() # optimiser call and step
loss += loss_fold.item() # add the new fold loss to the sum
# record global loss (mean of the losses of the training folds)
record_train_loss.append(loss/nb_folds)
#
# MONITORING VALIDATION SUBSET
#
with torch.set_grad_enabled(False):
# Precisions
precision_visco = 1.0#1/(2*torch.exp(-neuralmodel.log_vars[0]))
precision_raman = raman_scale #1/(2*torch.exp(-neuralmodel.log_vars[1]))
precision_density = density_scale #1/(2*torch.exp(-neuralmodel.log_vars[2]))
precision_entro = entro_scale#1/(2*torch.exp(-neuralmodel.log_vars[3]))
precision_tg = tg_scale#1/(2*torch.exp(-neuralmodel.log_vars[4]))
precision_ri = ri_scale#1/(2*torch.exp(-neuralmodel.log_vars[5]))
# on validation set
y_ag_pred_valid = neuralmodel.ag(ds.x_visco_valid.to(device),ds.T_visco_valid.to(device))
y_myega_pred_valid = neuralmodel.myega(ds.x_visco_valid.to(device),ds.T_visco_valid.to(device))
y_am_pred_valid = neuralmodel.am(ds.x_visco_valid.to(device),ds.T_visco_valid.to(device))
y_cg_pred_valid = neuralmodel.cg(ds.x_visco_valid.to(device),ds.T_visco_valid.to(device))
y_tvf_pred_valid = neuralmodel.tvf(ds.x_visco_valid.to(device),ds.T_visco_valid.to(device))
y_raman_pred_valid = neuralmodel.raman_pred(ds.x_raman_valid.to(device))
y_density_pred_valid = neuralmodel.density(ds.x_density_valid.to(device))
y_entro_pred_valid = neuralmodel.sctg(ds.x_entro_valid.to(device))
y_tg_pred_valid = neuralmodel.tg(ds.x_tg_valid.to(device))
y_cp_pred_valid = neuralmodel.dCp(ds.x_entro_valid.to(device),neuralmodel.tg(ds.x_entro_valid.to(device)))
y_ri_pred_valid = neuralmodel.sellmeier(ds.x_ri_valid.to(device), ds.lbd_ri_valid.to(device))
# validation loss
loss_ag_v = precision_visco * criterion(y_ag_pred_valid, ds.y_visco_valid.to(device)) #+ neuralmodel.log_vars[0]
loss_myega_v = precision_visco * criterion(y_myega_pred_valid, ds.y_visco_valid.to(device)) #+ neuralmodel.log_vars[0]
loss_am_v = precision_visco * criterion(y_am_pred_valid, ds.y_visco_valid.to(device)) #+ neuralmodel.log_vars[0]
loss_cg_v = precision_visco * criterion(y_cg_pred_valid, ds.y_visco_valid.to(device)) #+ neuralmodel.log_vars[0]
loss_tvf_v = precision_visco * criterion(y_tvf_pred_valid, ds.y_visco_valid.to(device)) #+ neuralmodel.log_vars[0]
loss_raman_v = precision_raman * criterion(y_raman_pred_valid,ds.y_raman_valid.to(device)) #+ neuralmodel.log_vars[1]
loss_density_v = precision_density * criterion(y_density_pred_valid,ds.y_density_valid.to(device)) #+ neuralmodel.log_vars[2]
loss_entro_v = precision_entro * criterion(y_entro_pred_valid,ds.y_entro_valid.to(device)) #+ neuralmodel.log_vars[3]
loss_tg_v = precision_tg * criterion(y_tg_pred_valid,ds.y_tg_valid.to(device)) #+ neuralmodel.log_vars[4]
loss_ri_v = precision_ri * criterion(y_ri_pred_valid,ds.y_ri_valid.to(device)) #+ neuralmodel.log_vars[5]
if mode == "pretrain":
loss_v = loss_tg_v + loss_raman_v + loss_density_v + loss_entro_v + loss_ri_v
else:
loss_v = loss_ag_v + loss_myega_v + loss_am_v + loss_cg_v + loss_tvf_v + loss_raman_v + loss_density_v + loss_entro_v + loss_ri
record_valid_loss.append(loss_v.item())
#
# Print info on screen
#
if verbose == True:
if (epoch % 5 == 0):
print('Epoch {} => train loss: {}; valid loss: {}'.format(epoch, loss/nb_folds, loss_v.item()))
#
# calculating ES criterion
#
if epoch == 0:
val_ex = 0
best_loss_v = loss_v.item()
elif loss_v.item() <= best_loss_v - min_delta: # if improvement is significant, this saves the model
val_ex = 0
best_epoch = epoch
best_loss_v = loss_v.item()
if save_switch == True: # save best model
torch.save(neuralmodel.state_dict(), save_name)
else:
val_ex += 1
epoch += 1
if verbose == True:
time2 = time.time()
print("Running time in seconds:", time2-time1)
print('Scaled valid loss values are {:.2f}, {:.2f}, {:.2f}, {:.2f}, {:.2f}, {:.2f} for Tg, Raman, density, entropy, ri, viscosity (AG)'.format(
loss_tg_v, loss_raman_v, loss_density_v, loss_entro_v, loss_ri_v, loss_ag_v
))
return neuralmodel, record_train_loss, record_valid_loss
def R_Raman(x,y, lb = 670, hb = 870):
"""calculates the R_Raman parameter of a Raman signal y sampled at x.
y can be an NxM array with N samples and M Raman shifts.
"""
A_LW = np.trapz(y[:,x<lb],x[x<lb],axis=1)
A_HW = np.trapz(y[:,x>hb],x[x>hb],axis=1)
return A_LW/A_HW
class bagging_models:
"""custom class for bagging models and making predictions
Parameters
----------
path : str
path of models
name_models : list of str
names of models
device : str
cpu or gpu
Methods
-------
predict : function
make predictions
"""
def __init__(self, path, name_models, ds, device):
self.device = device
self.n_models = len(name_models)
self.models = [None for _ in range(self.n_models)]
for i in range(self.n_models):
name = name_models[i]
# Extract arch
nb_layers = int(name[name.find("l")+1:name.find("_n")])
nb_neurons = int(name[name.find("n")+1:name.rfind("_p")])
p_drop = float(name[name.find("p")+1:name.rfind("_m")])
#p_drop = float(name[name.find("p")+1:name.rfind(".pth")])
self.models[i] = model(4,nb_neurons,nb_layers,ds.nb_channels_raman,p_drop=p_drop)
self.models[i].load_state_dict(torch.load(path+name,map_location='cpu'))
self.models[i].eval()
def predict(self,method,X, T=[1000.0], lbd= [500.0], sampling=False, n_sample = 10):
"""returns predictions from the n models
Parameters
----------
method : str
the property to predict. See imelt code for possibilities. Basically it is a string handle that will be converted to an imelt function.
For instance, for tg, enter 'tg'.
X : pandas dataframe
chemical composition for prediction
T : list
temperatures for predictions
sampling and n_sample are not used at the moment, in dev feature.
"""
X = torch.Tensor(X).to(self.device)
T = torch.Tensor(T).to(self.device)
lbd = torch.Tensor(lbd).to(self.device)
if sampling == True:
for i in range(self.n_models):
self.models[i].train() # we let the dropout active for error sampling
if method == "raman_pred":
out = np.zeros((len(X),850,self.n_models)) # problem is defined with a X raman shift of 850 values
for i in range(self.n_models):
out[:,:,i] = getattr(self.models[i],method)(X).cpu().detach().numpy()
return out
else:
out = np.zeros((len(X),self.n_models))
if method in frozenset(('ag', 'myega', 'am', 'cg', 'tvf')):
for i in range(self.n_models):
out[:,i] = getattr(self.models[i],method)(X,T).cpu().detach().numpy().reshape(-1)
elif method == "sellmeier":
for i in range(self.n_models):
out[:,i] = getattr(self.models[i],method)(X,lbd).cpu().detach().numpy().reshape(-1)
else:
for i in range(self.n_models):
out[:,i] = getattr(self.models[i],method)(X).cpu().detach().numpy().reshape(-1)
return out
def RMSE_viscosity_bydomain(bagged_model, ds, method="ag", boundary=7.0):
"""return the RMSE between predicted and measured viscosities
Parameters
----------
bagged_model : bagged model object
generated using the bagging_models class
ds : ds dataset
contains all the training, validation and test viscosity datasets
method : str
method to provide to the bagged model
boundary : float
boundary between the high and low viscosity domains (log Pa s value)
Returns
-------
total_RMSE : list
RMSE between predictions and observations, three values (train-valid-test)
high_RMSE : list
RMSE between predictions and observations, above the boundary, three values (train-valid-test)
low_RMSE : list
RMSE between predictions and observations, below the boundary, three values (train-valid-test)
"""
y_pred_train = bagged_model.predict(method,ds.x_visco_train,ds.T_visco_train).mean(axis=1).reshape(-1,1)
y_pred_valid = bagged_model.predict(method,ds.x_visco_valid,ds.T_visco_valid).mean(axis=1).reshape(-1,1)
y_pred_test = bagged_model.predict(method,ds.x_visco_test,ds.T_visco_test).mean(axis=1).reshape(-1,1)
y_train = ds.y_visco_train
y_valid = ds.y_visco_valid
y_test = ds.y_visco_test
total_RMSE_train = mean_squared_error(y_pred_train,y_train,squared=False)
total_RMSE_valid = mean_squared_error(y_pred_valid,y_valid,squared=False)
total_RMSE_test = mean_squared_error(y_pred_test,y_test,squared=False)
high_RMSE_train = mean_squared_error(y_pred_train[y_train>boundary],y_train[y_train>boundary],squared=False)
high_RMSE_valid = mean_squared_error(y_pred_valid[y_valid>boundary],y_valid[y_valid>boundary],squared=False)
high_RMSE_test = mean_squared_error(y_pred_test[y_test>boundary],y_test[y_test>boundary],squared=False)
low_RMSE_train = mean_squared_error(y_pred_train[y_train<boundary],y_train[y_train<boundary],squared=False)
low_RMSE_valid = mean_squared_error(y_pred_valid[y_valid<boundary],y_valid[y_valid<boundary],squared=False)
low_RMSE_test = mean_squared_error(y_pred_test[y_test<boundary],y_test[y_test<boundary],squared=False)
out1 = [total_RMSE_train, total_RMSE_valid, total_RMSE_test]
out2 = [high_RMSE_train, high_RMSE_valid, high_RMSE_test]
out3 = [low_RMSE_train, low_RMSE_valid, low_RMSE_test]
if method =="ag":
name_method = "Adam-Gibbs"
elif method == "cg":
name_method = "Free Volume"
elif method == "tvf":
name_method = "<NAME>"
elif method == "myega":
name_method = "MYEGA"
elif method == "am":
name_method = "<NAME>"
print("Using the equation from {}:".format(name_method))
print(" RMSE on the full range (0-15 log Pa s): train {0:.1f}, valid {1:.1f}, test {2:.1f}".format(total_RMSE_train,
total_RMSE_valid,
total_RMSE_test))
print(" RMSE on the -inf - {:.1f} log Pa s range: train {:.1f}, valid {:.1f}, test {:.1f}".format(boundary,
low_RMSE_train,
low_RMSE_valid,
low_RMSE_test))
print(" RMSE on the {:.1f} - +inf log Pa s range: train {:.1f}, valid {:.1f}, test {:.1f}".format(boundary,
high_RMSE_train,
high_RMSE_valid,
high_RMSE_test))
print("")
return out1, out2, out3
###
### Functions for chemical calculations
###
def chimie_control(data):
"""check that all needed oxides are there and setup correctly the Pandas datalist.
Parameters
----------
data : Pandas dataframe
the user input list.
Returns
-------
out : Pandas dataframe
the output list with all required oxides.
"""
list_oxides = ["sio2","al2o3","na2o","k2o","mgo","cao"]
datalist = data.copy() # safety network
for i in list_oxides:
try:
oxd = datalist[i]
except:
datalist[i] = 0.
sum_oxides = datalist["sio2"]+datalist["al2o3"]+datalist["na2o"]+datalist["k2o"]
datalist["sio2"] = datalist["sio2"]/sum_oxides
datalist["al2o3"] = datalist["al2o3"]/sum_oxides
datalist["na2o"] = datalist["na2o"]/sum_oxides
datalist["k2o"] = datalist["k2o"]/sum_oxides
sum_oxides = datalist["sio2"]+datalist["al2o3"]+datalist["na2o"]+datalist["k2o"]
datalist["sum"] = sum_oxides
return datalist
def molarweights():
"""returns a partial table of molecular weights for elements and oxides that can be used in other functions
Returns
=======
w : dictionary
containing the molar weights of elements and oxides:
- si, ti, al, fe, li, na, k, mg, ca, ba, o (no upper case, symbol calling)
- sio2, tio2, al2o3, fe2o3, feo, li2o, na2o, k2o, mgo, cao, sro, bao (no upper case, symbol calling)
"""
w = {"si": 28.085}
# From IUPAC Periodic Table 2016, in g/mol
w["ti"] = 47.867
w["al"] = 26.982
w["fe"] = 55.845
w["h"] = 1.00794
w["li"] = 6.94
w["na"] = 22.990
w["k"] = 39.098
w["mg"] = 24.305
w["ca"] = 40.078
w["ba"] = 137.327
w["sr"] = 87.62
w["o"] = 15.9994
w["ni"] = 58.6934
w["mn"] = 54.938045
w["p"] = 30.973762
# oxides
w["sio2"] = w["si"] + 2* w["o"]
w["tio2"] = w["ti"] + 2* w["o"]
w["al2o3"] = 2*w["al"] + 3* w["o"]
w["fe2o3"] = 2*w["fe"] + 3* w["o"]
w["feo"] = w["fe"] + w["o"]
w["h2o"] = 2*w["h"] + w["o"]
w["li2o"] = 2*w["li"] +w["o"]
w["na2o"] = 2*w["na"] + w["o"]
w["k2o"] = 2*w["k"] + w["o"]
w["mgo"] = w["mg"] + w["o"]
w["cao"] = w["ca"] + w["o"]
w["sro"] = w["sr"] + w["o"]
w["bao"] = w["ba"] + w["o"]
w["nio"] = w["ni"] + w["o"]
w["mno"] = w["mn"] + w["o"]
w["p2o5"] = w["p"]*2 + w["o"]*5
return w # explicit return
def wt_mol(data):
"""to convert weights in mol fraction
Parameters
==========
data: Pandas DataFrame
containing the fields sio2,tio2,al2o3,fe2o3,li2o,na2o,k2o,mgo,cao,feo
Returns
=======
chemtable: Pandas DataFrame
contains the fields sio2,tio2,al2o3,fe2o3,li2o,na2o,k2o,mgo,cao,feo in mol%
"""
chemtable = data.copy()
w = molarweights()
# conversion to mol in 100 grammes
sio2 = chemtable["sio2"]/w["sio2"]
al2o3 = chemtable["al2o3"]/w["al2o3"]
na2o = chemtable["na2o"]/w["na2o"]
k2o = chemtable["k2o"]/w["k2o"]
# renormalisation
tot = sio2+al2o3+na2o+k2o
chemtable["sio2"]=sio2/tot
chemtable["al2o3"]=al2o3/tot
chemtable["na2o"]=na2o/tot
chemtable["k2o"]=k2o/tot
return chemtable
###
### Functions for ternary plots (not really needed with mpltern)
###
def polycorners(ncorners=3):
'''
Return 2D cartesian coordinates of a regular convex polygon of a specified
number of corners.
Args:
ncorners (int, optional) number of corners for the polygon (default 3).
Returns:
(ncorners, 2) np.ndarray of cartesian coordinates of the polygon.
'''
center = np.array([0.5, 0.5])
points = []
for i in range(ncorners):
angle = (float(i) / ncorners) * (np.pi * 2) + (np.pi / 2)
x = center[0] + np.cos(angle) * 0.5
y = center[1] + np.sin(angle) * 0.5
points.append(np.array([x, y]))
return np.array(points)
def bary2cart(bary, corners):
'''
Convert barycentric coordinates to cartesian coordinates given the
cartesian coordinates of the corners.
Args:
bary (np.ndarray): barycentric coordinates to convert. If this matrix
has multiple rows, each row is interpreted as an individual
coordinate to convert.
corners (np.ndarray): cartesian coordinates of the corners.
Returns:
2-column np.ndarray of cartesian coordinates for each barycentric
coordinate provided.
'''
cart = None
if len(bary.shape) > 1 and bary.shape[1] > 1:
cart = np.array([np.sum(b / np.sum(b) * corners.T, axis=1) for b in bary])
else:
cart = np.sum(bary / np.sum(bary) * corners.T, axis=1)
return cart
def CLR(input_array):
"""Transform chemical composition in colors
Inputs
------
input_array: n*4 array
4 chemical inputs with sio2, al2o3, k2o and na2o in 4 columns, n samples in rows
Returns
-------
out: n*3 array
RGB colors
"""
XXX = input_array.copy()
XXX[:,2] = XXX[:,2]+XXX[:,3] # adding alkalis
out = np.delete(XXX,3,1) # remove 4th row
# min max scaling to have colors in the full RGB scale
out[:,0] = (out[:,0]-out[:,0].min())/(out[:,0].max()-out[:,0].min())
out[:,1] = (out[:,1]-out[:,1].min())/(out[:,1].max()-out[:,1].min())
out[:,2] = (out[:,2]-out[:,2].min())/(out[:,2].max()-out[:,2].min())
return out
def make_ternary(ax,t,l,r, z,
labelt,labell,labelr,
levels, levels_l, c_m, norm,
boundaries_SiO2,
annotation = "(a)"):
ax.plot([1.0,0.5],[0.,0.5],[0.,0.5],"--",color="black")
ax.tricontourf(t,l,r,z,
levels=levels, cmap=c_m, norm=norm)
tc = ax.tricontour(t,l,r,z,
levels=levels_l,colors='k', norm=norm)
ax.clabel(tc, inline=1, fontsize=7, fmt="%1.1f")
ax.set_tlabel(labelt)
#ax.set_llabel(labell)
#ax.set_rlabel(labelr)
ax.taxis.set_label_rotation_mode('horizontal')
#ax.laxis.set_tick_rotation_mode('horizontal')
#ax.raxis.set_label_rotation_mode('horizontal')
make_arrow(ax, labell, labelr)
ax.raxis.set_ticks([])
# Using ``ternary_lim``, you can limit the range of ternary axes.
# Be sure about the consistency; the limit values must satisfy:
# tmax + lmin + rmin = tmin + lmax + rmin = tmin + lmin + rmax = ternary_scale
ax.set_ternary_lim(
boundaries_SiO2[0], boundaries_SiO2[1], # tmin, tmax
0.0, boundaries_SiO2[0], # lmin, lmax
0.0, boundaries_SiO2[0], # rmin, rmax
)
ax.annotate(annotation, xy=(-0.1,1.0), xycoords="axes fraction", fontsize=12)
ax.spines['tside'].set_visible(False)
#ax.annotate(labell, xy=(-0.1,-0.07), xycoords="axes fraction", ha="center")
#ax.annotate(labelr, xy=(1.1,-0.07), xycoords="axes fraction", ha="center")
ax.tick_params(labelrotation='horizontal')
def make_arrow(ax, labell, labelr, sx1 = -0.1, sx2 = 1.02, fontsize = 9, linewidth = 2):
ax.annotate('', xy=(sx1, 0.03), xycoords='axes fraction', xytext=(sx1+0.08, 0.18),
arrowprops=dict(arrowstyle="->", color='k',linewidth=linewidth))
ax.annotate(labell, xy=(sx1+0.03
,0.08), xycoords="axes fraction",
ha="center",rotation=60,fontsize = fontsize)
ax.annotate('', xy=(sx2, 0.18), xycoords='axes fraction', xytext=(sx2+0.08, 0.03),
arrowprops=dict(arrowstyle="<-", color='k',linewidth=linewidth))
ax.annotate(labelr, xy=(sx2+0.05,0.08), xycoords="axes fraction",
ha="center",rotation=-60, fontsize = fontsize)
|
[
"torch.nn.Dropout",
"numpy.sum",
"numpy.mean",
"numpy.sin",
"numpy.std",
"torch.load",
"torch.FloatTensor",
"torch.Tensor",
"torch.nn.Linear",
"torch.log",
"sklearn.metrics.mean_squared_error",
"numpy.trapz",
"h5py.File",
"numpy.cos",
"torch.set_grad_enabled",
"torch.reshape",
"numpy.delete",
"torch.nn.ReLU",
"numpy.log",
"time.time",
"numpy.array"
] |
[((43013, 43054), 'numpy.trapz', 'np.trapz', (['y[:, x < lb]', 'x[x < lb]'], {'axis': '(1)'}), '(y[:, x < lb], x[x < lb], axis=1)\n', (43021, 43054), True, 'import numpy as np\n'), ((43060, 43101), 'numpy.trapz', 'np.trapz', (['y[:, x > hb]', 'x[x > hb]'], {'axis': '(1)'}), '(y[:, x > hb], x[x > hb], axis=1)\n', (43068, 43101), True, 'import numpy as np\n'), ((47454, 47510), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_pred_train', 'y_train'], {'squared': '(False)'}), '(y_pred_train, y_train, squared=False)\n', (47472, 47510), False, 'from sklearn.metrics import mean_squared_error\n'), ((47532, 47588), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_pred_valid', 'y_valid'], {'squared': '(False)'}), '(y_pred_valid, y_valid, squared=False)\n', (47550, 47588), False, 'from sklearn.metrics import mean_squared_error\n'), ((47609, 47663), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_pred_test', 'y_test'], {'squared': '(False)'}), '(y_pred_test, y_test, squared=False)\n', (47627, 47663), False, 'from sklearn.metrics import mean_squared_error\n'), ((47689, 47789), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_pred_train[y_train > boundary]', 'y_train[y_train > boundary]'], {'squared': '(False)'}), '(y_pred_train[y_train > boundary], y_train[y_train >\n boundary], squared=False)\n', (47707, 47789), False, 'from sklearn.metrics import mean_squared_error\n'), ((47802, 47902), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_pred_valid[y_valid > boundary]', 'y_valid[y_valid > boundary]'], {'squared': '(False)'}), '(y_pred_valid[y_valid > boundary], y_valid[y_valid >\n boundary], squared=False)\n', (47820, 47902), False, 'from sklearn.metrics import mean_squared_error\n'), ((47914, 48011), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_pred_test[y_test > boundary]', 'y_test[y_test > boundary]'], {'squared': '(False)'}), '(y_pred_test[y_test > boundary], y_test[y_test > boundary\n ], squared=False)\n', (47932, 48011), False, 'from sklearn.metrics import mean_squared_error\n'), ((48027, 48127), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_pred_train[y_train < boundary]', 'y_train[y_train < boundary]'], {'squared': '(False)'}), '(y_pred_train[y_train < boundary], y_train[y_train <\n boundary], squared=False)\n', (48045, 48127), False, 'from sklearn.metrics import mean_squared_error\n'), ((48139, 48239), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_pred_valid[y_valid < boundary]', 'y_valid[y_valid < boundary]'], {'squared': '(False)'}), '(y_pred_valid[y_valid < boundary], y_valid[y_valid <\n boundary], squared=False)\n', (48157, 48239), False, 'from sklearn.metrics import mean_squared_error\n'), ((48250, 48347), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_pred_test[y_test < boundary]', 'y_test[y_test < boundary]'], {'squared': '(False)'}), '(y_pred_test[y_test < boundary], y_test[y_test < boundary\n ], squared=False)\n', (48268, 48347), False, 'from sklearn.metrics import mean_squared_error\n'), ((53597, 53617), 'numpy.array', 'np.array', (['[0.5, 0.5]'], {}), '([0.5, 0.5])\n', (53605, 53617), True, 'import numpy as np\n'), ((53871, 53887), 'numpy.array', 'np.array', (['points'], {}), '(points)\n', (53879, 53887), True, 'import numpy as np\n'), ((55038, 55058), 'numpy.delete', 'np.delete', (['XXX', '(3)', '(1)'], {}), '(XXX, 3, 1)\n', (55047, 55058), True, 'import numpy as np\n'), ((1057, 1087), 'h5py.File', 'h5py.File', (['path_viscosity', '"""r"""'], {}), "(path_viscosity, 'r')\n", (1066, 1087), False, 'import h5py\n'), ((2047, 2073), 'h5py.File', 'h5py.File', (['path_raman', '"""r"""'], {}), "(path_raman, 'r')\n", (2056, 2073), False, 'import h5py\n'), ((2317, 2345), 'h5py.File', 'h5py.File', (['path_density', '"""r"""'], {}), "(path_density, 'r')\n", (2326, 2345), False, 'import h5py\n'), ((2720, 2743), 'h5py.File', 'h5py.File', (['path_ri', '"""r"""'], {}), "(path_ri, 'r')\n", (2729, 2743), False, 'import h5py\n'), ((13943, 13958), 'torch.nn.ReLU', 'torch.nn.ReLU', ([], {}), '()\n', (13956, 13958), False, 'import torch, time\n'), ((15129, 15155), 'torch.nn.Dropout', 'torch.nn.Dropout', ([], {'p': 'p_drop'}), '(p=p_drop)\n', (15145, 15155), False, 'import torch, time\n'), ((15394, 15431), 'torch.nn.Linear', 'torch.nn.Linear', (['self.hidden_size', '(17)'], {}), '(self.hidden_size, 17)\n', (15409, 15431), False, 'import torch, time\n'), ((15474, 15531), 'torch.nn.Linear', 'torch.nn.Linear', (['self.hidden_size', 'self.nb_channels_raman'], {}), '(self.hidden_size, self.nb_channels_raman)\n', (15489, 15531), False, 'import torch, time\n'), ((16820, 16857), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (16833, 16857), False, 'import torch, time\n'), ((17072, 17109), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (17085, 17109), False, 'import torch, time\n'), ((17265, 17302), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (17278, 17302), False, 'import torch, time\n'), ((17481, 17518), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (17494, 17518), False, 'import torch, time\n'), ((17657, 17694), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (17670, 17694), False, 'import torch, time\n'), ((17958, 17995), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (17971, 17995), False, 'import torch, time\n'), ((18141, 18178), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (18154, 18178), False, 'import torch, time\n'), ((18322, 18359), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (18335, 18359), False, 'import torch, time\n'), ((18497, 18534), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (18510, 18534), False, 'import torch, time\n'), ((18672, 18709), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (18685, 18709), False, 'import torch, time\n'), ((18848, 18885), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (18861, 18885), False, 'import torch, time\n'), ((19035, 19072), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (19048, 19072), False, 'import torch, time\n'), ((19221, 19258), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (19234, 19258), False, 'import torch, time\n'), ((19408, 19445), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (19421, 19445), False, 'import torch, time\n'), ((19578, 19615), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (19591, 19615), False, 'import torch, time\n'), ((19752, 19789), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (19765, 19789), False, 'import torch, time\n'), ((19907, 19944), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (19920, 19944), False, 'import torch, time\n'), ((20062, 20099), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (20075, 20099), False, 'import torch, time\n'), ((20217, 20254), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (20230, 20254), False, 'import torch, time\n'), ((20398, 20435), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (20411, 20435), False, 'import torch, time\n'), ((20579, 20616), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (20592, 20616), False, 'import torch, time\n'), ((20759, 20796), 'torch.reshape', 'torch.reshape', (['out', '(out.shape[0], 1)'], {}), '(out, (out.shape[0], 1))\n', (20772, 20796), False, 'import torch, time\n'), ((24499, 24510), 'time.time', 'time.time', ([], {}), '()\n', (24508, 24510), False, 'import torch, time\n'), ((29955, 29966), 'time.time', 'time.time', ([], {}), '()\n', (29964, 29966), False, 'import torch, time\n'), ((31825, 31836), 'time.time', 'time.time', ([], {}), '()\n', (31834, 31836), False, 'import torch, time\n'), ((42436, 42447), 'time.time', 'time.time', ([], {}), '()\n', (42445, 42447), False, 'import torch, time\n'), ((3490, 3522), 'numpy.mean', 'np.mean', (['X_train[:, 0:4]'], {'axis': '(0)'}), '(X_train[:, 0:4], axis=0)\n', (3497, 3522), True, 'import numpy as np\n'), ((3549, 3580), 'numpy.std', 'np.std', (['X_train[:, 0:4]'], {'axis': '(0)'}), '(X_train[:, 0:4], axis=0)\n', (3555, 3580), True, 'import numpy as np\n'), ((27834, 27863), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (27856, 27863), False, 'import torch, time\n'), ((38272, 38301), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (38294, 38301), False, 'import torch, time\n'), ((53841, 53857), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (53849, 53857), True, 'import numpy as np\n'), ((7678, 7710), 'torch.FloatTensor', 'torch.FloatTensor', (['y_raman_train'], {}), '(y_raman_train)\n', (7695, 7710), False, 'import torch, time\n'), ((7873, 7905), 'torch.FloatTensor', 'torch.FloatTensor', (['y_raman_valid'], {}), '(y_raman_valid)\n', (7890, 7905), False, 'import torch, time\n'), ((15201, 15246), 'torch.nn.Linear', 'torch.nn.Linear', (['input_size', 'self.hidden_size'], {}), '(input_size, self.hidden_size)\n', (15216, 15246), False, 'import torch, time\n'), ((15278, 15329), 'torch.nn.Linear', 'torch.nn.Linear', (['self.hidden_size', 'self.hidden_size'], {}), '(self.hidden_size, self.hidden_size)\n', (15293, 15329), False, 'import torch, time\n'), ((44151, 44194), 'torch.load', 'torch.load', (['(path + name)'], {'map_location': '"""cpu"""'}), "(path + name, map_location='cpu')\n", (44161, 44194), False, 'import torch, time\n'), ((44856, 44871), 'torch.Tensor', 'torch.Tensor', (['X'], {}), '(X)\n', (44868, 44871), False, 'import torch, time\n'), ((44900, 44915), 'torch.Tensor', 'torch.Tensor', (['T'], {}), '(T)\n', (44912, 44915), False, 'import torch, time\n'), ((44946, 44963), 'torch.Tensor', 'torch.Tensor', (['lbd'], {}), '(lbd)\n', (44958, 44963), False, 'import torch, time\n'), ((53755, 53768), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (53761, 53768), True, 'import numpy as np\n'), ((53799, 53812), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (53805, 53812), True, 'import numpy as np\n'), ((17574, 17586), 'torch.log', 'torch.log', (['T'], {}), '(T)\n', (17583, 17586), False, 'import torch, time\n'), ((54617, 54629), 'numpy.sum', 'np.sum', (['bary'], {}), '(bary)\n', (54623, 54629), True, 'import numpy as np\n'), ((15792, 15806), 'numpy.log', 'np.log', (['(1000.0)'], {}), '(1000.0)\n', (15798, 15806), True, 'import numpy as np\n'), ((15806, 15818), 'numpy.log', 'np.log', (['(10.0)'], {}), '(10.0)\n', (15812, 15818), True, 'import numpy as np\n'), ((16016, 16029), 'numpy.log', 'np.log', (['(500.0)'], {}), '(500.0)\n', (16022, 16029), True, 'import numpy as np\n'), ((16030, 16043), 'numpy.log', 'np.log', (['(100.0)'], {}), '(100.0)\n', (16036, 16043), True, 'import numpy as np\n'), ((16044, 16057), 'numpy.log', 'np.log', (['(400.0)'], {}), '(400.0)\n', (16050, 16057), True, 'import numpy as np\n'), ((16148, 16159), 'numpy.log', 'np.log', (['(2.3)'], {}), '(2.3)\n', (16154, 16159), True, 'import numpy as np\n'), ((16160, 16172), 'numpy.log', 'np.log', (['(25.0)'], {}), '(25.0)\n', (16166, 16172), True, 'import numpy as np\n'), ((54531, 54540), 'numpy.sum', 'np.sum', (['b'], {}), '(b)\n', (54537, 54540), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
"""
This file uses Theano dense layers for estimating Q values, but uses pre-trained Keras features before the dense layers.
"""
# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from vizdoom import *
import itertools as it
from random import sample, randint, random
from time import time, sleep
import numpy as np
import skimage.color, skimage.transform
from tqdm import trange
import pickle
from keras.layers import Input, Dense, Convolution2D, Activation, Flatten
from keras.models import Model
from keras.optimizers import SGD
import theano.tensor as T
import theano
import layers
from lasagne.objectives import squared_error
from lasagne.updates import rmsprop
# Q-learning settings
learning_rate = 0.00025
# learning_rate = 0.0001
discount_factor = 0.99
epochs = 20
learning_steps_per_epoch = 2000
replay_memory_size = 10000
# NN learning settings
batch_size = 64
# Training regime
test_episodes_per_epoch = 100
# Other parameters
frame_repeat = 12
resolution = (224, 224)
episodes_to_watch = 10
model_savefile = "./weights.dump"
# Configuration file path
config_file_path = "../../scenarios/simpler_basic.cfg"
# config_file_path = "../../scenarios/rocket_basic.cfg"
# config_file_path = "../../scenarios/basic.cfg"
# Converts and downsamples the input image
def preprocess(img):
img = skimage.transform.resize(img, resolution)
img = img.astype(np.float32)
return img
class ReplayMemory:
def __init__(self, capacity):
state_shape = (capacity, 4096)
self.s1 = np.zeros(state_shape, dtype=np.float32)
self.s2 = np.zeros(state_shape, dtype=np.float32)
self.a = np.zeros(capacity, dtype=np.int32)
self.r = np.zeros(capacity, dtype=np.float32)
self.isterminal = np.zeros(capacity, dtype=np.bool_)
self.capacity = capacity
self.size = 0
self.pos = 0
def add_transition(self, s1, action, s2, isterminal, reward):
self.s1[self.pos, :] = s1
self.a[self.pos] = action
if not isterminal:
self.s2[self.pos, :] = s2
self.isterminal[self.pos] = isterminal
self.r[self.pos] = reward
self.pos = (self.pos + 1) % self.capacity
self.size = min(self.size + 1, self.capacity)
def get_sample(self, sample_size):
i = sample(range(0, self.size), sample_size)
return self.s1[i], self.a[i], self.s2[i], self.isterminal[i], self.r[i]
def create_network(available_actions_count):
s1 = T.matrix("State")
a = T.vector("Action", dtype="int32")
q2 = T.vector("Q2")
r = T.vector("Reward")
isterminal = T.vector("IsTerminal", dtype="int8")
input_state = s1 #Input(shape=(4096,))
# Add a single fully-connected layer.
dense_1 = layers.FCLayer(input=input_state, fan_in=4096, num_hidden=128)
# Add the output layer. (no nonlinearity as it is for approximating an arbitrary real function)
dense_2 = layers.FCLayer(input=dense_1.out, fan_in=128, num_hidden=available_actions_count, activation=None)
q = dense_2.out
# target_Q(s,a) = r + gamma * max Q(s2,_) if isterminal else r
target_q = T.set_subtensor(q[T.arange(q.shape[0]), a], r + discount_factor * (1 - isterminal) * q2)
loss = squared_error(q, target_q).mean()
# Update the parameters according to the computed gradient using RMSProp.
params = dense_1.params + dense_2.params
updates = rmsprop(loss, params, learning_rate)
# Compile the theano functions
print("Compiling the network ...")
function_learn = theano.function([s1, q2, a, r, isterminal], loss, updates=updates, name="learn_fn", allow_input_downcast=True)
function_get_q_values = theano.function([s1], q, name="eval_fn", allow_input_downcast=True)
function_get_best_action = theano.function([s1], T.argmax(q), name="test_fn", allow_input_downcast=True)
print("Network compiled.")
def simple_get_best_action(state):
return function_get_best_action(state)
# Returns Theano objects for the net and functions.
return params, function_learn, function_get_q_values, simple_get_best_action
def learn_from_memory():
""" Learns from a single transition (making use of replay memory).
s2 is ignored if s2_isterminal """
# Get a random minibatch from the replay memory and learns from it.
if memory.size > batch_size:
s1, a, s2, isterminal, r = memory.get_sample(batch_size)
q2 = get_q_values(s2)
maxq2 = np.max(q2, axis=1)
# the value of q2 is ignored in learn if s2 is terminal
learn(s1, maxq2, a, r, isterminal)
def get_pre_trained_features(im):
im = 255 * np.stack([im, im, im], axis=0)
im[0,:,:] -= 103.939 #TODO: Check if the format is RGB or BGR
im[1,:,:] -= 116.779
im[2,:,:] -= 123.68
im = np.expand_dims(im, axis=0)
features = get_penaltimate_features([im, 0])[0]
s1new = np.zeros(shape=(1, 4096))
s1new[0, :] = features
return s1new
from keras import backend as K
from vggModel import *
CNN_model = vggModel('/home/monaj/Documents/myKeras/LRCN/vgg16_weights.h5')
get_penaltimate_features = K.function([CNN_model.layers[0].input, K.learning_phase()], [CNN_model.layers[-2].output])
def perform_learning_step(epoch):
""" Makes an action according to eps-greedy policy, observes the result
(next state, reward) and learns from the transition"""
def exploration_rate(epoch):
"""# Define exploration rate change over time"""
start_eps = 1.0
end_eps = 0.1
const_eps_epochs = 0.1 * epochs # 10% of learning time
eps_decay_epochs = 0.6 * epochs # 60% of learning time
if epoch < const_eps_epochs:
return start_eps
elif epoch < eps_decay_epochs:
# Linear decay
return start_eps - (epoch - const_eps_epochs) / \
(eps_decay_epochs - const_eps_epochs) * (start_eps - end_eps)
else:
return end_eps
s1 = preprocess(game.get_state().screen_buffer)
s1 = get_pre_trained_features(s1)
# With probability eps make a random action.
eps = exploration_rate(epoch)
if random() <= eps:
a = randint(0, len(actions) - 1)
else:
# Choose the best action according to the network.
a = get_best_action(s1)
reward = game.make_action(actions[a], frame_repeat)
isterminal = game.is_episode_finished()
s2 = get_pre_trained_features(preprocess(game.get_state().screen_buffer)) if not isterminal else None
# Remember the transition that was just experienced.
memory.add_transition(s1, a, s2, isterminal, reward)
learn_from_memory()
# Creates and initializes ViZDoom environment.
def initialize_vizdoom(config_file_path):
print("Initializing doom...")
game = DoomGame()
game.load_config(config_file_path)
game.set_window_visible(False)
game.set_mode(Mode.PLAYER)
game.set_screen_format(ScreenFormat.GRAY8)
game.set_screen_resolution(ScreenResolution.RES_640X480)
game.init()
print("Doom initialized.")
return game
def set_all_param_values_special(params, values, **tags):
if len(params) != len(values):
raise ValueError("mismatch: got %d values to set %d parameters" %
(len(values), len(params)))
for p, v in zip(params, values):
if p.get_value().shape != v.shape:
raise ValueError("mismatch: parameter has shape %r but value to "
"set has shape %r" %
(p.get_value().shape, v.shape))
else:
p.set_value(v)
# Create Doom instance
game = initialize_vizdoom(config_file_path)
# Action = which buttons are pressed
n = game.get_available_buttons_size()
actions = [list(a) for a in it.product([0, 1], repeat=n)]
# Create replay memory which will store the transitions
memory = ReplayMemory(capacity=replay_memory_size)
params, learn, get_q_values, get_best_action = create_network(len(actions))
print("Starting the training!")
time_start = time()
for epoch in range(epochs):
print("\nEpoch %d\n-------" % (epoch + 1))
train_episodes_finished = 0
train_scores = []
print("Training...")
game.new_episode()
for learning_step in trange(learning_steps_per_epoch):
perform_learning_step(epoch)
if game.is_episode_finished():
score = game.get_total_reward()
train_scores.append(score)
game.new_episode()
train_episodes_finished += 1
print("%d training episodes played." % train_episodes_finished)
train_scores = np.array(train_scores)
print("Results: mean: %.1f±%.1f," % (train_scores.mean(), train_scores.std()), \
"min: %.1f," % train_scores.min(), "max: %.1f," % train_scores.max())
print("\nTesting...")
test_episode = []
test_scores = []
for test_episode in trange(test_episodes_per_epoch):
game.new_episode()
while not game.is_episode_finished():
state = preprocess(game.get_state().screen_buffer)
state = get_pre_trained_features(state)
best_action_index = get_best_action(state)
game.make_action(actions[best_action_index], frame_repeat)
r = game.get_total_reward()
test_scores.append(r)
test_scores = np.array(test_scores)
print("Results: mean: %.1f±%.1f," % (
test_scores.mean(), test_scores.std()), "min: %.1f" % test_scores.min(), "max: %.1f" % test_scores.max())
print("Saving the network weigths to:", model_savefile)
pickle.dump([p.get_value() for p in params], open(model_savefile, "wb"))
print("Total elapsed time: %.2f minutes" % ((time() - time_start) / 60.0))
game.close()
print("======================================")
print("Loading the network weigths from:", model_savefile)
print("Training finished. It's time to watch!")
# Load the network's parameters from a file
params_values = pickle.load(open(model_savefile, "rb"))
set_all_param_values_special(params, params_values)
# Reinitialize the game with window visible
game.set_window_visible(True)
game.set_mode(Mode.ASYNC_PLAYER)
game.init()
for _ in range(episodes_to_watch):
game.new_episode()
while not game.is_episode_finished():
state = preprocess(game.get_state().screen_buffer)
state = get_pre_trained_features(state)
best_action_index = get_best_action(state)
# Instead of make_action(a, frame_repeat) in order to make the animation smooth
game.set_action(actions[best_action_index])
for _ in range(frame_repeat):
game.advance_action()
# Sleep between episodes
sleep(1.0)
score = game.get_total_reward()
print("Total score: ", score)
|
[
"layers.FCLayer",
"lasagne.objectives.squared_error",
"numpy.max",
"itertools.product",
"theano.tensor.arange",
"numpy.stack",
"keras.backend.learning_phase",
"tqdm.trange",
"time.sleep",
"random.random",
"theano.tensor.matrix",
"lasagne.updates.rmsprop",
"theano.tensor.vector",
"theano.function",
"numpy.zeros",
"numpy.expand_dims",
"time.time",
"numpy.array",
"theano.tensor.argmax"
] |
[((8092, 8098), 'time.time', 'time', ([], {}), '()\n', (8096, 8098), False, 'from time import time, sleep\n'), ((2530, 2547), 'theano.tensor.matrix', 'T.matrix', (['"""State"""'], {}), "('State')\n", (2538, 2547), True, 'import theano.tensor as T\n'), ((2556, 2589), 'theano.tensor.vector', 'T.vector', (['"""Action"""'], {'dtype': '"""int32"""'}), "('Action', dtype='int32')\n", (2564, 2589), True, 'import theano.tensor as T\n'), ((2599, 2613), 'theano.tensor.vector', 'T.vector', (['"""Q2"""'], {}), "('Q2')\n", (2607, 2613), True, 'import theano.tensor as T\n'), ((2622, 2640), 'theano.tensor.vector', 'T.vector', (['"""Reward"""'], {}), "('Reward')\n", (2630, 2640), True, 'import theano.tensor as T\n'), ((2658, 2694), 'theano.tensor.vector', 'T.vector', (['"""IsTerminal"""'], {'dtype': '"""int8"""'}), "('IsTerminal', dtype='int8')\n", (2666, 2694), True, 'import theano.tensor as T\n'), ((2797, 2859), 'layers.FCLayer', 'layers.FCLayer', ([], {'input': 'input_state', 'fan_in': '(4096)', 'num_hidden': '(128)'}), '(input=input_state, fan_in=4096, num_hidden=128)\n', (2811, 2859), False, 'import layers\n'), ((2974, 3077), 'layers.FCLayer', 'layers.FCLayer', ([], {'input': 'dense_1.out', 'fan_in': '(128)', 'num_hidden': 'available_actions_count', 'activation': 'None'}), '(input=dense_1.out, fan_in=128, num_hidden=\n available_actions_count, activation=None)\n', (2988, 3077), False, 'import layers\n'), ((3448, 3484), 'lasagne.updates.rmsprop', 'rmsprop', (['loss', 'params', 'learning_rate'], {}), '(loss, params, learning_rate)\n', (3455, 3484), False, 'from lasagne.updates import rmsprop\n'), ((3581, 3696), 'theano.function', 'theano.function', (['[s1, q2, a, r, isterminal]', 'loss'], {'updates': 'updates', 'name': '"""learn_fn"""', 'allow_input_downcast': '(True)'}), "([s1, q2, a, r, isterminal], loss, updates=updates, name=\n 'learn_fn', allow_input_downcast=True)\n", (3596, 3696), False, 'import theano\n'), ((3720, 3787), 'theano.function', 'theano.function', (['[s1]', 'q'], {'name': '"""eval_fn"""', 'allow_input_downcast': '(True)'}), "([s1], q, name='eval_fn', allow_input_downcast=True)\n", (3735, 3787), False, 'import theano\n'), ((4840, 4866), 'numpy.expand_dims', 'np.expand_dims', (['im'], {'axis': '(0)'}), '(im, axis=0)\n', (4854, 4866), True, 'import numpy as np\n'), ((4931, 4956), 'numpy.zeros', 'np.zeros', ([], {'shape': '(1, 4096)'}), '(shape=(1, 4096))\n', (4939, 4956), True, 'import numpy as np\n'), ((8302, 8334), 'tqdm.trange', 'trange', (['learning_steps_per_epoch'], {}), '(learning_steps_per_epoch)\n', (8308, 8334), False, 'from tqdm import trange\n'), ((8656, 8678), 'numpy.array', 'np.array', (['train_scores'], {}), '(train_scores)\n', (8664, 8678), True, 'import numpy as np\n'), ((8939, 8970), 'tqdm.trange', 'trange', (['test_episodes_per_epoch'], {}), '(test_episodes_per_epoch)\n', (8945, 8970), False, 'from tqdm import trange\n'), ((9372, 9393), 'numpy.array', 'np.array', (['test_scores'], {}), '(test_scores)\n', (9380, 9393), True, 'import numpy as np\n'), ((10718, 10728), 'time.sleep', 'sleep', (['(1.0)'], {}), '(1.0)\n', (10723, 10728), False, 'from time import time, sleep\n'), ((1573, 1612), 'numpy.zeros', 'np.zeros', (['state_shape'], {'dtype': 'np.float32'}), '(state_shape, dtype=np.float32)\n', (1581, 1612), True, 'import numpy as np\n'), ((1631, 1670), 'numpy.zeros', 'np.zeros', (['state_shape'], {'dtype': 'np.float32'}), '(state_shape, dtype=np.float32)\n', (1639, 1670), True, 'import numpy as np\n'), ((1688, 1722), 'numpy.zeros', 'np.zeros', (['capacity'], {'dtype': 'np.int32'}), '(capacity, dtype=np.int32)\n', (1696, 1722), True, 'import numpy as np\n'), ((1740, 1776), 'numpy.zeros', 'np.zeros', (['capacity'], {'dtype': 'np.float32'}), '(capacity, dtype=np.float32)\n', (1748, 1776), True, 'import numpy as np\n'), ((1803, 1837), 'numpy.zeros', 'np.zeros', (['capacity'], {'dtype': 'np.bool_'}), '(capacity, dtype=np.bool_)\n', (1811, 1837), True, 'import numpy as np\n'), ((3841, 3852), 'theano.tensor.argmax', 'T.argmax', (['q'], {}), '(q)\n', (3849, 3852), True, 'import theano.tensor as T\n'), ((4507, 4525), 'numpy.max', 'np.max', (['q2'], {'axis': '(1)'}), '(q2, axis=1)\n', (4513, 4525), True, 'import numpy as np\n'), ((4684, 4714), 'numpy.stack', 'np.stack', (['[im, im, im]'], {'axis': '(0)'}), '([im, im, im], axis=0)\n', (4692, 4714), True, 'import numpy as np\n'), ((5198, 5216), 'keras.backend.learning_phase', 'K.learning_phase', ([], {}), '()\n', (5214, 5216), True, 'from keras import backend as K\n'), ((6197, 6205), 'random.random', 'random', ([], {}), '()\n', (6203, 6205), False, 'from random import sample, randint, random\n'), ((7831, 7859), 'itertools.product', 'it.product', (['[0, 1]'], {'repeat': 'n'}), '([0, 1], repeat=n)\n', (7841, 7859), True, 'import itertools as it\n'), ((3276, 3302), 'lasagne.objectives.squared_error', 'squared_error', (['q', 'target_q'], {}), '(q, target_q)\n', (3289, 3302), False, 'from lasagne.objectives import squared_error\n'), ((3194, 3214), 'theano.tensor.arange', 'T.arange', (['q.shape[0]'], {}), '(q.shape[0])\n', (3202, 3214), True, 'import theano.tensor as T\n'), ((9738, 9744), 'time.time', 'time', ([], {}), '()\n', (9742, 9744), False, 'from time import time, sleep\n')]
|
"""GUI for rejecting epochs"""
# Author: <NAME> <<EMAIL>>
# Document: represents data
# ChangeAction: modifies Document
# Model: creates ChangeActions and applies them to the History
# Frame:
# - visualizaes Document
# - listens to Document changes
# - issues commands to Model
from logging import getLogger
import math
import os
import re
import time
import numpy as np
from scipy.spatial.distance import cdist
import wx
from .. import _meeg as meeg
from .. import _text
from .. import load, save, plot, fmtxt
from .._data_obj import Dataset, Factor, Var, Datalist, asndvar, combine
from .._info import BAD_CHANNELS
from .._names import INTERPOLATE_CHANNELS
from .._ndvar import neighbor_correlation
from .._utils.parse import FLOAT_PATTERN, POS_FLOAT_PATTERN, INT_PATTERN
from .._utils.numpy_utils import FULL_SLICE, INT_TYPES
from ..mne_fixes import MNE_EPOCHS
from ..plot._base import AxisData, LayerData, PlotType, AxisScale, find_fig_vlims, find_fig_cmaps
from ..plot._nuts import _plt_bin_nuts
from ..plot._topo import _ax_topomap
from ..plot._utsnd import _ax_bfly_epoch
from .app import get_app
from .frame import EelbrainDialog
from .mpl_canvas import FigureCanvasPanel
from .history import Action, FileDocument, FileModel, FileFrame
from .text import HTMLFrame
from .utils import Icon, REValidator
from . import ID
# IDs
MEAN_PLOT = -1
TOPO_PLOT = -2
OUT_OF_RANGE = -3
# For unit-tests
TEST_MODE = False
def _epoch_list_to_ranges(elist):
out = []
i = 0
i_last = len(elist) - 1
start = None
while i <= i_last:
cur = elist[i]
if i < i_last and elist[i + 1] - cur == 1:
if start is None:
start = cur
elif start is None:
out.append(fmtxt.Link(cur, 'epoch:%i' % cur))
else:
out.append(fmtxt.Link(start, 'epoch:%i' % start) + '-' +
fmtxt.Link(cur, 'epoch:%i' % cur))
start = None
i += 1
return out
def format_epoch_list(l, head="Epochs by channel:"):
d = meeg.channel_listlist_to_dict(l)
if not d:
return "None."
out = fmtxt.List(head)
for ch in sorted(d, key=lambda x: -len(d[x])):
item = fmtxt.FMText("%s (%i): " % (ch, len(d[ch])))
item += fmtxt.delim_list(_epoch_list_to_ranges(d[ch]))
out.add_item(item)
return out
class ChangeAction(Action):
"""Action objects are kept in the history and can do and undo themselves
Parameters
----------
desc : str
Description of the action
list of (i, name, old, new) tuples
"""
def __init__(self, desc, index=None, old_accept=None, new_accept=None,
old_tag=None, new_tag=None, old_path=None, new_path=None,
old_bad_chs=None, new_bad_chs=None, old_interpolate=None,
new_interpolate=None):
self.desc = desc
self.index = index
self.old_path = old_path
self.old_accept = old_accept
self.old_tag = old_tag
self.new_path = new_path
self.new_accept = new_accept
self.new_tag = new_tag
self.old_bad_chs = old_bad_chs
self.new_bad_chs = new_bad_chs
self.old_interpolate = old_interpolate
self.new_interpolate = new_interpolate
def do(self, doc):
if self.index is not None:
doc.set_case(self.index, self.new_accept, self.new_tag,
self.new_interpolate)
if self.new_path is not None:
doc.set_path(self.new_path)
if self.new_bad_chs is not None:
doc.set_bad_channels(self.new_bad_chs)
def undo(self, doc):
if self.index is not None:
doc.set_case(self.index, self.old_accept, self.old_tag,
self.old_interpolate)
if self.new_path is not None and self.old_path is not None:
doc.set_path(self.old_path)
if self.new_bad_chs is not None:
doc.set_bad_channels(self.old_bad_chs)
class Document(FileDocument):
"""Represent the current state of the Document
Data can be accesses through attributes, but should only be changed through
the set_...() methods.
Parameters
----------
path : None | str
Default location of the epoch selection file (used for save
command). If the file exists, it is loaded as initial state.
Attributes
----------
n_epochs : int
The number of epochs.
epochs : NDVar
The raw epochs.
accept : Var of bool
Case status.
tag : Factor
Case tag.
trigger : Var of int
Case trigger value.
blink : Datalist | None
Case eye tracker artifact data.
"""
def __init__(self, ds, data='meg', accept='accept', blink='blink',
tag='rej_tag', trigger='trigger', path=None, bad_chs=None,
allow_interpolation=True):
FileDocument.__init__(self, path)
if isinstance(ds, MNE_EPOCHS):
epochs = ds
ds = Dataset()
epochs.load_data()
ds[data] = epochs
ds['trigger'] = Var(epochs.events[:, 2])
data = asndvar(data, ds=ds)
self.n_epochs = n = len(data)
if not isinstance(accept, str):
raise TypeError("accept needs to be a string")
if accept not in ds:
x = np.ones(n, dtype=bool)
ds[accept] = Var(x)
accept = ds[accept]
if not isinstance(tag, str):
raise TypeError("tag needs to be a string")
if tag in ds:
tag = ds[tag]
else:
tag = Factor([''], repeat=n, name=tag)
ds.add(tag)
if not isinstance(trigger, str):
raise TypeError("trigger needs to be a string")
if trigger in ds:
trigger = ds[trigger]
else:
raise KeyError(f"ds does not contain a variable named {trigger!r}. The trigger parameters needs to point to a variable in ds containing trigger values.")
if INTERPOLATE_CHANNELS in ds:
interpolate = ds[INTERPOLATE_CHANNELS]
if not allow_interpolation and any(interpolate):
raise ValueError("Dataset contains channel interpolation information but interpolation is turned off")
else:
interpolate = Datalist([[]] * ds.n_cases, INTERPOLATE_CHANNELS, 'strlist')
if isinstance(blink, str):
if ds is not None:
blink = ds.get(blink, None)
elif blink is True:
if 'edf' in ds.info:
tmin = data.time.tmin
tmax = data.time.tmax
_, blink = load.eyelink.artifact_epochs(ds, tmin, tmax,
esacc=False)
else:
wx.MessageBox("No eye tracker data was found in ds.info['edf']. Use load.eyelink.add_edf(ds) to add an eye tracker file to a Dataset ds.", "Eye Tracker Data Not Found")
blink = None
elif blink is not None:
raise TypeError("blink needs to be a string or None")
if blink is not None:
raise NotImplementedError("Frame.SetPage() needs to be updated to use blink information")
# options
self.allow_interpolation = allow_interpolation
# data
self.epochs = data
self.accept = accept
self.tag = tag
self.interpolate = interpolate
self.trigger = trigger
self.blink = blink
self.bad_channels = [] # list of int
self.good_channels = None
# cache
self._good_sensor_indices = {}
# publisher
self.callbacks.register_key('case_change')
self.callbacks.register_key('bad_chs_change')
# finalize
if bad_chs is not None:
self.set_bad_channels_by_name(bad_chs)
if path and os.path.exists(path):
accept, tag, interpolate, bad_chs = self.read_rej_file(path)
self.accept[:] = accept
self.tag[:] = tag
self.interpolate[:] = interpolate
self.set_bad_channels(bad_chs)
self.saved = True
@property
def bad_channel_names(self):
return [self.epochs.sensor.names[i] for i in self.bad_channels]
def iter_good_epochs(self):
"All cases, only good channels"
if self.bad_channels:
epochs = self.epochs.sub(sensor=self.good_channels)
else:
epochs = self.epochs
bad_set = set(self.bad_channel_names)
interpolate = [set(chs) - bad_set for chs in self.interpolate]
if any(interpolate):
for epoch, chs in zip(epochs, interpolate):
if chs:
yield epoch.sub(sensor=epoch.sensor.index(exclude=chs))
else:
yield epoch
else:
for epoch in epochs:
yield epoch
def good_sensor_index(self, case):
"Index of non-interpolated sensor relative to good sensors"
if self.interpolate[case]:
key = frozenset(self.interpolate[case])
if key in self._good_sensor_indices:
return self._good_sensor_indices[key]
else:
out = np.ones(len(self.epochs.sensor), bool)
out[self.epochs.sensor._array_index(self.interpolate[case])] = False
if self.good_channels is not None:
out = out[self.good_channels]
self._good_sensor_indices[key] = out
return out
def get_epoch(self, case, name):
if self.bad_channels:
return self.epochs.sub(case=case, sensor=self.good_channels, name=name)
else:
return self.epochs.sub(case=case, name=name)
def get_grand_average(self):
"Grand average of all accepted epochs"
return self.epochs.sub(case=self.accept.x, sensor=self.good_channels,
name="Grand Average").mean('case')
def set_bad_channels(self, indexes):
"""Set the channels to treat as bad (i.e., exclude)
Parameters
----------
bad_chs : collection of int
Indices of channels to treat as bad.
"""
indexes = sorted(indexes)
if indexes == self.bad_channels:
return
self.bad_channels = indexes
if indexes:
self.good_channels = np.setdiff1d(np.arange(len(self.epochs.sensor)),
indexes, True)
else:
self.good_channels = None
self._good_sensor_indices.clear()
self.callbacks.callback('bad_chs_change')
def set_bad_channels_by_name(self, names):
self.set_bad_channels(self.epochs.sensor._array_index(names))
def set_case(self, index, state, tag, interpolate):
if state is not None:
self.accept[index] = state
if tag is not None:
self.tag[index] = tag
if interpolate is not None:
self.interpolate[index] = interpolate
self.callbacks.callback('case_change', index)
def set_path(self, path):
"""Set the path
Parameters
----------
path : str
Path under which to save. The extension determines the way file
(*.pickled -> pickled Dataset; *.txt -> tsv)
"""
root, ext = os.path.splitext(path)
if ext == '':
path = root + '.txt'
FileDocument.set_path(self, path)
def read_rej_file(self, path):
"Read a file making sure it is compatible"
_, ext = os.path.splitext(path)
if ext.startswith('.pickle'):
ds = load.unpickle(path)
elif ext == '.txt':
ds = load.tsv(path, delimiter='\t')
else:
raise ValueError(f"Unknown file extension for rejections: {path}")
# check file
if ds.n_cases > self.n_epochs:
app = get_app()
cmd = app.message_box(f"The File contains more events than the data (file: {ds.n_cases}, data: {self.n_epochs}). Truncate the file?", "Truncate the file?", wx.OK | wx.CANCEL | wx.CANCEL_DEFAULT | wx.ICON_WARNING)
if cmd == wx.ID_OK:
ds = ds[:self.n_epochs]
else:
raise RuntimeError("Unequal number of cases")
elif ds.n_cases < self.n_epochs:
app = get_app()
cmd = app.message_box(f"The rejection file contains fewer epochs than the data (file: {ds.n_cases}, data: {self.n_epochs}). Load anyways (epochs missing from the file will be accepted)?", "Load partial file?", wx.OK | wx.CANCEL | wx.CANCEL_DEFAULT | wx.ICON_WARNING)
if cmd == wx.ID_OK:
n_missing = self.n_epochs - ds.n_cases
tail = Dataset(info=ds.info)
tail['trigger'] = Var(self.trigger[-n_missing:])
tail['accept'] = Var([True], repeat=n_missing)
tail['tag'] = Factor(['missing'], repeat=n_missing)
ds = combine((ds, tail))
else:
raise RuntimeError("Unequal number of cases")
if not np.all(ds[self.trigger.name] == self.trigger):
app = get_app()
cmd = app.message_box("The file contains different triggers from the data. Ignore mismatch and proceed?", "Ignore trigger mismatch?", wx.OK | wx.CANCEL | wx.CANCEL_DEFAULT)
if cmd == wx.ID_OK:
ds[self.trigger.name] = self.trigger
else:
raise RuntimeError("Trigger mismatch")
accept = ds['accept']
if 'rej_tag' in ds:
tag = ds['rej_tag']
else:
tag = Factor([''], repeat=self.n_epochs, name='rej_tag')
if INTERPOLATE_CHANNELS in ds:
interpolate = ds[INTERPOLATE_CHANNELS]
if not self.allow_interpolation and any(interpolate):
app = get_app()
cmd = app.message_box("The file contains channel interpolation instructions, but interpolation is disabled is the current session. Drop interpolation instructions?", "Clear Channel Interpolation Instructions?", wx.OK | wx.CANCEL | wx.CANCEL_DEFAULT)
if cmd == wx.ID_OK:
for l in interpolate:
del l[:]
else:
raise RuntimeError("File with interpolation when Interpolation is disabled")
else:
interpolate = Datalist([[]] * self.n_epochs, INTERPOLATE_CHANNELS,
'strlist')
if BAD_CHANNELS in ds.info:
bad_channels = self.epochs.sensor._array_index(ds.info[BAD_CHANNELS])
else:
bad_channels = []
return accept, tag, interpolate, bad_channels
def save(self):
# find dest path
_, ext = os.path.splitext(self.path)
# create Dataset to save
info = {BAD_CHANNELS: self.bad_channel_names}
ds = Dataset((self.trigger, self.accept, self.tag, self.interpolate), info=info)
if ext == '.pickled':
save.pickle(ds, self.path)
elif ext == '.txt':
ds.save_txt(self.path)
else:
raise ValueError("Unsupported extension: %r" % ext)
class Model(FileModel):
"""Manages a document as well as its history"""
def clear(self):
desc = "Clear"
index = np.logical_not(self.doc.accept.x)
old_tag = self.doc.tag[index]
action = ChangeAction(desc, index, False, True, old_tag, 'clear')
logger = getLogger(__name__)
logger.info("Clearing %i rejections" % index.sum())
self.history.do(action)
def load(self, path):
new_accept, new_tag, new_interpolate, new_bad_chs = self.doc.read_rej_file(path)
# create load action
action = ChangeAction("Load File", FULL_SLICE, self.doc.accept, new_accept,
self.doc.tag, new_tag, self.doc.path, path,
self.doc.bad_channels, new_bad_chs,
self.doc.interpolate, new_interpolate)
self.history.do(action)
self.history.register_save()
def set_bad_channels(self, bad_channels, desc="Set bad channels"):
"Set bad channels with a list of int"
action = ChangeAction(desc, old_bad_chs=self.doc.bad_channels,
new_bad_chs=bad_channels)
self.history.do(action)
def set_case(self, i, state, tag=None, desc="Manual Change"):
old_accept = self.doc.accept[i]
if tag is None:
old_tag = None
else:
old_tag = self.doc.tag[i]
action = ChangeAction(desc, i, old_accept, state, old_tag, tag)
self.history.do(action)
def set_interpolation(self, case, ch_names):
action = ChangeAction("Epoch %s interpolate %r" % (case, ', '.join(ch_names)),
case, old_interpolate=self.doc.interpolate[case],
new_interpolate=ch_names)
self.history.do(action)
def set_range(self, start, stop, new_accept):
if start < 0:
start += len(self.doc.accept)
if stop <= 0:
stop += len(self.doc.accept)
if stop <= start:
return
old_accept = self.doc.accept[start: stop].copy()
action = ChangeAction("Set Range", slice(start, stop), old_accept,
new_accept)
self.history.do(action)
def threshold(self, threshold=2e-12, method='abs'):
"""Find epochs based on a threshold criterion
Parameters
----------
threshold : scalar
The threshold value. Examples: 1.25e-11 to detect saturated
channels; 2e-12: for conservative MEG rejection.
method : 'abs' | 'p2p'
How to apply the threshold. With "abs", the threshold is applied to
absolute values. With 'p2p' the threshold is applied to
peak-to-peak values.
Returns
-------
sub_threshold : array of bool
True for all epochs in which the criterion is not reached (i.e.,
epochs that should be accepted).
"""
args = ', '.join(map(str, (threshold, method)))
logger = getLogger(__name__)
logger.info("Auto-reject trials: %s" % args)
if method == 'abs':
x = [x.abs().max(('time', 'sensor')) for x in
self.doc.iter_good_epochs()]
elif method == 'p2p':
x = [(x.max('time') - x.min('time')).max('sensor') for x in
self.doc.iter_good_epochs()]
else:
raise ValueError("Invalid method: %r" % method)
return np.array(x) < threshold
def toggle_interpolation(self, case, ch_name):
old_interpolate = self.doc.interpolate[case]
new_interpolate = old_interpolate[:]
if ch_name in new_interpolate:
new_interpolate.remove(ch_name)
desc = "Don't interpolate %s for %i" % (ch_name, case)
else:
new_interpolate.append(ch_name)
desc = "Interpolate %s for %i" % (ch_name, case)
action = ChangeAction(desc, case, old_interpolate=old_interpolate,
new_interpolate=new_interpolate)
self.history.do(action)
def update_bad_chs(self, bad_chs, interp, desc):
if interp is None:
index = old_interp = new_interp = None
else:
new_interp = self.doc.interpolate[:]
new_interp._update_listlist(interp)
index = np.flatnonzero(new_interp != self.doc.interpolate)
if len(index):
old_interp = self.doc.interpolate[index]
new_interp = new_interp[index]
else:
index = old_interp = new_interp = None
# find changed bad channels
old_bad_chs = self.doc.bad_channel_names
if bad_chs and any(ch not in old_bad_chs for ch in bad_chs):
new_bad_chs = sorted(set(old_bad_chs).union(bad_chs))
else:
new_bad_chs = old_bad_chs = None
action = ChangeAction(desc, index, old_bad_chs=old_bad_chs, new_bad_chs=new_bad_chs,
old_interpolate=old_interp, new_interpolate=new_interp)
self.history.do(action)
def update_rejection(self, new_accept, mark_good, mark_bad, desc, new_tag):
# find changes
if not mark_good:
index = np.invert(new_accept)
elif not mark_bad:
index = new_accept
else:
index = None
if index is None:
index = new_accept != self.doc.accept.x
else:
np.logical_and(index, new_accept != self.doc.accept.x, index)
index = np.flatnonzero(index)
# construct action
old_accept = self.doc.accept[index]
new_accept = new_accept[index]
old_tag = self.doc.tag[index]
action = ChangeAction(desc, index, old_accept, new_accept, old_tag,
new_tag)
self.history.do(action)
class Frame(FileFrame):
"""Epoch rejection GUI
Exclude bad epochs and interpolate or remove bad channels.
* Use the `Bad Channels` button in the toolbar to exclude channels from
analysis (use the `GA` button to plot the grand average and look for
channels that are consistently bad).
* Click the `Threshold` button to automatically reject epochs in which the
signal exceeds a certain threshold.
* Click on an epoch plot to toggle rejection of that epoch.
* Click on a channel in the topo-map to mark that channel in the epoch
plots.
* Press ``i`` on the keyboard to toggle channel interpolation for the
channel that is closest to the cursor along the y-axis.
* Press ``shift-i`` on the keyboard to edit a list of interpolated channels
for the epoch under the cursor.
*Keyboard shortcuts* in addition to the ones in the menu:
=========== ============================================================
Key Effect
=========== ============================================================
right-arrow go to the next page
left-arrow go to the previous page
b butterfly plot of the epoch under the pointer
c pairwise sensor correlation plot or the current epoch
t topomap plot of the epoch/time point under the pointer
i interpolate the channel nearest to the pointer on the y-axis
shift-i open dialog to enter channels for interpolation
=========== ============================================================
"""
_doc_name = 'epoch selection'
_title = "Select Epochs"
def __init__(self, parent, model, nplots, topo, mean, vlim, color, lw, mark,
mcolor, mlw, antialiased, pos, size, allow_interpolation):
"""View object of the epoch selection GUI
Parameters
----------
parent : wx.Frame
Parent window.
others :
See TerminalInterface constructor.
"""
super(Frame, self).__init__(parent, pos, size, model)
self.allow_interpolation = allow_interpolation
# bind events
self.doc.callbacks.subscribe('case_change', self.CaseChanged)
self.doc.callbacks.subscribe('bad_chs_change', self.ShowPage)
# setup figure canvas
self.canvas = FigureCanvasPanel(self)
self.figure = self.canvas.figure
self.figure.set_facecolor('white')
self.figure.subplots_adjust(left=.01, right=.99, bottom=.025,
top=.975, wspace=.1, hspace=.25)
# Toolbar
tb = self.InitToolbar()
tb.AddSeparator()
# --> select page
txt = wx.StaticText(tb, -1, "Page:")
tb.AddControl(txt)
self.page_choice = wx.Choice(tb, -1)
tb.AddControl(self.page_choice)
tb.Bind(wx.EVT_CHOICE, self.OnPageChoice)
# --> forward / backward
self.back_button = tb.AddTool(wx.ID_BACKWARD, "Back",
Icon("tango/actions/go-previous"))
self.Bind(wx.EVT_TOOL, self.OnBackward, id=wx.ID_BACKWARD)
self.next_button = tb.AddTool(wx.ID_FORWARD, "Next",
Icon("tango/actions/go-next"))
self.Bind(wx.EVT_TOOL, self.OnForward, id=wx.ID_FORWARD)
tb.AddSeparator()
# --> Bad Channels
button = wx.Button(tb, ID.SET_BAD_CHANNELS, "Bad Channels")
button.Bind(wx.EVT_BUTTON, self.OnSetBadChannels)
tb.AddControl(button)
# --> Thresholding
button = wx.Button(tb, ID.THRESHOLD, "Threshold")
button.Bind(wx.EVT_BUTTON, self.OnThreshold)
tb.AddControl(button)
# right-most part
tb.AddStretchableSpace()
# Grand-average plot
button = wx.Button(tb, ID.GRAND_AVERAGE, "GA")
button.SetHelpText("Plot the grand average of all accepted epochs")
button.Bind(wx.EVT_BUTTON, self.OnPlotGrandAverage)
tb.AddControl(button)
# Info
tb.AddTool(wx.ID_INFO, 'Info', Icon("actions/info"))
self.Bind(wx.EVT_TOOL, self.OnInfo, id=wx.ID_INFO)
# --> Help
self.InitToolbarTail(tb)
tb.Realize()
self.CreateStatusBar()
# check plot parameters
if mark:
mark, invalid = self.doc.epochs.sensor._normalize_sensor_names(mark, missing='return')
if invalid:
msg = ("Some channels specified to mark do not exist in the "
"data and will be ignored: " + ', '.join(invalid))
wx.CallLater(1, wx.MessageBox, msg, "Invalid Channels in Mark",
wx.OK | wx.ICON_WARNING)
# setup plot parameters
plot_list = ((self.doc.epochs,),)
cmaps = find_fig_cmaps(plot_list)
self._vlims = find_fig_vlims(plot_list, vlim, None, cmaps)
self._mark = mark
self._bfly_kwargs = {'color': color, 'lw': lw, 'mlw': mlw,
'antialiased': antialiased, 'vlims': self._vlims,
'mcolor': mcolor}
self._topo_kwargs = {'vlims': self._vlims, 'mcolor': 'red', 'mmarker': 'x'}
self._SetLayout(nplots, topo, mean)
# Bind Events ---
self.canvas.mpl_connect('button_press_event', self.OnCanvasClick)
self.canvas.mpl_connect('key_release_event', self.OnCanvasKey)
self.canvas.mpl_connect('motion_notify_event', self.OnPointerMotion)
# plot objects
self._current_page_i = None
self._epoch_idxs = None
self._case_plots = None
self._case_axes = None
self._case_segs = None
self._axes_by_idx = None
self._topo_ax = None
self._topo_plot_info_str = None
self._topo_plot = None
self._mean_plot = None
# Finalize
self.ShowPage(0)
self.UpdateTitle()
def CanBackward(self):
return self._current_page_i > 0
def CanForward(self):
return self._current_page_i < self._n_pages - 1
def CaseChanged(self, index):
"Update the states of the segments on the current page"
if isinstance(index, INT_TYPES):
index = [index]
elif isinstance(index, slice):
start = index.start or 0
stop = index.stop or self.doc.n_epochs
index = range(start, stop)
elif index.dtype.kind == 'b':
index = np.nonzero(index)[0]
# update epoch plots
axes = []
for idx in index:
if idx in self._axes_by_idx:
ax = self._axes_by_idx[idx]
ax_idx = ax.ax_idx
h = self._case_plots[ax_idx]
h.set_state(self.doc.accept[idx])
# interpolated channels
ch_index = h.epoch.sensor.channel_idx
h.set_marked(INTERPOLATE_CHANNELS, [ch_index[ch] for ch in
self.doc.interpolate[idx]
if ch in ch_index])
axes.append(ax)
# update mean plot
if self._plot_mean:
self._mean_plot.set_data(self._get_page_mean_seg())
axes.append(self._mean_ax)
self.canvas.redraw(axes=axes)
def GoToEpoch(self, i):
for page, epochs in enumerate(self._segs_by_page):
if i in epochs:
break
else:
raise ValueError("Epoch not found: %r" % i)
if page != self._current_page_i:
self.SetPage(page)
def MakeToolsMenu(self, menu):
app = wx.GetApp()
item = menu.Append(wx.ID_ANY, "Set Bad Channels",
"Specify bad channels for the whole file")
app.Bind(wx.EVT_MENU, self.OnSetBadChannels, item)
item = menu.Append(wx.ID_ANY, "Set Rejection for Range",
"Set the rejection status for a range of epochs")
app.Bind(wx.EVT_MENU, self.OnRejectRange, item)
item = menu.Append(wx.ID_ANY, "Find Epochs by Threshold",
"Find epochs based in a specific threshold")
app.Bind(wx.EVT_MENU, self.OnThreshold, item)
item = menu.Append(wx.ID_ANY, "Find Bad Channels",
"Find bad channels using different criteria")
app.Bind(wx.EVT_MENU, self.OnFindNoisyChannels, item)
menu.AppendSeparator()
item = menu.Append(wx.ID_ANY, "Plot Grand Average",
"Plot the grand average of all accepted epochs "
"(does not perform single-epoch channel "
"interpolation)")
app.Bind(wx.EVT_MENU, self.OnPlotGrandAverage, item)
item = menu.Append(wx.ID_ANY, "Info")
app.Bind(wx.EVT_MENU, self.OnInfo, item)
def OnBackward(self, event):
"Turn the page backward"
self.SetPage(self._current_page_i - 1)
def OnCanvasClick(self, event):
"Called by mouse clicks"
ax = event.inaxes
logger = getLogger(__name__)
if ax:
logger.debug("Canvas click at ax.ax_idx=%i", ax.ax_idx)
if ax.ax_idx >= 0:
idx = ax.epoch_idx
state = not self.doc.accept[idx]
tag = "manual"
desc = "Epoch %i %s" % (idx, state)
self.model.set_case(idx, state, tag, desc)
elif ax.ax_idx == TOPO_PLOT:
ch_locs = self._topo_plot.sensors.locs
sensor_i = np.argmin(cdist(ch_locs, [[event.xdata, event.ydata]]))
sensor = self._topo_plot.sensors.sensors.names[sensor_i]
if sensor in self._mark:
self._mark.remove(sensor)
else:
self._mark.append(sensor)
self.SetPlotStyle(mark=self._mark)
else:
logger.debug("Canvas click outside axes")
def OnCanvasKey(self, event):
# GUI Control events
if event.key == 'right':
if self.CanForward():
self.OnForward(None)
return
elif event.key == 'left':
if self.CanBackward():
self.OnBackward(None)
return
elif event.key == 'u':
if self.CanUndo():
self.OnUndo(None)
return
elif event.key == 'U':
if self.CanRedo():
self.OnRedo(None)
return
# plotting
ax = event.inaxes
if ax is None or ax.ax_idx == TOPO_PLOT:
return
elif ax.ax_idx > 0 and ax.epoch_idx == OUT_OF_RANGE:
return
elif event.key == 't':
self.PlotTopomap(ax.ax_idx, event.xdata)
elif event.key == 'b':
self.PlotButterfly(ax.ax_idx)
elif event.key == 'c':
self.PlotCorrelation(ax.ax_idx)
elif ax.ax_idx == MEAN_PLOT:
return
elif event.key == 'i':
self.ToggleChannelInterpolation(ax, event)
elif event.key == 'I':
self.OnSetInterpolation(ax.epoch_idx)
def OnFindNoisyChannels(self, event):
dlg = FindNoisyChannelsDialog(self)
if dlg.ShowModal() == wx.ID_OK:
# Find bad channels
flat, flat_average, mincorr = dlg.GetValues()
if flat:
flats = meeg.find_flat_epochs(self.doc.epochs, flat)
else:
flats = None
if flat_average:
flats_av = meeg.find_flat_evoked(self.doc.epochs, flat_average)
else:
flats_av = None
if mincorr:
noisies = meeg.find_noisy_channels(self.doc.epochs, mincorr)
else:
noisies = None
# Apply
if dlg.do_apply.GetValue():
has_flats = flats and any(flats)
has_noisies = noisies and any(noisies)
if has_flats and has_noisies:
interp = flats[:]
interp._update_listlist(noisies)
elif has_flats:
interp = flats
elif has_noisies:
interp = noisies
else:
interp = None
self.model.update_bad_chs(flats_av, interp, "Find noisy channels")
# Show Report
if dlg.do_report.GetValue():
doc = fmtxt.Section("Noisy Channels")
doc.append("Total of %i epochs." % len(self.doc.epochs))
if flat_average:
sec = doc.add_section("Flat in the average (<%s)" % flat_average)
if flats_av:
sec.add_paragraph(', '.join(flats_av))
else:
sec.add_paragraph("None.")
if flat:
sec = doc.add_section("Flat Channels (<%s)" % flat)
sec.add_paragraph(format_epoch_list(flats))
if mincorr:
sec = doc.add_section("Neighbor correlation < %s" % mincorr)
sec.add_paragraph(format_epoch_list(noisies))
InfoFrame(self, "Noisy Channels", doc.get_html())
dlg.StoreConfig()
dlg.Destroy()
def OnForward(self, event):
"Turn the page forward"
self.SetPage(self._current_page_i + 1)
def OnInfo(self, event):
doc = fmtxt.Section("%i Epochs" % len(self.doc.epochs))
# rejected epochs
rejected = np.invert(self.doc.accept.x)
sec = doc.add_section(_text.n_of(rejected.sum(), 'epoch') + ' rejected')
if np.any(rejected):
para = fmtxt.delim_list((fmtxt.Link(epoch, "epoch:%i" % epoch) for
epoch in np.flatnonzero(rejected)))
sec.add_paragraph(para)
# bad channels
heading = _text.n_of(len(self.doc.bad_channels), "bad channel", True)
sec = doc.add_section(heading.capitalize())
if self.doc.bad_channels:
sec.add_paragraph(', '.join(self.doc.bad_channel_names))
# interpolation by epochs
if any(self.doc.interpolate):
sec = doc.add_section("Interpolate channels")
sec.add_paragraph(format_epoch_list(self.doc.interpolate, "Interpolation by epoch:"))
else:
doc.add_section("No channels interpolated in individual epochs")
InfoFrame(self, "Rejection Info", doc.get_html())
def OnPageChoice(self, event):
"Called by the page Choice control"
page = event.GetSelection()
self.SetPage(page)
def OnPlotGrandAverage(self, event):
self.PlotGrandAverage()
def OnPointerMotion(self, event):
"Update view on mouse pointer movement"
ax = event.inaxes
if not ax:
return self.SetStatusText("")
elif ax.ax_idx == TOPO_PLOT:
return self.SetStatusText(self._topo_plot_info_str)
elif ax.ax_idx != MEAN_PLOT and ax.epoch_idx == OUT_OF_RANGE:
return self.SetStatusText("")
# compose status text
x = ax.xaxis.get_major_formatter().format_data(event.xdata)
y = ax.yaxis.get_major_formatter().format_data(event.ydata)
desc = "Page average" if ax.ax_idx == MEAN_PLOT else "Epoch %i" % ax.epoch_idx
status = "%s, x = %s ms, y = %s" % (desc, x, y)
if ax.ax_idx >= 0: # single trial plot
interp = self.doc.interpolate[ax.epoch_idx]
if interp:
status += ", interpolate %s" % ', '.join(interp)
self.SetStatusText(status)
# update topomap
if self._plot_topo:
tseg = self._get_ax_data(ax.ax_idx, event.xdata)
self._topo_plot.set_data([tseg])
self.canvas.redraw(axes=[self._topo_ax])
self._topo_plot_info_str = ("Topomap: %s, t = %s ms, marked: %s" %
(desc, x, ', '.join(self._mark)))
def OnRejectRange(self, event):
dlg = RejectRangeDialog(self)
if dlg.ShowModal() == wx.ID_OK:
start = int(dlg.first.GetValue())
stop = int(dlg.last.GetValue()) + 1
state = bool(dlg.action.GetSelection())
self.model.set_range(start, stop, state)
dlg.StoreConfig()
dlg.Destroy()
def OnSetBadChannels(self, event):
dlg = wx.TextEntryDialog(self, "Please enter bad channel names separated by "
"comma (e.g., \"MEG 003, MEG 010\"):", "Set Bad "
"Channels", ', '.join(self.doc.bad_channel_names))
while True:
if dlg.ShowModal() == wx.ID_OK:
try:
names_in = filter(None, (s.strip() for s in dlg.GetValue().split(',')))
names = self.doc.epochs.sensor._normalize_sensor_names(names_in)
break
except ValueError as exception:
msg = wx.MessageDialog(self, str(exception), "Invalid Entry",
wx.OK | wx.ICON_ERROR)
msg.ShowModal()
msg.Destroy()
else:
dlg.Destroy()
return
dlg.Destroy()
bad_channels = self.doc.epochs.sensor._array_index(names)
self.model.set_bad_channels(bad_channels)
def OnSetInterpolation(self, epoch):
"Show Dialog for channel interpolation for this epoch (index)"
old = self.doc.interpolate[epoch]
dlg = wx.TextEntryDialog(self, "Please enter channel names separated by "
"comma (e.g., \"MEG 003, MEG 010\"):", "Set "
"Channels for Interpolation", ', '.join(old))
while True:
if dlg.ShowModal() == wx.ID_OK:
try:
names = filter(None, (s.strip() for s in dlg.GetValue().split(',')))
new = self.doc.epochs.sensor._normalize_sensor_names(names)
break
except ValueError as exception:
msg = wx.MessageDialog(self, str(exception), "Invalid Entry",
wx.OK | wx.ICON_ERROR)
msg.ShowModal()
msg.Destroy()
else:
dlg.Destroy()
return
dlg.Destroy()
if new != old:
self.model.set_interpolation(epoch, new)
def OnSetLayout(self, event):
dlg = LayoutDialog(self, self._rows, self._columns, self._plot_topo, self._plot_mean)
if dlg.ShowModal() == wx.ID_OK:
self.SetLayout(dlg.layout, dlg.topo, dlg.mean)
def OnSetMarkedChannels(self, event):
"Mark is represented in sensor names"
dlg = wx.TextEntryDialog(self, "Please enter channel names separated by "
"comma (e.g., \"MEG 003, MEG 010\"):", "Set Marked"
"Channels", ', '.join(self._mark))
while True:
if dlg.ShowModal() == wx.ID_OK:
try:
names_in = filter(None, (s.strip() for s in dlg.GetValue().split(',')))
names = self.doc.epochs.sensor._normalize_sensor_names(names_in)
break
except ValueError as exception:
msg = wx.MessageDialog(self, str(exception), "Invalid Entry",
wx.OK | wx.ICON_ERROR)
msg.ShowModal()
msg.Destroy()
else:
dlg.Destroy()
return
dlg.Destroy()
self.SetPlotStyle(mark=names)
def OnSetVLim(self, event):
default = str(tuple(self._vlims.values())[0][1])
dlg = wx.TextEntryDialog(self, "New Y-axis limit:", "Set Y-Axis Limit",
default)
if dlg.ShowModal() == wx.ID_OK:
value = dlg.GetValue()
try:
vlim = abs(float(value))
except Exception as exception:
msg = wx.MessageDialog(self, str(exception), "Invalid Entry",
wx.OK | wx.ICON_ERROR)
msg.ShowModal()
msg.Destroy()
raise
self.SetVLim(vlim)
dlg.Destroy()
def OnThreshold(self, event):
dlg = ThresholdDialog(self)
if dlg.ShowModal() == wx.ID_OK:
threshold = dlg.GetThreshold()
method = dlg.GetMethod()
sub_threshold = self.model.threshold(threshold, method)
mark_below = dlg.GetMarkBelow()
mark_above = dlg.GetMarkAbove()
if mark_below or mark_above:
self.model.update_rejection(sub_threshold, mark_below,
mark_above, "Threshold-%s" % method,
"%s_%s" % (method, threshold))
if dlg.do_report.GetValue():
rejected = np.invert(sub_threshold)
doc = fmtxt.Section("Threshold")
doc.append("%s at %s: reject %i of %i epochs:" %
(method, threshold, rejected.sum(), len(rejected)))
if np.any(rejected):
para = fmtxt.delim_list((fmtxt.Link(epoch, "epoch:%i" % epoch) for
epoch in np.flatnonzero(rejected)))
doc.add_paragraph(para)
InfoFrame(self, "Rejection Info", doc.get_html())
dlg.StoreConfig()
dlg.Destroy()
def OnUpdateUIBackward(self, event):
event.Enable(self.CanBackward())
def OnUpdateUIForward(self, event):
event.Enable(self.CanForward())
def OnUpdateUISetLayout(self, event):
event.Enable(True)
def OnUpdateUISetMarkedChannels(self, event):
event.Enable(True)
def OnUpdateUISetVLim(self, event):
event.Enable(True)
def PlotCorrelation(self, ax_index):
if ax_index == MEAN_PLOT:
seg = self._mean_seg
name = 'Page Mean Neighbor Correlation'
else:
epoch_idx = self._epoch_idxs[ax_index]
seg = self._case_segs[ax_index]
name = 'Epoch %i Neighbor Correlation' % epoch_idx
plot.Topomap(neighbor_correlation(seg, name=name), sensorlabels='name')
def PlotButterfly(self, ax_index):
epoch = self._get_ax_data(ax_index)
plot.TopoButterfly(epoch, vmax=self._vlims)
def PlotGrandAverage(self):
epoch = self.doc.get_grand_average()
plot.TopoButterfly(epoch)
def PlotTopomap(self, ax_index, time):
tseg = self._get_ax_data(ax_index, time)
plot.Topomap(tseg, vmax=self._vlims, sensorlabels='name', w=8,
title=tseg.name)
def SetLayout(self, nplots=(6, 6), topo=True, mean=True):
"""Determine the layout of the Epochs canvas
Parameters
----------
nplots : int | tuple of 2 int
Number of epoch plots per page. Can be an ``int`` to produce a
square layout with that many epochs, or an ``(n_rows, n_columns)``
tuple.
topo : bool
Show a topomap plot of the time point under the mouse cursor.
mean : bool
Show a plot of the page mean at the bottom right of the page.
"""
self._SetLayout(nplots, topo, mean)
self.ShowPage(0)
def _SetLayout(self, nplots, topo, mean):
if topo is None:
topo = self.config.ReadBool('Layout/show_topo', True)
else:
topo = bool(topo)
self.config.WriteBool('Layout/show_topo', topo)
if mean is None:
mean = self.config.ReadBool('Layout/show_mean', True)
else:
mean = bool(mean)
self.config.WriteBool('Layout/show_mean', mean)
if nplots is None:
nrow = self.config.ReadInt('Layout/n_rows', 6)
ncol = self.config.ReadInt('Layout/n_cols', 6)
nax = ncol * nrow
n_per_page = nax - bool(topo) - bool(mean)
else:
if isinstance(nplots, int):
if nplots == 1:
mean = False
elif nplots < 1:
raise ValueError("nplots needs to be >= 1; got %r" % nplots)
nax = nplots + bool(mean) + bool(topo)
nrow = math.ceil(math.sqrt(nax))
ncol = int(math.ceil(nax / nrow))
nrow = int(nrow)
n_per_page = nplots
else:
nrow, ncol = nplots
nax = ncol * nrow
if nax == 1:
mean = False
topo = False
elif nax == 2:
mean = False
elif nax < 1:
err = ("nplots=%s: Need at least one plot." % str(nplots))
raise ValueError(err)
n_per_page = nax - bool(topo) - bool(mean)
self.config.WriteInt('Layout/n_rows', nrow)
self.config.WriteInt('Layout/n_cols', ncol)
self.config.Flush()
self._plot_mean = mean
self._plot_topo = topo
# prepare segments
n = self.doc.n_epochs
self._rows = nrow
self._columns = ncol
self._n_per_page = n_per_page
self._n_pages = n_pages = int(math.ceil(n / n_per_page))
# get a list of IDS for each page
self._segs_by_page = []
for i in range(n_pages):
start = i * n_per_page
stop = min((i + 1) * n_per_page, n)
self._segs_by_page.append(np.arange(start, stop))
# update page selector
pages = []
for i in range(n_pages):
istart = self._segs_by_page[i][0]
if i == n_pages - 1:
pages.append('%i: %i..%i' % (i, istart, self.doc.n_epochs))
else:
pages.append('%i: %i...' % (i, istart))
self.page_choice.SetItems(pages)
def SetPlotStyle(self, **kwargs):
"""Select channels to mark in the butterfly plots.
Parameters
----------
color : None | matplotlib color
Color for primary data (default is black).
lw : scalar
Linewidth for normal sensor plots.
mark : None | str | list of str
Sensors to plot as individual traces with a separate color.
mcolor : matplotlib color
Color for marked traces.
mlw : scalar
Line width for marked sensor plots.
antialiased : bool
Perform Antialiasing on epoch plots (associated with a minor speed
cost).
"""
self._SetPlotStyle(**kwargs)
self.ShowPage()
def _SetPlotStyle(self, **kwargs):
"See .SetPlotStyle()"
for key, value in kwargs.items():
if key == 'vlims':
err = ("%r is an invalid keyword argument for this function"
% key)
raise TypeError(err)
elif key == 'mark':
self._mark = value
elif key in self._bf_kwargs:
self._bfly_kwargs[key] = value
else:
raise KeyError(repr(key))
def SetVLim(self, vlim):
"""Set the value limits (butterfly plot y axes and topomap colormaps)
Parameters
----------
vlim : scalar | (scalar, scalar)
For symmetric limits the positive vmax, for asymmetric limits a
(vmin, vmax) tuple.
"""
for p in self._case_plots:
p.set_ylim(vlim)
if self._mean_plot:
self._mean_plot.set_ylim(vlim)
if self._topo_plot:
self._topo_plot.set_vlim(vlim)
if np.isscalar(vlim):
vlim = (-vlim, vlim)
for key in self._vlims:
self._vlims[key] = vlim
self.canvas.draw()
def _page_change(self, page):
"Perform operations common to page change events"
self._current_page_i = page
self.page_choice.Select(page)
self._epoch_idxs = self._segs_by_page[page]
def SetPage(self, page):
"Change the page that is displayed without redrawing"
self._page_change(page)
self._case_segs = []
self._axes_by_idx = {}
for i, epoch_idx in enumerate(self._epoch_idxs):
ax = self._case_axes[i]
h = self._case_plots[i]
case = self.doc.get_epoch(epoch_idx, 'Epoch %i' % epoch_idx)
h.set_data(case, epoch_idx)
h.set_state(self.doc.accept[epoch_idx])
chs = [case.sensor.channel_idx[ch]
for ch in self.doc.interpolate[epoch_idx]
if ch in case.sensor.channel_idx]
h.set_marked(INTERPOLATE_CHANNELS, chs)
h.set_visible()
# store objects
ax.epoch_idx = epoch_idx
self._case_segs.append(case)
self._axes_by_idx[epoch_idx] = ax
# hide lines axes without data
if len(self._epoch_idxs) < len(self._case_axes):
for i in range(len(self._epoch_idxs), len(self._case_plots)):
self._case_plots[i].set_visible(False)
self._case_axes[i].epoch_idx = OUT_OF_RANGE
# update mean plot
if self._plot_mean:
self._mean_plot.set_data(self._get_page_mean_seg())
self.canvas.draw()
def ShowPage(self, page=None):
"Dislay a specific page (start counting with 0)"
wx.BeginBusyCursor()
logger = getLogger(__name__)
t0 = time.time()
if page is not None:
self._page_change(page)
self.figure.clf()
nrow = self._rows
ncol = self._columns
# formatters
t_formatter, t_locator, t_label = self.doc.epochs.time._axis_format(True, True)
y_scale = AxisScale(self.doc.epochs, True)
# segment plots
self._case_plots = []
self._case_axes = []
self._case_segs = []
self._axes_by_idx = {}
mark = None
for i, epoch_idx in enumerate(self._epoch_idxs):
case = self.doc.get_epoch(epoch_idx, 'Epoch %i' % epoch_idx)
if mark is None:
mark = [case.sensor.channel_idx[ch] for ch in self._mark
if ch in case.sensor.channel_idx]
state = self.doc.accept[epoch_idx]
ax = self.figure.add_subplot(nrow, ncol, i + 1, xticks=[0], yticks=[])
h = _ax_bfly_epoch(ax, case, mark, state, epoch_idx, **self._bfly_kwargs)
# mark interpolated channels
if self.doc.interpolate[epoch_idx]:
chs = [case.sensor.channel_idx[ch]
for ch in self.doc.interpolate[epoch_idx]
if ch in case.sensor.channel_idx]
h.set_marked(INTERPOLATE_CHANNELS, chs)
# mark eye tracker artifacts
if self.doc.blink is not None:
_plt_bin_nuts(ax, self.doc.blink[epoch_idx],
color=(0.99, 0.76, 0.21))
# formatters
if t_locator is not None:
ax.xaxis.set_major_locator(t_locator)
ax.xaxis.set_major_formatter(t_formatter)
ax.yaxis.set_major_formatter(y_scale.formatter)
# store objects
ax.ax_idx = i
ax.epoch_idx = epoch_idx
self._case_plots.append(h)
self._case_axes.append(ax)
self._case_segs.append(case)
self._axes_by_idx[epoch_idx] = ax
# mean plot
if self._plot_mean:
plot_i = nrow * ncol
self._mean_ax = ax = self.figure.add_subplot(nrow, ncol, plot_i)
ax.ax_idx = MEAN_PLOT
self._mean_seg = self._get_page_mean_seg()
self._mean_plot = _ax_bfly_epoch(ax, self._mean_seg, mark, 'Page Mean',
**self._bfly_kwargs)
# formatters
ax.xaxis.set_major_formatter(t_formatter)
ax.yaxis.set_major_formatter(y_scale.formatter)
# topomap
if self._plot_topo:
plot_i = nrow * ncol - self._plot_mean
self._topo_ax = self.figure.add_subplot(nrow, ncol, plot_i)
self._topo_ax.ax_idx = TOPO_PLOT
self._topo_ax.set_axis_off()
tseg = self._get_ax_data(0, True)
if self._mark:
mark = [ch for ch in self._mark if ch not in self.doc.bad_channel_names]
else:
mark = None
layers = AxisData([LayerData(tseg, PlotType.IMAGE)])
self._topo_plot = _ax_topomap(self._topo_ax, layers, mark=mark, **self._topo_kwargs)
self._topo_plot_info_str = ""
self.canvas.draw()
self.canvas.store_canvas()
dt = time.time() - t0
logger.debug('Page draw took %.1f seconds.', dt)
wx.EndBusyCursor()
def ToggleChannelInterpolation(self, ax, event):
if not self.allow_interpolation:
wx.MessageBox("Interpolation is disabled for this session",
"Interpolation disabled", wx.OK)
return
plt = self._case_plots[ax.ax_idx]
locs = plt.epoch.sub(time=event.xdata).x
sensor = np.argmin(np.abs(locs - event.ydata))
sensor_name = plt.epoch.sensor.names[sensor]
self.model.toggle_interpolation(ax.epoch_idx, sensor_name)
def _get_page_mean_seg(self):
page_segments = self._segs_by_page[self._current_page_i]
page_index = np.zeros(self.doc.n_epochs, dtype=bool)
page_index[page_segments] = True
index = np.logical_and(page_index, self.doc.accept.x)
mseg = self.doc.get_epoch(index, "Page Average").mean('case')
return mseg
def _get_ax_data(self, ax_index, time=None):
if ax_index == MEAN_PLOT:
seg = self._mean_seg
epoch_name = 'Page Average'
sensor_idx = None
elif ax_index >= 0:
epoch_idx = self._epoch_idxs[ax_index]
epoch_name = 'Epoch %i' % epoch_idx
seg = self._case_segs[ax_index]
sensor_idx = self.doc.good_sensor_index(epoch_idx)
else:
raise ValueError("Invalid ax_index: %s" % ax_index)
if time is not None:
if time is True:
time = min(max(0.1, seg.time.tmin), seg.time.tmax)
name = '%s, %i ms' % (epoch_name, 1e3 * time)
return seg.sub(time=time, sensor=sensor_idx, name=name)
elif sensor_idx is None:
return seg
else:
return seg.sub(sensor=sensor_idx)
class FindNoisyChannelsDialog(EelbrainDialog):
def __init__(self, parent, *args, **kwargs):
EelbrainDialog.__init__(self, parent, wx.ID_ANY, "Find Noisy Channels",
*args, **kwargs)
# load config
config = parent.config
flat = config.ReadFloat("FindNoisyChannels/flat", 1e-13)
flat_average = config.ReadFloat("FindNoisyChannels/flat_average", 1e-14)
corr = config.ReadFloat("FindNoisyChannels/mincorr", 0.35)
do_apply = config.ReadBool("FindNoisyChannels/do_apply", True)
do_report = config.ReadBool("FindNoisyChannels/do_report", True)
# construct layout
sizer = wx.BoxSizer(wx.VERTICAL)
# flat channels
sizer.Add(wx.StaticText(self, label="Threshold for flat channels:"))
msg = ("Invalid entry for flat channel threshold: {value}. Please "
"specify a number > 0.")
validator = REValidator(POS_FLOAT_PATTERN, msg, False)
ctrl = wx.TextCtrl(self, value=str(flat), validator=validator)
ctrl.SetHelpText("A channel that does not deviate from 0 by more than "
"this value is considered flat.")
ctrl.SelectAll()
sizer.Add(ctrl)
self.flat_ctrl = ctrl
# flat channels in average
sizer.Add(wx.StaticText(self, label="Threshold for flat channels in average:"))
msg = ("Invalid entry for average flat channel threshold: {value}. Please "
"specify a number > 0.")
validator = REValidator(POS_FLOAT_PATTERN, msg, False)
ctrl = wx.TextCtrl(self, value=str(flat_average), validator=validator)
ctrl.SetHelpText("A channel that does not deviate from 0 by more than "
"this value in the average of all epochs is "
"considered flat.")
sizer.Add(ctrl)
self.flat_average_ctrl = ctrl
# Correlation
sizer.Add(wx.StaticText(self, label="Threshold for channel to neighbor correlation:"))
msg = ("Invalid entry for channel neighbor correlation: {value}. Please "
"specify a number > 0.")
validator = REValidator(POS_FLOAT_PATTERN, msg, False)
ctrl = wx.TextCtrl(self, value=str(corr), validator=validator)
ctrl.SetHelpText("A channel is considered noisy if the average of the "
"correlation with its neighbors is smaller than this "
"value.")
sizer.Add(ctrl)
self.mincorr_ctrl = ctrl
# output
sizer.AddSpacer(4)
sizer.Add(wx.StaticText(self, label="Output"))
self.do_report = wx.CheckBox(self, wx.ID_ANY, "Show Report")
self.do_report.SetValue(do_report)
sizer.Add(self.do_report)
self.do_apply = wx.CheckBox(self, wx.ID_ANY, "Apply")
self.do_apply.SetValue(do_apply)
sizer.Add(self.do_apply)
# default button
sizer.AddSpacer(4)
btn = wx.Button(self, wx.ID_DEFAULT, "Default Settings")
sizer.Add(btn, border=2)
btn.Bind(wx.EVT_BUTTON, self.OnSetDefault)
# buttons
button_sizer = wx.StdDialogButtonSizer()
# ok
btn = wx.Button(self, wx.ID_OK)
btn.SetDefault()
btn.Bind(wx.EVT_BUTTON, self.OnOK)
button_sizer.AddButton(btn)
# cancel
btn = wx.Button(self, wx.ID_CANCEL)
button_sizer.AddButton(btn)
# finalize
button_sizer.Realize()
sizer.Add(button_sizer)
self.SetSizer(sizer)
sizer.Fit(self)
def GetValues(self):
return (float(self.flat_ctrl.GetValue()),
float(self.flat_average_ctrl.GetValue()),
float(self.mincorr_ctrl.GetValue()))
def OnOK(self, event):
if self.do_report.GetValue() or self.do_apply.GetValue():
event.Skip()
else:
wx.MessageBox("Specify at least one action (report or apply)",
"No Command Selected", wx.ICON_EXCLAMATION)
def OnSetDefault(self, event):
self.flat_ctrl.SetValue('1e-13')
self.flat_average_ctrl.SetValue('1e-14')
self.mincorr_ctrl.SetValue('0.35')
def StoreConfig(self):
config = self.Parent.config
config.WriteFloat("FindNoisyChannels/flat",
float(self.flat_ctrl.GetValue()))
config.WriteFloat("FindNoisyChannels/flat_average",
float(self.flat_average_ctrl.GetValue()))
config.WriteFloat("FindNoisyChannels/mincorr",
float(self.mincorr_ctrl.GetValue()))
config.WriteBool("FindNoisyChannels/do_report",
self.do_report.GetValue())
config.WriteBool("FindNoisyChannels/do_apply",
self.do_apply.GetValue())
config.Flush()
class LayoutDialog(EelbrainDialog):
def __init__(self, parent, rows, columns, topo, mean):
EelbrainDialog.__init__(self, parent, wx.ID_ANY, "Select-Epochs Layout")
# result attributes
self.topo = None
self.mean = None
self.layout = None
sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(wx.StaticText(self, wx.ID_ANY, "Layout: number of rows and "
"columns (e.g., '5 7')\n"
"or number of epochs (e.g., '35'):"))
self.text = wx.TextCtrl(self, wx.ID_ANY, "%i %i" % (rows, columns))
self.text.SelectAll()
sizer.Add(self.text)
self.topo_ctrl = wx.CheckBox(self, wx.ID_ANY, "Topographic map")
self.topo_ctrl.SetValue(topo)
sizer.Add(self.topo_ctrl)
self.mean_ctrl = wx.CheckBox(self, wx.ID_ANY, "Page mean plot")
self.mean_ctrl.SetValue(mean)
sizer.Add(self.mean_ctrl)
# buttons
button_sizer = wx.StdDialogButtonSizer()
# ok
btn = wx.Button(self, wx.ID_OK)
btn.SetDefault()
button_sizer.AddButton(btn)
# cancel
button_sizer.AddButton(wx.Button(self, wx.ID_CANCEL))
# finalize
button_sizer.Realize()
sizer.Add(button_sizer)
self.Bind(wx.EVT_BUTTON, self.OnOk, id=wx.ID_OK)
self.SetSizer(sizer)
sizer.Fit(self)
def OnOk(self, event):
self.topo = self.topo_ctrl.GetValue()
self.mean = self.mean_ctrl.GetValue()
value = self.text.GetValue()
m = re.match(r"(\d+)\s*(\d*)", value)
if m:
rows_str, columns_str = m.groups()
rows = int(rows_str)
if columns_str:
columns = int(columns_str)
n_plots = rows * columns
self.layout = (rows, columns)
else:
self.layout = n_plots = rows
if n_plots >= self.topo + self.mean + 1:
event.Skip()
return
else:
wx.MessageBox("Layout does not have enough plots",
"Invalid Layout", wx.OK | wx.ICON_ERROR, self)
else:
wx.MessageBox("Invalid layout string: %s" % value,
"Invalid Layout", wx.OK | wx.ICON_ERROR, self)
self.text.SetFocus()
self.text.SelectAll()
class RejectRangeDialog(EelbrainDialog):
def __init__(self, parent):
EelbrainDialog.__init__(self, parent, wx.ID_ANY, "Reject Epoch Range")
# load config
config = parent.config
first = config.ReadInt("RejectRange/first", 0)
last = config.ReadInt("RejectRange/last", 0)
action = config.ReadInt("Threshold/action", 0)
sizer = wx.BoxSizer(wx.VERTICAL)
# Range
hsizer = wx.BoxSizer(wx.HORIZONTAL)
hsizer.Add(wx.StaticText(self, wx.ID_ANY, "First:"))
validator = REValidator(INT_PATTERN, "Invalid entry for First: {value}. Need an integer.")
self.first = wx.TextCtrl(self, wx.ID_ANY, str(first), validator=validator)
hsizer.Add(self.first)
hsizer.Add(wx.StaticText(self, wx.ID_ANY, "Last:"))
validator = REValidator(INT_PATTERN, "Invalid entry for Last: {value}. Need an integer.")
self.last = wx.TextCtrl(self, wx.ID_ANY, str(last), validator=validator)
hsizer.Add(self.last)
sizer.Add(hsizer)
# Action
self.action = wx.RadioBox(self, wx.ID_ANY, "Action",
choices=('Reject', 'Accept'),
style=wx.RA_SPECIFY_ROWS)
self.action.SetSelection(action)
sizer.Add(self.action)
# buttons
button_sizer = wx.StdDialogButtonSizer()
# ok
btn = wx.Button(self, wx.ID_OK)
btn.SetDefault()
button_sizer.AddButton(btn)
# cancel
button_sizer.AddButton(wx.Button(self, wx.ID_CANCEL))
# finalize
button_sizer.Realize()
sizer.Add(button_sizer)
self.SetSizer(sizer)
sizer.Fit(self)
def StoreConfig(self):
config = self.Parent.config
config.WriteInt("RejectRange/first", int(self.first.GetValue()))
config.WriteInt("RejectRange/last", int(self.last.GetValue()))
config.WriteInt("RejectRange/action", self.action.GetSelection())
config.Flush()
class ThresholdDialog(EelbrainDialog):
_methods = (('absolute', 'abs'),
('peak-to-peak', 'p2p'))
def __init__(self, parent):
title = "Threshold Criterion Rejection"
wx.Dialog.__init__(self, parent, wx.ID_ANY, title)
choices = tuple(m[0] for m in self._methods)
method_tags = tuple(m[1] for m in self._methods)
# load config
config = parent.config
method = config.Read("Threshold/method", "p2p")
if method not in method_tags:
method = "p2p"
mark_above = config.ReadBool("Threshold/mark_above", True)
mark_below = config.ReadBool("Threshold/mark_below", False)
threshold = config.ReadFloat("Threshold/threshold", 2e-12)
do_report = config.ReadBool("Threshold/do_report", True)
# construct layout
sizer = wx.BoxSizer(wx.VERTICAL)
txt = "Mark epochs based on a threshold criterion"
ctrl = wx.StaticText(self, wx.ID_ANY, txt)
sizer.Add(ctrl)
ctrl = wx.RadioBox(self, wx.ID_ANY, "Method", choices=choices)
ctrl.SetSelection(method_tags.index(method))
sizer.Add(ctrl)
self.method_ctrl = ctrl
msg = ("Invalid entry for threshold: {value}. Need a floating\n"
"point number.")
validator = REValidator(FLOAT_PATTERN, msg, False)
ctrl = wx.TextCtrl(self, wx.ID_ANY, str(threshold),
validator=validator)
ctrl.SetHelpText("Threshold value (positive scalar)")
ctrl.SelectAll()
sizer.Add(ctrl)
self.threshold_ctrl = ctrl
# output
sizer.AddSpacer(4)
sizer.Add(wx.StaticText(self, label="Output"))
# mark above
self.mark_above = wx.CheckBox(self, wx.ID_ANY,
"Reject epochs exceeding the threshold")
self.mark_above.SetValue(mark_above)
sizer.Add(self.mark_above)
# mark below
self.mark_below = wx.CheckBox(self, wx.ID_ANY,
"Accept epochs below the threshold")
self.mark_below.SetValue(mark_below)
sizer.Add(self.mark_below)
# report
self.do_report = wx.CheckBox(self, wx.ID_ANY, "Show Report")
self.do_report.SetValue(do_report)
sizer.Add(self.do_report)
# buttons
button_sizer = wx.StdDialogButtonSizer()
# ok
btn = wx.Button(self, wx.ID_OK)
btn.SetDefault()
btn.Bind(wx.EVT_BUTTON, self.OnOK)
button_sizer.AddButton(btn)
# cancel
btn = wx.Button(self, wx.ID_CANCEL)
button_sizer.AddButton(btn)
# finalize
button_sizer.Realize()
sizer.Add(button_sizer)
self.SetSizer(sizer)
sizer.Fit(self)
def GetMarkAbove(self):
return self.mark_above.IsChecked()
def GetMarkBelow(self):
return self.mark_below.IsChecked()
def GetMethod(self):
index = self.method_ctrl.GetSelection()
value = self._methods[index][1]
return value
def GetThreshold(self):
text = self.threshold_ctrl.GetValue()
value = float(text)
return value
def OnOK(self, event):
if not (self.mark_above.GetValue() or self.mark_below.GetValue() or
self.do_report.GetValue()):
wx.MessageBox("Specify at least one action (create report or "
"reject or accept epochs)", "No Command Selected",
wx.ICON_EXCLAMATION)
else:
event.Skip()
def StoreConfig(self):
config = self.Parent.config
config.Write("Threshold/method", self.GetMethod())
config.WriteBool("Threshold/mark_above", self.GetMarkAbove())
config.WriteBool("Threshold/mark_below", self.GetMarkBelow())
config.WriteFloat("Threshold/threshold", self.GetThreshold())
config.WriteBool("Threshold/do_report", self.do_report.GetValue())
config.Flush()
class InfoFrame(HTMLFrame):
def OpenURL(self, url):
m = re.match(r'^(\w+):(\w+)$', url)
if m:
kind, address = m.groups()
if kind == 'epoch':
self.Parent.GoToEpoch(int(address))
else:
raise NotImplementedError("%s URL" % kind)
else:
raise ValueError("Invalid link URL: %r" % url)
|
[
"wx.Dialog.__init__",
"numpy.abs",
"numpy.invert",
"wx.CheckBox",
"numpy.ones",
"numpy.arange",
"wx.RadioBox",
"wx.Choice",
"numpy.logical_not",
"os.path.exists",
"wx.TextCtrl",
"wx.GetApp",
"scipy.spatial.distance.cdist",
"wx.TextEntryDialog",
"wx.BoxSizer",
"math.sqrt",
"math.ceil",
"wx.StdDialogButtonSizer",
"re.match",
"wx.StaticText",
"wx.MessageBox",
"numpy.all",
"numpy.logical_and",
"numpy.isscalar",
"numpy.flatnonzero",
"numpy.zeros",
"time.time",
"numpy.any",
"wx.CallLater",
"wx.Button",
"wx.BeginBusyCursor",
"numpy.array",
"os.path.splitext",
"numpy.nonzero",
"wx.EndBusyCursor",
"logging.getLogger"
] |
[((11436, 11458), 'os.path.splitext', 'os.path.splitext', (['path'], {}), '(path)\n', (11452, 11458), False, 'import os\n'), ((11660, 11682), 'os.path.splitext', 'os.path.splitext', (['path'], {}), '(path)\n', (11676, 11682), False, 'import os\n'), ((14903, 14930), 'os.path.splitext', 'os.path.splitext', (['self.path'], {}), '(self.path)\n', (14919, 14930), False, 'import os\n'), ((15458, 15491), 'numpy.logical_not', 'np.logical_not', (['self.doc.accept.x'], {}), '(self.doc.accept.x)\n', (15472, 15491), True, 'import numpy as np\n'), ((15621, 15640), 'logging.getLogger', 'getLogger', (['__name__'], {}), '(__name__)\n', (15630, 15640), False, 'from logging import getLogger\n'), ((18369, 18388), 'logging.getLogger', 'getLogger', (['__name__'], {}), '(__name__)\n', (18378, 18388), False, 'from logging import getLogger\n'), ((20887, 20908), 'numpy.flatnonzero', 'np.flatnonzero', (['index'], {}), '(index)\n', (20901, 20908), True, 'import numpy as np\n'), ((23928, 23958), 'wx.StaticText', 'wx.StaticText', (['tb', '(-1)', '"""Page:"""'], {}), "(tb, -1, 'Page:')\n", (23941, 23958), False, 'import wx\n'), ((24013, 24030), 'wx.Choice', 'wx.Choice', (['tb', '(-1)'], {}), '(tb, -1)\n', (24022, 24030), False, 'import wx\n'), ((24633, 24683), 'wx.Button', 'wx.Button', (['tb', 'ID.SET_BAD_CHANNELS', '"""Bad Channels"""'], {}), "(tb, ID.SET_BAD_CHANNELS, 'Bad Channels')\n", (24642, 24683), False, 'import wx\n'), ((24817, 24857), 'wx.Button', 'wx.Button', (['tb', 'ID.THRESHOLD', '"""Threshold"""'], {}), "(tb, ID.THRESHOLD, 'Threshold')\n", (24826, 24857), False, 'import wx\n'), ((25048, 25085), 'wx.Button', 'wx.Button', (['tb', 'ID.GRAND_AVERAGE', '"""GA"""'], {}), "(tb, ID.GRAND_AVERAGE, 'GA')\n", (25057, 25085), False, 'import wx\n'), ((28888, 28899), 'wx.GetApp', 'wx.GetApp', ([], {}), '()\n', (28897, 28899), False, 'import wx\n'), ((30335, 30354), 'logging.getLogger', 'getLogger', (['__name__'], {}), '(__name__)\n', (30344, 30354), False, 'from logging import getLogger\n'), ((34851, 34879), 'numpy.invert', 'np.invert', (['self.doc.accept.x'], {}), '(self.doc.accept.x)\n', (34860, 34879), True, 'import numpy as np\n'), ((34972, 34988), 'numpy.any', 'np.any', (['rejected'], {}), '(rejected)\n', (34978, 34988), True, 'import numpy as np\n'), ((41199, 41273), 'wx.TextEntryDialog', 'wx.TextEntryDialog', (['self', '"""New Y-axis limit:"""', '"""Set Y-Axis Limit"""', 'default'], {}), "(self, 'New Y-axis limit:', 'Set Y-Axis Limit', default)\n", (41217, 41273), False, 'import wx\n'), ((49295, 49312), 'numpy.isscalar', 'np.isscalar', (['vlim'], {}), '(vlim)\n', (49306, 49312), True, 'import numpy as np\n'), ((51070, 51090), 'wx.BeginBusyCursor', 'wx.BeginBusyCursor', ([], {}), '()\n', (51088, 51090), False, 'import wx\n'), ((51108, 51127), 'logging.getLogger', 'getLogger', (['__name__'], {}), '(__name__)\n', (51117, 51127), False, 'from logging import getLogger\n'), ((51141, 51152), 'time.time', 'time.time', ([], {}), '()\n', (51150, 51152), False, 'import time\n'), ((54503, 54521), 'wx.EndBusyCursor', 'wx.EndBusyCursor', ([], {}), '()\n', (54519, 54521), False, 'import wx\n'), ((55154, 55193), 'numpy.zeros', 'np.zeros', (['self.doc.n_epochs'], {'dtype': 'bool'}), '(self.doc.n_epochs, dtype=bool)\n', (55162, 55193), True, 'import numpy as np\n'), ((55251, 55296), 'numpy.logical_and', 'np.logical_and', (['page_index', 'self.doc.accept.x'], {}), '(page_index, self.doc.accept.x)\n', (55265, 55296), True, 'import numpy as np\n'), ((56935, 56959), 'wx.BoxSizer', 'wx.BoxSizer', (['wx.VERTICAL'], {}), '(wx.VERTICAL)\n', (56946, 56959), False, 'import wx\n'), ((58929, 58972), 'wx.CheckBox', 'wx.CheckBox', (['self', 'wx.ID_ANY', '"""Show Report"""'], {}), "(self, wx.ID_ANY, 'Show Report')\n", (58940, 58972), False, 'import wx\n'), ((59074, 59111), 'wx.CheckBox', 'wx.CheckBox', (['self', 'wx.ID_ANY', '"""Apply"""'], {}), "(self, wx.ID_ANY, 'Apply')\n", (59085, 59111), False, 'import wx\n'), ((59253, 59303), 'wx.Button', 'wx.Button', (['self', 'wx.ID_DEFAULT', '"""Default Settings"""'], {}), "(self, wx.ID_DEFAULT, 'Default Settings')\n", (59262, 59303), False, 'import wx\n'), ((59430, 59455), 'wx.StdDialogButtonSizer', 'wx.StdDialogButtonSizer', ([], {}), '()\n', (59453, 59455), False, 'import wx\n'), ((59483, 59508), 'wx.Button', 'wx.Button', (['self', 'wx.ID_OK'], {}), '(self, wx.ID_OK)\n', (59492, 59508), False, 'import wx\n'), ((59644, 59673), 'wx.Button', 'wx.Button', (['self', 'wx.ID_CANCEL'], {}), '(self, wx.ID_CANCEL)\n', (59653, 59673), False, 'import wx\n'), ((61440, 61464), 'wx.BoxSizer', 'wx.BoxSizer', (['wx.VERTICAL'], {}), '(wx.VERTICAL)\n', (61451, 61464), False, 'import wx\n'), ((61693, 61748), 'wx.TextCtrl', 'wx.TextCtrl', (['self', 'wx.ID_ANY', "('%i %i' % (rows, columns))"], {}), "(self, wx.ID_ANY, '%i %i' % (rows, columns))\n", (61704, 61748), False, 'import wx\n'), ((61834, 61881), 'wx.CheckBox', 'wx.CheckBox', (['self', 'wx.ID_ANY', '"""Topographic map"""'], {}), "(self, wx.ID_ANY, 'Topographic map')\n", (61845, 61881), False, 'import wx\n'), ((61980, 62026), 'wx.CheckBox', 'wx.CheckBox', (['self', 'wx.ID_ANY', '"""Page mean plot"""'], {}), "(self, wx.ID_ANY, 'Page mean plot')\n", (61991, 62026), False, 'import wx\n'), ((62141, 62166), 'wx.StdDialogButtonSizer', 'wx.StdDialogButtonSizer', ([], {}), '()\n', (62164, 62166), False, 'import wx\n'), ((62194, 62219), 'wx.Button', 'wx.Button', (['self', 'wx.ID_OK'], {}), '(self, wx.ID_OK)\n', (62203, 62219), False, 'import wx\n'), ((62722, 62757), 're.match', 're.match', (['"""(\\\\d+)\\\\s*(\\\\d*)"""', 'value'], {}), "('(\\\\d+)\\\\s*(\\\\d*)', value)\n", (62730, 62757), False, 'import re\n'), ((63937, 63961), 'wx.BoxSizer', 'wx.BoxSizer', (['wx.VERTICAL'], {}), '(wx.VERTICAL)\n', (63948, 63961), False, 'import wx\n'), ((63996, 64022), 'wx.BoxSizer', 'wx.BoxSizer', (['wx.HORIZONTAL'], {}), '(wx.HORIZONTAL)\n', (64007, 64022), False, 'import wx\n'), ((64632, 64731), 'wx.RadioBox', 'wx.RadioBox', (['self', 'wx.ID_ANY', '"""Action"""'], {'choices': "('Reject', 'Accept')", 'style': 'wx.RA_SPECIFY_ROWS'}), "(self, wx.ID_ANY, 'Action', choices=('Reject', 'Accept'), style=\n wx.RA_SPECIFY_ROWS)\n", (64643, 64731), False, 'import wx\n'), ((64909, 64934), 'wx.StdDialogButtonSizer', 'wx.StdDialogButtonSizer', ([], {}), '()\n', (64932, 64934), False, 'import wx\n'), ((64962, 64987), 'wx.Button', 'wx.Button', (['self', 'wx.ID_OK'], {}), '(self, wx.ID_OK)\n', (64971, 64987), False, 'import wx\n'), ((65778, 65828), 'wx.Dialog.__init__', 'wx.Dialog.__init__', (['self', 'parent', 'wx.ID_ANY', 'title'], {}), '(self, parent, wx.ID_ANY, title)\n', (65796, 65828), False, 'import wx\n'), ((66425, 66449), 'wx.BoxSizer', 'wx.BoxSizer', (['wx.VERTICAL'], {}), '(wx.VERTICAL)\n', (66436, 66449), False, 'import wx\n'), ((66525, 66560), 'wx.StaticText', 'wx.StaticText', (['self', 'wx.ID_ANY', 'txt'], {}), '(self, wx.ID_ANY, txt)\n', (66538, 66560), False, 'import wx\n'), ((66601, 66656), 'wx.RadioBox', 'wx.RadioBox', (['self', 'wx.ID_ANY', '"""Method"""'], {'choices': 'choices'}), "(self, wx.ID_ANY, 'Method', choices=choices)\n", (66612, 66656), False, 'import wx\n'), ((67332, 67401), 'wx.CheckBox', 'wx.CheckBox', (['self', 'wx.ID_ANY', '"""Reject epochs exceeding the threshold"""'], {}), "(self, wx.ID_ANY, 'Reject epochs exceeding the threshold')\n", (67343, 67401), False, 'import wx\n'), ((67567, 67632), 'wx.CheckBox', 'wx.CheckBox', (['self', 'wx.ID_ANY', '"""Accept epochs below the threshold"""'], {}), "(self, wx.ID_ANY, 'Accept epochs below the threshold')\n", (67578, 67632), False, 'import wx\n'), ((67793, 67836), 'wx.CheckBox', 'wx.CheckBox', (['self', 'wx.ID_ANY', '"""Show Report"""'], {}), "(self, wx.ID_ANY, 'Show Report')\n", (67804, 67836), False, 'import wx\n'), ((67956, 67981), 'wx.StdDialogButtonSizer', 'wx.StdDialogButtonSizer', ([], {}), '()\n', (67979, 67981), False, 'import wx\n'), ((68009, 68034), 'wx.Button', 'wx.Button', (['self', 'wx.ID_OK'], {}), '(self, wx.ID_OK)\n', (68018, 68034), False, 'import wx\n'), ((68170, 68199), 'wx.Button', 'wx.Button', (['self', 'wx.ID_CANCEL'], {}), '(self, wx.ID_CANCEL)\n', (68179, 68199), False, 'import wx\n'), ((69663, 69695), 're.match', 're.match', (['"""^(\\\\w+):(\\\\w+)$"""', 'url'], {}), "('^(\\\\w+):(\\\\w+)$', url)\n", (69671, 69695), False, 'import re\n'), ((5366, 5388), 'numpy.ones', 'np.ones', (['n'], {'dtype': 'bool'}), '(n, dtype=bool)\n', (5373, 5388), True, 'import numpy as np\n'), ((7898, 7918), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (7912, 7918), False, 'import os\n'), ((13206, 13251), 'numpy.all', 'np.all', (['(ds[self.trigger.name] == self.trigger)'], {}), '(ds[self.trigger.name] == self.trigger)\n', (13212, 13251), True, 'import numpy as np\n'), ((18812, 18823), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (18820, 18823), True, 'import numpy as np\n'), ((19688, 19738), 'numpy.flatnonzero', 'np.flatnonzero', (['(new_interp != self.doc.interpolate)'], {}), '(new_interp != self.doc.interpolate)\n', (19702, 19738), True, 'import numpy as np\n'), ((20585, 20606), 'numpy.invert', 'np.invert', (['new_accept'], {}), '(new_accept)\n', (20594, 20606), True, 'import numpy as np\n'), ((20809, 20870), 'numpy.logical_and', 'np.logical_and', (['index', '(new_accept != self.doc.accept.x)', 'index'], {}), '(index, new_accept != self.doc.accept.x, index)\n', (20823, 20870), True, 'import numpy as np\n'), ((46884, 46909), 'math.ceil', 'math.ceil', (['(n / n_per_page)'], {}), '(n / n_per_page)\n', (46893, 46909), False, 'import math\n'), ((54421, 54432), 'time.time', 'time.time', ([], {}), '()\n', (54430, 54432), False, 'import time\n'), ((54629, 54725), 'wx.MessageBox', 'wx.MessageBox', (['"""Interpolation is disabled for this session"""', '"""Interpolation disabled"""', 'wx.OK'], {}), "('Interpolation is disabled for this session',\n 'Interpolation disabled', wx.OK)\n", (54642, 54725), False, 'import wx\n'), ((54885, 54911), 'numpy.abs', 'np.abs', (['(locs - event.ydata)'], {}), '(locs - event.ydata)\n', (54891, 54911), True, 'import numpy as np\n'), ((57003, 57060), 'wx.StaticText', 'wx.StaticText', (['self'], {'label': '"""Threshold for flat channels:"""'}), "(self, label='Threshold for flat channels:')\n", (57016, 57060), False, 'import wx\n'), ((57584, 57652), 'wx.StaticText', 'wx.StaticText', (['self'], {'label': '"""Threshold for flat channels in average:"""'}), "(self, label='Threshold for flat channels in average:')\n", (57597, 57652), False, 'import wx\n'), ((58219, 58294), 'wx.StaticText', 'wx.StaticText', (['self'], {'label': '"""Threshold for channel to neighbor correlation:"""'}), "(self, label='Threshold for channel to neighbor correlation:')\n", (58232, 58294), False, 'import wx\n'), ((58867, 58902), 'wx.StaticText', 'wx.StaticText', (['self'], {'label': '"""Output"""'}), "(self, label='Output')\n", (58880, 58902), False, 'import wx\n'), ((60178, 60288), 'wx.MessageBox', 'wx.MessageBox', (['"""Specify at least one action (report or apply)"""', '"""No Command Selected"""', 'wx.ICON_EXCLAMATION'], {}), "('Specify at least one action (report or apply)',\n 'No Command Selected', wx.ICON_EXCLAMATION)\n", (60191, 60288), False, 'import wx\n'), ((61484, 61613), 'wx.StaticText', 'wx.StaticText', (['self', 'wx.ID_ANY', '"""Layout: number of rows and columns (e.g., \'5 7\')\nor number of epochs (e.g., \'35\'):"""'], {}), '(self, wx.ID_ANY,\n """Layout: number of rows and columns (e.g., \'5 7\')\nor number of epochs (e.g., \'35\'):"""\n )\n', (61497, 61613), False, 'import wx\n'), ((62329, 62358), 'wx.Button', 'wx.Button', (['self', 'wx.ID_CANCEL'], {}), '(self, wx.ID_CANCEL)\n', (62338, 62358), False, 'import wx\n'), ((63365, 63466), 'wx.MessageBox', 'wx.MessageBox', (["('Invalid layout string: %s' % value)", '"""Invalid Layout"""', '(wx.OK | wx.ICON_ERROR)', 'self'], {}), "('Invalid layout string: %s' % value, 'Invalid Layout', wx.OK |\n wx.ICON_ERROR, self)\n", (63378, 63466), False, 'import wx\n'), ((64042, 64082), 'wx.StaticText', 'wx.StaticText', (['self', 'wx.ID_ANY', '"""First:"""'], {}), "(self, wx.ID_ANY, 'First:')\n", (64055, 64082), False, 'import wx\n'), ((64316, 64355), 'wx.StaticText', 'wx.StaticText', (['self', 'wx.ID_ANY', '"""Last:"""'], {}), "(self, wx.ID_ANY, 'Last:')\n", (64329, 64355), False, 'import wx\n'), ((65097, 65126), 'wx.Button', 'wx.Button', (['self', 'wx.ID_CANCEL'], {}), '(self, wx.ID_CANCEL)\n', (65106, 65126), False, 'import wx\n'), ((67248, 67283), 'wx.StaticText', 'wx.StaticText', (['self'], {'label': '"""Output"""'}), "(self, label='Output')\n", (67261, 67283), False, 'import wx\n'), ((68935, 69075), 'wx.MessageBox', 'wx.MessageBox', (['"""Specify at least one action (create report or reject or accept epochs)"""', '"""No Command Selected"""', 'wx.ICON_EXCLAMATION'], {}), "(\n 'Specify at least one action (create report or reject or accept epochs)',\n 'No Command Selected', wx.ICON_EXCLAMATION)\n", (68948, 69075), False, 'import wx\n'), ((25835, 25928), 'wx.CallLater', 'wx.CallLater', (['(1)', 'wx.MessageBox', 'msg', '"""Invalid Channels in Mark"""', '(wx.OK | wx.ICON_WARNING)'], {}), "(1, wx.MessageBox, msg, 'Invalid Channels in Mark', wx.OK | wx.\n ICON_WARNING)\n", (25847, 25928), False, 'import wx\n'), ((42445, 42469), 'numpy.invert', 'np.invert', (['sub_threshold'], {}), '(sub_threshold)\n', (42454, 42469), True, 'import numpy as np\n'), ((42684, 42700), 'numpy.any', 'np.any', (['rejected'], {}), '(rejected)\n', (42690, 42700), True, 'import numpy as np\n'), ((47140, 47162), 'numpy.arange', 'np.arange', (['start', 'stop'], {}), '(start, stop)\n', (47149, 47162), True, 'import numpy as np\n'), ((63211, 63312), 'wx.MessageBox', 'wx.MessageBox', (['"""Layout does not have enough plots"""', '"""Invalid Layout"""', '(wx.OK | wx.ICON_ERROR)', 'self'], {}), "('Layout does not have enough plots', 'Invalid Layout', wx.OK |\n wx.ICON_ERROR, self)\n", (63224, 63312), False, 'import wx\n'), ((6817, 6995), 'wx.MessageBox', 'wx.MessageBox', (['"""No eye tracker data was found in ds.info[\'edf\']. Use load.eyelink.add_edf(ds) to add an eye tracker file to a Dataset ds."""', '"""Eye Tracker Data Not Found"""'], {}), '(\n "No eye tracker data was found in ds.info[\'edf\']. Use load.eyelink.add_edf(ds) to add an eye tracker file to a Dataset ds."\n , \'Eye Tracker Data Not Found\')\n', (6830, 6995), False, 'import wx\n'), ((45900, 45914), 'math.sqrt', 'math.sqrt', (['nax'], {}), '(nax)\n', (45909, 45914), False, 'import math\n'), ((45943, 45964), 'math.ceil', 'math.ceil', (['(nax / nrow)'], {}), '(nax / nrow)\n', (45952, 45964), False, 'import math\n'), ((27698, 27715), 'numpy.nonzero', 'np.nonzero', (['index'], {}), '(index)\n', (27708, 27715), True, 'import numpy as np\n'), ((30828, 30872), 'scipy.spatial.distance.cdist', 'cdist', (['ch_locs', '[[event.xdata, event.ydata]]'], {}), '(ch_locs, [[event.xdata, event.ydata]])\n', (30833, 30872), False, 'from scipy.spatial.distance import cdist\n'), ((35115, 35139), 'numpy.flatnonzero', 'np.flatnonzero', (['rejected'], {}), '(rejected)\n', (35129, 35139), True, 'import numpy as np\n'), ((42843, 42867), 'numpy.flatnonzero', 'np.flatnonzero', (['rejected'], {}), '(rejected)\n', (42857, 42867), True, 'import numpy as np\n')]
|
import numpy as np
import argparse
import os
from PIL import Image
class BackofficeIconConverter:
"""
Icon creator to convert an input file into the correct format needed by
the SAP Commerce Backoffice framework to be used as icon in the
explorer-tree.
"""
#: Side length of a single image (height = width)
SINGLE_IMAGE_SIDE_LENGTH = 16
#: The backoffice icon file must be 16x80 as RGBA
BACKOFFICE_ICON_SIZE = (80, 16, 4)
def __init__(self, inputFilename: str) -> None:
"""
Initialises a new BackofficeIconCreator that can be used to convert a
single icon.
:param inputFilename: Input file used as source for the conversation.
"""
self.sourceFilename = inputFilename
def getDefaultTargetPath(self) -> str:
""" Create the default output path from the input name. """
head, tail = os.path.split(self.sourceFilename)
outFilename = f"backoffice-{tail}"
return os.path.join(head, outFilename)
def convertToDefault(self) -> None:
"""Convert the current file and place it under the default
output location. If the target file already exists, it will be
overridden.
"""
self.convertTo(self.getDefaultTargetPath())
def convertTo(self, targetPath: str) -> None:
"""Convert the current file and place it under the targetPath.
If there is already a file in the given location, it will be
overridden.
:param targetPath: The path including filename.
"""
sourceImage = Image.open(self.sourceFilename).convert('RGBA')
width, height = sourceImage.size
if (width != self.SINGLE_IMAGE_SIDE_LENGTH or
height != self.SINGLE_IMAGE_SIDE_LENGTH):
raise ValueError("input image must be {}x{} but {} was actually \
{}x{}!".format(
self.SINGLE_IMAGE_SIDE_LENGTH,
self.SINGLE_IMAGE_SIDE_LENGTH,
self.sourceFilename,
width,
height
))
sourceImg = sourceImage.load()
outImg = np.zeros(self.BACKOFFICE_ICON_SIZE, dtype=np.uint8)
self.__fillImageWithColor(outImg, sourceImg, 0, (127, 144, 165, 255))
self.__fillImageWithColor(outImg, sourceImg, 1, (85, 102, 122, 255))
self.__fillImageWithColor(outImg, sourceImg, 2, (4, 134, 224, 255))
self.__fillImageWithColor(outImg, sourceImg, 3, (4, 134, 224, 255))
self.__fillImageWithColor(outImg, sourceImg, 4, (190, 196, 209, 255))
outImage = Image.fromarray(outImg)
outImage.save(targetPath)
def __fillImageWithColor(
self,
outImg: np.ndarray,
sourceImg,
heightDisplace: int,
color: tuple
) -> None:
heightDisplaceInPixel = heightDisplace * self.SINGLE_IMAGE_SIDE_LENGTH
for y in range(self.SINGLE_IMAGE_SIDE_LENGTH):
for x in range(self.SINGLE_IMAGE_SIDE_LENGTH):
sourcePx = sourceImg[x, y]
# take alpha value from source, the color from the target color
color = (color[0], color[1], color[2], sourcePx[3])
outImg[heightDisplaceInPixel + y, x] = color
def main():
parser = argparse.ArgumentParser(
description="Convert simple icons to the SAP Commerce Backoffice \
explorer tree icon format. The icon must be a sprite consist of 5 \
different color shades of the icon itself."
)
parser.add_argument("inputIcons", nargs="+", help="files to convert")
parser.add_argument("-o", "--output", dest="output")
args = parser.parse_args()
for file in args.inputIcons:
print(f"Process icon {file}...")
iconConverter = BackofficeIconConverter(file)
if args.output:
# combine the current filename with the out folder name
head, tail = os.path.split(file)
targetPath = os.path.join(args.output, tail)
iconConverter.convertTo(targetPath)
print(f"{file} => {targetPath}")
pass
else:
iconConverter.convertToDefault()
print(f"{file} => {iconConverter.getDefaultTargetPath()}")
if __name__ == "__main__":
main()
|
[
"argparse.ArgumentParser",
"numpy.zeros",
"PIL.Image.open",
"PIL.Image.fromarray",
"os.path.split",
"os.path.join"
] |
[((3290, 3517), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Convert simple icons to the SAP Commerce Backoffice explorer tree icon format. The icon must be a sprite consist of 5 different color shades of the icon itself."""'}), "(description=\n 'Convert simple icons to the SAP Commerce Backoffice explorer tree icon format. The icon must be a sprite consist of 5 different color shades of the icon itself.'\n )\n", (3313, 3517), False, 'import argparse\n'), ((894, 928), 'os.path.split', 'os.path.split', (['self.sourceFilename'], {}), '(self.sourceFilename)\n', (907, 928), False, 'import os\n'), ((987, 1018), 'os.path.join', 'os.path.join', (['head', 'outFilename'], {}), '(head, outFilename)\n', (999, 1018), False, 'import os\n'), ((2146, 2197), 'numpy.zeros', 'np.zeros', (['self.BACKOFFICE_ICON_SIZE'], {'dtype': 'np.uint8'}), '(self.BACKOFFICE_ICON_SIZE, dtype=np.uint8)\n', (2154, 2197), True, 'import numpy as np\n'), ((2603, 2626), 'PIL.Image.fromarray', 'Image.fromarray', (['outImg'], {}), '(outImg)\n', (2618, 2626), False, 'from PIL import Image\n'), ((3934, 3953), 'os.path.split', 'os.path.split', (['file'], {}), '(file)\n', (3947, 3953), False, 'import os\n'), ((3979, 4010), 'os.path.join', 'os.path.join', (['args.output', 'tail'], {}), '(args.output, tail)\n', (3991, 4010), False, 'import os\n'), ((1583, 1614), 'PIL.Image.open', 'Image.open', (['self.sourceFilename'], {}), '(self.sourceFilename)\n', (1593, 1614), False, 'from PIL import Image\n')]
|
# These are control plot used in the NN pipeline
import h5py
import matplotlib as mpl
import numpy as np
import pandas as pd
from modules.BAR_BC_method import calc_BAR_BC, calc_composition, filter_data_mask
from modules.collect_data import resave_Tomas_OL_OPX_mixtures
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import seaborn as sns
from sklearn.metrics import confusion_matrix
from keras.models import Functional
from mpl_toolkits.axes_grid1 import make_axes_locatable
from modules.NN_losses_metrics_activations import my_rmse, my_r2, my_sam, my_quantile
from modules.NN_data import *
from modules.NN_config import *
from modules.CD_parameters import path_relab, path_taxonomy
from modules.NN_config_taxonomy import classes, classes2
mpl.use('TkAgg')
TEXT_SIZE = 12
SMALL_SIZE = 16
MEDIUM_SIZE = 20
BIGGER_SIZE = 24
LW = 1
plt.rc('font', size=TEXT_SIZE) # controls default text sizes
plt.rc('axes', titlesize=BIGGER_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
# plt.rcParams['text.usetex'] = True
plt.rc('text', usetex=True)
plt.rcParams['text.latex.preamble'] = r"\usepackage{amsmath}"
plt.rc('font', **{'family': 'sans-serif', 'sans-serif': ['Arial']})
# plt.rc('font', **{'family': 'serif', 'serif': ['Palatino']})
outdir = "".join((project_dir, '/figures/'))
check_dir(outdir)
fig_format = 'pdf'
def plot_scatter_plots(y_true: np.ndarray, y_pred: np.ndarray, suf: str = '') -> None:
print('Scatter plots')
y_true = y_true[:] * 100
y_pred = y_pred[:] * 100
# limit = 0.25
shift = 3 # Control ranges of axes (from 0 - shift to 100 + shift)
s = 30 # scaling parameter (marker size)
vmin = 0 # minimum for colormap in scatter of chemical
cmap = 'viridis_r' # cmap of points
titles_all = [['Fa', 'Fo'], ['Fs', 'En', 'Wo'], ['Fs', 'En', 'Wo'], ['An', 'Ab', 'Or']]
if not chem_without_modal:
titles_all = [titles_all[k] for k in range(len(use_minerals)) if use_minerals_all[k]]
titles_all = [[titles_all[k][j] for j in range(len(subtypes_all_used[k])) if subtypes_all_used[k][j]]
for k in range(len(subtypes))]
# define the lines
x_line = np.arange(-150, 151)
y_line = x_line
y1p_line, y1m_line = y_line + 10, y_line - 10
y2p_line, y2m_line = y_line + 20, y_line - 20
l10, l20 = 'm-', 'c-'
lab_line0, lab_line10, lab_line20 = '0 pp error', '10 pp error', '20 pp error'
RMSE = my_rmse(num_minerals)(y_true, y_pred).numpy() / 100 # is multiplied with 100 in the code
R2 = my_r2(num_minerals)(y_true, y_pred).numpy()
SAM = my_sam(num_minerals)(y_true, y_pred).numpy() * 180 / np.pi
# modal first
start, stop = 0, num_minerals
if num_minerals > 1:
x_tmp, y_tmp = y_true[:, start:stop], y_pred[:, start:stop]
fig, ax = plt.subplots(1, num_minerals, figsize=(4.5 * num_minerals, 6))
for i in range(num_minerals):
# lines
lns1 = ax[i].plot(x_line, y_line, 'k', label=lab_line0, linewidth=LW)
lns2 = ax[i].plot(x_line, y1p_line, l10, label=lab_line10, linewidth=LW)
ax[i].plot(x_line, y1m_line, l10, linewidth=LW)
lns3 = ax[i].plot(x_line, y2p_line, l20, label=lab_line20, linewidth=LW)
ax[i].plot(x_line, y2m_line, l20, linewidth=LW)
# data
ax[i].scatter(x_tmp[:, i], y_tmp[:, i], c='black', s=s, zorder=100)
ax[i].set_xlabel('Actual')
ax[i].tick_params(axis='both')
ax[i].axis('square')
ax[i].set_ylim(bottom=-shift, top=100 + shift)
ax[i].set_xlim(left=-shift, right=100 + shift)
ax[i].set_title(minerals[i])
ax[i].set_xticks(np.arange(0, 100.1, 25))
ax[i].set_yticks(np.arange(0, 100.1, 25))
ax[i].text(0.8, 0.15,
r'\[' # every line is a separate raw string...
r'\begin{split}' # ...but they are all concatenated by the interpreter :-)
r'\mathsf{RMSE} &= ' + '{:4.1f}'.format(RMSE[i]) + r'\\'
r'\mathsf{R}^2 &= ' + '{:4.2f}'.format(
R2[i]) + r'\\'
r'\mathsf{SAM} &= ' + '{:4.1f}'.format(SAM[i]) + r'\text{ [deg]}'
r'\end{split}'
r'\]',
horizontalalignment='center', verticalalignment='center', transform=ax[i].transAxes)
if i > 0:
ax[i].set_yticklabels([])
lns = lns1 + lns2 + lns3
labs = [l.get_label() for l in lns]
ax[i].legend(lns, labs, loc='upper left', frameon=False)
ax[0].set_ylabel('Predicted')
plt.draw()
plt.tight_layout()
fig_name = "".join(('scatter_plot_modal', suf, '.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
# each mineral on separate plot
for i in range(len(subtypes)):
start, stop = stop, stop + subtypes[i]
titles = titles_all[i]
# fig size tuned such that the plots are approximately of the same size
fig, ax = plt.subplots(1, subtypes[i], figsize=(4.4 * subtypes[i] + 1.5, 6))
if num_minerals > 1:
# non-zero modal
mask = y_true[:, i] > 0
x_tmp, y_tmp = y_true[mask, start:stop], y_pred[mask, start:stop]
c = y_true[mask, i]
else:
x_tmp, y_tmp = y_true[:, start:stop], y_pred[:, start:stop]
c = 'black'
for j in range(subtypes[i]):
# lines
lns1 = ax[j].plot(x_line, y_line, 'k', label=lab_line0, linewidth=LW)
lns2 = ax[j].plot(x_line, y1p_line, l10, label=lab_line10, linewidth=LW)
ax[j].plot(x_line, y1m_line, l10, linewidth=LW)
lns3 = ax[j].plot(x_line, y2p_line, l20, label=lab_line20, linewidth=LW)
ax[j].plot(x_line, y2m_line, l20, linewidth=LW)
# data
sc = ax[j].scatter(x_tmp[:, j], y_tmp[:, j], c=c, cmap=cmap, vmin=vmin, vmax=100, s=s, zorder=100)
divider = make_axes_locatable(ax[j])
cax = divider.append_axes("right", size="5%", pad=0.1)
cbar = plt.colorbar(sc, ax=ax[j], cax=cax)
if j == subtypes[i] - 1:
cbar.ax.set_ylabel('Modal abundance [vol\%]')
else:
cbar.remove()
ax[j].set_xlabel('Actual')
ax[j].tick_params(axis='both')
ax[j].axis('square')
ax[j].set_ylim(bottom=-shift, top=100 + shift)
ax[j].set_xlim(left=-shift, right=100 + shift)
ax[j].set_title(titles[j])
ax[j].set_xticks(np.arange(0, 100.1, 25))
ax[j].set_yticks(np.arange(0, 100.1, 25))
ax[j].text(0.8, 0.15,
r'\[' # every line is a separate raw string...
r'\begin{split}' # ...but they are all concatenated by the interpreter :-)
r'\mathsf{RMSE} &= ' + '{:4.1f}'.format(RMSE[start + j]) + r'\\'
r'\mathsf{R}^2 &= ' + '{:4.2f}'.format(
R2[start + j]) + r'\\'
r'\mathsf{SAM} &= ' + '{:4.1f}'.format(SAM[start + j]) + r'\text{ [deg]}'
r'\end{split}'
r'\]',
horizontalalignment='center', verticalalignment='center', transform=ax[j].transAxes)
if j > 0:
ax[j].set_yticklabels([])
lns = lns1 + lns2 + lns3
labs = [l.get_label() for l in lns]
ax[j].legend(lns, labs, loc='upper left', frameon=False)
ax[0].set_ylabel('Predicted')
plt.draw()
plt.tight_layout()
fig_name = "".join(('scatter_plot_', minerals_used[i], suf, '.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_error_evaluation(y_true: np.ndarray, y_pred: np.ndarray) -> None:
print('Print quantiles')
# define the lines
x_line = np.arange(-150, 151)
y_line_10 = np.ones(np.shape(x_line)) * 10
y_line_20 = np.ones(np.shape(x_line)) * 20
l10, l20 = 'k--', 'k--'
percentile = np.arange(0, 101, 5)
quantile = my_quantile(num_minerals, percentile)(y_true, y_pred).numpy()
titles_all = [['OL', 'OPX', 'CPX', 'PLG'], ['Fa', 'Fo'], ['Fs (OPX)', 'En (OPX)', 'Wo (OPX)'],
['Fs (CPX)', 'En (CPX)', 'Wo (CPX)'], ['An', 'Ab', 'Or']]
titles_all = np.array(flatten_list(titles_all))[used_indices]
# modification of used indices (if there are two labels, their absolute errors are the same; one is enough)
use_inds = deepcopy([list(use_minerals_all)] + [*subtypes_all])
for i in range(len(use_inds)):
if np.sum(use_inds[i]) == 2:
use_inds[i][np.where(use_inds[i])[0][-1]] = False
use_inds = flatten_list(use_inds) * used_indices
# from quantile delete indices, where used_indices are not use_indices
keep_inds = np.array([i for i in range(len(np.where(used_indices)[0]))
if np.where(used_indices)[0][i] in np.where(use_inds)[0]])
titles_all = titles_all[keep_inds]
quantile = quantile[:, keep_inds]
shift = 3 # Control ranges of axes (from 0 - shift to 100 + shift)
fig, ax = plt.subplots(1, 1, figsize=(8, 6))
if np.shape(quantile)[1] > 10:
ax.plot(percentile, quantile[:, :10], linewidth=2)
ax.plot(percentile, quantile[:, 10:], '--', linewidth=2)
ncol = 2
else:
ax.plot(percentile, quantile, linewidth=2)
ncol = 1
# constant error lines
ax.plot(x_line, y_line_10, l10)
ax.plot(x_line, y_line_20, l20)
ax.set_xlabel('Percentile')
ax.set_ylabel('Absolute error')
ax.set_ylim(bottom=-shift, top=100 + shift)
ax.set_xlim(left=-shift, right=100 + shift)
ax.set_xticks(np.arange(0, 100.1, 10))
ax.set_yticks(np.arange(0, 100.1, 10))
ax.legend(titles_all, loc='upper left', ncol=ncol)
plt.draw()
plt.tight_layout()
fig_name = "".join(('quantile_error_plot', '.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_ast_PC1_PC2(y_pred: np.ndarray) -> None:
print('Plot PC1 vs PC2 for asteroids')
filename = project_dir + '/Datasets/taxonomy/asteroid_spectra-denoised-norm-meta.dat'
data = pd.read_csv(filename, sep='\t', header=None).to_numpy() # to read the file
types = data[:, 1].astype(np.str)
inds_S = np.array(['S' in ast_type for ast_type in types])
inds_Q = np.array(['Q' in ast_type for ast_type in types])
inds_A = np.array(['A' in ast_type for ast_type in types])
inds_V = np.array(['V' in ast_type for ast_type in types])
inds = inds_S + inds_Q + inds_V + inds_A
# ignore Sq: since its spectrum is very weird
inds[types == 'Sq:'] = False
unique, counts = np.unique(types[inds], return_counts=True)
PCA = data[inds, 3:5].astype(np.float64)
predictions = y_pred[inds] * 100
cmap = 'viridis_r' # cmap of points
s = 30 # scaling parameter (marker size)
vmin = 0 # minimum for colormap in scatter of chemical
labels = np.core.defchararray.add('$', types[inds])
labels = np.core.defchararray.add(labels, '$')
fig, ax = plt.subplots(1, 1, figsize=(8, 6))
# Why I cannot set marker=labels and do it all as for vectors??
for i in range(len(PCA)):
if len(labels[i]) == 3:
fact = 1
if len(labels[i]) == 4:
fact = 2.5
if len(labels[i]) == 5:
fact = 5.5
c = predictions[i, 0]
sp = ax.scatter(PCA[i, 1], PCA[i, 0], c=c, cmap=cmap, vmin=vmin, vmax=100, s=s * fact, marker=labels[i])
ax.set_xlabel("PC2'")
ax.set_ylabel("PC1'")
x0, x1 = np.array([0.5, -0.5]), np.array(([0.0, 0.8]))
plt.annotate("", xy=x1, xytext=x0, zorder=-1,
arrowprops=dict(arrowstyle="->", color='r', facecolor='black', lw=3))
plt.text(x=0.1, y=-0.2, s="Space weathering", rotation=-51, c='r', fontsize=SMALL_SIZE)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)
cbar = plt.colorbar(sp, ax=ax, cax=cax)
cbar.ax.set_ylabel('Olivine abundance [vol\%]')
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.draw()
fig_name = "".join(('PCA_plot.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_Fa_vs_Fs_ast_only() -> None:
print('Plot Fa vs Fs')
limx1, limx2 = 15, 35
limy1, limy2 = 10, 30
shift = 1 # Control ranges of axes
s = 50 # scaling parameter
fig, ax = plt.subplots(1, 1, figsize=(5, 5))
# definition of boxes from (for some reasons should be used just once)
# https://www.researchgate.net/figure/Mineral-compositional-data-for-the-Morokweng-meteoriteDiagram-shows-ferrosilite-Fs_fig3_7093505
H_rect = patches.Rectangle((16.2, 14.5), 3.8, 3.5, linewidth=1.5, edgecolor='r', facecolor='none')
L_rect = patches.Rectangle((22.0, 19.0), 4.0, 3.0, linewidth=1.5, edgecolor='g', facecolor='none')
LL_rect = patches.Rectangle((26.0, 22.0), 6.0, 4.2, linewidth=1.5, edgecolor='b', facecolor='none')
ax.set_xlabel('Fa')
ax.set_ylabel('Fs')
ax.tick_params(axis='both')
ax.axis('square')
ax.set_xticks(np.arange(limx1, limx2 + 0.1, 5))
ax.set_yticks(np.arange(limy1, limy2 + 0.1, 5))
ax.set_ylim(bottom=limy1 - shift, top=limy2 + shift)
ax.set_xlim(left=limx1 - shift, right=limx2 + shift)
# add the patches
ax.add_patch(H_rect)
ax.add_patch(L_rect)
ax.add_patch(LL_rect)
# artificial data to get labels for legend
ax.plot(120, 120, 'rs', label='H', markerfacecolor='none')
ax.plot(120, 120, 'gs', label='L', markerfacecolor='none')
ax.plot(120, 120, 'bs', label='LL', markerfacecolor='none')
ax.legend(loc='upper left')
Fa_S, Fs_S, sigma_fas, sigma_fss = [20.7], [18.3], 4.5, 4.9
Fa_Sq, Fs_Sq, sigma_fasq, sigma_fssq = [23.2], [21.0], 4.6, 4.1
Fa_Sr, Fs_Sr, sigma_fasr, sigma_fssr, = [18.3], [19.2], 5.7, 5.4
Fa_Sw, Fs_Sw, sigma_fasw, sigma_fssw = [21.3], [14.7], 4.1, 4.2
Fa_Q, Fs_Q, sigma_faq, sigma_fsq = [26.2], [23.8], 5.4, 5.1
ax.scatter(Fa_S, Fs_S, marker='$S$', c='k', s=s * 2.5, zorder=100)
ax.errorbar(Fa_S, Fs_S, xerr=sigma_fas, yerr=sigma_fss, c='c', ls='None')
ax.scatter(Fa_Sq, Fs_Sq, marker='$Sq$', c='k', s=s * 5, zorder=100)
ax.errorbar(Fa_Sq, Fs_Sq, xerr=sigma_fasq, yerr=sigma_fssq, c='c', ls='None')
ax.scatter(Fa_Sr, Fs_Sr, marker='$Sr$', c='k', s=s * 5, zorder=100)
ax.errorbar(Fa_Sr, Fs_Sr, xerr=sigma_fasr, yerr=sigma_fssr, c='c', ls='None')
ax.scatter(Fa_Sw, Fs_Sw, marker='$Sw$', c='k', s=s * 6, zorder=100)
ax.errorbar(Fa_Sw, Fs_Sw, xerr=sigma_fasw, yerr=sigma_fssw, c='c', ls='None')
ax.scatter(Fa_Q, Fs_Q, marker='$Q$', c='k', s=s * 2.5, zorder=100)
ax.errorbar(Fa_Q, Fs_Q, xerr=sigma_faq, yerr=sigma_fsq, c='c', ls='None')
plt.draw()
plt.tight_layout()
fig_name = "".join(('Fa_vs_Fs.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_scatter_NN_BC():
from modules.NN_evaluate import evaluate_test_data
wvl = np.arange(450, 2451, 5)
filename_train_data = 'combined-denoised-norm.dat'
x_train, y_train = load_data(filename_train_data, clean_dataset=True)
x_train, y_train, x_val, y_val, x_test, y_true = split_data_proportional(x_train, y_train)
model_names = ['20220330113805_CNN.h5'] # [14.4, 5.7, 5.7, 10.7]
y_pred, accuracy = evaluate_test_data(model_names, x_test, y_true)
# to get the test types
filename = project_dir + '/Datasets/combined-denoised-norm-clean-meta.dat'
data = pd.read_csv(filename, sep='\t', header=None).to_numpy() # to read the file
types = data[:, 7]
types = np.reshape(types, (len(types), 1))
filename_train_data = 'combined-denoised-norm-clean.dat'
x_tmp, y_tmp = load_data(filename_train_data)
_, _, _, _, meta, _ = split_data_proportional(
np.concatenate((x_tmp, types), axis=1), y_tmp)
types = meta[:, -1].astype(np.str)
# jenom ty, co obrasuhuji OL a OPX (jen mixtures 12 a 14)
binary = (y_true[:, :num_minerals] > 0).astype(int)
base = np.array([8, 4, 2, 1])[use_minerals]
mixtures = np.sum(binary * base, axis=1)
mask1 = np.logical_or(mixtures == 12, mixtures == 14)
# only those with CPX < 10
mask2 = y_true[:, 2] < 0.1
mask = np.logical_and(mask1, mask2)
x_true = x_test[mask]
y_true = y_true[mask]
y_pred = y_pred[mask]
types = types[mask]
inds_HED = np.array(['HED' in type for type in types])
types[inds_HED] = 'V'
types[~inds_HED] = 'S'
BAR, BIC, BIIC = calc_BAR_BC(wvl, x_true)
# remove nans
mask = np.logical_and(np.logical_and(BAR > 0, BIC > 0), BIIC > 0)
BAR, BIC, BIIC = BAR[mask], BIC[mask], BIIC[mask]
OL_true = y_true[mask, 0] * 100
OL_pred = y_pred[mask, 0] * 100
Fs_true = y_true[mask, 5] * 100
Fs_pred = y_pred[mask, 5] * 100
types = types[mask]
OL_fraction, Fs, Wo = calc_composition(BAR, BIC, BIIC, types, method=0)
_, Fs_v2, _ = calc_composition(BAR, BIC, BIIC, types, method=1)
# filter the data
mask = filter_data_mask(OL_fraction, Fs, Wo)
OL_fraction = OL_fraction[mask]
Fs, Wo = Fs[mask], Wo[mask]
OL_true = OL_true[mask]
OL_pred = OL_pred[mask]
Fs_true = Fs_true[mask]
Fs_pred = Fs_pred[mask]
Fs_v2 = Fs_v2[mask]
LW = 1
s = 30 # scaling parameter (marker size)
x_line = np.arange(-150, 151)
y_line = x_line
y1p_line, y1m_line = y_line + 10, y_line - 10
y2p_line, y2m_line = y_line + 20, y_line - 20
l10, l20 = 'm-', 'c-'
lab_line0, lab_line10, lab_line20 = '0 pp error', '10 pp error', '20 pp error'
shift = 3 # Control ranges of axes (from 0 - shift to 100 + shift)
outdir = "".join((project_dir, '/figures/'))
check_dir(outdir)
fig, ax = plt.subplots(1, 2, figsize=(4.4 * 2 + 1.5, 6))
ax[0].scatter(OL_true, OL_pred, s=s, label='NN pred.', zorder=100)
ax[0].scatter(OL_true, OL_fraction, s=s, label='BAR', zorder=99)
ax[1].scatter(Fs_true, Fs_pred, s=s, label='NN pred.', zorder=100)
ax[1].scatter(Fs_true, Fs_v2, s=s, label='BIC', zorder=99)
ax[1].scatter(Fs_true, Fs, s=s, label='BIIC', zorder=98)
ax[0].set_title('olivine')
ax[1].set_title('Fs')
ax[0].set_ylabel('Modelled')
for i in range(2):
ax[i].plot(x_line, y_line, 'k', label=lab_line0, linewidth=LW)
ax[i].plot(x_line, y1p_line, l10, label=lab_line10, linewidth=LW)
ax[i].plot(x_line, y1m_line, l10, linewidth=LW)
ax[i].plot(x_line, y2p_line, l20, label=lab_line20, linewidth=LW)
ax[i].plot(x_line, y2m_line, l20, linewidth=LW)
ax[i].set_xlabel('Actual')
ax[i].tick_params(axis='both')
ax[i].axis('square')
ax[i].set_ylim(bottom=-shift, top=100 + shift)
ax[i].set_xlim(left=-shift, right=100 + shift)
ax[i].set_xticks(np.arange(0, 100.1, 25))
ax[i].set_yticks(np.arange(0, 100.1, 25))
if i > 0:
ax[i].set_yticklabels([])
ax[i].legend(loc='upper left', frameon=False)
plt.draw()
plt.tight_layout()
fig_name = "".join(('scatter_plot_NN_BAR_BC_met_mix.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_PCA_BAR():
from modules.NN_evaluate import evaluate
model_names = ['20220330113805_CNN.h5'] # [14.4, 5.7, 5.7, 10.7]
wvl = np.arange(450, 2451, 5)
filename_data = 'asteroid_spectra-denoised-norm-nolabel.dat'
data_file = "".join((project_dir, '/Datasets/', filename_data))
data = np.loadtxt(data_file, delimiter='\t')
y__pred = evaluate(model_names, filename_data)
filename = project_dir + '/Datasets/taxonomy/asteroid_spectra-denoised-norm-meta.dat'
meta = pd.read_csv(filename, sep='\t', header=None).to_numpy() # to read the file
types = meta[:, 1].astype(np.str)
inds_S = np.array(['S' in ast_type for ast_type in types])
inds_Q = np.array(['Q' in ast_type for ast_type in types])
inds_A = np.array(['A' in ast_type for ast_type in types])
inds_V = np.array(['V' in ast_type for ast_type in types])
inds = inds_S + inds_Q + inds_V + inds_A
# ignore Sq: since its spectrum is very weird
inds[types == 'Sq:'] = False
types = types[inds]
x_data = data[inds]
y_pred = y__pred[inds]
PCA = meta[inds, 3:5].astype(np.float64)
labels = np.core.defchararray.add('$', types)
labels = np.core.defchararray.add(labels, '$')
BAR, BIC, BIIC = calc_BAR_BC(wvl, x_data)
# remove nans
mask = np.logical_and(np.logical_and(BAR > 0, BIC > 0), BIIC > 0)
BAR, BIC, BIIC = BAR[mask], BIC[mask], BIIC[mask]
OL_pred = y_pred[mask, 0] * 100
Fs_pred = y_pred[mask, 5] * 100
labels = labels[mask]
types = types[mask]
PCA = PCA[mask]
OL_fraction, Fs, Wo = calc_composition(BAR, BIC, BIIC, types, method=0)
_, Fs_v2, _ = calc_composition(BAR, BIC, BIIC, types, method=1)
# filter the data
mask = filter_data_mask(OL_fraction, Fs, Wo)
OL_fraction = OL_fraction[mask]
Fs, Wo = Fs[mask], Wo[mask]
OL_pred = OL_pred[mask]
Fs_pred = Fs_pred[mask]
labels = labels[mask]
types = types[mask]
PCA = PCA[mask]
unique, counts = np.unique(types, return_counts=True)
cmap = 'viridis_r' # cmap of points
s = 30 # scaling parameter (marker size)
vmin = 0 # minimum for colormap in scatter of chemical
fig, ax = plt.subplots(1, 1, figsize=(8, 6))
# Why I cannot set marker=labels and do it all as for vectors??
for i in range(len(PCA)):
if len(labels[i]) == 3:
fact = 1
if len(labels[i]) == 4:
fact = 2.5
if len(labels[i]) == 5:
fact = 5.5
c = OL_fraction[i]
sp = ax.scatter(PCA[i, 1], PCA[i, 0], c=c, cmap=cmap, vmin=vmin, vmax=100, s=s * fact, marker=labels[i])
ax.set_xlabel("PC2'")
ax.set_ylabel("PC1'")
x0, x1 = np.array([0.5, -0.5]), np.array(([0.0, 0.8]))
plt.annotate("", xy=x1, xytext=x0, zorder=-1,
arrowprops=dict(arrowstyle="->", color='r', facecolor='black', lw=3))
plt.text(x=0.16, y=-0.2, s="Space weathering", rotation=-59.5, c='r', fontsize=16)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)
cbar = plt.colorbar(sp, ax=ax, cax=cax)
cbar.ax.set_ylabel('Olivine abundance [vol\%]')
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.draw()
fig_name = "".join(('PCA_plot_BAR_BC.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_spectra(x_data, y_data) -> None:
x = np.arange(450, 2451, 5) / 1000 # um
titles = ['olivine', 'orthopyroxene', 'clinopyroxene', 'laboratory mixtures', 'meteorites', 'asteroids']
m, n = best_blk(len(titles))
# asteroid data
filename = project_dir + '/Datasets/taxonomy/asteroid_spectra-denoised-norm-meta.dat'
data = pd.read_csv(filename, sep='\t', header=None).to_numpy() # to read the file
types = data[:, 1].astype(np.str)
inds_S = np.array(['S' in ast_type for ast_type in types])
inds_Q = np.array(['Q' in ast_type for ast_type in types])
inds_A = np.array(['A' in ast_type for ast_type in types])
inds_V = np.array(['V' in ast_type for ast_type in types])
inds = inds_S + inds_Q + inds_V + inds_A
# ignore Sq: since its spectrum is very weird
inds[types == 'Sq:'] = False
filename_data = 'asteroid_spectra-denoised-norm-nolabel.dat'
data_file = "".join((project_dir, '/Datasets/', filename_data))
ast_data = np.loadtxt(data_file, delimiter='\t')[inds]
fig, ax = plt.subplots(m, n, figsize=(4.7 * n, 4.7 * m))
ax = np.reshape(ax, (m, n))
inds = np.where(np.sum(y_data[:, :3] > 0, axis=1) > 1)[0]
# urceno z konkretnich dat (90, 63)
inds_met, inds_mix = inds[:63], inds[63:]
for j in range(len(titles)):
if j <= 2:
data = x_data[y_data[:, j] == 1]
if j == 3:
data = x_data[inds_mix]
# data = x_data[109:180]
if j == 4:
data = x_data[inds_met]
# data = x_data[:109]
if j == 5:
data = ast_data
i, k = np.unravel_index(j, (m, n))
ax[i, k].plot(x, np.transpose(data))
ax[i, k].tick_params(axis='both')
ax[i, k].set_ylim(bottom=0, top=5)
ax[i, k].set_xlim(left=0.4, right=2.500)
ax[i, k].set_title(titles[j])
ax[i, k].set_xticks(np.arange(0.5, 2.501, 0.5))
if k > 0:
ax[i, k].set_yticklabels([])
else:
ax[i, k].set_ylabel('Reflectance [normalised]')
if i == 0:
ax[i, k].set_xticklabels([])
else:
ax[i, k].set_xlabel('$\lambda$ [$\mu$m]')
plt.draw()
plt.tight_layout()
fig_name = "".join(('spectra_all.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close()
def plot_model_history(model: Functional) -> None:
print('Model history')
history = model.history.history
kernel_width = 5 # Width of the convolution kernel
conv_kernel = np.ones((kernel_width,))
conv_kernel /= np.sum(conv_kernel)
fig = plt.figure("Loss and accuracy", figsize=(8, 6))
ax1 = fig.add_subplot(111)
color1, color2 = 'tab:red', 'tab:blue'
# Normalisation of the edges
norm = np.convolve(np.ones((len(history['loss']),)), conv_kernel, 'same')
plot1 = np.convolve(history['loss'], conv_kernel, 'same') / norm
if model.metrics_names[1] == 'mse': # MSE to RMSE
plot3 = np.convolve(np.sqrt(history[model.metrics_names[1]]), conv_kernel, 'same') / norm
labely = 'rmse'
else:
plot3 = np.convolve(history[model.metrics_names[1]], conv_kernel, 'same') / norm
labely = model.metrics_names[1]
labely = str(np.char.replace(labely, '_', ' '))
lns1 = ax1.plot(plot1, color=color1, linestyle='-', label='loss - training')
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
lns3 = ax2.plot(plot3, color=color2, linestyle='-', label=labely + ' - training')
if val_portion > 0:
plot2 = np.convolve(history['val_loss'], conv_kernel, 'same') / norm
if model.metrics_names[1] == 'mse': # MSE to RMSE
plot4 = np.convolve(np.sqrt(history['val_' + model.metrics_names[1]]), conv_kernel, 'same') / norm
else:
plot4 = np.convolve(history['val_' + model.metrics_names[1]], conv_kernel, 'same') / norm
lns2 = ax1.plot(plot2, color=color1, linestyle=':', label='loss - validation')
lns4 = ax2.plot(plot4, color=color2, linestyle=':', label=labely + ' - validation')
lns = lns1 + lns2 + lns3 + lns4
else:
lns = lns1 + lns3
ax1.set_xlabel('epoch')
ax1.tick_params(axis='x')
ax1.set_ylabel('loss', color=color1)
ax1.tick_params(axis='y', labelcolor=color1)
ax1.set_ylim(bottom=0)
ax1.set_xlim(left=0, right=model.history.params['epochs'])
ax1.grid(False)
ax2.set_ylabel(labely, color=color2) # we already handled the x-label with ax1
ax2.tick_params(axis='y', labelcolor=color2)
ax2.set_ylim(bottom=0)
ax2.grid(False)
labs = [l.get_label() for l in lns]
if plot3[0] > plot3[-1]: # the metric decreases if quality increases
loc = 'upper right'
else:
loc = 'center right'
ax1.legend(lns, labs, loc=loc)
fig.tight_layout() # otherwise the right y-label is slightly clipped
# plt.title('Model history')
plt.draw()
'''
from datetime import datetime
now = datetime.now()
dt_string = now.strftime("%Y%m%d%H%M%S")
fig_name = "".join((dt_string, '_', 'model_history.', fig_format))
'''
fig_name = "".join(('model_history.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_Fa_vs_Fs(y_true: np.ndarray, y_pred: np.ndarray) -> None:
print('Plot Fa vs Fs')
# Indices in which Fa and Fs are
ind_Fa, ind_Fs = num_minerals, num_minerals + subtypes[0]
filename = project_dir + '/Datasets/combined-denoised-norm-clean-meta.dat'
data = pd.read_csv(filename, sep='\t', header=None).to_numpy() # to read the file
types = data[:, 7]
types = np.reshape(types, (len(types), 1))
# to get the test types
filename_train_data = 'combined-denoised-norm-clean.dat'
x_train, y_train = load_data(filename_train_data)
x_train, y_train, x_val, y_val, x_test, y_test = split_data_proportional(
np.concatenate((x_train, types), axis=1), y_train)
types = x_test[:, -1].astype(np.str)
Fa_true, Fs_true = y_true[:, ind_Fa] * 100, y_true[:, ind_Fs] * 100
Fa_pred, Fs_pred = y_pred[:, ind_Fa] * 100, y_pred[:, ind_Fs] * 100
inds_H = np.array([('H' in OC_type) and ('HH' not in OC_type) if len(OC_type) == 2 else False for OC_type in types])
inds_L = np.array([('L' in OC_type) and ('LL' not in OC_type) if len(OC_type) == 2 else False for OC_type in types])
inds_LL = np.array(['LL' in OC_type if len(OC_type) == 3 else False for OC_type in types])
limx1, limx2 = 15, 35
limy1, limy2 = 10, 30
shift = 3 # Control ranges of axes
s = 40 # scaling parameter
fig, ax = plt.subplots(1, 2, figsize=(4.5 * 2, 6))
error_Fa, error_Fs = 5.7, 5.7
for i in range(2):
# definition of boxes from (for some reasons should be used just once)
# https://www.researchgate.net/figure/Mineral-compositional-data-for-the-Morokweng-meteoriteDiagram-shows-ferrosilite-Fs_fig3_7093505
H_rect = patches.Rectangle((16.2, 14.5), 3.8, 3.5, linewidth=1.5, edgecolor='r', facecolor='none')
L_rect = patches.Rectangle((22.0, 19.0), 4.0, 3.0, linewidth=1.5, edgecolor='g', facecolor='none')
LL_rect = patches.Rectangle((26.0, 22.0), 6.0, 4.2, linewidth=1.5, edgecolor='b', facecolor='none')
if i == 0:
ax[i].scatter(Fa_true[inds_H], Fs_true[inds_H], c='r', s=s, label='H')
ax[i].scatter(Fa_true[inds_L], Fs_true[inds_L], c='g', s=s, label='L')
ax[i].scatter(Fa_true[inds_LL], Fs_true[inds_LL], c='b', s=s, label='LL')
else:
ax[i].scatter(Fa_pred[inds_H], Fs_pred[inds_H], c='r', s=s, label='H')
ax[i].scatter(Fa_pred[inds_L], Fs_pred[inds_L], c='g', s=s, label='L')
ax[i].scatter(Fa_pred[inds_LL], Fs_pred[inds_LL], c='b', s=s, label='LL')
ax[i].errorbar(Fa_pred[inds_H], Fs_pred[inds_H], xerr=error_Fa, yerr=error_Fs, c='r', fmt='o')
ax[i].errorbar(Fa_pred[inds_L], Fs_pred[inds_L], xerr=error_Fa, yerr=error_Fs, c='g', fmt='o')
ax[i].errorbar(Fa_pred[inds_LL], Fs_pred[inds_LL], xerr=error_Fa, yerr=error_Fs, c='b', fmt='o')
ax[i].set_xlabel('Fa')
if i == 0:
ax[i].set_ylabel('Fs')
ax[i].set_title('ordinary chondrites')
else:
ax[i].set_title('predictions')
ax[i].set_yticklabels([])
ax[i].tick_params(axis='both')
ax[i].axis('square')
ax[i].set_xticks(np.arange(limx1, limx2 + 0.1, 5))
ax[i].set_yticks(np.arange(limy1, limy2 + 0.1, 5))
ax[i].set_ylim(bottom=limy1 - shift, top=limy2 + shift)
ax[i].set_xlim(left=limx1 - shift, right=limx2 + shift)
# add the patches
ax[i].add_patch(H_rect)
ax[i].add_patch(L_rect)
ax[i].add_patch(LL_rect)
ax[i].legend()
Fa_S, Fs_S = [20.7], [18.3]
Fa_Sq, Fs_Sq = [23.2], [21.0]
Fa_Sr, Fs_Sr = [18.3], [19.2]
Fa_Sw, Fs_Sw = [21.3], [14.7]
Fa_Q, Fs_Q = [26.2], [23.8]
ax[1].scatter(Fa_S, Fs_S, marker='$S$', c='k', s=s * 2.5)
ax[1].scatter(Fa_Sq, Fs_Sq, marker='$Sq$', c='k', s=s * 5)
ax[1].scatter(Fa_Sr, Fs_Sr, marker='$Sr$', c='k', s=s * 5)
ax[1].scatter(Fa_Sw, Fs_Sw, marker='$Sw$', c='k', s=s * 6)
ax[1].scatter(Fa_Q, Fs_Q, marker='$Q$', c='k', s=s * 2.5)
plt.draw()
plt.tight_layout()
fig_name = "".join(('Fa_vs_Fs.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_surface_spectra(y_pred: np.ndarray, filename: str, what_type: str) -> None:
# Set is already processed at ray_casting_mean
if 'Itokawa' in filename:
indices_file = "".join((project_dir, '/Datasets/taxonomy/polysum.h5'))
background_image = 'new_itokawa_mosaic.jpg'
name = 'Itokawa'
elif 'Eros' in filename:
indices_file = "".join((project_dir, '/Datasets/taxonomy/polysumeros1000.h5'))
background_image = 'eros_cyl_near.jpg'
name = 'Eros'
else:
raise ValueError('"filename" must contain either "Itokawa" or "Eros"')
with h5py.File(indices_file, 'r') as f:
# Choosing only the spectra, first two indexes contain coordinates
# Keeping only the coordinates
indices = np.array(f['d'][:, :2])
n, _ = y_pred.shape
sum_of_predictions = np.sum(y_pred, axis=0) / n * 100
if what_type == 'taxonomy':
n_probable_classes = 3
most_probable_classes = np.argsort(sum_of_predictions)[-n_probable_classes:][::-1]
print('\nMost probable classes:')
for cls in most_probable_classes:
print('{:4s} {:5.2f}%'.format(classes2[cls], round(sum_of_predictions[cls], 2)))
titles = ["".join((name, ' spectral ', classes2[most_probable_classes[i]],
'-class predictions with confidence')) for i in range(n_probable_classes)]
labels = [classes2[most_probable_classes[i]] for i in range(n_probable_classes)]
elif what_type == 'mineralogy':
most_probable_classes = np.array([0, 3, 5, 9]) # olivine, Fa, Fs_opx, Wo_cpx (possible source of errors...)
labels = ['olivine', 'Fa', 'Fs (OPX)', 'Wo (CPX)']
n_probable_classes = len(most_probable_classes)
print('\nSelected mineralogy:')
for i, cls in enumerate(most_probable_classes):
print('{:14s} {:5.2f}%'.format(labels[i], round(sum_of_predictions[cls], 2)))
titles = ["".join((name, ' ', labels[i], ' predictions with confidence')) for i in range(n_probable_classes)]
else:
raise ValueError('"what_type" must be either "taxonomy" or "mineralogy"')
# Color code dominant classes / labels
probability_values = np.transpose(np.array([y_pred[:, most_probable_classes[i]]
for i in range(n_probable_classes)]))
for i in range(n_probable_classes):
# Plot the coverage map using latitude and longitude from HB
img = plt.imread("".join((project_dir, '/Asteroid_images/', background_image))) # Background image
fig, ax = plt.subplots(figsize=(30, 25))
ax.imshow(img, cmap="gray", extent=[0, 360, -90, 90], alpha=1)
# Draw the predictions map
im = ax.scatter(indices[:, 0], indices[:, 1], s=10, c=probability_values[:, i] * 100,
marker=',', cmap="viridis_r", vmin=0, vmax=100, alpha=0.4)
plt.xlim([0, 360])
plt.ylim([-90, 90])
ax.set_xticks(np.arange(0, 361, 10))
plt.xticks(rotation=90)
ax.set_yticks(np.arange(-90, 91, 10))
plt.grid()
plt.xlabel('longitude [deg]') # \N{DEGREE SIGN}
plt.ylabel('latitude [deg]')
plt.title(titles[i])
divider = make_axes_locatable(ax)
# cax = divider.append_axes("right", size="5%", pad=0.1)
# cbar = plt.colorbar(im, cax=cax)
cax = divider.append_axes("bottom", size="10%", pad=1)
cbar = plt.colorbar(im, cax=cax, orientation="horizontal")
cbar.set_ticks(np.arange(0, 101, 10))
cbar.set_ticklabels(np.arange(0, 101, 10))
plt.draw()
fig_name = "".join((name, '_', labels[i].replace(' ', '_'), '.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close('all')
def plot_confusion_matrix(y_true: np.ndarray, y_pred: np.ndarray, suf: str = '') -> None:
print('Confusion matrix')
# upravit podle https://www.frontiersin.org/files/Articles/816268/fspas-09-816268-HTML-r1/image_m/fspas-09-816268-g002.jpg
array = confusion_matrix(y_true.argmax(axis=1), y_pred.argmax(axis=1))
'''
sum_cols = np.sum(array, axis=0, keepdims=True) # bude dole
array = np.concatenate((array, sum_cols), axis=0)
sum_rows = np.sum(array, axis=1, keepdims=True) # bude nahore
array = np.concatenate((array, sum_rows), axis=1)
'''
sum_rows = np.sum(array, axis=1, keepdims=True) # bude nahore
# tady nejak upravit dim
dim = np.unique(y_true.argmax(axis=1)) # true values in the confusion matrix # list(range(y_true.shape[1]))
df_cm = pd.DataFrame(array / sum_rows, dim, dim)
labels = np.array(list(classes.keys()))[dim]
# labels = np.concatenate((labels, np.array(['\Sigma'])))
fig = plt.figure("Confusion Matrix", figsize=(18, 15))
sns.set(font_scale=1.4) # label size
ax = sns.heatmap(df_cm, annot=array, fmt="d", annot_kws={"size": 14}, cmap="Blues", cbar=False)
ax.xaxis.tick_top() # x axis on top
ax.xaxis.set_label_position('top')
ax.tick_params(length=0)
ax.tick_params(axis='both')
# Plot diagonal line
ax.plot([0, np.max(dim) + 1], [0, np.max(dim) + 1], 'k--')
ax.set_xticklabels(labels)
ax.set_yticklabels(labels)
plt.xlabel("Predicted taxonomy")
plt.ylabel("Actual taxonomy")
"""
nx, ny = np.shape(array)
for ix in range(nx):
for iy in range(ny):
ax.text(iy + 0.5, ix + 0.5, int(array[ix, iy]), ha="center", va="center", color="r")
"""
plt.draw()
fig_name = "".join(('confusion_matrix', suf, '.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_corr_matrix(labels: np.ndarray, hp_values: np.ndarray, suf: str) -> None:
# pandas corr is NaN tolerant whereas numpy corr is not
hp_values = pd.DataFrame(np.transpose(hp_values))
corr_matrix = hp_values.corr().to_numpy()
fig, ax = plt.subplots(figsize=(15, 15))
im = ax.matshow(corr_matrix, vmin=-1, vmax=1)
plt.xticks(np.arange(0, len(labels), 1.0), rotation=90)
plt.yticks(np.arange(0, len(labels), 1.0))
if plt.rcParams['text.usetex']:
labels = np.char.replace(labels, '_', '\_')
ax.set_xticklabels(labels)
ax.set_yticklabels(labels)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)
plt.colorbar(im, cax=cax)
for ix in range(len(labels)):
for iy in range(len(labels)):
ax.text(iy, ix, "".join('{:.2f}'.format(corr_matrix[ix, iy])), ha="center", va="center", color="r")
plt.draw()
plt.tight_layout()
fig_name = "".join(('correlation_matrix', suf, '.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_range_histogram(start: np.ndarray, stop: np.ndarray, step: np.ndarray) -> None:
print('Range histograms')
x_lambda = np.arange(0, 3001, 1)
y_lambda = np.zeros(len(x_lambda))
for i in range(len(start)):
tmp = np.zeros(y_lambda.shape)
tmp[np.where((x_lambda >= start[i]) & (x_lambda <= stop[i]))] = 1
y_lambda += tmp
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 8))
ax1.plot(x_lambda, y_lambda)
ax2.hist(step, bins='auto')
ax1.set_xlabel('Wavelength [nm]')
ax1.set_ylabel('Counts')
ax1.tick_params(axis='both')
ax1.set_ylim(bottom=0)
ax1.set_xlim(left=np.min(x_lambda), right=np.max(x_lambda))
ax1.set_title('Histogram of ranges')
ax2.set_xlabel('Wavelength [nm]')
ax2.set_xlabel('Wavelength [nm]')
ax2.set_ylabel('Counts')
ax2.tick_params(axis='both')
ax2.set_ylim(bottom=0)
ax2.set_xlim(left=0, right=20)
ax2.set_title('Histogram of resolution')
plt.draw()
fig_name = 'hist_range.png'
fig.savefig("".join((outdir, '/', fig_name)), format='png', bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_numbers_histogram(fa: np.ndarray, fs: np.ndarray, wo: np.ndarray) -> None:
print('Numbers histograms')
bins = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(18, 5))
ax1.hist(fa, bins=bins)
ax2.hist(fs, bins=bins)
ax3.hist(wo, bins=bins)
ax1.set_xlabel('Fa')
ax2.set_xlabel('Fs')
ax3.set_xlabel('Wo')
ax1.set_ylabel('Counts')
ax1.tick_params(axis='both')
ax2.tick_params(axis='both')
ax3.tick_params(axis='both')
ax1.set_xlim(left=0, right=1)
ax2.set_xlim(left=0, right=1)
ax3.set_xlim(left=0, right=1)
ax1.set_title('Histogram of Fa')
ax2.set_title('Histogram of Fs')
ax3.set_title('Histogram of Wo')
plt.draw()
fig_name = 'hist_numbers.png'
fig.savefig("".join((outdir, '/', fig_name)), format='png', bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_ast_type_hist(y_pred: np.ndarray) -> None:
print('Plot histograms of asteroids compositions')
fig_format = 'png'
nbins = 10
shift = 3 # Control ylim
predictions = y_pred * 100
filename = project_dir + '/Datasets/asteroid_spectra-denoised-norm.dat'
data = pd.read_csv(filename, sep='\t', header=None).to_numpy() # to read the file
types = data[:, 0]
inds_S = np.array(['S' in ast_type for ast_type in types])
inds_Q = np.array(['Q' in ast_type for ast_type in types])
inds_A = np.array(['A' in ast_type for ast_type in types])
inds_V = np.array(['V' in ast_type for ast_type in types])
inds = np.array([inds_S, inds_Q, inds_A, inds_V])
PCA = pd.read_csv(path_taxonomy + 'asteroid_pca-spectra-combined.dat', sep='\t', header=None).to_numpy()
color = ['blue', 'magenta', 'brown', 'black']
labels = ['S type', 'Q type', 'A type', 'V type']
# modal first (expect all four minerals are in the model)
n_min = 3
fig, ax = plt.subplots(1, n_min, figsize=(6 * (n_min), 5)) # !!!!!
labelx = ['Olivine fraction [vol\%]', 'Orthopyroxene fraction [vol\%]',
'Clinopyroxene fraction [vol\%]', 'Plagioclase fraction [vol\%]']
limy = 0
for j in range(n_min):
# if j > 1: # !!!!!
# continue
for i in range(len(inds)):
# for i in [0, 1, 3]: # !!!!! for i in range(len(inds)):
# if j == 0 and i == 3: # !!!!!
# continue
# if j == 1 and i == 1: # !!!!!
# continue
hist, bins = np.histogram(predictions[inds[i, :], j], bins=nbins, range=(0, 100))
ax[j].bar(bins[:-1] + (bins[1] - bins[0]) / 2, hist.astype(np.float32) / hist.sum() * 100,
width=(bins[1] - bins[0]), fill=False, edgecolor=color[i], label=labels[i], linewidth=2)
if np.max(hist.astype(np.float32) / hist.sum() * 100) > limy:
limy = np.max(hist.astype(np.float32) / hist.sum() * 100)
if j > 0:
ax[j].set_yticklabels([])
else:
ax[j].set_ylabel('Normalised counts [\%]')
ax[j].set_xlabel(labelx[j])
ax[j].legend(loc='upper left')
# must be done after the first loop to get limy
limy = np.min((100, np.round(limy))) + shift
for j in range(n_min):
# if j > 1: # !!!!!
# continue
ax[j].set_ylim(bottom=0, top=limy)
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.draw()
fig_name = "".join(('ast_type_hist_modal.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
# OL
n_ol = 2
fig, ax = plt.subplots(1, n_ol, figsize=(6 * n_ol, 5))
labelx = ['Fa', 'Fo']
limy = 0
for j in range(n_ol):
for i in range(len(inds)):
hist, bins = np.histogram(predictions[inds[i, :], n_min + j], bins=nbins, range=(0, 100))
ax[j].bar(bins[:-1] + (bins[1] - bins[0]) / 2, hist.astype(np.float32) / hist.sum() * 100,
width=(bins[1] - bins[0]), fill=False, edgecolor=color[i], label=labels[i], linewidth=2)
if np.max(hist.astype(np.float32) / hist.sum() * 100) > limy:
limy = np.max(hist.astype(np.float32) / hist.sum() * 100)
if j > 0:
ax[j].set_yticklabels([])
else:
ax[j].set_ylabel('Normalised counts [\%]')
ax[j].set_xlabel(labelx[j])
ax[j].legend(loc='upper left')
# must be done after the first loop to get limy
limy = np.min((100, np.round(limy))) + shift
for j in range(n_ol):
ax[j].set_ylim(bottom=0, top=limy)
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.draw()
fig_name = "".join(('ast_type_hist_ol.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
# OPX
n_opx = 2
fig, ax = plt.subplots(1, n_opx, figsize=(6 * n_opx, 5))
labelx = ['Fs', 'En']
limy = 0
for j in range(n_opx):
for i in range(len(inds)):
hist, bins = np.histogram(predictions[inds[i, :], n_min + n_ol + j], bins=nbins, range=(0, 100))
ax[j].bar(bins[:-1] + (bins[1] - bins[0]) / 2, hist.astype(np.float32) / hist.sum() * 100,
width=(bins[1] - bins[0]), fill=False, edgecolor=color[i], label=labels[i], linewidth=2)
if np.max(hist.astype(np.float32) / hist.sum() * 100) > limy:
limy = np.max(hist.astype(np.float32) / hist.sum() * 100)
if j > 0:
ax[j].set_yticklabels([])
else:
ax[j].set_ylabel('Normalised counts [\%]')
ax[j].set_xlabel(labelx[j])
ax[j].legend(loc='upper left')
# must be done after the first loop to get limy
limy = np.min((100, np.round(limy))) + shift
for j in range(n_opx):
ax[j].set_ylim(bottom=0, top=limy)
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.draw()
fig_name = "".join(('ast_type_hist_opx.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
# CPX
n_cpx = 3
fig, ax = plt.subplots(1, n_cpx, figsize=(6 * n_cpx, 5))
labelx = ['Fs', 'En', 'Wo']
limy = 0
for j in range(n_cpx):
for i in range(len(inds)):
hist, bins = np.histogram(predictions[inds[i, :], n_min + n_ol + n_opx + j], bins=nbins, range=(0, 100))
ax[j].bar(bins[:-1] + (bins[1] - bins[0]) / 2, hist.astype(np.float32) / hist.sum() * 100,
width=(bins[1] - bins[0]), fill=False, edgecolor=color[i], label=labels[i], linewidth=2)
if np.max(hist.astype(np.float32) / hist.sum() * 100) > limy:
limy = np.max(hist.astype(np.float32) / hist.sum() * 100)
if j > 0:
ax[j].set_yticklabels([])
else:
ax[j].set_ylabel('Normalised counts [\%]')
ax[j].set_xlabel(labelx[j])
ax[j].legend(loc='upper left')
# must be done after the first loop to get limy
limy = np.min((100, np.round(limy))) + shift
for j in range(n_cpx):
ax[j].set_ylim(bottom=0, top=limy)
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.draw()
fig_name = "".join(('ast_type_hist_cpx.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
def plot_Tomas_mixtures() -> None:
x, spectra_msm, spectra_syn, C = resave_Tomas_OL_OPX_mixtures()
colours = ['k', 'r', 'b', 'g', 'c', 'm', 'y', 'k', 'r', 'b', 'g', 'c', 'm', 'y']
fig, ax = plt.subplots(1, 1, figsize=(6, 3.5))
for i in range(len(C)):
ax.plot(x, spectra_msm[:, i], colours[i], label=C[i])
ax.plot(x, spectra_syn[:, i], colours[i] + '--')
ax.set_ylabel('Reflectance')
ax.set_xlabel('$\lambda$ [nm]')
ax.set_ylim(bottom=0.2, top=0.8)
ax.tick_params(axis='both')
ax.set_xlim(left=400, right=2500)
# ax.legend(loc='upper right')
plt.draw()
plt.tight_layout()
fig_name = 'spectra_mixtures_Tomas.png'
fig.savefig("".join((outdir, '/', fig_name)), format='png', bbox_inches='tight', pad_inches=0.05)
plt.close()
def plot_OC_distance(y_pred: np.ndarray):
print('plot distance of OC predictions from the corresponding box')
fig_format = 'png'
# Indices in which Fa and Fs are
ind_Fa, ind_Fs = num_minerals, num_minerals + subtypes[0]
filename = project_dir + '/Datasets/combined-denoised-norm-clean-meta.dat'
data = pd.read_csv(filename, sep='\t', header=None).to_numpy() # to read the file
types = data[:, 7]
types = np.reshape(types, (len(types), 1))
# to get the test types
filename_train_data = 'combined-denoised-norm-clean.dat'
x_train, y_train = load_data(filename_train_data)
x_train, y_train, x_val, y_val, x_test, y_test = split_data_proportional(
np.concatenate((x_train, types), axis=1), y_train)
types = x_test[:, -1].astype(np.str)
Fa_pred, Fs_pred = y_pred[:, ind_Fa] * 100, y_pred[:, ind_Fs] * 100
inds_H = np.array([('H' in OC_type) and ('HH' not in OC_type) if len(OC_type) == 2 else False for OC_type in types])
inds_L = np.array([('L' in OC_type) and ('LL' not in OC_type) if len(OC_type) == 2 else False for OC_type in types])
inds_LL = np.array(['LL' in OC_type if len(OC_type) == 3 else False for OC_type in types])
# https://www.researchgate.net/figure/Mineral-compositional-data-for-the-Morokweng-meteoriteDiagram-shows-ferrosilite-Fs_fig3_7093505
rect_H = np.array([[16.2, 16.2 + 3.8], [14.5, 14.5 + 3.5]])
rect_L = np.array([[22, 22 + 4], [19, 19 + 3]])
rect_LL = np.array([[26, 26 + 6], [22, 22 + 4.2]])
p_H = np.array([Fa_pred[inds_H], Fs_pred[inds_H]])
p_L = np.array([Fa_pred[inds_L], Fs_pred[inds_L]])
p_LL = np.array([Fa_pred[inds_LL], Fs_pred[inds_LL]])
distance_H = np.array([distance(rect_H, p_H), distance(rect_L, p_H), distance(rect_LL, p_H)])
distance_L = np.array([distance(rect_H, p_L), distance(rect_L, p_L), distance(rect_LL, p_L)])
distance_LL = np.array([distance(rect_H, p_LL), distance(rect_L, p_LL), distance(rect_LL, p_LL)])
s = 30 # scaling parameter (marker size)
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.scatter(distance_H, np.tile(np.array([[0, 1, 2]]).transpose(), (1, np.shape(distance_H)[1])), color='r',
label='H', s=s)
ax.scatter(distance_L, np.tile(np.array([[0, 1, 2]]).transpose(), (1, np.shape(distance_L)[1])), color='g',
label='L', s=s)
ax.scatter(distance_LL, np.tile(np.array([[0, 1, 2]]).transpose(), (1, np.shape(distance_LL)[1])), color='b',
label='LL', s=s)
ax.set_xlabel('Distance')
ax.set_ylabel('Type')
ax.set_yticks([0, 1, 2])
ax.set_yticklabels(['H', 'L', 'LL'])
ax.legend(loc='center right')
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.draw()
fig_name = "".join(('OC_box_dist.', fig_format))
fig.savefig("".join((outdir, '/', fig_name)), format=fig_format, bbox_inches='tight', pad_inches=0.05)
plt.close(fig)
|
[
"matplotlib.pyplot.title",
"numpy.sum",
"seaborn.heatmap",
"modules.NN_losses_metrics_activations.my_rmse",
"pandas.read_csv",
"modules.NN_losses_metrics_activations.my_quantile",
"modules.NN_losses_metrics_activations.my_sam",
"numpy.ones",
"numpy.shape",
"numpy.argsort",
"matplotlib.pyplot.figure",
"numpy.histogram",
"numpy.arange",
"numpy.convolve",
"matplotlib.pyplot.tight_layout",
"numpy.round",
"numpy.unique",
"pandas.DataFrame",
"modules.BAR_BC_method.filter_data_mask",
"matplotlib.patches.Rectangle",
"matplotlib.pyplot.close",
"numpy.transpose",
"modules.BAR_BC_method.calc_composition",
"matplotlib.pyplot.colorbar",
"matplotlib.pyplot.draw",
"numpy.max",
"matplotlib.pyplot.rc",
"numpy.loadtxt",
"numpy.reshape",
"matplotlib.pyplot.xticks",
"matplotlib.pyplot.subplots",
"seaborn.set",
"numpy.core.defchararray.add",
"h5py.File",
"matplotlib.pyplot.ylim",
"matplotlib.pyplot.text",
"numpy.char.replace",
"matplotlib.use",
"numpy.min",
"matplotlib.pyplot.ylabel",
"modules.collect_data.resave_Tomas_OL_OPX_mixtures",
"matplotlib.pyplot.grid",
"numpy.concatenate",
"mpl_toolkits.axes_grid1.make_axes_locatable",
"modules.BAR_BC_method.calc_BAR_BC",
"matplotlib.pyplot.xlim",
"numpy.logical_and",
"modules.NN_config_taxonomy.classes.keys",
"modules.NN_losses_metrics_activations.my_r2",
"modules.NN_evaluate.evaluate_test_data",
"numpy.zeros",
"numpy.unravel_index",
"modules.NN_evaluate.evaluate",
"numpy.where",
"numpy.array",
"numpy.logical_or",
"matplotlib.pyplot.xlabel",
"numpy.sqrt"
] |
[((766, 782), 'matplotlib.use', 'mpl.use', (['"""TkAgg"""'], {}), "('TkAgg')\n", (773, 782), True, 'import matplotlib as mpl\n'), ((858, 888), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'size': 'TEXT_SIZE'}), "('font', size=TEXT_SIZE)\n", (864, 888), True, 'import matplotlib.pyplot as plt\n'), ((920, 957), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'titlesize': 'BIGGER_SIZE'}), "('axes', titlesize=BIGGER_SIZE)\n", (926, 957), True, 'import matplotlib.pyplot as plt\n'), ((988, 1025), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'labelsize': 'MEDIUM_SIZE'}), "('axes', labelsize=MEDIUM_SIZE)\n", (994, 1025), True, 'import matplotlib.pyplot as plt\n'), ((1060, 1097), 'matplotlib.pyplot.rc', 'plt.rc', (['"""xtick"""'], {'labelsize': 'SMALL_SIZE'}), "('xtick', labelsize=SMALL_SIZE)\n", (1066, 1097), True, 'import matplotlib.pyplot as plt\n'), ((1129, 1166), 'matplotlib.pyplot.rc', 'plt.rc', (['"""ytick"""'], {'labelsize': 'SMALL_SIZE'}), "('ytick', labelsize=SMALL_SIZE)\n", (1135, 1166), True, 'import matplotlib.pyplot as plt\n'), ((1198, 1235), 'matplotlib.pyplot.rc', 'plt.rc', (['"""legend"""'], {'fontsize': 'SMALL_SIZE'}), "('legend', fontsize=SMALL_SIZE)\n", (1204, 1235), True, 'import matplotlib.pyplot as plt\n'), ((1255, 1294), 'matplotlib.pyplot.rc', 'plt.rc', (['"""figure"""'], {'titlesize': 'BIGGER_SIZE'}), "('figure', titlesize=BIGGER_SIZE)\n", (1261, 1294), True, 'import matplotlib.pyplot as plt\n'), ((1365, 1392), 'matplotlib.pyplot.rc', 'plt.rc', (['"""text"""'], {'usetex': '(True)'}), "('text', usetex=True)\n", (1371, 1392), True, 'import matplotlib.pyplot as plt\n'), ((1457, 1524), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {}), "('font', **{'family': 'sans-serif', 'sans-serif': ['Arial']})\n", (1463, 1524), True, 'import matplotlib.pyplot as plt\n'), ((2497, 2517), 'numpy.arange', 'np.arange', (['(-150)', '(151)'], {}), '(-150, 151)\n', (2506, 2517), True, 'import numpy as np\n'), ((8944, 8964), 'numpy.arange', 'np.arange', (['(-150)', '(151)'], {}), '(-150, 151)\n', (8953, 8964), True, 'import numpy as np\n'), ((9105, 9125), 'numpy.arange', 'np.arange', (['(0)', '(101)', '(5)'], {}), '(0, 101, 5)\n', (9114, 9125), True, 'import numpy as np\n'), ((10216, 10250), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(8, 6)'}), '(1, 1, figsize=(8, 6))\n', (10228, 10250), True, 'import matplotlib.pyplot as plt\n'), ((10918, 10928), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (10926, 10928), True, 'import matplotlib.pyplot as plt\n'), ((10933, 10951), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (10949, 10951), True, 'import matplotlib.pyplot as plt\n'), ((11129, 11143), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (11138, 11143), True, 'import matplotlib.pyplot as plt\n'), ((11469, 11520), 'numpy.array', 'np.array', (["[('S' in ast_type) for ast_type in types]"], {}), "([('S' in ast_type) for ast_type in types])\n", (11477, 11520), True, 'import numpy as np\n'), ((11532, 11583), 'numpy.array', 'np.array', (["[('Q' in ast_type) for ast_type in types]"], {}), "([('Q' in ast_type) for ast_type in types])\n", (11540, 11583), True, 'import numpy as np\n'), ((11595, 11646), 'numpy.array', 'np.array', (["[('A' in ast_type) for ast_type in types]"], {}), "([('A' in ast_type) for ast_type in types])\n", (11603, 11646), True, 'import numpy as np\n'), ((11658, 11709), 'numpy.array', 'np.array', (["[('V' in ast_type) for ast_type in types]"], {}), "([('V' in ast_type) for ast_type in types])\n", (11666, 11709), True, 'import numpy as np\n'), ((11860, 11902), 'numpy.unique', 'np.unique', (['types[inds]'], {'return_counts': '(True)'}), '(types[inds], return_counts=True)\n', (11869, 11902), True, 'import numpy as np\n'), ((12148, 12190), 'numpy.core.defchararray.add', 'np.core.defchararray.add', (['"""$"""', 'types[inds]'], {}), "('$', types[inds])\n", (12172, 12190), True, 'import numpy as np\n'), ((12204, 12241), 'numpy.core.defchararray.add', 'np.core.defchararray.add', (['labels', '"""$"""'], {}), "(labels, '$')\n", (12228, 12241), True, 'import numpy as np\n'), ((12257, 12291), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(8, 6)'}), '(1, 1, figsize=(8, 6))\n', (12269, 12291), True, 'import matplotlib.pyplot as plt\n'), ((12954, 13046), 'matplotlib.pyplot.text', 'plt.text', ([], {'x': '(0.1)', 'y': '(-0.2)', 's': '"""Space weathering"""', 'rotation': '(-51)', 'c': '"""r"""', 'fontsize': 'SMALL_SIZE'}), "(x=0.1, y=-0.2, s='Space weathering', rotation=-51, c='r', fontsize\n =SMALL_SIZE)\n", (12962, 13046), True, 'import matplotlib.pyplot as plt\n'), ((13057, 13080), 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax'], {}), '(ax)\n', (13076, 13080), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), ((13151, 13183), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['sp'], {'ax': 'ax', 'cax': 'cax'}), '(sp, ax=ax, cax=cax)\n', (13163, 13183), True, 'import matplotlib.pyplot as plt\n'), ((13314, 13324), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (13322, 13324), True, 'import matplotlib.pyplot as plt\n'), ((13487, 13501), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (13496, 13501), True, 'import matplotlib.pyplot as plt\n'), ((13709, 13743), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(5, 5)'}), '(1, 1, figsize=(5, 5))\n', (13721, 13743), True, 'import matplotlib.pyplot as plt\n'), ((13971, 14064), 'matplotlib.patches.Rectangle', 'patches.Rectangle', (['(16.2, 14.5)', '(3.8)', '(3.5)'], {'linewidth': '(1.5)', 'edgecolor': '"""r"""', 'facecolor': '"""none"""'}), "((16.2, 14.5), 3.8, 3.5, linewidth=1.5, edgecolor='r',\n facecolor='none')\n", (13988, 14064), True, 'import matplotlib.patches as patches\n'), ((14074, 14167), 'matplotlib.patches.Rectangle', 'patches.Rectangle', (['(22.0, 19.0)', '(4.0)', '(3.0)'], {'linewidth': '(1.5)', 'edgecolor': '"""g"""', 'facecolor': '"""none"""'}), "((22.0, 19.0), 4.0, 3.0, linewidth=1.5, edgecolor='g',\n facecolor='none')\n", (14091, 14167), True, 'import matplotlib.patches as patches\n'), ((14178, 14271), 'matplotlib.patches.Rectangle', 'patches.Rectangle', (['(26.0, 22.0)', '(6.0)', '(4.2)'], {'linewidth': '(1.5)', 'edgecolor': '"""b"""', 'facecolor': '"""none"""'}), "((26.0, 22.0), 6.0, 4.2, linewidth=1.5, edgecolor='b',\n facecolor='none')\n", (14195, 14271), True, 'import matplotlib.patches as patches\n'), ((16062, 16072), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (16070, 16072), True, 'import matplotlib.pyplot as plt\n'), ((16077, 16095), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (16093, 16095), True, 'import matplotlib.pyplot as plt\n'), ((16258, 16272), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (16267, 16272), True, 'import matplotlib.pyplot as plt\n'), ((16366, 16389), 'numpy.arange', 'np.arange', (['(450)', '(2451)', '(5)'], {}), '(450, 2451, 5)\n', (16375, 16389), True, 'import numpy as np\n'), ((16708, 16755), 'modules.NN_evaluate.evaluate_test_data', 'evaluate_test_data', (['model_names', 'x_test', 'y_true'], {}), '(model_names, x_test, y_true)\n', (16726, 16755), False, 'from modules.NN_evaluate import evaluate_test_data\n'), ((17460, 17489), 'numpy.sum', 'np.sum', (['(binary * base)'], {'axis': '(1)'}), '(binary * base, axis=1)\n', (17466, 17489), True, 'import numpy as np\n'), ((17503, 17548), 'numpy.logical_or', 'np.logical_or', (['(mixtures == 12)', '(mixtures == 14)'], {}), '(mixtures == 12, mixtures == 14)\n', (17516, 17548), True, 'import numpy as np\n'), ((17623, 17651), 'numpy.logical_and', 'np.logical_and', (['mask1', 'mask2'], {}), '(mask1, mask2)\n', (17637, 17651), True, 'import numpy as np\n'), ((17771, 17816), 'numpy.array', 'np.array', (["[('HED' in type) for type in types]"], {}), "([('HED' in type) for type in types])\n", (17779, 17816), True, 'import numpy as np\n'), ((17890, 17914), 'modules.BAR_BC_method.calc_BAR_BC', 'calc_BAR_BC', (['wvl', 'x_true'], {}), '(wvl, x_true)\n', (17901, 17914), False, 'from modules.BAR_BC_method import calc_BAR_BC, calc_composition, filter_data_mask\n'), ((18253, 18302), 'modules.BAR_BC_method.calc_composition', 'calc_composition', (['BAR', 'BIC', 'BIIC', 'types'], {'method': '(0)'}), '(BAR, BIC, BIIC, types, method=0)\n', (18269, 18302), False, 'from modules.BAR_BC_method import calc_BAR_BC, calc_composition, filter_data_mask\n'), ((18321, 18370), 'modules.BAR_BC_method.calc_composition', 'calc_composition', (['BAR', 'BIC', 'BIIC', 'types'], {'method': '(1)'}), '(BAR, BIC, BIIC, types, method=1)\n', (18337, 18370), False, 'from modules.BAR_BC_method import calc_BAR_BC, calc_composition, filter_data_mask\n'), ((18405, 18442), 'modules.BAR_BC_method.filter_data_mask', 'filter_data_mask', (['OL_fraction', 'Fs', 'Wo'], {}), '(OL_fraction, Fs, Wo)\n', (18421, 18442), False, 'from modules.BAR_BC_method import calc_BAR_BC, calc_composition, filter_data_mask\n'), ((18718, 18738), 'numpy.arange', 'np.arange', (['(-150)', '(151)'], {}), '(-150, 151)\n', (18727, 18738), True, 'import numpy as np\n'), ((19127, 19173), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(4.4 * 2 + 1.5, 6)'}), '(1, 2, figsize=(4.4 * 2 + 1.5, 6))\n', (19139, 19173), True, 'import matplotlib.pyplot as plt\n'), ((20389, 20399), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (20397, 20399), True, 'import matplotlib.pyplot as plt\n'), ((20404, 20422), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (20420, 20422), True, 'import matplotlib.pyplot as plt\n'), ((20607, 20621), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (20616, 20621), True, 'import matplotlib.pyplot as plt\n'), ((20770, 20793), 'numpy.arange', 'np.arange', (['(450)', '(2451)', '(5)'], {}), '(450, 2451, 5)\n', (20779, 20793), True, 'import numpy as np\n'), ((20939, 20976), 'numpy.loadtxt', 'np.loadtxt', (['data_file'], {'delimiter': '"""\t"""'}), "(data_file, delimiter='\\t')\n", (20949, 20976), True, 'import numpy as np\n'), ((20992, 21028), 'modules.NN_evaluate.evaluate', 'evaluate', (['model_names', 'filename_data'], {}), '(model_names, filename_data)\n', (21000, 21028), False, 'from modules.NN_evaluate import evaluate\n'), ((21259, 21310), 'numpy.array', 'np.array', (["[('S' in ast_type) for ast_type in types]"], {}), "([('S' in ast_type) for ast_type in types])\n", (21267, 21310), True, 'import numpy as np\n'), ((21322, 21373), 'numpy.array', 'np.array', (["[('Q' in ast_type) for ast_type in types]"], {}), "([('Q' in ast_type) for ast_type in types])\n", (21330, 21373), True, 'import numpy as np\n'), ((21385, 21436), 'numpy.array', 'np.array', (["[('A' in ast_type) for ast_type in types]"], {}), "([('A' in ast_type) for ast_type in types])\n", (21393, 21436), True, 'import numpy as np\n'), ((21448, 21499), 'numpy.array', 'np.array', (["[('V' in ast_type) for ast_type in types]"], {}), "([('V' in ast_type) for ast_type in types])\n", (21456, 21499), True, 'import numpy as np\n'), ((21764, 21800), 'numpy.core.defchararray.add', 'np.core.defchararray.add', (['"""$"""', 'types'], {}), "('$', types)\n", (21788, 21800), True, 'import numpy as np\n'), ((21814, 21851), 'numpy.core.defchararray.add', 'np.core.defchararray.add', (['labels', '"""$"""'], {}), "(labels, '$')\n", (21838, 21851), True, 'import numpy as np\n'), ((21874, 21898), 'modules.BAR_BC_method.calc_BAR_BC', 'calc_BAR_BC', (['wvl', 'x_data'], {}), '(wvl, x_data)\n', (21885, 21898), False, 'from modules.BAR_BC_method import calc_BAR_BC, calc_composition, filter_data_mask\n'), ((22211, 22260), 'modules.BAR_BC_method.calc_composition', 'calc_composition', (['BAR', 'BIC', 'BIIC', 'types'], {'method': '(0)'}), '(BAR, BIC, BIIC, types, method=0)\n', (22227, 22260), False, 'from modules.BAR_BC_method import calc_BAR_BC, calc_composition, filter_data_mask\n'), ((22279, 22328), 'modules.BAR_BC_method.calc_composition', 'calc_composition', (['BAR', 'BIC', 'BIIC', 'types'], {'method': '(1)'}), '(BAR, BIC, BIIC, types, method=1)\n', (22295, 22328), False, 'from modules.BAR_BC_method import calc_BAR_BC, calc_composition, filter_data_mask\n'), ((22363, 22400), 'modules.BAR_BC_method.filter_data_mask', 'filter_data_mask', (['OL_fraction', 'Fs', 'Wo'], {}), '(OL_fraction, Fs, Wo)\n', (22379, 22400), False, 'from modules.BAR_BC_method import calc_BAR_BC, calc_composition, filter_data_mask\n'), ((22617, 22653), 'numpy.unique', 'np.unique', (['types'], {'return_counts': '(True)'}), '(types, return_counts=True)\n', (22626, 22653), True, 'import numpy as np\n'), ((22817, 22851), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(8, 6)'}), '(1, 1, figsize=(8, 6))\n', (22829, 22851), True, 'import matplotlib.pyplot as plt\n'), ((23511, 23597), 'matplotlib.pyplot.text', 'plt.text', ([], {'x': '(0.16)', 'y': '(-0.2)', 's': '"""Space weathering"""', 'rotation': '(-59.5)', 'c': '"""r"""', 'fontsize': '(16)'}), "(x=0.16, y=-0.2, s='Space weathering', rotation=-59.5, c='r',\n fontsize=16)\n", (23519, 23597), True, 'import matplotlib.pyplot as plt\n'), ((23609, 23632), 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax'], {}), '(ax)\n', (23628, 23632), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), ((23703, 23735), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['sp'], {'ax': 'ax', 'cax': 'cax'}), '(sp, ax=ax, cax=cax)\n', (23715, 23735), True, 'import matplotlib.pyplot as plt\n'), ((23866, 23876), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (23874, 23876), True, 'import matplotlib.pyplot as plt\n'), ((24046, 24060), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (24055, 24060), True, 'import matplotlib.pyplot as plt\n'), ((24543, 24594), 'numpy.array', 'np.array', (["[('S' in ast_type) for ast_type in types]"], {}), "([('S' in ast_type) for ast_type in types])\n", (24551, 24594), True, 'import numpy as np\n'), ((24606, 24657), 'numpy.array', 'np.array', (["[('Q' in ast_type) for ast_type in types]"], {}), "([('Q' in ast_type) for ast_type in types])\n", (24614, 24657), True, 'import numpy as np\n'), ((24669, 24720), 'numpy.array', 'np.array', (["[('A' in ast_type) for ast_type in types]"], {}), "([('A' in ast_type) for ast_type in types])\n", (24677, 24720), True, 'import numpy as np\n'), ((24732, 24783), 'numpy.array', 'np.array', (["[('V' in ast_type) for ast_type in types]"], {}), "([('V' in ast_type) for ast_type in types])\n", (24740, 24783), True, 'import numpy as np\n'), ((25120, 25166), 'matplotlib.pyplot.subplots', 'plt.subplots', (['m', 'n'], {'figsize': '(4.7 * n, 4.7 * m)'}), '(m, n, figsize=(4.7 * n, 4.7 * m))\n', (25132, 25166), True, 'import matplotlib.pyplot as plt\n'), ((25177, 25199), 'numpy.reshape', 'np.reshape', (['ax', '(m, n)'], {}), '(ax, (m, n))\n', (25187, 25199), True, 'import numpy as np\n'), ((26262, 26272), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (26270, 26272), True, 'import matplotlib.pyplot as plt\n'), ((26277, 26295), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (26293, 26295), True, 'import matplotlib.pyplot as plt\n'), ((26461, 26472), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (26470, 26472), True, 'import matplotlib.pyplot as plt\n'), ((26665, 26689), 'numpy.ones', 'np.ones', (['(kernel_width,)'], {}), '((kernel_width,))\n', (26672, 26689), True, 'import numpy as np\n'), ((26709, 26728), 'numpy.sum', 'np.sum', (['conv_kernel'], {}), '(conv_kernel)\n', (26715, 26728), True, 'import numpy as np\n'), ((26740, 26787), 'matplotlib.pyplot.figure', 'plt.figure', (['"""Loss and accuracy"""'], {'figsize': '(8, 6)'}), "('Loss and accuracy', figsize=(8, 6))\n", (26750, 26787), True, 'import matplotlib.pyplot as plt\n'), ((29077, 29087), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (29085, 29087), True, 'import matplotlib.pyplot as plt\n'), ((29446, 29460), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (29455, 29460), True, 'import matplotlib.pyplot as plt\n'), ((30840, 30880), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(4.5 * 2, 6)'}), '(1, 2, figsize=(4.5 * 2, 6))\n', (30852, 30880), True, 'import matplotlib.pyplot as plt\n'), ((33528, 33538), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (33536, 33538), True, 'import matplotlib.pyplot as plt\n'), ((33543, 33561), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (33559, 33561), True, 'import matplotlib.pyplot as plt\n'), ((33724, 33738), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (33733, 33738), True, 'import matplotlib.pyplot as plt\n'), ((37583, 37599), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (37592, 37599), True, 'import matplotlib.pyplot as plt\n'), ((38198, 38234), 'numpy.sum', 'np.sum', (['array'], {'axis': '(1)', 'keepdims': '(True)'}), '(array, axis=1, keepdims=True)\n', (38204, 38234), True, 'import numpy as np\n'), ((38406, 38446), 'pandas.DataFrame', 'pd.DataFrame', (['(array / sum_rows)', 'dim', 'dim'], {}), '(array / sum_rows, dim, dim)\n', (38418, 38446), True, 'import pandas as pd\n'), ((38571, 38619), 'matplotlib.pyplot.figure', 'plt.figure', (['"""Confusion Matrix"""'], {'figsize': '(18, 15)'}), "('Confusion Matrix', figsize=(18, 15))\n", (38581, 38619), True, 'import matplotlib.pyplot as plt\n'), ((38624, 38647), 'seaborn.set', 'sns.set', ([], {'font_scale': '(1.4)'}), '(font_scale=1.4)\n', (38631, 38647), True, 'import seaborn as sns\n'), ((38671, 38766), 'seaborn.heatmap', 'sns.heatmap', (['df_cm'], {'annot': 'array', 'fmt': '"""d"""', 'annot_kws': "{'size': 14}", 'cmap': '"""Blues"""', 'cbar': '(False)'}), "(df_cm, annot=array, fmt='d', annot_kws={'size': 14}, cmap=\n 'Blues', cbar=False)\n", (38682, 38766), True, 'import seaborn as sns\n'), ((39061, 39093), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Predicted taxonomy"""'], {}), "('Predicted taxonomy')\n", (39071, 39093), True, 'import matplotlib.pyplot as plt\n'), ((39098, 39127), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Actual taxonomy"""'], {}), "('Actual taxonomy')\n", (39108, 39127), True, 'import matplotlib.pyplot as plt\n'), ((39330, 39340), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (39338, 39340), True, 'import matplotlib.pyplot as plt\n'), ((39520, 39534), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (39529, 39534), True, 'import matplotlib.pyplot as plt\n'), ((39795, 39825), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(15, 15)'}), '(figsize=(15, 15))\n', (39807, 39825), True, 'import matplotlib.pyplot as plt\n'), ((40150, 40173), 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax'], {}), '(ax)\n', (40169, 40173), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), ((40237, 40262), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['im'], {'cax': 'cax'}), '(im, cax=cax)\n', (40249, 40262), True, 'import matplotlib.pyplot as plt\n'), ((40453, 40463), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (40461, 40463), True, 'import matplotlib.pyplot as plt\n'), ((40468, 40486), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (40484, 40486), True, 'import matplotlib.pyplot as plt\n'), ((40668, 40682), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (40677, 40682), True, 'import matplotlib.pyplot as plt\n'), ((40819, 40840), 'numpy.arange', 'np.arange', (['(0)', '(3001)', '(1)'], {}), '(0, 3001, 1)\n', (40828, 40840), True, 'import numpy as np\n'), ((41073, 41108), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(20, 8)'}), '(1, 2, figsize=(20, 8))\n', (41085, 41108), True, 'import matplotlib.pyplot as plt\n'), ((41659, 41669), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (41667, 41669), True, 'import matplotlib.pyplot as plt\n'), ((41809, 41823), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (41818, 41823), True, 'import matplotlib.pyplot as plt\n'), ((42037, 42072), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(18, 5)'}), '(1, 3, figsize=(18, 5))\n', (42049, 42072), True, 'import matplotlib.pyplot as plt\n'), ((42583, 42593), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (42591, 42593), True, 'import matplotlib.pyplot as plt\n'), ((42735, 42749), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (42744, 42749), True, 'import matplotlib.pyplot as plt\n'), ((43162, 43213), 'numpy.array', 'np.array', (["[('S' in ast_type) for ast_type in types]"], {}), "([('S' in ast_type) for ast_type in types])\n", (43170, 43213), True, 'import numpy as np\n'), ((43225, 43276), 'numpy.array', 'np.array', (["[('Q' in ast_type) for ast_type in types]"], {}), "([('Q' in ast_type) for ast_type in types])\n", (43233, 43276), True, 'import numpy as np\n'), ((43288, 43339), 'numpy.array', 'np.array', (["[('A' in ast_type) for ast_type in types]"], {}), "([('A' in ast_type) for ast_type in types])\n", (43296, 43339), True, 'import numpy as np\n'), ((43351, 43402), 'numpy.array', 'np.array', (["[('V' in ast_type) for ast_type in types]"], {}), "([('V' in ast_type) for ast_type in types])\n", (43359, 43402), True, 'import numpy as np\n'), ((43412, 43454), 'numpy.array', 'np.array', (['[inds_S, inds_Q, inds_A, inds_V]'], {}), '([inds_S, inds_Q, inds_A, inds_V])\n', (43420, 43454), True, 'import numpy as np\n'), ((43761, 43807), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', 'n_min'], {'figsize': '(6 * n_min, 5)'}), '(1, n_min, figsize=(6 * n_min, 5))\n', (43773, 43807), True, 'import matplotlib.pyplot as plt\n'), ((45292, 45302), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (45300, 45302), True, 'import matplotlib.pyplot as plt\n'), ((45476, 45490), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (45485, 45490), True, 'import matplotlib.pyplot as plt\n'), ((45528, 45572), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', 'n_ol'], {'figsize': '(6 * n_ol, 5)'}), '(1, n_ol, figsize=(6 * n_ol, 5))\n', (45540, 45572), True, 'import matplotlib.pyplot as plt\n'), ((46594, 46604), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (46602, 46604), True, 'import matplotlib.pyplot as plt\n'), ((46775, 46789), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (46784, 46789), True, 'import matplotlib.pyplot as plt\n'), ((46829, 46875), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', 'n_opx'], {'figsize': '(6 * n_opx, 5)'}), '(1, n_opx, figsize=(6 * n_opx, 5))\n', (46841, 46875), True, 'import matplotlib.pyplot as plt\n'), ((47906, 47916), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (47914, 47916), True, 'import matplotlib.pyplot as plt\n'), ((48088, 48102), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (48097, 48102), True, 'import matplotlib.pyplot as plt\n'), ((48142, 48188), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', 'n_cpx'], {'figsize': '(6 * n_cpx, 5)'}), '(1, n_cpx, figsize=(6 * n_cpx, 5))\n', (48154, 48188), True, 'import matplotlib.pyplot as plt\n'), ((49233, 49243), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (49241, 49243), True, 'import matplotlib.pyplot as plt\n'), ((49415, 49429), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (49424, 49429), True, 'import matplotlib.pyplot as plt\n'), ((49504, 49534), 'modules.collect_data.resave_Tomas_OL_OPX_mixtures', 'resave_Tomas_OL_OPX_mixtures', ([], {}), '()\n', (49532, 49534), False, 'from modules.collect_data import resave_Tomas_OL_OPX_mixtures\n'), ((49635, 49671), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(6, 3.5)'}), '(1, 1, figsize=(6, 3.5))\n', (49647, 49671), True, 'import matplotlib.pyplot as plt\n'), ((50036, 50046), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (50044, 50046), True, 'import matplotlib.pyplot as plt\n'), ((50051, 50069), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (50067, 50069), True, 'import matplotlib.pyplot as plt\n'), ((50221, 50232), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (50230, 50232), True, 'import matplotlib.pyplot as plt\n'), ((51596, 51646), 'numpy.array', 'np.array', (['[[16.2, 16.2 + 3.8], [14.5, 14.5 + 3.5]]'], {}), '([[16.2, 16.2 + 3.8], [14.5, 14.5 + 3.5]])\n', (51604, 51646), True, 'import numpy as np\n'), ((51660, 51698), 'numpy.array', 'np.array', (['[[22, 22 + 4], [19, 19 + 3]]'], {}), '([[22, 22 + 4], [19, 19 + 3]])\n', (51668, 51698), True, 'import numpy as np\n'), ((51713, 51753), 'numpy.array', 'np.array', (['[[26, 26 + 6], [22, 22 + 4.2]]'], {}), '([[26, 26 + 6], [22, 22 + 4.2]])\n', (51721, 51753), True, 'import numpy as np\n'), ((51765, 51809), 'numpy.array', 'np.array', (['[Fa_pred[inds_H], Fs_pred[inds_H]]'], {}), '([Fa_pred[inds_H], Fs_pred[inds_H]])\n', (51773, 51809), True, 'import numpy as np\n'), ((51820, 51864), 'numpy.array', 'np.array', (['[Fa_pred[inds_L], Fs_pred[inds_L]]'], {}), '([Fa_pred[inds_L], Fs_pred[inds_L]])\n', (51828, 51864), True, 'import numpy as np\n'), ((51876, 51922), 'numpy.array', 'np.array', (['[Fa_pred[inds_LL], Fs_pred[inds_LL]]'], {}), '([Fa_pred[inds_LL], Fs_pred[inds_LL]])\n', (51884, 51922), True, 'import numpy as np\n'), ((52280, 52306), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 6)'}), '(figsize=(8, 6))\n', (52290, 52306), True, 'import matplotlib.pyplot as plt\n'), ((53012, 53022), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (53020, 53022), True, 'import matplotlib.pyplot as plt\n'), ((53188, 53202), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (53197, 53202), True, 'import matplotlib.pyplot as plt\n'), ((3137, 3199), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', 'num_minerals'], {'figsize': '(4.5 * num_minerals, 6)'}), '(1, num_minerals, figsize=(4.5 * num_minerals, 6))\n', (3149, 3199), True, 'import matplotlib.pyplot as plt\n'), ((5223, 5233), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (5231, 5233), True, 'import matplotlib.pyplot as plt\n'), ((5242, 5260), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5258, 5260), True, 'import matplotlib.pyplot as plt\n'), ((5454, 5468), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (5463, 5468), True, 'import matplotlib.pyplot as plt\n'), ((5718, 5784), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', 'subtypes[i]'], {'figsize': '(4.4 * subtypes[i] + 1.5, 6)'}), '(1, subtypes[i], figsize=(4.4 * subtypes[i] + 1.5, 6))\n', (5730, 5784), True, 'import matplotlib.pyplot as plt\n'), ((8542, 8552), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (8550, 8552), True, 'import matplotlib.pyplot as plt\n'), ((8561, 8579), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (8577, 8579), True, 'import matplotlib.pyplot as plt\n'), ((8786, 8800), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (8795, 8800), True, 'import matplotlib.pyplot as plt\n'), ((10789, 10812), 'numpy.arange', 'np.arange', (['(0)', '(100.1)', '(10)'], {}), '(0, 100.1, 10)\n', (10798, 10812), True, 'import numpy as np\n'), ((10832, 10855), 'numpy.arange', 'np.arange', (['(0)', '(100.1)', '(10)'], {}), '(0, 100.1, 10)\n', (10841, 10855), True, 'import numpy as np\n'), ((12765, 12786), 'numpy.array', 'np.array', (['[0.5, -0.5]'], {}), '([0.5, -0.5])\n', (12773, 12786), True, 'import numpy as np\n'), ((12788, 12808), 'numpy.array', 'np.array', (['[0.0, 0.8]'], {}), '([0.0, 0.8])\n', (12796, 12808), True, 'import numpy as np\n'), ((14389, 14421), 'numpy.arange', 'np.arange', (['limx1', '(limx2 + 0.1)', '(5)'], {}), '(limx1, limx2 + 0.1, 5)\n', (14398, 14421), True, 'import numpy as np\n'), ((14441, 14473), 'numpy.arange', 'np.arange', (['limy1', '(limy2 + 0.1)', '(5)'], {}), '(limy1, limy2 + 0.1, 5)\n', (14450, 14473), True, 'import numpy as np\n'), ((17191, 17229), 'numpy.concatenate', 'np.concatenate', (['(x_tmp, types)'], {'axis': '(1)'}), '((x_tmp, types), axis=1)\n', (17205, 17229), True, 'import numpy as np\n'), ((17408, 17430), 'numpy.array', 'np.array', (['[8, 4, 2, 1]'], {}), '([8, 4, 2, 1])\n', (17416, 17430), True, 'import numpy as np\n'), ((17960, 17992), 'numpy.logical_and', 'np.logical_and', (['(BAR > 0)', '(BIC > 0)'], {}), '(BAR > 0, BIC > 0)\n', (17974, 17992), True, 'import numpy as np\n'), ((21944, 21976), 'numpy.logical_and', 'np.logical_and', (['(BAR > 0)', '(BIC > 0)'], {}), '(BAR > 0, BIC > 0)\n', (21958, 21976), True, 'import numpy as np\n'), ((23322, 23343), 'numpy.array', 'np.array', (['[0.5, -0.5]'], {}), '([0.5, -0.5])\n', (23330, 23343), True, 'import numpy as np\n'), ((23345, 23365), 'numpy.array', 'np.array', (['[0.0, 0.8]'], {}), '([0.0, 0.8])\n', (23353, 23365), True, 'import numpy as np\n'), ((24113, 24136), 'numpy.arange', 'np.arange', (['(450)', '(2451)', '(5)'], {}), '(450, 2451, 5)\n', (24122, 24136), True, 'import numpy as np\n'), ((25061, 25098), 'numpy.loadtxt', 'np.loadtxt', (['data_file'], {'delimiter': '"""\t"""'}), "(data_file, delimiter='\\t')\n", (25071, 25098), True, 'import numpy as np\n'), ((25691, 25718), 'numpy.unravel_index', 'np.unravel_index', (['j', '(m, n)'], {}), '(j, (m, n))\n', (25707, 25718), True, 'import numpy as np\n'), ((26988, 27037), 'numpy.convolve', 'np.convolve', (["history['loss']", 'conv_kernel', '"""same"""'], {}), "(history['loss'], conv_kernel, 'same')\n", (26999, 27037), True, 'import numpy as np\n'), ((27380, 27413), 'numpy.char.replace', 'np.char.replace', (['labely', '"""_"""', '""" """'], {}), "(labely, '_', ' ')\n", (27395, 27413), True, 'import numpy as np\n'), ((30124, 30164), 'numpy.concatenate', 'np.concatenate', (['(x_train, types)'], {'axis': '(1)'}), '((x_train, types), axis=1)\n', (30138, 30164), True, 'import numpy as np\n'), ((31178, 31271), 'matplotlib.patches.Rectangle', 'patches.Rectangle', (['(16.2, 14.5)', '(3.8)', '(3.5)'], {'linewidth': '(1.5)', 'edgecolor': '"""r"""', 'facecolor': '"""none"""'}), "((16.2, 14.5), 3.8, 3.5, linewidth=1.5, edgecolor='r',\n facecolor='none')\n", (31195, 31271), True, 'import matplotlib.patches as patches\n'), ((31285, 31378), 'matplotlib.patches.Rectangle', 'patches.Rectangle', (['(22.0, 19.0)', '(4.0)', '(3.0)'], {'linewidth': '(1.5)', 'edgecolor': '"""g"""', 'facecolor': '"""none"""'}), "((22.0, 19.0), 4.0, 3.0, linewidth=1.5, edgecolor='g',\n facecolor='none')\n", (31302, 31378), True, 'import matplotlib.patches as patches\n'), ((31393, 31486), 'matplotlib.patches.Rectangle', 'patches.Rectangle', (['(26.0, 22.0)', '(6.0)', '(4.2)'], {'linewidth': '(1.5)', 'edgecolor': '"""b"""', 'facecolor': '"""none"""'}), "((26.0, 22.0), 6.0, 4.2, linewidth=1.5, edgecolor='b',\n facecolor='none')\n", (31410, 31486), True, 'import matplotlib.patches as patches\n'), ((34348, 34376), 'h5py.File', 'h5py.File', (['indices_file', '"""r"""'], {}), "(indices_file, 'r')\n", (34357, 34376), False, 'import h5py\n'), ((34515, 34538), 'numpy.array', 'np.array', (["f['d'][:, :2]"], {}), "(f['d'][:, :2])\n", (34523, 34538), True, 'import numpy as np\n'), ((36347, 36377), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(30, 25)'}), '(figsize=(30, 25))\n', (36359, 36377), True, 'import matplotlib.pyplot as plt\n'), ((36671, 36689), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0, 360]'], {}), '([0, 360])\n', (36679, 36689), True, 'import matplotlib.pyplot as plt\n'), ((36698, 36717), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-90, 90]'], {}), '([-90, 90])\n', (36706, 36717), True, 'import matplotlib.pyplot as plt\n'), ((36771, 36794), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(90)'}), '(rotation=90)\n', (36781, 36794), True, 'import matplotlib.pyplot as plt\n'), ((36849, 36859), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (36857, 36859), True, 'import matplotlib.pyplot as plt\n'), ((36868, 36897), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""longitude [deg]"""'], {}), "('longitude [deg]')\n", (36878, 36897), True, 'import matplotlib.pyplot as plt\n'), ((36925, 36953), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""latitude [deg]"""'], {}), "('latitude [deg]')\n", (36935, 36953), True, 'import matplotlib.pyplot as plt\n'), ((36962, 36982), 'matplotlib.pyplot.title', 'plt.title', (['titles[i]'], {}), '(titles[i])\n', (36971, 36982), True, 'import matplotlib.pyplot as plt\n'), ((37002, 37025), 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax'], {}), '(ax)\n', (37021, 37025), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), ((37212, 37263), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['im'], {'cax': 'cax', 'orientation': '"""horizontal"""'}), "(im, cax=cax, orientation='horizontal')\n", (37224, 37263), True, 'import matplotlib.pyplot as plt\n'), ((37370, 37380), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (37378, 37380), True, 'import matplotlib.pyplot as plt\n'), ((39709, 39732), 'numpy.transpose', 'np.transpose', (['hp_values'], {}), '(hp_values)\n', (39721, 39732), True, 'import numpy as np\n'), ((40038, 40073), 'numpy.char.replace', 'np.char.replace', (['labels', '"""_"""', '"""\\\\_"""'], {}), "(labels, '_', '\\\\_')\n", (40053, 40073), True, 'import numpy as np\n'), ((40927, 40951), 'numpy.zeros', 'np.zeros', (['y_lambda.shape'], {}), '(y_lambda.shape)\n', (40935, 40951), True, 'import numpy as np\n'), ((50940, 50980), 'numpy.concatenate', 'np.concatenate', (['(x_train, types)'], {'axis': '(1)'}), '((x_train, types), axis=1)\n', (50954, 50980), True, 'import numpy as np\n'), ((6683, 6709), 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax[j]'], {}), '(ax[j])\n', (6702, 6709), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), ((6796, 6831), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['sc'], {'ax': 'ax[j]', 'cax': 'cax'}), '(sc, ax=ax[j], cax=cax)\n', (6808, 6831), True, 'import matplotlib.pyplot as plt\n'), ((8989, 9005), 'numpy.shape', 'np.shape', (['x_line'], {}), '(x_line)\n', (8997, 9005), True, 'import numpy as np\n'), ((9036, 9052), 'numpy.shape', 'np.shape', (['x_line'], {}), '(x_line)\n', (9044, 9052), True, 'import numpy as np\n'), ((9673, 9692), 'numpy.sum', 'np.sum', (['use_inds[i]'], {}), '(use_inds[i])\n', (9679, 9692), True, 'import numpy as np\n'), ((10259, 10277), 'numpy.shape', 'np.shape', (['quantile'], {}), '(quantile)\n', (10267, 10277), True, 'import numpy as np\n'), ((11341, 11385), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '"""\t"""', 'header': 'None'}), "(filename, sep='\\t', header=None)\n", (11352, 11385), True, 'import pandas as pd\n'), ((16875, 16919), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '"""\t"""', 'header': 'None'}), "(filename, sep='\\t', header=None)\n", (16886, 16919), True, 'import pandas as pd\n'), ((20197, 20220), 'numpy.arange', 'np.arange', (['(0)', '(100.1)', '(25)'], {}), '(0, 100.1, 25)\n', (20206, 20220), True, 'import numpy as np\n'), ((20247, 20270), 'numpy.arange', 'np.arange', (['(0)', '(100.1)', '(25)'], {}), '(0, 100.1, 25)\n', (20256, 20270), True, 'import numpy as np\n'), ((21131, 21175), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '"""\t"""', 'header': 'None'}), "(filename, sep='\\t', header=None)\n", (21142, 21175), True, 'import pandas as pd\n'), ((24415, 24459), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '"""\t"""', 'header': 'None'}), "(filename, sep='\\t', header=None)\n", (24426, 24459), True, 'import pandas as pd\n'), ((25745, 25763), 'numpy.transpose', 'np.transpose', (['data'], {}), '(data)\n', (25757, 25763), True, 'import numpy as np\n'), ((25966, 25992), 'numpy.arange', 'np.arange', (['(0.5)', '(2.501)', '(0.5)'], {}), '(0.5, 2.501, 0.5)\n', (25975, 25992), True, 'import numpy as np\n'), ((27249, 27314), 'numpy.convolve', 'np.convolve', (['history[model.metrics_names[1]]', 'conv_kernel', '"""same"""'], {}), "(history[model.metrics_names[1]], conv_kernel, 'same')\n", (27260, 27314), True, 'import numpy as np\n'), ((27703, 27756), 'numpy.convolve', 'np.convolve', (["history['val_loss']", 'conv_kernel', '"""same"""'], {}), "(history['val_loss'], conv_kernel, 'same')\n", (27714, 27756), True, 'import numpy as np\n'), ((29748, 29792), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '"""\t"""', 'header': 'None'}), "(filename, sep='\\t', header=None)\n", (29759, 29792), True, 'import pandas as pd\n'), ((32670, 32702), 'numpy.arange', 'np.arange', (['limx1', '(limx2 + 0.1)', '(5)'], {}), '(limx1, limx2 + 0.1, 5)\n', (32679, 32702), True, 'import numpy as np\n'), ((32729, 32761), 'numpy.arange', 'np.arange', (['limy1', '(limy2 + 0.1)', '(5)'], {}), '(limy1, limy2 + 0.1, 5)\n', (32738, 32761), True, 'import numpy as np\n'), ((34589, 34611), 'numpy.sum', 'np.sum', (['y_pred'], {'axis': '(0)'}), '(y_pred, axis=0)\n', (34595, 34611), True, 'import numpy as np\n'), ((35299, 35321), 'numpy.array', 'np.array', (['[0, 3, 5, 9]'], {}), '([0, 3, 5, 9])\n', (35307, 35321), True, 'import numpy as np\n'), ((36740, 36761), 'numpy.arange', 'np.arange', (['(0)', '(361)', '(10)'], {}), '(0, 361, 10)\n', (36749, 36761), True, 'import numpy as np\n'), ((36817, 36839), 'numpy.arange', 'np.arange', (['(-90)', '(91)', '(10)'], {}), '(-90, 91, 10)\n', (36826, 36839), True, 'import numpy as np\n'), ((37287, 37308), 'numpy.arange', 'np.arange', (['(0)', '(101)', '(10)'], {}), '(0, 101, 10)\n', (37296, 37308), True, 'import numpy as np\n'), ((37338, 37359), 'numpy.arange', 'np.arange', (['(0)', '(101)', '(10)'], {}), '(0, 101, 10)\n', (37347, 37359), True, 'import numpy as np\n'), ((40964, 41020), 'numpy.where', 'np.where', (['((x_lambda >= start[i]) & (x_lambda <= stop[i]))'], {}), '((x_lambda >= start[i]) & (x_lambda <= stop[i]))\n', (40972, 41020), True, 'import numpy as np\n'), ((41325, 41341), 'numpy.min', 'np.min', (['x_lambda'], {}), '(x_lambda)\n', (41331, 41341), True, 'import numpy as np\n'), ((41349, 41365), 'numpy.max', 'np.max', (['x_lambda'], {}), '(x_lambda)\n', (41355, 41365), True, 'import numpy as np\n'), ((43049, 43093), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '"""\t"""', 'header': 'None'}), "(filename, sep='\\t', header=None)\n", (43060, 43093), True, 'import pandas as pd\n'), ((43466, 43557), 'pandas.read_csv', 'pd.read_csv', (["(path_taxonomy + 'asteroid_pca-spectra-combined.dat')"], {'sep': '"""\t"""', 'header': 'None'}), "(path_taxonomy + 'asteroid_pca-spectra-combined.dat', sep='\\t',\n header=None)\n", (43477, 43557), True, 'import pandas as pd\n'), ((44355, 44423), 'numpy.histogram', 'np.histogram', (['predictions[inds[i, :], j]'], {'bins': 'nbins', 'range': '(0, 100)'}), '(predictions[inds[i, :], j], bins=nbins, range=(0, 100))\n', (44367, 44423), True, 'import numpy as np\n'), ((45701, 45777), 'numpy.histogram', 'np.histogram', (['predictions[inds[i, :], n_min + j]'], {'bins': 'nbins', 'range': '(0, 100)'}), '(predictions[inds[i, :], n_min + j], bins=nbins, range=(0, 100))\n', (45713, 45777), True, 'import numpy as np\n'), ((47005, 47093), 'numpy.histogram', 'np.histogram', (['predictions[inds[i, :], n_min + n_ol + j]'], {'bins': 'nbins', 'range': '(0, 100)'}), '(predictions[inds[i, :], n_min + n_ol + j], bins=nbins, range=(\n 0, 100))\n', (47017, 47093), True, 'import numpy as np\n'), ((48324, 48419), 'numpy.histogram', 'np.histogram', (['predictions[inds[i, :], n_min + n_ol + n_opx + j]'], {'bins': 'nbins', 'range': '(0, 100)'}), '(predictions[inds[i, :], n_min + n_ol + n_opx + j], bins=nbins,\n range=(0, 100))\n', (48336, 48419), True, 'import numpy as np\n'), ((50564, 50608), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '"""\t"""', 'header': 'None'}), "(filename, sep='\\t', header=None)\n", (50575, 50608), True, 'import pandas as pd\n'), ((2859, 2878), 'modules.NN_losses_metrics_activations.my_r2', 'my_r2', (['num_minerals'], {}), '(num_minerals)\n', (2864, 2878), False, 'from modules.NN_losses_metrics_activations import my_rmse, my_r2, my_sam, my_quantile\n'), ((4033, 4056), 'numpy.arange', 'np.arange', (['(0)', '(100.1)', '(25)'], {}), '(0, 100.1, 25)\n', (4042, 4056), True, 'import numpy as np\n'), ((4087, 4110), 'numpy.arange', 'np.arange', (['(0)', '(100.1)', '(25)'], {}), '(0, 100.1, 25)\n', (4096, 4110), True, 'import numpy as np\n'), ((7281, 7304), 'numpy.arange', 'np.arange', (['(0)', '(100.1)', '(25)'], {}), '(0, 100.1, 25)\n', (7290, 7304), True, 'import numpy as np\n'), ((7335, 7358), 'numpy.arange', 'np.arange', (['(0)', '(100.1)', '(25)'], {}), '(0, 100.1, 25)\n', (7344, 7358), True, 'import numpy as np\n'), ((9141, 9178), 'modules.NN_losses_metrics_activations.my_quantile', 'my_quantile', (['num_minerals', 'percentile'], {}), '(num_minerals, percentile)\n', (9152, 9178), False, 'from modules.NN_losses_metrics_activations import my_rmse, my_r2, my_sam, my_quantile\n'), ((25221, 25254), 'numpy.sum', 'np.sum', (['(y_data[:, :3] > 0)'], {'axis': '(1)'}), '(y_data[:, :3] > 0, axis=1)\n', (25227, 25254), True, 'import numpy as np\n'), ((27129, 27169), 'numpy.sqrt', 'np.sqrt', (['history[model.metrics_names[1]]'], {}), '(history[model.metrics_names[1]])\n', (27136, 27169), True, 'import numpy as np\n'), ((27968, 28042), 'numpy.convolve', 'np.convolve', (["history['val_' + model.metrics_names[1]]", 'conv_kernel', '"""same"""'], {}), "(history['val_' + model.metrics_names[1]], conv_kernel, 'same')\n", (27979, 28042), True, 'import numpy as np\n'), ((34718, 34748), 'numpy.argsort', 'np.argsort', (['sum_of_predictions'], {}), '(sum_of_predictions)\n', (34728, 34748), True, 'import numpy as np\n'), ((38475, 38489), 'modules.NN_config_taxonomy.classes.keys', 'classes.keys', ([], {}), '()\n', (38487, 38489), False, 'from modules.NN_config_taxonomy import classes, classes2\n'), ((38946, 38957), 'numpy.max', 'np.max', (['dim'], {}), '(dim)\n', (38952, 38957), True, 'import numpy as np\n'), ((38968, 38979), 'numpy.max', 'np.max', (['dim'], {}), '(dim)\n', (38974, 38979), True, 'import numpy as np\n'), ((45066, 45080), 'numpy.round', 'np.round', (['limy'], {}), '(limy)\n', (45074, 45080), True, 'import numpy as np\n'), ((46420, 46434), 'numpy.round', 'np.round', (['limy'], {}), '(limy)\n', (46428, 46434), True, 'import numpy as np\n'), ((47731, 47745), 'numpy.round', 'np.round', (['limy'], {}), '(limy)\n', (47739, 47745), True, 'import numpy as np\n'), ((49058, 49072), 'numpy.round', 'np.round', (['limy'], {}), '(limy)\n', (49066, 49072), True, 'import numpy as np\n'), ((2760, 2781), 'modules.NN_losses_metrics_activations.my_rmse', 'my_rmse', (['num_minerals'], {}), '(num_minerals)\n', (2767, 2781), False, 'from modules.NN_losses_metrics_activations import my_rmse, my_r2, my_sam, my_quantile\n'), ((27855, 27904), 'numpy.sqrt', 'np.sqrt', (["history['val_' + model.metrics_names[1]]"], {}), "(history['val_' + model.metrics_names[1]])\n", (27862, 27904), True, 'import numpy as np\n'), ((52373, 52394), 'numpy.array', 'np.array', (['[[0, 1, 2]]'], {}), '([[0, 1, 2]])\n', (52381, 52394), True, 'import numpy as np\n'), ((52412, 52432), 'numpy.shape', 'np.shape', (['distance_H'], {}), '(distance_H)\n', (52420, 52432), True, 'import numpy as np\n'), ((52516, 52537), 'numpy.array', 'np.array', (['[[0, 1, 2]]'], {}), '([[0, 1, 2]])\n', (52524, 52537), True, 'import numpy as np\n'), ((52555, 52575), 'numpy.shape', 'np.shape', (['distance_L'], {}), '(distance_L)\n', (52563, 52575), True, 'import numpy as np\n'), ((52660, 52681), 'numpy.array', 'np.array', (['[[0, 1, 2]]'], {}), '([[0, 1, 2]])\n', (52668, 52681), True, 'import numpy as np\n'), ((52699, 52720), 'numpy.shape', 'np.shape', (['distance_LL'], {}), '(distance_LL)\n', (52707, 52720), True, 'import numpy as np\n'), ((2913, 2933), 'modules.NN_losses_metrics_activations.my_sam', 'my_sam', (['num_minerals'], {}), '(num_minerals)\n', (2919, 2933), False, 'from modules.NN_losses_metrics_activations import my_rmse, my_r2, my_sam, my_quantile\n'), ((9723, 9744), 'numpy.where', 'np.where', (['use_inds[i]'], {}), '(use_inds[i])\n', (9731, 9744), True, 'import numpy as np\n'), ((10026, 10044), 'numpy.where', 'np.where', (['use_inds'], {}), '(use_inds)\n', (10034, 10044), True, 'import numpy as np\n'), ((9937, 9959), 'numpy.where', 'np.where', (['used_indices'], {}), '(used_indices)\n', (9945, 9959), True, 'import numpy as np\n'), ((9994, 10016), 'numpy.where', 'np.where', (['used_indices'], {}), '(used_indices)\n', (10002, 10016), True, 'import numpy as np\n')]
|
import numpy as np
import tensorflow as tf
tf.reset_default_graph()
sess = tf.InteractiveSession()
def exp():
s_len = 3
N, T = 2, 2
l = np.arange(1, N*T*s_len+1).reshape((N, T, s_len) )
x = tf.convert_to_tensor(l, dtype=tf.float32)
print("x= {}".format(x.eval() ) )
# l = np.arange(1, N*T+1).reshape((N, T) )
# o = tf.convert_to_tensor(l, dtype=tf.int32)
# print("o= {}".format(o.eval() ) )
# l = np.array([1] * N*T).reshape((N, T) )
# l = np.array([1] * N*T).reshape((N, T) )
l = np.random.randint(s_len, size=(N, T) )
a = tf.convert_to_tensor(l, dtype=tf.int32)
print("a= {}".format(a.eval() ) )
print("a[1:]= {}".format(a[1:].eval() ) )
print("shape(x)= {}".format(tf.shape(x).eval() ) )
indices = tf.range(0, tf.shape(x)[0]*tf.shape(x)[1] ) * tf.shape(x)[2] + tf.reshape(a, [-1] )
print("indices= {}".format(indices.eval() ) )
ro = tf.reshape(tf.gather(tf.reshape(x, [-1] ), indices), (N, T) )
print("ro= {}".format(ro.eval() ) )
def exp2():
x = tf.constant([[[1.], [1.]], [[2.], [2.]]])
print("x.shape= {}, x= \n{}".format(x.shape, x.eval() ) )
y = tf.reduce_mean(x, axis=0)
print("y.shape= {}, y= \n{}".format(y.shape, y.eval() ) )
z = tf.reduce_mean(y, axis=0)
print("z.shape= {}, z= \n{}".format(z.shape, z.eval() ) )
if __name__ == "__main__":
# exp()
exp2()
|
[
"tensorflow.reset_default_graph",
"tensorflow.convert_to_tensor",
"tensorflow.reshape",
"tensorflow.reduce_mean",
"tensorflow.constant",
"tensorflow.shape",
"numpy.random.randint",
"numpy.arange",
"tensorflow.InteractiveSession"
] |
[((44, 68), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (66, 68), True, 'import tensorflow as tf\n'), ((76, 99), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {}), '()\n', (97, 99), True, 'import tensorflow as tf\n'), ((200, 241), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['l'], {'dtype': 'tf.float32'}), '(l, dtype=tf.float32)\n', (220, 241), True, 'import tensorflow as tf\n'), ((511, 548), 'numpy.random.randint', 'np.random.randint', (['s_len'], {'size': '(N, T)'}), '(s_len, size=(N, T))\n', (528, 548), True, 'import numpy as np\n'), ((556, 595), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['l'], {'dtype': 'tf.int32'}), '(l, dtype=tf.int32)\n', (576, 595), True, 'import tensorflow as tf\n'), ((1002, 1047), 'tensorflow.constant', 'tf.constant', (['[[[1.0], [1.0]], [[2.0], [2.0]]]'], {}), '([[[1.0], [1.0]], [[2.0], [2.0]]])\n', (1013, 1047), True, 'import tensorflow as tf\n'), ((1113, 1138), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (1127, 1138), True, 'import tensorflow as tf\n'), ((1208, 1233), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['y'], {'axis': '(0)'}), '(y, axis=0)\n', (1222, 1233), True, 'import tensorflow as tf\n'), ((807, 826), 'tensorflow.reshape', 'tf.reshape', (['a', '[-1]'], {}), '(a, [-1])\n', (817, 826), True, 'import tensorflow as tf\n'), ((144, 175), 'numpy.arange', 'np.arange', (['(1)', '(N * T * s_len + 1)'], {}), '(1, N * T * s_len + 1)\n', (153, 175), True, 'import numpy as np\n'), ((904, 923), 'tensorflow.reshape', 'tf.reshape', (['x', '[-1]'], {}), '(x, [-1])\n', (914, 923), True, 'import tensorflow as tf\n'), ((790, 801), 'tensorflow.shape', 'tf.shape', (['x'], {}), '(x)\n', (798, 801), True, 'import tensorflow as tf\n'), ((709, 720), 'tensorflow.shape', 'tf.shape', (['x'], {}), '(x)\n', (717, 720), True, 'import tensorflow as tf\n'), ((756, 767), 'tensorflow.shape', 'tf.shape', (['x'], {}), '(x)\n', (764, 767), True, 'import tensorflow as tf\n'), ((771, 782), 'tensorflow.shape', 'tf.shape', (['x'], {}), '(x)\n', (779, 782), True, 'import tensorflow as tf\n')]
|
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests of the block operators."""
import numpy as np
import tensorflow as tf
import block_base
import blocks_operator
class AddOneBlock(block_base.BlockBase):
def __init__(self, name=None):
super(AddOneBlock, self).__init__(name)
def _Apply(self, x):
return x + 1.0
class SquareBlock(block_base.BlockBase):
def __init__(self, name=None):
super(SquareBlock, self).__init__(name)
def _Apply(self, x):
return x * x
class BlocksOperatorTest(tf.test.TestCase):
def testComposition(self):
x_value = np.array([[1.0, 2.0, 3.0],
[-1.0, -2.0, -3.0]])
y_expected_value = np.array([[4.0, 9.0, 16.0],
[0.0, 1.0, 4.0]])
x = tf.placeholder(dtype=tf.float32, shape=[2, 3])
complex_block = blocks_operator.CompositionOperator(
[AddOneBlock(),
SquareBlock()])
y = complex_block(x)
with self.test_session():
y_value = y.eval(feed_dict={x: x_value})
self.assertAllClose(y_expected_value, y_value)
if __name__ == '__main__':
tf.test.main()
|
[
"tensorflow.test.main",
"tensorflow.placeholder",
"numpy.array"
] |
[((1812, 1826), 'tensorflow.test.main', 'tf.test.main', ([], {}), '()\n', (1824, 1826), True, 'import tensorflow as tf\n'), ((1272, 1319), 'numpy.array', 'np.array', (['[[1.0, 2.0, 3.0], [-1.0, -2.0, -3.0]]'], {}), '([[1.0, 2.0, 3.0], [-1.0, -2.0, -3.0]])\n', (1280, 1319), True, 'import numpy as np\n'), ((1369, 1414), 'numpy.array', 'np.array', (['[[4.0, 9.0, 16.0], [0.0, 1.0, 4.0]]'], {}), '([[4.0, 9.0, 16.0], [0.0, 1.0, 4.0]])\n', (1377, 1414), True, 'import numpy as np\n'), ((1460, 1506), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '[2, 3]'}), '(dtype=tf.float32, shape=[2, 3])\n', (1474, 1506), True, 'import tensorflow as tf\n')]
|
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation, rc, patches
import matplotlib.collections as clt
import environment
import scenarios
import trajectory_gen
# Set jshtml default mode for notebook use
rc('animation', html='jshtml')
def plot_one_step(env, x_ref, x_bar, x_opt, x_next=None, nominals=None):
''' Plots a single step of trajectory optimization in environment '''
fig, ax = environment.plot_environment(env, figsize=(16, 10))
ax.plot(x_ref[0, :], x_ref[1, :], '-o', alpha=0.8,
color='blue', markersize=3, label='reference trajectory')
if nominals is not None:
for nom in nominals:
ax.plot(nom[0, :], nom[1, :], 'r-', label='nominal trajectories')
else:
ax.plot(x_bar[0, :], x_bar[1, :], 'r-', label='nominal trajectory')
ax.plot(x_opt[0, :], x_opt[1, :], '-o',
color='lightseagreen', label='optimal trajectory')
if x_next is not None:
ax.plot(x_next[0], x_next[1], 'o', color='blueviolet', label='next x0')
handles, labels = plt.gca().get_legend_handles_labels()
labels, ids = np.unique(labels, return_index=True)
handles = [handles[i] for i in ids]
ax.legend(handles, labels, loc='best')
return fig, ax
def plot_all_steps(env, x_ref_full, history):
''' Plots optimization paths in environment at each step over time
course of the full MPC run
'''
fig, ax = environment.plot_environment(env, figsize=(16, 10))
ax.plot(x_ref_full[0, :], x_ref_full[1, :],
'-o', color='blue', label='reference trajectory', markersize=3)
for i in range(len(history.keys())):
xi = history[i]['x_opt']
ax.plot(xi[0, :], xi[1, :], color='lightseagreen',
linewidth=1, label='N-step optimal traj')
x0x = [history[i]['x0'][0] for i in history.keys()]
x0y = [history[i]['x0'][1] for i in history.keys()]
ax.plot(x0x, x0y, '-o', color='blueviolet', label='actual trajectory')
xf_bar = history[len(history.keys())-1]['x_bar']
# ax.plot(xf_bar[0, :], xf_bar[1, :], 'r', label='xf_bar')
ax.axis('equal')
handles, labels = plt.gca().get_legend_handles_labels()
labels, ids = np.unique(labels, return_index=True)
handles = [handles[i] for i in ids]
ax.legend(handles, labels, loc='best')
return fig, ax
def animate(env, ctrl_pts, bc_headings, v, dt, x_ref, history, rect=False):
fig, ax = environment.plot_environment(env, figsize=(16, 10))
xs = x_ref[0, :]
ys = x_ref[1, :]
x0s = [history[i]['x0'][0] for i in history.keys()]
y0s = [history[i]['x0'][1] for i in history.keys()]
# plot reference trajectory
ax.plot(xs, ys, '-o', alpha=0.8, markersize=3,
color='blue', label='reference trajectory')
# optimized trajectory
opt_line, = ax.plot([], [], '-o', lw=3, color='lightseagreen',
label='N-step optimal traj')
nom_line, = ax.plot([], [], color='red', label='nominal trajectory')
act_line, = ax.plot([], [], '-o', lw=3, markersize=6,
color='blueviolet', label='actual trajectory')
if rect:
ld, wd = 0.5, 0.2
a2 = np.arctan2(wd, ld)
diag = np.sqrt(ld**2 + wd**2)
heading = np.rad2deg(np.arctan2((y0s[1]-y0s[0]), (x0s[1]-x0s[0])))
car = patches.Rectangle(
(x0s[0]-ld, y0s[0]-wd), 2*ld, 2*wd, angle=-heading, fc='none', lw=1, ec='k')
def init():
opt_line.set_data([], [])
act_line.set_data([], [])
nom_line.set_data([], [])
if rect:
ax.add_patch(car)
return opt_line,
def step(i):
x = history[i]['x_opt'][0]
y = history[i]['x_opt'][1]
xbar = history[i]['x_bar'][0]
ybar = history[i]['x_bar'][1]
opt_line.set_data(x, y)
act_line.set_data(x0s[:i], y0s[:i])
nom_line.set_data(xbar, ybar)
if rect:
if (len(x) == 1):
heading = bc_headings[1]
else:
heading = np.arctan2((y[1]-y[0]), (x[1]-x[0]))
xoff = diag*np.cos(heading + a2)
yoff = diag*np.sin(heading + a2)
car.set_xy((x[0] - xoff, y[0] - yoff))
car.angle = np.rad2deg(heading)
return opt_line,
anim = animation.FuncAnimation(fig, step, init_func=init,
frames=len(history.keys()), interval=1000*dt*2, blit=True)
ax.axis('equal')
ax.legend()
plt.close()
return anim
if __name__ == "__main__":
# TEST ANIMATION FUNCTION
scene = scenarios.five_obstacle
ctrl_pts = scene['control_pts']
bch = scene['bc_headings']
env = environment.Environment(scene['obs_list'],
scene['start'], scene['goal'])
env.add_control_points(ctrl_pts)
v = 4
dt = 0.1
xs, ys, psi = trajectory_gen.sample_trajectory(ctrl_pts, bch, v, dt)
nf = len(xs)
x_ref = np.vstack((xs.reshape((1, nf)),
ys.reshape((1, nf)),
psi.reshape((1, nf)),
v*np.ones((1, nf)),
np.zeros((1, nf))))
anim = animate(env, ctrl_pts, bch, v, dt, x_ref, None)
plt.show()
|
[
"matplotlib.rc",
"matplotlib.pyplot.show",
"numpy.arctan2",
"matplotlib.patches.Rectangle",
"matplotlib.pyplot.close",
"trajectory_gen.sample_trajectory",
"numpy.zeros",
"numpy.ones",
"numpy.rad2deg",
"numpy.sin",
"environment.plot_environment",
"environment.Environment",
"numpy.cos",
"matplotlib.pyplot.gca",
"numpy.unique",
"numpy.sqrt"
] |
[((242, 272), 'matplotlib.rc', 'rc', (['"""animation"""'], {'html': '"""jshtml"""'}), "('animation', html='jshtml')\n", (244, 272), False, 'from matplotlib import animation, rc, patches\n'), ((436, 487), 'environment.plot_environment', 'environment.plot_environment', (['env'], {'figsize': '(16, 10)'}), '(env, figsize=(16, 10))\n', (464, 487), False, 'import environment\n'), ((1128, 1164), 'numpy.unique', 'np.unique', (['labels'], {'return_index': '(True)'}), '(labels, return_index=True)\n', (1137, 1164), True, 'import numpy as np\n'), ((1443, 1494), 'environment.plot_environment', 'environment.plot_environment', (['env'], {'figsize': '(16, 10)'}), '(env, figsize=(16, 10))\n', (1471, 1494), False, 'import environment\n'), ((2212, 2248), 'numpy.unique', 'np.unique', (['labels'], {'return_index': '(True)'}), '(labels, return_index=True)\n', (2221, 2248), True, 'import numpy as np\n'), ((2444, 2495), 'environment.plot_environment', 'environment.plot_environment', (['env'], {'figsize': '(16, 10)'}), '(env, figsize=(16, 10))\n', (2472, 2495), False, 'import environment\n'), ((4494, 4505), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4503, 4505), True, 'from matplotlib import pyplot as plt\n'), ((4696, 4769), 'environment.Environment', 'environment.Environment', (["scene['obs_list']", "scene['start']", "scene['goal']"], {}), "(scene['obs_list'], scene['start'], scene['goal'])\n", (4719, 4769), False, 'import environment\n'), ((4882, 4936), 'trajectory_gen.sample_trajectory', 'trajectory_gen.sample_trajectory', (['ctrl_pts', 'bch', 'v', 'dt'], {}), '(ctrl_pts, bch, v, dt)\n', (4914, 4936), False, 'import trajectory_gen\n'), ((5237, 5247), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5245, 5247), True, 'from matplotlib import pyplot as plt\n'), ((3192, 3210), 'numpy.arctan2', 'np.arctan2', (['wd', 'ld'], {}), '(wd, ld)\n', (3202, 3210), True, 'import numpy as np\n'), ((3226, 3252), 'numpy.sqrt', 'np.sqrt', (['(ld ** 2 + wd ** 2)'], {}), '(ld ** 2 + wd ** 2)\n', (3233, 3252), True, 'import numpy as np\n'), ((3338, 3445), 'matplotlib.patches.Rectangle', 'patches.Rectangle', (['(x0s[0] - ld, y0s[0] - wd)', '(2 * ld)', '(2 * wd)'], {'angle': '(-heading)', 'fc': '"""none"""', 'lw': '(1)', 'ec': '"""k"""'}), "((x0s[0] - ld, y0s[0] - wd), 2 * ld, 2 * wd, angle=-\n heading, fc='none', lw=1, ec='k')\n", (3355, 3445), False, 'from matplotlib import animation, rc, patches\n'), ((1072, 1081), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1079, 1081), True, 'from matplotlib import pyplot as plt\n'), ((2156, 2165), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2163, 2165), True, 'from matplotlib import pyplot as plt\n'), ((3278, 3322), 'numpy.arctan2', 'np.arctan2', (['(y0s[1] - y0s[0])', '(x0s[1] - x0s[0])'], {}), '(y0s[1] - y0s[0], x0s[1] - x0s[0])\n', (3288, 3322), True, 'import numpy as np\n'), ((4249, 4268), 'numpy.rad2deg', 'np.rad2deg', (['heading'], {}), '(heading)\n', (4259, 4268), True, 'import numpy as np\n'), ((5153, 5170), 'numpy.zeros', 'np.zeros', (['(1, nf)'], {}), '((1, nf))\n', (5161, 5170), True, 'import numpy as np\n'), ((4047, 4083), 'numpy.arctan2', 'np.arctan2', (['(y[1] - y[0])', '(x[1] - x[0])'], {}), '(y[1] - y[0], x[1] - x[0])\n', (4057, 4083), True, 'import numpy as np\n'), ((4108, 4128), 'numpy.cos', 'np.cos', (['(heading + a2)'], {}), '(heading + a2)\n', (4114, 4128), True, 'import numpy as np\n'), ((4153, 4173), 'numpy.sin', 'np.sin', (['(heading + a2)'], {}), '(heading + a2)\n', (4159, 4173), True, 'import numpy as np\n'), ((5112, 5128), 'numpy.ones', 'np.ones', (['(1, nf)'], {}), '((1, nf))\n', (5119, 5128), True, 'import numpy as np\n')]
|
# /* Copyright (C) 2016 Ion Torrent Systems, Inc. All Rights Reserved */
import pandas as pd
import datetime
import dateutil
import matplotlib.dates as dates
from matplotlib import pyplot as plt
import numpy as np
from time import strptime
import os
# put the date on the same line with the cpu data
os.system("awk 'NR%2{printf \"%s \",$0;next;}1' cpu_util.log > cpu_data.log")
df = pd.read_csv(
"cpu_data.log",
names=[
"dow",
"mon",
"day",
"time",
"tz",
"year",
"lcpu",
"us",
"lus",
"sy",
"lsy",
"ni",
"lni",
"id",
"lid",
"wa",
"lwa",
"hi",
"lhi",
"si",
"lsi",
"st",
"lst",
],
delim_whitespace=True,
header=None,
)
data = list(df.T.to_dict().values()) # export the data frame to a python dictionary
x_axis = np.zeros(len(data), dtype="datetime64[s]")
y_axis_idle = np.zeros(len(data))
y_axis_idle_smoothed = np.zeros(len(data))
y_axis_usr = np.zeros(len(data))
y_axis_usr_smoothed = np.zeros(len(data))
y_axis_nice = np.zeros(len(data))
y_axis_nice_smoothed = np.zeros(len(data))
y_axis_sys = np.zeros(len(data))
y_axis_sys_smoothed = np.zeros(len(data))
span = 5
span_gpu = 10
for key in range(0, len(data)):
month = str(strptime(data[key]["mon"], "%b").tm_mon).zfill(2)
datekey = (
str(data[key]["year"])
+ "-"
+ month
+ "-"
+ str(data[key]["day"])
+ "T"
+ data[key]["time"]
)
x_axis[key] = np.datetime64(datekey)
y_axis_idle[key] = int(data[key]["id"])
y_axis_usr[key] = int(data[key]["us"])
y_axis_nice[key] = int(data[key]["ni"])
y_axis_sys[key] = int(data[key]["sy"])
# now, read in the gpu data
df = pd.read_csv(
"gpu_util.log", names=["systemtime", "percent"], sep=",", parse_dates=[0]
) # or:, infer_datetime_format=True)
data2 = list(df.T.to_dict().values()) # export the data frame to a python dictionary
x_axis_gpu = np.zeros(len(data2), dtype="datetime64[s]")
y_axis_gpu = np.zeros(len(data))
y_axis_gpu_smoothed = np.zeros(len(data))
for key in range(0, len(data)):
x_axis_gpu[key] = np.datetime64((data2[key]["systemtime"]))
if key < len(data2):
y_axis_gpu[key] = int((data2[key]["percent"].replace(" ", "").replace("%", "")))
else:
y_axis_gpu[key] = 0
# print x_axis[0]
# print x_axis_gpu[0]
# print x_axis[len(x_axis)-1]
# print x_axis_gpu[len(x_axis_gpu)-1]
# smooth the data
if len(data) > span:
for key in range(span, len(data) - span):
sum_gpu = 0
for key2 in range(key - span, key + span):
sum_gpu += y_axis_gpu[key2]
y_axis_gpu_smoothed[key] = sum_gpu / (2 * span)
for key in range(span, len(data) - span):
sum_idle = sum_usr = sum_nice = sum_sys = 0
for key2 in range(key - span, key + span):
sum_idle += y_axis_idle[key2]
sum_usr += y_axis_usr[key2]
sum_nice += y_axis_nice[key2]
sum_sys += y_axis_sys[key2]
y_axis_idle_smoothed[key] = sum_idle / (2 * span)
y_axis_usr_smoothed[key] = sum_usr / (2 * span)
y_axis_nice_smoothed[key] = sum_nice / (2 * span)
y_axis_sys_smoothed[key] = sum_sys / (2 * span)
s = data
wl = 0.6
fsz = 8
fig = plt.figure(figsize=(15, 5))
ax = plt.subplot(111)
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.85, box.height])
for item in ax.get_xticklabels() + ax.get_yticklabels():
item.set_fontsize(fsz)
# xstart, xend = ax.get_xlim()
# xtickvals =
# ax.xaxis.set_ticks(xtickvals)
plt.plot(x_axis, y_axis_usr, "#be4b48", linewidth=wl, label="% usr")
plt.plot(x_axis, y_axis_nice, "#98b954", linewidth=wl, label="% nice")
plt.plot(x_axis, y_axis_sys, "#7d60a0", linewidth=wl, label="% sys")
plt.plot(x_axis, y_axis_idle, "#46aac5", linewidth=wl, label="% idle")
plt.plot(x_axis, y_axis_gpu, "#000000", linewidth=wl, label="% gpu")
plt.legend(loc="right", bbox_to_anchor=(1.25, 0.5), fontsize=fsz)
plt.savefig("oiaTimingRaw.png")
plt.clf()
wl = 1.0
ax = plt.subplot(111)
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.85, box.height])
for item in ax.get_xticklabels() + ax.get_yticklabels():
item.set_fontsize(fsz)
plt.plot(x_axis, y_axis_usr_smoothed, "#be4b48", linewidth=wl, label="% usr")
plt.plot(x_axis, y_axis_nice_smoothed, "#98b954", linewidth=wl, label="% nice")
plt.plot(x_axis, y_axis_sys_smoothed, "#7d60a0", linewidth=wl, label="% sys")
plt.plot(x_axis, y_axis_idle_smoothed, "#46aac5", linewidth=wl, label="% idle")
plt.plot(x_axis, y_axis_gpu_smoothed, "#000000", linewidth=0.4, label="% gpu")
plt.legend(loc="right", bbox_to_anchor=(1.25, 0.5), fontsize=fsz)
plt.savefig("oiaTiming.png")
os.remove("cpu_data.log")
|
[
"matplotlib.pyplot.subplot",
"os.remove",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.clf",
"pandas.read_csv",
"numpy.datetime64",
"matplotlib.pyplot.legend",
"os.system",
"matplotlib.pyplot.figure",
"time.strptime",
"matplotlib.pyplot.savefig"
] |
[((301, 378), 'os.system', 'os.system', (['"""awk \'NR%2{printf "%s ",$0;next;}1\' cpu_util.log > cpu_data.log"""'], {}), '(\'awk \\\'NR%2{printf "%s ",$0;next;}1\\\' cpu_util.log > cpu_data.log\')\n', (310, 378), False, 'import os\n'), ((385, 624), 'pandas.read_csv', 'pd.read_csv', (['"""cpu_data.log"""'], {'names': "['dow', 'mon', 'day', 'time', 'tz', 'year', 'lcpu', 'us', 'lus', 'sy',\n 'lsy', 'ni', 'lni', 'id', 'lid', 'wa', 'lwa', 'hi', 'lhi', 'si', 'lsi',\n 'st', 'lst']", 'delim_whitespace': '(True)', 'header': 'None'}), "('cpu_data.log', names=['dow', 'mon', 'day', 'time', 'tz',\n 'year', 'lcpu', 'us', 'lus', 'sy', 'lsy', 'ni', 'lni', 'id', 'lid',\n 'wa', 'lwa', 'hi', 'lhi', 'si', 'lsi', 'st', 'lst'], delim_whitespace=\n True, header=None)\n", (396, 624), True, 'import pandas as pd\n'), ((1806, 1896), 'pandas.read_csv', 'pd.read_csv', (['"""gpu_util.log"""'], {'names': "['systemtime', 'percent']", 'sep': '""","""', 'parse_dates': '[0]'}), "('gpu_util.log', names=['systemtime', 'percent'], sep=',',\n parse_dates=[0])\n", (1817, 1896), True, 'import pandas as pd\n'), ((3339, 3366), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 5)'}), '(figsize=(15, 5))\n', (3349, 3366), True, 'from matplotlib import pyplot as plt\n'), ((3372, 3388), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (3383, 3388), True, 'from matplotlib import pyplot as plt\n'), ((3640, 3708), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'y_axis_usr', '"""#be4b48"""'], {'linewidth': 'wl', 'label': '"""% usr"""'}), "(x_axis, y_axis_usr, '#be4b48', linewidth=wl, label='% usr')\n", (3648, 3708), True, 'from matplotlib import pyplot as plt\n'), ((3709, 3779), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'y_axis_nice', '"""#98b954"""'], {'linewidth': 'wl', 'label': '"""% nice"""'}), "(x_axis, y_axis_nice, '#98b954', linewidth=wl, label='% nice')\n", (3717, 3779), True, 'from matplotlib import pyplot as plt\n'), ((3780, 3848), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'y_axis_sys', '"""#7d60a0"""'], {'linewidth': 'wl', 'label': '"""% sys"""'}), "(x_axis, y_axis_sys, '#7d60a0', linewidth=wl, label='% sys')\n", (3788, 3848), True, 'from matplotlib import pyplot as plt\n'), ((3849, 3919), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'y_axis_idle', '"""#46aac5"""'], {'linewidth': 'wl', 'label': '"""% idle"""'}), "(x_axis, y_axis_idle, '#46aac5', linewidth=wl, label='% idle')\n", (3857, 3919), True, 'from matplotlib import pyplot as plt\n'), ((3920, 3988), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'y_axis_gpu', '"""#000000"""'], {'linewidth': 'wl', 'label': '"""% gpu"""'}), "(x_axis, y_axis_gpu, '#000000', linewidth=wl, label='% gpu')\n", (3928, 3988), True, 'from matplotlib import pyplot as plt\n'), ((3989, 4054), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""right"""', 'bbox_to_anchor': '(1.25, 0.5)', 'fontsize': 'fsz'}), "(loc='right', bbox_to_anchor=(1.25, 0.5), fontsize=fsz)\n", (3999, 4054), True, 'from matplotlib import pyplot as plt\n'), ((4055, 4086), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""oiaTimingRaw.png"""'], {}), "('oiaTimingRaw.png')\n", (4066, 4086), True, 'from matplotlib import pyplot as plt\n'), ((4087, 4096), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (4094, 4096), True, 'from matplotlib import pyplot as plt\n'), ((4111, 4127), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (4122, 4127), True, 'from matplotlib import pyplot as plt\n'), ((4301, 4378), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'y_axis_usr_smoothed', '"""#be4b48"""'], {'linewidth': 'wl', 'label': '"""% usr"""'}), "(x_axis, y_axis_usr_smoothed, '#be4b48', linewidth=wl, label='% usr')\n", (4309, 4378), True, 'from matplotlib import pyplot as plt\n'), ((4379, 4458), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'y_axis_nice_smoothed', '"""#98b954"""'], {'linewidth': 'wl', 'label': '"""% nice"""'}), "(x_axis, y_axis_nice_smoothed, '#98b954', linewidth=wl, label='% nice')\n", (4387, 4458), True, 'from matplotlib import pyplot as plt\n'), ((4459, 4536), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'y_axis_sys_smoothed', '"""#7d60a0"""'], {'linewidth': 'wl', 'label': '"""% sys"""'}), "(x_axis, y_axis_sys_smoothed, '#7d60a0', linewidth=wl, label='% sys')\n", (4467, 4536), True, 'from matplotlib import pyplot as plt\n'), ((4537, 4616), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'y_axis_idle_smoothed', '"""#46aac5"""'], {'linewidth': 'wl', 'label': '"""% idle"""'}), "(x_axis, y_axis_idle_smoothed, '#46aac5', linewidth=wl, label='% idle')\n", (4545, 4616), True, 'from matplotlib import pyplot as plt\n'), ((4617, 4695), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'y_axis_gpu_smoothed', '"""#000000"""'], {'linewidth': '(0.4)', 'label': '"""% gpu"""'}), "(x_axis, y_axis_gpu_smoothed, '#000000', linewidth=0.4, label='% gpu')\n", (4625, 4695), True, 'from matplotlib import pyplot as plt\n'), ((4696, 4761), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""right"""', 'bbox_to_anchor': '(1.25, 0.5)', 'fontsize': 'fsz'}), "(loc='right', bbox_to_anchor=(1.25, 0.5), fontsize=fsz)\n", (4706, 4761), True, 'from matplotlib import pyplot as plt\n'), ((4762, 4790), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""oiaTiming.png"""'], {}), "('oiaTiming.png')\n", (4773, 4790), True, 'from matplotlib import pyplot as plt\n'), ((4792, 4817), 'os.remove', 'os.remove', (['"""cpu_data.log"""'], {}), "('cpu_data.log')\n", (4801, 4817), False, 'import os\n'), ((1575, 1597), 'numpy.datetime64', 'np.datetime64', (['datekey'], {}), '(datekey)\n', (1588, 1597), True, 'import numpy as np\n'), ((2208, 2247), 'numpy.datetime64', 'np.datetime64', (["data2[key]['systemtime']"], {}), "(data2[key]['systemtime'])\n", (2221, 2247), True, 'import numpy as np\n'), ((1336, 1368), 'time.strptime', 'strptime', (["data[key]['mon']", '"""%b"""'], {}), "(data[key]['mon'], '%b')\n", (1344, 1368), False, 'from time import strptime\n')]
|
import os
import h5py
import numpy as np
import pickle as pkl
import tensorflow as tf
from tqdm import tqdm
from gcn.train import train_model
from gcn.utils import load_data_pkl, load_data_h5
# Set random seed
seed = 123
np.random.seed(seed)
tf.set_random_seed(seed)
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_bool('use_h5', True, 'use h5 feature or not')
flags.DEFINE_string('data_dir', './data', 'Data root dir')
flags.DEFINE_string('save_dir', './genrated_textvqa_gcn_sg', 'dir to save generated scene graph')
flags.DEFINE_integer('epochs', 300, 'Number of epochs to train.')
flags.DEFINE_integer('hidden1', 600, 'Number of units in hidden layer, equal to the dim of output scene graph')
flags.DEFINE_string('tiers', 'train_val_test', 'what tier of textvqa sg to use: train, val, or test')
flags.DEFINE_integer('start_index', 0, 'image start index')
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_float('dropout', 0.2, 'Dropout rate (1 - keep probability).')
flags.DEFINE_float('weight_decay', 5e-4, 'Weight for L2 loss on embedding matrix.')
flags.DEFINE_bool('use_dummy', False, 'use dummy data for test')
if not os.path.exists(FLAGS.save_dir):
os.mkdir(FLAGS.save_dir)
tiers = FLAGS.tiers.split('_')
for tier in tiers:
data_root = os.path.join(FLAGS.data_dir, 'textvqa_{}'.format(tier))
if FLAGS.use_h5:
node_feature_h5 = h5py.File(os.path.join(data_root, 'node_features.h5'), "r")
adj_matrix_h5 = h5py.File(os.path.join(data_root, 'adjacent_matrix.h5'), "r")
target_h5 = h5py.File(os.path.join(data_root, 'targets.h5'), "r")
mask_h5 = h5py.File(os.path.join(data_root, 'mask.h5'), "r")
n_images = mask_h5['masks'].shape[0]
save_h5 = h5py.File(os.path.join(FLAGS.save_dir, '{}_sg.h5'.format(tier)), "w")
save_h5.create_dataset("gcn_scene_graphs",
(n_images,
node_feature_h5['object_name_embeddings'].shape[1] +
node_feature_h5['ocr_token_embeddings'].shape[1],
FLAGS.hidden1),
dtype='float32')
for image_index in tqdm(range(FLAGS.start_index, n_images),
unit='image',
desc='Generating gcn sg for {}'.format(tier)):
data = load_data_h5(image_index, node_feature_h5, adj_matrix_h5, target_h5, mask_h5)
hidden_state = train_model(data)
save_h5['gcn_scene_graphs'][image_index] = hidden_state
node_feature_h5.close()
adj_matrix_h5.close()
target_h5.close()
mask_h5.close()
save_h5.close()
else:
target_dir = os.path.join(data_root, 'targets')
n_images = len(os.listdir(target_dir))
for image_index in tqdm(range(FLAGS.start_index, n_images),
unit='image',
desc='Generating gcn sg for {}'.format(tier)):
data = load_data_pkl(data_root, image_index, FLAGS.use_dummy)
hidden_state = train_model(data)
# save 2nd layer hidden state
save_dir = os.path.join(FLAGS.save_dir, '{}_sg'.format(tier))
if not os.path.exists(save_dir):
os.mkdir(save_dir)
with open(os.path.join(save_dir, '{}.p'.format(image_index)), 'wb') as f:
pkl.dump(hidden_state, f)
|
[
"os.mkdir",
"pickle.dump",
"numpy.random.seed",
"gcn.utils.load_data_h5",
"gcn.train.train_model",
"gcn.utils.load_data_pkl",
"os.path.exists",
"tensorflow.set_random_seed",
"os.path.join",
"os.listdir"
] |
[((223, 243), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (237, 243), True, 'import numpy as np\n'), ((244, 268), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['seed'], {}), '(seed)\n', (262, 268), True, 'import tensorflow as tf\n'), ((1179, 1209), 'os.path.exists', 'os.path.exists', (['FLAGS.save_dir'], {}), '(FLAGS.save_dir)\n', (1193, 1209), False, 'import os\n'), ((1215, 1239), 'os.mkdir', 'os.mkdir', (['FLAGS.save_dir'], {}), '(FLAGS.save_dir)\n', (1223, 1239), False, 'import os\n'), ((2764, 2798), 'os.path.join', 'os.path.join', (['data_root', '"""targets"""'], {}), "(data_root, 'targets')\n", (2776, 2798), False, 'import os\n'), ((1422, 1465), 'os.path.join', 'os.path.join', (['data_root', '"""node_features.h5"""'], {}), "(data_root, 'node_features.h5')\n", (1434, 1465), False, 'import os\n'), ((1506, 1551), 'os.path.join', 'os.path.join', (['data_root', '"""adjacent_matrix.h5"""'], {}), "(data_root, 'adjacent_matrix.h5')\n", (1518, 1551), False, 'import os\n'), ((1588, 1625), 'os.path.join', 'os.path.join', (['data_root', '"""targets.h5"""'], {}), "(data_root, 'targets.h5')\n", (1600, 1625), False, 'import os\n'), ((1660, 1694), 'os.path.join', 'os.path.join', (['data_root', '"""mask.h5"""'], {}), "(data_root, 'mask.h5')\n", (1672, 1694), False, 'import os\n'), ((2405, 2482), 'gcn.utils.load_data_h5', 'load_data_h5', (['image_index', 'node_feature_h5', 'adj_matrix_h5', 'target_h5', 'mask_h5'], {}), '(image_index, node_feature_h5, adj_matrix_h5, target_h5, mask_h5)\n', (2417, 2482), False, 'from gcn.utils import load_data_pkl, load_data_h5\n'), ((2510, 2527), 'gcn.train.train_model', 'train_model', (['data'], {}), '(data)\n', (2521, 2527), False, 'from gcn.train import train_model\n'), ((2822, 2844), 'os.listdir', 'os.listdir', (['target_dir'], {}), '(target_dir)\n', (2832, 2844), False, 'import os\n'), ((3058, 3112), 'gcn.utils.load_data_pkl', 'load_data_pkl', (['data_root', 'image_index', 'FLAGS.use_dummy'], {}), '(data_root, image_index, FLAGS.use_dummy)\n', (3071, 3112), False, 'from gcn.utils import load_data_pkl, load_data_h5\n'), ((3140, 3157), 'gcn.train.train_model', 'train_model', (['data'], {}), '(data)\n', (3151, 3157), False, 'from gcn.train import train_model\n'), ((3294, 3318), 'os.path.exists', 'os.path.exists', (['save_dir'], {}), '(save_dir)\n', (3308, 3318), False, 'import os\n'), ((3336, 3354), 'os.mkdir', 'os.mkdir', (['save_dir'], {}), '(save_dir)\n', (3344, 3354), False, 'import os\n'), ((3457, 3482), 'pickle.dump', 'pkl.dump', (['hidden_state', 'f'], {}), '(hidden_state, f)\n', (3465, 3482), True, 'import pickle as pkl\n')]
|
#####################################################
#
# Train and test a restricted Boltzmann machine
#
# Copyright (c) 2018 christianb93
# Permission is hereby granted, free of charge, to
# any person obtaining a copy of this software and
# associated documentation files (the "Software"),
# to deal in the Software without restriction,
# including without limitation the rights to use,
# copy, modify, merge, publish, distribute,
# sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice
# shall be included in all copies or substantial
# portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY
# OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
# LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
# OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# If you want to run this on a machine without X-server,
# do a
# export MPLBACKEND="AGG"
#####################################################
from __future__ import print_function
import RBM.CD
import RBM.PCD
import pickle
import socket
import numpy as np
import matplotlib.pyplot as plt
import tempfile
import argparse
import time
import datetime
from sklearn.datasets import fetch_mldata
import urllib.request
from sklearn.datasets.base import get_data_home
import os
#
# Utility class to generate a pattern from the bars-and-stripes
# pattern set (MacKay, Information Theory, Inference and learning
# algorithms, section 43)
#
class BAS:
def __init__ (self, N = 4):
self.N = N
def createMatrix(self, orientation = 0, number = 0):
#
# Create a 4x4 matrix out of the bars-and-stripes
# collection
#
values = np.zeros((self.N,1))
for i in range(self.N):
values[i] = (number >> i) % 2
if (orientation == 0):
return np.matmul(values, np.ones((1,self.N)))
else:
return np.transpose(np.matmul(values, np.ones((1,self.N))))
def createVector(self, orientation = 0, number = 0):
M = self.createMatrix(orientation = orientation, number = number)
return M.reshape((self.N*self.N,1))
#
# Return a matrix with a given number of
# samples. The result will be stored in a
# matrix with shape (size, N*N)
#
def getSample(self, size = 30):
if size > 2*(2**self.N) - 2:
raise ValueError("Cannot generate that many samples")
if 0 != (size % 2):
raise ValueError("Number of samples must be even")
images = []
for n in range(int(size / 2)):
a = self.createVector(1,n+1)
images.append(a)
b = self.createVector(0,n+1)
images.append(b)
V = np.concatenate(images, axis=1)
return np.transpose(V)
#
# A utility class to manage training data sets
# that consist of quadratic images
#
class TrainingData:
def __init__(self, N = 6, ds_size = 80, ds = "BAS"):
self.ds = ds
if ds == "BAS":
self.BAS = BAS(args.N)
self.ds_size = ds_size
self.S = self.BAS.getSample(size = ds_size)
elif ds == "MNIST":
if (N != 28):
raise ValueError("Please use N = 28 for the MNIST data set")
try:
mnist = fetch_mldata('MNIST originalss')
except:
print("Could not download MNIST data from mldata.org, trying alternative...")
mnist_alternative_url = "https://github.com/amplab/datascience-sp14/raw/master/lab7/mldata/mnist-original.mat"
data_home = get_data_home(data_home=None)
data_home = os.path.join(data_home, 'mldata')
if not os.path.exists(data_home):
os.makedirs(data_home)
mnist_save_path = os.path.join(data_home, "mnist-original.mat")
if not os.path.exists(mnist_save_path):
print("Downloading from ", mnist_alternative_url)
urllib.request.urlretrieve(mnist_alternative_url, mnist_save_path)
print("Now calling fetch_mldata once more")
mnist = fetch_mldata('MNIST original')
label = mnist['target']
mnist = mnist.data
mnist = ((mnist / 255.0) + 0.5).astype(int)
images = []
for i in range(ds_size):
digit = i % 10
u = np.where(label == digit)[0]
images.append(mnist[u[i // 10], None,:])
self.S = np.concatenate(images, axis=0)
self.ds_size = ds_size
else:
raise ValueError("Unknown data set name")
def get_batch(self, batch_size = 10):
images = []
for i in range(batch_size):
u = np.random.randint(low = 0, high = self.ds_size)
images.append(self.S[u,None,:])
return np.concatenate(images, axis=0)
####################################################
# Parse arguments
####################################################
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--N",
type=int,
default=6,
help="Size of image")
parser.add_argument("--patterns",
type=int,
default=20,
help="Number of patterns that we store")
parser.add_argument("--hidden",
type=int,
default=16,
help="Number of hidden units")
parser.add_argument("--beta",
type=float,
default=2.0,
help="Inverse temperature")
parser.add_argument("--step",
type=float,
default=0.05,
help="Step size of gradient descent")
parser.add_argument("--iterations",
type=int,
default=1,
help="Number of iterations per batch during training")
parser.add_argument("--epochs",
type=int,
default=30000,
help="Number of epochs (batches) during training")
parser.add_argument("--sample",
type=int,
default=100,
help="Number of iterations during sampling")
parser.add_argument("--errors",
type=int,
default=3,
help="Number of points in the sample pattern that we flip")
parser.add_argument("--save",
type=int,
default=0,
help="Save results")
parser.add_argument("--run_samples",
type=int,
default=0,
help="Run test samples from full model")
parser.add_argument("--run_reconstructions",
type=int,
default=0,
help="Run reconstruction tests")
parser.add_argument("--show_weights",
type=int,
default=0,
help="Display weights after training")
parser.add_argument("--show_metrics",
type=int,
default=0,
help="Display a few metrics after training")
parser.add_argument("--algorithm",
choices=["CD", "PCD", "PCDTF"],
default="CD",
help="Algorithm: contrastive divergence (CD), PCD or PCD on TensorFlow (PCDTF)")
parser.add_argument("--batch_size",
type=int,
default=10,
help="Batch size")
parser.add_argument("--weight_decay",
type=float,
default=0.0001,
help="Weight decay")
parser.add_argument("--data",
choices=["BAS", "MNIST"],
default="BAS",
help="Data set")
parser.add_argument("--load",
default=None)
parser.add_argument("--precision",
type=int,
choices=[32,64],
default=32,
help="Floating point precision")
parser.add_argument("--sample_size",
type=str,
default="5,5",
help="X,Y: X- and Y-dimension of sampled set of images")
parser.add_argument("--tmpdir",
type=str,
default="/tmp",
help="Directory to use for storing results")
args=parser.parse_args()
return args
#
# Utility function to display an array
# as an N x N binary image
#
def show_pattern(ax, v):
ax.set_yticks([],[])
ax.set_xticks([],[])
ax.imshow(v.reshape(args.N,args.N), "binary")
####################################################
#
# Main
#
####################################################
#
# Only import tensorflow if really needed
#
args=get_args()
if args.algorithm == "PCDTF":
import RBM.PCDTF
print("Parameter: ", args)
#
# Create sample set
#
TrainingData = TrainingData(N = args.N,
ds_size = args.patterns,
ds = args.data)
#
# Init RBM and train
#
dw = []
error = []
if args.algorithm == "CD":
RBM = RBM.CD.CDRBM(visible=args.N*args.N, hidden=args.hidden, beta = args.beta)
elif args.algorithm == "PCD":
RBM = RBM.PCD.PCDRBM(visible=args.N*args.N, hidden=args.hidden, beta = args.beta, particles=args.batch_size)
elif args.algorithm == "PCDTF":
RBM = RBM.PCDTF.PCDRBM(visible=args.N*args.N, hidden=args.hidden, beta = args.beta, particles=args.batch_size)
else:
raise ValueError("Unknown algorithm")
start_time = time.time()
print("Start time: ", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
#
# If the load parameter has not been specified, train
#
if None == args.load:
for e in range(args.epochs):
V = TrainingData.get_batch(batch_size = args.batch_size)
_dw, _error = RBM.train(V,
iterations=args.iterations,
epochs = args.epochs,
step = args.step,
weight_decay=args.weight_decay)
dw.append(_dw)
if len(_error) > 0:
error.append(_error)
#
# Allow the model to finalize the training
#
RBM.postTraining()
else:
print("Loading parameters from ", args.load)
f= open(args.load, "rb")
params = pickle.load(f)
f.close()
RBM.setParameters(params)
end_time = time.time()
run_time = end_time - start_time
#
# Get file name and save model
#
if args.save == 1:
tmp = tempfile.mktemp(dir=args.tmpdir)
params = RBM.getParameters()
params['args'] = args
outfile = tmp + "_RBM.param"
f= open(outfile, "wb")
pickle.dump(params, f)
f.close()
print("Saved parameters in ", outfile)
#
# Now test reconstructions
#
if args.run_reconstructions:
tests = 8
cols = 4
fig = plt.figure(figsize=(5,cols*tests/5))
#
# Determine a sample set that we use for testing
#
I = TrainingData.get_batch(batch_size = tests)
#
# Now plot the original patterns
#
for t in range(tests):
show_pattern(fig.add_subplot(tests,cols,cols*t+1), I[t,:])
#
# Flip some bits at random in each
# of the rows
#
sample = np.copy(I)
for t in range(tests):
for i in range(args.errors):
field = np.random.randint(0,args.N*args.N)
sample[t,field] = (1 if I[t,field] == 0 else 0)
#
# Sample
#
print("Sampling reconstructions")
R0 = RBM.sampleFrom(initial = sample, iterations = int(args.sample / 2), size=tests)
R = RBM.sampleFrom(initial = R0, iterations = int(args.sample / 2), size=tests)
#
# Display results
#
for t in range(tests):
# Display distorted image
show_pattern(fig.add_subplot(tests,cols,cols*t+2), sample[t,:])
# Display reconstructions
show_pattern(fig.add_subplot(tests,cols,cols*t+3), R0[t,:])
show_pattern(fig.add_subplot(tests,cols,cols*t+4), R[t,:])
if args.save == 1:
outfile = tmp + "_RBMPartI.png"
print("Saving simulation results part I to ",outfile)
fig.savefig(outfile)
#
# Display metrics
#
if args.show_metrics == 1:
fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(1,2,1)
ax.set_xlabel("Iteration")
ax.set_ylabel("Change of weights")
ax.plot(dw)
ax = fig.add_subplot(1,2,2)
ax.plot(error,"y")
ax.set_xlabel("Iteration")
ax.set_ylabel("Reconstruction error")
if args.save == 1:
outfile = tmp + "_RBMPartII.png"
print("Saving simulation results part II to ",outfile)
fig.savefig(outfile)
#
# Now sample a few images and display them
#
if args.run_samples == 1:
cols = int(args.sample_size.split(',')[1])
rows = int(args.sample_size.split(',')[0])
sampling_start_time = time.time()
print("Sampling ", rows*cols, "images")
print("Start time: ", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
V = RBM.sample(iterations = args.sample, size=rows*cols)
fig = plt.figure(figsize=(8,8))
for i in range(rows*cols):
show_pattern(fig.add_subplot(rows,cols,i+1), V[i,:])
end_time = time.time()
run_time_sampling = end_time - sampling_start_time
if args.save == 1:
outfile = tmp + "_RBMPartIII.png"
print("Saving simulation results part III to ",outfile)
fig.savefig(outfile)
#
# Display weights
#
if args.show_weights == 1:
fig = plt.figure(figsize=(10,10))
RBM.showWeights(fig, 4, 4, args.N, args.N)
if args.save == 1:
outfile = tmp + "_RBMPartIV.png"
print("Saving simulation results part IV to ",outfile)
fig.savefig(outfile)
if args.save == 1:
outfile = tmp + "_RBMDesc.txt"
f= open(outfile, "w")
print(args, file=f)
print("Run time: ", str(datetime.timedelta(seconds=int(run_time))), file = f)
if args.run_samples == 1:
print("Run time sampling: ", str(datetime.timedelta(seconds=int(run_time_sampling))), file=f)
name = socket.gethostname()
print("Host: ", name, file=f)
f.close()
print("Saved simulation description and results in ",outfile)
print("Run time: ", str(datetime.timedelta(seconds=int(run_time))))
if args.run_samples == 1:
print("Run time sampling: ", str(datetime.timedelta(seconds=int(run_time_sampling))))
plt.show()
|
[
"pickle.dump",
"argparse.ArgumentParser",
"numpy.ones",
"matplotlib.pyplot.figure",
"pickle.load",
"numpy.random.randint",
"os.path.join",
"numpy.copy",
"numpy.transpose",
"os.path.exists",
"socket.gethostname",
"tempfile.mktemp",
"time.localtime",
"matplotlib.pyplot.show",
"numpy.concatenate",
"os.makedirs",
"numpy.zeros",
"sklearn.datasets.base.get_data_home",
"time.time",
"numpy.where",
"sklearn.datasets.fetch_mldata"
] |
[((10345, 10356), 'time.time', 'time.time', ([], {}), '()\n', (10354, 10356), False, 'import time\n'), ((11189, 11200), 'time.time', 'time.time', ([], {}), '()\n', (11198, 11200), False, 'import time\n'), ((15172, 15182), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (15180, 15182), True, 'import matplotlib.pyplot as plt\n'), ((5554, 5579), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (5577, 5579), False, 'import argparse\n'), ((11118, 11132), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (11129, 11132), False, 'import pickle\n'), ((11299, 11331), 'tempfile.mktemp', 'tempfile.mktemp', ([], {'dir': 'args.tmpdir'}), '(dir=args.tmpdir)\n', (11314, 11331), False, 'import tempfile\n'), ((11455, 11477), 'pickle.dump', 'pickle.dump', (['params', 'f'], {}), '(params, f)\n', (11466, 11477), False, 'import pickle\n'), ((11633, 11674), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, cols * tests / 5)'}), '(figsize=(5, cols * tests / 5))\n', (11643, 11674), True, 'import matplotlib.pyplot as plt\n'), ((12015, 12025), 'numpy.copy', 'np.copy', (['I'], {}), '(I)\n', (12022, 12025), True, 'import numpy as np\n'), ((13013, 13040), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (13023, 13040), True, 'import matplotlib.pyplot as plt\n'), ((13647, 13658), 'time.time', 'time.time', ([], {}), '()\n', (13656, 13658), False, 'import time\n'), ((13854, 13880), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (13864, 13880), True, 'import matplotlib.pyplot as plt\n'), ((13987, 13998), 'time.time', 'time.time', ([], {}), '()\n', (13996, 13998), False, 'import time\n'), ((14279, 14307), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (14289, 14307), True, 'import matplotlib.pyplot as plt\n'), ((14844, 14864), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (14862, 14864), False, 'import socket\n'), ((2115, 2136), 'numpy.zeros', 'np.zeros', (['(self.N, 1)'], {}), '((self.N, 1))\n', (2123, 2136), True, 'import numpy as np\n'), ((3163, 3193), 'numpy.concatenate', 'np.concatenate', (['images'], {'axis': '(1)'}), '(images, axis=1)\n', (3177, 3193), True, 'import numpy as np\n'), ((3209, 3224), 'numpy.transpose', 'np.transpose', (['V'], {}), '(V)\n', (3221, 3224), True, 'import numpy as np\n'), ((5359, 5389), 'numpy.concatenate', 'np.concatenate', (['images'], {'axis': '(0)'}), '(images, axis=0)\n', (5373, 5389), True, 'import numpy as np\n'), ((10414, 10430), 'time.localtime', 'time.localtime', ([], {}), '()\n', (10428, 10430), False, 'import time\n'), ((5252, 5295), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(0)', 'high': 'self.ds_size'}), '(low=0, high=self.ds_size)\n', (5269, 5295), True, 'import numpy as np\n'), ((12110, 12147), 'numpy.random.randint', 'np.random.randint', (['(0)', '(args.N * args.N)'], {}), '(0, args.N * args.N)\n', (12127, 12147), True, 'import numpy as np\n'), ((13764, 13780), 'time.localtime', 'time.localtime', ([], {}), '()\n', (13778, 13780), False, 'import time\n'), ((2278, 2298), 'numpy.ones', 'np.ones', (['(1, self.N)'], {}), '((1, self.N))\n', (2285, 2298), True, 'import numpy as np\n'), ((4983, 5013), 'numpy.concatenate', 'np.concatenate', (['images'], {'axis': '(0)'}), '(images, axis=0)\n', (4997, 5013), True, 'import numpy as np\n'), ((2363, 2383), 'numpy.ones', 'np.ones', (['(1, self.N)'], {}), '((1, self.N))\n', (2370, 2383), True, 'import numpy as np\n'), ((3747, 3779), 'sklearn.datasets.fetch_mldata', 'fetch_mldata', (['"""MNIST originalss"""'], {}), "('MNIST originalss')\n", (3759, 3779), False, 'from sklearn.datasets import fetch_mldata\n'), ((4049, 4078), 'sklearn.datasets.base.get_data_home', 'get_data_home', ([], {'data_home': 'None'}), '(data_home=None)\n', (4062, 4078), False, 'from sklearn.datasets.base import get_data_home\n'), ((4107, 4140), 'os.path.join', 'os.path.join', (['data_home', '"""mldata"""'], {}), "(data_home, 'mldata')\n", (4119, 4140), False, 'import os\n'), ((4268, 4313), 'os.path.join', 'os.path.join', (['data_home', '"""mnist-original.mat"""'], {}), "(data_home, 'mnist-original.mat')\n", (4280, 4313), False, 'import os\n'), ((4611, 4641), 'sklearn.datasets.fetch_mldata', 'fetch_mldata', (['"""MNIST original"""'], {}), "('MNIST original')\n", (4623, 4641), False, 'from sklearn.datasets import fetch_mldata\n'), ((4877, 4901), 'numpy.where', 'np.where', (['(label == digit)'], {}), '(label == digit)\n', (4885, 4901), True, 'import numpy as np\n'), ((4164, 4189), 'os.path.exists', 'os.path.exists', (['data_home'], {}), '(data_home)\n', (4178, 4189), False, 'import os\n'), ((4211, 4233), 'os.makedirs', 'os.makedirs', (['data_home'], {}), '(data_home)\n', (4222, 4233), False, 'import os\n'), ((4337, 4368), 'os.path.exists', 'os.path.exists', (['mnist_save_path'], {}), '(mnist_save_path)\n', (4351, 4368), False, 'import os\n')]
|
# -*- coding: UTF-8 -*-
"""
Created on Sat Jan 20 10:20:33 2018
@author: <NAME>
"""
import os, re, csv, time, warnings, threading
from pymongo import MongoClient
import pandas as pd
import numpy as np
from scipy.sparse import csr_matrix
from bson.objectid import ObjectId
import Text_Analysis.text_processing as tp
from gensim import corpora, utils
from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.externals import joblib
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
import sklearn.exceptions
from sklearn.preprocessing import OneHotEncoder
warnings.filterwarnings("ignore", category=sklearn.exceptions.UndefinedMetricWarning)
warnings.filterwarnings("ignore", category=Warning, module='sklearn')
warnings.filterwarnings("ignore", category=UserWarning, module='gensim')
warnings.filterwarnings("ignore", category=RuntimeWarning, module='gensim')
class TextMining(object):
'''Text analysis and prediction functions class.
# Arguments:
IP: IP address of mongodb database.
PORT: Port number corresponding to IP.
'''
def __init__(self,**kwarg):
self.IP = kwarg['IP']
self.PORT = kwarg['PORT']
self.ConnDB()
self.tp = tp.TextProcessing(os.getcwd() + '\\' + 'Chinese_Stop_Words.txt', \
os.getcwd() + '\\' + 'finance_dict.txt')
if not os.path.exists(os.getcwd() + '\\' + 'stock_dict_file'):
os.makedirs(os.getcwd() + '\\' + 'stock_dict_file')
self.DictPath = os.getcwd() + '\\' + 'stock_dict_file'
def ConnDB(self):
'''Connect to the mongodb.
'''
self._Conn = MongoClient(self.IP, self.PORT)
def extractData(self,dbName,colName,tag_list):
'''Extract data from specific collection of specific database.
# Arguments:
dbName: Name of database.
colName: Name of collection.
tag_list: List of tags that need to be extracted.
'''
db = self._Conn[dbName]
collection = db.get_collection(colName)
data = []
Dict = {}
for tag in tag_list:
exec(tag + " = collection.distinct('" + tag + "')")
exec("data.append(" + tag + ")")
exec("Dict.update({'" + tag + "' : np.array(" + tag + ")})")
dataFrame = pd.DataFrame(Dict,columns=tag_list)
return dataFrame
def extractStockCodeFromArticle(self,dbName,colName):
'''Extract the stocks mentioned by each news(articles/documents).
# Arguments:
dbName: Name of database.
colName: Name of collection.
'''
db = self._Conn[dbName]
collection = db.get_collection(colName)
idLst = self.extractData(dbName,colName,['_id'])._id
data = self.extractData("Stock","Basic_Info",['name','code'])
articles = []
for _id in idLst:
if dbName == 'NBD_Stock':
title = collection.find_one({'_id':ObjectId(_id)})['title']
else:
title = collection.find_one({'_id':ObjectId(_id)})['Title']
article = collection.find_one({'_id':ObjectId(_id)})['Article']
articles.append(title + ' ' + article)
token, _, _ = self.tp.genDictionary(articles,saveDict=False, returnValue=True)
j = 0
for tk in token:
relevantStockName = []
relevantStockCode = []
for k in range(len(tk)):
if len(tk[k]) >= 3 and tk[k] in list(data.name):
relevantStockName.append(tk[k])
relevantStockCode.append(list(data[(data.name == tk[k])].code)[0])
if len(relevantStockCode) != 0:
relevantStockCodeDuplicateRemoval = list(set(relevantStockCode))
collection.update({"_id":idLst[j]},{"$set":{"relevantStock":\
' '.join(relevantStockCodeDuplicateRemoval)}})
# print(' [*] finished ' + str(j+1) + ' ... ')
j += 1
def extractStockCodeFromRealtimeNews(self,documents):
'''Extract stocks mentioined by real-time crawled news(articles/documents),
and return the list of corresponding codes.
# Arguments:
documents: Real-time crawled news(articles/documents).
'''
stock_basic_info = self.extractData("Stock","Basic_Info",['name','code'])
token_list = self.tp.jieba_tokenize(documents)
relevant_stock_list = []
for tokens in token_list:
relevantStockCode = []
for tk in tokens:
if len(tk) >= 3 and tk in list(stock_basic_info.name):
relevantStockCode.append(list(stock_basic_info[(stock_basic_info.name == tk)].code)[0])
relevant_stock_list.append(list(set(relevantStockCode)))
return relevant_stock_list
def judgeGoodOrBadNews(self,stockCode,date,judgeTerm):
'''Label the historical news(articles/documents) with 'Bad', 'Good' or 'Neutral'.
# Arguments:
stockCode: Code of specific stock.
date: Date at which released the specific news.
judgeTerm: Interval after which compare the close price with that at the released date.
'''
db = self._Conn['Stock']
collection = db.get_collection(stockCode)
dateLst = self.extractData("Stock",stockCode,['date']).date
days = 0
CloseLst = []
for dt in dateLst:
if dt >= date:
CloseLst.append(float(collection.find_one({'date':dt})['close']))
if days >= judgeTerm:
break
days += 1
if CloseLst[-1] > CloseLst[0]:
character = '利好'
elif CloseLst[-1] < CloseLst[0]:
character = '利空'
else:
character = '中立'
return character
def getNewsOfSpecificStock(self,dbColLst,stockCode,**kwarg):
'''Get news related to specific stock from historical database.
# Arguments:
dbColLst: List of databases and collections, eg: [(db_1,col_1),(db_2,col_2),...,(db_N,col_N)].
stockCode: Code of specific stock.
export: List parameters deciding the ways of exporting('csv' or 'database')
and file path of saving, eg: export=['csv','.\\file'].
'''
if kwarg['export'][0] == 'csv':
with open(kwarg['export'][1] + '\\' + stockCode + '.csv', 'a+', newline='',encoding='utf-8') as file:
fieldnames = ['date','address','title','article']
writer = csv.DictWriter(file, fieldnames=fieldnames)
writer.writeheader()
for dbName,colName in dbColLst:
db = self._Conn[dbName]
collection = db.get_collection(colName)
idLst = self.extractData(dbName,colName,['_id'])._id
if dbName == 'Sina_Stock':
for _id in idLst:
keys = ' '.join([k for k in collection.find_one({'_id':ObjectId(_id)}).keys()])
if keys.find('RelevantStock') != -1:
if collection.find_one({'_id':ObjectId(_id)})['RelevantStock'].find(stockCode) != -1:
print(' ' + collection.find_one({'_id':ObjectId(_id)})['Title'])
writer.writerow({'date':collection.find_one({'_id':ObjectId(_id)})['Date'], \
'address':collection.find_one({'_id':ObjectId(_id)})['Address'], \
'title':collection.find_one({'_id':ObjectId(_id)})['Title'], \
'article':collection.find_one({'_id':ObjectId(_id)})['Article']})
elif dbName == 'NBD':
for _id in idLst:
keys = ' '.join([k for k in collection.find_one({'_id':ObjectId(_id)}).keys()])
if keys.find('relevantStock') != -1:
if collection.find_one({'_id':ObjectId(_id)})['relevantStock'].find(stockCode) != -1:
print(' ' + collection.find_one({'_id':ObjectId(_id)})['title'])
writer.writerow({'date':collection.find_one({'_id':ObjectId(_id)})['date'], \
'address':collection.find_one({'_id':ObjectId(_id)})['address'], \
'title':collection.find_one({'_id':ObjectId(_id)})['title'], \
'article':collection.find_one({'_id':ObjectId(_id)})['Article']})
print(' [*] extracting ' + stockCode + ' news from ' + dbName + ' database to CSV file successfully ... ')
elif kwarg['export'][0] == 'database': #new database
for dbName,colName in dbColLst:
db = self._Conn[dbName]
collection = db.get_collection(colName)
idLst = self.extractData(dbName,colName,['_id'])._id
if dbName == 'NBD_Stock':
newdb = self._Conn[kwarg['export'][1]]
newcollection = newdb.get_collection(kwarg['export'][2])
for _id in idLst:
keys = ' '.join([k for k in collection.find_one({'_id':ObjectId(_id)}).keys()])
if keys.find('relevantStock') != -1:
if collection.find_one({'_id':ObjectId(_id)})['relevantStock'].find(stockCode) != -1:
character = self.judgeGoodOrBadNews(stockCode,\
collection.find_one({'_id':ObjectId(_id)})['date'].split(' ')[0].replace('-',''),kwarg['judgeTerm'])
# print(' ' + collection.find_one({'_id':ObjectId(_id)})['title'] + '(' + character + ')')
data = {'Date' : collection.find_one({'_id':ObjectId(_id)})['date'],
'Address' : collection.find_one({'_id':ObjectId(_id)})['address'],
'Title' : collection.find_one({'_id':ObjectId(_id)})['title'],
'Article' : collection.find_one({'_id':ObjectId(_id)})['Article'],
'Character' : character}
newcollection.insert_one(data)
elif dbName == 'Sina_Stock':
newdb = self._Conn[kwarg['export'][1]]
newcollection = newdb.get_collection(kwarg['export'][2])
for _id in idLst:
keys = ' '.join([k for k in collection.find_one({'_id':ObjectId(_id)}).keys()])
if keys.find('RelevantStock') != -1:
if collection.find_one({'_id':ObjectId(_id)})['RelevantStock'].find(stockCode) != -1:
character = self.judgeGoodOrBadNews(stockCode,\
collection.find_one({'_id':ObjectId(_id)})['Date'].split(' ')[0].replace('-',''),kwarg['judgeTerm'])
# print(' ' + collection.find_one({'_id':ObjectId(_id)})['Title'] + '(' + character + ')')
data = {'Date' : collection.find_one({'_id':ObjectId(_id)})['Date'],
'Address' : collection.find_one({'_id':ObjectId(_id)})['Address'],
'Title' : collection.find_one({'_id':ObjectId(_id)})['Title'],
'Article' : collection.find_one({'_id':ObjectId(_id)})['Article'],
'Character' : character}
newcollection.insert_one(data)
else:
newdb = self._Conn[kwarg['export'][1]]
newcollection = newdb.get_collection(kwarg['export'][2])
for _id in idLst:
keys = ' '.join([k for k in collection.find_one({'_id':ObjectId(_id)}).keys()])
if keys.find('relevantStock') != -1:
if collection.find_one({'_id':ObjectId(_id)})['relevantStock'].find(stockCode) != -1:
character = self.judgeGoodOrBadNews(stockCode,\
collection.find_one({'_id':ObjectId(_id)})['Date'].split(' ')[0].replace('-',''),kwarg['judgeTerm'])
# print(' ' + collection.find_one({'_id':ObjectId(_id)})['Title'] + '(' + character + ')')
data = {'Date' : collection.find_one({'_id':ObjectId(_id)})['Date'],
'Address' : collection.find_one({'_id':ObjectId(_id)})['Address'],
'Title' : collection.find_one({'_id':ObjectId(_id)})['Title'],
'Article' : collection.find_one({'_id':ObjectId(_id)})['Article'],
'Character' : character}
newcollection.insert_one(data)
print(' [' + stockCode + '] ' + dbName + ' has been extracted successfully ... ')
def classifyHistoryStockNews(self,dbName,stockCode,**kwarg):
'''Build classifier from historical news(articles/documents) of specific stock.
# Arguments:
dbName: Name of database.
stockCode: Code of specific stock.
renewDict: Renew the dictionary created by historical news(articles/documents) of
specific stock or not(bool type).
modelType: Transformation model type, including 'lsi', 'lda' and 'None', 'None' means TF-IDF mmodel.
tfDim: The number of topics that will be extracted from each news(articles/documents).
renewModel: Re-train the transformation models or not(bool type).
Classifier: The name of classifier, including 'SVM' and 'RandomForest' so far.
Params: The parameters of classifier, detail refer to the setting of classifier parameters of scikit-learn module.
'''
if kwarg['renewDict']:
if not os.path.exists(self.DictPath+'\\'+stockCode):
os.makedirs(self.DictPath+'\\'+stockCode)
db = self._Conn[dbName]
collection = db.get_collection(stockCode)
idLst = self.extractData(dbName,stockCode,['_id'])._id
articles = []
characters = []
for _id in idLst:
articles.append(collection.find_one({'_id':ObjectId(_id)})['Article'])
if collection.find_one({'_id':ObjectId(_id)})['Character'] == "利好":
characters.append(1)
elif collection.find_one({'_id':ObjectId(_id)})['Character'] == "利空":
characters.append(-1)
else:
characters.append(0)
self.tp.genDictionary(articles,saveDict=True,saveDictPath=self.DictPath+'\\'+stockCode+'\\'+stockCode+'_dict.dict',\
saveBowvec=True,saveBowvecPath=self.DictPath+'\\'+stockCode+'\\'+stockCode+'_bowvec.mm',returnValue=False)
print(' [*] renew the dictionary and bow-vector successfully ... ')
elif not os.path.exists(self.DictPath+'\\'+stockCode+'\\'+stockCode+'_dict.dict') \
or not os.path.exists(self.DictPath+'\\'+stockCode+'\\'+stockCode+'_bowvec.mm'):
if not os.path.exists(self.DictPath+'\\'+stockCode):
os.makedirs(self.DictPath+'\\'+stockCode)
db = self._Conn[dbName]
collection = db.get_collection(stockCode)
idLst = self.extractData(dbName,stockCode,['_id'])._id
articles = []
characters = []
for _id in idLst:
articles.append(collection.find_one({'_id':ObjectId(_id)})['Article'])
if collection.find_one({'_id':ObjectId(_id)})['Character'] == "利好":
characters.append(1)
elif collection.find_one({'_id':ObjectId(_id)})['Character'] == "利空":
characters.append(-1)
else:
characters.append(0)
self.tp.genDictionary(articles,saveDict=True,saveDictPath=self.DictPath+'\\'+stockCode+'\\'+stockCode+'_dict.dict',\
saveBowvec=True,saveBowvecPath=self.DictPath+'\\'+stockCode+'\\'+stockCode+'_bowvec.mm',returnValue=False)
print(' [*] generate and save the dictionary and bow-vector successfully ... ')
else:
db = self._Conn[dbName]
collection = db.get_collection(stockCode)
idLst = self.extractData(dbName,stockCode,['_id'])._id
characters = []
for _id in idLst:
if collection.find_one({'_id':ObjectId(_id)})['Character'] == "利好":
characters.append(1)
elif collection.find_one({'_id':ObjectId(_id)})['Character'] == "利空":
characters.append(-1)
else:
characters.append(0)
dictionary = corpora.Dictionary.load(self.DictPath+'\\'+stockCode+'\\'+stockCode+'_dict.dict')
bowvec = corpora.MmCorpus(self.DictPath+'\\'+stockCode+'\\'+stockCode+'_bowvec.mm')
print(' [*] load dictionary and bow-vector successfully ... ')
_, modelVec = self.tp.CallTransformationModel(dictionary,bowvec,modelType=kwarg['modelType'],\
tfDim=kwarg['tfDim'],renewModel=kwarg['renewModel'],modelPath=self.DictPath+'\\'+stockCode+'\\')
CSRMatrix = self.ConvertToCSRMatrix(modelVec)
train_X, train_Y, test_X, test_Y = self.genTrainingSet(CSRMatrix,characters)
if kwarg['Classifier'] == 'SVM':
self.SVMClassifier(train_X,train_Y,test_X,test_Y,kwarg['Params'],['precision'],stockCode)
if kwarg['Classifier'] == 'RandomForest':
self.RdForestClassifier(train_X,train_Y,test_X,test_Y,kwarg['Params'],['precision'],stockCode)
return self._precise
def classifyRealtimeStockNews(self,doc_list):
'''Classify real-time news(articles/documents) of specific stock.
#Arguments:
doc_list: List of real-time news(articles/documents) crawled from specific websites.
'''
print(' * extract relevant stock codes from latest crawled news ... ')
relevant_stock_list = self.extractStockCodeFromRealtimeNews(doc_list)
if len(relevant_stock_list) != 0:
tfDim = 200
for i, code_list in enumerate(relevant_stock_list):
for code in code_list:
print(' * load SVM parameters (gamma & C) ... ')
Params_svm = {'kernel': ['rbf'], 'gamma': [10, 20, 50, 100, 150, 200], \
'C': [10, 15, 20, 30, 50, 100]}
print(' * use historical news to build SVM model of ' + code + ' ... ')
self.classifyHistoryStockNews("Stock_News",code,modelType='lda',tfDim=tfDim,renewDict=False,\
renewModel=False,Classifier='SVM',Params=Params_svm) #code="600740"
print(' * load historical dictionary of ' + code + ' ...')
dictionary = corpora.Dictionary.load(os.getcwd() + '\\' + 'stock_dict_file\\' + code + '\\' + code + '_dict.dict')
print(' * tokenize latest crawled news ... ')
token = self.tp.jieba_tokenize(doc_list)
print(' * create bow-vector of latest news of ' + code + ' ... ')
bowvec_doc = [dictionary.doc2bow(text) for text in token]
print(' * load bow-vector of historical news of ' + code + ' ... ')
bowvec_all = list(corpora.MmCorpus(os.getcwd() + '\\' + 'stock_dict_file\\' + code + '\\' + code + '_bowvec.mm'))
print(' * extend latest bow-vector to historical bow-vector of ' + code + ' ... ')
bowvec_all.extend(bowvec_doc)
print(' * create new lda model of ' + code + ' ... ')
_, NewmodelVec = self.tp.CallTransformationModel(dictionary,bowvec_all,modelType='lda',\
tfDim=200,renewModel=False,modelPath=os.getcwd() + '\\' + 'stock_dict_file\\' + code + '\\')
print(' * convert latest lda vector to CSR matrix of ' + code + ' ... ')
NewCSRMatrix = self.ConvertToCSRMatrix(NewmodelVec)
print(' * load SVM model of ' + code + ' ... ')
clf = joblib.load(os.getcwd() + '\\' + 'stock_dict_file\\' + code + '\\' + code + '_svm.pkl')
print(' * predicting ... ')
if clf.predict(NewCSRMatrix[i-2,:])[0] == 1:
print(' 《' + doc_list[i].split(' ')[0] + "》" + '对' + code + '是利好消息 ...')
elif clf.predict(NewCSRMatrix[i-2,:])[0] == -1:
print(' 《' + doc_list[i].split(' ')[0] + "》" + '对' + code + '是利空消息 ...')
else:
print(' 《' + doc_list[i].split(' ')[0] + "》" + '对' + code + '是中立消息 ...')
else:
print(' * not any relevant stock ... ')
def SVMClassifier(self,train_X,train_Y,test_X,test_Y,tuned_parameters,scores,stockCode):
'''SVM Classifier.
# Arguments:
train_X: Features train data.
train_Y: Labels train data.
test_X: Features train data.
test_Y: Labels train data.
tuned_parameters: The parameters of classifier, refer to the setting of classifier parameters of scikit-learn module.
scores: Targets of optimization, detail refer to optimal targets setting of scikit-learn module.
stockCode: Code of specific stock.
'''
for score in scores:
if not os.path.exists(self.DictPath+'\\'+stockCode+'\\'+stockCode+'_svm.pkl'):
clf = GridSearchCV(svm.SVC(), tuned_parameters, cv=5, scoring='%s_weighted' % score) # 构造这个GridSearch的分类器,5-fold
clf.fit(train_X, train_Y) # 只在训练集上面做k-fold,然后返回最优的模型参数
joblib.dump(clf, self.DictPath+'\\'+stockCode+'\\'+stockCode+'_svm.pkl')
print(clf.best_params_) # 输出最优的模型参数
else:
clf = joblib.load(self.DictPath+'\\'+stockCode+'\\'+stockCode+'_svm.pkl')
# for params, mean_score, scores in clf.grid_scores_:
# print("%0.3f (+/-%0.03f) for %r" % (mean_score, scores.std() * 2, params))
train_pred = clf.predict(train_X)
test_pred = clf.predict(test_X) # 在测试集上测试最优的模型的泛化能力.
print(classification_report(test_Y, test_pred))
precise_train = 0
for k in range(len(train_pred)):
if train_pred[k] == train_Y[k]:
precise_train += 1
precise_test = 0
for k in range(len(test_pred)):
if test_pred[k] == test_Y[k]:
precise_test += 1
print(' [*] train_pred:', precise_train/len(train_Y), ', test_pred:', precise_test/len(test_pred))
print(' ' + '-' * 50)
self._precise = precise_test/len(test_pred)
def RdForestClassifier(self,train_X,train_Y,test_X,test_Y,tuned_parameters,scores,stockCode):
'''Random Forest Classifier.
# Arguments:
train_X: Features train data.
train_Y: Labels train data.
test_X: Features train data.
test_Y: Labels train data.
tuned_parameters: The parameters of classifier, refer to the setting of classifier parameters of scikit-learn module.
scores: Targets of optimization, detail refer to optimal targets setting of scikit-learn module.
stockCode: Code of specific stock.
'''
for score in scores:
if not os.path.exists(self.DictPath+'\\'+stockCode+'\\'+stockCode+'_rdf.pkl'):
clf = GridSearchCV(RandomForestClassifier(random_state=14), tuned_parameters, cv=5, scoring='%s_weighted' % score) # 构造这个GridSearch的分类器,5-fold
clf.fit(train_X, train_Y) # 只在训练集上面做k-fold,然后返回最优的模型参数
joblib.dump(clf, self.DictPath+'\\'+stockCode+'\\'+stockCode+'_rdf.pkl')
print(clf.best_params_) # 输出最优的模型参数
else:
clf = joblib.load(self.DictPath+'\\'+stockCode+'\\'+stockCode+'_rdf.pkl')
# for params, mean_score, scores in clf.grid_scores_:
# print("%0.3f (+/-%0.03f) for %r" % (mean_score, scores.std() * 2, params))
train_pred = clf.predict(train_X)
test_pred = clf.predict(test_X) # 在测试集上测试最优的模型的泛化能力.
print(classification_report(test_Y, test_pred))
precise_train = 0
for k in range(len(train_pred)):
if train_pred[k] == train_Y[k]:
precise_train += 1
precise_test = 0
for k in range(len(test_pred)):
if test_pred[k] == test_Y[k]:
precise_test += 1
print(' [*] train_pred:', precise_train/len(train_Y), ', test_pred:', precise_test/len(test_pred))
print(' ' + '-' * 50)
self._precise = precise_test/len(test_pred)
def ConvertToCSRMatrix(self,modelVec):
'''Convert LDA(LSI) model vector to CSR sparse matrix, that could be accepted by Scipy and Numpy.
# Arguments:
modelVec: Transformation model vector, such as LDA model vector, tfidf model vector or lsi model vector.
'''
data = []
rows = []
cols = []
self._line_count = 0
for line in modelVec:
for elem in line:
rows.append(self._line_count)
cols.append(elem[0])
data.append(elem[1])
self._line_count += 1
sparse_matrix = csr_matrix((data,(rows,cols)))
matrix = sparse_matrix.toarray()
return matrix
def genTrainingSet(self,X,Y):
'''Generate training data set.
# Arguments:
X: Feature set.
Y: Label set.
'''
rarray=np.random.random(size=self._line_count)
train_X = []
train_Y = []
test_X = []
test_Y = []
for i in range(self._line_count):
if rarray[i]<0.8:
train_X.append(X[i,:])
train_Y.append(Y[i])
else:
test_X.append(X[i,:])
test_Y.append(Y[i])
return train_X,train_Y,test_X,test_Y
|
[
"pymongo.MongoClient",
"pandas.DataFrame",
"sklearn.externals.joblib.dump",
"sklearn.ensemble.RandomForestClassifier",
"os.makedirs",
"bson.objectid.ObjectId",
"warnings.filterwarnings",
"os.getcwd",
"sklearn.svm.SVC",
"os.path.exists",
"sklearn.metrics.classification_report",
"sklearn.externals.joblib.load",
"scipy.sparse.csr_matrix",
"numpy.random.random",
"gensim.corpora.MmCorpus",
"gensim.corpora.Dictionary.load",
"csv.DictWriter"
] |
[((665, 755), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'sklearn.exceptions.UndefinedMetricWarning'}), "('ignore', category=sklearn.exceptions.\n UndefinedMetricWarning)\n", (688, 755), False, 'import os, re, csv, time, warnings, threading\n'), ((752, 821), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'Warning', 'module': '"""sklearn"""'}), "('ignore', category=Warning, module='sklearn')\n", (775, 821), False, 'import os, re, csv, time, warnings, threading\n'), ((823, 895), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'UserWarning', 'module': '"""gensim"""'}), "('ignore', category=UserWarning, module='gensim')\n", (846, 895), False, 'import os, re, csv, time, warnings, threading\n'), ((897, 972), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'RuntimeWarning', 'module': '"""gensim"""'}), "('ignore', category=RuntimeWarning, module='gensim')\n", (920, 972), False, 'import os, re, csv, time, warnings, threading\n'), ((1641, 1672), 'pymongo.MongoClient', 'MongoClient', (['self.IP', 'self.PORT'], {}), '(self.IP, self.PORT)\n', (1652, 1672), False, 'from pymongo import MongoClient\n'), ((2226, 2262), 'pandas.DataFrame', 'pd.DataFrame', (['Dict'], {'columns': 'tag_list'}), '(Dict, columns=tag_list)\n', (2238, 2262), True, 'import pandas as pd\n'), ((14377, 14472), 'gensim.corpora.Dictionary.load', 'corpora.Dictionary.load', (["(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_dict.dict')"], {}), "(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode +\n '_dict.dict')\n", (14400, 14472), False, 'from gensim import corpora, utils\n'), ((14471, 14559), 'gensim.corpora.MmCorpus', 'corpora.MmCorpus', (["(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_bowvec.mm')"], {}), "(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode +\n '_bowvec.mm')\n", (14487, 14559), False, 'from gensim import corpora, utils\n'), ((21985, 22017), 'scipy.sparse.csr_matrix', 'csr_matrix', (['(data, (rows, cols))'], {}), '((data, (rows, cols)))\n', (21995, 22017), False, 'from scipy.sparse import csr_matrix\n'), ((22212, 22251), 'numpy.random.random', 'np.random.random', ([], {'size': 'self._line_count'}), '(size=self._line_count)\n', (22228, 22251), True, 'import numpy as np\n'), ((1527, 1538), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1536, 1538), False, 'import os, re, csv, time, warnings, threading\n'), ((5897, 5940), 'csv.DictWriter', 'csv.DictWriter', (['file'], {'fieldnames': 'fieldnames'}), '(file, fieldnames=fieldnames)\n', (5911, 5940), False, 'import os, re, csv, time, warnings, threading\n'), ((11926, 11974), 'os.path.exists', 'os.path.exists', (["(self.DictPath + '\\\\' + stockCode)"], {}), "(self.DictPath + '\\\\' + stockCode)\n", (11940, 11974), False, 'import os, re, csv, time, warnings, threading\n'), ((11977, 12022), 'os.makedirs', 'os.makedirs', (["(self.DictPath + '\\\\' + stockCode)"], {}), "(self.DictPath + '\\\\' + stockCode)\n", (11988, 12022), False, 'import os, re, csv, time, warnings, threading\n'), ((18546, 18631), 'os.path.exists', 'os.path.exists', (["(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_svm.pkl')"], {}), "(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_svm.pkl'\n )\n", (18560, 18631), False, 'import os, re, csv, time, warnings, threading\n'), ((18801, 18887), 'sklearn.externals.joblib.dump', 'joblib.dump', (['clf', "(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_svm.pkl')"], {}), "(clf, self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode +\n '_svm.pkl')\n", (18812, 18887), False, 'from sklearn.externals import joblib\n'), ((18936, 19013), 'sklearn.externals.joblib.load', 'joblib.load', (["(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_svm.pkl')"], {}), "(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_svm.pkl')\n", (18947, 19013), False, 'from sklearn.externals import joblib\n'), ((19251, 19291), 'sklearn.metrics.classification_report', 'classification_report', (['test_Y', 'test_pred'], {}), '(test_Y, test_pred)\n', (19272, 19291), False, 'from sklearn.metrics import classification_report\n'), ((20281, 20366), 'os.path.exists', 'os.path.exists', (["(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_rdf.pkl')"], {}), "(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_rdf.pkl'\n )\n", (20295, 20366), False, 'import os, re, csv, time, warnings, threading\n'), ((20566, 20652), 'sklearn.externals.joblib.dump', 'joblib.dump', (['clf', "(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_rdf.pkl')"], {}), "(clf, self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode +\n '_rdf.pkl')\n", (20577, 20652), False, 'from sklearn.externals import joblib\n'), ((20701, 20778), 'sklearn.externals.joblib.load', 'joblib.load', (["(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_rdf.pkl')"], {}), "(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_rdf.pkl')\n", (20712, 20778), False, 'from sklearn.externals import joblib\n'), ((21016, 21056), 'sklearn.metrics.classification_report', 'classification_report', (['test_Y', 'test_pred'], {}), '(test_Y, test_pred)\n', (21037, 21056), False, 'from sklearn.metrics import classification_report\n'), ((1292, 1303), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1301, 1303), False, 'import os, re, csv, time, warnings, threading\n'), ((1345, 1356), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1354, 1356), False, 'import os, re, csv, time, warnings, threading\n'), ((12846, 12932), 'os.path.exists', 'os.path.exists', (["(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_dict.dict')"], {}), "(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode +\n '_dict.dict')\n", (12860, 12932), False, 'import os, re, csv, time, warnings, threading\n'), ((12931, 13017), 'os.path.exists', 'os.path.exists', (["(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode + '_bowvec.mm')"], {}), "(self.DictPath + '\\\\' + stockCode + '\\\\' + stockCode +\n '_bowvec.mm')\n", (12945, 13017), False, 'import os, re, csv, time, warnings, threading\n'), ((13016, 13064), 'os.path.exists', 'os.path.exists', (["(self.DictPath + '\\\\' + stockCode)"], {}), "(self.DictPath + '\\\\' + stockCode)\n", (13030, 13064), False, 'import os, re, csv, time, warnings, threading\n'), ((13067, 13112), 'os.makedirs', 'os.makedirs', (["(self.DictPath + '\\\\' + stockCode)"], {}), "(self.DictPath + '\\\\' + stockCode)\n", (13078, 13112), False, 'import os, re, csv, time, warnings, threading\n'), ((18642, 18651), 'sklearn.svm.SVC', 'svm.SVC', ([], {}), '()\n', (18649, 18651), False, 'from sklearn import svm\n'), ((20377, 20416), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'random_state': '(14)'}), '(random_state=14)\n', (20399, 20416), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((1411, 1422), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1420, 1422), False, 'import os, re, csv, time, warnings, threading\n'), ((1468, 1479), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1477, 1479), False, 'import os, re, csv, time, warnings, threading\n'), ((2937, 2950), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (2945, 2950), False, 'from bson.objectid import ObjectId\n'), ((2796, 2809), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (2804, 2809), False, 'from bson.objectid import ObjectId\n'), ((2871, 2884), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (2879, 2884), False, 'from bson.objectid import ObjectId\n'), ((12260, 12273), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (12268, 12273), False, 'from bson.objectid import ObjectId\n'), ((12323, 12336), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (12331, 12336), False, 'from bson.objectid import ObjectId\n'), ((12425, 12438), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (12433, 12438), False, 'from bson.objectid import ObjectId\n'), ((13350, 13363), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (13358, 13363), False, 'from bson.objectid import ObjectId\n'), ((13413, 13426), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (13421, 13426), False, 'from bson.objectid import ObjectId\n'), ((14155, 14168), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (14163, 14168), False, 'from bson.objectid import ObjectId\n'), ((13515, 13528), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (13523, 13528), False, 'from bson.objectid import ObjectId\n'), ((14257, 14270), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (14265, 14270), False, 'from bson.objectid import ObjectId\n'), ((17159, 17170), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (17168, 17170), False, 'import os, re, csv, time, warnings, threading\n'), ((16295, 16306), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (16304, 16306), False, 'import os, re, csv, time, warnings, threading\n'), ((17444, 17455), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (17453, 17455), False, 'import os, re, csv, time, warnings, threading\n'), ((8552, 8565), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (8560, 8565), False, 'from bson.objectid import ObjectId\n'), ((8627, 8640), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (8635, 8640), False, 'from bson.objectid import ObjectId\n'), ((8703, 8716), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (8711, 8716), False, 'from bson.objectid import ObjectId\n'), ((8779, 8792), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (8787, 8792), False, 'from bson.objectid import ObjectId\n'), ((16739, 16750), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (16748, 16750), False, 'import os, re, csv, time, warnings, threading\n'), ((6260, 6273), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (6268, 6273), False, 'from bson.objectid import ObjectId\n'), ((6369, 6382), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (6377, 6382), False, 'from bson.objectid import ObjectId\n'), ((6478, 6491), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (6486, 6491), False, 'from bson.objectid import ObjectId\n'), ((6565, 6578), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (6573, 6578), False, 'from bson.objectid import ObjectId\n'), ((6640, 6653), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (6648, 6653), False, 'from bson.objectid import ObjectId\n'), ((6716, 6729), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (6724, 6729), False, 'from bson.objectid import ObjectId\n'), ((6792, 6805), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (6800, 6805), False, 'from bson.objectid import ObjectId\n'), ((8060, 8073), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (8068, 8073), False, 'from bson.objectid import ObjectId\n'), ((8167, 8180), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (8175, 8180), False, 'from bson.objectid import ObjectId\n'), ((9604, 9617), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (9612, 9617), False, 'from bson.objectid import ObjectId\n'), ((9679, 9692), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (9687, 9692), False, 'from bson.objectid import ObjectId\n'), ((9755, 9768), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (9763, 9768), False, 'from bson.objectid import ObjectId\n'), ((9831, 9844), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (9839, 9844), False, 'from bson.objectid import ObjectId\n'), ((10632, 10645), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (10640, 10645), False, 'from bson.objectid import ObjectId\n'), ((10707, 10720), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (10715, 10720), False, 'from bson.objectid import ObjectId\n'), ((10783, 10796), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (10791, 10796), False, 'from bson.objectid import ObjectId\n'), ((10859, 10872), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (10867, 10872), False, 'from bson.objectid import ObjectId\n'), ((6937, 6950), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (6945, 6950), False, 'from bson.objectid import ObjectId\n'), ((7046, 7059), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (7054, 7059), False, 'from bson.objectid import ObjectId\n'), ((7155, 7168), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (7163, 7168), False, 'from bson.objectid import ObjectId\n'), ((7242, 7255), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (7250, 7255), False, 'from bson.objectid import ObjectId\n'), ((7317, 7330), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (7325, 7330), False, 'from bson.objectid import ObjectId\n'), ((7393, 7406), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (7401, 7406), False, 'from bson.objectid import ObjectId\n'), ((7469, 7482), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (7477, 7482), False, 'from bson.objectid import ObjectId\n'), ((9112, 9125), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (9120, 9125), False, 'from bson.objectid import ObjectId\n'), ((9219, 9232), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (9227, 9232), False, 'from bson.objectid import ObjectId\n'), ((10140, 10153), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (10148, 10153), False, 'from bson.objectid import ObjectId\n'), ((10247, 10260), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (10255, 10260), False, 'from bson.objectid import ObjectId\n'), ((8317, 8330), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (8325, 8330), False, 'from bson.objectid import ObjectId\n'), ((9369, 9382), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (9377, 9382), False, 'from bson.objectid import ObjectId\n'), ((10397, 10410), 'bson.objectid.ObjectId', 'ObjectId', (['_id'], {}), '(_id)\n', (10405, 10410), False, 'from bson.objectid import ObjectId\n')]
|
from dash import dcc, html, Input, Output, callback, dash_table
import dash_bootstrap_components as dbc
import plotly.express as px
import pandas as pd
import numpy as np
from pages.sas_key import get_df_description
from pages.style import PADDING_STYLE
TEXT_STYLE = {
'textAlign':'center',
'width': '70%',
'margin': '0 auto',
'background-color': 'AliceBlue',
'color': 'Blue'
}
layout =html.Div([
html.H1('Subreddit Information',style={'textAlign':'center'}),
html.Div([
html.H3(id="factssubredditprinter", className="display-6 text-center"),
html.P('Here, you can check out more in formation about the subreddit. A snapshot of posts and their comments can be previewed along with the popularity and size of the subreddit selected. We have collected data on about 1,000 most recent posts and about 10,000 comments categorized as "hot" by Reddit for each subreddit (this might vary accordingly as posts/commets that were removed or deleted are not included in our analysis). Comment threads can be as long as a 100 comments per post due to API limitations.', className = 'fs-4 text-center'),
html.Hr(),
]),
dbc.Card(style=PADDING_STYLE, children=[
html.H5("Subreddit Description"),
html.Div(className='row', children=[
dcc.Loading(children=[
### Description
html.Div(className="six columns", children=[
html.P(id='subredditdescription', style=TEXT_STYLE),
]),
### Fact Table
html.Div(className="six columns", children=[
dash_table.DataTable(id="subredditfacts",
style_header={'font-weight': 'bold'},
style_cell={'font-family':'sans-serif', 'font-size': '14px', 'text-align': 'center'},
style_data={'whiteSpace': 'normal', 'height': 'auto'})
])
]),
])
]),
### Posts Table
dbc.Card([
html.H5("Post Data Preview", className="card-title"),
dcc.Loading(children=[
# html.H5("Post Data Preview", style=TEXT_STYLE),
dash_table.DataTable(id="subreddittable", page_size=5,
# fixed_rows={'headers': True},
style_header={'font-weight': 'bold'},
style_data={'whiteSpace': 'normal'},
columns=[{'name': 'Post ID', 'id': 'Post ID'}, {'name': 'Post Title', 'id': 'Post Title'}, {'name': 'Post Body', 'id': 'Post Body'}],
style_cell={
'font-family':'sans-serif',
'textAlign': 'left',
'font-size': '14px',
'padding-top': '3px',
'padding-bottom': '8px',
'padding-left': '8px',
'padding-right': '8px',
},
css=[{
'selector': '.dash-spreadsheet td div',
'rule': '''
line-height: 15px;
max-height: 75px; min-height: 33px;
display: block;
overflow-y: auto;
'''
}]
),
]),
# ], style=PADDING_STYLE),
### End of table
### Comments Table
# dbc.Card([
html.H5("Comments Data Preview", className="card-title"),
dcc.Loading(children=[
# html.H5("Comments Data Preview", style=TEXT_STYLE),
# html.P("Click a post in the above Post Table to view comments for that post", style=TEXT_STYLE),
html.P("Click a post in the above Post Table to view comments for that post", style=TEXT_STYLE),
dash_table.DataTable(id="subredditcommenttable", page_size=5,
# fixed_rows={'headers': True},
style_header={'font-weight': 'bold'},
style_data={'whiteSpace': 'normal'},
style_cell={
'font-family':'sans-serif',
'textAlign': 'left',
'font-size': '14px',
'padding-top': '3px',
'padding-bottom': '8px',
'padding-left': '8px',
'padding-right': '8px',
},
css=[{
'selector': '.dash-spreadsheet td div',
'rule': '''
line-height: 15px;
max-height: 75px; min-height: 33px;
display: block;
overflow-y: auto;
'''
}]
)
])
], style=PADDING_STYLE),
### End of table
### Score Frequency Plots
dbc.Card([
html.H5("Popularity", className="card-title"),
html.P('Score indicates the net total upvotes versus downvotes for a submission (post/comment), hence showing us Popularity.', className = 'card-subtitle'),
html.Div(className='row', children=[
dcc.Loading(children=[
html.Div([
### Post Score Plot
html.Div(className="six columns", children=[
dcc.Graph(id='facts1'),
# dcc.RangeSlider(0, 20, 1, value=[5, 15], id='my-range-slider'),
]),
### Comment Score Plot
html.Div(className="six columns", children=[
dcc.Graph(id="facts2"),
])
]),
]),
]),
], style=PADDING_STYLE),
### End of plot
### Word Count Frequency Plots
dcc.Loading(children=[
html.Div(id='facts3'),
])
# dbc.Card([
# html.H5("Size", className="card-title"),
# html.P('Word-count per submission shows us Size.', className = 'fs-4'),
# html.Div(className='row', children=[
# dcc.Loading(children=[
# html.Div([
# ### Post Word Count Plot
# html.Div(className="six columns", children=[
# dcc.Graph(id='facts3'),
# ]),
# ### Comment Word Count Plot
# html.Div(className="six columns", children=[
# dcc.Graph(id="facts4"),
# ])
# ]),
# ]),
# ]),
# ], style=PADDING_STYLE),
### End of plot
])
@callback(
Output('factssubredditprinter', 'children'),
Output('subredditdescription', 'children'),
Output('subredditfacts', 'data'),
Output('subreddittable', 'data'),
Output('facts1', 'figure'),
Output('facts2', 'figure'),
Output('facts3', 'children'),
Input('session', 'data'),
Input('session2', 'data'),
)
def update_df(data, value):
try:
# Load the data
df = pd.DataFrame(data)
subreddit = df.at[0, 'subreddit']
subreddit_df = get_df_description(value)
# Obtain description of the subreddit
description = subreddit_df.at[0, 'description']
# Posts Table
post_df = df[['post_id', 'post_title', 'post_body', 'post_score']].groupby('post_id', as_index=False, sort=False).first()
post_df['id'] = post_df.post_id
# post_df.rename(columns={'post_id': 'Post Id', 'post_title': 'Post Title', 'post_body': 'Post Body'}, inplace=True)
# Quick Facts Table
number_of_posts = len(post_df)
number_of_comments = len(df)
facts = [{
"Number of hot posts scraped": number_of_posts,
"Number of hot comments scraped": number_of_comments,
"Number of subscribers": subreddit_df.at[0, 'subscribers']
}]
# Post Score Plot
def reject_outliers(data, n=2.):
# data = data[~np.isnan(data)]
d = np.abs(data - np.median(data))
mdev = np.median(d)
s = d/mdev if mdev else 0.
return data[s<n].flatten()
post_scores = post_df['post_score'].to_numpy()
post_scores = reject_outliers(post_scores)
posts_score_hist = px.histogram(post_scores,
title='Frequency Distribution of Post Score',
labels={'value':'Score', 'count':'Number of Posts', 'variable':'Score'},
opacity=0.8,
color_discrete_sequence=['indianred'],
text_auto=True).update_layout(
xaxis_title="Score", yaxis_title="Number of Posts", showlegend=False)
# Comment Score Plot
comment_scores = df['comment_score'].dropna().to_numpy()
comment_scores = reject_outliers(comment_scores)
comms_score_hist = px.histogram(comment_scores,
labels={'value':'Score', 'variable':'Score'},
log_y=True,
title='Frequency Distribution of Comment Score',
opacity=0.8).update_layout(yaxis_title="Number of Comments (log scale)", showlegend=False)
post_df.dropna(inplace=True, subset=['post_title', 'post_body'])
df.dropna(inplace=True, subset=['comment'])
try:
post_df['word_counts'] = post_df.post_title.str.cat(post_df.post_body, sep=" ").str.split().apply(len)
df['word_counts'] = df.comment.astype(str).str.split().apply(len)
# Post Word Count Distribution
post_word = post_df['word_counts'].dropna().to_numpy()
post_word = reject_outliers(post_word)
post_word_count = px.histogram(post_word,
title='Word-Count Distribution for Posts',
labels={'value':'Word Count', 'count':'Number of Posts', 'variable':'Word Count'},
opacity=0.8,
color_discrete_sequence=['indianred'],
text_auto=True).update_layout(
yaxis_title="Number of Posts", showlegend=False)
# Comment Word Count Distribution
comment_word = df['word_counts'].dropna().to_numpy()
comment_word = reject_outliers(comment_word)
comms_word_count = px.histogram(comment_word,
labels={'value':'Word Count', 'count':'Number of Comments', 'variable':'Word Count'},
log_y=True,
title='Word-Count Distribution for Comments',
opacity=0.8).update_layout(
xaxis_title="Word Count", yaxis_title="Number of Comments (log scale)", showlegend=False)
if len(comment_word) == 0 or len(post_word) == 0:
card = ""
else:
card = dbc.Card([
html.H5("Size", className="card-title"),
html.P('Word-count per submission shows us Size.', className = 'fs-4'),
html.Div(className='row', children=[
dcc.Loading(children=[
html.Div([
### Post Word Count Plot
html.Div(className="six columns", children=[
dcc.Graph(figure=post_word_count),
]),
### Comment Word Count Plot
html.Div(className="six columns", children=[
dcc.Graph(figure=comms_word_count),
])
]),
]),
]),
], style=PADDING_STYLE),
except Exception as e:
print(e)
post_df.rename(columns={'post_id': 'Post ID', 'post_title': 'Post Title', 'post_body': 'Post Body'}, inplace=True)
return f"What is r/{subreddit}?", description, facts, post_df.to_dict('records'), posts_score_hist, comms_score_hist, card
except KeyError as e:
print(e)
return 'No data loaded! Go to Home Page first!', "", [], [], {}, {}, ""
@callback(
Output('subredditcommenttable', 'data'),
Input('session', 'data'),
Input('subreddittable', 'active_cell')
)
def update_comment_table(data, active_cell):
try:
# Load DataFrame
df = pd.DataFrame(data)
# Comments Table
comment_df = df[['post_id', 'comment']].copy()
comment_df.rename(columns={'post_id': 'Post Id', 'comment': 'Comment'}, inplace=True)
if active_cell is not None:
comment_df = comment_df[comment_df['Post Id'] == active_cell['row_id']]
return comment_df.to_dict('records')
except KeyError as e:
print(e)
return []
|
[
"pandas.DataFrame",
"dash.Output",
"numpy.median",
"dash.html.Div",
"dash.dash_table.DataTable",
"dash.dcc.Graph",
"dash.html.P",
"dash.html.H1",
"pages.sas_key.get_df_description",
"dash.Input",
"plotly.express.histogram",
"dash.html.Hr",
"dash.html.H5",
"dash.html.H3"
] |
[((8370, 8413), 'dash.Output', 'Output', (['"""factssubredditprinter"""', '"""children"""'], {}), "('factssubredditprinter', 'children')\n", (8376, 8413), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((8419, 8461), 'dash.Output', 'Output', (['"""subredditdescription"""', '"""children"""'], {}), "('subredditdescription', 'children')\n", (8425, 8461), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((8467, 8499), 'dash.Output', 'Output', (['"""subredditfacts"""', '"""data"""'], {}), "('subredditfacts', 'data')\n", (8473, 8499), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((8505, 8537), 'dash.Output', 'Output', (['"""subreddittable"""', '"""data"""'], {}), "('subreddittable', 'data')\n", (8511, 8537), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((8543, 8569), 'dash.Output', 'Output', (['"""facts1"""', '"""figure"""'], {}), "('facts1', 'figure')\n", (8549, 8569), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((8575, 8601), 'dash.Output', 'Output', (['"""facts2"""', '"""figure"""'], {}), "('facts2', 'figure')\n", (8581, 8601), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((8607, 8635), 'dash.Output', 'Output', (['"""facts3"""', '"""children"""'], {}), "('facts3', 'children')\n", (8613, 8635), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((8641, 8665), 'dash.Input', 'Input', (['"""session"""', '"""data"""'], {}), "('session', 'data')\n", (8646, 8665), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((8671, 8696), 'dash.Input', 'Input', (['"""session2"""', '"""data"""'], {}), "('session2', 'data')\n", (8676, 8696), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((14482, 14521), 'dash.Output', 'Output', (['"""subredditcommenttable"""', '"""data"""'], {}), "('subredditcommenttable', 'data')\n", (14488, 14521), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((14527, 14551), 'dash.Input', 'Input', (['"""session"""', '"""data"""'], {}), "('session', 'data')\n", (14532, 14551), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((14557, 14595), 'dash.Input', 'Input', (['"""subreddittable"""', '"""active_cell"""'], {}), "('subreddittable', 'active_cell')\n", (14562, 14595), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((431, 494), 'dash.html.H1', 'html.H1', (['"""Subreddit Information"""'], {'style': "{'textAlign': 'center'}"}), "('Subreddit Information', style={'textAlign': 'center'})\n", (438, 494), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((8774, 8792), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (8786, 8792), True, 'import pandas as pd\n'), ((8858, 8883), 'pages.sas_key.get_df_description', 'get_df_description', (['value'], {}), '(value)\n', (8876, 8883), False, 'from pages.sas_key import get_df_description\n'), ((14690, 14708), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (14702, 14708), True, 'import pandas as pd\n'), ((9814, 9826), 'numpy.median', 'np.median', (['d'], {}), '(d)\n', (9823, 9826), True, 'import numpy as np\n'), ((533, 603), 'dash.html.H3', 'html.H3', ([], {'id': '"""factssubredditprinter"""', 'className': '"""display-6 text-center"""'}), "(id='factssubredditprinter', className='display-6 text-center')\n", (540, 603), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((621, 1175), 'dash.html.P', 'html.P', (['"""Here, you can check out more in formation about the subreddit. A snapshot of posts and their comments can be previewed along with the popularity and size of the subreddit selected. We have collected data on about 1,000 most recent posts and about 10,000 comments categorized as "hot" by Reddit for each subreddit (this might vary accordingly as posts/commets that were removed or deleted are not included in our analysis). Comment threads can be as long as a 100 comments per post due to API limitations."""'], {'className': '"""fs-4 text-center"""'}), '(\n \'Here, you can check out more in formation about the subreddit. A snapshot of posts and their comments can be previewed along with the popularity and size of the subreddit selected. We have collected data on about 1,000 most recent posts and about 10,000 comments categorized as "hot" by Reddit for each subreddit (this might vary accordingly as posts/commets that were removed or deleted are not included in our analysis). Comment threads can be as long as a 100 comments per post due to API limitations.\'\n , className=\'fs-4 text-center\')\n', (627, 1175), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((1185, 1194), 'dash.html.Hr', 'html.Hr', ([], {}), '()\n', (1192, 1194), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((2288, 2340), 'dash.html.H5', 'html.H5', (['"""Post Data Preview"""'], {'className': '"""card-title"""'}), "('Post Data Preview', className='card-title')\n", (2295, 2340), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((4254, 4310), 'dash.html.H5', 'html.H5', (['"""Comments Data Preview"""'], {'className': '"""card-title"""'}), "('Comments Data Preview', className='card-title')\n", (4261, 4310), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((6302, 6347), 'dash.html.H5', 'html.H5', (['"""Popularity"""'], {'className': '"""card-title"""'}), "('Popularity', className='card-title')\n", (6309, 6347), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((6365, 6528), 'dash.html.P', 'html.P', (['"""Score indicates the net total upvotes versus downvotes for a submission (post/comment), hence showing us Popularity."""'], {'className': '"""card-subtitle"""'}), "(\n 'Score indicates the net total upvotes versus downvotes for a submission (post/comment), hence showing us Popularity.'\n , className='card-subtitle')\n", (6371, 6528), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((10047, 10275), 'plotly.express.histogram', 'px.histogram', (['post_scores'], {'title': '"""Frequency Distribution of Post Score"""', 'labels': "{'value': 'Score', 'count': 'Number of Posts', 'variable': 'Score'}", 'opacity': '(0.8)', 'color_discrete_sequence': "['indianred']", 'text_auto': '(True)'}), "(post_scores, title='Frequency Distribution of Post Score',\n labels={'value': 'Score', 'count': 'Number of Posts', 'variable':\n 'Score'}, opacity=0.8, color_discrete_sequence=['indianred'], text_auto\n =True)\n", (10059, 10275), True, 'import plotly.express as px\n'), ((10765, 10919), 'plotly.express.histogram', 'px.histogram', (['comment_scores'], {'labels': "{'value': 'Score', 'variable': 'Score'}", 'log_y': '(True)', 'title': '"""Frequency Distribution of Comment Score"""', 'opacity': '(0.8)'}), "(comment_scores, labels={'value': 'Score', 'variable': 'Score'},\n log_y=True, title='Frequency Distribution of Comment Score', opacity=0.8)\n", (10777, 10919), True, 'import plotly.express as px\n'), ((1282, 1314), 'dash.html.H5', 'html.H5', (['"""Subreddit Description"""'], {}), "('Subreddit Description')\n", (1289, 1314), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((7403, 7424), 'dash.html.Div', 'html.Div', ([], {'id': '"""facts3"""'}), "(id='facts3')\n", (7411, 7424), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((9778, 9793), 'numpy.median', 'np.median', (['data'], {}), '(data)\n', (9787, 9793), True, 'import numpy as np\n'), ((11676, 11909), 'plotly.express.histogram', 'px.histogram', (['post_word'], {'title': '"""Word-Count Distribution for Posts"""', 'labels': "{'value': 'Word Count', 'count': 'Number of Posts', 'variable': 'Word Count'}", 'opacity': '(0.8)', 'color_discrete_sequence': "['indianred']", 'text_auto': '(True)'}), "(post_word, title='Word-Count Distribution for Posts', labels={\n 'value': 'Word Count', 'count': 'Number of Posts', 'variable':\n 'Word Count'}, opacity=0.8, color_discrete_sequence=['indianred'],\n text_auto=True)\n", (11688, 11909), True, 'import plotly.express as px\n'), ((12393, 12588), 'plotly.express.histogram', 'px.histogram', (['comment_word'], {'labels': "{'value': 'Word Count', 'count': 'Number of Comments', 'variable': 'Word Count'\n }", 'log_y': '(True)', 'title': '"""Word-Count Distribution for Comments"""', 'opacity': '(0.8)'}), "(comment_word, labels={'value': 'Word Count', 'count':\n 'Number of Comments', 'variable': 'Word Count'}, log_y=True, title=\n 'Word-Count Distribution for Comments', opacity=0.8)\n", (12405, 12588), True, 'import plotly.express as px\n'), ((2467, 3343), 'dash.dash_table.DataTable', 'dash_table.DataTable', ([], {'id': '"""subreddittable"""', 'page_size': '(5)', 'style_header': "{'font-weight': 'bold'}", 'style_data': "{'whiteSpace': 'normal'}", 'columns': "[{'name': 'Post ID', 'id': 'Post ID'}, {'name': 'Post Title', 'id':\n 'Post Title'}, {'name': 'Post Body', 'id': 'Post Body'}]", 'style_cell': "{'font-family': 'sans-serif', 'textAlign': 'left', 'font-size': '14px',\n 'padding-top': '3px', 'padding-bottom': '8px', 'padding-left': '8px',\n 'padding-right': '8px'}", 'css': '[{\'selector\': \'.dash-spreadsheet td div\', \'rule\':\n """\n line-height: 15px;\n max-height: 75px; min-height: 33px;\n display: block;\n overflow-y: auto;\n """\n }]'}), '(id=\'subreddittable\', page_size=5, style_header={\n \'font-weight\': \'bold\'}, style_data={\'whiteSpace\': \'normal\'}, columns=[{\n \'name\': \'Post ID\', \'id\': \'Post ID\'}, {\'name\': \'Post Title\', \'id\':\n \'Post Title\'}, {\'name\': \'Post Body\', \'id\': \'Post Body\'}], style_cell={\n \'font-family\': \'sans-serif\', \'textAlign\': \'left\', \'font-size\': \'14px\',\n \'padding-top\': \'3px\', \'padding-bottom\': \'8px\', \'padding-left\': \'8px\',\n \'padding-right\': \'8px\'}, css=[{\'selector\': \'.dash-spreadsheet td div\',\n \'rule\':\n """\n line-height: 15px;\n max-height: 75px; min-height: 33px;\n display: block;\n overflow-y: auto;\n """\n }])\n', (2487, 3343), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((4564, 4663), 'dash.html.P', 'html.P', (['"""Click a post in the above Post Table to view comments for that post"""'], {'style': 'TEXT_STYLE'}), "('Click a post in the above Post Table to view comments for that post',\n style=TEXT_STYLE)\n", (4570, 4663), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((4681, 5420), 'dash.dash_table.DataTable', 'dash_table.DataTable', ([], {'id': '"""subredditcommenttable"""', 'page_size': '(5)', 'style_header': "{'font-weight': 'bold'}", 'style_data': "{'whiteSpace': 'normal'}", 'style_cell': "{'font-family': 'sans-serif', 'textAlign': 'left', 'font-size': '14px',\n 'padding-top': '3px', 'padding-bottom': '8px', 'padding-left': '8px',\n 'padding-right': '8px'}", 'css': '[{\'selector\': \'.dash-spreadsheet td div\', \'rule\':\n """\n line-height: 15px;\n max-height: 75px; min-height: 33px;\n display: block;\n overflow-y: auto;\n """\n }]'}), '(id=\'subredditcommenttable\', page_size=5, style_header=\n {\'font-weight\': \'bold\'}, style_data={\'whiteSpace\': \'normal\'},\n style_cell={\'font-family\': \'sans-serif\', \'textAlign\': \'left\',\n \'font-size\': \'14px\', \'padding-top\': \'3px\', \'padding-bottom\': \'8px\',\n \'padding-left\': \'8px\', \'padding-right\': \'8px\'}, css=[{\'selector\':\n \'.dash-spreadsheet td div\', \'rule\':\n """\n line-height: 15px;\n max-height: 75px; min-height: 33px;\n display: block;\n overflow-y: auto;\n """\n }])\n', (4701, 5420), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((13021, 13060), 'dash.html.H5', 'html.H5', (['"""Size"""'], {'className': '"""card-title"""'}), "('Size', className='card-title')\n", (13028, 13060), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((13090, 13158), 'dash.html.P', 'html.P', (['"""Word-count per submission shows us Size."""'], {'className': '"""fs-4"""'}), "('Word-count per submission shows us Size.', className='fs-4')\n", (13096, 13158), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((1549, 1600), 'dash.html.P', 'html.P', ([], {'id': '"""subredditdescription"""', 'style': 'TEXT_STYLE'}), "(id='subredditdescription', style=TEXT_STYLE)\n", (1555, 1600), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((1766, 1999), 'dash.dash_table.DataTable', 'dash_table.DataTable', ([], {'id': '"""subredditfacts"""', 'style_header': "{'font-weight': 'bold'}", 'style_cell': "{'font-family': 'sans-serif', 'font-size': '14px', 'text-align': 'center'}", 'style_data': "{'whiteSpace': 'normal', 'height': 'auto'}"}), "(id='subredditfacts', style_header={'font-weight':\n 'bold'}, style_cell={'font-family': 'sans-serif', 'font-size': '14px',\n 'text-align': 'center'}, style_data={'whiteSpace': 'normal', 'height':\n 'auto'})\n", (1786, 1999), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((6806, 6828), 'dash.dcc.Graph', 'dcc.Graph', ([], {'id': '"""facts1"""'}), "(id='facts1')\n", (6815, 6828), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((7116, 7138), 'dash.dcc.Graph', 'dcc.Graph', ([], {'id': '"""facts2"""'}), "(id='facts2')\n", (7125, 7138), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((13523, 13556), 'dash.dcc.Graph', 'dcc.Graph', ([], {'figure': 'post_word_count'}), '(figure=post_word_count)\n', (13532, 13556), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n'), ((13799, 13833), 'dash.dcc.Graph', 'dcc.Graph', ([], {'figure': 'comms_word_count'}), '(figure=comms_word_count)\n', (13808, 13833), False, 'from dash import dcc, html, Input, Output, callback, dash_table\n')]
|
import numpy as np
f8 = np.float64()
i8 = np.int64()
u8 = np.uint64()
f4 = np.float32()
i4 = np.int32()
u4 = np.uint32()
td = np.timedelta64(0, "D")
b_ = np.bool_()
b = bool()
f = float()
i = int()
AR = np.array([1], dtype=np.bool_)
AR.setflags(write=False)
AR2 = np.array([1], dtype=np.timedelta64)
AR2.setflags(write=False)
# Time structures
reveal_type(td % td) # E: numpy.timedelta64
reveal_type(AR2 % td) # E: Any
reveal_type(td % AR2) # E: Any
reveal_type(divmod(td, td)) # E: Tuple[{int64}, numpy.timedelta64]
reveal_type(divmod(AR2, td)) # E: Tuple[Any, Any]
reveal_type(divmod(td, AR2)) # E: Tuple[Any, Any]
# Bool
reveal_type(b_ % b) # E: {int8}
reveal_type(b_ % i) # E: {int_}
reveal_type(b_ % f) # E: {float64}
reveal_type(b_ % b_) # E: {int8}
reveal_type(b_ % i8) # E: {int64}
reveal_type(b_ % u8) # E: {uint64}
reveal_type(b_ % f8) # E: {float64}
reveal_type(b_ % AR) # E: Any
reveal_type(divmod(b_, b)) # E: Tuple[{int8}, {int8}]
reveal_type(divmod(b_, i)) # E: Tuple[{int_}, {int_}]
reveal_type(divmod(b_, f)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(b_, b_)) # E: Tuple[{int8}, {int8}]
reveal_type(divmod(b_, i8)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(b_, u8)) # E: Tuple[{uint64}, {uint64}]
reveal_type(divmod(b_, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(b_, AR)) # E: Tuple[Any, Any]
reveal_type(b % b_) # E: {int8}
reveal_type(i % b_) # E: {int_}
reveal_type(f % b_) # E: {float64}
reveal_type(b_ % b_) # E: {int8}
reveal_type(i8 % b_) # E: {int64}
reveal_type(u8 % b_) # E: {uint64}
reveal_type(f8 % b_) # E: {float64}
reveal_type(AR % b_) # E: Any
reveal_type(divmod(b, b_)) # E: Tuple[{int8}, {int8}]
reveal_type(divmod(i, b_)) # E: Tuple[{int_}, {int_}]
reveal_type(divmod(f, b_)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(b_, b_)) # E: Tuple[{int8}, {int8}]
reveal_type(divmod(i8, b_)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(u8, b_)) # E: Tuple[{uint64}, {uint64}]
reveal_type(divmod(f8, b_)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(AR, b_)) # E: Tuple[Any, Any]
# int
reveal_type(i8 % b) # E: {int64}
reveal_type(i8 % i) # E: {int64}
reveal_type(i8 % f) # E: {float64}
reveal_type(i8 % i8) # E: {int64}
reveal_type(i8 % f8) # E: {float64}
reveal_type(i4 % i8) # E: {int64}
reveal_type(i4 % f8) # E: {float64}
reveal_type(i4 % i4) # E: {int32}
reveal_type(i4 % f4) # E: {float32}
reveal_type(i8 % AR) # E: Any
reveal_type(divmod(i8, b)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i8, i)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i8, f)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i8, i8)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i8, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i8, i4)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i8, f4)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i4, i4)) # E: Tuple[{int32}, {int32}]
reveal_type(divmod(i4, f4)) # E: Tuple[{float32}, {float32}]
reveal_type(divmod(i8, AR)) # E: Tuple[Any, Any]
reveal_type(b % i8) # E: {int64}
reveal_type(i % i8) # E: {int64}
reveal_type(f % i8) # E: {float64}
reveal_type(i8 % i8) # E: {int64}
reveal_type(f8 % i8) # E: {float64}
reveal_type(i8 % i4) # E: {int64}
reveal_type(f8 % i4) # E: {float64}
reveal_type(i4 % i4) # E: {int32}
reveal_type(f4 % i4) # E: {float32}
reveal_type(AR % i8) # E: Any
reveal_type(divmod(b, i8)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i, i8)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(f, i8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i8, i8)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(f8, i8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i4, i8)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(f4, i8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i4, i4)) # E: Tuple[{int32}, {int32}]
reveal_type(divmod(f4, i4)) # E: Tuple[{float32}, {float32}]
reveal_type(divmod(AR, i8)) # E: Tuple[Any, Any]
# float
reveal_type(f8 % b) # E: {float64}
reveal_type(f8 % i) # E: {float64}
reveal_type(f8 % f) # E: {float64}
reveal_type(i8 % f4) # E: {float64}
reveal_type(f4 % f4) # E: {float32}
reveal_type(f8 % AR) # E: Any
reveal_type(divmod(f8, b)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, i)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, f)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, f4)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f4, f4)) # E: Tuple[{float32}, {float32}]
reveal_type(divmod(f8, AR)) # E: Tuple[Any, Any]
reveal_type(b % f8) # E: {float64}
reveal_type(i % f8) # E: {float64}
reveal_type(f % f8) # E: {float64}
reveal_type(f8 % f8) # E: {float64}
reveal_type(f8 % f8) # E: {float64}
reveal_type(f4 % f4) # E: {float32}
reveal_type(AR % f8) # E: Any
reveal_type(divmod(b, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f4, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f4, f4)) # E: Tuple[{float32}, {float32}]
reveal_type(divmod(AR, f8)) # E: Tuple[Any, Any]
|
[
"numpy.uint32",
"numpy.bool_",
"numpy.uint64",
"numpy.float32",
"numpy.timedelta64",
"numpy.array",
"numpy.int32",
"numpy.int64",
"numpy.float64"
] |
[((25, 37), 'numpy.float64', 'np.float64', ([], {}), '()\n', (35, 37), True, 'import numpy as np\n'), ((43, 53), 'numpy.int64', 'np.int64', ([], {}), '()\n', (51, 53), True, 'import numpy as np\n'), ((59, 70), 'numpy.uint64', 'np.uint64', ([], {}), '()\n', (68, 70), True, 'import numpy as np\n'), ((77, 89), 'numpy.float32', 'np.float32', ([], {}), '()\n', (87, 89), True, 'import numpy as np\n'), ((95, 105), 'numpy.int32', 'np.int32', ([], {}), '()\n', (103, 105), True, 'import numpy as np\n'), ((111, 122), 'numpy.uint32', 'np.uint32', ([], {}), '()\n', (120, 122), True, 'import numpy as np\n'), ((129, 151), 'numpy.timedelta64', 'np.timedelta64', (['(0)', '"""D"""'], {}), "(0, 'D')\n", (143, 151), True, 'import numpy as np\n'), ((157, 167), 'numpy.bool_', 'np.bool_', ([], {}), '()\n', (165, 167), True, 'import numpy as np\n'), ((208, 237), 'numpy.array', 'np.array', (['[1]'], {'dtype': 'np.bool_'}), '([1], dtype=np.bool_)\n', (216, 237), True, 'import numpy as np\n'), ((270, 305), 'numpy.array', 'np.array', (['[1]'], {'dtype': 'np.timedelta64'}), '([1], dtype=np.timedelta64)\n', (278, 305), True, 'import numpy as np\n')]
|
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from keras.preprocessing import text, sequence
from keras.preprocessing.text import Tokenizer
from keras.utils import to_categorical
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from sklearn.model_selection import train_test_split
from keras.metrics import categorical_accuracy
from keras import backend as K
import tensorflow as tf
from keras.callbacks import TensorBoard, LearningRateScheduler, ModelCheckpoint, ReduceLROnPlateau
from datetime import datetime
import os, pickle
from utils import *
maxlen_seq = 768
center_augmented_data = False ## center augmented data
training_idx = np.arange(5600)
test_idx = np.arange(5605,5877)
validation_idx = np.arange(5877,6133)
cb6133filename = '../data/cb6133.npy'
kfold=10
## cross validation
for fold_id in range(0, 10):
train_df_all, train_augment_data_all = load_augmented_data(cb6133filename, maxlen_seq, centered=center_augmented_data)
train_df = train_df_all.iloc[training_idx]
val_df = train_df_all.iloc[validation_idx]
# save preprocessed val and test data
test_df = train_df_all.iloc[test_idx]
train_augment_data = train_augment_data_all[training_idx]
test_augment_data = train_augment_data_all[test_idx]
index = np.arange(0,len(train_df))
# np.random.seed(0)
# np.random.shuffle(index)
chunk_all = [int(len(train_df)/kfold)*i for i in range(1,kfold)]
val_chunks = np.split(index, chunk_all)
chunk = val_chunks[fold_id]
val_df = train_df.iloc[chunk]
train_train_df = train_df.iloc[list(set(index)-set(chunk))]
# Loading and converting the inputs to ngrams
train_input_seqs, train_target_seqs = train_df[['input', 'expected']].values.T
train_input_grams = seq2ngrams(train_input_seqs, n=1)
# Initializing and defining the tokenizer encoders and decoders based on the train set
tokenizer_encoder = Tokenizer()
tokenizer_encoder.fit_on_texts(train_input_grams)
tokenizer_decoder = Tokenizer(char_level = True)
tokenizer_decoder.fit_on_texts(train_target_seqs)
# Using the tokenizer to encode and decode the sequences for use in training
# Inputs
train_input_data = tokenizer_encoder.texts_to_sequences(train_input_grams)
train_input_data = sequence.pad_sequences(train_input_data, maxlen = maxlen_seq, padding = 'post', truncating='post')
# Targets
train_target_data = tokenizer_decoder.texts_to_sequences(train_target_seqs)
train_target_data = sequence.pad_sequences(train_target_data, maxlen = maxlen_seq, padding = 'post', truncating='post')
train_target_data = to_categorical(train_target_data)
# Computing the number of words and number of tags to be passed as parameters to the keras model
n_words = len(tokenizer_encoder.word_index) + 1
n_tags = len(tokenizer_decoder.word_index) + 1
############################################
# Splitting the data for train and validation sets
X_val = train_input_data[chunk]
X_train = train_input_data[list(set(index)-set(chunk))]
y_val = train_target_data[chunk]
y_train = train_target_data[list(set(index)-set(chunk))]
X_train_augment = train_augment_data[list(set(index)-set(chunk))]
X_val_augment = train_augment_data[chunk]
############################################
# save preprocessed val and test data and tokenizer
script_name = os.path.basename(__file__).split(".")[0]
model_name = datetime.now().strftime("%Y%m%d-%H%M%S") + "-" + script_name
log_dir = '../logs/{}'.format(model_name) + str(fold_id)
os.mkdir(log_dir)
val_df.to_csv(os.path.join(log_dir, 'val_data.csv'))
np.save(os.path.join(log_dir, 'val_augment_data.npy'), X_val_augment)
test_df.to_csv(os.path.join(log_dir, 'test_data.csv'))
np.save(os.path.join(log_dir, 'test_augment_data.npy'), test_augment_data)
with open(os.path.join(log_dir, 'tokenizer_encoder.pickle'), 'wb') as handle:
pickle.dump(tokenizer_encoder, handle)
with open(os.path.join(log_dir, 'tokenizer_decoder.pickle'), 'wb') as handle:
pickle.dump(tokenizer_decoder, handle)
############################################
# Dropout to prevent overfitting.
droprate = 0.25
def conv_block(x, n_channels, droprate):
x = BatchNormalization()(x)
x = ReLU()(x)
x = Conv1D(n_channels, 3, padding = 'same', kernel_initializer = 'he_normal')(x)
x = Dropout(droprate)(x)
x = BatchNormalization()(x)
x = ReLU()(x)
x = Conv1D(n_channels, 3, padding = 'same', kernel_initializer = 'he_normal')(x)
return x
def up_block(x, n_channels):
x = BatchNormalization()(x)
x = ReLU()(x)
x = UpSampling1D(size = 2)(x)
x = Conv1D(n_channels, 2, padding = 'same', kernel_initializer = 'he_normal')(x)
return x
input = Input(shape = (None, ))
augment_input = Input(shape = (None, 22))
# Defining an embedding layer mapping from the words (n_words) to a vector of len 128
embed_input = Embedding(input_dim = n_words, output_dim = 128, input_length = None)(input)
merged_input = concatenate([embed_input, augment_input], axis = 2)
merged_input = Conv1D(128, 3, padding = 'same', kernel_initializer = 'he_normal')(merged_input)
conv1 = conv_block(merged_input, 128, droprate)
pool1 = MaxPooling1D(pool_size=2)(conv1)
conv2 = conv_block(pool1, 192, droprate)
pool2 = MaxPooling1D(pool_size=2)(conv2)
conv3 = conv_block(pool2, 384, droprate)
pool3 = MaxPooling1D(pool_size=2)(conv3)
conv4 = conv_block(pool3, 768, droprate)
pool4 = MaxPooling1D(pool_size=2)(conv4)
conv5 = conv_block(pool4, 1536, droprate)
up4 = up_block(conv5, 768)
up4 = concatenate([conv4,up4], axis = 2)
up4 = conv_block(up4, 768, droprate)
up3 = up_block(up4, 384)
up3 = concatenate([conv3,up3], axis = 2)
up3 = conv_block(up3, 384, droprate)
up2 = up_block(up3, 192)
up2 = concatenate([conv2,up2], axis = 2)
up2 = conv_block(up2, 192, droprate)
up1 = up_block(up2, 128)
up1 = concatenate([conv1,up1], axis = 2)
up1 = conv_block(up1, 128, droprate)
up1 = BatchNormalization()(up1)
up1 = ReLU()(up1)
# the following it equivalent to Conv1D with kernel size 1
# A dense layer to output from the LSTM's64 units to the appropriate number of tags to be fed into the decoder
y = TimeDistributed(Dense(n_tags, activation = "softmax"))(up1)
# Defining the model as a whole and printing the summary
model = Model([input, augment_input], y)
model.summary()
optim = RMSprop(lr=0.002)
def scheduler(i, lr):
if i in [60]:
return lr * 0.5
return lr
reduce_lr = LearningRateScheduler(schedule=scheduler, verbose=1)
# reduce_lr = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5,
# patience=8, min_lr=0.0005, verbose=1)
# Setting up the model with categorical x-entropy loss and the custom accuracy function as accuracy
model.compile(optimizer = optim, loss = "categorical_crossentropy", metrics = ["accuracy", accuracy])
tensorboard = TensorBoard(log_dir=log_dir)
checkpoint = ModelCheckpoint(os.path.join(log_dir, "best_val_acc.h5"),
monitor='val_accuracy',
verbose=1,
save_best_only=True,
mode='max')
# Training the model on the training data and validating using the validation set
model.fit([X_train, X_train_augment], y_train, batch_size = 128,
validation_data = ([X_val, X_val_augment], y_val), verbose = 1,
callbacks=[tensorboard, reduce_lr, checkpoint],
epochs = 90)
K.clear_session()
model = load_model(os.path.join(log_dir, "best_val_acc.h5"))
val_pred_df = predict_all(model, val_df, tokenizer_encoder, tokenizer_decoder, n_gram=1, max_len=maxlen_seq,
augmented_input=X_val_augment,
filepath = os.path.join(log_dir, "val_pred_{}.csv".format(model_name)))
val_score, val_score_df = edit_score(val_df, val_pred_df,
filepath = os.path.join(log_dir, "val_score_{}.csv".format(model_name)), plot=False)
plt.close()
K.clear_session()
|
[
"os.mkdir",
"pickle.dump",
"os.path.basename",
"keras.preprocessing.sequence.pad_sequences",
"matplotlib.pyplot.close",
"datetime.datetime.now",
"numpy.split",
"keras.preprocessing.text.Tokenizer",
"numpy.arange",
"keras.callbacks.TensorBoard",
"keras.callbacks.LearningRateScheduler",
"os.path.join",
"keras.backend.clear_session",
"keras.utils.to_categorical"
] |
[((702, 717), 'numpy.arange', 'np.arange', (['(5600)'], {}), '(5600)\n', (711, 717), True, 'import numpy as np\n'), ((729, 750), 'numpy.arange', 'np.arange', (['(5605)', '(5877)'], {}), '(5605, 5877)\n', (738, 750), True, 'import numpy as np\n'), ((767, 788), 'numpy.arange', 'np.arange', (['(5877)', '(6133)'], {}), '(5877, 6133)\n', (776, 788), True, 'import numpy as np\n'), ((1500, 1526), 'numpy.split', 'np.split', (['index', 'chunk_all'], {}), '(index, chunk_all)\n', (1508, 1526), True, 'import numpy as np\n'), ((1967, 1978), 'keras.preprocessing.text.Tokenizer', 'Tokenizer', ([], {}), '()\n', (1976, 1978), False, 'from keras.preprocessing.text import Tokenizer\n'), ((2057, 2083), 'keras.preprocessing.text.Tokenizer', 'Tokenizer', ([], {'char_level': '(True)'}), '(char_level=True)\n', (2066, 2083), False, 'from keras.preprocessing.text import Tokenizer\n'), ((2337, 2435), 'keras.preprocessing.sequence.pad_sequences', 'sequence.pad_sequences', (['train_input_data'], {'maxlen': 'maxlen_seq', 'padding': '"""post"""', 'truncating': '"""post"""'}), "(train_input_data, maxlen=maxlen_seq, padding='post',\n truncating='post')\n", (2359, 2435), False, 'from keras.preprocessing import text, sequence\n'), ((2555, 2654), 'keras.preprocessing.sequence.pad_sequences', 'sequence.pad_sequences', (['train_target_data'], {'maxlen': 'maxlen_seq', 'padding': '"""post"""', 'truncating': '"""post"""'}), "(train_target_data, maxlen=maxlen_seq, padding='post',\n truncating='post')\n", (2577, 2654), False, 'from keras.preprocessing import text, sequence\n'), ((2679, 2712), 'keras.utils.to_categorical', 'to_categorical', (['train_target_data'], {}), '(train_target_data)\n', (2693, 2712), False, 'from keras.utils import to_categorical\n'), ((3645, 3662), 'os.mkdir', 'os.mkdir', (['log_dir'], {}), '(log_dir)\n', (3653, 3662), False, 'import os, pickle\n'), ((6834, 6886), 'keras.callbacks.LearningRateScheduler', 'LearningRateScheduler', ([], {'schedule': 'scheduler', 'verbose': '(1)'}), '(schedule=scheduler, verbose=1)\n', (6855, 6886), False, 'from keras.callbacks import TensorBoard, LearningRateScheduler, ModelCheckpoint, ReduceLROnPlateau\n'), ((7261, 7289), 'keras.callbacks.TensorBoard', 'TensorBoard', ([], {'log_dir': 'log_dir'}), '(log_dir=log_dir)\n', (7272, 7289), False, 'from keras.callbacks import TensorBoard, LearningRateScheduler, ModelCheckpoint, ReduceLROnPlateau\n'), ((7898, 7915), 'keras.backend.clear_session', 'K.clear_session', ([], {}), '()\n', (7913, 7915), True, 'from keras import backend as K\n'), ((8456, 8467), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8465, 8467), True, 'import matplotlib.pyplot as plt\n'), ((8472, 8489), 'keras.backend.clear_session', 'K.clear_session', ([], {}), '()\n', (8487, 8489), True, 'from keras import backend as K\n'), ((3682, 3719), 'os.path.join', 'os.path.join', (['log_dir', '"""val_data.csv"""'], {}), "(log_dir, 'val_data.csv')\n", (3694, 3719), False, 'import os, pickle\n'), ((3733, 3778), 'os.path.join', 'os.path.join', (['log_dir', '"""val_augment_data.npy"""'], {}), "(log_dir, 'val_augment_data.npy')\n", (3745, 3778), False, 'import os, pickle\n'), ((3814, 3852), 'os.path.join', 'os.path.join', (['log_dir', '"""test_data.csv"""'], {}), "(log_dir, 'test_data.csv')\n", (3826, 3852), False, 'import os, pickle\n'), ((3866, 3912), 'os.path.join', 'os.path.join', (['log_dir', '"""test_augment_data.npy"""'], {}), "(log_dir, 'test_augment_data.npy')\n", (3878, 3912), False, 'import os, pickle\n'), ((4024, 4062), 'pickle.dump', 'pickle.dump', (['tokenizer_encoder', 'handle'], {}), '(tokenizer_encoder, handle)\n', (4035, 4062), False, 'import os, pickle\n'), ((4154, 4192), 'pickle.dump', 'pickle.dump', (['tokenizer_decoder', 'handle'], {}), '(tokenizer_decoder, handle)\n', (4165, 4192), False, 'import os, pickle\n'), ((7324, 7364), 'os.path.join', 'os.path.join', (['log_dir', '"""best_val_acc.h5"""'], {}), "(log_dir, 'best_val_acc.h5')\n", (7336, 7364), False, 'import os, pickle\n'), ((7940, 7980), 'os.path.join', 'os.path.join', (['log_dir', '"""best_val_acc.h5"""'], {}), "(log_dir, 'best_val_acc.h5')\n", (7952, 7980), False, 'import os, pickle\n'), ((3948, 3997), 'os.path.join', 'os.path.join', (['log_dir', '"""tokenizer_encoder.pickle"""'], {}), "(log_dir, 'tokenizer_encoder.pickle')\n", (3960, 3997), False, 'import os, pickle\n'), ((4078, 4127), 'os.path.join', 'os.path.join', (['log_dir', '"""tokenizer_decoder.pickle"""'], {}), "(log_dir, 'tokenizer_decoder.pickle')\n", (4090, 4127), False, 'import os, pickle\n'), ((3460, 3486), 'os.path.basename', 'os.path.basename', (['__file__'], {}), '(__file__)\n', (3476, 3486), False, 'import os, pickle\n'), ((3519, 3533), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3531, 3533), False, 'from datetime import datetime\n')]
|
from io import StringIO
import unittest
import os
import numpy as np
from gimmemotifs.motif import Motif, read_motifs
from gimmemotifs.shutils import which
class TestMotif(unittest.TestCase):
""" A test class for Motif """
def setUp(self):
self.data_dir = "test/data/motif"
self.pwm = os.path.join(self.data_dir, "test.pwm")
self.pwm2 = "test/data/pwms/motifs.pwm"
self.jaspar = "test/data/pwms/test.jaspar"
self.pfm = [
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[1, 1, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, 1],
[2, 0, 2, 0],
[3, 0, 0, 3],
[0, 1, 0, 1],
]
def test1_motif_instance(self):
""" Creation of Motif instance """
m = Motif()
self.assertTrue(type(m))
def test2_motif_instance_pfm(self):
""" Creation of Motif instance from pfm"""
m = Motif(self.pfm)
self.assertTrue(m)
def test3_motif_length(self):
""" Motif length """
m = Motif(self.pfm)
self.assertEqual(10, len(m))
def test4_motif_consensus(self):
""" Motif length """
m = Motif(self.pfm)
self.assertEqual("ACGTmskrwy", m.to_consensus())
def test5_motif_to_img(self):
""" Motif to img """
seqlogo = which("seqlogo")
if seqlogo:
m = Motif(self.pfm)
m.to_img("test/test.png", fmt="png", seqlogo=seqlogo)
self.assertTrue(os.path.exists("test/test.png"))
os.unlink("test/test.png")
else:
print("seqlogo not found, skipping.")
def test6_pcc(self):
pfm1 = [[5, 0, 0, 0], [0, 5, 0, 0], [0, 5, 0, 0], [0, 0, 0, 5]]
pfm2 = [[5, 0, 0, 0], [0, 5, 0, 0], [0, 5, 0, 0], [0, 0, 0, 5]]
m1 = Motif(pfm1)
m2 = Motif(pfm2)
self.assertEqual(4, m1.max_pcc(m2)[0])
def test7__read_motifs_pwm(self):
with open(self.pwm2) as f:
motifs = read_motifs(f, fmt="pwm")
motif_ids = [m.id for m in motifs]
self.assertEqual(5, len(motif_ids))
self.assertEqual(
["M1500_1.01", "M5659_1.01", "M5669_1.01", "M5715_1.01", "M5717_1.01"],
motif_ids,
)
def test7__read_motifs_jaspar(self):
with open(self.jaspar) as f:
motifs = read_motifs(f, fmt="jaspar")
my_motifs = ["MA0002.2", "MA0003.3", "MA0004.1", "MA0006.1"]
my_lens = [6, 6, 11, 11]
motif_ids = [m.id for m in motifs]
self.assertEqual(4, len(motif_ids))
self.assertEqual(my_motifs, motif_ids)
self.assertEqual(my_lens, sorted([len(m) for m in motifs]))
def test8_pwm_to_str(self):
pwm = [[0.01, 0.01, 0.01, 0.97], [0.123, 0.456, 0.222, 0.199]]
m = Motif(pwm)
s2 = "0.01\t0.01\t0.01\t0.97\n0.12\t0.46\t0.22\t0.20"
s3 = "0.010\t0.010\t0.010\t0.970\n0.123\t0.456\t0.222\t0.199"
self.assertEqual(s2, m._pwm_to_str(precision=2))
self.assertEqual(s3, m._pwm_to_str(precision=3))
def test8_pwm_to_str_hash(self):
pwm = [[0.01, 0.01, 0.01, 0.97], [0.123, 0.456, 0.222, 0.199]]
m = Motif(pwm)
h = "1f260320cac8c26a"
self.assertEqual(h, m.hash())
pwm = [
[0.010000, 0.010000, 0.010000, 0.970000],
[0.12300, 0.45600, 0.22200, 0.19900],
]
m = Motif(pwm)
self.assertEqual(h, m.hash())
def test9_logodds_matrix(self):
pwm = [[0.5, 0.4, 0.1, 0.0], [0.25, 0.25, 0.25, 0.25]]
logodds = np.array(
[
[0.69813, 0.47623, -0.89160, -4.60517],
[0.00995, 0.00995, 0.00995, 0.00995],
]
)
m = Motif(pwm)
np.testing.assert_almost_equal(logodds, np.array(m.logodds), decimal=5)
def test10_read_motifs(self):
# Read motifs from file
motifs = read_motifs(self.pwm2, fmt="pwm")
self.assertEqual(5, len(motifs))
# Read motifs from file as dictionary
motifs = read_motifs(self.pwm2, fmt="pwm", as_dict=True)
self.assertEqual(5, len(motifs))
self.assertEqual(type({}), type(motifs))
def test11_slice_motif(self):
pfm = [
[120, 0, 0, 0],
[120, 0, 0, 0],
[0, 60, 60, 0],
[0, 0, 0, 120],
[0, 0, 0, 120],
]
m = Motif(pfm)
m.to_consensus()
# take slice
m2 = m[1:-1]
self.assertEqual("AST", m2.consensus.upper())
self.assertEqual(pfm[1:-1], m2.pfm)
def test_motif_export_import(self):
pfm = [
[120, 0, 0, 0],
[120, 0, 0, 0],
[0, 60, 60, 0],
[0, 0, 0, 120],
[0, 0, 0, 120],
]
motif = Motif(pfm)
motif.id = "test_motif"
f = StringIO(motif.to_transfac())
motif_from_file = read_motifs(f, fmt="transfac")[0]
self.assertEqual("AASTT", motif_from_file.to_consensus().upper())
self.assertEqual("test_motif", motif_from_file.id)
f = StringIO(motif.to_meme())
motif_from_file = read_motifs(f, fmt="meme")[0]
self.assertEqual("AASTT", motif_from_file.to_consensus().upper())
self.assertEqual("test_motif", motif_from_file.id)
f = StringIO(motif.to_motevo())
motif_from_file = read_motifs(f, fmt="transfac")[0]
self.assertEqual("AASTT", motif_from_file.to_consensus().upper())
self.assertEqual("test_motif", motif_from_file.id)
def test_motif_from_alignment(self):
align = "AACTT\n" "AAGTA\n" "AACTC\n" "AAGTG\n"
f = StringIO(align)
motif = read_motifs(f, fmt="align")[0]
self.assertEqual("AASTN", motif.to_consensus().upper())
def test_read_motifs_xxmotifs(self):
fname = "test/data/motifprogram/xxmotif.pwm"
motifs = read_motifs(fname, fmt="xxmotif")
self.assertEqual(4, len(motifs))
self.assertEqual(9, len(motifs[-1]))
self.assertEqual("RGGCAWGYC", motifs[-1].to_consensus().upper())
def tearDown(self):
pass
if __name__ == "__main__":
unittest.main()
|
[
"unittest.main",
"gimmemotifs.motif.Motif",
"io.StringIO",
"os.unlink",
"os.path.exists",
"numpy.array",
"gimmemotifs.motif.read_motifs",
"gimmemotifs.shutils.which",
"os.path.join"
] |
[((6224, 6239), 'unittest.main', 'unittest.main', ([], {}), '()\n', (6237, 6239), False, 'import unittest\n'), ((312, 351), 'os.path.join', 'os.path.join', (['self.data_dir', '"""test.pwm"""'], {}), "(self.data_dir, 'test.pwm')\n", (324, 351), False, 'import os\n'), ((834, 841), 'gimmemotifs.motif.Motif', 'Motif', ([], {}), '()\n', (839, 841), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((980, 995), 'gimmemotifs.motif.Motif', 'Motif', (['self.pfm'], {}), '(self.pfm)\n', (985, 995), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((1099, 1114), 'gimmemotifs.motif.Motif', 'Motif', (['self.pfm'], {}), '(self.pfm)\n', (1104, 1114), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((1231, 1246), 'gimmemotifs.motif.Motif', 'Motif', (['self.pfm'], {}), '(self.pfm)\n', (1236, 1246), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((1386, 1402), 'gimmemotifs.shutils.which', 'which', (['"""seqlogo"""'], {}), "('seqlogo')\n", (1391, 1402), False, 'from gimmemotifs.shutils import which\n'), ((1869, 1880), 'gimmemotifs.motif.Motif', 'Motif', (['pfm1'], {}), '(pfm1)\n', (1874, 1880), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((1894, 1905), 'gimmemotifs.motif.Motif', 'Motif', (['pfm2'], {}), '(pfm2)\n', (1899, 1905), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((2859, 2869), 'gimmemotifs.motif.Motif', 'Motif', (['pwm'], {}), '(pwm)\n', (2864, 2869), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((3239, 3249), 'gimmemotifs.motif.Motif', 'Motif', (['pwm'], {}), '(pwm)\n', (3244, 3249), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((3462, 3472), 'gimmemotifs.motif.Motif', 'Motif', (['pwm'], {}), '(pwm)\n', (3467, 3472), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((3630, 3721), 'numpy.array', 'np.array', (['[[0.69813, 0.47623, -0.8916, -4.60517], [0.00995, 0.00995, 0.00995, 0.00995]]'], {}), '([[0.69813, 0.47623, -0.8916, -4.60517], [0.00995, 0.00995, 0.00995,\n 0.00995]])\n', (3638, 3721), True, 'import numpy as np\n'), ((3800, 3810), 'gimmemotifs.motif.Motif', 'Motif', (['pwm'], {}), '(pwm)\n', (3805, 3810), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((3976, 4009), 'gimmemotifs.motif.read_motifs', 'read_motifs', (['self.pwm2'], {'fmt': '"""pwm"""'}), "(self.pwm2, fmt='pwm')\n", (3987, 4009), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((4115, 4162), 'gimmemotifs.motif.read_motifs', 'read_motifs', (['self.pwm2'], {'fmt': '"""pwm"""', 'as_dict': '(True)'}), "(self.pwm2, fmt='pwm', as_dict=True)\n", (4126, 4162), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((4467, 4477), 'gimmemotifs.motif.Motif', 'Motif', (['pfm'], {}), '(pfm)\n', (4472, 4477), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((4868, 4878), 'gimmemotifs.motif.Motif', 'Motif', (['pfm'], {}), '(pfm)\n', (4873, 4878), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((5719, 5734), 'io.StringIO', 'StringIO', (['align'], {}), '(align)\n', (5727, 5734), False, 'from io import StringIO\n'), ((5959, 5992), 'gimmemotifs.motif.read_motifs', 'read_motifs', (['fname'], {'fmt': '"""xxmotif"""'}), "(fname, fmt='xxmotif')\n", (5970, 5992), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((1439, 1454), 'gimmemotifs.motif.Motif', 'Motif', (['self.pfm'], {}), '(self.pfm)\n', (1444, 1454), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((1594, 1620), 'os.unlink', 'os.unlink', (['"""test/test.png"""'], {}), "('test/test.png')\n", (1603, 1620), False, 'import os\n'), ((2049, 2074), 'gimmemotifs.motif.read_motifs', 'read_motifs', (['f'], {'fmt': '"""pwm"""'}), "(f, fmt='pwm')\n", (2060, 2074), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((2406, 2434), 'gimmemotifs.motif.read_motifs', 'read_motifs', (['f'], {'fmt': '"""jaspar"""'}), "(f, fmt='jaspar')\n", (2417, 2434), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((3859, 3878), 'numpy.array', 'np.array', (['m.logodds'], {}), '(m.logodds)\n', (3867, 3878), True, 'import numpy as np\n'), ((4980, 5010), 'gimmemotifs.motif.read_motifs', 'read_motifs', (['f'], {'fmt': '"""transfac"""'}), "(f, fmt='transfac')\n", (4991, 5010), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((5212, 5238), 'gimmemotifs.motif.read_motifs', 'read_motifs', (['f'], {'fmt': '"""meme"""'}), "(f, fmt='meme')\n", (5223, 5238), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((5442, 5472), 'gimmemotifs.motif.read_motifs', 'read_motifs', (['f'], {'fmt': '"""transfac"""'}), "(f, fmt='transfac')\n", (5453, 5472), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((5751, 5778), 'gimmemotifs.motif.read_motifs', 'read_motifs', (['f'], {'fmt': '"""align"""'}), "(f, fmt='align')\n", (5762, 5778), False, 'from gimmemotifs.motif import Motif, read_motifs\n'), ((1549, 1580), 'os.path.exists', 'os.path.exists', (['"""test/test.png"""'], {}), "('test/test.png')\n", (1563, 1580), False, 'import os\n')]
|
'Test the arnet module.'
import sys
sys.path.insert(0, './')
sys.path.insert(0, './tests')
import numpy as np
import torch
import beer
from basetest import BaseTest
class TestUtils(BaseTest):
def test_create_mask(self):
ordering = [2, 0, 1]
max_connections = [1, 0, 1, 1]
device = torch.device('cpu')
mask1 = beer.nnet.arnet.create_mask(ordering, max_connections).numpy()
mask2 = np.array([
[0, 1, 1],
[0, 1, 0],
[0, 1, 1],
[0, 1, 1]
])
self.assertArraysAlmostEqual(mask1, mask2)
def test_create_final_mask(self):
ordering = [2, 0, 1]
max_connections = [0, 1, 1, 0]
device = torch.device('cpu')
mask1 = beer.nnet.arnet.create_final_mask(ordering, max_connections).numpy()
mask2 = np.array([
[1, 1, 1, 1],
[0, 0, 0, 0],
[1, 0, 0, 1]
])
self.assertArraysAlmostEqual(mask1, mask2)
class TestMaskedLinearTransform(BaseTest):
def setUp(self):
self.dim = int(10 + torch.randint(100, (1, 1)).item())
self.dim_out = int(10 + torch.randint(100, (1, 1)).item())
self.npoints = int(1 + torch.randint(100, (1, 1)).item())
self.data = torch.randn(self.npoints, self.dim).type(self.type)
self.ltrans = torch.nn.Linear(self.dim, self.dim_out)
self.mask = torch.ones(self.dim_out, self.dim)
self.masked_ltrans = beer.nnet.arnet.MaskedLinear(self.mask,
self.ltrans).type(self.type)
def test_ltrans(self):
# Don't test the output values, just make sure that everything
# run.
out = self.masked_ltrans(self.data)
self.assertEqual(out.shape[0], self.npoints)
self.assertEqual(out.shape[1], self.dim_out)
def test_type_casting(self):
# Don't test the output values, just make sure that everything
# run.
self.masked_ltrans.float()
self.masked_ltrans.double()
device = torch.device('cpu')
self.masked_ltrans.to(device)
class TestARNetwork(BaseTest):
def setUp(self):
self.conf_nocontext = {
'data_dim': int(10 + torch.randint(100, (1, 1)).item()),
'depth': int(1 + torch.randint(100, (1, 1)).item()),
'width': int(1 + torch.randint(100, (1, 1)).item()),
'activation': 'Tanh',
'context_dim': 0,
}
self.conf_context = {
'data_dim': int(10 + torch.randint(100, (1, 1)).item()),
'depth': int(1 + torch.randint(100, (1, 1)).item()),
'width': int(1 + torch.randint(100, (1, 1)).item()),
'activation': 'Tanh',
'context_dim': int(1 + torch.randint(100, (1, 1)).item()),
}
def test_create(self):
arnet = beer.nnet.arnet.create_arnetwork(self.conf_nocontext)
self.assertEqual(len(arnet), 2 * self.conf_nocontext['depth'] + 1)
arnet = beer.nnet.arnet.create_arnetwork(self.conf_context)
self.assertEqual(len(arnet), 2 * self.conf_context['depth'] + 1)
__all__ = [
'TestUtils',
'TestMaskedLinearTransform',
'TestARNetwork'
]
|
[
"torch.ones",
"torch.randint",
"sys.path.insert",
"beer.nnet.arnet.create_final_mask",
"torch.randn",
"beer.nnet.arnet.MaskedLinear",
"beer.nnet.arnet.create_mask",
"numpy.array",
"beer.nnet.arnet.create_arnetwork",
"torch.nn.Linear",
"torch.device"
] |
[((37, 61), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""./"""'], {}), "(0, './')\n", (52, 61), False, 'import sys\n'), ((62, 91), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""./tests"""'], {}), "(0, './tests')\n", (77, 91), False, 'import sys\n'), ((314, 333), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (326, 333), False, 'import torch\n'), ((429, 483), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 1, 0], [0, 1, 1], [0, 1, 1]]'], {}), '([[0, 1, 1], [0, 1, 0], [0, 1, 1], [0, 1, 1]])\n', (437, 483), True, 'import numpy as np\n'), ((717, 736), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (729, 736), False, 'import torch\n'), ((838, 890), 'numpy.array', 'np.array', (['[[1, 1, 1, 1], [0, 0, 0, 0], [1, 0, 0, 1]]'], {}), '([[1, 1, 1, 1], [0, 0, 0, 0], [1, 0, 0, 1]])\n', (846, 890), True, 'import numpy as np\n'), ((1345, 1384), 'torch.nn.Linear', 'torch.nn.Linear', (['self.dim', 'self.dim_out'], {}), '(self.dim, self.dim_out)\n', (1360, 1384), False, 'import torch\n'), ((1405, 1439), 'torch.ones', 'torch.ones', (['self.dim_out', 'self.dim'], {}), '(self.dim_out, self.dim)\n', (1415, 1439), False, 'import torch\n'), ((2022, 2041), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (2034, 2041), False, 'import torch\n'), ((2828, 2881), 'beer.nnet.arnet.create_arnetwork', 'beer.nnet.arnet.create_arnetwork', (['self.conf_nocontext'], {}), '(self.conf_nocontext)\n', (2860, 2881), False, 'import beer\n'), ((2974, 3025), 'beer.nnet.arnet.create_arnetwork', 'beer.nnet.arnet.create_arnetwork', (['self.conf_context'], {}), '(self.conf_context)\n', (3006, 3025), False, 'import beer\n'), ((350, 404), 'beer.nnet.arnet.create_mask', 'beer.nnet.arnet.create_mask', (['ordering', 'max_connections'], {}), '(ordering, max_connections)\n', (377, 404), False, 'import beer\n'), ((753, 813), 'beer.nnet.arnet.create_final_mask', 'beer.nnet.arnet.create_final_mask', (['ordering', 'max_connections'], {}), '(ordering, max_connections)\n', (786, 813), False, 'import beer\n'), ((1271, 1306), 'torch.randn', 'torch.randn', (['self.npoints', 'self.dim'], {}), '(self.npoints, self.dim)\n', (1282, 1306), False, 'import torch\n'), ((1469, 1521), 'beer.nnet.arnet.MaskedLinear', 'beer.nnet.arnet.MaskedLinear', (['self.mask', 'self.ltrans'], {}), '(self.mask, self.ltrans)\n', (1497, 1521), False, 'import beer\n'), ((1083, 1109), 'torch.randint', 'torch.randint', (['(100)', '(1, 1)'], {}), '(100, (1, 1))\n', (1096, 1109), False, 'import torch\n'), ((1150, 1176), 'torch.randint', 'torch.randint', (['(100)', '(1, 1)'], {}), '(100, (1, 1))\n', (1163, 1176), False, 'import torch\n'), ((1216, 1242), 'torch.randint', 'torch.randint', (['(100)', '(1, 1)'], {}), '(100, (1, 1))\n', (1229, 1242), False, 'import torch\n'), ((2200, 2226), 'torch.randint', 'torch.randint', (['(100)', '(1, 1)'], {}), '(100, (1, 1))\n', (2213, 2226), False, 'import torch\n'), ((2265, 2291), 'torch.randint', 'torch.randint', (['(100)', '(1, 1)'], {}), '(100, (1, 1))\n', (2278, 2291), False, 'import torch\n'), ((2330, 2356), 'torch.randint', 'torch.randint', (['(100)', '(1, 1)'], {}), '(100, (1, 1))\n', (2343, 2356), False, 'import torch\n'), ((2503, 2529), 'torch.randint', 'torch.randint', (['(100)', '(1, 1)'], {}), '(100, (1, 1))\n', (2516, 2529), False, 'import torch\n'), ((2568, 2594), 'torch.randint', 'torch.randint', (['(100)', '(1, 1)'], {}), '(100, (1, 1))\n', (2581, 2594), False, 'import torch\n'), ((2633, 2659), 'torch.randint', 'torch.randint', (['(100)', '(1, 1)'], {}), '(100, (1, 1))\n', (2646, 2659), False, 'import torch\n'), ((2738, 2764), 'torch.randint', 'torch.randint', (['(100)', '(1, 1)'], {}), '(100, (1, 1))\n', (2751, 2764), False, 'import torch\n')]
|
"""
Testing for AUC ROC metric.
"""
from . import helpers
import itertools
import numpy as np
import pyltr
import sklearn.metrics
class TestAUCROC(helpers.TestMetric):
def get_metric(self):
return pyltr.metrics.AUCROC()
def get_queries_with_values(self):
for i in range(0, 7):
for tup in itertools.product(*([(0, 1)] * i)):
if any(e != tup[0] for e in tup):
yield (np.array(tup),
sklearn.metrics.roc_auc_score(tup, range(i, 0, -1)))
else:
yield np.array(tup), 0.0
def get_queries(self):
for i in range(0, 7):
for tup in itertools.product(*([(0, 1)] * i)):
yield np.array(tup)
|
[
"pyltr.metrics.AUCROC",
"numpy.array",
"itertools.product"
] |
[((214, 236), 'pyltr.metrics.AUCROC', 'pyltr.metrics.AUCROC', ([], {}), '()\n', (234, 236), False, 'import pyltr\n'), ((330, 364), 'itertools.product', 'itertools.product', (['*([(0, 1)] * i)'], {}), '(*([(0, 1)] * i))\n', (347, 364), False, 'import itertools\n'), ((686, 720), 'itertools.product', 'itertools.product', (['*([(0, 1)] * i)'], {}), '(*([(0, 1)] * i))\n', (703, 720), False, 'import itertools\n'), ((744, 757), 'numpy.array', 'np.array', (['tup'], {}), '(tup)\n', (752, 757), True, 'import numpy as np\n'), ((443, 456), 'numpy.array', 'np.array', (['tup'], {}), '(tup)\n', (451, 456), True, 'import numpy as np\n'), ((586, 599), 'numpy.array', 'np.array', (['tup'], {}), '(tup)\n', (594, 599), True, 'import numpy as np\n')]
|
# external libraries
import unittest
import numpy as np
# class to be tested
from rss.src.RSSvectors import Mom4
class Mom4TestCase(unittest.TestCase):
def test_boosted_to_rest_frame_of(self):
"""
Test that the boosting function works as advertised
"""
p4 = Mom4(10,0,0,9.9) # Alon z-axis
print(p4[-1])
p4_in_rest_frame = p4.boosted_to_rest_frame_of( p4 )
self.assertAlmostEqual(p4_in_rest_frame.E, np.sqrt(10**2 - 9.9**2))
self.assertAlmostEqual(p4_in_rest_frame.px,0)
self.assertAlmostEqual(p4_in_rest_frame.py,0)
self.assertAlmostEqual(p4_in_rest_frame.pz,0)
p4 = Mom4(10,3,3,3) # Along arbitrary axis
p4_in_rest_frame = p4.boosted_to_rest_frame_of( p4 )
self.assertAlmostEqual(p4_in_rest_frame.E, np.sqrt(10**2 - 3 * 3**2))
self.assertAlmostEqual(p4_in_rest_frame.px,0)
self.assertAlmostEqual(p4_in_rest_frame.py,0)
self.assertAlmostEqual(p4_in_rest_frame.pz,0)
p4 = Mom4(10,0,0,6)
k4 = Mom4(10,0,1,6) # Boosting a different momentum
k4_in_rest_frame = k4.boosted_to_rest_frame_of( p4 )
self.assertAlmostEqual(k4_in_rest_frame.E, np.sqrt(10**2 - 6**2))
self.assertAlmostEqual(k4_in_rest_frame.px,0)
self.assertAlmostEqual(k4_in_rest_frame.py,1)
self.assertAlmostEqual(k4_in_rest_frame.pz,0)
def test_boosted_away_with_momentum(self):
"""
Test that the boosting function works as advertised
"""
rest_mom = Mom4(1,0,0,0)
p4 = Mom4(10,0,0,6) # Along z-axis
rest_mom_boosted_away = rest_mom.boosted_away_with_momentum( p4 )
self.assertAlmostEqual(rest_mom_boosted_away.E, 10/np.sqrt(10**2-6**2) )
self.assertAlmostEqual(rest_mom_boosted_away.px,0)
self.assertAlmostEqual(rest_mom_boosted_away.py,0)
self.assertAlmostEqual(rest_mom_boosted_away.pz,10*(6/10)/np.sqrt(10**2-6**2))
moving = Mom4(10,0,-7,0)
push = Mom4(10,0,+7,0) # Along arbitrary axis
moving_pushed_opposite = moving.boosted_away_with_momentum( push )
self.assertAlmostEqual(moving_pushed_opposite.E, np.sqrt(10**2 - 7**2))
self.assertAlmostEqual(moving_pushed_opposite.px,0)
self.assertAlmostEqual(moving_pushed_opposite.py,0)
self.assertAlmostEqual(moving_pushed_opposite.pz,0)
|
[
"rss.src.RSSvectors.Mom4",
"numpy.sqrt"
] |
[((300, 319), 'rss.src.RSSvectors.Mom4', 'Mom4', (['(10)', '(0)', '(0)', '(9.9)'], {}), '(10, 0, 0, 9.9)\n', (304, 319), False, 'from rss.src.RSSvectors import Mom4\n'), ((667, 684), 'rss.src.RSSvectors.Mom4', 'Mom4', (['(10)', '(3)', '(3)', '(3)'], {}), '(10, 3, 3, 3)\n', (671, 684), False, 'from rss.src.RSSvectors import Mom4\n'), ((1021, 1038), 'rss.src.RSSvectors.Mom4', 'Mom4', (['(10)', '(0)', '(0)', '(6)'], {}), '(10, 0, 0, 6)\n', (1025, 1038), False, 'from rss.src.RSSvectors import Mom4\n'), ((1049, 1066), 'rss.src.RSSvectors.Mom4', 'Mom4', (['(10)', '(0)', '(1)', '(6)'], {}), '(10, 0, 1, 6)\n', (1053, 1066), False, 'from rss.src.RSSvectors import Mom4\n'), ((1545, 1561), 'rss.src.RSSvectors.Mom4', 'Mom4', (['(1)', '(0)', '(0)', '(0)'], {}), '(1, 0, 0, 0)\n', (1549, 1561), False, 'from rss.src.RSSvectors import Mom4\n'), ((1572, 1589), 'rss.src.RSSvectors.Mom4', 'Mom4', (['(10)', '(0)', '(0)', '(6)'], {}), '(10, 0, 0, 6)\n', (1576, 1589), False, 'from rss.src.RSSvectors import Mom4\n'), ((1981, 1999), 'rss.src.RSSvectors.Mom4', 'Mom4', (['(10)', '(0)', '(-7)', '(0)'], {}), '(10, 0, -7, 0)\n', (1985, 1999), False, 'from rss.src.RSSvectors import Mom4\n'), ((2012, 2030), 'rss.src.RSSvectors.Mom4', 'Mom4', (['(10)', '(0)', '(+7)', '(0)'], {}), '(10, 0, +7, 0)\n', (2016, 2030), False, 'from rss.src.RSSvectors import Mom4\n'), ((466, 493), 'numpy.sqrt', 'np.sqrt', (['(10 ** 2 - 9.9 ** 2)'], {}), '(10 ** 2 - 9.9 ** 2)\n', (473, 493), True, 'import numpy as np\n'), ((818, 847), 'numpy.sqrt', 'np.sqrt', (['(10 ** 2 - 3 * 3 ** 2)'], {}), '(10 ** 2 - 3 * 3 ** 2)\n', (825, 847), True, 'import numpy as np\n'), ((1209, 1234), 'numpy.sqrt', 'np.sqrt', (['(10 ** 2 - 6 ** 2)'], {}), '(10 ** 2 - 6 ** 2)\n', (1216, 1234), True, 'import numpy as np\n'), ((2184, 2209), 'numpy.sqrt', 'np.sqrt', (['(10 ** 2 - 7 ** 2)'], {}), '(10 ** 2 - 7 ** 2)\n', (2191, 2209), True, 'import numpy as np\n'), ((1736, 1761), 'numpy.sqrt', 'np.sqrt', (['(10 ** 2 - 6 ** 2)'], {}), '(10 ** 2 - 6 ** 2)\n', (1743, 1761), True, 'import numpy as np\n'), ((1942, 1967), 'numpy.sqrt', 'np.sqrt', (['(10 ** 2 - 6 ** 2)'], {}), '(10 ** 2 - 6 ** 2)\n', (1949, 1967), True, 'import numpy as np\n')]
|
import numpy as np
from keras import backend as K
from keras.applications.imagenet_utils import preprocess_input
from keras.preprocessing import image
from heatmap import synset_to_dfs_ids
from heatmap import to_heatmap
def helper_test(model):
img_path = "../examples/dog.jpg"
new_model = to_heatmap(model)
# Loading the image
img = image.load_img(img_path, target_size=(800, 800))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
out = new_model.predict(x)
s = "n02084071" # Imagenet code for "dog"
ids = synset_to_dfs_ids(s)
heatmap = out[0]
if K.image_data_format() == 'channels_first':
heatmap = heatmap[ids]
heatmap = np.sum(heatmap, axis=0)
else:
heatmap = heatmap[:, :, ids]
heatmap = np.sum(heatmap, axis=2)
print(heatmap.shape)
assert heatmap.shape[0] == heatmap.shape[1]
K.clear_session()
|
[
"heatmap.synset_to_dfs_ids",
"numpy.sum",
"keras.backend.image_data_format",
"heatmap.to_heatmap",
"numpy.expand_dims",
"keras.preprocessing.image.img_to_array",
"keras.preprocessing.image.load_img",
"keras.applications.imagenet_utils.preprocess_input",
"keras.backend.clear_session"
] |
[((300, 317), 'heatmap.to_heatmap', 'to_heatmap', (['model'], {}), '(model)\n', (310, 317), False, 'from heatmap import to_heatmap\n'), ((353, 401), 'keras.preprocessing.image.load_img', 'image.load_img', (['img_path'], {'target_size': '(800, 800)'}), '(img_path, target_size=(800, 800))\n', (367, 401), False, 'from keras.preprocessing import image\n'), ((410, 433), 'keras.preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (428, 433), False, 'from keras.preprocessing import image\n'), ((442, 467), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (456, 467), True, 'import numpy as np\n'), ((476, 495), 'keras.applications.imagenet_utils.preprocess_input', 'preprocess_input', (['x'], {}), '(x)\n', (492, 495), False, 'from keras.applications.imagenet_utils import preprocess_input\n'), ((586, 606), 'heatmap.synset_to_dfs_ids', 'synset_to_dfs_ids', (['s'], {}), '(s)\n', (603, 606), False, 'from heatmap import synset_to_dfs_ids\n'), ((917, 934), 'keras.backend.clear_session', 'K.clear_session', ([], {}), '()\n', (932, 934), True, 'from keras import backend as K\n'), ((635, 656), 'keras.backend.image_data_format', 'K.image_data_format', ([], {}), '()\n', (654, 656), True, 'from keras import backend as K\n'), ((727, 750), 'numpy.sum', 'np.sum', (['heatmap'], {'axis': '(0)'}), '(heatmap, axis=0)\n', (733, 750), True, 'import numpy as np\n'), ((816, 839), 'numpy.sum', 'np.sum', (['heatmap'], {'axis': '(2)'}), '(heatmap, axis=2)\n', (822, 839), True, 'import numpy as np\n')]
|
from __future__ import print_function, division
import sys
from datetime import datetime
from collections import OrderedDict
import numpy as np
import h5py
from .data import Dataset, SyncRecording, PatchClampRecording, TSeries
from .test_pulse import PatchClampTestPulse
from . import stimuli
class MiesNwb(Dataset):
"""Class for accessing data from a MIES-generated NWB file.
"""
def __init__(self, filename):
Dataset.__init__(self)
self.filename = filename
self._hdf = None
self._sweeps = None
self._timeseries = None
self._groups = None
self._notebook = None
self.open()
@property
def hdf(self):
if self._hdf is None:
self.open()
return self._hdf
def notebook(self):
"""Return compiled data from the lab notebook.
The format is a dict like ``{sweep_number: [ch1, ch2, ...]}`` that contains one key:value
pair per sweep. Each value is a list containing one metadata dict for each channel in the
sweep. For example::
nwb.notebook()[sweep_id][channel_id][metadata_key]
"""
if self._notebook is None:
# collect all lab notebook entries
sweep_entries = OrderedDict()
tp_entries = []
device = list(self.hdf['general/devices'].keys())[0].split('_',1)[-1]
nb_keys = self.hdf['general']['labnotebook'][device]['numericalKeys'][0]
nb_fields = OrderedDict([(k, i) for i,k in enumerate(nb_keys)])
# convert notebook to array here, otherwise we incur the decompression cost for the entire
# dataset every time we try to access part of it.
nb = np.array(self.hdf['general']['labnotebook'][device]['numericalValues'])
# EntrySourceType field is needed to distinguish between records created by TP vs sweep
entry_source_type_index = nb_fields.get('EntrySourceType', None)
nb_iter = iter(range(nb.shape[0])) # so we can skip multiple rows from within the loop
for i in nb_iter:
rec = nb[i]
sweep_num = rec[0,0]
is_tp_record = False
is_sweep_record = False
# ignore records that were generated by test pulse
# (note: entrySourceType is nan if an older pxp is re-exported to nwb using newer MIES)
if entry_source_type_index is not None and not np.isnan(rec[entry_source_type_index][0]):
if rec[entry_source_type_index][0] == 0:
is_sweep_record = True
else:
is_tp_record = True
elif i < nb.shape[0] - 1:
# Older files may be missing EntrySourceType. In this case, we can identify TP blocks
# as two records containing a "TP Peak Resistance" value in the first record followed
# by a "TP Pulse Duration" value in the second record.
tp_peak = rec[nb_fields['TP Peak Resistance']]
if any(np.isfinite(tp_peak)):
tp_dur = nb[i+1][nb_fields['TP Pulse Duration']]
if any(np.isfinite(tp_dur)):
next(nb_iter)
is_tp_record = True
if not is_tp_record:
is_sweep_record = np.isfinite(sweep_num)
if is_tp_record:
rec = np.array(rec)
next(nb_iter)
rec2 = np.array(nb[i+1])
mask = ~np.isnan(rec2)
rec[mask] = rec2[mask]
tp_entries.append(rec)
elif is_sweep_record:
sweep_num = int(sweep_num)
# each sweep gets multiple nb records; for each field we use the last non-nan value in any record
if sweep_num not in sweep_entries:
sweep_entries[sweep_num] = np.array(rec)
else:
mask = ~np.isnan(rec)
sweep_entries[sweep_num][mask] = rec[mask]
for swid, entry in sweep_entries.items():
# last column is "global"; applies to all channels
mask = ~np.isnan(entry[:,8])
entry[mask] = entry[:,8:9][mask]
# first 4 fields of first column apply to all channels
entry[:4] = entry[:4, 0:1]
# async AD fields (notably used to record temperature) appear
# only in column 0, but might move to column 8 later? Since these
# are not channel-specific, we'll copy them to all channels
for i,k in enumerate(nb_keys):
if not k.startswith('Async AD '):
continue
entry[i] = entry[i, 0]
# convert to list-o-dicts
meta = []
for i in range(entry.shape[1]):
tm = entry[:, i]
meta.append(OrderedDict([(nb_keys[j], (None if np.isnan(tm[j]) else tm[j])) for j in range(len(nb_keys))]))
sweep_entries[swid] = meta
# Load textual keys in a similar way
text_nb_keys = self.hdf['general']['labnotebook'][device]['textualKeys'][0]
text_nb_fields = OrderedDict([(k, i) for i,k in enumerate(text_nb_keys)])
text_nb = np.array(self.hdf['general']['labnotebook'][device]['textualValues'])
entry_source_type_index = text_nb_fields.get('EntrySourceType', None)
for rec in text_nb:
if entry_source_type_index is None:
# older nwb files lack EntrySourceType; fake it for now
source_type = 0
else:
try:
source_type = int(rec[entry_source_type_index, 0])
except ValueError:
# No entry source type recorded here; skip for now.
continue
if source_type != 0:
# Select only sweep records for now.
continue
try:
sweep_id = int(rec[0,0])
except ValueError:
# Not sure how to handle records with no sweep ID; skip for now.
continue
sweep_entry = sweep_entries[sweep_id]
for k,i in text_nb_fields.items():
for j, val in enumerate(rec[i, :-1]):
if k in sweep_entry[j]:
# already have a value here; don't overwrite.
continue
if val == '':
# take value from last column if this one is empty
val == rec[i, -1]
if val == '':
# no value here; skip.
continue
sweep_entry[j][k] = val
self._notebook = sweep_entries
self._tp_notebook = tp_entries
self._notebook_keys = nb_fields
self._tp_entries = None
return self._notebook
@property
def contents(self):
"""A list of all sweeps in this file.
"""
if self._sweeps is None:
# sort all timeseries groups into sweeps / channels
self._timeseries = {}
for ts_name, ts in self.hdf['acquisition/timeseries'].items():
src = dict([field.split('=') for field in ts.attrs['source'].split(';')])
sweep = int(src['Sweep'])
ad_chan = int(src['AD'])
src['hdf_group_name'] = 'acquisition/timeseries/' + ts_name
self._timeseries.setdefault(sweep, {})[ad_chan] = src
sweep_ids = sorted(list(self._timeseries.keys()))
self._sweeps = []
for sweep_id in sweep_ids:
try:
srec = self.create_sync_recording(int(sweep_id))
except Exception:
print("Skipping sweep %s:" % sweep_id)
sys.excepthook(*sys.exc_info())
continue
self._sweeps.append(srec)
return self._sweeps
def create_sync_recording(self, sweep_id):
return MiesSyncRecording(self, sweep_id)
def close(self):
self.hdf.close()
self._hdf = None
def open(self):
if self._hdf is not None:
return
try:
self._hdf = h5py.File(self.filename, 'r')
except Exception:
print("Error opening: %s" % self.filename)
raise
def __enter__(self):
self.open()
return self
def __exit__(self, *args):
self.close()
@staticmethod
def pack_sweep_data(sweeps):
"""Return a single array containing all data from a list of sweeps.
The array shape is (sweeps, channels, samples, 2), where the final axis
contains recorded data at index 0 and the stimulus at index 1.
All sweeps must have the same length and number of channels.
"""
sweeps = [s.data() for s in sweeps]
data = np.empty((len(sweeps),) + sweeps[0].shape, dtype=sweeps[0].dtype)
for i in range(len(sweeps)):
data[i] = sweeps[i]
return data
@staticmethod
def igorpro_date(timestamp):
"""Convert an IgorPro timestamp (seconds since 1904-01-01) to a datetime
object.
"""
dt = datetime(1970,1,1) - datetime(1904,1,1)
return datetime.utcfromtimestamp(timestamp) - dt
@property
def children(self):
return self.contents
def __repr__(self):
return "<%s %s>" % (self.__class__.__name__, self.filename)
def __getstate__(self):
state = self.__dict__.copy()
# don't try to pickle hdf objects
state['_hdf'] = None
return state
def test_pulse_entries(self):
if self._tp_entries is None:
self._tp_entries = []
fields = ['TP Baseline Vm', 'TP Baseline pA', 'TP Peak Resistance', 'TP Steady State Resistance']
stim_fields = ['TP Baseline Fraction', 'TP Amplitude VC', 'TP Amplitude IC', 'TP Pulse Duration']
for rec in self._tp_notebook:
entry = {'timestamp': MiesNwb.igorpro_date(rec[1, 0])}
for f in fields:
i = self._notebook_keys[f]
entry[f] = rec[i, :8]
entry['stim'] = {f:rec[self._notebook_keys[f], 8] for f in stim_fields}
self._tp_entries.append(entry)
return self._tp_entries
class MiesTSeries(TSeries):
def __init__(self, recording, chan):
start = recording._meta['start_time']
# Note: this is also available in meta()['Minimum Sampling interval'],
# but that key is missing in some older NWB files.
dt = recording.primary_hdf.attrs['IGORWaveScaling'][1,0] / 1000.
TSeries.__init__(self, recording=recording, channel_id=chan, dt=dt, start_time=start)
@property
def data(self):
if self._data is None:
rec = self.recording
chan = self.channel_id
if chan == 'primary':
scale = 1e-12 if rec.clamp_mode == 'vc' else 1e-3
self._data = np.array(rec.primary_hdf) * scale
elif chan == 'command':
scale = 1e-3 if rec.clamp_mode == 'vc' else 1e-12
# command values are stored _without_ holding, so we add
# that back in here.
offset = rec.holding_potential if rec.clamp_mode == 'vc' else rec.holding_current
if offset is None:
exc = Exception("Holding value unknown for this recording; cannot generate command data.")
# Mark this exception so it can be ignored in specific places
exc._ignorable_bug_flag = True
raise exc
self._data = (np.array(rec.command_hdf) * scale) + offset
return self._data
@property
def shape(self):
# allow accessing shape without reading all data
if self._data is None:
rec = self.recording
chan = self.channel_id
if chan == 'primary':
return rec.primary_hdf.shape
elif chan == 'command':
return rec.command_hdf.shape
else:
return self._data.shape
class MiesRecording(PatchClampRecording):
"""A single stimulus / recording made on a single channel.
"""
def __init__(self, sweep, sweep_id, ad_chan):
self._sweep = sweep
self._nwb = sweep._nwb
self._trace_id = (sweep_id, ad_chan)
self._inserted_test_pulse = None
self._nearest_test_pulse = None
self._hdf_group_name = sweep._channel_keys[ad_chan]['hdf_group_name']
self._hdf_group = None
self._da_chan = None
headstage_id = int(self.hdf_group['electrode_name'][()][0].split('_')[1])
PatchClampRecording.__init__(self, device_type='MultiClamp 700', device_id=headstage_id,
sync_recording=sweep)
# update metadata
nb = self._nwb.notebook()[int(self._trace_id[0])][headstage_id]
self.meta['holding_potential'] = (
None if nb['V-Clamp Holding Level'] is None
else nb['V-Clamp Holding Level'] * 1e-3
)
self.meta['holding_current'] = (
None if nb['I-Clamp Holding Level'] is None
else nb['I-Clamp Holding Level'] * 1e-12
)
self._meta['notebook'] = nb
if nb['Clamp Mode'] == 0:
self._meta['clamp_mode'] = 'vc'
else:
self._meta['clamp_mode'] = 'ic'
self._meta['bridge_balance'] = (
0.0 if nb['Bridge Bal Enable'] == 0.0 or nb['Bridge Bal Value'] is None
else nb['Bridge Bal Value'] * 1e6
)
self._meta['lpf_cutoff'] = nb['LPF Cutoff']
offset = nb['Pipette Offset'] # sometimes the pipette offset recording can fail??
self._meta['pipette_offset'] = None if offset is None else offset * 1e-3
datetime = MiesNwb.igorpro_date(nb['TimeStamp'])
self.meta['start_time'] = datetime
self._channels['primary'] = MiesTSeries(self, 'primary')
self._channels['command'] = MiesTSeries(self, 'command')
@property
def stimulus(self):
stim = self._meta.get('stimulus', None)
if stim is None:
stim = MiesStimulus(self)
self._meta['stimulus'] = stim
return stim
def _stim_wave_note(self):
"""Return version and epochs from stim wave note
"""
notebook = self._meta['notebook']
sweep_count = int(notebook['Set Sweep Count'])
wave_note = notebook['Stim Wave Note']
lines = wave_note.split('\n')
version = [line for line in lines if line.startswith('Version =')]
if len(version) == 0:
version = 0
else:
version = float(version[0].rstrip(';').split(' = ')[1])
epochs = []
for line in lines:
if not line.startswith('Sweep = %d;' % sweep_count):
continue
epoch = dict([part.split(' = ') for part in line.split(';') if '=' in part])
epochs.append(epoch)
return version, epochs
@property
def hdf_group(self):
if self._hdf_group is None:
self._hdf_group = self._nwb.hdf[self._hdf_group_name]
return self._hdf_group
@property
def clamp_mode(self):
return 'vc' if self.meta['notebook']['Clamp Mode'] == 0 else 'ic'
@property
def primary_hdf(self):
"""The raw HDF5 data containing the primary channel recording
"""
return self.hdf_group['data']
@property
def command_hdf(self):
"""The raw HDF5 data containing the stimulus command
"""
return self._nwb.hdf['stimulus/presentation/data_%05d_DA%d/data' % (self._trace_id[0], self.da_chan())]
@property
def nearest_test_pulse(self):
"""The test pulse that was acquired nearest to this recording.
"""
if self.has_inserted_test_pulse:
return self.inserted_test_pulse
else:
if self._nearest_test_pulse is None:
self._find_nearest_test_pulse()
return self._nearest_test_pulse
def _find_nearest_test_pulse(self):
start = self.start_time
min_dt = None
nearest = None
for entry in self._nwb.test_pulse_entries():
dt = abs((entry['timestamp'] - start).total_seconds())
if min_dt is None or dt < min_dt:
min_dt = dt
nearest = entry
if nearest is None:
return None
self._nearest_test_pulse = MiesTestPulse(nearest, self)
@property
def has_inserted_test_pulse(self):
return self.meta['notebook']['TP Insert Checkbox'] == 1.0
@property
def inserted_test_pulse(self):
"""Return the test pulse inserted at the beginning of the recording,
or None if no pulse was inserted.
"""
if self._inserted_test_pulse is None:
if not self.has_inserted_test_pulse:
return None
# get start/stop indices of the test pulse region
pulse_dur = self.meta['notebook']['TP Pulse Duration'] / 1000.
total_dur = pulse_dur / (1.0 - 2. * self.meta['notebook']['TP Baseline Fraction'])
start = 0
stop = start + int(total_dur / self['primary'].dt)
tp = PatchClampTestPulse(self, indices=(start, stop))
# Record amplitude as specified by MIES
if self.clamp_mode == 'vc':
amp = self.meta['notebook']['TP Amplitude VC'] * 1e-3
else:
amp = self.meta['notebook']['TP Amplitude IC'] * 1e-12
self._inserted_test_pulse = tp
return self._inserted_test_pulse
@property
def baseline_regions(self):
"""A list of (start, stop) time pairs that cover regions of the recording
the cell is expected to be in a steady state.
"""
pri = self['primary']
regions = []
start = self.meta['notebook']['Delay onset auto'] / 1000. # duration of test pulse
dur = self.meta['notebook']['Delay onset user'] / 1000. # duration of baseline
if dur > 0:
regions.append((start, start+dur))
dur = self.meta['notebook']['Delay termination'] / 1000.
if dur > 0:
regions.append((pri.t_end-dur, pri.t_end))
return regions
def da_chan(self):
"""Return the DA channel ID for this recording.
"""
if self._da_chan is None:
hdf = self._nwb.hdf['stimulus/presentation']
stims = [k for k in hdf.keys() if k.startswith('data_%05d_'%self._trace_id[0])]
for s in stims:
elec = hdf[s]['electrode_name'][()][0]
if elec == 'electrode_%d' % self.device_id:
self._da_chan = int(s.split('_')[-1][2:])
if self._da_chan is None:
raise Exception("Cannot find DA channel for headstage %d" % self.device_id)
return self._da_chan
def _descr(self):
stim = self.stimulus
stim_name = '' if stim is None else stim.description
return "%s %s.%s stim=%s" % (PatchClampRecording._descr(self), self._trace_id[0], self.device_id, stim_name)
def __getstate__(self):
state = self.__dict__.copy()
state['_hdf_group'] = None
return state
class MiesTestPulse(PatchClampTestPulse):
def __init__(self, entry, rec):
chan = rec.device_id
self._nb_entry = {}
for k,v in entry.items():
if isinstance(v, np.ndarray):
self._nb_entry[k] = v[chan]
else:
self._nb_entry[k] = v
clamp_mode = 'vc' if np.isnan(self._nb_entry['TP Baseline Vm']) else 'ic'
PatchClampRecording.__init__(self,
device_type=rec.device_type,
device_id=rec.device_id,
start_time=entry['timestamp'],
channels={},
clamp_mode=clamp_mode
)
@property
def indices(self):
return None
@property
def access_resistance(self):
"""The access resistance measured from this test pulse.
Includes the bridge balance resistance if the recording was made in
current clamp mode.
"""
if self.clamp_mode == 'vc':
return self._nb_entry['TP Peak Resistance'] * 1e6
else:
return None
@property
def input_resistance(self):
"""The input resistance measured from this test pulse.
"""
return self._nb_entry['TP Steady State Resistance'] * 1e6
@property
def capacitance(self):
"""The capacitance of the cell measured from this test pulse.
"""
return None
@property
def time_constant(self):
"""The membrane time constant measured from this test pulse.
"""
return None
@property
def baseline_potential(self):
"""The potential of the cell membrane measured (or clamped) before
the onset of the test pulse.
"""
if self.clamp_mode == 'ic':
return self._nb_entry['TP Baseline Vm'] * 1e-3
else:
return None # how do we get the holding potential??
@property
def baseline_current(self):
"""The pipette current measured (or clamped) before the onset of the
test pulse.
"""
if self.clamp_mode == 'vc':
return self._nb_entry['TP Baseline pA'] * 1e-12
else:
return None # how do we get the holding current??
class MiesSyncRecording(SyncRecording):
"""Represents one recorded sweep with multiple channels.
"""
def __init__(self, nwb, sweep_id):
sweep_id = int(sweep_id)
self._nwb = nwb
self._sweep_id = sweep_id
self._chan_meta = None
self._traces = None
self._notebook_entry = None
# get list of all A/D channels in this sweep
self._channel_keys = self._nwb._timeseries.get(sweep_id, {})
self._ad_channels = sorted(list(self._channel_keys.keys()))
devs = OrderedDict()
for ch in self._ad_channels:
# there is a very rare/specific acquisition bug that we want to be able to ignore here:
try:
hdf_group_name = self._channel_keys[ch]['hdf_group_name']
rec = self.create_recording(sweep_id, ch)
except Exception as exc:
if hasattr(exc, '_ignorable_bug_flag'):
print("Warning: ignoring channel %s in %s; could not determine holding value." % (ch, self))
continue
else:
raise
devs[rec.device_id] = rec
SyncRecording.__init__(self, devs, parent=nwb)
self._meta['sweep_id'] = sweep_id
def create_recording(self, sweep_id, ch):
return MiesRecording(self, sweep_id, ch)
@property
def key(self):
return self._sweep_id
def __repr__(self):
return "<%s sweep=%d>" % (self.__class__.__name__, self._sweep_id)
@property
def parent(self):
return self._nwb
class MiesStimulus(stimuli.Stimulus):
"""Stimulus that generates its children by parsing a MIES wavenote
"""
def __init__(self, recording):
self._recording = recording
stim_name = recording.hdf_group['stimulus_description'][()][0]
stimuli.Stimulus.__init__(self, description=stim_name)
self._items = None
@property
def items(self):
if self._items is None:
self._items = []
self._parse_wavenote()
return tuple(self._items)
def _parse_wavenote(self):
rec = self._recording
# Add holding offset
if rec.clamp_mode == 'ic':
units = 'A'
self.append_item(stimuli.Offset(
start_time=0,
amplitude=rec.holding_current,
description="holding current",
units=units,
))
elif rec.clamp_mode == 'vc':
units = 'V'
self.append_item(stimuli.Offset(
start_time=0,
amplitude=rec.holding_potential,
description="holding potential",
units=units,
))
else:
units = None
# inserted test pulse?
if rec.has_inserted_test_pulse:
self.append_item(rec.inserted_test_pulse.stimulus)
notebook = rec._meta['notebook']
if 'Stim Wave Note' in notebook:
# Stim Wave Note format is explained here:
# https://alleninstitute.github.io/MIES/file/_m_i_e_s___wave_builder_8ipf.html#_CPPv319WB_GetWaveNoteEntry4wave8variable6string8variable8variable
# read stimulus structure from notebook
version, epochs = rec._stim_wave_note()
assert len(epochs) > 0
scale = (1e-3 if rec.clamp_mode == 'vc' else 1e-12) * notebook['Stim Scale Factor']
t = (notebook['Delay onset oodDAQ'] + notebook['Delay onset user'] + notebook['Delay onset auto']) * 1e-3
# if dDAQ is active, add delay from previous channels
if notebook['Distributed DAQ'] == 1.0:
ddaq_delay = notebook['Delay distributed DAQ'] * 1e-3
for dev in rec.parent.devices:
rec = rec.parent[dev]
if rec is self._recording:
break
_, epochs = rec._stim_wave_note()
for ep in epochs:
dt = float(ep.get('Duration', 0)) * 1e-3
t += dt
t += ddaq_delay
for epoch_n,epoch in enumerate(epochs):
try:
if epoch['Epoch'] == 'nan':
# Sweep-specific entry; not sure if we need to do anything with this.
continue
stim_type = epoch.get('Type')
duration = float(epoch.get('Duration', 0)) * 1e-3
name = "Epoch %d" % int(epoch['Epoch'])
if stim_type == 'Square pulse':
item = stimuli.SquarePulse(
start_time=t,
amplitude=float(epoch['Amplitude']) * scale,
duration=duration,
description=name,
units=units,
)
elif stim_type == 'Pulse Train':
assert epoch['Poisson distribution'] == 'False', "Poisson distributed pulse train not supported"
assert epoch['Mixed frequency'] == 'False', "Mixed frequency pulse train not supported"
assert epoch['Pulse Type'] == 'Square', "Pulse train with %s pulse type not supported"
item = stimuli.SquarePulseTrain(
start_time=t,
n_pulses=int(epoch['Number of pulses']),
pulse_duration=float(epoch['Pulse duration']) * 1e-3,
amplitude=float(epoch['Amplitude']) * scale,
interval=float(epoch['Pulse To Pulse Length']) * 1e-3,
description=name,
units=units,
)
elif stim_type == 'Sin Wave':
# bug in stim wave note version 2: log chirp field is inverted
is_chirp = epoch['Log chirp'] == ('False' if version <= 2 else 'True')
if is_chirp:
assert epoch['FunctionType'] == 'Sin', "Chirp wave function type %s not supported" % epoch['Function type']
item = stimuli.Chirp(
start_time=t,
start_frequency=float(epoch['Frequency']),
end_frequency=float(epoch['End frequency']),
duration=duration,
amplitude=float(epoch['Amplitude']) * scale,
phase=0,
offset=float(epoch['Offset']) * scale,
description=name,
units=units,
)
else:
if epoch['FunctionType'] == 'Sin':
phase = 0
elif epoch['FunctionType'] == 'Cos':
phase = np.pi / 2.0
else:
raise ValueError("Unsupported sine wave function type: %r" % epoch['FunctionType'])
item = stimuli.Sine(
start_time=t,
frequency=float(epoch['Frequency']),
duration=duration,
amplitude=float(epoch['Amplitude']) * scale,
phase=phase,
offset=float(epoch['Offset']) * scale,
description=name,
units=units,
)
else:
print(epoch)
print("Warning: unknown stimulus type %s in %s sweep %s" % (stim_type, rec._nwb, rec._trace_id))
item = None
except Exception as exc:
print("Warning: error reading stimulus epoch %d in %s sweep %s: %s" % (epoch_n, rec._nwb, rec._trace_id, str(exc)))
t += duration
if item is not None:
self.append_item(item)
|
[
"h5py.File",
"numpy.isfinite",
"numpy.isnan",
"datetime.datetime",
"datetime.datetime.utcfromtimestamp",
"numpy.array",
"sys.exc_info",
"collections.OrderedDict"
] |
[((23002, 23015), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (23013, 23015), False, 'from collections import OrderedDict\n'), ((1266, 1279), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1277, 1279), False, 'from collections import OrderedDict\n'), ((1735, 1806), 'numpy.array', 'np.array', (["self.hdf['general']['labnotebook'][device]['numericalValues']"], {}), "(self.hdf['general']['labnotebook'][device]['numericalValues'])\n", (1743, 1806), True, 'import numpy as np\n'), ((5561, 5630), 'numpy.array', 'np.array', (["self.hdf['general']['labnotebook'][device]['textualValues']"], {}), "(self.hdf['general']['labnotebook'][device]['textualValues'])\n", (5569, 5630), True, 'import numpy as np\n'), ((8807, 8836), 'h5py.File', 'h5py.File', (['self.filename', '"""r"""'], {}), "(self.filename, 'r')\n", (8816, 8836), False, 'import h5py\n'), ((9817, 9837), 'datetime.datetime', 'datetime', (['(1970)', '(1)', '(1)'], {}), '(1970, 1, 1)\n', (9825, 9837), False, 'from datetime import datetime\n'), ((9838, 9858), 'datetime.datetime', 'datetime', (['(1904)', '(1)', '(1)'], {}), '(1904, 1, 1)\n', (9846, 9858), False, 'from datetime import datetime\n'), ((9872, 9908), 'datetime.datetime.utcfromtimestamp', 'datetime.utcfromtimestamp', (['timestamp'], {}), '(timestamp)\n', (9897, 9908), False, 'from datetime import datetime\n'), ((20546, 20588), 'numpy.isnan', 'np.isnan', (["self._nb_entry['TP Baseline Vm']"], {}), "(self._nb_entry['TP Baseline Vm'])\n", (20554, 20588), True, 'import numpy as np\n'), ((3555, 3568), 'numpy.array', 'np.array', (['rec'], {}), '(rec)\n', (3563, 3568), True, 'import numpy as np\n'), ((3630, 3649), 'numpy.array', 'np.array', (['nb[i + 1]'], {}), '(nb[i + 1])\n', (3638, 3649), True, 'import numpy as np\n'), ((4386, 4407), 'numpy.isnan', 'np.isnan', (['entry[:, 8]'], {}), '(entry[:, 8])\n', (4394, 4407), True, 'import numpy as np\n'), ((11663, 11688), 'numpy.array', 'np.array', (['rec.primary_hdf'], {}), '(rec.primary_hdf)\n', (11671, 11688), True, 'import numpy as np\n'), ((2506, 2547), 'numpy.isnan', 'np.isnan', (['rec[entry_source_type_index][0]'], {}), '(rec[entry_source_type_index][0])\n', (2514, 2547), True, 'import numpy as np\n'), ((3676, 3690), 'numpy.isnan', 'np.isnan', (['rec2'], {}), '(rec2)\n', (3684, 3690), True, 'import numpy as np\n'), ((3150, 3170), 'numpy.isfinite', 'np.isfinite', (['tp_peak'], {}), '(tp_peak)\n', (3161, 3170), True, 'import numpy as np\n'), ((3472, 3494), 'numpy.isfinite', 'np.isfinite', (['sweep_num'], {}), '(sweep_num)\n', (3483, 3494), True, 'import numpy as np\n'), ((4087, 4100), 'numpy.array', 'np.array', (['rec'], {}), '(rec)\n', (4095, 4100), True, 'import numpy as np\n'), ((12346, 12371), 'numpy.array', 'np.array', (['rec.command_hdf'], {}), '(rec.command_hdf)\n', (12354, 12371), True, 'import numpy as np\n'), ((3277, 3296), 'numpy.isfinite', 'np.isfinite', (['tp_dur'], {}), '(tp_dur)\n', (3288, 3296), True, 'import numpy as np\n'), ((4159, 4172), 'numpy.isnan', 'np.isnan', (['rec'], {}), '(rec)\n', (4167, 4172), True, 'import numpy as np\n'), ((8408, 8422), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (8420, 8422), False, 'import sys\n'), ((5210, 5225), 'numpy.isnan', 'np.isnan', (['tm[j]'], {}), '(tm[j])\n', (5218, 5225), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
# Copyright 2019 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
"""
Module handles computing and formatting basic statistics
about a dataset like false negatives and false positives
"""
import numpy as np
counts_str = '''
=== Counts ===
False Positives: {false_pos}
True Negatives: {true_neg}
False Negatives: {false_neg}
True Positives: {true_pos}
'''.strip()
summary_str = '''
=== Summary ===
{num_correct} out of {total}
{accuracy_ratio:.2%}
{false_pos_ratio:.2%} false positives
{false_neg_ratio:.2%} false negatives
'''
class Stats:
"""Represents a set of statistics from a model run on a dataset"""
def __init__(self, outputs, targets, filenames):
self.outputs = np.array(outputs)
self.targets = np.array(targets)
self.filenames = filenames
self.num_positives = int((self.targets > 0.5).sum())
self.num_negatives = int((self.targets < 0.5).sum())
# Methods
self.false_positives = lambda threshold=0.5: self.calc_metric(False, True, threshold) / max(1,
self.num_negatives)
self.false_negatives = lambda threshold=0.5: self.calc_metric(False, False, threshold) / max(1,
self.num_positives)
self.num_correct = lambda threshold=0.5: (
(self.outputs >= threshold) == self.targets.astype(bool)
).sum()
self.num_incorrect = lambda threshold=0.5: len(self) - self.num_correct(threshold)
self.accuracy = lambda threshold=0.5: self.num_correct(threshold) / max(1, len(self))
def __len__(self):
return len(self.outputs)
def to_np_dict(self):
import numpy as np
return {
'outputs': self.outputs,
'targets': self.targets,
'filenames': np.array(self.filenames)
}
@staticmethod
def from_np_dict(data) -> 'Stats':
return Stats(data['outputs'], data['targets'], data['filenames'])
def to_dict(self, threshold=0.5):
return {
'true_pos': self.calc_metric(True, True, threshold),
'true_neg': self.calc_metric(True, False, threshold),
'false_pos': self.calc_metric(False, True, threshold),
'false_neg': self.calc_metric(False, False, threshold),
}
def counts_str(self, threshold=0.5):
return counts_str.format(**self.to_dict(threshold))
def summary_str(self, threshold=0.5):
return summary_str.format(
num_correct=self.num_correct(threshold), total=len(self),
accuracy_ratio=self.accuracy(threshold),
false_pos_ratio=self.false_positives(threshold),
false_neg_ratio=self.false_negatives(threshold)
)
def calc_filenames(self, is_correct: bool, actual_output: bool, threshold=0.5) -> list:
"""Find a list of files with the given classification"""
return [
filename
for output, target, filename in zip(self.outputs, self.targets, self.filenames)
if ((output > threshold) == bool(target)) == is_correct and actual_output == bool(output > threshold)
]
def calc_metric(self, is_correct: bool, actual_output: bool, threshold=0.5) -> int:
"""For example, calc_metric(False, True) calculates false positives"""
return int(
((((self.outputs > threshold) == self.targets.astype(bool)) == is_correct) &
((self.outputs > threshold) == actual_output)).sum()
)
@staticmethod
def matches_sample(output, target, threshold, is_correct, actual_output):
"""
Check if a sample with the given network output, target output, and threshold
is the classification (is_correct, actual_output) like true positive or false negative
"""
return (bool(output > threshold) == bool(target)) == is_correct and actual_output == bool(output > threshold)
|
[
"numpy.array"
] |
[((1227, 1244), 'numpy.array', 'np.array', (['outputs'], {}), '(outputs)\n', (1235, 1244), True, 'import numpy as np\n'), ((1268, 1285), 'numpy.array', 'np.array', (['targets'], {}), '(targets)\n', (1276, 1285), True, 'import numpy as np\n'), ((2462, 2486), 'numpy.array', 'np.array', (['self.filenames'], {}), '(self.filenames)\n', (2470, 2486), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
import os
import time
import numpy as np
from astropy.io import fits
from aoide import voronoi
import argparse
def main():
print("\n======================= Aoide | Step 3 ====================\n")
print("AoideVoronoi.py: Voronoi Tesselation based on Stellar Continuum Signal\n")
args = parse_args()
input_cube = os.path.abspath(args.input_cube)
name = args.name
continuum_signal_band = args.band_continuum
target_sn = args.sn
max_area = args.max_area
working_directory = os.path.dirname(os.path.abspath(input_cube))
voronoi_directory = working_directory + "/voronoi/"
if not os.path.exists(voronoi_directory):
os.makedirs(voronoi_directory)
print("Voronoi Products Directory {} not found. Creating it.".format(
voronoi_directory))
else:
print("Voronoi products will be saved to {}".format(voronoi_directory))
# Change to Voronoi directory
os.chdir(voronoi_directory)
print("Working directory set to {}".format(voronoi_directory))
# Work on input cube
hdu = fits.open(input_cube)
data = hdu[0].data
select = np.isnan(data)
data[select] = 0
error = np.sqrt(hdu[1].data)
error[select] = 1e9
hdr = hdu[0].header
wave = np.arange(hdr['NAXIS3']) * 1.25 + hdr['CRVAL3']
hdu.close()
select_wave = (wave > continuum_signal_band[0]) & (
wave < continuum_signal_band[1])
mean_img = np.mean(data[select_wave, :, :], 0)
err_img = np.std(data[select_wave, :, :], 0)
# Create CONTINUUM SIGNAL and NOISE samples on which to iterate
hdu = fits.PrimaryHDU(mean_img)
hdu.writeto('signal_cont.fits', overwrite=True)
hdu = fits.PrimaryHDU(err_img)
hdu.writeto('noise_cont.fits', overwrite=True)
voronoi.binning_fits('signal_cont.fits', voronoi_directory + 'noise_cont.fits',
target_sn, name, max_area=max_area, gersho=True, plot=False)
bin_cube('{}.voronoi.pixel.dat'.format(name),
input_cube, '{}.voronoi_rss.fits'.format(name))
return voronoi_directory
def bin_cube(voronoi_pixel, input_cube, output_rss):
hdu = fits.open(input_cube)
data = hdu[0].data
select = np.isnan(data)
data[select] = 0
error = np.sqrt(hdu[1].data)
error[select] = 1e9
hdr = hdu[0].header
wave = np.arange(hdr['NAXIS3']) * 1.25 + hdr['CRVAL3']
hdu.close()
ascii_in = open(voronoi_pixel, 'r')
lines = ascii_in.readlines()
x = np.arange(len(lines) - 1, dtype=np.int16)
y = np.arange(len(lines) - 1, dtype=np.int16)
binNr = np.arange(len(lines) - 1, dtype=np.int16)
for i in range(1, len(lines)):
line = lines[i].split()
x[i - 1] = int(line[0])
y[i - 1] = int(line[1])
binNr[i - 1] = int(line[2])
rss_data = np.zeros((max(binNr), len(wave)), dtype=np.float32)
rss_error = np.zeros((max(binNr), len(wave)), dtype=np.float32)
for l in range(max(binNr)):
select_bin = binNr == (l + 1)
x_bin = x[select_bin] - 1
y_bin = y[select_bin] - 1
for j in range(len(x_bin)):
rss_data[l, :] += data[:, y_bin[j], x_bin[j]]
rss_error[l, :] += error[:, y_bin[j], x_bin[j]]**2
rss_error[l, :] = np.sqrt(rss_error[l, :])
rss_error[np.isnan(rss_error)] = 1e9
rss_out = fits.HDUList([fits.PrimaryHDU(rss_data), fits.ImageHDU(
rss_error, name='ERROR'), fits.ImageHDU(np.zeros(rss_data.shape, dtype=np.uint16), name='MASK')])
rss_out[0].header = hdr
rss_out[0].header['CDELT1'] = 1.25
rss_out[0].header['CRVAL1'] = hdr['CRVAL3']
rss_out[0].header['CRPIX1'] = 1
rss_out.writeto(output_rss, overwrite=True, output_verify='fix')
def parse_args():
parser = argparse.ArgumentParser(
description="Voronoi bin a clean MUSE datacube based on S/N in the stellar continuum.")
parser.add_argument('input_cube', metavar='CUBE_IN', type=str, nargs='?',
help='Input FITS MUSE cube to bin.')
parser.add_argument('-n', '--name', metavar='GALAXY_NAME', default='NAME_OF_GALAXY', type=str,
nargs='?', help='Name of your galaxy.')
parser.add_argument('-b', '--band_continuum', nargs='?', default=(6427, 6632),
help='Wavelength range, in Angstroms, of a line-free region of stellar continuum signal. Express as a tuple, e.g. (6427, 6632).')
parser.add_argument('-s', '--sn', type=int, nargs='?',
default=50, help='Signal-to-noise ratio used for Voronoi threshold. Default is 50.')
parser.add_argument('-m', '--max_area', type=int, nargs='?',
default=1000, help='Maximum area, in pixels, for any given Voronoi bin. ')
args = parser.parse_args()
return args
if __name__ == '__main__':
start_time = time.time()
voronoi_directory = main()
runtime = round((time.time() - start_time), 3)
print("\n================= Aoide | Step 3 Finished ================\n")
print("Finished in {} minutes.".format(round(runtime / 60, 3)))
print("Use the Voronoi-binned cube as part of your Paradise STELLAR fitting.")
print("You'll find these products in {}.".format(voronoi_directory))
|
[
"astropy.io.fits.ImageHDU",
"os.path.abspath",
"argparse.ArgumentParser",
"os.makedirs",
"numpy.std",
"astropy.io.fits.PrimaryHDU",
"aoide.voronoi.binning_fits",
"os.path.exists",
"numpy.isnan",
"time.time",
"numpy.zeros",
"numpy.mean",
"numpy.arange",
"astropy.io.fits.open",
"os.chdir",
"numpy.sqrt"
] |
[((362, 394), 'os.path.abspath', 'os.path.abspath', (['args.input_cube'], {}), '(args.input_cube)\n', (377, 394), False, 'import os\n'), ((968, 995), 'os.chdir', 'os.chdir', (['voronoi_directory'], {}), '(voronoi_directory)\n', (976, 995), False, 'import os\n'), ((1099, 1120), 'astropy.io.fits.open', 'fits.open', (['input_cube'], {}), '(input_cube)\n', (1108, 1120), False, 'from astropy.io import fits\n'), ((1157, 1171), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (1165, 1171), True, 'import numpy as np\n'), ((1205, 1225), 'numpy.sqrt', 'np.sqrt', (['hdu[1].data'], {}), '(hdu[1].data)\n', (1212, 1225), True, 'import numpy as np\n'), ((1461, 1496), 'numpy.mean', 'np.mean', (['data[select_wave, :, :]', '(0)'], {}), '(data[select_wave, :, :], 0)\n', (1468, 1496), True, 'import numpy as np\n'), ((1511, 1545), 'numpy.std', 'np.std', (['data[select_wave, :, :]', '(0)'], {}), '(data[select_wave, :, :], 0)\n', (1517, 1545), True, 'import numpy as np\n'), ((1625, 1650), 'astropy.io.fits.PrimaryHDU', 'fits.PrimaryHDU', (['mean_img'], {}), '(mean_img)\n', (1640, 1650), False, 'from astropy.io import fits\n'), ((1714, 1738), 'astropy.io.fits.PrimaryHDU', 'fits.PrimaryHDU', (['err_img'], {}), '(err_img)\n', (1729, 1738), False, 'from astropy.io import fits\n'), ((1795, 1943), 'aoide.voronoi.binning_fits', 'voronoi.binning_fits', (['"""signal_cont.fits"""', "(voronoi_directory + 'noise_cont.fits')", 'target_sn', 'name'], {'max_area': 'max_area', 'gersho': '(True)', 'plot': '(False)'}), "('signal_cont.fits', voronoi_directory +\n 'noise_cont.fits', target_sn, name, max_area=max_area, gersho=True,\n plot=False)\n", (1815, 1943), False, 'from aoide import voronoi\n'), ((2168, 2189), 'astropy.io.fits.open', 'fits.open', (['input_cube'], {}), '(input_cube)\n', (2177, 2189), False, 'from astropy.io import fits\n'), ((2226, 2240), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (2234, 2240), True, 'import numpy as np\n'), ((2274, 2294), 'numpy.sqrt', 'np.sqrt', (['hdu[1].data'], {}), '(hdu[1].data)\n', (2281, 2294), True, 'import numpy as np\n'), ((3767, 3883), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Voronoi bin a clean MUSE datacube based on S/N in the stellar continuum."""'}), "(description=\n 'Voronoi bin a clean MUSE datacube based on S/N in the stellar continuum.')\n", (3790, 3883), False, 'import argparse\n'), ((4860, 4871), 'time.time', 'time.time', ([], {}), '()\n', (4869, 4871), False, 'import time\n'), ((558, 585), 'os.path.abspath', 'os.path.abspath', (['input_cube'], {}), '(input_cube)\n', (573, 585), False, 'import os\n'), ((655, 688), 'os.path.exists', 'os.path.exists', (['voronoi_directory'], {}), '(voronoi_directory)\n', (669, 688), False, 'import os\n'), ((698, 728), 'os.makedirs', 'os.makedirs', (['voronoi_directory'], {}), '(voronoi_directory)\n', (709, 728), False, 'import os\n'), ((3271, 3295), 'numpy.sqrt', 'np.sqrt', (['rss_error[l, :]'], {}), '(rss_error[l, :])\n', (3278, 3295), True, 'import numpy as np\n'), ((3310, 3329), 'numpy.isnan', 'np.isnan', (['rss_error'], {}), '(rss_error)\n', (3318, 3329), True, 'import numpy as np\n'), ((1285, 1309), 'numpy.arange', 'np.arange', (["hdr['NAXIS3']"], {}), "(hdr['NAXIS3'])\n", (1294, 1309), True, 'import numpy as np\n'), ((2354, 2378), 'numpy.arange', 'np.arange', (["hdr['NAXIS3']"], {}), "(hdr['NAXIS3'])\n", (2363, 2378), True, 'import numpy as np\n'), ((3365, 3390), 'astropy.io.fits.PrimaryHDU', 'fits.PrimaryHDU', (['rss_data'], {}), '(rss_data)\n', (3380, 3390), False, 'from astropy.io import fits\n'), ((3392, 3430), 'astropy.io.fits.ImageHDU', 'fits.ImageHDU', (['rss_error'], {'name': '"""ERROR"""'}), "(rss_error, name='ERROR')\n", (3405, 3430), False, 'from astropy.io import fits\n'), ((4924, 4935), 'time.time', 'time.time', ([], {}), '()\n', (4933, 4935), False, 'import time\n'), ((3455, 3496), 'numpy.zeros', 'np.zeros', (['rss_data.shape'], {'dtype': 'np.uint16'}), '(rss_data.shape, dtype=np.uint16)\n', (3463, 3496), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
import gensim
import numpy as np
from numpy import linalg as LA
import logging
logger = logging.getLogger(__name__)
def embedding_matrix(nb_tokens, embedding_size, token_to_index,
glove_path=None,
unit_norm=True,
rs=None,
dtype=None):
rs = rs if rs else np.random.RandomState(0)
embedding_matrix_np = rs.uniform(low=0.0, high=1.0,
size=(nb_tokens, embedding_size))
if glove_path is not None:
word_to_vector = load_glove(path=glove_path, words={token for token in token_to_index})
for word, vector in word_to_vector.items():
word_id = token_to_index[word]
vector_np = np.array(vector)
embedding_matrix_np[word_id, :] = vector_np
if unit_norm:
norms = LA.norm(embedding_matrix_np, axis=1, keepdims=True)
embedding_matrix_np /= norms
if dtype is not None:
embedding_matrix_np = embedding_matrix_np.astype(dtype)
return embedding_matrix_np
def load_glove(path, words=None):
word_to_embedding = {}
with open(path, 'r') as stream:
for n, line in enumerate(stream):
if not isinstance(line, str):
line = line.decode('utf-8')
split_line = line.split(' ')
word = split_line[0]
if words is None or word in words:
try:
word_to_embedding[word] = [float(f) for f in split_line[1:]]
except ValueError:
logger.error('{}\t{}\t{}'.format(n, word, str(split_line)))
return word_to_embedding
def load_word2vec(path, words=None, binary=True):
word_to_embedding = {}
model = gensim.models.KeyedVectors.load_word2vec_format(path, binary=binary)
for word in words:
if word in model:
word_to_embedding[word] = model[word].tolist()
return word_to_embedding
|
[
"numpy.random.RandomState",
"numpy.array",
"numpy.linalg.norm",
"gensim.models.KeyedVectors.load_word2vec_format",
"logging.getLogger"
] |
[((116, 143), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (133, 143), False, 'import logging\n'), ((1772, 1840), 'gensim.models.KeyedVectors.load_word2vec_format', 'gensim.models.KeyedVectors.load_word2vec_format', (['path'], {'binary': 'binary'}), '(path, binary=binary)\n', (1819, 1840), False, 'import gensim\n'), ((372, 396), 'numpy.random.RandomState', 'np.random.RandomState', (['(0)'], {}), '(0)\n', (393, 396), True, 'import numpy as np\n'), ((877, 928), 'numpy.linalg.norm', 'LA.norm', (['embedding_matrix_np'], {'axis': '(1)', 'keepdims': '(True)'}), '(embedding_matrix_np, axis=1, keepdims=True)\n', (884, 928), True, 'from numpy import linalg as LA\n'), ((770, 786), 'numpy.array', 'np.array', (['vector'], {}), '(vector)\n', (778, 786), True, 'import numpy as np\n')]
|
"""Debiasing using reweighing"""
"""
This data recipe performs reweighing debiasing using the AIF360 package.
https://github.com/Trusted-AI/AIF360
<NAME>., <NAME>. Data preprocessing techniques for classification without discrimination.
Knowl Inf Syst 33, 1–33 (2012). https://doi.org/10.1007/s10115-011-0463-8
The transformer splits the original data as specified and returns training, validation, and test sets
with weights added.
1. Update the folder_path and data_file variables to indicate the location of the dataset(s).
2. validation_test_files lists additional validation or test files that need to be updated with weights.
3. validation_split indicates the percentiles at which the original data should be split to create a
validation and test set. If it's empty, no validation or test set is created. [0.7] would create
a 70/30 training/validation split. [0.7, 0.9] would create a 70/20/10 training, validation, and test split.
4. target is the name of the target column.
5. favorable_label and unfavorable_label are the socially positive and negative target value respectively.
6. protected_group_info list of lists, where each sublist contains the name of a protected column,
the unprivledged level, and the privleged level. Each of the protected columns must be binary.
7. From the Datasets section of driverless, click on ADD DATASET and then UPLOAD DATA RECIPE to upload this file.
Be sure to use the specified validation set to be used for validation when a model is trained. The weights
can cause leakage if the validation or test data is used for determining the weights.
"""
import datatable as dt
import numpy as np
import os
from h2oaicore.data import CustomData
from h2oaicore.systemutils import config
class MyReweightingData(CustomData):
_modules_needed_by_name = ['datetime', 'fairlearn', 'aif360', 'sklearn']
@staticmethod
def create_data():
import pandas as pd
from h2oaicore.models_utils import import_tensorflow
tf = import_tensorflow()
# above is because aif360 requires tensorflow
from aif360.datasets import BinaryLabelDataset
from aif360.algorithms.preprocessing.reweighing import Reweighing
"""
Update the below as needed
"""
#########
#########
#########
# Path to the data
folder_path = 'tmp/'
# Data file
data_file = 'housing_train_proc.csv'
full_data_file = folder_path + data_file
if not os.path.isfile(full_data_file):
# for testing, just return something
if config.hard_asserts:
return dt.Frame(np.array([[1, 2, 3], [4, 5, 6]]))
else:
return []
train = pd.read_csv(full_data_file)
validation_test_files = ['housing_test_proc.csv']
validation_split = [0.6, 0.8]
# Target column
target = 'high_priced'
favorable_label = 0
unfavorable_label = 1
# Privleged_group_info = [[Protetected group name 1, prevleged level, unprivleged level], [Protetected group name 2, prevleged level, unprivleged level]]
# The protected group columns need to be binary
protected_group_info = [['hispanic', 0, 1], ['black', 0, 1]]
#########
#########
#########
# Set up protected group info
protected_groups = [group_info[0] for group_info in protected_group_info]
dataset_orig = BinaryLabelDataset(df=train, label_names=[target], favorable_label=favorable_label,
unfavorable_label=unfavorable_label,
protected_attribute_names=protected_groups)
privileged_groups = []
unprivileged_groups = []
for protected_group in protected_group_info:
privileged_groups_dict = {}
unprivileged_groups_dict = {}
privileged_groups_dict[protected_group[0]] = protected_group[1]
unprivileged_groups_dict[protected_group[0]] = protected_group[2]
privileged_groups.append(privileged_groups_dict)
unprivileged_groups.append(unprivileged_groups_dict)
# Fit weights on the full dataset to be used on the external test set, if given
RW_full = Reweighing(unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups)
RW_full.fit(dataset_orig)
# Split the original data into train, validation, and test if applicable
if len(validation_split) == 1:
dataset_orig_train, dataset_orig_valid = dataset_orig.split(validation_split, shuffle=True)
elif len(validation_split) == 2:
dataset_orig_train_valid, dataset_orig_test = dataset_orig.split([validation_split[1]], shuffle=True)
# Fit the weights on both the validation and test set for the test set split
RW_train_valid = Reweighing(unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups)
RW_train_valid.fit(dataset_orig_train_valid)
dataset_orig_train, dataset_orig_valid = dataset_orig_train_valid.split(
[validation_split[0] / (validation_split[1])], shuffle=True)
else:
dataset_orig_train = dataset_orig
# Fit weights on the training set only
RW = Reweighing(unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups)
RW.fit(dataset_orig_train)
dataset_transf_train = RW.transform(dataset_orig_train)
# Add the weigts to the training set
train_df = pd.DataFrame(dataset_transf_train.features, columns=dataset_transf_train.feature_names)
train_df[target] = dataset_transf_train.labels.ravel()
train_df['weights'] = dataset_transf_train.instance_weights.ravel()
# Create datasets with minimum features calculated the given number of days ahead
dataset_dict = {}
dataset_dict[data_file.split('.')[0] + "_rw_train.csv"] = train_df
# Add weights to the validation split (if a validation split was specified)
if len(validation_split) >= 1:
dataset_transf_valid = RW.transform(dataset_orig_valid)
valid_df = pd.DataFrame(dataset_transf_valid.features, columns=dataset_transf_valid.feature_names)
valid_df[target] = dataset_transf_valid.labels.ravel()
valid_df['weights'] = dataset_transf_valid.instance_weights.ravel()
dataset_dict[data_file.split('.')[0] + "_rw_validation.csv"] = valid_df
# Add weights to the test split (if a test split was specified)
if len(validation_split) >= 2:
dataset_transf_test = RW_train_valid.transform(dataset_orig_test)
test_df = pd.DataFrame(dataset_transf_test.features, columns=dataset_transf_test.feature_names)
test_df[target] = dataset_transf_test.labels.ravel()
test_df['weights'] = dataset_transf_test.instance_weights.ravel()
dataset_dict[data_file.split('.')[0] + "_rw_test.csv"] = test_df
# Add weights to the test files (If provided)
for valid_file in validation_test_files:
valid = pd.read_csv(folder_path + valid_file)
dataset_valid_orig = BinaryLabelDataset(df=valid, label_names=[target], favorable_label=favorable_label,
unfavorable_label=unfavorable_label,
protected_attribute_names=protected_groups)
dataset_transf_valid = RW_full.transform(dataset_valid_orig)
valid_df = pd.DataFrame(dataset_transf_valid.features, columns=dataset_transf_valid.feature_names)
valid_df[target] = dataset_transf_valid.labels.ravel()
valid_df['weights'] = dataset_transf_valid.instance_weights.ravel()
dataset_dict[valid_file.split('.')[0] + "_rw_transformed.csv"] = valid_df
return dataset_dict
|
[
"pandas.DataFrame",
"aif360.datasets.BinaryLabelDataset",
"pandas.read_csv",
"h2oaicore.models_utils.import_tensorflow",
"aif360.algorithms.preprocessing.reweighing.Reweighing",
"os.path.isfile",
"numpy.array"
] |
[((2001, 2020), 'h2oaicore.models_utils.import_tensorflow', 'import_tensorflow', ([], {}), '()\n', (2018, 2020), False, 'from h2oaicore.models_utils import import_tensorflow\n'), ((2748, 2775), 'pandas.read_csv', 'pd.read_csv', (['full_data_file'], {}), '(full_data_file)\n', (2759, 2775), True, 'import pandas as pd\n'), ((3476, 3649), 'aif360.datasets.BinaryLabelDataset', 'BinaryLabelDataset', ([], {'df': 'train', 'label_names': '[target]', 'favorable_label': 'favorable_label', 'unfavorable_label': 'unfavorable_label', 'protected_attribute_names': 'protected_groups'}), '(df=train, label_names=[target], favorable_label=\n favorable_label, unfavorable_label=unfavorable_label,\n protected_attribute_names=protected_groups)\n', (3494, 3649), False, 'from aif360.datasets import BinaryLabelDataset\n'), ((4312, 4405), 'aif360.algorithms.preprocessing.reweighing.Reweighing', 'Reweighing', ([], {'unprivileged_groups': 'unprivileged_groups', 'privileged_groups': 'privileged_groups'}), '(unprivileged_groups=unprivileged_groups, privileged_groups=\n privileged_groups)\n', (4322, 4405), False, 'from aif360.algorithms.preprocessing.reweighing import Reweighing\n'), ((5366, 5459), 'aif360.algorithms.preprocessing.reweighing.Reweighing', 'Reweighing', ([], {'unprivileged_groups': 'unprivileged_groups', 'privileged_groups': 'privileged_groups'}), '(unprivileged_groups=unprivileged_groups, privileged_groups=\n privileged_groups)\n', (5376, 5459), False, 'from aif360.algorithms.preprocessing.reweighing import Reweighing\n'), ((5619, 5711), 'pandas.DataFrame', 'pd.DataFrame', (['dataset_transf_train.features'], {'columns': 'dataset_transf_train.feature_names'}), '(dataset_transf_train.features, columns=dataset_transf_train.\n feature_names)\n', (5631, 5711), True, 'import pandas as pd\n'), ((2504, 2534), 'os.path.isfile', 'os.path.isfile', (['full_data_file'], {}), '(full_data_file)\n', (2518, 2534), False, 'import os\n'), ((6253, 6345), 'pandas.DataFrame', 'pd.DataFrame', (['dataset_transf_valid.features'], {'columns': 'dataset_transf_valid.feature_names'}), '(dataset_transf_valid.features, columns=dataset_transf_valid.\n feature_names)\n', (6265, 6345), True, 'import pandas as pd\n'), ((6784, 6874), 'pandas.DataFrame', 'pd.DataFrame', (['dataset_transf_test.features'], {'columns': 'dataset_transf_test.feature_names'}), '(dataset_transf_test.features, columns=dataset_transf_test.\n feature_names)\n', (6796, 6874), True, 'import pandas as pd\n'), ((7221, 7258), 'pandas.read_csv', 'pd.read_csv', (['(folder_path + valid_file)'], {}), '(folder_path + valid_file)\n', (7232, 7258), True, 'import pandas as pd\n'), ((7292, 7465), 'aif360.datasets.BinaryLabelDataset', 'BinaryLabelDataset', ([], {'df': 'valid', 'label_names': '[target]', 'favorable_label': 'favorable_label', 'unfavorable_label': 'unfavorable_label', 'protected_attribute_names': 'protected_groups'}), '(df=valid, label_names=[target], favorable_label=\n favorable_label, unfavorable_label=unfavorable_label,\n protected_attribute_names=protected_groups)\n', (7310, 7465), False, 'from aif360.datasets import BinaryLabelDataset\n'), ((7658, 7750), 'pandas.DataFrame', 'pd.DataFrame', (['dataset_transf_valid.features'], {'columns': 'dataset_transf_valid.feature_names'}), '(dataset_transf_valid.features, columns=dataset_transf_valid.\n feature_names)\n', (7670, 7750), True, 'import pandas as pd\n'), ((4933, 5026), 'aif360.algorithms.preprocessing.reweighing.Reweighing', 'Reweighing', ([], {'unprivileged_groups': 'unprivileged_groups', 'privileged_groups': 'privileged_groups'}), '(unprivileged_groups=unprivileged_groups, privileged_groups=\n privileged_groups)\n', (4943, 5026), False, 'from aif360.algorithms.preprocessing.reweighing import Reweighing\n'), ((2653, 2685), 'numpy.array', 'np.array', (['[[1, 2, 3], [4, 5, 6]]'], {}), '([[1, 2, 3], [4, 5, 6]])\n', (2661, 2685), True, 'import numpy as np\n')]
|
import numpy as np
import pytest
import rlberry.seeding as seeding
from rlberry.envs import gym_make
from copy import deepcopy
gym_envs = [
'Acrobot-v1',
'CartPole-v1',
'MountainCar-v0',
]
def get_env_trajectory(env, horizon):
states = []
ss = env.reset()
for ii in range(horizon):
states.append(ss)
ss, _, done, _ = env.step(env.action_space.sample())
if done:
ss = env.reset()
return states
def compare_trajectories(traj1, traj2):
for ss1, ss2 in zip(traj1, traj2):
if not np.array_equal(ss1, ss2):
return False
return True
@pytest.mark.parametrize("env_name", gym_envs)
def test_env_seeding(env_name):
seeding.set_global_seed(123)
env1 = gym_make(env_name)
seeding.set_global_seed(456)
env2 = gym_make(env_name)
seeding.set_global_seed(123)
env3 = gym_make(env_name)
if deepcopy(env1).is_online():
traj1 = get_env_trajectory(env1, 500)
traj2 = get_env_trajectory(env2, 500)
traj3 = get_env_trajectory(env3, 500)
assert not compare_trajectories(traj1, traj2)
assert compare_trajectories(traj1, traj3)
@pytest.mark.parametrize("env_name", gym_envs)
def test_copy_reseeding(env_name):
seeding.set_global_seed(123)
env = gym_make(env_name)
c_env = deepcopy(env)
c_env.reseed()
if deepcopy(env).is_online():
traj1 = get_env_trajectory(env, 500)
traj2 = get_env_trajectory(c_env, 500)
assert not compare_trajectories(traj1, traj2)
|
[
"copy.deepcopy",
"numpy.array_equal",
"pytest.mark.parametrize",
"rlberry.seeding.set_global_seed",
"rlberry.envs.gym_make"
] |
[((629, 674), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""env_name"""', 'gym_envs'], {}), "('env_name', gym_envs)\n", (652, 674), False, 'import pytest\n'), ((1181, 1226), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""env_name"""', 'gym_envs'], {}), "('env_name', gym_envs)\n", (1204, 1226), False, 'import pytest\n'), ((712, 740), 'rlberry.seeding.set_global_seed', 'seeding.set_global_seed', (['(123)'], {}), '(123)\n', (735, 740), True, 'import rlberry.seeding as seeding\n'), ((752, 770), 'rlberry.envs.gym_make', 'gym_make', (['env_name'], {}), '(env_name)\n', (760, 770), False, 'from rlberry.envs import gym_make\n'), ((776, 804), 'rlberry.seeding.set_global_seed', 'seeding.set_global_seed', (['(456)'], {}), '(456)\n', (799, 804), True, 'import rlberry.seeding as seeding\n'), ((816, 834), 'rlberry.envs.gym_make', 'gym_make', (['env_name'], {}), '(env_name)\n', (824, 834), False, 'from rlberry.envs import gym_make\n'), ((840, 868), 'rlberry.seeding.set_global_seed', 'seeding.set_global_seed', (['(123)'], {}), '(123)\n', (863, 868), True, 'import rlberry.seeding as seeding\n'), ((880, 898), 'rlberry.envs.gym_make', 'gym_make', (['env_name'], {}), '(env_name)\n', (888, 898), False, 'from rlberry.envs import gym_make\n'), ((1267, 1295), 'rlberry.seeding.set_global_seed', 'seeding.set_global_seed', (['(123)'], {}), '(123)\n', (1290, 1295), True, 'import rlberry.seeding as seeding\n'), ((1306, 1324), 'rlberry.envs.gym_make', 'gym_make', (['env_name'], {}), '(env_name)\n', (1314, 1324), False, 'from rlberry.envs import gym_make\n'), ((1338, 1351), 'copy.deepcopy', 'deepcopy', (['env'], {}), '(env)\n', (1346, 1351), False, 'from copy import deepcopy\n'), ((559, 583), 'numpy.array_equal', 'np.array_equal', (['ss1', 'ss2'], {}), '(ss1, ss2)\n', (573, 583), True, 'import numpy as np\n'), ((907, 921), 'copy.deepcopy', 'deepcopy', (['env1'], {}), '(env1)\n', (915, 921), False, 'from copy import deepcopy\n'), ((1379, 1392), 'copy.deepcopy', 'deepcopy', (['env'], {}), '(env)\n', (1387, 1392), False, 'from copy import deepcopy\n')]
|
import glob
import numpy as np
import xlrd
import csv
def parse_xlsx_file(file_path):
"""Parse contents of xlsx file into numpy array.
Author: <NAME> (<EMAIL>)
Args:
file_path (str): path for the xlsx file.
Returns:
numpy.ndarray: parsed contents of the xlsx file.
"""
# Open worksheet.
worksheet = xlrd.open_workbook(file_path).sheet_by_index(0)
# Parse data from worksheet.
data = np.empty((worksheet.nrows-1, worksheet.ncols), dtype=object)
for row in np.arange(1, worksheet.nrows):
for col in np.arange(worksheet.ncols):
data[row-1, col] = worksheet.cell_value(row, col)
return data
def parse_csv_file(file_path):
"""Parse contents of csv file into numpy array.
Author: <NAME> (<EMAIL>)
Args:
file_path (str): path for the csv file.
Returns:
numpy.ndarray: parsed contents of the csv file.
"""
# Parse contents into array and return it.
reader = csv.reader(open(file_path, "r"), delimiter=",")
raw_data = list(reader)
raw_data = [[x for x in el if x != ''] for el in raw_data]
raw_data = [el for el in raw_data if len(el) == 4]
data = np.array(raw_data).astype(np.float)
return data
def parse_acc_data(data_folder_path, dataset_num):
"""Parse contents of data files into one numpy array.
Author: <NAME> (<EMAIL>)
Args:
data_folder_path (str): path of folder containing the dataset.
Yields:
(tuple): parsed contents of next raw data file (examples and target values).
"""
if dataset_num == 1:
# Go over xlsx files in data folder.
for f in glob.glob(data_folder_path + '*.xlsx'):
data_raw = parse_xlsx_file(f)
data = data_raw[:, 2:-1]
target = data_raw[:, -1]
unlabeled_msk = target == ''
target_final = target[~unlabeled_msk].astype(np.int)
data_final = data[~unlabeled_msk, :].astype(np.float)
yield data_final, target_final
elif dataset_num == 2 or dataset_num == 3:
# Go over .xlsx files in data folder.
for f in glob.glob(data_folder_path + '*.csv'):
data_raw = parse_csv_file(f)
data = data_raw[:, :-1]
target = data_raw[:, -1]
yield data.astype(np.int), target.astype(np.int)
def concatenate_data(data_folder_path, dataset_num):
"""Concatenate data from different files of same dataset into
one numpy array.
Author: <NAME> (<EMAIL>)
Args:
data_folder_path (str): path of folder containing the dataset.
dataset_num (int): index of dataset to parse.
Returns:
(tuple): parsed contents of dataset files (examples and target values).
"""
data_master = None
target_master = None
first = True
# Parse accelerometer data and concatenate into data matrix.
for data, target in parse_acc_data(data_folder_path, dataset_num):
if first:
data_master = data
target_master = target
first = False
else:
data_master = np.vstack((data_master, data))
target_master = np.hstack((target_master, target))
return data_master, target_master
def get_data1(data_folder_path):
"""Get numpy arrays representing the contents of specified datset.
Author: <NAME> (<EMAIL>)
Args:
file_path (str): path for the xlsx file.
Returns:
(tuple): parsed contents of dataset files (examples and target values).
Raises:
ValueError
"""
dataset_num = 1
return concatenate_data(data_folder_path, dataset_num)
def get_data2(data_folder_path):
"""Get numpy arrays representing the contents of specified datset.
Author: <NAME> (<EMAIL>)
Args:
file_path (str): path for the xlsx file.
Returns:
(tuple): parsed contents of dataset files (examples and target values).
Raises:
ValueError
"""
dataset_num = 2
return concatenate_data(data_folder_path, dataset_num)
def get_data3(data_folder_path):
"""Get numpy arrays representing the contents of specified datset.
Author: <NAME> (<EMAIL>)
Args:
file_path (str): path for the xlsx file.
Returns:
(tuple): parsed contents of dataset files (examples and target values).
Raises:
ValueError
"""
dataset_num = 3
return concatenate_data(data_folder_path, dataset_num)
|
[
"numpy.empty",
"xlrd.open_workbook",
"numpy.hstack",
"numpy.array",
"numpy.arange",
"glob.glob",
"numpy.vstack"
] |
[((443, 505), 'numpy.empty', 'np.empty', (['(worksheet.nrows - 1, worksheet.ncols)'], {'dtype': 'object'}), '((worksheet.nrows - 1, worksheet.ncols), dtype=object)\n', (451, 505), True, 'import numpy as np\n'), ((519, 548), 'numpy.arange', 'np.arange', (['(1)', 'worksheet.nrows'], {}), '(1, worksheet.nrows)\n', (528, 548), True, 'import numpy as np\n'), ((569, 595), 'numpy.arange', 'np.arange', (['worksheet.ncols'], {}), '(worksheet.ncols)\n', (578, 595), True, 'import numpy as np\n'), ((1664, 1702), 'glob.glob', 'glob.glob', (["(data_folder_path + '*.xlsx')"], {}), "(data_folder_path + '*.xlsx')\n", (1673, 1702), False, 'import glob\n'), ((350, 379), 'xlrd.open_workbook', 'xlrd.open_workbook', (['file_path'], {}), '(file_path)\n', (368, 379), False, 'import xlrd\n'), ((1194, 1212), 'numpy.array', 'np.array', (['raw_data'], {}), '(raw_data)\n', (1202, 1212), True, 'import numpy as np\n'), ((2145, 2182), 'glob.glob', 'glob.glob', (["(data_folder_path + '*.csv')"], {}), "(data_folder_path + '*.csv')\n", (2154, 2182), False, 'import glob\n'), ((3123, 3153), 'numpy.vstack', 'np.vstack', (['(data_master, data)'], {}), '((data_master, data))\n', (3132, 3153), True, 'import numpy as np\n'), ((3182, 3216), 'numpy.hstack', 'np.hstack', (['(target_master, target)'], {}), '((target_master, target))\n', (3191, 3216), True, 'import numpy as np\n')]
|
import random
import numpy as np
import matplotlib.pyplot as plt
import logging
from qlazy import QState
from qlazy.tools.Register import CreateRegister, InitRegister
EPS = 1.e-8
QS_Y = QState(qubit_num=1).h(0).s(0)
def init_qs_list(N, prob):
return [QState(qubit_num=1).h(0).s(0).z(0) if random.uniform(0, 1) <= prob else QState(qubit_num=1).h(0).s(0) for i in range(N)]
def measure_X_stab(mval_list):
p0 = (mval_list[3-1] + mval_list[4-1] + mval_list[5-1] + mval_list[6-1]) % 2
p1 = (mval_list[2-1] + mval_list[5-1] + mval_list[6-1] + mval_list[7-1]) % 2
p2 = (mval_list[1-1] + mval_list[4-1] + mval_list[6-1] + mval_list[7-1]) % 2
if p0 == 0 and p1 == 0 and p2 == 0: return True
else: return False
def measure_logical_X(mval_list):
if sum(mval_list) % 2 == 0: return True
else: return False
def distillation_Y(qs_list):
data = CreateRegister(1) # data qubit
code = CreateRegister(7) # logical qubit for Steane code
anci = CreateRegister(1) # ancilla qubit for S gate
qubit_num = InitRegister(data, code, anci)
qs = QState(qubit_num=qubit_num-len(anci))
# bell state
qs.h(data[0]).cx(data[0], code[6])
# steane code
qs.h(code[0]).h(code[1]).h(code[2])
qs.cx(code[6], code[3]).cx(code[6], code[4])
qs.cx(code[2], code[3]).cx(code[2], code[4]).cx(code[2], code[5])
qs.cx(code[1], code[4]).cx(code[1], code[5]).cx(code[1], code[6])
qs.cx(code[0], code[3]).cx(code[0], code[5]).cx(code[0], code[6])
# S gates and measurements
mval_list = []
for i in range(7):
qs_total = qs.tenspro(qs_list[i])
qs_total.cx(code[i], anci[0]).h(anci[0]).cx(code[i], anci[0]).h(anci[0])
mval = int(qs_total.mx(qid=[code[i]]).last)
mval_list.append(mval)
qs = qs_total.partial(qid=data+code)
if measure_X_stab(mval_list) == False:
return None
qs_pat = qs_total.partial(qid=data)
if measure_logical_X(mval_list) == True: qs_pat.z(0)
return qs_pat
def prob_simulation(prob, trial):
fail = 0
for _ in range(trial):
while True:
qs_list = init_qs_list(7, prob)
qs = distillation_Y(qs_list)
if qs is not None: break
if abs(qs.fidelity(QS_Y) - 1.0) > EPS: fail += 1
return fail / trial
def prob_theoretical(p):
u, v = 2 * p - 1, 1 - 2 * p
return (1 + 7 * u**3 + 7 * u**4 + u**7) / (2 * (1 + 7 * v**4))
if __name__ == '__main__':
# logging
logger = logging.getLogger('ErrorSimulation')
logger.setLevel(20)
sh = logging.StreamHandler()
fh = logging.FileHandler('error_simulation_Y.log', mode='w')
logger.addHandler(sh)
logger.addHandler(fh)
# error probability (theoretical)
prob_in = np.linspace(0.0, 0.4, 50)
prob_out_linear = np.array([p for p in prob_in])
prob_out_theoretical = np.array([prob_theoretical(p) for p in prob_in])
# error probability (simulation)
trial = 500
prob_in_simulation = np.linspace(0.0, 0.4, 9)
logger.info("{0:}, {1:}, {2:}".format("in", "out(simulation)", "out(theoretical)"))
prob_out_simulation = []
for p_in in prob_in_simulation:
p_out = prob_simulation(p_in, trial)
logger.info("{0:.6f}, {1:.6f} {2:.6f}".format(p_in, p_out, prob_theoretical(p_in)))
prob_out_simulation.append(p_out)
# plot
fig, ax = plt.subplots()
ax.set_xlabel("error probability (in)")
ax.set_ylabel("error probability (out)")
ax.set_title("magic state distillation: |Y>")
ax.grid()
ax.plot(prob_in, prob_out_theoretical, color='orange', label='theoretical')
ax.plot(prob_in, prob_out_linear, color='gray', linestyle='dashed')
ax.plot(prob_in_simulation, prob_out_simulation, color='green', label='simultion', marker='s')
ax.legend(loc=0)
fig.tight_layout()
plt.savefig('error_simulation_Y.png')
plt.show()
|
[
"qlazy.tools.Register.CreateRegister",
"matplotlib.pyplot.savefig",
"matplotlib.pyplot.show",
"logging.FileHandler",
"random.uniform",
"logging.StreamHandler",
"qlazy.QState",
"qlazy.tools.Register.InitRegister",
"numpy.array",
"numpy.linspace",
"matplotlib.pyplot.subplots",
"logging.getLogger"
] |
[((875, 892), 'qlazy.tools.Register.CreateRegister', 'CreateRegister', (['(1)'], {}), '(1)\n', (889, 892), False, 'from qlazy.tools.Register import CreateRegister, InitRegister\n'), ((918, 935), 'qlazy.tools.Register.CreateRegister', 'CreateRegister', (['(7)'], {}), '(7)\n', (932, 935), False, 'from qlazy.tools.Register import CreateRegister, InitRegister\n'), ((980, 997), 'qlazy.tools.Register.CreateRegister', 'CreateRegister', (['(1)'], {}), '(1)\n', (994, 997), False, 'from qlazy.tools.Register import CreateRegister, InitRegister\n'), ((1042, 1072), 'qlazy.tools.Register.InitRegister', 'InitRegister', (['data', 'code', 'anci'], {}), '(data, code, anci)\n', (1054, 1072), False, 'from qlazy.tools.Register import CreateRegister, InitRegister\n'), ((2486, 2522), 'logging.getLogger', 'logging.getLogger', (['"""ErrorSimulation"""'], {}), "('ErrorSimulation')\n", (2503, 2522), False, 'import logging\n'), ((2556, 2579), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (2577, 2579), False, 'import logging\n'), ((2589, 2644), 'logging.FileHandler', 'logging.FileHandler', (['"""error_simulation_Y.log"""'], {'mode': '"""w"""'}), "('error_simulation_Y.log', mode='w')\n", (2608, 2644), False, 'import logging\n'), ((2754, 2779), 'numpy.linspace', 'np.linspace', (['(0.0)', '(0.4)', '(50)'], {}), '(0.0, 0.4, 50)\n', (2765, 2779), True, 'import numpy as np\n'), ((2802, 2832), 'numpy.array', 'np.array', (['[p for p in prob_in]'], {}), '([p for p in prob_in])\n', (2810, 2832), True, 'import numpy as np\n'), ((2988, 3012), 'numpy.linspace', 'np.linspace', (['(0.0)', '(0.4)', '(9)'], {}), '(0.0, 0.4, 9)\n', (2999, 3012), True, 'import numpy as np\n'), ((3371, 3385), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3383, 3385), True, 'import matplotlib.pyplot as plt\n'), ((3838, 3875), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""error_simulation_Y.png"""'], {}), "('error_simulation_Y.png')\n", (3849, 3875), True, 'import matplotlib.pyplot as plt\n'), ((3880, 3890), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3888, 3890), True, 'import matplotlib.pyplot as plt\n'), ((187, 206), 'qlazy.QState', 'QState', ([], {'qubit_num': '(1)'}), '(qubit_num=1)\n', (193, 206), False, 'from qlazy import QState\n'), ((296, 316), 'random.uniform', 'random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (310, 316), False, 'import random\n'), ((330, 349), 'qlazy.QState', 'QState', ([], {'qubit_num': '(1)'}), '(qubit_num=1)\n', (336, 349), False, 'from qlazy import QState\n'), ((258, 277), 'qlazy.QState', 'QState', ([], {'qubit_num': '(1)'}), '(qubit_num=1)\n', (264, 277), False, 'from qlazy import QState\n')]
|
# Copyright 2018 The Cirq Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for simulator.py"""
from typing import List, Dict
import numpy as np
import pytest
import cirq
from cirq.testing.mock import mock
@mock.patch.multiple(cirq.SimulatesSamples, _run=mock.Mock())
def test_run_simulator_run():
simulator = cirq.SimulatesSamples()
expected_measurements = {'a': np.array([[1]])}
simulator._run.return_value = expected_measurements
circuit = mock.Mock(cirq.Circuit)
param_resolver = mock.Mock(cirq.ParamResolver)
expected_result = cirq.TrialResult(repetitions=10,
measurements=expected_measurements,
params=param_resolver)
assert expected_result == simulator.run(program=circuit,
repetitions=10,
param_resolver=param_resolver)
simulator._run.assert_called_once_with(circuit=circuit,
repetitions=10,
param_resolver=param_resolver)
@mock.patch.multiple(cirq.SimulatesSamples, _run=mock.Mock())
def test_run_simulator_sweeps():
simulator = cirq.SimulatesSamples()
expected_measurements = {'a': np.array([[1]])}
simulator._run.return_value = expected_measurements
circuit = mock.Mock(cirq.Circuit)
param_resolvers = [mock.Mock(cirq.ParamResolver),
mock.Mock(cirq.ParamResolver)]
expected_results = [cirq.TrialResult(repetitions=10,
measurements=expected_measurements,
params=param_resolvers[0]),
cirq.TrialResult(repetitions=10,
measurements=expected_measurements,
params=param_resolvers[1])]
assert expected_results == simulator.run_sweep(program=circuit,
repetitions=10,
params=param_resolvers)
simulator._run.assert_called_with(circuit=circuit,
repetitions=10,
param_resolver=mock.ANY)
assert simulator._run.call_count == 2
@mock.patch.multiple(cirq.SimulatesIntermediateWaveFunction,
_simulator_iterator=mock.Mock())
def test_wave_simulator():
simulator = cirq.SimulatesIntermediateWaveFunction()
final_state = np.array([1, 0, 0, 0])
def steps(*args, **kwargs):
result = mock.Mock()
result.measurements = {'a': [True, True]}
yield result
result = mock.Mock()
result.measurements = {'b': [True, False]}
result.state.return_value = final_state
yield result
simulator._simulator_iterator.side_effect = steps
circuit = mock.Mock(cirq.Circuit)
param_resolver = mock.Mock(cirq.ParamResolver)
qubit_order = mock.Mock(cirq.QubitOrder)
result = simulator.simulate(program=circuit,
param_resolver=param_resolver,
qubit_order=qubit_order,
initial_state=2)
np.testing.assert_equal(result.measurements['a'], [True, True])
np.testing.assert_equal(result.measurements['b'], [True, False])
assert set(result.measurements.keys()) == {'a', 'b'}
assert result.params == param_resolver
np.testing.assert_equal(result.final_state, final_state)
@mock.patch.multiple(cirq.SimulatesIntermediateWaveFunction,
_simulator_iterator=mock.Mock())
def test_wave_simulator_no_steps():
simulator = cirq.SimulatesIntermediateWaveFunction()
initial_state = np.array([1, 0, 0, 0], dtype=np.complex64)
simulator._simulator_iterator.return_value = iter([])
circuit = cirq.testing.random_circuit(2, 20, 0.99)
param_resolver = mock.Mock(cirq.ParamResolver)
qubit_order = circuit.all_qubits()
result = simulator.simulate(program=circuit,
param_resolver=param_resolver,
qubit_order=list(qubit_order),
initial_state=initial_state)
assert len(result.measurements) == 0
assert result.params == param_resolver
np.testing.assert_equal(result.final_state, initial_state)
@mock.patch.multiple(cirq.SimulatesIntermediateWaveFunction,
_simulator_iterator=mock.Mock())
def test_wave_simulator_sweeps():
simulator = cirq.SimulatesIntermediateWaveFunction()
final_state = np.array([1, 0, 0, 0])
def steps(*args, **kwargs):
result = mock.Mock()
result.measurements = {'a': np.array([True, True])}
result.state.return_value = final_state
yield result
simulator._simulator_iterator.side_effect = steps
circuit = mock.Mock(cirq.Circuit)
param_resolvers = [mock.Mock(cirq.ParamResolver),
mock.Mock(cirq.ParamResolver)]
qubit_order = mock.Mock(cirq.QubitOrder)
results = simulator.simulate_sweep(program=circuit,
params=param_resolvers,
qubit_order=qubit_order,
initial_state=2)
expected_results = [
cirq.SimulationTrialResult(
measurements={'a': np.array([True, True])},
params=param_resolvers[0],
final_state=final_state),
cirq.SimulationTrialResult(
measurements={'a': np.array([True, True])},
params=param_resolvers[1],
final_state=final_state)
]
assert results == expected_results
# Python 2 gives a different repr due to unicode strings being prefixed with u.
@cirq.testing.only_test_in_python3
def test_simulator_simulate_trial_result_repr():
v = cirq.SimulationTrialResult(
params=cirq.ParamResolver({'a': 2}),
measurements={'m': np.array([1, 2])},
final_state=np.array([0, 1, 0, 0]))
assert repr(v) == ("SimulationTrialResult("
"params=cirq.ParamResolver({'a': 2}), "
"measurements={'m': array([1, 2])}, "
"final_state=array([0, 1, 0, 0]))")
def test_simulator_trial_result_equality():
eq = cirq.testing.EqualsTester()
eq.add_equality_group(
cirq.SimulationTrialResult(
params=cirq.ParamResolver({'a': 2}),
measurements={'m': np.array([1, 0])},
final_state=np.array([0, 1, 0, 0])))
eq.add_equality_group(
cirq.SimulationTrialResult(
params=cirq.ParamResolver({'a': 2}),
measurements={'m': np.array([1, 0])},
final_state=np.array([0, 0, 1, 0])))
eq.add_equality_group(
cirq.SimulationTrialResult(
params=cirq.ParamResolver({'a': 3}),
measurements={'m': np.array([1, 0])},
final_state=np.array([0, 0, 1, 0])))
eq.add_equality_group(
cirq.SimulationTrialResult(
params=cirq.ParamResolver({'a': 3}),
measurements={'m': np.array([0, 1])},
final_state=np.array([0, 0, 1, 0])))
def test_simulator_trial_pretty_state():
result = cirq.SimulationTrialResult(
params=cirq.ParamResolver({'a': 2}),
measurements={'m': np.array([1, 2])},
final_state=np.array([0, 1, 0, 0]))
assert result.dirac_notation() == '|01⟩'
def test_simulator_trial_density_matrix():
result = cirq.SimulationTrialResult(
params=cirq.ParamResolver({'a': 2}),
measurements={'m': np.array([1, 2])},
final_state=np.array([0, 1, 0, 0]))
rho = np.array([[0, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])
np.testing.assert_array_almost_equal(rho,
result.density_matrix())
def test_simulator_trial_bloch_vector():
result = cirq.SimulationTrialResult(
params=cirq.ParamResolver({'a': 2}),
measurements={'m': np.array([1, 2])},
final_state=np.array([0, 1, 0, 0]))
bloch = np.array([0,0,-1])
np.testing.assert_array_almost_equal(bloch,
result.bloch_vector(1))
class BasicStepResult(cirq.StepResult):
def __init__(self, qubit_map: Dict,
measurements: Dict[str, List[bool]]) -> None:
super().__init__(qubit_map, measurements)
def state(self) -> np.ndarray:
return np.array([0, 1, 0, 0])
def test_step_result_pretty_state():
step_result = BasicStepResult({}, {})
assert step_result.dirac_notation() == '|01⟩'
def test_step_result_density_matrix():
q0, q1 = cirq.LineQubit.range(2)
step_result = BasicStepResult({q0: 0, q1: 1}, {})
rho = np.array([[0, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])
np.testing.assert_array_almost_equal(rho,
step_result.density_matrix([q0, q1]))
np.testing.assert_array_almost_equal(rho,
step_result.density_matrix())
rho_ind_rev = np.array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 0]])
np.testing.assert_array_almost_equal(rho_ind_rev,
step_result.density_matrix([q1, q0]))
single_rho = np.array([[0, 0],
[0, 1]])
np.testing.assert_array_almost_equal(single_rho,
step_result.density_matrix([q1]))
def test_step_result_density_matrix_invalid():
q0, q1 = cirq.LineQubit.range(2)
step_result = BasicStepResult({q0: 0}, {})
with pytest.raises(KeyError):
step_result.density_matrix([q1])
with pytest.raises(KeyError):
step_result.density_matrix('junk')
with pytest.raises(TypeError):
step_result.density_matrix(0)
def test_step_result_bloch_vector():
q0, q1 = cirq.LineQubit.range(2)
step_result = BasicStepResult({q0: 0, q1: 1}, {})
bloch1 = np.array([0,0,-1])
bloch0 = np.array([0,0,1])
np.testing.assert_array_almost_equal(bloch1,
step_result.bloch_vector(q1))
np.testing.assert_array_almost_equal(bloch0,
step_result.bloch_vector(q0))
def test_bloch_vector_invalid():
q0, q1 = cirq.LineQubit.range(2)
step_result = BasicStepResult({q0: 0}, {})
with pytest.raises(KeyError):
step_result.bloch_vector(q1)
with pytest.raises(KeyError):
step_result.bloch_vector('junk')
with pytest.raises(KeyError):
step_result.bloch_vector(0)
class FakeStepResult(cirq.StepResult):
def __init__(self, ones_qubits):
self._ones_qubits = set(ones_qubits)
def state(self):
pass
def __setstate__(self, state):
pass
def sample(self, qubits, repetitions):
return [[qubit in self._ones_qubits for qubit in qubits]] * repetitions
def test_step_sample_measurement_ops():
q0, q1, q2 = cirq.LineQubit.range(3)
measurement_ops = [cirq.measure(q0, q1), cirq.measure(q2)]
step_result = FakeStepResult([q1])
measurements = step_result.sample_measurement_ops(measurement_ops)
np.testing.assert_equal(measurements,
{'0,1': [[False, True]], '2': [[False]]})
def test_step_sample_measurement_ops_repetitions():
q0, q1, q2 = cirq.LineQubit.range(3)
measurement_ops = [cirq.measure(q0, q1), cirq.measure(q2)]
step_result = FakeStepResult([q1])
measurements = step_result.sample_measurement_ops(measurement_ops,
repetitions=3)
np.testing.assert_equal(measurements,
{'0,1': [[False, True]] * 3, '2': [[False]] * 3})
def test_step_sample_measurement_ops_no_measurements():
step_result = FakeStepResult([])
measurements = step_result.sample_measurement_ops([])
assert measurements == {}
def test_step_sample_measurement_ops_not_measurement():
q0 = cirq.LineQubit(0)
step_result = FakeStepResult([q0])
with pytest.raises(ValueError, match='MeasurementGate'):
step_result.sample_measurement_ops([cirq.X(q0)])
def test_step_sample_measurement_ops_repeated_qubit():
q0, q1, q2 = cirq.LineQubit.range(3)
step_result = FakeStepResult([q0])
with pytest.raises(ValueError, match='MeasurementGate'):
step_result.sample_measurement_ops(
[cirq.measure(q0), cirq.measure(q1, q2), cirq.measure(q0)])
class MultiHTestGate(cirq.Gate):
def _decompose_(self, qubits):
return cirq.H.on_each(qubits)
def test_simulates_composite():
c = cirq.Circuit.from_ops(MultiHTestGate().on(*cirq.LineQubit.range(2)))
expected = np.array([0.5] * 4)
np.testing.assert_allclose(c.apply_unitary_effect_to_state(),
expected)
np.testing.assert_allclose(cirq.Simulator().simulate(c).final_state,
expected)
def test_simulate_measurement_inversions():
q = cirq.NamedQubit('q')
c = cirq.Circuit.from_ops(cirq.MeasurementGate(key='q',
invert_mask=(True,)).on(q))
assert cirq.Simulator().simulate(c).measurements == {'q': np.array([True])}
c = cirq.Circuit.from_ops(cirq.MeasurementGate(key='q',
invert_mask=(False,)).on(q))
assert cirq.Simulator().simulate(c).measurements == {'q': np.array([False])}
|
[
"cirq.SimulatesSamples",
"cirq.testing.EqualsTester",
"cirq.X",
"cirq.LineQubit",
"cirq.NamedQubit",
"cirq.MeasurementGate",
"cirq.H.on_each",
"cirq.Simulator",
"cirq.ParamResolver",
"pytest.raises",
"numpy.array",
"cirq.testing.random_circuit",
"cirq.SimulatesIntermediateWaveFunction",
"numpy.testing.assert_equal",
"cirq.LineQubit.range",
"cirq.testing.mock.mock.Mock",
"cirq.TrialResult",
"cirq.measure"
] |
[((836, 859), 'cirq.SimulatesSamples', 'cirq.SimulatesSamples', ([], {}), '()\n', (857, 859), False, 'import cirq\n'), ((981, 1004), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.Circuit'], {}), '(cirq.Circuit)\n', (990, 1004), False, 'from cirq.testing.mock import mock\n'), ((1026, 1055), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.ParamResolver'], {}), '(cirq.ParamResolver)\n', (1035, 1055), False, 'from cirq.testing.mock import mock\n'), ((1078, 1174), 'cirq.TrialResult', 'cirq.TrialResult', ([], {'repetitions': '(10)', 'measurements': 'expected_measurements', 'params': 'param_resolver'}), '(repetitions=10, measurements=expected_measurements, params\n =param_resolver)\n', (1094, 1174), False, 'import cirq\n'), ((1750, 1773), 'cirq.SimulatesSamples', 'cirq.SimulatesSamples', ([], {}), '()\n', (1771, 1773), False, 'import cirq\n'), ((1895, 1918), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.Circuit'], {}), '(cirq.Circuit)\n', (1904, 1918), False, 'from cirq.testing.mock import mock\n'), ((3017, 3057), 'cirq.SimulatesIntermediateWaveFunction', 'cirq.SimulatesIntermediateWaveFunction', ([], {}), '()\n', (3055, 3057), False, 'import cirq\n'), ((3077, 3099), 'numpy.array', 'np.array', (['[1, 0, 0, 0]'], {}), '([1, 0, 0, 0])\n', (3085, 3099), True, 'import numpy as np\n'), ((3450, 3473), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.Circuit'], {}), '(cirq.Circuit)\n', (3459, 3473), False, 'from cirq.testing.mock import mock\n'), ((3495, 3524), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.ParamResolver'], {}), '(cirq.ParamResolver)\n', (3504, 3524), False, 'from cirq.testing.mock import mock\n'), ((3543, 3569), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.QubitOrder'], {}), '(cirq.QubitOrder)\n', (3552, 3569), False, 'from cirq.testing.mock import mock\n'), ((3792, 3855), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["result.measurements['a']", '[True, True]'], {}), "(result.measurements['a'], [True, True])\n", (3815, 3855), True, 'import numpy as np\n'), ((3860, 3924), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["result.measurements['b']", '[True, False]'], {}), "(result.measurements['b'], [True, False])\n", (3883, 3924), True, 'import numpy as np\n'), ((4029, 4085), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['result.final_state', 'final_state'], {}), '(result.final_state, final_state)\n', (4052, 4085), True, 'import numpy as np\n'), ((4255, 4295), 'cirq.SimulatesIntermediateWaveFunction', 'cirq.SimulatesIntermediateWaveFunction', ([], {}), '()\n', (4293, 4295), False, 'import cirq\n'), ((4317, 4359), 'numpy.array', 'np.array', (['[1, 0, 0, 0]'], {'dtype': 'np.complex64'}), '([1, 0, 0, 0], dtype=np.complex64)\n', (4325, 4359), True, 'import numpy as np\n'), ((4433, 4473), 'cirq.testing.random_circuit', 'cirq.testing.random_circuit', (['(2)', '(20)', '(0.99)'], {}), '(2, 20, 0.99)\n', (4460, 4473), False, 'import cirq\n'), ((4495, 4524), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.ParamResolver'], {}), '(cirq.ParamResolver)\n', (4504, 4524), False, 'from cirq.testing.mock import mock\n'), ((4888, 4946), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['result.final_state', 'initial_state'], {}), '(result.final_state, initial_state)\n', (4911, 4946), True, 'import numpy as np\n'), ((5114, 5154), 'cirq.SimulatesIntermediateWaveFunction', 'cirq.SimulatesIntermediateWaveFunction', ([], {}), '()\n', (5152, 5154), False, 'import cirq\n'), ((5174, 5196), 'numpy.array', 'np.array', (['[1, 0, 0, 0]'], {}), '([1, 0, 0, 0])\n', (5182, 5196), True, 'import numpy as np\n'), ((5456, 5479), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.Circuit'], {}), '(cirq.Circuit)\n', (5465, 5479), False, 'from cirq.testing.mock import mock\n'), ((5606, 5632), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.QubitOrder'], {}), '(cirq.QubitOrder)\n', (5615, 5632), False, 'from cirq.testing.mock import mock\n'), ((6903, 6930), 'cirq.testing.EqualsTester', 'cirq.testing.EqualsTester', ([], {}), '()\n', (6928, 6930), False, 'import cirq\n'), ((8270, 8336), 'numpy.array', 'np.array', (['[[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]'], {}), '([[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])\n', (8278, 8336), True, 'import numpy as np\n'), ((8707, 8727), 'numpy.array', 'np.array', (['[0, 0, -1]'], {}), '([0, 0, -1])\n', (8715, 8727), True, 'import numpy as np\n'), ((9256, 9279), 'cirq.LineQubit.range', 'cirq.LineQubit.range', (['(2)'], {}), '(2)\n', (9276, 9279), False, 'import cirq\n'), ((9345, 9411), 'numpy.array', 'np.array', (['[[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]'], {}), '([[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])\n', (9353, 9411), True, 'import numpy as np\n'), ((9668, 9734), 'numpy.array', 'np.array', (['[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]]'], {}), '([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]])\n', (9676, 9734), True, 'import numpy as np\n'), ((9937, 9963), 'numpy.array', 'np.array', (['[[0, 0], [0, 1]]'], {}), '([[0, 0], [0, 1]])\n', (9945, 9963), True, 'import numpy as np\n'), ((10148, 10171), 'cirq.LineQubit.range', 'cirq.LineQubit.range', (['(2)'], {}), '(2)\n', (10168, 10171), False, 'import cirq\n'), ((10498, 10521), 'cirq.LineQubit.range', 'cirq.LineQubit.range', (['(2)'], {}), '(2)\n', (10518, 10521), False, 'import cirq\n'), ((10589, 10609), 'numpy.array', 'np.array', (['[0, 0, -1]'], {}), '([0, 0, -1])\n', (10597, 10609), True, 'import numpy as np\n'), ((10621, 10640), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (10629, 10640), True, 'import numpy as np\n'), ((10861, 10884), 'cirq.LineQubit.range', 'cirq.LineQubit.range', (['(2)'], {}), '(2)\n', (10881, 10884), False, 'import cirq\n'), ((11540, 11563), 'cirq.LineQubit.range', 'cirq.LineQubit.range', (['(3)'], {}), '(3)\n', (11560, 11563), False, 'import cirq\n'), ((11742, 11821), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['measurements', "{'0,1': [[False, True]], '2': [[False]]}"], {}), "(measurements, {'0,1': [[False, True]], '2': [[False]]})\n", (11765, 11821), True, 'import numpy as np\n'), ((11921, 11944), 'cirq.LineQubit.range', 'cirq.LineQubit.range', (['(3)'], {}), '(3)\n', (11941, 11944), False, 'import cirq\n'), ((12192, 12284), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['measurements', "{'0,1': [[False, True]] * 3, '2': [[False]] * 3}"], {}), "(measurements, {'0,1': [[False, True]] * 3, '2': [[\n False]] * 3})\n", (12215, 12284), True, 'import numpy as np\n'), ((12559, 12576), 'cirq.LineQubit', 'cirq.LineQubit', (['(0)'], {}), '(0)\n', (12573, 12576), False, 'import cirq\n'), ((12808, 12831), 'cirq.LineQubit.range', 'cirq.LineQubit.range', (['(3)'], {}), '(3)\n', (12828, 12831), False, 'import cirq\n'), ((13286, 13305), 'numpy.array', 'np.array', (['([0.5] * 4)'], {}), '([0.5] * 4)\n', (13294, 13305), True, 'import numpy as np\n'), ((13581, 13601), 'cirq.NamedQubit', 'cirq.NamedQubit', (['"""q"""'], {}), "('q')\n", (13596, 13601), False, 'import cirq\n'), ((894, 909), 'numpy.array', 'np.array', (['[[1]]'], {}), '([[1]])\n', (902, 909), True, 'import numpy as np\n'), ((777, 788), 'cirq.testing.mock.mock.Mock', 'mock.Mock', ([], {}), '()\n', (786, 788), False, 'from cirq.testing.mock import mock\n'), ((1808, 1823), 'numpy.array', 'np.array', (['[[1]]'], {}), '([[1]])\n', (1816, 1823), True, 'import numpy as np\n'), ((1942, 1971), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.ParamResolver'], {}), '(cirq.ParamResolver)\n', (1951, 1971), False, 'from cirq.testing.mock import mock\n'), ((1996, 2025), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.ParamResolver'], {}), '(cirq.ParamResolver)\n', (2005, 2025), False, 'from cirq.testing.mock import mock\n'), ((2051, 2151), 'cirq.TrialResult', 'cirq.TrialResult', ([], {'repetitions': '(10)', 'measurements': 'expected_measurements', 'params': 'param_resolvers[0]'}), '(repetitions=10, measurements=expected_measurements, params\n =param_resolvers[0])\n', (2067, 2151), False, 'import cirq\n'), ((2254, 2354), 'cirq.TrialResult', 'cirq.TrialResult', ([], {'repetitions': '(10)', 'measurements': 'expected_measurements', 'params': 'param_resolvers[1]'}), '(repetitions=10, measurements=expected_measurements, params\n =param_resolvers[1])\n', (2270, 2354), False, 'import cirq\n'), ((1688, 1699), 'cirq.testing.mock.mock.Mock', 'mock.Mock', ([], {}), '()\n', (1697, 1699), False, 'from cirq.testing.mock import mock\n'), ((3149, 3160), 'cirq.testing.mock.mock.Mock', 'mock.Mock', ([], {}), '()\n', (3158, 3160), False, 'from cirq.testing.mock import mock\n'), ((3249, 3260), 'cirq.testing.mock.mock.Mock', 'mock.Mock', ([], {}), '()\n', (3258, 3260), False, 'from cirq.testing.mock import mock\n'), ((2961, 2972), 'cirq.testing.mock.mock.Mock', 'mock.Mock', ([], {}), '()\n', (2970, 2972), False, 'from cirq.testing.mock import mock\n'), ((4190, 4201), 'cirq.testing.mock.mock.Mock', 'mock.Mock', ([], {}), '()\n', (4199, 4201), False, 'from cirq.testing.mock import mock\n'), ((5246, 5257), 'cirq.testing.mock.mock.Mock', 'mock.Mock', ([], {}), '()\n', (5255, 5257), False, 'from cirq.testing.mock import mock\n'), ((5503, 5532), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.ParamResolver'], {}), '(cirq.ParamResolver)\n', (5512, 5532), False, 'from cirq.testing.mock import mock\n'), ((5557, 5586), 'cirq.testing.mock.mock.Mock', 'mock.Mock', (['cirq.ParamResolver'], {}), '(cirq.ParamResolver)\n', (5566, 5586), False, 'from cirq.testing.mock import mock\n'), ((5051, 5062), 'cirq.testing.mock.mock.Mock', 'mock.Mock', ([], {}), '()\n', (5060, 5062), False, 'from cirq.testing.mock import mock\n'), ((9048, 9070), 'numpy.array', 'np.array', (['[0, 1, 0, 0]'], {}), '([0, 1, 0, 0])\n', (9056, 9070), True, 'import numpy as np\n'), ((10230, 10253), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (10243, 10253), False, 'import pytest\n'), ((10305, 10328), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (10318, 10328), False, 'import pytest\n'), ((10382, 10406), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (10395, 10406), False, 'import pytest\n'), ((10942, 10965), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (10955, 10965), False, 'import pytest\n'), ((11013, 11036), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (11026, 11036), False, 'import pytest\n'), ((11088, 11111), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (11101, 11111), False, 'import pytest\n'), ((11587, 11607), 'cirq.measure', 'cirq.measure', (['q0', 'q1'], {}), '(q0, q1)\n', (11599, 11607), False, 'import cirq\n'), ((11609, 11625), 'cirq.measure', 'cirq.measure', (['q2'], {}), '(q2)\n', (11621, 11625), False, 'import cirq\n'), ((11968, 11988), 'cirq.measure', 'cirq.measure', (['q0', 'q1'], {}), '(q0, q1)\n', (11980, 11988), False, 'import cirq\n'), ((11990, 12006), 'cirq.measure', 'cirq.measure', (['q2'], {}), '(q2)\n', (12002, 12006), False, 'import cirq\n'), ((12625, 12675), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""MeasurementGate"""'}), "(ValueError, match='MeasurementGate')\n", (12638, 12675), False, 'import pytest\n'), ((12880, 12930), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""MeasurementGate"""'}), "(ValueError, match='MeasurementGate')\n", (12893, 12930), False, 'import pytest\n'), ((13137, 13159), 'cirq.H.on_each', 'cirq.H.on_each', (['qubits'], {}), '(qubits)\n', (13151, 13159), False, 'import cirq\n'), ((5294, 5316), 'numpy.array', 'np.array', (['[True, True]'], {}), '([True, True])\n', (5302, 5316), True, 'import numpy as np\n'), ((6496, 6524), 'cirq.ParamResolver', 'cirq.ParamResolver', (["{'a': 2}"], {}), "({'a': 2})\n", (6514, 6524), False, 'import cirq\n'), ((6592, 6614), 'numpy.array', 'np.array', (['[0, 1, 0, 0]'], {}), '([0, 1, 0, 0])\n', (6600, 6614), True, 'import numpy as np\n'), ((7874, 7902), 'cirq.ParamResolver', 'cirq.ParamResolver', (["{'a': 2}"], {}), "({'a': 2})\n", (7892, 7902), False, 'import cirq\n'), ((7970, 7992), 'numpy.array', 'np.array', (['[0, 1, 0, 0]'], {}), '([0, 1, 0, 0])\n', (7978, 7992), True, 'import numpy as np\n'), ((8140, 8168), 'cirq.ParamResolver', 'cirq.ParamResolver', (["{'a': 2}"], {}), "({'a': 2})\n", (8158, 8168), False, 'import cirq\n'), ((8236, 8258), 'numpy.array', 'np.array', (['[0, 1, 0, 0]'], {}), '([0, 1, 0, 0])\n', (8244, 8258), True, 'import numpy as np\n'), ((8575, 8603), 'cirq.ParamResolver', 'cirq.ParamResolver', (["{'a': 2}"], {}), "({'a': 2})\n", (8593, 8603), False, 'import cirq\n'), ((8671, 8693), 'numpy.array', 'np.array', (['[0, 1, 0, 0]'], {}), '([0, 1, 0, 0])\n', (8679, 8693), True, 'import numpy as np\n'), ((13804, 13820), 'numpy.array', 'np.array', (['[True]'], {}), '([True])\n', (13812, 13820), True, 'import numpy as np\n'), ((14025, 14042), 'numpy.array', 'np.array', (['[False]'], {}), '([False])\n', (14033, 14042), True, 'import numpy as np\n'), ((6553, 6569), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (6561, 6569), True, 'import numpy as np\n'), ((7013, 7041), 'cirq.ParamResolver', 'cirq.ParamResolver', (["{'a': 2}"], {}), "({'a': 2})\n", (7031, 7041), False, 'import cirq\n'), ((7117, 7139), 'numpy.array', 'np.array', (['[0, 1, 0, 0]'], {}), '([0, 1, 0, 0])\n', (7125, 7139), True, 'import numpy as np\n'), ((7224, 7252), 'cirq.ParamResolver', 'cirq.ParamResolver', (["{'a': 2}"], {}), "({'a': 2})\n", (7242, 7252), False, 'import cirq\n'), ((7328, 7350), 'numpy.array', 'np.array', (['[0, 0, 1, 0]'], {}), '([0, 0, 1, 0])\n', (7336, 7350), True, 'import numpy as np\n'), ((7435, 7463), 'cirq.ParamResolver', 'cirq.ParamResolver', (["{'a': 3}"], {}), "({'a': 3})\n", (7453, 7463), False, 'import cirq\n'), ((7539, 7561), 'numpy.array', 'np.array', (['[0, 0, 1, 0]'], {}), '([0, 0, 1, 0])\n', (7547, 7561), True, 'import numpy as np\n'), ((7646, 7674), 'cirq.ParamResolver', 'cirq.ParamResolver', (["{'a': 3}"], {}), "({'a': 3})\n", (7664, 7674), False, 'import cirq\n'), ((7750, 7772), 'numpy.array', 'np.array', (['[0, 0, 1, 0]'], {}), '([0, 0, 1, 0])\n', (7758, 7772), True, 'import numpy as np\n'), ((7931, 7947), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (7939, 7947), True, 'import numpy as np\n'), ((8197, 8213), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (8205, 8213), True, 'import numpy as np\n'), ((8632, 8648), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (8640, 8648), True, 'import numpy as np\n'), ((12721, 12731), 'cirq.X', 'cirq.X', (['q0'], {}), '(q0)\n', (12727, 12731), False, 'import cirq\n'), ((12993, 13009), 'cirq.measure', 'cirq.measure', (['q0'], {}), '(q0)\n', (13005, 13009), False, 'import cirq\n'), ((13011, 13031), 'cirq.measure', 'cirq.measure', (['q1', 'q2'], {}), '(q1, q2)\n', (13023, 13031), False, 'import cirq\n'), ((13033, 13049), 'cirq.measure', 'cirq.measure', (['q0'], {}), '(q0)\n', (13045, 13049), False, 'import cirq\n'), ((13245, 13268), 'cirq.LineQubit.range', 'cirq.LineQubit.range', (['(2)'], {}), '(2)\n', (13265, 13268), False, 'import cirq\n'), ((13633, 13683), 'cirq.MeasurementGate', 'cirq.MeasurementGate', ([], {'key': '"""q"""', 'invert_mask': '(True,)'}), "(key='q', invert_mask=(True,))\n", (13653, 13683), False, 'import cirq\n'), ((13853, 13904), 'cirq.MeasurementGate', 'cirq.MeasurementGate', ([], {'key': '"""q"""', 'invert_mask': '(False,)'}), "(key='q', invert_mask=(False,))\n", (13873, 13904), False, 'import cirq\n'), ((5964, 5986), 'numpy.array', 'np.array', (['[True, True]'], {}), '([True, True])\n', (5972, 5986), True, 'import numpy as np\n'), ((6133, 6155), 'numpy.array', 'np.array', (['[True, True]'], {}), '([True, True])\n', (6141, 6155), True, 'import numpy as np\n'), ((7074, 7090), 'numpy.array', 'np.array', (['[1, 0]'], {}), '([1, 0])\n', (7082, 7090), True, 'import numpy as np\n'), ((7285, 7301), 'numpy.array', 'np.array', (['[1, 0]'], {}), '([1, 0])\n', (7293, 7301), True, 'import numpy as np\n'), ((7496, 7512), 'numpy.array', 'np.array', (['[1, 0]'], {}), '([1, 0])\n', (7504, 7512), True, 'import numpy as np\n'), ((7707, 7723), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (7715, 7723), True, 'import numpy as np\n'), ((13444, 13460), 'cirq.Simulator', 'cirq.Simulator', ([], {}), '()\n', (13458, 13460), False, 'import cirq\n'), ((13753, 13769), 'cirq.Simulator', 'cirq.Simulator', ([], {}), '()\n', (13767, 13769), False, 'import cirq\n'), ((13974, 13990), 'cirq.Simulator', 'cirq.Simulator', ([], {}), '()\n', (13988, 13990), False, 'import cirq\n')]
|
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import itertools
import logging
import numpy as np
import pickle
import random
import torch
import torch.utils.data as data
from torch.utils.data.sampler import Sampler
from detectron2.utils.serialize import PicklableWrapper
__all__ = ["MapDataset", "DatasetFromList", "AspectRatioGroupedDataset", "ToIterableDataset"]
class MapDataset(data.Dataset):
"""
Map a function over the elements in a dataset.
Args:
dataset: a dataset where map function is applied.
map_func: a callable which maps the element in dataset. map_func is
responsible for error handling, when error happens, it needs to
return None so the MapDataset will randomly use other
elements from the dataset.
"""
def __init__(self, dataset, map_func, task_dropout=False, train_controller=False, subperclass_indices=None): # 这个task_dropout需要在ratio>0时才为true
self._dataset = dataset
self.train_controller = train_controller
self.superclass_indices = subperclass_indices
self._dataset.train_controller = train_controller
self._map_func = PicklableWrapper(map_func) # wrap so that a lambda will work
self._rng = random.Random(42)
if self.train_controller:
self._fallback_candidates = [set(range(len(dset))) for dset in dataset._lst]
else:
self._fallback_candidates = set(range(len(dataset)))
self.task_dropout = task_dropout
self._dataset.task_dropout = task_dropout
self.superclass_id = 0
def set_superclass_id(self, superclass_index: int):
self.superclass_id = superclass_index
self._dataset.set_superclass_id(superclass_index)
def __len__(self):
if not self.train_controller:
return len(self._dataset)
else:
return len(self.superclass_indices[self.superclass_id])
def __getitem__(self, idx):
retry_count = 0
cur_idx = int(idx)
while True:
if self.task_dropout:
if self.train_controller:
dataset_dict, super_targets_idxs, super_targets = self._dataset[self.superclass_indices[self.superclass_id][cur_idx]]
else:
dataset_dict, super_targets_masks, super_targets_inverse_masks, super_targets_idxs, super_targets = self._dataset[cur_idx]
else:
dataset_dict = self._dataset[cur_idx]
data, m = self._map_func(dataset_dict) # 返回的m是non empty后的图片object
nonempty_obj = []
for i, j in enumerate(m):
if j:
nonempty_obj.append(i)
if data is not None:
if self.train_controller:
self._fallback_candidates[self.superclass_id].add(cur_idx)
else:
self._fallback_candidates.add(cur_idx)
if self.task_dropout:
if self.train_controller:
return (data, super_targets_idxs[nonempty_obj], super_targets[nonempty_obj])
else:
return (data, super_targets_masks[nonempty_obj], super_targets_inverse_masks[nonempty_obj], super_targets_idxs[nonempty_obj], super_targets[nonempty_obj])
return data
# _map_func fails for this idx, use a random new index from the pool
retry_count += 1
if self.train_controller:
self._fallback_candidates[self.superclass_id].discard(cur_idx)
cur_idx = self._rng.sample(self._fallback_candidates[self.superclass_id], k=1)[0]
else:
self._fallback_candidates.discard(cur_idx)
cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0]
if retry_count >= 3:
logger = logging.getLogger(__name__)
logger.warning(
"Failed to apply `_map_func` for idx: {}, retry count: {}".format(
idx, retry_count
)
)
class DatasetFromList(data.Dataset):
"""
Wrap a list to a torch Dataset. It produces elements of the list as data.
"""
def __init__(self, lst, class_ranges=None, meta=None, in_hier=None, task_dropout: bool = False, \
copy: bool = True, serialize: bool = True, train_controller: bool = False, whole_dataset=None):
"""
Args:
lst (list): a list which contains elements to produce.
copy (bool): whether to deepcopy the element when producing it,
so that the result can be modified in place without affecting the
source in the list.
serialize (bool): whether to hold memory using serialized objects, when
enabled, data loader workers can use shared RAM from master
process instead of making a copy.
"""
logger = logging.getLogger(__name__)
# 当train controller的时候,_lst就是一个list,object类型的np.array,要先根据superclass id拿出指定超类的数据,再去做下面一些必要的代码
self._lst = lst
self.whole_dataset = whole_dataset # list,包含整个数据集,里面必须是每个superclass放在一起才行
self.class_ranges = class_ranges
self.meta = meta
self.in_hier = in_hier
self.task_dropout = task_dropout # 这个task_dropout需要在ratio>0时才为true
self._copy = copy
self._serialize = serialize
self.train_controller = train_controller # 当train controller时,dataset设为eval模态
if self.train_controller:
assert self.task_dropout
self._serialize = False # train controller的时候必须为false,不搞这个了
logger.info("Now data is related to controller, no need to serialize data")
self.superclass_id = 0
if self.task_dropout:
# 下面的数据都是针对每一个物体的,按照图片的顺序,然后每张图片按照其中物体的顺序,与分类任务还是不一样的
# create a dict contain the start and end anno of each image's objects
if not self.train_controller:
self.targets = []
self.images_part = [] # 保存每张图片对应的obj是list中的哪一段,原本是定义为dict,但是因为torch的dataset处理getitem的时候是在触发到indexerror时自动停止,结果我这里先遇到了一个keyerror,所以它就报错,改为list,就会在idx超出范围时报错indexerror,就会停止读取数据集了
end = 0 # 每张图片中包含的obj在list中的end index,最后的数值大小是所有物体的数量
for i, s in enumerate(self._lst):
start = end # after a image is done, the end of the last one becomes the start of next one
for j, obj in enumerate(s['annotations']):
id_for_only_class_in_superclass_exists = obj["category_id"]
self.targets.append(id_for_only_class_in_superclass_exists)
end += 1
self.images_part.append([start, end])
assert end-start==len(s['annotations']), "img objs indexs wrong."
self.targets = np.array(self.targets)
self.images_part = np.array(self.images_part)
else: # train controller的时候,需要把target和image part都搞成每个superclass单独存的
self.whole_targets = []
self.whole_images_part = [] # 保存每张图片对应的obj是list中的哪一段,原本是定义为dict,但是因为torch的dataset处理getitem的时候是在触发到indexerror时自动停止,结果我这里先遇到了一个keyerror,所以它就报错,改为list,就会在idx超出范围时报错indexerror,就会停止读取数据集了
end = 0 # 每张图片中包含的obj在list中的end index,最后的数值大小是所有物体的数量
for i, s in enumerate(self.whole_dataset):
start = end # after a image is done, the end of the last one becomes the start of next one
for j, obj in enumerate(s['annotations']):
id_for_only_class_in_superclass_exists = obj["category_id"]
self.whole_targets.append(id_for_only_class_in_superclass_exists)
end += 1
self.whole_images_part.append([start, end])
self.whole_targets = np.array(self.whole_targets)
self.whole_images_part = np.array(self.whole_images_part)
self.targets_per_superclass = [] # 它的长度和当前superclass里的object数量一样
self.images_part_per_superclass = [] # 它的长度和当前superclass里的图片数量一样
for i, superclass_lst in enumerate(self._lst):
targets = []
images_part = [] # 保存每张图片对应的obj是list中的哪一段,原本是定义为dict,但是因为torch的dataset处理getitem的时候是在触发到indexerror时自动停止,结果我这里先遇到了一个keyerror,所以它就报错,改为list,就会在idx超出范围时报错indexerror,就会停止读取数据集了
end = 0 # 每张图片中包含的obj在list中的end index,最后的数值大小是所有物体的数量
for i, s in enumerate(superclass_lst):
start = end # after a image is done, the end of the last one becomes the start of next one
for j, obj in enumerate(s['annotations']):
id_in_80 = obj["category_id"]
targets.append(id_in_80)
end += 1
images_part.append([start, end])
self.targets_per_superclass.append(targets)
self.images_part_per_superclass.append(images_part)
self.targets_per_superclass = np.array(self.targets_per_superclass, dtype=object)
self.images_part_per_superclass = np.array(self.images_part_per_superclass, dtype=object)
# 这里获取的targets已经是0-80的label了,不需要映射了
# self.category_ids = self.targets
self.class_to_superclass = np.ones(len(self.in_hier.in_wnids_child)) * -1 # 应该是一个长度为80的array
for ran in class_ranges: # ranges里保存的是连续的id,是属于0-80范围的
for classnum in ran:
classname = self.in_hier.num_to_name_child[classnum]
classwnid = self.in_hier.name_to_wnid_child[classname]
parentwnid = self.in_hier.tree_child[classwnid].parent_wnid
parentnum = self.in_hier.wnid_to_num_parent[parentwnid]
self.class_to_superclass[classnum] = parentnum
# 验证一下一致性,之前有定义一个连续id到超类id的字典
for num, super_idx in self.meta.class_to_superclass_idx.items():
assert self.class_to_superclass[num] == super_idx, 'inconsistency between num and superclass idx projection'
# self.super_targets里不应该有-1
if not self.train_controller:
self.super_targets = self.class_to_superclass[self.targets]
else:
self.whole_super_targets = self.class_to_superclass[self.whole_targets]
self.super_targets_per_superclass = [] # inference需要这个量
for i in self.targets_per_superclass:
self.super_targets_per_superclass.append(self.class_to_superclass[i])
self.super_targets_per_superclass = np.array(self.super_targets_per_superclass, dtype=object)
self.n_superclass = len(class_ranges)
if self.train_controller: # 训controller的时候需要对dataset特殊处理, TODO: train controller的时候val数据指定了数量,每个superclass要load一样的数据量
self.superclass_masks = []
self.superclass_data = []
self.superclass_samples_indices = []
self.superclass_targets = self.targets_per_superclass
self.superclass_images_part = self.images_part_per_superclass
self.super_targets_idxes_per_superclass = []
for i in range(self.n_superclass):
super_targets_idxes = []
for idx in range(self.images_part_per_superclass[i][-1][1]): # 获取每个superclass的end
super_targets_idxes.append((self.super_targets_per_superclass[i][idx] == self.class_to_superclass).nonzero()[0])
super_targets_idxes = np.stack(super_targets_idxes, axis=0).astype("int64") # 不知道是不是所有类的图片数量都一样,这里可能有问题
self.super_targets_idxes_per_superclass.append(super_targets_idxes) # inference 需要它
obj_idx = (self.whole_super_targets == i).nonzero()[0] # 保存属于当前superclass的所有obj的target index
# 如何从obj_idx得到图片的idx,for循环肯定特别慢啊
img_idx = []
for obj_position in obj_idx: # 每一个object在整个数据集的位置
for img_position, (obj_s, obj_e) in enumerate(self.whole_images_part):
if obj_s <= obj_position < obj_e and img_position not in img_idx:
img_idx.append(img_position)
break
self.superclass_data.append(np.array(self.whole_dataset)[img_idx].tolist())
self.superclass_samples_indices.append(np.array(img_idx).tolist())
superclass_mask = (self.class_to_superclass == i).astype("int32")
self.superclass_masks.append(superclass_mask)
self.superclass_masks = np.vstack(self.superclass_masks)
self.superclass_masks = np.array(self.superclass_masks)
self.superclass_samples_indices = np.array(self.superclass_samples_indices, dtype=object)
self.super_targets_idxes_per_superclass = np.array(self.super_targets_idxes_per_superclass, dtype=object)
else:
self.super_targets_masks = (self.super_targets.reshape(-1, 1) == self.class_to_superclass).astype("single")
self.super_targets_inverse_masks = (self.super_targets.reshape(-1, 1) != self.class_to_superclass).astype(
"single")
self.super_targets_idxes = []
assert end==len(self.super_targets_masks), "end={} wrong, total {} objects".format(end, len(self.super_targets_masks))
for idx in range(end):
self.super_targets_idxes.append((self.super_targets[idx] == self.class_to_superclass).nonzero()[0])
self.super_targets_idxes = np.stack(self.super_targets_idxes, axis=0).astype(
"int64") # 不知道是不是所有类的图片数量都一样,这里可能有问题
self.superclass_masks = []
self.superclass_samples_indices = []
for i in range(self.n_superclass):
idx = (self.super_targets == i).nonzero()[0]
self.superclass_samples_indices.append(idx.tolist())
superclass_mask = (self.class_to_superclass == i).astype("single")
self.superclass_masks.append(superclass_mask)
self.super_targets_idxes = np.array(self.super_targets_idxes)
self.superclass_masks = np.array(self.superclass_masks)
self.superclass_samples_indices = np.array(self.superclass_samples_indices, dtype=object)
def _serialize(data):
buffer = pickle.dumps(data, protocol=-1)
return np.frombuffer(buffer, dtype=np.uint8)
"""
这样处理之后,如果addr一次性指定获取多段,它只能得到第一个元素,比如_lst[:x]是第一张,_lst[x:y]是第二张,这都没问题
但如果指定_lst[:y]还是只能得到第一张,而mask那些就是需要一次性得到多段,所以要用循环来搞
"""
if self._serialize and not self.train_controller:
logger.info(
"Serializing {} _lst elements to byte tensors and concatenating them all ...".format(
len(self._lst)
)
)
self._lst = [_serialize(x) for x in self._lst] # 把每张图片给平铺成vector了
self._addr = np.asarray([len(x) for x in self._lst], dtype=np.int64)
self._addr = np.cumsum(self._addr)
self._lst = np.concatenate(self._lst) # 把所有的图片拼成整一条vector了,_addr里记录每张的起始/终止位置
logger.info("Serialized dataset takes {:.2f} MiB".format(len(self._lst) / 1024 ** 2))
if self.task_dropout:
logger.info("Serializing {} super_targets_masks elements to byte tensors and concatenating them all ...".format(len(self.super_targets_masks)))
self.super_targets_masks = [_serialize(x) for x in self.super_targets_masks]
self.super_targets_masks_addr = np.asarray([len(x) for x in self.super_targets_masks], dtype=np.int64)
self.super_targets_masks_addr = np.cumsum(self.super_targets_masks_addr)
self.super_targets_masks = np.concatenate(self.super_targets_masks)
logger.info("Serialized super_targets_masks takes {:.2f} MiB".format(len(self.super_targets_masks) / 1024 ** 2))
logger.info("Serializing {} super_targets_inverse_masks elements to byte tensors and concatenating them all ...".format(len(self.super_targets_inverse_masks)))
self.super_targets_inverse_masks = [_serialize(x) for x in self.super_targets_inverse_masks]
self.super_targets_inverse_masks_addr = np.asarray([len(x) for x in self.super_targets_inverse_masks], dtype=np.int64)
self.super_targets_inverse_masks_addr = np.cumsum(self.super_targets_inverse_masks_addr)
self.super_targets_inverse_masks = np.concatenate(self.super_targets_inverse_masks)
logger.info("Serialized super_targets_inverse_masks takes {:.2f} MiB".format(len(self.super_targets_inverse_masks) / 1024 ** 2))
logger.info("Serializing {} super_targets_idxes elements to byte tensors and concatenating them all ...".format(len(self.super_targets_idxes)))
self.super_targets_idxes = [_serialize(x) for x in self.super_targets_idxes]
self.super_targets_idxes_addr = np.asarray([len(x) for x in self.super_targets_idxes], dtype=np.int64)
self.super_targets_idxes_addr = np.cumsum(self.super_targets_idxes_addr)
self.super_targets_idxes = np.concatenate(self.super_targets_idxes)
logger.info("Serialized super_targets_idxes takes {:.2f} MiB".format(len(self.super_targets_idxes) / 1024 ** 2))
logger.info("Serializing {} super_targets elements to byte tensors and concatenating them all ...".format(len(self.super_targets)))
self.super_targets = [_serialize(x) for x in self.super_targets]
self.super_targets_addr = np.asarray([len(x) for x in self.super_targets], dtype=np.int64)
self.super_targets_addr = np.cumsum(self.super_targets_addr)
self.super_targets = np.concatenate(self.super_targets)
logger.info("Serialized super_targets takes {:.2f} MiB".format(len(self.super_targets) / 1024 ** 2))
def __len__(self):
if self.train_controller:
return len(self.superclass_data[self.superclass_id])
else:
if self._serialize:
return len(self._addr)
else:
return len(self._lst)
def set_superclass_id(self, superclass_index: int):
self.superclass_id = superclass_index
def __getitem__(self, idx):
if self.task_dropout:
if self.train_controller:
start, end = self.superclass_images_part[self.superclass_id][idx] # 获取的是对应总数据集里的image part,所以下面还是从self.super_targets里拿
else:
start, end = self.images_part[idx]
if self._serialize and not self.train_controller:
start_addr = 0 if idx == 0 else self._addr[idx - 1].item()
end_addr = self._addr[idx].item()
bytes = memoryview(self._lst[start_addr:end_addr])
return_lst = pickle.loads(bytes)
assert len(return_lst['annotations'])==end-start, "obj indexs num {} != obj num {} in image".format(end-start, len(return_lst['annotations']))
if self.task_dropout: # _serialize的话,需要先根据image_part对应的start和end,找到对应的下面这些值的addr的开始与结束
"""
下面这些,需要一次得到多个,所以必须用for训练来一个个object的得到
"""
super_targets_masks_bytes_for_return = []
super_targets_inverse_masks_bytes_for_return = []
super_targets_idxes_bytes_for_return = []
super_targets_bytes_for_return = []
for obj_idx in range(start, end): # 如果start为0,那么obj_idx就是从-1开始,所以下面的判断需要改为== -1
super_targets_masks_start_addr = 0 if obj_idx == 0 else self.super_targets_masks_addr[obj_idx - 1].item()
super_targets_masks_end_addr = self.super_targets_masks_addr[obj_idx].item()
super_targets_masks_bytes = memoryview(self.super_targets_masks[super_targets_masks_start_addr:super_targets_masks_end_addr])
super_targets_masks_bytes_for_return.append(pickle.loads(super_targets_masks_bytes))
super_targets_inverse_masks_start_addr = 0 if obj_idx == 0 else self.super_targets_inverse_masks_addr[obj_idx - 1].item()
super_targets_inverse_masks_end_addr = self.super_targets_inverse_masks_addr[obj_idx].item()
super_targets_inverse_masks_bytes = memoryview(self.super_targets_inverse_masks[super_targets_inverse_masks_start_addr:super_targets_inverse_masks_end_addr])
super_targets_inverse_masks_bytes_for_return.append(pickle.loads(super_targets_inverse_masks_bytes))
super_targets_idxes_start_addr = 0 if obj_idx == 0 else self.super_targets_idxes_addr[obj_idx - 1].item()
super_targets_idxes_end_addr = self.super_targets_idxes_addr[obj_idx].item()
super_targets_idxes_bytes = memoryview(self.super_targets_idxes[super_targets_idxes_start_addr:super_targets_idxes_end_addr])
super_targets_idxes_bytes_for_return.append(pickle.loads(super_targets_idxes_bytes))
super_targets_start_addr = 0 if obj_idx == 0 else self.super_targets_addr[obj_idx - 1].item()
super_targets_end_addr = self.super_targets_addr[obj_idx].item()
super_targets_bytes = memoryview(self.super_targets[super_targets_start_addr:super_targets_end_addr])
super_targets_bytes_for_return.append(pickle.loads(super_targets_bytes))
# 仔细想想其实这些量的_serialize有没有必要,这样搞还要加个for训练来获取值,很多次的pickle.loads,会不会更慢了
assert len(super_targets_masks_bytes_for_return)==len(return_lst['annotations']), "return value length num {} != obj num {} in image".format(len(super_targets_masks_bytes_for_return), len(return_lst['annotations']))
return_super_targets_masks = np.stack(super_targets_masks_bytes_for_return, axis=0)
return_super_targets_inverse_masks = np.stack(super_targets_inverse_masks_bytes_for_return, axis=0)
return_super_targets_idxes = np.stack(super_targets_idxes_bytes_for_return, axis=0)
return_super_targets = np.array(super_targets_bytes_for_return)
return return_lst, return_super_targets_masks, return_super_targets_inverse_masks, return_super_targets_idxes, return_super_targets
return pickle.loads(bytes)
elif self._copy:
if self.train_controller:
return copy.deepcopy(self.superclass_data[self.superclass_id][idx]), copy.deepcopy(self.super_targets_idxes_per_superclass[self.superclass_id][start:end]), copy.deepcopy(self.super_targets_per_superclass[self.superclass_id][start:end])
if self.task_dropout:
return copy.deepcopy(self._lst[idx]), copy.deepcopy(self.super_targets_masks[start:end]), copy.deepcopy(self.super_targets_inverse_masks[start:end]),\
copy.deepcopy(self.super_targets_idxes[start:end]), copy.deepcopy(self.super_targets[start:end])
return copy.deepcopy(self._lst[idx])
else:
if self.train_controller:
return self.superclass_data[self.superclass_id][idx], self.super_targets_idxes_per_superclass[self.superclass_id][start:end], self.super_targets_per_superclass[self.superclass_id][start:end]
if self.task_dropout:
return self._lst[idx], self.super_targets_masks[start:end], self.super_targets_inverse_masks[start:end],\
self.super_targets_idxes[start:end], self.super_targets[start:end]
return self._lst[idx]
class ToIterableDataset(data.IterableDataset):
"""
Convert an old indices-based (also called map-style) dataset
to an iterable-style dataset.
"""
def __init__(self, dataset, sampler):
"""
Args:
dataset (torch.utils.data.Dataset): an old-style dataset with ``__getitem__``
sampler (torch.utils.data.sampler.Sampler): a cheap iterable that produces indices
to be applied on ``dataset``.
"""
assert not isinstance(dataset, data.IterableDataset), dataset
assert isinstance(sampler, Sampler), sampler
self.dataset = dataset
self.sampler = sampler
def __iter__(self):
worker_info = data.get_worker_info()
if worker_info is None or worker_info.num_workers == 1:
for idx in self.sampler:
yield self.dataset[idx]
else:
# With map-style dataset, `DataLoader(dataset, sampler)` runs the
# sampler in main process only. But `DataLoader(ToIterableDataset(dataset, sampler))`
# will run sampler in every of the N worker and only keep 1/N of the ids on each
# worker. The assumption is that sampler is cheap to iterate and it's fine to discard
# ids in workers.
for idx in itertools.islice(
self.sampler, worker_info.id, None, worker_info.num_workers
):
yield self.dataset[idx]
class AspectRatioGroupedDataset(data.IterableDataset):
"""
Batch data that have similar aspect ratio together.
In this implementation, images whose aspect ratio < (or >) 1 will
be batched together.
This improves training speed because the images then need less padding
to form a batch.
It assumes the underlying dataset produces dicts with "width" and "height" keys.
It will then produce a list of original dicts with length = batch_size,
all with similar aspect ratios.
"""
def __init__(self, dataset, batch_size, task_dropout=False): # 这个task_dropout需要在ratio>0时才为true
"""
Args:
dataset: an iterable. Each element must be a dict with keys
"width" and "height", which will be used to batch data.
batch_size (int):
"""
self.dataset = dataset
self.batch_size = batch_size
self.task_dropout = task_dropout
self._buckets = [[] for _ in range(2)]
# Hard-coded two aspect ratio groups: w > h and w < h.
# Can add support for more aspect ratio groups, but doesn't seem useful
def __iter__(self):
for d in self.dataset:
if self.task_dropout:
w, h = d[0]["width"], d[0]["height"]
else:
w, h = d["width"], d["height"]
bucket_id = 0 if w > h else 1
bucket = self._buckets[bucket_id]
bucket.append(d)
if len(bucket) == self.batch_size:
yield bucket[:]
del bucket[:]
def __len__(self):
return len(self.dataset)
|
[
"pickle.loads",
"numpy.stack",
"torch.utils.data.get_worker_info",
"copy.deepcopy",
"numpy.concatenate",
"random.Random",
"numpy.frombuffer",
"numpy.cumsum",
"numpy.array",
"itertools.islice",
"numpy.vstack",
"detectron2.utils.serialize.PicklableWrapper",
"logging.getLogger",
"pickle.dumps"
] |
[((1177, 1203), 'detectron2.utils.serialize.PicklableWrapper', 'PicklableWrapper', (['map_func'], {}), '(map_func)\n', (1193, 1203), False, 'from detectron2.utils.serialize import PicklableWrapper\n'), ((1260, 1277), 'random.Random', 'random.Random', (['(42)'], {}), '(42)\n', (1273, 1277), False, 'import random\n'), ((4999, 5026), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (5016, 5026), False, 'import logging\n'), ((24849, 24871), 'torch.utils.data.get_worker_info', 'data.get_worker_info', ([], {}), '()\n', (24869, 24871), True, 'import torch.utils.data as data\n'), ((14826, 14857), 'pickle.dumps', 'pickle.dumps', (['data'], {'protocol': '(-1)'}), '(data, protocol=-1)\n', (14838, 14857), False, 'import pickle\n'), ((14877, 14914), 'numpy.frombuffer', 'np.frombuffer', (['buffer'], {'dtype': 'np.uint8'}), '(buffer, dtype=np.uint8)\n', (14890, 14914), True, 'import numpy as np\n'), ((15511, 15532), 'numpy.cumsum', 'np.cumsum', (['self._addr'], {}), '(self._addr)\n', (15520, 15532), True, 'import numpy as np\n'), ((15557, 15582), 'numpy.concatenate', 'np.concatenate', (['self._lst'], {}), '(self._lst)\n', (15571, 15582), True, 'import numpy as np\n'), ((19414, 19433), 'pickle.loads', 'pickle.loads', (['bytes'], {}), '(bytes)\n', (19426, 19433), False, 'import pickle\n'), ((22911, 22930), 'pickle.loads', 'pickle.loads', (['bytes'], {}), '(bytes)\n', (22923, 22930), False, 'import pickle\n'), ((25447, 25524), 'itertools.islice', 'itertools.islice', (['self.sampler', 'worker_info.id', 'None', 'worker_info.num_workers'], {}), '(self.sampler, worker_info.id, None, worker_info.num_workers)\n', (25463, 25524), False, 'import itertools\n'), ((3905, 3932), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (3922, 3932), False, 'import logging\n'), ((6944, 6966), 'numpy.array', 'np.array', (['self.targets'], {}), '(self.targets)\n', (6952, 6966), True, 'import numpy as np\n'), ((7002, 7028), 'numpy.array', 'np.array', (['self.images_part'], {}), '(self.images_part)\n', (7010, 7028), True, 'import numpy as np\n'), ((7962, 7990), 'numpy.array', 'np.array', (['self.whole_targets'], {}), '(self.whole_targets)\n', (7970, 7990), True, 'import numpy as np\n'), ((8032, 8064), 'numpy.array', 'np.array', (['self.whole_images_part'], {}), '(self.whole_images_part)\n', (8040, 8064), True, 'import numpy as np\n'), ((9221, 9272), 'numpy.array', 'np.array', (['self.targets_per_superclass'], {'dtype': 'object'}), '(self.targets_per_superclass, dtype=object)\n', (9229, 9272), True, 'import numpy as np\n'), ((9323, 9378), 'numpy.array', 'np.array', (['self.images_part_per_superclass'], {'dtype': 'object'}), '(self.images_part_per_superclass, dtype=object)\n', (9331, 9378), True, 'import numpy as np\n'), ((10836, 10893), 'numpy.array', 'np.array', (['self.super_targets_per_superclass'], {'dtype': 'object'}), '(self.super_targets_per_superclass, dtype=object)\n', (10844, 10893), True, 'import numpy as np\n'), ((12956, 12988), 'numpy.vstack', 'np.vstack', (['self.superclass_masks'], {}), '(self.superclass_masks)\n', (12965, 12988), True, 'import numpy as np\n'), ((13030, 13061), 'numpy.array', 'np.array', (['self.superclass_masks'], {}), '(self.superclass_masks)\n', (13038, 13061), True, 'import numpy as np\n'), ((13112, 13167), 'numpy.array', 'np.array', (['self.superclass_samples_indices'], {'dtype': 'object'}), '(self.superclass_samples_indices, dtype=object)\n', (13120, 13167), True, 'import numpy as np\n'), ((13226, 13289), 'numpy.array', 'np.array', (['self.super_targets_idxes_per_superclass'], {'dtype': 'object'}), '(self.super_targets_idxes_per_superclass, dtype=object)\n', (13234, 13289), True, 'import numpy as np\n'), ((14561, 14595), 'numpy.array', 'np.array', (['self.super_targets_idxes'], {}), '(self.super_targets_idxes)\n', (14569, 14595), True, 'import numpy as np\n'), ((14636, 14667), 'numpy.array', 'np.array', (['self.superclass_masks'], {}), '(self.superclass_masks)\n', (14644, 14667), True, 'import numpy as np\n'), ((14718, 14773), 'numpy.array', 'np.array', (['self.superclass_samples_indices'], {'dtype': 'object'}), '(self.superclass_samples_indices, dtype=object)\n', (14726, 14773), True, 'import numpy as np\n'), ((16176, 16216), 'numpy.cumsum', 'np.cumsum', (['self.super_targets_masks_addr'], {}), '(self.super_targets_masks_addr)\n', (16185, 16216), True, 'import numpy as np\n'), ((16260, 16300), 'numpy.concatenate', 'np.concatenate', (['self.super_targets_masks'], {}), '(self.super_targets_masks)\n', (16274, 16300), True, 'import numpy as np\n'), ((16907, 16955), 'numpy.cumsum', 'np.cumsum', (['self.super_targets_inverse_masks_addr'], {}), '(self.super_targets_inverse_masks_addr)\n', (16916, 16955), True, 'import numpy as np\n'), ((17007, 17055), 'numpy.concatenate', 'np.concatenate', (['self.super_targets_inverse_masks'], {}), '(self.super_targets_inverse_masks)\n', (17021, 17055), True, 'import numpy as np\n'), ((17622, 17662), 'numpy.cumsum', 'np.cumsum', (['self.super_targets_idxes_addr'], {}), '(self.super_targets_idxes_addr)\n', (17631, 17662), True, 'import numpy as np\n'), ((17706, 17746), 'numpy.concatenate', 'np.concatenate', (['self.super_targets_idxes'], {}), '(self.super_targets_idxes)\n', (17720, 17746), True, 'import numpy as np\n'), ((18255, 18289), 'numpy.cumsum', 'np.cumsum', (['self.super_targets_addr'], {}), '(self.super_targets_addr)\n', (18264, 18289), True, 'import numpy as np\n'), ((18327, 18361), 'numpy.concatenate', 'np.concatenate', (['self.super_targets'], {}), '(self.super_targets)\n', (18341, 18361), True, 'import numpy as np\n'), ((22393, 22447), 'numpy.stack', 'np.stack', (['super_targets_masks_bytes_for_return'], {'axis': '(0)'}), '(super_targets_masks_bytes_for_return, axis=0)\n', (22401, 22447), True, 'import numpy as np\n'), ((22501, 22563), 'numpy.stack', 'np.stack', (['super_targets_inverse_masks_bytes_for_return'], {'axis': '(0)'}), '(super_targets_inverse_masks_bytes_for_return, axis=0)\n', (22509, 22563), True, 'import numpy as np\n'), ((22609, 22663), 'numpy.stack', 'np.stack', (['super_targets_idxes_bytes_for_return'], {'axis': '(0)'}), '(super_targets_idxes_bytes_for_return, axis=0)\n', (22617, 22663), True, 'import numpy as np\n'), ((22703, 22743), 'numpy.array', 'np.array', (['super_targets_bytes_for_return'], {}), '(super_targets_bytes_for_return)\n', (22711, 22743), True, 'import numpy as np\n'), ((23579, 23608), 'copy.deepcopy', 'copy.deepcopy', (['self._lst[idx]'], {}), '(self._lst[idx])\n', (23592, 23608), False, 'import copy\n'), ((13969, 14011), 'numpy.stack', 'np.stack', (['self.super_targets_idxes'], {'axis': '(0)'}), '(self.super_targets_idxes, axis=0)\n', (13977, 14011), True, 'import numpy as np\n'), ((20545, 20584), 'pickle.loads', 'pickle.loads', (['super_targets_masks_bytes'], {}), '(super_targets_masks_bytes)\n', (20557, 20584), False, 'import pickle\n'), ((21092, 21139), 'pickle.loads', 'pickle.loads', (['super_targets_inverse_masks_bytes'], {}), '(super_targets_inverse_masks_bytes)\n', (21104, 21139), False, 'import pickle\n'), ((21575, 21614), 'pickle.loads', 'pickle.loads', (['super_targets_idxes_bytes'], {}), '(super_targets_idxes_bytes)\n', (21587, 21614), False, 'import pickle\n'), ((21996, 22029), 'pickle.loads', 'pickle.loads', (['super_targets_bytes'], {}), '(super_targets_bytes)\n', (22008, 22029), False, 'import pickle\n'), ((23017, 23077), 'copy.deepcopy', 'copy.deepcopy', (['self.superclass_data[self.superclass_id][idx]'], {}), '(self.superclass_data[self.superclass_id][idx])\n', (23030, 23077), False, 'import copy\n'), ((23079, 23169), 'copy.deepcopy', 'copy.deepcopy', (['self.super_targets_idxes_per_superclass[self.superclass_id][start:end]'], {}), '(self.super_targets_idxes_per_superclass[self.superclass_id][\n start:end])\n', (23092, 23169), False, 'import copy\n'), ((23166, 23245), 'copy.deepcopy', 'copy.deepcopy', (['self.super_targets_per_superclass[self.superclass_id][start:end]'], {}), '(self.super_targets_per_superclass[self.superclass_id][start:end])\n', (23179, 23245), False, 'import copy\n'), ((23303, 23332), 'copy.deepcopy', 'copy.deepcopy', (['self._lst[idx]'], {}), '(self._lst[idx])\n', (23316, 23332), False, 'import copy\n'), ((23334, 23384), 'copy.deepcopy', 'copy.deepcopy', (['self.super_targets_masks[start:end]'], {}), '(self.super_targets_masks[start:end])\n', (23347, 23384), False, 'import copy\n'), ((23386, 23444), 'copy.deepcopy', 'copy.deepcopy', (['self.super_targets_inverse_masks[start:end]'], {}), '(self.super_targets_inverse_masks[start:end])\n', (23399, 23444), False, 'import copy\n'), ((23463, 23513), 'copy.deepcopy', 'copy.deepcopy', (['self.super_targets_idxes[start:end]'], {}), '(self.super_targets_idxes[start:end])\n', (23476, 23513), False, 'import copy\n'), ((23515, 23559), 'copy.deepcopy', 'copy.deepcopy', (['self.super_targets[start:end]'], {}), '(self.super_targets[start:end])\n', (23528, 23559), False, 'import copy\n'), ((11834, 11871), 'numpy.stack', 'np.stack', (['super_targets_idxes'], {'axis': '(0)'}), '(super_targets_idxes, axis=0)\n', (11842, 11871), True, 'import numpy as np\n'), ((12735, 12752), 'numpy.array', 'np.array', (['img_idx'], {}), '(img_idx)\n', (12743, 12752), True, 'import numpy as np\n'), ((12628, 12656), 'numpy.array', 'np.array', (['self.whole_dataset'], {}), '(self.whole_dataset)\n', (12636, 12656), True, 'import numpy as np\n')]
|
"""
Copyright (c) 2018-2021 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import numpy as np
import cv2
from .format_converter import DirectoryBasedAnnotationConverter, ConverterReturn
from ..utils import UnsupportedPackage
from ..representation import CharacterRecognitionAnnotation
from ..config import BoolField
try:
import lmdb
except ImportError as import_error:
lmdb = UnsupportedPackage("lmdb", import_error.msg)
class LMDBConverter(DirectoryBasedAnnotationConverter):
__provider__ = 'lmdb_text_recognition_database'
annotation_types = (CharacterRecognitionAnnotation, )
supported_symbols = '0123456789abcdefghijklmnopqrstuvwxyz'
@classmethod
def parameters(cls):
configuration_parameters = super().parameters()
configuration_parameters.update({
'lower_case': BoolField(description='Convert GT text to lowercase.', optional=True)
})
return configuration_parameters
def configure(self):
super().configure()
self.lower_case = self.get_value_from_config('lower_case')
def convert(self, check_content=False, progress_callback=None, progress_interval=100, **kwargs):
"""Reads data from disk and returns dataset in converted for AC format
Args:
check_content (bool, optional): Check if content is valid. Defaults to False.
progress_callback (bool, optional): Display progress. Defaults to None.
progress_interval (int, optional): Units to display progress. Defaults to 100 (percent).
Returns:
[type]: Converted dataset
"""
annotations = []
content_errors = None if not check_content else []
lmdb_env = lmdb.open(bytes(self.data_dir), readonly=True)
with lmdb_env.begin(write=False) as txn:
num_iterations = int(txn.get('num-samples'.encode()))
for index in range(1, num_iterations + 1):
label_key = f'label-{index:09d}'.encode()
text = txn.get(label_key).decode('utf-8')
if self.lower_case:
text = text.lower()
if progress_callback is not None and index % progress_interval == 0:
progress_callback(index / num_iterations * 100)
if check_content:
img_key = f'label-{index:09d}'.encode()
image_bytes = txn.get(img_key)
image = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), cv2.IMREAD_ANYCOLOR)
if image is None:
content_errors.append(f'label-{index:09d}: does not exist')
annotations.append(CharacterRecognitionAnnotation(index, text))
label_map = {ind: str(key) for ind, key in enumerate(self.supported_symbols)}
meta = {'label_map': label_map, 'blank_label': len(label_map)}
return ConverterReturn(annotations, meta, content_errors)
|
[
"numpy.frombuffer"
] |
[((2963, 2999), 'numpy.frombuffer', 'np.frombuffer', (['image_bytes', 'np.uint8'], {}), '(image_bytes, np.uint8)\n', (2976, 2999), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
# Copyright (c) the JPEG XL Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""JPEG XL conformance test runner.
Tool to perform a conformance test for a decoder.
"""
import argparse
import json
import numpy
import os
import subprocess
import sys
import tempfile
class ConformanceTestError(Exception):
"""General conformance test error."""
def CompareNPY(ref_npy, ref_icc, dec_npy, dec_icc, threshold=0.):
"""Compare a decoded numpy against the reference one."""
ref = numpy.load(ref_npy)
dec = numpy.load(dec_npy)
if ref.shape != dec.shape:
raise ConformanceTestError('Expected shape %s but found %s' %
(ref.shape, dec.shape))
# TODO(deymo): Implement this comparison.
def CompareBinaries(ref_bin, dec_bin):
"""Compare a decoded binary file against the reference for exact contents."""
with open(ref_bin, 'rb') as reff:
ref_data = reff.read()
with open(dec_bin, 'rb') as decf:
dec_data = decf.read()
if ref_data != dec_data:
raise ConformanceTestError('Binary files mismatch: %s %s' %
(ref_bin, dec_bin))
def ConformanceTestRunner(args):
# We can pass either the .txt file or the directory which defaults to the
# full corpus. This is useful to run a subset of the corpus in other .txt
# files.
if os.path.isdir(args.corpus):
corpus_dir = args.corpus
corpus_txt = os.path.join(args.corpus, 'corpus.txt')
else:
corpus_dir = os.path.dirname(args.corpus)
corpus_txt = args.corpus
with open(corpus_txt, 'r') as f:
for test_id in f:
test_id = test_id.rstrip('\n')
print('Testing %s' % test_id)
test_dir = os.path.join(corpus_dir, test_id)
with open(os.path.join(test_dir, 'test.json'), 'r') as f:
descriptor = json.load(f)
exact_tests = []
with tempfile.TemporaryDirectory(prefix=test_id) as work_dir:
cmd = [args.decoder, os.path.join(test_dir, descriptor['jxl'])]
# Select the parameters to run.
pixel_prefix = os.path.join(work_dir, 'dec')
cmd.extend(['-p', pixel_prefix])
# TODO(deymo): Add preview.
if 'preview main' in descriptor:
cmd.append('-w')
if 'jpeg' in descriptor:
jpeg_filename = os.path.join(work_dir, 'decoded.jpg')
cmd.extend(['-j', jpeg_filename])
exact_tests.append(('jpeg', jpeg_filename))
if 'original_icc' in descriptor:
decoded_original_icc = os.path.join(work_dir, 'decoded_org.icc')
cmd.extend(['-i', decoded_original_icc])
exact_tests.append(('original_icc', decoded_original_icc))
if subprocess.call(cmd) != 0:
raise ConformanceTestError(
'Running the decoder (%s) returned error' % ' '.join(cmd))
# Run validation of exact files.
for key, decoded_filename in exact_tests:
reference_filename = os.path.join(test_dir, descriptor[key])
CompareBinaries(reference_filename, decoded_filename)
# Pixel data.
decoded_icc = pixel_prefix + '.icc'
reference_icc = os.path.join(test_dir, descriptor['reference_icc'])
if 'reference' in descriptor:
reference_npy = os.path.join(test_dir, descriptor['reference'])
decoded_npy = os.path.join(work_dir, 'dec.npy')
if not os.path.exists(decoded_npy):
raise ConformanceTestError('File not decoded: dec.npy')
CompareNPY(reference_npy, reference_icc, decoded_npy, decoded_icc)
# TODO(deymo): Add preview
return True
def main():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--decoder', metavar='DECODER', required=True,
help='path to the decoder binary under test.')
parser.add_argument('--corpus', metavar='CORPUS', required=True,
help=('path to the corpus directory or corpus descriptor'
' text file.'))
args = parser.parse_args()
if not ConformanceTestRunner(args):
sys.exit(1)
if __name__ == '__main__':
main()
|
[
"numpy.load",
"json.load",
"tempfile.TemporaryDirectory",
"argparse.ArgumentParser",
"os.path.isdir",
"os.path.dirname",
"os.path.exists",
"subprocess.call",
"os.path.join",
"sys.exit"
] |
[((1010, 1029), 'numpy.load', 'numpy.load', (['ref_npy'], {}), '(ref_npy)\n', (1020, 1029), False, 'import numpy\n'), ((1038, 1057), 'numpy.load', 'numpy.load', (['dec_npy'], {}), '(dec_npy)\n', (1048, 1057), False, 'import numpy\n'), ((1846, 1872), 'os.path.isdir', 'os.path.isdir', (['args.corpus'], {}), '(args.corpus)\n', (1859, 1872), False, 'import os\n'), ((4116, 4160), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__'}), '(description=__doc__)\n', (4139, 4160), False, 'import argparse\n'), ((1920, 1959), 'os.path.join', 'os.path.join', (['args.corpus', '"""corpus.txt"""'], {}), "(args.corpus, 'corpus.txt')\n", (1932, 1959), False, 'import os\n'), ((1985, 2013), 'os.path.dirname', 'os.path.dirname', (['args.corpus'], {}), '(args.corpus)\n', (2000, 2013), False, 'import os\n'), ((4561, 4572), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (4569, 4572), False, 'import sys\n'), ((2191, 2224), 'os.path.join', 'os.path.join', (['corpus_dir', 'test_id'], {}), '(corpus_dir, test_id)\n', (2203, 2224), False, 'import os\n'), ((2311, 2323), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2320, 2323), False, 'import json\n'), ((2360, 2403), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {'prefix': 'test_id'}), '(prefix=test_id)\n', (2387, 2403), False, 'import tempfile\n'), ((2552, 2581), 'os.path.join', 'os.path.join', (['work_dir', '"""dec"""'], {}), "(work_dir, 'dec')\n", (2564, 2581), False, 'import os\n'), ((3626, 3677), 'os.path.join', 'os.path.join', (['test_dir', "descriptor['reference_icc']"], {}), "(test_dir, descriptor['reference_icc'])\n", (3638, 3677), False, 'import os\n'), ((2242, 2277), 'os.path.join', 'os.path.join', (['test_dir', '"""test.json"""'], {}), "(test_dir, 'test.json')\n", (2254, 2277), False, 'import os\n'), ((2446, 2487), 'os.path.join', 'os.path.join', (['test_dir', "descriptor['jxl']"], {}), "(test_dir, descriptor['jxl'])\n", (2458, 2487), False, 'import os\n'), ((2786, 2823), 'os.path.join', 'os.path.join', (['work_dir', '"""decoded.jpg"""'], {}), "(work_dir, 'decoded.jpg')\n", (2798, 2823), False, 'import os\n'), ((2996, 3037), 'os.path.join', 'os.path.join', (['work_dir', '"""decoded_org.icc"""'], {}), "(work_dir, 'decoded_org.icc')\n", (3008, 3037), False, 'import os\n'), ((3170, 3190), 'subprocess.call', 'subprocess.call', (['cmd'], {}), '(cmd)\n', (3185, 3190), False, 'import subprocess\n'), ((3431, 3470), 'os.path.join', 'os.path.join', (['test_dir', 'descriptor[key]'], {}), '(test_dir, descriptor[key])\n', (3443, 3470), False, 'import os\n'), ((3743, 3790), 'os.path.join', 'os.path.join', (['test_dir', "descriptor['reference']"], {}), "(test_dir, descriptor['reference'])\n", (3755, 3790), False, 'import os\n'), ((3815, 3848), 'os.path.join', 'os.path.join', (['work_dir', '"""dec.npy"""'], {}), "(work_dir, 'dec.npy')\n", (3827, 3848), False, 'import os\n'), ((3866, 3893), 'os.path.exists', 'os.path.exists', (['decoded_npy'], {}), '(decoded_npy)\n', (3880, 3893), False, 'import os\n')]
|
import json
import logging
from itertools import cycle
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.datasets.samples_generator import make_blobs
log = logging.getLogger(__name__)
def analyze(data):
# Convert this to python data for us to be able to run ML algorithms
json_to_python = json.loads(data)
per_size = dict() # IP-Response size
hostlist = dict()
# Data pre-processing here:
for y in json_to_python:
hostlist[y['HOST']] = 1
if y['HOST'] in per_size:
per_size[y['HOST']].append(int(y['SIZE']))
else:
per_size[y['HOST']] = [int(y['SIZE'])]
##Data pre-processing ends here
log.debug(
"*** Printing Input to analysis - 4 (1): K-means on IP and average response size ****"
)
#####*****SIZE******####
#### Analysis #4 (1): IP address - Size of response received feature
X = np.array([[0.00, 0.00]])
for x in hostlist:
avg_size = mean(per_size[x])
log.debug(x + ": " + str(avg_size))
y = x.split(".")
ip = ""
for z in range(4):
l = len(y[z])
l = 3 - l
if (l > 0):
zero = ""
for t in range(3 - len(y[z])):
zero = zero + "0"
y[z] = zero + y[z]
ip = ip + y[z]
# log.debug( str(float(float(ip)/1000)) + ": " + str(avg_size))
le = [float(float(ip) / 1000), avg_size]
X = np.vstack([X, le])
log.info(
"******** Printing Analysis #4: IP-Address and Response Size received: MEAN SHIFT algorithm ********"
)
log.info("Please check the graph at test-mean-shift.png for more info!")
# print kmeans.labels_
## Analysis 4 (6): MEAN SHIFT algorithm: (IP-response size) #########
# #############################################################################
# Generate sample data
X1 = X
centers = X1
X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6)
# #############################################################################
# Compute clustering with MeanShift
# The following bandwidth can be automatically detected using
bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
labels = ms.labels_
cluster_centers = ms.cluster_centers_
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
log.info("number of estimated clusters : %d" % n_clusters_)
# #############################################################################
# Plot result
plt.figure(1)
plt.clf()
colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):
my_members = labels == k
cluster_center = cluster_centers[k]
plt.plot(X[my_members, 0], X[my_members, 1], col + '.')
plt.plot(
cluster_center[0],
cluster_center[1],
'o',
markerfacecolor=col,
markeredgecolor='k',
markersize=14)
plt.title('Estimated number of clusters: %d' % n_clusters_)
##plt.show()
plt.savefig('test-mean-shift.png')
def mean(numbers):
return float(sum(numbers)) / max(len(numbers), 1)
|
[
"matplotlib.pyplot.title",
"matplotlib.pyplot.savefig",
"json.loads",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.clf",
"sklearn.cluster.MeanShift",
"numpy.unique",
"sklearn.cluster.estimate_bandwidth",
"matplotlib.pyplot.figure",
"numpy.vstack",
"numpy.array",
"sklearn.datasets.samples_generator.make_blobs",
"itertools.cycle",
"logging.getLogger"
] |
[((230, 257), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (247, 257), False, 'import logging\n'), ((373, 389), 'json.loads', 'json.loads', (['data'], {}), '(data)\n', (383, 389), False, 'import json\n'), ((973, 995), 'numpy.array', 'np.array', (['[[0.0, 0.0]]'], {}), '([[0.0, 0.0]])\n', (981, 995), True, 'import numpy as np\n'), ((2039, 2100), 'sklearn.datasets.samples_generator.make_blobs', 'make_blobs', ([], {'n_samples': '(10000)', 'centers': 'centers', 'cluster_std': '(0.6)'}), '(n_samples=10000, centers=centers, cluster_std=0.6)\n', (2049, 2100), False, 'from sklearn.datasets.samples_generator import make_blobs\n'), ((2309, 2359), 'sklearn.cluster.estimate_bandwidth', 'estimate_bandwidth', (['X'], {'quantile': '(0.2)', 'n_samples': '(500)'}), '(X, quantile=0.2, n_samples=500)\n', (2327, 2359), False, 'from sklearn.cluster import MeanShift, estimate_bandwidth\n'), ((2370, 2418), 'sklearn.cluster.MeanShift', 'MeanShift', ([], {'bandwidth': 'bandwidth', 'bin_seeding': '(True)'}), '(bandwidth=bandwidth, bin_seeding=True)\n', (2379, 2418), False, 'from sklearn.cluster import MeanShift, estimate_bandwidth\n'), ((2520, 2537), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (2529, 2537), True, 'import numpy as np\n'), ((2747, 2760), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (2757, 2760), True, 'import matplotlib.pyplot as plt\n'), ((2765, 2774), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (2772, 2774), True, 'import matplotlib.pyplot as plt\n'), ((2789, 2826), 'itertools.cycle', 'cycle', (['"""bgrcmykbgrcmykbgrcmykbgrcmyk"""'], {}), "('bgrcmykbgrcmykbgrcmykbgrcmyk')\n", (2794, 2826), False, 'from itertools import cycle\n'), ((3213, 3272), 'matplotlib.pyplot.title', 'plt.title', (["('Estimated number of clusters: %d' % n_clusters_)"], {}), "('Estimated number of clusters: %d' % n_clusters_)\n", (3222, 3272), True, 'import matplotlib.pyplot as plt\n'), ((3294, 3328), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""test-mean-shift.png"""'], {}), "('test-mean-shift.png')\n", (3305, 3328), True, 'import matplotlib.pyplot as plt\n'), ((1553, 1571), 'numpy.vstack', 'np.vstack', (['[X, le]'], {}), '([X, le])\n', (1562, 1571), True, 'import numpy as np\n'), ((2963, 3018), 'matplotlib.pyplot.plot', 'plt.plot', (['X[my_members, 0]', 'X[my_members, 1]', "(col + '.')"], {}), "(X[my_members, 0], X[my_members, 1], col + '.')\n", (2971, 3018), True, 'import matplotlib.pyplot as plt\n'), ((3027, 3139), 'matplotlib.pyplot.plot', 'plt.plot', (['cluster_center[0]', 'cluster_center[1]', '"""o"""'], {'markerfacecolor': 'col', 'markeredgecolor': '"""k"""', 'markersize': '(14)'}), "(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,\n markeredgecolor='k', markersize=14)\n", (3035, 3139), True, 'import matplotlib.pyplot as plt\n')]
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import inspect
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from itertools import product as product
import cv2
from trident.backend.opencv_backend import image2array
from trident.data.dataset import BboxDataset
from trident.backend.common import *
from trident.backend.tensorspec import *
from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList
from trident.backend.pytorch_ops import *
from trident.backend.pillow_backend import image2array, array2image
from trident.data.bbox_common import xywh2xyxy, xyxy2xywh, bbox_giou, bbox_giou_numpy
from trident.data.image_common import *
from trident.data.utils import download_model_from_google_drive
from trident.layers.pytorch_activations import get_activation, Identity, Relu, softmax
from trident.layers.pytorch_blocks import *
from trident.layers.pytorch_layers import *
from trident.layers.pytorch_normalizations import get_normalization
from trident.layers.pytorch_pooling import *
from trident.optims.pytorch_trainer import *
from trident.optims.pytorch_losses import *
from trident.data.transform import *
from trident.data.vision_transforms import Resize, Normalize
from trident.misc.visualization_utils import generate_palette, plot_bbox
image_size = [640, 480]
cfg = {'min_sizes': [[10, 16, 24], [32, 48], [64, 96], [128, 192, 256]], 'steps': [8, 16, 32, 64],
'variance': [0.1, 0.2], 'clip': False, }
__all__ = ['Ssd', 'encode', 'decode', 'SsdBboxDataset', 'SsdBboxDatasetV2', 'SsdDetectionModel', 'MultiBoxLoss',
'MultiBoxLossV2', 'IoULoss']
def intersect(box_a, box_b):
""" We Resize both tensors to [A,B,2] without new malloc:
[A,2] -> [A,1,2] -> [A,B,2]
[B,2] -> [1,B,2] -> [A,B,2]
Then we compute the area of intersect between box_a and box_b.
Args:
box_a: (tensor) bounding boxes, Shape: [A,4].
box_b: (tensor) bounding boxes, Shape: [B,4].
Return:
(tensor) intersection area, Shape: [A,B].
"""
A = box_a.size(0)
B = box_b.size(0)
max_xy = torch.min(box_a[:, 2:4].unsqueeze(1).expand(A, B, 2), box_b[:, 2:4].unsqueeze(0).expand(A, B, 2))
min_xy = torch.max(box_a[:, 0:2].unsqueeze(1).expand(A, B, 2), box_b[:, 0:2].unsqueeze(0).expand(A, B, 2))
inter = torch.clamp((max_xy - min_xy), min=0)
return inter[:, :, 0] * inter[:, :, 1]
def jaccard(box_a, box_b):
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
is simply the intersection over union of two boxes. Here we operate on
ground truth boxes and default boxes.
E.g.:
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
Args:
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
Return:
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
"""
inter = intersect(box_a, box_b)
area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
area_b = ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
union = area_a + area_b - inter
return inter / union # [A,B]
def match(truths, priors, variances, labels, threshold=0.3):
"""Match each prior box with the ground truth box of the highest jaccard
overlap, encode the bounding boxes, then return the matched indices
corresponding to both confidence and location preds.
Args:
truths: (tensor) Ground truth boxes, Shape: [num_obj, num_priors].
priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
variances: (tensor) Variances corresponding to each prior coord,
Shape: [num_priors, 4].
labels: (tensor) All the class labels for the image, Shape: [num_obj].
loc_t: (tensor) Tensor to be filled w/ endcoded location targets.
conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
idx: (int) current batch index
threshold: (float) The overlap threshold used when mathing boxes.
Return:
The matched indices corresponding to 1)location and 2)confidence preds.
"""
# jaccard index
priors2 = priors.clone()
num_priors = len(priors)
overlaps = jaccard(truths, xywh2xyxy(priors.clone()))
# (Bipartite Matching)
# [1,num_objects] best prior for each ground truth
best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
# ignore hard gt
valid_gt_idx = best_prior_overlap[:, 0] >= 0.2
best_prior_idx_filter = best_prior_idx[valid_gt_idx, :]
if best_prior_idx_filter.shape[0] <= 0:
return np.zeros((num_priors, 4)).astype(np.float32), np.zeros(num_priors).astype(np.int64)
# [1,num_priors] best ground truth for each prior
best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
best_truth_idx.squeeze_(0)
best_truth_overlap.squeeze_(0)
best_prior_idx.squeeze_(1)
best_prior_idx_filter.squeeze_(1)
best_prior_overlap.squeeze_(1)
best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior
# TODO refactor: index best_prior_idx with long tensor
# ensure every gt matches with its prior of max overlap
for j in range(best_prior_idx.size(0)):
best_truth_idx[best_prior_idx[j]] = j
matches = truths[best_truth_idx] # Shape: [num_priors,14]
conf = labels[best_truth_idx] # Shape: [num_priors]
conf[best_truth_overlap < threshold] = 0 # label as background
loc = encode(matches, priors2, variances)
return loc, conf
def encode(matched, priors, variances):
"""
Args:
matched (tensor): Coords of ground truth for each prior in xyxy Shape: [num_priors, 4].
priors (tensor): Prior boxes in center-offset form Shape: [num_priors,4].
variances (list[float]): Variances of priorboxes
Returns:
encoded boxes and landmarks (tensor), Shape: [num_priors, 14]
"""
# dist b/t match center and prior's center
priors = priors.clone()
g_cxcy = (matched[:, 0:2] + matched[:, 2:4]) / 2 - priors[:, 0:2]
# encode variance
g_cxcy /= (variances[0] * priors[:, 2:4])
# match wh / prior wh
g_wh = (matched[:, 2:4] - matched[:, 0:2]) / priors[:, 2:4]
g_wh = torch.log(g_wh) / variances[1]
# # landmarks
# g_xy1 = (matched[:, 4:6] - priors[:, 0:2]) / (variances[0] * priors[:, 2:4])
# g_xy2 = (matched[:, 6:8] - priors[:, 0:2]) / (variances[0] * priors[:, 2:4])
# g_xy3 = (matched[:, 8:10] - priors[:, 0:2]) / (variances[0] * priors[:, 2:4])
# g_xy4 = (matched[:, 10:12] - priors[:, 0:2]) / (variances[0] * priors[:, 2:4])
# g_xy5 = (matched[:, 12:14] - priors[:, 0:2]) / (variances[0] * priors[:, 2:4])
# return target for loss
return torch.cat([g_cxcy, g_wh], 1) # [num_priors,14]
def decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Adapted from https://github.com/Hakuyume/chainer-ssd
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat([priors.unsqueeze(0)[:, :, 0:2] + loc[:, :, 0:2] * variances[0] * priors.unsqueeze(0)[:, :, 2:4],
priors.unsqueeze(0)[:, :, 2:4] * torch.exp(loc[:, :, 2:4] * variances[1])], -1)
boxes[:, :, 0:2] -= boxes[:, :, 2:4] / 2
boxes[:, :, 2:4] += boxes[:, :, 0:2]
return boxes
class SsdBboxDataset(BboxDataset):
def __init__(self, boxes=None, image_size=None, priors=None, center_variance=0.1, size_variance=0.2,
gt_overlap_tolerance=0.5, expect_data_type=ExpectDataType.absolute_bbox, class_names=None,
symbol='bbox', name=''):
super().__init__(boxes=boxes, image_size=image_size, expect_data_type=expect_data_type, class_names=class_names,
symbol=symbol, name=name)
self.priors = priors
self.label_transform_funcs = []
self.gt_overlap_tolerance = gt_overlap_tolerance
self.bbox_post_transform_funcs = []
def binding_class_names(self, class_names=None, language=None):
if class_names is not None and hasattr(class_names, '__len__'):
if language is None:
language = 'en-us'
self.class_names[language] = list(class_names)
self.__default_language__ = language
self._lab2idx = {v: k for k, v in enumerate(self.class_names[language])}
self._idx2lab = {k: v for k, v in enumerate(self.class_names[language])}
def bbox_transform(self, bbox):
num_priors = self.priors.shape[0]
if bbox is None or len(bbox) == 0:
return np.zeros((num_priors, 4)).astype(np.float32), np.zeros(num_priors).astype(np.int64)
elif isinstance(bbox, np.ndarray):
height, width = self.image_size
gt_label = None
gt_box = bbox
if bbox.shape[-1] % 2 == 1:
gt_box = bbox[:, :-1]
gt_label = bbox[:, -1]
gt_box[:, 0::2] /= width
gt_box[:, 1::2] /= height
# match priors (default boxes) and ground truth boxes
if gt_box is not None and len(gt_box) > 0:
truths = to_tensor(gt_box).float()
labels = to_tensor(gt_label).long()
loc_t, conf_t = match(truths, self.priors.data, (0.1, 0.2), labels, self.gt_overlap_tolerance)
return to_numpy(loc_t).astype(np.float32), to_numpy(conf_t).astype(np.int64)
return np.zeros((num_priors, 4)).astype(np.float32), np.zeros(num_priors).astype(np.int64)
class SsdBboxDatasetV2(BboxDataset):
def __init__(self, boxes=None, image_size=None, priors=None, center_variance=0.1, size_variance=0.2,
gt_overlap_tolerance=0.5, expect_data_type=ExpectDataType.absolute_bbox, class_names=None,
symbol='bbox', name=''):
super().__init__(boxes=boxes, image_size=image_size, expect_data_type=expect_data_type, class_names=class_names,
symbol=symbol, name=name)
self.priors = priors
self.center_variance = center_variance
self.size_variance = size_variance
self.label_transform_funcs = []
self.gt_overlap_tolerance = gt_overlap_tolerance
self.bbox_post_transform_funcs = []
def area_of(self, left_top, right_bottom):
"""Compute the areas of rectangles given two corners.
Args:
left_top (N, 2): left top corner.
right_bottom (N, 2): right bottom corner.
Returns:
area (N): return the area.
"""
hw = np.clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
def iou_of(self, boxes0, boxes1, eps=1e-5):
"""Return intersection-over-union (Jaccard index) of boxes.
Args:
boxes0 (N, 4): ground truth boxes.
boxes1 (N or 1, 4): predicted boxes.
eps: a small number to avoid 0 as denominator.
Returns:
iou (N): IoU values.
"""
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = self.area_of(overlap_left_top, overlap_right_bottom)
area0 = self.area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = self.area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def convert_boxes_to_locations(self, center_form_boxes, center_form_priors):
if len(center_form_priors.shape) + 1 == len(center_form_boxes.shape):
center_form_priors = np.expand_dims(center_form_priors, 0)
return np.concatenate([(center_form_boxes[..., :2] - center_form_priors[..., :2]) / center_form_priors[...,
2:] / self.center_variance,
np.log(np.clip(center_form_boxes[..., 2:] / center_form_priors[..., 2:], 1e-8, np.inf)) / self.size_variance],
axis=len(center_form_boxes.shape) - 1)
def assign_priors(self, gt_boxes, gt_labels, center_form_priors, iou_threshold):
# """Assign ground truth boxes and targets to priors.
#
# Args:
# gt_boxes (num_targets, 4): ground truth boxes.
# gt_labels (num_targets): labels of targets.
# priors (num_priors, 4): corner form priors
# Returns:
# boxes (num_priors, 4): real values for priors.
# labels (num_priros): labels for priors.
# """
# # size: num_priors x num_targets
# # if gt_boxes is not None :
#
# ious = self.iou_of(gt_boxes.unsqueeze(0), corner_form_priors.unsqueeze(1))
# # size: num_priors
# best_target_per_prior, best_target_per_prior_index = ious.max(1)
# # size: num_targets
# best_prior_per_target, best_prior_per_target_index = ious.max(0)
#
# for target_index, prior_index in enumerate(best_prior_per_target_index):
# best_target_per_prior_index[prior_index] = target_index
# # 2.0 is used to make sure every target has a prior assigned
# best_target_per_prior.index_fill_(0, best_prior_per_target_index, 2)
# # size: num_priors
# labels = gt_labels[best_target_per_prior_index]
# labels[best_target_per_prior < iou_threshold] = 0 # the backgournd id
# boxes = gt_boxes[best_target_per_prior_index]
# return boxes, labels
corner_form_priors = xywh2xyxy(center_form_priors)
ious = self.iou_of(np.expand_dims(gt_boxes, 0), np.expand_dims(corner_form_priors, 1))
# size: num_priors
best_target_per_prior, best_target_per_prior_index = np.max(ious, axis=1), np.argmax(ious, axis=1)
# size: num_targets
best_prior_per_target, best_prior_per_target_index = np.max(ious, axis=0), np.argmax(ious, axis=0)
for target_index, prior_index in enumerate(best_prior_per_target_index):
best_target_per_prior_index[prior_index] = target_index
# 2.0 is used to make sure every target has a prior assigned
best_prior_per_target_index_list = best_prior_per_target_index.tolist()
for i in range(best_target_per_prior.shape[0]):
if i in best_prior_per_target_index_list:
best_target_per_prior[i] = 2
labels = gt_labels[best_target_per_prior_index]
labels[best_target_per_prior < iou_threshold] = 0 # the backgournd id
boxes = gt_boxes[best_target_per_prior_index]
return boxes, labels
def binding_class_names(self, class_names=None, language=None):
if class_names is not None and hasattr(class_names, '__len__'):
if language is None:
language = 'en-us'
self.class_names[language] = list(class_names)
self.__default_language__ = language
self._lab2idx = {v: k for k, v in enumerate(self.class_names[language])}
self._idx2lab = {k: v for k, v in enumerate(self.class_names[language])}
def bbox_transform(self, bbox):
if bbox is None or len(bbox) == 0:
return np.zeros((self.priors.shape[0], 4)).astype(np.float32), np.zeros((self.priors.shape[0])).astype(
np.int64)
elif isinstance(bbox, np.ndarray):
height, width = self.image_size
bbox[:, 0] = bbox[:, 0] / width
bbox[:, 2] = bbox[:, 2] / width
bbox[:, 1] = bbox[:, 1] / height
bbox[:, 3] = bbox[:, 3] / height
if bbox.shape[-1] == 5:
gt_box = bbox[:, :4]
gt_label = bbox[:, 4]
boxes, labels = self.assign_priors(gt_box, gt_label, to_numpy(self.priors), 0.3)
boxes = xyxy2xywh(boxes)
locations = self.convert_boxes_to_locations(boxes, to_numpy(self.priors))
return boxes.astype(np.float32), labels.astype(np.int64)
else:
return bbox
def hard_negative_mining(loss, labels, neg_pos_ratio):
"""
It used to suppress the presence of a large number of negative prediction.
It works on image level not batch level.
For any example/image, it keeps all the positive predictions and
cut the number of negative predictions to make sure the ratio
between the negative examples and positive examples is no more
the given ratio for an image.
Args:
loss (N, num_priors): the loss for each example.
labels (N, num_priors): the labels.
neg_pos_ratio: the ratio between the negative examples and positive examples.
"""
pos_mask = labels > 0
num_pos = pos_mask.long().sum()
num_neg = num_pos * neg_pos_ratio
loss[pos_mask] = -math.inf
_, indexes = loss.sort(descending=True)
_, orders = indexes.sort()
neg_mask = orders < num_neg
return pos_mask | neg_mask
class MultiBoxLoss(nn.Module):
def __init__(self, priors, neg_pos_ratio, center_variance, size_variance):
"""Implement SSD Multibox Loss.
Basically, Multibox loss combines classification loss
and Smooth L1 regression loss.
"""
super(MultiBoxLoss, self).__init__()
self.neg_pos_ratio = neg_pos_ratio
self.center_variance = center_variance
self.size_variance = size_variance
self.priors = to_tensor(priors)
def forward(self, confidence, locations, target_confidence, target_locations):
"""Compute classification loss and smooth l1 loss.
Args:
confidence (batch_size, num_priors, num_classes): class predictions.
locations (batch_size, num_priors, 4): predicted locations.
labels (batch_size, num_priors): real labels of all the priors.
boxes (batch_size, num_priors, 4): real boxes corresponding all the priors.
"""
num_classes = confidence.size(2)
# derived from cross_entropy=sum(log(p))
with torch.no_grad():
loss = -F.log_softmax(confidence, dim=2)[:, :, 0]
mask = hard_negative_mining(loss, target_confidence, self.neg_pos_ratio)
weight = to_tensor(np.array([0.05, 1, 5, 20, 10]))
classification_loss = F.cross_entropy(confidence[mask, :].reshape(-1, num_classes), target_confidence[mask],
weight=weight, reduction='sum')
# classification_loss += 0.1*F.cross_entropy(confidence.reshape(-1, num_classes), target_confidence.reshape(
# -1), weight=weight, reduction='sum')
pos_mask = target_confidence > 0
locations = locations[pos_mask, :].reshape(-1, 4)
target_locations = target_locations[pos_mask, :].reshape(-1, 4)
smooth_l1_loss = F.mse_loss(locations, target_locations, reduction='sum') # smooth_l1_loss
smooth_l1_loss += F.l1_loss(locations[:, 2:4].exp(), target_locations[:, 2:4].exp(), reduction='sum')
num_pos = target_locations.size(0)
return (smooth_l1_loss + classification_loss) / num_pos
class MultiBoxLossV2(nn.Module):
def __init__(self, priors, neg_pos_ratio, center_variance, size_variance):
"""Implement SSD Multibox Loss.
Basically, Multibox loss combines classification loss
and Smooth L1 regression loss.
"""
super(MultiBoxLossV2, self).__init__()
self.neg_pos_ratio = neg_pos_ratio
self.center_variance = center_variance
self.size_variance = size_variance
self.priors = to_tensor(priors)
def forward(self, confidence, locations, target_confidence, target_locations):
"""Compute classification loss and smooth l1 loss.
Args:
confidence (batch_size, num_priors, num_classes): class predictions.
locations (batch_size, num_priors, 4): predicted locations.
target_confidence (batch_size, num_priors): real labels of all the priors.
target_locations (batch_size, num_priors, 4): real boxes corresponding all the priors.
"""
num_classes = confidence.size(2)
# derived from cross_entropy=sum(log(p))
with torch.no_grad():
loss = -F.log_softmax(confidence, dim=2)[:, :, 0]
mask = hard_negative_mining(loss, target_confidence, self.neg_pos_ratio)
classification_loss = CrossEntropyLoss(axis=-1, label_smooth=True, reduction='sum')(confidence[mask, :].reshape(-1, num_classes), target_confidence[mask].reshape(-1))
pos_mask = target_confidence > 0
target_locations = target_locations[pos_mask, :].reshape(-1, 4)
num_pos = target_locations.size(0)
return classification_loss / num_pos
class IouLoss(nn.Module):
def __init__(self, priors, center_variance, size_variance):
"""Implement SSD Multibox Loss.
Basically, Multibox loss combines classification loss
and Smooth L1 regression loss.
"""
super(IoULoss, self).__init__()
self.center_variance = center_variance
self.size_variance = size_variance
self.priors = to_tensor(priors)
def forward(self, confidence, locations, target_confidence, target_locations):
"""Compute classification loss and smooth l1 loss.
Args:
confidence (batch_size, num_priors, num_classes): class predictions.
locations (batch_size, num_priors, 4): predicted locations.
target_confidence (batch_size, num_priors): real labels of all the priors.
target_locations (batch_size, num_priors, 4): real boxes corresponding all the priors.
"""
num_classes = confidence.size(2)
num_batch = confidence.size(0)
confidence_logit = softmax(confidence, -1)
confidence_logit_probs, confidence_logit_idxs = confidence_logit.max(-1)
probs_mask = confidence_logit_probs > 0.5
label_mask = confidence_logit_idxs > 0
pos_target_mask_all = target_confidence > 0
pos_infer_mask_all = (pos_target_mask_all.float() + probs_mask.float() + label_mask.float() == 3)
decode_locations_all = decode(locations, self.priors, (self.center_variance, self.size_variance))
decode_target_locations_all = decode(target_locations, self.priors, (self.center_variance, self.size_variance))
giou_np = 0.0
giou = 0.0
overlaps = 0.0
num_boxes = 0
for i in range(num_batch):
pos_target_mask = pos_target_mask_all[i]
pos_infer_mask = pos_infer_mask_all[i]
decode_locations = decode_locations_all[i][pos_infer_mask, :]
decode_target_locations = decode_target_locations_all[i][pos_target_mask, :]
num_boxes += decode_target_locations.shape[0]
if decode_target_locations.shape[0] > 0 and decode_locations.shape[0] > 0:
giou = giou + (1 - (bbox_giou(decode_locations, decode_target_locations).sum(0) / decode_target_locations.shape[0])).sum()
overlaps = overlaps + (-log(clip(jaccard(decode_locations, decode_target_locations), min=1e-8)).sum(0) / decode_target_locations.shape[0]).sum()
elif decode_target_locations.shape[0] == 0 and decode_locations.shape[0] == 0:
pass
else:
giou = giou + 1
overlaps = overlaps - log(to_tensor(1e-8))
giou = giou / num_boxes
overlaps = overlaps / num_boxes
return giou
class Ssd(Layer):
def __init__(self, backbond, base_filters=16, num_classes=5, num_regressors=14, variance=(0.1, 0.2), name='tiny_mobile_rfbnet', **kwargs):
"""
Parameters
----------
layer_defs : object
"""
super(Ssd, self).__init__(name=name)
self.base_filters = base_filters
idxes = []
if isinstance(backbond, Sequential):
for i in range(len(backbond._modules)):
layer = backbond[i]
if hasattr(layer, 'strides') or isinstance(layer, Sequential):
if isinstance(layer, Sequential):
layer = layer[0]
if isinstance(layer.strides, int) and layer.strides == 2:
idxes.append(i)
elif isinstance(layer.strides, tuple) and layer.strides[0] == 2:
idxes.append(i)
self.backbond1 = Sequential(backbond[:idxes[-2]], name='backbond1')
self.backbond2 = Sequential(backbond[idxes[-2]:idxes[-1]], name='backbond2')
self.backbond3 = Sequential(backbond[idxes[-1]:], name='backbond3')
else:
raise ValueError('{0} is not a valid backbond...'.format(backbond.__class__.__name__))
self.variance = variance
self.num_classes = num_classes
self.num_regressors = num_regressors
self.extra = Sequential(Conv2d((1, 1), num_filters=64, strides=1, activation='relu', use_bias=True),
DepthwiseConv2d((3, 3), depth_multiplier=1, strides=2, auto_pad=True, activation='relu',
use_bias=True),
Conv2d((1, 1), num_filters=256, strides=1, activation=None, use_bias=True), Relu())
self.regression_headers = nn.ModuleList([Sequential(
DepthwiseConv2d((3, 3), depth_multiplier=1, strides=1, auto_pad=True, activation='relu', use_bias=True),
Conv2d((1, 1), num_filters=3 * self.num_regressors, strides=1, activation=None, use_bias=True)),
Sequential(
DepthwiseConv2d((3, 3), depth_multiplier=1, strides=1, auto_pad=True, activation='relu', use_bias=True),
Conv2d((1, 1), num_filters=2 * self.num_regressors, strides=1, activation=None, use_bias=True)),
Sequential(
DepthwiseConv2d((3, 3), depth_multiplier=1, strides=1, auto_pad=True, activation='relu', use_bias=True),
Conv2d((1, 1), num_filters=2 * self.num_regressors, strides=1, activation=None, use_bias=True)),
Conv2d((3, 3), num_filters=3 * self.num_regressors, strides=1, auto_pad=True, activation=None), ])
self.classification_headers = nn.ModuleList([Sequential(
DepthwiseConv2d((3, 3), depth_multiplier=1, strides=1, auto_pad=True, activation='relu', use_bias=True),
Conv2d((1, 1), num_filters=3 * self.num_classes, strides=1, activation=None, use_bias=True)),
Sequential(
DepthwiseConv2d((3, 3), depth_multiplier=1, strides=1, auto_pad=True, activation='relu', use_bias=True),
Conv2d((1, 1), num_filters=2 * self.num_classes, strides=1, activation=None, use_bias=True)),
Sequential(
DepthwiseConv2d((3, 3), depth_multiplier=1, strides=1, auto_pad=True, activation='relu', use_bias=True),
Conv2d((1, 1), num_filters=2 * self.num_classes, strides=1, activation=None, use_bias=True)),
Conv2d((3, 3), num_filters=3 * self.num_classes, strides=1, auto_pad=True, activation=None,
use_bias=True), ])
self.priors = []
# generate priors
self.define_img_size(640)
def generate_priors(self, feature_map_list, shrinkage_list, image_size, min_boxes, clamp=True) -> torch.Tensor:
priors = []
for index in range(0, len(feature_map_list[0])):
scale_w = image_size[0] / shrinkage_list[0][index]
scale_h = image_size[1] / shrinkage_list[1][index]
for j in range(0, feature_map_list[1][index]):
for i in range(0, feature_map_list[0][index]):
x_center = (i + 0.5) / scale_w
y_center = (j + 0.5) / scale_h
for min_box in min_boxes[index]:
w = min_box / image_size[0]
h = min_box / image_size[1]
priors.append([x_center, y_center, w, h])
print("priors nums:{}".format(len(priors)))
priors = to_tensor(priors) # .view(-1, 4)
if clamp:
torch.clamp(priors, 0.0, 1.0, out=priors)
return priors
def define_img_size(self, size=640):
global image_size, feature_map_w_h_list, priors
img_size_dict = {128: [128, 96], 160: [160, 120], 320: [320, 240], 480: [480, 360], 640: [640, 480],
1280: [1280, 960]}
min_boxes = [[10, 16, 24], [32, 48], [64, 96], [128, 192, 256]]
shrinkage_list = []
feature_map_w_h_list_dict = {128: [[16, 8, 4, 2], [12, 6, 3, 2]], 160: [[20, 10, 5, 3], [15, 8, 4, 2]],
320: [[40, 20, 10, 5], [30, 15, 8, 4]], 480: [[60, 30, 15, 8], [45, 23, 12, 6]],
640: [[80, 40, 20, 10], [60, 30, 15, 8]],
1280: [[160, 80, 40, 20], [120, 60, 30, 15]]}
feature_map_w_h_list = feature_map_w_h_list_dict[size]
for i in range(0, len(image_size)):
item_list = []
for k in range(0, len(feature_map_w_h_list[i])):
item_list.append(image_size[i] / feature_map_w_h_list[i][k])
shrinkage_list.append(item_list)
self.priors = self.generate_priors(feature_map_w_h_list_dict[size], shrinkage_list, img_size_dict[size],
min_boxes)
def init_from_pretrained_ssd(self, model):
def _xavier_init_(m: Layer):
if isinstance(m, (Conv2d, DepthwiseConv2d)):
nn.init.xavier_uniform_(m.weight)
state_dict = torch.load(model, map_location=lambda storage, loc: storage)
state_dict = state_dict['state_dict']
state_dict = {k: v for k, v in state_dict.items() if
not (k.startswith("classification_headers") or k.startswith("regression_headers"))}
model_dict = self.state_dict()
model_dict.update(state_dict)
self.load_state_dict(model_dict, strict=False)
self.classification_headers.apply(_xavier_init_)
self.regression_headers.apply(_xavier_init_)
def compute_header(self, i, x):
confidence = self.classification_headers[i](x)
confidence = confidence.permute(0, 2, 3, 1).contiguous()
confidence = confidence.view(confidence.size(0), -1, self.num_classes)
location = self.regression_headers[i](x)
location = location.permute(0, 2, 3, 1).contiguous()
location = location.view(location.size(0), -1, 4)
return confidence, location
def forward(self, *x):
x = enforce_singleton(x)
confidences = []
locations = []
x = self.backbond1(x)
confidence0, location0 = self.compute_header(0, x)
confidences.append(confidence0)
locations.append(location0)
x = self.backbond2(x)
confidence1, location1 = self.compute_header(1, x)
confidences.append(confidence1)
locations.append(location1)
x = self.backbond3(x)
confidence2, location2 = self.compute_header(2, x)
confidences.append(confidence2)
locations.append(location2)
x = self.extra(x)
confidence3, location3 = self.compute_header(3, x)
confidences.append(confidence3)
locations.append(location3)
confidences = torch.cat(confidences, 1)
locations = torch.cat(locations, 1)
if self.training:
return confidences, locations
else:
confidences = softmax(confidences, -1)
locations = decode(locations, self.priors, self.variance)
return confidences, locations
class SsdDetectionModel(ImageDetectionModel):
def __init__(self, inputs=None, input_shape=None, output=None):
super(SsdDetectionModel, self).__init__(inputs, input_shape, output)
self.preprocess_flow = []
self.palette = OrderedDict()
with open('coco_classes.txt', 'r',
encoding='utf-8-sig') as f:
self.class_names = [l.rstrip() for l in f]
object.__setattr__(self, 'detection_threshold', 0.2)
object.__setattr__(self, 'nms_threshold', 0.1)
def area_of(self, left_top, right_bottom):
"""Compute the areas of rectangles given two corners.
Args:
left_top (N, 2): left top corner.
right_bottom (N, 2): right bottom corner.
Returns:
area (N): return the area.
"""
hw = clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
def iou_of(self, boxes0, boxes1, eps=1e-5):
"""Return intersection-over-union (Jaccard index) of boxes.
Args:
boxes0 (N, 4): ground truth boxes.
boxes1 (N or 1, 4): predicted boxes.
eps: a small number to avoid 0 as denominator.
Returns:
iou (N): IoU values.
"""
overlap_left_top = maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = self.area_of(overlap_left_top, overlap_right_bottom)
area0 = self.area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = self.area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def hard_nms(self, box_scores, nms_threshold, top_k=-1, candidate_size=200):
"""
Args:
box_scores (N, 5): boxes in corner-form and probabilities.
nms_threshold: intersection over union threshold.
top_k: keep top_k results. If k <= 0, keep all the results.
candidate_size: only consider the candidates with the highest scores.
Returns:
picked: a list of indexes of the kept boxes
"""
if box_scores is None or len(box_scores) == 0:
return None, None
scores = box_scores[:, -1]
boxes = box_scores[:, :4]
picked = []
# _, indexes = scores.sort(descending=True)
indexes = argsort(scores)
# indexes = indexes[:candidate_size]
indexes = indexes[-candidate_size:]
while len(indexes) > 0:
# current = indexes[0]
current = indexes[-1]
picked.append(current)
if 0 < top_k == len(picked) or len(indexes) == 1:
break
current_box = boxes[current, :]
# indexes = indexes[1:]
indexes = indexes[:-1]
rest_boxes = boxes[indexes, :]
iou = self.iou_of(rest_boxes, expand_dims(current_box, axis=0), )
indexes = indexes[iou <= nms_threshold]
return box_scores[picked, :], picked
def nms(self, boxes, nms_threshold=0.3):
# if there are no boxes, return an empty list
if len(boxes) == 0:
return []
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
# compute the area of the bounding boxes and sort the bounding
# boxes by the bottom-right y-coordinate of the bounding box
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(y2)
# keep looping while some indexes still remain in the indexes
# list
while len(idxs) > 0:
# grab the last index in the indexes list, add the index
# value to the list of picked indexes, then initialize
# the suppression list (i.e. indexes that will be deleted)
# using the last index
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
suppress = [last]
# loop over all indexes in the indexes list
for pos in range(0, last):
# grab the current index
j = idxs[pos]
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = max(x1[i], x1[j])
yy1 = max(y1[i], y1[j])
xx2 = min(x2[i], x2[j])
yy2 = min(y2[i], y2[j])
# compute the width and height of the bounding box
w = max(0, xx2 - xx1 + 1)
h = max(0, yy2 - yy1 + 1)
# compute the ratio of overlap between the computed
# bounding box and the bounding box in the area list
overlap = float(w * h) / area[j]
# if there is sufficient overlap, suppress the
# current bounding box
if overlap > nms_threshold:
suppress.append(pos)
# delete all indexes from the index list that are in the
# suppression list
idxs = np.delete(idxs, suppress)
# return only the bounding boxes that were picked
return boxes[pick], pick
def infer_single_image(self, img, scale=1):
if self._model.built:
try:
self._model.to(self.device)
self._model.eval()
if self._model.input_spec.object_type is None:
self._model.input_spec.object_type = ObjectType.rgb
img = image2array(img)
if img.shape[-1] == 4:
img = img[:, :, :3]
img_orig = img.copy()
rescale_scale = 1
for func in self.preprocess_flow:
if (inspect.isfunction(func) or isinstance(func, Transform)) and func is not image_backend_adaption:
img = func(img, spec=self._model.input_spec)
if (inspect.isfunction(func) and func.__qualname__ == 'resize.<locals>.img_op') or (isinstance(func, Transform) and func.name == 'resize'):
rescale_scale = func.scale
else:
print(func)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
img = image_backend_adaption(img)
inp = to_tensor(np.expand_dims(img, 0)).to(
torch.device("cuda" if self._model.weights[0].data.is_cuda else "cpu")).to(
self._model.weights[0].data.dtype)
confidence, boxes = self._model(inp)
boxes = boxes[0]
confidence = confidence[0]
if len(self.palette) == 0:
self.palette = generate_palette(confidence.shape[-1])
probs = 1 - confidence[:, 0]
label = argmax(confidence[:, 1:], -1) + 1
# mask = label > 0
# probs = probs[mask]
# label = label[mask]
# boxes = boxes[mask, :]
print(probs.max())
mask = probs > self.detection_threshold
probs = probs[mask]
label = label[mask]
boxes = boxes[mask, :]
if boxes is not None and len(boxes) > 0:
box_probs = concate([boxes.float(), label.reshape(-1, 1).float(), probs.reshape(-1, 1).float()], axis=1)
if len(boxes) > 1:
box_probs, keep = self.hard_nms(box_probs, nms_threshold=self.nms_threshold, top_k=-1, )
boxes = box_probs[:, :4]
boxes[:, 0::2] *= self._model.input_spec.shape.dims[-1]
boxes[:, 1::2] *= self._model.input_spec.shape.dims[-2]
boxes[:, :4] /= rescale_scale
# boxes = boxes * (1 / scale[0])
return img_orig, to_numpy(boxes), to_numpy(box_probs[:, 4]).astype(np.int32), to_numpy(box_probs[:, 5])
else:
return img_orig, None, None, None
except:
PrintException()
else:
raise ValueError('the model is not built yet.')
def infer_then_draw_single_image(self, img, scale=1):
start_time = time.time()
rgb_image, boxes, labels, probs = self.infer_single_image(img, scale)
if boxes is not None and len(boxes) > 0:
boxes = np.round(boxes).astype(np.int32)
if boxes.ndim == 1:
boxes = np.expand_dims(boxes, 0)
if labels.ndim == 0:
labels = np.expand_dims(labels, 0)
print(img, time.time() - start_time)
pillow_img = array2image(rgb_image.copy())
for m in range(len(boxes)):
this_box = boxes[m]
this_label = labels[m]
thiscolor = tuple([int(c) for c in self.palette[int(this_label) - 1][:3]])
print(img, self.class_names[int(this_label) - 1], this_box, probs[m])
pillow_img = plot_bbox(this_box, pillow_img, thiscolor, self.class_names[int(this_label) - 1], line_thickness=2)
rgb_image = np.array(pillow_img.copy())
return rgb_image, boxes, labels, probs
|
[
"trident.data.bbox_common.bbox_giou",
"numpy.maximum",
"trident.layers.pytorch_activations.softmax",
"numpy.argmax",
"trident.misc.visualization_utils.generate_palette",
"torch.cat",
"numpy.clip",
"numpy.argsort",
"torch.device",
"torch.no_grad",
"trident.data.bbox_common.xyxy2xywh",
"numpy.round",
"cv2.cvtColor",
"torch.load",
"trident.data.bbox_common.xywh2xyxy",
"trident.backend.pytorch_backend.Sequential",
"torch.exp",
"numpy.max",
"torch.nn.functional.log_softmax",
"inspect.isfunction",
"torch.log",
"numpy.minimum",
"torch.nn.init.xavier_uniform_",
"torch.nn.functional.mse_loss",
"torch.clamp",
"trident.layers.pytorch_activations.Relu",
"numpy.delete",
"trident.backend.pytorch_backend.to_numpy",
"numpy.zeros",
"numpy.expand_dims",
"trident.backend.pytorch_backend.to_tensor",
"time.time",
"trident.backend.pillow_backend.image2array",
"numpy.array"
] |
[((2429, 2464), 'torch.clamp', 'torch.clamp', (['(max_xy - min_xy)'], {'min': '(0)'}), '(max_xy - min_xy, min=0)\n', (2440, 2464), False, 'import torch\n'), ((7013, 7041), 'torch.cat', 'torch.cat', (['[g_cxcy, g_wh]', '(1)'], {}), '([g_cxcy, g_wh], 1)\n', (7022, 7041), False, 'import torch\n'), ((6502, 6517), 'torch.log', 'torch.log', (['g_wh'], {}), '(g_wh)\n', (6511, 6517), False, 'import torch\n'), ((11170, 11213), 'numpy.clip', 'np.clip', (['(right_bottom - left_top)', '(0.0)', 'None'], {}), '(right_bottom - left_top, 0.0, None)\n', (11177, 11213), True, 'import numpy as np\n'), ((11629, 11673), 'numpy.maximum', 'np.maximum', (['boxes0[..., :2]', 'boxes1[..., :2]'], {}), '(boxes0[..., :2], boxes1[..., :2])\n', (11639, 11673), True, 'import numpy as np\n'), ((11705, 11749), 'numpy.minimum', 'np.minimum', (['boxes0[..., 2:]', 'boxes1[..., 2:]'], {}), '(boxes0[..., 2:], boxes1[..., 2:])\n', (11715, 11749), True, 'import numpy as np\n'), ((14178, 14207), 'trident.data.bbox_common.xywh2xyxy', 'xywh2xyxy', (['center_form_priors'], {}), '(center_form_priors)\n', (14187, 14207), False, 'from trident.data.bbox_common import xywh2xyxy, xyxy2xywh, bbox_giou, bbox_giou_numpy\n'), ((18048, 18065), 'trident.backend.pytorch_backend.to_tensor', 'to_tensor', (['priors'], {}), '(priors)\n', (18057, 18065), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((19436, 19492), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['locations', 'target_locations'], {'reduction': '"""sum"""'}), "(locations, target_locations, reduction='sum')\n", (19446, 19492), True, 'import torch.nn.functional as F\n'), ((20199, 20216), 'trident.backend.pytorch_backend.to_tensor', 'to_tensor', (['priors'], {}), '(priors)\n', (20208, 20216), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((21771, 21788), 'trident.backend.pytorch_backend.to_tensor', 'to_tensor', (['priors'], {}), '(priors)\n', (21780, 21788), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((22406, 22429), 'trident.layers.pytorch_activations.softmax', 'softmax', (['confidence', '(-1)'], {}), '(confidence, -1)\n', (22413, 22429), False, 'from trident.layers.pytorch_activations import get_activation, Identity, Relu, softmax\n'), ((28729, 28746), 'trident.backend.pytorch_backend.to_tensor', 'to_tensor', (['priors'], {}), '(priors)\n', (28738, 28746), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((30299, 30359), 'torch.load', 'torch.load', (['model'], {'map_location': '(lambda storage, loc: storage)'}), '(model, map_location=lambda storage, loc: storage)\n', (30309, 30359), False, 'import torch\n'), ((32049, 32074), 'torch.cat', 'torch.cat', (['confidences', '(1)'], {}), '(confidences, 1)\n', (32058, 32074), False, 'import torch\n'), ((32095, 32118), 'torch.cat', 'torch.cat', (['locations', '(1)'], {}), '(locations, 1)\n', (32104, 32118), False, 'import torch\n'), ((35996, 36010), 'numpy.argsort', 'np.argsort', (['y2'], {}), '(y2)\n', (36006, 36010), True, 'import numpy as np\n'), ((40861, 40872), 'time.time', 'time.time', ([], {}), '()\n', (40870, 40872), False, 'import time\n'), ((12213, 12250), 'numpy.expand_dims', 'np.expand_dims', (['center_form_priors', '(0)'], {}), '(center_form_priors, 0)\n', (12227, 12250), True, 'import numpy as np\n'), ((14235, 14262), 'numpy.expand_dims', 'np.expand_dims', (['gt_boxes', '(0)'], {}), '(gt_boxes, 0)\n', (14249, 14262), True, 'import numpy as np\n'), ((14264, 14301), 'numpy.expand_dims', 'np.expand_dims', (['corner_form_priors', '(1)'], {}), '(corner_form_priors, 1)\n', (14278, 14301), True, 'import numpy as np\n'), ((14391, 14411), 'numpy.max', 'np.max', (['ious'], {'axis': '(1)'}), '(ious, axis=1)\n', (14397, 14411), True, 'import numpy as np\n'), ((14413, 14436), 'numpy.argmax', 'np.argmax', (['ious'], {'axis': '(1)'}), '(ious, axis=1)\n', (14422, 14436), True, 'import numpy as np\n'), ((14526, 14546), 'numpy.max', 'np.max', (['ious'], {'axis': '(0)'}), '(ious, axis=0)\n', (14532, 14546), True, 'import numpy as np\n'), ((14548, 14571), 'numpy.argmax', 'np.argmax', (['ious'], {'axis': '(0)'}), '(ious, axis=0)\n', (14557, 14571), True, 'import numpy as np\n'), ((18657, 18672), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (18670, 18672), False, 'import torch\n'), ((18848, 18878), 'numpy.array', 'np.array', (['[0.05, 1, 5, 20, 10]'], {}), '([0.05, 1, 5, 20, 10])\n', (18856, 18878), True, 'import numpy as np\n'), ((20829, 20844), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (20842, 20844), False, 'import torch\n'), ((25081, 25131), 'trident.backend.pytorch_backend.Sequential', 'Sequential', (['backbond[:idxes[-2]]'], {'name': '"""backbond1"""'}), "(backbond[:idxes[-2]], name='backbond1')\n", (25091, 25131), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((25161, 25220), 'trident.backend.pytorch_backend.Sequential', 'Sequential', (['backbond[idxes[-2]:idxes[-1]]'], {'name': '"""backbond2"""'}), "(backbond[idxes[-2]:idxes[-1]], name='backbond2')\n", (25171, 25220), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((25250, 25300), 'trident.backend.pytorch_backend.Sequential', 'Sequential', (['backbond[idxes[-1]:]'], {'name': '"""backbond3"""'}), "(backbond[idxes[-1]:], name='backbond3')\n", (25260, 25300), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((25936, 25942), 'trident.layers.pytorch_activations.Relu', 'Relu', ([], {}), '()\n', (25940, 25942), False, 'from trident.layers.pytorch_activations import get_activation, Identity, Relu, softmax\n'), ((28793, 28834), 'torch.clamp', 'torch.clamp', (['priors', '(0.0)', '(1.0)'], {'out': 'priors'}), '(priors, 0.0, 1.0, out=priors)\n', (28804, 28834), False, 'import torch\n'), ((32228, 32252), 'trident.layers.pytorch_activations.softmax', 'softmax', (['confidences', '(-1)'], {}), '(confidences, -1)\n', (32235, 32252), False, 'from trident.layers.pytorch_activations import get_activation, Identity, Relu, softmax\n'), ((37652, 37677), 'numpy.delete', 'np.delete', (['idxs', 'suppress'], {}), '(idxs, suppress)\n', (37661, 37677), True, 'import numpy as np\n'), ((7774, 7814), 'torch.exp', 'torch.exp', (['(loc[:, :, 2:4] * variances[1])'], {}), '(loc[:, :, 2:4] * variances[1])\n', (7783, 7814), False, 'import torch\n'), ((30243, 30276), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['m.weight'], {}), '(m.weight)\n', (30266, 30276), True, 'import torch.nn as nn\n'), ((38102, 38118), 'trident.backend.pillow_backend.image2array', 'image2array', (['img'], {}), '(img)\n', (38113, 38118), False, 'from trident.backend.pillow_backend import image2array, array2image\n'), ((38813, 38849), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_RGB2BGR'], {}), '(img, cv2.COLOR_RGB2BGR)\n', (38825, 38849), False, 'import cv2\n'), ((41109, 41133), 'numpy.expand_dims', 'np.expand_dims', (['boxes', '(0)'], {}), '(boxes, 0)\n', (41123, 41133), True, 'import numpy as np\n'), ((41192, 41217), 'numpy.expand_dims', 'np.expand_dims', (['labels', '(0)'], {}), '(labels, 0)\n', (41206, 41217), True, 'import numpy as np\n'), ((4865, 4890), 'numpy.zeros', 'np.zeros', (['(num_priors, 4)'], {}), '((num_priors, 4))\n', (4873, 4890), True, 'import numpy as np\n'), ((4911, 4931), 'numpy.zeros', 'np.zeros', (['num_priors'], {}), '(num_priors)\n', (4919, 4931), True, 'import numpy as np\n'), ((16449, 16465), 'trident.data.bbox_common.xyxy2xywh', 'xyxy2xywh', (['boxes'], {}), '(boxes)\n', (16458, 16465), False, 'from trident.data.bbox_common import xywh2xyxy, xyxy2xywh, bbox_giou, bbox_giou_numpy\n'), ((18694, 18726), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['confidence'], {'dim': '(2)'}), '(confidence, dim=2)\n', (18707, 18726), True, 'import torch.nn.functional as F\n'), ((20866, 20898), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['confidence'], {'dim': '(2)'}), '(confidence, dim=2)\n', (20879, 20898), True, 'import torch.nn.functional as F\n'), ((39319, 39357), 'trident.misc.visualization_utils.generate_palette', 'generate_palette', (['confidence.shape[-1]'], {}), '(confidence.shape[-1])\n', (39335, 39357), False, 'from trident.misc.visualization_utils import generate_palette, plot_bbox\n'), ((41020, 41035), 'numpy.round', 'np.round', (['boxes'], {}), '(boxes)\n', (41028, 41035), True, 'import numpy as np\n'), ((41241, 41252), 'time.time', 'time.time', ([], {}), '()\n', (41250, 41252), False, 'import time\n'), ((9186, 9211), 'numpy.zeros', 'np.zeros', (['(num_priors, 4)'], {}), '((num_priors, 4))\n', (9194, 9211), True, 'import numpy as np\n'), ((9232, 9252), 'numpy.zeros', 'np.zeros', (['num_priors'], {}), '(num_priors)\n', (9240, 9252), True, 'import numpy as np\n'), ((12525, 12610), 'numpy.clip', 'np.clip', (['(center_form_boxes[..., 2:] / center_form_priors[..., 2:])', '(1e-08)', 'np.inf'], {}), '(center_form_boxes[..., 2:] / center_form_priors[..., 2:], 1e-08, np.inf\n )\n', (12532, 12610), True, 'import numpy as np\n'), ((15829, 15864), 'numpy.zeros', 'np.zeros', (['(self.priors.shape[0], 4)'], {}), '((self.priors.shape[0], 4))\n', (15837, 15864), True, 'import numpy as np\n'), ((15885, 15915), 'numpy.zeros', 'np.zeros', (['self.priors.shape[0]'], {}), '(self.priors.shape[0])\n', (15893, 15915), True, 'import numpy as np\n'), ((16397, 16418), 'trident.backend.pytorch_backend.to_numpy', 'to_numpy', (['self.priors'], {}), '(self.priors)\n', (16405, 16418), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((16533, 16554), 'trident.backend.pytorch_backend.to_numpy', 'to_numpy', (['self.priors'], {}), '(self.priors)\n', (16541, 16554), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((40491, 40506), 'trident.backend.pytorch_backend.to_numpy', 'to_numpy', (['boxes'], {}), '(boxes)\n', (40499, 40506), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((40552, 40577), 'trident.backend.pytorch_backend.to_numpy', 'to_numpy', (['box_probs[:, 5]'], {}), '(box_probs[:, 5])\n', (40560, 40577), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((9751, 9768), 'trident.backend.pytorch_backend.to_tensor', 'to_tensor', (['gt_box'], {}), '(gt_box)\n', (9760, 9768), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((9802, 9821), 'trident.backend.pytorch_backend.to_tensor', 'to_tensor', (['gt_label'], {}), '(gt_label)\n', (9811, 9821), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((10053, 10078), 'numpy.zeros', 'np.zeros', (['(num_priors, 4)'], {}), '((num_priors, 4))\n', (10061, 10078), True, 'import numpy as np\n'), ((10099, 10119), 'numpy.zeros', 'np.zeros', (['num_priors'], {}), '(num_priors)\n', (10107, 10119), True, 'import numpy as np\n'), ((24031, 24047), 'trident.backend.pytorch_backend.to_tensor', 'to_tensor', (['(1e-08)'], {}), '(1e-08)\n', (24040, 24047), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((38344, 38368), 'inspect.isfunction', 'inspect.isfunction', (['func'], {}), '(func)\n', (38362, 38368), False, 'import inspect\n'), ((38980, 39050), 'torch.device', 'torch.device', (["('cuda' if self._model.weights[0].data.is_cuda else 'cpu')"], {}), "('cuda' if self._model.weights[0].data.is_cuda else 'cpu')\n", (38992, 39050), False, 'import torch\n'), ((9964, 9979), 'trident.backend.pytorch_backend.to_numpy', 'to_numpy', (['loc_t'], {}), '(loc_t)\n', (9972, 9979), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((10000, 10016), 'trident.backend.pytorch_backend.to_numpy', 'to_numpy', (['conf_t'], {}), '(conf_t)\n', (10008, 10016), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((38538, 38562), 'inspect.isfunction', 'inspect.isfunction', (['func'], {}), '(func)\n', (38556, 38562), False, 'import inspect\n'), ((40508, 40533), 'trident.backend.pytorch_backend.to_numpy', 'to_numpy', (['box_probs[:, 4]'], {}), '(box_probs[:, 4])\n', (40516, 40533), False, 'from trident.backend.pytorch_backend import to_numpy, to_tensor, Layer, Sequential, ModuleList\n'), ((38932, 38954), 'numpy.expand_dims', 'np.expand_dims', (['img', '(0)'], {}), '(img, 0)\n', (38946, 38954), True, 'import numpy as np\n'), ((23563, 23615), 'trident.data.bbox_common.bbox_giou', 'bbox_giou', (['decode_locations', 'decode_target_locations'], {}), '(decode_locations, decode_target_locations)\n', (23572, 23615), False, 'from trident.data.bbox_common import xywh2xyxy, xyxy2xywh, bbox_giou, bbox_giou_numpy\n')]
|
import unittest
import numpy as np
import tensorflow as tf
import dlf.core
from dlf.evaluators.coco_object_detection import CocoObjectDectectionEvaluator
class TestCocoObjectDetectionEvaluator(unittest.TestCase):
image_shape = (1024, 1024, 3)
def setUp(self):
self.evaluator = CocoObjectDectectionEvaluator(per_class=True)
def test_evaluation(self):
bboxes = np.array(
[
[[0.1, 0.1, 0.3, 0.3]],
[[0.25, 0.25, 0.3, 0.3]],
[[0.75, 0.75, 0.8, 0.8]]
]
)
labels = np.array([[1], [1], [2]])
scores = np.array([[1.0], [1.0], [1.0]])
ids = np.array([[0], [1], [2]])
self.evaluator.add_batch(self.image_shape,
bboxes, labels, scores,
bboxes, labels, ids, None)
result = self.evaluator.evaluate()
self.assertEqual(result['MSCOCO_Precision/mAP'], 1.0)
self.assertEqual(result['MSCOCO_Recall/AR@1'], 1.0)
|
[
"numpy.array",
"dlf.evaluators.coco_object_detection.CocoObjectDectectionEvaluator"
] |
[((296, 341), 'dlf.evaluators.coco_object_detection.CocoObjectDectectionEvaluator', 'CocoObjectDectectionEvaluator', ([], {'per_class': '(True)'}), '(per_class=True)\n', (325, 341), False, 'from dlf.evaluators.coco_object_detection import CocoObjectDectectionEvaluator\n'), ((391, 482), 'numpy.array', 'np.array', (['[[[0.1, 0.1, 0.3, 0.3]], [[0.25, 0.25, 0.3, 0.3]], [[0.75, 0.75, 0.8, 0.8]]]'], {}), '([[[0.1, 0.1, 0.3, 0.3]], [[0.25, 0.25, 0.3, 0.3]], [[0.75, 0.75, \n 0.8, 0.8]]])\n', (399, 482), True, 'import numpy as np\n'), ((579, 604), 'numpy.array', 'np.array', (['[[1], [1], [2]]'], {}), '([[1], [1], [2]])\n', (587, 604), True, 'import numpy as np\n'), ((622, 653), 'numpy.array', 'np.array', (['[[1.0], [1.0], [1.0]]'], {}), '([[1.0], [1.0], [1.0]])\n', (630, 653), True, 'import numpy as np\n'), ((668, 693), 'numpy.array', 'np.array', (['[[0], [1], [2]]'], {}), '([[0], [1], [2]])\n', (676, 693), True, 'import numpy as np\n')]
|
import numpy as np
def create_results_values(proxy_evaluation, drift_labels_known, drift_decisions, acc_vector, drift_labels):
"""
Parameters
----------
proxy_evaluation: Boolean whether proxy evaluation was used
drift_labels_known: Boolean whether change detection evaluation is used
drift_decisions: Array with booleans for decisions about drift
acc_vector: Array with booleans for (in)correct classification of data instance
drift_labels: Array with booleans of drift labels
Returns the results data, the headers for results and the format of the results
-------
"""
# Save values for: drift_decisions, acc_vector, drift_labels
if proxy_evaluation and drift_labels_known:
result_data = np.transpose([drift_decisions, acc_vector, drift_labels])
result_header = "driftDecisions, accVector, driftLabels"
result_format = ('%i', '%i', '%i')
elif proxy_evaluation:
result_data = np.transpose([drift_decisions, acc_vector])
result_header = "driftDecisions, accVector"
result_format = ('%i', '%i')
elif drift_labels_known:
result_data = np.transpose([drift_decisions, drift_labels])
result_header = "driftDecisions, driftLabels"
result_format = ('%i', '%i')
else:
result_data = np.transpose([drift_decisions])
result_header = "driftDecisions"
result_format = '%i'
return result_data, result_header, result_format
|
[
"numpy.transpose"
] |
[((755, 812), 'numpy.transpose', 'np.transpose', (['[drift_decisions, acc_vector, drift_labels]'], {}), '([drift_decisions, acc_vector, drift_labels])\n', (767, 812), True, 'import numpy as np\n'), ((970, 1013), 'numpy.transpose', 'np.transpose', (['[drift_decisions, acc_vector]'], {}), '([drift_decisions, acc_vector])\n', (982, 1013), True, 'import numpy as np\n'), ((1154, 1199), 'numpy.transpose', 'np.transpose', (['[drift_decisions, drift_labels]'], {}), '([drift_decisions, drift_labels])\n', (1166, 1199), True, 'import numpy as np\n'), ((1323, 1354), 'numpy.transpose', 'np.transpose', (['[drift_decisions]'], {}), '([drift_decisions])\n', (1335, 1354), True, 'import numpy as np\n')]
|
import operator
import numpy as np
import pytest
import pytz
from pandas._libs.tslibs import IncompatibleFrequency
import pandas as pd
from pandas import Series, date_range
import pandas._testing as tm
def _permute(obj):
return obj.take(np.random.permutation(len(obj)))
class TestSeriesFlexArithmetic:
@pytest.mark.parametrize(
"ts",
[
(lambda x: x, lambda x: x * 2, False),
(lambda x: x, lambda x: x[::2], False),
(lambda x: x, lambda x: 5, True),
(lambda x: tm.makeFloatSeries(), lambda x: tm.makeFloatSeries(), True),
],
)
@pytest.mark.parametrize(
"opname", ["add", "sub", "mul", "floordiv", "truediv", "pow"]
)
def test_flex_method_equivalence(self, opname, ts):
# check that Series.{opname} behaves like Series.__{opname}__,
tser = tm.makeTimeSeries().rename("ts")
series = ts[0](tser)
other = ts[1](tser)
check_reverse = ts[2]
op = getattr(Series, opname)
alt = getattr(operator, opname)
result = op(series, other)
expected = alt(series, other)
tm.assert_almost_equal(result, expected)
if check_reverse:
rop = getattr(Series, "r" + opname)
result = rop(series, other)
expected = alt(other, series)
tm.assert_almost_equal(result, expected)
def test_flex_method_subclass_metadata_preservation(self, all_arithmetic_operators):
# GH 13208
class MySeries(Series):
_metadata = ["x"]
@property
def _constructor(self):
return MySeries
opname = all_arithmetic_operators
op = getattr(Series, opname)
m = MySeries([1, 2, 3], name="test")
m.x = 42
result = op(m, 1)
assert result.x == 42
class TestSeriesArithmetic:
# Some of these may end up in tests/arithmetic, but are not yet sorted
def test_add_series_with_period_index(self):
rng = pd.period_range("1/1/2000", "1/1/2010", freq="A")
ts = Series(np.random.randn(len(rng)), index=rng)
result = ts + ts[::2]
expected = ts + ts
expected[1::2] = np.nan
tm.assert_series_equal(result, expected)
result = ts + _permute(ts[::2])
tm.assert_series_equal(result, expected)
msg = "Input has different freq=D from PeriodIndex\\(freq=A-DEC\\)"
with pytest.raises(IncompatibleFrequency, match=msg):
ts + ts.asfreq("D", how="end")
@pytest.mark.parametrize(
"target_add,input_value,expected_value",
[
("!", ["hello", "world"], ["hello!", "world!"]),
("m", ["hello", "world"], ["hellom", "worldm"]),
],
)
def test_string_addition(self, target_add, input_value, expected_value):
# GH28658 - ensure adding 'm' does not raise an error
a = Series(input_value)
result = a + target_add
expected = Series(expected_value)
tm.assert_series_equal(result, expected)
# ------------------------------------------------------------------
# Comparisons
class TestSeriesFlexComparison:
def test_comparison_flex_basic(self):
left = pd.Series(np.random.randn(10))
right = pd.Series(np.random.randn(10))
tm.assert_series_equal(left.eq(right), left == right)
tm.assert_series_equal(left.ne(right), left != right)
tm.assert_series_equal(left.le(right), left < right)
tm.assert_series_equal(left.lt(right), left <= right)
tm.assert_series_equal(left.gt(right), left > right)
tm.assert_series_equal(left.ge(right), left >= right)
# axis
for axis in [0, None, "index"]:
tm.assert_series_equal(left.eq(right, axis=axis), left == right)
tm.assert_series_equal(left.ne(right, axis=axis), left != right)
tm.assert_series_equal(left.le(right, axis=axis), left < right)
tm.assert_series_equal(left.lt(right, axis=axis), left <= right)
tm.assert_series_equal(left.gt(right, axis=axis), left > right)
tm.assert_series_equal(left.ge(right, axis=axis), left >= right)
#
msg = "No axis named 1 for object type"
for op in ["eq", "ne", "le", "le", "gt", "ge"]:
with pytest.raises(ValueError, match=msg):
getattr(left, op)(right, axis=1)
class TestSeriesComparison:
def test_comparison_different_length(self):
a = Series(["a", "b", "c"])
b = Series(["b", "a"])
with pytest.raises(ValueError):
a < b
a = Series([1, 2])
b = Series([2, 3, 4])
with pytest.raises(ValueError):
a == b
@pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
def test_ser_flex_cmp_return_dtypes(self, opname):
# GH#15115
ser = Series([1, 3, 2], index=range(3))
const = 2
result = getattr(ser, opname)(const).dtypes
expected = np.dtype("bool")
assert result == expected
@pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
def test_ser_flex_cmp_return_dtypes_empty(self, opname):
# GH#15115 empty Series case
ser = Series([1, 3, 2], index=range(3))
empty = ser.iloc[:0]
const = 2
result = getattr(empty, opname)(const).dtypes
expected = np.dtype("bool")
assert result == expected
@pytest.mark.parametrize(
"op",
[operator.eq, operator.ne, operator.le, operator.lt, operator.ge, operator.gt],
)
@pytest.mark.parametrize(
"names", [(None, None, None), ("foo", "bar", None), ("baz", "baz", "baz")]
)
def test_ser_cmp_result_names(self, names, op):
# datetime64 dtype
dti = pd.date_range("1949-06-07 03:00:00", freq="H", periods=5, name=names[0])
ser = Series(dti).rename(names[1])
result = op(ser, dti)
assert result.name == names[2]
# datetime64tz dtype
dti = dti.tz_localize("US/Central")
ser = Series(dti).rename(names[1])
result = op(ser, dti)
assert result.name == names[2]
# timedelta64 dtype
tdi = dti - dti.shift(1)
ser = Series(tdi).rename(names[1])
result = op(ser, tdi)
assert result.name == names[2]
# interval dtype
if op in [operator.eq, operator.ne]:
# interval dtype comparisons not yet implemented
ii = pd.interval_range(start=0, periods=5, name=names[0])
ser = Series(ii).rename(names[1])
result = op(ser, ii)
assert result.name == names[2]
# categorical
if op in [operator.eq, operator.ne]:
# categorical dtype comparisons raise for inequalities
cidx = tdi.astype("category")
ser = Series(cidx).rename(names[1])
result = op(ser, cidx)
assert result.name == names[2]
# ------------------------------------------------------------------
# Unsorted
# These arithmetic tests were previously in other files, eventually
# should be parametrized and put into tests.arithmetic
class TestTimeSeriesArithmetic:
# TODO: De-duplicate with test below
def test_series_add_tz_mismatch_converts_to_utc_duplicate(self):
rng = date_range("1/1/2011", periods=10, freq="H", tz="US/Eastern")
ser = Series(np.random.randn(len(rng)), index=rng)
ts_moscow = ser.tz_convert("Europe/Moscow")
result = ser + ts_moscow
assert result.index.tz is pytz.utc
result = ts_moscow + ser
assert result.index.tz is pytz.utc
def test_series_add_tz_mismatch_converts_to_utc(self):
rng = date_range("1/1/2011", periods=100, freq="H", tz="utc")
perm = np.random.permutation(100)[:90]
ser1 = Series(
np.random.randn(90), index=rng.take(perm).tz_convert("US/Eastern")
)
perm = np.random.permutation(100)[:90]
ser2 = Series(
np.random.randn(90), index=rng.take(perm).tz_convert("Europe/Berlin")
)
result = ser1 + ser2
uts1 = ser1.tz_convert("utc")
uts2 = ser2.tz_convert("utc")
expected = uts1 + uts2
assert result.index.tz == pytz.UTC
tm.assert_series_equal(result, expected)
def test_series_add_aware_naive_raises(self):
rng = date_range("1/1/2011", periods=10, freq="H")
ser = Series(np.random.randn(len(rng)), index=rng)
ser_utc = ser.tz_localize("utc")
with pytest.raises(Exception):
ser + ser_utc
with pytest.raises(Exception):
ser_utc + ser
def test_datetime_understood(self):
# Ensures it doesn't fail to create the right series
# reported in issue#16726
series = pd.Series(pd.date_range("2012-01-01", periods=3))
offset = pd.offsets.DateOffset(days=6)
result = series - offset
expected = pd.Series(pd.to_datetime(["2011-12-26", "2011-12-27", "2011-12-28"]))
tm.assert_series_equal(result, expected)
|
[
"pandas.offsets.DateOffset",
"pandas.period_range",
"pandas.interval_range",
"pandas._testing.assert_almost_equal",
"pandas.date_range",
"numpy.random.randn",
"numpy.dtype",
"pandas._testing.assert_series_equal",
"pytest.raises",
"pandas.to_datetime",
"pandas.Series",
"pandas._testing.makeFloatSeries",
"pandas._testing.makeTimeSeries",
"numpy.random.permutation",
"pytest.mark.parametrize"
] |
[((622, 712), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""opname"""', "['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow']"], {}), "('opname', ['add', 'sub', 'mul', 'floordiv',\n 'truediv', 'pow'])\n", (645, 712), False, 'import pytest\n'), ((2550, 2724), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""target_add,input_value,expected_value"""', "[('!', ['hello', 'world'], ['hello!', 'world!']), ('m', ['hello', 'world'],\n ['hellom', 'worldm'])]"], {}), "('target_add,input_value,expected_value', [('!', [\n 'hello', 'world'], ['hello!', 'world!']), ('m', ['hello', 'world'], [\n 'hellom', 'worldm'])])\n", (2573, 2724), False, 'import pytest\n'), ((4754, 4825), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""opname"""', "['eq', 'ne', 'gt', 'lt', 'ge', 'le']"], {}), "('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le'])\n", (4777, 4825), False, 'import pytest\n'), ((5094, 5165), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""opname"""', "['eq', 'ne', 'gt', 'lt', 'ge', 'le']"], {}), "('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le'])\n", (5117, 5165), False, 'import pytest\n'), ((5489, 5602), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""op"""', '[operator.eq, operator.ne, operator.le, operator.lt, operator.ge, operator.gt]'], {}), "('op', [operator.eq, operator.ne, operator.le,\n operator.lt, operator.ge, operator.gt])\n", (5512, 5602), False, 'import pytest\n'), ((5627, 5730), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""names"""', "[(None, None, None), ('foo', 'bar', None), ('baz', 'baz', 'baz')]"], {}), "('names', [(None, None, None), ('foo', 'bar', None),\n ('baz', 'baz', 'baz')])\n", (5650, 5730), False, 'import pytest\n'), ((1146, 1186), 'pandas._testing.assert_almost_equal', 'tm.assert_almost_equal', (['result', 'expected'], {}), '(result, expected)\n', (1168, 1186), True, 'import pandas._testing as tm\n'), ((2025, 2074), 'pandas.period_range', 'pd.period_range', (['"""1/1/2000"""', '"""1/1/2010"""'], {'freq': '"""A"""'}), "('1/1/2000', '1/1/2010', freq='A')\n", (2040, 2074), True, 'import pandas as pd\n'), ((2231, 2271), 'pandas._testing.assert_series_equal', 'tm.assert_series_equal', (['result', 'expected'], {}), '(result, expected)\n', (2253, 2271), True, 'import pandas._testing as tm\n'), ((2321, 2361), 'pandas._testing.assert_series_equal', 'tm.assert_series_equal', (['result', 'expected'], {}), '(result, expected)\n', (2343, 2361), True, 'import pandas._testing as tm\n'), ((2924, 2943), 'pandas.Series', 'Series', (['input_value'], {}), '(input_value)\n', (2930, 2943), False, 'from pandas import Series, date_range\n'), ((2996, 3018), 'pandas.Series', 'Series', (['expected_value'], {}), '(expected_value)\n', (3002, 3018), False, 'from pandas import Series, date_range\n'), ((3027, 3067), 'pandas._testing.assert_series_equal', 'tm.assert_series_equal', (['result', 'expected'], {}), '(result, expected)\n', (3049, 3067), True, 'import pandas._testing as tm\n'), ((4518, 4541), 'pandas.Series', 'Series', (["['a', 'b', 'c']"], {}), "(['a', 'b', 'c'])\n", (4524, 4541), False, 'from pandas import Series, date_range\n'), ((4554, 4572), 'pandas.Series', 'Series', (["['b', 'a']"], {}), "(['b', 'a'])\n", (4560, 4572), False, 'from pandas import Series, date_range\n'), ((4644, 4658), 'pandas.Series', 'Series', (['[1, 2]'], {}), '([1, 2])\n', (4650, 4658), False, 'from pandas import Series, date_range\n'), ((4671, 4688), 'pandas.Series', 'Series', (['[2, 3, 4]'], {}), '([2, 3, 4])\n', (4677, 4688), False, 'from pandas import Series, date_range\n'), ((5037, 5053), 'numpy.dtype', 'np.dtype', (['"""bool"""'], {}), "('bool')\n", (5045, 5053), True, 'import numpy as np\n'), ((5432, 5448), 'numpy.dtype', 'np.dtype', (['"""bool"""'], {}), "('bool')\n", (5440, 5448), True, 'import numpy as np\n'), ((5834, 5906), 'pandas.date_range', 'pd.date_range', (['"""1949-06-07 03:00:00"""'], {'freq': '"""H"""', 'periods': '(5)', 'name': 'names[0]'}), "('1949-06-07 03:00:00', freq='H', periods=5, name=names[0])\n", (5847, 5906), True, 'import pandas as pd\n'), ((7371, 7432), 'pandas.date_range', 'date_range', (['"""1/1/2011"""'], {'periods': '(10)', 'freq': '"""H"""', 'tz': '"""US/Eastern"""'}), "('1/1/2011', periods=10, freq='H', tz='US/Eastern')\n", (7381, 7432), False, 'from pandas import Series, date_range\n'), ((7773, 7828), 'pandas.date_range', 'date_range', (['"""1/1/2011"""'], {'periods': '(100)', 'freq': '"""H"""', 'tz': '"""utc"""'}), "('1/1/2011', periods=100, freq='H', tz='utc')\n", (7783, 7828), False, 'from pandas import Series, date_range\n'), ((8342, 8382), 'pandas._testing.assert_series_equal', 'tm.assert_series_equal', (['result', 'expected'], {}), '(result, expected)\n', (8364, 8382), True, 'import pandas._testing as tm\n'), ((8448, 8492), 'pandas.date_range', 'date_range', (['"""1/1/2011"""'], {'periods': '(10)', 'freq': '"""H"""'}), "('1/1/2011', periods=10, freq='H')\n", (8458, 8492), False, 'from pandas import Series, date_range\n'), ((8946, 8975), 'pandas.offsets.DateOffset', 'pd.offsets.DateOffset', ([], {'days': '(6)'}), '(days=6)\n', (8967, 8975), True, 'import pandas as pd\n'), ((9106, 9146), 'pandas._testing.assert_series_equal', 'tm.assert_series_equal', (['result', 'expected'], {}), '(result, expected)\n', (9128, 9146), True, 'import pandas._testing as tm\n'), ((1355, 1395), 'pandas._testing.assert_almost_equal', 'tm.assert_almost_equal', (['result', 'expected'], {}), '(result, expected)\n', (1377, 1395), True, 'import pandas._testing as tm\n'), ((2452, 2499), 'pytest.raises', 'pytest.raises', (['IncompatibleFrequency'], {'match': 'msg'}), '(IncompatibleFrequency, match=msg)\n', (2465, 2499), False, 'import pytest\n'), ((3254, 3273), 'numpy.random.randn', 'np.random.randn', (['(10)'], {}), '(10)\n', (3269, 3273), True, 'import numpy as np\n'), ((3301, 3320), 'numpy.random.randn', 'np.random.randn', (['(10)'], {}), '(10)\n', (3316, 3320), True, 'import numpy as np\n'), ((4586, 4611), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4599, 4611), False, 'import pytest\n'), ((4702, 4727), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4715, 4727), False, 'import pytest\n'), ((6528, 6580), 'pandas.interval_range', 'pd.interval_range', ([], {'start': '(0)', 'periods': '(5)', 'name': 'names[0]'}), '(start=0, periods=5, name=names[0])\n', (6545, 6580), True, 'import pandas as pd\n'), ((7845, 7871), 'numpy.random.permutation', 'np.random.permutation', (['(100)'], {}), '(100)\n', (7866, 7871), True, 'import numpy as np\n'), ((7912, 7931), 'numpy.random.randn', 'np.random.randn', (['(90)'], {}), '(90)\n', (7927, 7931), True, 'import numpy as np\n'), ((8005, 8031), 'numpy.random.permutation', 'np.random.permutation', (['(100)'], {}), '(100)\n', (8026, 8031), True, 'import numpy as np\n'), ((8072, 8091), 'numpy.random.randn', 'np.random.randn', (['(90)'], {}), '(90)\n', (8087, 8091), True, 'import numpy as np\n'), ((8608, 8632), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (8621, 8632), False, 'import pytest\n'), ((8674, 8698), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (8687, 8698), False, 'import pytest\n'), ((8889, 8927), 'pandas.date_range', 'pd.date_range', (['"""2012-01-01"""'], {'periods': '(3)'}), "('2012-01-01', periods=3)\n", (8902, 8927), True, 'import pandas as pd\n'), ((9038, 9096), 'pandas.to_datetime', 'pd.to_datetime', (["['2011-12-26', '2011-12-27', '2011-12-28']"], {}), "(['2011-12-26', '2011-12-27', '2011-12-28'])\n", (9052, 9096), True, 'import pandas as pd\n'), ((865, 884), 'pandas._testing.makeTimeSeries', 'tm.makeTimeSeries', ([], {}), '()\n', (882, 884), True, 'import pandas._testing as tm\n'), ((4341, 4377), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': 'msg'}), '(ValueError, match=msg)\n', (4354, 4377), False, 'import pytest\n'), ((5921, 5932), 'pandas.Series', 'Series', (['dti'], {}), '(dti)\n', (5927, 5932), False, 'from pandas import Series, date_range\n'), ((6107, 6118), 'pandas.Series', 'Series', (['dti'], {}), '(dti)\n', (6113, 6118), False, 'from pandas import Series, date_range\n'), ((6281, 6292), 'pandas.Series', 'Series', (['tdi'], {}), '(tdi)\n', (6287, 6292), False, 'from pandas import Series, date_range\n'), ((539, 559), 'pandas._testing.makeFloatSeries', 'tm.makeFloatSeries', ([], {}), '()\n', (557, 559), True, 'import pandas._testing as tm\n'), ((571, 591), 'pandas._testing.makeFloatSeries', 'tm.makeFloatSeries', ([], {}), '()\n', (589, 591), True, 'import pandas._testing as tm\n'), ((6599, 6609), 'pandas.Series', 'Series', (['ii'], {}), '(ii)\n', (6605, 6609), False, 'from pandas import Series, date_range\n'), ((6898, 6910), 'pandas.Series', 'Series', (['cidx'], {}), '(cidx)\n', (6904, 6910), False, 'from pandas import Series, date_range\n')]
|
import numpy as np
import pandas as pd
import gzip
from PCA import IPCA
#DEVICE = "cpu"
CHUNK_SIZE = 5
BATCH_SIZE = 5
NUM_COMPONENTS = 2
files = ["tweet_tokens/embeddings/training_embeddings.csv.gz", "tweet_tokens/embeddings/training_embeddings_2.csv.gz"]
#PATH = "tweet_tokens/embeddings/day_1/embeddings_day_1_clean_unique_COMPLETE.csv"
OUTPUT_PATH = "tweet_tokens/embeddings/test_embeddings_PCA_" + str(NUM_COMPONENTS) + ".csv.gz"
'''
def read_text_embeddings(emb_file):
if i == 0:
f = open(path, 'r')
text_embeddings = np.genfromtxt(emb_file, delimiter=",", skip_header=1, usecols=range(1,768), max_rows=100000)
return text_embeddings
'''
def write_header():
output_file = gzip.open(OUTPUT_PATH, "wt")
output_file.write("tweet_features_tweet_id")
for i in range(0, NUM_COMPONENTS):
output_file.write(',embedding_' + str(i))
output_file.write('\n')
output_file.close()
def write_to_csv(df, embeddings):
output_file = gzip.open(OUTPUT_PATH, "at")
for i, row in enumerate(df.itertuples(index=False)):
output_file.write(str(row[0])) # get the tweet id
for j in range(0, NUM_COMPONENTS):
output_file.write(',' + str(embeddings[i][j]))
output_file.write('\n')
output_file.close()
if __name__ == "__main__":
inc_pca = IPCA(num_components=NUM_COMPONENTS)
# incremental training phase
print('\nTRAINING\n')
i = 0
for f in files:
#print(f)
for chunk in pd.read_csv(f, usecols=range(1,769), chunksize=CHUNK_SIZE, compression='gzip', nrows=10):
#print(chunk)
print("Chunk :", i)
text_embeddings = np.array(chunk.values, dtype=np.float32)
print("Training set :", text_embeddings.shape)
#del chunk
i += 1
transformed_embeddings = inc_pca.fit(text_embeddings, batch_size=BATCH_SIZE)
#transformed_embeddings, reconstructed_embeddings, loss = inc_pca.fit_transform(text_embeddings, batch_size=BATCH_SIZE, with_loss=True)
#print("Transformed embeddings : ", transformed_embeddings.shape)
#print("Reconstructed embeddings : ", reconstructed_embeddings.shape)
#print("\nPCA projection loss :", loss, "\n")
# produce embeddings with reduced dimensionality
print('\nPRODUCING REDUCED EMBEDDINGS\n')
write_header() # column names
i = 0
for f in files:
for chunk in pd.read_csv(f, chunksize=CHUNK_SIZE, compression='gzip', nrows=10):
#print(chunk)
print("Chunk :", i)
text_embeddings = np.array(chunk.iloc[:,1:769].values, dtype=np.float32)
i += 1
transformed_embeddings = inc_pca.transform(text_embeddings)
#print("Transformed embeddings : ", transformed_embeddings.shape)
write_to_csv(chunk, transformed_embeddings)
#emb_file.close()
|
[
"pandas.read_csv",
"PCA.IPCA",
"gzip.open",
"numpy.array"
] |
[((724, 752), 'gzip.open', 'gzip.open', (['OUTPUT_PATH', '"""wt"""'], {}), "(OUTPUT_PATH, 'wt')\n", (733, 752), False, 'import gzip\n'), ((1005, 1033), 'gzip.open', 'gzip.open', (['OUTPUT_PATH', '"""at"""'], {}), "(OUTPUT_PATH, 'at')\n", (1014, 1033), False, 'import gzip\n'), ((1351, 1386), 'PCA.IPCA', 'IPCA', ([], {'num_components': 'NUM_COMPONENTS'}), '(num_components=NUM_COMPONENTS)\n', (1355, 1386), False, 'from PCA import IPCA\n'), ((2497, 2563), 'pandas.read_csv', 'pd.read_csv', (['f'], {'chunksize': 'CHUNK_SIZE', 'compression': '"""gzip"""', 'nrows': '(10)'}), "(f, chunksize=CHUNK_SIZE, compression='gzip', nrows=10)\n", (2508, 2563), True, 'import pandas as pd\n'), ((1698, 1738), 'numpy.array', 'np.array', (['chunk.values'], {'dtype': 'np.float32'}), '(chunk.values, dtype=np.float32)\n', (1706, 1738), True, 'import numpy as np\n'), ((2653, 2708), 'numpy.array', 'np.array', (['chunk.iloc[:, 1:769].values'], {'dtype': 'np.float32'}), '(chunk.iloc[:, 1:769].values, dtype=np.float32)\n', (2661, 2708), True, 'import numpy as np\n')]
|
from typing import List, Tuple, NoReturn, Optional, Union
import numpy as np
from auto_editor.utils.log import Log
from auto_editor.utils.types import split_num_str
def combine_audio_motion(
audio_list: np.ndarray, motion_list: np.ndarray, based: str, log: Log
) -> Optional[np.ndarray]:
no_place_where = "There was no place where {} exceeded the threshold."
if (based == 'audio' or based == 'not_audio') and max(audio_list) == 0:
log.error(no_place_where.format('audio'))
if (based == 'motion' or based == 'not_motion') and max(motion_list) == 0:
log.error(no_place_where.format('motion'))
if audio_list is not None and max(audio_list) == 0:
log.warning(no_place_where.format('audio'))
if motion_list is not None and max(motion_list) == 0:
log.warning(no_place_where.format('motion'))
if based == 'audio':
return audio_list
if based == 'motion':
return motion_list
if based == 'not_audio':
return np.invert(audio_list)
if based == 'not_motion':
return np.invert(motion_list)
if based == 'audio_and_motion':
return audio_list & motion_list
if based == 'audio_or_motion':
return audio_list | motion_list
if based == 'audio_xor_motion':
return np.bitwise_xor(audio_list, motion_list)
if based == 'audio_and_not_motion':
return audio_list & np.invert(motion_list)
if based == 'not_audio_and_motion':
return np.invert(audio_list) & motion_list
if based == 'not_audio_and_not_motion':
return np.invert(audio_list) & np.invert(motion_list)
return None
def remove_small(has_loud: np.ndarray, lim: int, replace: int, with_: int) -> np.ndarray:
startP = 0
active = False
for j, item in enumerate(has_loud):
if item == replace:
if not active:
startP = j
active = True
# Special case for end.
if j == len(has_loud) - 1:
if j - startP < lim:
has_loud[startP:j+1] = with_
else:
if active:
if j - startP < lim:
has_loud[startP:j] = with_
active = False
return has_loud
def str_is_number(val: str) -> bool:
return val.replace('.', '', 1).replace('-', '', 1).isdigit()
def str_starts_with_number(val: str) -> bool:
if val.startswith('-'):
val = val[1:]
val = val.replace('.', '', 1)
return val[0].isdigit()
def set_range(
has_loud: np.ndarray, range_syntax: list, fps: float, with_: int, log: Log
) -> np.ndarray:
def replace_variables_to_values(val: str, fps: float, log: Log) -> Union[int, NoReturn]:
if str_is_number(val):
return int(val)
if str_starts_with_number(val):
try:
value, unit = split_num_str(val)
except TypeError as e:
log.error(str(e))
if unit in ('', 'f', 'frame', 'frames'):
if isinstance(value, float):
log.error('float type cannot be used with frame unit')
return int(value)
if unit in ('s', 'sec', 'secs', 'second', 'seconds'):
return round(value * fps)
log.error(f'Unknown unit: {unit}')
if val == 'start':
return 0
if val == 'end':
return len(has_loud)
return log.error(f"variable '{val}' not available.")
def var_val_to_frames(val: str, fps: float, log: Log) -> int:
num = replace_variables_to_values(val, fps, log)
if num < 0:
num += len(has_loud)
return num
for item in range_syntax:
pair = []
for val in item:
pair.append(var_val_to_frames(val, fps, log))
has_loud[pair[0]:pair[1]] = with_
return has_loud
def seconds_to_frames(value: Union[int, str], fps: float) -> int:
if isinstance(value, str):
return int(float(value) * fps)
return value
def cook(has_loud: np.ndarray, min_clip: int, min_cut: int) -> np.ndarray:
has_loud = remove_small(has_loud, min_clip, replace=1, with_=0)
has_loud = remove_small(has_loud, min_cut, replace=0, with_=1)
return has_loud
# Turn long silent/loud array to formatted chunk list.
# Example: [1, 1, 1, 2, 2] => [(0, 3, 1), (3, 5, 2)]
def chunkify(arr: np.ndarray, arr_length: int = None) -> List[Tuple[int, int, float]]:
if arr_length is None:
arr_length = len(arr)
chunks = []
start = 0
for j in range(1, arr_length):
if arr[j] != arr[j - 1]:
chunks.append((start, j, arr[j - 1]))
start = j
chunks.append((start, arr_length, arr[j]))
return chunks
def apply_margin(
has_loud: np.ndarray, has_loud_length: int, start_m: int, end_m: int
) -> np.ndarray:
# Find start and end indexes.
start_index = []
end_index = []
for j in range(1, has_loud_length):
if has_loud[j] != has_loud[j - 1]:
if has_loud[j]:
start_index.append(j)
else:
end_index.append(j)
# Apply margin
if start_m > 0:
for i in start_index:
has_loud[max(i-start_m, 0):i] = True
if start_m < 0:
for i in start_index:
has_loud[i:min(i-start_m, has_loud_length)] = False
if end_m > 0:
for i in end_index:
has_loud[i:min(i+end_m, has_loud_length)] = True
if end_m < 0:
for i in end_index:
has_loud[max(i+end_m, 0):i] = False
return has_loud
def apply_mark_as(
has_loud: np.ndarray, has_loud_length: int, fps: float, args, log: Log
) -> np.ndarray:
if args.mark_as_loud != []:
has_loud = set_range(has_loud, args.mark_as_loud, fps, args.video_speed, log)
if args.mark_as_silent != []:
has_loud = set_range(has_loud, args.mark_as_silent, fps, args.silent_speed, log)
return has_loud
def to_speed_list(
has_loud: np.ndarray, video_speed: float, silent_speed: float
) -> np.ndarray:
speed_list = has_loud.astype(float)
# This code will break is speed is allowed to be 0
speed_list[speed_list == 1] = video_speed
speed_list[speed_list == 0] = silent_speed
return speed_list
def merge(start_list: np.ndarray, end_list: np.ndarray) -> np.ndarray:
merge = np.zeros((len(start_list)), dtype=np.bool_)
startP = 0
for item in start_list:
if item == True:
where_list = np.where(end_list[startP:])[0]
if len(where_list) > 0:
merge[startP:where_list[0]] = True
startP += 1
return merge
|
[
"numpy.bitwise_xor",
"numpy.where",
"auto_editor.utils.types.split_num_str",
"numpy.invert"
] |
[((1005, 1026), 'numpy.invert', 'np.invert', (['audio_list'], {}), '(audio_list)\n', (1014, 1026), True, 'import numpy as np\n'), ((1073, 1095), 'numpy.invert', 'np.invert', (['motion_list'], {}), '(motion_list)\n', (1082, 1095), True, 'import numpy as np\n'), ((1301, 1340), 'numpy.bitwise_xor', 'np.bitwise_xor', (['audio_list', 'motion_list'], {}), '(audio_list, motion_list)\n', (1315, 1340), True, 'import numpy as np\n'), ((1410, 1432), 'numpy.invert', 'np.invert', (['motion_list'], {}), '(motion_list)\n', (1419, 1432), True, 'import numpy as np\n'), ((1489, 1510), 'numpy.invert', 'np.invert', (['audio_list'], {}), '(audio_list)\n', (1498, 1510), True, 'import numpy as np\n'), ((1585, 1606), 'numpy.invert', 'np.invert', (['audio_list'], {}), '(audio_list)\n', (1594, 1606), True, 'import numpy as np\n'), ((1609, 1631), 'numpy.invert', 'np.invert', (['motion_list'], {}), '(motion_list)\n', (1618, 1631), True, 'import numpy as np\n'), ((2880, 2898), 'auto_editor.utils.types.split_num_str', 'split_num_str', (['val'], {}), '(val)\n', (2893, 2898), False, 'from auto_editor.utils.types import split_num_str\n'), ((6537, 6564), 'numpy.where', 'np.where', (['end_list[startP:]'], {}), '(end_list[startP:])\n', (6545, 6564), True, 'import numpy as np\n')]
|
"""End to end testing on simple linear models"""
# pylint: disable=C0103
# pylint: disable=C0325
# pylint: disable=E1101
import numpy as np
from scipy.stats import zscore
from sklearn.linear_model import LogisticRegression as sk_LogisticRegression
from sklearn.linear_model import LinearRegression as sk_LinearRegression
from model_wrangler.model_wrangler import ModelWrangler
from model_wrangler.dataset_managers import DatasetManager
from model_wrangler.model.corral.linear_regression import LinearRegressionModel
from model_wrangler.model.corral.logistic_regression import LogisticRegressionModel
from model_wrangler.model.tester import ModelTester
LINEAR_PARAMS = {
'name': 'test_lin',
'path': './tests/test_lin',
'graph': {
'in_sizes': [12],
'out_sizes': [1],
}
}
LOGISTIC_PARAMS = {
'name': 'test_log',
'path': './tests/test_log',
'graph': {
'in_sizes': [12],
'out_sizes': [1],
}
}
def make_linear_reg_testdata(in_dim=2, n_samp=1000):
"""Make sample data for linear regression"""
signal = zscore(np.random.randn(n_samp, 1), axis=0)
X = zscore(np.random.randn(n_samp, in_dim), axis=0)
X += 0.2 * signal
X = zscore(X, axis=0)
y = signal + 100
return X, y
def make_linear_cls_testdata(in_dim=2, n_samp=1000):
"""Make sample data for logistic regression"""
signal = zscore(np.random.randn(n_samp, 1), axis=0)
X = zscore(np.random.randn(n_samp, in_dim), axis=0)
X += 0.2 * signal
X = zscore(X, axis=0)
y = (signal > 0).astype(int)
return X, y
def compare_scikt_and_tf(sk_model, tf_model, X, y, sk_params={}):
sk_model = sk_model.fit(X, y.ravel())
print('Scikit values:')
print('\t coef: {}'.format(sk_model.coef_.ravel()))
print('\t int: {}'.format(sk_model.intercept_.ravel()))
dm1 = DatasetManager([X], [y])
dm2 = DatasetManager([X], [y])
tf_model.add_data(dm1, dm2)
print('TF training:')
print('\tpre-score: {}'.format(tf_model.score([X], [y])))
tf_model.train()
print('\tpost-score: {}'.format(tf_model.score([X], [y])))
print('TF values:')
data_dict = tf_model.make_data_dict([X], [y], is_training=False)
tf_coef = tf_model.get_from_model('params/coeff_0', data_dict)
tf_int = tf_model.get_from_model('params/intercept_0', data_dict)
print('\t coef: {}'.format(tf_coef.ravel()))
print('\t int: {}'.format(tf_int.ravel()))
try:
corr = np.mean(
zscore(tf_model.predict([X])[0].ravel()) *
zscore(sk_model.predict_proba(X)[:, 1].ravel())
)
except AttributeError:
corr = np.mean(
zscore(tf_model.predict([X])[0].ravel()) *
zscore(sk_model.predict(X).ravel())
)
print('Model Correlation')
print('\tr = {:.2f}'.format(corr))
def test_linear_regr():
"""Compare tf linear regression to scikit learn"""
X, y = make_linear_reg_testdata(in_dim=LINEAR_PARAMS['graph']['in_sizes'][0])
compare_scikt_and_tf(
sk_LinearRegression(),
ModelWrangler(LinearRegressionModel, LINEAR_PARAMS),
X, y)
def test_logistic_regr():
"""Compare tf logistic regression to scikit learn"""
X, y = make_linear_cls_testdata(in_dim=LOGISTIC_PARAMS['graph']['in_sizes'][0])
compare_scikt_and_tf(
sk_LogisticRegression(**{'penalty':'l2', 'C':100.0}),
ModelWrangler(LogisticRegressionModel, LOGISTIC_PARAMS),
X, y)
if __name__ == "__main__":
print("\n\nunit testing linear regression")
ModelTester(
ModelWrangler(LinearRegressionModel, LINEAR_PARAMS)
)
print("\n\ne2e testing linear regression")
test_linear_regr()
print("\n\nunit testing logistic regression")
ModelTester(
ModelWrangler(LogisticRegressionModel, LOGISTIC_PARAMS)
)
print("\n\ne2e testing logistic regression")
test_logistic_regr()
|
[
"scipy.stats.zscore",
"numpy.random.randn",
"model_wrangler.dataset_managers.DatasetManager",
"sklearn.linear_model.LinearRegression",
"sklearn.linear_model.LogisticRegression",
"model_wrangler.model_wrangler.ModelWrangler"
] |
[((1212, 1229), 'scipy.stats.zscore', 'zscore', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (1218, 1229), False, 'from scipy.stats import zscore\n'), ((1515, 1532), 'scipy.stats.zscore', 'zscore', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (1521, 1532), False, 'from scipy.stats import zscore\n'), ((1848, 1872), 'model_wrangler.dataset_managers.DatasetManager', 'DatasetManager', (['[X]', '[y]'], {}), '([X], [y])\n', (1862, 1872), False, 'from model_wrangler.dataset_managers import DatasetManager\n'), ((1883, 1907), 'model_wrangler.dataset_managers.DatasetManager', 'DatasetManager', (['[X]', '[y]'], {}), '([X], [y])\n', (1897, 1907), False, 'from model_wrangler.dataset_managers import DatasetManager\n'), ((1089, 1115), 'numpy.random.randn', 'np.random.randn', (['n_samp', '(1)'], {}), '(n_samp, 1)\n', (1104, 1115), True, 'import numpy as np\n'), ((1141, 1172), 'numpy.random.randn', 'np.random.randn', (['n_samp', 'in_dim'], {}), '(n_samp, in_dim)\n', (1156, 1172), True, 'import numpy as np\n'), ((1393, 1419), 'numpy.random.randn', 'np.random.randn', (['n_samp', '(1)'], {}), '(n_samp, 1)\n', (1408, 1419), True, 'import numpy as np\n'), ((1444, 1475), 'numpy.random.randn', 'np.random.randn', (['n_samp', 'in_dim'], {}), '(n_samp, in_dim)\n', (1459, 1475), True, 'import numpy as np\n'), ((3034, 3055), 'sklearn.linear_model.LinearRegression', 'sk_LinearRegression', ([], {}), '()\n', (3053, 3055), True, 'from sklearn.linear_model import LinearRegression as sk_LinearRegression\n'), ((3065, 3116), 'model_wrangler.model_wrangler.ModelWrangler', 'ModelWrangler', (['LinearRegressionModel', 'LINEAR_PARAMS'], {}), '(LinearRegressionModel, LINEAR_PARAMS)\n', (3078, 3116), False, 'from model_wrangler.model_wrangler import ModelWrangler\n'), ((3336, 3390), 'sklearn.linear_model.LogisticRegression', 'sk_LogisticRegression', ([], {}), "(**{'penalty': 'l2', 'C': 100.0})\n", (3357, 3390), True, 'from sklearn.linear_model import LogisticRegression as sk_LogisticRegression\n'), ((3398, 3453), 'model_wrangler.model_wrangler.ModelWrangler', 'ModelWrangler', (['LogisticRegressionModel', 'LOGISTIC_PARAMS'], {}), '(LogisticRegressionModel, LOGISTIC_PARAMS)\n', (3411, 3453), False, 'from model_wrangler.model_wrangler import ModelWrangler\n'), ((3571, 3622), 'model_wrangler.model_wrangler.ModelWrangler', 'ModelWrangler', (['LinearRegressionModel', 'LINEAR_PARAMS'], {}), '(LinearRegressionModel, LINEAR_PARAMS)\n', (3584, 3622), False, 'from model_wrangler.model_wrangler import ModelWrangler\n'), ((3776, 3831), 'model_wrangler.model_wrangler.ModelWrangler', 'ModelWrangler', (['LogisticRegressionModel', 'LOGISTIC_PARAMS'], {}), '(LogisticRegressionModel, LOGISTIC_PARAMS)\n', (3789, 3831), False, 'from model_wrangler.model_wrangler import ModelWrangler\n')]
|
from functools import wraps
from random import random, seed, sample
import numpy as np
import pandas as pd
import datetime
import time
import Code.method_collector as mc
import Code.create_collector as cc
import cv2
def to_categorical_unit(target, nb_class):
categorical = np.zeros([1, int(nb_class)])
categorical[1, int(target)] = 1
return categorical
def from_categorical(target):
NotImplemented
return target
def to_categorical(target, nb_class):
categorical = np.zeros([len(target), nb_class])
for idx in range(len(target)):
categorical[idx, int(target[idx])] = 1
return categorical
def chosen_method(param, comb, datasets):
if param.datatype == "disease":
return method_collect(param, comb, datasets)
elif param.datatype == "type":
return method_collect(param, comb, datasets)
def feature_add(param, datasets):
data1, data2, data3 = datasets
plabel = data1[:, -2]
tlabel = data1[:, -1]
# dataset index
data1 = data1[:, :-2]
data2 = data2[:, :-2]
data3 = data3[:, :-2]
nb_class = int(max(tlabel)) + 1
nb_people = int(max(plabel)) + 1
unit_step = cc.get_unit_step(data1)
cc.get_index_sampling(param, data1, step_index=unit_step)
def method_collect(param, comb, datasets):
if param.method == "Sn":
"""
sampling data : [train_list, trainp, trainc, test_list, testp, testc]
"""
return mc.method_sn(param, comb, datasets)
elif param.method == "base":
return mc.method_base(param, comb, datasets)
elif param.method == "LeaveOne":
return mc.method_leaveone(param, comb, datasets)
elif param.method == "SelectLeaveOne":
return mc.method_sleaveone(param, comb, datasets)
elif param.method == "Feature_Added_LeaveOne":
return mc.method_fa_leaveone(param, comb, datasets)
elif param.method == "mdpi":
return mc.method_mdpi(param, comb, datasets)
elif param.method == "dhalf":
return mc.method_dhalf(param, comb, datasets)
elif param.method == "half":
return mc.method_half(param, comb, datasets)
elif param.method == "MCCV":
return mc.method_MCCV(param, comb, datasets)
elif param.method == "7CV" or param.method == "MCCV":
return mc.method_CV(param, comb, datasets)
# sort people number
def sort_by_people(datasets):
output_list = list()
for data in datasets:
row = data.shape[0]
nb_people = int(max(data[:, -2])) + 1
output = np.array([])
for pn in range(nb_people):
temp = np.array([])
state = False
if not max(data[:, -2] == pn):
# if max(data[:, -2] == pn) == False:
continue
for r in range(row):
if int(data[r, -2]) == pn and state is False:
temp = data[r, :]
state = True
continue
elif int(data[r, -2]) == pn and state is True:
temp = np.vstack([temp, data[r, :]])
if pn == 0:
output = temp
else:
output = np.vstack([output, temp])
output_list.append(output)
return output_list
# Delete Dataset for Binary Classification
def del_subject(param, datasets, target):
fired = list()
for dataset in datasets:
drow, dcol = dataset.shape
dataset = dataset[dataset[:, -1] != param.collect["category"][target]]
fired.append(dataset)
return fired
def normalize_all_of_length(param, datasets):
print("normalize")
min_length = 0
data_column = param.collect["csv_columns_names"]["datasets"]
pressure_column = param.collect["csv_columns_names"]["pressure"]
acc_column = param.collect["csv_columns_names"]["acc"]
gyro_column = param.collect["csv_columns_names"]["gyro"]
for key, data_paths in datasets.items():
for path in data_paths:
data = pd.read_csv(filepath_or_buffer=path, names=data_column, header=None, skiprows=1, encoding='utf7')
row, col = data.to_numpy().shape
if min_length == 0:
min_length = row
elif min_length > row and row > 10000:
min_length = row
init_state = True
for key, data_paths in datasets.items():
for i, path in enumerate(data_paths):
peo_num = np.full([min_length, 1], int(path.split('/')[-1].split('_')[0]))
type_num = np.full([min_length, 1], int(key))
data = pd.read_csv(filepath_or_buffer=path, names=data_column, header=None, skiprows=1, encoding='utf7')
target = np.array(data[pressure_column].to_numpy(), dtype='float32')
pressure = cv2.resize(src=target, dsize=(target.shape[1], min_length), interpolation=cv2.INTER_CUBIC)
target = np.array(data[acc_column].to_numpy(), dtype='float32')
acc = cv2.resize(src=target, dsize=(target.shape[1], min_length), interpolation=cv2.INTER_CUBIC)
target = np.array(data[gyro_column].to_numpy(), dtype='float32')
gyro = cv2.resize(src=target, dsize=(target.shape[1], min_length), interpolation=cv2.INTER_CUBIC)
if init_state is True:
pressure_collect = pressure
acc_collect = acc
gyro_collect = gyro
peo_collect = peo_num
type_collect = type_num
init_state = False
else:
pressure_collect = np.vstack([pressure_collect, pressure])
acc_collect = np.vstack([acc_collect, acc])
gyro_collect = np.vstack([gyro_collect, gyro])
peo_collect = np.vstack([peo_collect, peo_num])
type_collect = np.vstack([type_collect, type_num])
return [np.hstack([pressure_collect, peo_collect, type_collect]),
np.hstack([acc_collect, peo_collect, type_collect]), np.hstack([gyro_collect, peo_collect, type_collect])]
|
[
"Code.method_collector.method_fa_leaveone",
"Code.method_collector.method_sleaveone",
"pandas.read_csv",
"Code.method_collector.method_mdpi",
"Code.method_collector.method_dhalf",
"Code.method_collector.method_half",
"Code.method_collector.method_CV",
"Code.create_collector.get_unit_step",
"numpy.hstack",
"Code.method_collector.method_sn",
"Code.method_collector.method_MCCV",
"numpy.array",
"Code.create_collector.get_index_sampling",
"Code.method_collector.method_leaveone",
"numpy.vstack",
"Code.method_collector.method_base",
"cv2.resize"
] |
[((1168, 1191), 'Code.create_collector.get_unit_step', 'cc.get_unit_step', (['data1'], {}), '(data1)\n', (1184, 1191), True, 'import Code.create_collector as cc\n'), ((1196, 1253), 'Code.create_collector.get_index_sampling', 'cc.get_index_sampling', (['param', 'data1'], {'step_index': 'unit_step'}), '(param, data1, step_index=unit_step)\n', (1217, 1253), True, 'import Code.create_collector as cc\n'), ((1449, 1484), 'Code.method_collector.method_sn', 'mc.method_sn', (['param', 'comb', 'datasets'], {}), '(param, comb, datasets)\n', (1461, 1484), True, 'import Code.method_collector as mc\n'), ((2527, 2539), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (2535, 2539), True, 'import numpy as np\n'), ((5852, 5908), 'numpy.hstack', 'np.hstack', (['[pressure_collect, peo_collect, type_collect]'], {}), '([pressure_collect, peo_collect, type_collect])\n', (5861, 5908), True, 'import numpy as np\n'), ((5922, 5973), 'numpy.hstack', 'np.hstack', (['[acc_collect, peo_collect, type_collect]'], {}), '([acc_collect, peo_collect, type_collect])\n', (5931, 5973), True, 'import numpy as np\n'), ((5975, 6027), 'numpy.hstack', 'np.hstack', (['[gyro_collect, peo_collect, type_collect]'], {}), '([gyro_collect, peo_collect, type_collect])\n', (5984, 6027), True, 'import numpy as np\n'), ((1533, 1570), 'Code.method_collector.method_base', 'mc.method_base', (['param', 'comb', 'datasets'], {}), '(param, comb, datasets)\n', (1547, 1570), True, 'import Code.method_collector as mc\n'), ((2595, 2607), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (2603, 2607), True, 'import numpy as np\n'), ((3991, 4092), 'pandas.read_csv', 'pd.read_csv', ([], {'filepath_or_buffer': 'path', 'names': 'data_column', 'header': 'None', 'skiprows': '(1)', 'encoding': '"""utf7"""'}), "(filepath_or_buffer=path, names=data_column, header=None,\n skiprows=1, encoding='utf7')\n", (4002, 4092), True, 'import pandas as pd\n'), ((4562, 4663), 'pandas.read_csv', 'pd.read_csv', ([], {'filepath_or_buffer': 'path', 'names': 'data_column', 'header': 'None', 'skiprows': '(1)', 'encoding': '"""utf7"""'}), "(filepath_or_buffer=path, names=data_column, header=None,\n skiprows=1, encoding='utf7')\n", (4573, 4663), True, 'import pandas as pd\n'), ((4764, 4859), 'cv2.resize', 'cv2.resize', ([], {'src': 'target', 'dsize': '(target.shape[1], min_length)', 'interpolation': 'cv2.INTER_CUBIC'}), '(src=target, dsize=(target.shape[1], min_length), interpolation=\n cv2.INTER_CUBIC)\n', (4774, 4859), False, 'import cv2\n'), ((4950, 5045), 'cv2.resize', 'cv2.resize', ([], {'src': 'target', 'dsize': '(target.shape[1], min_length)', 'interpolation': 'cv2.INTER_CUBIC'}), '(src=target, dsize=(target.shape[1], min_length), interpolation=\n cv2.INTER_CUBIC)\n', (4960, 5045), False, 'import cv2\n'), ((5138, 5233), 'cv2.resize', 'cv2.resize', ([], {'src': 'target', 'dsize': '(target.shape[1], min_length)', 'interpolation': 'cv2.INTER_CUBIC'}), '(src=target, dsize=(target.shape[1], min_length), interpolation=\n cv2.INTER_CUBIC)\n', (5148, 5233), False, 'import cv2\n'), ((1623, 1664), 'Code.method_collector.method_leaveone', 'mc.method_leaveone', (['param', 'comb', 'datasets'], {}), '(param, comb, datasets)\n', (1641, 1664), True, 'import Code.method_collector as mc\n'), ((3168, 3193), 'numpy.vstack', 'np.vstack', (['[output, temp]'], {}), '([output, temp])\n', (3177, 3193), True, 'import numpy as np\n'), ((5545, 5584), 'numpy.vstack', 'np.vstack', (['[pressure_collect, pressure]'], {}), '([pressure_collect, pressure])\n', (5554, 5584), True, 'import numpy as np\n'), ((5615, 5644), 'numpy.vstack', 'np.vstack', (['[acc_collect, acc]'], {}), '([acc_collect, acc])\n', (5624, 5644), True, 'import numpy as np\n'), ((5676, 5707), 'numpy.vstack', 'np.vstack', (['[gyro_collect, gyro]'], {}), '([gyro_collect, gyro])\n', (5685, 5707), True, 'import numpy as np\n'), ((5738, 5771), 'numpy.vstack', 'np.vstack', (['[peo_collect, peo_num]'], {}), '([peo_collect, peo_num])\n', (5747, 5771), True, 'import numpy as np\n'), ((5803, 5838), 'numpy.vstack', 'np.vstack', (['[type_collect, type_num]'], {}), '([type_collect, type_num])\n', (5812, 5838), True, 'import numpy as np\n'), ((1723, 1765), 'Code.method_collector.method_sleaveone', 'mc.method_sleaveone', (['param', 'comb', 'datasets'], {}), '(param, comb, datasets)\n', (1742, 1765), True, 'import Code.method_collector as mc\n'), ((1832, 1876), 'Code.method_collector.method_fa_leaveone', 'mc.method_fa_leaveone', (['param', 'comb', 'datasets'], {}), '(param, comb, datasets)\n', (1853, 1876), True, 'import Code.method_collector as mc\n'), ((3041, 3070), 'numpy.vstack', 'np.vstack', (['[temp, data[r, :]]'], {}), '([temp, data[r, :]])\n', (3050, 3070), True, 'import numpy as np\n'), ((1925, 1962), 'Code.method_collector.method_mdpi', 'mc.method_mdpi', (['param', 'comb', 'datasets'], {}), '(param, comb, datasets)\n', (1939, 1962), True, 'import Code.method_collector as mc\n'), ((2012, 2050), 'Code.method_collector.method_dhalf', 'mc.method_dhalf', (['param', 'comb', 'datasets'], {}), '(param, comb, datasets)\n', (2027, 2050), True, 'import Code.method_collector as mc\n'), ((2099, 2136), 'Code.method_collector.method_half', 'mc.method_half', (['param', 'comb', 'datasets'], {}), '(param, comb, datasets)\n', (2113, 2136), True, 'import Code.method_collector as mc\n'), ((2185, 2222), 'Code.method_collector.method_MCCV', 'mc.method_MCCV', (['param', 'comb', 'datasets'], {}), '(param, comb, datasets)\n', (2199, 2222), True, 'import Code.method_collector as mc\n'), ((2296, 2331), 'Code.method_collector.method_CV', 'mc.method_CV', (['param', 'comb', 'datasets'], {}), '(param, comb, datasets)\n', (2308, 2331), True, 'import Code.method_collector as mc\n')]
|
"""
Test benches for the computational efficiency of toolbox routines.
"""
import time
import unittest
import numpy as np
import pyinduct as pi
from pyinduct.tests.test_core import CalculateScalarProductMatrixTestCase
def simulation_benchmark(spat_domain, settings):
"""
This benchmark covers a typical simulation.
Args:
spat_domain (:py:class:`.Domain`): spatial domain for the simulation
settings (dict): settings to use for simulation run
Returns:
timings
"""
sys_name = 'transport system'
v = 10
temp_domain = pi.Domain(bounds=(0, 5), num=100)
init_x = pi.Function(lambda z: 0)
_a = time.clock()
nodes = pi.Domain(settings["bounds"], settings["num"])
cls = settings.get("shapefunction_class")
base = cls.cure_interval(nodes, **settings)
_b = time.clock()
func_label = 'base'
pi.register_base(func_label, base)
u = pi.SimulationInputSum([
pi.SignalGenerator('square', temp_domain.points, frequency=0.3, scale=2,
offset=4, phase_shift=1),
])
_c = time.clock()
weak_form = pi.WeakFormulation([
pi.IntegralTerm(pi.Product(
pi.FieldVariable(func_label, order=(1, 0)),
pi.TestFunction(func_label)),
spat_domain.bounds),
pi.IntegralTerm(pi.Product(
pi.FieldVariable(func_label),
pi.TestFunction(func_label, order=1)),
spat_domain.bounds, scale=-v),
pi.ScalarTerm(pi.Product(
pi.FieldVariable(func_label, location=spat_domain.bounds[-1]),
pi.TestFunction(func_label, location=spat_domain.bounds[-1])),
scale=v),
pi.ScalarTerm(pi.Product(
pi.Input(u),
pi.TestFunction(func_label, location=0)), scale=-v),
],
name=sys_name)
_d = time.clock()
initial_states = np.atleast_1d(init_x)
_e = time.clock()
can_eq = pi.parse_weak_formulation(weak_form)
_f = time.clock()
state_space_form = pi.create_state_space(can_eq)
_g = time.clock()
q0 = np.array([pi.project_on_base(initial_state, pi.get_base(can_eq.dominant_lbl))
for initial_state in initial_states]).flatten()
_h = time.clock()
sim_domain, q = pi.simulate_state_space(state_space_form, q0, temp_domain)
temporal_order = min(initial_states.size - 1, 0)
_i = time.clock()
eval_data = pi.get_sim_result(can_eq.dominant_lbl, q, sim_domain, spat_domain, temporal_order, 0,
name=can_eq.dominant_form.name)
_j = time.clock()
pi.deregister_base("base")
return _b - _a, _d - _c, _f - _e, _h - _g, _j - _i
def product_benchmark(base):
def projection_func(z):
return np.sin(2 * z) + np.exp(z)
_t = time.clock()
res = pi.calculate_scalar_product_matrix(base, base)
_t_mat = time.clock() - _t
_t = time.clock()
res = pi.project_on_base(pi.Function(projection_func), base)
_t_proj = time.clock() - _t
return _t_mat, _t_proj
class ShapeFunctionTestBench(unittest.TestCase):
"""
Compare LagrangeNthOrder with LagrangeSecondOrder (have a look at terminal
output).
When it succeeds to get positive values (at least a few) under the
"Difference" headline by the transport system example, too, you can delete:
- this test case
- LagrangeFirstOrder
- LagrangeSecondOrder
"""
def setUp(self):
self.node_cnt = 51
self.domain = pi.Domain(bounds=(0, 1), num=1000)
# first one is used as reference
if True:
self.candidates = [
dict(shapefunction_class=pi.LagrangeFirstOrder,
bounds=self.domain.bounds,
num=self.node_cnt),
dict(shapefunction_class=pi.LagrangeNthOrder,
bounds=self.domain.bounds,
num=self.node_cnt,
order=1), ]
else:
self.candidates = [
dict(shapefunction_class=pi.LagrangeSecondOrder,
bounds=self.domain.bounds,
num=self.node_cnt),
dict(shapefunction_class=pi.LagrangeNthOrder,
bounds=self.domain.bounds,
num=self.node_cnt,
order=2),
]
print("comparing {} (1) against {} (2)".format(
*[candidate["shapefunction_class"]
for candidate in self.candidates]))
@unittest.skip
def test_simulation(self):
print(">>> transport system example speed test: \n")
timings = []
n_iteration = 3
for i in range(n_iteration):
print("running round {} of {}".format(i, n_iteration))
results = []
for candidate in self.candidates:
results.append(simulation_benchmark(self.domain, candidate))
timings.append(results)
res = np.array(timings)
mean = np.mean(res, axis=0)
for idx in range(len(self.candidates)):
self.print_time(
"means of {} rounds for {} in [s]:".format(
n_iteration,
self.candidates[idx]["shapefunction_class"]),
mean[idx])
# process results
diff = np.subtract(mean[1], mean[0])
try:
frac = 100 * diff / mean[0]
self.print_time("relative difference (2-1)/1 in [%]", frac)
except FloatingPointError as e:
print("relative difference not available")
finally:
self.print_time("absolute difference (2-1) in [s]", diff)
@unittest.skip
def test_evaluation(self):
print(">>> evaluation speed test:")
timings = []
n_iteration = 3
for i in range(n_iteration):
print("running round {} of {}".format(i, n_iteration))
results = []
for candidate in self.candidates:
nodes = pi.Domain(candidate["bounds"], candidate["num"])
cls = candidate.get("shapefunction_class")
base = cls.cure_interval(nodes, **candidate)
results.append(product_benchmark(base))
timings.append(results)
# process results
res = np.array(timings)
mean = np.mean(res, axis=0)
diff = np.subtract(mean[1], mean[0])
try:
frac = 100 * diff / mean[0]
print("relative difference (2-1)/1 in [%]:\n\t {}".format(frac))
except FloatingPointError as e:
print("relative difference not available")
finally:
print("absolute difference (2-1) in [s]:\n\t {}".format(diff))
def print_time(self, headline, times):
print(headline + "\n" + "\t cure interval: {}\n"
"\t create weak form: {}\n"
"\t parse weak form: {}\n"
"\t initial weights: {}\n"
"\t process data: {}\n"
"".format(*times))
class ScalarProductMatrixTextBench(unittest.TestCase):
@unittest.skip
def test_optimization(self):
c = CalculateScalarProductMatrixTestCase()
c.setUp(dim1=100, dim2=200)
c.compare_timings()
|
[
"pyinduct.create_state_space",
"pyinduct.get_sim_result",
"pyinduct.FieldVariable",
"numpy.mean",
"numpy.sin",
"numpy.exp",
"time.clock",
"pyinduct.calculate_scalar_product_matrix",
"pyinduct.Input",
"pyinduct.simulate_state_space",
"pyinduct.get_base",
"pyinduct.parse_weak_formulation",
"pyinduct.SignalGenerator",
"pyinduct.tests.test_core.CalculateScalarProductMatrixTestCase",
"pyinduct.deregister_base",
"pyinduct.Function",
"pyinduct.Domain",
"numpy.subtract",
"pyinduct.register_base",
"numpy.array",
"numpy.atleast_1d",
"pyinduct.TestFunction"
] |
[((577, 610), 'pyinduct.Domain', 'pi.Domain', ([], {'bounds': '(0, 5)', 'num': '(100)'}), '(bounds=(0, 5), num=100)\n', (586, 610), True, 'import pyinduct as pi\n'), ((625, 649), 'pyinduct.Function', 'pi.Function', (['(lambda z: 0)'], {}), '(lambda z: 0)\n', (636, 649), True, 'import pyinduct as pi\n'), ((660, 672), 'time.clock', 'time.clock', ([], {}), '()\n', (670, 672), False, 'import time\n'), ((685, 731), 'pyinduct.Domain', 'pi.Domain', (["settings['bounds']", "settings['num']"], {}), "(settings['bounds'], settings['num'])\n", (694, 731), True, 'import pyinduct as pi\n'), ((835, 847), 'time.clock', 'time.clock', ([], {}), '()\n', (845, 847), False, 'import time\n'), ((877, 911), 'pyinduct.register_base', 'pi.register_base', (['func_label', 'base'], {}), '(func_label, base)\n', (893, 911), True, 'import pyinduct as pi\n'), ((1096, 1108), 'time.clock', 'time.clock', ([], {}), '()\n', (1106, 1108), False, 'import time\n'), ((1854, 1866), 'time.clock', 'time.clock', ([], {}), '()\n', (1864, 1866), False, 'import time\n'), ((1889, 1910), 'numpy.atleast_1d', 'np.atleast_1d', (['init_x'], {}), '(init_x)\n', (1902, 1910), True, 'import numpy as np\n'), ((1921, 1933), 'time.clock', 'time.clock', ([], {}), '()\n', (1931, 1933), False, 'import time\n'), ((1947, 1983), 'pyinduct.parse_weak_formulation', 'pi.parse_weak_formulation', (['weak_form'], {}), '(weak_form)\n', (1972, 1983), True, 'import pyinduct as pi\n'), ((1993, 2005), 'time.clock', 'time.clock', ([], {}), '()\n', (2003, 2005), False, 'import time\n'), ((2030, 2059), 'pyinduct.create_state_space', 'pi.create_state_space', (['can_eq'], {}), '(can_eq)\n', (2051, 2059), True, 'import pyinduct as pi\n'), ((2070, 2082), 'time.clock', 'time.clock', ([], {}), '()\n', (2080, 2082), False, 'import time\n'), ((2246, 2258), 'time.clock', 'time.clock', ([], {}), '()\n', (2256, 2258), False, 'import time\n'), ((2280, 2338), 'pyinduct.simulate_state_space', 'pi.simulate_state_space', (['state_space_form', 'q0', 'temp_domain'], {}), '(state_space_form, q0, temp_domain)\n', (2303, 2338), True, 'import pyinduct as pi\n'), ((2402, 2414), 'time.clock', 'time.clock', ([], {}), '()\n', (2412, 2414), False, 'import time\n'), ((2431, 2552), 'pyinduct.get_sim_result', 'pi.get_sim_result', (['can_eq.dominant_lbl', 'q', 'sim_domain', 'spat_domain', 'temporal_order', '(0)'], {'name': 'can_eq.dominant_form.name'}), '(can_eq.dominant_lbl, q, sim_domain, spat_domain,\n temporal_order, 0, name=can_eq.dominant_form.name)\n', (2448, 2552), True, 'import pyinduct as pi\n'), ((2592, 2604), 'time.clock', 'time.clock', ([], {}), '()\n', (2602, 2604), False, 'import time\n'), ((2610, 2636), 'pyinduct.deregister_base', 'pi.deregister_base', (['"""base"""'], {}), "('base')\n", (2628, 2636), True, 'import pyinduct as pi\n'), ((2803, 2815), 'time.clock', 'time.clock', ([], {}), '()\n', (2813, 2815), False, 'import time\n'), ((2826, 2872), 'pyinduct.calculate_scalar_product_matrix', 'pi.calculate_scalar_product_matrix', (['base', 'base'], {}), '(base, base)\n', (2860, 2872), True, 'import pyinduct as pi\n'), ((2914, 2926), 'time.clock', 'time.clock', ([], {}), '()\n', (2924, 2926), False, 'import time\n'), ((2886, 2898), 'time.clock', 'time.clock', ([], {}), '()\n', (2896, 2898), False, 'import time\n'), ((2956, 2984), 'pyinduct.Function', 'pi.Function', (['projection_func'], {}), '(projection_func)\n', (2967, 2984), True, 'import pyinduct as pi\n'), ((3006, 3018), 'time.clock', 'time.clock', ([], {}), '()\n', (3016, 3018), False, 'import time\n'), ((3506, 3540), 'pyinduct.Domain', 'pi.Domain', ([], {'bounds': '(0, 1)', 'num': '(1000)'}), '(bounds=(0, 1), num=1000)\n', (3515, 3540), True, 'import pyinduct as pi\n'), ((4978, 4995), 'numpy.array', 'np.array', (['timings'], {}), '(timings)\n', (4986, 4995), True, 'import numpy as np\n'), ((5011, 5031), 'numpy.mean', 'np.mean', (['res'], {'axis': '(0)'}), '(res, axis=0)\n', (5018, 5031), True, 'import numpy as np\n'), ((5337, 5366), 'numpy.subtract', 'np.subtract', (['mean[1]', 'mean[0]'], {}), '(mean[1], mean[0])\n', (5348, 5366), True, 'import numpy as np\n'), ((6319, 6336), 'numpy.array', 'np.array', (['timings'], {}), '(timings)\n', (6327, 6336), True, 'import numpy as np\n'), ((6352, 6372), 'numpy.mean', 'np.mean', (['res'], {'axis': '(0)'}), '(res, axis=0)\n', (6359, 6372), True, 'import numpy as np\n'), ((6388, 6417), 'numpy.subtract', 'np.subtract', (['mean[1]', 'mean[0]'], {}), '(mean[1], mean[0])\n', (6399, 6417), True, 'import numpy as np\n'), ((7252, 7290), 'pyinduct.tests.test_core.CalculateScalarProductMatrixTestCase', 'CalculateScalarProductMatrixTestCase', ([], {}), '()\n', (7288, 7290), False, 'from pyinduct.tests.test_core import CalculateScalarProductMatrixTestCase\n'), ((953, 1054), 'pyinduct.SignalGenerator', 'pi.SignalGenerator', (['"""square"""', 'temp_domain.points'], {'frequency': '(0.3)', 'scale': '(2)', 'offset': '(4)', 'phase_shift': '(1)'}), "('square', temp_domain.points, frequency=0.3, scale=2,\n offset=4, phase_shift=1)\n", (971, 1054), True, 'import pyinduct as pi\n'), ((2767, 2780), 'numpy.sin', 'np.sin', (['(2 * z)'], {}), '(2 * z)\n', (2773, 2780), True, 'import numpy as np\n'), ((2783, 2792), 'numpy.exp', 'np.exp', (['z'], {}), '(z)\n', (2789, 2792), True, 'import numpy as np\n'), ((6016, 6064), 'pyinduct.Domain', 'pi.Domain', (["candidate['bounds']", "candidate['num']"], {}), "(candidate['bounds'], candidate['num'])\n", (6025, 6064), True, 'import pyinduct as pi\n'), ((1194, 1236), 'pyinduct.FieldVariable', 'pi.FieldVariable', (['func_label'], {'order': '(1, 0)'}), '(func_label, order=(1, 0))\n', (1210, 1236), True, 'import pyinduct as pi\n'), ((1250, 1277), 'pyinduct.TestFunction', 'pi.TestFunction', (['func_label'], {}), '(func_label)\n', (1265, 1277), True, 'import pyinduct as pi\n'), ((1361, 1389), 'pyinduct.FieldVariable', 'pi.FieldVariable', (['func_label'], {}), '(func_label)\n', (1377, 1389), True, 'import pyinduct as pi\n'), ((1403, 1439), 'pyinduct.TestFunction', 'pi.TestFunction', (['func_label'], {'order': '(1)'}), '(func_label, order=1)\n', (1418, 1439), True, 'import pyinduct as pi\n'), ((1531, 1592), 'pyinduct.FieldVariable', 'pi.FieldVariable', (['func_label'], {'location': 'spat_domain.bounds[-1]'}), '(func_label, location=spat_domain.bounds[-1])\n', (1547, 1592), True, 'import pyinduct as pi\n'), ((1606, 1666), 'pyinduct.TestFunction', 'pi.TestFunction', (['func_label'], {'location': 'spat_domain.bounds[-1]'}), '(func_label, location=spat_domain.bounds[-1])\n', (1621, 1666), True, 'import pyinduct as pi\n'), ((1737, 1748), 'pyinduct.Input', 'pi.Input', (['u'], {}), '(u)\n', (1745, 1748), True, 'import pyinduct as pi\n'), ((1762, 1801), 'pyinduct.TestFunction', 'pi.TestFunction', (['func_label'], {'location': '(0)'}), '(func_label, location=0)\n', (1777, 1801), True, 'import pyinduct as pi\n'), ((2136, 2168), 'pyinduct.get_base', 'pi.get_base', (['can_eq.dominant_lbl'], {}), '(can_eq.dominant_lbl)\n', (2147, 2168), True, 'import pyinduct as pi\n')]
|
from geometry.TwoDimension import SE2Pose
from factors.Factors import SE2RelativeGaussianLikelihoodFactor, \
R2RelativeGaussianLikelihoodFactor, R2RangeGaussianLikelihoodFactor, \
LikelihoodFactor, SE2R2RangeGaussianLikelihoodFactor
import numpy as np
import TransportMaps.Distributions as dist
from slam.Variables import VariableType, Variable, R2Variable, \
SE2Variable
import matplotlib.pyplot as plt
from typing import Tuple, Iterable, Dict, List, ClassVar
from factors.Factors import Factor, UnaryR2GaussianPriorFactor, UnarySE2ApproximateGaussianPriorFactor
from enum import Enum
class SensorType(Enum):
relative = 0
range_only_gaussian = 1
def read_variable_and_truth_from_line(line: str) -> Tuple[Variable, np.ndarray]:
"""
Read and create a Variable object from a list of strings
The string is formatted as: [variable_type, class_name, var_name]
+ true_pose
Return the ground truth location/pose of the variable
"""
var = Variable.construct_from_text(line)
line = line.strip().split()
val = np.array([float(line[i]) for i in range(4, 4 + var.dim)])
return var, val
def write_variable_and_truth_to_line(
var: Variable, truth: np.ndarray = None) -> str:
"""
Write a variable and its ground truth location/pose to a string
"""
line = str(var)
if truth is not None:
line += " " + " ".join([str(v) for v in truth])
return line
def factor_graph_to_string(variables: Iterable[Variable],
factors: Iterable[Factor],
var_truth: Dict[Variable, np.ndarray] = None) -> str:
res = [None] * (len(variables) + len(factors))
for i, var in enumerate(variables):
truth = var_truth[var] if var in var_truth else None
res[i] = write_variable_and_truth_to_line(var, truth)
for i, factor in enumerate(factors):
res[len(variables) + i] = str(factor)
return "\n".join(res)
def read_factor_graph_from_file(file_name: str) -> Tuple[List[Variable],
Dict[Variable,
np.ndarray],
List[Factor]]:
with open(file_name) as file:
variables = []
var_poses = {}
line = file.readline()
factors = []
while line:
texts = line.strip().split()
if texts[0] == "Variable":
var, val = read_variable_and_truth_from_line(line)
variables.append(var)
var_poses[var] = val
elif texts[0] == "Factor":
factors.append(Factor.construct_from_text(line, variables))
line = file.readline()
return variables, var_poses, factors
def \
generate_measurements_for_factor_graph(
input_file_name: str,
odometry_class: ClassVar,
landmark_measurement_class: ClassVar,
landmark_measurement_range: float,
output_file_name: str = None,
max_measurements_allowed: int = 1,
**kwargs) -> Tuple[List[Variable], Dict[Variable, np.ndarray],
List[Factor]]:
def _create_r2_relative_gaussian_factor(
var1: R2Variable, var2: R2Variable, covariance: np.ndarray,
obs: np.ndarray = None
) -> R2RelativeGaussianLikelihoodFactor:
if obs is None:
obs = np.zeros(R2RelativeGaussianLikelihoodFactor.measurement_dim)
elif len(obs.shape) != 1 or obs.shape[0] \
!= R2RelativeGaussianLikelihoodFactor.measurement_dim:
raise ValueError("Dimensionality of obs is incorrect")
return R2RelativeGaussianLikelihoodFactor(var1=var1, var2=var2,
observation=obs,
covariance=covariance)
def _create_se2_relative_gaussian_factor(
var1: R2Variable, var2: R2Variable, covariance: np.ndarray,
obs: np.ndarray = None
) -> SE2RelativeGaussianLikelihoodFactor:
if obs is None:
obs = np.zeros(SE2RelativeGaussianLikelihoodFactor.measurement_dim)
elif len(obs.shape) != 1 or obs.shape[0] \
!= SE2RelativeGaussianLikelihoodFactor.measurement_dim:
raise ValueError("Dimensionality of obs is incorrect")
return SE2RelativeGaussianLikelihoodFactor(var1=var1, var2=var2,
observation=SE2Pose.by_array(obs),
covariance=covariance)
def _create_se2_r2_range_gaussian_factor(
var1: SE2Variable, var2: R2Variable, sigma: float, obs: np.ndarray = None
) -> SE2R2RangeGaussianLikelihoodFactor:
if obs is None:
obs = np.zeros(SE2R2RangeGaussianLikelihoodFactor.measurement_dim)
elif len(obs.shape) != 1 or obs.shape[0] \
!= SE2R2RangeGaussianLikelihoodFactor.measurement_dim:
raise ValueError("Dimensionality of obs is incorrect")
return SE2R2RangeGaussianLikelihoodFactor(var1=var1, var2=var2, observation=obs, sigma=sigma)
def _create_r2_range_gaussian_factor(
var1: R2Variable, var2: R2Variable, sigma: float,
obs: np.ndarray = None
) -> R2RangeGaussianLikelihoodFactor:
if obs is None:
obs = np.zeros(R2RangeGaussianLikelihoodFactor.measurement_dim)
elif len(obs.shape) != 1 or obs.shape[0] \
!= R2RangeGaussianLikelihoodFactor.measurement_dim:
raise ValueError("Dimensionality of obs is incorrect")
return R2RangeGaussianLikelihoodFactor(var1=var1, var2=var2,
observation=obs,
sigma=sigma)
def _create_se2_r2_range_gaussian_factor_with_ambiguous_association(
var1: SE2Variable, var2: R2Variable, sigma: float, obs: np.ndarray = None
) -> SE2R2RangeGaussianLikelihoodFactor:
if obs is None:
obs = np.zeros(SE2R2RangeGaussianLikelihoodFactor.measurement_dim)
elif len(obs.shape) != 1 or obs.shape[0] \
!= SE2R2RangeGaussianLikelihoodFactor.measurement_dim:
raise ValueError("Dimensionality of obs is incorrect")
return SE2R2RangeGaussianLikelihoodFactor(var1=var1, var2=var2, observation=obs, sigma=sigma)
def _create_odometry_factor(var1: Variable, var2: Variable,
obs: np.ndarray = None) -> LikelihoodFactor:
if odometry_class == R2RelativeGaussianLikelihoodFactor:
covariance = kwargs["odometry_covariance"] \
if "odometry_covariance" in kwargs else \
np.identity(2) * kwargs["odometry_sigma"] ** 2
return _create_r2_relative_gaussian_factor(var1=var1, var2=var2,
covariance=covariance,
obs=obs)
elif odometry_class == SE2RelativeGaussianLikelihoodFactor:
if "odometry_covariance" in kwargs:
covariance = kwargs["odometry_covariance"]
else:
covariance = np.identity(3) * kwargs["odometry_sigma"] ** 2
covariance[2, 2] = kwargs["orientation_sigma"] ** 2
return _create_se2_relative_gaussian_factor(var1=var1, var2=var2,
covariance=covariance,
obs=obs)
else:
raise ValueError("The odometry factor is not supported yet")
def _create_landmark_measurement_factor(
pose_var: Variable, landmark_var: Variable, obs: np.ndarray = None
) -> LikelihoodFactor:
if landmark_measurement_class == R2RelativeGaussianLikelihoodFactor:
covariance = kwargs["landmark_covariance"] \
if "landmark_covariance" in kwargs else \
np.identity(2) * kwargs["landmark_sigma"] ** 2
return _create_r2_relative_gaussian_factor(var1=pose_var,
var2=landmark_var,
covariance=covariance,
obs=obs)
elif landmark_measurement_class == R2RangeGaussianLikelihoodFactor:
return _create_r2_range_gaussian_factor(var1=pose_var,
var2=landmark_var,
sigma=kwargs[
"landmark_sigma"],
obs=obs)
elif landmark_measurement_class == SE2R2RangeGaussianLikelihoodFactor:
return _create_se2_r2_range_gaussian_factor(var1=pose_var,
var2=landmark_var,
sigma=kwargs[
"landmark_sigma"],
obs=obs)
# Read all nodes, true positions, and pre-defined factors
variables, truth, factors = read_factor_graph_from_file(input_file_name)
# Generate odometry measurements
poses = [var for var in variables if var.type == VariableType.Pose]
landmarks = [var for var in variables if var.type == VariableType.Landmark]
for i in range(len(poses) - 1):
var_from, var_to = poses[i: i + 2]
tmp_factor = _create_odometry_factor(
var1=var_from, var2=var_to)
obs = tmp_factor.sample(var1=truth[var_from].reshape(
(1, var_from.dim)), var2=truth[var_to].reshape((1, var_to.dim))
).reshape(tmp_factor.measurement_dim)
factor = _create_odometry_factor(var1=var_from, var2=var_to, obs=obs)
factors.append(factor)
# Generate landmark measurements
for var in poses:
translational_dim = var.translational_dim
pose_location = truth[var][:translational_dim]
landmark_distances = {l: np.sqrt(np.sum((pose_location -
truth[l][:translational_dim])
** 2)
) for l in landmarks}
detected_landmarks = [l for l in landmarks if landmark_distances[l] <=
landmark_measurement_range]
if not detected_landmarks:
continue
else:
num_factors = min(max_measurements_allowed, len(detected_landmarks))
landmarks_to_add = sorted(detected_landmarks,
key=lambda x: landmark_distances[x])[
:num_factors]
for landmark in landmarks_to_add:
tmp_factor = _create_landmark_measurement_factor(
pose_var=var, landmark_var=landmark)
obs = tmp_factor.sample(var1=truth[var].reshape(
(1, var.dim)),
var2=truth[landmark].reshape((1, landmark.dim))
).reshape(tmp_factor.measurement_dim)
factor = _create_landmark_measurement_factor(
pose_var=var, landmark_var=landmark, obs=obs)
factors.append(factor)
# Write into output file
text_file = open(output_file_name, "w")
text_file.write(factor_graph_to_string(variables, factors, truth))
text_file.close()
return variables, truth, factors
def separate_incremental_nodes_and_factors(variables: Iterable[Variable],
truth: Dict[Variable, np.ndarray],
factors: Iterable[Factor]
) -> Tuple[List[List[Variable]]]:
pass
class G2oToroPoseGraphReader(object):
file_type_list = ["g2o", "graph"]
node_header_list = ["VERTEX_SE2", "VERTEX2"]
factor_header_list = ["EDGE_SE2", "EDGE2"]
info_mat_format_list = [[(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)],
[(0, 0), (0, 1), (1, 1), (2, 2), (0, 2), (1, 2)]]
def __init__(self, file_path: str, correlated_R_t: bool = True,
ignore_orientation: bool = False,
synthetic_observation: bool = False, covariance: float = None):
"""
formats of pose graph files refer to
https://www.dropbox.com/s/uwwt3ni7uzdv1j7/g2oVStoro.pdf?dl=0
convert a pose graph file to our NFiSAM object
:param file_path: a string of file directory
:param correlated_R_t: true if using wrapped Gaussian on manifold;
false if using von Mises
:param ignore_orientation: when false, SE2 poses are used; when true,
R2 poses are used
:param synthetic_observation: when false, we use the data from g2o file;
when true, we generate synthetic observations
:param covariance: the sigma of likelihood factors
"""
self._correlated_R_t = correlated_R_t
self._file_path = file_path
self._file_type, self._node_head, self._factor_head, \
self._info_mat_format = self.getFileType()
self._node_list = []
self._factor_list = []
self._true_location_mapping = {}
dim = 2 if ignore_orientation else 3
with open(file_path) as fp:
line = fp.readline()
cnt = 1
while line:
line_list = line.strip().split()
if line_list[0] == self._node_head:
# reading lines for init solution to find new nodes
var = R2Variable(line_list[1]) if ignore_orientation else SE2Variable(line_list[1])
self._node_list.append(var)
self._true_location_mapping[var] = \
np.array([float(line_list[2]), float(line_list[3])]) if ignore_orientation else \
np.array([float(line_list[2]), float(line_list[3]), float(line_list[4])])
elif line_list[0] == self._factor_head:
if not synthetic_observation:
info_mat = np.zeros((dim, dim))
for i in range(6, 12):
info_mat[self._info_mat_format[i - 6]] = float(
line_list[i])
info_mat[
self._info_mat_format[i - 6][::-1]] = float(
line_list[i])
cov_mat = np.linalg.inv(info_mat)
var1 = R2Variable(line_list[1]) if ignore_orientation else SE2Variable(line_list[1])
var2 = R2Variable(line_list[2]) if ignore_orientation else SE2Variable(line_list[2])
tmp = R2RelativeGaussianLikelihoodFactor(
var1=var1,
var2=var2,
observation=np.ndarray([line_list[3], line_list[4]]
),
covariance=cov_mat[:2, :2]) \
if ignore_orientation else \
SE2RelativeGaussianLikelihoodFactor(
var1=var1,
var2=var2,
observation=SE2Pose(x=float(line_list[3]),
y=float(line_list[4]),
theta=float(line_list[5])),
covariance=cov_mat,
correlated_R_t=correlated_R_t)
self._factor_list.append(tmp)
else:
if ignore_orientation:
var1 = R2Variable(line_list[1])
var2 = R2Variable(line_list[2])
obs = self._true_location_mapping[var2] - \
self._true_location_mapping[var1]
if covariance is None:
cov = np.identity(dim)
else:
cov = covariance
obs += dist.GaussianDistribution(
mu=np.zeros(dim), sigma=cov).rvs(
1).reshape(dim)
tmp = R2RelativeGaussianLikelihoodFactor(
var1=var1, var2=var2,
observation=obs,
covariance=cov)
self._factor_list.append(tmp)
line = fp.readline()
cnt += 1
plt.plot([self._true_location_mapping[node][0] for node in
self._node_list], [self._true_location_mapping[node][1]
for node in
self._node_list], c='k')
plt.savefig(file_path+'.png', dpi=300)
plt.show()
def dataForSolver(self, prior_cov_scale=.1):
var0 = self._node_list[0]
if var0.dim == 2:
prior_factor = UnaryR2GaussianPriorFactor(var=var0,
mu=self._true_location_mapping[var0],
covariance=prior_cov_scale * np.identity(var0.dim))
elif var0.dim == 3:
prior_factor = UnarySE2ApproximateGaussianPriorFactor(var=var0,
prior_pose=SE2Pose.by_array(self._true_location_mapping[var0]),
covariance=prior_cov_scale * np.identity(var0.dim))
factors = [prior_factor] + self._factor_list
return self._node_list, factors, self._true_location_mapping
def getFileType(self):
i = 0
for type in G2oToroPoseGraphReader.file_type_list:
if self._file_path.endswith(type):
return type, G2oToroPoseGraphReader.node_header_list[i], \
G2oToroPoseGraphReader.factor_header_list[i], \
G2oToroPoseGraphReader.info_mat_format_list[i]
i += 1
raise ValueError("Can not recognize the suffix of input file")
@property
def file_type(self):
return self._file_type
@property
def node_head(self):
return self._node_head
@property
def factor_head(self):
return self._factor_head
@property
def info_mat_format(self):
return self._info_mat_format
@property
def file_path(self):
return self._file_path
@property
def node_list(self):
return self._node_list
@property
def factor_list(self):
return self._factor_list
|
[
"factors.Factors.R2RangeGaussianLikelihoodFactor",
"matplotlib.pyplot.show",
"slam.Variables.Variable.construct_from_text",
"matplotlib.pyplot.plot",
"factors.Factors.SE2R2RangeGaussianLikelihoodFactor",
"numpy.sum",
"slam.Variables.SE2Variable",
"numpy.zeros",
"numpy.identity",
"slam.Variables.R2Variable",
"geometry.TwoDimension.SE2Pose.by_array",
"numpy.linalg.inv",
"factors.Factors.R2RelativeGaussianLikelihoodFactor",
"factors.Factors.Factor.construct_from_text",
"numpy.ndarray",
"matplotlib.pyplot.savefig"
] |
[((1017, 1051), 'slam.Variables.Variable.construct_from_text', 'Variable.construct_from_text', (['line'], {}), '(line)\n', (1045, 1051), False, 'from slam.Variables import VariableType, Variable, R2Variable, SE2Variable\n'), ((3828, 3928), 'factors.Factors.R2RelativeGaussianLikelihoodFactor', 'R2RelativeGaussianLikelihoodFactor', ([], {'var1': 'var1', 'var2': 'var2', 'observation': 'obs', 'covariance': 'covariance'}), '(var1=var1, var2=var2, observation=obs,\n covariance=covariance)\n', (3862, 3928), False, 'from factors.Factors import SE2RelativeGaussianLikelihoodFactor, R2RelativeGaussianLikelihoodFactor, R2RangeGaussianLikelihoodFactor, LikelihoodFactor, SE2R2RangeGaussianLikelihoodFactor\n'), ((5256, 5346), 'factors.Factors.SE2R2RangeGaussianLikelihoodFactor', 'SE2R2RangeGaussianLikelihoodFactor', ([], {'var1': 'var1', 'var2': 'var2', 'observation': 'obs', 'sigma': 'sigma'}), '(var1=var1, var2=var2, observation=obs,\n sigma=sigma)\n', (5290, 5346), False, 'from factors.Factors import SE2RelativeGaussianLikelihoodFactor, R2RelativeGaussianLikelihoodFactor, R2RangeGaussianLikelihoodFactor, LikelihoodFactor, SE2R2RangeGaussianLikelihoodFactor\n'), ((5837, 5924), 'factors.Factors.R2RangeGaussianLikelihoodFactor', 'R2RangeGaussianLikelihoodFactor', ([], {'var1': 'var1', 'var2': 'var2', 'observation': 'obs', 'sigma': 'sigma'}), '(var1=var1, var2=var2, observation=obs,\n sigma=sigma)\n', (5868, 5924), False, 'from factors.Factors import SE2RelativeGaussianLikelihoodFactor, R2RelativeGaussianLikelihoodFactor, R2RangeGaussianLikelihoodFactor, LikelihoodFactor, SE2R2RangeGaussianLikelihoodFactor\n'), ((6535, 6625), 'factors.Factors.SE2R2RangeGaussianLikelihoodFactor', 'SE2R2RangeGaussianLikelihoodFactor', ([], {'var1': 'var1', 'var2': 'var2', 'observation': 'obs', 'sigma': 'sigma'}), '(var1=var1, var2=var2, observation=obs,\n sigma=sigma)\n', (6569, 6625), False, 'from factors.Factors import SE2RelativeGaussianLikelihoodFactor, R2RelativeGaussianLikelihoodFactor, R2RangeGaussianLikelihoodFactor, LikelihoodFactor, SE2R2RangeGaussianLikelihoodFactor\n'), ((17368, 17523), 'matplotlib.pyplot.plot', 'plt.plot', (['[self._true_location_mapping[node][0] for node in self._node_list]', '[self._true_location_mapping[node][1] for node in self._node_list]'], {'c': '"""k"""'}), "([self._true_location_mapping[node][0] for node in self._node_list],\n [self._true_location_mapping[node][1] for node in self._node_list], c='k')\n", (17376, 17523), True, 'import matplotlib.pyplot as plt\n'), ((17624, 17664), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(file_path + '.png')"], {'dpi': '(300)'}), "(file_path + '.png', dpi=300)\n", (17635, 17664), True, 'import matplotlib.pyplot as plt\n'), ((17672, 17682), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (17680, 17682), True, 'import matplotlib.pyplot as plt\n'), ((3559, 3619), 'numpy.zeros', 'np.zeros', (['R2RelativeGaussianLikelihoodFactor.measurement_dim'], {}), '(R2RelativeGaussianLikelihoodFactor.measurement_dim)\n', (3567, 3619), True, 'import numpy as np\n'), ((4276, 4337), 'numpy.zeros', 'np.zeros', (['SE2RelativeGaussianLikelihoodFactor.measurement_dim'], {}), '(SE2RelativeGaussianLikelihoodFactor.measurement_dim)\n', (4284, 4337), True, 'import numpy as np\n'), ((4987, 5047), 'numpy.zeros', 'np.zeros', (['SE2R2RangeGaussianLikelihoodFactor.measurement_dim'], {}), '(SE2R2RangeGaussianLikelihoodFactor.measurement_dim)\n', (4995, 5047), True, 'import numpy as np\n'), ((5574, 5631), 'numpy.zeros', 'np.zeros', (['R2RangeGaussianLikelihoodFactor.measurement_dim'], {}), '(R2RangeGaussianLikelihoodFactor.measurement_dim)\n', (5582, 5631), True, 'import numpy as np\n'), ((6266, 6326), 'numpy.zeros', 'np.zeros', (['SE2R2RangeGaussianLikelihoodFactor.measurement_dim'], {}), '(SE2R2RangeGaussianLikelihoodFactor.measurement_dim)\n', (6274, 6326), True, 'import numpy as np\n'), ((4668, 4689), 'geometry.TwoDimension.SE2Pose.by_array', 'SE2Pose.by_array', (['obs'], {}), '(obs)\n', (4684, 4689), False, 'from geometry.TwoDimension import SE2Pose\n'), ((10463, 10522), 'numpy.sum', 'np.sum', (['((pose_location - truth[l][:translational_dim]) ** 2)'], {}), '((pose_location - truth[l][:translational_dim]) ** 2)\n', (10469, 10522), True, 'import numpy as np\n'), ((6967, 6981), 'numpy.identity', 'np.identity', (['(2)'], {}), '(2)\n', (6978, 6981), True, 'import numpy as np\n'), ((8259, 8273), 'numpy.identity', 'np.identity', (['(2)'], {}), '(2)\n', (8270, 8273), True, 'import numpy as np\n'), ((2776, 2819), 'factors.Factors.Factor.construct_from_text', 'Factor.construct_from_text', (['line', 'variables'], {}), '(line, variables)\n', (2802, 2819), False, 'from factors.Factors import Factor, UnaryR2GaussianPriorFactor, UnarySE2ApproximateGaussianPriorFactor\n'), ((7463, 7477), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (7474, 7477), True, 'import numpy as np\n'), ((14156, 14180), 'slam.Variables.R2Variable', 'R2Variable', (['line_list[1]'], {}), '(line_list[1])\n', (14166, 14180), False, 'from slam.Variables import VariableType, Variable, R2Variable, SE2Variable\n'), ((14208, 14233), 'slam.Variables.SE2Variable', 'SE2Variable', (['line_list[1]'], {}), '(line_list[1])\n', (14219, 14233), False, 'from slam.Variables import VariableType, Variable, R2Variable, SE2Variable\n'), ((18039, 18060), 'numpy.identity', 'np.identity', (['var0.dim'], {}), '(var0.dim)\n', (18050, 18060), True, 'import numpy as np\n'), ((18246, 18297), 'geometry.TwoDimension.SE2Pose.by_array', 'SE2Pose.by_array', (['self._true_location_mapping[var0]'], {}), '(self._true_location_mapping[var0])\n', (18262, 18297), False, 'from geometry.TwoDimension import SE2Pose\n'), ((14691, 14711), 'numpy.zeros', 'np.zeros', (['(dim, dim)'], {}), '((dim, dim))\n', (14699, 14711), True, 'import numpy as np\n'), ((15083, 15106), 'numpy.linalg.inv', 'np.linalg.inv', (['info_mat'], {}), '(info_mat)\n', (15096, 15106), True, 'import numpy as np\n'), ((18395, 18416), 'numpy.identity', 'np.identity', (['var0.dim'], {}), '(var0.dim)\n', (18406, 18416), True, 'import numpy as np\n'), ((15139, 15163), 'slam.Variables.R2Variable', 'R2Variable', (['line_list[1]'], {}), '(line_list[1])\n', (15149, 15163), False, 'from slam.Variables import VariableType, Variable, R2Variable, SE2Variable\n'), ((15191, 15216), 'slam.Variables.SE2Variable', 'SE2Variable', (['line_list[1]'], {}), '(line_list[1])\n', (15202, 15216), False, 'from slam.Variables import VariableType, Variable, R2Variable, SE2Variable\n'), ((15249, 15273), 'slam.Variables.R2Variable', 'R2Variable', (['line_list[2]'], {}), '(line_list[2])\n', (15259, 15273), False, 'from slam.Variables import VariableType, Variable, R2Variable, SE2Variable\n'), ((15301, 15326), 'slam.Variables.SE2Variable', 'SE2Variable', (['line_list[2]'], {}), '(line_list[2])\n', (15312, 15326), False, 'from slam.Variables import VariableType, Variable, R2Variable, SE2Variable\n'), ((16397, 16421), 'slam.Variables.R2Variable', 'R2Variable', (['line_list[1]'], {}), '(line_list[1])\n', (16407, 16421), False, 'from slam.Variables import VariableType, Variable, R2Variable, SE2Variable\n'), ((16458, 16482), 'slam.Variables.R2Variable', 'R2Variable', (['line_list[2]'], {}), '(line_list[2])\n', (16468, 16482), False, 'from slam.Variables import VariableType, Variable, R2Variable, SE2Variable\n'), ((17044, 17137), 'factors.Factors.R2RelativeGaussianLikelihoodFactor', 'R2RelativeGaussianLikelihoodFactor', ([], {'var1': 'var1', 'var2': 'var2', 'observation': 'obs', 'covariance': 'cov'}), '(var1=var1, var2=var2, observation=obs,\n covariance=cov)\n', (17078, 17137), False, 'from factors.Factors import SE2RelativeGaussianLikelihoodFactor, R2RelativeGaussianLikelihoodFactor, R2RangeGaussianLikelihoodFactor, LikelihoodFactor, SE2R2RangeGaussianLikelihoodFactor\n'), ((16716, 16732), 'numpy.identity', 'np.identity', (['dim'], {}), '(dim)\n', (16727, 16732), True, 'import numpy as np\n'), ((15515, 15555), 'numpy.ndarray', 'np.ndarray', (['[line_list[3], line_list[4]]'], {}), '([line_list[3], line_list[4]])\n', (15525, 15555), True, 'import numpy as np\n'), ((16925, 16938), 'numpy.zeros', 'np.zeros', (['dim'], {}), '(dim)\n', (16933, 16938), True, 'import numpy as np\n')]
|
#!/usr/local/bin/python3
# SimSRE, a tool to investigate how different work structures for SRE
# might affect outcomes for an SRE team or teams.
# The basic idea is that we model an SRE team as a state machine (via
# discrete event simulation) which has work assigned, processes work,
# and different types of work have different effects.
# There are a large number of improvements to be made:
# 1. Should fully utilise the actual event-oriented approach of simpy,
# rather than the half-way house I do here
# 2. Should fully simulate multiple teams; the approach here makes
# that tricky to do. (Particularly important to do for cross-team work.)
# 3. In the future "policy" such as whether onboardings add one operational
# work or two or whatever, should be easily swappable out objects, so we
# we can test the effects of changing more easily.
# You'll need to do the equivalent of pip3 install mplot3d matplotlib
# to get this to work.
from mpl_toolkits.mplot3d import Axes3D
import collections
import numpy
import matplotlib.pyplot as plt
import pprint
import random
import simpy
# Enums, via stack overflow.
def enum(*sequential, **named):
enums = dict(zip(sequential, range(len(sequential))), **named)
reverse = dict((value, key) for key, value in enums.items())
enums['reverse_mapping'] = reverse
return type('Enum', (), enums)
# Constants
# The Treynor "hard cap" on operational work, not more than 50%.
HARD_CAP_OPEX = 0.5
# How many "clock ticks" the simulation goes for.
SIM_DURATION = 100
# How much operational growth happens, per clock tick, which is used
# as an analogue for much our existing units of operatational work should
# be multiplied by.
QUARTERLY_GROWTH = 1.15
# The different work types that an SRE team can have.
# Operational: e.g. cell moves, cluster turnups, totally operational and necessary,
# but not relevant outside of the team (and it goes up as a function of the systems
# that a team has onboarded.)
# In team project: a siloized project, basically just some work that again makes
# something within the team easier, that's it.
# Cross team project: right now, for simplifying reasons, this overloads _two_ things:
# the team itself working on cross-team work, and also receiving the benefits of someone
# else's cross-team projects.
# Onboarding: an onboarding adds some additional work to the stack, and also changes
# the base level of operational level.
SRE_WORK_TYPES = enum(OPERATIONAL=1, IN_TEAM_PROJECT=2, CROSS_TEAM_PROJECT=3, ONBOARDING=4)
# The number of work units an SRE team can process in a clock-tick.
SRE_TEAM_CAPACITY = 10
# The maximum number of onboardings an SRE team can do.
SRE_TEAM_ONBOARDINGS_LIMIT = 10
# The baseline operational work; again a simplifying constant for the multiplications re:
# onboardings.
SRE_BASELINE_OPERATIONAL = 1
# The cap on operational work available to be assigned.
SRE_TEAM_MAX_OPERATIONAL = 20
# The default distribution of work, for a team starting from scratch.
SRE_WORK_DISTRIBUTION = [SRE_WORK_TYPES.OPERATIONAL,
SRE_WORK_TYPES.OPERATIONAL,
SRE_WORK_TYPES.OPERATIONAL,
SRE_WORK_TYPES.OPERATIONAL,
SRE_WORK_TYPES.IN_TEAM_PROJECT,
SRE_WORK_TYPES.IN_TEAM_PROJECT,
SRE_WORK_TYPES.IN_TEAM_PROJECT,
SRE_WORK_TYPES.IN_TEAM_PROJECT,
SRE_WORK_TYPES.CROSS_TEAM_PROJECT,
SRE_WORK_TYPES.CROSS_TEAM_PROJECT]
class SRE_work_item(object):
"""A very thin wrapper around enums to represent work types."""
def __init__(self, work_type=None):
if work_type is None:
self.work_type = work_type
class SRE_team(object):
"""Class simulating an SRE team.
env: simpy environment object."""
def __init__(self, env):
self.env = env
# Our internal way of tracking the work assigned for us to potentially do.
# Double-ended because I want to pop from one end and push onto the other.
self.work_items = collections.deque()
# Instantiate me as a process.
self.action = env.process(self.run(env))
# A guard to prevent simultaneous onboardings.
self.onboarding_in_progress = False
# Number of total onboardings we've done.
self.onboardings = 0
# Multiplication hack.
self.operational_work = SRE_BASELINE_OPERATIONAL
# How long the sim has gone on for (I believe you can get this from
# the simpy env object, but I was on a plane and couldn't look it up)
self.ticks = 0
# The history of what assignments were made (i.e. put into the work queue).
self.assigned_history_dict = collections.defaultdict(list)
# The history of what work was performed
self.performed_history_dict = collections.defaultdict(list)
# Per-cycle tracking
self.tracking = collections.defaultdict(int)
def run(self, env):
"""Run the simulation with this SRE team object."""
print("considering work")
while True:
self.ticks += 1
# If I have no work items, assign a default distribution...
if len(self.work_items) == 0:
print("assigning work; default distribution")
self.work_items = collections.deque(SRE_WORK_DISTRIBUTION[:])
else:
# Otherwise take a census of what work was done (during
# which some useful housekeeping is tracked), and assign/process work.
self.census(self.env)
self.assign_work()
self.process_work()
# Return back to simulation.
yield env.timeout(1)
def add_work(self, work_type):
"""Add work of specifed type at the right end."""
self.work_items.append(work_type)
def assign_work(self):
"""Assign work to the SRE team.
This should be in a policy object, but it's hard-coded for now."""
# 10% chance of having a cross team project.
if random.randint(1,10) > 9:
print ("assigning cross team")
self.add_work(SRE_WORK_TYPES.CROSS_TEAM_PROJECT)
# This is a hacky representation of a cross-team project
# solving other problems... need to find a better way.
# If we have a cross team, remove two operationals and an
# in-team. Other possibilities exist.
self.clear_first_of_type(SRE_WORK_TYPES.OPERATIONAL)
self.clear_first_of_type(SRE_WORK_TYPES.OPERATIONAL)
self.clear_first_of_type(SRE_WORK_TYPES.IN_TEAM_PROJECT)
# 20% chance of an onboarding per tick, but only do it if we're
# not already doing one and are below our max.
if (random.randint(1,10) > 8 and self.onboarding_in_progress is False
and self.onboardings < SRE_TEAM_ONBOARDINGS_LIMIT):
print ("assigning onboarding")
self.onboarding_in_progress = True
self.onboardings += 1
self.add_work(SRE_WORK_TYPES.ONBOARDING)
# Unconditionally: scale up our operational work as a proportion of
# onboarded systems and "quarterly" growth.
self.add_scaled_operational()
print ("post assigned work: len", len(self.work_items))
print ("onboardings: ", self.onboardings)
def process_work(self):
"""Process the work we have in our local queue."""
# State variables to allow us to implement things like a limit on
# operational work.
op_counter = 0
capacity = 0
self.tracking.clear()
# Process what work we have up to our allowed limit, potentially
# avoiding doing some kinds.
while capacity < SRE_TEAM_CAPACITY:
# Pop work items from the left, push onto the right
try:
work_item = self.work_items.popleft()
if work_item is SRE_WORK_TYPES.IN_TEAM_PROJECT:
print ("found in team project")
self.work_items.append(work_item)
self.tracking[SRE_WORK_TYPES.IN_TEAM_PROJECT] += 1
capacity += 1
elif (work_item is SRE_WORK_TYPES.OPERATIONAL) and (op_counter < 0.5 * SRE_TEAM_CAPACITY):
print ("found operational")
op_counter += 1
capacity += 1
self.tracking[SRE_WORK_TYPES.OPERATIONAL] += 1
elif (work_item is SRE_WORK_TYPES.OPERATIONAL) and (op_counter >= 0.5 * SRE_TEAM_CAPACITY):
print ("passing on operational work because over threshold")
pass
elif work_item is SRE_WORK_TYPES.CROSS_TEAM_PROJECT:
print ("found cross team project")
# "policy": 50% chance that cross team work will give you more cross team work,
# e.g. that there's project run-over
if random.randint(1,10) > 5:
self.add_work(SRE_WORK_TYPES.CROSS_TEAM_PROJECT)
capacity += 1
self.tracking[SRE_WORK_TYPES.CROSS_TEAM_PROJECT] += 1
elif work_item is SRE_WORK_TYPES.ONBOARDING:
# "policy" -- an onboarding gives you a siloed project and
# an operational work.
self.add_work(SRE_WORK_TYPES.IN_TEAM_PROJECT)
self.add_work(SRE_WORK_TYPES.OPERATIONAL)
self.onboarding_in_progress = False
capacity += 2
self.tracking[SRE_WORK_TYPES.CROSS_TEAM_PROJECT] += 1
except IndexError:
print ("Hmm, work_items is empty.")
break
print ("post process work: assignable")
print (collections.Counter(self.work_items).most_common())
print ("post process work: performed")
print (collections.Counter(self.tracking).most_common())
def add_default_operational(self):
"""Default method I think no longer use."""
for x in range(4):
self.add_work(SRE_WORK_TYPES.OPERATIONAL)
def add_scaled_operational(self):
"""Scale the operational work in our queue by some function of growth."""
new_operational_work = int(round(self.operational_work * QUARTERLY_GROWTH) + self.onboardings)
delta = new_operational_work - self.operational_work
if self.operational_work < SRE_TEAM_MAX_OPERATIONAL:
for x in range(delta):
self.add_work(SRE_WORK_TYPES.OPERATIONAL)
def census(self, env, printing=False):
"""Display the work that's been done, and record the history of it."""
print ("census -- %s work items" % len(self.work_items))
unused_work_types = [1, 2, 3, 4]
if printing:
print ("assignable work")
print (collections.Counter(self.work_items).most_common())
if printing:
print ("performed work")
print (self.tracking)
for k, v in collections.Counter(self.work_items).most_common():
self.assigned_history_dict[k].append(v)
if k in unused_work_types:
unused_work_types.remove(k)
# We end up with a complete history of what work types were assigned,
# including ones that were 0.
for work_type in unused_work_types:
self.assigned_history_dict[work_type].append(0)
# Now do again for performed work
unused_work_types = [1, 2, 3, 4]
for k, v in collections.Counter(self.tracking).most_common():
self.performed_history_dict[k].append(v)
if k in unused_work_types:
unused_work_types.remove(k)
# We end up with a complete history of what work types were assigned,
# including ones that were 0.
for work_type in unused_work_types:
self.performed_history_dict[work_type].append(0)
def clear_first_of_type(self, supplied_type):
"""Look through work queue and remove the first of the specified type."""
try:
self.work_items.remove(supplied_type)
except ValueError:
return 0
def sum_total_work(self):
"""Sum the total work done (unused right now)."""
sums = []
for x in range(1, self.ticks):
sums.append(self.assigned_history_dict[1][x] +
self.assigned_history_dict[2][x] +
self.assigned_history_dict[3][x] +
self.assigned_history_dict[4][x])
return sums
def twod_graphing_setup(title, op, in_team, cross_team, onboarding):
# The x locations for the groups
ind = numpy.arange(sre_team.ticks)
# the width of the bars: can also be len(x) sequence
width = 0.35
# Plot colours
p1 = plt.bar(ind, op, width, color='green')
p2 = plt.bar(ind, in_team, width, bottom=op, color='blue')
p3 = plt.bar(ind, cross_team, width, bottom=in_team, color='red')
p4 = plt.bar(ind, onboarding, width, bottom=cross_team, color='yellow')
# Legend, etc
plt.ylabel('Work graphing, SRE')
plt.title(title)
plt.legend( (p1[0], p2[0], p3[0], p4[0]), ('Operational', 'In-team', 'Cross-team', 'Onboarding') )
# Display
plt.show()
env = simpy.Environment()
sre_team = SRE_team(env)
env.run(until=SIM_DURATION)
sre_team.census(env, printing=True)
twod_graphing_setup("Work available for doing",
sre_team.assigned_history_dict[SRE_WORK_TYPES.OPERATIONAL],
sre_team.assigned_history_dict[SRE_WORK_TYPES.IN_TEAM_PROJECT],
sre_team.assigned_history_dict[SRE_WORK_TYPES.CROSS_TEAM_PROJECT],
sre_team.assigned_history_dict[SRE_WORK_TYPES.ONBOARDING])
twod_graphing_setup("Work actually performed",
sre_team.performed_history_dict[SRE_WORK_TYPES.OPERATIONAL],
sre_team.performed_history_dict[SRE_WORK_TYPES.IN_TEAM_PROJECT],
sre_team.performed_history_dict[SRE_WORK_TYPES.CROSS_TEAM_PROJECT],
sre_team.performed_history_dict[SRE_WORK_TYPES.ONBOARDING])
|
[
"matplotlib.pyplot.title",
"matplotlib.pyplot.show",
"random.randint",
"matplotlib.pyplot.bar",
"matplotlib.pyplot.legend",
"collections.Counter",
"collections.defaultdict",
"numpy.arange",
"simpy.Environment",
"matplotlib.pyplot.ylabel",
"collections.deque"
] |
[((12429, 12448), 'simpy.Environment', 'simpy.Environment', ([], {}), '()\n', (12446, 12448), False, 'import simpy\n'), ((11861, 11889), 'numpy.arange', 'numpy.arange', (['sre_team.ticks'], {}), '(sre_team.ticks)\n', (11873, 11889), False, 'import numpy\n'), ((11984, 12022), 'matplotlib.pyplot.bar', 'plt.bar', (['ind', 'op', 'width'], {'color': '"""green"""'}), "(ind, op, width, color='green')\n", (11991, 12022), True, 'import matplotlib.pyplot as plt\n'), ((12030, 12083), 'matplotlib.pyplot.bar', 'plt.bar', (['ind', 'in_team', 'width'], {'bottom': 'op', 'color': '"""blue"""'}), "(ind, in_team, width, bottom=op, color='blue')\n", (12037, 12083), True, 'import matplotlib.pyplot as plt\n'), ((12091, 12151), 'matplotlib.pyplot.bar', 'plt.bar', (['ind', 'cross_team', 'width'], {'bottom': 'in_team', 'color': '"""red"""'}), "(ind, cross_team, width, bottom=in_team, color='red')\n", (12098, 12151), True, 'import matplotlib.pyplot as plt\n'), ((12159, 12225), 'matplotlib.pyplot.bar', 'plt.bar', (['ind', 'onboarding', 'width'], {'bottom': 'cross_team', 'color': '"""yellow"""'}), "(ind, onboarding, width, bottom=cross_team, color='yellow')\n", (12166, 12225), True, 'import matplotlib.pyplot as plt\n'), ((12244, 12276), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Work graphing, SRE"""'], {}), "('Work graphing, SRE')\n", (12254, 12276), True, 'import matplotlib.pyplot as plt\n'), ((12279, 12295), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (12288, 12295), True, 'import matplotlib.pyplot as plt\n'), ((12298, 12398), 'matplotlib.pyplot.legend', 'plt.legend', (['(p1[0], p2[0], p3[0], p4[0])', "('Operational', 'In-team', 'Cross-team', 'Onboarding')"], {}), "((p1[0], p2[0], p3[0], p4[0]), ('Operational', 'In-team',\n 'Cross-team', 'Onboarding'))\n", (12308, 12398), True, 'import matplotlib.pyplot as plt\n'), ((12411, 12421), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12419, 12421), True, 'import matplotlib.pyplot as plt\n'), ((4061, 4080), 'collections.deque', 'collections.deque', ([], {}), '()\n', (4078, 4080), False, 'import collections\n'), ((4681, 4710), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (4704, 4710), False, 'import collections\n'), ((4790, 4819), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (4813, 4819), False, 'import collections\n'), ((4865, 4893), 'collections.defaultdict', 'collections.defaultdict', (['int'], {}), '(int)\n', (4888, 4893), False, 'import collections\n'), ((5885, 5906), 'random.randint', 'random.randint', (['(1)', '(10)'], {}), '(1, 10)\n', (5899, 5906), False, 'import random\n'), ((5223, 5266), 'collections.deque', 'collections.deque', (['SRE_WORK_DISTRIBUTION[:]'], {}), '(SRE_WORK_DISTRIBUTION[:])\n', (5240, 5266), False, 'import collections\n'), ((6543, 6564), 'random.randint', 'random.randint', (['(1)', '(10)'], {}), '(1, 10)\n', (6557, 6564), False, 'import random\n'), ((10341, 10377), 'collections.Counter', 'collections.Counter', (['self.work_items'], {}), '(self.work_items)\n', (10360, 10377), False, 'import collections\n'), ((10801, 10835), 'collections.Counter', 'collections.Counter', (['self.tracking'], {}), '(self.tracking)\n', (10820, 10835), False, 'import collections\n'), ((9200, 9236), 'collections.Counter', 'collections.Counter', (['self.work_items'], {}), '(self.work_items)\n', (9219, 9236), False, 'import collections\n'), ((9306, 9340), 'collections.Counter', 'collections.Counter', (['self.tracking'], {}), '(self.tracking)\n', (9325, 9340), False, 'import collections\n'), ((10197, 10233), 'collections.Counter', 'collections.Counter', (['self.work_items'], {}), '(self.work_items)\n', (10216, 10233), False, 'import collections\n'), ((8490, 8511), 'random.randint', 'random.randint', (['(1)', '(10)'], {}), '(1, 10)\n', (8504, 8511), False, 'import random\n')]
|
from jesse.helpers import get_candle_source, slice_candles, np_shift, same_length
import numpy as np
from numba import njit,jit
import talib
from typing import Union
from jesse.helpers import get_config
from collections import namedtuple
import tulipy as ti
import math
"""
https://www.tradingview.com/script/umIHbltg/#chart-view-comment-form
"""
#jesse backtest '2021-01-03' '2021-03-02'
def reverseema(candles: np.ndarray,source_type: str = "close", sequential: bool = False) -> Union[float, np.ndarray]:
candles = slice_candles(candles, sequential)
source = get_candle_source(candles, source_type=source_type)
rema = fast_reverseema(source,candles)
if sequential:
return rema
else:
return rema[-1]
@njit
def fast_reverseema(source,candles):
aa = 0.1
cc = 1 - aa
ma = np.full_like(source,0)
r1 = np.full_like(source,0)
r2 = np.full_like(source,0)
r3 = np.full_like(source,0)
r4 = np.full_like(source,0)
r5 = np.full_like(source,0)
r6 = np.full_like(source,0)
r7 = np.full_like(source,0)
r8 = np.full_like(source,0)
wa = np.full_like(source,0)
for i in range(source.shape[0]):
ma[i] = aa * source[i] + cc*ma[i-1]
r1[i] = cc * ma[i] + ma[i-1]
r2[i] = np.power(cc,2)*r1[i] + r1[i-1]
r3[i] = np.power(cc,4)*r2[i] + r2[i-1]
r4[i] = np.power(cc,8)*r3[i] + r3[i-1]
r5[i] = np.power(cc,16)*r4[i] + r4[i-1]
r6[i] = np.power(cc,32)*r5[i] + r5[i-1]
r7[i] = np.power(cc,64)*r6[i] + r6[i-1]
r8[i] = np.power(cc,128)*r7[i] + r7[i-1]
wa[i] = ma[i] - aa * r8[i]
return wa
|
[
"jesse.helpers.slice_candles",
"numpy.power",
"numpy.full_like",
"jesse.helpers.get_candle_source"
] |
[((526, 560), 'jesse.helpers.slice_candles', 'slice_candles', (['candles', 'sequential'], {}), '(candles, sequential)\n', (539, 560), False, 'from jesse.helpers import get_candle_source, slice_candles, np_shift, same_length\n'), ((575, 626), 'jesse.helpers.get_candle_source', 'get_candle_source', (['candles'], {'source_type': 'source_type'}), '(candles, source_type=source_type)\n', (592, 626), False, 'from jesse.helpers import get_candle_source, slice_candles, np_shift, same_length\n'), ((831, 854), 'numpy.full_like', 'np.full_like', (['source', '(0)'], {}), '(source, 0)\n', (843, 854), True, 'import numpy as np\n'), ((863, 886), 'numpy.full_like', 'np.full_like', (['source', '(0)'], {}), '(source, 0)\n', (875, 886), True, 'import numpy as np\n'), ((895, 918), 'numpy.full_like', 'np.full_like', (['source', '(0)'], {}), '(source, 0)\n', (907, 918), True, 'import numpy as np\n'), ((927, 950), 'numpy.full_like', 'np.full_like', (['source', '(0)'], {}), '(source, 0)\n', (939, 950), True, 'import numpy as np\n'), ((959, 982), 'numpy.full_like', 'np.full_like', (['source', '(0)'], {}), '(source, 0)\n', (971, 982), True, 'import numpy as np\n'), ((991, 1014), 'numpy.full_like', 'np.full_like', (['source', '(0)'], {}), '(source, 0)\n', (1003, 1014), True, 'import numpy as np\n'), ((1023, 1046), 'numpy.full_like', 'np.full_like', (['source', '(0)'], {}), '(source, 0)\n', (1035, 1046), True, 'import numpy as np\n'), ((1055, 1078), 'numpy.full_like', 'np.full_like', (['source', '(0)'], {}), '(source, 0)\n', (1067, 1078), True, 'import numpy as np\n'), ((1087, 1110), 'numpy.full_like', 'np.full_like', (['source', '(0)'], {}), '(source, 0)\n', (1099, 1110), True, 'import numpy as np\n'), ((1119, 1142), 'numpy.full_like', 'np.full_like', (['source', '(0)'], {}), '(source, 0)\n', (1131, 1142), True, 'import numpy as np\n'), ((1276, 1291), 'numpy.power', 'np.power', (['cc', '(2)'], {}), '(cc, 2)\n', (1284, 1291), True, 'import numpy as np\n'), ((1324, 1339), 'numpy.power', 'np.power', (['cc', '(4)'], {}), '(cc, 4)\n', (1332, 1339), True, 'import numpy as np\n'), ((1371, 1386), 'numpy.power', 'np.power', (['cc', '(8)'], {}), '(cc, 8)\n', (1379, 1386), True, 'import numpy as np\n'), ((1419, 1435), 'numpy.power', 'np.power', (['cc', '(16)'], {}), '(cc, 16)\n', (1427, 1435), True, 'import numpy as np\n'), ((1467, 1483), 'numpy.power', 'np.power', (['cc', '(32)'], {}), '(cc, 32)\n', (1475, 1483), True, 'import numpy as np\n'), ((1516, 1532), 'numpy.power', 'np.power', (['cc', '(64)'], {}), '(cc, 64)\n', (1524, 1532), True, 'import numpy as np\n'), ((1564, 1581), 'numpy.power', 'np.power', (['cc', '(128)'], {}), '(cc, 128)\n', (1572, 1581), True, 'import numpy as np\n')]
|
#! -*- coding: utf-8 -*-
import json
import os
import numpy as np
import tensorflow as tf
import random as rn
np.random.seed(42)
rn.seed(12345)
tf.set_random_seed(1234)
os.environ['PYTHONHASHSEED'] = '0'
from keras_bert import load_trained_model_from_checkpoint, Tokenizer
import codecs
from keras.layers import *
from keras.models import Model
import keras.backend as K
import time
from keras.optimizers import Adam
from keras.callbacks import Callback
from tqdm import tqdm
import jieba
import editdistance
import re
import numpy as np
import sys
from dbengine import DBEngine
from calc_acc import *
from check_input_feature import *
from post_treat import *
# from mark_acc_ensure import *
from new_mark_acc_ensure import *
from question_prepro import *
from exceptdata import *
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='', help='execute mode, eg: train/test/evaluate')
args = parser.parse_args()
if args.mode not in set(['train', 'test', 'evaluate']):
raise ValueError('Please input correct execute mode')
mode = args.mode
maxlen = 160
num_agg = 7 # agg_sql_dict = {0:"", 1:"AVG", 2:"MAX", 3:"MIN", 4:"COUNT", 5:"SUM", 6:"不被select"}
num_op = 5 # {0:">", 1:"<", 2:"==", 3:"!=", 4:"不被select"}
num_cond_conn_op = 3 # conn_sql_dict = {0:"", 1:"and", 2:"or"}
csel_num = 20 # col cnt 最大为20
# learning_rate = 5e-5
learning_rate = 1e-5 # from 15 to 8
min_learning_rate = 1e-5
PY2 = sys.version_info[0] == 2
PY3 = sys.version_info[0] == 3
toy = False
toy_data_cnt = 200
except_cnt = 0
config_path = os.path.join(model_bert_wwm_path, 'chinese-bert_chinese_wwm_L-12_H-768_A-12/bert_config.json')
checkpoint_path = os.path.join(model_bert_wwm_path, 'chinese-bert_chinese_wwm_L-12_H-768_A-12/bert_model.ckpt')
dict_path = os.path.join(model_bert_wwm_path, 'chinese-bert_chinese_wwm_L-12_H-768_A-12/vocab.txt')
weight_save_path = os.path.join(model_path, 'weights/nl2sql_finetune_add_div2.weights')
# weight_save_path = os.path.join(model_path, 'weights/nl2sql_finetune_add_div_goodest_0.804.weights')
def read_data(data_file, table_file):
data, tables = [], {}
with open(data_file) as f:
for l in f:
data.append(json.loads(l))
with open(table_file) as f:
for l in f:
l = json.loads(l)
d = {}
d['headers'] = l['header']
d['header2id'] = {j: i for i, j in enumerate(d['headers'])}
d['content'] = {}
d['keywords'] = {}
d['all_values'] = set()
d['types'] = l['types']
d['title'] = l['title']
rows = np.array(l['rows'])
for i, h in enumerate(d['headers']):
d['content'][h] = set(rows[:, i])
if d['types'][i] == 'text':
d['keywords'][i] = ''
# get_key_words(d['content'][h])
else:
d['keywords'][i] = ''
d['all_values'].update(d['content'][h])
# print(d['keywords'])
d['all_values'] = set([i for i in d['all_values'] if hasattr(i, '__len__')])
tables[l['id']] = d
if toy:
data = data[:toy_data_cnt]
return data, tables
if mode != 'test':
train_data, train_tables = read_data(
os.path.join(train_data_path, 'train.json'),
os.path.join(train_data_path, 'train.tables.json')
) # 41522 5013
valid_data, valid_tables = read_data(
os.path.join(valid_data_path, 'val.json'),
os.path.join(valid_data_path, 'val.tables.json')
) # 4396 1197
test_data, test_tables = read_data(
os.path.join(test_file_path, 'final_test.json'),
os.path.join(test_file_path, 'final_test.tables.json')
)
token_dict = {}
with codecs.open(dict_path, 'r', 'utf8') as reader:
for line in reader:
token = line.strip()
token_dict[token] = len(token_dict)
class OurTokenizer(Tokenizer):
def _tokenize(self, text):
R = []
for c in text:
if c in self._token_dict:
R.append(c)
elif self._is_space(c):
R.append('[unused1]')
else:
R.append('[UNK]')
return R
tokenizer = OurTokenizer(token_dict)
def seq_padding(X, padding=0, maxlen=None):
if maxlen is None:
L = [len(x) for x in X]
ML = max(L)
else:
ML = maxlen
return np.array([
np.concatenate([x[:ML], [padding] * (ML - len(x))]) if len(x[:ML]) < ML else x for x in X
])
class data_generator:
def __init__(self, data, tables, batch_size=32): # 32 to 256 for cpu , 32 for gpu
self.data = data
self.tables = tables
self.batch_size = batch_size
self.steps = len(self.data) // self.batch_size
if len(self.data) % self.batch_size != 0:
self.steps += 1
def __len__(self):
return self.steps
def __iter__(self):
while True:
if PY2:
idxs = range(len(self.data))
elif PY3:
idxs = [x for x in range(len(self.data))]
np.random.shuffle(idxs)
X1, X2, XM, H, HM, SEL, CONN, CSEL0, COP = [], [], [], [], [], [], [], [], []
CSEL1, CSEL2 = [], []
CDIV = []
for i in idxs:
d = self.data[i]
ori_q = d['question']
d['question'] = trans_question_acc(d['question'])
t = self.tables[d['table_id']]['headers']
dtypes = self.tables[d['table_id']]['types']
x1, x2 = tokenizer.encode(d['question'])
'''
这里的xm的左侧和右侧的mask值为0, len(d['question']) 这个长度被标记为1,
mask其实就是像一个盖子一样,把有用的东西盖起来,或者说标记出来对后续有用的东西。
为什么xm的左侧这个[cls]被标记为0了?因为这个位置铁打不动,长度固定就是1
同理xm右侧这个[seq]被标记为0了,因为这个[sep]没啥用这里.
'''
xm = [0] + [1] * len(d['question']) + [0]
h = []
for j in t:
_x1, _x2 = tokenizer.encode(j)
h.append(len(x1))
x1.extend(_x1)
x2.extend(_x2)
'''
batch中的每一个hm其实就是告诉你,前len(h)这个长度是有效的,后面都是为了凑 header_max_cnt 而pandding出来的0.
padding出来的东西对loss无任何意义.
'''
hm = [1] * len(h)
sel = []
for j in range(len(h)):
if j in d['sql']['sel']:
j = d['sql']['sel'].index(j)
sel.append(d['sql']['agg'][j])
else:
sel.append(num_agg - 1)
conn = [d['sql']['cond_conn_op']]
csel0 = np.zeros(len(d['question']) + 2, dtype='int32') # 这里的0既表示padding,表示当前位置不对应任何表中的列
csel1 = np.zeros(len(d['question']) + 2, dtype='int32')
csel2 = np.zeros(len(d['question']) + 2, dtype='int32')
cop = np.zeros(len(d['question']) + 2, dtype='int32') + num_op - 1
cdiv = np.zeros(len(d['question']) + 2, dtype='int32')
is_wrong_q = False
for cond in d['sql']['conds']:
# 重新在这里面弄
if d['question'] in correct_q_set:
# print(d['question'])
if dtypes[cond[0]] == 'real':
_, start_pos, end_pos = check_num_exactly_match(cond[2], d['question'])
# print(start_pos, end_pos, d['question'][start_pos: end_pos + 1])
csel0[start_pos + 1: end_pos + 1 + 1] = cond[0] + 1
cop[start_pos + 1: end_pos + 1 + 1] = cond[1]
else:
start_pos = d['question'].index(cond[2]) if cond[2] in d['question'] else \
d['question'].index(most_similar_2(cond[2], d['question']))
# print(start_pos, start_pos + len(cond[2]), d['question'][start_pos: start_pos + len(cond[2])])
csel0[start_pos + 1: start_pos + 1 + len(cond[2])] = cond[0] + 1
cop[start_pos + 1: start_pos + 1 + len(cond[2])] = cond[1]
elif d['question'] in no_num_similar_set:
# print('cond val is{}'.format(cond[2]))
# print('cond val is {}, q is {} and sim is {}'.format(cond[2], most_similar_2(cond[2], d['question'])))
sim = cond[2] if cond[2] in d['question'] else most_similar_2(cond[2], d['question'])
start_pos = d['question'].index(sim)
# print(d['question'])
# print(start_pos, start_pos + len(sim), d['question'][start_pos: start_pos + len(sim)])
csel0[start_pos + 1: start_pos + len(sim) + 1] = cond[0] + 1
cop[start_pos + 1: start_pos + len(sim) + 1] = cond[1]
elif d['question'] in q_one_vs_more_col_set:
# print(d['question'])
if check_num_exactly_match(cond[2], d['question'])[0] == 1:
_, start_pos, end_pos = check_num_exactly_match(cond[2], d['question'])
elif check_num_exactly_match_zero_case(cond[2], d['question'])[0] == 1:
_, start_pos, end_pos = check_num_exactly_match_zero_case(cond[2], d['question'])
else:
raise ValueError('value error')
if max(csel0[start_pos + 1: end_pos + 1 + 1]) != 0:
if max(csel1[start_pos + 1: end_pos + 1 + 1]) != 0:
csel2[start_pos + 1: end_pos + 1 + 1] = cond[0] + 1
else:
csel1[start_pos + 1: end_pos + 1 + 1] = cond[0] + 1
else:
csel0[start_pos + 1: end_pos + 1 + 1] = cond[0] + 1
cop[start_pos + 1: end_pos + 1 + 1] = cond[1]
# print(start_pos, end_pos, d['question'][start_pos: end_pos + 1])
elif d['question'] in q_need_exactly_match_set:
_, start_pos, end_pos = check_num_exactly_match(cond[2], d['question'])
# print(d['question'])
# print(start_pos, end_pos, d['question'][start_pos: end_pos + 1])
csel0[start_pos + 1: end_pos + 1 + 1] = cond[0] + 1
cop[start_pos + 1: end_pos + 1 + 1] = cond[1]
elif d['question'] in q_need_exactly_match_more_strinct_set:
_, start_pos, end_pos = check_num_exactly_match_zero_case(cond[2], d['question'])
# print(d['question'])
# print(start_pos, end_pos, d['question'][start_pos: end_pos + 1])
csel0[start_pos + 1: end_pos + 1 + 1] = cond[0] + 1
cop[start_pos + 1: end_pos + 1 + 1] = cond[1]
elif d['question'] in q_text_contain_similar_set:
if dtypes[cond[0]] == 'real': # 如果是数字的话,通过另外的方法判断
# print(d['question'])
find_cnt, start_pos, end_pos = check_num_exactly_match_zero_case(cond[2], d['question'])
if find_cnt == 1:
# print(start_pos, end_pos, d['question'][start_pos: end_pos + 1])
csel0[start_pos + 1: end_pos + 1 + 1] = cond[0] + 1
cop[start_pos + 1: end_pos + 1 + 1] = cond[1]
elif find_cnt == 0:
val = most_similar_2(cond[2], d['question'])
start_pos = d['question'].index(val)
# print(start_pos, start_pos + len(sim), d['question'][start_pos: start_pos + len(sim)])
csel0[start_pos + 1: start_pos + len(val) + 1] = cond[0] + 1
cop[start_pos + 1: start_pos + len(val) + 1] = cond[1]
else: # 文本
val = most_similar_2(cond[2], d['question'])
start_pos = d['question'].index(val)
# print(start_pos, start_pos + len(sim), d['question'][start_pos: start_pos + len(sim)])
csel0[start_pos + 1: start_pos + len(val) + 1] = cond[0] + 1
cop[start_pos + 1: start_pos + len(val) + 1] = cond[1]
elif d['question'] in q_need_col_similar_set:
header_name = t[cond[0]]
start_pos, end_pos, match_val = alap_an_cn_mark(d['question'], header_name, cond[2])
csel0[start_pos + 1: end_pos + 1] = cond[0] + 1
cop[start_pos + 1: end_pos + 1] = cond[1]
# print(d['question'])
# print(start_pos, end_pos, d['question'][start_pos: end_pos])
else:
is_wrong_q = True
ab = True
if ab:
for idx in range(1, len(csel0) - 1):
if csel0[idx] != csel0[idx - 1] and csel0[idx - 1] != 0 and csel0[idx] != 0:
# print(d['question'])
cdiv[idx] = 1
# print(cdiv)
if len(x1) > maxlen or is_wrong_q :
continue
X1.append(x1) # bert的输入
X2.append(x2) # bert的输入
XM.append(xm) # 输入序列的mask
H.append(h) # 列名所在位置
HM.append(hm) # 列名mask
SEL.append(sel) # 被select的列
CONN.append(conn) # 连接类型
CSEL0.append(csel0) # 条件中的列
CSEL1.append(csel1) # 条件中的列
CSEL2.append(csel2) # 条件中的列
COP.append(cop) # 条件中的运算符(同时也是值的标记)
CDIV.append(cdiv) #
if len(X1) == self.batch_size:
X1 = seq_padding(X1)
X2 = seq_padding(X2)
XM = seq_padding(XM, maxlen=X1.shape[1])
H = seq_padding(H)
HM = seq_padding(HM)
SEL = seq_padding(SEL)
CONN = seq_padding(CONN)
CSEL0 = seq_padding(CSEL0, maxlen=X1.shape[1])
CSEL1 = seq_padding(CSEL1, maxlen=X1.shape[1])
CSEL2 = seq_padding(CSEL2, maxlen=X1.shape[1])
CDIV = seq_padding(CDIV, maxlen=X1.shape[1])
COP = seq_padding(COP, maxlen=X1.shape[1])
yield [X1, X2, XM, H, HM, SEL, CONN, CSEL0, CSEL1, CSEL2, COP, CDIV], None
X1, X2, XM, H, HM, SEL, CONN, CSEL0, COP = [], [], [], [], [], [], [], [], []
CSEL1, CSEL2 = [], []
CDIV = []
else:
pass
def seq_gather(x):
"""seq是[None, seq_len, s_size]的格式,
idxs是[None, n]的格式,在seq的第i个序列中选出第idxs[i]个向量,
最终输出[None, n, s_size]的向量。
seq_gather[x, h]
"""
seq, idxs = x
idxs = K.cast(idxs, 'int32') # must int 32
return K.tf.batch_gather(seq, idxs)
train_D = data_generator(train_data, train_tables) #get Train data
#valid_D = data_generator(valid_data, valid_tables) #get Train data
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path, seq_len=None)
for l in bert_model.layers:
l.trainable = True
x1_in = Input(shape=(None,), dtype='int32')
x2_in = Input(shape=(None,))
xm_in = Input(shape=(None,))
h_in = Input(shape=(None,), dtype='int32')
hm_in = Input(shape=(None,))
sel_in = Input(shape=(None,), dtype='int32')
conn_in = Input(shape=(1,), dtype='int32')
csel0_in = Input(shape=(None,), dtype='int32')
csel1_in = Input(shape=(None,), dtype='int32')
csel2_in = Input(shape=(None,), dtype='int32')
cop_in = Input(shape=(None,), dtype='int32')
cdiv_in = Input(shape=(None,), dtype='int32')
x1, x2, xm, h, hm, sel, conn, csel0, csel1, csel2, cop, cdiv = (
x1_in, x2_in, xm_in, h_in, hm_in, sel_in, conn_in, csel0_in, csel1_in, csel2_in, cop_in, cdiv_in
)
hm = Lambda(lambda x: K.expand_dims(x, 1))(hm) # header的mask.shape=(None, 1, h_len)
x = bert_model([x1_in, x2_in]) # shape x [?, ?, 768] [batch_size, n_step(n_input_step), hidden_size]
x4conn = Lambda(lambda x: x[:, 0])(x) #x[:, 0]是获取每个训练样本的输入的第0个step,也就是用来判断条件之间关联运算符 [None, hidden_size]
pconn = Dense(num_cond_conn_op, activation='softmax')(x4conn) # [None, num_cond_conn_op]
# h记录各个header[cls]所在的位置, 这个seq_gather的作用就是把input_x中的header[cls]搞出来。
x4h = Lambda(seq_gather)([x, h]) # header [cls] is selected [batch_size, header_step, hidden_size]
psel = Dense(num_agg, activation='softmax')(x4h) # [bs, header_step, num_agg]
pcop = Dense(num_op, activation='softmax')(x) # [bs, q_step, num_op]
x_ori = x
x = Lambda(lambda x: K.expand_dims(x, 2))(x) # shape [batch_size, n_step, 1, hidden_size]
x4h_ori = x4h
x4h = Lambda(lambda x: K.expand_dims(x, 1))(x4h) # header cls selected in x4h [None, 1, header_n_step, hidden_size ]
pcsel_1 = Dense(1)(x) # [None, q_n_step, 1 ,1]
pcsel_2 = Dense(1)(x4h) # [None, 1, h_n_step, 1 ]
pcsel_att = Lambda(lambda x: x[0] * x[1])([pcsel_1, pcsel_2]) # [None, q_n_step, h_n_step,1]
pcsel_att = Lambda(lambda x: x[..., 0])(pcsel_att) # [None,q_n_step,h_n_step]
#x4h_ori [None, h_n_step,hidden_size】
pcsel_h_part = Lambda(lambda x: K.batch_dot(x[0], x[1]))([pcsel_att, x4h_ori]) # [None, q_n_step, hidden_siz]
#pcsel = Lambda(lambda x: K.batch_dot(x[0], x[1]))([att_val, x4h_ori]) # [None, q_n_step, hidden_size]
#pcsel = Lambda(lambda x: x[0] + x[1])([x_ori, pcsel_h_part]) # [None, q_n_step, hidden]
pcsel = concatenate([x_ori, pcsel_h_part], axis=-1)
# pcsel = Dropout(0.2)(pcsel)
# 支持 cdiv
# new add
pcsel = Dense(1200, activation='relu')(pcsel) #[None, q_n_step, 1200] 看看这个对于缓解 loss 作用大不大 梯度爆炸
pcdiv = Dense(2, activation='softmax')(pcsel)
# # ## add Drop out layer
# # pcsel = Dense(1200, activation='relu')(pcsel) #[None, q_n_step, 1200]
# pcsel = Lambda(lambda x: x, output_shape=lambda s:s)(pcsel)
# pcsel = Reshape((-1, 3, 400))(pcsel)
# #pcsel = Lambda(lambda x: K.reshape(x, (-1, 3, 400)))(pcsel) # header的mask.shape=(None, 1, h_len)
# pcsel = concatenate([x_ori, pcsel_h_part], axis=-1)
pcsel0 = Dense(csel_num, activation='softmax')(pcsel) # [bs, q_step, 3, num_op]
pcsel1 = Dense(csel_num, activation='softmax')(pcsel) # [bs, q_step, 3, num_op]
pcsel2 = Dense(csel_num, activation='softmax')(pcsel) # [bs, q_step, 3, num_op]
# Model的参数 def __init__(self, inputs, outputs, name=None):
model = Model(
[x1_in, x2_in, h_in, hm_in], # inputs
[psel, pconn, pcop, pcsel0, pcsel1, pcsel2, pcdiv] # outputs
)
# shuai 这里看看是不是要加载一个已经训练出来的模型??
train_model = Model(
[x1_in, x2_in, xm_in, h_in, hm_in, sel_in, conn_in, csel0_in, csel1_in, csel2_in, cop_in, cdiv_in],
[psel, pconn, pcop, pcsel0, pcsel1, pcsel2, pcdiv]
)
'''
mask存在的意义是什么? 为什么被mask的位置要用1,而padding要用0???
(1) mask的位置说明这个位置的数据是有效的,我们后续会专门把为1的部分拿出来,比如计算损失等
(2) 在训练过程中,数据会以batch的形式进行组织,例如batch_size=16, 在这16组训练数据中,以question长度为例,这16组数据的question长度是不同的,那么一般会这样做:
获取这16个question中的长度最大值,然后question中的有效部分会通过mask 1值来记录,而question中未达到max_len的部分会通过padding 0标记.
所以其实这个mask并没有很神奇,只不过是为了标记一下哪些位置是"有用的",而且后续计算损失等会"保留"的.
'''
xm = xm # question的mask.shape=(None, x_len)
hm = hm[:, 0] # header的mask.shape=(None, h_len) # 这个操作就是去掉1,torch中有squeeze压紧方法做这个事情
# condition mask, [1, 0, 1, 1,1 ] 如果元素为1,说明当前位置的op不是空操作
cm = K.cast(K.not_equal(cop, num_op - 1), 'float32') # conds的mask.shape=(None, x_len)
# 注意hm & xm 用在啥地方了
'''
例子1:
以psel_loss = K.sum(psel_loss * hm) / K.sum(hm) 为例介绍这里的hm的用处.
首先 hm作为header mask, 里面存储的都是header[cls]的位置
hm的shape为[bs, header_cnt], header_cnt这个维度里面的值有一些padding的0
psel_loss 的shape为 [bs, header_cnt] ?
psel_loss * hm 的shape为 [bs, header_cnt] 相乘之后即只关注有效header的损失,那些padding出来的不要加入损失计算
k.sum(psel_loss * hm) keras.backend中的sum和普通的sum不同,他会将矩阵中的所有值相加,最后结果为一个值
几乎所有参数都是带有batch_size维度的,因为计算损失是在整个batch上计算的
'''
print(pcsel.get_shape()[2])
print(type(pcsel))
#pcsel0 = pcsel[32, int(pcsel.get_shape()[2]), 1, 20]
#print(pcsel0.get_shape())
psel_loss = K.sparse_categorical_crossentropy(sel_in, psel)
psel_loss = K.sum(psel_loss * hm) / K.sum(hm) # case: test10 padding位置的header不纳入损失计算
pconn_loss = K.sparse_categorical_crossentropy(conn_in, pconn)
pconn_loss = K.mean(pconn_loss) # 取均值,是为了算在整个batch中的损失
pcop_loss = K.sparse_categorical_crossentropy(cop_in, pcop)
pcop_loss = K.sum(pcop_loss * xm) / K.sum(xm)
pcsel0_loss = K.sparse_categorical_crossentropy(csel0_in, pcsel0)
pcsel0_loss = K.sum(pcsel0_loss * xm * cm) / K.sum(xm * cm)
pcsel1_loss = K.sparse_categorical_crossentropy(csel1_in, pcsel1)
pcsel1_loss = K.sum(pcsel1_loss * xm * cm) / K.sum(xm * cm)
pcsel2_loss = K.sparse_categorical_crossentropy(csel2_in, pcsel2)
pcsel2_loss = K.sum(pcsel2_loss * xm * cm) / K.sum(xm * cm)
pcdiv_loss = K.sparse_categorical_crossentropy(cdiv_in, pcdiv)
pcdiv_loss = K.sum(pcdiv_loss * xm * cm) / K.sum(xm * cm)
loss = psel_loss + pconn_loss + pcop_loss + pcsel0_loss + pcsel1_loss + pcsel2_loss + pcdiv_loss
train_model.add_loss(loss)
train_model.compile(optimizer=Adam(learning_rate))
# train_model.summary()
model.load_weights(weight_save_path) #
except_tr_cnt = 0
log_file = open('./asser_log.log', 'w')
assert_wrong_log_file = open('./asser_wrong_log.log', 'w')
def nl2sql(question, table):
"""输入question和headers,转SQL
"""
try:
question = trans_question_acc(question)
question = trans_question_short_year(question)
# shuai
question = question.replace('负数', '小于0')
question = question.replace('负值', '小于0')
question = question.replace('为负', '小于0')
question = question.replace('正数', '大于0')
question = question.replace('正值', '大于0')
question = question.replace('为正', '大于0')
question = question.replace('没什么要求', '不限')
question = question.replace('没要求', '不限')
except:
pass
#raise ValueError
x1, x2 = tokenizer.encode(question)
if question in set([
'总收入高于500万或者座位数大于5000个的场馆有多少个啊',
'有多少个场馆的座位超过了5000个或者收入超过了500万'
]):
print(question)
print(question)
h = []
for i in table['headers']:
_x1, _x2 = tokenizer.encode(i)
# h这里记录了每个header的[cls]所在位置
h.append(len(x1))
x1.extend(_x1)
x2.extend(_x2)
hm = [1] * len(h) # hm为header在[cls]位置的mask, hm的长度,正好是header的个数,当然header的个数和[cls]的个数是一致的
psel, pconn, pcop, pcsel0, pcsel1, pcsel2, pcdiv = model.predict([
np.array([x1]),
np.array([x2]),
np.array([h]),
np.array([hm])
])
if max(pcsel2[0][1:len(question) + 1].argmax(1)) > 0:
pass
# print('pcsel is > 0 with q \n {}\nand pcsel is :{}\n'.format(question, pcsel2[0][1:len(question) + 1].argmax(1)))
pcsel_ori = pcsel
# pcsel0 = np.squeeze(pcsel[:,:,:1,:], axis=(2,)) # numpy 不能是tensor哈 ,返回是numpy格式数据
# test
if max(pcdiv[0][0:len(question) + 1].argmax(1)) > 0:
pass
# print(question)
# print(pcdiv[0][0:len(question) + 1].argmax(1))
# print(pcop[0][0:len(question) + 1].argmax(1))
# print(pcsel0[0][0:len(question) + 1].argmax(1))
# print('\ncop and csel is ---------\n')
# pcsel1 = np.squeeze(pcsel[:,:,1:2,:], axis=(2,))
'''
if max(pcsel1[0][1:len(question) + 1].argmax(1)) > 0:
print('\nmul col ---------\n')
print(question)
print(pcop[0][0:len(question) + 1].argmax(1))
print(pcsel0[0][0:len(question) + 1].argmax(1))
print(pcsel1[0][0:len(question) + 1].argmax(1))
else:
print('\single op and col ---------\n')
print(question)
print(pcop[0][0:len(question) + 1].argmax(1))
print(pcsel0[0][0:len(question) + 1].argmax(1))
print('\pcdiv is ---------\n')
print(pcdiv[0][0:len(question) + 1].argmax(1))
print('\pconn is ---------\n')
print(pconn[0, 1:].argmax())
'''
R = {'agg': [], 'sel': []}
# psel是对header的[CLS]位置做处理的出来的,各个header的聚合或者是否被select的概率。
# psel shape [1, 9, 7] => [None, header_col_cnt, op]
for i, j in enumerate(psel[0].argmax(1)):
if j != num_agg - 1: # num_agg-1类是不被select的意思
# 7中状态拆分成下面两种,1种是是否被选择,另外一种是agg operation
R['sel'].append(i)
R['agg'].append(j)
conds = []
v_op = -1
# pcop: shape [bs, seq_len(n_step), num_op] 下面截取了:len(question) + 1
# 截取之后shape: [bs, question_len]
# 在这里的bs=1, 貌似是对每一个样例做的处理.
# pcop (1, 103, 5) => [None, question+header_len, op_len]
# 这里的pcop的第二个维度为105
# 105 = 32(question len) + 2(question cls&sep)+ 53(all header col len) +18(header cls+sep,total 9 column in table)
# 下面取的时候只取了 [0:33]
unit_first_list = []
unit_second_list = []
for i, j in enumerate(pcop[0, :len(question) + 1].argmax(1)): #[,,op_cnt]
# 这里结合标注和分类来预测条件
if i == 0: continue # start 0 is of no use
if j != num_op - 1: # num_op: {0:">", 1:"<", 2:"==", 3:"!=", 4:"不被select"}
if v_op != j:
if v_op != -1:
v_end = v_start + len(v_str)
v_start_idx, v_end_idx, smooth_val = smooth_numeric(v_start - 1, v_end - 1, question)
unit_first, unit_second = get_append_unit(v_start - 1, v_end - 1, question) # unit_firt: 亿 unit_second: 元
# 添加div中的信息
# print(max(pcdiv[0][v_start: v_end].argmax(1)))
if max(pcdiv[0][v_start: v_end].argmax(1)) > 0:# 0
# print(smooth_val)
if 1 in pcdiv[0][v_start: v_end].argmax(1):
entity_start_pos_list = [v_start + 1 + idx for idx, mark in enumerate(pcdiv[0][v_start + 1: v_end].argmax(1)) if mark == 1]
if entity_start_pos_list[0] != v_start:
entity_start_pos_list.insert(0, v_start)
if entity_start_pos_list[-1] != v_end:
entity_start_pos_list.append(v_end)
for idx in range(len(entity_start_pos_list) - 1):
new_s = entity_start_pos_list[idx]
new_e = entity_start_pos_list[idx + 1]
# print(question[new_s - 1: new_e - 1])
csel = pcsel0[0][new_s: new_e].mean(0).argmax() - 1
v_str1 = question[new_s - 1: new_e - 1]
if v_str1 is not None and csel >= 0:
unit_first_list.append(unit_first)
unit_second_list.append(unit_second)
conds.append((csel, v_op, v_str1))
# print(conds)
else:
csel = pcsel0[0][v_start: v_end].mean(0).argmax() - 1
if v_str is not None:
v_str = smooth_val
unit_first_list.append(unit_first)
unit_second_list.append(unit_second)
conds.append((csel, v_op, v_str))
# print('here--')
# print(pcsel1[0][v_start: v_end].argmax(1))
if pcsel1[0][v_start: v_end].mean(0).argmax() - 1 >= 0: # add
csel = pcsel1[0][v_start: v_end].mean(0).argmax() - 1
if csel >= 0:
'''
print('warnings_ok ---- ')
print(question)
print((csel, v_op, v_str))
'''
if v_str is not None:
v_str = smooth_val
unit_first_list.append(unit_first)
unit_second_list.append(unit_second)
conds.append((csel, v_op, v_str))
if pcsel2[0][v_start: v_end].mean(0).argmax() - 1 > 0: # add
csel = pcsel2[0][v_start: v_end].mean(0).argmax() - 1
'''
print('warnings_ok ---- ')
print(question)
print((csel, v_op, v_str))
'''
if v_str is not None:
v_str = smooth_val
unit_first_list.append(unit_first)
unit_second_list.append(unit_second)
conds.append((csel, v_op, v_str))
v_start = i
v_op = j # v_op在这里第一次赋值
v_str = question[i - 1] # v_str在这里第一次赋值
else: # 在 这里 j == num_op-1,说明当前运算符在question上延续着
v_str += question[i - 1]
if i == len(question):
v_end = v_start + len(v_str)
v_start_idx, v_end_idx, smooth_val = smooth_numeric(v_start - 1, v_end - 1, question)
unit_first, unit_second = get_append_unit(v_start - 1, v_end - 1, question) # unit_firt: 亿 unit_second: 元
# 添加div中的信息
# print(max(pcdiv[0][v_start: v_end].argmax(1)))
if max(pcdiv[0][v_start: v_end].argmax(1)) > 0:# 0
# print(smooth_val)
if 1 in pcdiv[0][v_start: v_end].argmax(1):
entity_start_pos_list = [v_start + 1 + idx for idx, mark in enumerate(pcdiv[0][v_start + 1: v_end].argmax(1)) if mark == 1]
if entity_start_pos_list[0] != v_start:
entity_start_pos_list.insert(0, v_start)
if entity_start_pos_list[-1] != v_end:
entity_start_pos_list.append(v_end)
for idx in range(len(entity_start_pos_list) - 1):
new_s = entity_start_pos_list[idx]
new_e = entity_start_pos_list[idx + 1]
# print(question[new_s - 1: new_e - 1])
csel = pcsel0[0][new_s: new_e].mean(0).argmax() - 1
v_str1 = question[new_s - 1: new_e - 1]
if v_str1 is not None and csel >= 0:
unit_first_list.append(unit_first)
unit_second_list.append(unit_second)
conds.append((csel, v_op, v_str1))
# print(conds)
else:
# print('here_break--')
# print(pcsel1[0][v_start: v_end].argmax(1))
if pcsel1[0][v_start: v_end].mean(0).argmax() - 1 >= 0: # add
csel = pcsel1[0][v_start: v_end].mean(0).argmax() - 1
if csel >= 0:
'''
print('warnings_ok ---- ')
print(question)
print((csel, v_op, v_str))
'''
if v_str is not None:
v_str = smooth_val
unit_first_list.append(unit_first)
unit_second_list.append(unit_second)
conds.append((csel, v_op, v_str))
if pcsel2[0][v_start: v_end].mean(0).argmax() - 1 >= 0: # add
csel = pcsel2[0][v_start: v_end].mean(0).argmax() - 1
'''
print('warnings_ok ---- ')
print(question)
print((csel, v_op, v_str))
if v_str is not None:
v_str = smooth_val
unit_first_list.append(unit_first)
unit_second_list.append(unit_second)
conds.append((csel, v_op, v_str))
'''
csel = pcsel0[0][v_start: v_end].mean(0).argmax() - 1
if v_str is not None:
v_str = smooth_val
unit_first_list.append(unit_first)
unit_second_list.append(unit_second)
conds.append((csel, v_op, v_str))
# print(conds)
break
elif v_op != -1: # 遇到了"not selected" 了
v_end = v_start + len(v_str)
# pcsel (1, 105, 9) => (None, q_len+h_len, col_cnt )
# 第二个维度为105, 105 = 32(question len)+2(question cls&sep)+ 53(all header col len) +18(header cls+sep,total 9 column in table
# pcsel的作用是定位question中的每个字段对应header中的哪个列,所以最后一维为9,当前测试样例的表有9列
v_start_idx, v_end_idx, smooth_val = smooth_numeric(v_start - 1, v_end - 1, question)
unit_first, unit_second = get_append_unit(v_start - 1, v_end - 1, question) # unit_firt: 亿 unit_second: 元
# 添加div中的信息
# print(max(pcdiv[0][v_start: v_end].argmax(1)))
if max(pcdiv[0][v_start: v_end].argmax(1)) > 0:
'''
print(question)
print(smooth_val)
print(v_start)
print(v_end)
print(pcdiv[0][v_start: v_end].argmax(1))
'''
if 1 in pcdiv[0][v_start: v_end].argmax(1) and pcdiv[0][v_start].argmax() != 1 :
entity_start_pos_list = [v_start + 1 + idx for idx, mark in enumerate(pcdiv[0][v_start + 1: v_end].argmax(1)) if mark == 1]
# print(entity_start_pos_list)
if entity_start_pos_list[0] != v_start:
entity_start_pos_list.insert(0, v_start)
if entity_start_pos_list[-1] != v_end:
entity_start_pos_list.append(v_end)
for idx in range(len(entity_start_pos_list) - 1):
new_s = entity_start_pos_list[idx]
new_e = entity_start_pos_list[idx + 1]
# print(question[new_s - 1: new_e - 1])
csel = pcsel0[0][new_s: new_e].mean(0).argmax() - 1
v_str1 = question[new_s - 1: new_e - 1]
if v_str1 is not None and csel >= 0:
unit_first_list.append(unit_first)
unit_second_list.append(unit_second)
conds.append((csel, v_op, v_str1))
# print(conds)
else:
csel = pcsel0[0][v_start: v_end].mean(0).argmax() - 1
# 做一些处理
v_e = v_end - 1
untreat_unit = ''
if v_e < len(question) and len(re.findall(regex_tail, question[v_e])) > 0:
untreat_unit = re.findall(regex_tail, question[v_e])[0]
# print('unit is{}, first{}'.format(untreat_unit))
if v_e + 1 < len(question) and len(re.findall(regex_tail, question[v_e + 1])) > 0:
untreat_unit += re.findall(regex_tail, question[v_e + 1])[0]
if untreat_unit != '':
pass
# print('untreat_unit is not null and is{} and q is {}\n and v_str is {} \n '.format(untreat_unit, question, v_str))
if v_str is not None:
v_str = smooth_val
unit_first_list.append(unit_first)
unit_second_list.append(unit_second)
conds.append((csel, v_op, v_str))
# print('here--')
# print(pcsel1[0][v_start: v_end].argmax(1))
if pcsel1[0][v_start: v_end].mean(0).argmax() - 1 >= 0: # add
csel = pcsel1[0][v_start: v_end].mean(0).argmax() - 1
if csel >= 0:
# print('warnings_ok ---- ')
# print(question)
# print((csel, v_op, v_str))
if v_str is not None:
v_str = smooth_val
unit_first_list.append(unit_first)
unit_second_list.append(unit_second)
conds.append((csel, v_op, v_str))
if pcsel2[0][v_start: v_end].mean(0).argmax() - 1 >= 0: # add
csel = pcsel2[0][v_start: v_end].mean(0).argmax() - 1
# print('warnings_ok ---- ')
# print(question)
# print((csel, v_op, v_str))
if v_str is not None:
v_str = smooth_val
unit_first_list.append(unit_first)
unit_second_list.append(unit_second)
conds.append((csel, v_op, v_str))
v_op = -1
R['conds'] = set() # 集合自己去重
idx = 0
for i, j, k in conds:
if re.findall('[^\d\-\.\%]', k): # 找到非数字
j = 2 # 非数字只能用等号,,
# and len(re.findall('[\d\-\.\%]', k)) != len(k)
# re.findall('[^\d\-\.\%]', k)
# 如果目标列的所有值里面没有除数字之外的东西,那么就不要模糊匹配了
# try:
# col_table_vals = table['content'][table['headers'][i]]
# except: col_table_vals = {'--------'}
# no_other_text = True
# print(col_table_vals)
# for val in col_table_vals:
# print('val is {}'.format(val))
# if re.findall('[^\d\-\.\%]', str(val)): no_other_text = False
if j == 2 : # 这里判定出条件运算符是等号哦 等号也有可能是数字的
ori_k = k
before_treat = 'before of i,j, k is({},{},{})\n'.format(i, j, k)
before_ikj = (i, j, k)
# sqlite3 text where col1='2' 与 col2='2.0'执行结果不一致
if k not in table['all_values']:
k_sim = most_similar_new(k, list(table['all_values']))
if k_sim is not None: k = k_sim
idx_except = False
try:
h = table['headers'][i]
except:
global except_cnt
except_cnt += 1
idx_except = True
h = table['headers'][0]
# 然后检查值对应的列是否正确,如果不正确,直接修正列名
if k not in table['content'][h]: # 发现标记出来的值不在预测出来所属的列不一致。
for r, v in table['content'].items():
if k in v:
i = table['header2id'][r]
break
# if not re.findall('[^\d\-\.\%]', ori_k):
# # 字符串还是要精准匹配的,比如 2015跟2015.0
# after_ijk = (i, j, k)
# if before_ikj != after_ijk:
# print(before_treat)
# print(types[i])
# print('after of i,j, k is({},{},{})\n'.format(i, j, k))
unit_first = None if unit_first_list[idx] == '' else unit_first_list[idx]
unit_second = None if unit_second_list[idx] == '' else unit_second_list[idx]
idx += 1
if not re.findall('[^\d]', str(k)) and i <= len(table['headers']) - 1: ## 需要改 不要用 isnumeric() 并要处理百分号
# 添加一个预处理,预测的数字左右缺失的话
ori_k = k
try:
right_str = "\n{},'{}','{}',format_of_number={}, format_desc={}\n".format(k, table['headers'][i], table['title'], unit_first, unit_second)
assert_str = "assert number_trans({},'{}','{}',format_of_number='{}', format_desc='{}') ==".format(k, table['headers'][i], table['title'], unit_first, unit_second)
k = number_trans(int(k), table['headers'][i], table['title'], format_of_number=unit_first, format_desc=unit_second)
# print('number_trans right {} \n right param is \n{}\n'.format(question, right_str))
max_col_val = None
have_text_in_col = False
for col_val in table['content'][table['headers'][i]]:
if not re.findall('[^\d\.]', str(col_val)):
if max_col_val is None:
max_col_val = float(col_val)
else:
max_col_val = max(max_col_val, float(col_val))
else:
have_text_in_col = True
break
if '万平' in question:
if max_col_val is not None and not re.findall('[^\d\.]', str(k)) and float(k) > max_col_val * 10:
k = ori_k
print('--- warining -- \n use ori {}'.format(k))
print(question)
print(table['content'][table['headers'][i]])
print('max is {}'.format(max_col_val))
assert_str = assert_str + '{}'.format(k)
print(assert_str)
# log_file.write(assert_str)
except:
# print('number_trans error {} \n'.format(question))
# print("\n{},'{}','{}',format_of_number={}, format_desc={}\n".format(k, table['headers'][i], table['title'], unit_first, unit_second))
# raise
assert_str = assert_str + '{}\n'.format(k)
# assert_wrong_log_file.write(assert_str)
#这里如果k是 数字的话,包含百分数,那么去掉后面的百分号
if not re.findall('[^\d\-\.\%]', str(k)) and '%' in str(k):
# print('\n get percent val {} '.format(k))
k = str(k)[:-1]
# print('percent after treate {}\n'.format(k))
R['conds'].add((i, j, k))
if max(pcsel2[0][1:len(question) + 1].argmax(1)) > 0:
pass
# print('pcsel cond is \n {}\n'.format(R['conds']))
R['conds'] = list(R['conds'])
if len(R['conds']) <= 1: # 条件数少于等于1时,条件连接符直接为0
R['cond_conn_op'] = 0
else:
# pconn (1,3) => (None, con_conn_cnt)
R['cond_conn_op'] = 1 + pconn[0, 1:].argmax() # 不能是0
return R
def evaluate(data, tables):
pbar = tqdm()
F = open('../data/logs/evaluate_pred.json', 'w')
pred_sql_list = []
gd_sql_list = []
tables_list = []
for i, d in enumerate(data):
question = d['question']
table = tables[d['table_id']]
R = nl2sql(question, table) #
# print("predicted is {}\n".format(R))
gd_sql_list.append(d['sql'])
pred_sql_list.append(R)
tables_list.append(d['table_id'])
pbar.update(1)
d['sql_pred'] = R
if PY2:
s = json.dumps(d, ensure_ascii=False) # add str
F.write(s.encode('utf-8') + '\n')
elif PY3:
s = json.dumps(eval(str(R)), ensure_ascii=False)
F.write(s + '\n') #
F.close()
acc = check_part_acc(pred_sql_list, gd_sql_list, tables_list, data)
print(' Acc in evaluate data set is {}'.format(1 - acc[-1])) # data here is valid data
pbar.close()
return 1 - acc[-1]
if mode == 'evaluate':
evaluate(valid_data, valid_tables)
import sys
sys.exit(0)
def test(data, tables, submit_path):
pbar = tqdm()
F = open(submit_path, 'w')
for i, d in enumerate(data):
question = d['question']
table = tables[d['table_id']]
R = nl2sql(question, table)
pbar.update(1)
if PY2:
s = json.dumps(R, ensure_ascii=False)
F.write(s.encode('utf-8') + '\n')
elif PY3:
sql_pred = eval(str(R))
F.writelines(json.dumps(sql_pred, ensure_ascii=False) + '\n')
F.close()
pbar.close()
if mode == 'test':
print("Start create test result ....")
# submit_path = '../submit/submit-{}.json'.format(time.strftime('%Y-%m-%d_%H:%M:%S', time.localtime(time.time())))
test(test_data, test_tables, test_submit_path) # add by shuai should used !!!!!
print('Finish create test result and saved in {}'.format(test_submit_path))
import sys
sys.exit(0)
class Evaluate(Callback):
def __init__(self):
self.accs = []
self.best = 0
self.passed = 0
self.stage = 0
def on_batch_begin(self, batch, logs=None):
"""
第一个epoch用来warmup,第二个epoch把学习率降到最低
"""
if self.passed < self.params['steps']:
lr = (self.passed + 1.) / self.params['steps'] * learning_rate
K.set_value(self.model.optimizer.lr, lr)
self.passed += 1
elif self.params['steps'] <= self.passed < self.params['steps'] * 2:
lr = (2 - (self.passed + 1.) / self.params['steps']) * (learning_rate - min_learning_rate)
lr += min_learning_rate
K.set_value(self.model.optimizer.lr, lr)
self.passed += 1
def on_epoch_end(self, epoch, logs=None):
acc = self.evaluate()
self.accs.append(acc)
if acc >= self.best:
self.best = acc
train_model.save_weights(weight_save_path)
print('acc: %.5f, best acc: %.5f\n' % (acc, self.best))
def evaluate(self):
return evaluate(valid_data, valid_tables)
evaluator = Evaluate()
if __name__ == '__main__':
train_model.fit_generator(
train_D.__iter__(),
steps_per_epoch=len(train_D),
epochs=40,
callbacks=[evaluator]
)
else:
train_model.load_weights(weight_save_path)
|
[
"numpy.random.seed",
"argparse.ArgumentParser",
"keras.backend.set_value",
"keras.backend.sparse_categorical_crossentropy",
"keras.models.Model",
"keras.backend.batch_dot",
"json.dumps",
"os.path.join",
"keras.backend.cast",
"keras_bert.load_trained_model_from_checkpoint",
"codecs.open",
"json.loads",
"tensorflow.set_random_seed",
"re.findall",
"random.seed",
"numpy.random.shuffle",
"tqdm.tqdm",
"keras.backend.expand_dims",
"keras.optimizers.Adam",
"keras.backend.tf.batch_gather",
"sys.exit",
"keras.backend.sum",
"keras.backend.mean",
"numpy.array",
"keras.backend.not_equal"
] |
[((112, 130), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (126, 130), True, 'import numpy as np\n'), ((131, 145), 'random.seed', 'rn.seed', (['(12345)'], {}), '(12345)\n', (138, 145), True, 'import random as rn\n'), ((146, 170), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['(1234)'], {}), '(1234)\n', (164, 170), True, 'import tensorflow as tf\n'), ((823, 848), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (846, 848), False, 'import argparse\n'), ((1588, 1686), 'os.path.join', 'os.path.join', (['model_bert_wwm_path', '"""chinese-bert_chinese_wwm_L-12_H-768_A-12/bert_config.json"""'], {}), "(model_bert_wwm_path,\n 'chinese-bert_chinese_wwm_L-12_H-768_A-12/bert_config.json')\n", (1600, 1686), False, 'import os\n'), ((1701, 1798), 'os.path.join', 'os.path.join', (['model_bert_wwm_path', '"""chinese-bert_chinese_wwm_L-12_H-768_A-12/bert_model.ckpt"""'], {}), "(model_bert_wwm_path,\n 'chinese-bert_chinese_wwm_L-12_H-768_A-12/bert_model.ckpt')\n", (1713, 1798), False, 'import os\n'), ((1807, 1898), 'os.path.join', 'os.path.join', (['model_bert_wwm_path', '"""chinese-bert_chinese_wwm_L-12_H-768_A-12/vocab.txt"""'], {}), "(model_bert_wwm_path,\n 'chinese-bert_chinese_wwm_L-12_H-768_A-12/vocab.txt')\n", (1819, 1898), False, 'import os\n'), ((1914, 1982), 'os.path.join', 'os.path.join', (['model_path', '"""weights/nl2sql_finetune_add_div2.weights"""'], {}), "(model_path, 'weights/nl2sql_finetune_add_div2.weights')\n", (1926, 1982), False, 'import os\n'), ((16024, 16102), 'keras_bert.load_trained_model_from_checkpoint', 'load_trained_model_from_checkpoint', (['config_path', 'checkpoint_path'], {'seq_len': 'None'}), '(config_path, checkpoint_path, seq_len=None)\n', (16058, 16102), False, 'from keras_bert import load_trained_model_from_checkpoint, Tokenizer\n'), ((19311, 19401), 'keras.models.Model', 'Model', (['[x1_in, x2_in, h_in, hm_in]', '[psel, pconn, pcop, pcsel0, pcsel1, pcsel2, pcdiv]'], {}), '([x1_in, x2_in, h_in, hm_in], [psel, pconn, pcop, pcsel0, pcsel1,\n pcsel2, pcdiv])\n', (19316, 19401), False, 'from keras.models import Model\n'), ((19478, 19643), 'keras.models.Model', 'Model', (['[x1_in, x2_in, xm_in, h_in, hm_in, sel_in, conn_in, csel0_in, csel1_in,\n csel2_in, cop_in, cdiv_in]', '[psel, pconn, pcop, pcsel0, pcsel1, pcsel2, pcdiv]'], {}), '([x1_in, x2_in, xm_in, h_in, hm_in, sel_in, conn_in, csel0_in,\n csel1_in, csel2_in, cop_in, cdiv_in], [psel, pconn, pcop, pcsel0,\n pcsel1, pcsel2, pcdiv])\n', (19483, 19643), False, 'from keras.models import Model\n'), ((20874, 20921), 'keras.backend.sparse_categorical_crossentropy', 'K.sparse_categorical_crossentropy', (['sel_in', 'psel'], {}), '(sel_in, psel)\n', (20907, 20921), True, 'import keras.backend as K\n'), ((21021, 21070), 'keras.backend.sparse_categorical_crossentropy', 'K.sparse_categorical_crossentropy', (['conn_in', 'pconn'], {}), '(conn_in, pconn)\n', (21054, 21070), True, 'import keras.backend as K\n'), ((21084, 21102), 'keras.backend.mean', 'K.mean', (['pconn_loss'], {}), '(pconn_loss)\n', (21090, 21102), True, 'import keras.backend as K\n'), ((21138, 21185), 'keras.backend.sparse_categorical_crossentropy', 'K.sparse_categorical_crossentropy', (['cop_in', 'pcop'], {}), '(cop_in, pcop)\n', (21171, 21185), True, 'import keras.backend as K\n'), ((21251, 21302), 'keras.backend.sparse_categorical_crossentropy', 'K.sparse_categorical_crossentropy', (['csel0_in', 'pcsel0'], {}), '(csel0_in, pcsel0)\n', (21284, 21302), True, 'import keras.backend as K\n'), ((21378, 21429), 'keras.backend.sparse_categorical_crossentropy', 'K.sparse_categorical_crossentropy', (['csel1_in', 'pcsel1'], {}), '(csel1_in, pcsel1)\n', (21411, 21429), True, 'import keras.backend as K\n'), ((21506, 21557), 'keras.backend.sparse_categorical_crossentropy', 'K.sparse_categorical_crossentropy', (['csel2_in', 'pcsel2'], {}), '(csel2_in, pcsel2)\n', (21539, 21557), True, 'import keras.backend as K\n'), ((21632, 21681), 'keras.backend.sparse_categorical_crossentropy', 'K.sparse_categorical_crossentropy', (['cdiv_in', 'pcdiv'], {}), '(cdiv_in, pcdiv)\n', (21665, 21681), True, 'import keras.backend as K\n'), ((3572, 3613), 'os.path.join', 'os.path.join', (['valid_data_path', '"""val.json"""'], {}), "(valid_data_path, 'val.json')\n", (3584, 3613), False, 'import os\n'), ((3639, 3687), 'os.path.join', 'os.path.join', (['valid_data_path', '"""val.tables.json"""'], {}), "(valid_data_path, 'val.tables.json')\n", (3651, 3687), False, 'import os\n'), ((3755, 3802), 'os.path.join', 'os.path.join', (['test_file_path', '"""final_test.json"""'], {}), "(test_file_path, 'final_test.json')\n", (3767, 3802), False, 'import os\n'), ((3821, 3875), 'os.path.join', 'os.path.join', (['test_file_path', '"""final_test.tables.json"""'], {}), "(test_file_path, 'final_test.tables.json')\n", (3833, 3875), False, 'import os\n'), ((3902, 3937), 'codecs.open', 'codecs.open', (['dict_path', '"""r"""', '"""utf8"""'], {}), "(dict_path, 'r', 'utf8')\n", (3913, 3937), False, 'import codecs\n'), ((15790, 15811), 'keras.backend.cast', 'K.cast', (['idxs', '"""int32"""'], {}), "(idxs, 'int32')\n", (15796, 15811), True, 'import keras.backend as K\n'), ((15838, 15866), 'keras.backend.tf.batch_gather', 'K.tf.batch_gather', (['seq', 'idxs'], {}), '(seq, idxs)\n', (15855, 15866), True, 'import keras.backend as K\n'), ((20201, 20229), 'keras.backend.not_equal', 'K.not_equal', (['cop', '(num_op - 1)'], {}), '(cop, num_op - 1)\n', (20212, 20229), True, 'import keras.backend as K\n'), ((20934, 20955), 'keras.backend.sum', 'K.sum', (['(psel_loss * hm)'], {}), '(psel_loss * hm)\n', (20939, 20955), True, 'import keras.backend as K\n'), ((20958, 20967), 'keras.backend.sum', 'K.sum', (['hm'], {}), '(hm)\n', (20963, 20967), True, 'import keras.backend as K\n'), ((21199, 21220), 'keras.backend.sum', 'K.sum', (['(pcop_loss * xm)'], {}), '(pcop_loss * xm)\n', (21204, 21220), True, 'import keras.backend as K\n'), ((21223, 21232), 'keras.backend.sum', 'K.sum', (['xm'], {}), '(xm)\n', (21228, 21232), True, 'import keras.backend as K\n'), ((21317, 21345), 'keras.backend.sum', 'K.sum', (['(pcsel0_loss * xm * cm)'], {}), '(pcsel0_loss * xm * cm)\n', (21322, 21345), True, 'import keras.backend as K\n'), ((21348, 21362), 'keras.backend.sum', 'K.sum', (['(xm * cm)'], {}), '(xm * cm)\n', (21353, 21362), True, 'import keras.backend as K\n'), ((21444, 21472), 'keras.backend.sum', 'K.sum', (['(pcsel1_loss * xm * cm)'], {}), '(pcsel1_loss * xm * cm)\n', (21449, 21472), True, 'import keras.backend as K\n'), ((21475, 21489), 'keras.backend.sum', 'K.sum', (['(xm * cm)'], {}), '(xm * cm)\n', (21480, 21489), True, 'import keras.backend as K\n'), ((21572, 21600), 'keras.backend.sum', 'K.sum', (['(pcsel2_loss * xm * cm)'], {}), '(pcsel2_loss * xm * cm)\n', (21577, 21600), True, 'import keras.backend as K\n'), ((21603, 21617), 'keras.backend.sum', 'K.sum', (['(xm * cm)'], {}), '(xm * cm)\n', (21608, 21617), True, 'import keras.backend as K\n'), ((21695, 21722), 'keras.backend.sum', 'K.sum', (['(pcdiv_loss * xm * cm)'], {}), '(pcdiv_loss * xm * cm)\n', (21700, 21722), True, 'import keras.backend as K\n'), ((21725, 21739), 'keras.backend.sum', 'K.sum', (['(xm * cm)'], {}), '(xm * cm)\n', (21730, 21739), True, 'import keras.backend as K\n'), ((43797, 43803), 'tqdm.tqdm', 'tqdm', ([], {}), '()\n', (43801, 43803), False, 'from tqdm import tqdm\n'), ((44819, 44830), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (44827, 44830), False, 'import sys\n'), ((44882, 44888), 'tqdm.tqdm', 'tqdm', ([], {}), '()\n', (44886, 44888), False, 'from tqdm import tqdm\n'), ((45726, 45737), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (45734, 45737), False, 'import sys\n'), ((3340, 3383), 'os.path.join', 'os.path.join', (['train_data_path', '"""train.json"""'], {}), "(train_data_path, 'train.json')\n", (3352, 3383), False, 'import os\n'), ((3413, 3463), 'os.path.join', 'os.path.join', (['train_data_path', '"""train.tables.json"""'], {}), "(train_data_path, 'train.tables.json')\n", (3425, 3463), False, 'import os\n'), ((21897, 21916), 'keras.optimizers.Adam', 'Adam', (['learning_rate'], {}), '(learning_rate)\n', (21901, 21916), False, 'from keras.optimizers import Adam\n'), ((38646, 38678), 're.findall', 're.findall', (['"""[^\\\\d\\\\-\\\\.\\\\%]"""', 'k'], {}), "('[^\\\\d\\\\-\\\\.\\\\%]', k)\n", (38656, 38678), False, 'import re\n'), ((2312, 2325), 'json.loads', 'json.loads', (['l'], {}), '(l)\n', (2322, 2325), False, 'import json\n'), ((2644, 2663), 'numpy.array', 'np.array', (["l['rows']"], {}), "(l['rows'])\n", (2652, 2663), True, 'import numpy as np\n'), ((5272, 5295), 'numpy.random.shuffle', 'np.random.shuffle', (['idxs'], {}), '(idxs)\n', (5289, 5295), True, 'import numpy as np\n'), ((16844, 16863), 'keras.backend.expand_dims', 'K.expand_dims', (['x', '(1)'], {}), '(x, 1)\n', (16857, 16863), True, 'import keras.backend as K\n'), ((17553, 17572), 'keras.backend.expand_dims', 'K.expand_dims', (['x', '(2)'], {}), '(x, 2)\n', (17566, 17572), True, 'import keras.backend as K\n'), ((17660, 17679), 'keras.backend.expand_dims', 'K.expand_dims', (['x', '(1)'], {}), '(x, 1)\n', (17673, 17679), True, 'import keras.backend as K\n'), ((18098, 18121), 'keras.backend.batch_dot', 'K.batch_dot', (['x[0]', 'x[1]'], {}), '(x[0], x[1])\n', (18109, 18121), True, 'import keras.backend as K\n'), ((23379, 23393), 'numpy.array', 'np.array', (['[x1]'], {}), '([x1])\n', (23387, 23393), True, 'import numpy as np\n'), ((23403, 23417), 'numpy.array', 'np.array', (['[x2]'], {}), '([x2])\n', (23411, 23417), True, 'import numpy as np\n'), ((23427, 23440), 'numpy.array', 'np.array', (['[h]'], {}), '([h])\n', (23435, 23440), True, 'import numpy as np\n'), ((23450, 23464), 'numpy.array', 'np.array', (['[hm]'], {}), '([hm])\n', (23458, 23464), True, 'import numpy as np\n'), ((44316, 44349), 'json.dumps', 'json.dumps', (['d'], {'ensure_ascii': '(False)'}), '(d, ensure_ascii=False)\n', (44326, 44349), False, 'import json\n'), ((45117, 45150), 'json.dumps', 'json.dumps', (['R'], {'ensure_ascii': '(False)'}), '(R, ensure_ascii=False)\n', (45127, 45150), False, 'import json\n'), ((46135, 46175), 'keras.backend.set_value', 'K.set_value', (['self.model.optimizer.lr', 'lr'], {}), '(self.model.optimizer.lr, lr)\n', (46146, 46175), True, 'import keras.backend as K\n'), ((2229, 2242), 'json.loads', 'json.loads', (['l'], {}), '(l)\n', (2239, 2242), False, 'import json\n'), ((46433, 46473), 'keras.backend.set_value', 'K.set_value', (['self.model.optimizer.lr', 'lr'], {}), '(self.model.optimizer.lr, lr)\n', (46444, 46473), True, 'import keras.backend as K\n'), ((45276, 45316), 'json.dumps', 'json.dumps', (['sql_pred'], {'ensure_ascii': '(False)'}), '(sql_pred, ensure_ascii=False)\n', (45286, 45316), False, 'import json\n'), ((36439, 36476), 're.findall', 're.findall', (['regex_tail', 'question[v_e]'], {}), '(regex_tail, question[v_e])\n', (36449, 36476), False, 'import re\n'), ((36360, 36397), 're.findall', 're.findall', (['regex_tail', 'question[v_e]'], {}), '(regex_tail, question[v_e])\n', (36370, 36397), False, 'import re\n'), ((36694, 36735), 're.findall', 're.findall', (['regex_tail', 'question[v_e + 1]'], {}), '(regex_tail, question[v_e + 1])\n', (36704, 36735), False, 'import re\n'), ((36606, 36647), 're.findall', 're.findall', (['regex_tail', 'question[v_e + 1]'], {}), '(regex_tail, question[v_e + 1])\n', (36616, 36647), False, 'import re\n')]
|
from src.envs.color_generation import sample_color, infer_color
from src.envs.env_params import get_env_params
import numpy as np
import pybullet as p
import os
import pickle
ENV_PARAMS = get_env_params()
# path = "./src/envs/shapenet_objects/" # If the relative path doesn't work, we can use the absolute (complete) path.
from constants import root_folder
path = root_folder+"src/envs/shapenet_objects/" # If the relative path doesn't work, we can use the absolute (complete) path.
objects = [o for o in os.listdir(path) if 'urdf' in o and '_prototype' not in o]
with open(path + 'sizes.pkl', 'rb') as f:
object_sizes = pickle.load(f)
class Thing:
def __init__(self, env_params, bullet_client, object_type, color, object_id, objects, size=None):
assert color in env_params['colors_attributes']
self.env_params = env_params
self.id = object_id
self.bullet_client = bullet_client
self.type = object_type
self.get_type_encoding(object_type)
self.color = color
self.render_mode = False # render_mode
self.attributes = []
if 'categories' in self.env_params['admissible_attributes']:
self.attributes += ['thing', object_type, self.color]
self.categories = []
self.features = []
self.position = None
self.orientation = None
self.size_encoding = None
self.rgb_encoding = None
self.objects = None
self.touched = False
self.grasped = False
if size != None:
self.size_encoding = size
else:
self.sample_size()
self.sample_color()
self.initial_rgb_encoding = self.rgb_encoding.copy()
self.p_id = self.generate_object()
self.sample_position(objects)
self.bullet_client.changeVisualShape(self.p_id, -1, rgbaColor=self.rgb_encoding)
def give_ref_to_obj_list(self, objects):
self.objects = objects
def sample_color(self):
self.rgb_encoding = np.array(list(sample_color(color=self.color)) + [1])
def update_attributes(self):
if 'absolute_location' in self.env_params['admissible_attributes']:
self.update_absolute_location_attributes(self.position)
if 'color' in self.env_params['admissible_attributes']:
self.update_color_attributes()
def update_all_attributes(self):
self.update_attributes()
def update_color_attributes(self, old_color=None):
if self.color not in self.attributes:
self.attributes.append(self.color)
if old_color is not None:
self.attributes.remove(old_color)
def update_position(self, new_position=None):
if new_position is None:
new_position, new_orientation = self.bullet_client.getBasePositionAndOrientation(self.p_id)
self.orientation = np.array(new_orientation).copy()
new_position = np.array(new_position)
if 'absolute_location' in self.env_params['admissible_attributes']:
self.update_absolute_location_attributes(new_position)
# update relative attributes
self.position = new_position.copy()
def get_type_encoding(self, object_type):
self.type_encoding = np.zeros([self.env_params['nb_types']])
self.type_encoding[self.env_params['types'].index(object_type)] = 1
def get_features(self):
self.features = dict(pos=self.position,
orn=self.orientation,
type=self.type_encoding,
# vel=self.velocity,
color=self.rgb_encoding[:3],
size=self.get_all_sizes()
)
return self.features.copy()
def get_all_sizes(self):
sizes = np.array(self.bullet_client.getAABB(self.p_id)[1]) - np.array(self.bullet_client.getAABB(self.p_id)[0])
return sizes
def compute_radius(self):
return np.sqrt((self.sizes[0]/2)**2 + (self.sizes[1]/2)**2)
def sample_position(self, objects):
ok = False
while not ok:
is_left = np.random.rand() < 0.5
low, high = np.array(self.env_params['table_ranges'])[:, 0], np.array(self.env_params['table_ranges'])[:, 1]
if is_left:
high[0] = -0.2
else:
low[0] = 0.2
candidate_position = np.random.uniform(low=low, high=high)
candidate_position = np.array(list(candidate_position) + [-0.025 + self.sizes[2] + 0.0005])
ok = True
for obj in objects:
if np.linalg.norm(obj.position - candidate_position) < (self.compute_radius() + obj.compute_radius())*1.2:
ok = False
if ok:
# set object in correct position
orientation = np.random.uniform(-180, 180)
self.bullet_client.resetBasePositionAndOrientation(self.p_id, candidate_position, self.bullet_client.getQuaternionFromEuler(np.deg2rad([0, 0, orientation])))
#[0.0, 0.0, 0.7071, 0.7071])
# update position encoding
self.update_position()
def sample_size(self):
self.size_encoding = np.random.uniform(self.env_params['min_max_sizes'][0], self.env_params['min_max_sizes'][1])
def update_color(self, new_color=None, new_rgb=None):
old_color = self.color
if new_color is None:
self.color = infer_color(new_rgb[:3])
else:
self.color = new_color
self.rgb_encoding = new_rgb
self.update_color_attributes(old_color)
self.bullet_client.changeVisualShape(self.p_id, -1, rgbaColor=self.rgb_encoding)
def __repr__(self):
return 'Object # {}: {} {}'.format(self.id, self.color, self.type)
# SHAPENET objects
class ShapeNet(Thing):
def __init__(self, env_params, bullet_client, object_type, color, object_id, objects, size=None):
super().__init__(env_params, bullet_client, object_type, color, object_id, objects, size=size)
def scan_objects_and_save_their_sizes(self):
objects = sorted([o for o in os.listdir(path) if 'urdf' in o and '_prototype' not in o])
if os.path.exists(path + 'sizes.pkl'):
with open(path + 'sizes.pkl', 'rb') as f:
max_sizes = pickle.load(f)
else:
max_sizes = dict()
for o in objects:
print(o)
object_urdf = path + o
boxStartOr = p.getQuaternionFromEuler(np.deg2rad([0, 0, 0]))
boxId = p.loadURDF(object_urdf, [0, 0, 0], boxStartOr)
sizes = np.array(p.getAABB(boxId)[1]) - np.array(p.getAABB(boxId)[0])
p.removeBody(boxId)
max_sizes[o] = sizes
with open(path + 'sizes.pkl', 'wb') as f:
pickle.dump(max_sizes, f)
def generate_object(self):
# Uncomment this once
# self.scan_objects_and_save_their_sizes()
# code for now, until we load the urdf models and save their sizes in the sizes.pkl file for all objects listed in env_params
# objects = sorted([o for o in os.listdir(path) if 'urdf' in o and '_prototype' not in o])
# o = np.random.choice(objects)
# after
o = self.type + '.urdf'
object_urdf = path + o
original_sizes = object_sizes[o] # get original size
ratio = self.size_encoding / np.sqrt(np.sum(np.array(original_sizes)**2)) # compute scaling ratio
boxStartOr = self.bullet_client.getQuaternionFromEuler(np.deg2rad([0, 0, 0]))
boxId = self.bullet_client.loadURDF(object_urdf, [0, 0, 0], boxStartOr, globalScaling=ratio)
self.sizes = original_sizes.copy() * ratio
# self.sizes = np.array(p.getAABB(boxId)[1]) - np.array(p.getAABB(boxId)[0])
self.bullet_client.changeDynamics(boxId, -1, linearDamping=0, angularDamping=0, rollingFriction=0.001, spinningFriction=0.001)
self.bullet_client.changeVisualShape(boxId, -1, rgbaColor=self.rgb_encoding + [1])
return boxId
# CATEGORIES
class Solid(Thing):
def __init__(self, env_params, bullet_client, object_type, color, object_id, objects, size=None):
super().__init__(env_params, bullet_client, object_type, color, object_id, objects, size=size)
if 'category' in env_params['admissible_attributes']:
self.attributes += ['solid']
class Animal(ShapeNet):
def __init__(self, env_params, bullet_client, object_type, color, object_id, objects, size=None):
super().__init__(env_params, bullet_client, object_type, color, object_id, objects, size=size)
if 'category' in env_params['admissible_attributes']:
self.attributes += ['animal']
class Food(ShapeNet):
def __init__(self, env_params, bullet_client, object_type, color, object_id, objects, size=None):
super().__init__(env_params, bullet_client, object_type, color, object_id, objects, size=size)
if 'category' in env_params['admissible_attributes']:
self.attributes += ['food']
class Kitchenware(ShapeNet):
def __init__(self, env_params, bullet_client, object_type, color, object_id, objects, size=None):
super().__init__(env_params, bullet_client, object_type, color, object_id, objects, size=size)
if 'category' in env_params['admissible_attributes']:
self.attributes += ['kitchenware']
class Vehicle(ShapeNet):
def __init__(self, env_params, bullet_client, object_type, color, object_id, objects, size=None):
super().__init__(env_params, bullet_client, object_type, color, object_id, objects, size=size)
if 'category' in env_params['admissible_attributes']:
self.attributes += ['vehicle']
# OBJECTS
class Cube(Solid):
def __init__(self, env_params, bullet_client, object_type, color, object_id, objects, size=None):
super().__init__(env_params, bullet_client, object_type, color, object_id, objects, size=size)
def generate_object(self):
sizes = [self.size_encoding / (np.sqrt(3) * 2) * 0.75] * 3
self.sizes = sizes.copy()
colcubeId = self.bullet_client.createCollisionShape(self.bullet_client.GEOM_BOX, halfExtents=sizes)
visplaneId = self.bullet_client.createVisualShape(self.bullet_client.GEOM_BOX, halfExtents=sizes, rgbaColor=list(self.rgb_encoding))
legoUID = self.bullet_client.createMultiBody(0.3, colcubeId, visplaneId, self.position)
self.bullet_client.changeDynamics(legoUID, -1, lateralFriction=1.5)
return legoUID
class Block(Solid):
def __init__(self, env_params, bullet_client, object_type, color, object_id, objects, size=None):
super().__init__(env_params, bullet_client, object_type, color, object_id, objects, size=size)
def generate_object(self):
sizes = [self.size_encoding / np.sqrt(6)] + [self.size_encoding / (np.sqrt(6) * 2)] * 2
self.sizes = sizes.copy()
self.sizes = sizes.copy()
colcubeId = self.bullet_client.createCollisionShape(self.bullet_client.GEOM_BOX, halfExtents=sizes)
visplaneId = self.bullet_client.createVisualShape(self.bullet_client.GEOM_BOX, halfExtents=sizes, rgbaColor=list(self.rgb_encoding))
legoUID = self.bullet_client.createMultiBody(0.3, colcubeId, visplaneId, self.position)
self.bullet_client.changeDynamics(legoUID, -1, lateralFriction=1.5)
return legoUID
class Cylinder(Solid):
def __init__(self, env_params, bullet_client, object_type, color, object_id, objects, size=None):
super().__init__(env_params, bullet_client, object_type, color, object_id, objects, size=size)
def generate_object(self):
sizes = [self.size_encoding / np.sqrt(6)] + [self.size_encoding / (np.sqrt(6) * 2)] * 2
self.sizes = sizes.copy()
colcubeId = self.bullet_client.createCollisionShape(self.bullet_client.GEOM_CYLINDER, radius=self.size_encoding / (np.sqrt(6) * 2), height=2*self.size_encoding / np.sqrt(6))
visplaneId = self.bullet_client.createVisualShape(self.bullet_client.GEOM_CYLINDER, radius=self.size_encoding / (np.sqrt(6) * 2), length=2*self.size_encoding / np.sqrt(6), rgbaColor=list(self.rgb_encoding))
legoUID = self.bullet_client.createMultiBody(0.3, colcubeId, visplaneId, self.position)
self.bullet_client.changeDynamics(legoUID, -1, lateralFriction=1.5)
return legoUID
# build a dict of the classes
things_classes = dict(cube=Cube,
block=Block,
cylinder=Cylinder)
shapenet_categories = list(ENV_PARAMS['attributes']['categories'])
shapenet_categories.remove('solid')
shapenet_obj = []
cat_dict = dict(kitchenware=Kitchenware,
vehicle=Vehicle,
food=Food,
animal=Animal)
for c in shapenet_categories:
things_classes.update(dict(zip(ENV_PARAMS['categories'][c], [cat_dict[c]] * len(ENV_PARAMS['categories'][c]))))
def build_object(env_params, bullet_client, object_type, color, object_id, objects, size=None):
assert object_type in env_params['types']
obj_class = things_classes[object_type](env_params, bullet_client, object_type, color, object_id, objects, size)
assert obj_class.type == object_type, '{}, {}'.format(obj_class.type, object_type)
return obj_class
stop = 1
|
[
"numpy.random.uniform",
"pybullet.loadURDF",
"pickle.dump",
"numpy.deg2rad",
"numpy.random.rand",
"numpy.zeros",
"os.path.exists",
"pybullet.removeBody",
"src.envs.color_generation.sample_color",
"pickle.load",
"numpy.array",
"numpy.linalg.norm",
"src.envs.env_params.get_env_params",
"src.envs.color_generation.infer_color",
"pybullet.getAABB",
"os.listdir",
"numpy.sqrt"
] |
[((189, 205), 'src.envs.env_params.get_env_params', 'get_env_params', ([], {}), '()\n', (203, 205), False, 'from src.envs.env_params import get_env_params\n'), ((634, 648), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (645, 648), False, 'import pickle\n'), ((514, 530), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (524, 530), False, 'import os\n'), ((3275, 3314), 'numpy.zeros', 'np.zeros', (["[self.env_params['nb_types']]"], {}), "([self.env_params['nb_types']])\n", (3283, 3314), True, 'import numpy as np\n'), ((4021, 4081), 'numpy.sqrt', 'np.sqrt', (['((self.sizes[0] / 2) ** 2 + (self.sizes[1] / 2) ** 2)'], {}), '((self.sizes[0] / 2) ** 2 + (self.sizes[1] / 2) ** 2)\n', (4028, 4081), True, 'import numpy as np\n'), ((5292, 5388), 'numpy.random.uniform', 'np.random.uniform', (["self.env_params['min_max_sizes'][0]", "self.env_params['min_max_sizes'][1]"], {}), "(self.env_params['min_max_sizes'][0], self.env_params[\n 'min_max_sizes'][1])\n", (5309, 5388), True, 'import numpy as np\n'), ((6287, 6321), 'os.path.exists', 'os.path.exists', (["(path + 'sizes.pkl')"], {}), "(path + 'sizes.pkl')\n", (6301, 6321), False, 'import os\n'), ((2950, 2972), 'numpy.array', 'np.array', (['new_position'], {}), '(new_position)\n', (2958, 2972), True, 'import numpy as np\n'), ((4457, 4494), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': 'low', 'high': 'high'}), '(low=low, high=high)\n', (4474, 4494), True, 'import numpy as np\n'), ((5529, 5553), 'src.envs.color_generation.infer_color', 'infer_color', (['new_rgb[:3]'], {}), '(new_rgb[:3])\n', (5540, 5553), False, 'from src.envs.color_generation import sample_color, infer_color\n'), ((6640, 6686), 'pybullet.loadURDF', 'p.loadURDF', (['object_urdf', '[0, 0, 0]', 'boxStartOr'], {}), '(object_urdf, [0, 0, 0], boxStartOr)\n', (6650, 6686), True, 'import pybullet as p\n'), ((6781, 6800), 'pybullet.removeBody', 'p.removeBody', (['boxId'], {}), '(boxId)\n', (6793, 6800), True, 'import pybullet as p\n'), ((6896, 6921), 'pickle.dump', 'pickle.dump', (['max_sizes', 'f'], {}), '(max_sizes, f)\n', (6907, 6921), False, 'import pickle\n'), ((7621, 7642), 'numpy.deg2rad', 'np.deg2rad', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (7631, 7642), True, 'import numpy as np\n'), ((4178, 4194), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (4192, 4194), True, 'import numpy as np\n'), ((4905, 4933), 'numpy.random.uniform', 'np.random.uniform', (['(-180)', '(180)'], {}), '(-180, 180)\n', (4922, 4933), True, 'import numpy as np\n'), ((6405, 6419), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (6416, 6419), False, 'import pickle\n'), ((6597, 6618), 'numpy.deg2rad', 'np.deg2rad', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (6607, 6618), True, 'import numpy as np\n'), ((2038, 2068), 'src.envs.color_generation.sample_color', 'sample_color', ([], {'color': 'self.color'}), '(color=self.color)\n', (2050, 2068), False, 'from src.envs.color_generation import sample_color, infer_color\n'), ((2890, 2915), 'numpy.array', 'np.array', (['new_orientation'], {}), '(new_orientation)\n', (2898, 2915), True, 'import numpy as np\n'), ((4225, 4266), 'numpy.array', 'np.array', (["self.env_params['table_ranges']"], {}), "(self.env_params['table_ranges'])\n", (4233, 4266), True, 'import numpy as np\n'), ((4274, 4315), 'numpy.array', 'np.array', (["self.env_params['table_ranges']"], {}), "(self.env_params['table_ranges'])\n", (4282, 4315), True, 'import numpy as np\n'), ((4672, 4721), 'numpy.linalg.norm', 'np.linalg.norm', (['(obj.position - candidate_position)'], {}), '(obj.position - candidate_position)\n', (4686, 4721), True, 'import numpy as np\n'), ((6215, 6231), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (6225, 6231), False, 'import os\n'), ((10929, 10939), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (10936, 10939), True, 'import numpy as np\n'), ((11800, 11810), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (11807, 11810), True, 'import numpy as np\n'), ((12063, 12073), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (12070, 12073), True, 'import numpy as np\n'), ((12243, 12253), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (12250, 12253), True, 'import numpy as np\n'), ((5074, 5105), 'numpy.deg2rad', 'np.deg2rad', (['[0, 0, orientation]'], {}), '([0, 0, orientation])\n', (5084, 5105), True, 'import numpy as np\n'), ((6716, 6732), 'pybullet.getAABB', 'p.getAABB', (['boxId'], {}), '(boxId)\n', (6725, 6732), True, 'import pybullet as p\n'), ((6748, 6764), 'pybullet.getAABB', 'p.getAABB', (['boxId'], {}), '(boxId)\n', (6757, 6764), True, 'import pybullet as p\n'), ((7504, 7528), 'numpy.array', 'np.array', (['original_sizes'], {}), '(original_sizes)\n', (7512, 7528), True, 'import numpy as np\n'), ((12016, 12026), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (12023, 12026), True, 'import numpy as np\n'), ((12196, 12206), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (12203, 12206), True, 'import numpy as np\n'), ((10125, 10135), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (10132, 10135), True, 'import numpy as np\n'), ((10966, 10976), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (10973, 10976), True, 'import numpy as np\n'), ((11837, 11847), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (11844, 11847), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
# wujian@2018
import argparse
from distutils.util import strtobool
import numpy as np
from libs.data_handler import NumpyReader, NumpyWriter, parse_scps
from libs.utils import get_logger
logger = get_logger(__name__)
def run(args):
numpy_reader = NumpyReader(args.npy_scp)
spk2utt = parse_scps(args.spk2utt, num_tokens=-1) if args.spk2utt else None
with NumpyWriter(args.dump_dir, args.scp) as writer:
if spk2utt is None:
for key, mat in numpy_reader:
if mat.ndim != 2:
raise RuntimeError(
"--spk2utt is None, so input ndarray must be 2D, got {:d}"
.format(mat.ndim))
if args.normalize:
mat = mat / np.linalg.norm(
mat, ord=2, axis=1, keepdims=True)
writer.write(key, np.mean(mat, axis=0))
logger.info("Processed {:d} speakers".format(len(numpy_reader)))
else:
for spkid, uttlist in spk2utt.items():
spkset = []
for uttid in uttlist:
vec = numpy_reader[uttid]
if vec.ndim != 1:
raise RuntimeError(
"--spk2utt is not None, expect input as vector, got {:d}"
.format(vec.ndim))
if args.normalize:
vec = vec / np.linalg.norm(vec)
spkset.append(vec)
spk_mat = np.stack(spkset)
writer.write(spkid, np.mean(spk_mat, axis=0))
logger.info("Processed {:d} speakers".format(len(spk2utt)))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Command to compute means of numpy vectors/matrix",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("npy_scp", type=str, help="Input numpy rspecifier")
parser.add_argument("--dump-dir",
type=str,
default="mean",
help="Directory to dump computed results")
parser.add_argument("--spk2utt",
type=str,
default="",
help="Rspecifier for speaker to utterance-list map")
parser.add_argument("--scp",
type=str,
default="",
help="If assigned, generate corresponding scripts")
parser.add_argument("--normalize",
type=strtobool,
default=False,
help="If true, normalize vectors before compute means")
args = parser.parse_args()
run(args)
|
[
"numpy.stack",
"libs.utils.get_logger",
"argparse.ArgumentParser",
"libs.data_handler.NumpyReader",
"libs.data_handler.NumpyWriter",
"numpy.mean",
"numpy.linalg.norm",
"libs.data_handler.parse_scps"
] |
[((222, 242), 'libs.utils.get_logger', 'get_logger', (['__name__'], {}), '(__name__)\n', (232, 242), False, 'from libs.utils import get_logger\n'), ((279, 304), 'libs.data_handler.NumpyReader', 'NumpyReader', (['args.npy_scp'], {}), '(args.npy_scp)\n', (290, 304), False, 'from libs.data_handler import NumpyReader, NumpyWriter, parse_scps\n'), ((1734, 1887), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Command to compute means of numpy vectors/matrix"""', 'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), "(description=\n 'Command to compute means of numpy vectors/matrix', formatter_class=\n argparse.ArgumentDefaultsHelpFormatter)\n", (1757, 1887), False, 'import argparse\n'), ((320, 359), 'libs.data_handler.parse_scps', 'parse_scps', (['args.spk2utt'], {'num_tokens': '(-1)'}), '(args.spk2utt, num_tokens=-1)\n', (330, 359), False, 'from libs.data_handler import NumpyReader, NumpyWriter, parse_scps\n'), ((396, 432), 'libs.data_handler.NumpyWriter', 'NumpyWriter', (['args.dump_dir', 'args.scp'], {}), '(args.dump_dir, args.scp)\n', (407, 432), False, 'from libs.data_handler import NumpyReader, NumpyWriter, parse_scps\n'), ((1541, 1557), 'numpy.stack', 'np.stack', (['spkset'], {}), '(spkset)\n', (1549, 1557), True, 'import numpy as np\n'), ((890, 910), 'numpy.mean', 'np.mean', (['mat'], {'axis': '(0)'}), '(mat, axis=0)\n', (897, 910), True, 'import numpy as np\n'), ((1594, 1618), 'numpy.mean', 'np.mean', (['spk_mat'], {'axis': '(0)'}), '(spk_mat, axis=0)\n', (1601, 1618), True, 'import numpy as np\n'), ((781, 830), 'numpy.linalg.norm', 'np.linalg.norm', (['mat'], {'ord': '(2)', 'axis': '(1)', 'keepdims': '(True)'}), '(mat, ord=2, axis=1, keepdims=True)\n', (795, 830), True, 'import numpy as np\n'), ((1456, 1475), 'numpy.linalg.norm', 'np.linalg.norm', (['vec'], {}), '(vec)\n', (1470, 1475), True, 'import numpy as np\n')]
|
# the version without filter
# !/usr/bin/python3
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from scipy import signal
import time
import webcam2rgb
import cv2
class RealtimePlotWindow:
def __init__(self, channel: str):
# create a plot window
self.fig, (self.ax, self.ax_iir) = plt.subplots(2)
self.ax.set_title('Original data')
self.ax_iir.set_title('After filtering')
#ax.plt.title("Oiginal")
# that's our plotbuffer
self.plotbuffer = np.zeros(50)
self.plotbuffer_iir = np.zeros(50)
# create an empty line
self.line, = self.ax.plot(self.plotbuffer)
self.line_iir, = self.ax_iir.plot(self.plotbuffer_iir)
# axis
# That's our ringbuffer which accumluates the samples
# It's emptied every time when the plot window below
# does a repaint
self.ringbuffer = []
self.ringbuffer_iir = []
# add any initialisation code here (filters etc)
# start the animation
self.ani = animation.FuncAnimation(self.fig, self.update, interval=100)
# adjust the space between two subplots
plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.5, hspace=0.5)
# updates the plot
def update(self, data):
# add new data to the buffer
self.plotbuffer = np.append(self.plotbuffer, self.ringbuffer)
self.plotbuffer_iir = np.append(self.plotbuffer_iir, self.ringbuffer_iir)
# only keep the 50 newest ones and discard the old ones
self.plotbuffer = self.plotbuffer[-50:]
self.plotbuffer_iir = self.plotbuffer_iir[-50:]
self.ringbuffer = []
self.ringbuffer_iir = []
# set the new 50 points of channel 9
self.line.set_ydata(self.plotbuffer)
self.line_iir.set_ydata(self.plotbuffer_iir)
# set the y axis limit
self.ax.set_ylim(-255, 255)
self.ax_iir.set_ylim(-255, 255)
return self.line, self.line_iir
# appends data to the ringbuffer
def addData(self, v):
self.ringbuffer.append(v)
def addData_iir(self, v):
self.ringbuffer_iir.append(v)
def addTitle(self, sampling_rate):
self.ax.set_title('Original data\n'+"Real time sampling rate: "+str(sampling_rate)+" FPS")
def addTitle_iir(self, result_iir):
self.ax_iir.set_title('After filtering\n'+"fan speed after filtering : " + str(result_iir))
class IIR2_filter:
def __init__(self, s):
self.b0 = s[0]
self.b1 = s[1]
self.b2 = s[2]
self.a1 = s[4]
self.a2 = s[5]
self.buffer1 = 0
self.buffer2 = 0
def filter(self, value):
inputt = value
inputt = inputt - (self.a1 * self.buffer1)
inputt = inputt - (self.a2 * self.buffer2)
output = inputt * self.b0
output = output + (self.b1 * self.buffer1)
output = output + (self.b2 * self.buffer2)
self.buffer2 = self.buffer1
self.buffer1 = inputt
return output
class IIR_filter:
def __init__(self, sos):
self.cascade = []
for s in sos:
self.cascade.append(IIR2_filter(s))
def dofilter(self, value):
for f in self.cascade:
value = f.filter(value)
return value
# calculate the speeed of the fan
last_status = 0
last_peak_time = 0
def calFanSpeed(data):
global last_status, last_peak_time
fan_speed = 0
peak_rate = 0
# if the data surpass the threshold value, count as a peak
if data > 10:
peak = 1
else:
peak = 0
# Detect falling edge of a peak
cur_status = peak
if cur_status == 0 and last_status == 1:
# Calculating the time interval between the two peaks to obtain the peak_rate
cur_peak_time = time.time()
if last_peak_time != 0:
peak_rate = 60 / (cur_peak_time - last_peak_time)
last_peak_time = cur_peak_time
last_status = cur_status
# Because there are six blades, the speed of the fan should be 1/6 of the peak rate
fan_speed = peak_rate / 6
return fan_speed
# create callback method reading camera and plotting in windows
i = 0
list_result=[]
list_time=[]
def hasData(retval, data):
result = 0
global i,list_result,list_time
r = data[2]
# plot the original figure
realtimePlotWindowRed.addData(r)
# plot the figure after filtering
r_iir = iir_filter.dofilter(r)
realtimePlotWindowRed.addData_iir(r_iir)
result_iir = calFanSpeed(r_iir)
if result_iir:
list_result.append(result_iir)
# check the sampling rate by obtaining the time gap of every callback
time_cur = time.time()
list_time.append(time_cur)
time_last = time_cur
# The results of fan speed and sampling rate are averaged to obtain a more stable output
i += 1
if i > 30 and list_result:
avg=np.mean(list_result)
print("\nfan speed after IIR: ", int(avg), "rpm")
realtimePlotWindowRed.addTitle_iir(int(avg))
sampling_rate=1/((list_time[-1]-list_time[0])/(len(list_time)-1))
# Output sampling rate with two decimal places
print("check sampling rate", format(sampling_rate, '.2f'))
realtimePlotWindowRed.addTitle(format(sampling_rate, '.2f'))
i = 0
list_result=[]
list_time=[]
realtimePlotWindowRed = RealtimePlotWindow("red")
# create instances of camera
camera = webcam2rgb.Webcam2rgb()
# Add a horizontal line as the reference line for the threshold
plt.axhline(y=10, ls=":", c="red")
# start the thread and stop it when we close the plot windows
camera.start(callback=hasData, cameraNumber=0)
# create instances for iir filter
wc1 = 2 * 0.5 / camera.cameraFs()
wc2 = 2 * 5 / camera.cameraFs()
sos = signal.butter(3, [wc1, wc2], 'bandpass', output='sos')
iir_filter = IIR_filter(sos)
print("camera samplerate: ", camera.cameraFs(), "Hz")
plt.show()
camera.stop()
# shutdown the camera
camera.cam.release()
cv2.destroyAllWindows()
print('finished')
|
[
"matplotlib.pyplot.axhline",
"matplotlib.pyplot.show",
"numpy.zeros",
"time.time",
"matplotlib.animation.FuncAnimation",
"numpy.append",
"numpy.mean",
"webcam2rgb.Webcam2rgb",
"matplotlib.pyplot.subplots_adjust",
"cv2.destroyAllWindows",
"matplotlib.pyplot.subplots",
"scipy.signal.butter"
] |
[((5529, 5552), 'webcam2rgb.Webcam2rgb', 'webcam2rgb.Webcam2rgb', ([], {}), '()\n', (5550, 5552), False, 'import webcam2rgb\n'), ((5617, 5651), 'matplotlib.pyplot.axhline', 'plt.axhline', ([], {'y': '(10)', 'ls': '""":"""', 'c': '"""red"""'}), "(y=10, ls=':', c='red')\n", (5628, 5651), True, 'import matplotlib.pyplot as plt\n'), ((5867, 5921), 'scipy.signal.butter', 'signal.butter', (['(3)', '[wc1, wc2]', '"""bandpass"""'], {'output': '"""sos"""'}), "(3, [wc1, wc2], 'bandpass', output='sos')\n", (5880, 5921), False, 'from scipy import signal\n'), ((6005, 6015), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6013, 6015), True, 'import matplotlib.pyplot as plt\n'), ((6073, 6096), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (6094, 6096), False, 'import cv2\n'), ((4747, 4758), 'time.time', 'time.time', ([], {}), '()\n', (4756, 4758), False, 'import time\n'), ((350, 365), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)'], {}), '(2)\n', (362, 365), True, 'import matplotlib.pyplot as plt\n'), ((549, 561), 'numpy.zeros', 'np.zeros', (['(50)'], {}), '(50)\n', (557, 561), True, 'import numpy as np\n'), ((592, 604), 'numpy.zeros', 'np.zeros', (['(50)'], {}), '(50)\n', (600, 604), True, 'import numpy as np\n'), ((1081, 1141), 'matplotlib.animation.FuncAnimation', 'animation.FuncAnimation', (['self.fig', 'self.update'], {'interval': '(100)'}), '(self.fig, self.update, interval=100)\n', (1104, 1141), True, 'import matplotlib.animation as animation\n'), ((1198, 1292), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': 'None', 'bottom': 'None', 'right': 'None', 'top': 'None', 'wspace': '(0.5)', 'hspace': '(0.5)'}), '(left=None, bottom=None, right=None, top=None, wspace=\n 0.5, hspace=0.5)\n', (1217, 1292), True, 'import matplotlib.pyplot as plt\n'), ((1403, 1446), 'numpy.append', 'np.append', (['self.plotbuffer', 'self.ringbuffer'], {}), '(self.plotbuffer, self.ringbuffer)\n', (1412, 1446), True, 'import numpy as np\n'), ((1477, 1528), 'numpy.append', 'np.append', (['self.plotbuffer_iir', 'self.ringbuffer_iir'], {}), '(self.plotbuffer_iir, self.ringbuffer_iir)\n', (1486, 1528), True, 'import numpy as np\n'), ((3867, 3878), 'time.time', 'time.time', ([], {}), '()\n', (3876, 3878), False, 'import time\n'), ((4967, 4987), 'numpy.mean', 'np.mean', (['list_result'], {}), '(list_result)\n', (4974, 4987), True, 'import numpy as np\n')]
|
import numpy as np
import random
import matplotlib.pyplot as plt
hours = np.arange(0, 100) + 1
def r_exp(n):
return 100 * (((1 + 0.01) * 0.9) + ((1 + 0.06) * 0.1)) ** n
def r(x):
if random.random() < 0.9:
return 0.01
else:
return 0.06
def f(x):
return (1 + r(x))*x
x_cache = {}
def x(n):
if n in x_cache:
return x_cache[n]
if n == 0:
result = 100
elif n > 0:
result = f(x(n-1))
x_cache[n] = result
return result
#def dev()
iterations = 20
population = []
sums_pop = [0 for n in hours]
running_dev_sum = [0 for n in hours]
dangerous_level = 0
for n in range(0, iterations):
x_cache = {}
population = [x(i) for i in hours]
running_dev_sum = list(map(lambda x, y, z: x + (y - r_exp(z)) ** 2, running_dev_sum, population, hours))
plt.scatter(hours, population, s=1.0)
sums_pop = list(map(lambda x, y: x + y, sums_pop, population))
if population[-1] > 500:
dangerous_level += 1
# X bar
sample_mean_pop = [(i/iterations) for i in sums_pop]
plt.scatter(hours, sample_mean_pop, c='Orange', s=10.0, alpha=0.5)
# E(x)
expected = [r_exp(n) for n in hours]
plt.scatter(hours, expected, c='Blue', s=10.0, alpha=0.5)
# Standard Deviation
deviation = [round(np.sqrt(i/iterations), 3) for i in running_dev_sum]
print(deviation)
# Dangerous Level Probability
dangerous_prob = dangerous_level / iterations
print(dangerous_prob)
plt.xlabel("Hours")
plt.ylabel("Population")
plt.title(f"{iterations} Iterations w Sample Mean Population (Orange) & Expected (Blue)")
plt.show()
|
[
"matplotlib.pyplot.title",
"matplotlib.pyplot.show",
"matplotlib.pyplot.scatter",
"random.random",
"numpy.arange",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xlabel",
"numpy.sqrt"
] |
[((1058, 1124), 'matplotlib.pyplot.scatter', 'plt.scatter', (['hours', 'sample_mean_pop'], {'c': '"""Orange"""', 's': '(10.0)', 'alpha': '(0.5)'}), "(hours, sample_mean_pop, c='Orange', s=10.0, alpha=0.5)\n", (1069, 1124), True, 'import matplotlib.pyplot as plt\n'), ((1170, 1227), 'matplotlib.pyplot.scatter', 'plt.scatter', (['hours', 'expected'], {'c': '"""Blue"""', 's': '(10.0)', 'alpha': '(0.5)'}), "(hours, expected, c='Blue', s=10.0, alpha=0.5)\n", (1181, 1227), True, 'import matplotlib.pyplot as plt\n'), ((1439, 1458), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Hours"""'], {}), "('Hours')\n", (1449, 1458), True, 'import matplotlib.pyplot as plt\n'), ((1459, 1483), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Population"""'], {}), "('Population')\n", (1469, 1483), True, 'import matplotlib.pyplot as plt\n'), ((1484, 1583), 'matplotlib.pyplot.title', 'plt.title', (['f"""{iterations} Iterations w Sample Mean Population (Orange) & Expected (Blue)"""'], {}), "(\n f'{iterations} Iterations w Sample Mean Population (Orange) & Expected (Blue)'\n )\n", (1493, 1583), True, 'import matplotlib.pyplot as plt\n'), ((1574, 1584), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1582, 1584), True, 'import matplotlib.pyplot as plt\n'), ((74, 91), 'numpy.arange', 'np.arange', (['(0)', '(100)'], {}), '(0, 100)\n', (83, 91), True, 'import numpy as np\n'), ((832, 869), 'matplotlib.pyplot.scatter', 'plt.scatter', (['hours', 'population'], {'s': '(1.0)'}), '(hours, population, s=1.0)\n', (843, 869), True, 'import matplotlib.pyplot as plt\n'), ((193, 208), 'random.random', 'random.random', ([], {}), '()\n', (206, 208), False, 'import random\n'), ((1269, 1292), 'numpy.sqrt', 'np.sqrt', (['(i / iterations)'], {}), '(i / iterations)\n', (1276, 1292), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""
This framework is based on SSD_tensorlow(https://github.com/balancap/SSD-Tensorflow)
Add descriptions
"""
import math
from collections import namedtuple
import copy
import numpy as np
import tensorflow as tf
import tf_extended as tfe
from nets import custom_layers
from nets import textbox_common
import tensorflow.contrib.slim as slim
# =========================================================================== #
# Text class definition.
# =========================================================================== #
TextboxParams = namedtuple('TextboxParameters',
['img_shape',
'num_classes',
'feat_layers',
'feat_shapes',
'scale_range',
'anchor_ratios',
'anchor_sizes',
'anchor_steps',
'normalizations',
'prior_scaling',
'step',
'scales'
])
class TextboxNet(object):
"""
Implementation of the Textbox 300 network.
The default features layers with 300x300 image input are:
conv4_3 ==> 38 x 38
fc7 ==> 19 x 19
conv6_2 ==> 10 x 10
conv7_2 ==> 5 x 5
conv8_2 ==> 3 x 3
pool6 ==> 1 x 1
The default image size used to train this network is 300x300.
"""
default_params = TextboxParams(
img_shape=(768, 768),
num_classes=2,
feat_layers=['conv4', 'conv7', 'conv8', 'conv9', 'conv10', 'conv11'],
feat_shapes=[(96, 96), (48, 48), (24, 24), (12, 12), (10, 10), (8, 8)],
scale_range=[0.20, 0.90],
# anchor_ratios=[1.0, 2.0, 3.0,4.0, 5.0,1.0, 0.50, 1./3 , 1./4, 1./5],
anchor_ratios=[
[2.0, 1. / 2, 3.0, 1. / 3, 5.0, 1. / 5, 7.0, 1. / 7, 9.0, 1. / 9, 15.0, 1. /15],
[2.0, 1. / 2, 3.0, 1. / 3, 5.0, 1. / 5, 7.0, 1. / 7, 9.0, 1. / 9, 15.0, 1. / 15],
[2.0, 1. / 2, 3.0, 1. / 3, 5.0, 1. / 5, 7.0, 1. / 7, 9.0, 1. / 9, 15.0, 1. / 15],
[2.0, 1. / 2, 3.0, 1. / 3, 4.0, 1. / 4, 5.0, 1. / 5, 7., 1. / 7, 9., 1. / 9],
[2.0, 1. / 2, 3.0, 1. / 3, 4.0, 1. / 4, 5.0, 1. / 5, 7., 1. / 7, 9., 1. / 9],
[2.0, 1. / 2, 3.0, 1. / 3, 4.0, 1. / 4, 5.0, 1. / 5],
],
anchor_sizes=[
(30.,60.),
(30.,90.),
(90.,150.),
(150., 210.),
(210., 270.),
(270., 330.)
],
anchor_steps=[8, 16, 32, 64, 100, 300],
normalizations=[20, -1, -1, -1, -1, -1],
prior_scaling=[0.1, 0.1, 0.2, 0.2],
step=0.14,
scales=[0.2, 0.34, 0.48, 0.62, 0.76, 0.90]
)#step 8 16 32 64 96 192
def __init__(self, params=None):
"""
Init the Textbox net with some parameters. Use the default ones
if none provided.
"""
if isinstance(params, TextboxParams):
self.params = params
else:
self.params = self.default_params
# self.params.step = (scale_range[1] - scale_range[0])/ 5
# self.params.scales = [scale_range[0] + i* self.params.step for i in range(6)]
# ======================================================================= #
def net(self, inputs,
is_training=True,
dropout_keep_prob=0.5,
reuse=None,
scope='text_box_384'):
"""
Text network definition.
"""
r = text_net(inputs,
feat_layers=self.params.feat_layers,
anchor_sizes=self.params.anchor_sizes,
anchor_ratios = self.params.anchor_ratios,
normalizations=self.params.normalizations,
is_training=is_training,
dropout_keep_prob=dropout_keep_prob,
reuse=reuse,
scope=scope)
# Update feature shapes (try at least!)
def arg_scope(self, weight_decay=0.0005, data_format='NHWC'):
"""Network arg_scope.
"""
return ssd_arg_scope(weight_decay, data_format=data_format)
def arg_scope_caffe(self, caffe_scope):
"""Caffe arg_scope used for weights importing.
"""
return ssd_arg_scope_caffe(caffe_scope)
# ======================================================================= #
'''
def update_feature_shapes(self, predictions):
"""Update feature shapes from predictions collection (Tensor or Numpy
array).
"""
shapes = ssd_feat_shapes_from_net(predictions, self.params.feat_shapes)
self.params = self.params._replace(feat_shapes=shapes)
'''
def anchors(self, img_shape, dtype=np.float32):
"""Compute the default anchor boxes, given an image shape.
"""
return textbox_achor_all_layers(img_shape,
self.params.feat_shapes,
self.params.anchor_ratios,
self.params.anchor_sizes,
self.params.anchor_steps,
self.params.scales,
0.5,
dtype)
def bboxes_encode(self,glabels, bboxes, anchors, gxs, gys,
scope='text_bboxes_encode'):
"""Encode labels and bounding boxes.
"""
return textbox_common.tf_text_bboxes_encode(
glabels, bboxes, anchors, gxs, gys,
matching_threshold=0.5,
prior_scaling=self.params.prior_scaling,
scope=scope)
def losses(self, logits, localisations,
glabels,
glocalisations, gscores,
match_threshold=0.5,
negative_ratio=3.,
alpha=0.2,
label_smoothing=0.,
batch_size=16,
scope='txt_losses'):
"""Define the SSD network losses.
"""
return ssd_losses(logits, localisations,
glabels,
glocalisations, gscores,
match_threshold=match_threshold,
negative_ratio=negative_ratio,
alpha=alpha,
label_smoothing=label_smoothing,
batch_size = batch_size,
scope=scope)
def text_multibox_layer(layer,
inputs,
anchor_size,
anchor_ratio,
normalization=-1):
"""
Construct a multibox layer, return a class and localization predictions.
The most different between textbox and ssd is the prediction shape
where textbox has prediction score shape (48,48,2,6)
and location has shape (48,48,2,6,12)
besise,the kernel for every layer same
"""
net = inputs
if normalization > 0:
net = custom_layers.l2_normalization(net, scaling=True)
# Number of anchors.
num_anchors = len(anchor_ratio) + len(anchor_size)
num_classes = 2
# Location.
# location 4+8
num_prior_per_location = 2 * num_anchors
num_loc_pred = num_prior_per_location* 12
# num_loc_pred = num_prior_per_location * 4
#240/12 = 20 = num_prior_per_location
# if(layer == 'conv11'):
# loc_pred = slim.conv2d(net, num_loc_pred, [1, 1], activation_fn=None, padding = 'VALID',
# scope='conv_loc')
# else:
loc_pred = slim.conv2d(net, num_loc_pred, [3, 5], activation_fn=None, padding='SAME', scope='conv_loc')
# loc_pred = custom_layers.channel_to_last(loc_pred)
loc_pred = slim.flatten(loc_pred)
l_shape = loc_pred.shape
batch_size = l_shape[0]
loc_pred = tf.reshape(loc_pred, [batch_size, -1, 12])
# loc_pred = tf.reshape(loc_pred, [1, -1, 2])
# loc_pred = tf.reshape(loc_pred, loc_pred.get_shape().as_list()[:-1] + [2, num_anchors, 12])
# loc_pred = tf.reshape(loc_pred, loc_pred.get_shape().as_list()[:-1] + [2, num_anchors, 4])
# Class prediction.
scores_pred = num_prior_per_location * num_classes
# scores_pred = num_classes
# scores_pred = 40
# if(layer == 'conv11'):
# sco_pred = slim.conv2d(net, scores_pred, [1, 1], activation_fn=None, padding = 'VALID',
# scope='conv_cls')
# else:
sco_pred = slim.conv2d(net, scores_pred, [3, 5], activation_fn=None, padding='SAME',scope='conv_cls')
# cls_pred = custom_layers.channel_to_last(cls_pred)
# sco_pred = tf.reshape(sco_pred, sco_pred.get_shape().as_list()[:-1] + [2, num_anchors, num_classes])
sco_pred = slim.flatten(sco_pred)
sco_pred = tf.reshape(sco_pred, [batch_size, -1 ,2])
return sco_pred, loc_pred
def text_net(inputs,
feat_layers=TextboxNet.default_params.feat_layers,
anchor_sizes=TextboxNet.default_params.anchor_sizes,
anchor_ratios = TextboxNet.default_params.anchor_ratios,
normalizations=TextboxNet.default_params.normalizations,
is_training=True,
dropout_keep_prob=0.5,
reuse=None,
scope='text_box_384'):
end_points = {}
with tf.variable_scope(scope, 'text_box_300', [inputs], reuse=reuse): # 300*300 384*383
# Original VGG-16 blocks.
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') # 300 384
end_points['conv1'] = net
net = slim.max_pool2d(net, [2, 2], scope='pool1') # 150
# Block 2.
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') # 150 192
end_points['conv2'] = net
net = slim.max_pool2d(net, [2, 2], scope='pool2') # 75
# Block 3.
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') # 75 81
end_points['conv3'] = net
net = slim.max_pool2d(net, [2, 2], scope='pool3') # 38
# Block 4.
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') # 38 40
end_point = 'conv4'
end_points[end_point] = net
net = slim.max_pool2d(net, [2, 2], scope='pool4') # 19
# Block 5.
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') # 19
end_points['conv5'] = net
net = slim.max_pool2d(net, [3, 3], stride=1, scope='pool5') # 19
# Additional SSD blocks.
# Block 6: let's dilate the hell out of it!
net = slim.conv2d(net, 1024, [3, 3], rate=6, scope='conv6') # 19
end_points['conv6'] = net
# Block 7: 1x1 conv. Because the fuck.
net = slim.conv2d(net, 1024, [1, 1], scope='conv7') # 19
end_point = 'conv7'
end_points[end_point] = net
# Block 8/9/10/11: 1x1 and 3x3 convolutions stride 2
end_point = 'conv8'
with tf.variable_scope(end_point):
net = slim.conv2d(net, 256, [1, 1], scope='conv1x1')
net = custom_layers.pad2d(net, pad=(1, 1))
net = slim.conv2d(net, 512, [3, 3], stride=2, scope='conv3x3', padding='VALID')
end_points[end_point] = net # 10
end_point = 'conv9'
with tf.variable_scope(end_point):
net = slim.conv2d(net, 128, [1, 1], scope='conv1x1')
net = custom_layers.pad2d(net, pad=(1, 1))
net = slim.conv2d(net, 256, [3, 3], stride=2, scope='conv3x3', padding='VALID')
end_points[end_point] = net # 5
end_point = 'conv10'
with tf.variable_scope(end_point):
net = slim.conv2d(net, 128, [1, 1], scope='conv1x1', padding= 'VALID')
net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID')
end_points[end_point] = net # 3
end_point = 'conv11'
with tf.variable_scope(end_point):
net = slim.conv2d(net, 128, [1, 1], scope='conv1x1')
net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID')
end_points[end_point] = net #
end_point = feat_layers[0]
with tf.variable_scope(end_point):
net_dilation1 = slim.conv2d(end_points[end_point], 128, [3, 3], stride=1, scope='dilation1')
# net_dilation2 = custom_layers.pad2d(net, pad=(0, 4))
net_dilation2 = slim.conv2d(end_points[end_point], 128, [1, 9], padding='SAME', stride=1, scope='dilation2')
net_dilation3 = slim.conv2d(end_points[end_point], 128, [9, 1], stride=1, padding='SAME', scope='dilation3')
# net_dilation3 = custom_layers.pad2d(net_dilation3, pad=(4, 0))
net_inception = tf.concat(values=[net_dilation1, net_dilation2, net_dilation3], axis=3)
end_points[end_point] = net_inception
end_point= feat_layers[1]
with tf.variable_scope(end_point):
net_dilation1 = slim.conv2d(end_points[end_point], 1024, [1, 1], stride=1, scope='dilation1')
net_dilation2 = slim.conv2d(end_points[end_point], 1024, [1, 7], stride=1, scope='dilation2')
# net_dilation2 = custom_layers.pad2d(net_dilation2, pad=(0, 3))
net_dilation3 = slim.conv2d(end_points[end_point], 1024, [7, 1], stride=1, scope='dilation3')
# net_dilation3 = custom_layers.pad2d(net_dilation3, pad=(3, 0))
net_inception = tf.concat([net_dilation1, net_dilation2, net_dilation3], axis=3)
end_points[end_point] = net_inception
end_point = 'conv8'
with tf.variable_scope(end_point):
net_dilation1 = slim.conv2d(end_points[end_point], 128, [1, 1], stride=1,scope='dilation1')
net_dilation2 = slim.conv2d(end_points[end_point], 128, [1, 7], stride=1, scope='dilation2')
# net_dilation2 = custom_layers.pad2d(net_dilation2, pad=(0, 3))
net_dilation3 = slim.conv2d(end_points[end_point], 128, [7, 1], stride=1, scope='dilation3')
# net_dilation3 = custom_layers.pad2d(net_dilation3, pad=(3, 0))
net_inception = tf.concat([net_dilation1, net_dilation2, net_dilation3], axis=3)
end_points[end_point] = net_inception
end_point = feat_layers[3]
with tf.variable_scope(end_point):
net_dilation1 = slim.conv2d(end_points[end_point], 128, [1, 1], stride=1,scope='dilation1')
net_dilation2 = slim.conv2d(end_points[end_point], 128, [1, 7], stride=1, scope='dilation2')
# net_dilation2 = custom_layers.pad2d(net_dilation2, pad=(0, 3))
net_dilation3 = slim.conv2d(end_points[end_point], 128, [7, 1], stride=1, scope='dilation3')
# net_dilation3 = custom_layers.pad2d(net_dilation3, pad=(3, 0))
net_inception = tf.concat([net_dilation1, net_dilation2, net_dilation3], axis=3)
end_points[end_point] = net_inception # 5
end_point = 'conv10'
with tf.variable_scope(end_point):
net_dilation1 = slim.conv2d(end_points[end_point], 128, [1, 1], stride=1, scope='dilation1')
net_dilation2 = slim.conv2d(end_points[end_point], 128, [1, 7], stride=1, scope='dilation2')
# net_dilation2 = custom_layers.pad2d(net_dilation2, pad=(0, 3))
net_dilation3 = slim.conv2d(end_points[end_point], 128, [7, 1], stride=1, scope='dilation3')
# net_dilation3 = custom_layers.pad2d(net_dilation3, pad=(3, 0))
net_inception = tf.concat([net_dilation1, net_dilation2, net_dilation3], axis=3)
end_points[end_point] = net_inception # 3
end_point = 'conv11'
with tf.variable_scope(end_point):
net_dilation1 = slim.conv2d(end_points[end_point], 128, [1, 1], stride=1,scope='dilation1')
net_dilation2 = slim.conv2d(end_points[end_point], 128, [1, 5], stride=1, scope='dilation2')
# net_dilation2 = custom_layers.pad2d(net_dilation2, pad=(0, 2))
net_dilation3 = slim.conv2d(end_points[end_point], 128, [5, 1], stride=1, scope='dilation3')
# net_dilation3 = custom_layers.pad2d(net_dilation3, pad=(2, 0))
net_inception = tf.concat([net_dilation1, net_dilation2, net_dilation3], axis=3)
end_points[end_point] = net_inception # 1
# Prediction and localisations layers.
predictions = []
logits = []
localisations = []
for i, layer in enumerate(feat_layers):
with tf.variable_scope(layer + '_box'):
p, loc = text_multibox_layer(layer,
end_points[layer],
anchor_sizes[i],
anchor_ratios[i],
normalizations[i])
prediction_fn = slim.softmax
predictions.append(prediction_fn(p))
logits.append(p)
localisations.append(loc)
return predictions, localisations, logits, end_points
## produce anchor for one layer
# each feature point has 12 default textboxes(6 boxes + 6 offsets boxes)
# aspect ratios = (1,2,3,5,1/2,1/3, 1/5)
# feat_size :
# conv4_3 ==> 38 x 38
# fc7 ==> 19 x 19
# conv6_2 ==> 10 x 10
# conv7_2 ==> 5 x 5
# conv8_2 ==> 3 x 3
# pool6 ==> 1 x 1
"""Computer TextBoxes++ default anchor boxes for one feature layer.
Determine the relative position grid of the centers, and the relative
width and height.
Arguments:
feat_shape: Feature shape, used for computing relative position grids;
ratios: Ratios to use on these features;
img_shape: Image shape, used for computing height, width relatively to the
former;
offset: Grid offset.
Return:
y, x, h, w: Relative x and y grids, and height and width.
"""
def textbox_anchor_one_layer(img_shape,
feat_size,
ratios,
size,
step,
scale,
offset=0.5,
dtype=np.float32):
# Follow the papers scheme
# 12 ahchor boxes with out sk' = sqrt(sk * sk+1)
# size_h = img_shape[0] / 384
# size_w = img_shape[1] / 384
#
# feat_size_h = feat_size[0] * size_h
# feat_size_w = feat_size[1] * size_w
y, x = np.mgrid[0:feat_size[0], 0:feat_size[1]] + 0.5
y_offset = (y.astype(dtype) + 0.5) * step / img_shape[0]
y = y.astype(dtype) * step / img_shape[0]
x = x.astype(dtype) * step / img_shape[1]
x_offset = x
#38,38,2 origin and offset
x_out = np.stack((x, x_offset), -1)
y_out = np.stack((y, y_offset), -1)
# add dims
y_out = np.expand_dims(y_out, axis=-1)
x_out = np.expand_dims(x_out, axis=-1)
#
num_anchors = len(ratios) + len(size)
h = np.zeros((num_anchors,), dtype=dtype)
w = np.zeros((num_anchors,), dtype=dtype)
# first prior
h[0] = size[0] / img_shape[0]
w[0] = size[0] / img_shape[1]
di = 1
if len(size) > 1:
h[1] = math.sqrt(size[0] * size[1]) / img_shape[0]
w[1] = math.sqrt(size[0] * size[1]) / img_shape[1]
di += 1
for i, r in enumerate(ratios):
h[i+di] = size[0] / img_shape[0] /math.sqrt(r)
w[i+di] = size[0] / img_shape[1] * math.sqrt(r)
# h[i] = scale / math.sqrt(r) / feat_size[0]
# w[i] = scale * math.sqrt(r) / feat_size[1]
xmin = x_out - w/2
ymin = y_out - h/2
xmax = x_out + w/2
ymax = y_out + h/2
xmin = xmin.reshape([xmin.shape[0], xmin.shape[1], -1], order='F').reshape(-1)
ymin = ymin.reshape([ymin.shape[0], ymin.shape[1], -1], order='F').reshape(-1)
xmax = xmax.reshape([xmax.shape[0], xmax.shape[1], -1], order='F').reshape(-1)
ymax = ymax.reshape([ymax.shape[0], ymax.shape[1], -1], order='F').reshape(-1)
return xmin, ymin, xmax, ymax
## produce anchor for all layers
def ssd_arg_scope(weight_decay=0.0005, data_format='NHWC'):
"""Defines the VGG arg scope.
Args:
weight_decay: The l2 regularization coefficient.
Returns:
An arg_scope.
"""
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.contrib.layers.xavier_initializer(),
biases_initializer=tf.zeros_initializer()):
with slim.arg_scope([slim.conv2d, slim.max_pool2d],
padding='SAME',
data_format=data_format):
with slim.arg_scope([custom_layers.pad2d,
custom_layers.l2_normalization,
custom_layers.channel_to_last],
data_format=data_format) as sc:
return sc
def textbox_achor_all_layers(img_shape,
layers_shape,
anchor_ratios,
anchor_sizes,
anchor_steps,
scales,
offset=0.5,
dtype=np.float32):
"""
Compute anchor boxes for all feature layers.
"""
layers_anchors = []
for i, s in enumerate(layers_shape):
anchor_bboxes = textbox_anchor_one_layer(img_shape, s,
anchor_ratios[i],
anchor_sizes[i],
anchor_steps[i],
scales[i],
offset=offset, dtype=dtype)
layers_anchors.append(anchor_bboxes)
return layers_anchors
# =========================================================================== #
# Caffe scope: importing weights at initialization.
# =========================================================================== #
def ssd_arg_scope_caffe(caffe_scope):
"""Caffe scope definition.
Args:
caffe_scope: Caffe scope object with loaded weights.
Returns:
An arg_scope.
"""
# Default network arg scope.
with slim.arg_scope([slim.conv2d],
activation_fn=tf.nn.relu,
weights_initializer=caffe_scope.conv_weights_init(),
biases_initializer=caffe_scope.conv_biases_init()):
with slim.arg_scope([slim.fully_connected],
activation_fn=tf.nn.relu):
with slim.arg_scope([custom_layers.l2_normalization],
scale_initializer=caffe_scope.l2_norm_scale_init()):
with slim.arg_scope([slim.conv2d, slim.max_pool2d],
padding='SAME') as sc:
return sc
# =========================================================================== #
# Text loss function.
# =========================================================================== #
def ssd_losses(logits, localisations,glabels,
glocalisations, gscores,
match_threshold=0.5,
negative_ratio=3.,
alpha=0.2,
label_smoothing=0.,
batch_size=16,
scope=None):
'''Loss functions for training the text box network.
Arguments:
logits: (list of) predictions logits Tensors; x
localisations: (list of) localisations Tensors; l
glocalisations: (list of) groundtruth localisations Tensors; g
gscores: (list of) groundtruth score Tensors; c
'''
# from ssd loss
with tf.name_scope(scope, 'txt_losses'):
lshape = tfe.get_shape(logits[0], 5)
num_classes = lshape[-1]
batch_size = batch_size
l_cross_pos = []
l_cross_neg = []
l_loc = []
# Flatten out all vectors!
flogits = logits
fgscores = gscores
flocalisations = localisations
fglocalisations = glocalisations
fglabels = glabels
# for i in range(len(logits)):
# flogits.append(tf.reshape(logits[i], [-1, num_classes]))
# fgscores.append(tf.reshape(gscores[i], [-1]))
# fglabels.append(tf.reshape(glabels[i], [-1]))
# flocalisations.append(tf.reshape(localisations[i], [-1, 12]))
# fglocalisations.append(tf.reshape(glocalisations[i], [-1, 12]))
# And concat the crap!
glabels = tf.concat(fglabels, axis=1)
logits = tf.concat(flogits, axis=1) # x
gscores = tf.concat(fgscores, axis=1) # c
localisations = tf.concat(flocalisations, axis=1) # l
glocalisations = tf.concat(fglocalisations, axis=1) # g
dtype = logits.dtype
# Compute positive matching mask...
pmask = gscores > match_threshold # positive mask
# pmask = tf.concat(axis=0, values=[pmask[:tf.argmax(gscores, axis=0)], [True], pmask[tf.argmax(gscores, axis=0) + 1:]])
ipmask = tf.cast(pmask, tf.int32) # int positive mask
fpmask = tf.cast(pmask, dtype) # float positive mask
n_positives = tf.reduce_sum(fpmask) # calculate all number
# Hard negative mining...
# conf loss ??
no_classes = tf.cast(pmask, tf.int32)
predictions = slim.softmax(logits) #
nmask = tf.logical_and(tf.logical_not(pmask),
gscores > -0.5) #
fnmask = tf.cast(nmask, dtype)
nvalues = tf.where(nmask,
predictions[:, :, 0],
1. - fnmask)
nvalues_flat = tf.reshape(nvalues, [-1])
# Number of negative entries to select.
max_neg_entries = tf.cast(tf.reduce_sum(fnmask), tf.int32)
n_neg = tf.cast(negative_ratio * n_positives, tf.int32) + batch_size
n_neg = tf.minimum(n_neg, max_neg_entries)
val, idxes = tf.nn.top_k(-nvalues_flat, k=n_neg)
max_hard_pred = -val[-1]
# Final negative mask.
nmask = tf.logical_and(nmask, nvalues < max_hard_pred)
fnmask = tf.cast(nmask, dtype)
inmask = tf.cast(nmask, tf.int32)
# Add cross-entropy loss.
# logits [batch_size, num_classes] labels [batch_size] ~ 0,num_class
with tf.name_scope('cross_entropy_pos'):
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=glabels)
loss = tf.div(tf.reduce_sum(loss * fpmask), batch_size, name='value')
tf.losses.add_loss(loss)
l_cross_pos.append(loss)
with tf.name_scope('cross_entropy_neg'):
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
labels=no_classes)
loss = tf.div(tf.reduce_sum(loss * fnmask), batch_size, name='value')
tf.losses.add_loss(loss)
l_cross_neg.append(loss)
# Add localization loss: smooth L1, L2, ...
with tf.name_scope('localization'):
# Weights Tensor: positive mask + random negative.
weights = tf.expand_dims(alpha * fpmask, axis=-1)
# localisations = tf.Print(localisations, [localisations, tf.shape(localisations)], "pre is: ", summarize=20)
# glocalisations = tf.Print(glocalisations, [glocalisations, tf.shape(glocalisations)], "gt is : ",summarize=20)
loss = custom_layers.abs_smooth(localisations - glocalisations)
loss = tf.div(tf.reduce_sum(loss * weights), batch_size, name='value')
tf.losses.add_loss(loss)
l_loc.append(loss)
with tf.name_scope('total'):
total_cross_pos = tf.add_n(l_cross_pos, 'cross_entropy_pos')
total_cross_neg = tf.add_n(l_cross_neg, 'cross_entropy_neg')
total_cross = tf.add(total_cross_pos, total_cross_neg, 'cross_entropy')
total_loc = tf.add_n(l_loc, 'localization')
# Add to EXTRA LOSSES TF.collection
tf.add_to_collection('EXTRA_LOSSES', total_cross_pos)
tf.add_to_collection('EXTRA_LOSSES', total_cross_neg)
tf.add_to_collection('EXTRA_LOSSES', total_cross)
tf.add_to_collection('EXTRA_LOSSES', total_loc)
# with tf.name_scope(scope, 'txt_losses'):
# l_cross_pos = []
# l_cross_neg = []
# l_loc = []
# tf.logging.info('logits len:',len(logits), logits)
# for i in range(len(logits)):
# dtype = logits[i].dtype
# with tf.name_scope('block_%i' % i):
#
# # Determine weights Tensor.
# pmask = gscores[i] > match_threshold
# ipmask = tf.cast(pmask, tf.int32)
# fpmask = tf.cast(pmask, dtype)
# n_positives = tf.reduce_sum(fpmask)
#
# # Negative mask
# # Number of negative entries to select.
# n_neg = tf.cast(negative_ratio * n_positives, tf.int32)
#
# nvalues = tf.where(tf.cast(1-ipmask,tf.bool), gscores[i], np.zeros(gscores[i].shape))
# nvalues_flat = tf.reshape(nvalues, [-1])
# val, idxes = tf.nn.top_k(nvalues_flat, k=n_neg)
# minval = val[-1]
# # Final negative mask.
# nmask = nvalues > minval
# fnmask = tf.cast(nmask, dtype)
# inmask = tf.cast(nmask, tf.int32)
# # Add cross-entropy loss.
# with tf.name_scope('cross_entropy_pos'):
# loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits[i],
# labels=ipmask)
# loss = tf.losses.compute_weighted_loss(loss, fpmask)
# l_cross_pos.append(loss)
#
# with tf.name_scope('cross_entropy_neg'):
# loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits[i],
# labels=inmask)
# loss = tf.losses.compute_weighted_loss(loss, fnmask)
# l_cross_neg.append(loss)
#
# # Add localization loss: smooth L1, L2, ...
# with tf.name_scope('localization'):
# # Weights Tensor: positive mask + random negative.
# weights = tf.expand_dims(alpha * fpmask, axis=-1)
# loss = custom_layers.abs_smooth(localisations[i] - glocalisations[i])
# loss = tf.losses.compute_weighted_loss(loss, weights)
# l_loc.append(loss)
#
# # Additional total losses...
# with tf.name_scope('total'):
# total_cross_pos = tf.add_n(l_cross_pos, 'cross_entropy_pos')
# total_cross_neg = tf.add_n(l_cross_neg, 'cross_entropy_neg')
# total_cross = tf.add(total_cross_pos, total_cross_neg, 'cross_entropy')
# total_loc = tf.add_n(l_loc, 'localization')
#
# # Add to EXTRA LOSSES TF.collection
# tf.add_to_collection('EXTRA_LOSSES', total_cross_pos)
# tf.add_to_collection('EXTRA_LOSSES', total_cross_neg)
# tf.add_to_collection('EXTRA_LOSSES', total_cross)
# tf.add_to_collection('EXTRA_LOSSES', total_loc)
# with tf.name_scope(scope, 'txt_losses'):
# l_cross_pos = []
# l_cross_neg = []
# l_loc = []
# for i in range(len(logits)):
# dtype = logits[i].dtype
# with tf.name_scope('block_%i' % i):
# # Sizing weight...
#
# wsize = tfe.get_shape(logits[i], rank=5)
# wsize = wsize[1] * wsize[2] * wsize[3]
#
# # Positive mask.
# pmask = gscores[i] > match_threshold
# fpmask = tf.cast(pmask, dtype)
# ipmask = tf.cast(fpmask, 'int32')
# n_positives = tf.reduce_sum(fpmask)
#
# # Negative mask.
# no_classes = tf.cast(pmask, tf.int32)
# predictions = slim.softmax(logits[i])
# nmask = tf.logical_and(tf.logical_not(pmask),
# gscores[i] > -0.5)
# fnmask = tf.cast(nmask, dtype)
# print('nmask',nmask)
# print('preditions', predictions)
# predictions_low = predictions[:, :, :, :, :, 0]
# print('fnmask', 1.-fnmask)
# nvalues = tf.where(nmask,
# predictions_low,
# 1. - fnmask)
# nvalues_flat = tf.reshape(nvalues, [-1])
# # Number of negative entries to select.
# n_neg = tf.cast(negative_ratio * n_positives, tf.int32)
# n_neg = tf.maximum(n_neg, tf.size(nvalues_flat) // 8)
# n_neg = tf.maximum(n_neg, tf.shape(nvalues)[0] * 4)
# max_neg_entries = 1 + tf.cast(tf.reduce_sum(fnmask), tf.int32)
# n_neg = tf.minimum(n_neg, max_neg_entries)
#
# val, idxes = tf.nn.top_k(-nvalues_flat, k=n_neg)
# max_hard_pred = -val[-1]
# # Final negative mask.
# nmask = tf.logical_and(nmask, nvalues < max_hard_pred)
# fnmask = tf.cast(nmask, dtype)
#
# # Add cross-entropy loss.
# with tf.name_scope('cross_entropy_pos'):
# fpmask = wsize * fpmask
# loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits[i],
# labels=ipmask)
# loss = tf.losses.compute_weighted_loss(loss, fpmask)
# l_cross_pos.append(loss)
#
# with tf.name_scope('cross_entropy_neg'):
# fnmask = wsize * fnmask
# loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits[i],
# labels=no_classes)
# loss = tf.losses.compute_weighted_loss(loss, fnmask)
# l_cross_neg.append(loss)
#
# # Add localization loss: smooth L1, L2, ...
# with tf.name_scope('localization'):
# # Weights Tensor: positive mask + random negative.
# weights = tf.expand_dims(alpha * fpmask, axis=-1)
# loss = custom_layers.abs_smooth(localisations[i] - glocalisations[i])
# loss = tf.losses.compute_weighted_loss(loss, weights)
# l_loc.append(loss)
#
# # Additional total losses...
# with tf.name_scope('total'):
# total_cross_pos = tf.add_n(l_cross_pos, 'cross_entropy_pos')
# total_cross_neg = tf.add_n(l_cross_neg, 'cross_entropy_neg')
# total_cross = tf.add(total_cross_pos, total_cross_neg, 'cross_entropy')
# total_loc = tf.add_n(l_loc, 'localization')
#
# # Add to EXTRA LOSSES TF.collection
# tf.add_to_collection('EXTRA_LOSSES', total_cross_pos)
# tf.add_to_collection('EXTRA_LOSSES', total_cross_neg)
# tf.add_to_collection('EXTRA_LOSSES', total_cross)
# tf.add_to_collection('EXTRA_LOSSES', total_loc)
|
[
"tensorflow.contrib.layers.xavier_initializer",
"tensorflow.reduce_sum",
"nets.custom_layers.abs_smooth",
"tensorflow.reshape",
"tensorflow.contrib.slim.softmax",
"tensorflow.contrib.slim.l2_regularizer",
"tensorflow.contrib.slim.conv2d",
"tensorflow.add_n",
"tensorflow.losses.add_loss",
"tensorflow.logical_and",
"tensorflow.nn.top_k",
"tensorflow.variable_scope",
"tensorflow.concat",
"tensorflow.minimum",
"nets.textbox_common.tf_text_bboxes_encode",
"tf_extended.get_shape",
"tensorflow.cast",
"tensorflow.name_scope",
"numpy.stack",
"nets.custom_layers.l2_normalization",
"tensorflow.contrib.slim.arg_scope",
"math.sqrt",
"tensorflow.add",
"tensorflow.contrib.slim.repeat",
"tensorflow.where",
"tensorflow.contrib.slim.max_pool2d",
"nets.custom_layers.pad2d",
"tensorflow.zeros_initializer",
"tensorflow.contrib.slim.flatten",
"tensorflow.expand_dims",
"numpy.zeros",
"numpy.expand_dims",
"tensorflow.add_to_collection",
"tensorflow.logical_not",
"collections.namedtuple",
"tensorflow.nn.sparse_softmax_cross_entropy_with_logits"
] |
[((590, 806), 'collections.namedtuple', 'namedtuple', (['"""TextboxParameters"""', "['img_shape', 'num_classes', 'feat_layers', 'feat_shapes', 'scale_range',\n 'anchor_ratios', 'anchor_sizes', 'anchor_steps', 'normalizations',\n 'prior_scaling', 'step', 'scales']"], {}), "('TextboxParameters', ['img_shape', 'num_classes', 'feat_layers',\n 'feat_shapes', 'scale_range', 'anchor_ratios', 'anchor_sizes',\n 'anchor_steps', 'normalizations', 'prior_scaling', 'step', 'scales'])\n", (600, 806), False, 'from collections import namedtuple\n'), ((7157, 7253), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['net', 'num_loc_pred', '[3, 5]'], {'activation_fn': 'None', 'padding': '"""SAME"""', 'scope': '"""conv_loc"""'}), "(net, num_loc_pred, [3, 5], activation_fn=None, padding='SAME',\n scope='conv_loc')\n", (7168, 7253), True, 'import tensorflow.contrib.slim as slim\n'), ((7318, 7340), 'tensorflow.contrib.slim.flatten', 'slim.flatten', (['loc_pred'], {}), '(loc_pred)\n', (7330, 7340), True, 'import tensorflow.contrib.slim as slim\n'), ((7407, 7449), 'tensorflow.reshape', 'tf.reshape', (['loc_pred', '[batch_size, -1, 12]'], {}), '(loc_pred, [batch_size, -1, 12])\n', (7417, 7449), True, 'import tensorflow as tf\n'), ((8009, 8104), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['net', 'scores_pred', '[3, 5]'], {'activation_fn': 'None', 'padding': '"""SAME"""', 'scope': '"""conv_cls"""'}), "(net, scores_pred, [3, 5], activation_fn=None, padding='SAME',\n scope='conv_cls')\n", (8020, 8104), True, 'import tensorflow.contrib.slim as slim\n'), ((8273, 8295), 'tensorflow.contrib.slim.flatten', 'slim.flatten', (['sco_pred'], {}), '(sco_pred)\n', (8285, 8295), True, 'import tensorflow.contrib.slim as slim\n'), ((8309, 8350), 'tensorflow.reshape', 'tf.reshape', (['sco_pred', '[batch_size, -1, 2]'], {}), '(sco_pred, [batch_size, -1, 2])\n', (8319, 8350), True, 'import tensorflow as tf\n'), ((17412, 17439), 'numpy.stack', 'np.stack', (['(x, x_offset)', '(-1)'], {}), '((x, x_offset), -1)\n', (17420, 17439), True, 'import numpy as np\n'), ((17450, 17477), 'numpy.stack', 'np.stack', (['(y, y_offset)', '(-1)'], {}), '((y, y_offset), -1)\n', (17458, 17477), True, 'import numpy as np\n'), ((17501, 17531), 'numpy.expand_dims', 'np.expand_dims', (['y_out'], {'axis': '(-1)'}), '(y_out, axis=-1)\n', (17515, 17531), True, 'import numpy as np\n'), ((17542, 17572), 'numpy.expand_dims', 'np.expand_dims', (['x_out'], {'axis': '(-1)'}), '(x_out, axis=-1)\n', (17556, 17572), True, 'import numpy as np\n'), ((17625, 17662), 'numpy.zeros', 'np.zeros', (['(num_anchors,)'], {'dtype': 'dtype'}), '((num_anchors,), dtype=dtype)\n', (17633, 17662), True, 'import numpy as np\n'), ((17669, 17706), 'numpy.zeros', 'np.zeros', (['(num_anchors,)'], {'dtype': 'dtype'}), '((num_anchors,), dtype=dtype)\n', (17677, 17706), True, 'import numpy as np\n'), ((5186, 5345), 'nets.textbox_common.tf_text_bboxes_encode', 'textbox_common.tf_text_bboxes_encode', (['glabels', 'bboxes', 'anchors', 'gxs', 'gys'], {'matching_threshold': '(0.5)', 'prior_scaling': 'self.params.prior_scaling', 'scope': 'scope'}), '(glabels, bboxes, anchors, gxs, gys,\n matching_threshold=0.5, prior_scaling=self.params.prior_scaling, scope=\n scope)\n', (5222, 5345), False, 'from nets import textbox_common\n'), ((6612, 6661), 'nets.custom_layers.l2_normalization', 'custom_layers.l2_normalization', (['net'], {'scaling': '(True)'}), '(net, scaling=True)\n', (6642, 6661), False, 'from nets import custom_layers\n'), ((8836, 8899), 'tensorflow.variable_scope', 'tf.variable_scope', (['scope', '"""text_box_300"""', '[inputs]'], {'reuse': 'reuse'}), "(scope, 'text_box_300', [inputs], reuse=reuse)\n", (8853, 8899), True, 'import tensorflow as tf\n'), ((8958, 9020), 'tensorflow.contrib.slim.repeat', 'slim.repeat', (['inputs', '(2)', 'slim.conv2d', '(64)', '[3, 3]'], {'scope': '"""conv1"""'}), "(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')\n", (8969, 9020), True, 'import tensorflow.contrib.slim as slim\n'), ((9070, 9113), 'tensorflow.contrib.slim.max_pool2d', 'slim.max_pool2d', (['net', '[2, 2]'], {'scope': '"""pool1"""'}), "(net, [2, 2], scope='pool1')\n", (9085, 9113), True, 'import tensorflow.contrib.slim as slim\n'), ((9144, 9204), 'tensorflow.contrib.slim.repeat', 'slim.repeat', (['net', '(2)', 'slim.conv2d', '(128)', '[3, 3]'], {'scope': '"""conv2"""'}), "(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')\n", (9155, 9204), True, 'import tensorflow.contrib.slim as slim\n'), ((9254, 9297), 'tensorflow.contrib.slim.max_pool2d', 'slim.max_pool2d', (['net', '[2, 2]'], {'scope': '"""pool2"""'}), "(net, [2, 2], scope='pool2')\n", (9269, 9297), True, 'import tensorflow.contrib.slim as slim\n'), ((9327, 9387), 'tensorflow.contrib.slim.repeat', 'slim.repeat', (['net', '(3)', 'slim.conv2d', '(256)', '[3, 3]'], {'scope': '"""conv3"""'}), "(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')\n", (9338, 9387), True, 'import tensorflow.contrib.slim as slim\n'), ((9435, 9478), 'tensorflow.contrib.slim.max_pool2d', 'slim.max_pool2d', (['net', '[2, 2]'], {'scope': '"""pool3"""'}), "(net, [2, 2], scope='pool3')\n", (9450, 9478), True, 'import tensorflow.contrib.slim as slim\n'), ((9508, 9568), 'tensorflow.contrib.slim.repeat', 'slim.repeat', (['net', '(3)', 'slim.conv2d', '(512)', '[3, 3]'], {'scope': '"""conv4"""'}), "(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')\n", (9519, 9568), True, 'import tensorflow.contrib.slim as slim\n'), ((9643, 9686), 'tensorflow.contrib.slim.max_pool2d', 'slim.max_pool2d', (['net', '[2, 2]'], {'scope': '"""pool4"""'}), "(net, [2, 2], scope='pool4')\n", (9658, 9686), True, 'import tensorflow.contrib.slim as slim\n'), ((9716, 9776), 'tensorflow.contrib.slim.repeat', 'slim.repeat', (['net', '(3)', 'slim.conv2d', '(512)', '[3, 3]'], {'scope': '"""conv5"""'}), "(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')\n", (9727, 9776), True, 'import tensorflow.contrib.slim as slim\n'), ((9821, 9874), 'tensorflow.contrib.slim.max_pool2d', 'slim.max_pool2d', (['net', '[3, 3]'], {'stride': '(1)', 'scope': '"""pool5"""'}), "(net, [3, 3], stride=1, scope='pool5')\n", (9836, 9874), True, 'import tensorflow.contrib.slim as slim\n'), ((9967, 10020), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['net', '(1024)', '[3, 3]'], {'rate': '(6)', 'scope': '"""conv6"""'}), "(net, 1024, [3, 3], rate=6, scope='conv6')\n", (9978, 10020), True, 'import tensorflow.contrib.slim as slim\n'), ((10107, 10152), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['net', '(1024)', '[1, 1]'], {'scope': '"""conv7"""'}), "(net, 1024, [1, 1], scope='conv7')\n", (10118, 10152), True, 'import tensorflow.contrib.slim as slim\n'), ((22300, 22334), 'tensorflow.name_scope', 'tf.name_scope', (['scope', '"""txt_losses"""'], {}), "(scope, 'txt_losses')\n", (22313, 22334), True, 'import tensorflow as tf\n'), ((22348, 22375), 'tf_extended.get_shape', 'tfe.get_shape', (['logits[0]', '(5)'], {}), '(logits[0], 5)\n', (22361, 22375), True, 'import tf_extended as tfe\n'), ((23031, 23058), 'tensorflow.concat', 'tf.concat', (['fglabels'], {'axis': '(1)'}), '(fglabels, axis=1)\n', (23040, 23058), True, 'import tensorflow as tf\n'), ((23071, 23097), 'tensorflow.concat', 'tf.concat', (['flogits'], {'axis': '(1)'}), '(flogits, axis=1)\n', (23080, 23097), True, 'import tensorflow as tf\n'), ((23116, 23143), 'tensorflow.concat', 'tf.concat', (['fgscores'], {'axis': '(1)'}), '(fgscores, axis=1)\n', (23125, 23143), True, 'import tensorflow as tf\n'), ((23168, 23201), 'tensorflow.concat', 'tf.concat', (['flocalisations'], {'axis': '(1)'}), '(flocalisations, axis=1)\n', (23177, 23201), True, 'import tensorflow as tf\n'), ((23227, 23261), 'tensorflow.concat', 'tf.concat', (['fglocalisations'], {'axis': '(1)'}), '(fglocalisations, axis=1)\n', (23236, 23261), True, 'import tensorflow as tf\n'), ((23524, 23548), 'tensorflow.cast', 'tf.cast', (['pmask', 'tf.int32'], {}), '(pmask, tf.int32)\n', (23531, 23548), True, 'import tensorflow as tf\n'), ((23582, 23603), 'tensorflow.cast', 'tf.cast', (['pmask', 'dtype'], {}), '(pmask, dtype)\n', (23589, 23603), True, 'import tensorflow as tf\n'), ((23644, 23665), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['fpmask'], {}), '(fpmask)\n', (23657, 23665), True, 'import tensorflow as tf\n'), ((23755, 23779), 'tensorflow.cast', 'tf.cast', (['pmask', 'tf.int32'], {}), '(pmask, tf.int32)\n', (23762, 23779), True, 'import tensorflow as tf\n'), ((23797, 23817), 'tensorflow.contrib.slim.softmax', 'slim.softmax', (['logits'], {}), '(logits)\n', (23809, 23817), True, 'import tensorflow.contrib.slim as slim\n'), ((23927, 23948), 'tensorflow.cast', 'tf.cast', (['nmask', 'dtype'], {}), '(nmask, dtype)\n', (23934, 23948), True, 'import tensorflow as tf\n'), ((23962, 24013), 'tensorflow.where', 'tf.where', (['nmask', 'predictions[:, :, 0]', '(1.0 - fnmask)'], {}), '(nmask, predictions[:, :, 0], 1.0 - fnmask)\n', (23970, 24013), True, 'import tensorflow as tf\n'), ((24075, 24100), 'tensorflow.reshape', 'tf.reshape', (['nvalues', '[-1]'], {}), '(nvalues, [-1])\n', (24085, 24100), True, 'import tensorflow as tf\n'), ((24289, 24323), 'tensorflow.minimum', 'tf.minimum', (['n_neg', 'max_neg_entries'], {}), '(n_neg, max_neg_entries)\n', (24299, 24323), True, 'import tensorflow as tf\n'), ((24342, 24377), 'tensorflow.nn.top_k', 'tf.nn.top_k', (['(-nvalues_flat)'], {'k': 'n_neg'}), '(-nvalues_flat, k=n_neg)\n', (24353, 24377), True, 'import tensorflow as tf\n'), ((24443, 24489), 'tensorflow.logical_and', 'tf.logical_and', (['nmask', '(nvalues < max_hard_pred)'], {}), '(nmask, nvalues < max_hard_pred)\n', (24457, 24489), True, 'import tensorflow as tf\n'), ((24502, 24523), 'tensorflow.cast', 'tf.cast', (['nmask', 'dtype'], {}), '(nmask, dtype)\n', (24509, 24523), True, 'import tensorflow as tf\n'), ((24536, 24560), 'tensorflow.cast', 'tf.cast', (['nmask', 'tf.int32'], {}), '(nmask, tf.int32)\n', (24543, 24560), True, 'import tensorflow as tf\n'), ((10304, 10332), 'tensorflow.variable_scope', 'tf.variable_scope', (['end_point'], {}), '(end_point)\n', (10321, 10332), True, 'import tensorflow as tf\n'), ((10344, 10390), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['net', '(256)', '[1, 1]'], {'scope': '"""conv1x1"""'}), "(net, 256, [1, 1], scope='conv1x1')\n", (10355, 10390), True, 'import tensorflow.contrib.slim as slim\n'), ((10401, 10437), 'nets.custom_layers.pad2d', 'custom_layers.pad2d', (['net'], {'pad': '(1, 1)'}), '(net, pad=(1, 1))\n', (10420, 10437), False, 'from nets import custom_layers\n'), ((10448, 10521), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['net', '(512)', '[3, 3]'], {'stride': '(2)', 'scope': '"""conv3x3"""', 'padding': '"""VALID"""'}), "(net, 512, [3, 3], stride=2, scope='conv3x3', padding='VALID')\n", (10459, 10521), True, 'import tensorflow.contrib.slim as slim\n'), ((10592, 10620), 'tensorflow.variable_scope', 'tf.variable_scope', (['end_point'], {}), '(end_point)\n', (10609, 10620), True, 'import tensorflow as tf\n'), ((10632, 10678), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['net', '(128)', '[1, 1]'], {'scope': '"""conv1x1"""'}), "(net, 128, [1, 1], scope='conv1x1')\n", (10643, 10678), True, 'import tensorflow.contrib.slim as slim\n'), ((10689, 10725), 'nets.custom_layers.pad2d', 'custom_layers.pad2d', (['net'], {'pad': '(1, 1)'}), '(net, pad=(1, 1))\n', (10708, 10725), False, 'from nets import custom_layers\n'), ((10736, 10809), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['net', '(256)', '[3, 3]'], {'stride': '(2)', 'scope': '"""conv3x3"""', 'padding': '"""VALID"""'}), "(net, 256, [3, 3], stride=2, scope='conv3x3', padding='VALID')\n", (10747, 10809), True, 'import tensorflow.contrib.slim as slim\n'), ((10879, 10907), 'tensorflow.variable_scope', 'tf.variable_scope', (['end_point'], {}), '(end_point)\n', (10896, 10907), True, 'import tensorflow as tf\n'), ((10919, 10982), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['net', '(128)', '[1, 1]'], {'scope': '"""conv1x1"""', 'padding': '"""VALID"""'}), "(net, 128, [1, 1], scope='conv1x1', padding='VALID')\n", (10930, 10982), True, 'import tensorflow.contrib.slim as slim\n'), ((10994, 11057), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['net', '(256)', '[3, 3]'], {'scope': '"""conv3x3"""', 'padding': '"""VALID"""'}), "(net, 256, [3, 3], scope='conv3x3', padding='VALID')\n", (11005, 11057), True, 'import tensorflow.contrib.slim as slim\n'), ((11128, 11156), 'tensorflow.variable_scope', 'tf.variable_scope', (['end_point'], {}), '(end_point)\n', (11145, 11156), True, 'import tensorflow as tf\n'), ((11168, 11214), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['net', '(128)', '[1, 1]'], {'scope': '"""conv1x1"""'}), "(net, 128, [1, 1], scope='conv1x1')\n", (11179, 11214), True, 'import tensorflow.contrib.slim as slim\n'), ((11225, 11288), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['net', '(256)', '[3, 3]'], {'scope': '"""conv3x3"""', 'padding': '"""VALID"""'}), "(net, 256, [3, 3], scope='conv3x3', padding='VALID')\n", (11236, 11288), True, 'import tensorflow.contrib.slim as slim\n'), ((11369, 11397), 'tensorflow.variable_scope', 'tf.variable_scope', (['end_point'], {}), '(end_point)\n', (11386, 11397), True, 'import tensorflow as tf\n'), ((11419, 11495), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[3, 3]'], {'stride': '(1)', 'scope': '"""dilation1"""'}), "(end_points[end_point], 128, [3, 3], stride=1, scope='dilation1')\n", (11430, 11495), True, 'import tensorflow.contrib.slim as slim\n'), ((11579, 11675), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[1, 9]'], {'padding': '"""SAME"""', 'stride': '(1)', 'scope': '"""dilation2"""'}), "(end_points[end_point], 128, [1, 9], padding='SAME', stride=1,\n scope='dilation2')\n", (11590, 11675), True, 'import tensorflow.contrib.slim as slim\n'), ((11694, 11790), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[9, 1]'], {'stride': '(1)', 'padding': '"""SAME"""', 'scope': '"""dilation3"""'}), "(end_points[end_point], 128, [9, 1], stride=1, padding='SAME',\n scope='dilation3')\n", (11705, 11790), True, 'import tensorflow.contrib.slim as slim\n'), ((11876, 11947), 'tensorflow.concat', 'tf.concat', ([], {'values': '[net_dilation1, net_dilation2, net_dilation3]', 'axis': '(3)'}), '(values=[net_dilation1, net_dilation2, net_dilation3], axis=3)\n', (11885, 11947), True, 'import tensorflow as tf\n'), ((12030, 12058), 'tensorflow.variable_scope', 'tf.variable_scope', (['end_point'], {}), '(end_point)\n', (12047, 12058), True, 'import tensorflow as tf\n'), ((12080, 12157), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(1024)', '[1, 1]'], {'stride': '(1)', 'scope': '"""dilation1"""'}), "(end_points[end_point], 1024, [1, 1], stride=1, scope='dilation1')\n", (12091, 12157), True, 'import tensorflow.contrib.slim as slim\n'), ((12180, 12257), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(1024)', '[1, 7]'], {'stride': '(1)', 'scope': '"""dilation2"""'}), "(end_points[end_point], 1024, [1, 7], stride=1, scope='dilation2')\n", (12191, 12257), True, 'import tensorflow.contrib.slim as slim\n'), ((12349, 12426), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(1024)', '[7, 1]'], {'stride': '(1)', 'scope': '"""dilation3"""'}), "(end_points[end_point], 1024, [7, 1], stride=1, scope='dilation3')\n", (12360, 12426), True, 'import tensorflow.contrib.slim as slim\n'), ((12518, 12582), 'tensorflow.concat', 'tf.concat', (['[net_dilation1, net_dilation2, net_dilation3]'], {'axis': '(3)'}), '([net_dilation1, net_dilation2, net_dilation3], axis=3)\n', (12527, 12582), True, 'import tensorflow as tf\n'), ((12661, 12689), 'tensorflow.variable_scope', 'tf.variable_scope', (['end_point'], {}), '(end_point)\n', (12678, 12689), True, 'import tensorflow as tf\n'), ((12713, 12789), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[1, 1]'], {'stride': '(1)', 'scope': '"""dilation1"""'}), "(end_points[end_point], 128, [1, 1], stride=1, scope='dilation1')\n", (12724, 12789), True, 'import tensorflow.contrib.slim as slim\n'), ((12811, 12887), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[1, 7]'], {'stride': '(1)', 'scope': '"""dilation2"""'}), "(end_points[end_point], 128, [1, 7], stride=1, scope='dilation2')\n", (12822, 12887), True, 'import tensorflow.contrib.slim as slim\n'), ((12979, 13055), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[7, 1]'], {'stride': '(1)', 'scope': '"""dilation3"""'}), "(end_points[end_point], 128, [7, 1], stride=1, scope='dilation3')\n", (12990, 13055), True, 'import tensorflow.contrib.slim as slim\n'), ((13147, 13211), 'tensorflow.concat', 'tf.concat', (['[net_dilation1, net_dilation2, net_dilation3]'], {'axis': '(3)'}), '([net_dilation1, net_dilation2, net_dilation3], axis=3)\n', (13156, 13211), True, 'import tensorflow as tf\n'), ((13297, 13325), 'tensorflow.variable_scope', 'tf.variable_scope', (['end_point'], {}), '(end_point)\n', (13314, 13325), True, 'import tensorflow as tf\n'), ((13347, 13423), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[1, 1]'], {'stride': '(1)', 'scope': '"""dilation1"""'}), "(end_points[end_point], 128, [1, 1], stride=1, scope='dilation1')\n", (13358, 13423), True, 'import tensorflow.contrib.slim as slim\n'), ((13445, 13521), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[1, 7]'], {'stride': '(1)', 'scope': '"""dilation2"""'}), "(end_points[end_point], 128, [1, 7], stride=1, scope='dilation2')\n", (13456, 13521), True, 'import tensorflow.contrib.slim as slim\n'), ((13613, 13689), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[7, 1]'], {'stride': '(1)', 'scope': '"""dilation3"""'}), "(end_points[end_point], 128, [7, 1], stride=1, scope='dilation3')\n", (13624, 13689), True, 'import tensorflow.contrib.slim as slim\n'), ((13779, 13843), 'tensorflow.concat', 'tf.concat', (['[net_dilation1, net_dilation2, net_dilation3]'], {'axis': '(3)'}), '([net_dilation1, net_dilation2, net_dilation3], axis=3)\n', (13788, 13843), True, 'import tensorflow as tf\n'), ((13925, 13953), 'tensorflow.variable_scope', 'tf.variable_scope', (['end_point'], {}), '(end_point)\n', (13942, 13953), True, 'import tensorflow as tf\n'), ((13977, 14053), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[1, 1]'], {'stride': '(1)', 'scope': '"""dilation1"""'}), "(end_points[end_point], 128, [1, 1], stride=1, scope='dilation1')\n", (13988, 14053), True, 'import tensorflow.contrib.slim as slim\n'), ((14076, 14152), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[1, 7]'], {'stride': '(1)', 'scope': '"""dilation2"""'}), "(end_points[end_point], 128, [1, 7], stride=1, scope='dilation2')\n", (14087, 14152), True, 'import tensorflow.contrib.slim as slim\n'), ((14244, 14320), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[7, 1]'], {'stride': '(1)', 'scope': '"""dilation3"""'}), "(end_points[end_point], 128, [7, 1], stride=1, scope='dilation3')\n", (14255, 14320), True, 'import tensorflow.contrib.slim as slim\n'), ((14410, 14474), 'tensorflow.concat', 'tf.concat', (['[net_dilation1, net_dilation2, net_dilation3]'], {'axis': '(3)'}), '([net_dilation1, net_dilation2, net_dilation3], axis=3)\n', (14419, 14474), True, 'import tensorflow as tf\n'), ((14559, 14587), 'tensorflow.variable_scope', 'tf.variable_scope', (['end_point'], {}), '(end_point)\n', (14576, 14587), True, 'import tensorflow as tf\n'), ((14611, 14687), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[1, 1]'], {'stride': '(1)', 'scope': '"""dilation1"""'}), "(end_points[end_point], 128, [1, 1], stride=1, scope='dilation1')\n", (14622, 14687), True, 'import tensorflow.contrib.slim as slim\n'), ((14709, 14785), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[1, 5]'], {'stride': '(1)', 'scope': '"""dilation2"""'}), "(end_points[end_point], 128, [1, 5], stride=1, scope='dilation2')\n", (14720, 14785), True, 'import tensorflow.contrib.slim as slim\n'), ((14877, 14953), 'tensorflow.contrib.slim.conv2d', 'slim.conv2d', (['end_points[end_point]', '(128)', '[5, 1]'], {'stride': '(1)', 'scope': '"""dilation3"""'}), "(end_points[end_point], 128, [5, 1], stride=1, scope='dilation3')\n", (14888, 14953), True, 'import tensorflow.contrib.slim as slim\n'), ((15043, 15107), 'tensorflow.concat', 'tf.concat', (['[net_dilation1, net_dilation2, net_dilation3]'], {'axis': '(3)'}), '([net_dilation1, net_dilation2, net_dilation3], axis=3)\n', (15052, 15107), True, 'import tensorflow as tf\n'), ((17826, 17854), 'math.sqrt', 'math.sqrt', (['(size[0] * size[1])'], {}), '(size[0] * size[1])\n', (17835, 17854), False, 'import math\n'), ((17880, 17908), 'math.sqrt', 'math.sqrt', (['(size[0] * size[1])'], {}), '(size[0] * size[1])\n', (17889, 17908), False, 'import math\n'), ((18007, 18019), 'math.sqrt', 'math.sqrt', (['r'], {}), '(r)\n', (18016, 18019), False, 'import math\n'), ((18058, 18070), 'math.sqrt', 'math.sqrt', (['r'], {}), '(r)\n', (18067, 18070), False, 'import math\n'), ((19182, 19274), 'tensorflow.contrib.slim.arg_scope', 'slim.arg_scope', (['[slim.conv2d, slim.max_pool2d]'], {'padding': '"""SAME"""', 'data_format': 'data_format'}), "([slim.conv2d, slim.max_pool2d], padding='SAME', data_format=\n data_format)\n", (19196, 19274), True, 'import tensorflow.contrib.slim as slim\n'), ((21116, 21180), 'tensorflow.contrib.slim.arg_scope', 'slim.arg_scope', (['[slim.fully_connected]'], {'activation_fn': 'tf.nn.relu'}), '([slim.fully_connected], activation_fn=tf.nn.relu)\n', (21130, 21180), True, 'import tensorflow.contrib.slim as slim\n'), ((23847, 23868), 'tensorflow.logical_not', 'tf.logical_not', (['pmask'], {}), '(pmask)\n', (23861, 23868), True, 'import tensorflow as tf\n'), ((24173, 24194), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['fnmask'], {}), '(fnmask)\n', (24186, 24194), True, 'import tensorflow as tf\n'), ((24217, 24264), 'tensorflow.cast', 'tf.cast', (['(negative_ratio * n_positives)', 'tf.int32'], {}), '(negative_ratio * n_positives, tf.int32)\n', (24224, 24264), True, 'import tensorflow as tf\n'), ((24670, 24704), 'tensorflow.name_scope', 'tf.name_scope', (['"""cross_entropy_pos"""'], {}), "('cross_entropy_pos')\n", (24683, 24704), True, 'import tensorflow as tf\n'), ((24717, 24794), 'tensorflow.nn.sparse_softmax_cross_entropy_with_logits', 'tf.nn.sparse_softmax_cross_entropy_with_logits', ([], {'logits': 'logits', 'labels': 'glabels'}), '(logits=logits, labels=glabels)\n', (24763, 24794), True, 'import tensorflow as tf\n'), ((24873, 24897), 'tensorflow.losses.add_loss', 'tf.losses.add_loss', (['loss'], {}), '(loss)\n', (24891, 24897), True, 'import tensorflow as tf\n'), ((24937, 24971), 'tensorflow.name_scope', 'tf.name_scope', (['"""cross_entropy_neg"""'], {}), "('cross_entropy_neg')\n", (24950, 24971), True, 'import tensorflow as tf\n'), ((24984, 25069), 'tensorflow.nn.sparse_softmax_cross_entropy_with_logits', 'tf.nn.sparse_softmax_cross_entropy_with_logits', ([], {'logits': 'logits', 'labels': 'no_classes'}), '(logits=logits, labels=no_classes\n )\n', (25030, 25069), True, 'import tensorflow as tf\n'), ((25201, 25225), 'tensorflow.losses.add_loss', 'tf.losses.add_loss', (['loss'], {}), '(loss)\n', (25219, 25225), True, 'import tensorflow as tf\n'), ((25312, 25341), 'tensorflow.name_scope', 'tf.name_scope', (['"""localization"""'], {}), "('localization')\n", (25325, 25341), True, 'import tensorflow as tf\n'), ((25412, 25451), 'tensorflow.expand_dims', 'tf.expand_dims', (['(alpha * fpmask)'], {'axis': '(-1)'}), '(alpha * fpmask, axis=-1)\n', (25426, 25451), True, 'import tensorflow as tf\n'), ((25711, 25767), 'nets.custom_layers.abs_smooth', 'custom_layers.abs_smooth', (['(localisations - glocalisations)'], {}), '(localisations - glocalisations)\n', (25735, 25767), False, 'from nets import custom_layers\n'), ((25847, 25871), 'tensorflow.losses.add_loss', 'tf.losses.add_loss', (['loss'], {}), '(loss)\n', (25865, 25871), True, 'import tensorflow as tf\n'), ((25905, 25927), 'tensorflow.name_scope', 'tf.name_scope', (['"""total"""'], {}), "('total')\n", (25918, 25927), True, 'import tensorflow as tf\n'), ((25951, 25993), 'tensorflow.add_n', 'tf.add_n', (['l_cross_pos', '"""cross_entropy_pos"""'], {}), "(l_cross_pos, 'cross_entropy_pos')\n", (25959, 25993), True, 'import tensorflow as tf\n'), ((26016, 26058), 'tensorflow.add_n', 'tf.add_n', (['l_cross_neg', '"""cross_entropy_neg"""'], {}), "(l_cross_neg, 'cross_entropy_neg')\n", (26024, 26058), True, 'import tensorflow as tf\n'), ((26077, 26134), 'tensorflow.add', 'tf.add', (['total_cross_pos', 'total_cross_neg', '"""cross_entropy"""'], {}), "(total_cross_pos, total_cross_neg, 'cross_entropy')\n", (26083, 26134), True, 'import tensorflow as tf\n'), ((26151, 26182), 'tensorflow.add_n', 'tf.add_n', (['l_loc', '"""localization"""'], {}), "(l_loc, 'localization')\n", (26159, 26182), True, 'import tensorflow as tf\n'), ((26229, 26282), 'tensorflow.add_to_collection', 'tf.add_to_collection', (['"""EXTRA_LOSSES"""', 'total_cross_pos'], {}), "('EXTRA_LOSSES', total_cross_pos)\n", (26249, 26282), True, 'import tensorflow as tf\n'), ((26287, 26340), 'tensorflow.add_to_collection', 'tf.add_to_collection', (['"""EXTRA_LOSSES"""', 'total_cross_neg'], {}), "('EXTRA_LOSSES', total_cross_neg)\n", (26307, 26340), True, 'import tensorflow as tf\n'), ((26345, 26394), 'tensorflow.add_to_collection', 'tf.add_to_collection', (['"""EXTRA_LOSSES"""', 'total_cross'], {}), "('EXTRA_LOSSES', total_cross)\n", (26365, 26394), True, 'import tensorflow as tf\n'), ((26399, 26446), 'tensorflow.add_to_collection', 'tf.add_to_collection', (['"""EXTRA_LOSSES"""', 'total_loc'], {}), "('EXTRA_LOSSES', total_loc)\n", (26419, 26446), True, 'import tensorflow as tf\n'), ((15309, 15342), 'tensorflow.variable_scope', 'tf.variable_scope', (["(layer + '_box')"], {}), "(layer + '_box')\n", (15326, 15342), True, 'import tensorflow as tf\n'), ((18991, 19024), 'tensorflow.contrib.slim.l2_regularizer', 'slim.l2_regularizer', (['weight_decay'], {}), '(weight_decay)\n', (19010, 19024), True, 'import tensorflow.contrib.slim as slim\n'), ((19068, 19106), 'tensorflow.contrib.layers.xavier_initializer', 'tf.contrib.layers.xavier_initializer', ([], {}), '()\n', (19104, 19106), True, 'import tensorflow as tf\n'), ((19149, 19171), 'tensorflow.zeros_initializer', 'tf.zeros_initializer', ([], {}), '()\n', (19169, 19171), True, 'import tensorflow as tf\n'), ((19326, 19455), 'tensorflow.contrib.slim.arg_scope', 'slim.arg_scope', (['[custom_layers.pad2d, custom_layers.l2_normalization, custom_layers.\n channel_to_last]'], {'data_format': 'data_format'}), '([custom_layers.pad2d, custom_layers.l2_normalization,\n custom_layers.channel_to_last], data_format=data_format)\n', (19340, 19455), True, 'import tensorflow.contrib.slim as slim\n'), ((24813, 24841), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(loss * fpmask)'], {}), '(loss * fpmask)\n', (24826, 24841), True, 'import tensorflow as tf\n'), ((25141, 25169), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(loss * fnmask)'], {}), '(loss * fnmask)\n', (25154, 25169), True, 'import tensorflow as tf\n'), ((25786, 25815), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(loss * weights)'], {}), '(loss * weights)\n', (25799, 25815), True, 'import tensorflow as tf\n'), ((21350, 21412), 'tensorflow.contrib.slim.arg_scope', 'slim.arg_scope', (['[slim.conv2d, slim.max_pool2d]'], {'padding': '"""SAME"""'}), "([slim.conv2d, slim.max_pool2d], padding='SAME')\n", (21364, 21412), True, 'import tensorflow.contrib.slim as slim\n')]
|
# -*- coding:utf-8 -*-
"""Strassen算法求矩阵乘法
"""
import numpy as np
def strassen(A, B):
"""Strassen算法求矩阵乘法
Args:
A(np.array): 矩阵1
B(np.array): 矩阵2
Return:
C(np.array): 矩阵乘法结果
"""
n, _ = A.shape
if n == 1:
C = np.array(A[0, 0] * B[0, 0])
return C
else:
A11 = A[0:n//2, 0:n//2]
A12 = A[0:n//2, n//2:]
A21 = A[n//2:, 0:n//2]
A22 = A[n//2:, n//2:]
B11 = B[0:n//2, 0:n//2]
B12 = B[0:n//2, n//2:]
B21 = B[n//2:, 0:n//2]
B22 = B[n//2:, n//2:]
S1 = B12 - B22
S2 = A11 + A12
S3 = A21 + A22
S4 = B21 - B11
S5 = A11 + A22
S6 = B11 + B22
S7 = A12 - A22
S8 = B21 + B22
S9 = A11 - A21
S10 = B11 + B12
P1 = strassen(A11, S1)
P2 = strassen(S2, B22)
P3 = strassen(S3, B11)
P4 = strassen(A22, S4)
P5 = strassen(S5, S6)
P6 = strassen(S7, S8)
P7 = strassen(S9, S10)
C11 = P5 + P4 - P2 + P6
C12 = P1 + P2
C21 = P3 + P4
C22 = P5 + P1 - P3 - P7
C = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
return C
if __name__ == '__main__':
A = np.array([
[1, 2, 3, 4],
[4, 3, 2, 1],
[1, 3, 5, 7],
[7, 5, 3, 1],
])
B = np.array([
[2, 4, 6, 8],
[8, 6, 4, 2],
[1, 2, 3, 4],
[4, 3, 2, 1],
])
print(strassen(A, B))
|
[
"numpy.array",
"numpy.hstack"
] |
[((1254, 1320), 'numpy.array', 'np.array', (['[[1, 2, 3, 4], [4, 3, 2, 1], [1, 3, 5, 7], [7, 5, 3, 1]]'], {}), '([[1, 2, 3, 4], [4, 3, 2, 1], [1, 3, 5, 7], [7, 5, 3, 1]])\n', (1262, 1320), True, 'import numpy as np\n'), ((1368, 1434), 'numpy.array', 'np.array', (['[[2, 4, 6, 8], [8, 6, 4, 2], [1, 2, 3, 4], [4, 3, 2, 1]]'], {}), '([[2, 4, 6, 8], [8, 6, 4, 2], [1, 2, 3, 4], [4, 3, 2, 1]])\n', (1376, 1434), True, 'import numpy as np\n'), ((269, 296), 'numpy.array', 'np.array', (['(A[0, 0] * B[0, 0])'], {}), '(A[0, 0] * B[0, 0])\n', (277, 296), True, 'import numpy as np\n'), ((1153, 1174), 'numpy.hstack', 'np.hstack', (['(C11, C12)'], {}), '((C11, C12))\n', (1162, 1174), True, 'import numpy as np\n'), ((1176, 1197), 'numpy.hstack', 'np.hstack', (['(C21, C22)'], {}), '((C21, C22))\n', (1185, 1197), True, 'import numpy as np\n')]
|
# Copyright 2018 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Testing the TFP Hypothesis strategies.
(As opposed to using them to test other things).
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
from absl.testing import parameterized
import hypothesis as hp
from hypothesis import strategies as hps
import numpy as np
from tensorflow_probability.python.internal import hypothesis_testlib as tfp_hps
from tensorflow_probability.python.internal import test_util
@test_util.test_all_tf_execution_regimes
class HypothesisTestlibTest(test_util.TestCase):
@parameterized.parameters((support,) for support in tfp_hps.ALL_SUPPORTS)
@hp.given(hps.data())
@tfp_hps.tfp_hp_settings()
def testTensorsInSupportsAlwaysFinite(self, support, data):
try:
result_ = data.draw(tfp_hps.tensors_in_support(support))
except NotImplementedError:
# Constraint class doesn't have a constrainer function at all, so this
# test is moot.
return
result = self.evaluate(result_)
self.assertTrue(np.all(np.isfinite(result)))
class HypothesisTestlibTimeoutTest(test_util.TestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls._num_test_timeout_runs = 0
@hp.given(hps.data())
@tfp_hps.tfp_hp_settings(max_examples=1000, timeout=10)
def testTimeout(self, data):
# Trivial Hypothesis test.
x = data.draw(hps.floats(allow_nan=False, allow_infinity=False))
self.assertGreaterEqual(x * x, 0)
# Sleep for two seconds, so only ~5 test runs fit in the 10s timeout.
time.sleep(2)
# Check that Hypothesis timeout prevented the test from running more than
# six times (the expected five times plus a buffer of one).
self._num_test_timeout_runs += 1
self.assertLessEqual(self._num_test_timeout_runs, 6)
if __name__ == '__main__':
test_util.main()
|
[
"hypothesis.strategies.data",
"tensorflow_probability.python.internal.test_util.main",
"absl.testing.parameterized.parameters",
"time.sleep",
"tensorflow_probability.python.internal.hypothesis_testlib.tensors_in_support",
"numpy.isfinite",
"tensorflow_probability.python.internal.hypothesis_testlib.tfp_hp_settings",
"hypothesis.strategies.floats"
] |
[((1260, 1332), 'absl.testing.parameterized.parameters', 'parameterized.parameters', (['((support,) for support in tfp_hps.ALL_SUPPORTS)'], {}), '((support,) for support in tfp_hps.ALL_SUPPORTS)\n', (1284, 1332), False, 'from absl.testing import parameterized\n'), ((1360, 1385), 'tensorflow_probability.python.internal.hypothesis_testlib.tfp_hp_settings', 'tfp_hps.tfp_hp_settings', ([], {}), '()\n', (1383, 1385), True, 'from tensorflow_probability.python.internal import hypothesis_testlib as tfp_hps\n'), ((1934, 1988), 'tensorflow_probability.python.internal.hypothesis_testlib.tfp_hp_settings', 'tfp_hps.tfp_hp_settings', ([], {'max_examples': '(1000)', 'timeout': '(10)'}), '(max_examples=1000, timeout=10)\n', (1957, 1988), True, 'from tensorflow_probability.python.internal import hypothesis_testlib as tfp_hps\n'), ((2518, 2534), 'tensorflow_probability.python.internal.test_util.main', 'test_util.main', ([], {}), '()\n', (2532, 2534), False, 'from tensorflow_probability.python.internal import test_util\n'), ((1345, 1355), 'hypothesis.strategies.data', 'hps.data', ([], {}), '()\n', (1353, 1355), True, 'from hypothesis import strategies as hps\n'), ((2237, 2250), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (2247, 2250), False, 'import time\n'), ((1919, 1929), 'hypothesis.strategies.data', 'hps.data', ([], {}), '()\n', (1927, 1929), True, 'from hypothesis import strategies as hps\n'), ((2069, 2118), 'hypothesis.strategies.floats', 'hps.floats', ([], {'allow_nan': '(False)', 'allow_infinity': '(False)'}), '(allow_nan=False, allow_infinity=False)\n', (2079, 2118), True, 'from hypothesis import strategies as hps\n'), ((1483, 1518), 'tensorflow_probability.python.internal.hypothesis_testlib.tensors_in_support', 'tfp_hps.tensors_in_support', (['support'], {}), '(support)\n', (1509, 1518), True, 'from tensorflow_probability.python.internal import hypothesis_testlib as tfp_hps\n'), ((1727, 1746), 'numpy.isfinite', 'np.isfinite', (['result'], {}), '(result)\n', (1738, 1746), True, 'import numpy as np\n')]
|
import pandas as pd
import numpy as np
def append(target_df, df):
"""Append df to the end of target_df.
Intended to be used in a loop where you are appending multiple dataframes
together.
Parameters
----------
target_df : GeoDataFrame or DataFrame
May be none for the first append operation. If so, the df
will be returned.
df : GeoDataFrame or DataFrame
dataframe to append
Returns
-------
GeoDataFrame or DataFrame
"""
if target_df is None:
return df
if len(df) > 0:
return target_df.append(df, ignore_index=True, sort=False)
return target_df
def flatten_series(series):
"""Convert a series, which may have iterables, into a flattened series,
repeating index values as necessary.
NOTE: this can also be done using .explode() on the pandas Series or DataFrame.
Parameters
----------
series : Series
Returns
-------
Series
index will have duplicate values for each entry in the original iterable for that index
"""
return pd.Series(
np.concatenate(series.values), index=np.repeat(series.index, series.apply(len))
)
def ndarray_append_strings(*args):
if len(args) < 2:
raise ValueError("Must have at least 2 values to append per element")
def get_str(value):
if (
isinstance(value, np.ndarray) or isinstance(value, pd.Series)
) and not value.dtype == "O":
return value.astype("str")
return str(value)
result = get_str(args[0]) + get_str(args[1])
for i in range(2, len(args)):
result = result + get_str(args[i])
return result
|
[
"numpy.concatenate"
] |
[((1103, 1132), 'numpy.concatenate', 'np.concatenate', (['series.values'], {}), '(series.values)\n', (1117, 1132), True, 'import numpy as np\n')]
|
import numpy as np
import tensorflow as tf
from collections import deque
import random
from . import env
np.random.seed(1)
tf.set_random_seed(1)
def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(initial, name=name)
def bias_variable(shape, name):
initial = tf.constant(0.01, shape=shape)
return tf.Variable(initial, name=name)
def conv2d(x, W, stride):
return tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding="SAME")
def max_pool_2x2(x, name):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME", name=name)
class DeepQNetwork:
def __init__(
self,
n_actions,
learning_rate=0.9,
reward_decay=0.9,
e_greedy=0.9,
memory_size=500,
batch_size=32,
e_greedy_increment=None,
e_greedy_init=0.0,
output_graph=False,
):
self.n_actions = n_actions
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon_max = e_greedy
self.memory_size = memory_size
self.batch_size = batch_size
self.epsilon_increment = e_greedy_increment
self.epsilon = e_greedy_init
# Memory arrangement: (s, s_, r, a)
self.memory = deque()
self._build_net()
self.sess = tf.Session()
if output_graph:
tf.summary.FileWriter("logs/", self.sess.graph)
self.sess.run(tf.global_variables_initializer())
self.cost_his = []
self.saver = tf.train.Saver()
def _build_net(self):
# ---------inputs-------------
self.s = tf.placeholder(tf.float32, [None, env.max_x, env.max_y, 4], name='s')
self.r = tf.placeholder(tf.float32, [None], name='r')
self.a = tf.placeholder(tf.float32, [None, self.n_actions], name='a')
# ------------------ build evaluate_net ------------------
with tf.variable_scope('eval_net'):
W_conv1 = weight_variable([7, 7, 4, 32], "W_conv1")
b_conv1 = bias_variable([32], "b_conv1")
h_conv1 = tf.nn.relu(conv2d(self.s, W_conv1, 4) + b_conv1, name="conv1")
h_pool1 = max_pool_2x2(h_conv1, "pool1")
W_conv2 = weight_variable([5, 5, 32, 64], "W_conv2")
b_conv2 = bias_variable([64], "b_conv2")
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2, 2) + b_conv2, name="conv2")
h_pool2 = max_pool_2x2(h_conv2, "pool2")
W_conv3 = weight_variable([3, 3, 64, 128], "W_conv3")
b_conv3 = bias_variable([128], "b_conv3")
h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3, 2) + b_conv3, name="conv3")
# h_pool3 = max_pool_2x2(h_conv3, "pool3")
h_flat3 = tf.reshape(h_conv3, [-1, 5120])
W_fc1 = weight_variable([5120, 512], "W_fc1")
b_fc1 = bias_variable([512], "b_fc1")
h_fc1 = tf.nn.relu(tf.matmul(h_flat3, W_fc1) + b_fc1, name="fc1")
W_fc2 = weight_variable([512, self.n_actions], "W_fc2")
b_fc2 = bias_variable([self.n_actions], "b_fc2")
self.q_eval = tf.matmul(h_fc1, W_fc2) + b_fc2
with tf.variable_scope('loss'):
self.q0 = tf.reduce_sum(tf.multiply(self.q_eval, self.a), reduction_indices=1)
self.loss = tf.losses.mean_squared_error(self.q0, self.r)
with tf.variable_scope('train'):
self.train0 = tf.train.AdamOptimizer(self.lr).minimize(self.loss)
def store_transition(self, state, state_, reward, action):
self.memory.append((state, state_, reward, action))
if len(self.memory) > self.memory_size:
self.memory.popleft()
def choose_action(self, st):
# print(st)
val = self.sess.run(self.q_eval, feed_dict={self.s: np.reshape(st, newshape=(1, env.max_x, env.max_y, 4))})
# print(val)
if np.random.uniform() < self.epsilon:
action = np.argmax(val)
else:
action = np.random.randint(0, self.n_actions)
return action
def greedy(self, st):
# print(st)
val = self.sess.run(self.q_eval, feed_dict={self.s: np.reshape(st, newshape=(1, env.max_x, env.max_y, 4))})
action = np.argmax(val)
# print(val)
return action
def learn(self):
# Experience Replay
batch_memory = random.sample(self.memory, self.batch_size)
batch_s = [d[0] for d in batch_memory]
batch_s_ = [d[1] for d in batch_memory]
batch_r = [d[2] for d in batch_memory]
batch_a = [d[3] for d in batch_memory]
batch_target = []
batch_action = []
s_eval = self.sess.run(self.q_eval,
feed_dict={self.s: batch_s_})
# Compute q-target
for i in range(0, len(batch_memory)):
batch_target.append(batch_r[i] + self.gamma * np.max(s_eval[i]))
a_ = np.zeros(self.n_actions)
a_[batch_a[i]] = 1
batch_action.append(a_)
_, cost = self.sess.run(
[self.train0, self.loss],
feed_dict={
self.s: batch_s,
self.r: batch_target,
self.a: batch_action,
})
# ----------------------------------------------------
self.cost_his.append(cost)
self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
def save(self, path):
try:
save_path = self.saver.save(self.sess, path)
print("Model saved in path: %s" % save_path)
except IOError:
print("IOError: Model is not saved.")
def load(self, path):
self.saver.restore(self.sess, path)
print("Successfully loaded.")
def plot_cost(self):
import matplotlib.pyplot as plt
plt.plot(np.arange(len(self.cost_his)), self.cost_his)
plt.ylabel('Cost')
plt.xlabel('training steps')
plt.show()
|
[
"numpy.random.seed",
"numpy.argmax",
"random.sample",
"tensorflow.reshape",
"tensorflow.train.AdamOptimizer",
"tensorflow.matmul",
"tensorflow.multiply",
"tensorflow.Variable",
"numpy.random.randint",
"tensorflow.nn.conv2d",
"tensorflow.truncated_normal",
"collections.deque",
"tensorflow.variable_scope",
"tensorflow.set_random_seed",
"tensorflow.placeholder",
"numpy.max",
"tensorflow.summary.FileWriter",
"numpy.reshape",
"matplotlib.pyplot.show",
"tensorflow.train.Saver",
"tensorflow.losses.mean_squared_error",
"tensorflow.global_variables_initializer",
"tensorflow.Session",
"tensorflow.constant",
"tensorflow.nn.max_pool",
"matplotlib.pyplot.ylabel",
"numpy.random.uniform",
"numpy.zeros",
"matplotlib.pyplot.xlabel"
] |
[((106, 123), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (120, 123), True, 'import numpy as np\n'), ((124, 145), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['(1)'], {}), '(1)\n', (142, 145), True, 'import tensorflow as tf\n'), ((196, 235), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['shape'], {'stddev': '(0.01)'}), '(shape, stddev=0.01)\n', (215, 235), True, 'import tensorflow as tf\n'), ((247, 278), 'tensorflow.Variable', 'tf.Variable', (['initial'], {'name': 'name'}), '(initial, name=name)\n', (258, 278), True, 'import tensorflow as tf\n'), ((327, 357), 'tensorflow.constant', 'tf.constant', (['(0.01)'], {'shape': 'shape'}), '(0.01, shape=shape)\n', (338, 357), True, 'import tensorflow as tf\n'), ((369, 400), 'tensorflow.Variable', 'tf.Variable', (['initial'], {'name': 'name'}), '(initial, name=name)\n', (380, 400), True, 'import tensorflow as tf\n'), ((440, 506), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['x', 'W'], {'strides': '[1, stride, stride, 1]', 'padding': '"""SAME"""'}), "(x, W, strides=[1, stride, stride, 1], padding='SAME')\n", (452, 506), True, 'import tensorflow as tf\n'), ((547, 637), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['x'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""', 'name': 'name'}), "(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME',\n name=name)\n", (561, 637), True, 'import tensorflow as tf\n'), ((1294, 1301), 'collections.deque', 'deque', ([], {}), '()\n', (1299, 1301), False, 'from collections import deque\n'), ((1350, 1362), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1360, 1362), True, 'import tensorflow as tf\n'), ((1554, 1570), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (1568, 1570), True, 'import tensorflow as tf\n'), ((1654, 1723), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, env.max_x, env.max_y, 4]'], {'name': '"""s"""'}), "(tf.float32, [None, env.max_x, env.max_y, 4], name='s')\n", (1668, 1723), True, 'import tensorflow as tf\n'), ((1741, 1785), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None]'], {'name': '"""r"""'}), "(tf.float32, [None], name='r')\n", (1755, 1785), True, 'import tensorflow as tf\n'), ((1803, 1863), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, self.n_actions]'], {'name': '"""a"""'}), "(tf.float32, [None, self.n_actions], name='a')\n", (1817, 1863), True, 'import tensorflow as tf\n'), ((4255, 4269), 'numpy.argmax', 'np.argmax', (['val'], {}), '(val)\n', (4264, 4269), True, 'import numpy as np\n'), ((4386, 4429), 'random.sample', 'random.sample', (['self.memory', 'self.batch_size'], {}), '(self.memory, self.batch_size)\n', (4399, 4429), False, 'import random\n'), ((5946, 5964), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Cost"""'], {}), "('Cost')\n", (5956, 5964), True, 'import matplotlib.pyplot as plt\n'), ((5973, 6001), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""training steps"""'], {}), "('training steps')\n", (5983, 6001), True, 'import matplotlib.pyplot as plt\n'), ((6010, 6020), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6018, 6020), True, 'import matplotlib.pyplot as plt\n'), ((1400, 1447), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['"""logs/"""', 'self.sess.graph'], {}), "('logs/', self.sess.graph)\n", (1421, 1447), True, 'import tensorflow as tf\n'), ((1471, 1504), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1502, 1504), True, 'import tensorflow as tf\n'), ((1945, 1974), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""eval_net"""'], {}), "('eval_net')\n", (1962, 1974), True, 'import tensorflow as tf\n'), ((2773, 2804), 'tensorflow.reshape', 'tf.reshape', (['h_conv3', '[-1, 5120]'], {}), '(h_conv3, [-1, 5120])\n', (2783, 2804), True, 'import tensorflow as tf\n'), ((3194, 3219), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""loss"""'], {}), "('loss')\n", (3211, 3219), True, 'import tensorflow as tf\n'), ((3336, 3381), 'tensorflow.losses.mean_squared_error', 'tf.losses.mean_squared_error', (['self.q0', 'self.r'], {}), '(self.q0, self.r)\n', (3364, 3381), True, 'import tensorflow as tf\n'), ((3395, 3421), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""train"""'], {}), "('train')\n", (3412, 3421), True, 'import tensorflow as tf\n'), ((3909, 3928), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (3926, 3928), True, 'import numpy as np\n'), ((3966, 3980), 'numpy.argmax', 'np.argmax', (['val'], {}), '(val)\n', (3975, 3980), True, 'import numpy as np\n'), ((4016, 4052), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.n_actions'], {}), '(0, self.n_actions)\n', (4033, 4052), True, 'import numpy as np\n'), ((4944, 4968), 'numpy.zeros', 'np.zeros', (['self.n_actions'], {}), '(self.n_actions)\n', (4952, 4968), True, 'import numpy as np\n'), ((3148, 3171), 'tensorflow.matmul', 'tf.matmul', (['h_fc1', 'W_fc2'], {}), '(h_fc1, W_fc2)\n', (3157, 3171), True, 'import tensorflow as tf\n'), ((3257, 3289), 'tensorflow.multiply', 'tf.multiply', (['self.q_eval', 'self.a'], {}), '(self.q_eval, self.a)\n', (3268, 3289), True, 'import tensorflow as tf\n'), ((2945, 2970), 'tensorflow.matmul', 'tf.matmul', (['h_flat3', 'W_fc1'], {}), '(h_flat3, W_fc1)\n', (2954, 2970), True, 'import tensorflow as tf\n'), ((3449, 3480), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['self.lr'], {}), '(self.lr)\n', (3471, 3480), True, 'import tensorflow as tf\n'), ((3821, 3874), 'numpy.reshape', 'np.reshape', (['st'], {'newshape': '(1, env.max_x, env.max_y, 4)'}), '(st, newshape=(1, env.max_x, env.max_y, 4))\n', (3831, 3874), True, 'import numpy as np\n'), ((4182, 4235), 'numpy.reshape', 'np.reshape', (['st'], {'newshape': '(1, env.max_x, env.max_y, 4)'}), '(st, newshape=(1, env.max_x, env.max_y, 4))\n', (4192, 4235), True, 'import numpy as np\n'), ((4908, 4925), 'numpy.max', 'np.max', (['s_eval[i]'], {}), '(s_eval[i])\n', (4914, 4925), True, 'import numpy as np\n')]
|
import pandas as pd
import numpy as np
import glob
import os
import warnings
from joblib import wrap_non_picklable_objects
from ..util import get_unique_str_markers
def proc_fop(fop):
# If provided as just % number, divide by 100
if not isinstance(fop, tuple):
fop /= 100
return (fop, 1-fop)
elif fop[0] is None:
return tuple([None, 1-(fop[1] / 100)])
elif fop[1] is None:
return tuple([fop[0] / 100, None])
return tuple([fop[0]/100, 1-(fop[1] / 100)])
def auto_determine_subjects(file_paths, existing_index):
# Check if is integer index
is_int = False
if hasattr(existing_index, 'dtype'):
is_int = 'int' in existing_index.dtype.name
# Set as list from index
existing_index = list(existing_index)
if len(existing_index) > 1:
# If int, need to handle special case
if is_int:
existing_index = [str(i) for i in existing_index]
# Figure out from existing index
# how it would have been loaded by auto
ei_as_auto_subjs = auto_determine_subjects(existing_index, [])
# Use this information to generate templates
templates = [ei.replace(ei_subj, 'SUBJ-MARKER')
for ei, ei_subj in zip(existing_index, ei_as_auto_subjs)]
# In the case where some templates are messed up
# e.g., the common path may repeat, e.g.,
# ['subjs_grp1-0001', 'subjs_grp1-0002', 'subjs_grp1-0003']
# we want to get the most common template
unique, cnts = np.unique(templates, return_counts=True)
template = unique[np.argmax(cnts)]
# Otherwise no template is used
else:
template = None
# Get top common sub strings, then remove
# from all pieces
subjects = get_unique_str_markers(file_paths,
template=template,
template_marker='SUBJ-MARKER')
if is_int:
subjects = [int(s) for s in subjects]
return subjects
def proc_file_input(files, file_to_subject, existing_index=None):
if existing_index is None:
existing_index = []
if not isinstance(files, dict):
raise ValueError('files must be passed as a python dict')
if file_to_subject is None:
raise RuntimeError('file_to_subject must be specified!')
# If not passed as dict, convert to dict
if not isinstance(file_to_subject, dict):
file_to_subject = {key: file_to_subject for key in files}
# Check
for key in files:
if key not in file_to_subject:
raise ValueError('If passing file_to_subject as a dict '
'then a value must be passed for all '
'keys in files. ' + repr(key) + 'was '
'not passed in this case.')
# Compute pd series
files_series = dict()
for key in files:
file_paths = files[key]
# If passed file path as str, assume globbing
if isinstance(file_paths, str):
file_paths = glob.glob(file_paths)
# Auto case
if file_to_subject[key] == 'auto':
subjects = auto_determine_subjects(file_paths,
existing_index=existing_index)
# Otherwise normal function
else:
subjects = [file_to_subject[key](fp) for fp in file_paths]
# If more subjects than unique subjects
# assume DataFile is made of multiple paths
if len(subjects) != len(np.unique(subjects)):
# Convert to dict of subjects to list of paths
subjects_dict = {subject: [] for subject in set(subjects)}
for subject, path in zip(subjects, file_paths):
subjects_dict[subject].append(path)
# Then convert to two lists lists
subjects, file_paths = list(subjects_dict.keys()), list(subjects_dict.values())
# Put together in series
files_series[key] = pd.Series(file_paths, index=subjects,
dtype='object')
return files_series
def base_load_subjects(subjects):
loaded_subjects = set()
if isinstance(subjects, str):
with open(subjects, 'r') as f:
lines = f.readlines()
for line in lines:
subject = line.rstrip()
try:
subject = eval(subject)
except NameError:
subject = subject
loaded_subjects.add(subject)
else:
loaded_subjects = set([s for s in subjects])
return loaded_subjects
def save_subjects(loc, subjects):
with open(loc, 'w') as f:
for subject in subjects:
f.write(repr(subject) + '\n')
def add_new_categories(existing, new_values):
# This is only relevant for type category
if existing.dtype.name != 'category':
return existing
# Only add new categories
new_cats = set(pd.unique(new_values))
existing_cats = set(existing.dtype.categories)
to_add = new_cats - existing_cats
# Add categories
return existing.cat.add_categories(list(to_add))
def remove_unused_categories(existing):
# This is only relevant for type category
if existing.dtype.name != 'category':
return existing
to_remove = set(existing.dtype.categories) - set(pd.unique(existing))
to_remove = to_remove - set([np.nan])
return existing.cat.remove_categories(list(to_remove))
def get_str_round(val, places=3):
if isinstance(val, int):
return val
return str(np.round(float(val), places))
def verbose_print(self, *args, **kwargs):
'''Overriding the print function to allow for
customizable verbosity.
According to passed level:
Warnings are level 0,
Information on sizes / how many dropped are level 1.
Set to level -1 to mute warnings too.
Parameters
----------
args
Anything that would be passed to default python print
'''
if 'level' in kwargs:
level = kwargs.pop('level')
else:
level = 1
if self.verbose >= level:
# Use warnings for level = 0
if level == 0:
# Conv print to str - then warn
sep = ' '
if 'sep' in kwargs:
sep = kwargs.pop('sep')
as_str = sep.join(str(arg) for arg in args)
warnings.warn(as_str)
# Use base print for rest
else:
print(flush=True, *args, **kwargs)
def mp_consol_save(data_files, index, cast_to, save_dr):
# Load the subjects data
subj_data = [df.load() for df in data_files]
# Stack the subj data with extra columns at last axis
subj_data = np.stack(subj_data, axis=-1)
# Optional cast to dtype
if cast_to is not None:
subj_data = subj_data.astype(cast_to)
# Save as name of index in save loc
save_loc = os.path.join(save_dr, str(index) + '.npy')
np.save(save_loc, subj_data)
return save_loc
def wrap_load_func(load_func, _print):
if load_func.__module__ == '__main__':
wrapped_load_func = wrap_non_picklable_objects(load_func)
_print('Warning: Passed load_func was defined within the',
'__main__ namespace and therefore has been '
'cloud wrapped.',
'The function will still work, but it is '
'reccomended to',
'define this function in a separate file, '
'and then import',
'it , otherwise loader caching will be limited',
'in utility!', level=0)
else:
wrapped_load_func = load_func
return wrapped_load_func
|
[
"numpy.stack",
"numpy.save",
"numpy.argmax",
"joblib.wrap_non_picklable_objects",
"pandas.unique",
"pandas.Series",
"glob.glob",
"warnings.warn",
"numpy.unique"
] |
[((6788, 6816), 'numpy.stack', 'np.stack', (['subj_data'], {'axis': '(-1)'}), '(subj_data, axis=-1)\n', (6796, 6816), True, 'import numpy as np\n'), ((7024, 7052), 'numpy.save', 'np.save', (['save_loc', 'subj_data'], {}), '(save_loc, subj_data)\n', (7031, 7052), True, 'import numpy as np\n'), ((1555, 1595), 'numpy.unique', 'np.unique', (['templates'], {'return_counts': '(True)'}), '(templates, return_counts=True)\n', (1564, 1595), True, 'import numpy as np\n'), ((4036, 4089), 'pandas.Series', 'pd.Series', (['file_paths'], {'index': 'subjects', 'dtype': '"""object"""'}), "(file_paths, index=subjects, dtype='object')\n", (4045, 4089), True, 'import pandas as pd\n'), ((5027, 5048), 'pandas.unique', 'pd.unique', (['new_values'], {}), '(new_values)\n', (5036, 5048), True, 'import pandas as pd\n'), ((7187, 7224), 'joblib.wrap_non_picklable_objects', 'wrap_non_picklable_objects', (['load_func'], {}), '(load_func)\n', (7213, 7224), False, 'from joblib import wrap_non_picklable_objects\n'), ((1622, 1637), 'numpy.argmax', 'np.argmax', (['cnts'], {}), '(cnts)\n', (1631, 1637), True, 'import numpy as np\n'), ((3092, 3113), 'glob.glob', 'glob.glob', (['file_paths'], {}), '(file_paths)\n', (3101, 3113), False, 'import glob\n'), ((5423, 5442), 'pandas.unique', 'pd.unique', (['existing'], {}), '(existing)\n', (5432, 5442), True, 'import pandas as pd\n'), ((6457, 6478), 'warnings.warn', 'warnings.warn', (['as_str'], {}), '(as_str)\n', (6470, 6478), False, 'import warnings\n'), ((3570, 3589), 'numpy.unique', 'np.unique', (['subjects'], {}), '(subjects)\n', (3579, 3589), True, 'import numpy as np\n')]
|
'''
AUTHOR : <NAME>.
CAPSTONE 2: BUILDING A SMART QUEUE SYSTEM.
INTEL(R) EDGE AI FOR IOT DEVELOPERS NANODEGREE.
QUEUE SYSTEM AND INFERENCE MODULE.
'''
import numpy as np
import time
from openvino.inference_engine import IECore
import os
import cv2
import argparse
import sys, traceback
class Queue:
'''
Class for dealing with queues
'''
def __init__(self):
self.queues=[]
def add_queue(self, points):
self.queues.append(points)
def get_queues(self, image):
for q in self.queues:
x_min, y_min, x_max, y_max=q
frame=image[y_min:y_max, x_min:x_max]
yield frame
def check_coords(self, coords):
d={k+1:0 for k in range(len(self.queues))}
for coord in coords:
for i, q in enumerate(self.queues):
if coord[0]>q[0] and coord[2]<q[2]:
d[i+1]+=1
return d
class PersonDetect:
def __init__(self, model_name, device, threshold=0.60):
self.model_weights=model_name+'.bin'
self.model_structure=model_name+'.xml'
self.device=device
self.threshold=threshold
self.ie = IECore()
try:
self.model=self.ie.read_network(self.model_structure, self.model_weights)
except Exception as e:
raise ValueError("Could not Initialise the network. Have you enterred the correct model path?")
self.input_name=next(iter(self.model.inputs))
self.input_shape=self.model.inputs[self.input_name].shape
self.output_name=next(iter(self.model.outputs))
self.output_shape=self.model.outputs[self.output_name].shape
def load_model(self):
self.net_plugin = self.ie.load_network(network=self.model, device_name=self.device)
def predict(self, image):
prepro_img = self.preprocess_input(image)
self.request_handler = self.net_plugin.start_async(request_id=0, inputs={self.input_name:prepro_img})
if self.wait(0) == 0:
output = self.net_plugin.requests[0].outputs[self.output_name]
coords, image = self.draw_outputs(output, image)
return coords, image
def draw_outputs(self, coords, image):
coords_new = []
for obj in coords[0][0]:
if obj[2] > self.threshold:
xmin = int(obj[3] * initial_w)
ymin = int(obj[4] * initial_h)
xmax = int(obj[5] * initial_w)
ymax = int(obj[6] * initial_h)
color = (210, 0, 100)
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 4)
coords_new.append((xmin, ymin, xmax, ymax))
# coords_new.append((int(obj[3]), int(obj[4]), int(obj[5]), int(obj[6])))
return coords_new, image
def preprocess_outputs(self, output):
raise NotImplementedError
def preprocess_input(self, image):
n,c,h,w = self.input_shape
image = np.copy(image)
inf_image = cv2.resize(image, (w, h))
inf_image = inf_image.transpose((2,0,1))
inf_image = inf_image.reshape((n,c,h,w))
return inf_image
def wait(self, request_id):
### Implementing the Infinite Wait for Asynchronous Request to deal with the [REQUEST_BUSY] Error
wait_for_complete_interface = self.net_plugin.requests[request_id].wait(-1)
return wait_for_complete_interface
def main(args):
model=args.model
device=args.device
video_file=args.video
max_people=args.max_people
threshold=args.threshold
output_path=args.output_path
global initial_h, initial_w
start_model_load_time=time.time()
pd= PersonDetect(model, device, threshold)
pd.load_model()
total_model_load_time = time.time() - start_model_load_time
queue=Queue()
try:
queue_param=np.load(args.queue_param)
for q in queue_param:
queue.add_queue(q)
except:
print("error loading queue param file")
try:
cap=cv2.VideoCapture(video_file)
except FileNotFoundError:
print("Cannot locate video file: "+ video_file)
except Exception as e:
print("Something else went wrong with the video file: ", e)
initial_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
initial_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
video_len = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
out_video = cv2.VideoWriter(os.path.join(output_path, 'output_video.mp4'), cv2.VideoWriter_fourcc(*'avc1'), fps, (initial_w, initial_h), True)
counter=0
start_inference_time=time.time()
try:
while cap.isOpened():
ret, frame=cap.read()
if not ret:
break
counter+=1
coords, image= pd.predict(frame)
num_people= queue.check_coords(coords)
print(f"Total People in frame = {len(coords)}")
print(f"Number of people in queue = {num_people}")
out_text=""
y_pixel=25
for k, v in num_people.items():
out_text += f"No. of People in Queue {k} is {v} "
if v >= int(max_people):
out_text += f" Queue full; Please move to next Queue "
cv2.putText(image, out_text, (15, y_pixel), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
out_text=""
y_pixel+=40
out_video.write(image)
total_time=time.time()-start_inference_time
total_inference_time=round(total_time, 1)
fps=counter/total_inference_time
with open(os.path.join(output_path, 'stats.txt'), 'w') as f:
f.write(str(total_inference_time)+'\n')
f.write(str(fps)+'\n')
f.write(str(total_model_load_time)+'\n')
cap.release()
cv2.destroyAllWindows()
except Exception as e:
print("Could not run Inference: ", e)
exc_type, exc_value, exc_traceback = sys.exc_info()
print( "*** print_tb:")
traceback.print_tb(exc_traceback, limit=1, file=sys.stdout)
print ("*** print_exception:")
traceback.print_exception(exc_type, exc_value, exc_traceback,
limit=2, file=sys.stdout)
if __name__=='__main__':
parser=argparse.ArgumentParser()
parser.add_argument('--model', required=True)
parser.add_argument('--device', default='CPU')
parser.add_argument('--video', default=None)
parser.add_argument('--queue_param', default=None)
parser.add_argument('--output_path', default='/results')
parser.add_argument('--max_people', default=2)
parser.add_argument('--threshold', default=0.60)
args=parser.parse_args()
main(args)
|
[
"numpy.load",
"cv2.putText",
"argparse.ArgumentParser",
"numpy.copy",
"openvino.inference_engine.IECore",
"cv2.VideoWriter_fourcc",
"traceback.print_tb",
"time.time",
"cv2.VideoCapture",
"cv2.rectangle",
"sys.exc_info",
"traceback.print_exception",
"cv2.destroyAllWindows",
"os.path.join",
"cv2.resize"
] |
[((3695, 3706), 'time.time', 'time.time', ([], {}), '()\n', (3704, 3706), False, 'import time\n'), ((4673, 4684), 'time.time', 'time.time', ([], {}), '()\n', (4682, 4684), False, 'import time\n'), ((6406, 6431), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (6429, 6431), False, 'import argparse\n'), ((1166, 1174), 'openvino.inference_engine.IECore', 'IECore', ([], {}), '()\n', (1172, 1174), False, 'from openvino.inference_engine import IECore\n'), ((3002, 3016), 'numpy.copy', 'np.copy', (['image'], {}), '(image)\n', (3009, 3016), True, 'import numpy as np\n'), ((3037, 3062), 'cv2.resize', 'cv2.resize', (['image', '(w, h)'], {}), '(image, (w, h))\n', (3047, 3062), False, 'import cv2\n'), ((3802, 3813), 'time.time', 'time.time', ([], {}), '()\n', (3811, 3813), False, 'import time\n'), ((3891, 3916), 'numpy.load', 'np.load', (['args.queue_param'], {}), '(args.queue_param)\n', (3898, 3916), True, 'import numpy as np\n'), ((4060, 4088), 'cv2.VideoCapture', 'cv2.VideoCapture', (['video_file'], {}), '(video_file)\n', (4076, 4088), False, 'import cv2\n'), ((4514, 4559), 'os.path.join', 'os.path.join', (['output_path', '"""output_video.mp4"""'], {}), "(output_path, 'output_video.mp4')\n", (4526, 4559), False, 'import os\n'), ((4561, 4592), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'avc1'"], {}), "(*'avc1')\n", (4583, 4592), False, 'import cv2\n'), ((5939, 5962), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5960, 5962), False, 'import cv2\n'), ((5574, 5585), 'time.time', 'time.time', ([], {}), '()\n', (5583, 5585), False, 'import time\n'), ((6081, 6095), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (6093, 6095), False, 'import sys, traceback\n'), ((6136, 6195), 'traceback.print_tb', 'traceback.print_tb', (['exc_traceback'], {'limit': '(1)', 'file': 'sys.stdout'}), '(exc_traceback, limit=1, file=sys.stdout)\n', (6154, 6195), False, 'import sys, traceback\n'), ((6243, 6335), 'traceback.print_exception', 'traceback.print_exception', (['exc_type', 'exc_value', 'exc_traceback'], {'limit': '(2)', 'file': 'sys.stdout'}), '(exc_type, exc_value, exc_traceback, limit=2, file\n =sys.stdout)\n', (6268, 6335), False, 'import sys, traceback\n'), ((2568, 2626), 'cv2.rectangle', 'cv2.rectangle', (['image', '(xmin, ymin)', '(xmax, ymax)', 'color', '(4)'], {}), '(image, (xmin, ymin), (xmax, ymax), color, 4)\n', (2581, 2626), False, 'import cv2\n'), ((5362, 5454), 'cv2.putText', 'cv2.putText', (['image', 'out_text', '(15, y_pixel)', 'cv2.FONT_HERSHEY_COMPLEX', '(1)', '(0, 255, 0)', '(2)'], {}), '(image, out_text, (15, y_pixel), cv2.FONT_HERSHEY_COMPLEX, 1, (0,\n 255, 0), 2)\n', (5373, 5454), False, 'import cv2\n'), ((5717, 5755), 'os.path.join', 'os.path.join', (['output_path', '"""stats.txt"""'], {}), "(output_path, 'stats.txt')\n", (5729, 5755), False, 'import os\n')]
|
from typing import List
from functools import lru_cache
import numpy as np
import matplotlib.pyplot as plt
from metaflow import Flow, Run
def _tokenize_full_text(texts, tokenizer):
"""Tokenize texts without truncation."""
return tokenizer(texts, padding=True, truncation=False, return_tensors="np")
def token_count(texts, tokenizer):
"""Get number of tokens in original text after tokenization."""
tokenized = _tokenize_full_text(texts, tokenizer)
return np.array(tokenized["attention_mask"].sum(axis=1))
def tokenized_length_histogram(lengths, tokenizer):
"""Plots a cumulative histogram of tokenized text lengths with vertical
line indicating `model_max_length`.
Args:
lengths: List of lengths (number of tokens) of tokenized texts
tokenizer: A `transformers` tokenizer
Returns:
fig: Cumulative normalised histogram of document lengths with a
vertical line indicating the max tokens of the model
associated with `tokenizer`.
"""
max_tokens = np.max(lengths)
model_max_length = tokenizer.model_max_length
fig, ax = plt.subplots()
ax.hist(
lengths,
cumulative=True,
histtype="step",
density="normed",
bins=max_tokens,
)
ax.axvline(model_max_length, color="gray", linestyle="--")
ax.set_xlabel("N Tokens")
ax.set_xlim(0, max_tokens)
ax.set_ylabel("Cumulative Frequency (norm)")
return fig
def random_sample_idx(x, n_samples, seed=100):
"""Get a random sample of elements from a list-like without replacement."""
n_total = len(x)
rn_gen = np.random.RandomState(seed)
sample_idx = rn_gen.choice(n_total, size=n_samples, replace=False)
return sample_idx
def get_nearest_neighbour(index, embedding):
"""Gets the single nearest neighbours to a series of embeddings from a
faiss index."""
embedding = np.array([embedding])
dists, nn_ids = index.search(embedding, 2)
dist = dists[0, 1] # nearest neighbours that aren't self
nn_id = nn_ids[0, 1]
return nn_id, dist
@lru_cache
def get_latest_runs_by_model() -> List[Run]:
"""Gets the last successful production run for each encoder.
Returns:
latest_runs: A list of the last successful production run for each
embedding model used.
"""
runs = Flow("GlassEmbed").runs("project_branch:prod")
_model_names = []
latest_runs = []
for run in filter(lambda run: run.successful, runs):
try:
model_name = run.data.model_name
except KeyError:
continue
if model_name not in _model_names:
latest_runs.append(run)
_model_names.append(model_name)
return latest_runs
|
[
"metaflow.Flow",
"numpy.random.RandomState",
"numpy.max",
"numpy.array",
"matplotlib.pyplot.subplots"
] |
[((1044, 1059), 'numpy.max', 'np.max', (['lengths'], {}), '(lengths)\n', (1050, 1059), True, 'import numpy as np\n'), ((1125, 1139), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1137, 1139), True, 'import matplotlib.pyplot as plt\n'), ((1629, 1656), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (1650, 1656), True, 'import numpy as np\n'), ((1908, 1929), 'numpy.array', 'np.array', (['[embedding]'], {}), '([embedding])\n', (1916, 1929), True, 'import numpy as np\n'), ((2352, 2370), 'metaflow.Flow', 'Flow', (['"""GlassEmbed"""'], {}), "('GlassEmbed')\n", (2356, 2370), False, 'from metaflow import Flow, Run\n')]
|
import numpy as np
import pylab as pl
import matplotlib as mpl
mpl.rcParams['text.usetex'] = True
# Optionally, you can import packages
mpl.rcParams['text.latex.preamble'] = r'\usepackage{{amsmath}}\usepackage{{amsfonts}}'
mainpath = '/data/pt_02015/human_test_data_deconvolution_08088.b3/tp0/mrtrix/'
prob_int_tc = np.load(mainpath+'tc_step_0p5_theta_90_th_0p20_npv_50_seed_int.npy')
graphcone_p = np.load(mainpath+'graph_mat_cone60_com2com_prob.npy')
N = prob_int_tc.shape[0]
graphcone_p_row_norm = graphcone_p / ((graphcone_p - np.eye(N)).sum(axis=1))[:, None]
log10_prob_graph_row_norm = np.log10(graphcone_p_row_norm)
log_tc_plus_1 = np.log10(prob_int_tc+1)
# pl.figure()
# pl.imshow(log10_prob_graph_row_norm)
# pl.xticks([])
# pl.yticks([])
# pl.title(r'$\log_{{10}}{{(\mathbb{{P}}_{{path}})}}$', fontsize=18)
# # pl.show()
pl.figure()
pl.imshow(np.log10(graphcone_p), 'viridis')
pl.xticks([])
pl.yticks([])
pl.title(r'$\log_{{10}}{{(\mathbb{{P}}_{{path}})}}$', fontsize=18)
pl.colorbar()
# pl.show()
pl.savefig('/data/hu_paquette/work/tractoGRAPHy/ismrm2022/images/'+'matrix_log_p.png',
dpi=300,
pad_inches=0.25,
transparent=True,
bbox_inches='tight')
pl.close()
pl.figure()
pl.imshow(log_tc_plus_1, 'viridis')
pl.xticks([])
pl.yticks([])
pl.title(r'$\log_{{10}}{{(\text{{Streamline}}_{{\text{{count}}}} + 1)}}$', fontsize=18)
pl.colorbar()
# pl.show()
pl.savefig('/data/hu_paquette/work/tractoGRAPHy/ismrm2022/images/'+'matrix_log_tc.png',
dpi=300,
pad_inches=0.25,
transparent=True,
bbox_inches='tight')
pl.close()
|
[
"pylab.close",
"numpy.load",
"pylab.title",
"pylab.imshow",
"pylab.xticks",
"pylab.savefig",
"pylab.yticks",
"pylab.colorbar",
"pylab.figure",
"numpy.eye",
"numpy.log10"
] |
[((326, 396), 'numpy.load', 'np.load', (["(mainpath + 'tc_step_0p5_theta_90_th_0p20_npv_50_seed_int.npy')"], {}), "(mainpath + 'tc_step_0p5_theta_90_th_0p20_npv_50_seed_int.npy')\n", (333, 396), True, 'import numpy as np\n'), ((409, 464), 'numpy.load', 'np.load', (["(mainpath + 'graph_mat_cone60_com2com_prob.npy')"], {}), "(mainpath + 'graph_mat_cone60_com2com_prob.npy')\n", (416, 464), True, 'import numpy as np\n'), ((607, 637), 'numpy.log10', 'np.log10', (['graphcone_p_row_norm'], {}), '(graphcone_p_row_norm)\n', (615, 637), True, 'import numpy as np\n'), ((655, 680), 'numpy.log10', 'np.log10', (['(prob_int_tc + 1)'], {}), '(prob_int_tc + 1)\n', (663, 680), True, 'import numpy as np\n'), ((852, 863), 'pylab.figure', 'pl.figure', ([], {}), '()\n', (861, 863), True, 'import pylab as pl\n'), ((908, 921), 'pylab.xticks', 'pl.xticks', (['[]'], {}), '([])\n', (917, 921), True, 'import pylab as pl\n'), ((922, 935), 'pylab.yticks', 'pl.yticks', (['[]'], {}), '([])\n', (931, 935), True, 'import pylab as pl\n'), ((936, 1003), 'pylab.title', 'pl.title', (['"""$\\\\log_{{10}}{{(\\\\mathbb{{P}}_{{path}})}}$"""'], {'fontsize': '(18)'}), "('$\\\\log_{{10}}{{(\\\\mathbb{{P}}_{{path}})}}$', fontsize=18)\n", (944, 1003), True, 'import pylab as pl\n'), ((1003, 1016), 'pylab.colorbar', 'pl.colorbar', ([], {}), '()\n', (1014, 1016), True, 'import pylab as pl\n'), ((1030, 1191), 'pylab.savefig', 'pl.savefig', (["('/data/hu_paquette/work/tractoGRAPHy/ismrm2022/images/' + 'matrix_log_p.png')"], {'dpi': '(300)', 'pad_inches': '(0.25)', 'transparent': '(True)', 'bbox_inches': '"""tight"""'}), "('/data/hu_paquette/work/tractoGRAPHy/ismrm2022/images/' +\n 'matrix_log_p.png', dpi=300, pad_inches=0.25, transparent=True,\n bbox_inches='tight')\n", (1040, 1191), True, 'import pylab as pl\n'), ((1195, 1205), 'pylab.close', 'pl.close', ([], {}), '()\n', (1203, 1205), True, 'import pylab as pl\n'), ((1208, 1219), 'pylab.figure', 'pl.figure', ([], {}), '()\n', (1217, 1219), True, 'import pylab as pl\n'), ((1220, 1255), 'pylab.imshow', 'pl.imshow', (['log_tc_plus_1', '"""viridis"""'], {}), "(log_tc_plus_1, 'viridis')\n", (1229, 1255), True, 'import pylab as pl\n'), ((1256, 1269), 'pylab.xticks', 'pl.xticks', (['[]'], {}), '([])\n', (1265, 1269), True, 'import pylab as pl\n'), ((1270, 1283), 'pylab.yticks', 'pl.yticks', (['[]'], {}), '([])\n', (1279, 1283), True, 'import pylab as pl\n'), ((1284, 1377), 'pylab.title', 'pl.title', (['"""$\\\\log_{{10}}{{(\\\\text{{Streamline}}_{{\\\\text{{count}}}} + 1)}}$"""'], {'fontsize': '(18)'}), "('$\\\\log_{{10}}{{(\\\\text{{Streamline}}_{{\\\\text{{count}}}} + 1)}}$',\n fontsize=18)\n", (1292, 1377), True, 'import pylab as pl\n'), ((1372, 1385), 'pylab.colorbar', 'pl.colorbar', ([], {}), '()\n', (1383, 1385), True, 'import pylab as pl\n'), ((1399, 1561), 'pylab.savefig', 'pl.savefig', (["('/data/hu_paquette/work/tractoGRAPHy/ismrm2022/images/' + 'matrix_log_tc.png')"], {'dpi': '(300)', 'pad_inches': '(0.25)', 'transparent': '(True)', 'bbox_inches': '"""tight"""'}), "('/data/hu_paquette/work/tractoGRAPHy/ismrm2022/images/' +\n 'matrix_log_tc.png', dpi=300, pad_inches=0.25, transparent=True,\n bbox_inches='tight')\n", (1409, 1561), True, 'import pylab as pl\n'), ((1565, 1575), 'pylab.close', 'pl.close', ([], {}), '()\n', (1573, 1575), True, 'import pylab as pl\n'), ((874, 895), 'numpy.log10', 'np.log10', (['graphcone_p'], {}), '(graphcone_p)\n', (882, 895), True, 'import numpy as np\n'), ((546, 555), 'numpy.eye', 'np.eye', (['N'], {}), '(N)\n', (552, 555), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
__author__ = "Yuchen"
__aim__ = 'rank top sentences in one topic'
__testCase__ = "../test/test_sentenceRanking.py"
import argparse
import numpy as np
# from Processing import process,synonyms
import Processing
from sentSimilarity import Rouge
import operator
from tfidf_contentWords import loadData
## for annotation sentences, there have many similar sentences; I hate monday/ I hate monday either. Although diff people select diff sentences, but the meaning is exactly same.
# So the question is how to measure the the similar sentence at annotation stage
def load_data(i_corpus):
"""
input data format: txt. sentence --(rank:1)
sentence --(rank:0)..
:return:
"""
docs = np.zeros((1 , len(i_corpus)+1), dtype=np.int16)
# for ifl in i_corpus:
# print (ifl)
for ifl in enumerate(i_corpus):
print (ifl)
if ifl[0] == 0:
with open(ifl[1]) as fi:
for ln in enumerate(fi):
row = np.array([ln[0],ln[1].split(" --(")[0],ln[1].split(" --(")[1].split(")")[0]])
docs = np.row_stack((docs,row))
else:
with open(ifl[1]) as fi:
list = [0]
for ln in enumerate(fi):
# print (ln[1])
list.append(ln[1].split(" --(")[1].split(")")[0])
column = np.array(list)
docs = np.column_stack((docs, column))
return docs
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--allData', default='', action='store', nargs='+',
help="add train test validation dataset together")
args = parser.parse_args()
data = load_data(args.allData)
##processing
list = [0]
for sent in data[:,1][1:]:
list.append(Processing.process(sent))
column = np.array(list)
data = np.column_stack((data, column))
#find synonyms
synonyms_column = [0]
for sent in data[:, -1][1:]:
synonyms_sent = []
for word in sent.split():
weight = 1/len(sent.split())
# print (weight)
word_list = Processing.synonyms(word)
synonyms_sent = synonyms_sent + word_list
uniqSynon = set(synonyms_sent)
synonyms_column.append(uniqSynon)
data = np.column_stack((data, synonyms_column))
#calculate similarity
dic = {}
simiSentences = []
for i in range(1,len(data)):
for j in range(i+1,len(data)):
enstance = Rouge(' '.join(data[:,-1][i]), ' '.join(data[:,-1][j]))
score = enstance.get_rouge_1()
dic[i-1, j-1] = score['f']
sorted_x = sorted(dic.items(), key=operator.itemgetter(1),reverse=True)
# print (sorted_x)
for sents,simiScore in sorted_x:
if simiScore > 0.6:
simiSentences.append(sents)
# print (simiSentences)
## sentence groups
allSents = ()
for item in simiSentences:
allSents = allSents + item
# print(allSents)
senGroup = []
for item in [sent for sent in allSents if sent not in senGroup]:
if item not in senGroup:
senGroup.append('mark')
senGroup.append(item)
for index in senGroup:
for i, j in simiSentences:
if i == index and j not in senGroup:
senGroup.append(j)
elif j == index and i not in senGroup:
senGroup.append(i)
# print (senGroup)
## each sentence groups
group = {}
num = 0
list = []
for i in senGroup:
# print (i)
if i != 'mark':
list.append(i)
# print(list)
else:
group[num] = list
num = num + 1
list = []
# print (list)
group[num] = list
print(group)
#delete first row
data = np.delete(data, 0, 0)
##annotate similar sentence
for row in data:
# pass
print (row[:,2:-2])
if __name__ == '__main__':
"""
--allData enlistment_pos1.txt enlistment_pos2.txt
"""
main()
|
[
"Processing.synonyms",
"argparse.ArgumentParser",
"numpy.array",
"Processing.process",
"numpy.row_stack",
"numpy.column_stack",
"operator.itemgetter",
"numpy.delete"
] |
[((1526, 1551), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1549, 1551), False, 'import argparse\n'), ((1893, 1907), 'numpy.array', 'np.array', (['list'], {}), '(list)\n', (1901, 1907), True, 'import numpy as np\n'), ((1919, 1950), 'numpy.column_stack', 'np.column_stack', (['(data, column)'], {}), '((data, column))\n', (1934, 1950), True, 'import numpy as np\n'), ((2360, 2400), 'numpy.column_stack', 'np.column_stack', (['(data, synonyms_column)'], {}), '((data, synonyms_column))\n', (2375, 2400), True, 'import numpy as np\n'), ((3921, 3942), 'numpy.delete', 'np.delete', (['data', '(0)', '(0)'], {}), '(data, 0, 0)\n', (3930, 3942), True, 'import numpy as np\n'), ((1854, 1878), 'Processing.process', 'Processing.process', (['sent'], {}), '(sent)\n', (1872, 1878), False, 'import Processing\n'), ((2186, 2211), 'Processing.synonyms', 'Processing.synonyms', (['word'], {}), '(word)\n', (2205, 2211), False, 'import Processing\n'), ((2740, 2762), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (2759, 2762), False, 'import operator\n'), ((1411, 1425), 'numpy.array', 'np.array', (['list'], {}), '(list)\n', (1419, 1425), True, 'import numpy as np\n'), ((1449, 1480), 'numpy.column_stack', 'np.column_stack', (['(docs, column)'], {}), '((docs, column))\n', (1464, 1480), True, 'import numpy as np\n'), ((1136, 1161), 'numpy.row_stack', 'np.row_stack', (['(docs, row)'], {}), '((docs, row))\n', (1148, 1161), True, 'import numpy as np\n')]
|
import os
import shutil
import pickle
from torch import nn
import torch
import pandas as pd
import random
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.cuda.amp import autocast,GradScaler
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from torchvision import transforms
from utils import dfs_remove_weight
from feature_selection import select_feature_linesvc
ACTIVATION = {
'relu':nn.ReLU(inplace=True),
'elu':nn.ELU(inplace=True),
'leakyrelu':nn.LeakyReLU(inplace=True),
'prelu':nn.PReLU(),
'gelu':nn.GELU(),
'tanh':nn.Tanh()
}
class RandomMask1d(object):
def __init__(self,factor=0.1,p=0.5):
self.factor = factor
self.p = p
def __call__(self,seq):
"""
seq: vector of 1d
"""
if np.random.rand() > self.p:
mask = (np.random.random_sample(seq.shape) > self.factor).astype(np.float32)
seq = seq * mask
return seq
class RandomScale1d(object):
def __init__(self,factor=0.2,p=0.5):
self.factor = factor
self.p = p
def __call__(self,seq):
"""
seq: vector of 1d
"""
if np.random.rand() > self.p:
mask = (np.random.random_sample(seq.shape)*self.factor + (1.0-self.factor/2)).astype(np.float32)
seq = seq * mask
return seq
class MyDataset(Dataset):
def __init__(self, X, Y=None,transform=None):
self.X = X
self.Y = Y
self.transform = transform
def __len__(self):
return len(self.X)
def __getitem__(self,index):
data = self.X[index]
if self.transform is not None:
data = self.transform(data)
if self.Y is not None:
target = self.Y[index]
sample = {'data':torch.from_numpy(data), 'target':int(target)}
else:
sample = {'data':torch.from_numpy(data)}
return sample
class MLP_CLASSIFIER(nn.Module):
def __init__(self, input_size, output_size=245, depth=3, depth_list=[256,128,64], drop_prob=0.5, use_norm=True,activation=None):
super(MLP_CLASSIFIER, self).__init__()
assert len(depth_list) == depth
self.linear_list = []
for i in range(depth):
if i == 0:
self.linear_list.append(nn.Linear(input_size,depth_list[i]))
else:
self.linear_list.append(nn.Linear(depth_list[i-1],depth_list[i]))
if use_norm:
self.linear_list.append(nn.BatchNorm1d(depth_list[i]))
self.linear_list.append(nn.Dropout(0.2))
if activation is None:
self.linear_list.append(nn.ReLU(inplace=True))
else:
self.linear_list.append(activation)
# self.linear_list.append(nn.Tanh())
# self.linear_list.append(nn.Dropout(0.5)) #pro
self.linear = nn.Sequential(*self.linear_list)
self.drop = nn.Dropout(drop_prob) if drop_prob > 0.0 else None
self.cls_head = nn.Linear(depth_list[-1],output_size)
def forward(self, x):
x = self.linear(x) #N*C
if self.drop:
x = self.drop(x)
x = self.cls_head(x)
return x
class AverageMeter(object):
'''
Computes and stores the average and current value
'''
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
'''
Computes the precision@k for the specified values of k
'''
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(1/batch_size))
return res
def train_epoch(epoch,net,criterion,optim,train_loader,scaler,use_fp16=True):
net.train()
train_loss = AverageMeter()
train_acc = AverageMeter()
for step, sample in enumerate(train_loader):
data = sample['data']
target = sample['target']
# print(data.size())
data = data.cuda()
target = target.cuda()
with autocast(use_fp16):
output = net(data)
loss = criterion(output, target)
optim.zero_grad()
if use_fp16:
scaler.scale(loss).backward()
scaler.step(optim)
scaler.update()
else:
loss.backward()
optim.step()
output = output.float()
loss = loss.float()
# measure accuracy and record loss
acc = accuracy(output.data, target)[0]
train_loss.update(loss.item(), data.size(0))
train_acc.update(acc.item(), data.size(0))
torch.cuda.empty_cache()
# if step % 10 == 0:
# print('epoch:{},step:{},train_loss:{:.5f},train_acc:{:.5f},lr:{}'
# .format(epoch, step, loss.item(), acc.item(), optim.param_groups[0]['lr']))
return train_acc.avg,train_loss.avg
def val_epoch(epoch,net,criterion,val_loader,use_fp16=True):
net.eval()
val_loss = AverageMeter()
val_acc = AverageMeter()
with torch.no_grad():
for step, sample in enumerate(val_loader):
data = sample['data']
target = sample['target']
data = data.cuda()
target = target.cuda()
with autocast(use_fp16):
output = net(data)
loss = criterion(output, target)
output = output.float()
loss = loss.float()
# measure accuracy and record loss
acc = accuracy(output.data, target)[0]
val_loss.update(loss.item(), data.size(0))
val_acc.update(acc.item(), data.size(0))
torch.cuda.empty_cache()
# print('epoch:{},step:{},val_loss:{:.5f},val_acc:{:.5f}'
# .format(epoch, step, loss.item(), acc.item()))
return val_acc.avg,val_loss.avg
def evaluation(test_data,net,weight_path,use_fp16=True):
ckpt = torch.load(weight_path)
net.load_state_dict(ckpt['state_dict'])
net.eval()
test_data = torch.from_numpy(test_data) #N*fea_len
with torch.no_grad():
data = test_data.cuda()
with autocast(use_fp16):
output = net(data)
output = output.float()
prob_output = torch.softmax(output,dim=1) # N*C
output = torch.argmax(prob_output,dim=1) #N
torch.cuda.empty_cache()
return output.cpu().numpy().tolist(),prob_output.cpu().numpy()
def evaluation_tta(test_data,net,weight_path,use_fp16=True,tta=5):
ckpt = torch.load(weight_path)
net.load_state_dict(ckpt['state_dict'])
net.eval()
transform = transforms.Compose([RandomScale1d()])
vote_out = []
prob_out = []
for _ in range(tta):
input_data = transform(test_data)
input_data = torch.from_numpy(input_data) #N*fea_len
with torch.no_grad():
data = input_data.cuda()
with autocast(use_fp16):
output = net(data)
output = output.float()
prob_output = torch.softmax(output,dim=1) #N*C
output = torch.argmax(prob_output,dim=1) #N
vote_out.append(output.cpu().numpy().tolist())
prob_out.append(prob_output.cpu().numpy()) # tta*N*C
torch.cuda.empty_cache()
vote_array = np.asarray(vote_out).astype(np.uint8) # tta*N
vote_out = [max(list(vote_array[:,i]),key=list(vote_array[:,i]).count) for i in range(vote_array.shape[1])]
return vote_out, np.mean(prob_out, axis=0)
def manual_select(total_list,exclude_list=None):
fea_list = []
nouse_list = []
if exclude_list is not None:
for exclude_label in exclude_list:
if 'sum' not in exclude_label and 'avg' not in exclude_label:
nouse_list += [f'{exclude_label}_{str(i)}' for i in range(400)]
else:
nouse_list += [f'{exclude_label}_{str(i)}' for i in range(40)]
for col in total_list:
if col not in nouse_list:
fea_list.append(col)
return fea_list
else:
return total_list
def run(train_path,test_path,output_dir,net_depth=3,exclude_list=None,scale_flag=True,select_flag=False,dim_reduction=False,aug_flag=False,tta=False,**aux_config):
torch.manual_seed(0)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
else:
shutil.rmtree(output_dir)
os.makedirs(output_dir)
# load training and testing data
train_df = pd.read_csv(train_path)
test_df = pd.read_csv(test_path)
# data preprocessing
del train_df['seq']
del test_df['seq']
test_id = test_df['id']
# print(list(test_id))
del train_df['id']
del test_df['id']
# manual select
fea_list = manual_select(train_df.columns,exclude_list)
fea_list = [f for f in fea_list if f not in ['label']]
le = LabelEncoder()
label_list = set(train_df['label'])
print(random.sample(label_list,1))
train_df['label'] = le.fit_transform(train_df['label'])
# convert to numpy array
Y = np.asarray(train_df['label']).astype(np.uint8)
X = np.asarray(train_df[fea_list]).astype(np.float32)
test = np.asarray(test_df[fea_list]).astype(np.float32)
# feature selection
if select_flag:
select_model_path = './select_model.pkl'
if os.path.exists(select_model_path):
with open(select_model_path, 'rb') as f:
select_model = pickle.load(f)
else:
select_model = select_feature_linesvc(X, Y, select_model_path)
X = select_model.transform(X)
test = select_model.transform(test)
# data scale
if scale_flag:
X_len = X.shape[0]
data_scaler = StandardScaler()
cat_data = np.concatenate([X,test],axis=0)
cat_data= data_scaler.fit_transform(cat_data)
X = cat_data[:X_len]
test = cat_data[X_len:]
# dim reduction
if dim_reduction:
X_len = X.shape[0]
cat_data = np.concatenate([X,test],axis=0)
# fastica = FastICA(n_components=int(X.shape[1]*0.5),random_state=0)
# cat_data= fastica.fit_transform(cat_data)
pca = PCA(n_components=int(X.shape[1]*0.5))
cat_data= pca.fit_transform(cat_data)
X = cat_data[:X_len]
test = cat_data[X_len:]
# print(Y)
print(X.shape,test.shape)
num_classes = len(set(train_df['label'])) #245
fea_len = X.shape[1]
total_result = []
total_prob_result = []
kfold = KFold(n_splits=5,shuffle=True,random_state=21)
for fold_num,(train_index,val_index) in enumerate(kfold.split(X)):
print(f'***********fold {fold_num+1} start!!***********')
fold_dir = os.path.join(output_dir,f'fold{fold_num+1}')
if not os.path.exists(fold_dir):
os.makedirs(fold_dir)
# initialization
epoch_num = 100
acc_threshold = 0.0
depth = net_depth
# depth_list = [int(fea_len*(2**(1-i))) for i in range(depth)]
depth_list = [fea_len - i*(fea_len-num_classes)// depth for i in range(1,depth)]
print('depth list:',depth_list)
net = MLP_CLASSIFIER(fea_len,num_classes,len(depth_list),depth_list,**aux_config)
criterion = nn.CrossEntropyLoss()
optim = torch.optim.Adam(net.parameters(), lr=0.001, weight_decay=0.0001)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optim, [25,60,80], gamma=0.1)
scaler = GradScaler()
net = net.cuda()
criterion = criterion.cuda()
# data loader
x_train, x_val = X[train_index], X[val_index]
y_train, y_val = Y[train_index], Y[val_index]
print('Train Data Size:',x_train.shape)
print('Val Data Size:',x_val.shape)
if aug_flag:
transform = transforms.Compose([RandomScale1d()])
else:
transform = None
train_dataset = MyDataset(X=x_train,Y=y_train,transform=transform)
val_dataset = MyDataset(X=x_val,Y=y_val,transform=transform)
train_loader = DataLoader(
train_dataset,
batch_size=256,
shuffle=True,
num_workers=2)
val_loader = DataLoader(
val_dataset,
batch_size=256,
shuffle=False,
num_workers=2)
# main processing
for epoch in range(epoch_num):
train_acc, train_loss = train_epoch(epoch,net,criterion,optim,train_loader,scaler)
val_acc,val_loss = val_epoch(epoch,net,criterion,val_loader)
torch.cuda.empty_cache()
if epoch % 10 == 0:
print('Train epoch:{},train_loss:{:.5f},train_acc:{:.5f}'
.format(epoch, train_loss, train_acc))
print('Val epoch:{},val_loss:{:.5f},val_acc:{:.5f}'
.format(epoch, val_loss, val_acc))
if lr_scheduler is not None:
lr_scheduler.step()
if val_acc > acc_threshold:
acc_threshold = val_acc
saver = {
'state_dict': net.state_dict()
}
file_name = 'epoch:{}-val_acc:{:.5f}-val_loss:{:.5f}-mlp.pth'.format(epoch,val_acc,val_loss)
save_path = os.path.join(fold_dir, file_name)
print('Save as: %s'%file_name)
torch.save(saver, save_path)
# save top3 model
dfs_remove_weight(fold_dir,retain=1)
# generating test result using the best model
if tta:
fold_result,fold_prob_result = evaluation_tta(test,net,save_path,tta=9) #N,N*C
else:
fold_result,fold_prob_result = evaluation(test,net,save_path) #N,N*C
total_result.append(fold_result)
total_prob_result.append(fold_prob_result)
fold_prob_result = np.argmax(fold_prob_result,axis=1).astype(np.uint8).tolist()
fold_result = le.inverse_transform(fold_result)
fold_prob_result = le.inverse_transform(fold_prob_result)
# csv save
fold_vote_csv = {}
fold_vote_csv = pd.DataFrame(fold_vote_csv)
fold_vote_csv['sample_id'] = list(test_id) + ['d2ciob_']
fold_vote_csv['category_id'] = list(fold_result) + random.sample(label_list,1)
fold_vote_csv.to_csv(os.path.join(output_dir, f'fold{fold_num}-vote.csv'),index=False)
fold_prob_csv = {}
fold_prob_csv = pd.DataFrame(fold_prob_csv)
fold_prob_csv['sample_id'] = list(test_id) + ['d2ciob_']
fold_prob_csv['category_id'] = list(fold_prob_result) + random.sample(label_list,1)
fold_vote_csv.to_csv(os.path.join(output_dir, f'fold{fold_num}-prob.csv'),index=False)
# result fusion by voting
final_vote_result = []
vote_array = np.asarray(total_result).astype(np.uint8) #fold*N
final_vote_result.extend([max(list(vote_array[:,i]),key=list(vote_array[:,i]).count) for i in range(vote_array.shape[1])])
final_vote_result = le.inverse_transform(final_vote_result)
# result fusion by avg prob
final_prob_result = []
prob_array = np.asarray(total_prob_result) # fold*N*C
prob_array = np.mean(prob_array,axis=0) #N*C
final_prob_result = np.argmax(prob_array,axis=1).astype(np.uint8).tolist()
final_prob_result = le.inverse_transform(final_prob_result)
# csv save
total_vote_csv = {}
total_vote_csv = pd.DataFrame(total_vote_csv)
total_vote_csv['sample_id'] = list(test_id) + ['d2ciob_']
total_vote_csv['category_id'] = list(final_vote_result) + random.sample(label_list,1)
total_vote_csv.to_csv(os.path.join(output_dir, f'fusion-vote.csv'),index=False)
total_prob_csv = {}
total_prob_csv = pd.DataFrame(total_prob_csv)
total_prob_csv['sample_id'] = list(test_id) + ['d2ciob_']
total_prob_csv['category_id'] = list(final_prob_result) + random.sample(label_list,1)
total_prob_csv.to_csv(os.path.join(output_dir, f'fusion-prob.csv'),index=False)
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
pssm_key = ['pssm_sum', 'pssm_avg','acc_1','acc_2','acc_3','acc_4','acc_5','acc_6','sxg_0','sxg_1','sxg_2','sxg_3','sxg_4','sxg_5']
hmm_key = ['hmm_sum', 'hmm_avg','acc_hmm_1','acc_hmm_2','acc_hmm_3','acc_hmm_4','acc_hmm_5','acc_hmm_6','sxg_hmm_0','sxg_hmm_1','sxg_hmm_2','sxg_hmm_3','sxg_hmm_4','sxg_hmm_5']
total_key = pssm_key[:2] + hmm_key[:2] + pssm_key[2:] + hmm_key[2:]
# train_path = '../dataset/pssm_train.csv'
# test_path = '../dataset/pssm_test.csv'
train_path = '../dataset/hmm_train.csv'
test_path = '../dataset/hmm_test.csv'
fea_key = hmm_key
#HALF
output_dir = './result/hmm_half_scale_pro/'
for i in range(11,12):
# for i,act in enumerate(ACTIVATION):
save_path = os.path.join(output_dir,f'trial_{str(i+1)}')
# total
# exclude_list = None
# half
exclude_list = random.sample(fea_key[2:],6)
# qtr
# exclude_list = random.sample(fea_key[2:],9)
# uncia
# exclude_list = random.sample(fea_key[2:],11)
print('exclude list:',exclude_list)
run(train_path,test_path,save_path,net_depth=3,exclude_list=exclude_list,scale_flag=True,select_flag=False,dim_reduction=False,aug_flag=False,tta=False)
# QTR
output_dir = './result/hmm_qtr_scale_pro/'
for i in range(10):
# for i,act in enumerate(ACTIVATION):
save_path = os.path.join(output_dir,f'trial_{str(i+1)}')
# total
# exclude_list = None
# half
# exclude_list = random.sample(fea_key[2:],6)
# qtr
exclude_list = random.sample(fea_key[2:],9)
# uncia
# exclude_list = random.sample(fea_key[2:],11)
print('exclude list:',exclude_list)
run(train_path,test_path,save_path,net_depth=3,exclude_list=exclude_list,scale_flag=True,select_flag=False,dim_reduction=False,aug_flag=False,tta=False)
|
[
"torch.nn.Dropout",
"sklearn.preprocessing.StandardScaler",
"numpy.random.random_sample",
"numpy.argmax",
"pandas.read_csv",
"torch.argmax",
"random.sample",
"numpy.mean",
"pickle.load",
"shutil.rmtree",
"torch.no_grad",
"os.path.join",
"pandas.DataFrame",
"torch.cuda.amp.autocast",
"torch.utils.data.DataLoader",
"torch.load",
"os.path.exists",
"sklearn.preprocessing.LabelEncoder",
"torch.softmax",
"torch.nn.Linear",
"feature_selection.select_feature_linesvc",
"torch.nn.Tanh",
"torch.manual_seed",
"numpy.asarray",
"torch.nn.BatchNorm1d",
"utils.dfs_remove_weight",
"torch.nn.GELU",
"torch.nn.ELU",
"torch.cuda.amp.GradScaler",
"torch.nn.LeakyReLU",
"numpy.concatenate",
"torch.from_numpy",
"torch.nn.PReLU",
"torch.nn.ReLU",
"os.makedirs",
"torch.nn.Sequential",
"torch.nn.CrossEntropyLoss",
"sklearn.model_selection.KFold",
"torch.save",
"torch.cuda.empty_cache",
"numpy.random.rand",
"torch.optim.lr_scheduler.MultiStepLR"
] |
[((580, 601), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (587, 601), False, 'from torch import nn\n'), ((613, 633), 'torch.nn.ELU', 'nn.ELU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (619, 633), False, 'from torch import nn\n'), ((651, 677), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (663, 677), False, 'from torch import nn\n'), ((691, 701), 'torch.nn.PReLU', 'nn.PReLU', ([], {}), '()\n', (699, 701), False, 'from torch import nn\n'), ((714, 723), 'torch.nn.GELU', 'nn.GELU', ([], {}), '()\n', (721, 723), False, 'from torch import nn\n'), ((736, 745), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (743, 745), False, 'from torch import nn\n'), ((6543, 6566), 'torch.load', 'torch.load', (['weight_path'], {}), '(weight_path)\n', (6553, 6566), False, 'import torch\n'), ((6642, 6669), 'torch.from_numpy', 'torch.from_numpy', (['test_data'], {}), '(test_data)\n', (6658, 6669), False, 'import torch\n'), ((7124, 7147), 'torch.load', 'torch.load', (['weight_path'], {}), '(weight_path)\n', (7134, 7147), False, 'import torch\n'), ((8860, 8880), 'torch.manual_seed', 'torch.manual_seed', (['(0)'], {}), '(0)\n', (8877, 8880), False, 'import torch\n'), ((9086, 9109), 'pandas.read_csv', 'pd.read_csv', (['train_path'], {}), '(train_path)\n', (9097, 9109), True, 'import pandas as pd\n'), ((9124, 9146), 'pandas.read_csv', 'pd.read_csv', (['test_path'], {}), '(test_path)\n', (9135, 9146), True, 'import pandas as pd\n'), ((9472, 9486), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (9484, 9486), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((11123, 11171), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': '(5)', 'shuffle': '(True)', 'random_state': '(21)'}), '(n_splits=5, shuffle=True, random_state=21)\n', (11128, 11171), False, 'from sklearn.model_selection import KFold\n'), ((15789, 15818), 'numpy.asarray', 'np.asarray', (['total_prob_result'], {}), '(total_prob_result)\n', (15799, 15818), True, 'import numpy as np\n'), ((15847, 15874), 'numpy.mean', 'np.mean', (['prob_array'], {'axis': '(0)'}), '(prob_array, axis=0)\n', (15854, 15874), True, 'import numpy as np\n'), ((16083, 16111), 'pandas.DataFrame', 'pd.DataFrame', (['total_vote_csv'], {}), '(total_vote_csv)\n', (16095, 16111), True, 'import pandas as pd\n'), ((16394, 16422), 'pandas.DataFrame', 'pd.DataFrame', (['total_prob_csv'], {}), '(total_prob_csv)\n', (16406, 16422), True, 'import pandas as pd\n'), ((3092, 3124), 'torch.nn.Sequential', 'nn.Sequential', (['*self.linear_list'], {}), '(*self.linear_list)\n', (3105, 3124), False, 'from torch import nn\n'), ((3220, 3258), 'torch.nn.Linear', 'nn.Linear', (['depth_list[-1]', 'output_size'], {}), '(depth_list[-1], output_size)\n', (3229, 3258), False, 'from torch import nn\n'), ((5231, 5255), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (5253, 5255), False, 'import torch\n'), ((5658, 5673), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5671, 5673), False, 'import torch\n'), ((6690, 6705), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6703, 6705), False, 'import torch\n'), ((6857, 6885), 'torch.softmax', 'torch.softmax', (['output'], {'dim': '(1)'}), '(output, dim=1)\n', (6870, 6885), False, 'import torch\n'), ((6908, 6940), 'torch.argmax', 'torch.argmax', (['prob_output'], {'dim': '(1)'}), '(prob_output, dim=1)\n', (6920, 6940), False, 'import torch\n'), ((6951, 6975), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (6973, 6975), False, 'import torch\n'), ((7387, 7415), 'torch.from_numpy', 'torch.from_numpy', (['input_data'], {}), '(input_data)\n', (7403, 7415), False, 'import torch\n'), ((8074, 8099), 'numpy.mean', 'np.mean', (['prob_out'], {'axis': '(0)'}), '(prob_out, axis=0)\n', (8081, 8099), True, 'import numpy as np\n'), ((8893, 8919), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (8907, 8919), False, 'import os\n'), ((8929, 8952), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (8940, 8952), False, 'import os\n'), ((8971, 8996), 'shutil.rmtree', 'shutil.rmtree', (['output_dir'], {}), '(output_dir)\n', (8984, 8996), False, 'import shutil\n'), ((9005, 9028), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (9016, 9028), False, 'import os\n'), ((9537, 9565), 'random.sample', 'random.sample', (['label_list', '(1)'], {}), '(label_list, 1)\n', (9550, 9565), False, 'import random\n'), ((9938, 9971), 'os.path.exists', 'os.path.exists', (['select_model_path'], {}), '(select_model_path)\n', (9952, 9971), False, 'import os\n'), ((10330, 10346), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (10344, 10346), False, 'from sklearn.preprocessing import StandardScaler\n'), ((10366, 10399), 'numpy.concatenate', 'np.concatenate', (['[X, test]'], {'axis': '(0)'}), '([X, test], axis=0)\n', (10380, 10399), True, 'import numpy as np\n'), ((10608, 10641), 'numpy.concatenate', 'np.concatenate', (['[X, test]'], {'axis': '(0)'}), '([X, test], axis=0)\n', (10622, 10641), True, 'import numpy as np\n'), ((11326, 11373), 'os.path.join', 'os.path.join', (['output_dir', 'f"""fold{fold_num + 1}"""'], {}), "(output_dir, f'fold{fold_num + 1}')\n", (11338, 11373), False, 'import os\n'), ((11862, 11883), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (11881, 11883), False, 'from torch import nn\n'), ((11989, 12057), 'torch.optim.lr_scheduler.MultiStepLR', 'torch.optim.lr_scheduler.MultiStepLR', (['optim', '[25, 60, 80]'], {'gamma': '(0.1)'}), '(optim, [25, 60, 80], gamma=0.1)\n', (12025, 12057), False, 'import torch\n'), ((12073, 12085), 'torch.cuda.amp.GradScaler', 'GradScaler', ([], {}), '()\n', (12083, 12085), False, 'from torch.cuda.amp import autocast, GradScaler\n'), ((12677, 12747), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'batch_size': '(256)', 'shuffle': '(True)', 'num_workers': '(2)'}), '(train_dataset, batch_size=256, shuffle=True, num_workers=2)\n', (12687, 12747), False, 'from torch.utils.data import DataLoader\n'), ((12843, 12912), 'torch.utils.data.DataLoader', 'DataLoader', (['val_dataset'], {'batch_size': '(256)', 'shuffle': '(False)', 'num_workers': '(2)'}), '(val_dataset, batch_size=256, shuffle=False, num_workers=2)\n', (12853, 12912), False, 'from torch.utils.data import DataLoader\n'), ((14113, 14150), 'utils.dfs_remove_weight', 'dfs_remove_weight', (['fold_dir'], {'retain': '(1)'}), '(fold_dir, retain=1)\n', (14130, 14150), False, 'from utils import dfs_remove_weight\n'), ((14789, 14816), 'pandas.DataFrame', 'pd.DataFrame', (['fold_vote_csv'], {}), '(fold_vote_csv)\n', (14801, 14816), True, 'import pandas as pd\n'), ((15116, 15143), 'pandas.DataFrame', 'pd.DataFrame', (['fold_prob_csv'], {}), '(fold_prob_csv)\n', (15128, 15143), True, 'import pandas as pd\n'), ((16236, 16264), 'random.sample', 'random.sample', (['label_list', '(1)'], {}), '(label_list, 1)\n', (16249, 16264), False, 'import random\n'), ((16290, 16334), 'os.path.join', 'os.path.join', (['output_dir', 'f"""fusion-vote.csv"""'], {}), "(output_dir, f'fusion-vote.csv')\n", (16302, 16334), False, 'import os\n'), ((16547, 16575), 'random.sample', 'random.sample', (['label_list', '(1)'], {}), '(label_list, 1)\n', (16560, 16575), False, 'import random\n'), ((16601, 16645), 'os.path.join', 'os.path.join', (['output_dir', 'f"""fusion-prob.csv"""'], {}), "(output_dir, f'fusion-prob.csv')\n", (16613, 16645), False, 'import os\n'), ((17610, 17639), 'random.sample', 'random.sample', (['fea_key[2:]', '(6)'], {}), '(fea_key[2:], 6)\n', (17623, 17639), False, 'import random\n'), ((18337, 18366), 'random.sample', 'random.sample', (['fea_key[2:]', '(9)'], {}), '(fea_key[2:], 9)\n', (18350, 18366), False, 'import random\n'), ((961, 977), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (975, 977), True, 'import numpy as np\n'), ((1340, 1356), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1354, 1356), True, 'import numpy as np\n'), ((3145, 3166), 'torch.nn.Dropout', 'nn.Dropout', (['drop_prob'], {}), '(drop_prob)\n', (3155, 3166), False, 'from torch import nn\n'), ((4646, 4664), 'torch.cuda.amp.autocast', 'autocast', (['use_fp16'], {}), '(use_fp16)\n', (4654, 4664), False, 'from torch.cuda.amp import autocast, GradScaler\n'), ((6275, 6299), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (6297, 6299), False, 'import torch\n'), ((6752, 6770), 'torch.cuda.amp.autocast', 'autocast', (['use_fp16'], {}), '(use_fp16)\n', (6760, 6770), False, 'from torch.cuda.amp import autocast, GradScaler\n'), ((7440, 7455), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7453, 7455), False, 'import torch\n'), ((7628, 7656), 'torch.softmax', 'torch.softmax', (['output'], {'dim': '(1)'}), '(output, dim=1)\n', (7641, 7656), False, 'import torch\n'), ((7682, 7714), 'torch.argmax', 'torch.argmax', (['prob_output'], {'dim': '(1)'}), '(prob_output, dim=1)\n', (7694, 7714), False, 'import torch\n'), ((7853, 7877), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (7875, 7877), False, 'import torch\n'), ((7895, 7915), 'numpy.asarray', 'np.asarray', (['vote_out'], {}), '(vote_out)\n', (7905, 7915), True, 'import numpy as np\n'), ((9664, 9693), 'numpy.asarray', 'np.asarray', (["train_df['label']"], {}), "(train_df['label'])\n", (9674, 9693), True, 'import numpy as np\n'), ((9719, 9749), 'numpy.asarray', 'np.asarray', (['train_df[fea_list]'], {}), '(train_df[fea_list])\n', (9729, 9749), True, 'import numpy as np\n'), ((9780, 9809), 'numpy.asarray', 'np.asarray', (['test_df[fea_list]'], {}), '(test_df[fea_list])\n', (9790, 9809), True, 'import numpy as np\n'), ((10113, 10160), 'feature_selection.select_feature_linesvc', 'select_feature_linesvc', (['X', 'Y', 'select_model_path'], {}), '(X, Y, select_model_path)\n', (10135, 10160), False, 'from feature_selection import select_feature_linesvc\n'), ((11386, 11410), 'os.path.exists', 'os.path.exists', (['fold_dir'], {}), '(fold_dir)\n', (11400, 11410), False, 'import os\n'), ((11424, 11445), 'os.makedirs', 'os.makedirs', (['fold_dir'], {}), '(fold_dir)\n', (11435, 11445), False, 'import os\n'), ((13224, 13248), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (13246, 13248), False, 'import torch\n'), ((14941, 14969), 'random.sample', 'random.sample', (['label_list', '(1)'], {}), '(label_list, 1)\n', (14954, 14969), False, 'import random\n'), ((14998, 15050), 'os.path.join', 'os.path.join', (['output_dir', 'f"""fold{fold_num}-vote.csv"""'], {}), "(output_dir, f'fold{fold_num}-vote.csv')\n", (15010, 15050), False, 'import os\n'), ((15273, 15301), 'random.sample', 'random.sample', (['label_list', '(1)'], {}), '(label_list, 1)\n', (15286, 15301), False, 'import random\n'), ((15330, 15382), 'os.path.join', 'os.path.join', (['output_dir', 'f"""fold{fold_num}-prob.csv"""'], {}), "(output_dir, f'fold{fold_num}-prob.csv')\n", (15342, 15382), False, 'import os\n'), ((15471, 15495), 'numpy.asarray', 'np.asarray', (['total_result'], {}), '(total_result)\n', (15481, 15495), True, 'import numpy as np\n'), ((1965, 1987), 'torch.from_numpy', 'torch.from_numpy', (['data'], {}), '(data)\n', (1981, 1987), False, 'import torch\n'), ((2054, 2076), 'torch.from_numpy', 'torch.from_numpy', (['data'], {}), '(data)\n', (2070, 2076), False, 'import torch\n'), ((5882, 5900), 'torch.cuda.amp.autocast', 'autocast', (['use_fp16'], {}), '(use_fp16)\n', (5890, 5900), False, 'from torch.cuda.amp import autocast, GradScaler\n'), ((7511, 7529), 'torch.cuda.amp.autocast', 'autocast', (['use_fp16'], {}), '(use_fp16)\n', (7519, 7529), False, 'from torch.cuda.amp import autocast, GradScaler\n'), ((10057, 10071), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (10068, 10071), False, 'import pickle\n'), ((13944, 13977), 'os.path.join', 'os.path.join', (['fold_dir', 'file_name'], {}), '(fold_dir, file_name)\n', (13956, 13977), False, 'import os\n'), ((14041, 14069), 'torch.save', 'torch.save', (['saver', 'save_path'], {}), '(saver, save_path)\n', (14051, 14069), False, 'import torch\n'), ((2489, 2525), 'torch.nn.Linear', 'nn.Linear', (['input_size', 'depth_list[i]'], {}), '(input_size, depth_list[i])\n', (2498, 2525), False, 'from torch import nn\n'), ((2584, 2627), 'torch.nn.Linear', 'nn.Linear', (['depth_list[i - 1]', 'depth_list[i]'], {}), '(depth_list[i - 1], depth_list[i])\n', (2593, 2627), False, 'from torch import nn\n'), ((2691, 2720), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['depth_list[i]'], {}), '(depth_list[i])\n', (2705, 2720), False, 'from torch import nn\n'), ((2762, 2777), 'torch.nn.Dropout', 'nn.Dropout', (['(0.2)'], {}), '(0.2)\n', (2772, 2777), False, 'from torch import nn\n'), ((2854, 2875), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2861, 2875), False, 'from torch import nn\n'), ((15903, 15932), 'numpy.argmax', 'np.argmax', (['prob_array'], {'axis': '(1)'}), '(prob_array, axis=1)\n', (15912, 15932), True, 'import numpy as np\n'), ((1008, 1042), 'numpy.random.random_sample', 'np.random.random_sample', (['seq.shape'], {}), '(seq.shape)\n', (1031, 1042), True, 'import numpy as np\n'), ((14535, 14570), 'numpy.argmax', 'np.argmax', (['fold_prob_result'], {'axis': '(1)'}), '(fold_prob_result, axis=1)\n', (14544, 14570), True, 'import numpy as np\n'), ((1387, 1421), 'numpy.random.random_sample', 'np.random.random_sample', (['seq.shape'], {}), '(seq.shape)\n', (1410, 1421), True, 'import numpy as np\n')]
|
import numpy as np
import capytaine as cpt
vert = np.array([0.0, 0.0, -1.0,
1.0, 0.0, -1.0,
1.0, 1.0, -1.0,
0.0, 1.0, -1.0,
1.0, 0.0, -1.0,
2.0, 0.0, -1.0,
2.0, 1.0, -1.0,
1.0, 1.0, -1.0]).reshape((8, 3))
faces = np.arange(0, 8).reshape(2, 4)
mesh = cpt.Mesh(vert, faces)
S, K = cpt.Delhommeau().evaluate(mesh, mesh, sea_bottom=-np.infty, wavenumber=1.0)
print(S)
print(K)
|
[
"capytaine.Mesh",
"capytaine.Delhommeau",
"numpy.array",
"numpy.arange"
] |
[((370, 391), 'capytaine.Mesh', 'cpt.Mesh', (['vert', 'faces'], {}), '(vert, faces)\n', (378, 391), True, 'import capytaine as cpt\n'), ((51, 194), 'numpy.array', 'np.array', (['[0.0, 0.0, -1.0, 1.0, 0.0, -1.0, 1.0, 1.0, -1.0, 0.0, 1.0, -1.0, 1.0, 0.0, \n -1.0, 2.0, 0.0, -1.0, 2.0, 1.0, -1.0, 1.0, 1.0, -1.0]'], {}), '([0.0, 0.0, -1.0, 1.0, 0.0, -1.0, 1.0, 1.0, -1.0, 0.0, 1.0, -1.0, \n 1.0, 0.0, -1.0, 2.0, 0.0, -1.0, 2.0, 1.0, -1.0, 1.0, 1.0, -1.0])\n', (59, 194), True, 'import numpy as np\n'), ((333, 348), 'numpy.arange', 'np.arange', (['(0)', '(8)'], {}), '(0, 8)\n', (342, 348), True, 'import numpy as np\n'), ((399, 415), 'capytaine.Delhommeau', 'cpt.Delhommeau', ([], {}), '()\n', (413, 415), True, 'import capytaine as cpt\n')]
|
# SPDX-License-Identifier: BSD-3-Clause
# Copyright (c) 2022 Scipp contributors (https://github.com/scipp)
# @author <NAME>
import numpy as np
import scipp as sc
def make_variables():
data = np.arange(1, 4, dtype=float)
a = sc.Variable(dims=['x'], values=data)
b = sc.Variable(dims=['x'], values=data)
a_slice = a['x', :]
b_slice = b['x', :]
return a, b, a_slice, b_slice, data
# This check is important: It can happen that an implementation of,
# e.g., __iadd__ does an in-place modification, updating `b`, but then the
# return value is assigned to `a`, which could break the connection unless
# the correct Python object is returned.
def test_iadd_returns_original_object():
a = sc.scalar(1.2)
b = a
a += 1.0
assert sc.identical(a, b)
def test_isub_returns_original_object():
a = sc.scalar(1.2)
b = a
a -= 1.0
assert sc.identical(a, b)
def test_imul_returns_original_object():
a = sc.scalar(1.2)
b = a
a *= 1.0
assert sc.identical(a, b)
def test_itruediv_returns_original_object():
a = sc.scalar(1.2)
b = a
a /= 1.0
assert sc.identical(a, b)
def test_add_variable():
a, b, a_slice, b_slice, data = make_variables()
c = a + b
assert np.array_equal(c.values, data + data)
c = a + 2.0
assert np.array_equal(c.values, data + 2.0)
c = a + b_slice
assert np.array_equal(c.values, data + data)
c += b
assert np.array_equal(c.values, data + data + data)
c += b_slice
assert np.array_equal(c.values, data + data + data + data)
c = 3.5 + c
assert np.array_equal(c.values, data + data + data + data + 3.5)
def test_sub_variable():
a, b, a_slice, b_slice, data = make_variables()
c = a - b
assert np.array_equal(c.values, data - data)
c = a - 2.0
assert np.array_equal(c.values, data - 2.0)
c = a - b_slice
assert np.array_equal(c.values, data - data)
c -= b
assert np.array_equal(c.values, data - data - data)
c -= b_slice
assert np.array_equal(c.values, data - data - data - data)
c = 3.5 - c
assert np.array_equal(c.values, 3.5 - data + data + data + data)
def test_mul_variable():
a, b, a_slice, b_slice, data = make_variables()
c = a * b
assert np.array_equal(c.values, data * data)
c = a * 2.0
assert np.array_equal(c.values, data * 2.0)
c = a * b_slice
assert np.array_equal(c.values, data * data)
c *= b
assert np.array_equal(c.values, data * data * data)
c *= b_slice
assert np.array_equal(c.values, data * data * data * data)
c = 3.5 * c
assert np.array_equal(c.values, data * data * data * data * 3.5)
def test_truediv_variable():
a, b, a_slice, b_slice, data = make_variables()
c = a / b
assert np.array_equal(c.values, data / data)
c = a / 2.0
assert np.array_equal(c.values, data / 2.0)
c = a / b_slice
assert np.array_equal(c.values, data / data)
c /= b
assert np.array_equal(c.values, data / data / data)
c /= b_slice
assert np.array_equal(c.values, data / data / data / data)
c = 2.0 / a
assert np.array_equal(c.values, 2.0 / data)
def test_pow_variable():
a, b, a_slice, b_slice, data = make_variables()
c = a**b
assert np.array_equal(c.values, data**data)
c **= b
assert np.array_equal(c.values, (data**data)**data)
c = a**3
assert np.array_equal(c.values, data**3)
c **= 3
assert np.array_equal(c.values, (data**3)**3)
c = a**3.0
assert np.array_equal(c.values, data**3.0)
c **= 3.0
assert np.array_equal(c.values, (data**3.0)**3.0)
c = a**b_slice
assert np.array_equal(c.values, data**data)
c **= b_slice
assert np.array_equal(c.values, (data**data)**data)
c = 2**b
assert np.array_equal(c.values, 2**data)
c = 2.0**b
assert np.array_equal(c.values, 2.0**data)
def test_iadd_variable_with_scalar():
v = sc.Variable(dims=['x'], values=[10.0])
expected = sc.Variable(dims=['x'], values=[12.0])
v += 2
assert sc.identical(v, expected)
def test_isub_variable_with_scalar():
v = sc.Variable(dims=['x'], values=[10.0])
expected = sc.Variable(dims=['x'], values=[9.0])
v -= 1
assert sc.identical(v, expected)
def test_imul_variable_with_scalar():
v = sc.Variable(dims=['x'], values=[10.0])
expected = sc.Variable(dims=['x'], values=[30.0])
v *= 3
assert sc.identical(v, expected)
def test_itruediv_variable_with_scalar():
v = sc.Variable(dims=['x'], values=[10.0])
expected = sc.Variable(dims=['x'], values=[5.0])
v /= 2
assert sc.identical(v, expected)
def test_add_dataarray_with_dataarray():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = sc.zeros_like(da)
expected.data = sc.arange('x', 2.0, 20.0, 2.0)
assert sc.identical(da + da, expected)
def test_sub_dataarray_with_dataarray():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = sc.zeros_like(da)
assert sc.identical(da - da, expected)
def test_mul_dataarray_with_dataarray():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = sc.zeros_like(da)
expected.data = sc.arange('x', 1.0, 10.0)**2
assert sc.identical(da * da, expected)
def test_truediv_dataarray_with_dataarray():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = sc.ones_like(da)
assert sc.identical(da / da, expected)
def test_add_dataarray_with_variable():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = sc.zeros_like(da)
expected.data = sc.arange('x', 2.0, 20.0, 2.0)
assert sc.identical(da + da.data, expected)
assert sc.identical(da.data + da, expected)
def test_sub_dataarray_with_variable():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = sc.zeros_like(da)
assert sc.identical(da - da.data, expected)
assert sc.identical(da.data - da, expected)
def test_mul_dataarray_with_variable():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = sc.zeros_like(da)
expected.data = sc.arange('x', 1.0, 10.0)**2
assert sc.identical(da * da.data, expected)
assert sc.identical(da.data * da, expected)
def test_truediv_dataarray_with_variable():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = sc.ones_like(da)
assert sc.identical(da / da.data, expected)
assert sc.identical(da.data / da, expected)
def test_add_dataarray_with_scalar():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = sc.zeros_like(da)
expected.data = sc.arange('x', 3.0, 12.0)
assert sc.identical(da + 2.0, expected)
assert sc.identical(2.0 + da, expected)
def test_sub_dataarray_with_scalar():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = sc.zeros_like(da)
expected.data = sc.arange('x', 1.0, 10.0) - 2.0
assert sc.identical(da - 2.0, expected)
expected.data = 2.0 - sc.arange('x', 1.0, 10.0)
assert sc.identical(2.0 - da, expected)
def test_mul_dataarray_with_scalar():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = sc.zeros_like(da)
expected.data = sc.arange('x', 2.0, 20.0, 2.0)
assert sc.identical(da * 2.0, expected)
assert sc.identical(2.0 * da, expected)
def test_truediv_dataarray_with_scalar():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = sc.zeros_like(da)
expected.data = sc.arange('x', 1.0, 10.0) / 2.0
assert sc.identical(da / 2.0, expected)
expected.data = 2.0 / sc.arange('x', 1.0, 10.0)
assert sc.identical(2.0 / da, expected)
def test_iadd_dataset_with_dataarray():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
ds = sc.Dataset({'data': da.copy()})
expected = sc.Dataset({'data': da + da})
ds += da
assert sc.identical(ds, expected)
def test_isub_dataset_with_dataarray():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
ds = sc.Dataset({'data': da.copy()})
expected = sc.Dataset({'data': da - da})
ds -= da
assert sc.identical(ds, expected)
def test_imul_dataset_with_dataarray():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
ds = sc.Dataset({'data': da.copy()})
expected = sc.Dataset({'data': da * da})
ds *= da
assert sc.identical(ds, expected)
def test_itruediv_dataset_with_dataarray():
da = sc.DataArray(sc.arange('x', 1.0, 10.0),
coords={'x': sc.arange('x', 10.0, 20.0)})
ds = sc.Dataset({'data': da.copy()})
expected = sc.Dataset({'data': da / da})
ds /= da
assert sc.identical(ds, expected)
def test_iadd_dataset_with_scalar():
ds = sc.Dataset(data={'data': sc.arange('x', 10.0)},
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = ds.copy()
expected['data'] = ds['data'] + 2.0
ds += 2.0
assert sc.identical(ds, expected)
def test_isub_dataset_with_scalar():
ds = sc.Dataset(data={'data': sc.arange('x', 10.0)},
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = ds.copy()
expected['data'] = ds['data'] - 3.0
ds -= 3.0
assert sc.identical(ds, expected)
def test_imul_dataset_with_scalar():
ds = sc.Dataset(data={'data': sc.arange('x', 10.0)},
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = ds.copy()
expected['data'] = ds['data'] * 1.5
ds *= 1.5
assert sc.identical(ds, expected)
def test_itruediv_dataset_with_scalar():
ds = sc.Dataset(data={'data': sc.arange('x', 10.0)},
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = ds.copy()
expected['data'] = ds['data'] / 0.5
ds /= 0.5
assert sc.identical(ds, expected)
def test_isub_dataset_with_dataset_broadcast():
ds = sc.Dataset(data={'data': sc.arange('x', 10.0)},
coords={'x': sc.arange('x', 10.0, 20.0)})
expected = ds - ds['x', 0]
ds -= ds['x', 0]
assert sc.identical(ds, expected)
def test_add_function():
assert sc.identical(sc.add(sc.scalar(3), sc.scalar(2)), sc.scalar(5))
def test_divide_function():
assert sc.identical(sc.divide(sc.scalar(6), sc.scalar(2)), sc.scalar(3.0))
def test_floor_divide_function():
assert sc.identical(sc.floor_divide(sc.scalar(6), sc.scalar(2.5)), sc.scalar(2.0))
def test_mod_function():
assert sc.identical(sc.mod(sc.scalar(3), sc.scalar(2)), sc.scalar(1))
def test_multipy_function():
assert sc.identical(sc.multiply(sc.scalar(3), sc.scalar(2)), sc.scalar(6))
def test_subtract_function():
assert sc.identical(sc.subtract(sc.scalar(3), sc.scalar(2)), sc.scalar(1))
def test_negative_function():
assert sc.identical(sc.negative(sc.scalar(3)), sc.scalar(-3))
|
[
"scipp.Dataset",
"scipp.ones_like",
"scipp.scalar",
"scipp.Variable",
"scipp.identical",
"scipp.zeros_like",
"numpy.arange",
"numpy.array_equal",
"scipp.arange"
] |
[((198, 226), 'numpy.arange', 'np.arange', (['(1)', '(4)'], {'dtype': 'float'}), '(1, 4, dtype=float)\n', (207, 226), True, 'import numpy as np\n'), ((235, 271), 'scipp.Variable', 'sc.Variable', ([], {'dims': "['x']", 'values': 'data'}), "(dims=['x'], values=data)\n", (246, 271), True, 'import scipp as sc\n'), ((280, 316), 'scipp.Variable', 'sc.Variable', ([], {'dims': "['x']", 'values': 'data'}), "(dims=['x'], values=data)\n", (291, 316), True, 'import scipp as sc\n'), ((715, 729), 'scipp.scalar', 'sc.scalar', (['(1.2)'], {}), '(1.2)\n', (724, 729), True, 'import scipp as sc\n'), ((764, 782), 'scipp.identical', 'sc.identical', (['a', 'b'], {}), '(a, b)\n', (776, 782), True, 'import scipp as sc\n'), ((834, 848), 'scipp.scalar', 'sc.scalar', (['(1.2)'], {}), '(1.2)\n', (843, 848), True, 'import scipp as sc\n'), ((883, 901), 'scipp.identical', 'sc.identical', (['a', 'b'], {}), '(a, b)\n', (895, 901), True, 'import scipp as sc\n'), ((953, 967), 'scipp.scalar', 'sc.scalar', (['(1.2)'], {}), '(1.2)\n', (962, 967), True, 'import scipp as sc\n'), ((1002, 1020), 'scipp.identical', 'sc.identical', (['a', 'b'], {}), '(a, b)\n', (1014, 1020), True, 'import scipp as sc\n'), ((1076, 1090), 'scipp.scalar', 'sc.scalar', (['(1.2)'], {}), '(1.2)\n', (1085, 1090), True, 'import scipp as sc\n'), ((1125, 1143), 'scipp.identical', 'sc.identical', (['a', 'b'], {}), '(a, b)\n', (1137, 1143), True, 'import scipp as sc\n'), ((1248, 1285), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data + data)'], {}), '(c.values, data + data)\n', (1262, 1285), True, 'import numpy as np\n'), ((1313, 1349), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data + 2.0)'], {}), '(c.values, data + 2.0)\n', (1327, 1349), True, 'import numpy as np\n'), ((1381, 1418), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data + data)'], {}), '(c.values, data + data)\n', (1395, 1418), True, 'import numpy as np\n'), ((1441, 1485), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data + data + data)'], {}), '(c.values, data + data + data)\n', (1455, 1485), True, 'import numpy as np\n'), ((1514, 1565), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data + data + data + data)'], {}), '(c.values, data + data + data + data)\n', (1528, 1565), True, 'import numpy as np\n'), ((1593, 1650), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data + data + data + data + 3.5)'], {}), '(c.values, data + data + data + data + 3.5)\n', (1607, 1650), True, 'import numpy as np\n'), ((1755, 1792), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data - data)'], {}), '(c.values, data - data)\n', (1769, 1792), True, 'import numpy as np\n'), ((1820, 1856), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data - 2.0)'], {}), '(c.values, data - 2.0)\n', (1834, 1856), True, 'import numpy as np\n'), ((1888, 1925), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data - data)'], {}), '(c.values, data - data)\n', (1902, 1925), True, 'import numpy as np\n'), ((1948, 1992), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data - data - data)'], {}), '(c.values, data - data - data)\n', (1962, 1992), True, 'import numpy as np\n'), ((2021, 2072), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data - data - data - data)'], {}), '(c.values, data - data - data - data)\n', (2035, 2072), True, 'import numpy as np\n'), ((2100, 2157), 'numpy.array_equal', 'np.array_equal', (['c.values', '(3.5 - data + data + data + data)'], {}), '(c.values, 3.5 - data + data + data + data)\n', (2114, 2157), True, 'import numpy as np\n'), ((2262, 2299), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data * data)'], {}), '(c.values, data * data)\n', (2276, 2299), True, 'import numpy as np\n'), ((2327, 2363), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data * 2.0)'], {}), '(c.values, data * 2.0)\n', (2341, 2363), True, 'import numpy as np\n'), ((2395, 2432), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data * data)'], {}), '(c.values, data * data)\n', (2409, 2432), True, 'import numpy as np\n'), ((2455, 2499), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data * data * data)'], {}), '(c.values, data * data * data)\n', (2469, 2499), True, 'import numpy as np\n'), ((2528, 2579), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data * data * data * data)'], {}), '(c.values, data * data * data * data)\n', (2542, 2579), True, 'import numpy as np\n'), ((2607, 2664), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data * data * data * data * 3.5)'], {}), '(c.values, data * data * data * data * 3.5)\n', (2621, 2664), True, 'import numpy as np\n'), ((2773, 2810), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data / data)'], {}), '(c.values, data / data)\n', (2787, 2810), True, 'import numpy as np\n'), ((2838, 2874), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data / 2.0)'], {}), '(c.values, data / 2.0)\n', (2852, 2874), True, 'import numpy as np\n'), ((2906, 2943), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data / data)'], {}), '(c.values, data / data)\n', (2920, 2943), True, 'import numpy as np\n'), ((2966, 3010), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data / data / data)'], {}), '(c.values, data / data / data)\n', (2980, 3010), True, 'import numpy as np\n'), ((3039, 3090), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data / data / data / data)'], {}), '(c.values, data / data / data / data)\n', (3053, 3090), True, 'import numpy as np\n'), ((3118, 3154), 'numpy.array_equal', 'np.array_equal', (['c.values', '(2.0 / data)'], {}), '(c.values, 2.0 / data)\n', (3132, 3154), True, 'import numpy as np\n'), ((3258, 3296), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data ** data)'], {}), '(c.values, data ** data)\n', (3272, 3296), True, 'import numpy as np\n'), ((3318, 3366), 'numpy.array_equal', 'np.array_equal', (['c.values', '((data ** data) ** data)'], {}), '(c.values, (data ** data) ** data)\n', (3332, 3366), True, 'import numpy as np\n'), ((3387, 3422), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data ** 3)'], {}), '(c.values, data ** 3)\n', (3401, 3422), True, 'import numpy as np\n'), ((3444, 3486), 'numpy.array_equal', 'np.array_equal', (['c.values', '((data ** 3) ** 3)'], {}), '(c.values, (data ** 3) ** 3)\n', (3458, 3486), True, 'import numpy as np\n'), ((3509, 3546), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data ** 3.0)'], {}), '(c.values, data ** 3.0)\n', (3523, 3546), True, 'import numpy as np\n'), ((3570, 3616), 'numpy.array_equal', 'np.array_equal', (['c.values', '((data ** 3.0) ** 3.0)'], {}), '(c.values, (data ** 3.0) ** 3.0)\n', (3584, 3616), True, 'import numpy as np\n'), ((3643, 3681), 'numpy.array_equal', 'np.array_equal', (['c.values', '(data ** data)'], {}), '(c.values, data ** data)\n', (3657, 3681), True, 'import numpy as np\n'), ((3709, 3757), 'numpy.array_equal', 'np.array_equal', (['c.values', '((data ** data) ** data)'], {}), '(c.values, (data ** data) ** data)\n', (3723, 3757), True, 'import numpy as np\n'), ((3778, 3813), 'numpy.array_equal', 'np.array_equal', (['c.values', '(2 ** data)'], {}), '(c.values, 2 ** data)\n', (3792, 3813), True, 'import numpy as np\n'), ((3838, 3875), 'numpy.array_equal', 'np.array_equal', (['c.values', '(2.0 ** data)'], {}), '(c.values, 2.0 ** data)\n', (3852, 3875), True, 'import numpy as np\n'), ((3922, 3960), 'scipp.Variable', 'sc.Variable', ([], {'dims': "['x']", 'values': '[10.0]'}), "(dims=['x'], values=[10.0])\n", (3933, 3960), True, 'import scipp as sc\n'), ((3976, 4014), 'scipp.Variable', 'sc.Variable', ([], {'dims': "['x']", 'values': '[12.0]'}), "(dims=['x'], values=[12.0])\n", (3987, 4014), True, 'import scipp as sc\n'), ((4037, 4062), 'scipp.identical', 'sc.identical', (['v', 'expected'], {}), '(v, expected)\n', (4049, 4062), True, 'import scipp as sc\n'), ((4111, 4149), 'scipp.Variable', 'sc.Variable', ([], {'dims': "['x']", 'values': '[10.0]'}), "(dims=['x'], values=[10.0])\n", (4122, 4149), True, 'import scipp as sc\n'), ((4165, 4202), 'scipp.Variable', 'sc.Variable', ([], {'dims': "['x']", 'values': '[9.0]'}), "(dims=['x'], values=[9.0])\n", (4176, 4202), True, 'import scipp as sc\n'), ((4225, 4250), 'scipp.identical', 'sc.identical', (['v', 'expected'], {}), '(v, expected)\n', (4237, 4250), True, 'import scipp as sc\n'), ((4299, 4337), 'scipp.Variable', 'sc.Variable', ([], {'dims': "['x']", 'values': '[10.0]'}), "(dims=['x'], values=[10.0])\n", (4310, 4337), True, 'import scipp as sc\n'), ((4353, 4391), 'scipp.Variable', 'sc.Variable', ([], {'dims': "['x']", 'values': '[30.0]'}), "(dims=['x'], values=[30.0])\n", (4364, 4391), True, 'import scipp as sc\n'), ((4414, 4439), 'scipp.identical', 'sc.identical', (['v', 'expected'], {}), '(v, expected)\n', (4426, 4439), True, 'import scipp as sc\n'), ((4492, 4530), 'scipp.Variable', 'sc.Variable', ([], {'dims': "['x']", 'values': '[10.0]'}), "(dims=['x'], values=[10.0])\n", (4503, 4530), True, 'import scipp as sc\n'), ((4546, 4583), 'scipp.Variable', 'sc.Variable', ([], {'dims': "['x']", 'values': '[5.0]'}), "(dims=['x'], values=[5.0])\n", (4557, 4583), True, 'import scipp as sc\n'), ((4606, 4631), 'scipp.identical', 'sc.identical', (['v', 'expected'], {}), '(v, expected)\n', (4618, 4631), True, 'import scipp as sc\n'), ((4803, 4820), 'scipp.zeros_like', 'sc.zeros_like', (['da'], {}), '(da)\n', (4816, 4820), True, 'import scipp as sc\n'), ((4841, 4871), 'scipp.arange', 'sc.arange', (['"""x"""', '(2.0)', '(20.0)', '(2.0)'], {}), "('x', 2.0, 20.0, 2.0)\n", (4850, 4871), True, 'import scipp as sc\n'), ((4883, 4914), 'scipp.identical', 'sc.identical', (['(da + da)', 'expected'], {}), '(da + da, expected)\n', (4895, 4914), True, 'import scipp as sc\n'), ((5086, 5103), 'scipp.zeros_like', 'sc.zeros_like', (['da'], {}), '(da)\n', (5099, 5103), True, 'import scipp as sc\n'), ((5115, 5146), 'scipp.identical', 'sc.identical', (['(da - da)', 'expected'], {}), '(da - da, expected)\n', (5127, 5146), True, 'import scipp as sc\n'), ((5318, 5335), 'scipp.zeros_like', 'sc.zeros_like', (['da'], {}), '(da)\n', (5331, 5335), True, 'import scipp as sc\n'), ((5396, 5427), 'scipp.identical', 'sc.identical', (['(da * da)', 'expected'], {}), '(da * da, expected)\n', (5408, 5427), True, 'import scipp as sc\n'), ((5603, 5619), 'scipp.ones_like', 'sc.ones_like', (['da'], {}), '(da)\n', (5615, 5619), True, 'import scipp as sc\n'), ((5631, 5662), 'scipp.identical', 'sc.identical', (['(da / da)', 'expected'], {}), '(da / da, expected)\n', (5643, 5662), True, 'import scipp as sc\n'), ((5833, 5850), 'scipp.zeros_like', 'sc.zeros_like', (['da'], {}), '(da)\n', (5846, 5850), True, 'import scipp as sc\n'), ((5871, 5901), 'scipp.arange', 'sc.arange', (['"""x"""', '(2.0)', '(20.0)', '(2.0)'], {}), "('x', 2.0, 20.0, 2.0)\n", (5880, 5901), True, 'import scipp as sc\n'), ((5913, 5949), 'scipp.identical', 'sc.identical', (['(da + da.data)', 'expected'], {}), '(da + da.data, expected)\n', (5925, 5949), True, 'import scipp as sc\n'), ((5961, 5997), 'scipp.identical', 'sc.identical', (['(da.data + da)', 'expected'], {}), '(da.data + da, expected)\n', (5973, 5997), True, 'import scipp as sc\n'), ((6168, 6185), 'scipp.zeros_like', 'sc.zeros_like', (['da'], {}), '(da)\n', (6181, 6185), True, 'import scipp as sc\n'), ((6197, 6233), 'scipp.identical', 'sc.identical', (['(da - da.data)', 'expected'], {}), '(da - da.data, expected)\n', (6209, 6233), True, 'import scipp as sc\n'), ((6245, 6281), 'scipp.identical', 'sc.identical', (['(da.data - da)', 'expected'], {}), '(da.data - da, expected)\n', (6257, 6281), True, 'import scipp as sc\n'), ((6452, 6469), 'scipp.zeros_like', 'sc.zeros_like', (['da'], {}), '(da)\n', (6465, 6469), True, 'import scipp as sc\n'), ((6530, 6566), 'scipp.identical', 'sc.identical', (['(da * da.data)', 'expected'], {}), '(da * da.data, expected)\n', (6542, 6566), True, 'import scipp as sc\n'), ((6578, 6614), 'scipp.identical', 'sc.identical', (['(da.data * da)', 'expected'], {}), '(da.data * da, expected)\n', (6590, 6614), True, 'import scipp as sc\n'), ((6789, 6805), 'scipp.ones_like', 'sc.ones_like', (['da'], {}), '(da)\n', (6801, 6805), True, 'import scipp as sc\n'), ((6817, 6853), 'scipp.identical', 'sc.identical', (['(da / da.data)', 'expected'], {}), '(da / da.data, expected)\n', (6829, 6853), True, 'import scipp as sc\n'), ((6865, 6901), 'scipp.identical', 'sc.identical', (['(da.data / da)', 'expected'], {}), '(da.data / da, expected)\n', (6877, 6901), True, 'import scipp as sc\n'), ((7070, 7087), 'scipp.zeros_like', 'sc.zeros_like', (['da'], {}), '(da)\n', (7083, 7087), True, 'import scipp as sc\n'), ((7108, 7133), 'scipp.arange', 'sc.arange', (['"""x"""', '(3.0)', '(12.0)'], {}), "('x', 3.0, 12.0)\n", (7117, 7133), True, 'import scipp as sc\n'), ((7145, 7177), 'scipp.identical', 'sc.identical', (['(da + 2.0)', 'expected'], {}), '(da + 2.0, expected)\n', (7157, 7177), True, 'import scipp as sc\n'), ((7189, 7221), 'scipp.identical', 'sc.identical', (['(2.0 + da)', 'expected'], {}), '(2.0 + da, expected)\n', (7201, 7221), True, 'import scipp as sc\n'), ((7390, 7407), 'scipp.zeros_like', 'sc.zeros_like', (['da'], {}), '(da)\n', (7403, 7407), True, 'import scipp as sc\n'), ((7471, 7503), 'scipp.identical', 'sc.identical', (['(da - 2.0)', 'expected'], {}), '(da - 2.0, expected)\n', (7483, 7503), True, 'import scipp as sc\n'), ((7567, 7599), 'scipp.identical', 'sc.identical', (['(2.0 - da)', 'expected'], {}), '(2.0 - da, expected)\n', (7579, 7599), True, 'import scipp as sc\n'), ((7768, 7785), 'scipp.zeros_like', 'sc.zeros_like', (['da'], {}), '(da)\n', (7781, 7785), True, 'import scipp as sc\n'), ((7806, 7836), 'scipp.arange', 'sc.arange', (['"""x"""', '(2.0)', '(20.0)', '(2.0)'], {}), "('x', 2.0, 20.0, 2.0)\n", (7815, 7836), True, 'import scipp as sc\n'), ((7848, 7880), 'scipp.identical', 'sc.identical', (['(da * 2.0)', 'expected'], {}), '(da * 2.0, expected)\n', (7860, 7880), True, 'import scipp as sc\n'), ((7892, 7924), 'scipp.identical', 'sc.identical', (['(2.0 * da)', 'expected'], {}), '(2.0 * da, expected)\n', (7904, 7924), True, 'import scipp as sc\n'), ((8097, 8114), 'scipp.zeros_like', 'sc.zeros_like', (['da'], {}), '(da)\n', (8110, 8114), True, 'import scipp as sc\n'), ((8178, 8210), 'scipp.identical', 'sc.identical', (['(da / 2.0)', 'expected'], {}), '(da / 2.0, expected)\n', (8190, 8210), True, 'import scipp as sc\n'), ((8274, 8306), 'scipp.identical', 'sc.identical', (['(2.0 / da)', 'expected'], {}), '(2.0 / da, expected)\n', (8286, 8306), True, 'import scipp as sc\n'), ((8518, 8547), 'scipp.Dataset', 'sc.Dataset', (["{'data': da + da}"], {}), "({'data': da + da})\n", (8528, 8547), True, 'import scipp as sc\n'), ((8572, 8598), 'scipp.identical', 'sc.identical', (['ds', 'expected'], {}), '(ds, expected)\n', (8584, 8598), True, 'import scipp as sc\n'), ((8810, 8839), 'scipp.Dataset', 'sc.Dataset', (["{'data': da - da}"], {}), "({'data': da - da})\n", (8820, 8839), True, 'import scipp as sc\n'), ((8864, 8890), 'scipp.identical', 'sc.identical', (['ds', 'expected'], {}), '(ds, expected)\n', (8876, 8890), True, 'import scipp as sc\n'), ((9102, 9131), 'scipp.Dataset', 'sc.Dataset', (["{'data': da * da}"], {}), "({'data': da * da})\n", (9112, 9131), True, 'import scipp as sc\n'), ((9156, 9182), 'scipp.identical', 'sc.identical', (['ds', 'expected'], {}), '(ds, expected)\n', (9168, 9182), True, 'import scipp as sc\n'), ((9398, 9427), 'scipp.Dataset', 'sc.Dataset', (["{'data': da / da}"], {}), "({'data': da / da})\n", (9408, 9427), True, 'import scipp as sc\n'), ((9452, 9478), 'scipp.identical', 'sc.identical', (['ds', 'expected'], {}), '(ds, expected)\n', (9464, 9478), True, 'import scipp as sc\n'), ((9728, 9754), 'scipp.identical', 'sc.identical', (['ds', 'expected'], {}), '(ds, expected)\n', (9740, 9754), True, 'import scipp as sc\n'), ((10004, 10030), 'scipp.identical', 'sc.identical', (['ds', 'expected'], {}), '(ds, expected)\n', (10016, 10030), True, 'import scipp as sc\n'), ((10280, 10306), 'scipp.identical', 'sc.identical', (['ds', 'expected'], {}), '(ds, expected)\n', (10292, 10306), True, 'import scipp as sc\n'), ((10560, 10586), 'scipp.identical', 'sc.identical', (['ds', 'expected'], {}), '(ds, expected)\n', (10572, 10586), True, 'import scipp as sc\n'), ((10819, 10845), 'scipp.identical', 'sc.identical', (['ds', 'expected'], {}), '(ds, expected)\n', (10831, 10845), True, 'import scipp as sc\n'), ((4697, 4722), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (4706, 4722), True, 'import scipp as sc\n'), ((4980, 5005), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (4989, 5005), True, 'import scipp as sc\n'), ((5212, 5237), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (5221, 5237), True, 'import scipp as sc\n'), ((5356, 5381), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (5365, 5381), True, 'import scipp as sc\n'), ((5497, 5522), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (5506, 5522), True, 'import scipp as sc\n'), ((5727, 5752), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (5736, 5752), True, 'import scipp as sc\n'), ((6062, 6087), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (6071, 6087), True, 'import scipp as sc\n'), ((6346, 6371), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (6355, 6371), True, 'import scipp as sc\n'), ((6490, 6515), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (6499, 6515), True, 'import scipp as sc\n'), ((6683, 6708), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (6692, 6708), True, 'import scipp as sc\n'), ((6964, 6989), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (6973, 6989), True, 'import scipp as sc\n'), ((7284, 7309), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (7293, 7309), True, 'import scipp as sc\n'), ((7428, 7453), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (7437, 7453), True, 'import scipp as sc\n'), ((7530, 7555), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (7539, 7555), True, 'import scipp as sc\n'), ((7662, 7687), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (7671, 7687), True, 'import scipp as sc\n'), ((7991, 8016), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (8000, 8016), True, 'import scipp as sc\n'), ((8135, 8160), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (8144, 8160), True, 'import scipp as sc\n'), ((8237, 8262), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (8246, 8262), True, 'import scipp as sc\n'), ((8371, 8396), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (8380, 8396), True, 'import scipp as sc\n'), ((8663, 8688), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (8672, 8688), True, 'import scipp as sc\n'), ((8955, 8980), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (8964, 8980), True, 'import scipp as sc\n'), ((9251, 9276), 'scipp.arange', 'sc.arange', (['"""x"""', '(1.0)', '(10.0)'], {}), "('x', 1.0, 10.0)\n", (9260, 9276), True, 'import scipp as sc\n'), ((10933, 10945), 'scipp.scalar', 'sc.scalar', (['(5)'], {}), '(5)\n', (10942, 10945), True, 'import scipp as sc\n'), ((11040, 11054), 'scipp.scalar', 'sc.scalar', (['(3.0)'], {}), '(3.0)\n', (11049, 11054), True, 'import scipp as sc\n'), ((11163, 11177), 'scipp.scalar', 'sc.scalar', (['(2.0)'], {}), '(2.0)\n', (11172, 11177), True, 'import scipp as sc\n'), ((11266, 11278), 'scipp.scalar', 'sc.scalar', (['(1)'], {}), '(1)\n', (11275, 11278), True, 'import scipp as sc\n'), ((11376, 11388), 'scipp.scalar', 'sc.scalar', (['(6)'], {}), '(6)\n', (11385, 11388), True, 'import scipp as sc\n'), ((11487, 11499), 'scipp.scalar', 'sc.scalar', (['(1)'], {}), '(1)\n', (11496, 11499), True, 'import scipp as sc\n'), ((11584, 11597), 'scipp.scalar', 'sc.scalar', (['(-3)'], {}), '(-3)\n', (11593, 11597), True, 'import scipp as sc\n'), ((10904, 10916), 'scipp.scalar', 'sc.scalar', (['(3)'], {}), '(3)\n', (10913, 10916), True, 'import scipp as sc\n'), ((10918, 10930), 'scipp.scalar', 'sc.scalar', (['(2)'], {}), '(2)\n', (10927, 10930), True, 'import scipp as sc\n'), ((11011, 11023), 'scipp.scalar', 'sc.scalar', (['(6)'], {}), '(6)\n', (11020, 11023), True, 'import scipp as sc\n'), ((11025, 11037), 'scipp.scalar', 'sc.scalar', (['(2)'], {}), '(2)\n', (11034, 11037), True, 'import scipp as sc\n'), ((11132, 11144), 'scipp.scalar', 'sc.scalar', (['(6)'], {}), '(6)\n', (11141, 11144), True, 'import scipp as sc\n'), ((11146, 11160), 'scipp.scalar', 'sc.scalar', (['(2.5)'], {}), '(2.5)\n', (11155, 11160), True, 'import scipp as sc\n'), ((11237, 11249), 'scipp.scalar', 'sc.scalar', (['(3)'], {}), '(3)\n', (11246, 11249), True, 'import scipp as sc\n'), ((11251, 11263), 'scipp.scalar', 'sc.scalar', (['(2)'], {}), '(2)\n', (11260, 11263), True, 'import scipp as sc\n'), ((11347, 11359), 'scipp.scalar', 'sc.scalar', (['(3)'], {}), '(3)\n', (11356, 11359), True, 'import scipp as sc\n'), ((11361, 11373), 'scipp.scalar', 'sc.scalar', (['(2)'], {}), '(2)\n', (11370, 11373), True, 'import scipp as sc\n'), ((11458, 11470), 'scipp.scalar', 'sc.scalar', (['(3)'], {}), '(3)\n', (11467, 11470), True, 'import scipp as sc\n'), ((11472, 11484), 'scipp.scalar', 'sc.scalar', (['(2)'], {}), '(2)\n', (11481, 11484), True, 'import scipp as sc\n'), ((11569, 11581), 'scipp.scalar', 'sc.scalar', (['(3)'], {}), '(3)\n', (11578, 11581), True, 'import scipp as sc\n'), ((4759, 4785), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (4768, 4785), True, 'import scipp as sc\n'), ((5042, 5068), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (5051, 5068), True, 'import scipp as sc\n'), ((5274, 5300), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (5283, 5300), True, 'import scipp as sc\n'), ((5559, 5585), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (5568, 5585), True, 'import scipp as sc\n'), ((5789, 5815), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (5798, 5815), True, 'import scipp as sc\n'), ((6124, 6150), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (6133, 6150), True, 'import scipp as sc\n'), ((6408, 6434), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (6417, 6434), True, 'import scipp as sc\n'), ((6745, 6771), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (6754, 6771), True, 'import scipp as sc\n'), ((7026, 7052), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (7035, 7052), True, 'import scipp as sc\n'), ((7346, 7372), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (7355, 7372), True, 'import scipp as sc\n'), ((7724, 7750), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (7733, 7750), True, 'import scipp as sc\n'), ((8053, 8079), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (8062, 8079), True, 'import scipp as sc\n'), ((8433, 8459), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (8442, 8459), True, 'import scipp as sc\n'), ((8725, 8751), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (8734, 8751), True, 'import scipp as sc\n'), ((9017, 9043), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (9026, 9043), True, 'import scipp as sc\n'), ((9313, 9339), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (9322, 9339), True, 'import scipp as sc\n'), ((9552, 9572), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)'], {}), "('x', 10.0)\n", (9561, 9572), True, 'import scipp as sc\n'), ((9608, 9634), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (9617, 9634), True, 'import scipp as sc\n'), ((9828, 9848), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)'], {}), "('x', 10.0)\n", (9837, 9848), True, 'import scipp as sc\n'), ((9884, 9910), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (9893, 9910), True, 'import scipp as sc\n'), ((10104, 10124), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)'], {}), "('x', 10.0)\n", (10113, 10124), True, 'import scipp as sc\n'), ((10160, 10186), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (10169, 10186), True, 'import scipp as sc\n'), ((10384, 10404), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)'], {}), "('x', 10.0)\n", (10393, 10404), True, 'import scipp as sc\n'), ((10440, 10466), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (10449, 10466), True, 'import scipp as sc\n'), ((10671, 10691), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)'], {}), "('x', 10.0)\n", (10680, 10691), True, 'import scipp as sc\n'), ((10727, 10753), 'scipp.arange', 'sc.arange', (['"""x"""', '(10.0)', '(20.0)'], {}), "('x', 10.0, 20.0)\n", (10736, 10753), True, 'import scipp as sc\n')]
|
from numpy import zeros, swapaxes, sign
from ....Methods.Machine.Winding import WindingError
from swat_em import datamodel
def comp_connection_mat(self, Zs=None, p=None):
"""Compute the Winding Matrix for
Parameters
----------
self : Winding
A: Winding object
Zs : int
Number of Slot (Integer >0)
p : int
Number of pole pairs (Integer >0)
Returns
-------
wind_mat: numpy.ndarray
Winding Matrix (1, 1, Zs, qs)
Raises
------
WindingT2DefNtError
Zs/qs/2 must be an integer
"""
if Zs is None:
if not hasattr(self.parent, "slot") and not hasattr(self.parent, "slot_list"):
raise WindingError("The Winding object must be in a Lamination object.")
Zs = self.parent.get_Zs()
if p is None:
if self.parent is None:
raise WindingError("The Winding object must be in a Lamination object.")
p = self.parent.get_pole_pair_number()
assert Zs > 0, "Zs must be >0"
assert Zs % 1 == 0, "Zs must be an integer"
assert p > 0, "p must be >0"
assert p % 1 == 0, "p must be an integer"
qs = self.qs # Phase Number
Ntcoil = self.Ntcoil # number of turns per coils
Nlayer = self.Nlayer # number of layers
# Coil pitch (or coil span)
if self.coil_pitch in [0, None]:
# Number of slots per pole and per phase
spp = Zs / (2 * p * qs)
if spp > 0.5:
# distributed winding
self.coil_pitch = int(qs * spp)
else:
# tooth concentrated winding
self.coil_pitch = 1
# generate a datamodel for the winding
wdg = datamodel()
# generate winding from inputs
wdg.genwdg(Q=Zs, P=2 * p, m=qs, layers=Nlayer, turns=Ntcoil, w=self.coil_pitch)
# init connexion matrix
wind_mat = zeros((Nlayer, 1, Zs, qs))
# get connexion matrix from swat-em
wind_mat_swat = wdg.get_phases()
# perform checks
assert p == wdg.get_num_polepairs(), (
"number of pole pairs is not as requested (returned "
+ str(wdg.get_num_polepairs())
+ " expected "
+ str(p)
+ ")"
)
assert qs == wdg.get_num_phases(), (
"number of phases is not as requested (returned "
+ str(wdg.get_num_phases())
+ " expected "
+ str(qs)
+ ")"
)
# convert swat-em connexion matrix to pyleecan connexion matrix
for qq, phase in enumerate(wind_mat_swat):
for ll, layer in enumerate(phase):
if len(layer) > 0:
for cond in layer:
wind_mat[Nlayer - ll - 1, 0, abs(cond) - 1, qq] = (
sign(cond) * Ntcoil
)
# permute radial and tangential layers if coil span is 1
if wdg.get_coilspan() == 1:
wind_mat = swapaxes(wind_mat, 0, 1)
# check that requested number of parallel connections is feasible
Npcp_list = wdg.get_parallel_connections()
if self.Npcp is None:
self.Npcp = Npcp_list[0]
elif self.Npcp > 2 * p:
# self.Npcp = 2 * p
self.get_logger().warning(
"Number of parallel circuits per phase should be < 2*p, current value is: "
+ str(self.Npcp)
)
# if self.Npcp not in Npcp_list:
# if self.Npcp is not None:
# self.get_logger().warning(
# "Requested number of parallel circuits per phase is not feasible, assign it to: "
# + str(Npcp_list[0])
# )
# self.Npcp = Npcp_list[0]
# enforce the number of layers if it is not as requested
Nlayer_actual = wdg.get_num_layers()
if self.Nlayer != Nlayer_actual:
self.Nlayer = Nlayer_actual
self.get_logger().info(
"Requested number of layers is not feasible, assign it to: "
+ str(Nlayer_actual)
)
# get periodicities
# self.per_a = wdg.get_periodicity_t()
# self.is_aper_a = wdg.get_is_symmetric()
# To check periodicities swat-em / pyleecan definitions
self.per_a, self.is_aper_a = self.comp_periodicity(wind_mat=wind_mat)
# if is_aper_a: # Different def for Anti per
# per_a = per_a / 2
# if self.per_a != per_a or self.is_aper_a != is_aper_a:
# self.get_logger().warning(
# "(Anti-)periodicity calculated by pyleecan and SWAT_EM differs"
# )
# Set default values
if self.is_reverse_wind is None:
self.is_reverse_wind = False
if self.Nslot_shift_wind is None:
self.Nslot_shift_wind = 0
return wind_mat
|
[
"numpy.zeros",
"numpy.swapaxes",
"swat_em.datamodel",
"numpy.sign"
] |
[((1676, 1687), 'swat_em.datamodel', 'datamodel', ([], {}), '()\n', (1685, 1687), False, 'from swat_em import datamodel\n'), ((1852, 1878), 'numpy.zeros', 'zeros', (['(Nlayer, 1, Zs, qs)'], {}), '((Nlayer, 1, Zs, qs))\n', (1857, 1878), False, 'from numpy import zeros, swapaxes, sign\n'), ((2855, 2879), 'numpy.swapaxes', 'swapaxes', (['wind_mat', '(0)', '(1)'], {}), '(wind_mat, 0, 1)\n', (2863, 2879), False, 'from numpy import zeros, swapaxes, sign\n'), ((2700, 2710), 'numpy.sign', 'sign', (['cond'], {}), '(cond)\n', (2704, 2710), False, 'from numpy import zeros, swapaxes, sign\n')]
|
"""
Kernel orthogonal matching pursuit for changepoint detection.
Fast but approximate.
"""
from itertools import product
import numpy as np
from ruptures.utils import pairwise
class OmpK:
"""Contient l'algorithme de parcours des partitions."""
def __init__(self, min_size=2, jump=5):
"""One line description
Detailled description
Args:
min_size (int, optional): minimum segment length
jump (int, optional): subsample (one every "jump" points)
Returns:
self
"""
self.min_size = min_size # not used
self.jump = jump # not used
self.n_samples = None
self.gram = None
def _seg(self, n_bkps=None, pen=None, epsilon=None):
"""Computes the binary segmentation.
The stopping rule depends on the parameter passed to the function.
Args:
n_bkps (int): number of breakpoints to find before stopping.
penalty (float): penalty value (>0)
epsilon (float): reconstruction budget
Returns:
list: list of breakpoint indexes
"""
stop = False
bkps = [self.n_samples]
inds = np.arange(1, self.n_samples + 1)
csum = self.gram.cumsum(axis=0).cumsum(axis=1)
residual = csum[-1, -1]
while not stop:
# greedy search
correlation = np.diag(csum) * self.n_samples * self.n_samples
correlation += inds ** 2 * csum[-1, -1]
correlation -= 2 * self.n_samples * inds * csum[-1]
correlation /= inds * inds[::-1]
bkp = np.argmax(correlation) + 1
# orthogonal projection (matrix form)
# adj = np.zeros(self.gram.shape) # adjacency matrix
# for start, end in pairwise(sorted([0, bkp] + bkps)):
# duree = end - start
# adj[start:end, start:end] = np.ones(duree, duree) / duree
# gram_new = self.gram + adj @ self.gram @ adj - adj @ self.gram - self.gram @ adj
# csum = gram_new.cumsum(axis=0).cumsum(axis=1)
# orthogonal projection (vectorized form)
gram_new = self.gram.copy()
# cross product
cross_g = np.zeros(self.gram.shape)
for start, end in pairwise(sorted([0, bkp] + bkps)):
val = self.gram[:, start:end].mean(axis=1).reshape(-1, 1)
cross_g[:, start:end] = val
gram_new -= cross_g + cross_g.T
# products of segment means
for p, q in product(pairwise(sorted([0, bkp] + bkps)), repeat=2):
start1, end1 = p
start2, end2 = q
gram_new[start1:end1, start2:end2] += self.gram[
start1:end1, start2:end2
].mean()
csum = gram_new.cumsum(axis=0).cumsum(axis=1)
# stopping criterion
stop = True
if n_bkps is not None:
if len(bkps) - 1 < n_bkps:
stop = False
elif pen is not None:
if residual - csum[-1, -1] > pen:
stop = False
elif epsilon is not None:
if csum[-1, -1] > epsilon:
stop = False
# update
if not stop:
residual = csum[-1, -1]
bkps.append(bkp)
bkps.sort()
return bkps
def fit(self, gram):
"""Compute params to segment signal.
Args:
gram (array): Gram matrix of signal to segment. Shape (n_samples, n_samples).
Returns:
self
"""
assert gram.shape[0] == gram.shape[1], "Not a square matrix."
# update some params
self.gram = gram
self.n_samples, _ = self.gram.shape
return self
def predict(self, n_bkps=None, pen=None, epsilon=None):
"""Return the optimal breakpoints.
Must be called after the fit method. The breakpoints are associated with the signal passed
to fit().
The stopping rule depends on the parameter passed to the function.
Args:
n_bkps (int): number of breakpoints to find before stopping.
penalty (float): penalty value (>0)
penalty (float): penalty value
Returns:
list: sorted list of breakpoints
"""
msg = "Give a parameter."
assert any(param is not None for param in (n_bkps, pen, epsilon)), msg
bkps = self._seg(n_bkps=n_bkps, pen=pen, epsilon=epsilon)
return bkps
def fit_predict(self, gram, n_bkps=None, pen=None, epsilon=None):
"""Helper method to call fit and predict once."""
self.fit(gram)
return self.predict(n_bkps=n_bkps, pen=pen, epsilon=epsilon)
|
[
"numpy.zeros",
"numpy.diag",
"numpy.arange",
"numpy.argmax"
] |
[((1204, 1236), 'numpy.arange', 'np.arange', (['(1)', '(self.n_samples + 1)'], {}), '(1, self.n_samples + 1)\n', (1213, 1236), True, 'import numpy as np\n'), ((2255, 2280), 'numpy.zeros', 'np.zeros', (['self.gram.shape'], {}), '(self.gram.shape)\n', (2263, 2280), True, 'import numpy as np\n'), ((1630, 1652), 'numpy.argmax', 'np.argmax', (['correlation'], {}), '(correlation)\n', (1639, 1652), True, 'import numpy as np\n'), ((1403, 1416), 'numpy.diag', 'np.diag', (['csum'], {}), '(csum)\n', (1410, 1416), True, 'import numpy as np\n')]
|
import numpy as np
# --------------------------- line-search ---------------------------
def wolfe(func, grad, xk, alpha, pk):
c1 = 1e-4
return func(xk + alpha * pk) <= func(xk) + c1 * alpha * np.dot(grad(xk), pk)
def strong_wolfe(func, grad, xk, alpha, pk, c2):
return wolfe(func, grad, xk, alpha, pk) and abs(
np.dot(grad(xk + alpha * pk), pk)) <= c2 * abs(np.dot(grad(xk), pk))
def step_length(func, grad, xk, pk, alpha=1., c2=0.9, max_iters=20):
f_alpha = lambda alpha: func(xk + alpha * pk)
g_alpha = lambda alpha: np.dot(grad(xk + alpha * pk), pk)
l = 0.0
h = 1.0
for i in range(max_iters):
if strong_wolfe(func, grad, xk, alpha, pk, c2):
return alpha
half = (l + h) / 2
alpha = - g_alpha(l) * (h ** 2) / (2 * (f_alpha(h) - f_alpha(l) - g_alpha(l) * h))
if alpha < l or alpha > h:
alpha = half
if g_alpha(alpha) > 0:
h = alpha
elif g_alpha(alpha) <= 0:
l = alpha
return alpha
# --------------------------- termination criterion ---------------------------
def termination_criterion(termination_version, grad, xk, xk1, tol):
if termination_version == 0:
return np.linalg.norm(grad(xk1)) < tol
elif termination_version == 1:
return np.linalg.norm(grad(xk1)) / np.linalg.norm(grad(xk)) < tol
TERMINATION_VERSION = 0 # TODO: Don't change this argument if not necessary!
# --------------------------- gradient descent ---------------------------
def gradient_descent(func, grad, x0, tol=1e-5, max_iters=1000):
k = 0
xk = x0
gk = grad(xk)
logs = [[*xk, func(xk), np.linalg.norm(gk)]]
while True:
tau = step_length(func, grad, xk, -gk, alpha=1.0, c2=0.9)
sk = -tau * gk
xk1 = xk + sk
if termination_criterion(TERMINATION_VERSION, grad, xk, xk1, tol):
logs.append([*xk1, func(xk1), np.linalg.norm(grad(xk1))])
break
if k >= max_iters:
break
xk = xk1
gk = grad(xk)
k += 1
logs.append([*xk, func(xk), np.linalg.norm(gk)])
return xk, np.array(logs)
# --------------------------- newton ---------------------------
def newton(func, grad, hess, x0, tol=1e-5, max_iters=1000):
k = 0
xk = x0
gk = grad(xk)
logs = [[*xk, func(xk), np.linalg.norm(gk)]]
while True:
hk = np.linalg.inv(hess(xk))
tau = step_length(func, grad, xk, -hk@gk, alpha=1.0, c2=0.9)
sk = -tau * hk@gk
xk1 = xk + sk
gk1 = grad(xk1)
if termination_criterion(TERMINATION_VERSION, grad, xk, xk1, tol):
logs.append([*xk1, func(xk1), np.linalg.norm(gk1)])
break
if k >= max_iters:
break
xk = xk1
gk = gk1
k += 1
logs.append([*xk, func(xk), np.linalg.norm(gk)])
return xk, np.array(logs)
# --------------------------- bfgs ---------------------------
def bfgs(func, grad, x0, tol=1e-5, max_iters=1000):
k = 0
xk = x0
gk = grad(xk)
hk = e = np.eye(xk.__len__())
logs = [[*xk, func(xk), np.linalg.norm(gk)]]
while True:
pk = -hk @ gk
tau = step_length(func, grad, xk, alpha=1.0, pk=pk, c2=0.9)
sk = tau * pk
xk1 = xk + sk
gk1 = grad(xk1)
yk = gk1 - gk
if termination_criterion(TERMINATION_VERSION, grad, xk, xk1, tol):
logs.append([*xk1, func(xk1), np.linalg.norm(gk1)])
break
if np.linalg.norm(yk) == 0:
logs = logs[:-1]
break
if k >= max_iters:
break
xk = xk1
gk = gk1
temp = e - np.outer(sk, yk) / np.inner(sk, yk)
hk = temp @ hk @ temp.T + np.outer(sk, sk) / np.inner(sk, yk)
k += 1
logs.append([*xk, func(xk), np.linalg.norm(gk)])
return xk, np.array(logs)
# --------------------------- l-bfgs ---------------------------
def two_loop_recursion(sks, yks, H0, q):
m_t = len(sks)
a = np.zeros(m_t)
b = np.zeros(m_t)
# print('global_var = ', q)
for i in reversed(range(m_t)):
s = sks[i]
y = yks[i]
rho_i = float(1.0 / y.T.dot(s))
a[i] = rho_i * s.dot(q)
q = q - a[i] * y
r = H0.dot(q)
for i in range(m_t):
s = sks[i]
y = yks[i]
rho_i = float(1.0 / y.T.dot(s))
b[i] = rho_i * y.dot(r)
r = r + s * (a[i] - b[i])
return -r
def l_bfgs(func, grad, m, x0, tol=1e-5, max_iters=1000):
k = 0
xk = x0
gk = grad(xk)
I = np.identity(xk.size)
sks = []
yks = []
logs = [[*xk, func(xk), np.linalg.norm(gk)]]
while True:
# compute search direction
pk = two_loop_recursion(sks, yks, I, gk)
# obtain step length by line search
tau = step_length(func, grad, xk, alpha=1.0, pk=pk, c2=0.9)
# update x
xk1 = xk + tau * pk
gk1 = grad(xk1)
# define sk and yk for convenience
sk = xk1 - xk
yk = gk1 - gk
if termination_criterion(TERMINATION_VERSION, grad, xk, xk1, tol):
logs.append([*xk1, func(xk1), np.linalg.norm(gk1)])
break
if np.linalg.norm(yk) == 0:
logs = logs[:-1]
break
if k >= max_iters:
break
xk = xk1
gk = gk1
sks.append(sk)
yks.append(yk)
if len(sks) > m:
sks = sks[1:]
yks = yks[1:]
k += 1
logs.append([*xk, func(xk), np.linalg.norm(gk)])
return xk, np.array(logs)
# --------------------------- fast-bfgs ---------------------------
def update_lk(m, yk, sks, lk, secant=False):
"""
lk <- tk @ lk @ tk.T + [[0, 0], [0, 1]].
# ----------------------- note 1 -----------------------
tk = \begin{bmatrix}
t_1 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
t_{m-1} & 0 & \cdots & 1 \\
t_m - y_k^T s_{k-m} & -y_k^T s_{k+1-m} & \cdots & -y_k^T s_{k-1}
\begin{bmatrix}
# ----------------------- note 2 -----------------------
\begin{bmatrix} t_1 \\ \vdots \\ t_m \end{bmatrix}
= \mathop{\arg\min}_t \| \tilde{S}_{k+1} t - \tilde{\boldsymbol{s}}_{k-m} \|_2
subject to
\tilde{\boldsymbol{y}}_k^T \tilde{S}_{k+1} t = \tilde{\boldsymbol{y}}_k^T \tilde{\boldsymbol{s}}_{k-m}
"""
k = sks.__len__() - 1
n = yk.__len__()
if k < m:
ys = np.array([[-np.inner(yk, sk) for sk in sks[:-1]]])
tk = np.vstack((np.eye(k), ys))
else:
tk = np.zeros(shape=(m, m))
tk[:-1, 1:] = np.eye(m - 1)
tk[-1] = np.array([-np.inner(yk, sk) for sk in sks[:-1]])
if m >= n:
mat = np.array(sks[-n:]).T
rhs = sks[0]
try:
c = np.linalg.solve(mat, rhs)
except np.linalg.LinAlgError:
# TODO: `1e-6` is set based on experimental results.
c = np.linalg.solve(mat + 1e-6 * np.eye(rhs.__len__()), rhs)
tk[-n:, 0] += c
else:
if secant:
mat = np.zeros(shape=(m+1, m+1))
mat[:-1, :-1] = 2 * np.array(sks[1:]) @ np.array(sks[1:]).T
mat[:-1, -1] = np.array(sks[1:]) @ yk
mat[-1, :-1] = np.array(sks[1:]) @ yk
rhs = np.zeros(shape=(m+1, ))
rhs[:-1] = 2 * np.array(sks[1:]) @ sks[0]
rhs[-1] = np.inner(yk, sks[0])
try:
c = np.linalg.solve(mat, rhs)
except np.linalg.LinAlgError:
c = np.linalg.solve(mat + 1e-6 * np.eye(rhs.__len__()), rhs)
tk[:, 0] += c[:-1]
else:
mat = np.array(sks[1:]) @ np.array(sks[1:]).T
rhs = np.array(sks[1:]) @ sks[0]
try:
c = np.linalg.solve(mat, rhs)
except np.linalg.LinAlgError:
c = np.linalg.solve(mat + 1e-6 * np.eye(rhs.__len__()), rhs)
tk[:, 0] += c
lk = tk @ lk @ tk.T
lk[-1, -1] += 1
return lk
def estimate_vk(grad, xk, gk, pk, w1=0.5, w2=0.5):
v1 = gk
# TODO: `1e-6` is set based on experimental results.
eps = 1e-6 / np.linalg.norm(gk)
bg = (grad(xk + eps * gk) - gk) / eps
if np.linalg.norm(pk) > 0:
eps = 1e-6 / np.linalg.norm(pk)
bp = (grad(xk + eps * pk) - gk) / eps
eps = 1e-6 / np.linalg.norm(bp)
b2p = (grad(xk + eps * bp) - gk) / eps
else:
b2p = 0
v2 = bg - b2p
orth_v1 = v1 - np.inner(v1, v2) / np.inner(v2, v2) * v2
orth_v2 = v2 - np.inner(v1, v2) / np.inner(v1, v1) * v1
if np.linalg.norm(orth_v1) > 0 and np.linalg.norm(orth_v2) > 0:
vk = w1 / np.linalg.norm(orth_v1) * orth_v1 + w2 / np.linalg.norm(orth_v2) * orth_v2
elif np.inner(v1, v2) > 0:
vk = w1 * v1 + w2 * v2
else:
raise ValueError
return vk / np.linalg.norm(vk)
def estimate_alpha(grad, xk, gk, pk, vk):
if np.linalg.norm(vk) == 0:
return 0
# TODO: `1e-6` is set based on experimental results.
eps = 1e-6 / np.linalg.norm(vk)
bv = (grad(xk + eps * vk) - gk) / eps
if np.linalg.norm(pk) > 0:
eps = 1e-6 / np.linalg.norm(pk)
bp = (grad(xk + eps * pk) - gk) / eps
else:
bp = 0
return np.inner(gk - bp, bv) / np.inner(bv, bv)
def fix_pk(grad, xk, gk, pk, version="A"):
if version == "A":
try:
vk = estimate_vk(grad, xk, gk, pk)
alpha = estimate_alpha(grad, xk, gk, pk, vk=vk)
except ValueError:
vk = np.zeros_like(xk)
alpha = 0.
elif version == "B":
vk = gk
alpha = estimate_alpha(grad, xk, gk, pk, vk=gk)
else:
raise ValueError("Invalid argument `version`.")
return pk - alpha * vk
def fast_bfgs(func, grad, x0, m=8, secant=False, version="A", tol=1e-5, max_iters=1000):
xk = x0
gk = grad(xk)
logs = [[*xk, func(xk), np.linalg.norm(gk)]]
# compute x1, s0, y0
pk = -gk
tau = step_length(func, grad, xk, alpha=1.0, pk=pk, c2=0.9)
sk = tau * pk
xk1 = xk + sk
gk1 = grad(xk1)
yk = gk1 - gk
# update xk, gk, sks, ak, k
xk = xk1
gk = gk1
sks = [sk / np.sqrt(np.abs(np.inner(sk, yk)))]
lk = np.array([[1]])
k = 0
logs.append([*xk, func(xk), np.linalg.norm(gk)])
while True:
# compute pk
pk = -np.array(sks).T @ (lk @ (np.array(sks) @ gk))
if m < x0.__len__() or sks.__len__() <= x0.__len__():
# fix pk
pk = fix_pk(grad, xk, gk, pk, version=version)
# compute xk1, sk, yk
tau = step_length(func, grad, xk, alpha=1.0, pk=pk, c2=0.9)
sk = tau * pk
xk1 = xk + sk
gk1 = grad(xk1)
yk = gk1 - gk
if termination_criterion(TERMINATION_VERSION, grad, xk, xk1, tol):
logs.append([*xk1, func(xk1), np.linalg.norm(gk1)])
break
if np.linalg.norm(yk) == 0:
logs = logs[:-1]
break
if k >= max_iters:
break
# update xk, gk, sks, yk, ak, k
xk = xk1
gk = gk1
sks.append(sk / np.sqrt(np.abs(np.inner(sk, yk))))
yk = yk / np.sqrt(np.abs(np.inner(sk, yk)))
lk = update_lk(m, yk, sks, lk, secant=secant)
if len(sks) > m:
sks = sks[1:]
k += 1
logs.append([*xk, func(xk), np.linalg.norm(gk)])
return xk, np.array(logs)
def unit_test():
print('\n' + '#' * 32 + "\tLIGHTWEIGHT TEST\t" + '#' * 32)
# Rosenbrock's function
class Rosenbrock:
@classmethod
def function(cls, x):
return 100 * (x[1] - x[0] ** 2) ** 2 + (1 - x[0]) ** 2
@classmethod
def gradients(cls, x):
return np.array([200 * (x[1] - x[0] ** 2) * (-2 * x[0]) + 2 * (x[0] - 1), 200 * (x[1] - x[0] ** 2)])
# Styblinski & Tang's function(1990)
class Styblinski:
@classmethod
def function(cls, x):
return np.mean(x ** 4 - 16 * x ** 2 + 5 * x)
@classmethod
def gradients(cls, x):
return (4 * x ** 3 - 32 * x + 5) / x.__len__()
m = 8
# Solving Rosenbrock's function.
print('-' * 32 + "\tSolving {}-dim Rosenbrock's function\t".format(2) + '-' * 32)
func = Rosenbrock.function
grad = Rosenbrock.gradients
x0 = 1.1 * np.ones(shape=(2, ))
xk, log = gradient_descent(func, grad, x0)
fk, gk, k = log[-1, -2], log[-1, -1], log.__len__()
print("gradient descent: fk = {:.2e}, ||gk|| = {:.2e}, iters = {}".format(fk, gk, k))
xk, log = bfgs(func, grad, x0)
fk, gk, k = log[-1, -2], log[-1, -1], log.__len__()
print("bfgs: fk = {:.2e}, ||gk|| = {:.2e}, iters = {}".format(fk, gk, k))
xk, log = l_bfgs(func, grad, m, x0)
fk, gk, k = log[-1, -2], log[-1, -1], log.__len__()
print("l-bfgs(m={}): fk = {:.2e}, ||gk|| = {:.2e}, iters = {}".format(m, fk, gk, k))
for secant in [False, True]:
for version in ["A", "B"]:
xk, log = fast_bfgs(func, grad, x0, m=m, version=version)
fk, gk, k = log[-1, -2], log[-1, -1], log.__len__()
print("fast-bfgs(secant={}, version={}, m={}): fk = {:.2e}, ||gk|| = {:.2e}, iters = {}".format(
secant, version, m, fk, gk, k))
# Solving Styblinski & Tang's function.
for n in [128, 256, 512, 1024]:
print('-' * 32 + "\tSolving {}-dim Styblinski & Tang's function\t".format(n) + '-' * 32)
func = Styblinski.function
grad = Styblinski.gradients
x0 = -2.5 * np.ones(shape=(n, )) + 0.1 * np.random.rand(n)
xk, log = gradient_descent(func, grad, x0)
fk, gk, k = log[-1, -2], log[-1, -1], log.__len__()
print("gradient descent: fk = {:.2e}, ||gk|| = {:.2e}, iters = {}".format(fk, gk, k))
xk, log = bfgs(func, grad, x0)
fk, gk, k = log[-1, -2], log[-1, -1], log.__len__()
print("bfgs: fk = {:.2e}, ||gk|| = {:.2e}, iters = {}".format(fk, gk, k))
xk, log = l_bfgs(func, grad, m, x0)
fk, gk, k = log[-1, -2], log[-1, -1], log.__len__()
print("l-bfgs(m={}): fk = {:.2e}, ||gk|| = {:.2e}, iters = {}".format(m, fk, gk, k))
for secant in [False, True]:
for version in ["A", "B"]:
xk, log = fast_bfgs(func, grad, x0, m=m, version=version)
fk, gk, k = log[-1, -2], log[-1, -1], log.__len__()
print("fast-bfgs(secant={}, version={}, m={}):fk = {:.2e}, ||gk|| = {:.2e}, iters = {}".format(
secant, version, m, fk, gk, k))
# unit_test()
|
[
"numpy.outer",
"numpy.zeros_like",
"numpy.zeros",
"numpy.identity",
"numpy.ones",
"numpy.mean",
"numpy.array",
"numpy.linalg.norm",
"numpy.inner",
"numpy.random.rand",
"numpy.eye",
"numpy.linalg.solve"
] |
[((4042, 4055), 'numpy.zeros', 'np.zeros', (['m_t'], {}), '(m_t)\n', (4050, 4055), True, 'import numpy as np\n'), ((4064, 4077), 'numpy.zeros', 'np.zeros', (['m_t'], {}), '(m_t)\n', (4072, 4077), True, 'import numpy as np\n'), ((4591, 4611), 'numpy.identity', 'np.identity', (['xk.size'], {}), '(xk.size)\n', (4602, 4611), True, 'import numpy as np\n'), ((10486, 10501), 'numpy.array', 'np.array', (['[[1]]'], {}), '([[1]])\n', (10494, 10501), True, 'import numpy as np\n'), ((2149, 2163), 'numpy.array', 'np.array', (['logs'], {}), '(logs)\n', (2157, 2163), True, 'import numpy as np\n'), ((2903, 2917), 'numpy.array', 'np.array', (['logs'], {}), '(logs)\n', (2911, 2917), True, 'import numpy as np\n'), ((3891, 3905), 'numpy.array', 'np.array', (['logs'], {}), '(logs)\n', (3899, 3905), True, 'import numpy as np\n'), ((5594, 5608), 'numpy.array', 'np.array', (['logs'], {}), '(logs)\n', (5602, 5608), True, 'import numpy as np\n'), ((6703, 6725), 'numpy.zeros', 'np.zeros', ([], {'shape': '(m, m)'}), '(shape=(m, m))\n', (6711, 6725), True, 'import numpy as np\n'), ((6748, 6761), 'numpy.eye', 'np.eye', (['(m - 1)'], {}), '(m - 1)\n', (6754, 6761), True, 'import numpy as np\n'), ((8404, 8422), 'numpy.linalg.norm', 'np.linalg.norm', (['gk'], {}), '(gk)\n', (8418, 8422), True, 'import numpy as np\n'), ((8473, 8491), 'numpy.linalg.norm', 'np.linalg.norm', (['pk'], {}), '(pk)\n', (8487, 8491), True, 'import numpy as np\n'), ((9112, 9130), 'numpy.linalg.norm', 'np.linalg.norm', (['vk'], {}), '(vk)\n', (9126, 9130), True, 'import numpy as np\n'), ((9182, 9200), 'numpy.linalg.norm', 'np.linalg.norm', (['vk'], {}), '(vk)\n', (9196, 9200), True, 'import numpy as np\n'), ((9299, 9317), 'numpy.linalg.norm', 'np.linalg.norm', (['vk'], {}), '(vk)\n', (9313, 9317), True, 'import numpy as np\n'), ((9368, 9386), 'numpy.linalg.norm', 'np.linalg.norm', (['pk'], {}), '(pk)\n', (9382, 9386), True, 'import numpy as np\n'), ((9515, 9536), 'numpy.inner', 'np.inner', (['(gk - bp)', 'bv'], {}), '(gk - bp, bv)\n', (9523, 9536), True, 'import numpy as np\n'), ((9539, 9555), 'numpy.inner', 'np.inner', (['bv', 'bv'], {}), '(bv, bv)\n', (9547, 9555), True, 'import numpy as np\n'), ((11661, 11675), 'numpy.array', 'np.array', (['logs'], {}), '(logs)\n', (11669, 11675), True, 'import numpy as np\n'), ((12590, 12609), 'numpy.ones', 'np.ones', ([], {'shape': '(2,)'}), '(shape=(2,))\n', (12597, 12609), True, 'import numpy as np\n'), ((1663, 1681), 'numpy.linalg.norm', 'np.linalg.norm', (['gk'], {}), '(gk)\n', (1677, 1681), True, 'import numpy as np\n'), ((2361, 2379), 'numpy.linalg.norm', 'np.linalg.norm', (['gk'], {}), '(gk)\n', (2375, 2379), True, 'import numpy as np\n'), ((3139, 3157), 'numpy.linalg.norm', 'np.linalg.norm', (['gk'], {}), '(gk)\n', (3153, 3157), True, 'import numpy as np\n'), ((3526, 3544), 'numpy.linalg.norm', 'np.linalg.norm', (['yk'], {}), '(yk)\n', (3540, 3544), True, 'import numpy as np\n'), ((4668, 4686), 'numpy.linalg.norm', 'np.linalg.norm', (['gk'], {}), '(gk)\n', (4682, 4686), True, 'import numpy as np\n'), ((5231, 5249), 'numpy.linalg.norm', 'np.linalg.norm', (['yk'], {}), '(yk)\n', (5245, 5249), True, 'import numpy as np\n'), ((8518, 8536), 'numpy.linalg.norm', 'np.linalg.norm', (['pk'], {}), '(pk)\n', (8532, 8536), True, 'import numpy as np\n'), ((8604, 8622), 'numpy.linalg.norm', 'np.linalg.norm', (['bp'], {}), '(bp)\n', (8618, 8622), True, 'import numpy as np\n'), ((8844, 8867), 'numpy.linalg.norm', 'np.linalg.norm', (['orth_v1'], {}), '(orth_v1)\n', (8858, 8867), True, 'import numpy as np\n'), ((8876, 8899), 'numpy.linalg.norm', 'np.linalg.norm', (['orth_v2'], {}), '(orth_v2)\n', (8890, 8899), True, 'import numpy as np\n'), ((9007, 9023), 'numpy.inner', 'np.inner', (['v1', 'v2'], {}), '(v1, v2)\n', (9015, 9023), True, 'import numpy as np\n'), ((9413, 9431), 'numpy.linalg.norm', 'np.linalg.norm', (['pk'], {}), '(pk)\n', (9427, 9431), True, 'import numpy as np\n'), ((10169, 10187), 'numpy.linalg.norm', 'np.linalg.norm', (['gk'], {}), '(gk)\n', (10183, 10187), True, 'import numpy as np\n'), ((10544, 10562), 'numpy.linalg.norm', 'np.linalg.norm', (['gk'], {}), '(gk)\n', (10558, 10562), True, 'import numpy as np\n'), ((11164, 11182), 'numpy.linalg.norm', 'np.linalg.norm', (['yk'], {}), '(yk)\n', (11178, 11182), True, 'import numpy as np\n'), ((11999, 12097), 'numpy.array', 'np.array', (['[200 * (x[1] - x[0] ** 2) * (-2 * x[0]) + 2 * (x[0] - 1), 200 * (x[1] - x[0\n ] ** 2)]'], {}), '([200 * (x[1] - x[0] ** 2) * (-2 * x[0]) + 2 * (x[0] - 1), 200 * (x\n [1] - x[0] ** 2)])\n', (12007, 12097), True, 'import numpy as np\n'), ((12227, 12264), 'numpy.mean', 'np.mean', (['(x ** 4 - 16 * x ** 2 + 5 * x)'], {}), '(x ** 4 - 16 * x ** 2 + 5 * x)\n', (12234, 12264), True, 'import numpy as np\n'), ((2112, 2130), 'numpy.linalg.norm', 'np.linalg.norm', (['gk'], {}), '(gk)\n', (2126, 2130), True, 'import numpy as np\n'), ((2866, 2884), 'numpy.linalg.norm', 'np.linalg.norm', (['gk'], {}), '(gk)\n', (2880, 2884), True, 'import numpy as np\n'), ((3697, 3713), 'numpy.outer', 'np.outer', (['sk', 'yk'], {}), '(sk, yk)\n', (3705, 3713), True, 'import numpy as np\n'), ((3716, 3732), 'numpy.inner', 'np.inner', (['sk', 'yk'], {}), '(sk, yk)\n', (3724, 3732), True, 'import numpy as np\n'), ((3767, 3783), 'numpy.outer', 'np.outer', (['sk', 'sk'], {}), '(sk, sk)\n', (3775, 3783), True, 'import numpy as np\n'), ((3786, 3802), 'numpy.inner', 'np.inner', (['sk', 'yk'], {}), '(sk, yk)\n', (3794, 3802), True, 'import numpy as np\n'), ((3854, 3872), 'numpy.linalg.norm', 'np.linalg.norm', (['gk'], {}), '(gk)\n', (3868, 3872), True, 'import numpy as np\n'), ((5557, 5575), 'numpy.linalg.norm', 'np.linalg.norm', (['gk'], {}), '(gk)\n', (5571, 5575), True, 'import numpy as np\n'), ((6664, 6673), 'numpy.eye', 'np.eye', (['k'], {}), '(k)\n', (6670, 6673), True, 'import numpy as np\n'), ((6866, 6884), 'numpy.array', 'np.array', (['sks[-n:]'], {}), '(sks[-n:])\n', (6874, 6884), True, 'import numpy as np\n'), ((6950, 6975), 'numpy.linalg.solve', 'np.linalg.solve', (['mat', 'rhs'], {}), '(mat, rhs)\n', (6965, 6975), True, 'import numpy as np\n'), ((7251, 7281), 'numpy.zeros', 'np.zeros', ([], {'shape': '(m + 1, m + 1)'}), '(shape=(m + 1, m + 1))\n', (7259, 7281), True, 'import numpy as np\n'), ((7484, 7508), 'numpy.zeros', 'np.zeros', ([], {'shape': '(m + 1,)'}), '(shape=(m + 1,))\n', (7492, 7508), True, 'import numpy as np\n'), ((7592, 7612), 'numpy.inner', 'np.inner', (['yk', 'sks[0]'], {}), '(yk, sks[0])\n', (7600, 7612), True, 'import numpy as np\n'), ((8735, 8751), 'numpy.inner', 'np.inner', (['v1', 'v2'], {}), '(v1, v2)\n', (8743, 8751), True, 'import numpy as np\n'), ((8754, 8770), 'numpy.inner', 'np.inner', (['v2', 'v2'], {}), '(v2, v2)\n', (8762, 8770), True, 'import numpy as np\n'), ((8795, 8811), 'numpy.inner', 'np.inner', (['v1', 'v2'], {}), '(v1, v2)\n', (8803, 8811), True, 'import numpy as np\n'), ((8814, 8830), 'numpy.inner', 'np.inner', (['v1', 'v1'], {}), '(v1, v1)\n', (8822, 8830), True, 'import numpy as np\n'), ((9788, 9805), 'numpy.zeros_like', 'np.zeros_like', (['xk'], {}), '(xk)\n', (9801, 9805), True, 'import numpy as np\n'), ((11624, 11642), 'numpy.linalg.norm', 'np.linalg.norm', (['gk'], {}), '(gk)\n', (11638, 11642), True, 'import numpy as np\n'), ((13790, 13809), 'numpy.ones', 'np.ones', ([], {'shape': '(n,)'}), '(shape=(n,))\n', (13797, 13809), True, 'import numpy as np\n'), ((13819, 13836), 'numpy.random.rand', 'np.random.rand', (['n'], {}), '(n)\n', (13833, 13836), True, 'import numpy as np\n'), ((2694, 2713), 'numpy.linalg.norm', 'np.linalg.norm', (['gk1'], {}), '(gk1)\n', (2708, 2713), True, 'import numpy as np\n'), ((3475, 3494), 'numpy.linalg.norm', 'np.linalg.norm', (['gk1'], {}), '(gk1)\n', (3489, 3494), True, 'import numpy as np\n'), ((5180, 5199), 'numpy.linalg.norm', 'np.linalg.norm', (['gk1'], {}), '(gk1)\n', (5194, 5199), True, 'import numpy as np\n'), ((6790, 6806), 'numpy.inner', 'np.inner', (['yk', 'sk'], {}), '(yk, sk)\n', (6798, 6806), True, 'import numpy as np\n'), ((7385, 7402), 'numpy.array', 'np.array', (['sks[1:]'], {}), '(sks[1:])\n', (7393, 7402), True, 'import numpy as np\n'), ((7439, 7456), 'numpy.array', 'np.array', (['sks[1:]'], {}), '(sks[1:])\n', (7447, 7456), True, 'import numpy as np\n'), ((7659, 7684), 'numpy.linalg.solve', 'np.linalg.solve', (['mat', 'rhs'], {}), '(mat, rhs)\n', (7674, 7684), True, 'import numpy as np\n'), ((7887, 7904), 'numpy.array', 'np.array', (['sks[1:]'], {}), '(sks[1:])\n', (7895, 7904), True, 'import numpy as np\n'), ((7949, 7966), 'numpy.array', 'np.array', (['sks[1:]'], {}), '(sks[1:])\n', (7957, 7966), True, 'import numpy as np\n'), ((8022, 8047), 'numpy.linalg.solve', 'np.linalg.solve', (['mat', 'rhs'], {}), '(mat, rhs)\n', (8037, 8047), True, 'import numpy as np\n'), ((8923, 8946), 'numpy.linalg.norm', 'np.linalg.norm', (['orth_v1'], {}), '(orth_v1)\n', (8937, 8946), True, 'import numpy as np\n'), ((8964, 8987), 'numpy.linalg.norm', 'np.linalg.norm', (['orth_v2'], {}), '(orth_v2)\n', (8978, 8987), True, 'import numpy as np\n'), ((10457, 10473), 'numpy.inner', 'np.inner', (['sk', 'yk'], {}), '(sk, yk)\n', (10465, 10473), True, 'import numpy as np\n'), ((10617, 10630), 'numpy.array', 'np.array', (['sks'], {}), '(sks)\n', (10625, 10630), True, 'import numpy as np\n'), ((10642, 10655), 'numpy.array', 'np.array', (['sks'], {}), '(sks)\n', (10650, 10655), True, 'import numpy as np\n'), ((11113, 11132), 'numpy.linalg.norm', 'np.linalg.norm', (['gk1'], {}), '(gk1)\n', (11127, 11132), True, 'import numpy as np\n'), ((11448, 11464), 'numpy.inner', 'np.inner', (['sk', 'yk'], {}), '(sk, yk)\n', (11456, 11464), True, 'import numpy as np\n'), ((6601, 6617), 'numpy.inner', 'np.inner', (['yk', 'sk'], {}), '(yk, sk)\n', (6609, 6617), True, 'import numpy as np\n'), ((7314, 7331), 'numpy.array', 'np.array', (['sks[1:]'], {}), '(sks[1:])\n', (7322, 7331), True, 'import numpy as np\n'), ((7334, 7351), 'numpy.array', 'np.array', (['sks[1:]'], {}), '(sks[1:])\n', (7342, 7351), True, 'import numpy as np\n'), ((7539, 7556), 'numpy.array', 'np.array', (['sks[1:]'], {}), '(sks[1:])\n', (7547, 7556), True, 'import numpy as np\n'), ((7907, 7924), 'numpy.array', 'np.array', (['sks[1:]'], {}), '(sks[1:])\n', (7915, 7924), True, 'import numpy as np\n'), ((11395, 11411), 'numpy.inner', 'np.inner', (['sk', 'yk'], {}), '(sk, yk)\n', (11403, 11411), True, 'import numpy as np\n')]
|
import os
import pickle
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.io import loadmat
from torch import optim
from torch.autograd import Variable
from torch.optim.lr_scheduler import StepLR
from torchvision import models
from datasets import LOG_PARA, load_datasets
# Seed for reproducibility
SEED = 3035
if SEED is not None:
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
# Nombre de archivo para guardar resultados
SAVE_FILENAME = 'CANNet_Prueba.pickle'
MODEL_FILENAME = 'CANNet_Prueba.pth'
# Para comprobar si tenemos GPUs disponibles para usar o no:
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
train_loader, val_loader, test_loader, restore_transform = load_datasets()
#RED
class ContextualModule(nn.Module):
def __init__(self, features, out_features=512, sizes=(1, 2, 3, 6)):
super(ContextualModule, self).__init__()
self.scales = []
self.scales = nn.ModuleList([self._make_scale(features, size) for size in sizes])
self.bottleneck = nn.Conv2d(features * 2, out_features, kernel_size=1)
self.relu = nn.ReLU()
self.weight_net = nn.Conv2d(features,features,kernel_size=1)
def __make_weight(self,feature,scale_feature):
weight_feature = feature - scale_feature
return F.sigmoid(self.weight_net(weight_feature))
def _make_scale(self, features, size):
prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
conv = nn.Conv2d(features, features, kernel_size=1, bias=False)
return nn.Sequential(prior, conv)
def forward(self, feats):
h, w = feats.size(2), feats.size(3)
multi_scales = [F.upsample(input=stage(feats), size=(h, w), mode='bilinear') for stage in self.scales]
weights = [self.__make_weight(feats,scale_feature) for scale_feature in multi_scales]
overall_features = [(multi_scales[0]*weights[0]+multi_scales[1]*weights[1]+multi_scales[2]*weights[2]+multi_scales[3]*weights[3])/(weights[0]+weights[1]+weights[2]+weights[3])]+ [feats]
bottle = self.bottleneck(torch.cat(overall_features, 1))
return self.relu(bottle)
class CANNet(nn.Module):
def __init__(self, load_weights=False):
super(CANNet, self).__init__()
self.seen = 0
self.context = ContextualModule(512, 512)
self.frontend_feat = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512]
self.backend_feat = [512, 512, 512,256,128,64]
self.frontend = make_layers(self.frontend_feat)
self.backend = make_layers(self.backend_feat,in_channels = 512,batch_norm=True, dilation = True)
self.output_layer = nn.Conv2d(64, 1, kernel_size=1)
if not load_weights:
mod = models.vgg16(pretrained = True)
self._initialize_weights()
self.frontend.load_state_dict(mod.features[0:23].state_dict())
# for i in range(len(self.frontend.state_dict().items())):
# self.frontend.state_dict().items()[i][1].data[:] = mod.state_dict().items()[i][1].data[:]
def forward(self,x):
x = self.frontend(x)
x = self.context(x)
x = self.backend(x)
x = self.output_layer(x)
x = F.upsample(x, scale_factor=8)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, std=0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def make_layers(cfg, in_channels = 3,batch_norm=False,dilation = False):
if dilation:
d_rate = 2
else:
d_rate = 1
layers = []
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=d_rate,dilation = d_rate)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
modelo = CANNet()
modelo = modelo.to(device)
#pytorch_total_params = sum(p.numel() for p in modelo.parameters())
#print(pytorch_total_params)
# Definimos el criterion de pérdida:
criterion = nn.MSELoss().to(device)
# criterion = nn.L1Loss(reduction='mean')
# convertimos train_loader en un iterador
# dataiter = iter(train_loader)
# y recuperamos el i-esimo elemento, un par de valores (imagenes, etiquetas)
# x, y = dataiter.next() # x e y son tensores
# Para predecir y, la normalizaremos. Siempre por el mismo valor:
#Y_NORM = 200
# UPDATE: Ahora se normaliza en dataset.py con LOG_PARA
losses = {'train': list(), 'validacion': list(),
'val_mae': list(), 'val_mse': list()}
# PRUEBAS:
# print(x.size())
# print(y['map'].size())
# print(torch.max(x))
# print(x)
# Parámetros (de la configuracion original)
LR = 1e-5
LR_DECAY = 0.99
NUM_EPOCH_LR_DECAY = 1
LR_DECAY_START = -1
# ENTRENAMIENTO 1
n_epochs = 200
optimizador = optim.Adam(modelo.parameters(), lr=LR, weight_decay=1e-4)
scheduler = StepLR(optimizador, step_size=NUM_EPOCH_LR_DECAY, gamma=LR_DECAY)
train_record = {'best_mae': float('Inf'), 'best_mse': float('Inf')}
# Para early stopping: guarda el modelo si mejora en acumulados, para si se sobrepasa MAX_ACCUM
MAX_ACCUM = 100
accum = 0
for epoch in range(n_epochs):
print("Entrenando... \n") # Esta será la parte de entrenamiento
training_loss = 0.0 # el loss en cada epoch de entrenamiento
total_iter = 0
modelo.train() # Para preparar el modelo para el training
for x, y in train_loader:
x = x.to(device)
y = y.to(device)
total_iter += 1 # como estamos usando el total, auemntamos 1 y.shape[0]
# ponemos a cero todos los gradientes en todas las neuronas:
optimizador.zero_grad()
pred_map = modelo(x) # forward
loss = criterion(pred_map.squeeze(), y.squeeze()) # evaluación del loss
loss.backward() # backward pass
optimizador.step() # optimización
training_loss += loss.data.cpu().item() # acumulamos el loss de este batch
training_loss /= total_iter
lr_computed = optimizador.param_groups[0]['lr']*10000
orig_count = y[0].sum().data/LOG_PARA
pred_count = pred_map[0].sum().data/LOG_PARA
print( f'[ep {epoch}][loss {training_loss:.4f}][lr {lr_computed:.4f}][cnt: den: {orig_count:.1f} pred: {pred_count:.1f}]')
losses['train'].append(training_loss) # .item())
# Para iniciar el scheduler (siempre tras optimizer.step())
if epoch > LR_DECAY_START:
scheduler.step()
val_loss = 0.0
mae_accum = 0.0
mse_accum = 0.0
total_iter = 0
total = 0
modelo.eval() # Preparar el modelo para validación y/o test
print("Validando... \n")
for x, y in val_loader:
x = x.to(device)
y = y.to(device)
total_iter += 1
with torch.no_grad():
# y = y/Y_NORM # normalizamoss
pred_map = modelo(x)
#output = output.flatten()
loss = criterion(pred_map.squeeze(), y.squeeze())
val_loss += loss.cpu().item()
for i_img in range(pred_map.shape[0]):
pred_num = pred_map[i_img].sum().data/LOG_PARA
y_num = y[i_img].sum().data/LOG_PARA
mae_accum += abs(y_num-pred_num)
mse_accum += (pred_num-y_num)*(pred_num-y_num)
total += 1
val_loss /= total
mae_accum /= total_iter
mse_accum = torch.sqrt(mse_accum/total_iter)
losses['validacion'].append(val_loss) # .item())
losses['val_mae'].append(mae_accum) # .item())
losses['val_mse'].append(mse_accum) # .item())
print(
f'[e {epoch}] \t Train: {training_loss:.4f} \t Val_loss: {val_loss:.4f}, MAE: {mae_accum:.2f}, MSE: {mse_accum:.2f}')
# EARLY STOPPING
if (mae_accum <= train_record['best_mae']) or (mse_accum <= train_record['best_mse']):
print(f'Saving model...')
torch.save(modelo, MODEL_FILENAME)
accum = 0
if mae_accum <= train_record['best_mae']:
print(f'MAE: ({mae_accum:.2f}<{train_record["best_mae"]:.2f})')
train_record['best_mae'] = mae_accum
if mse_accum <= train_record['best_mse']:
print(f'MSE: ({mse_accum:.2f}<{train_record["best_mse"]:.2f})')
train_record['best_mse'] = mse_accum
else:
accum += 1
if accum>MAX_ACCUM:
break
with open(SAVE_FILENAME, 'wb') as handle:
pickle.dump(losses, handle, protocol=pickle.HIGHEST_PROTOCOL)
'''
# ENTRENAMIENTO 2
n_epochs = 130
optimizador = optim.SGD(modelo.parameters(), lr=0.0001)
for epoch in range(n_epochs):
print("Entrenando... \n") # Esta será la parte de entrenamiento
training_loss = 0.0 # el loss en cada epoch de entrenamiento
total = 0
modelo.train() # Para preparar el modelo para el training
for x, y in train_loader:
# ponemos a cero todos los gradientes en todas las neuronas:
optimizador.zero_grad()
# y=y/Y_NORM #normalizamos
x = x.to(device)
y = y.to(device)
total += y.shape[0]
output = modelo(x) # forward
loss = criterion(output, y) # evaluación del loss
loss.backward() # backward pass
optimizador.step() # optimización
training_loss += loss.cpu().item() # acumulamos el loss de este batch
training_loss /= total
losses['train'].append(training_loss) # .item())
val_loss = 0.0
total = 0
modelo.eval() # Preparar el modelo para validación y/o test
print("Validando... \n")
for x, y in val_loader:
# y = y/Y_NORM # normalizamos
x = x.to(device)
y = y.to(device)
total += y.shape[0]
output = modelo(x)
#output = output.flatten()
loss = criterion(output, y)
val_loss += loss.cpu().item()
val_loss /= total
losses['validacion'].append(val_loss) # .item())
print(
f'Epoch {epoch} \t\t Training Loss: {training_loss} \t\t Validation Loss: {val_loss}')
with open(SAVE_FILENAME, 'wb') as handle:
pickle.dump(losses, handle, protocol=pickle.HIGHEST_PROTOCOL)
'''
# TEST
modelo.eval() # Preparar el modelo para validación y/o test
print("Testing... \n")
# definimos la pérdida
total_iter = 0
total = 0
mse = nn.MSELoss()
test_loss = 0.0
test_loss_mse = 0.0
test_loss_mae = 0.0
yreal = list()
ypredicha = list()
with torch.no_grad():
for x, y in test_loader:
# y=y/Y_NORM #normalizamos
x = x.to(device)
y = y.to(device)
total_iter += 1
pred_map = modelo(x)
#output = output.flatten()
loss = mse(pred_map.squeeze(), y.squeeze())
test_loss += loss.cpu().item()
for i_img in range(pred_map.shape[0]):
pred_num = pred_map[i_img].sum().data/LOG_PARA
y_num = y[i_img].sum().data/LOG_PARA
test_loss_mae += abs(y_num-pred_num)
test_loss_mse += (pred_num-y_num)*(pred_num-y_num)
total += 1
output_num = pred_map.data.cpu().sum()/LOG_PARA
y_num = y.sum()/LOG_PARA
test_loss_mae += abs(output_num - y_num)
test_loss_mse += (output_num-y_num)**2
# para guardar las etqieutas.
yreal.append(y.data.cpu().numpy())
ypredicha.append(pred_map.data.cpu().numpy())
test_loss /= total
test_loss_mae /= total_iter
test_loss_mse = torch.sqrt(test_loss_mse/total_iter)
# yreal = np.array(yreal).flatten()
# ypredicha = np.array(ypredicha).flatten() # comprobar si funciona.
losses['yreal'] = yreal
losses['ypredicha'] = ypredicha
print(f'Test Loss (MSE): {test_loss_mse}')
losses['test_mse'] = test_loss_mse # .item())
print(f'Test Loss (MAE): {test_loss_mae}')
losses['test_mae'] = test_loss_mae # .item())
with open(SAVE_FILENAME, 'wb') as handle:
pickle.dump(losses, handle, protocol=pickle.HIGHEST_PROTOCOL)
#%% VISUALIZATION
# fig, ax = plt.subplots(2, 1, figsize=(30,10))
# img_orig = x.data.cpu().numpy().squeeze().transpose((1,2,0))
# img_orig = (img_orig-img_orig.min())/(img_orig.max()-img_orig.min())
# ax[0].imshow(img_orig)
# ax[1].imshow(y.data.cpu().numpy().squeeze())
|
[
"pickle.dump",
"torch.optim.lr_scheduler.StepLR",
"numpy.random.seed",
"torch.sqrt",
"torch.cat",
"torch.nn.init.constant_",
"torch.device",
"torch.no_grad",
"torch.nn.MSELoss",
"torchvision.models.vgg16",
"torch.manual_seed",
"torch.nn.Conv2d",
"torch.cuda.manual_seed",
"torch.nn.functional.upsample",
"torch.nn.BatchNorm2d",
"torch.cuda.is_available",
"datasets.load_datasets",
"torch.nn.MaxPool2d",
"torch.nn.AdaptiveAvgPool2d",
"torch.nn.ReLU",
"torch.nn.Sequential",
"torch.save",
"torch.nn.init.normal_"
] |
[((694, 719), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (717, 719), False, 'import torch\n'), ((729, 772), 'torch.device', 'torch.device', (["('cuda' if use_cuda else 'cpu')"], {}), "('cuda' if use_cuda else 'cpu')\n", (741, 772), False, 'import torch\n'), ((833, 848), 'datasets.load_datasets', 'load_datasets', ([], {}), '()\n', (846, 848), False, 'from datasets import LOG_PARA, load_datasets\n'), ((5403, 5468), 'torch.optim.lr_scheduler.StepLR', 'StepLR', (['optimizador'], {'step_size': 'NUM_EPOCH_LR_DECAY', 'gamma': 'LR_DECAY'}), '(optimizador, step_size=NUM_EPOCH_LR_DECAY, gamma=LR_DECAY)\n', (5409, 5468), False, 'from torch.optim.lr_scheduler import StepLR\n'), ((10743, 10755), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (10753, 10755), True, 'import torch.nn as nn\n'), ((11843, 11881), 'torch.sqrt', 'torch.sqrt', (['(test_loss_mse / total_iter)'], {}), '(test_loss_mse / total_iter)\n', (11853, 11881), False, 'import torch\n'), ((418, 438), 'numpy.random.seed', 'np.random.seed', (['SEED'], {}), '(SEED)\n', (432, 438), True, 'import numpy as np\n'), ((443, 466), 'torch.manual_seed', 'torch.manual_seed', (['SEED'], {}), '(SEED)\n', (460, 466), False, 'import torch\n'), ((471, 499), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['SEED'], {}), '(SEED)\n', (493, 499), False, 'import torch\n'), ((4360, 4382), 'torch.nn.Sequential', 'nn.Sequential', (['*layers'], {}), '(*layers)\n', (4373, 4382), True, 'import torch.nn as nn\n'), ((7869, 7903), 'torch.sqrt', 'torch.sqrt', (['(mse_accum / total_iter)'], {}), '(mse_accum / total_iter)\n', (7879, 7903), False, 'import torch\n'), ((10853, 10868), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10866, 10868), False, 'import torch\n'), ((12271, 12332), 'pickle.dump', 'pickle.dump', (['losses', 'handle'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(losses, handle, protocol=pickle.HIGHEST_PROTOCOL)\n', (12282, 12332), False, 'import pickle\n'), ((1153, 1205), 'torch.nn.Conv2d', 'nn.Conv2d', (['(features * 2)', 'out_features'], {'kernel_size': '(1)'}), '(features * 2, out_features, kernel_size=1)\n', (1162, 1205), True, 'import torch.nn as nn\n'), ((1226, 1235), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1233, 1235), True, 'import torch.nn as nn\n'), ((1262, 1306), 'torch.nn.Conv2d', 'nn.Conv2d', (['features', 'features'], {'kernel_size': '(1)'}), '(features, features, kernel_size=1)\n', (1271, 1306), True, 'import torch.nn as nn\n'), ((1524, 1570), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', ([], {'output_size': '(size, size)'}), '(output_size=(size, size))\n', (1544, 1570), True, 'import torch.nn as nn\n'), ((1586, 1642), 'torch.nn.Conv2d', 'nn.Conv2d', (['features', 'features'], {'kernel_size': '(1)', 'bias': '(False)'}), '(features, features, kernel_size=1, bias=False)\n', (1595, 1642), True, 'import torch.nn as nn\n'), ((1658, 1684), 'torch.nn.Sequential', 'nn.Sequential', (['prior', 'conv'], {}), '(prior, conv)\n', (1671, 1684), True, 'import torch.nn as nn\n'), ((2777, 2808), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(1)'], {'kernel_size': '(1)'}), '(64, 1, kernel_size=1)\n', (2786, 2808), True, 'import torch.nn as nn\n'), ((3337, 3366), 'torch.nn.functional.upsample', 'F.upsample', (['x'], {'scale_factor': '(8)'}), '(x, scale_factor=8)\n', (3347, 3366), True, 'import torch.nn.functional as F\n'), ((4579, 4591), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (4589, 4591), True, 'import torch.nn as nn\n'), ((8353, 8387), 'torch.save', 'torch.save', (['modelo', 'MODEL_FILENAME'], {}), '(modelo, MODEL_FILENAME)\n', (8363, 8387), False, 'import torch\n'), ((8889, 8950), 'pickle.dump', 'pickle.dump', (['losses', 'handle'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(losses, handle, protocol=pickle.HIGHEST_PROTOCOL)\n', (8900, 8950), False, 'import pickle\n'), ((2192, 2222), 'torch.cat', 'torch.cat', (['overall_features', '(1)'], {}), '(overall_features, 1)\n', (2201, 2222), False, 'import torch\n'), ((2856, 2885), 'torchvision.models.vgg16', 'models.vgg16', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (2868, 2885), False, 'from torchvision import models\n'), ((4066, 4139), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_channels', 'v'], {'kernel_size': '(3)', 'padding': 'd_rate', 'dilation': 'd_rate'}), '(in_channels, v, kernel_size=3, padding=d_rate, dilation=d_rate)\n', (4075, 4139), True, 'import torch.nn as nn\n'), ((7258, 7273), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7271, 7273), False, 'import torch\n'), ((3510, 3545), 'torch.nn.init.normal_', 'nn.init.normal_', (['m.weight'], {'std': '(0.01)'}), '(m.weight, std=0.01)\n', (3525, 3545), True, 'import torch.nn as nn\n'), ((3992, 4029), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(2)', 'stride': '(2)'}), '(kernel_size=2, stride=2)\n', (4004, 4029), True, 'import torch.nn as nn\n'), ((3605, 3633), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (3622, 3633), True, 'import torch.nn as nn\n'), ((3698, 3728), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.weight', '(1)'], {}), '(m.weight, 1)\n', (3715, 3728), True, 'import torch.nn as nn\n'), ((3745, 3773), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (3762, 3773), True, 'import torch.nn as nn\n'), ((4203, 4220), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['v'], {}), '(v)\n', (4217, 4220), True, 'import torch.nn as nn\n'), ((4222, 4243), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (4229, 4243), True, 'import torch.nn as nn\n'), ((4298, 4319), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (4305, 4319), True, 'import torch.nn as nn\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# signals.py - <NAME> (<EMAIL>) - Jan 2017
'''
Contains functions to deal with masking and removing periodic signals in light
curves.
'''
#############
## LOGGING ##
#############
import logging
from astrobase import log_sub, log_fmt, log_date_fmt
DEBUG = False
if DEBUG:
level = logging.DEBUG
else:
level = logging.INFO
LOGGER = logging.getLogger(__name__)
logging.basicConfig(
level=level,
style=log_sub,
format=log_fmt,
datefmt=log_date_fmt,
)
LOGDEBUG = LOGGER.debug
LOGINFO = LOGGER.info
LOGWARNING = LOGGER.warning
LOGERROR = LOGGER.error
LOGEXCEPTION = LOGGER.exception
#############
## IMPORTS ##
#############
import os.path
import os
from io import BytesIO as Strio
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
###################
## LOCAL IMPORTS ##
###################
from ..periodbase.zgls import pgen_lsp
from ..lcfit.sinusoidal import _fourier_func, fourier_fit_magseries
from ..lcmath import sigclip_magseries, phase_magseries
################################################
## REMOVING SIGNALS FROM MAGNITUDE TIMESERIES ##
################################################
def prewhiten_magseries(times, mags, errs,
whitenperiod,
whitenparams,
sigclip=3.0,
magsarefluxes=False,
plotfit=None,
plotfitphasedlconly=True,
rescaletomedian=True):
'''Removes a periodic sinusoidal signal generated using whitenparams from
the input magnitude time series.
Parameters
----------
times,mags,errs : np.array
The input mag/flux time-series to prewhiten.
whitenperiod : float
The period of the sinusoidal signal to remove.
whitenparams : list of floats
This contains the Fourier amplitude and phase coefficients of the
sinusoidal signal to remove::
[ampl_1, ampl_2, ampl_3, ..., ampl_X,
pha_1, pha_2, pha_3, ..., pha_X]
where `X` is the Fourier order. These are usually the output of a
previous Fourier fit to the light curve (from
:py:func:`astrobase.lcfit.sinusoidal.fourier_fit_magseries` for
example).
sigclip : float or int or sequence of two floats/ints or None
If a single float or int, a symmetric sigma-clip will be performed using
the number provided as the sigma-multiplier to cut out from the input
time-series.
If a list of two ints/floats is provided, the function will perform an
'asymmetric' sigma-clip. The first element in this list is the sigma
value to use for fainter flux/mag values; the second element in this
list is the sigma value to use for brighter flux/mag values. For
example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma
dimmings and greater than 3-sigma brightenings. Here the meaning of
"dimming" and "brightening" is set by *physics* (not the magnitude
system), which is why the `magsarefluxes` kwarg must be correctly set.
If `sigclip` is None, no sigma-clipping will be performed, and the
time-series (with non-finite elems removed) will be passed through to
the output.
magsarefluxes : bool
If True, will treat the input values of `mags` as fluxes for purposes of
plotting the fit and sig-clipping.
plotfit : str or False
If this is a string, this function will make a plot showing the effect
of the pre-whitening on the mag/flux time-series and write the plot to
the path specified here.
plotfitphasedlconly : bool
If True, will plot only the phased LC for showing the effect of
pre-whitening, and skip plotting the unphased LC.
rescaletomedian : bool
If this is True, then we add back the constant median term of the
magnitudes to the final pre-whitened mag series.
Returns
-------
dict
Returns a dict of the form::
{'wtimes':times array after pre-whitening,
'wphase':phase array after pre-whitening,
'wmags':mags array after pre-whitening,
'werrs':errs array after pre-whitening,
'whitenparams':the input pre-whitening params used,
'whitenperiod':the input pre-whitening period used,
'fitplotfile':the output plot file if plotfit was set}
'''
stimes, smags, serrs = sigclip_magseries(times, mags, errs,
sigclip=sigclip,
magsarefluxes=magsarefluxes)
median_mag = np.median(smags)
# phase the mag series using the given period and epoch = min(stimes)
mintime = np.min(stimes)
# calculate the unsorted phase, then sort it
iphase = (
(stimes - mintime)/whitenperiod -
np.floor((stimes - mintime)/whitenperiod)
)
phasesortind = np.argsort(iphase)
# these are the final quantities to use for the Fourier fits
phase = iphase[phasesortind]
pmags = smags[phasesortind]
perrs = serrs[phasesortind]
# get the times sorted in phase order (useful to get the fit mag minimum
# with respect to phase -- the light curve minimum)
ptimes = stimes[phasesortind]
# now subtract the harmonic series from the phased LC
# these are still in phase order
wmags = pmags - _fourier_func(whitenparams, phase, pmags)
# resort everything by time order
wtimeorder = np.argsort(ptimes)
wtimes = ptimes[wtimeorder]
wphase = phase[wtimeorder]
wmags = wmags[wtimeorder]
werrs = perrs[wtimeorder]
if rescaletomedian:
wmags = wmags + median_mag
# prepare the returndict
returndict = {'wtimes':wtimes, # these are in the new time order
'wphase':wphase,
'wmags':wmags,
'werrs':werrs,
'whitenparams':whitenparams,
'whitenperiod':whitenperiod}
# make the fit plot if required
if plotfit and (isinstance(plotfit, str) or isinstance(plotfit, Strio)):
if plotfitphasedlconly:
plt.figure(figsize=(10,4.8))
else:
plt.figure(figsize=(16,9.6))
if plotfitphasedlconly:
# phased series before whitening
plt.subplot(121)
plt.plot(phase,pmags,
marker='.',
color='k',
linestyle='None',
markersize=2.0,
markeredgewidth=0)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('fluxes')
plt.xlabel('phase')
plt.title('phased LC before pre-whitening')
# phased series after whitening
plt.subplot(122)
plt.plot(wphase,wmags,
marker='.',
color='g',
linestyle='None',
markersize=2.0,
markeredgewidth=0)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('fluxes')
plt.xlabel('phase')
plt.title('phased LC after pre-whitening')
else:
# time series before whitening
plt.subplot(221)
plt.plot(stimes,smags,
marker='.',
color='k',
linestyle='None',
markersize=2.0,
markeredgewidth=0)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('fluxes')
plt.xlabel('JD')
plt.title('LC before pre-whitening')
# time series after whitening
plt.subplot(222)
plt.plot(wtimes,wmags,
marker='.',
color='g',
linestyle='None',
markersize=2.0,
markeredgewidth=0)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('fluxes')
plt.xlabel('JD')
plt.title('LC after pre-whitening with period: %.6f' % whitenperiod)
# phased series before whitening
plt.subplot(223)
plt.plot(phase,pmags,
marker='.',
color='k',
linestyle='None',
markersize=2.0,
markeredgewidth=0)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('fluxes')
plt.xlabel('phase')
plt.title('phased LC before pre-whitening')
# phased series after whitening
plt.subplot(224)
plt.plot(wphase,wmags,
marker='.',
color='g',
linestyle='None',
markersize=2.0,
markeredgewidth=0)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('fluxes')
plt.xlabel('phase')
plt.title('phased LC after pre-whitening')
plt.tight_layout()
plt.savefig(plotfit, format='png', pad_inches=0.0)
plt.close()
if isinstance(plotfit, str) or isinstance(plotfit, Strio):
returndict['fitplotfile'] = plotfit
return returndict
def gls_prewhiten(times, mags, errs,
fourierorder=3, # 3rd order series to start with
initfparams=None,
startp_gls=None,
endp_gls=None,
stepsize=1.0e-4,
autofreq=True,
sigclip=30.0,
magsarefluxes=False,
nbestpeaks=5,
nworkers=4,
plotfits=None):
'''Iterative pre-whitening of a magnitude series using the L-S periodogram.
This finds the best period, fits a fourier series with the best period, then
whitens the time series with the best period, and repeats until `nbestpeaks`
are done.
Parameters
----------
times,mags,errs : np.array
The input mag/flux time-series to iteratively pre-whiten.
fourierorder : int
The Fourier order of the sinusoidal signal to fit to the time-series and
iteratively remove.
initfparams : list or None
If this is provided, should be a list of Fourier amplitudes and phases
in the following format::
[ampl_1, ampl_2, ampl_3, ..., ampl_X,
pha_1, pha_2, pha_3, ..., pha_X]
where `X` is the Fourier order. These are usually the output of a
previous Fourier fit to the light curve (from
:py:func:`astrobase.lcfit.sinusoidal.fourier_fit_magseries` for
example). You MUST provide ONE of `fourierorder` and `initfparams`, but
not both. If both are provided or both are None, a sinusoidal signal of
Fourier order 3 will be used by default.
startp_gls, endp_gls : float or None
If these are provided, will serve as input to the Generalized
Lomb-Scargle function that will attempt to find the best `nbestpeaks`
periods in the time-series. These set the minimum and maximum period to
search for in the time-series.
stepsize : float
The step-size in frequency to use when constructing a frequency grid for
the period search.
autofreq : bool
If this is True, the value of `stepsize` will be ignored and the
:py:func:`astrobase.periodbase.get_frequency_grid` function will be used
to generate a frequency grid based on `startp`, and `endp`. If these are
None as well, `startp` will be set to 0.1 and `endp` will be set to
`times.max() - times.min()`.
sigclip : float or int or sequence of two floats/ints or None
If a single float or int, a symmetric sigma-clip will be performed using
the number provided as the sigma-multiplier to cut out from the input
time-series.
If a list of two ints/floats is provided, the function will perform an
'asymmetric' sigma-clip. The first element in this list is the sigma
value to use for fainter flux/mag values; the second element in this
list is the sigma value to use for brighter flux/mag values. For
example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma
dimmings and greater than 3-sigma brightenings. Here the meaning of
"dimming" and "brightening" is set by *physics* (not the magnitude
system), which is why the `magsarefluxes` kwarg must be correctly set.
If `sigclip` is None, no sigma-clipping will be performed, and the
time-series (with non-finite elems removed) will be passed through to
the output.
magsarefluxes : bool
If the input measurement values in `mags` and `errs` are in fluxes, set
this to True.
nbestpeaks : int
The number of 'best' peaks to return from the periodogram results,
starting from the global maximum of the periodogram peak values.
nworkers : int
The number of parallel workers to use when calculating the periodogram.
plotfits : None or str
If this is a str, should indicate the file to which a plot of the
successive iterations of pre-whitening will be written to. This will
contain a row of plots indicating the before/after states of the light
curves for each round of pre-whitening.
Returns
-------
(bestperiods, plotfile) : tuple
This returns a list of the best periods (with the "highest" peak in the
periodogram) after each round of pre-whitening is done. If plotfit is a
str, will also return the path to the generated plot file.
'''
stimes, smags, serrs = sigclip_magseries(times, mags, errs,
sigclip=sigclip,
magsarefluxes=magsarefluxes)
# now start the cycle by doing an GLS on the initial timeseries
gls = pgen_lsp(stimes, smags, serrs,
magsarefluxes=magsarefluxes,
startp=startp_gls,
endp=endp_gls,
autofreq=autofreq,
sigclip=sigclip,
stepsize=stepsize,
nworkers=nworkers)
LOGINFO('round %s: period = %.6f' % (0, gls['bestperiod']))
if plotfits and isinstance(plotfits, str):
plt.figure(figsize=(20,6*nbestpeaks))
nplots = nbestpeaks + 1
# periodogram
plt.subplot(nplots,3,1)
plt.plot(gls['periods'],gls['lspvals'])
plt.xlabel('period [days]')
plt.ylabel('GLS power')
plt.xscale('log')
plt.title('round 0, best period = %.6f' % gls['bestperiod'])
# unphased LC
plt.subplot(nplots,3,2)
plt.plot(stimes, smags,
linestyle='none', marker='o',ms=1.0,rasterized=True)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('flux')
plt.xlabel('JD')
plt.title('unphased LC before whitening')
# phased LC
plt.subplot(nplots,3,3)
phased = phase_magseries(stimes, smags,
gls['bestperiod'], stimes.min())
plt.plot(phased['phase'], phased['mags'],
linestyle='none', marker='o',ms=1.0,rasterized=True)
if not magsarefluxes:
plt.ylabel('magnitude')
plt.gca().invert_yaxis()
else:
plt.ylabel('flux')
plt.xlabel('phase')
plt.title('phased LC before whitening: P = %.6f' % gls['bestperiod'])
# set up the initial times, mags, errs, period
wtimes, wmags, werrs = stimes, smags, serrs
wperiod = gls['bestperiod']
# start the best periods list
bestperiods = []
# now go through the rest of the cycles
for fitind in range(nbestpeaks):
wfseries = fourier_fit_magseries(wtimes, wmags, werrs, wperiod,
fourierorder=fourierorder,
fourierparams=initfparams,
magsarefluxes=magsarefluxes,
sigclip=sigclip)
wffitparams = wfseries['fitinfo']['finalparams']
wseries = prewhiten_magseries(wtimes, wmags, werrs,
wperiod,
wffitparams,
magsarefluxes=magsarefluxes,
sigclip=sigclip)
LOGINFO('round %s: period = %.6f' % (fitind+1, wperiod))
bestperiods.append(wperiod)
# update the mag series with whitened version
wtimes, wmags, werrs = (
wseries['wtimes'], wseries['wmags'], wseries['werrs']
)
# redo the periodogram
wgls = pgen_lsp(wtimes, wmags, werrs,
magsarefluxes=magsarefluxes,
startp=startp_gls,
endp=endp_gls,
autofreq=autofreq,
sigclip=sigclip,
stepsize=stepsize,
nworkers=nworkers)
wperiod = wgls['bestperiod']
bestperiods.append(wperiod)
# make plots if requested
if plotfits and isinstance(plotfits, str):
# periodogram
plt.subplot(nplots,3,4+fitind*3)
plt.plot(wgls['periods'],wgls['lspvals'])
plt.xlabel('period [days]')
plt.ylabel('LSP power')
plt.xscale('log')
plt.title('round %s, best period = %.6f' % (fitind+1,
wgls['bestperiod']))
# unphased LC
plt.subplot(nplots,3,5+fitind*3)
plt.plot(wtimes, wmags,
linestyle='none', marker='o',ms=1.0,rasterized=True)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('flux')
plt.xlabel('JD')
plt.title('unphased LC after whitening')
# phased LC
plt.subplot(nplots,3,6+fitind*3)
wphased = phase_magseries(wtimes, wmags,
wperiod, stimes.min())
plt.plot(wphased['phase'], wphased['mags'],
linestyle='none', marker='o',ms=1.0,rasterized=True)
if not magsarefluxes:
plt.ylabel('magnitude')
plt.gca().invert_yaxis()
else:
plt.ylabel('flux')
plt.xlabel('phase')
plt.title('phased LC after whitening: P = %.6f' % wperiod)
# in the end, write out the plot
if plotfits and isinstance(plotfits, str):
plt.subplots_adjust(hspace=0.2,wspace=0.4)
plt.savefig(plotfits, bbox_inches='tight')
plt.close('all')
return bestperiods, os.path.abspath(plotfits)
else:
return bestperiods
def mask_signal(times, mags, errs,
signalperiod,
signalepoch,
magsarefluxes=False,
maskphases=(0,0,0.5,1.0),
maskphaselength=0.1,
plotfit=None,
plotfitphasedlconly=True,
sigclip=30.0):
'''This removes repeating signals in the magnitude time series.
Useful for masking planetary transit signals in light curves to search for
other variability.
A small worked example of using this and `prewhiten_magseries` above:
https://github.com/waqasbhatti/astrobase/issues/77#issuecomment-463803558
Parameters
----------
times,mags,errs : np.array
The input mag/flux time-series to run the masking on.
signalperiod : float
The period of the signal to mask.
signalepoch : float
The epoch of the signal to mask.
magsarefluxes : bool
Set to True if `mags` is actually an array of fluxes.
maskphases : sequence of floats
This defines which phase values will be masked. For each item in this
sequence, this function will mask a length of phase given by
`maskphaselength` centered on each `maskphases` value, and remove all LC
points in these regions from the light curve.
maskphaselength : float
The length in phase to mask for each phase value provided in
`maskphases`.
plotfit : str or None
If provided as a str, indicates the output plot file.
plotfitphasedlconly : bool
If True, will only plot the effect of masking the signal as requested on
the phased LC. If False, will also plot the unphased LC.
sigclip : float or int or sequence of two floats/ints or None
If a single float or int, a symmetric sigma-clip will be performed using
the number provided as the sigma-multiplier to cut out from the input
time-series.
If a list of two ints/floats is provided, the function will perform an
'asymmetric' sigma-clip. The first element in this list is the sigma
value to use for fainter flux/mag values; the second element in this
list is the sigma value to use for brighter flux/mag values. For
example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma
dimmings and greater than 3-sigma brightenings. Here the meaning of
"dimming" and "brightening" is set by *physics* (not the magnitude
system), which is why the `magsarefluxes` kwarg must be correctly set.
If `sigclip` is None, no sigma-clipping will be performed, and the
time-series (with non-finite elems removed) will be passed through to
the output.
'''
stimes, smags, serrs = sigclip_magseries(times, mags, errs,
sigclip=sigclip,
magsarefluxes=magsarefluxes)
# now phase the light curve using the period and epoch provided
phases = (
(stimes - signalepoch)/signalperiod -
np.floor((stimes - signalepoch)/signalperiod)
)
# mask the requested phases using the mask length (in phase units)
# this gets all the masks into one array
masks = np.array([(np.abs(phases - x) > maskphaselength)
for x in maskphases])
# this flattens the masks to a single array for all combinations
masks = np.all(masks,axis=0)
# apply the mask to the times, mags, and errs
mphases = phases[masks]
mtimes = stimes[masks]
mmags = smags[masks]
merrs = serrs[masks]
returndict = {'mphases':mphases,
'mtimes':mtimes,
'mmags':mmags,
'merrs':merrs}
# make the fit plot if required
if plotfit and isinstance(plotfit, str) or isinstance(plotfit, Strio):
if plotfitphasedlconly:
plt.figure(figsize=(10,4.8))
else:
plt.figure(figsize=(16,9.6))
if plotfitphasedlconly:
# phased series before whitening
plt.subplot(121)
plt.plot(phases,smags,
marker='.',
color='k',
linestyle='None',
markersize=2.0,
markeredgewidth=0)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('fluxes')
plt.xlabel('phase')
plt.title('phased LC before signal masking')
# phased series after whitening
plt.subplot(122)
plt.plot(mphases,mmags,
marker='.',
color='g',
linestyle='None',
markersize=2.0,
markeredgewidth=0)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('fluxes')
plt.xlabel('phase')
plt.title('phased LC after signal masking')
else:
# time series before whitening
plt.subplot(221)
plt.plot(stimes,smags,
marker='.',
color='k',
linestyle='None',
markersize=2.0,
markeredgewidth=0)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('fluxes')
plt.xlabel('JD')
plt.title('LC before signal masking')
# time series after whitening
plt.subplot(222)
plt.plot(mtimes,mmags,
marker='.',
color='g',
linestyle='None',
markersize=2.0,
markeredgewidth=0)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('fluxes')
plt.xlabel('JD')
plt.title('LC after signal masking')
# phased series before whitening
plt.subplot(223)
plt.plot(phases,smags,
marker='.',
color='k',
linestyle='None',
markersize=2.0,
markeredgewidth=0)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('fluxes')
plt.xlabel('phase')
plt.title('phased LC before signal masking')
# phased series after whitening
plt.subplot(224)
plt.plot(mphases,mmags,
marker='.',
color='g',
linestyle='None',
markersize=2.0,
markeredgewidth=0)
if not magsarefluxes:
plt.gca().invert_yaxis()
plt.ylabel('magnitude')
else:
plt.ylabel('fluxes')
plt.xlabel('phase')
plt.title('phased LC after signal masking')
plt.tight_layout()
plt.savefig(plotfit, format='png', pad_inches=0.0)
plt.close()
if isinstance(plotfit, str) or isinstance(plotfit, Strio):
returndict['fitplotfile'] = plotfit
return returndict
|
[
"matplotlib.pyplot.title",
"numpy.abs",
"numpy.floor",
"logging.getLogger",
"numpy.argsort",
"matplotlib.pyplot.figure",
"matplotlib.pyplot.gca",
"matplotlib.pyplot.tight_layout",
"os.path.abspath",
"matplotlib.pyplot.close",
"numpy.median",
"numpy.min",
"matplotlib.use",
"matplotlib.pyplot.subplots_adjust",
"matplotlib.pyplot.ylabel",
"numpy.all",
"matplotlib.pyplot.xscale",
"matplotlib.pyplot.subplot",
"logging.basicConfig",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.savefig"
] |
[((390, 417), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (407, 417), False, 'import logging\n'), ((418, 508), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'level', 'style': 'log_sub', 'format': 'log_fmt', 'datefmt': 'log_date_fmt'}), '(level=level, style=log_sub, format=log_fmt, datefmt=\n log_date_fmt)\n', (437, 508), False, 'import logging\n'), ((795, 816), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (809, 816), False, 'import matplotlib\n'), ((4775, 4791), 'numpy.median', 'np.median', (['smags'], {}), '(smags)\n', (4784, 4791), True, 'import numpy as np\n'), ((4881, 4895), 'numpy.min', 'np.min', (['stimes'], {}), '(stimes)\n', (4887, 4895), True, 'import numpy as np\n'), ((5078, 5096), 'numpy.argsort', 'np.argsort', (['iphase'], {}), '(iphase)\n', (5088, 5096), True, 'import numpy as np\n'), ((5642, 5660), 'numpy.argsort', 'np.argsort', (['ptimes'], {}), '(ptimes)\n', (5652, 5660), True, 'import numpy as np\n'), ((23291, 23312), 'numpy.all', 'np.all', (['masks'], {'axis': '(0)'}), '(masks, axis=0)\n', (23297, 23312), True, 'import numpy as np\n'), ((5011, 5054), 'numpy.floor', 'np.floor', (['((stimes - mintime) / whitenperiod)'], {}), '((stimes - mintime) / whitenperiod)\n', (5019, 5054), True, 'import numpy as np\n'), ((9746, 9764), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (9762, 9764), True, 'import matplotlib.pyplot as plt\n'), ((9773, 9823), 'matplotlib.pyplot.savefig', 'plt.savefig', (['plotfit'], {'format': '"""png"""', 'pad_inches': '(0.0)'}), "(plotfit, format='png', pad_inches=0.0)\n", (9784, 9823), True, 'import matplotlib.pyplot as plt\n'), ((9832, 9843), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (9841, 9843), True, 'import matplotlib.pyplot as plt\n'), ((15148, 15188), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 6 * nbestpeaks)'}), '(figsize=(20, 6 * nbestpeaks))\n', (15158, 15188), True, 'import matplotlib.pyplot as plt\n'), ((15250, 15275), 'matplotlib.pyplot.subplot', 'plt.subplot', (['nplots', '(3)', '(1)'], {}), '(nplots, 3, 1)\n', (15261, 15275), True, 'import matplotlib.pyplot as plt\n'), ((15282, 15322), 'matplotlib.pyplot.plot', 'plt.plot', (["gls['periods']", "gls['lspvals']"], {}), "(gls['periods'], gls['lspvals'])\n", (15290, 15322), True, 'import matplotlib.pyplot as plt\n'), ((15330, 15357), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""period [days]"""'], {}), "('period [days]')\n", (15340, 15357), True, 'import matplotlib.pyplot as plt\n'), ((15366, 15389), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GLS power"""'], {}), "('GLS power')\n", (15376, 15389), True, 'import matplotlib.pyplot as plt\n'), ((15398, 15415), 'matplotlib.pyplot.xscale', 'plt.xscale', (['"""log"""'], {}), "('log')\n", (15408, 15415), True, 'import matplotlib.pyplot as plt\n'), ((15424, 15484), 'matplotlib.pyplot.title', 'plt.title', (["('round 0, best period = %.6f' % gls['bestperiod'])"], {}), "('round 0, best period = %.6f' % gls['bestperiod'])\n", (15433, 15484), True, 'import matplotlib.pyplot as plt\n'), ((15516, 15541), 'matplotlib.pyplot.subplot', 'plt.subplot', (['nplots', '(3)', '(2)'], {}), '(nplots, 3, 2)\n', (15527, 15541), True, 'import matplotlib.pyplot as plt\n'), ((15548, 15626), 'matplotlib.pyplot.plot', 'plt.plot', (['stimes', 'smags'], {'linestyle': '"""none"""', 'marker': '"""o"""', 'ms': '(1.0)', 'rasterized': '(True)'}), "(stimes, smags, linestyle='none', marker='o', ms=1.0, rasterized=True)\n", (15556, 15626), True, 'import matplotlib.pyplot as plt\n'), ((15798, 15814), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""JD"""'], {}), "('JD')\n", (15808, 15814), True, 'import matplotlib.pyplot as plt\n'), ((15823, 15864), 'matplotlib.pyplot.title', 'plt.title', (['"""unphased LC before whitening"""'], {}), "('unphased LC before whitening')\n", (15832, 15864), True, 'import matplotlib.pyplot as plt\n'), ((15894, 15919), 'matplotlib.pyplot.subplot', 'plt.subplot', (['nplots', '(3)', '(3)'], {}), '(nplots, 3, 3)\n', (15905, 15919), True, 'import matplotlib.pyplot as plt\n'), ((16041, 16142), 'matplotlib.pyplot.plot', 'plt.plot', (["phased['phase']", "phased['mags']"], {'linestyle': '"""none"""', 'marker': '"""o"""', 'ms': '(1.0)', 'rasterized': '(True)'}), "(phased['phase'], phased['mags'], linestyle='none', marker='o', ms=\n 1.0, rasterized=True)\n", (16049, 16142), True, 'import matplotlib.pyplot as plt\n'), ((16309, 16328), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""phase"""'], {}), "('phase')\n", (16319, 16328), True, 'import matplotlib.pyplot as plt\n'), ((16337, 16406), 'matplotlib.pyplot.title', 'plt.title', (["('phased LC before whitening: P = %.6f' % gls['bestperiod'])"], {}), "('phased LC before whitening: P = %.6f' % gls['bestperiod'])\n", (16346, 16406), True, 'import matplotlib.pyplot as plt\n'), ((19648, 19691), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(0.2)', 'wspace': '(0.4)'}), '(hspace=0.2, wspace=0.4)\n', (19667, 19691), True, 'import matplotlib.pyplot as plt\n'), ((19699, 19741), 'matplotlib.pyplot.savefig', 'plt.savefig', (['plotfits'], {'bbox_inches': '"""tight"""'}), "(plotfits, bbox_inches='tight')\n", (19710, 19741), True, 'import matplotlib.pyplot as plt\n'), ((19750, 19766), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (19759, 19766), True, 'import matplotlib.pyplot as plt\n'), ((22936, 22983), 'numpy.floor', 'np.floor', (['((stimes - signalepoch) / signalperiod)'], {}), '((stimes - signalepoch) / signalperiod)\n', (22944, 22983), True, 'import numpy as np\n'), ((27189, 27207), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (27205, 27207), True, 'import matplotlib.pyplot as plt\n'), ((27216, 27266), 'matplotlib.pyplot.savefig', 'plt.savefig', (['plotfit'], {'format': '"""png"""', 'pad_inches': '(0.0)'}), "(plotfit, format='png', pad_inches=0.0)\n", (27227, 27266), True, 'import matplotlib.pyplot as plt\n'), ((27275, 27286), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (27284, 27286), True, 'import matplotlib.pyplot as plt\n'), ((6298, 6327), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 4.8)'}), '(figsize=(10, 4.8))\n', (6308, 6327), True, 'import matplotlib.pyplot as plt\n'), ((6353, 6382), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 9.6)'}), '(figsize=(16, 9.6))\n', (6363, 6382), True, 'import matplotlib.pyplot as plt\n'), ((6473, 6489), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(121)'], {}), '(121)\n', (6484, 6489), True, 'import matplotlib.pyplot as plt\n'), ((6502, 6605), 'matplotlib.pyplot.plot', 'plt.plot', (['phase', 'pmags'], {'marker': '"""."""', 'color': '"""k"""', 'linestyle': '"""None"""', 'markersize': '(2.0)', 'markeredgewidth': '(0)'}), "(phase, pmags, marker='.', color='k', linestyle='None', markersize=\n 2.0, markeredgewidth=0)\n", (6510, 6605), True, 'import matplotlib.pyplot as plt\n'), ((6889, 6908), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""phase"""'], {}), "('phase')\n", (6899, 6908), True, 'import matplotlib.pyplot as plt\n'), ((6921, 6964), 'matplotlib.pyplot.title', 'plt.title', (['"""phased LC before pre-whitening"""'], {}), "('phased LC before pre-whitening')\n", (6930, 6964), True, 'import matplotlib.pyplot as plt\n'), ((7022, 7038), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(122)'], {}), '(122)\n', (7033, 7038), True, 'import matplotlib.pyplot as plt\n'), ((7051, 7155), 'matplotlib.pyplot.plot', 'plt.plot', (['wphase', 'wmags'], {'marker': '"""."""', 'color': '"""g"""', 'linestyle': '"""None"""', 'markersize': '(2.0)', 'markeredgewidth': '(0)'}), "(wphase, wmags, marker='.', color='g', linestyle='None', markersize\n =2.0, markeredgewidth=0)\n", (7059, 7155), True, 'import matplotlib.pyplot as plt\n'), ((7439, 7458), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""phase"""'], {}), "('phase')\n", (7449, 7458), True, 'import matplotlib.pyplot as plt\n'), ((7471, 7513), 'matplotlib.pyplot.title', 'plt.title', (['"""phased LC after pre-whitening"""'], {}), "('phased LC after pre-whitening')\n", (7480, 7513), True, 'import matplotlib.pyplot as plt\n'), ((7585, 7601), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(221)'], {}), '(221)\n', (7596, 7601), True, 'import matplotlib.pyplot as plt\n'), ((7614, 7718), 'matplotlib.pyplot.plot', 'plt.plot', (['stimes', 'smags'], {'marker': '"""."""', 'color': '"""k"""', 'linestyle': '"""None"""', 'markersize': '(2.0)', 'markeredgewidth': '(0)'}), "(stimes, smags, marker='.', color='k', linestyle='None', markersize\n =2.0, markeredgewidth=0)\n", (7622, 7718), True, 'import matplotlib.pyplot as plt\n'), ((8002, 8018), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""JD"""'], {}), "('JD')\n", (8012, 8018), True, 'import matplotlib.pyplot as plt\n'), ((8031, 8067), 'matplotlib.pyplot.title', 'plt.title', (['"""LC before pre-whitening"""'], {}), "('LC before pre-whitening')\n", (8040, 8067), True, 'import matplotlib.pyplot as plt\n'), ((8123, 8139), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(222)'], {}), '(222)\n', (8134, 8139), True, 'import matplotlib.pyplot as plt\n'), ((8152, 8256), 'matplotlib.pyplot.plot', 'plt.plot', (['wtimes', 'wmags'], {'marker': '"""."""', 'color': '"""g"""', 'linestyle': '"""None"""', 'markersize': '(2.0)', 'markeredgewidth': '(0)'}), "(wtimes, wmags, marker='.', color='g', linestyle='None', markersize\n =2.0, markeredgewidth=0)\n", (8160, 8256), True, 'import matplotlib.pyplot as plt\n'), ((8540, 8556), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""JD"""'], {}), "('JD')\n", (8550, 8556), True, 'import matplotlib.pyplot as plt\n'), ((8569, 8637), 'matplotlib.pyplot.title', 'plt.title', (["('LC after pre-whitening with period: %.6f' % whitenperiod)"], {}), "('LC after pre-whitening with period: %.6f' % whitenperiod)\n", (8578, 8637), True, 'import matplotlib.pyplot as plt\n'), ((8696, 8712), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(223)'], {}), '(223)\n', (8707, 8712), True, 'import matplotlib.pyplot as plt\n'), ((8725, 8828), 'matplotlib.pyplot.plot', 'plt.plot', (['phase', 'pmags'], {'marker': '"""."""', 'color': '"""k"""', 'linestyle': '"""None"""', 'markersize': '(2.0)', 'markeredgewidth': '(0)'}), "(phase, pmags, marker='.', color='k', linestyle='None', markersize=\n 2.0, markeredgewidth=0)\n", (8733, 8828), True, 'import matplotlib.pyplot as plt\n'), ((9112, 9131), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""phase"""'], {}), "('phase')\n", (9122, 9131), True, 'import matplotlib.pyplot as plt\n'), ((9144, 9187), 'matplotlib.pyplot.title', 'plt.title', (['"""phased LC before pre-whitening"""'], {}), "('phased LC before pre-whitening')\n", (9153, 9187), True, 'import matplotlib.pyplot as plt\n'), ((9245, 9261), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(224)'], {}), '(224)\n', (9256, 9261), True, 'import matplotlib.pyplot as plt\n'), ((9274, 9378), 'matplotlib.pyplot.plot', 'plt.plot', (['wphase', 'wmags'], {'marker': '"""."""', 'color': '"""g"""', 'linestyle': '"""None"""', 'markersize': '(2.0)', 'markeredgewidth': '(0)'}), "(wphase, wmags, marker='.', color='g', linestyle='None', markersize\n =2.0, markeredgewidth=0)\n", (9282, 9378), True, 'import matplotlib.pyplot as plt\n'), ((9662, 9681), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""phase"""'], {}), "('phase')\n", (9672, 9681), True, 'import matplotlib.pyplot as plt\n'), ((9694, 9736), 'matplotlib.pyplot.title', 'plt.title', (['"""phased LC after pre-whitening"""'], {}), "('phased LC after pre-whitening')\n", (9703, 9736), True, 'import matplotlib.pyplot as plt\n'), ((15721, 15744), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (15731, 15744), True, 'import matplotlib.pyplot as plt\n'), ((15771, 15789), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""flux"""'], {}), "('flux')\n", (15781, 15789), True, 'import matplotlib.pyplot as plt\n'), ((16195, 16218), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (16205, 16218), True, 'import matplotlib.pyplot as plt\n'), ((16282, 16300), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""flux"""'], {}), "('flux')\n", (16292, 16300), True, 'import matplotlib.pyplot as plt\n'), ((18200, 18238), 'matplotlib.pyplot.subplot', 'plt.subplot', (['nplots', '(3)', '(4 + fitind * 3)'], {}), '(nplots, 3, 4 + fitind * 3)\n', (18211, 18238), True, 'import matplotlib.pyplot as plt\n'), ((18245, 18287), 'matplotlib.pyplot.plot', 'plt.plot', (["wgls['periods']", "wgls['lspvals']"], {}), "(wgls['periods'], wgls['lspvals'])\n", (18253, 18287), True, 'import matplotlib.pyplot as plt\n'), ((18299, 18326), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""period [days]"""'], {}), "('period [days]')\n", (18309, 18326), True, 'import matplotlib.pyplot as plt\n'), ((18339, 18362), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""LSP power"""'], {}), "('LSP power')\n", (18349, 18362), True, 'import matplotlib.pyplot as plt\n'), ((18375, 18392), 'matplotlib.pyplot.xscale', 'plt.xscale', (['"""log"""'], {}), "('log')\n", (18385, 18392), True, 'import matplotlib.pyplot as plt\n'), ((18405, 18481), 'matplotlib.pyplot.title', 'plt.title', (["('round %s, best period = %.6f' % (fitind + 1, wgls['bestperiod']))"], {}), "('round %s, best period = %.6f' % (fitind + 1, wgls['bestperiod']))\n", (18414, 18481), True, 'import matplotlib.pyplot as plt\n'), ((18575, 18613), 'matplotlib.pyplot.subplot', 'plt.subplot', (['nplots', '(3)', '(5 + fitind * 3)'], {}), '(nplots, 3, 5 + fitind * 3)\n', (18586, 18613), True, 'import matplotlib.pyplot as plt\n'), ((18620, 18698), 'matplotlib.pyplot.plot', 'plt.plot', (['wtimes', 'wmags'], {'linestyle': '"""none"""', 'marker': '"""o"""', 'ms': '(1.0)', 'rasterized': '(True)'}), "(wtimes, wmags, linestyle='none', marker='o', ms=1.0, rasterized=True)\n", (18628, 18698), True, 'import matplotlib.pyplot as plt\n'), ((18898, 18914), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""JD"""'], {}), "('JD')\n", (18908, 18914), True, 'import matplotlib.pyplot as plt\n'), ((18927, 18967), 'matplotlib.pyplot.title', 'plt.title', (['"""unphased LC after whitening"""'], {}), "('unphased LC after whitening')\n", (18936, 18967), True, 'import matplotlib.pyplot as plt\n'), ((19005, 19043), 'matplotlib.pyplot.subplot', 'plt.subplot', (['nplots', '(3)', '(6 + fitind * 3)'], {}), '(nplots, 3, 6 + fitind * 3)\n', (19016, 19043), True, 'import matplotlib.pyplot as plt\n'), ((19165, 19267), 'matplotlib.pyplot.plot', 'plt.plot', (["wphased['phase']", "wphased['mags']"], {'linestyle': '"""none"""', 'marker': '"""o"""', 'ms': '(1.0)', 'rasterized': '(True)'}), "(wphased['phase'], wphased['mags'], linestyle='none', marker='o',\n ms=1.0, rasterized=True)\n", (19173, 19267), True, 'import matplotlib.pyplot as plt\n'), ((19463, 19482), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""phase"""'], {}), "('phase')\n", (19473, 19482), True, 'import matplotlib.pyplot as plt\n'), ((19495, 19553), 'matplotlib.pyplot.title', 'plt.title', (["('phased LC after whitening: P = %.6f' % wperiod)"], {}), "('phased LC after whitening: P = %.6f' % wperiod)\n", (19504, 19553), True, 'import matplotlib.pyplot as plt\n'), ((19795, 19820), 'os.path.abspath', 'os.path.abspath', (['plotfits'], {}), '(plotfits)\n', (19810, 19820), False, 'import os\n'), ((23764, 23793), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 4.8)'}), '(figsize=(10, 4.8))\n', (23774, 23793), True, 'import matplotlib.pyplot as plt\n'), ((23819, 23848), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 9.6)'}), '(figsize=(16, 9.6))\n', (23829, 23848), True, 'import matplotlib.pyplot as plt\n'), ((23939, 23955), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(121)'], {}), '(121)\n', (23950, 23955), True, 'import matplotlib.pyplot as plt\n'), ((23968, 24072), 'matplotlib.pyplot.plot', 'plt.plot', (['phases', 'smags'], {'marker': '"""."""', 'color': '"""k"""', 'linestyle': '"""None"""', 'markersize': '(2.0)', 'markeredgewidth': '(0)'}), "(phases, smags, marker='.', color='k', linestyle='None', markersize\n =2.0, markeredgewidth=0)\n", (23976, 24072), True, 'import matplotlib.pyplot as plt\n'), ((24356, 24375), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""phase"""'], {}), "('phase')\n", (24366, 24375), True, 'import matplotlib.pyplot as plt\n'), ((24388, 24432), 'matplotlib.pyplot.title', 'plt.title', (['"""phased LC before signal masking"""'], {}), "('phased LC before signal masking')\n", (24397, 24432), True, 'import matplotlib.pyplot as plt\n'), ((24490, 24506), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(122)'], {}), '(122)\n', (24501, 24506), True, 'import matplotlib.pyplot as plt\n'), ((24519, 24623), 'matplotlib.pyplot.plot', 'plt.plot', (['mphases', 'mmags'], {'marker': '"""."""', 'color': '"""g"""', 'linestyle': '"""None"""', 'markersize': '(2.0)', 'markeredgewidth': '(0)'}), "(mphases, mmags, marker='.', color='g', linestyle='None',\n markersize=2.0, markeredgewidth=0)\n", (24527, 24623), True, 'import matplotlib.pyplot as plt\n'), ((24908, 24927), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""phase"""'], {}), "('phase')\n", (24918, 24927), True, 'import matplotlib.pyplot as plt\n'), ((24940, 24983), 'matplotlib.pyplot.title', 'plt.title', (['"""phased LC after signal masking"""'], {}), "('phased LC after signal masking')\n", (24949, 24983), True, 'import matplotlib.pyplot as plt\n'), ((25055, 25071), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(221)'], {}), '(221)\n', (25066, 25071), True, 'import matplotlib.pyplot as plt\n'), ((25084, 25188), 'matplotlib.pyplot.plot', 'plt.plot', (['stimes', 'smags'], {'marker': '"""."""', 'color': '"""k"""', 'linestyle': '"""None"""', 'markersize': '(2.0)', 'markeredgewidth': '(0)'}), "(stimes, smags, marker='.', color='k', linestyle='None', markersize\n =2.0, markeredgewidth=0)\n", (25092, 25188), True, 'import matplotlib.pyplot as plt\n'), ((25472, 25488), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""JD"""'], {}), "('JD')\n", (25482, 25488), True, 'import matplotlib.pyplot as plt\n'), ((25501, 25538), 'matplotlib.pyplot.title', 'plt.title', (['"""LC before signal masking"""'], {}), "('LC before signal masking')\n", (25510, 25538), True, 'import matplotlib.pyplot as plt\n'), ((25594, 25610), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(222)'], {}), '(222)\n', (25605, 25610), True, 'import matplotlib.pyplot as plt\n'), ((25623, 25727), 'matplotlib.pyplot.plot', 'plt.plot', (['mtimes', 'mmags'], {'marker': '"""."""', 'color': '"""g"""', 'linestyle': '"""None"""', 'markersize': '(2.0)', 'markeredgewidth': '(0)'}), "(mtimes, mmags, marker='.', color='g', linestyle='None', markersize\n =2.0, markeredgewidth=0)\n", (25631, 25727), True, 'import matplotlib.pyplot as plt\n'), ((26011, 26027), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""JD"""'], {}), "('JD')\n", (26021, 26027), True, 'import matplotlib.pyplot as plt\n'), ((26040, 26076), 'matplotlib.pyplot.title', 'plt.title', (['"""LC after signal masking"""'], {}), "('LC after signal masking')\n", (26049, 26076), True, 'import matplotlib.pyplot as plt\n'), ((26135, 26151), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(223)'], {}), '(223)\n', (26146, 26151), True, 'import matplotlib.pyplot as plt\n'), ((26164, 26268), 'matplotlib.pyplot.plot', 'plt.plot', (['phases', 'smags'], {'marker': '"""."""', 'color': '"""k"""', 'linestyle': '"""None"""', 'markersize': '(2.0)', 'markeredgewidth': '(0)'}), "(phases, smags, marker='.', color='k', linestyle='None', markersize\n =2.0, markeredgewidth=0)\n", (26172, 26268), True, 'import matplotlib.pyplot as plt\n'), ((26552, 26571), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""phase"""'], {}), "('phase')\n", (26562, 26571), True, 'import matplotlib.pyplot as plt\n'), ((26584, 26628), 'matplotlib.pyplot.title', 'plt.title', (['"""phased LC before signal masking"""'], {}), "('phased LC before signal masking')\n", (26593, 26628), True, 'import matplotlib.pyplot as plt\n'), ((26686, 26702), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(224)'], {}), '(224)\n', (26697, 26702), True, 'import matplotlib.pyplot as plt\n'), ((26715, 26819), 'matplotlib.pyplot.plot', 'plt.plot', (['mphases', 'mmags'], {'marker': '"""."""', 'color': '"""g"""', 'linestyle': '"""None"""', 'markersize': '(2.0)', 'markeredgewidth': '(0)'}), "(mphases, mmags, marker='.', color='g', linestyle='None',\n markersize=2.0, markeredgewidth=0)\n", (26723, 26819), True, 'import matplotlib.pyplot as plt\n'), ((27104, 27123), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""phase"""'], {}), "('phase')\n", (27114, 27123), True, 'import matplotlib.pyplot as plt\n'), ((27136, 27179), 'matplotlib.pyplot.title', 'plt.title', (['"""phased LC after signal masking"""'], {}), "('phased LC after signal masking')\n", (27145, 27179), True, 'import matplotlib.pyplot as plt\n'), ((6797, 6820), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (6807, 6820), True, 'import matplotlib.pyplot as plt\n'), ((6855, 6875), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fluxes"""'], {}), "('fluxes')\n", (6865, 6875), True, 'import matplotlib.pyplot as plt\n'), ((7347, 7370), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (7357, 7370), True, 'import matplotlib.pyplot as plt\n'), ((7405, 7425), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fluxes"""'], {}), "('fluxes')\n", (7415, 7425), True, 'import matplotlib.pyplot as plt\n'), ((7910, 7933), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (7920, 7933), True, 'import matplotlib.pyplot as plt\n'), ((7968, 7988), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fluxes"""'], {}), "('fluxes')\n", (7978, 7988), True, 'import matplotlib.pyplot as plt\n'), ((8448, 8471), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (8458, 8471), True, 'import matplotlib.pyplot as plt\n'), ((8506, 8526), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fluxes"""'], {}), "('fluxes')\n", (8516, 8526), True, 'import matplotlib.pyplot as plt\n'), ((9020, 9043), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (9030, 9043), True, 'import matplotlib.pyplot as plt\n'), ((9078, 9098), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fluxes"""'], {}), "('fluxes')\n", (9088, 9098), True, 'import matplotlib.pyplot as plt\n'), ((9570, 9593), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (9580, 9593), True, 'import matplotlib.pyplot as plt\n'), ((9628, 9648), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fluxes"""'], {}), "('fluxes')\n", (9638, 9648), True, 'import matplotlib.pyplot as plt\n'), ((18809, 18832), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (18819, 18832), True, 'import matplotlib.pyplot as plt\n'), ((18867, 18885), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""flux"""'], {}), "('flux')\n", (18877, 18885), True, 'import matplotlib.pyplot as plt\n'), ((19333, 19356), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (19343, 19356), True, 'import matplotlib.pyplot as plt\n'), ((19432, 19450), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""flux"""'], {}), "('flux')\n", (19442, 19450), True, 'import matplotlib.pyplot as plt\n'), ((23128, 23146), 'numpy.abs', 'np.abs', (['(phases - x)'], {}), '(phases - x)\n', (23134, 23146), True, 'import numpy as np\n'), ((24264, 24287), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (24274, 24287), True, 'import matplotlib.pyplot as plt\n'), ((24322, 24342), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fluxes"""'], {}), "('fluxes')\n", (24332, 24342), True, 'import matplotlib.pyplot as plt\n'), ((24816, 24839), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (24826, 24839), True, 'import matplotlib.pyplot as plt\n'), ((24874, 24894), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fluxes"""'], {}), "('fluxes')\n", (24884, 24894), True, 'import matplotlib.pyplot as plt\n'), ((25380, 25403), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (25390, 25403), True, 'import matplotlib.pyplot as plt\n'), ((25438, 25458), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fluxes"""'], {}), "('fluxes')\n", (25448, 25458), True, 'import matplotlib.pyplot as plt\n'), ((25919, 25942), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (25929, 25942), True, 'import matplotlib.pyplot as plt\n'), ((25977, 25997), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fluxes"""'], {}), "('fluxes')\n", (25987, 25997), True, 'import matplotlib.pyplot as plt\n'), ((26460, 26483), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (26470, 26483), True, 'import matplotlib.pyplot as plt\n'), ((26518, 26538), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fluxes"""'], {}), "('fluxes')\n", (26528, 26538), True, 'import matplotlib.pyplot as plt\n'), ((27012, 27035), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""magnitude"""'], {}), "('magnitude')\n", (27022, 27035), True, 'import matplotlib.pyplot as plt\n'), ((27070, 27090), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fluxes"""'], {}), "('fluxes')\n", (27080, 27090), True, 'import matplotlib.pyplot as plt\n'), ((15684, 15693), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (15691, 15693), True, 'import matplotlib.pyplot as plt\n'), ((16231, 16240), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (16238, 16240), True, 'import matplotlib.pyplot as plt\n'), ((6756, 6765), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (6763, 6765), True, 'import matplotlib.pyplot as plt\n'), ((7306, 7315), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (7313, 7315), True, 'import matplotlib.pyplot as plt\n'), ((7869, 7878), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (7876, 7878), True, 'import matplotlib.pyplot as plt\n'), ((8407, 8416), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (8414, 8416), True, 'import matplotlib.pyplot as plt\n'), ((8979, 8988), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (8986, 8988), True, 'import matplotlib.pyplot as plt\n'), ((9529, 9538), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (9536, 9538), True, 'import matplotlib.pyplot as plt\n'), ((18768, 18777), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (18775, 18777), True, 'import matplotlib.pyplot as plt\n'), ((19373, 19382), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (19380, 19382), True, 'import matplotlib.pyplot as plt\n'), ((24223, 24232), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (24230, 24232), True, 'import matplotlib.pyplot as plt\n'), ((24775, 24784), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (24782, 24784), True, 'import matplotlib.pyplot as plt\n'), ((25339, 25348), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (25346, 25348), True, 'import matplotlib.pyplot as plt\n'), ((25878, 25887), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (25885, 25887), True, 'import matplotlib.pyplot as plt\n'), ((26419, 26428), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (26426, 26428), True, 'import matplotlib.pyplot as plt\n'), ((26971, 26980), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (26978, 26980), True, 'import matplotlib.pyplot as plt\n')]
|
import numpy as np
import signal_processing as sp
import numpy.ma as ma
import datetime as dt
"""
mel 2018-04-20
Translates RMS results for all files to minimum / mean / maximum and filters out zeros in the minimum.
Filters out only weekday results between 6:00 and 18:00 hours.
"""
# dir_path = "C:\\Users\\mel\\Documents\\Python\\Betacampus_pos1\\"
# dir_path = "C:\\Users\\mel\\Documents\\Python\\Betacampus_pos2\\"
dir_path = "C:\\Users\\mel\\Documents\\Python\\Huygensgebouw\\"
file_list = sp.obtain_files(dir_path)
start_date = []
start_time = []
time_length = []
total_time_start = []
total_time_end = []
total = None
date = None
time_of_day = None
for i in range(len(file_list)):
file_path = dir_path + file_list[i]
# print(file_list[i])
with open(file_path, encoding='latin-1') as f:
for cnt, line in enumerate(f):
if line.startswith('# StartDate'):
year = int(line[12:16])
month = int(line[17:19])
day = int(line[20:22])
date = dt.date(year = year, month = month, day = day)
total = dt.datetime(year = year, month = month, day = day)
start_date.append(date)
elif line.startswith('# StartTime'):
hour = int(line[12:14])
minutes = int(line[15:17])
seconds = int(line[18:20])
time_of_day = dt.time(hour = hour, minute = minutes, second = seconds)
total = total+ dt.timedelta(hours = hour, minutes = minutes, seconds = seconds)
start_time.append(time_of_day)
elif line.startswith('# Length'):
hour = int(line[9:11])
minutes = int(line[12:14])
seconds = int(line[15:17])
dtime = dt.time(hour = hour, minute= minutes, second = seconds)
time_length.append(dtime)
total_time_start.append(total)
total = total + dt.timedelta(hours = hour, minutes = minutes, seconds = seconds)
total_time_end.append(total)
break
f_band = sp.OneThird_octave(0.625 / 2**(1/3), 80 * 2**(1/3))
filter_weekday = np.ndarray((len(f_band), len(file_list)+1), dtype = 'bool')
filter_weekday[..., 0] = True
for i in range(len(file_list)):
if (start_date[i].weekday() >= 0) and (start_date[i].weekday() <= 4):
if (start_time[i].hour >= 6) and (start_time[i].hour <= 18):
filter_weekday[..., i + 1] = False
else:
filter_weekday[..., i + 1] = True
else:
filter_weekday[..., i + 1] = True
# rms_x_array = np.loadtxt("14208_betacampus_pos1_rms_x_400.txt")
# rms_y_array = np.loadtxt("14208_betacampus_pos1_rms_y_400.txt")
# rms_z_array = np.loadtxt("14208_betacampus_pos1_rms_z_400.txt")
# rms_x_array = np.loadtxt("14208_betacampus_pos2_rms_x.txt")
# rms_y_array = np.loadtxt("14208_betacampus_pos2_rms_y.txt")
# rms_z_array = np.loadtxt("14208_betacampus_pos2_rms_z.txt")
rms_x_array = np.loadtxt("14208_Huygensgebouw_rms_x.txt")
rms_y_array = np.loadtxt("14208_Huygensgebouw_rms_y.txt")
rms_z_array = np.loadtxt("14208_Huygensgebouw_rms_z.txt")
rms_x_array = ma.array(rms_x_array, mask = filter_weekday)
rms_y_array = ma.array(rms_y_array, mask = filter_weekday)
rms_z_array = ma.array(rms_z_array, mask = filter_weekday)
rms_x_all = np.zeros((len(f_band), 6))
rms_y_all = np.zeros((len(f_band), 6))
rms_z_all = np.zeros((len(f_band), 6))
rms_x_array_masked = ma.masked_less(rms_x_array, 1e-9)
rms_y_array_masked = ma.masked_less(rms_y_array, 1e-9)
rms_z_array_masked = ma.masked_less(rms_z_array, 1e-9)
rms_x_all[..., 0] = f_band
rms_x_all[..., 1] = rms_x_array_masked[..., 1:].min(axis = 1)
rms_x_all[..., 2] = rms_x_array[..., 1:].mean(axis = 1) - rms_x_array[..., 1:].std(axis = 1)
rms_x_all[..., 3] = rms_x_array[..., 1:].mean(axis = 1)
rms_x_all[..., 4] = rms_x_array[..., 1:].mean(axis = 1) + rms_x_array[..., 1:].std(axis = 1)
rms_x_all[..., 5] = rms_x_array[..., 1:].max(axis = 1)
rms_y_all[..., 0] = f_band
rms_y_all[..., 1] = rms_y_array_masked[..., 1:].min(axis = 1)
rms_y_all[..., 2] = rms_y_array[..., 1:].mean(axis = 1) - rms_y_array[..., 1:].std(axis = 1)
rms_y_all[..., 3] = rms_y_array[..., 1:].mean(axis = 1)
rms_y_all[..., 4] = rms_y_array[..., 1:].mean(axis = 1) + rms_y_array[..., 1:].std(axis = 1)
rms_y_all[..., 5] = rms_y_array[..., 1:].max(axis = 1)
rms_z_all[..., 0] = f_band
rms_z_all[..., 1] = rms_z_array_masked[..., 1:].min(axis = 1)
rms_z_all[..., 2] = rms_z_array[..., 1:].mean(axis = 1) - rms_z_array[..., 1:].std(axis = 1)
rms_z_all[..., 3] = rms_z_array[..., 1:].mean(axis = 1)
rms_z_all[..., 4] = rms_z_array[..., 1:].mean(axis = 1) + rms_z_array[..., 1:].std(axis = 1)
rms_z_all[..., 5] = rms_z_array[..., 1:].max(axis = 1)
# np.savetxt("14208_betacampus_pos1_rms_x_weekday.txt", rms_x_all)
# np.savetxt("14208_betacampus_pos1_rms_y_weekday.txt", rms_y_all)
# np.savetxt("14208_betacampus_pos1_rms_z_weekday.txt", rms_z_all)
# np.savetxt("14208_betacampus_pos2_rms_x_weekday.txt", rms_x_all)
# np.savetxt("14208_betacampus_pos2_rms_y_weekday.txt", rms_y_all)
# np.savetxt("14208_betacampus_pos2_rms_z_weekday.txt", rms_z_all)
np.savetxt("14208_Huygensgebouw_rms_x_weekday.txt", rms_x_all)
np.savetxt("14208_Huygensgebouw_rms_y_weekday.txt", rms_y_all)
np.savetxt("14208_Huygensgebouw_rms_z_weekday.txt", rms_z_all)
|
[
"numpy.savetxt",
"datetime.date",
"datetime.datetime",
"numpy.ma.array",
"signal_processing.OneThird_octave",
"datetime.timedelta",
"numpy.loadtxt",
"datetime.time",
"numpy.ma.masked_less",
"signal_processing.obtain_files"
] |
[((513, 538), 'signal_processing.obtain_files', 'sp.obtain_files', (['dir_path'], {}), '(dir_path)\n', (528, 538), True, 'import signal_processing as sp\n'), ((2149, 2208), 'signal_processing.OneThird_octave', 'sp.OneThird_octave', (['(0.625 / 2 ** (1 / 3))', '(80 * 2 ** (1 / 3))'], {}), '(0.625 / 2 ** (1 / 3), 80 * 2 ** (1 / 3))\n', (2167, 2208), True, 'import signal_processing as sp\n'), ((3069, 3112), 'numpy.loadtxt', 'np.loadtxt', (['"""14208_Huygensgebouw_rms_x.txt"""'], {}), "('14208_Huygensgebouw_rms_x.txt')\n", (3079, 3112), True, 'import numpy as np\n'), ((3128, 3171), 'numpy.loadtxt', 'np.loadtxt', (['"""14208_Huygensgebouw_rms_y.txt"""'], {}), "('14208_Huygensgebouw_rms_y.txt')\n", (3138, 3171), True, 'import numpy as np\n'), ((3187, 3230), 'numpy.loadtxt', 'np.loadtxt', (['"""14208_Huygensgebouw_rms_z.txt"""'], {}), "('14208_Huygensgebouw_rms_z.txt')\n", (3197, 3230), True, 'import numpy as np\n'), ((3248, 3290), 'numpy.ma.array', 'ma.array', (['rms_x_array'], {'mask': 'filter_weekday'}), '(rms_x_array, mask=filter_weekday)\n', (3256, 3290), True, 'import numpy.ma as ma\n'), ((3308, 3350), 'numpy.ma.array', 'ma.array', (['rms_y_array'], {'mask': 'filter_weekday'}), '(rms_y_array, mask=filter_weekday)\n', (3316, 3350), True, 'import numpy.ma as ma\n'), ((3368, 3410), 'numpy.ma.array', 'ma.array', (['rms_z_array'], {'mask': 'filter_weekday'}), '(rms_z_array, mask=filter_weekday)\n', (3376, 3410), True, 'import numpy.ma as ma\n'), ((3559, 3593), 'numpy.ma.masked_less', 'ma.masked_less', (['rms_x_array', '(1e-09)'], {}), '(rms_x_array, 1e-09)\n', (3573, 3593), True, 'import numpy.ma as ma\n'), ((3615, 3649), 'numpy.ma.masked_less', 'ma.masked_less', (['rms_y_array', '(1e-09)'], {}), '(rms_y_array, 1e-09)\n', (3629, 3649), True, 'import numpy.ma as ma\n'), ((3671, 3705), 'numpy.ma.masked_less', 'ma.masked_less', (['rms_z_array', '(1e-09)'], {}), '(rms_z_array, 1e-09)\n', (3685, 3705), True, 'import numpy.ma as ma\n'), ((5298, 5360), 'numpy.savetxt', 'np.savetxt', (['"""14208_Huygensgebouw_rms_x_weekday.txt"""', 'rms_x_all'], {}), "('14208_Huygensgebouw_rms_x_weekday.txt', rms_x_all)\n", (5308, 5360), True, 'import numpy as np\n'), ((5362, 5424), 'numpy.savetxt', 'np.savetxt', (['"""14208_Huygensgebouw_rms_y_weekday.txt"""', 'rms_y_all'], {}), "('14208_Huygensgebouw_rms_y_weekday.txt', rms_y_all)\n", (5372, 5424), True, 'import numpy as np\n'), ((5426, 5488), 'numpy.savetxt', 'np.savetxt', (['"""14208_Huygensgebouw_rms_z_weekday.txt"""', 'rms_z_all'], {}), "('14208_Huygensgebouw_rms_z_weekday.txt', rms_z_all)\n", (5436, 5488), True, 'import numpy as np\n'), ((1066, 1106), 'datetime.date', 'dt.date', ([], {'year': 'year', 'month': 'month', 'day': 'day'}), '(year=year, month=month, day=day)\n', (1073, 1106), True, 'import datetime as dt\n'), ((1137, 1181), 'datetime.datetime', 'dt.datetime', ([], {'year': 'year', 'month': 'month', 'day': 'day'}), '(year=year, month=month, day=day)\n', (1148, 1181), True, 'import datetime as dt\n'), ((1433, 1483), 'datetime.time', 'dt.time', ([], {'hour': 'hour', 'minute': 'minutes', 'second': 'seconds'}), '(hour=hour, minute=minutes, second=seconds)\n', (1440, 1483), True, 'import datetime as dt\n'), ((1521, 1579), 'datetime.timedelta', 'dt.timedelta', ([], {'hours': 'hour', 'minutes': 'minutes', 'seconds': 'seconds'}), '(hours=hour, minutes=minutes, seconds=seconds)\n', (1533, 1579), True, 'import datetime as dt\n'), ((1828, 1878), 'datetime.time', 'dt.time', ([], {'hour': 'hour', 'minute': 'minutes', 'second': 'seconds'}), '(hour=hour, minute=minutes, second=seconds)\n', (1835, 1878), True, 'import datetime as dt\n'), ((2005, 2063), 'datetime.timedelta', 'dt.timedelta', ([], {'hours': 'hour', 'minutes': 'minutes', 'seconds': 'seconds'}), '(hours=hour, minutes=minutes, seconds=seconds)\n', (2017, 2063), True, 'import datetime as dt\n')]
|
import torch
import numpy as np
from torch.autograd import Variable
import halp.utils.utils
from halp.utils.utils import single_to_half_det, single_to_half_stoc
from halp.models.logistic_regression import LogisticRegression
from unittest import TestCase
class LeNetTest(TestCase):
def test_logistic_regression_grad(self):
n_sample = 4
n_dim = 3
n_class = 4
X = Variable(torch.DoubleTensor(np.random.normal(size=(n_sample, n_dim) ) ) )
Y = Variable(torch.LongTensor(np.array([0, 1, 3, 2] ) ) )
regressor = LogisticRegression(input_dim=n_dim, n_class=n_class, reg_lambda=100.0, dtype="fp")
regressor.double()
loss1 = regressor.forward(X, Y)
loss_diff = 0.0
move = 1e-9
loss1.backward()
for w in regressor.parameters():
loss_diff += torch.sum(w.grad.data * move)
for w in regressor.parameters():
w.data += move
loss2 = regressor.forward(X, Y)
assert np.abs((loss2.item() - loss1.item() ) - loss_diff) < 1e-9
print("logistic regression gradient test done!")
if __name__ == "__main__":
print(torch.__version__)
unittest.main()
|
[
"halp.models.logistic_regression.LogisticRegression",
"torch.sum",
"numpy.array",
"numpy.random.normal"
] |
[((560, 646), 'halp.models.logistic_regression.LogisticRegression', 'LogisticRegression', ([], {'input_dim': 'n_dim', 'n_class': 'n_class', 'reg_lambda': '(100.0)', 'dtype': '"""fp"""'}), "(input_dim=n_dim, n_class=n_class, reg_lambda=100.0,\n dtype='fp')\n", (578, 646), False, 'from halp.models.logistic_regression import LogisticRegression\n'), ((845, 874), 'torch.sum', 'torch.sum', (['(w.grad.data * move)'], {}), '(w.grad.data * move)\n', (854, 874), False, 'import torch\n'), ((428, 468), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(n_sample, n_dim)'}), '(size=(n_sample, n_dim))\n', (444, 468), True, 'import numpy as np\n'), ((512, 534), 'numpy.array', 'np.array', (['[0, 1, 3, 2]'], {}), '([0, 1, 3, 2])\n', (520, 534), True, 'import numpy as np\n')]
|
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
def plot_images(images, targets, n_plot=30):
n_rows = n_plot // 10 + ((n_plot % 10) > 0)
fig, axes = plt.subplots(n_rows, 10, figsize=(15, 1.5 * n_rows))
axes = np.atleast_2d(axes)
for i, (image, target) in enumerate(zip(images[:n_plot], targets[:n_plot])):
row, col = i // 10, i % 10
ax = axes[row, col]
ax.set_title('#{} - Label:{}'.format(i, target), {'size': 12})
# plot filter channel in grayscale
ax.imshow(image.squeeze(), cmap='gray', vmin=0, vmax=1)
for ax in axes.flat:
ax.set_xticks([])
ax.set_yticks([])
ax.label_outer()
plt.tight_layout()
return fig
|
[
"matplotlib.pyplot.tight_layout",
"matplotlib.pyplot.style.use",
"matplotlib.pyplot.subplots",
"numpy.atleast_2d"
] |
[((51, 83), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""fivethirtyeight"""'], {}), "('fivethirtyeight')\n", (64, 83), True, 'import matplotlib.pyplot as plt\n'), ((194, 246), 'matplotlib.pyplot.subplots', 'plt.subplots', (['n_rows', '(10)'], {'figsize': '(15, 1.5 * n_rows)'}), '(n_rows, 10, figsize=(15, 1.5 * n_rows))\n', (206, 246), True, 'import matplotlib.pyplot as plt\n'), ((258, 277), 'numpy.atleast_2d', 'np.atleast_2d', (['axes'], {}), '(axes)\n', (271, 277), True, 'import numpy as np\n'), ((713, 731), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (729, 731), True, 'import matplotlib.pyplot as plt\n')]
|
import os
import sys
import h5py
import numpy as np
import pandas as pd
import networkx as nx
from convert import make_adjacency, make_sparse_adjacency, save_problem, spadj2edgelist
np.random.seed(123)
def load_ages(path):
ages = pd.read_csv(path, header=None, sep='\t')
ages.columns = ('id', 'age')
ages = ages[ages.age != 'null']
ages.age = ages.age.astype(int)
ages = ages[ages.age > 0]
return ages
max_degree = 128
inpath = '../data/pokec/'
# --
# Load data
ages = load_ages(os.path.join(inpath, 'soc-pokec-ages.tsv'))
edges = pd.read_csv(os.path.join(inpath, 'soc-pokec-relationships.txt'), header=None, sep='\t')
edges.columns = ('src', 'trg')
edges = edges[edges.src.isin(ages.id)]
edges = edges[edges.trg.isin(ages.id)]
ages = ages[ages.id.isin(edges.src) | ages.id.isin(edges.trg)]
ages['uid'] = np.arange(ages.shape[0])
edges = pd.merge(edges, ages, left_on='src', right_on='id')
edges = edges[['uid', 'trg']]
edges.columns = ('src', 'trg')
edges = pd.merge(edges, ages, left_on='trg', right_on='id')
edges = edges[['src', 'uid']]
edges.columns = ('src', 'trg')
ages = ages[['uid', 'age']]
targets = np.array(ages.age).astype(float).reshape(-1, 1)
folds = np.random.choice(['train', 'val'], targets.shape[0], p=[0.5, 0.5])
G = nx.from_edgelist(np.array(edges))
# --
# Dense version
adj = make_adjacency(G, max_degree, sel=None) # Adds dummy node
aug_targets = np.vstack([targets, np.zeros((targets.shape[1],), dtype='float64')])
aug_folds = np.hstack([folds, ['dummy']])
save_problem({
"task" : 'regression_mae',
"n_classes" : None,
"feats" : None,
"adj" : adj,
"train_adj" : adj,
"targets" : aug_targets,
"folds" : aug_folds,
}, '../data/pokec/problem.h5')
spadj = make_sparse_adjacency(G, sel=None)
aug_targets = np.vstack([np.zeros((targets.shape[1],), dtype='float64'), targets])
aug_folds = np.hstack([['dummy'], folds])
save_problem({
"task" : 'regression_mae',
"n_classes" : None,
"feats" : None,
"sparse" : True,
"adj" : spadj2edgelist(spadj),
"train_adj" : spadj2edgelist(spadj),
"targets" : aug_targets,
"folds" : aug_folds,
}, '../data/pokec/sparse-problem.h5')
|
[
"numpy.random.seed",
"convert.make_adjacency",
"convert.save_problem",
"pandas.read_csv",
"pandas.merge",
"numpy.zeros",
"numpy.hstack",
"numpy.arange",
"numpy.array",
"numpy.random.choice",
"os.path.join",
"convert.spadj2edgelist",
"convert.make_sparse_adjacency"
] |
[((183, 202), 'numpy.random.seed', 'np.random.seed', (['(123)'], {}), '(123)\n', (197, 202), True, 'import numpy as np\n'), ((848, 872), 'numpy.arange', 'np.arange', (['ages.shape[0]'], {}), '(ages.shape[0])\n', (857, 872), True, 'import numpy as np\n'), ((882, 933), 'pandas.merge', 'pd.merge', (['edges', 'ages'], {'left_on': '"""src"""', 'right_on': '"""id"""'}), "(edges, ages, left_on='src', right_on='id')\n", (890, 933), True, 'import pandas as pd\n'), ((1003, 1054), 'pandas.merge', 'pd.merge', (['edges', 'ages'], {'left_on': '"""trg"""', 'right_on': '"""id"""'}), "(edges, ages, left_on='trg', right_on='id')\n", (1011, 1054), True, 'import pandas as pd\n'), ((1212, 1278), 'numpy.random.choice', 'np.random.choice', (["['train', 'val']", 'targets.shape[0]'], {'p': '[0.5, 0.5]'}), "(['train', 'val'], targets.shape[0], p=[0.5, 0.5])\n", (1228, 1278), True, 'import numpy as np\n'), ((1347, 1386), 'convert.make_adjacency', 'make_adjacency', (['G', 'max_degree'], {'sel': 'None'}), '(G, max_degree, sel=None)\n', (1361, 1386), False, 'from convert import make_adjacency, make_sparse_adjacency, save_problem, spadj2edgelist\n'), ((1503, 1532), 'numpy.hstack', 'np.hstack', (["[folds, ['dummy']]"], {}), "([folds, ['dummy']])\n", (1512, 1532), True, 'import numpy as np\n'), ((1534, 1718), 'convert.save_problem', 'save_problem', (["{'task': 'regression_mae', 'n_classes': None, 'feats': None, 'adj': adj,\n 'train_adj': adj, 'targets': aug_targets, 'folds': aug_folds}", '"""../data/pokec/problem.h5"""'], {}), "({'task': 'regression_mae', 'n_classes': None, 'feats': None,\n 'adj': adj, 'train_adj': adj, 'targets': aug_targets, 'folds':\n aug_folds}, '../data/pokec/problem.h5')\n", (1546, 1718), False, 'from convert import make_adjacency, make_sparse_adjacency, save_problem, spadj2edgelist\n'), ((1790, 1824), 'convert.make_sparse_adjacency', 'make_sparse_adjacency', (['G'], {'sel': 'None'}), '(G, sel=None)\n', (1811, 1824), False, 'from convert import make_adjacency, make_sparse_adjacency, save_problem, spadj2edgelist\n'), ((1922, 1951), 'numpy.hstack', 'np.hstack', (["[['dummy'], folds]"], {}), "([['dummy'], folds])\n", (1931, 1951), True, 'import numpy as np\n'), ((236, 276), 'pandas.read_csv', 'pd.read_csv', (['path'], {'header': 'None', 'sep': '"""\t"""'}), "(path, header=None, sep='\\t')\n", (247, 276), True, 'import pandas as pd\n'), ((519, 561), 'os.path.join', 'os.path.join', (['inpath', '"""soc-pokec-ages.tsv"""'], {}), "(inpath, 'soc-pokec-ages.tsv')\n", (531, 561), False, 'import os\n'), ((583, 634), 'os.path.join', 'os.path.join', (['inpath', '"""soc-pokec-relationships.txt"""'], {}), "(inpath, 'soc-pokec-relationships.txt')\n", (595, 634), False, 'import os\n'), ((1301, 1316), 'numpy.array', 'np.array', (['edges'], {}), '(edges)\n', (1309, 1316), True, 'import numpy as np\n'), ((1440, 1486), 'numpy.zeros', 'np.zeros', (['(targets.shape[1],)'], {'dtype': '"""float64"""'}), "((targets.shape[1],), dtype='float64')\n", (1448, 1486), True, 'import numpy as np\n'), ((1850, 1896), 'numpy.zeros', 'np.zeros', (['(targets.shape[1],)'], {'dtype': '"""float64"""'}), "((targets.shape[1],), dtype='float64')\n", (1858, 1896), True, 'import numpy as np\n'), ((2099, 2120), 'convert.spadj2edgelist', 'spadj2edgelist', (['spadj'], {}), '(spadj)\n', (2113, 2120), False, 'from convert import make_adjacency, make_sparse_adjacency, save_problem, spadj2edgelist\n'), ((2140, 2161), 'convert.spadj2edgelist', 'spadj2edgelist', (['spadj'], {}), '(spadj)\n', (2154, 2161), False, 'from convert import make_adjacency, make_sparse_adjacency, save_problem, spadj2edgelist\n'), ((1156, 1174), 'numpy.array', 'np.array', (['ages.age'], {}), '(ages.age)\n', (1164, 1174), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 19 21:43:37 2020
@author: acer
"""
import numpy as np
import sys
import csv
import argparse
def step1(dec_matrix):
sqrtSum=np.sqrt(np.sum(np.square(dec_matrix),axis=0))
dec_matrix=dec_matrix/sqrtSum
return (dec_matrix)
def step2(dec_matrix,weights):
return dec_matrix*weights
def step3a(dec_matrix,impact):
col=len(dec_matrix[0])
row=len(dec_matrix)
minValues=np.min(dec_matrix, axis=0)
maxValues=np.max(dec_matrix, axis=0)
idealSol=np.zeros((1,col))
for i in range(0,col):
if(impact[i]==1):
idealSol[0][i]=maxValues[i]
else:
idealSol[0][i]=minValues[i]
return idealSol
def step3b(dec_matrix,impact):
col=len(dec_matrix[0])
row=len(dec_matrix)
minValues=np.min(dec_matrix, axis=0)
maxValues=np.max(dec_matrix, axis=0)
negIdealSol=np.zeros((1,col))
for i in range(0,col):
if(impact[i]==1):
negIdealSol[0][i]=minValues[i]
else:
negIdealSol[0][i]=maxValues[i]
return negIdealSol
def step4a(idealSol,dec_matrix):
return np.sqrt(np.sum(np.square(dec_matrix-idealSol),axis=1))
def step4b(negIdealSol,dec_matrix):
return np.sqrt(np.sum(np.square(dec_matrix-negIdealSol),axis=1))
def step5(idealSol,negIdealSol):
return (negIdealSol)/(idealSol+negIdealSol)
def topsisCalc(dec_matrix,weights,impacts):
dec_matrix=step1(dec_matrix)
dec_matrix=step2(dec_matrix,weights)
idealSol=step3a(dec_matrix,impacts)
negIdealSol=step3b(dec_matrix,impacts)
eucIdeal=step4a(idealSol,dec_matrix)
eucNonIdeal=step4b(negIdealSol,dec_matrix)
relClos=step5(eucIdeal,eucNonIdeal)
print("BEST DECISION: ",max(relClos),"\n")
print("WORST DECISION: ",min(relClos),"\n")
def main(args):
filename = args['InputDataFile']
try:
f = open(filename, 'r')
except IOError:
print ("There was an error reading", filename)
sys.exit()
file = csv.reader(f)
data = list(file)
data=np.array(data)
data=np.array(data[1:,1:],dtype=float)
x=data
n=np.size(x,1)
m=np.size(x,0)
try:
weights = np.array(args['Weights'][0].split(','),dtype=float)
except ValueError:
print ("Incorrect value(s) in Weight vector")
sys.exit()
if(len(weights) != n):
print("Incorrect input size for Weights vector")
sys.exit(0)
try:
impacts = args['Impacts'][0].split(',')
except ValueError:
print ("Incorrect value(s) in Impacts vector")
sys.exit()
if(len(impacts) != n):
print("Incorrect input size for Impacts vector")
sys.exit(0)
topsisCalc(x,weights,impacts)
# driver code
if __name__ == "__main__":
# parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("InputDataFile", help="Enter the name of CSV file with .csv extention",type=str)
parser.add_argument("Weights", nargs=1, help="Enter the weight vector comma separated" ,type=str)
parser.add_argument("Impacts", nargs=1, help="Enter the impact vector comma separated",type=str)
args = parser.parse_args()
main(vars(args))
'''m=[[7,9,9,8],[8,7,8,7],[9,6,8,9],[6,7,8,6]]
w=[0.1,.4,.3,.2]
i=[1,1,1,0]
topsisCalc(m,w,i)
m=step1(m)
print(m)
w=[0.1,.4,.3,.2]
m=step2(m,w)
print(m)
i=[1,1,1,0]
ideal=step3a(m,i)
neg=step3b(m,i)
print(ideal)
print(neg)
anspos=step4a(ideal,m)
print(anspos)
ansneg=step4b(neg,m)
print(ansneg)
relClos=step5(anspos,ansneg)
print(relClos)'''
|
[
"numpy.size",
"csv.reader",
"argparse.ArgumentParser",
"numpy.square",
"numpy.zeros",
"numpy.min",
"numpy.max",
"numpy.array",
"sys.exit"
] |
[((439, 465), 'numpy.min', 'np.min', (['dec_matrix'], {'axis': '(0)'}), '(dec_matrix, axis=0)\n', (445, 465), True, 'import numpy as np\n'), ((481, 507), 'numpy.max', 'np.max', (['dec_matrix'], {'axis': '(0)'}), '(dec_matrix, axis=0)\n', (487, 507), True, 'import numpy as np\n'), ((526, 544), 'numpy.zeros', 'np.zeros', (['(1, col)'], {}), '((1, col))\n', (534, 544), True, 'import numpy as np\n'), ((816, 842), 'numpy.min', 'np.min', (['dec_matrix'], {'axis': '(0)'}), '(dec_matrix, axis=0)\n', (822, 842), True, 'import numpy as np\n'), ((858, 884), 'numpy.max', 'np.max', (['dec_matrix'], {'axis': '(0)'}), '(dec_matrix, axis=0)\n', (864, 884), True, 'import numpy as np\n'), ((906, 924), 'numpy.zeros', 'np.zeros', (['(1, col)'], {}), '((1, col))\n', (914, 924), True, 'import numpy as np\n'), ((2025, 2038), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (2035, 2038), False, 'import csv\n'), ((2070, 2084), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (2078, 2084), True, 'import numpy as np\n'), ((2094, 2129), 'numpy.array', 'np.array', (['data[1:, 1:]'], {'dtype': 'float'}), '(data[1:, 1:], dtype=float)\n', (2102, 2129), True, 'import numpy as np\n'), ((2155, 2168), 'numpy.size', 'np.size', (['x', '(1)'], {}), '(x, 1)\n', (2162, 2168), True, 'import numpy as np\n'), ((2174, 2187), 'numpy.size', 'np.size', (['x', '(0)'], {}), '(x, 0)\n', (2181, 2187), True, 'import numpy as np\n'), ((2898, 2923), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2921, 2923), False, 'import argparse\n'), ((2467, 2478), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (2475, 2478), False, 'import sys\n'), ((2745, 2756), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (2753, 2756), False, 'import sys\n'), ((191, 212), 'numpy.square', 'np.square', (['dec_matrix'], {}), '(dec_matrix)\n', (200, 212), True, 'import numpy as np\n'), ((1165, 1197), 'numpy.square', 'np.square', (['(dec_matrix - idealSol)'], {}), '(dec_matrix - idealSol)\n', (1174, 1197), True, 'import numpy as np\n'), ((1268, 1303), 'numpy.square', 'np.square', (['(dec_matrix - negIdealSol)'], {}), '(dec_matrix - negIdealSol)\n', (1277, 1303), True, 'import numpy as np\n'), ((1999, 2009), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2007, 2009), False, 'import sys\n'), ((2359, 2369), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2367, 2369), False, 'import sys\n'), ((2637, 2647), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2645, 2647), False, 'import sys\n')]
|
from __future__ import print_function
import cv2
import numpy as np
import os
import tkFileDialog, tkMessageBox
def lin_regress(x, y):
A = np.vstack([x]).T
return np.linalg.lstsq(A, y)[0]
def get_track(filename):
with open(filename, 'r') as f:
lines = f.readlines()
print(lines[0])
lines = np.array([
map(float, _.split(' ')[-5:])
for _ in lines[1:]])
return lines
def click_and_drag(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
#refPt = [(x, y)]
param[3] = x;
param[4] = y;
elif event == cv2.EVENT_MOUSEMOVE and flags>0:
param[0] = int(round((x+param[3])/2.0))
param[1] = int(round((y+param[4])/2.0))
param[2] = np.sqrt((param[3]-x)**2+(param[4]-y)**2)/2
def get_tracker_parameters(footage_file):
print("Click and drag on the image to select where the tracked ball is located and then press Enter")
try:
center_x_y_rad = np.zeros(5)
cv2.namedWindow("footage")
cv2.setMouseCallback("footage", click_and_drag, param = center_x_y_rad)
cap = cv2.VideoCapture(footage_file)
k = 0
while (cap.isOpened()):
ret, frame = cap.read()
if ret == True:
frame = frame[:,:]
cv2.circle(frame,(
int(round(center_x_y_rad[0])),
int(round(center_x_y_rad[1]))),
int(round(center_x_y_rad[2])
), color=(255))
cv2.imshow('footage', frame)
k = cv2.waitKey(25) & 0xFF
if k == ord('q'):
break
elif k==13: #enter pressed, success
cap.release()
center_x_y_rad[3:5] = frame.shape
cv2.destroyWindow('footage')
return center_x_y_rad
else:
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
except Exception as e:
print("Error in footage processing of {}".format(footage_file))
print(e.message)
pass
def save_tracking_params(ball_cx, ball_cy, ball_r, cxy_rad, cxy_tan, c_z):
lines = []
config_filename = '..\\Config\\tracking.cfg'
if os.path.exists(config_filename):
with open(config_filename, 'r') as f:
lines = f.readlines()
else:
#default values
lines = """[camera settings]
# if true, CameraSettingsFile will be loaded:
LoadCameraSettings=true
# file of the camera settings. The camera can be set up with the
# Pylon viewer:
CameraSettingsFile=Config/camera_settings.pfs
# user defined name of the camera to use for ball tracking:
TrackingCameraName=ball_cam
[tracking settings]
# These are the settings to extract optical flow from the frame
# the circle bounding the tracked ball in frame coordinates:
BallCenterX=112.0
BallCenterY=70.0
BallRadius=116.0
# These are the calibration constants, the factors scaling optical
# flow in pixels to the ball rotation. [px/rad]
CxyRad=100.31
CxyTan=76.85
Cz=20.63
""".split('\n')
lines = map(lambda l: l+'\n', lines)
#print(lines)
for _ in range(len(lines)):
if "BallCenterX" in lines[_]:
lines[_] = "BallCenterX={}\n".format(ball_cx)
if "BallCenterY" in lines[_]:
lines[_] = "BallCenterY={}\n".format(ball_cy)
if "BallRadius" in lines[_]:
lines[_] = "BallRadius={}\n".format(ball_r)
if "CxyRad" in lines[_]:
lines[_] = "CxyRad={}\n".format(cxy_rad)
if "CxyTan" in lines[_]:
lines[_] = "CxyTan={}\n".format(cxy_tan)
if "Cz" in lines[_]:
lines[_] = "Cz={}\n".format(c_z)
if os.path.exists(config_filename):
os.remove(config_filename)
with open(config_filename, "w+") as f:
f.writelines(lines)
def run_tracking(input_filename, parameters):
tmp_cfg = 'tmp_track.cfg'
tmp_track = '.'.join(input_filename.split('.')[:-1])+'.txt'
for f in [tmp_cfg, tmp_track]:
if os.path.exists(f):
os.remove(f)
with open(tmp_cfg, "w+") as f:
f.write("""[tracking settings]
BallCenterX={}
BallCenterY={}
BallRadius={}
CxyRad=1.0
CxyTan=1.0
Cz=1.0
""".format(*parameters[:3]))
os.system(r'..\BallFootageTracking.exe "{}" "{}" -c "{}" -q true'.format(input_filename, tmp_track, tmp_cfg))
if os.path.exists(tmp_cfg):
os.remove(tmp_cfg)
return tmp_track
def main():
print("Welcome to the 2-camera calibration procedure")
print("Select main (ball tracking) camera footage")
tkMessageBox.showinfo("Select calibration footage", "Select the footage from the main tracking camera")
main_footage_file = tkFileDialog.askopenfilename(initialfile="D:\\test.avi")
main_track_params = get_tracker_parameters(main_footage_file)
print('main: ', main_track_params)
if main_track_params is not None:
main_track_file = run_tracking(main_footage_file, main_track_params)
else:
print("Could not get tracking parameters")
return
print("Select secondary camera footage")
tkMessageBox.showinfo("Select calibration footage", "Select the footage from the secondary camera")
secondary_footage_file = tkFileDialog.askopenfilename(initialdir=main_footage_file)
secondary_track_params = get_tracker_parameters(secondary_footage_file)
print('secondary: ', secondary_track_params)
if secondary_track_params is not None:
secondary_track_file = run_tracking(secondary_footage_file, secondary_track_params)
else:
print("Could not get tracking parameters")
return
'''
Caluclating the calibration factors
'''
main_track = get_track(main_track_file)
secondary_track = get_track(secondary_track_file)
fit_quality_threshold = np.mean(main_track[:, 0])
filter = np.where((np.abs(main_track[:, 0]) < fit_quality_threshold) & (np.abs(secondary_track[:, 0]) < fit_quality_threshold))
main_track, secondary_track = main_track[filter], secondary_track[filter]
main_tracking_cam_resolution_h = main_track_params[3]
secondary_tracking_cam_resolution_h = secondary_track_params[3]
c_z = float(main_tracking_cam_resolution_h) / np.pi / 2.0
c_z_secondary = float(secondary_tracking_cam_resolution_h)/np.pi/2.0
rad_tan_ratio = lin_regress(main_track[:, 1], main_track[:, 2])[0]
c = lin_regress(np.cos(main_track[:, 4]) * main_track[:, 2], secondary_track[:, 3])[0]
c_xy_rad = np.abs(c_z_secondary/c)
c_xy_tan = np.abs(c_xy_rad * rad_tan_ratio)
#print(rad_tan_ratio)
print(c_xy_rad, c_xy_tan, c_z)
mbox = tkMessageBox.askquestion('Calibration complete. Save parameters?',
'Calibration complete. The factors found are: \nc_xy_rad={}\nc_xy_tan={}\n c_z={}\nSave them for VR application?'.format(
c_xy_rad, c_xy_tan, c_z
),
icon='info')
if mbox == 'yes':
save_tracking_params(main_track_params[0],
main_track_params[1],
main_track_params[2],
c_xy_rad,
c_xy_tan,
c_z
)
pass
else:
print("No :(")
#secondary_footage_file = tkFileDialog.askopenfilename(initialdir=main_footage_file)
#main_footage_file = 'D:\\test.avi'
print(main_footage_file)
pass
if __name__=="__main__":
main()
print("Press any key to exit")
#while cv2.waitKey(1) == 255:
# pass
|
[
"os.remove",
"numpy.abs",
"numpy.linalg.lstsq",
"cv2.waitKey",
"os.path.exists",
"numpy.zeros",
"tkMessageBox.showinfo",
"cv2.VideoCapture",
"cv2.namedWindow",
"numpy.mean",
"cv2.setMouseCallback",
"numpy.cos",
"cv2.destroyWindow",
"cv2.imshow",
"tkFileDialog.askopenfilename",
"numpy.vstack",
"numpy.sqrt"
] |
[((2243, 2274), 'os.path.exists', 'os.path.exists', (['config_filename'], {}), '(config_filename)\n', (2257, 2274), False, 'import os\n'), ((3728, 3759), 'os.path.exists', 'os.path.exists', (['config_filename'], {}), '(config_filename)\n', (3742, 3759), False, 'import os\n'), ((4397, 4420), 'os.path.exists', 'os.path.exists', (['tmp_cfg'], {}), '(tmp_cfg)\n', (4411, 4420), False, 'import os\n'), ((4602, 4709), 'tkMessageBox.showinfo', 'tkMessageBox.showinfo', (['"""Select calibration footage"""', '"""Select the footage from the main tracking camera"""'], {}), "('Select calibration footage',\n 'Select the footage from the main tracking camera')\n", (4623, 4709), False, 'import tkFileDialog, tkMessageBox\n'), ((4730, 4786), 'tkFileDialog.askopenfilename', 'tkFileDialog.askopenfilename', ([], {'initialfile': '"""D:\\\\test.avi"""'}), "(initialfile='D:\\\\test.avi')\n", (4758, 4786), False, 'import tkFileDialog, tkMessageBox\n'), ((5132, 5235), 'tkMessageBox.showinfo', 'tkMessageBox.showinfo', (['"""Select calibration footage"""', '"""Select the footage from the secondary camera"""'], {}), "('Select calibration footage',\n 'Select the footage from the secondary camera')\n", (5153, 5235), False, 'import tkFileDialog, tkMessageBox\n'), ((5261, 5319), 'tkFileDialog.askopenfilename', 'tkFileDialog.askopenfilename', ([], {'initialdir': 'main_footage_file'}), '(initialdir=main_footage_file)\n', (5289, 5319), False, 'import tkFileDialog, tkMessageBox\n'), ((5840, 5865), 'numpy.mean', 'np.mean', (['main_track[:, 0]'], {}), '(main_track[:, 0])\n', (5847, 5865), True, 'import numpy as np\n'), ((6518, 6543), 'numpy.abs', 'np.abs', (['(c_z_secondary / c)'], {}), '(c_z_secondary / c)\n', (6524, 6543), True, 'import numpy as np\n'), ((6557, 6589), 'numpy.abs', 'np.abs', (['(c_xy_rad * rad_tan_ratio)'], {}), '(c_xy_rad * rad_tan_ratio)\n', (6563, 6589), True, 'import numpy as np\n'), ((145, 159), 'numpy.vstack', 'np.vstack', (['[x]'], {}), '([x])\n', (154, 159), True, 'import numpy as np\n'), ((173, 194), 'numpy.linalg.lstsq', 'np.linalg.lstsq', (['A', 'y'], {}), '(A, y)\n', (188, 194), True, 'import numpy as np\n'), ((967, 978), 'numpy.zeros', 'np.zeros', (['(5)'], {}), '(5)\n', (975, 978), True, 'import numpy as np\n'), ((988, 1014), 'cv2.namedWindow', 'cv2.namedWindow', (['"""footage"""'], {}), "('footage')\n", (1003, 1014), False, 'import cv2\n'), ((1023, 1092), 'cv2.setMouseCallback', 'cv2.setMouseCallback', (['"""footage"""', 'click_and_drag'], {'param': 'center_x_y_rad'}), "('footage', click_and_drag, param=center_x_y_rad)\n", (1043, 1092), False, 'import cv2\n'), ((1110, 1140), 'cv2.VideoCapture', 'cv2.VideoCapture', (['footage_file'], {}), '(footage_file)\n', (1126, 1140), False, 'import cv2\n'), ((3769, 3795), 'os.remove', 'os.remove', (['config_filename'], {}), '(config_filename)\n', (3778, 3795), False, 'import os\n'), ((4056, 4073), 'os.path.exists', 'os.path.exists', (['f'], {}), '(f)\n', (4070, 4073), False, 'import os\n'), ((4430, 4448), 'os.remove', 'os.remove', (['tmp_cfg'], {}), '(tmp_cfg)\n', (4439, 4448), False, 'import os\n'), ((4087, 4099), 'os.remove', 'os.remove', (['f'], {}), '(f)\n', (4096, 4099), False, 'import os\n'), ((740, 790), 'numpy.sqrt', 'np.sqrt', (['((param[3] - x) ** 2 + (param[4] - y) ** 2)'], {}), '((param[3] - x) ** 2 + (param[4] - y) ** 2)\n', (747, 790), True, 'import numpy as np\n'), ((1529, 1557), 'cv2.imshow', 'cv2.imshow', (['"""footage"""', 'frame'], {}), "('footage', frame)\n", (1539, 1557), False, 'import cv2\n'), ((5889, 5913), 'numpy.abs', 'np.abs', (['main_track[:, 0]'], {}), '(main_track[:, 0])\n', (5895, 5913), True, 'import numpy as np\n'), ((5942, 5971), 'numpy.abs', 'np.abs', (['secondary_track[:, 0]'], {}), '(secondary_track[:, 0])\n', (5948, 5971), True, 'import numpy as np\n'), ((6431, 6455), 'numpy.cos', 'np.cos', (['main_track[:, 4]'], {}), '(main_track[:, 4])\n', (6437, 6455), True, 'import numpy as np\n'), ((1578, 1593), 'cv2.waitKey', 'cv2.waitKey', (['(25)'], {}), '(25)\n', (1589, 1593), False, 'import cv2\n'), ((1821, 1849), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""footage"""'], {}), "('footage')\n", (1838, 1849), False, 'import cv2\n')]
|
import os
from PIL import Image
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
def read_ct_scan(folder_name):
"""Read the CT scan image files from directory"""
images = []
# Construct path for two image file folders
filepaths = [os.path.join(folder_name,file) for file in os.listdir(folder_name) if file != '.DS_Store']
# Read image file in each folder and convert them to RGB channel
for file in filepaths:
images.append(np.array(Image.open(file).convert('RGB')))
return images
def get_metric_history(history):
"""Extract loss and metrics history from model's training history,
and return as a list that has training and validation:
1. loss
2. accuracy
3. type I error
4. type II error
"""
keys = [key for key in history.history.keys()]
loss=history.history[keys[0]]
val_loss=history.history[keys[6]]
acc = history.history[keys[1]]
val_acc = history.history[keys[7]]
false_pos = np.array(history.history[keys[2]])
true_pos = np.array(history.history[keys[3]])
false_negs = np.array(history.history[keys[4]])
true_negs = np.array(history.history[keys[5]])
val_false_pos = np.array(history.history[keys[8]])
val_true_pos = np.array(history.history[keys[9]])
val_false_negs = np.array(history.history[keys[10]])
val_true_negs = np.array(history.history[keys[11]])
type_1 = np.nan_to_num(false_pos/(false_pos+true_negs), nan=0)
val_type_1 = np.nan_to_num(val_false_pos/(val_false_pos+val_true_negs))
type_2 = np.nan_to_num(false_negs/(false_negs+true_pos))
val_type_2 = np.nan_to_num(val_false_negs/(val_false_negs+val_true_pos))
metric_history = [loss, val_loss, acc, val_acc, type_1.tolist(),
val_type_1.tolist(), type_2.tolist(), val_type_2.tolist()]
return metric_history
def plot_metric_history(metric_history):
"""Plot loss and metrics history"""
epochs_range = range(len(metric_history[0]))
plt.figure(figsize=(12, 10))
plt.subplot(2, 2, 1)
plt.plot(epochs_range, metric_history[0], label='Training Loss')
plt.plot(epochs_range, metric_history[1], '-', label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Loss')
plt.subplot(2, 2, 2)
plt.plot(epochs_range, metric_history[2], label='Training Accuracy')
plt.plot(epochs_range, metric_history[3], '-', label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Accuracy')
plt.subplot(2, 2, 3)
plt.plot(epochs_range, metric_history[4], label='Training Type I Error')
plt.plot(epochs_range, metric_history[5], '-', label='Validation Type I Error')
plt.legend(loc='upper right')
plt.title('Type I Error')
plt.subplot(2, 2, 4)
plt.plot(epochs_range, metric_history[6], label='Training Type II Error')
plt.plot(epochs_range, metric_history[7], '-', label='Validation Type II Error')
plt.legend(loc='upper right')
plt.title('Type II Error')
plt.show()
return
def resize_and_shuffle(X, y, img_size=(256,256), batch_size=32, seed=123, buffer_size=500):
"""Resize image files to equal height and width of IMG_SIZE,
Convert data to tensorflow.data.Dataset objects with random shuffle and batches
"""
results = list(map(lambda img: tf.image.resize(img, img_size), X))
results = tf.data.Dataset.from_tensor_slices((results, y))
ds = results.shuffle(len(y)).batch(batch_size)
return ds
def label_predictions(predictions):
predictions = predictions.reshape(len(predictions))
mask = predictions > 0.5
predictions = np.full(len(predictions), 'NonCOVID')
predictions[mask] = 'COVID'
return(predictions.tolist())
|
[
"matplotlib.pyplot.title",
"matplotlib.pyplot.subplot",
"matplotlib.pyplot.show",
"numpy.nan_to_num",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.legend",
"tensorflow.data.Dataset.from_tensor_slices",
"PIL.Image.open",
"matplotlib.pyplot.figure",
"numpy.array",
"tensorflow.image.resize",
"os.path.join",
"os.listdir"
] |
[((1033, 1067), 'numpy.array', 'np.array', (['history.history[keys[2]]'], {}), '(history.history[keys[2]])\n', (1041, 1067), True, 'import numpy as np\n'), ((1083, 1117), 'numpy.array', 'np.array', (['history.history[keys[3]]'], {}), '(history.history[keys[3]])\n', (1091, 1117), True, 'import numpy as np\n'), ((1135, 1169), 'numpy.array', 'np.array', (['history.history[keys[4]]'], {}), '(history.history[keys[4]])\n', (1143, 1169), True, 'import numpy as np\n'), ((1186, 1220), 'numpy.array', 'np.array', (['history.history[keys[5]]'], {}), '(history.history[keys[5]])\n', (1194, 1220), True, 'import numpy as np\n'), ((1242, 1276), 'numpy.array', 'np.array', (['history.history[keys[8]]'], {}), '(history.history[keys[8]])\n', (1250, 1276), True, 'import numpy as np\n'), ((1296, 1330), 'numpy.array', 'np.array', (['history.history[keys[9]]'], {}), '(history.history[keys[9]])\n', (1304, 1330), True, 'import numpy as np\n'), ((1352, 1387), 'numpy.array', 'np.array', (['history.history[keys[10]]'], {}), '(history.history[keys[10]])\n', (1360, 1387), True, 'import numpy as np\n'), ((1408, 1443), 'numpy.array', 'np.array', (['history.history[keys[11]]'], {}), '(history.history[keys[11]])\n', (1416, 1443), True, 'import numpy as np\n'), ((1458, 1515), 'numpy.nan_to_num', 'np.nan_to_num', (['(false_pos / (false_pos + true_negs))'], {'nan': '(0)'}), '(false_pos / (false_pos + true_negs), nan=0)\n', (1471, 1515), True, 'import numpy as np\n'), ((1529, 1591), 'numpy.nan_to_num', 'np.nan_to_num', (['(val_false_pos / (val_false_pos + val_true_negs))'], {}), '(val_false_pos / (val_false_pos + val_true_negs))\n', (1542, 1591), True, 'import numpy as np\n'), ((1602, 1653), 'numpy.nan_to_num', 'np.nan_to_num', (['(false_negs / (false_negs + true_pos))'], {}), '(false_negs / (false_negs + true_pos))\n', (1615, 1653), True, 'import numpy as np\n'), ((1667, 1730), 'numpy.nan_to_num', 'np.nan_to_num', (['(val_false_negs / (val_false_negs + val_true_pos))'], {}), '(val_false_negs / (val_false_negs + val_true_pos))\n', (1680, 1730), True, 'import numpy as np\n'), ((2046, 2074), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 10)'}), '(figsize=(12, 10))\n', (2056, 2074), True, 'import matplotlib.pyplot as plt\n'), ((2079, 2099), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (2090, 2099), True, 'import matplotlib.pyplot as plt\n'), ((2104, 2168), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs_range', 'metric_history[0]'], {'label': '"""Training Loss"""'}), "(epochs_range, metric_history[0], label='Training Loss')\n", (2112, 2168), True, 'import matplotlib.pyplot as plt\n'), ((2173, 2244), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs_range', 'metric_history[1]', '"""-"""'], {'label': '"""Validation Loss"""'}), "(epochs_range, metric_history[1], '-', label='Validation Loss')\n", (2181, 2244), True, 'import matplotlib.pyplot as plt\n'), ((2249, 2278), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (2259, 2278), True, 'import matplotlib.pyplot as plt\n'), ((2283, 2300), 'matplotlib.pyplot.title', 'plt.title', (['"""Loss"""'], {}), "('Loss')\n", (2292, 2300), True, 'import matplotlib.pyplot as plt\n'), ((2310, 2330), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (2321, 2330), True, 'import matplotlib.pyplot as plt\n'), ((2335, 2403), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs_range', 'metric_history[2]'], {'label': '"""Training Accuracy"""'}), "(epochs_range, metric_history[2], label='Training Accuracy')\n", (2343, 2403), True, 'import matplotlib.pyplot as plt\n'), ((2408, 2483), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs_range', 'metric_history[3]', '"""-"""'], {'label': '"""Validation Accuracy"""'}), "(epochs_range, metric_history[3], '-', label='Validation Accuracy')\n", (2416, 2483), True, 'import matplotlib.pyplot as plt\n'), ((2488, 2517), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (2498, 2517), True, 'import matplotlib.pyplot as plt\n'), ((2522, 2543), 'matplotlib.pyplot.title', 'plt.title', (['"""Accuracy"""'], {}), "('Accuracy')\n", (2531, 2543), True, 'import matplotlib.pyplot as plt\n'), ((2549, 2569), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (2560, 2569), True, 'import matplotlib.pyplot as plt\n'), ((2574, 2646), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs_range', 'metric_history[4]'], {'label': '"""Training Type I Error"""'}), "(epochs_range, metric_history[4], label='Training Type I Error')\n", (2582, 2646), True, 'import matplotlib.pyplot as plt\n'), ((2651, 2730), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs_range', 'metric_history[5]', '"""-"""'], {'label': '"""Validation Type I Error"""'}), "(epochs_range, metric_history[5], '-', label='Validation Type I Error')\n", (2659, 2730), True, 'import matplotlib.pyplot as plt\n'), ((2735, 2764), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (2745, 2764), True, 'import matplotlib.pyplot as plt\n'), ((2769, 2794), 'matplotlib.pyplot.title', 'plt.title', (['"""Type I Error"""'], {}), "('Type I Error')\n", (2778, 2794), True, 'import matplotlib.pyplot as plt\n'), ((2800, 2820), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (2811, 2820), True, 'import matplotlib.pyplot as plt\n'), ((2825, 2898), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs_range', 'metric_history[6]'], {'label': '"""Training Type II Error"""'}), "(epochs_range, metric_history[6], label='Training Type II Error')\n", (2833, 2898), True, 'import matplotlib.pyplot as plt\n'), ((2903, 2988), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs_range', 'metric_history[7]', '"""-"""'], {'label': '"""Validation Type II Error"""'}), "(epochs_range, metric_history[7], '-', label='Validation Type II Error'\n )\n", (2911, 2988), True, 'import matplotlib.pyplot as plt\n'), ((2988, 3017), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (2998, 3017), True, 'import matplotlib.pyplot as plt\n'), ((3022, 3048), 'matplotlib.pyplot.title', 'plt.title', (['"""Type II Error"""'], {}), "('Type II Error')\n", (3031, 3048), True, 'import matplotlib.pyplot as plt\n'), ((3053, 3063), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3061, 3063), True, 'import matplotlib.pyplot as plt\n'), ((3413, 3461), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(results, y)'], {}), '((results, y))\n', (3447, 3461), True, 'import tensorflow as tf\n'), ((280, 311), 'os.path.join', 'os.path.join', (['folder_name', 'file'], {}), '(folder_name, file)\n', (292, 311), False, 'import os\n'), ((323, 346), 'os.listdir', 'os.listdir', (['folder_name'], {}), '(folder_name)\n', (333, 346), False, 'import os\n'), ((3363, 3393), 'tensorflow.image.resize', 'tf.image.resize', (['img', 'img_size'], {}), '(img, img_size)\n', (3378, 3393), True, 'import tensorflow as tf\n'), ((503, 519), 'PIL.Image.open', 'Image.open', (['file'], {}), '(file)\n', (513, 519), False, 'from PIL import Image\n')]
|
import numpy as np
from torchnlp.datasets import imdb_dataset # run pip install pytorch-nlp if you dont have this
from tamnun.bert import BertClassifier, BertVectorizer
from sklearn.pipeline import make_pipeline
from sklearn.metrics import classification_report
# Getting data
train_data, test_data = imdb_dataset(train=True, test=True)
# Each instance in the dataset is a dict with `text` and `sentiment`, we extract those fields and create two variables
train_texts, train_labels = list(zip(*map(lambda d: (d['text'], d['sentiment']), train_data)))
test_texts, test_labels = list(zip(*map(lambda d: (d['text'], d['sentiment']), test_data)))
# Convert label to boolean
train_y = np.array(train_labels) == 'pos'
test_y = np.array(test_labels) == 'pos'
print('Train size:', len(train_texts))
print('Test size:', len(test_texts))
# Create a pipeline with the vectorizer and the classifier and then fit it on the raw data
print('Fine-tuning BERT...')
clf = make_pipeline(BertVectorizer(do_truncate=True),
BertClassifier(num_of_classes=2, lr=1e-5)).fit(train_texts, train_y)
predicted = clf.predict(test_texts)
print(classification_report(predicted, test_y))
|
[
"torchnlp.datasets.imdb_dataset",
"tamnun.bert.BertVectorizer",
"sklearn.metrics.classification_report",
"tamnun.bert.BertClassifier",
"numpy.array"
] |
[((302, 337), 'torchnlp.datasets.imdb_dataset', 'imdb_dataset', ([], {'train': '(True)', 'test': '(True)'}), '(train=True, test=True)\n', (314, 337), False, 'from torchnlp.datasets import imdb_dataset\n'), ((683, 705), 'numpy.array', 'np.array', (['train_labels'], {}), '(train_labels)\n', (691, 705), True, 'import numpy as np\n'), ((724, 745), 'numpy.array', 'np.array', (['test_labels'], {}), '(test_labels)\n', (732, 745), True, 'import numpy as np\n'), ((1140, 1180), 'sklearn.metrics.classification_report', 'classification_report', (['predicted', 'test_y'], {}), '(predicted, test_y)\n', (1161, 1180), False, 'from sklearn.metrics import classification_report\n'), ((973, 1005), 'tamnun.bert.BertVectorizer', 'BertVectorizer', ([], {'do_truncate': '(True)'}), '(do_truncate=True)\n', (987, 1005), False, 'from tamnun.bert import BertClassifier, BertVectorizer\n'), ((1027, 1069), 'tamnun.bert.BertClassifier', 'BertClassifier', ([], {'num_of_classes': '(2)', 'lr': '(1e-05)'}), '(num_of_classes=2, lr=1e-05)\n', (1041, 1069), False, 'from tamnun.bert import BertClassifier, BertVectorizer\n')]
|
import numpy as np
import time
import sys
from ServoMotor import *
from fns import *
# Initialize motor control library & USB Port
filename = "/dev/ttyUSB0"
motor = ServoMotor(filename)
IO = motor.IO_Init()
if IO < 0:
print('IO exit')
sys.exit()
# Call corresponding function to convert sim2real/real2sim
def convFns(pos, convType):
conv = [left_armpit, left_elbow, left_shoulder, right_armpit, right_elbow, right_shoulder,
left_armpit, left_elbow, left_shoulder, right_armpit, right_elbow, right_shoulder]
targ = np.zeros(12)
for i in range(len(pos)):
if i==0:
targ[i] = conv[i](pos[i], convType, "front")
elif i==6:
targ[i] = conv[i](pos[i], convType, "back")
else:
targ[i] = conv[i](pos[i], convType)
return targ
# Define next action given parameters
def act(t, p0, p1, p2, p3, p4, p5, p6, p7, p8):
# front shoulder (+p1)
f_s = p0 * np.sin(t * p8)
# front elbow (+p3)
f_e = p2 * np.sin(t * p8)
# back shoulder (+p5)
b_s = p4 * np.sin(t * p8)
# back elbow (+p7)
b_e = p6 * np.sin(t * p8)
desired_p = np.array([0, f_s+p1, f_e+p3, 0, -f_s+p1, -f_e+p3, 0, -b_s+p5, -b_e+p7, 0, b_s+p5, b_e+p7])
# return desired new position
return convFns(desired_p, "sim2real")
# Return position to take
def get_action(steps):
#params = np.array(np.load('params/best_overall_5.npy'))
params = np.array([0.15, 0.0, 0.15, 0.0, 0.2, 0.15, 0.2, 0.15, 0.21]) # Smooth Criminal, Jul 31 19:00
return act(steps, *params)
# MOVE MOTOR TO GIVEN POSITION
def walk(pos):
h = 0
real_pos = []
for j in range(1,5):
u = 10*j
r = range(u, u+3)
for i in r:
real_pos.append(motor.readPosition(i))
motor.move(i, int(pos[h]), 0)
h+=1
time.sleep(0.005)
return real_pos
# Initialize motors as servos and set offset
offsets = [30, 0, 64, 0, 70, 50, 26, 0, 55, 80, 90, 35]
h = 0
# Set servo mode to all servos with their offset
for j in range(1,5):
u = 10*j
r = range(u, u+3)
for i in r:
motor.setServoMode(i)
if offsets[h]!=0:
motor.setPositionOffset(i,offsets[h])
h+=1
# RESET position and stand down & up before walking
pos = [500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500]
h = 0
for j in range(1,5):
u = 10*j
r = range(u, u+3)
for i in r:
motor.move(i, int(pos[h]), 1500)
h+=1
time.sleep(3)
pos = [500, 750, 583, 500, 250, 417, 500, 750, 583, 500, 250, 417]
#pos = get_action(0)
h = 0
for j in range(1,5):
u = 10*j
r = range(u, u+3)
for i in r:
if h>5:
motor.move(i, int(pos[h]), 1000)
else:
motor.move(i, int(pos[h]), 1500)
h+=1
time.sleep(3)
# Determine need to smoothen transition to first position
pos_prev = [500, 750, 583, 500, 250, 417, 500, 750, 583, 500, 250, 417]
pos = get_action(0)
delta_pos = abs(pos-pos_prev)
steps = int(max(delta_pos)/15)
m = []
for i in range(len(pos)):
m.append(np.linspace(pos_prev[i], pos[i], steps))
m_t = np.array(m).T.tolist()
for i in range(len(m_t)):
for j in range(len(m_t[0])):
m_t[i][j] = int(round(m_t[i][j]))
# If smoothing is needed, perform actions
for i in m_t:
real_pos = walk(i)
# WALK
j = 1
while j < 300:
# Get target position
pos = get_action(j)
# Move robot to target position
real_pos = walk(pos)
j += 1
# RESET position and stand down & up before walking
pos = [500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500]
h = 0
for j in range(1,5):
u = 10*j
r = range(u, u+3)
for i in r:
motor.move(i, int(pos[h]), 1500)
h+=1
|
[
"numpy.zeros",
"time.sleep",
"numpy.sin",
"numpy.array",
"numpy.linspace",
"sys.exit"
] |
[((2243, 2256), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (2253, 2256), False, 'import time\n'), ((2511, 2524), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (2521, 2524), False, 'import time\n'), ((238, 248), 'sys.exit', 'sys.exit', ([], {}), '()\n', (246, 248), False, 'import sys\n'), ((524, 536), 'numpy.zeros', 'np.zeros', (['(12)'], {}), '(12)\n', (532, 536), True, 'import numpy as np\n'), ((1040, 1151), 'numpy.array', 'np.array', (['[0, f_s + p1, f_e + p3, 0, -f_s + p1, -f_e + p3, 0, -b_s + p5, -b_e + p7, 0,\n b_s + p5, b_e + p7]'], {}), '([0, f_s + p1, f_e + p3, 0, -f_s + p1, -f_e + p3, 0, -b_s + p5, -\n b_e + p7, 0, b_s + p5, b_e + p7])\n', (1048, 1151), True, 'import numpy as np\n'), ((1321, 1381), 'numpy.array', 'np.array', (['[0.15, 0.0, 0.15, 0.0, 0.2, 0.15, 0.2, 0.15, 0.21]'], {}), '([0.15, 0.0, 0.15, 0.0, 0.2, 0.15, 0.2, 0.15, 0.21])\n', (1329, 1381), True, 'import numpy as np\n'), ((866, 880), 'numpy.sin', 'np.sin', (['(t * p8)'], {}), '(t * p8)\n', (872, 880), True, 'import numpy as np\n'), ((914, 928), 'numpy.sin', 'np.sin', (['(t * p8)'], {}), '(t * p8)\n', (920, 928), True, 'import numpy as np\n'), ((964, 978), 'numpy.sin', 'np.sin', (['(t * p8)'], {}), '(t * p8)\n', (970, 978), True, 'import numpy as np\n'), ((1011, 1025), 'numpy.sin', 'np.sin', (['(t * p8)'], {}), '(t * p8)\n', (1017, 1025), True, 'import numpy as np\n'), ((1665, 1682), 'time.sleep', 'time.sleep', (['(0.005)'], {}), '(0.005)\n', (1675, 1682), False, 'import time\n'), ((2780, 2819), 'numpy.linspace', 'np.linspace', (['pos_prev[i]', 'pos[i]', 'steps'], {}), '(pos_prev[i], pos[i], steps)\n', (2791, 2819), True, 'import numpy as np\n'), ((2827, 2838), 'numpy.array', 'np.array', (['m'], {}), '(m)\n', (2835, 2838), True, 'import numpy as np\n')]
|
import numpy
# ###############################################################
#
# ###############################################################
THRESHOLD = 0.00001
AREA_THRESHOLD = 0.01
def fequal(x1, x2, threshold=THRESHOLD):
d = x1 - x2
if d < 0.0:
d *= -1.0
if threshold >= d:
return True
else:
return False
def area_equal(a1, a2, threshold=AREA_THRESHOLD):
return fequal(a1, a2, threshold)
# ###############################################################
#
# ###############################################################
class Vertex:
def __init__(self, x, y):
self._vertex = [0.0, 0.0]
self._vertex[0] = x
self._vertex[1] = y
def __str__(self):
return '[{}, {}]'.format(self._vertex[0], self._vertex[1])
@property
def x(self):
return self._vertex[0]
@x.setter
def x(self, value):
self._vertex[0] = value
@property
def y(self):
return self._vertex[1]
@y.setter
def y(self, value):
self._vertex[1] = value
def __eq__(self, b):
result = True
if not fequal(self.x, b.x):
result = False
if not fequal(self.y, b.y):
result = False
return result
def is_higher_than(self, q):
if self.x < q.x and self.y >= q.y:
return True
else:
return False
# ###############################################################
#
# ###############################################################
class Points(object):
def __init__(self):
self._order = []
self._points = []
self._i = 0
def __add_point_from_vertex(self, n):
if self._points:
h = self._points[0]
if n.y > h.y or (n.y == h.y and n.x < h.x):
self._points[0] = n
n = h
self._points.append(n)
def length(self):
return len(self._points)
def add_point(self, *args):
if isinstance(args[0], Vertex):
self.__add_point_from_vertex(args[0])
elif isinstance(args[0], float) and isinstance(args[1], float):
n = Vertex(args[0], args[1])
self.__add_point_from_vertex(n)
else:
raise ValueError()
def get_point(self, i):
if self._order:
return self._points[self._order[i]]
else:
return self._points[i]
def __getitem__(self, key):
return self.get_point(key)
def permute(self):
p = numpy.random.permutation(len(self._points))
l = list(p)
l.remove(0)
l.insert(0,0)
self._order = l
def highest(self):
return self.get_point(0)
def __iter__(self):
self._i = 0
return self
def __next__(self):
if self._i >= len(self._points):
raise StopIteration()
i = self._i
self._i += 1
return self.get_point(i)
# ###############################################################
#
# ###############################################################
class DagNode:
def __init__(self):
self._children = None
def is_leaf(self):
if self._children is None:
return True
else:
return False
@property
def children(self):
return self._children
def add_child(self, value):
if not issubclass(value, DagNode):
raise ValueError()
if self._children:
self._children.append(value)
else:
self._children = [value]
# ###############################################################
#
# ###############################################################
def are_pts_ccw(pts):
a = pts[0]
b = pts[1]
c = pts[2]
det = (b.x - a.x) * (c.y - a.y) \
- (c.x - a.x) * (b.y - a.y)
if det > 0.0:
return True
else:
return False
def is_higher(a, b):
if a.y > b.y or (a.y == b.y and a.x < b.x):
return True
else:
return False
def order_pt(a, b, c):
pts = []
if is_higher(a, b):
if is_higher(a, c):
pts = [a, b, c]
else:
pts = [c, a, b]
else:
if is_higher(b, c):
pts = [b, c, a]
else:
pts = [c, a, b]
if are_pts_ccw(pts):
return pts
else:
return [pts[0], pts[2], pts[1]]
def area_of_triangle(a,b,c):
area = ( a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y) )/ 2.0
if area < 0.0:
return -area
else:
return area
def adjacent_triangle_edges(t1,t2):
adj_edges = None
uni_edges = None
if t1.a == t2.a and t1.b == t2.b:
adj_edges = (t1.a, t1.b, t2.a, t2.b)
uni_edges = (t1.c, t2.c)
elif t1.a == t2.a and t1.b == t2.c:
adj_edges = (t1.a, t1.b, t2.a, t2.c)
uni_edges = (t1.c, t2.b)
elif t1.a == t2.a and t1.c == t2.b:
adj_edges = (t1.a, t1.c, t2.a, t2.b)
uni_edges = (t1.b, t2.b)
elif t1.a == t2.a and t1.c == t2.c:
adj_edges = (t1.a, t1.c, t2.a, t2.c)
uni_edges = (t1.b, t2.b)
elif t1.a == t2.b and t1.b == t2.a:
adj_edges = (t1.a, t1.b, t2.b, t2.a)
uni_edges = (t1.c, t2.c)
elif t1.a == t2.b and t1.b == t2.c:
adj_edges = (t1.a, t1.b, t2.b, t2.c)
uni_edges = (t1.c, t2.a)
elif t1.a == t2.b and t1.c == t2.a:
adj_edges = (t1.a, t1.c, t2.b, t2.a)
uni_edges = (t1.b, t2.c)
elif t1.a == t2.b and t1.c == t2.c:
adj_edges = (t1.a, t1.c, t2.b, t2.c)
uni_edges = (t1.b, t2.a)
elif t1.a == t2.c and t1.b == t2.a:
adj_edges = (t1.a, t1.b, t2.c, t2.a)
uni_edges = (t1.c, t2.b)
elif t1.a == t2.c and t1.b == t2.b:
adj_edges = (t1.a, t1.b, t2.c, t2.b)
uni_edges = (t1.c, t2.a)
elif t1.a == t2.c and t1.c == t2.a:
adj_edges = (t1.a, t1.c, t2.c, t2.a)
uni_edges = (t1.b, t2.b)
elif t1.a == t2.c and t1.c == t2.b:
adj_edges = (t1.a, t1.c, t2.c, t2.b)
uni_edges = (t1.b, t2.a)
elif t1.b == t2.a and t1.c == t2.b:
adj_edges = (t1.b, t1.c, t2.a, t2.b)
uni_edges = (t1.a, t2.c)
elif t1.b == t2.a and t1.c == t2.c:
adj_edges = (t1.b, t1.c, t2.a, t2.c)
uni_edges = (t1.a, t2.b)
elif t1.b == t2.b and t1.c == t2.a:
adj_edges = (t1.b, t1.c, t2.b, t2.a)
uni_edges = (t1.a, t2.c)
elif t1.b == t2.b and t1.c == t2.c:
adj_edges = (t1.b, t1.c, t2.b, t2.c)
uni_edges = (t1.a, t2.a)
elif t1.b == t2.c and t1.c == t2.a:
adj_edges = (t1.b, t1.c, t2.c, t2.a)
uni_edges = (t1.a, t2.b)
elif t1.b == t2.c and t1.c == t2.b:
adj_edges = (t1.b, t1.c, t2.c, t2.b)
uni_edges = (t1.a, t2.a)
else:
adj_edges = None
uni_edges = None
return (adj_edges, uni_edges)
def are_triangles_adjacent(t1,t2):
result = False
if t1.a == t2.a and t1.b == t2.b:
result = True
elif t1.a == t2.a and t1.b == t2.c:
result = True
elif t1.a == t2.a and t1.c == t2.b:
result = True
elif t1.a == t2.a and t1.c == t2.c:
result = True
elif t1.a == t2.b and t1.b == t2.a:
result = True
elif t1.a == t2.b and t1.b == t2.c:
result = True
elif t1.a == t2.b and t1.c == t2.a:
result = True
elif t1.a == t2.b and t1.c == t2.c:
result = True
elif t1.a == t2.c and t1.b == t2.a:
result = True
elif t1.a == t2.c and t1.b == t2.b:
result = True
elif t1.a == t2.c and t1.c == t2.a:
result = True
elif t1.a == t2.c and t1.c == t2.b:
result = True
elif t1.b == t2.a and t1.c == t2.b:
result = True
elif t1.b == t2.a and t1.c == t2.c:
result = True
elif t1.b == t2.b and t1.c == t2.a:
result = True
elif t1.b == t2.b and t1.c == t2.c:
result = True
elif t1.b == t2.c and t1.c == t2.a:
result = True
elif t1.b == t2.c and t1.c == t2.b:
result = True
else:
result = False
return result
# ###############################################################
#
# ###############################################################
class Triangle(DagNode):
def __init__(self, a, b, c):
DagNode.__init__(self)
self._points = order_pts(a, b, c)
@property
def a(self):
return self._points[0]
@property
def b(self):
return self._points[1]
@property
def c(self):
return self._points[2]
def area(self):
a = area_of_triangle(self.a, self.b, self.c)
if area_equal(a, 0.0):
return 0.0
else:
return a
def is_adjacent(self, b):
return are_triangles_adjacent(self, b)
# ###############################################################
#
# ###############################################################
def is_triangle_area_zero(a, b, c):
a = area_of_triangle(a, b, c)
if area_equal(a, 0.0):
return True
else:
return False
def is_pt_on_edge(p, t):
on_edge = False
a1 = area_of_triangle(t.a, t.b, p)
if area_equal(a1, 0.0):
on_edge = True
a2 = area_of_triangle(t.b, t.c, p)
if area_equal(a2, 0.0):
on_edge = True
a3 = area_of_triangle(t.c, t.a, p)
if area_equal(a3, 0.0):
on_edge = True
return on_edge
def is_pt_inside_triangle(p, t):
if t.b == None and t.c == None:
# This is the first triangle that contains all points
return True
a1 = area_of_triangle(t.a, t.b, p)
a2 = area_of_triangle(t.b, t.c, p)
a3 = area_of_triangle(t.c, t.a, p)
a = area_of_triangle(t.a, t.b, t.c)
inside = fequal(a, a1+a2+a3)
return inside
def is_pt_inside_triangle2(p, t):
x = p.x
y = p.y
x1 = t.a.x
y1 = t.a.y
x2 = t.b.x
y2 = t.b.y
x3 = t.c.x
y3 = t.c.y
denom = (x1 * (y2 - y3) + y1 * (x3 - x2) + x2 * y3 - y2 * x3)
t1 = (x * (y3 - y1) + y * (x1 - x3) - x1 * y3 + y1 * x3) / denom
t2 = (x * (y2 - y1) + y * (x1 - x2) - x1 * y2 + y1 * x2) / -denom
if 0.0 <= t1 <= 1.0 and 0.0 <= t2 <= 1.0 and t1 + t2 <= 1.0:
return True
else:
return False
# ###############################################################
#
# ###############################################################
def circle_for_points(a, b, c):
x1 = a.x
y1 = a.y
x2 = b.x
y2 = b.y
x3 = c.x
y3 = c.y
X2 = (x2-x1)
X3 = (x3-x1)
Y2 = (y2-y1)
Y3 = (y3-y1)
alpha = X3 / X2
bx2 = (x2+x1) * X2
bx3 = (x3+x1) * X3
by2 = (y2+y1) * Y2
by3 = (y3+y1) * Y3
h = 0.0
k = 0.0
r = 0.0
k = bx3 + by3 - alpha * (bx2 + by2)
k /= 2 * (Y3 - alpha * Y2)
h = bx2 + by2 - 2 * k * Y2
h /= 2 * X2
r = numpy.sqrt( (x1 - h)*(x1 - h) + (y1 - k)*(y1 - k) )
return h, k, r
def in_circle(t, pr):
x, y, r = circle_for_points(t.points[0], t.points[1], t.points[2])
x_diff = pr.x - x
y_diff = pr.y - y
dist = numpy.sqrt(x_diff**2 + y_diff**2)
if dist <= r:
return True
else:
return False
|
[
"numpy.sqrt"
] |
[((11063, 11116), 'numpy.sqrt', 'numpy.sqrt', (['((x1 - h) * (x1 - h) + (y1 - k) * (y1 - k))'], {}), '((x1 - h) * (x1 - h) + (y1 - k) * (y1 - k))\n', (11073, 11116), False, 'import numpy\n'), ((11289, 11326), 'numpy.sqrt', 'numpy.sqrt', (['(x_diff ** 2 + y_diff ** 2)'], {}), '(x_diff ** 2 + y_diff ** 2)\n', (11299, 11326), False, 'import numpy\n')]
|
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:light
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.3.3
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# # Materials
#
# This test showcases rendering with various materials provided by Lightmetrica. We render the images using ``renderer::pt``.
# %load_ext autoreload
# %autoreload 2
import lmenv
env = lmenv.load('.lmenv')
import os
import pickle
import json
import numpy as np
import matplotlib.pyplot as plt
import lightmetrica as lm
# %load_ext lightmetrica_jupyter
import lmscene
lm.init()
lm.log.init('jupyter')
lm.progress.init('jupyter')
lm.info()
lm.comp.load_plugin(os.path.join(env.bin_path, 'accel_embree'))
if not lm.Release:
lm.parallel.init('openmp', num_threads=1)
lm.debug.attach_to_debugger()
# +
def render(scene, name, **kwargs):
w = 854
h = 480
film = lm.load_film('film', 'bitmap', w=w, h=h)
renderer = lm.load_renderer('renderer', name,
scene=scene,
output=film,
max_verts=20,
scheduler='time',
render_time=30,
**kwargs)
renderer.render()
return np.copy(film.buffer())
def display_image(img, fig_size=15, scale=1):
f = plt.figure(figsize=(fig_size,fig_size))
ax = f.add_subplot(111)
ax.imshow(np.clip(np.power(img*scale,1/2.2),0,1), origin='lower')
ax.axis('off')
plt.show()
# -
# ## Scene setup
# Create scene
accel = lm.load_accel('accel', 'embree')
scene = lm.load_scene('scene', 'default', accel=accel)
mat = lm.load_material('mat_ut', 'diffuse', Kd=[1,1,1])
lmscene.bunny_with_area_light(scene, env.scene_path, mat_knob=mat)
scene.build()
# ## Rendering
# ### Diffse material
#
# `material::diffuse`
lm.load_material('mat_ut', 'diffuse', Kd=[.8,.2,.2])
img = render(scene, 'pt')
display_image(img)
# ### Glossy material
#
# `material::glossy`
lm.load_material('mat_ut', 'glossy', Ks=[.8,.2,.2], ax=0.2, ay=0.2)
img = render(scene, 'pt')
display_image(img)
# ### Perfect specular reflection
#
# `material::mirror`
lm.load_material('mat_ut', 'mirror')
img = render(scene, 'pt')
display_image(img)
# ### Fresnel reflection / refraction
#
# `material::fresnel`
lm.load_material('mat_ut', 'glass', Ni=1.5)
img = render(scene, 'pt')
display_image(img)
# ### Mixture material with constant weights using RR
#
# `material::constant_weight_mixture_rr`
mat_diffuse = lm.load_material('mat_diffuse', 'diffuse', Kd=[.1,.8,.1])
mat_glossy = lm.load_material('mat_glossy', 'glossy', Ks=[.8,.1,.1], ax=0.2, ay=0.2)
mat_mirror = lm.load_material('mat_mirror', 'mirror')
mat = lm.load_material('mat_ut', 'constant_weight_mixture_rr', [
{'material': mat_diffuse.loc(), 'weight': 0.2},
{'material': mat_glossy.loc(), 'weight': 0.4},
{'material': mat_mirror.loc(), 'weight': 0.4}
])
img = render(scene, 'pt')
display_image(img)
# ### Mixture material with constant weights using marginalization
#
# `material::constant_weight_mixture_marginalized`
mat = lm.load_material('mat_ut', 'constant_weight_mixture_marginalized', [
{'material': mat_diffuse.loc(), 'weight': 0.2},
{'material': mat_glossy.loc(), 'weight': 0.4},
{'material': mat_mirror.loc(), 'weight': 0.4}
])
img = render(scene, 'pt')
display_image(img)
# ### Mixture material with alpha texture
#
# `material::mixture_wavefrontobj`
#
# This material is the default material converted from MTL format of Wavefront OBJ.
tex = lm.load_texture('tex', 'bitmap',
path=os.path.join(env.scene_path, 'fireplace_room', 'textures', 'leaf.png'))
lm.load_material('mat_ut', 'mixture_wavefrontobj',
Kd=[.8,.8,.8],
mapKd=tex,
Ks=[0,0,0],
ax=0.2,
ay=0.2,
no_alpha_mask=False)
img = render(scene, 'pt')
display_image(img)
|
[
"lmscene.bunny_with_area_light",
"lightmetrica.load_renderer",
"matplotlib.pyplot.show",
"lightmetrica.load_scene",
"lightmetrica.load_film",
"lightmetrica.progress.init",
"numpy.power",
"lightmetrica.init",
"lightmetrica.load_accel",
"lmenv.load",
"lightmetrica.info",
"matplotlib.pyplot.figure",
"lightmetrica.debug.attach_to_debugger",
"lightmetrica.log.init",
"lightmetrica.load_material",
"os.path.join",
"lightmetrica.parallel.init"
] |
[((497, 517), 'lmenv.load', 'lmenv.load', (['""".lmenv"""'], {}), "('.lmenv')\n", (507, 517), False, 'import lmenv\n'), ((681, 690), 'lightmetrica.init', 'lm.init', ([], {}), '()\n', (688, 690), True, 'import lightmetrica as lm\n'), ((691, 713), 'lightmetrica.log.init', 'lm.log.init', (['"""jupyter"""'], {}), "('jupyter')\n", (702, 713), True, 'import lightmetrica as lm\n'), ((714, 741), 'lightmetrica.progress.init', 'lm.progress.init', (['"""jupyter"""'], {}), "('jupyter')\n", (730, 741), True, 'import lightmetrica as lm\n'), ((742, 751), 'lightmetrica.info', 'lm.info', ([], {}), '()\n', (749, 751), True, 'import lightmetrica as lm\n'), ((1689, 1721), 'lightmetrica.load_accel', 'lm.load_accel', (['"""accel"""', '"""embree"""'], {}), "('accel', 'embree')\n", (1702, 1721), True, 'import lightmetrica as lm\n'), ((1730, 1776), 'lightmetrica.load_scene', 'lm.load_scene', (['"""scene"""', '"""default"""'], {'accel': 'accel'}), "('scene', 'default', accel=accel)\n", (1743, 1776), True, 'import lightmetrica as lm\n'), ((1783, 1834), 'lightmetrica.load_material', 'lm.load_material', (['"""mat_ut"""', '"""diffuse"""'], {'Kd': '[1, 1, 1]'}), "('mat_ut', 'diffuse', Kd=[1, 1, 1])\n", (1799, 1834), True, 'import lightmetrica as lm\n'), ((1833, 1899), 'lmscene.bunny_with_area_light', 'lmscene.bunny_with_area_light', (['scene', 'env.scene_path'], {'mat_knob': 'mat'}), '(scene, env.scene_path, mat_knob=mat)\n', (1862, 1899), False, 'import lmscene\n'), ((1978, 2035), 'lightmetrica.load_material', 'lm.load_material', (['"""mat_ut"""', '"""diffuse"""'], {'Kd': '[0.8, 0.2, 0.2]'}), "('mat_ut', 'diffuse', Kd=[0.8, 0.2, 0.2])\n", (1994, 2035), True, 'import lightmetrica as lm\n'), ((2123, 2195), 'lightmetrica.load_material', 'lm.load_material', (['"""mat_ut"""', '"""glossy"""'], {'Ks': '[0.8, 0.2, 0.2]', 'ax': '(0.2)', 'ay': '(0.2)'}), "('mat_ut', 'glossy', Ks=[0.8, 0.2, 0.2], ax=0.2, ay=0.2)\n", (2139, 2195), True, 'import lightmetrica as lm\n'), ((2295, 2331), 'lightmetrica.load_material', 'lm.load_material', (['"""mat_ut"""', '"""mirror"""'], {}), "('mat_ut', 'mirror')\n", (2311, 2331), True, 'import lightmetrica as lm\n'), ((2441, 2484), 'lightmetrica.load_material', 'lm.load_material', (['"""mat_ut"""', '"""glass"""'], {'Ni': '(1.5)'}), "('mat_ut', 'glass', Ni=1.5)\n", (2457, 2484), True, 'import lightmetrica as lm\n'), ((2643, 2705), 'lightmetrica.load_material', 'lm.load_material', (['"""mat_diffuse"""', '"""diffuse"""'], {'Kd': '[0.1, 0.8, 0.1]'}), "('mat_diffuse', 'diffuse', Kd=[0.1, 0.8, 0.1])\n", (2659, 2705), True, 'import lightmetrica as lm\n'), ((2714, 2790), 'lightmetrica.load_material', 'lm.load_material', (['"""mat_glossy"""', '"""glossy"""'], {'Ks': '[0.8, 0.1, 0.1]', 'ax': '(0.2)', 'ay': '(0.2)'}), "('mat_glossy', 'glossy', Ks=[0.8, 0.1, 0.1], ax=0.2, ay=0.2)\n", (2730, 2790), True, 'import lightmetrica as lm\n'), ((2799, 2839), 'lightmetrica.load_material', 'lm.load_material', (['"""mat_mirror"""', '"""mirror"""'], {}), "('mat_mirror', 'mirror')\n", (2815, 2839), True, 'import lightmetrica as lm\n'), ((3792, 3928), 'lightmetrica.load_material', 'lm.load_material', (['"""mat_ut"""', '"""mixture_wavefrontobj"""'], {'Kd': '[0.8, 0.8, 0.8]', 'mapKd': 'tex', 'Ks': '[0, 0, 0]', 'ax': '(0.2)', 'ay': '(0.2)', 'no_alpha_mask': '(False)'}), "('mat_ut', 'mixture_wavefrontobj', Kd=[0.8, 0.8, 0.8],\n mapKd=tex, Ks=[0, 0, 0], ax=0.2, ay=0.2, no_alpha_mask=False)\n", (3808, 3928), True, 'import lightmetrica as lm\n'), ((772, 814), 'os.path.join', 'os.path.join', (['env.bin_path', '"""accel_embree"""'], {}), "(env.bin_path, 'accel_embree')\n", (784, 814), False, 'import os\n'), ((839, 880), 'lightmetrica.parallel.init', 'lm.parallel.init', (['"""openmp"""'], {'num_threads': '(1)'}), "('openmp', num_threads=1)\n", (855, 880), True, 'import lightmetrica as lm\n'), ((885, 914), 'lightmetrica.debug.attach_to_debugger', 'lm.debug.attach_to_debugger', ([], {}), '()\n', (912, 914), True, 'import lightmetrica as lm\n'), ((991, 1031), 'lightmetrica.load_film', 'lm.load_film', (['"""film"""', '"""bitmap"""'], {'w': 'w', 'h': 'h'}), "('film', 'bitmap', w=w, h=h)\n", (1003, 1031), True, 'import lightmetrica as lm\n'), ((1047, 1169), 'lightmetrica.load_renderer', 'lm.load_renderer', (['"""renderer"""', 'name'], {'scene': 'scene', 'output': 'film', 'max_verts': '(20)', 'scheduler': '"""time"""', 'render_time': '(30)'}), "('renderer', name, scene=scene, output=film, max_verts=20,\n scheduler='time', render_time=30, **kwargs)\n", (1063, 1169), True, 'import lightmetrica as lm\n'), ((1325, 1365), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(fig_size, fig_size)'}), '(figsize=(fig_size, fig_size))\n', (1335, 1365), True, 'import matplotlib.pyplot as plt\n'), ((1630, 1640), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1638, 1640), True, 'import matplotlib.pyplot as plt\n'), ((3720, 3790), 'os.path.join', 'os.path.join', (['env.scene_path', '"""fireplace_room"""', '"""textures"""', '"""leaf.png"""'], {}), "(env.scene_path, 'fireplace_room', 'textures', 'leaf.png')\n", (3732, 3790), False, 'import os\n'), ((1559, 1589), 'numpy.power', 'np.power', (['(img * scale)', '(1 / 2.2)'], {}), '(img * scale, 1 / 2.2)\n', (1567, 1589), True, 'import numpy as np\n')]
|
import face_recognition
import cv2
import numpy as np
from PIL import Image,ImageDraw
import pickle
all_face_encodings = {}
shah_image = face_recognition.load_image_file("alexa.jpg")
np.save("shah",shah_image)
shah_encoding = face_recognition.face_encodings(shah_image)[0]
np.save("shah-en",shah_encoding)
all_face_encodings["shahrukhan"] = face_recognition.face_encodings(shah_image)[0]
with open('dataset_sali1.dat', 'wb') as f:
pickle.dump(all_face_encodings, f)
known_face_encodings=[shah_encoding]
print(type(known_face_encodings))
known_face_names=["joe"]
test_image=face_recognition.load_image_file('stud2.jpeg')
face_locations=face_recognition.face_locations(test_image)
face_encodings = face_recognition.face_encodings(test_image,face_locations)
pil_image=Image.fromarray(test_image)
draw=ImageDraw.Draw(pil_image)
for (top,right,bottom,left) ,face_encoding in zip(face_locations,face_encodings):
matches=face_recognition.compare_faces(known_face_encodings,face_encoding)
name="Unknown Person"
if True in matches:
first_match_index=matches.index(True)
name=known_face_names[first_match_index]
draw.rectangle(((left+2,top+2),(right+2,bottom+2)),outline=(0,255,255))
text_width,text_height=draw.textsize(name)
draw.rectangle(((left,bottom-text_height-10),(right,bottom)),fill=(0,0,0),outline=(0,0,0))
draw.text((left+6,bottom-text_height-5),name,fill=(255,255,255,255))
del draw
img = np.array(pil_image)
img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
scale_percent = 60 # percent of original size
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
dim = (width, height)
img = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
cv2.imshow("test",img)
cv2.waitKey(0)
cv2.destroyAllWindows()
|
[
"pickle.dump",
"numpy.save",
"face_recognition.compare_faces",
"cv2.cvtColor",
"cv2.waitKey",
"face_recognition.face_encodings",
"cv2.destroyAllWindows",
"cv2.imshow",
"PIL.ImageDraw.Draw",
"numpy.array",
"PIL.Image.fromarray",
"face_recognition.face_locations",
"face_recognition.load_image_file",
"cv2.resize"
] |
[((139, 184), 'face_recognition.load_image_file', 'face_recognition.load_image_file', (['"""alexa.jpg"""'], {}), "('alexa.jpg')\n", (171, 184), False, 'import face_recognition\n'), ((185, 212), 'numpy.save', 'np.save', (['"""shah"""', 'shah_image'], {}), "('shah', shah_image)\n", (192, 212), True, 'import numpy as np\n'), ((277, 310), 'numpy.save', 'np.save', (['"""shah-en"""', 'shah_encoding'], {}), "('shah-en', shah_encoding)\n", (284, 310), True, 'import numpy as np\n'), ((587, 633), 'face_recognition.load_image_file', 'face_recognition.load_image_file', (['"""stud2.jpeg"""'], {}), "('stud2.jpeg')\n", (619, 633), False, 'import face_recognition\n'), ((649, 692), 'face_recognition.face_locations', 'face_recognition.face_locations', (['test_image'], {}), '(test_image)\n', (680, 692), False, 'import face_recognition\n'), ((710, 769), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['test_image', 'face_locations'], {}), '(test_image, face_locations)\n', (741, 769), False, 'import face_recognition\n'), ((779, 806), 'PIL.Image.fromarray', 'Image.fromarray', (['test_image'], {}), '(test_image)\n', (794, 806), False, 'from PIL import Image, ImageDraw\n'), ((812, 837), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['pil_image'], {}), '(pil_image)\n', (826, 837), False, 'from PIL import Image, ImageDraw\n'), ((1450, 1469), 'numpy.array', 'np.array', (['pil_image'], {}), '(pil_image)\n', (1458, 1469), True, 'import numpy as np\n'), ((1475, 1511), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2RGB'], {}), '(img, cv2.COLOR_BGR2RGB)\n', (1487, 1511), False, 'import cv2\n'), ((1683, 1733), 'cv2.resize', 'cv2.resize', (['img', 'dim'], {'interpolation': 'cv2.INTER_AREA'}), '(img, dim, interpolation=cv2.INTER_AREA)\n', (1693, 1733), False, 'import cv2\n'), ((1736, 1759), 'cv2.imshow', 'cv2.imshow', (['"""test"""', 'img'], {}), "('test', img)\n", (1746, 1759), False, 'import cv2\n'), ((1759, 1773), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (1770, 1773), False, 'import cv2\n'), ((1774, 1797), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1795, 1797), False, 'import cv2\n'), ((230, 273), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['shah_image'], {}), '(shah_image)\n', (261, 273), False, 'import face_recognition\n'), ((348, 391), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['shah_image'], {}), '(shah_image)\n', (379, 391), False, 'import face_recognition\n'), ((443, 477), 'pickle.dump', 'pickle.dump', (['all_face_encodings', 'f'], {}), '(all_face_encodings, f)\n', (454, 477), False, 'import pickle\n'), ((932, 999), 'face_recognition.compare_faces', 'face_recognition.compare_faces', (['known_face_encodings', 'face_encoding'], {}), '(known_face_encodings, face_encoding)\n', (962, 999), False, 'import face_recognition\n')]
|
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import torch
from torch.utils.data.dataset import Dataset
import cv2
import numpy as np
from datasets.sensor import Sensor
import os
import sys
import time
import math
import scipy.io
CCM_NUS = {}#每相机的CCM校正矩阵
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ccm', 'nus', 'canon_eos_1D_mark3.txt'), 'r') as f:
CCM_NUS['canon_eos_1D_mark3'] = torch.FloatTensor(np.loadtxt(f))
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ccm', 'nus', 'canon_eos_600D.txt'), 'r') as f:
CCM_NUS['canon_eos_600D'] = torch.FloatTensor(np.loadtxt(f))
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ccm', 'nus', 'fuji.txt'), 'r') as f:
CCM_NUS['fuji'] = torch.FloatTensor(np.loadtxt(f))
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ccm', 'nus', 'nikonD40.txt'), 'r') as f:
CCM_NUS['nikonD40'] = torch.FloatTensor(np.loadtxt(f))
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ccm', 'nus', 'nikonD5200.txt'), 'r') as f:
CCM_NUS['nikonD5200'] = torch.FloatTensor(np.loadtxt(f))
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ccm', 'nus', 'olympus.txt'), 'r') as f:
CCM_NUS['olympus'] = torch.FloatTensor(np.loadtxt(f))
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ccm', 'nus', 'panasonic.txt'), 'r') as f:
CCM_NUS['panasonic'] = torch.FloatTensor(np.loadtxt(f))
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ccm', 'nus', 'samsung.txt'), 'r') as f:
CCM_NUS['samsung'] = torch.FloatTensor(np.loadtxt(f))
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ccm', 'nus', 'sony.txt'), 'r') as f:
CCM_NUS['sony'] = torch.FloatTensor(np.loadtxt(f))
class CanonEos1DMark3Sensor(Sensor):
def __init__(self, black_level, saturation):
super(CanonEos1DMark3Sensor, self).__init__(black_level, saturation, CCM_NUS['canon_eos_1D_mark3'], 'CanonEos1DMark3')
class CanonEos600DSensor(Sensor):
def __init__(self, black_level, saturation):
super(CanonEos600DSensor, self).__init__(black_level, saturation, CCM_NUS['canon_eos_600D'], 'CanonEos600D')
class FujiSensor(Sensor):
def __init__(self, black_level, saturation):
super(FujiSensor, self).__init__(black_level, saturation, CCM_NUS['fuji'], 'FujifilmXM1')
class NikonD40Sensor(Sensor):
def __init__(self, black_level, saturation):
super(NikonD40Sensor, self).__init__(black_level, saturation, CCM_NUS['nikonD40'], 'NikonD40')
class NikonD5200Sensor(Sensor):
def __init__(self, black_level, saturation):
super(NikonD5200Sensor, self).__init__(black_level, saturation, CCM_NUS['nikonD5200'], 'NikonD5200')
class OlympusSensor(Sensor):
def __init__(self, black_level, saturation):
super(OlympusSensor, self).__init__(black_level, saturation, CCM_NUS['olympus'], 'OlympusEPL6')
class PanasonicSensor(Sensor):
def __init__(self, black_level, saturation):
super(PanasonicSensor, self).__init__(black_level, saturation, CCM_NUS['panasonic'], 'PanasonicGX1')
class SamsungSensor(Sensor):
def __init__(self, black_level, saturation):
super(SamsungSensor, self).__init__(black_level, saturation, CCM_NUS['samsung'], 'SamsungNX2000')
class SonySensor(Sensor):
def __init__(self, black_level, saturation):
super(SonySensor, self).__init__(black_level, saturation, CCM_NUS['sony'], 'SonyA57')
CAMERA_CLASS_NUS = {}#类成员
CAMERA_CLASS_NUS['canon_eos_1D_mark3'] = CanonEos1DMark3Sensor
CAMERA_CLASS_NUS['canon_eos_600D'] = CanonEos600DSensor
CAMERA_CLASS_NUS['fuji'] = FujiSensor
CAMERA_CLASS_NUS['nikonD40'] = NikonD40Sensor
CAMERA_CLASS_NUS['nikonD5200'] = NikonD5200Sensor
CAMERA_CLASS_NUS['olympus'] = OlympusSensor
CAMERA_CLASS_NUS['panasonic'] = PanasonicSensor
CAMERA_CLASS_NUS['samsung'] = SamsungSensor
CAMERA_CLASS_NUS['sony'] = SonySensor
# NUS dataset: http://cvil.eecs.yorku.ca/projects/public_html/illuminant/illuminant.html
class Nus(Dataset):
def __init__(self, subdataset, data_conf, file, cache):
self._rgbs = []
self._illuminants = []#按_rgbs顺序对应存储光源gt
self._x = {}
self._y = {}
self._base_path = data_conf['nus_'+subdataset]
if type(file) is list:
for f in file:
self._read_list(os.path.join(data_conf['base'], f))
else:
self._read_list(os.path.join(data_conf['base'], file))
gt = scipy.io.loadmat(os.path.join(self._base_path, 'gt', 'gt.mat'))
self._darkness_level = int(gt['darkness_level'][0][0])
self._saturation_level = int(gt['saturation_level'][0][0])
self._class_dataset = CAMERA_CLASS_NUS[subdataset]
image_names = gt['all_image_names'].tolist()
image_names = [e[0][0] for e in image_names]
groundtruth_illuminants = gt['groundtruth_illuminants']
CC_coords = gt['CC_coords']
#按对应关系将光源取出
for i in range(len(self._rgbs)):
basename_rgb = os.path.basename(self._rgbs[i].replace('.PNG', ''))
index = image_names.index(basename_rgb)
self._illuminants.append(groundtruth_illuminants[index, :])
self._cache = cache
def get_filename(self, index):
return self._rgbs[index]
def get_illuminants(self):
return self._illuminants
def get_illuminants_by_sensor(self):
dict = {self._class_dataset(None,None).camera_name: self._illuminants}
return dict
def _read_list(self, file):
with open(file, 'r') as f:
content = f.readlines()
for line in content:
filename = line.strip()
rgb_path = os.path.join(self._base_path, 'PNG', filename)
self._rgbs.append(rgb_path)
txt = filename.replace('.PNG','_mask.txt')
mask_path = os.path.join(self._base_path, 'mask', txt)
with open(mask_path, 'r') as file_txt:
coordinates = file_txt.readlines()[0].split(',')
x = float(coordinates[0])
width = float(coordinates[2])
y = float(coordinates[1])
height = float(coordinates[3])
self._x[rgb_path] = [x, x+width, x+width, x]
self._y[rgb_path] = [y, y, y+height, y+height]
def get_rgb_by_path(self, filename):
sensor = self._class_dataset(self._darkness_level, self._saturation_level)
if self._cache.is_cached(filename):
im, mask = self._cache.read(filename)
else:
im = cv2.imread(filename, -1)
if im is None:
raise Exception('File not found: ' + filename)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
# get mask of valid pixels
mask = np.ones(im.shape[:2], dtype = np.float32)
rc = np.array((self._x[filename], self._y[filename])).T
ctr = rc.reshape((-1,1,2)).astype(np.int32)
cv2.drawContours(mask, [ctr], 0, 0, -1)
# set CCB pixels to zero
# TODO: ideally, downsampling should consider the mask
# and then, apply the mask as a final step
im[mask == 0] = [0, 0, 0]
# rotate 90 degrees so that all images have the same resolution
if im.shape[0] == 2820:
im = cv2.transpose(im)
im = cv2.flip(im, flipCode=0)
mask = cv2.transpose(mask)
mask = cv2.flip(mask, flipCode=0)
self._cache.save(filename, (im, mask))
im = im[np.newaxis, ...]
mask = mask[np.newaxis, ...]
sensor = [sensor]
return im, mask, sensor
def get_rgb(self, index):
path = self._rgbs[index]
return self.get_rgb_by_path(path)
def __getitem__(self, index):
filename = self._rgbs[index]
im, mask, sensor = self.get_rgb(index)
illuminant = np.array(self._illuminants[index], dtype=np.float32)
dict = {'rgb': im, 'sensor': sensor, 'mask': mask,
'illuminant': illuminant, 'path': filename}
return dict
def __len__(self):
return len(self._rgbs)
if __name__ == '__main__':
import scipy
import scipy.io
#利用cv_metadata.mat做fold分割
path = 'data/nus/'
camera = scipy.io.loadmat(os.path.join(path, 'cv_metadata.mat'))['cv_metadata'][0][0]
cameras_list = ['canon_eos_1D_mark3', 'canon_eos_600D', 'fuji',
'nikonD40', 'nikonD5200', 'olympus', 'panasonic',
'samsung', 'sony']
camera_folds = []
for i in range(len(cameras_list)):
camera_folds.append([[],[],[]])
for i in range(len(camera)):
files = camera[i]
for j in range(len(files)):
file = files[j]
filename = file[0][0][0]
scene_idx = file[0][1][0][0] - 1
cv_fold = file[0][2][0][0] - 1
camera_folds[i][cv_fold].append(filename)
for i in range(len(camera)):
camera_name = cameras_list[i]
with open(os.path.join(path, camera_name + '.txt'), 'w') as f:
f.write('Nus\n')
f.write('data/nus/splits/'+camera_name+'/fold1.txt\n')
f.write('data/nus/splits/'+camera_name+'/fold2.txt\n')
f.write('data/nus/splits/'+camera_name+'/fold3.txt\n')
for fold in range(3):
camera_folder = os.path.join(path, 'splits', camera_name)
os.makedirs(camera_folder, exist_ok=True)
with open(os.path.join(camera_folder, 'fold'+str(fold+1)+'.txt'), 'w') as f:
files = camera_folds[i][fold]
for file in files:
f.write(file+'\n')
|
[
"os.makedirs",
"cv2.cvtColor",
"os.path.realpath",
"numpy.ones",
"cv2.transpose",
"cv2.flip",
"cv2.imread",
"numpy.array",
"numpy.loadtxt",
"cv2.drawContours",
"os.path.join"
] |
[((944, 957), 'numpy.loadtxt', 'np.loadtxt', (['f'], {}), '(f)\n', (954, 957), True, 'import numpy as np\n'), ((1126, 1139), 'numpy.loadtxt', 'np.loadtxt', (['f'], {}), '(f)\n', (1136, 1139), True, 'import numpy as np\n'), ((1288, 1301), 'numpy.loadtxt', 'np.loadtxt', (['f'], {}), '(f)\n', (1298, 1301), True, 'import numpy as np\n'), ((1458, 1471), 'numpy.loadtxt', 'np.loadtxt', (['f'], {}), '(f)\n', (1468, 1471), True, 'import numpy as np\n'), ((1632, 1645), 'numpy.loadtxt', 'np.loadtxt', (['f'], {}), '(f)\n', (1642, 1645), True, 'import numpy as np\n'), ((1800, 1813), 'numpy.loadtxt', 'np.loadtxt', (['f'], {}), '(f)\n', (1810, 1813), True, 'import numpy as np\n'), ((1972, 1985), 'numpy.loadtxt', 'np.loadtxt', (['f'], {}), '(f)\n', (1982, 1985), True, 'import numpy as np\n'), ((2140, 2153), 'numpy.loadtxt', 'np.loadtxt', (['f'], {}), '(f)\n', (2150, 2153), True, 'import numpy as np\n'), ((2302, 2315), 'numpy.loadtxt', 'np.loadtxt', (['f'], {}), '(f)\n', (2312, 2315), True, 'import numpy as np\n'), ((8520, 8572), 'numpy.array', 'np.array', (['self._illuminants[index]'], {'dtype': 'np.float32'}), '(self._illuminants[index], dtype=np.float32)\n', (8528, 8572), True, 'import numpy as np\n'), ((5040, 5085), 'os.path.join', 'os.path.join', (['self._base_path', '"""gt"""', '"""gt.mat"""'], {}), "(self._base_path, 'gt', 'gt.mat')\n", (5052, 5085), False, 'import os\n'), ((7154, 7178), 'cv2.imread', 'cv2.imread', (['filename', '(-1)'], {}), '(filename, -1)\n', (7164, 7178), False, 'import cv2\n'), ((7287, 7322), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_BGR2RGB'], {}), '(im, cv2.COLOR_BGR2RGB)\n', (7299, 7322), False, 'import cv2\n'), ((7382, 7421), 'numpy.ones', 'np.ones', (['im.shape[:2]'], {'dtype': 'np.float32'}), '(im.shape[:2], dtype=np.float32)\n', (7389, 7421), True, 'import numpy as np\n'), ((7560, 7599), 'cv2.drawContours', 'cv2.drawContours', (['mask', '[ctr]', '(0)', '(0)', '(-1)'], {}), '(mask, [ctr], 0, 0, -1)\n', (7576, 7599), False, 'import cv2\n'), ((9993, 10034), 'os.path.join', 'os.path.join', (['path', '"""splits"""', 'camera_name'], {}), "(path, 'splits', camera_name)\n", (10005, 10034), False, 'import os\n'), ((10047, 10088), 'os.makedirs', 'os.makedirs', (['camera_folder'], {'exist_ok': '(True)'}), '(camera_folder, exist_ok=True)\n', (10058, 10088), False, 'import os\n'), ((809, 835), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (825, 835), False, 'import os\n'), ((999, 1025), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (1015, 1025), False, 'import os\n'), ((1181, 1207), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (1197, 1207), False, 'import os\n'), ((1343, 1369), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (1359, 1369), False, 'import os\n'), ((1513, 1539), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (1529, 1539), False, 'import os\n'), ((1687, 1713), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (1703, 1713), False, 'import os\n'), ((1855, 1881), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (1871, 1881), False, 'import os\n'), ((2027, 2053), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (2043, 2053), False, 'import os\n'), ((2195, 2221), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (2211, 2221), False, 'import os\n'), ((4970, 5007), 'os.path.join', 'os.path.join', (["data_conf['base']", 'file'], {}), "(data_conf['base'], file)\n", (4982, 5007), False, 'import os\n'), ((6257, 6303), 'os.path.join', 'os.path.join', (['self._base_path', '"""PNG"""', 'filename'], {}), "(self._base_path, 'PNG', filename)\n", (6269, 6303), False, 'import os\n'), ((6436, 6478), 'os.path.join', 'os.path.join', (['self._base_path', '"""mask"""', 'txt'], {}), "(self._base_path, 'mask', txt)\n", (6448, 6478), False, 'import os\n'), ((7441, 7489), 'numpy.array', 'np.array', (['(self._x[filename], self._y[filename])'], {}), '((self._x[filename], self._y[filename]))\n', (7449, 7489), True, 'import numpy as np\n'), ((7932, 7949), 'cv2.transpose', 'cv2.transpose', (['im'], {}), '(im)\n', (7945, 7949), False, 'import cv2\n'), ((7971, 7995), 'cv2.flip', 'cv2.flip', (['im'], {'flipCode': '(0)'}), '(im, flipCode=0)\n', (7979, 7995), False, 'import cv2\n'), ((8019, 8038), 'cv2.transpose', 'cv2.transpose', (['mask'], {}), '(mask)\n', (8032, 8038), False, 'import cv2\n'), ((8062, 8088), 'cv2.flip', 'cv2.flip', (['mask'], {'flipCode': '(0)'}), '(mask, flipCode=0)\n', (8070, 8088), False, 'import cv2\n'), ((9651, 9691), 'os.path.join', 'os.path.join', (['path', "(camera_name + '.txt')"], {}), "(path, camera_name + '.txt')\n", (9663, 9691), False, 'import os\n'), ((4892, 4926), 'os.path.join', 'os.path.join', (["data_conf['base']", 'f'], {}), "(data_conf['base'], f)\n", (4904, 4926), False, 'import os\n'), ((8919, 8956), 'os.path.join', 'os.path.join', (['path', '"""cv_metadata.mat"""'], {}), "(path, 'cv_metadata.mat')\n", (8931, 8956), False, 'import os\n')]
|
import pygame as pg
import math
import numpy as np
_BLACK = (0, 0, 0)
_DARK_GRAY = (40, 40, 40)
_GRAY = (100, 100, 100)
_WHITE = (255, 255, 255)
draw_speed = 60
clock = pg.time.Clock()
class Cube:
def __init__(self, surface, color, position, rotation, scale):
self.surface = surface
self.color = color
self.position = position
self.rotation = rotation
self.scale = scale
# Relative to center-point
# Top-left
# Top-Right
# Bottom-Left
# Bottom-Right
self.vertices = np.array(
[[self.position[0] - self.scale[0] / 2, self.position[1] - self.scale[1] / 2, self.position[2] - self.scale[2] / 2],
[self.position[0] + self.scale[0] / 2, self.position[1] - self.scale[1] / 2, self.position[2] - self.scale[2] / 2],
[self.position[0] - self.scale[0] / 2, self.position[1] + self.scale[1] / 2, self.position[2] - self.scale[2] / 2],
[self.position[0] + self.scale[0] / 2, self.position[1] + self.scale[1] / 2, self.position[2] - self.scale[2] / 2],
[self.position[0] - self.scale[0] / 2, self.position[1] - self.scale[1] / 2, self.position[2] / 2 + self.scale[2] / 2],
[self.position[0] + self.scale[0] / 2, self.position[1] - self.scale[1] / 2, self.position[2] / 2 + self.scale[2] / 2],
[self.position[0] - self.scale[0] / 2, self.position[1] + self.scale[1] / 2, self.position[2] / 2 + self.scale[2] / 2],
[self.position[0] + self.scale[0] / 2, self.position[1] + self.scale[1] / 2, self.position[2] / 2 + self.scale[2] / 2]]
)
self.rotate_x(90 - self.rotation[0])
self.rotate_y(90 - self.rotation[1])
self.rotate_z(90 - self.rotation[2])
def rotate_z(self, degrees):
for ind, _ in enumerate(self.vertices):
r_x = self.vertices[ind, 0] - self.position[0]
r_y = self.vertices[ind, 1] - self.position[1]
r = math.hypot(r_x, r_y)
theta = math.atan2(r_y, r_x) + math.radians(degrees)
self.vertices[ind, 0] = self.position[0] + r * math.cos(theta)
self.vertices[ind, 1] = self.position[1] + r * math.sin(theta)
def rotate_y(self, degrees):
for ind, _ in enumerate(self.vertices):
r_x = self.vertices[ind, 0] - self.position[0]
r_z = self.vertices[ind, 2] - self.position[2]
r = math.hypot(r_x, r_z)
theta = math.atan2(r_x, r_z) + math.radians(degrees)
self.vertices[ind, 0] = self.position[0] + r * math.cos(theta)
self.vertices[ind, 2] = self.position[2] + r * math.sin(theta)
def rotate_x(self, degrees):
for ind, _ in enumerate(self.vertices):
r_y = self.vertices[ind, 1] - self.position[1]
r_z = self.vertices[ind, 2] - self.position[2]
r = math.hypot(r_y, r_z)
theta = math.atan2(r_y, r_z) - math.radians(degrees)
self.vertices[ind, 1] = self.position[1] + r * math.cos(theta)
self.vertices[ind, 2] = self.position[2] + r * math.sin(theta)
def render_points(self, point_radius):
for x, y, z in sorted(self.vertices, key=lambda x:x[2]):
pg.draw.circle(self.surface, np.interp([z, z, z], [-10, 10], [0, 255]), (x, y), point_radius)
cube_surfaces = np.array(
[[0, 1, 3, 2],
[4, 5, 7, 6],
[0, 4, 6, 2],
[1, 5, 7, 3],
[0, 4, 5, 1],
[2, 6, 7, 3]]
)
surfaces = np.array([self.vertices[i] for i in [surface for surface in cube_surfaces]])
for surface in sorted(surfaces, key=lambda x:np.mean(x, axis=0)[2]):
mean_z = np.mean(surface, axis=0)[2]
pg.draw.polygon(self.surface, np.interp([mean_z, mean_z, mean_z], [-20, 20], [0, 255]), [vertex[:2] for vertex in surface])
def setup():
display_width = 500
display_height = 500
pg.init()
dis = pg.display.set_mode((display_width, display_height))
pg.display.set_caption('Pseudo-3D')
dis.fill(_BLACK)
pg.display.update()
loop(dis)
def loop(dis):
running = True
x = 0
y = 0
z = 0
while running:
for event in pg.event.get():
if event.type == pg.QUIT:
running=False
dis.fill(_BLACK)
pressed = pg.key.get_pressed()
if pressed[pg.K_w]:
y += 1
if pressed[pg.K_s]:
y -= 1
if pressed[pg.K_d]:
x += 1
if pressed[pg.K_a]:
x -= 1
if pressed[pg.K_q]:
z += 1
if pressed[pg.K_e]:
z -= 1
cube = Cube(dis, _WHITE, (100, 100, 0), (x, y, z), (50, 50, 50))
cube.render_points(3)
clock.tick(draw_speed)
pg.display.flip()
pg.quit()
if __name__=='__main__':
setup()
|
[
"pygame.quit",
"math.hypot",
"math.atan2",
"pygame.event.get",
"pygame.display.set_mode",
"math.radians",
"pygame.init",
"pygame.display.flip",
"math.sin",
"pygame.display.update",
"numpy.mean",
"numpy.array",
"math.cos",
"numpy.interp",
"pygame.display.set_caption",
"pygame.time.Clock",
"pygame.key.get_pressed"
] |
[((171, 186), 'pygame.time.Clock', 'pg.time.Clock', ([], {}), '()\n', (184, 186), True, 'import pygame as pg\n'), ((3981, 3990), 'pygame.init', 'pg.init', ([], {}), '()\n', (3988, 3990), True, 'import pygame as pg\n'), ((4001, 4053), 'pygame.display.set_mode', 'pg.display.set_mode', (['(display_width, display_height)'], {}), '((display_width, display_height))\n', (4020, 4053), True, 'import pygame as pg\n'), ((4058, 4093), 'pygame.display.set_caption', 'pg.display.set_caption', (['"""Pseudo-3D"""'], {}), "('Pseudo-3D')\n", (4080, 4093), True, 'import pygame as pg\n'), ((4120, 4139), 'pygame.display.update', 'pg.display.update', ([], {}), '()\n', (4137, 4139), True, 'import pygame as pg\n'), ((4861, 4870), 'pygame.quit', 'pg.quit', ([], {}), '()\n', (4868, 4870), True, 'import pygame as pg\n'), ((565, 1580), 'numpy.array', 'np.array', (['[[self.position[0] - self.scale[0] / 2, self.position[1] - self.scale[1] / \n 2, self.position[2] - self.scale[2] / 2], [self.position[0] + self.\n scale[0] / 2, self.position[1] - self.scale[1] / 2, self.position[2] - \n self.scale[2] / 2], [self.position[0] - self.scale[0] / 2, self.\n position[1] + self.scale[1] / 2, self.position[2] - self.scale[2] / 2],\n [self.position[0] + self.scale[0] / 2, self.position[1] + self.scale[1] /\n 2, self.position[2] - self.scale[2] / 2], [self.position[0] - self.\n scale[0] / 2, self.position[1] - self.scale[1] / 2, self.position[2] / \n 2 + self.scale[2] / 2], [self.position[0] + self.scale[0] / 2, self.\n position[1] - self.scale[1] / 2, self.position[2] / 2 + self.scale[2] /\n 2], [self.position[0] - self.scale[0] / 2, self.position[1] + self.\n scale[1] / 2, self.position[2] / 2 + self.scale[2] / 2], [self.position\n [0] + self.scale[0] / 2, self.position[1] + self.scale[1] / 2, self.\n position[2] / 2 + self.scale[2] / 2]]'], {}), '([[self.position[0] - self.scale[0] / 2, self.position[1] - self.\n scale[1] / 2, self.position[2] - self.scale[2] / 2], [self.position[0] +\n self.scale[0] / 2, self.position[1] - self.scale[1] / 2, self.position[\n 2] - self.scale[2] / 2], [self.position[0] - self.scale[0] / 2, self.\n position[1] + self.scale[1] / 2, self.position[2] - self.scale[2] / 2],\n [self.position[0] + self.scale[0] / 2, self.position[1] + self.scale[1] /\n 2, self.position[2] - self.scale[2] / 2], [self.position[0] - self.\n scale[0] / 2, self.position[1] - self.scale[1] / 2, self.position[2] / \n 2 + self.scale[2] / 2], [self.position[0] + self.scale[0] / 2, self.\n position[1] - self.scale[1] / 2, self.position[2] / 2 + self.scale[2] /\n 2], [self.position[0] - self.scale[0] / 2, self.position[1] + self.\n scale[1] / 2, self.position[2] / 2 + self.scale[2] / 2], [self.position\n [0] + self.scale[0] / 2, self.position[1] + self.scale[1] / 2, self.\n position[2] / 2 + self.scale[2] / 2]])\n', (573, 1580), True, 'import numpy as np\n'), ((3370, 3468), 'numpy.array', 'np.array', (['[[0, 1, 3, 2], [4, 5, 7, 6], [0, 4, 6, 2], [1, 5, 7, 3], [0, 4, 5, 1], [2, \n 6, 7, 3]]'], {}), '([[0, 1, 3, 2], [4, 5, 7, 6], [0, 4, 6, 2], [1, 5, 7, 3], [0, 4, 5,\n 1], [2, 6, 7, 3]])\n', (3378, 3468), True, 'import numpy as np\n'), ((3572, 3648), 'numpy.array', 'np.array', (['[self.vertices[i] for i in [surface for surface in cube_surfaces]]'], {}), '([self.vertices[i] for i in [surface for surface in cube_surfaces]])\n', (3580, 3648), True, 'import numpy as np\n'), ((4262, 4276), 'pygame.event.get', 'pg.event.get', ([], {}), '()\n', (4274, 4276), True, 'import pygame as pg\n'), ((4391, 4411), 'pygame.key.get_pressed', 'pg.key.get_pressed', ([], {}), '()\n', (4409, 4411), True, 'import pygame as pg\n'), ((4839, 4856), 'pygame.display.flip', 'pg.display.flip', ([], {}), '()\n', (4854, 4856), True, 'import pygame as pg\n'), ((1986, 2006), 'math.hypot', 'math.hypot', (['r_x', 'r_y'], {}), '(r_x, r_y)\n', (1996, 2006), False, 'import math\n'), ((2439, 2459), 'math.hypot', 'math.hypot', (['r_x', 'r_z'], {}), '(r_x, r_z)\n', (2449, 2459), False, 'import math\n'), ((2892, 2912), 'math.hypot', 'math.hypot', (['r_y', 'r_z'], {}), '(r_y, r_z)\n', (2902, 2912), False, 'import math\n'), ((2027, 2047), 'math.atan2', 'math.atan2', (['r_y', 'r_x'], {}), '(r_y, r_x)\n', (2037, 2047), False, 'import math\n'), ((2050, 2071), 'math.radians', 'math.radians', (['degrees'], {}), '(degrees)\n', (2062, 2071), False, 'import math\n'), ((2480, 2500), 'math.atan2', 'math.atan2', (['r_x', 'r_z'], {}), '(r_x, r_z)\n', (2490, 2500), False, 'import math\n'), ((2503, 2524), 'math.radians', 'math.radians', (['degrees'], {}), '(degrees)\n', (2515, 2524), False, 'import math\n'), ((2933, 2953), 'math.atan2', 'math.atan2', (['r_y', 'r_z'], {}), '(r_y, r_z)\n', (2943, 2953), False, 'import math\n'), ((2956, 2977), 'math.radians', 'math.radians', (['degrees'], {}), '(degrees)\n', (2968, 2977), False, 'import math\n'), ((3280, 3321), 'numpy.interp', 'np.interp', (['[z, z, z]', '[-10, 10]', '[0, 255]'], {}), '([z, z, z], [-10, 10], [0, 255])\n', (3289, 3321), True, 'import numpy as np\n'), ((3748, 3772), 'numpy.mean', 'np.mean', (['surface'], {'axis': '(0)'}), '(surface, axis=0)\n', (3755, 3772), True, 'import numpy as np\n'), ((3818, 3874), 'numpy.interp', 'np.interp', (['[mean_z, mean_z, mean_z]', '[-20, 20]', '[0, 255]'], {}), '([mean_z, mean_z, mean_z], [-20, 20], [0, 255])\n', (3827, 3874), True, 'import numpy as np\n'), ((2132, 2147), 'math.cos', 'math.cos', (['theta'], {}), '(theta)\n', (2140, 2147), False, 'import math\n'), ((2207, 2222), 'math.sin', 'math.sin', (['theta'], {}), '(theta)\n', (2215, 2222), False, 'import math\n'), ((2585, 2600), 'math.cos', 'math.cos', (['theta'], {}), '(theta)\n', (2593, 2600), False, 'import math\n'), ((2660, 2675), 'math.sin', 'math.sin', (['theta'], {}), '(theta)\n', (2668, 2675), False, 'import math\n'), ((3038, 3053), 'math.cos', 'math.cos', (['theta'], {}), '(theta)\n', (3046, 3053), False, 'import math\n'), ((3113, 3128), 'math.sin', 'math.sin', (['theta'], {}), '(theta)\n', (3121, 3128), False, 'import math\n'), ((3703, 3721), 'numpy.mean', 'np.mean', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (3710, 3721), True, 'import numpy as np\n')]
|
import torch
import torch.autograd
from torch.autograd import Variable
import torch.optim as optim
import torch.nn as nn
import numpy as np
import scipy as sp
import scipy.linalg
from qpsolvers import solve_qp
from core.DDPG import DDPGagent
from core.ConstraintNetwork import ConstraintNetwork
class SafeDDPGagent(DDPGagent):
def __init__(self, state_dim, act_dim, constraint_dim, num_agents, constraint_networks_dir, col_margin = 0.35 ,
hidden_size=256, actor_learning_rate=1e-4, critic_learning_rate=1e-3,
gamma=0.99, tau=1e-2, max_memory_size=16000, soften = True):
# Call DDPGagent's constructor
super().__init__(state_dim, act_dim, num_agents ,hidden_size,
actor_learning_rate, critic_learning_rate, gamma,
tau, max_memory_size)
# Extra Params
self.col_margin = col_margin
self.constraint_dim = constraint_dim
self.total_state_dim = self.state_dim * self.num_agents
self.total_constraint_dim = self.constraint_dim * self.num_agents
self.total_action_dim = self.act_dim * self.num_agents
self.constraint_nets = self.total_constraint_dim*[None]
# Initialize constraint networks
for i in range(self.total_constraint_dim):
self.constraint_nets[i] = ConstraintNetwork(self.total_state_dim, self.total_action_dim)
self.constraint_nets[i].load_state_dict(torch.load(constraint_networks_dir
+ "constraint_net_" + str(i) + ".pkl"))
# Define Solver Globaly
self.solver_interventions = 0
self.solver_infeasible = 0
# Choose Solver
if soften:
self.correct_actions = self.correct_actions_soften
else:
self.correct_actions = self.correct_actions_hard
def reset_metrics(self):
self.solver_interventions = 0
self.solver_infeasible = 0
def get_interventions(self):
return self.solver_interventions
def get_infeasible(self):
return self.solver_infeasible
@torch.no_grad()
def get_action(self, state, constraint):
state = Variable(torch.from_numpy(state).float().unsqueeze(0))
action = self.actor(state)
action = action.detach().numpy().flatten()
# transform numpy array into list of 3 actions
action = self.correct_actions(state, action, constraint)
actions = np.split(action, self.num_agents)
return actions
@torch.no_grad()
def correct_actions_hard(self, state, actions, constraint):
# (1) Problem Variables
# Problem specific constants
I = np.eye(self.total_action_dim)
ones = np.ones(self.total_action_dim)
C = np.concatenate(constraint)
# Formulate the constraints using neural networks
G = np.zeros([self.total_action_dim, self.total_action_dim])
for i, net in enumerate(self.constraint_nets):
G[i, :] = net(state).numpy()
# (2) Problem Variables in QP form
# Cost Function
q = -actions
P = np.eye(self.total_action_dim)
# Constraints
A = np.concatenate([-G, I, -I])
ub = np.concatenate([C - self.col_margin, ones, ones])
lb = None
# Solve Optimization Problem
try:
x = solve_qp(P.astype(np.float64), q.astype(np.float64), A.astype(np.float64),
ub.astype(np.float64), None, None, None, None)
except:
self.solver_infeasible +=1
return actions
# Count Solver interventions
if np.linalg.norm(actions - x) > 1e-3:
self.solver_interventions += 1
return x
@torch.no_grad()
def correct_actions_soften(self, state, actions, constraint):
# (1) Create solver as a globar variable
l1_penalty = 1000
# (2) Problem Variables
# Problem specific constants
I = np.eye(self.total_action_dim)
Z = np.zeros([self.total_action_dim, self.total_action_dim])
ones = np.ones(self.total_action_dim)
zeros = np.zeros(self.total_action_dim)
C = np.concatenate(constraint) - self.col_margin
# Formulate the constraints using neural networks
G = np.zeros([self.total_action_dim, self.total_action_dim])
for i, net in enumerate(self.constraint_nets):
G[i, :] = net(state).numpy()
# (2) Problem Variables in QP form
# Cost Function
P = sp.linalg.block_diag(I, Z + I * 0.001, Z + I * 0.001)
q = np.concatenate([-actions, ones, zeros])
# Constraints
A = np.vstack((np.concatenate([-G, Z, -I], axis = 1),
np.concatenate([Z, Z, -I], axis = 1),
np.concatenate([Z, -I, l1_penalty * I], axis = 1),
np.concatenate([Z, -I, -l1_penalty * I], axis = 1)))
ub = np.concatenate((C, zeros, zeros, zeros))
lb = None
# Solve Optimization Problem
try:
x = solve_qp(P.astype(np.float64), q.astype(np.float64), A.astype(np.float64),
ub.astype(np.float64), None, None, None, None)
x = x[0:(self.total_action_dim)]
except:
self.solver_infeasible +=1
return actions
# Count Solver interventions
if np.linalg.norm(actions - x) > 1e-3:
self.solver_interventions += 1
return x
|
[
"core.ConstraintNetwork.ConstraintNetwork",
"scipy.linalg.block_diag",
"numpy.zeros",
"numpy.ones",
"numpy.split",
"numpy.linalg.norm",
"numpy.eye",
"torch.no_grad",
"numpy.concatenate",
"torch.from_numpy"
] |
[((2130, 2145), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2143, 2145), False, 'import torch\n'), ((2551, 2566), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2564, 2566), False, 'import torch\n'), ((3784, 3799), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3797, 3799), False, 'import torch\n'), ((2488, 2521), 'numpy.split', 'np.split', (['action', 'self.num_agents'], {}), '(action, self.num_agents)\n', (2496, 2521), True, 'import numpy as np\n'), ((2716, 2745), 'numpy.eye', 'np.eye', (['self.total_action_dim'], {}), '(self.total_action_dim)\n', (2722, 2745), True, 'import numpy as np\n'), ((2761, 2791), 'numpy.ones', 'np.ones', (['self.total_action_dim'], {}), '(self.total_action_dim)\n', (2768, 2791), True, 'import numpy as np\n'), ((2807, 2833), 'numpy.concatenate', 'np.concatenate', (['constraint'], {}), '(constraint)\n', (2821, 2833), True, 'import numpy as np\n'), ((2908, 2964), 'numpy.zeros', 'np.zeros', (['[self.total_action_dim, self.total_action_dim]'], {}), '([self.total_action_dim, self.total_action_dim])\n', (2916, 2964), True, 'import numpy as np\n'), ((3162, 3191), 'numpy.eye', 'np.eye', (['self.total_action_dim'], {}), '(self.total_action_dim)\n', (3168, 3191), True, 'import numpy as np\n'), ((3227, 3254), 'numpy.concatenate', 'np.concatenate', (['[-G, I, -I]'], {}), '([-G, I, -I])\n', (3241, 3254), True, 'import numpy as np\n'), ((3268, 3317), 'numpy.concatenate', 'np.concatenate', (['[C - self.col_margin, ones, ones]'], {}), '([C - self.col_margin, ones, ones])\n', (3282, 3317), True, 'import numpy as np\n'), ((4028, 4057), 'numpy.eye', 'np.eye', (['self.total_action_dim'], {}), '(self.total_action_dim)\n', (4034, 4057), True, 'import numpy as np\n'), ((4074, 4130), 'numpy.zeros', 'np.zeros', (['[self.total_action_dim, self.total_action_dim]'], {}), '([self.total_action_dim, self.total_action_dim])\n', (4082, 4130), True, 'import numpy as np\n'), ((4147, 4177), 'numpy.ones', 'np.ones', (['self.total_action_dim'], {}), '(self.total_action_dim)\n', (4154, 4177), True, 'import numpy as np\n'), ((4194, 4225), 'numpy.zeros', 'np.zeros', (['self.total_action_dim'], {}), '(self.total_action_dim)\n', (4202, 4225), True, 'import numpy as np\n'), ((4361, 4417), 'numpy.zeros', 'np.zeros', (['[self.total_action_dim, self.total_action_dim]'], {}), '([self.total_action_dim, self.total_action_dim])\n', (4369, 4417), True, 'import numpy as np\n'), ((4594, 4647), 'scipy.linalg.block_diag', 'sp.linalg.block_diag', (['I', '(Z + I * 0.001)', '(Z + I * 0.001)'], {}), '(I, Z + I * 0.001, Z + I * 0.001)\n', (4614, 4647), True, 'import scipy as sp\n'), ((4660, 4699), 'numpy.concatenate', 'np.concatenate', (['[-actions, ones, zeros]'], {}), '([-actions, ones, zeros])\n', (4674, 4699), True, 'import numpy as np\n'), ((5011, 5051), 'numpy.concatenate', 'np.concatenate', (['(C, zeros, zeros, zeros)'], {}), '((C, zeros, zeros, zeros))\n', (5025, 5051), True, 'import numpy as np\n'), ((1340, 1402), 'core.ConstraintNetwork.ConstraintNetwork', 'ConstraintNetwork', (['self.total_state_dim', 'self.total_action_dim'], {}), '(self.total_state_dim, self.total_action_dim)\n', (1357, 1402), False, 'from core.ConstraintNetwork import ConstraintNetwork\n'), ((3681, 3708), 'numpy.linalg.norm', 'np.linalg.norm', (['(actions - x)'], {}), '(actions - x)\n', (3695, 3708), True, 'import numpy as np\n'), ((4242, 4268), 'numpy.concatenate', 'np.concatenate', (['constraint'], {}), '(constraint)\n', (4256, 4268), True, 'import numpy as np\n'), ((5461, 5488), 'numpy.linalg.norm', 'np.linalg.norm', (['(actions - x)'], {}), '(actions - x)\n', (5475, 5488), True, 'import numpy as np\n'), ((4746, 4781), 'numpy.concatenate', 'np.concatenate', (['[-G, Z, -I]'], {'axis': '(1)'}), '([-G, Z, -I], axis=1)\n', (4760, 4781), True, 'import numpy as np\n'), ((4808, 4842), 'numpy.concatenate', 'np.concatenate', (['[Z, Z, -I]'], {'axis': '(1)'}), '([Z, Z, -I], axis=1)\n', (4822, 4842), True, 'import numpy as np\n'), ((4869, 4916), 'numpy.concatenate', 'np.concatenate', (['[Z, -I, l1_penalty * I]'], {'axis': '(1)'}), '([Z, -I, l1_penalty * I], axis=1)\n', (4883, 4916), True, 'import numpy as np\n'), ((4944, 4992), 'numpy.concatenate', 'np.concatenate', (['[Z, -I, -l1_penalty * I]'], {'axis': '(1)'}), '([Z, -I, -l1_penalty * I], axis=1)\n', (4958, 4992), True, 'import numpy as np\n'), ((2216, 2239), 'torch.from_numpy', 'torch.from_numpy', (['state'], {}), '(state)\n', (2232, 2239), False, 'import torch\n')]
|
import pandas as pd
import numpy as np
from gamechangerml.src.utilities.text_utils import normalize_answer, normalize_query, get_tokens
from gamechangerml.src.utilities.test_utils import *
from gamechangerml.configs.config import ValidationConfig, TrainingConfig
from gamechangerml.api.utils.logger import logger
from gamechangerml.src.utilities.es_search_utils import get_paragraph_results, connect_es
from gamechangerml.src.utilities.test_utils import filter_date_range
ES_URL = 'https://vpc-gamechanger-iquxkyq2dobz4antllp35g2vby.us-east-1.es.amazonaws.com'
class ValidationData():
def __init__(self, validation_dir):
self.validation_dir = validation_dir
class SQuADData(ValidationData):
def __init__(
self,
validation_dir=ValidationConfig.DATA_ARGS['validation_dir'],
squad_path=ValidationConfig.DATA_ARGS['squad']['dev'],
sample_limit=None
):
super().__init__(validation_dir)
logger.info(f"Pulling validation data from {str(os.path.join(validation_dir, squad_path))}")
if not os.path.exists(os.path.join(validation_dir, squad_path)):
logger.warning("No directory exists for this validation data.")
self.dev = open_json(squad_path, validation_dir)
self.queries = self.get_squad_sample(sample_limit)
def get_squad_sample(self, sample_limit):
'''Format SQuAD data into list of dictionaries (length = sample size)'''
data_limit = len(self.dev['data'])
if sample_limit:
data_limit = np.min([data_limit, sample_limit])
par_limit = sample_limit // data_limit
else:
par_limit = np.max([len(d['paragraphs']) for d in self.dev['data']])
count = 0
queries = []
for p in range(par_limit):
for d in range(data_limit):
try:
base = self.dev['data'][d]['paragraphs'][p]
context = base['context']
questions = base['qas']
q_limit = np.min([2, par_limit, len(questions)])
for q in range(q_limit):
if count < sample_limit:
count += 1
mydict = {
"search_context": context,
"question": questions[q]['question'],
"id": questions[q]['id'],
"null_expected": questions[q]['is_impossible'],
"expected": questions[q]['answers']
}
queries.append(mydict)
else:
break
except:
pass
logger.info("Generated {} question/answer pairs from SQuAD dataset".format(len(queries)))
return queries
class QADomainData(ValidationData):
def __init__(
self,
validation_dir=ValidationConfig.DATA_ARGS['validation_dir'],
qa_gc_data_path=ValidationConfig.DATA_ARGS['question_gc']['queries']
):
super().__init__(validation_dir)
self.all_queries = open_json(qa_gc_data_path, self.validation_dir)
self.queries = self.check_queries()
def check_queries(self):
'''Check that in-domain examples contain expected answers in their context'''
checked = []
for test in self.all_queries['test_queries']:
alltext = normalize_query(' '.join(test['search_context']))
checked_answers = [i for i in test['expected'] if normalize_answer(i['text']) in alltext]
test['expected'] = checked_answers
if test['expected'] != []:
checked.append(test)
else:
logger.info("Could not add {} to test queries: answer not in context".format(test['question']))
logger.info("Generated {} question/answer pairs from in-domain data".format(len(checked)))
return checked
class MSMarcoData(ValidationData):
def __init__(
self,
validation_dir=ValidationConfig.DATA_ARGS['validation_dir'],
queries=ValidationConfig.DATA_ARGS['msmarco']['queries'],
collection=ValidationConfig.DATA_ARGS['msmarco']['collection'],
relations=ValidationConfig.DATA_ARGS['msmarco']['relations'],
metadata=ValidationConfig.DATA_ARGS['msmarco']['metadata']
):
super().__init__(validation_dir)
self.queries = open_json(queries, self.validation_dir)
self.collection = open_json(collection, self.validation_dir)
self.relations = open_json(relations, self.validation_dir)
self.metadata = open_json(metadata, self.validation_dir)
self.corpus = self.get_msmarco_corpus()
def get_msmarco_corpus(self):
'''Format MSMarco so it can be indexed like the GC corpus'''
return [(x, y, '') for x, y in self.collection.items()]
class RetrieverGSData(ValidationData):
def __init__(
self,
validation_dir,
available_ids,
gold_standard):
super().__init__(validation_dir)
self.samples = pd.read_csv(os.path.join(self.validation_dir, gold_standard), names=['query', 'document'])
self.queries, self.collection, self.relations = self.dictify_data(available_ids)
def dictify_data(self, available_ids):
'''
Filter out any validation queries whose documents areen't in the index.
Forrmat gold standard csv examples into MSMarco format.
'''
ids = ['.'.join(i.strip('\n').split('.')[:-1]).strip().lstrip() for i in available_ids]
self.samples['document'] = self.samples['document'].apply(lambda x: [i.strip().lstrip() for i in x.split(';')])
self.samples = self.samples.explode('document')
df = self.samples[self.samples['document'].isin(ids)] # check ids are in the index
if df.shape[0] < self.samples.shape[0]:
all_ids = self.samples['document'].unique()
missing_ids = [i for i in all_ids if i not in ids]
logger.info("Validation IDs not in the index (removed from validation set): {}".format(missing_ids))
logger.info("Number of missing IDs: {}".format(str(len(missing_ids))))
logger.info("Number documents in the index to test: {}".format(str(len(all_ids) - len(missing_ids))))
df = df.groupby('query').agg({'document': lambda x: x.tolist()}).reset_index()
query_list = df['query'].to_list()
doc_list = df['document'].to_list()
q_idx = ["query_" + str(i) for i in range(len(query_list))]
queries = dict(zip(q_idx, query_list))
collection = dict(zip(all_ids, all_ids))
relations = dict(zip(q_idx, doc_list))
logger.info("Generated {} test queries of gold standard data".format(len(query_list)))
return queries, collection, relations
class UpdatedGCRetrieverData(RetrieverGSData):
def __init__(self,
available_ids,
level=['gold', 'silver'],
data_path=None,
validation_dir=ValidationConfig.DATA_ARGS['validation_dir'],
gold_standard=ValidationConfig.DATA_ARGS['retriever_gc']['gold_standard']
):
super().__init__(validation_dir, available_ids, gold_standard)
try:
if data_path: # if there is a path for data, use that
self.data_path = os.path.join(data_path, level)
else:
new_data = get_most_recent_dir(os.path.join(ValidationConfig.DATA_ARGS['validation_dir'], 'sent_transformer'))
self.data_path = os.path.join(new_data, level)
self.new_queries, self.new_collection, self.new_relations = self.load_new_data()
self.combine_in_domain()
except:
logger.info(f"Error getting data from {new_data}. Could not create UpdatedGCRetrieverData object.")
def load_new_data(self):
f = open_json('intelligent_search_data.json', self.data_path)
intel = json.loads(f)
logger.info(f"Added {str(len(intel['correct']))} correct query/sent pairs from updated GC retriever data.")
return intel['queries'], intel['collection'], intel['correct']
def combine_in_domain(self):
self.queries.update({k:v for (k, v) in self.new_queries.items() if k in self.new_relations.keys()})
self.collection.update(self.new_collection)
self.relations.update(self.new_relations)
return
class NLIData(ValidationData):
def __init__(
self,
sample_limit,
validation_dir=ValidationConfig.DATA_ARGS['validation_dir'],
matched=ValidationConfig.DATA_ARGS['nli']['matched'],
mismatched=ValidationConfig.DATA_ARGS['nli']['matched']
):
super().__init__(validation_dir)
self.matched = open_jsonl(matched, self.validation_dir)
self.mismatched = open_jsonl(mismatched, self.validation_dir)
self.sample_csv = self.get_sample_csv(sample_limit)
self.query_lookup = dict(zip(self.sample_csv['promptID'], self.sample_csv['sentence1']))
def get_sample_csv(self, sample_limit):
'''Format NLI data into smaller sample for evaluation'''
match_df = pd.DataFrame(self.matched)
mismatched_df = pd.DataFrame(self.mismatched)
match_df['set'] = 'matched'
mismatched_df['set'] = 'mismatched'
both = pd.concat([match_df, mismatched_df])
# assign int ranks based on gold label
gold_labels_map = {
'entailment': 2,
'neutral': 1,
'contradiction': 5
}
both['gold_label_int'] = both['gold_label'].map(gold_labels_map)
# filter out propmtIDs that don't have a clear 0, 1, 2 rank
sum_map = both.groupby('promptID')['gold_label_int'].sum().to_dict()
both['rank_sum'] = both['promptID'].map(sum_map)
both = both[both['rank_sum']==8]
# map ranks
rank_map = {
'entailment': 0,
'neutral': 1,
'contradiction': 2
}
both['expected_rank'] = both['gold_label'].map(rank_map)
cats = both['genre'].nunique()
# get smaller sample df with even proportion of genres across matched/mismatched
sample = pd.DataFrame()
for i in both['genre'].unique():
subset = both[both['genre']==i].sort_values(by='promptID')
if sample_limit:
split = sample_limit * 3 // cats
subset = subset.head(split)
sample = pd.concat([sample, subset])
logger.info(("Created {} sample sentence pairs from {} unique queries:".format(sample.shape[0], sample_limit)))
return sample[['genre', 'gold_label', 'pairID', 'promptID', 'sentence1', 'sentence2', 'expected_rank']]
class MatamoFeedback():
def __init__(
self,
start_date,
end_date,
exclude_searches
):
self.matamo = concat_matamo()
self.start_date = start_date
self.end_date = end_date
self.exclude_searches=exclude_searches
self.intel, self.qa = self.split_matamo()
def split_matamo(self):
'''Split QA queries from intelligent search queries'''
df = self.matamo
if self.start_date or self.end_date:
df = filter_date_range(df, self.start_date, self.end_date)
df.drop_duplicates(subset = ['user_id', 'createdAt', 'value_1', 'value_2'], inplace = True)
df['source'] = 'matamo'
df['correct'] = df['event_name'].apply(lambda x: ' '.join(x.split('_')[-2:])).map({'thumbs up': True, 'thumbs down': False})
df['type'] = df['event_name'].apply(lambda x: ' '.join(x.split('_')[:-2]))
df['value_5'] = df['value_5'].apply(lambda x: x.replace('sentence_results', 'sentence_results:') if type(x)==str else x)
intel = df[df['type']=='intelligent search'].copy()
intel.dropna(axis=1, how='all', inplace = True)
qa = df[df['type']=='qa'].copy()
qa.dropna(axis=1, how='all', inplace = True)
def process_matamo(df):
'''Reformat Matamo feedback'''
queries = []
cols = [i for i in df.columns if i[:5]=='value']
def process_row(row, col_name):
'''Split the pre-colon text from rows'''
if ':' in row:
row = row.split(':')
key = row[0]
vals = ':'.join(row[1:])
return key, vals
else:
return col_name, row
for i in df.index:
query = {}
query['date'] = df.loc[i, 'createdAt']
query['source'] = 'matamo'
query['correct_match'] = df.loc[i, 'correct']
for j in cols:
row = df.loc[i, j]
if type(row) == str and row[0] != '[':
key, val = process_row(row, j)
query[key] = val
if key in ['question', 'search_text', 'QA answer']:
clean_val = normalize_query(val)
clean_key = key + '_clean'
query[clean_key] = clean_val
queries.append(query)
return pd.DataFrame(queries)
return process_matamo(intel), process_matamo(qa)
class SearchHistory():
def __init__(
self,
start_date,
end_date,
exclude_searches
):
self.history = concat_search_hist()
self.start_date = start_date
self.end_date = end_date
self.exclude_searches=exclude_searches
self.intel_matched, self.intel_unmatched = self.split_feedback()
def split_feedback(self):
df = self.history
if self.start_date or self.end_date:
df = filter_date_range(df, self.start_date, self.end_date)
df.dropna(subset = ['search'], inplace = True) # drop all rows where is no search
if self.exclude_searches:
logger.info(f"Excluding searches: {str(self.exclude_searches)}")
df = df[~df['search'].isin(self.exclude_searches)] # remove searches we don't want to use
df.drop_duplicates(subset = ['idvisit', 'document', 'search'], inplace = True) # drop duplicates
df['source'] = 'user_history'
def clean_quot(string):
return string.replace('"', "'").replace("'", "'").lower()
def clean_doc(string):
return string.strip('.pdf')
def is_question(string):
'''If we find a good way to use search history for QA validation (not used currently)'''
question_words = ['what', 'who', 'where', 'why', 'how', 'when']
if '?' in string:
return True
else:
return bool(set(string.lower().split()).intersection(question_words))
df.rename(columns = {'documenttime': 'date', 'search': 'search_text', 'document': 'title_returned'}, inplace = True)
df['search_text'] = df['search_text'].apply(lambda x: clean_quot(x))
df['search_text_clean'] = df['search_text'].apply(lambda x: normalize_query(x))
df = df[df['search_text_clean'] != ''].copy()
df.drop(columns = ['idvisit', 'idaction_name', 'search_cat', 'searchtime'], inplace = True)
matched = df[~df['title_returned'].isnull()].copy()
matched['correct_match'] = True
matched['title_returned'] = matched['title_returned'].apply(lambda x: clean_doc(x))
#matched['is_question'] = matched['search'].apply(lambda x: is_question(x))
unmatched = df[df['title_returned'].isnull()].copy()
unmatched['correct_match'] = False
return matched, unmatched
class SearchValidationData():
def __init__(
self,
start_date,
end_date,
exclude_searches
):
self.start_date = start_date
self.end_date = end_date
self.exclude_searches=exclude_searches
self.matamo_data = MatamoFeedback(self.start_date, self.end_date, self.exclude_searches)
self.history_data = SearchHistory(self.start_date, self.end_date, self.exclude_searches)
class QASearchData(SearchValidationData):
##TODO: add context relations attr for QASearchData
def __init__(
self,
start_date,
end_date,
exclude_searches,
min_correct_matches,
max_results
):
super().__init__(start_date, end_date, exclude_searches)
self.data = self.matamo_data.qa
self.min_correct_matches = min_correct_matches
self.max_results = max_results
self.queries, self.collection, self.all_relations, self.correct, self.incorrect = self.make_qa()
def make_qa(self):
qa = self.data
# get set of queries + make unique query dict
qa_queries = set(qa['question_clean'])
qa_search_queries = update_dictionary(old_dict = {}, new_additions = qa_queries, prefix = 'Q')
# get set of docs + make unique doc dict
qa_answers = set(qa['QA answer_clean'])
qa_search_results = update_dictionary(old_dict = {}, new_additions = qa_answers, prefix = 'A')
# map IDs back to df
qa = map_ids(qa_search_queries, qa, 'question_clean', 'key')
qa = map_ids(qa_search_results, qa, 'QA answer_clean', 'value')
# create new QA metadata rels
qa_metadata = {} # TODO: add option to add existing metadata
new_qa_metadata = update_meta_relations(qa_metadata, qa, 'question', 'QA answer')
# filtere the metadata to only get relations we want to test against
correct, incorrect = filter_rels(new_qa_metadata, min_correct_matches=self.min_correct_matches, max_results=self.max_results)
return qa_search_queries, qa_search_results, new_qa_metadata, correct, incorrect
class IntelSearchData(SearchValidationData):
def __init__(
self,
start_date,
end_date,
exclude_searches,
min_correct_matches,
max_results
):
super().__init__(start_date, end_date, exclude_searches)
self.exclude_searches = exclude_searches
self.data = pd.concat([self.matamo_data.intel, self.history_data.intel_matched]).reset_index()
self.min_correct_matches = min_correct_matches
self.max_results = max_results
self.queries, self.collection, self.all_relations, self.correct, self.incorrect = self.make_intel()
def make_intel(self):
intel = self.data
intel = intel[~intel['search_text'].isin(self.exclude_searches)]
int_queries = set(intel['search_text_clean'])
intel_search_queries = update_dictionary(old_dict = {}, new_additions = int_queries, prefix ='S')
int_docs = set(intel['title_returned'])
intel_search_results = update_dictionary(old_dict = {}, new_additions = int_docs, prefix ='R')
# map IDS back to dfs
intel = map_ids(intel_search_queries, intel, 'search_text_clean', 'key')
intel = map_ids(intel_search_results, intel, 'title_returned', 'value')
# create new intel search metadata rels
intel_metadata = {} # TODO: add option to add existing metadata
new_intel_metadata = update_meta_relations(intel_metadata, intel, 'search_text', 'title_returned')
# filtere the metadata to only get relations we want to test against
logger.info(f"min_correct_matches: {(str(self.min_correct_matches))}")
logger.info(f"max_results: {(str(self.max_results))}")
correct, incorrect = filter_rels(new_intel_metadata, min_correct_matches=self.min_correct_matches, max_results=self.max_results)
return intel_search_queries, intel_search_results, new_intel_metadata, correct, incorrect
class QEXPDomainData(ValidationData):
def __init__(
self,
validation_dir=ValidationConfig.DATA_ARGS['validation_dir'],
qe_gc_path=ValidationConfig.DATA_ARGS['qe_gc']
):
super().__init__(validation_dir)
self.data = open_json(qe_gc_path, self.validation_dir)['queries']
|
[
"pandas.DataFrame",
"gamechangerml.api.utils.logger.logger.info",
"gamechangerml.src.utilities.text_utils.normalize_query",
"numpy.min",
"gamechangerml.src.utilities.test_utils.filter_date_range",
"gamechangerml.api.utils.logger.logger.warning",
"gamechangerml.src.utilities.text_utils.normalize_answer",
"pandas.concat"
] |
[((9324, 9350), 'pandas.DataFrame', 'pd.DataFrame', (['self.matched'], {}), '(self.matched)\n', (9336, 9350), True, 'import pandas as pd\n'), ((9375, 9404), 'pandas.DataFrame', 'pd.DataFrame', (['self.mismatched'], {}), '(self.mismatched)\n', (9387, 9404), True, 'import pandas as pd\n'), ((9500, 9536), 'pandas.concat', 'pd.concat', (['[match_df, mismatched_df]'], {}), '([match_df, mismatched_df])\n', (9509, 9536), True, 'import pandas as pd\n'), ((10378, 10392), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (10390, 10392), True, 'import pandas as pd\n'), ((1141, 1204), 'gamechangerml.api.utils.logger.logger.warning', 'logger.warning', (['"""No directory exists for this validation data."""'], {}), "('No directory exists for this validation data.')\n", (1155, 1204), False, 'from gamechangerml.api.utils.logger import logger\n'), ((1548, 1582), 'numpy.min', 'np.min', (['[data_limit, sample_limit]'], {}), '([data_limit, sample_limit])\n', (1554, 1582), True, 'import numpy as np\n'), ((10648, 10675), 'pandas.concat', 'pd.concat', (['[sample, subset]'], {}), '([sample, subset])\n', (10657, 10675), True, 'import pandas as pd\n'), ((11457, 11510), 'gamechangerml.src.utilities.test_utils.filter_date_range', 'filter_date_range', (['df', 'self.start_date', 'self.end_date'], {}), '(df, self.start_date, self.end_date)\n', (11474, 11510), False, 'from gamechangerml.src.utilities.test_utils import filter_date_range\n'), ((13478, 13499), 'pandas.DataFrame', 'pd.DataFrame', (['queries'], {}), '(queries)\n', (13490, 13499), True, 'import pandas as pd\n'), ((14069, 14122), 'gamechangerml.src.utilities.test_utils.filter_date_range', 'filter_date_range', (['df', 'self.start_date', 'self.end_date'], {}), '(df, self.start_date, self.end_date)\n', (14086, 14122), False, 'from gamechangerml.src.utilities.test_utils import filter_date_range\n'), ((7885, 7994), 'gamechangerml.api.utils.logger.logger.info', 'logger.info', (['f"""Error getting data from {new_data}. Could not create UpdatedGCRetrieverData object."""'], {}), "(\n f'Error getting data from {new_data}. Could not create UpdatedGCRetrieverData object.'\n )\n", (7896, 7994), False, 'from gamechangerml.api.utils.logger import logger\n'), ((15415, 15433), 'gamechangerml.src.utilities.text_utils.normalize_query', 'normalize_query', (['x'], {}), '(x)\n', (15430, 15433), False, 'from gamechangerml.src.utilities.text_utils import normalize_answer, normalize_query, get_tokens\n'), ((18609, 18677), 'pandas.concat', 'pd.concat', (['[self.matamo_data.intel, self.history_data.intel_matched]'], {}), '([self.matamo_data.intel, self.history_data.intel_matched])\n', (18618, 18677), True, 'import pandas as pd\n'), ((3636, 3663), 'gamechangerml.src.utilities.text_utils.normalize_answer', 'normalize_answer', (["i['text']"], {}), "(i['text'])\n", (3652, 3663), False, 'from gamechangerml.src.utilities.text_utils import normalize_answer, normalize_query, get_tokens\n'), ((13287, 13307), 'gamechangerml.src.utilities.text_utils.normalize_query', 'normalize_query', (['val'], {}), '(val)\n', (13302, 13307), False, 'from gamechangerml.src.utilities.text_utils import normalize_answer, normalize_query, get_tokens\n')]
|
from queue import *
from Segmentation import CombinedHist
import numpy as np
#Thia class is a queuse of histograms
class HistQueue:
size = 0
added_elements = 0
hist_queue = Queue()
total_blue_histr = np.zeros((256,1),dtype = np.float32)
total_green_histr = np.zeros((256,1),dtype = np.float32)
total_red_histr = np.zeros((256,1),dtype = np.float32)
# initializer
def __init__(self, size):
self.size = size
self.hist_queue = Queue(size)
# this will insert a new histr to qwuee
# if the queue is full this will remove the first element and
# then insert the new histr
def insert_histr(self, combined_histr):
self.added_elements +=1
if self.hist_queue.qsize() < self.size:
self.hist_queue.put(combined_histr)
self.increaseTotalValues(combined_histr)
else:
removed_hist = self.hist_queue.get()
self.decreaseTotalValues(removed_hist)
self.hist_queue.put(combined_histr)
self.increaseTotalValues(combined_histr)
# this will return the size of the queue
def getMaximumSize(self):
return self.size
# this will return the number of elements currently added to the queue
def getAddedNoOfHistr(self):
return self.added_elements
#this will return an average hist from the elements in the queue
def getAverageHist(self):
if self.added_elements>0:
avg_blue_histr = self.total_blue_histr/self.added_elements
avg_green_histr = self.total_green_histr / self.added_elements
avg_red_histr = self.total_red_histr / self.added_elements
return CombinedHist.CombinedHist(avg_blue_histr, avg_green_histr, avg_red_histr)
else:
return CombinedHist.CombinedHist(np.zeros((256, 1), dtype = np.float32), np.zeros((256, 1), dtype = np.float32), np.zeros((256, 1), dtype = np.float32))
#this will increase the total values for a given hist
def increaseTotalValues(self,cmbHist):
#cmbHist = CombinedHist.CombinedHist(CombinedHists)
self.total_blue_histr += cmbHist.getBlueHistr()
self.total_green_histr += cmbHist.getGreenHistr()
self.total_red_histr += cmbHist.getRedHistr()
# this will increase the total values for a given hist
def decreaseTotalValues(self, cmbHist):
#cmbHist = CombinedHist.CombinedHist(CombinedHists)
self.total_blue_histr -= cmbHist.getBlueHistr()
self.total_green_histr -= cmbHist.getGreenHistr()
self.total_red_histr -= cmbHist.getRedHistr()
|
[
"Segmentation.CombinedHist.CombinedHist",
"numpy.zeros"
] |
[((219, 255), 'numpy.zeros', 'np.zeros', (['(256, 1)'], {'dtype': 'np.float32'}), '((256, 1), dtype=np.float32)\n', (227, 255), True, 'import numpy as np\n'), ((280, 316), 'numpy.zeros', 'np.zeros', (['(256, 1)'], {'dtype': 'np.float32'}), '((256, 1), dtype=np.float32)\n', (288, 316), True, 'import numpy as np\n'), ((339, 375), 'numpy.zeros', 'np.zeros', (['(256, 1)'], {'dtype': 'np.float32'}), '((256, 1), dtype=np.float32)\n', (347, 375), True, 'import numpy as np\n'), ((1686, 1759), 'Segmentation.CombinedHist.CombinedHist', 'CombinedHist.CombinedHist', (['avg_blue_histr', 'avg_green_histr', 'avg_red_histr'], {}), '(avg_blue_histr, avg_green_histr, avg_red_histr)\n', (1711, 1759), False, 'from Segmentation import CombinedHist\n'), ((1819, 1855), 'numpy.zeros', 'np.zeros', (['(256, 1)'], {'dtype': 'np.float32'}), '((256, 1), dtype=np.float32)\n', (1827, 1855), True, 'import numpy as np\n'), ((1859, 1895), 'numpy.zeros', 'np.zeros', (['(256, 1)'], {'dtype': 'np.float32'}), '((256, 1), dtype=np.float32)\n', (1867, 1895), True, 'import numpy as np\n'), ((1899, 1935), 'numpy.zeros', 'np.zeros', (['(256, 1)'], {'dtype': 'np.float32'}), '((256, 1), dtype=np.float32)\n', (1907, 1935), True, 'import numpy as np\n')]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.