code
stringlengths 31
1.05M
| apis
list | extract_api
stringlengths 97
1.91M
|
---|---|---|
import logging
from typing import List, Dict, Any, Tuple, Callable
import math
import numpy as np
from scipy.special import logit
from fiesta.util import belief_calc
logger = logging.getLogger(__name__)
def TTTS(data: List[Dict[str, Any]],
model_functions: List[Callable[[List[Dict[str, Any]],
List[Dict[str, Any]]], float]],
split_function: Callable[[List[Dict[str, Any]]],
Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]],
p_value: float, logit_transform: bool = False, samples: int = 100000
) -> Tuple[List[float], List[float], int, List[List[float]]]:
'''
:param data: A list of dictionaries, that as a whole represents the entire
dataset. Each dictionary within the list represents
one sample from the dataset.
:param model_functions: A list of functions that represent different
models e.g. pytorch model. Which take a train and
test dataset as input and returns a metric score
e.g. Accuracy. The model functions should not have
random seeds set else it defeats the point of
finding the best model independent of the random
seed and data split.
:param split_function: A function that can be used to split the data into
train and test splits. This should produce random
splits each time it is called. If you would like to
use a fixed split each time, you can hard code this
function to produce a fixed split each time.
:param p_value: The significance value for the best model to be truely the
best model e.g. 0.05 if you want to be at least
95% confident.
:param logit_transform: Whether to transform the model function's returned
metric score by the logit function.
:param samples: Number of samples to generate from our belief distribution
for each model. This argument is passed directly to
:func:`fiesta.util.belief_calc` within this function.
This should be large e.g. minimum 10000.
:returns: Tuple containing 4 values:
1. The confidence socres for each model, the best model should
have the highest confidence
2. The number of times each model was evaluated as a proportion of
the number of evaluations
3. The total number of model evaluations
4. The scores that each model generated when evaluated.
:NOTE: That if the logit transform is True then the last item in
the tuple would be scores that have been transformed by
the logit function.
:raises ValueError: If the ``p_value`` is not between 0 and 1.
'''
if p_value < 0.0 or p_value > 1.0:
raise ValueError('The p value has to be between 0 and 1 and '
f'not: {p_value}')
num_models = len(model_functions)
total_samples = samples * num_models
# initialize data storage
# (use lists because will be of different lengths)
evaluations = [[] for _ in range(num_models)]
est_means = np.zeros(num_models)
est_variances = np.zeros(num_models)
# Number of times each model has been evaluated.
eval_counts = np.zeros(num_models)
init_num_evals = 3
#start by evaluating each model 3 times
for model_index, model_function in enumerate(model_functions):
for _ in range(0, init_num_evals):
train, test = split_function(data)
score = model_function(train, test)
if logit_transform:
score = logit(score)
evaluations[model_index].append(score)
est_means[model_index] = np.mean(evaluations[model_index])
est_variances[model_index] = np.var(evaluations[model_index], ddof=0)
eval_counts[model_index] = len(evaluations[model_index])
#initialize belief about location of best arm
pi = belief_calc(est_means, est_variances, eval_counts, total_samples)
#run TTTS until hit required confidence
#count number of evals
num = init_num_evals * num_models
#store running counts of each arm pulled
#props = []
#pis = []
while max(pi) < 1 - p_value:
# Get new train test split
train, test = split_function(data)
#pis.append(pi)
#sample m-1
m_1 = np.random.choice(range(0, num_models), 1, p=pi)[0]
r = np.random.uniform(0, 1)
if r<=0.5:
#eval model m_1
score = model_functions[m_1](train, test)
if logit_transform:
score = logit(score)
evaluations[m_1].append(score)
#update summary stats
est_means[m_1] = np.mean(evaluations[m_1])
est_variances[m_1] = np.var(evaluations[m_1],ddof=0)
eval_counts[m_1] += 1
logger.info("Evalaution: %s, Model: %s", str(num), str(m_1))
else:
#sample other model
m_2 = np.random.choice(range(0, num_models), 1, p=pi)[0]
#resample until unique from model 1
while m_1==m_2:
m_2 = np.random.choice(range(0, num_models), 1, p=pi)[0]
#eval m_2
score = model_functions[m_2](train, test)
if logit_transform:
score = logit(score)
evaluations[m_2].append(score)
#update summary stats
est_means[m_2] = np.mean(evaluations[m_2])
est_variances[m_2] = np.var(evaluations[m_2],ddof=0)
eval_counts[m_2] += 1
logger.info("Evalaution: %s, Model: %s", str(num), str(m_2))
num += 1
#update belief
pi = belief_calc(est_means,est_variances,eval_counts, total_samples)
logger.info("Evalaution: %s, Model confidences: %s", str(num), str(pi))
logger.info("selected model %s", str(np.argmax(pi)))
props = [x / sum(eval_counts) for x in eval_counts]
return pi, props, num, evaluations
def sequential_halving(data: List[Dict[str, Any]],
model_functions: List[Callable[[List[Dict[str, Any]],
List[Dict[str, Any]]], float]],
split_function: Callable[[List[Dict[str, Any]]],
Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]],
budget: int, logit_transform: bool = False
) -> Tuple[int, List[float], List[List[float]]]:
'''
:param data: A list of dictionaries, that as a whole represents the entire
dataset. Each dictionary within the list represents
one sample from the dataset.
:param model_functions: A list of functions that represent different
models e.g. pytorch model. Which take a train and
test dataset as input and returns a metric score
e.g. Accuracy. The model functions should not have
random seeds set else it defeats the point of
finding the best model independent of the random
seed and data split.
:param split_function: A function that can be used to split the data into
train and test splits. This should produce random
splits each time it is called. If you would like to
use a fixed split each time, you can hard code this
function to produce a fixed split each time.
:param budget: The total number of evaluations
:param logit_transform: Whether to transform the model function's returned
metric score by the logit function.
:returns: Tuple containing 3 values:
1. The best performing model function index given the budget
2. The number of times each model was evaluated as a proportion
of the total number of evaluations
3. The scores that each model generated when evaluated.
:NOTE: That if the logit transform is True then the last item in
the tuple would be scores that have been transformed by
the logit function.
:raises ValueError: Given budget :math:`T` and the models :math:`N` this
will be raised if: :math:`T < (|N| * \log_2|N|)`
'''
num_models = len(model_functions)
R = math.ceil(np.log2(num_models))
min_num_models = num_models * R
if budget < min_num_models:
raise ValueError(f'The budget {budget} cannot be smaller than (the '
f'number of models to evaluate {num_models}) * '
'(the log to the base 2 of the number of models '
f'{R}) = {min_num_models}')
evaluations = [[] for x in range(0, num_models)]
candidate_names = [x for x in range(0, num_models)]
candidate_est_means = [0 for x in range(0, num_models)]
_round = 0
while len(candidate_names) != 1:
# calc number of evals for this round
number_candidates = len(candidate_names)
num_evals = math.floor(budget / (number_candidates * R))
logger.info("Starting round %s, with %s models, with %s this round",
str(_round), str(number_candidates), str(num_evals))
# collect evaluations
for candidate_name in candidate_names:
for _ in range(0, num_evals):
train, test = split_function(data)
score = model_functions[candidate_name](train, test)
if logit_transform:
score = logit(score)
evaluations[candidate_name].append(score)
# update means
candidate_index = candidate_names.index(candidate_name)
candidate_est_mean = np.mean(evaluations[candidate_name])
candidate_est_means[candidate_index] = candidate_est_mean
# remove approx half models
for _ in range(0, math.floor(number_candidates / 2)):
drop_index = np.argmin(candidate_est_means)
del candidate_names[drop_index]
del candidate_est_means[drop_index]
_round = _round + 1
total_num_evals = sum([len(model_evaluations) for model_evaluations in evaluations])
props = [len(model_evaluations) / total_num_evals for model_evaluations in evaluations]
return candidate_names[0], props, evaluations
def non_adaptive_fb(data: List[Dict[str, Any]],
model_functions: List[Callable[[List[Dict[str, Any]],
List[Dict[str, Any]]], float]],
split_function: Callable[[List[Dict[str, Any]]],
Tuple[List[Dict[str, Any]],
List[Dict[str, Any]]]],
budget: int, logit_transform: bool = False
) -> Tuple[int, List[List[float]]]:
'''
:param data: A list of dictionaries, that as a whole represents the entire
dataset. Each dictionary within the list represents
one sample from the dataset.
:param model_functions: A list of functions that represent different
models e.g. pytorch model. Which take a train and
test dataset as input and returns a metric score
e.g. Accuracy. The model functions should not have
random seeds set else it defeats the point of
finding the best model independent of the random
seed and data split.
:param split_function: A function that can be used to split the data into
train and test splits. This should produce random
splits each time it is called. If you would like to
use a fixed split each time, you can hard code this
function to produce a fixed split each time.
:param budget: The total number of evaluations
:param logit_transform: Whether to transform the model function's returned
metric score by the logit function.
:returns: Tuple containing 2 values:
1. The best performing model function index given the budget
2. The scores that each model generated when evaluated.
:NOTE: That if the logit transform is True then the last item in
the tuple would be scores that have been transformed by
the logit function.
:raises ValueError: Given budget :math:`T` and the models :math:`N` this
will be raised if: :math:`T < |N|`
'''
num_models = len(model_functions)
if budget < num_models:
raise ValueError(f'The budget {budget} cannot be smaller than the '
f'number of models to evaluate {num_models}')
evals: List[List[float]] = []
num_evals_per_model = math.floor(budget / num_models)
for model_function in model_functions:
model_evals: List[float] = []
for _ in range(0, num_evals_per_model):
train, test = split_function(data)
score = model_function(train, test)
if logit_transform:
score = logit(score)
model_evals.append(score)
evals.append(model_evals)
# return model index with largest sample mean, and all the models scores.
eval_means = np.mean(evals, axis=1)
num_means = len(eval_means)
assert_msg = f'The number of means: {num_means} should equal the number of'\
f' models {num_models}'
assert len(eval_means) == num_models, assert_msg
return np.argmax(eval_means), evals
def non_adaptive_fc(data: List[Dict[str, Any]],
model_functions: List[Callable[[List[Dict[str, Any]],
List[Dict[str, Any]]], float]],
split_function: Callable[[List[Dict[str, Any]]],
Tuple[List[Dict[str, Any]],
List[Dict[str, Any]]]],
p_value: float, logit_transform: bool = False,
samples: int = 100000
) -> Tuple[List[float], List[float], int, List[List[float]]]:
'''
:param data: A list of dictionaries, that as a whole represents the entire
dataset. Each dictionary within the list represents
one sample from the dataset.
:param model_functions: A list of functions that represent different
models e.g. pytorch model. Which take a train and
test dataset as input and returns a metric score
e.g. Accuracy. The model functions should not have
random seeds set else it defeats the point of
finding the best model independent of the random
seed and data split.
:param split_function: A function that can be used to split the data into
train and test splits. This should produce random
splits each time it is called. If you would like to
use a fixed split each time, you can hard code this
function to produce a fixed split each time.
:param p_value: The significance value for the best model to be truely the
best model e.g. 0.05 if you want to be at
least 95% confident.
:param logit_transform: Whether to transform the model function's returned
metric score by the logit function.
:param samples: Number of samples to generate from our belief distribution
for each model. This argument is passed directly to
:func:`fiesta.util.belief_calc` within this function.
This should be large e.g. minimum 10000.
:returns: Tuple containing 4 values:
1. The confidence socres for each model, the best model should
have the highest confidence
2. The number of times each model was evaluated as a proportion of
the number of evaluations
3. The total number of model evaluations
4. The scores that each model generated when evaluated.
:NOTE: That if the logit transform is True then the last item in
the tuple would be scores that have been transformed by
the logit function.
:raises ValueError: If the ``p_value`` is not between 0 and 1.
'''
if p_value < 0.0 or p_value > 1.0:
raise ValueError('The p value has to be between 0 and 1 and '
f'not: {p_value}')
num_models = len(model_functions)
total_samples = samples * num_models
evaluations = [[] for i in range(num_models)]
est_means = np.zeros(num_models)
est_variances = np.zeros(num_models)
eval_counts = np.zeros(num_models)
# start by evaluating each model 3 times
for model_index, model_function in enumerate(model_functions):
for _ in range(0, 3):
train, test = split_function(data)
score = model_function(train, test)
if logit_transform:
score = logit(score)
evaluations[model_index].append(score)
est_means[model_index] = np.mean(evaluations[model_index])
est_variances[model_index] = np.var(evaluations[model_index], ddof=0)
eval_counts[model_index] = len(evaluations[model_index])
#initialize belief about location of best arm
pi = belief_calc(est_means, est_variances, eval_counts, total_samples)
# count number of evals
num = 3 * num_models
# run until hit required confidence
while max(pi) < 1 - p_value:
# sample all arms
for model_index, model_function in enumerate(model_functions):
train, test = split_function(data)
score = model_function(train, test)
if logit_transform:
score = logit(score)
evaluations[model_index].append(score)
# update summary stats
est_means[model_index] = np.mean(evaluations[model_index])
est_variances[model_index] = np.var(evaluations[model_index], ddof=0)
eval_counts[model_index] += 1
num += num_models
# update belief
pi = belief_calc(est_means, est_variances, eval_counts, total_samples)
logger.info("Evalaution: %s, Model confidences: %s", str(num), str(pi))
logger.info("selected model %s", str(np.argmax(pi)))
props = [x / sum(eval_counts) for x in eval_counts]
return pi, props, num, evaluations
|
[
"fiesta.util.belief_calc",
"numpy.random.uniform",
"numpy.argmax",
"numpy.log2",
"numpy.zeros",
"math.floor",
"numpy.argmin",
"scipy.special.logit",
"numpy.mean",
"numpy.var",
"logging.getLogger"
] |
[((178, 205), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (195, 205), False, 'import logging\n'), ((3504, 3524), 'numpy.zeros', 'np.zeros', (['num_models'], {}), '(num_models)\n', (3512, 3524), True, 'import numpy as np\n'), ((3545, 3565), 'numpy.zeros', 'np.zeros', (['num_models'], {}), '(num_models)\n', (3553, 3565), True, 'import numpy as np\n'), ((3637, 3657), 'numpy.zeros', 'np.zeros', (['num_models'], {}), '(num_models)\n', (3645, 3657), True, 'import numpy as np\n'), ((4326, 4391), 'fiesta.util.belief_calc', 'belief_calc', (['est_means', 'est_variances', 'eval_counts', 'total_samples'], {}), '(est_means, est_variances, eval_counts, total_samples)\n', (4337, 4391), False, 'from fiesta.util import belief_calc\n'), ((13658, 13689), 'math.floor', 'math.floor', (['(budget / num_models)'], {}), '(budget / num_models)\n', (13668, 13689), False, 'import math\n'), ((14150, 14172), 'numpy.mean', 'np.mean', (['evals'], {'axis': '(1)'}), '(evals, axis=1)\n', (14157, 14172), True, 'import numpy as np\n'), ((17784, 17804), 'numpy.zeros', 'np.zeros', (['num_models'], {}), '(num_models)\n', (17792, 17804), True, 'import numpy as np\n'), ((17825, 17845), 'numpy.zeros', 'np.zeros', (['num_models'], {}), '(num_models)\n', (17833, 17845), True, 'import numpy as np\n'), ((17864, 17884), 'numpy.zeros', 'np.zeros', (['num_models'], {}), '(num_models)\n', (17872, 17884), True, 'import numpy as np\n'), ((18518, 18583), 'fiesta.util.belief_calc', 'belief_calc', (['est_means', 'est_variances', 'eval_counts', 'total_samples'], {}), '(est_means, est_variances, eval_counts, total_samples)\n', (18529, 18583), False, 'from fiesta.util import belief_calc\n'), ((4084, 4117), 'numpy.mean', 'np.mean', (['evaluations[model_index]'], {}), '(evaluations[model_index])\n', (4091, 4117), True, 'import numpy as np\n'), ((4155, 4195), 'numpy.var', 'np.var', (['evaluations[model_index]'], {'ddof': '(0)'}), '(evaluations[model_index], ddof=0)\n', (4161, 4195), True, 'import numpy as np\n'), ((4808, 4831), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (4825, 4831), True, 'import numpy as np\n'), ((6075, 6140), 'fiesta.util.belief_calc', 'belief_calc', (['est_means', 'est_variances', 'eval_counts', 'total_samples'], {}), '(est_means, est_variances, eval_counts, total_samples)\n', (6086, 6140), False, 'from fiesta.util import belief_calc\n'), ((8956, 8975), 'numpy.log2', 'np.log2', (['num_models'], {}), '(num_models)\n', (8963, 8975), True, 'import numpy as np\n'), ((9661, 9705), 'math.floor', 'math.floor', (['(budget / (number_candidates * R))'], {}), '(budget / (number_candidates * R))\n', (9671, 9705), False, 'import math\n'), ((14391, 14412), 'numpy.argmax', 'np.argmax', (['eval_means'], {}), '(eval_means)\n', (14400, 14412), True, 'import numpy as np\n'), ((18276, 18309), 'numpy.mean', 'np.mean', (['evaluations[model_index]'], {}), '(evaluations[model_index])\n', (18283, 18309), True, 'import numpy as np\n'), ((18347, 18387), 'numpy.var', 'np.var', (['evaluations[model_index]'], {'ddof': '(0)'}), '(evaluations[model_index], ddof=0)\n', (18353, 18387), True, 'import numpy as np\n'), ((19321, 19386), 'fiesta.util.belief_calc', 'belief_calc', (['est_means', 'est_variances', 'eval_counts', 'total_samples'], {}), '(est_means, est_variances, eval_counts, total_samples)\n', (19332, 19386), False, 'from fiesta.util import belief_calc\n'), ((5108, 5133), 'numpy.mean', 'np.mean', (['evaluations[m_1]'], {}), '(evaluations[m_1])\n', (5115, 5133), True, 'import numpy as np\n'), ((5167, 5199), 'numpy.var', 'np.var', (['evaluations[m_1]'], {'ddof': '(0)'}), '(evaluations[m_1], ddof=0)\n', (5173, 5199), True, 'import numpy as np\n'), ((5822, 5847), 'numpy.mean', 'np.mean', (['evaluations[m_2]'], {}), '(evaluations[m_2])\n', (5829, 5847), True, 'import numpy as np\n'), ((5881, 5913), 'numpy.var', 'np.var', (['evaluations[m_2]'], {'ddof': '(0)'}), '(evaluations[m_2], ddof=0)\n', (5887, 5913), True, 'import numpy as np\n'), ((6260, 6273), 'numpy.argmax', 'np.argmax', (['pi'], {}), '(pi)\n', (6269, 6273), True, 'import numpy as np\n'), ((10359, 10395), 'numpy.mean', 'np.mean', (['evaluations[candidate_name]'], {}), '(evaluations[candidate_name])\n', (10366, 10395), True, 'import numpy as np\n'), ((10528, 10561), 'math.floor', 'math.floor', (['(number_candidates / 2)'], {}), '(number_candidates / 2)\n', (10538, 10561), False, 'import math\n'), ((10589, 10619), 'numpy.argmin', 'np.argmin', (['candidate_est_means'], {}), '(candidate_est_means)\n', (10598, 10619), True, 'import numpy as np\n'), ((19099, 19132), 'numpy.mean', 'np.mean', (['evaluations[model_index]'], {}), '(evaluations[model_index])\n', (19106, 19132), True, 'import numpy as np\n'), ((19174, 19214), 'numpy.var', 'np.var', (['evaluations[model_index]'], {'ddof': '(0)'}), '(evaluations[model_index], ddof=0)\n', (19180, 19214), True, 'import numpy as np\n'), ((19508, 19521), 'numpy.argmax', 'np.argmax', (['pi'], {}), '(pi)\n', (19517, 19521), True, 'import numpy as np\n'), ((3987, 3999), 'scipy.special.logit', 'logit', (['score'], {}), '(score)\n', (3992, 3999), False, 'from scipy.special import logit\n'), ((4989, 5001), 'scipy.special.logit', 'logit', (['score'], {}), '(score)\n', (4994, 5001), False, 'from scipy.special import logit\n'), ((5703, 5715), 'scipy.special.logit', 'logit', (['score'], {}), '(score)\n', (5708, 5715), False, 'from scipy.special import logit\n'), ((13970, 13982), 'scipy.special.logit', 'logit', (['score'], {}), '(score)\n', (13975, 13982), False, 'from scipy.special import logit\n'), ((18179, 18191), 'scipy.special.logit', 'logit', (['score'], {}), '(score)\n', (18184, 18191), False, 'from scipy.special import logit\n'), ((18963, 18975), 'scipy.special.logit', 'logit', (['score'], {}), '(score)\n', (18968, 18975), False, 'from scipy.special import logit\n'), ((10160, 10172), 'scipy.special.logit', 'logit', (['score'], {}), '(score)\n', (10165, 10172), False, 'from scipy.special import logit\n')]
|
from pypot.primitive import LoopPrimitive
from .trajectory import ConstantTrajectory, FootstepTrajectory
from .ik import darwin_ik
from .ik import PELVIS_HEIGHT_REST, FOOT_SPREAD
from numpy import rad2deg
class WalkingState(object):
SINGLE_SUPPORT = 1
DOUBLE_SUPPORT = 2
class WalkStraight(LoopPrimitive):
def __init__(self, robot, distance, step_duration, frequency=50):
LoopPrimitive.__init__(self, robot, frequency)
self.step_length = 0.1
self.step_height = 0.01
self.pelvis_height = 0.098
self.motors = dict([(m.name, self.get_mockup_motor(m)) for m in self.robot.motors])
self.distance_left = distance
self.step_duration = step_duration
ssp_ratio = .75
self.ssp_duration = ssp_ratio * step_duration
self.dsp_duration = (1 - ssp_ratio) * step_duration
self.dt = 1. / frequency
self.pos = None
@property
def stable_side(self):
return 'l' if self.swing_side == 'r' else 'r'
def setup(self):
self.swing_side = 'r'
self.x_stable = 0.
self.x_swing_start = 0.
self.pos = {
'pelvis': [0., 0., PELVIS_HEIGHT_REST],
'l_foot': [0., FOOT_SPREAD, 0.],
'r_foot': [0., -FOOT_SPREAD, 0.],
}
self.start_step(0)
def update(self):
t = self.elapsed_time
# print(t)
if self.state == WalkingState.DOUBLE_SUPPORT:
self.run_double_support(t)
elif self.state == WalkingState.SINGLE_SUPPORT:
self.run_single_support(t)
else:
raise Exception("Unknown state: {}".format(self.state))
def update_position(self, t):
self.pos = self.current_trajectory(t)
q = darwin_ik(self.pos)
self.goto_position(q)
def run_double_support(self, t):
t -= self.current_step * self.step_duration
if t > self.dsp_duration:
self.start_single_support()
self.update_position(t)
def run_single_support(self, t):
step = t // self.step_duration
t = t % self.step_duration
done = False
if step > self.current_step:
done = self.check_walking_done()
if not done:
self.start_next_step(step)
if not done:
self.update_position(t)
def get_next_step_length(self):
next_step_max_length = self.step_length if self.current_step > 0 else 0.5 * self.step_length
if 2 * self.distance_left > next_step_max_length:
next_step_length = next_step_max_length
else:
next_step_length = 2 * self.distance_left
return next_step_length
def check_walking_done(self):
# the pelvis only moves half of the footstep length
self.distance_left = max(0, self.distance_left - 0.5 * self.current_step_length)
if self.distance_left < 1e-6:
# We have arrived.
print('Done!')
self.stop()
return True
return False
def start_step(self, step):
print('\n*** Start step {} ***'.format(step + 1))
self.current_step = step
self.current_step_length = self.get_next_step_length()
self.start_double_support()
def start_next_step(self, step):
self.swing_side = 'l' if self.swing_side == 'r' else 'r'
next_swing_start = self.x_stable
self.x_stable = self.x_swing_start + self.current_step_length
self.x_swing_start = next_swing_start
self.start_step(step)
def start_single_support(self):
print(" >> start single support phase <<")
self.current_trajectory = FootstepTrajectory(
self.current_step_length, self.step_height, self.x_stable,
self.x_swing_start, self.pelvis_height, self.swing_side, self.ssp_duration)
self.state = WalkingState.SINGLE_SUPPORT
def get_swing_target(self):
traj = FootstepTrajectory(
self.current_step_length, self.step_height, self.x_stable,
self.x_swing_start, self.pelvis_height, self.swing_side, self.ssp_duration)
return traj(self.ssp_duration)[self.swing_side + '_foot']
def start_double_support(self):
print(" >> start double support phase <<")
self.current_trajectory = ConstantTrajectory(self.pos)
self.swing_target = self.get_swing_target()
self.state = WalkingState.DOUBLE_SUPPORT
def goto_position(self, qs):
for name, q in qs.items():
m = self.motors[name]
m.goal_position = rad2deg(q)
|
[
"numpy.rad2deg",
"pypot.primitive.LoopPrimitive.__init__"
] |
[((396, 442), 'pypot.primitive.LoopPrimitive.__init__', 'LoopPrimitive.__init__', (['self', 'robot', 'frequency'], {}), '(self, robot, frequency)\n', (418, 442), False, 'from pypot.primitive import LoopPrimitive\n'), ((4577, 4587), 'numpy.rad2deg', 'rad2deg', (['q'], {}), '(q)\n', (4584, 4587), False, 'from numpy import rad2deg\n')]
|
'''
---------------------------
Licensing and Distribution
---------------------------
Program name: Pilgrim
Version : 2021.5
License : MIT/x11
Copyright (c) 2021, <NAME> (<EMAIL>) and
<NAME> (<EMAIL>)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
---------------------------
*----------------------------------*
| Module : common |
| Sub-module : MolGraph |
| Last Update: 2020/05/03 (Y/M/D) |
| Main Author: <NAME> |
*----------------------------------*
This module contains the MolGraph class
'''
#=============================================#
import numpy as np
#---------------------------------------------#
import common.fncs as fncs
import common.internal as intl
from common.Ugraph import UGRAPH
#=============================================#
class MolGraph(UGRAPH):
def __init__(self,xcc,symbols,cscal=1.3,nfrags=1,epslin=4.5):
# initialize data for UGRAPH
self._ugdict = {}
self._nnodes = 0
self._nedges = 0
self._cnumber= 0
# calculate connectivity matrix
cmatrix = intl.get_adjmatrix(xcc,symbols,cscal,mode="int")[0]
# autoconnect
cmatrix = intl.link_fragments(xcc,cmatrix,nfrags)[0]
# save cmatrix
cmatrix = np.matrix(cmatrix)
# set graph
self.set_from_amatrix(cmatrix)
# detect atoms in cycles
nodes_cycles = self.nodes_in_cycles()
# save data
self._xcc = [xi for xi in xcc]
self._symbols = symbols
self._incycle = nodes_cycles
self._cmatrix = cmatrix
self._epslin = epslin
self._cscal = cscal
self._angles = {}
# see if dummy is required by checking all atoms with two connections (B-A-C)
dummies = []
nodeX = int(self._nnodes) - 1
for nodeA,neighbors in self._ugdict.items():
if len(neighbors) != 2: continue
nodeB,nodeC = neighbors
# add dummy atom??
if self.islinear( (nodeB,nodeA,nodeC) ):
xB = self._xcc[3*nodeB:3*nodeB+3]
xA = self._xcc[3*nodeA:3*nodeA+3]
# coordinates of dummy atom
xX = intl.zmat_thirdatom(xB,xA,dist=1.0,angle=np.pi/2)
# save data
nodeX += 1
dummies.append( (nodeA,nodeX,xX) )
#---------------------#
# Include dummy atoms #
#---------------------#
nn = int(self._nnodes)
nd = len(dummies)
if nd > 0:
# increase cmatrix
zerocols = np.zeros( (nn,nd ) , dtype=int)
zerorows = np.zeros( (nd,nn+nd) , dtype=int)
self._cmatrix = np.hstack( (self._cmatrix,zerocols) )
self._cmatrix = np.vstack( (self._cmatrix,zerorows) )
# Add dummy atoms!!
for nodeA,nodeX,xX in dummies:
# add connection in graph
self.add_node(nodeX)
self.add_edge(nodeX,nodeA)
# add connection in cmatrix
self._cmatrix[nodeA,nodeX] = 1
self._cmatrix[nodeX,nodeA] = 1
# add dummy to symbols and xcc
self._symbols.append("X")
self._xcc += [xi for xi in xX]
def __str__(self):
return "(n,e)=(%i,%i)"%(self._nnodes,self._nedges)
def islinear(self,triad):
if triad not in self._angles:
nodeA,nodeB,nodeC = triad
xA = self._xcc[3*nodeA:3*nodeA+3]
xB = self._xcc[3*nodeB:3*nodeB+3]
xC = self._xcc[3*nodeC:3*nodeC+3]
angABC = fncs.angle(xA,xB,xC)
# save angles
self._angles[(nodeA,nodeB,nodeC)] = angABC
self._angles[(nodeC,nodeB,nodeA)] = angABC
else: angABC = self._angles[triad]
# return boolean (True if linear)
return abs(180-np.rad2deg(angABC)) < self._epslin
def nonlinearpath(self,start_idx,visited=[],ppoint=None):
'''
Get longest path without three connected atoms in a line
To do so, it always choose the dummy atom (if not visited yet)
'''
# Get neighbors, excluding previously visited ones
neighbors = [node for node in self._ugdict[start_idx] if node not in visited]
if len(neighbors) == 0: return [start_idx]
# see if any neighbor is X (dummy atom), it must be the end of path
symbol_neighbors = [self._symbols[node] for node in neighbors]
if symbol_neighbors.count("X") != 0:
nodeX = neighbors[symbol_neighbors.index("X")]
return [start_idx,nodeX]
# Get longest from non-visited neighbors
length = - float("inf")
for neighbor in neighbors:
# assert path does not contain linear angles
if ppoint is not None and self.islinear( (ppoint,start_idx,neighbor) ): continue
# now we now it is not 180, we can continue
visited_i = visited + [start_idx,neighbor]
path_i = self.nonlinearpath(neighbor,visited=visited_i,ppoint=start_idx)
symbol_path = [self._symbols[node] for node in path_i]
ppath = [start_idx]+path_i
if len(path_i) > length:
length = len(path_i)
the_path = path_i
return [start_idx] + the_path
def construct_zmatrix(self,seed=None,visited=set([]),previous=None):
'''
Returns $zmatrix and $visited
* $zmatrix --> a list of tuples
* $visited --> a list of visited nodes
Tuples in $zmatrix contains the following elements
(at1,at2,at3,at4,boolean1,boolean2)
where:
* at1 to at4 are node indices
* boolean1 is True is the tuple corresponds to a PROPER torsion
'''
#---------------------------------------------------------------------------------#
# For some reason, Python messes when the following line is not included #
# If ommited and construct_zmatrix is inside a loop to analize different graphs, #
# the $visited variable DO NOT initialize when calling it as: #
# construct_zmatrix(graph) #
# I guess this is a Python bug or something.... #
#---------------------------------------------------------------------------------#
visited = set(visited) # for some reason, this is required
#---------------------------------------------------------------------------------#
zmatrix = []
# find longest path
if seed is None:
for node in range(self._nnodes):
if len(self.neighbors(node)) == 1: break
# DFS to find one end point of longest path
path = self.nonlinearpath(node)
# DFS to find the actual longest path
path = self.nonlinearpath(path[-1])
else:
path = self.nonlinearpath(seed,list(visited))
###########################
# for idx in range(1,len(path)-1):
# triad = (idx-1,idx,idx+1)
# if self.islinear( triad ): print("*linear:",triad)
###########################
tovisit = set([])
links = {}
zmatrix2 = []
added_as_itor = set([])
for idx,atom in enumerate(path):
if idx == 0: atoms = ( atom, -1 , -1 , -1 ,False)
elif idx == 1: atoms = ( atom, path[0] , -1 , -1 ,False)
elif idx == 2: atoms = ( atom, path[1] , path[0] , -1 ,False)
else : atoms = ( atom, path[idx-1], path[idx-2], path[idx-3] ,True )
zmatrix.append(atoms)
visited.add(atom)
# link rest of bonded atoms to path
for vecino in self.neighbors(atom):
if vecino in path : continue
if vecino in added_as_itor: continue
if vecino in visited : continue
if idx == 0:
# select node in previous such as angle != 180
for prev_i in previous:
if not self.islinear( (vecino,atom,prev_i) ): break
atoms = (vecino,atom,prev_i ,path[idx+1],False)
else:
if self.islinear( (vecino,atom,path[idx-1]) ):
atoms = (vecino,atom,path[idx+1],path[idx-1],False)
else:
atoms = (vecino,atom,path[idx-1],path[idx+1],False)
zmatrix2.append( atoms )
tovisit.add(vecino)
added_as_itor.add(vecino)
# save link (if X, save X)
link1 = path[idx-1]
link2 = path[idx-1]
if idx+1 != len(path): link2 = path[idx+1]
if self._symbols[link2] == "X": links[vecino] = (atom,link2,link1)
else : links[vecino] = (atom,link1,link2)
zmatrix += zmatrix2
# now work with neighbors
while len(tovisit) != 0:
node3 = tovisit.pop()
# update visited
visited.add(node3)
# recurrence!!
zmatrix_i, visited_i = self.construct_zmatrix(node3,visited,links[node3])
# update visited and tovisit
visited = visited.union(visited_i)
tovisit = tovisit.difference(visited)
# update zmatrix with torsions in ramifications
for torsion in zmatrix_i:
numnegs = torsion.count(-1)
if numnegs == 3: continue
# requires connection to main path
elif numnegs == 2:
atom,link1,link2 = links[node3]
triad1 = (node3,atom,link1)
triad2 = (node3,atom,link2)
if self.islinear( triad1 ):
torsion = [torsion[0],node3,atom,link2,True]
else:
torsion = [torsion[0],node3,atom,link1,True]
# requires connection to main path
elif numnegs == 1: torsion = torsion[0:3] + links[node3][0:1]+(True,)
zmatrix.append(torsion)
return zmatrix, visited
|
[
"numpy.matrix",
"common.fncs.angle",
"common.internal.zmat_thirdatom",
"numpy.zeros",
"numpy.hstack",
"numpy.rad2deg",
"common.internal.get_adjmatrix",
"numpy.vstack",
"common.internal.link_fragments"
] |
[((2281, 2299), 'numpy.matrix', 'np.matrix', (['cmatrix'], {}), '(cmatrix)\n', (2290, 2299), True, 'import numpy as np\n'), ((2097, 2148), 'common.internal.get_adjmatrix', 'intl.get_adjmatrix', (['xcc', 'symbols', 'cscal'], {'mode': '"""int"""'}), "(xcc, symbols, cscal, mode='int')\n", (2115, 2148), True, 'import common.internal as intl\n'), ((2193, 2234), 'common.internal.link_fragments', 'intl.link_fragments', (['xcc', 'cmatrix', 'nfrags'], {}), '(xcc, cmatrix, nfrags)\n', (2212, 2234), True, 'import common.internal as intl\n'), ((3670, 3699), 'numpy.zeros', 'np.zeros', (['(nn, nd)'], {'dtype': 'int'}), '((nn, nd), dtype=int)\n', (3678, 3699), True, 'import numpy as np\n'), ((3733, 3767), 'numpy.zeros', 'np.zeros', (['(nd, nn + nd)'], {'dtype': 'int'}), '((nd, nn + nd), dtype=int)\n', (3741, 3767), True, 'import numpy as np\n'), ((3796, 3832), 'numpy.hstack', 'np.hstack', (['(self._cmatrix, zerocols)'], {}), '((self._cmatrix, zerocols))\n', (3805, 3832), True, 'import numpy as np\n'), ((3863, 3899), 'numpy.vstack', 'np.vstack', (['(self._cmatrix, zerorows)'], {}), '((self._cmatrix, zerorows))\n', (3872, 3899), True, 'import numpy as np\n'), ((4745, 4767), 'common.fncs.angle', 'fncs.angle', (['xA', 'xB', 'xC'], {}), '(xA, xB, xC)\n', (4755, 4767), True, 'import common.fncs as fncs\n'), ((3265, 3319), 'common.internal.zmat_thirdatom', 'intl.zmat_thirdatom', (['xB', 'xA'], {'dist': '(1.0)', 'angle': '(np.pi / 2)'}), '(xB, xA, dist=1.0, angle=np.pi / 2)\n', (3284, 3319), True, 'import common.internal as intl\n'), ((5019, 5037), 'numpy.rad2deg', 'np.rad2deg', (['angABC'], {}), '(angABC)\n', (5029, 5037), True, 'import numpy as np\n')]
|
# %%
import seaborn as sns
import torch
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
from perturb_pca import compute_dot_products
from mpl_toolkits.axes_grid1 import make_axes_locatable
# matplotlib.style.use('seaborn-white')
plt.rcParams['font.family'] = 'Calibri'
def format_axes(
ax: plt.Axes,
ticklabels,
patch_size,
total_size,
block_size,
):
robust_models = [1, 2]
ax_mm_ticks = np.arange(0, total_size, block_size)
ax.set_xticks(ax_mm_ticks-0.5)
ax.set_yticks(ax_mm_ticks-0.5)
ax.set_xticklabels(ax_mm_ticks)
ax.set_yticklabels(ax_mm_ticks)
ax.grid(which='major', axis='both', lw=1, color='k', alpha=0.5, ls='-')
ax.set_xticks(ax_mm_ticks + block_size/2, minor=True)
ax.set_yticks(ax_mm_ticks + block_size/2, minor=True)
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_xticklabels(ticklabels, minor=True, fontsize=12, weight='light')
ax.set_yticklabels(ticklabels, minor=True, fontsize=12, weight='light')
plt.setp(
ax.get_yticklabels(minor=True),
rotation=90,
ha="center",
va="bottom",
rotation_mode="anchor")
# ax.set_title(f'Patch Size {patch_size}', fontsize=1, pad=10)
ax.set_xlabel('Models', fontsize=14)
ax.set_ylabel('Models', fontsize=14)
ax.xaxis.labelpad = 7
ax.yaxis.labelpad = 7
# for rm in robust_models:
# plt.setp(
# ax.get_yticklabels(minor=True)[rm],
# style='italic',
# weight='bold')
# plt.setp(
# ax.get_xticklabels(minor=True)[rm],
# style='italic',
# weight='bold')
# %%
patch_size_configs = [5, 15, 28]
max_pool_kernel = [1, 3, 14]
attacker = 'fw'
models = [
'Model1',
'Model2',
'Model4',
'MNIST_DNN',
'VGG16BN',
'VITB'
]
ticklabels = [
'R34',
'R18',
'WRN',
'DNN',
'VGG',
'ViT',
'RND',
'SQR'
]
fig, axs = plt.subplots(1, 3, figsize=(18, 6))
for idx, p_size in enumerate(patch_size_configs):
ax = axs[idx]
dot_product = compute_dot_products(models, attacker, p_size)
downsample = max_pool_kernel[idx]
if downsample > 1:
pooled = F.max_pool2d(
torch.Tensor(dot_product).unsqueeze(0).unsqueeze(0),
downsample)
dot_product = pooled.squeeze(0).squeeze(0).numpy()
imobj = ax.imshow(dot_product, cmap='YlGn')
format_axes(
ax,
ticklabels,
p_size,
dot_product.shape[0],
p_size ** 2 // downsample
)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)
fig.colorbar(
imobj, cax=cax, ticks=[0, 1]
# aspect=40, fraction=0.07,
)
fig.savefig('./figs/dot_product_trinity.pdf', bbox_inches='tight')
# %%
models = [
'Model2',
'MNIST_RMDENSE',
'MNIST_RPDENSE',
'RMCONV',
'RPCONV',
]
ticklabels = [
'R18',
'RMDNN',
'RPDNN',
'RMCNN',
'RPCNN',
]
fig, ax = plt.subplots()
dot_product = compute_dot_products(models, 'fw', 5)
imobj = ax.imshow(dot_product, cmap='YlGn')
format_axes(ax, ticklabels, 5, 125, 25)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)
fig.colorbar(
imobj, cax=cax, ticks=[0, 1]
# aspect=40, fraction=0.07,
)
fig.savefig('./figs/dot_product_MNIST_NEW.pdf', bbox_inches='tight')
# %%
sns.set_theme(context='paper', font='Calibri', font_scale=1.25)
x = [1, 2, 4, 7, 10, 13]
mnist_lenet_eps_0_3 = [45.5921, 50.5076, 54.9649, 69.1903, 69.3305, 79.3606]
imagenet_inception_eps_0_05 = [91.08, 88.42, 101.39, 107.70, 128.35, 140.05]
fig, ax = plt.subplots()
ax = sns.lineplot(x=x, y=mnist_lenet_eps_0_3, label='MNIST LeNet', ax=ax)
ax = sns.lineplot(x=x, y=imagenet_inception_eps_0_05, ax=ax, label='ImageNet InceptionV3')
sns.despine()
ax.set_xlabel('Threshold $\\tau$')
ax.set_ylabel('Avg. Queries')
fig.savefig('./figs/batch_threshold.pdf', bbox_inches='tight')
|
[
"mpl_toolkits.axes_grid1.make_axes_locatable",
"seaborn.lineplot",
"perturb_pca.compute_dot_products",
"seaborn.despine",
"torch.Tensor",
"numpy.arange",
"matplotlib.pyplot.subplots",
"seaborn.set_theme"
] |
[((1989, 2024), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(18, 6)'}), '(1, 3, figsize=(18, 6))\n', (2001, 2024), True, 'import matplotlib.pyplot as plt\n'), ((3038, 3052), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3050, 3052), True, 'import matplotlib.pyplot as plt\n'), ((3068, 3105), 'perturb_pca.compute_dot_products', 'compute_dot_products', (['models', '"""fw"""', '(5)'], {}), "(models, 'fw', 5)\n", (3088, 3105), False, 'from perturb_pca import compute_dot_products\n'), ((3200, 3223), 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax'], {}), '(ax)\n', (3219, 3223), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), ((3437, 3500), 'seaborn.set_theme', 'sns.set_theme', ([], {'context': '"""paper"""', 'font': '"""Calibri"""', 'font_scale': '(1.25)'}), "(context='paper', font='Calibri', font_scale=1.25)\n", (3450, 3500), True, 'import seaborn as sns\n'), ((3691, 3705), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3703, 3705), True, 'import matplotlib.pyplot as plt\n'), ((3712, 3780), 'seaborn.lineplot', 'sns.lineplot', ([], {'x': 'x', 'y': 'mnist_lenet_eps_0_3', 'label': '"""MNIST LeNet"""', 'ax': 'ax'}), "(x=x, y=mnist_lenet_eps_0_3, label='MNIST LeNet', ax=ax)\n", (3724, 3780), True, 'import seaborn as sns\n'), ((3786, 3876), 'seaborn.lineplot', 'sns.lineplot', ([], {'x': 'x', 'y': 'imagenet_inception_eps_0_05', 'ax': 'ax', 'label': '"""ImageNet InceptionV3"""'}), "(x=x, y=imagenet_inception_eps_0_05, ax=ax, label=\n 'ImageNet InceptionV3')\n", (3798, 3876), True, 'import seaborn as sns\n'), ((3872, 3885), 'seaborn.despine', 'sns.despine', ([], {}), '()\n', (3883, 3885), True, 'import seaborn as sns\n'), ((474, 510), 'numpy.arange', 'np.arange', (['(0)', 'total_size', 'block_size'], {}), '(0, total_size, block_size)\n', (483, 510), True, 'import numpy as np\n'), ((2112, 2158), 'perturb_pca.compute_dot_products', 'compute_dot_products', (['models', 'attacker', 'p_size'], {}), '(models, attacker, p_size)\n', (2132, 2158), False, 'from perturb_pca import compute_dot_products\n'), ((2596, 2619), 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax'], {}), '(ax)\n', (2615, 2619), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), ((2263, 2288), 'torch.Tensor', 'torch.Tensor', (['dot_product'], {}), '(dot_product)\n', (2275, 2288), False, 'import torch\n')]
|
import json
from collections.__init__ import OrderedDict
import numpy as np
from PIL import Image
from annotation_predictor.util.class_reader import ClassReader
from annotation_predictor.util.oid_classcode_reader import OIDClassCodeReader
from settings import known_class_ids_annotation_predictor, path_to_model_evaluation_record
def compute_feature_vector(detection: dict) -> list:
"""
Compute a feature vector for a detection with the following features:
(compare https://arxiv.org/abs/1712.08087):
- score: score of the detection (i.e.: certainty of the object-detector)
- rel_size: ratio of size of the bounding box of the detection over size of the image
- avg: average score of all detections for the class of the object
- avg-dif: difference of score (first feature) and avg (third feature)
- max_dif: difference of highest score of the class and current score (first feature)
- one_hot_encoding: vector with one entry for each class contained in a dataset which has a one
for the class of the current detections and zeros everywhere else, uniquely defining the class.
Args:
detection: a object detection
Returns: feature vector with the above features
"""
class_reader = ClassReader(known_class_ids_annotation_predictor)
score = float(detection['Confidence'])
rel_size = get_rel_size(detection)
avg = get_avg_score(detection)
avg_dif = score - avg
max_dif = get_max_score(detection) - score
class_index = class_reader.get_index_of_class_from_label(detection['LabelName'])
# number of classes in oid dataset which is used for base training
one_hot_encoding = np.zeros(1000)
one_hot_encoding[class_index] = 1
feature_vector = [score, rel_size, avg, avg_dif, max_dif]
feature_vector.extend(one_hot_encoding)
return feature_vector
def get_rel_size(detection: dict) -> float:
"""
Args:
detection: a object detection
Returns: relative size of a bounding box in an image
"""
return round((float(detection['XMax']) - float(detection['XMin'])) * (
float(detection['YMax']) - float(detection['YMin'])), 10)
def get_avg_score(detection: dict) -> float:
"""
Args:
detection: a object detection
Returns: average score of all detections for this class.
"""
oid_classcode_reader = OIDClassCodeReader()
cls = detection['LabelName']
if detection['LabelName'] in oid_classcode_reader.cc_to_human_readable_dict:
cls = oid_classcode_reader.get_human_readable_label_for_code(cls)
with open(path_to_model_evaluation_record, 'r') as f:
evaluation_record = json.load(f)
avg_score = evaluation_record[cls][0]
return avg_score
def get_max_score(detection: dict) -> float:
"""
Args:
detection: a object detection
Returns: maximum of all scores of those detections.
"""
oid_classcode_reader = OIDClassCodeReader()
cls = detection['LabelName']
if detection['LabelName'] in oid_classcode_reader.cc_to_human_readable_dict:
cls = oid_classcode_reader.get_human_readable_label_for_code(cls)
with open(path_to_model_evaluation_record, 'r') as f:
evaluation_record = json.load(f)
max_score = evaluation_record[cls][1]
return max_score
def compute_iou(det_a: dict, det_b: dict) -> float:
"""
Args:
det_a: First detection
det_b: Second detection
Returns: 'Intersection over Union' of two detections which equals the ratio of the
intersected area of both detection-bounding-boxes over the union of both.
"""
bbA = [float(det_a['XMin']), float(det_a['YMin']), float(det_a['XMax']), float(det_a['YMax'])]
bbB = [float(det_b['XMin']), float(det_b['YMin']), float(det_b['XMax']), float(det_b['YMax'])]
x_min = max(bbA[0], bbB[0])
y_min = max(bbA[1], bbB[1])
x_max = min(bbA[2], bbB[2])
y_max = min(bbA[3], bbB[3])
intersection_area = max(0.0, x_max - x_min) * max(0.0, y_max - y_min)
a_area = (bbA[0] - bbA[2]) * (bbA[1] - bbA[3])
b_area = (bbB[0] - bbB[2]) * (bbB[1] - bbB[3])
iou = round(intersection_area / float(a_area + b_area - intersection_area), 5)
return iou
def evaluate_prediction_record(pred: np.ndarray, label: np.ndarray):
"""
Evaluates the performance of an acceptance-predictor created by accept_prob_predictor.py
Args:
pred: Array of acceptance-predictions for a set of images
label: Ground-truth data for those predictions.
Returns:
acc: percentage of correct predictions
acc_ann: percentage of correct predictions with label 0
acc_ver: percentage of correct predictions with label 1
"""
correct = 0
correct_ver = 0
correct_ann = 0
nr_ann = 0
nr_ver = 0
for i, prediction in enumerate(pred):
if label[i] == 1:
nr_ver += 1
if prediction > 0.5:
correct += 1
correct_ver += 1
else:
nr_ann += 1
if prediction < 0.5:
correct += 1
correct_ann += 1
acc = round(correct / len(pred), 5)
if nr_ann == 0:
acc_ann = 0
else:
acc_ann = round(correct_ann / nr_ann, 5)
if nr_ver == 0:
acc_ver = 0
else:
acc_ver = round(correct_ver / nr_ver, 5)
return acc, acc_ann, acc_ver
def compute_label(detection: OrderedDict, ground_truth: list, alpha: float) -> float:
"""
Args:
detection: object-detection on an image
ground_truth: ground-truth values for this image
alpha: required value for IoU (Intersection over Union) for the detection
and a ground-truth value (of the same class)
Returns: '0' if no ground-truth-box matches the detection, '1' else.
"""
for i in ground_truth:
if i['LabelName'] == detection['LabelName'] and compute_iou(i, detection) >= alpha:
return 1.0
return 0.0
def load_image(path_to_image: str):
"""
Args:
path_to_image: Path to an image-file.
Returns: Image-data in numpy format which is required for the object-detector.
"""
img = Image.open(path_to_image).convert('RGB')
img.load()
data = np.asarray(img, dtype='uint8')
data = np.expand_dims(data, 0)
return data
|
[
"json.load",
"numpy.asarray",
"numpy.zeros",
"numpy.expand_dims",
"PIL.Image.open",
"annotation_predictor.util.oid_classcode_reader.OIDClassCodeReader",
"annotation_predictor.util.class_reader.ClassReader"
] |
[((1247, 1296), 'annotation_predictor.util.class_reader.ClassReader', 'ClassReader', (['known_class_ids_annotation_predictor'], {}), '(known_class_ids_annotation_predictor)\n', (1258, 1296), False, 'from annotation_predictor.util.class_reader import ClassReader\n'), ((1666, 1680), 'numpy.zeros', 'np.zeros', (['(1000)'], {}), '(1000)\n', (1674, 1680), True, 'import numpy as np\n'), ((2362, 2382), 'annotation_predictor.util.oid_classcode_reader.OIDClassCodeReader', 'OIDClassCodeReader', ([], {}), '()\n', (2380, 2382), False, 'from annotation_predictor.util.oid_classcode_reader import OIDClassCodeReader\n'), ((2931, 2951), 'annotation_predictor.util.oid_classcode_reader.OIDClassCodeReader', 'OIDClassCodeReader', ([], {}), '()\n', (2949, 2951), False, 'from annotation_predictor.util.oid_classcode_reader import OIDClassCodeReader\n'), ((6256, 6286), 'numpy.asarray', 'np.asarray', (['img'], {'dtype': '"""uint8"""'}), "(img, dtype='uint8')\n", (6266, 6286), True, 'import numpy as np\n'), ((6298, 6321), 'numpy.expand_dims', 'np.expand_dims', (['data', '(0)'], {}), '(data, 0)\n', (6312, 6321), True, 'import numpy as np\n'), ((2659, 2671), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2668, 2671), False, 'import json\n'), ((3228, 3240), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3237, 3240), False, 'import json\n'), ((6189, 6214), 'PIL.Image.open', 'Image.open', (['path_to_image'], {}), '(path_to_image)\n', (6199, 6214), False, 'from PIL import Image\n')]
|
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import datasets
from sklearn.decomposition import PCA
import pandas as pd
from urllib.request import urlretrieve
import numpy as np
from sklearn.linear_model import LogisticRegression # for Logistic Regression Algorithm
from sklearn.model_selection import train_test_split # to split the dataset for training and testing
from sklearn.neighbors import KNeighborsClassifier # KNN classifier
from sklearn import metrics # for checking the model accuracy
from sklearn.tree import DecisionTreeClassifier # for using DTA
from sklearn import tree
import seaborn as sns
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import KFold
from sklearn.externals.six import StringIO
from IPython.display import Image
from sklearn.tree import export_graphviz
import pydotplus
df = pd.read_csv('googleplaystore.csv')
# let's do some cleaning
df = df.rename(index=str, columns={"Content Rating": "Content_rating", "Last Updated": "Last_updated", "Current Ver":"Current_ver", "Android Ver":"Android_ver"})
df['Price'] = df.Price.str.replace('Everyone','0')
df['Price'] = df.Price.str.replace('$','')
df['Android_ver'] = df.Android_ver.str.replace('[^\d.]','')
df['Installs'] = df.Installs.str.replace('[^\d.]','')
df.mask((df == "Varies with device") | (df == "Unrated"), inplace=True)
# removing a parasite row
df = df.drop(df.index[[10472]])
# convert the continuous features to float
df.Rating = df.Rating.astype(float)
df['Reviews'] = df['Reviews'].str.extract('(\d*\.?\d*)', expand=False).astype(float)
df['Installs'] = pd.to_numeric(df.Installs.str.replace('[^\d.]', ''), errors='coerce')
df['Price'] = df['Price'].str.extract('(\d*\.?\d*)', expand=False).astype(float)
# the feature size required more tedious work
def preprocess_Size(df_size):
df_size = (df_size.replace(r'[kM]+$', '', regex=True).astype(float) * \
df_size.str.extract(r'[\d\.]+([kM]+)', expand=False)
.fillna(1)
.replace(['k','M'], [10**3, 10**6]).astype(int))
return(df_size)
df['Size'] = preprocess_Size(df['Size'])
# Calculate the means of the continuous features
avg_rating = df["Rating"].mean()
avg_size = df["Size"].mean()
avg_reviews = df["Reviews"].mean()
avg_install = df["Installs"].mean()
avg_price = df["Price"].mean()
# Put the averages in a list
avg_list = [avg_rating, avg_reviews, avg_size, avg_install, avg_price]
# Print the means
print("~ The features Avg ~")
print("avg_rating: ", avg_rating)
print("avg_reviews: ", avg_reviews)
print("avg_install: ", avg_install)
print("avg_price: ", avg_price)
print("avg_size: ", avg_size)
# print("Rating avg: ", avg_rating)
# Calculate the SD
sd_rating = df["Rating"].std()
sd_review = df["Reviews"].std()
sd_size = df["Size"].std()
sd_install = df["Installs"].std()
sd_price = df["Price"].std()
# Put them in a list
std_list = [sd_rating, sd_review, sd_size, sd_install, sd_price]
# print the SDs
print("~ The SD of the features ~")
print("Rating: ", sd_rating)
print("Reviews: ", sd_review)
print("Size: ", sd_size)
print("Installs: ", sd_install)
print("Price: ", sd_price)
x_pos = [1, 2, 3, 4, 5]
att = ["Rating", "Reviews", "Size", "Installs", "Price"]
# show the mean and SD
fig, ax = plt.subplots()
ax.bar(x_pos, avg_list, yerr=std_list, align='center', alpha=0.5, ecolor='black', capsize=10)
ax.set_ylabel('Y axis')
ax.set_xticks(x_pos)
ax.set_xticklabels(att)
ax.set_title('Mean and Standard deviation of the continuous features')
ax.yaxis.grid(True)
plt.tight_layout()
plt.show()
# Value count
values_count = [df["Rating"].sum(), df["Reviews"].sum(), df["Size"].sum(), df["Installs"].sum(), df["Price"].sum()]
fig1, ax1 = plt.subplots()
ax1.bar(x_pos, values_count, align='center', alpha=0.5, ecolor='black', capsize=10)
ax1.set_ylabel('Counts')
ax1.set_xticks(x_pos)
ax1.set_xticklabels(att)
ax1.set_title('Plot of the values count of the continuous features')
ax1.yaxis.grid(True)
plt.tight_layout()
plt.show()
# Preprocess all the data (from categorical to continuous)
from sklearn import preprocessing
from sklearn.pipeline import Pipeline
def handle_non_numerical_data(df):
columns = df.columns.values
for column in columns:
text_digit_vals = {}
def convert_to_int(val):
return text_digit_vals[val]
if df[column].dtype != np.int64 and df[column].dtype!= np.float64:
column_contents = df[column].values.tolist()
unique_elements = set(column_contents)
x = 0
for unique in unique_elements:
if unique not in text_digit_vals:
text_digit_vals[unique]=x
x+=1
df[column]= list(map(convert_to_int,df[column]))
return df
df = handle_non_numerical_data(df)
# Check correlation
# plt.figure(figsize=(8,4))
# sns.heatmap(df.corr(), annot=True, cmap='cubehelix_r') # draws heatmap with input as correlation matrix calculated by iris.corr()
# plt.show()
# Delete useless column
del df["App"]
# Since we will use Category as target, put it as the last column
df = df[['Rating', 'Reviews', 'Size', 'Installs', 'Type', 'Price', 'Content_rating', 'Genres', 'Last_updated', 'Current_ver', 'Android_ver', 'Category']]
features = ['Rating', 'Reviews', 'Size', 'Installs', 'Type', 'Price', 'Content_rating', 'Genres', 'Last_updated', 'Current_ver', 'Android_ver']
# Reconvert to csv for Random Forest algo
df_preprocessed = df.to_csv('googleplaystore_preprocessed.csv', index=False)
# Preprocessing
data = np.array(df)
X = np.delete(data, 11, axis=1)
X = np.nan_to_num(X)
y = data[:,-1]
# Splitting
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.25)
# Decision tree
model = DecisionTreeClassifier()
model.fit(train_X, train_y)
prediction = model.predict(test_X)
accuracy = metrics.accuracy_score(prediction, test_y)
print("Accuracy of DT : ", accuracy)
# plot DT
dot_data = tree.export_graphviz(model, out_file=None,
feature_names=features)
# Draw graph
graph = pydotplus.graph_from_dot_data(dot_data)
# Show graph
Image(graph.create_png())
# Create PDF and PNG
graph.write_pdf("googleplaystore_tree.pdf")
graph.write_png("googleplaystore_tree.png")
# Confusion Matrix
print ("The Confusion matrix: ")
print (confusion_matrix(test_y, prediction))
def perf_measure(y_actual, y_hat):
TP = 0
FP = 0
TN = 0
FN = 0
for i in range(len(y_hat)):
if y_actual[i]==y_hat[i]==1:
TP += 1
if y_hat[i]==1 and y_actual[i]!=y_hat[i]:
FP += 1
if y_actual[i]==y_hat[i]==0:
TN += 1
if y_hat[i]==0 and y_actual[i]!=y_hat[i]:
FN += 1
return(print("TP, FP, TN, FN: ",TP, FP, TN, FN))
print(perf_measure(test_y, prediction))
# Kfold
kf = KFold(n_splits=4)
kf.get_n_splits(X)
for train_index, test_index in kf.split(X):
print("KFold train-test cross validation")
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
# resubstitution validation
prediction_identical = model.predict(train_X)
print('The accuracy resubstitution: ', metrics.accuracy_score(prediction_identical, train_y))
|
[
"matplotlib.pyplot.show",
"numpy.nan_to_num",
"pandas.read_csv",
"sklearn.model_selection.train_test_split",
"sklearn.metrics.accuracy_score",
"matplotlib.pyplot.subplots",
"sklearn.tree.DecisionTreeClassifier",
"sklearn.tree.export_graphviz",
"pydotplus.graph_from_dot_data",
"sklearn.model_selection.KFold",
"numpy.array",
"sklearn.metrics.confusion_matrix",
"matplotlib.pyplot.tight_layout",
"numpy.delete"
] |
[((881, 915), 'pandas.read_csv', 'pd.read_csv', (['"""googleplaystore.csv"""'], {}), "('googleplaystore.csv')\n", (892, 915), True, 'import pandas as pd\n'), ((3249, 3263), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3261, 3263), True, 'import matplotlib.pyplot as plt\n'), ((3518, 3536), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3534, 3536), True, 'import matplotlib.pyplot as plt\n'), ((3537, 3547), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3545, 3547), True, 'import matplotlib.pyplot as plt\n'), ((3691, 3705), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3703, 3705), True, 'import matplotlib.pyplot as plt\n'), ((3952, 3970), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3968, 3970), True, 'import matplotlib.pyplot as plt\n'), ((3971, 3981), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3979, 3981), True, 'import matplotlib.pyplot as plt\n'), ((5410, 5422), 'numpy.array', 'np.array', (['df'], {}), '(df)\n', (5418, 5422), True, 'import numpy as np\n'), ((5427, 5454), 'numpy.delete', 'np.delete', (['data', '(11)'], {'axis': '(1)'}), '(data, 11, axis=1)\n', (5436, 5454), True, 'import numpy as np\n'), ((5459, 5475), 'numpy.nan_to_num', 'np.nan_to_num', (['X'], {}), '(X)\n', (5472, 5475), True, 'import numpy as np\n'), ((5539, 5577), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.25)'}), '(X, y, test_size=0.25)\n', (5555, 5577), False, 'from sklearn.model_selection import train_test_split\n'), ((5603, 5627), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {}), '()\n', (5625, 5627), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((5702, 5744), 'sklearn.metrics.accuracy_score', 'metrics.accuracy_score', (['prediction', 'test_y'], {}), '(prediction, test_y)\n', (5724, 5744), False, 'from sklearn import metrics\n'), ((5804, 5870), 'sklearn.tree.export_graphviz', 'tree.export_graphviz', (['model'], {'out_file': 'None', 'feature_names': 'features'}), '(model, out_file=None, feature_names=features)\n', (5824, 5870), False, 'from sklearn import tree\n'), ((5926, 5965), 'pydotplus.graph_from_dot_data', 'pydotplus.graph_from_dot_data', (['dot_data'], {}), '(dot_data)\n', (5955, 5965), False, 'import pydotplus\n'), ((6685, 6702), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': '(4)'}), '(n_splits=4)\n', (6690, 6702), False, 'from sklearn.model_selection import KFold\n'), ((6178, 6214), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['test_y', 'prediction'], {}), '(test_y, prediction)\n', (6194, 6214), False, 'from sklearn.metrics import confusion_matrix\n'), ((7081, 7134), 'sklearn.metrics.accuracy_score', 'metrics.accuracy_score', (['prediction_identical', 'train_y'], {}), '(prediction_identical, train_y)\n', (7103, 7134), False, 'from sklearn import metrics\n')]
|
import argparse
import os
from collections import defaultdict
from typing import Dict, List
import ipdb
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as F
from torch import nn
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from yacs.config import CfgNode
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.image_list import ImageList, to_image_list
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from utils.data import VideoDataset
from utils.io import dump_pickle, load_image, load_pickle
import numpy as np
# MSVD = True
# class Args(TypedArgs):
# def __init__(self):
# parser = argparse.ArgumentParser()
# self.frame_path = parser.add_argument(
# '-f', '--frame-path',
# )
# self.output = parser.add_argument(
# '-o', '--output'
# )
# self.batch_size = parser.add_argument(
# '-b', '--batch-size', type=int, default=16
# )
# self.num_workers = parser.add_argument(
# '-n', '--num-workers', type=int, default=4
# )
# self.parse_args_from(parser)
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--frame-path', help='path to frames')
parser.add_argument('-o', '--output', help='path to output pt file')
parser.add_argument('-b', '--batch-size', default=16)
parser.add_argument('-n', '--num-workers', type=int, default=4)
parser.add_argument('--msvd', action='store_true', help='for MSVD-QA')
parser.add_argument(
'-c', '--config', help='path to e2e_mask_rcnn_R_101_FPN_1x_caffe2.yaml')
class Resize(object):
def __init__(self, min_size, max_size):
self.min_size = min_size
self.max_size = max_size
# modified from torchvision to add support for max size
def get_size(self, image_size):
w, h = image_size
size = self.min_size
max_size = self.max_size
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(
round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
def __call__(self, image):
size = self.get_size(image.size)
image = F.resize(image, size)
return image
class FrameDataset(Dataset):
def __init__(self, cfg: CfgNode, samples: List[str]):
self.cfg = cfg
self.transform = self.build_transform()
self.samples: List[str] = samples
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
sample = self.samples[index]
image = load_image(sample)
image = self.transform(image)
return image
def build_transform(self):
cfg = self.cfg
to_bgr = T.Lambda(lambda x: x[[2, 1, 0]] * 255)
normalize = T.Normalize(
cfg.INPUT.PIXEL_MEAN,
cfg.INPUT.PIXEL_STD
)
transform = T.Compose([
Resize(cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MAX_SIZE_TEST),
T.ToTensor(),
to_bgr,
normalize
])
return transform
# def set_samples(self, samples):
# self.samples = samples
class GIFDataset(Dataset):
def __init__(self, cfg: CfgNode, args):
self.cfg = cfg
self.args = args
self.samples: List[str] = load_pickle(args.frame_path)
self.video_dict: Dict[str, List[str]] = defaultdict(list)
self.videos = []
for sample in tqdm(self.samples):
gif_name = sample.split('/')[-1]
self.videos.append(gif_name)
num_frames = len(os.listdir(sample))
# if MSVD:
if args.msvd:
selected_frames = np.linspace(
0, num_frames, 20 + 2)[1:20+1].astype(np.int) + 1
for n in selected_frames:
self.video_dict[gif_name].append(
# os.path.join(sample, f'{n}.jpg') # For TGIF-QA
os.path.join(sample, f'{n + 1:06}.jpg') # For MSVD-QA
)
else:
for n in range(num_frames):
self.video_dict[gif_name].append(
os.path.join(sample, f'{n}.jpg') # For TGIF-QA
# os.path.join(sample, f'{n + 1:06}.jpg') # For MSVD-QA
)
# self.frame_dataset = FrameDataset(cfg)
def __getitem__(self, index):
gif_name = self.videos[index]
# self.frame_dataset.set_samples(self.video_dict[gif_name])
dataset = FrameDataset(self.cfg, self.video_dict[gif_name])
loader = DataLoader(
dataset,
batch_size=self.args.batch_size,
shuffle=False,
num_workers=self.args.num_workers,
pin_memory=True,
collate_fn=collate_fn
)
return loader, gif_name
def __len__(self):
return len(self.samples)
def collate_fn(batch: List[torch.Tensor]) -> ImageList:
return to_image_list(batch, size_divisible=cfg.DATALOADER.SIZE_DIVISIBILITY)
class Extractor:
def __init__(self, cfg: CfgNode, args):
self.args = args
self.cfg = cfg.clone()
self.model: nn.Module = build_detection_model(cfg)
self.model.eval()
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
# Load weight
save_dir = cfg.OUTPUT_DIR
checkpointer = DetectronCheckpointer(
cfg, self.model, save_dir=save_dir
)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
self.cpu_device = torch.device('cpu')
# Keep all result
self.confidence_threshold = 0.
self.datasets = GIFDataset(cfg, args)
self.results: Dict[str, List] = defaultdict(list)
@torch.no_grad()
def compute_predictions(self, image_list: ImageList) -> List[BoxList]:
image_list = image_list.to(self.device)
predictions = self.model(image_list)
return predictions
def run_once(self):
for dataset, gif_name in self.datasets:
# ipdb.set_trace()
loader = DataLoader(
dataset,
batch_size=self.args.batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
collate_fn=collate_fn
)
for image_list in loader:
predictions = self.compute_predictions(image_list)
self.save_predictions(gif_name, predictions)
ipdb.set_trace()
break
break
self.dump_result()
def run(self):
dataset_loader = DataLoader(
self.datasets,
batch_size=1,
collate_fn=lambda x: x[0]
)
for loader, gif_name in tqdm(dataset_loader):
# ipdb.set_trace()
for image_list in tqdm(loader):
predictions = self.compute_predictions(image_list)
self.save_predictions(gif_name, predictions)
self.dump_result()
def save_predictions(self, gif_name: str, predictions: List[BoxList]):
# preds = [
# {
# 'bbox': pred.bbox,
# 'scores': pred.scores,
# 'labels': pred.labels,
# }
# for pred in predictions
# ]
for pred in predictions:
pred: BoxList = pred.to(self.cpu_device).resize((1, 1))
self.results[gif_name].append(
{
'bbox': pred.bbox,
'scores': pred.get_field('scores'),
'labels': pred.get_field('labels'),
}
)
def dump_result(self):
torch.save(self.results, self.args.output)
def load_config(config_file='/home/huangdeng/Code/python/maskrcnn/maskrcnn-benchmark/configs/caffe2/e2e_mask_rcnn_R_101_FPN_1x_caffe2.yaml') -> CfgNode:
cfg.merge_from_file(config_file)
cfg.merge_from_list(["MODEL.MASK_ON", False])
return cfg
def main(args):
cfg = load_config(args.config)
extractor = Extractor(cfg, args)
# extractor.run_once()
extractor.run()
if __name__ == "__main__":
# args = Args()
args = parser.parse_args()
main(args)
|
[
"argparse.ArgumentParser",
"ipdb.set_trace",
"collections.defaultdict",
"maskrcnn_benchmark.config.cfg.merge_from_list",
"maskrcnn_benchmark.modeling.detector.build_detection_model",
"torch.device",
"torchvision.transforms.Normalize",
"maskrcnn_benchmark.structures.image_list.to_image_list",
"torch.no_grad",
"os.path.join",
"torch.utils.data.DataLoader",
"torchvision.transforms.Lambda",
"utils.io.load_image",
"maskrcnn_benchmark.config.cfg.merge_from_file",
"numpy.linspace",
"tqdm.tqdm",
"maskrcnn_benchmark.config.cfg.clone",
"torchvision.transforms.functional.resize",
"os.listdir",
"maskrcnn_benchmark.utils.checkpoint.DetectronCheckpointer",
"utils.io.load_pickle",
"torch.save",
"torchvision.transforms.ToTensor"
] |
[((1350, 1375), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1373, 1375), False, 'import argparse\n'), ((5589, 5658), 'maskrcnn_benchmark.structures.image_list.to_image_list', 'to_image_list', (['batch'], {'size_divisible': 'cfg.DATALOADER.SIZE_DIVISIBILITY'}), '(batch, size_divisible=cfg.DATALOADER.SIZE_DIVISIBILITY)\n', (5602, 5658), False, 'from maskrcnn_benchmark.structures.image_list import ImageList, to_image_list\n'), ((6384, 6399), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6397, 6399), False, 'import torch\n'), ((8554, 8586), 'maskrcnn_benchmark.config.cfg.merge_from_file', 'cfg.merge_from_file', (['config_file'], {}), '(config_file)\n', (8573, 8586), False, 'from maskrcnn_benchmark.config import cfg\n'), ((8591, 8636), 'maskrcnn_benchmark.config.cfg.merge_from_list', 'cfg.merge_from_list', (["['MODEL.MASK_ON', False]"], {}), "(['MODEL.MASK_ON', False])\n", (8610, 8636), False, 'from maskrcnn_benchmark.config import cfg\n'), ((2777, 2798), 'torchvision.transforms.functional.resize', 'F.resize', (['image', 'size'], {}), '(image, size)\n', (2785, 2798), True, 'import torchvision.transforms.functional as F\n'), ((3168, 3186), 'utils.io.load_image', 'load_image', (['sample'], {}), '(sample)\n', (3178, 3186), False, 'from utils.io import dump_pickle, load_image, load_pickle\n'), ((3319, 3357), 'torchvision.transforms.Lambda', 'T.Lambda', (['(lambda x: x[[2, 1, 0]] * 255)'], {}), '(lambda x: x[[2, 1, 0]] * 255)\n', (3327, 3357), True, 'import torchvision.transforms as T\n'), ((3379, 3433), 'torchvision.transforms.Normalize', 'T.Normalize', (['cfg.INPUT.PIXEL_MEAN', 'cfg.INPUT.PIXEL_STD'], {}), '(cfg.INPUT.PIXEL_MEAN, cfg.INPUT.PIXEL_STD)\n', (3390, 3433), True, 'import torchvision.transforms as T\n'), ((3903, 3931), 'utils.io.load_pickle', 'load_pickle', (['args.frame_path'], {}), '(args.frame_path)\n', (3914, 3931), False, 'from utils.io import dump_pickle, load_image, load_pickle\n'), ((3981, 3998), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (3992, 3998), False, 'from collections import defaultdict\n'), ((4047, 4065), 'tqdm.tqdm', 'tqdm', (['self.samples'], {}), '(self.samples)\n', (4051, 4065), False, 'from tqdm import tqdm\n'), ((5206, 5352), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': 'self.args.batch_size', 'shuffle': '(False)', 'num_workers': 'self.args.num_workers', 'pin_memory': '(True)', 'collate_fn': 'collate_fn'}), '(dataset, batch_size=self.args.batch_size, shuffle=False,\n num_workers=self.args.num_workers, pin_memory=True, collate_fn=collate_fn)\n', (5216, 5352), False, 'from torch.utils.data import DataLoader, Dataset\n'), ((5767, 5778), 'maskrcnn_benchmark.config.cfg.clone', 'cfg.clone', ([], {}), '()\n', (5776, 5778), False, 'from maskrcnn_benchmark.config import cfg\n'), ((5811, 5837), 'maskrcnn_benchmark.modeling.detector.build_detection_model', 'build_detection_model', (['cfg'], {}), '(cfg)\n', (5832, 5837), False, 'from maskrcnn_benchmark.modeling.detector import build_detection_model\n'), ((5886, 5916), 'torch.device', 'torch.device', (['cfg.MODEL.DEVICE'], {}), '(cfg.MODEL.DEVICE)\n', (5898, 5916), False, 'import torch\n'), ((6032, 6089), 'maskrcnn_benchmark.utils.checkpoint.DetectronCheckpointer', 'DetectronCheckpointer', (['cfg', 'self.model'], {'save_dir': 'save_dir'}), '(cfg, self.model, save_dir=save_dir)\n', (6053, 6089), False, 'from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer\n'), ((6187, 6206), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (6199, 6206), False, 'import torch\n'), ((6360, 6377), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (6371, 6377), False, 'from collections import defaultdict\n'), ((7271, 7337), 'torch.utils.data.DataLoader', 'DataLoader', (['self.datasets'], {'batch_size': '(1)', 'collate_fn': '(lambda x: x[0])'}), '(self.datasets, batch_size=1, collate_fn=lambda x: x[0])\n', (7281, 7337), False, 'from torch.utils.data import DataLoader, Dataset\n'), ((7416, 7436), 'tqdm.tqdm', 'tqdm', (['dataset_loader'], {}), '(dataset_loader)\n', (7420, 7436), False, 'from tqdm import tqdm\n'), ((8352, 8394), 'torch.save', 'torch.save', (['self.results', 'self.args.output'], {}), '(self.results, self.args.output)\n', (8362, 8394), False, 'import torch\n'), ((6721, 6847), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': 'self.args.batch_size', 'shuffle': '(False)', 'num_workers': '(0)', 'pin_memory': '(True)', 'collate_fn': 'collate_fn'}), '(dataset, batch_size=self.args.batch_size, shuffle=False,\n num_workers=0, pin_memory=True, collate_fn=collate_fn)\n', (6731, 6847), False, 'from torch.utils.data import DataLoader, Dataset\n'), ((7500, 7512), 'tqdm.tqdm', 'tqdm', (['loader'], {}), '(loader)\n', (7504, 7512), False, 'from tqdm import tqdm\n'), ((3582, 3594), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (3592, 3594), True, 'import torchvision.transforms as T\n'), ((4182, 4200), 'os.listdir', 'os.listdir', (['sample'], {}), '(sample)\n', (4192, 4200), False, 'import os\n'), ((7139, 7155), 'ipdb.set_trace', 'ipdb.set_trace', ([], {}), '()\n', (7153, 7155), False, 'import ipdb\n'), ((4561, 4600), 'os.path.join', 'os.path.join', (['sample', 'f"""{n + 1:06}.jpg"""'], {}), "(sample, f'{n + 1:06}.jpg')\n", (4573, 4600), False, 'import os\n'), ((4779, 4811), 'os.path.join', 'os.path.join', (['sample', 'f"""{n}.jpg"""'], {}), "(sample, f'{n}.jpg')\n", (4791, 4811), False, 'import os\n'), ((4285, 4319), 'numpy.linspace', 'np.linspace', (['(0)', 'num_frames', '(20 + 2)'], {}), '(0, num_frames, 20 + 2)\n', (4296, 4319), True, 'import numpy as np\n')]
|
"""
Generative Adversarial Network for fitting tuning curve generator.
This module implements Wasserstein GAN (`BPTTWassersteinGAN`) to fit
`TuningCurveGenerator`. It is composed of the following components:
- `BPTTWassersteinGAN`
- `.TuningCurveGenerator`: generator
- `UnConditionalDiscriminator`: discriminator
- `GeneratorTrainer`: generator-trainer
- `CriticTrainer`: discriminator (critic)-trainer
Generator and Discriminator only define the symbolic expression of the
forward-pass and gradients (backward-pass) are calculated in their
trainer.
`BPTTWassersteinGAN` is responsible for bundling them together,
managing numeric data, and looping through the learning argorithm.
"""
import itertools
import lasagne
import numpy as np
from .. import ssnode
from ..core import BaseComponent, consume_subdict
from ..gradient_expressions.utils import sample_sites_from_stim_space
from ..lasagne_toppings.rechack import largerrecursionlimit
from ..utils import (
cached_property, cartesian_product, random_minibatches, StopWatch,
theano_function, log_timing, Namespace,
)
from .ssn import make_tuning_curve_generator, maybe_mixin_noise, is_heteroin
DEFAULT_PARAMS = dict(
bandwidths=ssnode.DEFAULT_PARAMS['bandwidths'],
contrasts=ssnode.DEFAULT_PARAMS['contrast'],
smoothness=ssnode.DEFAULT_PARAMS['smoothness'],
sample_sites=[0],
# Stimulator:
num_sites=ssnode.DEFAULT_PARAMS['N'],
# Model / SSN:
k=ssnode.DEFAULT_PARAMS['k'],
n=ssnode.DEFAULT_PARAMS['n'],
io_type='asym_tanh',
tau_E=10,
tau_I=1,
dt=0.1,
seqlen=1200,
batchsize=1,
skip_steps=1000,
gen=dict(
rate_cost=0.01,
rate_penalty_threshold=200.0,
),
disc=dict(
rate_penalty_bound=-1.0,
),
)
class UnConditionalDiscriminator(BaseComponent):
def __init__(self, shape, loss_type,
layers, normalization, nonlinearity,
net_options=None):
from .simple_discriminator import make_net
self.l_out = make_net(
shape, loss_type,
layers, normalization, nonlinearity,
options=net_options,
)
from theano import tensor as T
self.xg = xg = T.matrix() # \tilde x -- "fake image"
self.xd = xd = T.matrix() # x -- ground truth
Dg = self.get_output(xg)
Dd = self.get_output(xd)
self.accuracy_expr = Dg.mean() - Dd.mean()
@cached_property
def accuracy(self):
return theano_function([self.xg, self.xd], self.accuracy_expr)
def get_all_params(self):
return lasagne.layers.get_all_params(self.l_out, trainable=True)
def get_output(self, inputs=None):
return lasagne.layers.get_output(self.l_out, inputs=inputs)
def prepare(self):
""" Force compile Theano functions. """
self.accuracy
def apply_l2_decay(updates, params, decay):
for var in params:
updates[var] -= decay * var
def apply_l1_decay(updates, params, decay):
from theano.tensor import sgn
for var in params:
updates[var] -= decay * sgn(var)
class Updater(BaseComponent):
_named_update_configs = {
# Values recommended by Gulrajani et al. (2017)
# -- http://arxiv.org/abs/1704.00028:
'adam-wgan': ('adam', dict(beta1=0.5, beta2=0.9)),
}
def __init__(self, learning_rate=0.001, update_name='adam-wgan',
update_config={},
reg_l2_penalty=0.0, reg_l2_decay=0.0,
reg_l1_penalty=0.0, reg_l1_decay=0.0):
self.learning_rate = learning_rate
self.update_name = update_name
self.update_config = update_config
self.reg_l2_penalty = reg_l2_penalty
self.reg_l1_penalty = reg_l1_penalty
self.reg_l2_decay = reg_l2_decay # Loshchilov & Hutter (2017)
self.reg_l1_decay = reg_l1_decay
def _get_updater(self):
name, default = self._named_update_configs.get(
self.update_name,
(self.update_name, {}))
updater = getattr(lasagne.updates, name)
config = dict(default, **self.update_config)
return updater, config
def __call__(self, loss, params):
updater, config = self._get_updater()
# Add L2/L1 regularizatio penalty to `loss`:
if self.reg_l2_penalty:
loss += lasagne.regularization.apply_penalty(
params, lasagne.regularization.l2,
) * self.reg_l2_penalty
if self.reg_l1_penalty:
loss += lasagne.regularization.apply_penalty(
params, lasagne.regularization.l1,
) * self.reg_l1_penalty
# Compute gradient & update formulae:
updates = updater(
loss, params, learning_rate=self.learning_rate,
**config)
# Add L2/L1 weight decay to the update:
learning_rate = self.learning_rate
if self.reg_l2_decay:
apply_l2_decay(updates, params, learning_rate * self.reg_l2_decay)
if self.reg_l1_decay:
apply_l1_decay(updates, params, learning_rate * self.reg_l1_decay)
return updates
class BaseTrainer(BaseComponent):
@classmethod
def consume_kwargs(self, *args, **kwargs):
updater, rest = Updater.consume_kwargs(**kwargs)
return super(BaseTrainer, self).consume_kwargs(
*args, updater=updater, **rest)
def get_updates(self):
with log_timing("{}.update()".format(self.__class__.__name__)):
return self.updater(self.loss, self.target.get_all_params())
@cached_property
def train_impl(self):
with log_timing("compiling {}.train_impl"
.format(self.__class__.__name__)):
return theano_function(self.inputs, self.loss,
updates=self.get_updates())
train = property(lambda self: self.train_impl)
def prepare(self):
""" Force compile Theano functions. """
self.train_impl
class CriticTrainer(BaseTrainer):
"""
Discriminator/Critic trainer for WGAN.
"""
def __init__(self, disc, updater):
self.target = disc
self.updater = updater
from theano import tensor as T
self.lmd = lmd = T.scalar()
self.xg = xg = T.matrix() # \tilde x -- "fake image"
self.xd = xd = T.matrix() # x -- ground truth
self.xp = xp = T.matrix() # \hat x -- interpolated sample
self.disc_gene = disc.get_output(xg).mean()
self.disc_data = disc.get_output(xd).mean()
self.disc_intp = disc.get_output(xp)[:, 0]
self.dgrad = T.jacobian(self.disc_intp, xp)
self.penalty = ((self.dgrad.norm(2, axis=(1, 2)) - 1)**2).mean()
self.loss = self.disc_gene - self.disc_data + lmd * self.penalty
self.inputs = (xg, xd, xp, lmd)
class GeneratorTrainer(BaseTrainer):
def __init__(self, gen, disc, dynamics_cost, rate_cost,
J_min, J_max, D_min, D_max, S_min, S_max,
updater):
self.target = self.gen = gen
self.disc = disc
self.dynamics_cost = dynamics_cost
self.rate_cost = rate_cost
self.J_min = J_min
self.J_max = J_max
self.D_min = D_min
self.D_max = D_max
self.S_min = S_min
self.S_max = S_max
self.updater = updater
self.post_init()
def post_init(self):
gen = self.gen
disc = self.disc
self.loss = - disc.get_output(gen.get_output()).mean()
self.loss += self.dynamics_cost * gen.model.dynamics_penalty
self.loss += self.rate_cost * gen.model.rate_penalty
self.inputs = gen.inputs
def clip_params(self, updates):
for var in self.gen.get_all_params():
p_min = getattr(self, var.name + '_min')
p_max = getattr(self, var.name + '_max')
p_min = np.array(p_min, dtype=updates[var].dtype)
p_max = np.array(p_max, dtype=updates[var].dtype)
updates[var] = updates[var].clip(p_min, p_max)
return updates
def get_updates(self):
return self.clip_params(super(GeneratorTrainer, self).get_updates())
def train(self, rng=None, **kwargs):
kwargs = maybe_mixin_noise(self.gen, rng, kwargs)
values = [kwargs.pop(k) for k in self.gen._input_names]
assert not kwargs
return self.train_impl(*values)
class HeteroInGeneratorTrainer(GeneratorTrainer):
def __init__(self, gen, disc, dynamics_cost, rate_cost,
J_min, J_max, D_min, D_max, S_min, S_max,
updater,
V_min=0, V_max=1):
self.target = self.gen = gen
self.disc = disc
self.dynamics_cost = dynamics_cost
self.rate_cost = rate_cost
self.J_min = J_min
self.J_max = J_max
self.D_min = D_min
self.D_max = D_max
self.S_min = S_min
self.S_max = S_max
self.V_min = V_min
self.V_max = V_max
self.updater = updater
self.post_init()
def emit_generator_trainer(gen, *args, **kwargs):
if is_heteroin(gen):
trainer_class = HeteroInGeneratorTrainer
else:
trainer_class = GeneratorTrainer
return trainer_class.consume_kwargs(gen, *args, **kwargs)
def grid_stimulator_inputs(contrasts, bandwidths, batchsize):
product = cartesian_product(contrasts, bandwidths)
return np.tile(product.reshape((1,) + product.shape),
(batchsize,) + (1,) * product.ndim).swapaxes(0, 1)
class BPTTWassersteinGAN(BaseComponent):
def __init__(self, gen, disc, gen_trainer, disc_trainer,
bandwidths, contrasts,
include_inhibitory_neurons,
rate_penalty_threshold,
critic_iters_init, critic_iters, lipschitz_cost,
disc_rate_penalty_bound,
seed=0):
self.gen = gen
self.disc = disc
self.gen_trainer = gen_trainer
self.disc_trainer = disc_trainer
self.critic_iters_init = critic_iters_init
self.critic_iters = critic_iters
self.lipschitz_cost = lipschitz_cost
self.disc_rate_penalty_bound = disc_rate_penalty_bound
self.rng = np.random.RandomState(seed)
self.bandwidths = bandwidths
self.contrasts = contrasts
self.stimulator_contrasts, self.stimulator_bandwidths \
= grid_stimulator_inputs(contrasts, bandwidths, self.batchsize)
self.include_inhibitory_neurons = include_inhibitory_neurons
# As of writing, this variable is not required for learning.
# This is only used from `sample_sites` property which is only
# used from bptt_wgan.learn.
self.rate_penalty_threshold = rate_penalty_threshold
batchsize = property(lambda self: self.gen.batchsize)
num_neurons = property(lambda self: self.gen.num_neurons)
@property
def sample_sites(self):
probes = list(self.gen.prober.probes)
if self.include_inhibitory_neurons:
return probes[:len(probes) // 2]
else:
return probes
# To be compatible with GANDriver:
loss_type = 'WD'
discriminator = property(lambda self: self.disc.l_out)
NZ = property(lambda self: self.batchsize)
def get_gen_param(self):
# To be called from GANDriver
return [
self.gen.model.J.get_value(),
self.gen.model.D.get_value(),
self.gen.model.S.get_value(),
]
def set_dataset(self, data, **kwargs):
kwargs.setdefault('seed', self.rng)
self.dataset = random_minibatches(self.batchsize, data, **kwargs)
def next_minibatch(self):
return next(self.dataset)
def prepare(self):
""" Force compile Theano functions. """
with largerrecursionlimit(self.gen.model.unroll_scan,
self.gen.model.seqlen):
self.gen.prepare()
self.gen_trainer.prepare()
self.disc.prepare()
self.disc_trainer.prepare()
def gen_forward(self):
return self.gen.forward(
rng=self.rng,
stimulator_bandwidths=self.stimulator_bandwidths,
stimulator_contrasts=self.stimulator_contrasts,
model_rate_penalty_threshold=self.rate_penalty_threshold,
)
def train_discriminator(self, info):
xd = self.next_minibatch()
eps = self.rng.rand(self.batchsize).reshape((-1, 1))
with self.gen_forward_watch:
gen_out = self.gen_forward()
xg = gen_out.prober_tuning_curve
xp = eps * xd + (1 - eps) * xg
info.gen_out = gen_out
info.dynamics_penalty = gen_out.model_dynamics_penalty
info.rate_penalty = gen_out.model_rate_penalty
info.xd = xd
info.xg = xg
info.xp = xp
info.gen_time = self.gen_forward_watch.times[-1]
bound = self.disc_rate_penalty_bound
if bound > 0 and gen_out.model_rate_penalty > bound:
info.disc_loss = np.nan
info.accuracy = np.nan
info.disc_time = np.nan
return info
with self.disc_train_watch:
info.disc_loss = self.disc_trainer.train(
xg, xd, xp, self.lipschitz_cost,
)
info.accuracy = self.disc.accuracy(xg, xd)
info.disc_time = self.disc_train_watch.times[-1]
return info
def train_generator(self, info):
with self.gen_train_watch:
info.gen_loss = self.gen_trainer.train(
rng=self.rng,
stimulator_bandwidths=self.stimulator_bandwidths,
stimulator_contrasts=self.stimulator_contrasts,
model_rate_penalty_threshold=self.rate_penalty_threshold,
)
info.gen_forward_time = self.gen_forward_watch.sum()
info.gen_train_time = self.gen_train_watch.sum()
info.gen_time = info.gen_train_time + info.gen_forward_time
info.disc_time = self.disc_train_watch.sum()
return info
def _single_gen_step(self, gen_step, critic_iters):
self.gen_forward_watch = StopWatch()
self.gen_train_watch = StopWatch()
self.disc_train_watch = StopWatch()
for disc_step in range(critic_iters):
info = Namespace(is_discriminator=True, gen_step=gen_step,
disc_step=disc_step)
yield self.train_discriminator(info)
info = Namespace(is_discriminator=False, gen_step=gen_step)
yield self.train_generator(info)
def learning(self):
for info in self._single_gen_step(0, self.critic_iters_init):
yield info
for gen_step in itertools.count(1):
for info in self._single_gen_step(gen_step, self.critic_iters):
yield info
def probes_from_stim_space(stim_locs, num_sites, include_inhibitory_neurons):
probes = sample_sites_from_stim_space(stim_locs, num_sites)
if include_inhibitory_neurons:
probes.extend(np.array(probes) + num_sites)
return probes
def make_gan(config):
"""make_gan(config: dict) -> (GAN, dict)
Initialize a GAN given `config` and return unconsumed part of `config`.
"""
kwargs = dict(DEFAULT_PARAMS, **config)
kwargs['gen'] = dict(DEFAULT_PARAMS['gen'], **config.get('gen', {}))
kwargs['disc'] = dict(DEFAULT_PARAMS['disc'], **config.get('disc', {}))
return _make_gan_from_kwargs(**kwargs)
def _make_gan_from_kwargs(
J0, S0, D0, num_sites, bandwidths, contrasts, sample_sites,
include_inhibitory_neurons,
consume_union=True,
**rest):
probes = probes_from_stim_space(sample_sites, num_sites,
include_inhibitory_neurons)
if 'V0' in rest:
rest['V'] = rest.pop('V0')
rate_penalty_threshold = rest['gen'].pop('rate_penalty_threshold') # FIXME
disc_rate_penalty_bound = rest['disc'].pop('rate_penalty_bound') # FIXME
gen, rest = make_tuning_curve_generator(
rest,
consume_union=consume_union,
# Stimulator:
num_tcdom=len(bandwidths) * len(contrasts),
num_sites=num_sites,
# Model / SSN:
J=J0,
D=D0,
S=S0,
# Prober:
probes=probes,
)
disc, rest = consume_subdict(
UnConditionalDiscriminator.consume_kwargs, 'disc', rest,
shape=gen.output_shape,
loss_type='WD',
)
gen_trainer, rest = consume_subdict(
emit_generator_trainer, 'gen', rest,
gen, disc,
)
disc_trainer, rest = consume_subdict(
CriticTrainer.consume_kwargs, 'disc', rest,
disc,
)
if consume_union:
for key in ['V_min', 'V_max']:
rest.pop(key, None)
return BPTTWassersteinGAN.consume_kwargs(
gen, disc, gen_trainer, disc_trainer, bandwidths, contrasts,
include_inhibitory_neurons=include_inhibitory_neurons,
rate_penalty_threshold=rate_penalty_threshold,
disc_rate_penalty_bound=disc_rate_penalty_bound,
**rest)
|
[
"lasagne.regularization.apply_penalty",
"lasagne.layers.get_all_params",
"numpy.random.RandomState",
"itertools.count",
"lasagne.layers.get_output",
"numpy.array",
"theano.tensor.jacobian",
"theano.tensor.sgn",
"theano.tensor.scalar",
"theano.tensor.matrix"
] |
[((2229, 2239), 'theano.tensor.matrix', 'T.matrix', ([], {}), '()\n', (2237, 2239), True, 'from theano import tensor as T\n'), ((2293, 2303), 'theano.tensor.matrix', 'T.matrix', ([], {}), '()\n', (2301, 2303), True, 'from theano import tensor as T\n'), ((2614, 2671), 'lasagne.layers.get_all_params', 'lasagne.layers.get_all_params', (['self.l_out'], {'trainable': '(True)'}), '(self.l_out, trainable=True)\n', (2643, 2671), False, 'import lasagne\n'), ((2727, 2779), 'lasagne.layers.get_output', 'lasagne.layers.get_output', (['self.l_out'], {'inputs': 'inputs'}), '(self.l_out, inputs=inputs)\n', (2752, 2779), False, 'import lasagne\n'), ((6280, 6290), 'theano.tensor.scalar', 'T.scalar', ([], {}), '()\n', (6288, 6290), True, 'from theano import tensor as T\n'), ((6314, 6324), 'theano.tensor.matrix', 'T.matrix', ([], {}), '()\n', (6322, 6324), True, 'from theano import tensor as T\n'), ((6378, 6388), 'theano.tensor.matrix', 'T.matrix', ([], {}), '()\n', (6386, 6388), True, 'from theano import tensor as T\n'), ((6442, 6452), 'theano.tensor.matrix', 'T.matrix', ([], {}), '()\n', (6450, 6452), True, 'from theano import tensor as T\n'), ((6666, 6696), 'theano.tensor.jacobian', 'T.jacobian', (['self.disc_intp', 'xp'], {}), '(self.disc_intp, xp)\n', (6676, 6696), True, 'from theano import tensor as T\n'), ((10303, 10330), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (10324, 10330), True, 'import numpy as np\n'), ((14800, 14818), 'itertools.count', 'itertools.count', (['(1)'], {}), '(1)\n', (14815, 14818), False, 'import itertools\n'), ((3114, 3122), 'theano.tensor.sgn', 'sgn', (['var'], {}), '(var)\n', (3117, 3122), False, 'from theano.tensor import sgn\n'), ((7937, 7978), 'numpy.array', 'np.array', (['p_min'], {'dtype': 'updates[var].dtype'}), '(p_min, dtype=updates[var].dtype)\n', (7945, 7978), True, 'import numpy as np\n'), ((7999, 8040), 'numpy.array', 'np.array', (['p_max'], {'dtype': 'updates[var].dtype'}), '(p_max, dtype=updates[var].dtype)\n', (8007, 8040), True, 'import numpy as np\n'), ((4372, 4443), 'lasagne.regularization.apply_penalty', 'lasagne.regularization.apply_penalty', (['params', 'lasagne.regularization.l2'], {}), '(params, lasagne.regularization.l2)\n', (4408, 4443), False, 'import lasagne\n'), ((4549, 4620), 'lasagne.regularization.apply_penalty', 'lasagne.regularization.apply_penalty', (['params', 'lasagne.regularization.l1'], {}), '(params, lasagne.regularization.l1)\n', (4585, 4620), False, 'import lasagne\n'), ((15124, 15140), 'numpy.array', 'np.array', (['probes'], {}), '(probes)\n', (15132, 15140), True, 'import numpy as np\n')]
|
import numpy as np
import os
import shutil
import random
from model_mask_cond import MaskNN
import torch
import sklearn.utils
from torch.nn import functional as F
vector_num = 256
cond_num = 12
rest_pitch = 129
hold_pitch = 128
cpath = "processed_data"
train_path = cpath + "/vae_train_data.npy"
validate_path = cpath + "/vae_validate_data.npy"
test_path = cpath + "/vae_test_data.npy"
total_len = 256 # 32.0 s
known_len = 128 # 16.0 s
shift_len = 32 # 4.0 s
total_epoch = 20000
batch_size = 64
learning_rate = 1e-4
train_data = np.load(train_path,allow_pickle = True)
test_data = np.load(test_path,allow_pickle = True)
validate_data = np.load(validate_path,allow_pickle = True)
print(train_data.shape)
print(test_data.shape)
print(validate_data.shape)
def create_mask(data):
data_x = []
data_gd = []
for x in data:
temp_gd = x[0].numpy()
temp_x = np.concatenate((x[0].numpy(),x[1]),axis = 1)
temp_x[4:,:128] = 0
data_x.append(temp_x)
data_gd.append(temp_gd)
# print(data_x[0])
# print(data_gd[0])
return np.array(data_x),np.array(data_gd)
train_x,train_gd = create_mask(train_data)
print(train_x.shape)
print(train_gd.shape)
test_x,test_gd = create_mask(test_data)
print(test_x.shape)
print(test_gd.shape)
validate_x,validate_gd = create_mask(validate_data)
print(validate_x.shape)
print(validate_gd.shape)
# train
model = MaskNN(input_dims = vector_num ,
hidden_dims = vector_num + 128,output_dims = 128,time_steps = total_len)
optimizer = torch.optim.Adam(model.parameters(), lr = learning_rate)
if torch.cuda.is_available():
print("Using:", torch.cuda.get_device_name(torch.cuda.current_device()),flush = True)
model.cuda()
else:
print("Using CPU",flush = True)
model.train()
for epoch in range(total_epoch):
print("epoch: %d\n_________________________________" % epoch,flush = True)
train_x, train_gd = sklearn.utils.shuffle(train_x, train_gd)
train_batches_x = np.split(train_x,
range(batch_size, train_x.shape[0] // batch_size * batch_size, batch_size))
train_batches_gd = np.split(train_gd,
range(batch_size, train_gd.shape[0] // batch_size * batch_size, batch_size))
validate_x, validate_gd = sklearn.utils.shuffle(validate_x, validate_gd)
validate_batches_x = np.split(validate_x,
range(batch_size, validate_x.shape[0] // batch_size * batch_size, batch_size))
validate_batches_gd = np.split(validate_gd,
range(batch_size, validate_gd.shape[0] // batch_size * batch_size, batch_size))
for i in range(len(train_batches_x)):
x = torch.from_numpy(train_batches_x[i]).float()
gd = torch.from_numpy(train_batches_gd[i]).float()
j = i % len(validate_batches_x)
v_x = torch.from_numpy(validate_batches_x[j]).float()
v_gd = torch.from_numpy(validate_batches_gd[j]).float()
if torch.cuda.is_available():
x = x.cuda()
gd = gd.cuda()
v_x = v_x.cuda()
v_gd = v_gd.cuda()
optimizer.zero_grad()
x_out = model(x)
loss = F.mse_loss(x_out, gd.float())
loss.backward()
optimizer.step()
v_loss = 0.0
with torch.no_grad():
v_x_out = model(v_x)
v_loss = F.mse_loss(v_x_out, v_gd.float())
print("batch %d loss: %.5f | val loss %.5f" % (i,loss.item(),v_loss.item()),flush = True)
if (epoch + 1) % 100 == 0:
torch.save(model.cpu().state_dict(), "model_v5_" + str(epoch) + ".pt")
model.cuda()
|
[
"numpy.load",
"model_mask_cond.MaskNN",
"torch.cuda.is_available",
"numpy.array",
"torch.cuda.current_device",
"torch.no_grad",
"torch.from_numpy"
] |
[((530, 568), 'numpy.load', 'np.load', (['train_path'], {'allow_pickle': '(True)'}), '(train_path, allow_pickle=True)\n', (537, 568), True, 'import numpy as np\n'), ((582, 619), 'numpy.load', 'np.load', (['test_path'], {'allow_pickle': '(True)'}), '(test_path, allow_pickle=True)\n', (589, 619), True, 'import numpy as np\n'), ((637, 678), 'numpy.load', 'np.load', (['validate_path'], {'allow_pickle': '(True)'}), '(validate_path, allow_pickle=True)\n', (644, 678), True, 'import numpy as np\n'), ((1390, 1492), 'model_mask_cond.MaskNN', 'MaskNN', ([], {'input_dims': 'vector_num', 'hidden_dims': '(vector_num + 128)', 'output_dims': '(128)', 'time_steps': 'total_len'}), '(input_dims=vector_num, hidden_dims=vector_num + 128, output_dims=128,\n time_steps=total_len)\n', (1396, 1492), False, 'from model_mask_cond import MaskNN\n'), ((1577, 1602), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1600, 1602), False, 'import torch\n'), ((1070, 1086), 'numpy.array', 'np.array', (['data_x'], {}), '(data_x)\n', (1078, 1086), True, 'import numpy as np\n'), ((1087, 1104), 'numpy.array', 'np.array', (['data_gd'], {}), '(data_gd)\n', (1095, 1104), True, 'import numpy as np\n'), ((2942, 2967), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2965, 2967), False, 'import torch\n'), ((1651, 1678), 'torch.cuda.current_device', 'torch.cuda.current_device', ([], {}), '()\n', (1676, 1678), False, 'import torch\n'), ((3264, 3279), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3277, 3279), False, 'import torch\n'), ((2661, 2697), 'torch.from_numpy', 'torch.from_numpy', (['train_batches_x[i]'], {}), '(train_batches_x[i])\n', (2677, 2697), False, 'import torch\n'), ((2719, 2756), 'torch.from_numpy', 'torch.from_numpy', (['train_batches_gd[i]'], {}), '(train_batches_gd[i])\n', (2735, 2756), False, 'import torch\n'), ((2819, 2858), 'torch.from_numpy', 'torch.from_numpy', (['validate_batches_x[j]'], {}), '(validate_batches_x[j])\n', (2835, 2858), False, 'import torch\n'), ((2882, 2922), 'torch.from_numpy', 'torch.from_numpy', (['validate_batches_gd[j]'], {}), '(validate_batches_gd[j])\n', (2898, 2922), False, 'import torch\n')]
|
import sys
print(sys.path)
sys.path.append('./')
print(sys.path)
from modeling import build_model
from data.datasets.cuhk_sysu import CUHK_SYSU
from data.datasets.transformer import get_transform
from tools.util import ship_data_to_cuda,draw_box_in_image
from torch.utils.data import DataLoader
import torch
from tqdm import tqdm
import os
import numpy as np
import matplotlib.pyplot as plt
def visual(model_path,cfg=None):
# model=build_model.build(cfg)
# checkpoint=torch.load(model_path)
# model.load_state_dict(checkpoint.state_dict())
model=torch.load(model_path)
model=model.cuda()
model.eval()
testset=CUHK_SYSU('/root/dataset', transform=get_transform(True,0.5), test_size=50, mode='test')
loader = DataLoader(testset, batch_size=1, shuffle=False, collate_fn=testset.collate_fn)
for i,(img,target) in enumerate(loader):
img, target = ship_data_to_cuda(img, target, 'cuda')
result = model(img, target)
scores=result[0]['scores'].cpu()
ind_over_thresh=np.where(scores>0)
pre_boxes=result[0]['boxes'][ind_over_thresh]
img=(img[0]*255).permute([1,2,0]).cpu().numpy().astype(int)
for box in target[0]['boxes']:
draw_box_in_image(img,box)
for box in pre_boxes:
draw_box_in_image(img,box,False)
plt.imshow(img)
plt.show()
plt.ioff()
if __name__=='__main__':
visual('/root/proj/JMS_OIM/outputs/Dec 13 10:59:13 2020/ep16.pth')
|
[
"sys.path.append",
"data.datasets.transformer.get_transform",
"matplotlib.pyplot.show",
"torch.utils.data.DataLoader",
"matplotlib.pyplot.ioff",
"matplotlib.pyplot.imshow",
"torch.load",
"numpy.where",
"tools.util.draw_box_in_image",
"tools.util.ship_data_to_cuda"
] |
[((27, 48), 'sys.path.append', 'sys.path.append', (['"""./"""'], {}), "('./')\n", (42, 48), False, 'import sys\n'), ((563, 585), 'torch.load', 'torch.load', (['model_path'], {}), '(model_path)\n', (573, 585), False, 'import torch\n'), ((740, 819), 'torch.utils.data.DataLoader', 'DataLoader', (['testset'], {'batch_size': '(1)', 'shuffle': '(False)', 'collate_fn': 'testset.collate_fn'}), '(testset, batch_size=1, shuffle=False, collate_fn=testset.collate_fn)\n', (750, 819), False, 'from torch.utils.data import DataLoader\n'), ((888, 926), 'tools.util.ship_data_to_cuda', 'ship_data_to_cuda', (['img', 'target', '"""cuda"""'], {}), "(img, target, 'cuda')\n", (905, 926), False, 'from tools.util import ship_data_to_cuda, draw_box_in_image\n'), ((1028, 1048), 'numpy.where', 'np.where', (['(scores > 0)'], {}), '(scores > 0)\n', (1036, 1048), True, 'import numpy as np\n'), ((1330, 1345), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (1340, 1345), True, 'import matplotlib.pyplot as plt\n'), ((1354, 1364), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1362, 1364), True, 'import matplotlib.pyplot as plt\n'), ((1373, 1383), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (1381, 1383), True, 'import matplotlib.pyplot as plt\n'), ((675, 699), 'data.datasets.transformer.get_transform', 'get_transform', (['(True)', '(0.5)'], {}), '(True, 0.5)\n', (688, 699), False, 'from data.datasets.transformer import get_transform\n'), ((1220, 1247), 'tools.util.draw_box_in_image', 'draw_box_in_image', (['img', 'box'], {}), '(img, box)\n', (1237, 1247), False, 'from tools.util import ship_data_to_cuda, draw_box_in_image\n'), ((1289, 1323), 'tools.util.draw_box_in_image', 'draw_box_in_image', (['img', 'box', '(False)'], {}), '(img, box, False)\n', (1306, 1323), False, 'from tools.util import ship_data_to_cuda, draw_box_in_image\n')]
|
from pathlib import Path
import json
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt
from sklearn.dummy import DummyClassifier
from sklearn.metrics import accuracy_score
from src import DataProcessor, Model, EarlyStopping
from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec
#
# Loading arguments
#
if len(sys.argv) <= 1:
print("""
=======
JSON config helper
=======
`mode` (str): Choose ``train'', ``test'' or ``random''.
`seed` (int): Random seed.
`batch_size` (int): Specify the size of a batch.
`epochs` (int): Maximum number of epochs to train.
`hidden_dim` (int): The number of units for the first hidden layer.
`drop_rate` (float) [0.0, 1.0): Specify a dropout rate.
`patience` (int): Number of epochs to terminate the training process
if validation loss does not improve.
`loss_correction` (bool): Whether to apply class weight correction.
`gpu` (bool): Whether you want to use a GPU.
`gpu_number` (int): When gpu is `true`, which gpu you want to use?.
`save_model` (bool): Whether you want to save weights (train mode only).
`weight_name` (str): Specify a path where weights are saved (test mode only).
`split_rate` (float) [0.0, 1.0): The proportion of validation set.
`data_ratio` (float) (0.0, 1.0]: The proportion of training data with an even label being preserved.
""")
raise Exception('Please give a json file path!')
args_p = Path(sys.argv[1])
if args_p.exists() is False:
raise Exception('Path not found. Please check an argument again!')
with args_p.open(mode='r') as f:
true = True
false = False
null = None
args = json.load(f)
#
# Logger
#
import datetime
run_start_time = datetime.datetime.today().strftime('%Y-%m-%d_%H-%M-%S')
import logging
logfile = str('log/log-{}.txt'.format(run_start_time))
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
handlers=[
logging.FileHandler(logfile),
logging.StreamHandler(sys.stdout)
])
logger = logging.getLogger(__name__)
#
# Settings
#
torch.manual_seed(args['seed'])
if args["gpu"] is True:
torch.cuda.manual_seed_all(args['seed'])
if args["save_model"] is True:
save_path = Path(f'./weights/{run_start_time}.pth')
fig_path = Path('fig') / run_start_time
if fig_path.exists():
raise Exception('Path already exists!')
else:
fig_path.mkdir()
def train():
logger.info("***** Setup *****")
logger.info(f"Configs: {args}")
# make iterators
data_proceessor = DataProcessor()
train_data, val_data, pos_weight = data_proceessor.get_data(args['split_rate'], args['data_ratio'], args['seed'])
train_iterator = DataLoader(train_data, batch_size=args["batch_size"], shuffle=True)
val_iterator = DataLoader(val_data, batch_size=args["batch_size"], shuffle=True)
# build a model
model = Model(input_dim=28 * 28, hidden_dim=args['hidden_dim'], drop_rate=args['drop_rate'])
# define an optimizer
optimizer = optim.Adam(model.parameters())
if args['loss_correction'] is True:
pos_weight = torch.tensor(pos_weight)
criterion = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
else:
criterion = nn.BCEWithLogitsLoss()
# additional settings (e.g., early stopping)
early_stopping = EarlyStopping(logger, patience=args['patience'], verbose=True)
# for gpu environment
if args['gpu'] is True and args['gpu_number'] is not None:
torch.cuda.set_device(args['gpu_number'])
device = torch.device('cuda')
model = model.to(device)
criterion = criterion.to(device)
else:
device = torch.device('cpu')
model = model.to(device)
criterion = criterion.to(device)
logger.info(f"Number of training samples: {len(train_iterator.dataset)}")
logger.info(f"Number of validation samples: {len(val_iterator.dataset)}")
logger.info("***** Training *****")
_history = []
for epoch in range(args['epochs']):
train_loss, train_acc = train_run(model, train_iterator, optimizer, criterion, device)
logger.info(f'| Epoch: {epoch+1:02} | Train Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.3f}% |')
val_loss, val_acc = eval_run(model, val_iterator, criterion, device)
logger.info(f'| Val. Loss: {val_loss:.3f} | Val. Acc: {val_acc*100:.3f}% |')
_history.append([train_loss, train_acc, val_loss, val_acc])
# early stopping
early_stopping(val_loss)
if early_stopping.early_stop:
logger.info(f'\tEarly stopping at {epoch+1:02}')
if args['save_model'] is True:
save_model(model)
break
else: # end of the for loop
if args['save_model'] is True:
save_model(model)
logger.info("***** Evaluation *****")
# plot loss
_history = np.array(_history)
plt.figure()
plt.plot(np.arange(len(_history)), _history[:, 0], label="train")
plt.plot(np.arange(len(_history)), _history[:, 2], label='validation')
plt.grid(True)
plt.legend()
plt.title("Training Monitoring")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.savefig('./fig/{}/loss.png'.format(run_start_time), bbox_inches="tight", pad_inches=0.1)
# draw figures for evaluation
_, _, val_auc, val_ap, val_eer, val_prec, val_rec, val_f1 = test_run(model, val_iterator, criterion, device)
logger.info(f'| Val. AUC: {val_auc:.3f} | Val. AP: {val_ap:.3f} | Val. EER: {val_eer:.3f} | Val. Precision: {val_prec:.3f} | Val. Recall: {val_rec:.3f} | Val. F1: {val_f1:.3f} |')
def test():
logger.info("***** Setup *****")
logger.info(f"Configs: {args}")
# make iterators
data_proceessor = DataProcessor()
test_data = data_proceessor.get_test_data(args['data_ratio'])
test_iterator = DataLoader(test_data, batch_size=args["batch_size"], shuffle=True)
# build a model
model = Model(input_dim=28 * 28, hidden_dim=args['hidden_dim'], drop_rate=args['drop_rate'])
# load weights
model_dict = model.state_dict()
weights_dict = torch.load(args["weight_name"])
model.load_state_dict(weights_dict)
# define an optimizer
optimizer = optim.Adam(model.parameters())
criterion = nn.BCEWithLogitsLoss()
# for gpu environment
if args['gpu'] is True and args['gpu_number'] is not None:
torch.cuda.set_device(args['gpu_number'])
device = torch.device('cuda')
model = model.to(device)
criterion = criterion.to(device)
else:
device = torch.device('cpu')
model = model.to(device)
criterion = criterion.to(device)
logger.info(f"Number of testing samples: {len(test_iterator.dataset)}")
logger.info("***** Testing *****")
_, test_acc, test_auc, test_ap, test_eer, test_prec, test_rec, test_f1 = test_run(model, test_iterator, criterion, device)
logger.info(f'| Test Accuracy: {test_acc:.3f} | Test AUC: {test_auc:.3f} | Test AP: {test_ap:.3f} | Test EER: {test_eer:.3f} | Test Precision: {test_prec:.3f} | Test Recall: {test_rec:.3f} | Test F1: {test_f1:.3f} |')
def train_run(model, iterator, optimizer, criterion, device):
epoch_loss = 0
epoch_acc = 0
model.train()
for batch in iterator:
batch = tuple(t.to(device) for t in batch)
optimizer.zero_grad()
output = model(batch[0])
loss = criterion(output, batch[1])
acc = binary_accuracy(output, batch[1])
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def eval_run(model, iterator, criterion, device):
epoch_loss = 0
epoch_acc = 0
model.eval()
with torch.no_grad():
for batch in iterator:
batch = tuple(t.to(device) for t in batch)
predictions = model(batch[0])
loss = criterion(predictions, batch[1])
acc = binary_accuracy(predictions, batch[1])
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def test_run(model, iterator, criterion, device):
epoch_loss = 0
epoch_acc = 0
model.eval()
y_pred_list = np.array([])
y_true_list = np.array([])
with torch.no_grad():
for batch in iterator:
batch = tuple(t.to(device) for t in batch)
predictions = model(batch[0])
loss = criterion(predictions, batch[1])
acc = binary_accuracy(predictions, batch[1])
epoch_loss += loss.item()
epoch_acc += acc.item()
y_pred_list = np.append(y_pred_list, predictions.sigmoid().cpu().numpy())
y_true_list = np.append(y_true_list, batch[1].float().cpu().numpy())
draw_cm(y_pred_list, y_true_list, run_start_time)
auc = draw_roc(y_pred_list, y_true_list, run_start_time)
ap = draw_prc(y_pred_list, y_true_list, run_start_time)
eer = draw_det(y_pred_list, y_true_list, run_start_time)
f1, prec, rec = compute_f1_prec_rec(y_pred_list, y_true_list)
return epoch_loss / len(iterator), epoch_acc / len(iterator), auc, ap, eer, prec, rec, f1
def random():
logger.info("***** Setup *****")
logger.info(f"Configs: {args}")
# make iterators
data_proceessor = DataProcessor()
train_data, val_data, pos_weight = data_proceessor.get_data(args['split_rate'], args['data_ratio'], args['seed'])
test_data = data_proceessor.get_test_data(args['data_ratio'])
train_iterator = DataLoader(train_data, batch_size=args["batch_size"], shuffle=True)
val_iterator = DataLoader(val_data, batch_size=args["batch_size"], shuffle=True)
test_iterator = DataLoader(test_data, batch_size=args["batch_size"], shuffle=True)
logger.info(f"Number of training samples: {len(train_iterator.dataset)}")
logger.info(f"Number of validation samples: {len(val_iterator.dataset)}")
logger.info(f"Number of testing samples: {len(test_iterator.dataset)}")
# create a naive classifier
# https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
y_true_list = np.array([])
with torch.no_grad():
for batch in train_iterator:
y_true_list = np.append(y_true_list, batch[1].float().cpu().numpy())
model = DummyClassifier(strategy="stratified") # "most_frequent" or 'stratified'
X = np.zeros_like(y_true_list).reshape(-1, 1)
model.fit(X, y_true_list)
logger.info("***** Testing *****")
val_acc, val_auc, val_ap, val_eer, val_prec, val_rec, val_f1 = random_run(model, val_iterator)
test_acc, test_auc, test_ap, test_eer, test_prec, test_rec, test_f1 = random_run(model, test_iterator)
logger.info(f'| Val. Accuracy: {test_acc:.3f} | Val. AUC: {test_auc:.3f} | Val. AP: {test_ap:.3f} | Val. EER: {test_eer:.3f} | Val. Precision: {test_prec:.3f} | Val. Recall: {test_rec:.3f} | Val. F1: {test_f1:.3f} |')
logger.info(f'| Test Accuracy: {test_acc:.3f} | Test AUC: {test_auc:.3f} | Test AP: {test_ap:.3f} | Test EER: {test_eer:.3f} | Test Precision: {test_prec:.3f} | Test Recall: {test_rec:.3f} | Test F1: {test_f1:.3f} |')
def random_run(model, iterator):
y_true_list = []
# combine data
with torch.no_grad():
for batch in iterator:
y_true_list = np.append(y_true_list, batch[1].float().numpy())
# predict
X = np.zeros_like(y_true_list).reshape(-1, 1)
preds = model.predict(X)
# compute metrics
acc = accuracy_score(y_true_list, (preds >= 0.5).astype(int))
draw_cm(preds, y_true_list, run_start_time)
auc = draw_roc(preds, y_true_list, run_start_time)
ap = draw_prc(preds, y_true_list, run_start_time)
eer = draw_det(preds, y_true_list, run_start_time)
f1, prec, rec = compute_f1_prec_rec(preds, y_true_list)
return acc, auc, ap, eer, prec, rec, f1
def save_model(model):
torch.save(model.state_dict(), save_path)
def main():
if args['mode'] == 'train':
train()
elif args['mode'] == 'test':
test()
elif args['mode'] == 'random':
random()
else:
raise NotImplementedError('Check the mode argument!')
if __name__ == '__main__':
main()
|
[
"matplotlib.pyplot.title",
"pathlib.Path",
"matplotlib.pyplot.figure",
"torch.device",
"torch.no_grad",
"sklearn.dummy.DummyClassifier",
"numpy.zeros_like",
"logging.FileHandler",
"torch.utils.data.DataLoader",
"src.binary_accuracy",
"torch.load",
"torch.cuda.set_device",
"src.Model",
"src.draw_prc",
"torch.nn.BCEWithLogitsLoss",
"datetime.datetime.today",
"torch.manual_seed",
"matplotlib.pyplot.legend",
"src.draw_roc",
"logging.StreamHandler",
"src.DataProcessor",
"matplotlib.pyplot.ylabel",
"src.compute_f1_prec_rec",
"src.draw_det",
"src.EarlyStopping",
"matplotlib.pyplot.grid",
"json.load",
"torch.cuda.manual_seed_all",
"numpy.array",
"src.draw_cm",
"torch.tensor",
"matplotlib.pyplot.xlabel",
"logging.getLogger"
] |
[((1604, 1621), 'pathlib.Path', 'Path', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (1608, 1621), False, 'from pathlib import Path\n'), ((2354, 2381), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2371, 2381), False, 'import logging\n'), ((2399, 2430), 'torch.manual_seed', 'torch.manual_seed', (["args['seed']"], {}), "(args['seed'])\n", (2416, 2430), False, 'import torch\n'), ((1817, 1829), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1826, 1829), False, 'import json\n'), ((2459, 2499), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (["args['seed']"], {}), "(args['seed'])\n", (2485, 2499), False, 'import torch\n'), ((2547, 2586), 'pathlib.Path', 'Path', (['f"""./weights/{run_start_time}.pth"""'], {}), "(f'./weights/{run_start_time}.pth')\n", (2551, 2586), False, 'from pathlib import Path\n'), ((2598, 2609), 'pathlib.Path', 'Path', (['"""fig"""'], {}), "('fig')\n", (2602, 2609), False, 'from pathlib import Path\n'), ((2856, 2871), 'src.DataProcessor', 'DataProcessor', ([], {}), '()\n', (2869, 2871), False, 'from src import DataProcessor, Model, EarlyStopping\n'), ((3011, 3078), 'torch.utils.data.DataLoader', 'DataLoader', (['train_data'], {'batch_size': "args['batch_size']", 'shuffle': '(True)'}), "(train_data, batch_size=args['batch_size'], shuffle=True)\n", (3021, 3078), False, 'from torch.utils.data import DataLoader\n'), ((3098, 3163), 'torch.utils.data.DataLoader', 'DataLoader', (['val_data'], {'batch_size': "args['batch_size']", 'shuffle': '(True)'}), "(val_data, batch_size=args['batch_size'], shuffle=True)\n", (3108, 3163), False, 'from torch.utils.data import DataLoader\n'), ((3197, 3286), 'src.Model', 'Model', ([], {'input_dim': '(28 * 28)', 'hidden_dim': "args['hidden_dim']", 'drop_rate': "args['drop_rate']"}), "(input_dim=28 * 28, hidden_dim=args['hidden_dim'], drop_rate=args[\n 'drop_rate'])\n", (3202, 3286), False, 'from src import DataProcessor, Model, EarlyStopping\n'), ((3630, 3692), 'src.EarlyStopping', 'EarlyStopping', (['logger'], {'patience': "args['patience']", 'verbose': '(True)'}), "(logger, patience=args['patience'], verbose=True)\n", (3643, 3692), False, 'from src import DataProcessor, Model, EarlyStopping\n'), ((5190, 5208), 'numpy.array', 'np.array', (['_history'], {}), '(_history)\n', (5198, 5208), True, 'import numpy as np\n'), ((5213, 5225), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5223, 5225), True, 'import matplotlib.pyplot as plt\n'), ((5375, 5389), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (5383, 5389), True, 'import matplotlib.pyplot as plt\n'), ((5394, 5406), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (5404, 5406), True, 'import matplotlib.pyplot as plt\n'), ((5411, 5443), 'matplotlib.pyplot.title', 'plt.title', (['"""Training Monitoring"""'], {}), "('Training Monitoring')\n", (5420, 5443), True, 'import matplotlib.pyplot as plt\n'), ((5448, 5467), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch"""'], {}), "('Epoch')\n", (5458, 5467), True, 'import matplotlib.pyplot as plt\n'), ((5472, 5490), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (5482, 5490), True, 'import matplotlib.pyplot as plt\n'), ((6052, 6067), 'src.DataProcessor', 'DataProcessor', ([], {}), '()\n', (6065, 6067), False, 'from src import DataProcessor, Model, EarlyStopping\n'), ((6154, 6220), 'torch.utils.data.DataLoader', 'DataLoader', (['test_data'], {'batch_size': "args['batch_size']", 'shuffle': '(True)'}), "(test_data, batch_size=args['batch_size'], shuffle=True)\n", (6164, 6220), False, 'from torch.utils.data import DataLoader\n'), ((6254, 6343), 'src.Model', 'Model', ([], {'input_dim': '(28 * 28)', 'hidden_dim': "args['hidden_dim']", 'drop_rate': "args['drop_rate']"}), "(input_dim=28 * 28, hidden_dim=args['hidden_dim'], drop_rate=args[\n 'drop_rate'])\n", (6259, 6343), False, 'from src import DataProcessor, Model, EarlyStopping\n'), ((6414, 6445), 'torch.load', 'torch.load', (["args['weight_name']"], {}), "(args['weight_name'])\n", (6424, 6445), False, 'import torch\n'), ((6576, 6598), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {}), '()\n', (6596, 6598), True, 'import torch.nn as nn\n'), ((8628, 8640), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (8636, 8640), True, 'import numpy as np\n'), ((8659, 8671), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (8667, 8671), True, 'import numpy as np\n'), ((9200, 9249), 'src.draw_cm', 'draw_cm', (['y_pred_list', 'y_true_list', 'run_start_time'], {}), '(y_pred_list, y_true_list, run_start_time)\n', (9207, 9249), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((9260, 9310), 'src.draw_roc', 'draw_roc', (['y_pred_list', 'y_true_list', 'run_start_time'], {}), '(y_pred_list, y_true_list, run_start_time)\n', (9268, 9310), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((9320, 9370), 'src.draw_prc', 'draw_prc', (['y_pred_list', 'y_true_list', 'run_start_time'], {}), '(y_pred_list, y_true_list, run_start_time)\n', (9328, 9370), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((9381, 9431), 'src.draw_det', 'draw_det', (['y_pred_list', 'y_true_list', 'run_start_time'], {}), '(y_pred_list, y_true_list, run_start_time)\n', (9389, 9431), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((9452, 9497), 'src.compute_f1_prec_rec', 'compute_f1_prec_rec', (['y_pred_list', 'y_true_list'], {}), '(y_pred_list, y_true_list)\n', (9471, 9497), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((9726, 9741), 'src.DataProcessor', 'DataProcessor', ([], {}), '()\n', (9739, 9741), False, 'from src import DataProcessor, Model, EarlyStopping\n'), ((9947, 10014), 'torch.utils.data.DataLoader', 'DataLoader', (['train_data'], {'batch_size': "args['batch_size']", 'shuffle': '(True)'}), "(train_data, batch_size=args['batch_size'], shuffle=True)\n", (9957, 10014), False, 'from torch.utils.data import DataLoader\n'), ((10034, 10099), 'torch.utils.data.DataLoader', 'DataLoader', (['val_data'], {'batch_size': "args['batch_size']", 'shuffle': '(True)'}), "(val_data, batch_size=args['batch_size'], shuffle=True)\n", (10044, 10099), False, 'from torch.utils.data import DataLoader\n'), ((10120, 10186), 'torch.utils.data.DataLoader', 'DataLoader', (['test_data'], {'batch_size': "args['batch_size']", 'shuffle': '(True)'}), "(test_data, batch_size=args['batch_size'], shuffle=True)\n", (10130, 10186), False, 'from torch.utils.data import DataLoader\n'), ((10566, 10578), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (10574, 10578), True, 'import numpy as np\n'), ((10735, 10773), 'sklearn.dummy.DummyClassifier', 'DummyClassifier', ([], {'strategy': '"""stratified"""'}), "(strategy='stratified')\n", (10750, 10773), False, 'from sklearn.dummy import DummyClassifier\n'), ((11975, 12018), 'src.draw_cm', 'draw_cm', (['preds', 'y_true_list', 'run_start_time'], {}), '(preds, y_true_list, run_start_time)\n', (11982, 12018), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((12029, 12073), 'src.draw_roc', 'draw_roc', (['preds', 'y_true_list', 'run_start_time'], {}), '(preds, y_true_list, run_start_time)\n', (12037, 12073), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((12083, 12127), 'src.draw_prc', 'draw_prc', (['preds', 'y_true_list', 'run_start_time'], {}), '(preds, y_true_list, run_start_time)\n', (12091, 12127), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((12138, 12182), 'src.draw_det', 'draw_det', (['preds', 'y_true_list', 'run_start_time'], {}), '(preds, y_true_list, run_start_time)\n', (12146, 12182), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((12203, 12242), 'src.compute_f1_prec_rec', 'compute_f1_prec_rec', (['preds', 'y_true_list'], {}), '(preds, y_true_list)\n', (12222, 12242), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((1878, 1903), 'datetime.datetime.today', 'datetime.datetime.today', ([], {}), '()\n', (1901, 1903), False, 'import datetime\n'), ((3417, 3441), 'torch.tensor', 'torch.tensor', (['pos_weight'], {}), '(pos_weight)\n', (3429, 3441), False, 'import torch\n'), ((3462, 3505), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {'pos_weight': 'pos_weight'}), '(pos_weight=pos_weight)\n', (3482, 3505), True, 'import torch.nn as nn\n'), ((3536, 3558), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {}), '()\n', (3556, 3558), True, 'import torch.nn as nn\n'), ((3791, 3832), 'torch.cuda.set_device', 'torch.cuda.set_device', (["args['gpu_number']"], {}), "(args['gpu_number'])\n", (3812, 3832), False, 'import torch\n'), ((3850, 3870), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (3862, 3870), False, 'import torch\n'), ((3972, 3991), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (3984, 3991), False, 'import torch\n'), ((6697, 6738), 'torch.cuda.set_device', 'torch.cuda.set_device', (["args['gpu_number']"], {}), "(args['gpu_number'])\n", (6718, 6738), False, 'import torch\n'), ((6756, 6776), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (6768, 6776), False, 'import torch\n'), ((6878, 6897), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (6890, 6897), False, 'import torch\n'), ((7762, 7795), 'src.binary_accuracy', 'binary_accuracy', (['output', 'batch[1]'], {}), '(output, batch[1])\n', (7777, 7795), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((8097, 8112), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8110, 8112), False, 'import torch\n'), ((8682, 8697), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8695, 8697), False, 'import torch\n'), ((10588, 10603), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10601, 10603), False, 'import torch\n'), ((11665, 11680), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (11678, 11680), False, 'import torch\n'), ((2234, 2262), 'logging.FileHandler', 'logging.FileHandler', (['logfile'], {}), '(logfile)\n', (2253, 2262), False, 'import logging\n'), ((2288, 2321), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (2309, 2321), False, 'import logging\n'), ((8312, 8350), 'src.binary_accuracy', 'binary_accuracy', (['predictions', 'batch[1]'], {}), '(predictions, batch[1])\n', (8327, 8350), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((8897, 8935), 'src.binary_accuracy', 'binary_accuracy', (['predictions', 'batch[1]'], {}), '(predictions, batch[1])\n', (8912, 8935), False, 'from src import binary_accuracy, draw_det, draw_prc, draw_roc, draw_cm, compute_f1_prec_rec\n'), ((10816, 10842), 'numpy.zeros_like', 'np.zeros_like', (['y_true_list'], {}), '(y_true_list)\n', (10829, 10842), True, 'import numpy as np\n'), ((11811, 11837), 'numpy.zeros_like', 'np.zeros_like', (['y_true_list'], {}), '(y_true_list)\n', (11824, 11837), True, 'import numpy as np\n')]
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Optimizer
import paddle.fluid.core as core
import numpy as np
registerd_op = {
"elementwise_add": "AddParser",
"matmul": "MatMulParser",
"mul": "MulParser",
"relu": "ReluParser",
"softmax_with_cross_entropy": "SoftmaxWithCrossEntropyParser",
"shape": "ShapeParser",
"fill_constant": "FillConstantParser",
"reduce_sum": "ReduceSumParser",
"reduce_sum_grad": "ReduceSumGradParser",
"matmul_grad": "MatMulGradParser",
"mul_grad": "MulGradParser",
"reshape2": "ReshapeParser",
"scale": "ScaleParser",
"relu_grad": "ReluGradParser",
"softmax_with_cross_entropy_grad": "SoftmaxWithCrossEntropyGradParser",
"truncated_gaussian_random": "TruncatedNormalParser",
"sgd": "SGDParser"
}
global_cnt = -1
global_input_cnt = -1
class AscendHelper(object):
def __init__(self):
self.dtype2ge_map = {
0: core.GEDataType.DT_BOOL,
1: core.GEDataType.DT_INT16,
2: core.GEDataType.DT_INT32,
3: core.GEDataType.DT_INT64,
4: core.GEDataType.DT_FLOAT16,
5: core.GEDataType.DT_FLOAT,
6: core.GEDataType.DT_DOUBLE
}
self.dtype2np_map = {
0: "bool",
1: "int16",
2: "int32",
3: "int64",
4: "float16",
5: "float32",
6: "float64"
}
def dtype2ge(self, dtype):
assert dtype in self.dtype2ge_map, "dtype[%d] is not supported %d" % (
dtype)
return self.dtype2ge_map[dtype]
def dtype2np(self, index):
assert index in self.dtype2np_map, "index[%d] is not supported %d" % (
dtype)
return self.dtype2np_map[index]
class AscendParserFactory(object):
def __init__(self, graph, var2geop):
self.graph = graph
self.var2geop = var2geop
def create_parse(self, parser_class):
try:
parser = globals()[parser_class](self.graph, self.var2geop)
return parser
except:
raise ValueError("parser class %s does not exist" % parser_class)
class AscendParserBase(object):
def __init__(self, graph, var2geop):
self.graph = graph
self.var2geop = var2geop
self.op = None
self.ascend_helper = AscendHelper()
def _get_ge_input(self, input_var_name):
assert input_var_name in self.var2geop, "var %s not created before" % (
input_var_name)
return self.var2geop[input_var_name]
def update_output(self, geop_list, index_list):
output_num = len(self.op.output_names)
assert output_num == len(
index_list
), "Parser[%s]'s output number[%d] is not equal to parameters number[%d]" % (
self.parser_name, len(index_list), output_num)
for output_id in range(output_num):
arguments = self.op.output(self.op.output_names[output_id])
print("%d argument: %s" % (output_id, str(arguments)))
if len(arguments) > 0:
assert len(arguments) == len(
index_list[output_id]
), "Parser[%s]'s %dth argument number[%d] is not equal to paddle's number[%d]" % (
self.parser_name, output_id, len(index_list[output_id]),
len(arguments))
for i in range(len(arguments)):
print("assgin index_list[%d][%d] to %s" %
(output_id, i, arguments[i]))
self.var2geop[arguments[i]] = geop_list[index_list[
output_id][i]]
for geop in geop_list:
self.graph.add_op(geop)
def apply(self, op):
self.op = op
assert self.op.type == self.parser_name, "op [%s] != parser_name[%s]" % (
self.op.type, self.parser_name)
print("begin to parse op %s" % (self.parser_name))
geop_list, index_list = self._apply()
self.update_output(geop_list, index_list)
def _mark_as_input(self, ge_tensor):
global global_input_cnt
global_input_cnt += 1
self.var2geop["geinput." + str(global_input_cnt)] = ge_tensor
def _accumulated_op_id(self):
global global_cnt
global_cnt += 1
return "." + str(global_cnt)
def _create_ge_tensor(self, shape, dtype, value):
tensor_desc = core.GETensorDesc(
core.GEShape(shape), core.GEFormat.FORMAT_ND,
self.ascend_helper.dtype2ge(dtype))
tensor = core.GETensor(tensor_desc)
data = (value * np.ones((
shape))).reshape(shape).astype(self.ascend_helper.dtype2np(dtype))
buf = data.tobytes()
data_8 = np.frombuffer(buf, dtype=np.uint8)
tensor.set_data(data_8)
return tensor
class AddParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(AddParser, self).__init__(graph, var2geop)
self.parser_name = "elementwise_add"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
y = self._get_ge_input(self.op.input_arg_names[1])
add = core.GEOperatorFactory.create_operator(
"add" + self._accumulated_op_id(), "Add").set_input(
"x1", x).set_input("x2", y)
return [add], [[0]]
class ReduceSumParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReduceSumParser, self).__init__(graph, var2geop)
self.parser_name = "reduce_sum"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
axes = self.op.attr("dim")
keep_dims = self.op.attr("keep_dim")
reduce_sum = core.GEOperatorFactory.create_operator(
"reduce_sum" + self._accumulated_op_id(), "ReduceSumD").set_input(
"x", x, 0).set_attr_vec_int32("axes", axes).set_attr_bool(
"keep_dims", keep_dims)
return [reduce_sum], [[0]]
class ReduceSumGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReduceSumGradParser, self).__init__(graph, var2geop)
self.parser_name = "reduce_sum_grad"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
input = self._get_ge_input(self.op.input_arg_names[1])
shape_tensor = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(), "Shape").set_input("x", input,
0)
axis_const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", self._create_ge_tensor([1], 2, -1))
self._mark_as_input(axis_const)
broadcast = core.GEOperatorFactory.create_operator(
"broadcast_to_d" + self._accumulated_op_id(),
"BroadcastTo").set_input("x", x).set_input("shape", shape_tensor)
# unsqueeze cannot get right result, but ExpandDims seems have the same functionality.
reduce_sum_grad = core.GEOperatorFactory.create_operator(
"expand" + self._accumulated_op_id(), "ExpandDims").set_input(
"x", broadcast).set_input("axis", axis_const)
return [shape_tensor, axis_const, broadcast, reduce_sum_grad], [[3]]
class MatMulParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MatMulParser, self).__init__(graph, var2geop)
self.parser_name = "matmul"
def _apply(self):
x1 = self._get_ge_input(self.op.input_arg_names[0])
x2 = self._get_ge_input(self.op.input_arg_names[1])
matmul = core.GEOperatorFactory.create_operator(
"matmul" + self._accumulated_op_id(), "MatMul").set_input(
"x1", x1).set_input("x2", x2)
return [matmul], [[0]]
class MatMulGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MatMulGradParser, self).__init__(graph, var2geop)
self.parser_name = "matmul_grad"
def _apply(self):
out_grad = self._get_ge_input(self.op.input_arg_names[0])
x = self._get_ge_input(self.op.input_arg_names[1])
y = self._get_ge_input(self.op.input_arg_names[2])
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(), "MatMul").set_input(
"x1", out_grad).set_input("x2", y).set_attr_bool(
"transpose_x1", False).set_attr_bool("transpose_x2", True)
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(), "MatMul").set_input(
"x1", x).set_input("x2", out_grad).set_attr_bool(
"transpose_x1", True).set_attr_bool("transpose_x2", False)
return [x_grad, y_grad], [[0], [1]]
class MulGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MulGradParser, self).__init__(graph, var2geop)
self.parser_name = "mul_grad"
def _apply(self):
out_grad = self._get_ge_input(self.op.input_arg_names[0])
x = self._get_ge_input(self.op.input_arg_names[1])
y = self._get_ge_input(self.op.input_arg_names[2])
x_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(), "MatMul").set_input(
"x1", out_grad).set_input("x2", y).set_attr_bool(
"transpose_x1", False).set_attr_bool("transpose_x2", True)
y_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(), "MatMul").set_input(
"x1", x).set_input("x2", out_grad).set_attr_bool(
"transpose_x1", True).set_attr_bool("transpose_x2", False)
return [x_grad, y_grad], [[0], [1]]
class MulParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(MulParser, self).__init__(graph, var2geop)
self.parser_name = "mul"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
y = self._get_ge_input(self.op.input_arg_names[1])
matmul = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "MatMul").set_input(
"x1", x).set_input("x2", y)
return [matmul], [[0]]
class ReluParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReluParser, self).__init__(graph, var2geop)
self.parser_name = "relu"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
relu = core.GEOperatorFactory.create_operator(
"relu" + self._accumulated_op_id(), "Relu").set_input("x", x)
return [relu], [[0]]
class ReluGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReluGradParser, self).__init__(graph, var2geop)
self.parser_name = "relu_grad"
def _apply(self):
out = self._get_ge_input(self.op.input_arg_names[0])
out_grad = self._get_ge_input(self.op.input_arg_names[1])
relu_grad = core.GEOperatorFactory.create_operator(
self.parser_name + self._accumulated_op_id(), "ReluGrad").set_input(
"gradients", out_grad).set_input("features", out)
return [relu_grad], [[0]]
class SoftmaxWithCrossEntropyParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SoftmaxWithCrossEntropyParser, self).__init__(graph, var2geop)
self.parser_name = "softmax_with_cross_entropy"
def _apply(self):
label = self._get_ge_input(self.op.input_arg_names[0])
logits = self._get_ge_input(self.op.input_arg_names[1])
cls_num = self.op.block.var(self.op.input_arg_names[1]).shape[1]
softmax = core.GEOperatorFactory.create_operator(
"softmax" + self._accumulated_op_id(), "SoftmaxV2").set_input(
"x", logits)
label = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", label).set_attr_int32("dst_type", 3)
tensoron = self._create_ge_tensor([1], 5, 1)
on_const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensoron)
self._mark_as_input(on_const)
tensoroff = self._create_ge_tensor([1], 5, 0)
off_const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensoroff)
self._mark_as_input(off_const)
onehot = core.GEOperatorFactory.create_operator(
"onehot" + self._accumulated_op_id(), "OneHotD").set_input(
"x", label).set_input("on_value", on_const).set_input(
"off_value", off_const).set_attr_int32("depth", cls_num)
squeeze = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "Squeeze").set_input("x", onehot)
loss = core.GEOperatorFactory.create_operator(
"loss" + self._accumulated_op_id(),
"SoftmaxCrossEntropyWithLogits").set_input(
"features", logits).set_input("labels", squeeze)
return [label, softmax, on_const, off_const, onehot, squeeze,
loss], [[6], [1]]
class SoftmaxWithCrossEntropyGradParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SoftmaxWithCrossEntropyGradParser, self).__init__(graph, var2geop)
self.parser_name = "softmax_with_cross_entropy_grad"
def _apply(self):
label = self._get_ge_input(self.op.input_arg_names[0])
loss_grad = self._get_ge_input(self.op.input_arg_names[1])
softmax = self._get_ge_input(self.op.input_arg_names[2])
cls_num = self.op.block.var(self.op.input_arg_names[2]).shape[1]
tensoron = self._create_ge_tensor([1], 5, 1)
on_const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensoron)
self._mark_as_input(on_const)
tensoroff = self._create_ge_tensor([1], 5, 0)
off_const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensoroff)
self._mark_as_input(off_const)
label = core.GEOperatorFactory.create_operator(
"cast" + self._accumulated_op_id(), "Cast").set_input(
"x", label).set_attr_int32("dst_type", 3)
onehot = core.GEOperatorFactory.create_operator(
"onehot" + self._accumulated_op_id(), "OneHotD").set_input(
"x", label).set_input("on_value", on_const).set_input(
"off_value", off_const).set_attr_int32("depth", cls_num)
# the fuck onehot will add a demension, so must call squeeze afterward
squeeze = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "Squeeze").set_input("x", onehot)
sub = core.GEOperatorFactory.create_operator(
"sub" + self._accumulated_op_id(), "Sub").set_input(
"x1", softmax).set_input("x2", squeeze)
grad = core.GEOperatorFactory.create_operator(
"mul" + self._accumulated_op_id(), "Mul").set_input(
"x1", loss_grad).set_input("x2", sub)
return [on_const, off_const, label, onehot, squeeze, sub, grad], [[-1]]
class ShapeParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ShapeParser, self).__init__(graph, var2geop)
self.parser_name = "shape"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
shape = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(), "Shape").set_input("x", x)
return [shape], [[0]]
class FillConstantParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(FillConstantParser, self).__init__(graph, var2geop)
self.parser_name = "fill_constant"
def _apply(self):
shape = self.op.attr("shape")
dtype = self.op.attr("dtype")
value = self.op.attr("value")
print("shape: ", shape)
print("dtype: ", dtype)
print("value: ", value)
tensor = self._create_ge_tensor(shape, dtype, value)
const = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor)
self._mark_as_input(const)
if self.op.block.var(self.op.output('Out')[0]).persistable:
print("%s fill_constant" % (self.op.output('Out')[0]))
var = core.GEOperatorFactory.create_operator(
self.op.output('Out')[0], "Variable")
var.update_output_desc("y",
core.GETensorDesc(
core.GEShape(shape),
core.GEFormat.FORMAT_ND,
core.GEDataType.DT_FLOAT))
assign = core.GEOperatorFactory.create_operator(
"assign" + self._accumulated_op_id(), "Assign").set_input(
"value", const).set_input("ref", var)
return [const], [[0]]
else:
print(
"self.op.output('Out')[0] is not persistable in fill_constant")
return [const], [[0]]
class SGDParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(SGDParser, self).__init__(graph, var2geop)
self.parser_name = "sgd"
def _apply(self):
grad = self._get_ge_input(self.op.input_arg_names[0])
lr = self._get_ge_input(self.op.input_arg_names[1])
param = self._get_ge_input(self.op.input_arg_names[2])
sgd = core.GEOperatorFactory.create_operator(
"momentum" + self._accumulated_op_id(),
"ApplyGradientDescent").set_input("var", param).set_input(
"alpha", lr).set_input("delta", grad)
return [sgd], [[0]]
class TruncatedNormalParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(TruncatedNormalParser, self).__init__(graph, var2geop)
self.parser_name = "truncated_gaussian_random"
def _apply(self):
shape = self.op.attr("shape")
dtype = self.op.attr("dtype")
mean = self.op.attr("mean")
std = self.op.attr("std")
seed = self.op.attr("seed")
tensor1 = self._create_ge_tensor([len(shape)], 2, shape)
shape_tensor = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor1)
tensor2 = self._create_ge_tensor([1], dtype, mean)
mean_tensor = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor2)
tensor3 = self._create_ge_tensor([1], dtype, std)
std_tensor = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor3)
tensor4 = self._create_ge_tensor([1], dtype, mean - 2 * std)
min_tensor = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor4)
tensor5 = self._create_ge_tensor([1], dtype, mean + 2 * std)
max_tensor = core.GEOperatorFactory.create_operator(
"const" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor5)
self._mark_as_input(shape_tensor)
self._mark_as_input(mean_tensor)
self._mark_as_input(std_tensor)
self._mark_as_input(min_tensor)
self._mark_as_input(max_tensor)
truncated_normal = core.GEOperatorFactory.create_operator(
"truncated_normal" + self._accumulated_op_id(),
"ParameterizedTruncatedNormal").set_input(
"shape", shape_tensor).set_input(
"means", mean_tensor).set_input(
"stdevs", std_tensor).set_input(
"min", min_tensor).set_input(
"max", max_tensor).set_attr_int32("seed", 0)
## wirte the output of truncatedNormal from startup_program to main_program
if self.op.block.var(self.op.output('Out')[0]).persistable:
print("%s is Persistable in truncated_normal" %
(self.op.output('Out')[0]))
#var = core.GEOperatorFactory.create_operator(self.op.output('Out')[0], "Variable").set_input("x", truncated_normal)
var = core.GEOperatorFactory.create_operator(
self.op.output('Out')[0], "Variable")
var.update_output_desc("y",
core.GETensorDesc(
core.GEShape(shape),
core.GEFormat.FORMAT_ND,
core.GEDataType.DT_FLOAT))
assign = core.GEOperatorFactory.create_operator(
"assign" + self._accumulated_op_id(), "Assign").set_input(
"value", truncated_normal).set_input("ref", var)
return [
shape_tensor, mean_tensor, std_tensor, min_tensor, max_tensor,
truncated_normal
], [[-1]]
else:
print(
"self.op.output('Out')[0] is not persistable in truncated_noraml"
)
return [truncated_normal], [[0]] #[assign]
class ScaleParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ScaleParser, self).__init__(graph, var2geop)
self.parser_name = "scale"
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
scale = self.op.attr(
"scale") #self.get_ge_input(self.op.input_arg_names[1])
bias = self.op.attr("bias")
bias_after_scale = self.op.attr("bias_after_scale")
if bias_after_scale:
scale_value = core.GEOperatorFactory.create_operator(
"scale" + self._accumulated_op_id(), "Power").set_input(
"x", x).set_attr_float("power", 1.0).set_attr_float(
"scale", scale).set_attr_float("shift", bias)
else:
x_add_bias = core.GEOperatorFactory.create_operator(
"adds" + self._accumulated_op_id(), "Adds").set_input(
"x", x).set_attr_float("value",
bias) #set_input("x2", bias)
scale_value = core.GEOperatorFactory.create_operator(
"scale" + self._accumulated_op_id(), "Power").set_input(
"x", x_add_bias).set_attr_float(
"power", 1.0).set_attr_float(
"scale", scale).set_attr_float("shift", 0.0)
#tensor_zeros = core.GEOperatorFactory.create_operator("zeroslike" + self.getid(), "ZerosLike").set_input("x", x)
#bias_ = self.create_ge_tensor([1], 5, bias)
#const_bias = core.GEOperatorFactory.create_operator("const" + self.getid(), "Const").set_attr_tensor("value", tensor_bias)
return [scale_value], [[0]]
class ReshapeParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ReshapeParser, self).__init__(graph, var2geop)
self.parser_name = "reshape2"
def _apply(self):
print("swbuf:", self.op.input_arg_names)
shape = self.op.attr("shape")
axis = 0
if shape[0] == -1:
axis = 1
shape = shape[1:]
print("shape: ", shape)
data_x1_shape = self._get_ge_input(self.op.input_arg_names[0])
tensor = self._create_ge_tensor([len(shape)], 2, shape)
const_shape = core.GEOperatorFactory.create_operator(
"shape" + self._accumulated_op_id(), "Const").set_attr_tensor(
"value", tensor)
reshape = core.GEOperatorFactory.create_operator(
"reshape" + self._accumulated_op_id(), "Reshape").set_input(
"x", data_x1_shape).set_input(
"shape", const_shape).set_attr_int32("axis", axis)
return [reshape, reshape], [[0], [1]]
|
[
"numpy.frombuffer",
"paddle.fluid.core.GETensor",
"paddle.fluid.core.GEShape",
"numpy.ones"
] |
[((5204, 5230), 'paddle.fluid.core.GETensor', 'core.GETensor', (['tensor_desc'], {}), '(tensor_desc)\n', (5217, 5230), True, 'import paddle.fluid.core as core\n'), ((5391, 5425), 'numpy.frombuffer', 'np.frombuffer', (['buf'], {'dtype': 'np.uint8'}), '(buf, dtype=np.uint8)\n', (5404, 5425), True, 'import numpy as np\n'), ((5093, 5112), 'paddle.fluid.core.GEShape', 'core.GEShape', (['shape'], {}), '(shape)\n', (5105, 5112), True, 'import paddle.fluid.core as core\n'), ((17745, 17764), 'paddle.fluid.core.GEShape', 'core.GEShape', (['shape'], {}), '(shape)\n', (17757, 17764), True, 'import paddle.fluid.core as core\n'), ((21817, 21836), 'paddle.fluid.core.GEShape', 'core.GEShape', (['shape'], {}), '(shape)\n', (21829, 21836), True, 'import paddle.fluid.core as core\n'), ((5256, 5270), 'numpy.ones', 'np.ones', (['shape'], {}), '(shape)\n', (5263, 5270), True, 'import numpy as np\n')]
|
"""
A class that is responsible for detecting a barcode and extracting information
from said barcode.
"""
import numpy as np
import cv2
import zbar.misc
__author__ = "<NAME>"
__copyright__ = "Copyright 2017, Java the Hutts"
__license__ = "BSD"
__maintainer__ = "<NAME>"
__email__ = "<EMAIL>"
__status__ = "Development"
# The minimum area a rectangle must be to be considered a barcode.
BOUNDING_RECTANGLE_THRESHOLD = 200
class BarCodeManager:
"""
The BarCode Manager is responsible for:
1. Detecting the barcode.
2. Extracting any information on the detected barcode.
3. Applying blurring to the detected barcode to reduce noise.
"""
def __init__(self):
self.scanner = zbar.Scanner()
def detect(self, image):
"""
This function detects a region containing a barcode if a barcode is present in the image passed.
Barcodes supported:
- EAN
- UPC
- Code 39
- Code 93
- Code 128
- ITF
For more information on Barcode types: https://www.scandit.com/types-barcodes-choosing-right-barcode/.
:param image (obj): Image containing the potential barcode.
Returns:
- (boolean): Indicates whether a barcode was detected or not.
- (obj): Return the detected barcode or the original image, based on whether the barcode was found.
- (int list): This list contains the box coordinates for the region in which the barcode resides.
Raises:
- TypeError: If a none numpy array value has been passed.
"""
if type(image) is not np.ndarray:
raise TypeError(
'Bad type for arg image - expected image in numpy array. Received type "%s".' %
type(image).__name__
)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
grad_x = cv2.Sobel(gray, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
grad_y = cv2.Sobel(gray, ddepth=cv2.CV_32F, dx=0, dy=1, ksize=-1)
gradient = cv2.subtract(grad_x, grad_y)
gradient = cv2.convertScaleAbs(gradient)
blurred = cv2.blur(gradient, (7, 7))
(_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (27, 7))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
eroded = cv2.erode(closed, None, iterations=4)
dilated = cv2.dilate(eroded, None, iterations=4)
(_, contours, _) = cv2.findContours(dilated.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
c = sorted(contours, key=cv2.contourArea, reverse=True)[0]
rectangle = cv2.minAreaRect(c)
box = cv2.boxPoints(rectangle)
box = np.int0(box)
(x, y, w, h) = cv2.boundingRect(box)
# The Difference between the upper and lower Y-value is calculated to ensure a Barcode is detected.
# This reduces the chance of a false positive detection.
diff = y - (y+h)
if abs(diff) < BOUNDING_RECTANGLE_THRESHOLD:
return True, image[y:y + h, x:x + w], box
else:
return False, image, box
def get_barcode_info(self, image):
"""
This function returns scanned barcode information.
:param image (obj): Image containing a Barcode.
Returns:
- (boolean): Whether the function was able to extract information from the barcode.
- (str): A UTF-8 String of the data extracted from the barcode (empty if nothing was extracted).
- (obj): A copy of the original image.
"""
(detection, detected_image, box) = self.detect(image.copy())
if detection:
gray = cv2.cvtColor(detected_image, cv2.COLOR_BGR2GRAY)
results = self.scanner.scan(gray)
if not results:
return False, "", image
else:
image = self.apply_barcode_blur(image, box)
return True, results[0].data, image
else:
return False, "", image
def apply_barcode_blur(self, image, box, dilation_intensity=2):
"""
This function applies blurring to a detected barcode region to reduce noise in the image.
The barcode region is first extracted, then blurring is applied, after blurring is applied
the blurred out barcode is reapplied to the original image.
:param image (obj): Image containing a Barcode.
:param box (int list): The box is an integer list containing the box region coordinates of the
barcode location.
:param dilation_intensity (int): Indicates the intensity by which the barcode should be dilated.
The greater the intensity the greater the extent of dilation.
Returns:
(obj): The original image with blurring applied to the barcode region in the image.
"""
(x, y, w, h) = cv2.boundingRect(box)
sub_bar_code = image[y:y + h, x:x + w]
sub_bar_code = cv2.dilate(sub_bar_code, None, iterations=dilation_intensity)
sub_bar_code = cv2.GaussianBlur(sub_bar_code, (31, 31), 0)
image[y:y + sub_bar_code.shape[0], x:x + sub_bar_code.shape[1]] = sub_bar_code
return image
|
[
"cv2.GaussianBlur",
"cv2.subtract",
"numpy.int0",
"cv2.dilate",
"cv2.cvtColor",
"cv2.getStructuringElement",
"cv2.threshold",
"cv2.morphologyEx",
"cv2.blur",
"cv2.boxPoints",
"cv2.convertScaleAbs",
"cv2.minAreaRect",
"cv2.erode",
"cv2.boundingRect",
"cv2.Sobel"
] |
[((1854, 1893), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (1866, 1893), False, 'import cv2\n'), ((1912, 1968), 'cv2.Sobel', 'cv2.Sobel', (['gray'], {'ddepth': 'cv2.CV_32F', 'dx': '(1)', 'dy': '(0)', 'ksize': '(-1)'}), '(gray, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)\n', (1921, 1968), False, 'import cv2\n'), ((1986, 2042), 'cv2.Sobel', 'cv2.Sobel', (['gray'], {'ddepth': 'cv2.CV_32F', 'dx': '(0)', 'dy': '(1)', 'ksize': '(-1)'}), '(gray, ddepth=cv2.CV_32F, dx=0, dy=1, ksize=-1)\n', (1995, 2042), False, 'import cv2\n'), ((2063, 2091), 'cv2.subtract', 'cv2.subtract', (['grad_x', 'grad_y'], {}), '(grad_x, grad_y)\n', (2075, 2091), False, 'import cv2\n'), ((2111, 2140), 'cv2.convertScaleAbs', 'cv2.convertScaleAbs', (['gradient'], {}), '(gradient)\n', (2130, 2140), False, 'import cv2\n'), ((2160, 2186), 'cv2.blur', 'cv2.blur', (['gradient', '(7, 7)'], {}), '(gradient, (7, 7))\n', (2168, 2186), False, 'import cv2\n'), ((2209, 2260), 'cv2.threshold', 'cv2.threshold', (['blurred', '(225)', '(255)', 'cv2.THRESH_BINARY'], {}), '(blurred, 225, 255, cv2.THRESH_BINARY)\n', (2222, 2260), False, 'import cv2\n'), ((2278, 2328), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(27, 7)'], {}), '(cv2.MORPH_RECT, (27, 7))\n', (2303, 2328), False, 'import cv2\n'), ((2346, 2395), 'cv2.morphologyEx', 'cv2.morphologyEx', (['thresh', 'cv2.MORPH_CLOSE', 'kernel'], {}), '(thresh, cv2.MORPH_CLOSE, kernel)\n', (2362, 2395), False, 'import cv2\n'), ((2414, 2451), 'cv2.erode', 'cv2.erode', (['closed', 'None'], {'iterations': '(4)'}), '(closed, None, iterations=4)\n', (2423, 2451), False, 'import cv2\n'), ((2470, 2508), 'cv2.dilate', 'cv2.dilate', (['eroded', 'None'], {'iterations': '(4)'}), '(eroded, None, iterations=4)\n', (2480, 2508), False, 'import cv2\n'), ((2746, 2764), 'cv2.minAreaRect', 'cv2.minAreaRect', (['c'], {}), '(c)\n', (2761, 2764), False, 'import cv2\n'), ((2779, 2803), 'cv2.boxPoints', 'cv2.boxPoints', (['rectangle'], {}), '(rectangle)\n', (2792, 2803), False, 'import cv2\n'), ((2818, 2830), 'numpy.int0', 'np.int0', (['box'], {}), '(box)\n', (2825, 2830), True, 'import numpy as np\n'), ((2854, 2875), 'cv2.boundingRect', 'cv2.boundingRect', (['box'], {}), '(box)\n', (2870, 2875), False, 'import cv2\n'), ((5014, 5035), 'cv2.boundingRect', 'cv2.boundingRect', (['box'], {}), '(box)\n', (5030, 5035), False, 'import cv2\n'), ((5106, 5167), 'cv2.dilate', 'cv2.dilate', (['sub_bar_code', 'None'], {'iterations': 'dilation_intensity'}), '(sub_bar_code, None, iterations=dilation_intensity)\n', (5116, 5167), False, 'import cv2\n'), ((5191, 5234), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['sub_bar_code', '(31, 31)', '(0)'], {}), '(sub_bar_code, (31, 31), 0)\n', (5207, 5234), False, 'import cv2\n'), ((3797, 3845), 'cv2.cvtColor', 'cv2.cvtColor', (['detected_image', 'cv2.COLOR_BGR2GRAY'], {}), '(detected_image, cv2.COLOR_BGR2GRAY)\n', (3809, 3845), False, 'import cv2\n')]
|
# -*- coding: utf-8 -*-
"""nnetwork.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1pMeLa_X6bXVDBF07Nf5ISyPfmGEpurvH
"""
import pandas as pd
import numpy as np
# first neural network with keras tutorial
from numpy import loadtxt
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt
import tensorflow as tf
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device_name))
#data= pd.read_csv('/content/drive/MyDrive/Expert-Opinion.csv')
data = pd.read_csv('/content/drive/MyDrive/data_1000.csv',nrows = 1000)
#data = pd.read_csv('/content/drive/MyDrive/Expert_opinion_1000.csv')
dataset = data.drop(['Title'], axis=1)
data
#data = loadtxt('/content/drive/MyDrive/Expert-Opinion.csv',delimiter=',')
#Expert Opinion on Recipies
dataset.head(5)
import seaborn as sns
dataset['remarks'].value_counts().plot(kind='bar')
#input and output variables
X = dataset.iloc[:,0:6]
Y = dataset.iloc[:,6]
X
lst = list(dataset['energy'])
lst1 = list(dataset['fat'])
lst3 = list(dataset['sugars'])
lst2 = list(dataset['remarks'])
np.random.seed(100)
#create array of 50 random integers between 0 and 10
var1 = np.array(lst)+np.array(lst1)+np.array(lst3)
#create a positively correlated array with some random noise
var2 = var1 + np.array(lst2)
#calculate the correlation between the two arrays
np.corrcoef(var1, var2)
#create train and testing vars
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.2)
print(X_train.shape, Y_train.shape)
print(X_test.shape, Y_test.shape)
#from sklearn.linear_model import LinearRegression
#lr = LinearRegression()
#lr.fit(X_train, Y_train)
#y_lr_train_pred = lr.predict(X_train)
#y_lr_test_pred = lr.predict(X_test)
#from sklearn.metrics import mean_squared_error, r2_score
#lr_train_mse = mean_squared_error(Y_train, y_lr_train_pred)
#lr_train_r2 = r2_score(Y_train, y_lr_train_pred)
#lr_test_mse = mean_squared_error(Y_test, y_lr_test_pred)
#lr_test_r2 = r2_score(Y_test, y_lr_test_pred)
#print(lr_train_mse)
# define the keras model layer by layer
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras import initializers
model = Sequential()
model.add(Dense(12, input_dim=6, activation='relu'))
model.add(Dense(8, activation='relu'))
#model.add(Dense(4,init = 'uniform', activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# compile the keras model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit the keras model on the dataset
model.fit(X_train, Y_train, epochs=200, batch_size=32)
# evaluate the keras model
_, accuracy = model.evaluate(X_train, Y_train)
print('Train_Accuracy: %.2f' % (accuracy*100))
y_hat= model.predict(np.array(X_test))
print('Test_Accuracy: %.2f' % (y_hat[0]))
model.save('ann-model.model.h5')
#from sklearn.metrics import mean_squared_error, r2_score
#lr_train_mse = mean_squared_error(Y_train, y_lr_train_pred)
#lr_train_r2 = r2_score(Y_train, y_lr_train_pred)
#lr_test_mse = mean_squared_error(Y_test, y_lr_test_pred)
#lr_test_r2 = r2_score(Y_test, y_lr_test_pred)#test accuracy check
#print('Test_Accuracy: %.2f' % (lr_test_r2*100))
|
[
"numpy.random.seed",
"tensorflow.keras.layers.Dense",
"pandas.read_csv",
"numpy.corrcoef",
"sklearn.model_selection.train_test_split",
"numpy.array",
"tensorflow.keras.models.Sequential",
"tensorflow.test.gpu_device_name"
] |
[((495, 520), 'tensorflow.test.gpu_device_name', 'tf.test.gpu_device_name', ([], {}), '()\n', (518, 520), True, 'import tensorflow as tf\n'), ((718, 781), 'pandas.read_csv', 'pd.read_csv', (['"""/content/drive/MyDrive/data_1000.csv"""'], {'nrows': '(1000)'}), "('/content/drive/MyDrive/data_1000.csv', nrows=1000)\n", (729, 781), True, 'import pandas as pd\n'), ((1294, 1313), 'numpy.random.seed', 'np.random.seed', (['(100)'], {}), '(100)\n', (1308, 1313), True, 'import numpy as np\n'), ((1561, 1584), 'numpy.corrcoef', 'np.corrcoef', (['var1', 'var2'], {}), '(var1, var2)\n', (1572, 1584), True, 'import numpy as np\n'), ((1652, 1689), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'Y'], {'test_size': '(0.2)'}), '(X, Y, test_size=0.2)\n', (1668, 1689), False, 'from sklearn.model_selection import train_test_split\n'), ((2416, 2428), 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), '()\n', (2426, 2428), False, 'from tensorflow.keras.models import Sequential\n'), ((1404, 1418), 'numpy.array', 'np.array', (['lst3'], {}), '(lst3)\n', (1412, 1418), True, 'import numpy as np\n'), ((1495, 1509), 'numpy.array', 'np.array', (['lst2'], {}), '(lst2)\n', (1503, 1509), True, 'import numpy as np\n'), ((2439, 2480), 'tensorflow.keras.layers.Dense', 'Dense', (['(12)'], {'input_dim': '(6)', 'activation': '"""relu"""'}), "(12, input_dim=6, activation='relu')\n", (2444, 2480), False, 'from tensorflow.keras.layers import Dense\n'), ((2492, 2519), 'tensorflow.keras.layers.Dense', 'Dense', (['(8)'], {'activation': '"""relu"""'}), "(8, activation='relu')\n", (2497, 2519), False, 'from tensorflow.keras.layers import Dense\n'), ((2588, 2618), 'tensorflow.keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (2593, 2618), False, 'from tensorflow.keras.layers import Dense\n'), ((2967, 2983), 'numpy.array', 'np.array', (['X_test'], {}), '(X_test)\n', (2975, 2983), True, 'import numpy as np\n'), ((1375, 1388), 'numpy.array', 'np.array', (['lst'], {}), '(lst)\n', (1383, 1388), True, 'import numpy as np\n'), ((1389, 1403), 'numpy.array', 'np.array', (['lst1'], {}), '(lst1)\n', (1397, 1403), True, 'import numpy as np\n')]
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# 通过tf.set_random_seed设定种子数,后面定义的全部变量都可以跨会话生成相同的随机数
tf.set_random_seed(1)
np.random.seed(1)
learn_rate = 0.01
batch_size = 64
xdata = np.linspace(-1, 1, 100)[:, np.newaxis] # shape (100, 1)
noise = np.random.normal(0, 0.1, size=xdata.shape)
ydata = np.power(xdata, 2) + noise # shape (100, 1) + some noise
plt.scatter(xdata, ydata)
plt.show()
# 定义神经网络
class Net:
def __init__(self, opt, **kwargs):
self.x = tf.placeholder(tf.float32, [None, 1])
self.y = tf.placeholder(tf.float32, [None, 1])
l1 = tf.layers.dense(self.x, 20, tf.nn.relu)
lo = tf.layers.dense(l1, 1)
self.loss = tf.losses.mean_squared_error(self.y, lo)
self.train = opt(learn_rate, **kwargs).minimize(self.loss)
# 定义不同的优化方法
net_SGD = Net(tf.train.GradientDescentOptimizer)
net_Momentum = Net(tf.train.MomentumOptimizer, momentum=0.9)
net_RMSprop = Net(tf.train.RMSPropOptimizer)
net_Adam = Net(tf.train.AdamOptimizer)
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
sess = tf.Session()
sess.run(tf.global_variables_initializer())
losses_ = [[], [], [], []]
for step in range(300):
index = np.random.randint(0, xdata.shape[0], batch_size)
b_x = xdata[index]
b_y = ydata[index]
for net, l_ in zip(nets, losses_):
_, l2 = sess.run([net.train, net.loss], {net.x: b_x, net.y: b_y})
l_.append(l2)
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(losses_):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.3))
plt.show()
|
[
"matplotlib.pyplot.show",
"numpy.random.seed",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.ylim",
"tensorflow.global_variables_initializer",
"matplotlib.pyplot.scatter",
"matplotlib.pyplot.legend",
"numpy.power",
"tensorflow.Session",
"tensorflow.layers.dense",
"tensorflow.losses.mean_squared_error",
"tensorflow.set_random_seed",
"tensorflow.placeholder",
"numpy.random.randint",
"numpy.random.normal",
"numpy.linspace",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xlabel"
] |
[((171, 192), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['(1)'], {}), '(1)\n', (189, 192), True, 'import tensorflow as tf\n'), ((193, 210), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (207, 210), True, 'import numpy as np\n'), ((332, 374), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)'], {'size': 'xdata.shape'}), '(0, 0.1, size=xdata.shape)\n', (348, 374), True, 'import numpy as np\n'), ((465, 490), 'matplotlib.pyplot.scatter', 'plt.scatter', (['xdata', 'ydata'], {}), '(xdata, ydata)\n', (476, 490), True, 'import matplotlib.pyplot as plt\n'), ((491, 501), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (499, 501), True, 'import matplotlib.pyplot as plt\n'), ((1160, 1172), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1170, 1172), True, 'import tensorflow as tf\n'), ((1633, 1655), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (1643, 1655), True, 'import matplotlib.pyplot as plt\n'), ((1656, 1675), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Steps"""'], {}), "('Steps')\n", (1666, 1675), True, 'import matplotlib.pyplot as plt\n'), ((1676, 1694), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (1686, 1694), True, 'import matplotlib.pyplot as plt\n'), ((1695, 1713), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0, 0.3)'], {}), '((0, 0.3))\n', (1703, 1713), True, 'import matplotlib.pyplot as plt\n'), ((1714, 1724), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1722, 1724), True, 'import matplotlib.pyplot as plt\n'), ((255, 278), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', '(100)'], {}), '(-1, 1, 100)\n', (266, 278), True, 'import numpy as np\n'), ((383, 401), 'numpy.power', 'np.power', (['xdata', '(2)'], {}), '(xdata, 2)\n', (391, 401), True, 'import numpy as np\n'), ((1182, 1215), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1213, 1215), True, 'import tensorflow as tf\n'), ((1281, 1329), 'numpy.random.randint', 'np.random.randint', (['(0)', 'xdata.shape[0]', 'batch_size'], {}), '(0, xdata.shape[0], batch_size)\n', (1298, 1329), True, 'import numpy as np\n'), ((1600, 1632), 'matplotlib.pyplot.plot', 'plt.plot', (['l_his'], {'label': 'labels[i]'}), '(l_his, label=labels[i])\n', (1608, 1632), True, 'import matplotlib.pyplot as plt\n'), ((580, 617), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, 1]'], {}), '(tf.float32, [None, 1])\n', (594, 617), True, 'import tensorflow as tf\n'), ((635, 672), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, 1]'], {}), '(tf.float32, [None, 1])\n', (649, 672), True, 'import tensorflow as tf\n'), ((686, 725), 'tensorflow.layers.dense', 'tf.layers.dense', (['self.x', '(20)', 'tf.nn.relu'], {}), '(self.x, 20, tf.nn.relu)\n', (701, 725), True, 'import tensorflow as tf\n'), ((739, 761), 'tensorflow.layers.dense', 'tf.layers.dense', (['l1', '(1)'], {}), '(l1, 1)\n', (754, 761), True, 'import tensorflow as tf\n'), ((782, 822), 'tensorflow.losses.mean_squared_error', 'tf.losses.mean_squared_error', (['self.y', 'lo'], {}), '(self.y, lo)\n', (810, 822), True, 'import tensorflow as tf\n')]
|
import numpy as np
from scipy import linalg
from numpy.testing import assert_almost_equal
from megamix.online.base import _log_normal_matrix
from megamix.online.base import _full_covariance_matrices, _spherical_covariance_matrices
from megamix.utils_testing import generate
def test_log_normal_matrix_full():
n_points, n_components, n_features = 10,5,2
points = np.random.randn(n_points,n_features)
means = np.random.randn(n_components,n_features)
cov = generate.generate_covariance_matrices_full(n_components,n_features)
cov_chol = np.empty((n_components,n_features,n_features))
for i in range(n_components):
cov_chol[i] = linalg.cholesky(cov[i],lower=True)
# Beginnig of the test
log_det_cov = np.log(np.linalg.det(cov))
precisions = np.linalg.inv(cov)
log_prob = np.empty((n_points,n_components))
for i in range(n_components):
diff = points - means[i]
y = np.dot(diff,np.dot(precisions[i],diff.T))
log_prob[:,i] = np.diagonal(y)
expected_log_normal_matrix = -0.5 * (n_features * np.log(2*np.pi) +
log_prob + log_det_cov)
predected_log_normal_matrix = _log_normal_matrix(points,means,cov_chol,'full')
assert_almost_equal(expected_log_normal_matrix,predected_log_normal_matrix)
def test_full_covariance_matrices():
n_points, n_components, n_features = 10,5,2
points = np.random.randn(n_points,n_features)
means = np.random.randn(n_components,n_features)
pi = generate.generate_mixing_coefficients(n_components)
resp = generate.generate_resp(n_points,n_components)
weights = pi * n_points
reg_covar = 1e-6
expected_full_covariance_matrices = np.empty((n_components,n_features,n_features))
for i in range(n_components):
diff = points - means[i]
diff_weighted = diff*resp[:,i:i+1]
cov = 1/weights[i] * np.dot(diff_weighted.T,diff)
cov.flat[::n_features+1] += reg_covar
expected_full_covariance_matrices[i] = cov
predected_full_covariance_matrices = _full_covariance_matrices(points,means,weights,resp,reg_covar)
assert_almost_equal(expected_full_covariance_matrices,predected_full_covariance_matrices)
def test_spherical_covariance_matrices():
n_points, n_components, n_features = 10,5,2
points = np.random.randn(n_points,n_features)
means = np.random.randn(n_components,n_features)
pi = generate.generate_mixing_coefficients(n_components)
resp = generate.generate_resp(n_points,n_components)
weights = pi * n_points
reg_covar = 1e-6
expected_full_covariance_matrices = np.empty(n_components)
for i in range(n_components):
diff = points - means[i]
diff_weighted = diff * resp[:,i:i+1]
product = diff * diff_weighted
expected_full_covariance_matrices[i] = np.sum(product)/weights[i] + reg_covar
expected_full_covariance_matrices /= n_features
predected_full_covariance_matrices = _spherical_covariance_matrices(points,means,weights,resp,reg_covar)
assert_almost_equal(expected_full_covariance_matrices,predected_full_covariance_matrices)
|
[
"megamix.online.base._full_covariance_matrices",
"numpy.sum",
"numpy.log",
"megamix.online.base._log_normal_matrix",
"numpy.random.randn",
"numpy.empty",
"numpy.testing.assert_almost_equal",
"scipy.linalg.cholesky",
"megamix.utils_testing.generate.generate_covariance_matrices_full",
"numpy.linalg.inv",
"megamix.online.base._spherical_covariance_matrices",
"megamix.utils_testing.generate.generate_mixing_coefficients",
"numpy.dot",
"numpy.linalg.det",
"megamix.utils_testing.generate.generate_resp",
"numpy.diagonal"
] |
[((376, 413), 'numpy.random.randn', 'np.random.randn', (['n_points', 'n_features'], {}), '(n_points, n_features)\n', (391, 413), True, 'import numpy as np\n'), ((425, 466), 'numpy.random.randn', 'np.random.randn', (['n_components', 'n_features'], {}), '(n_components, n_features)\n', (440, 466), True, 'import numpy as np\n'), ((476, 544), 'megamix.utils_testing.generate.generate_covariance_matrices_full', 'generate.generate_covariance_matrices_full', (['n_components', 'n_features'], {}), '(n_components, n_features)\n', (518, 544), False, 'from megamix.utils_testing import generate\n'), ((559, 607), 'numpy.empty', 'np.empty', (['(n_components, n_features, n_features)'], {}), '((n_components, n_features, n_features))\n', (567, 607), True, 'import numpy as np\n'), ((791, 809), 'numpy.linalg.inv', 'np.linalg.inv', (['cov'], {}), '(cov)\n', (804, 809), True, 'import numpy as np\n'), ((825, 859), 'numpy.empty', 'np.empty', (['(n_points, n_components)'], {}), '((n_points, n_components))\n', (833, 859), True, 'import numpy as np\n'), ((1204, 1255), 'megamix.online.base._log_normal_matrix', '_log_normal_matrix', (['points', 'means', 'cov_chol', '"""full"""'], {}), "(points, means, cov_chol, 'full')\n", (1222, 1255), False, 'from megamix.online.base import _log_normal_matrix\n'), ((1262, 1338), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['expected_log_normal_matrix', 'predected_log_normal_matrix'], {}), '(expected_log_normal_matrix, predected_log_normal_matrix)\n', (1281, 1338), False, 'from numpy.testing import assert_almost_equal\n'), ((1446, 1483), 'numpy.random.randn', 'np.random.randn', (['n_points', 'n_features'], {}), '(n_points, n_features)\n', (1461, 1483), True, 'import numpy as np\n'), ((1495, 1536), 'numpy.random.randn', 'np.random.randn', (['n_components', 'n_features'], {}), '(n_components, n_features)\n', (1510, 1536), True, 'import numpy as np\n'), ((1545, 1596), 'megamix.utils_testing.generate.generate_mixing_coefficients', 'generate.generate_mixing_coefficients', (['n_components'], {}), '(n_components)\n', (1582, 1596), False, 'from megamix.utils_testing import generate\n'), ((1608, 1654), 'megamix.utils_testing.generate.generate_resp', 'generate.generate_resp', (['n_points', 'n_components'], {}), '(n_points, n_components)\n', (1630, 1654), False, 'from megamix.utils_testing import generate\n'), ((1748, 1796), 'numpy.empty', 'np.empty', (['(n_components, n_features, n_features)'], {}), '((n_components, n_features, n_features))\n', (1756, 1796), True, 'import numpy as np\n'), ((2143, 2209), 'megamix.online.base._full_covariance_matrices', '_full_covariance_matrices', (['points', 'means', 'weights', 'resp', 'reg_covar'], {}), '(points, means, weights, resp, reg_covar)\n', (2168, 2209), False, 'from megamix.online.base import _full_covariance_matrices, _spherical_covariance_matrices\n'), ((2219, 2313), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['expected_full_covariance_matrices', 'predected_full_covariance_matrices'], {}), '(expected_full_covariance_matrices,\n predected_full_covariance_matrices)\n', (2238, 2313), False, 'from numpy.testing import assert_almost_equal\n'), ((2422, 2459), 'numpy.random.randn', 'np.random.randn', (['n_points', 'n_features'], {}), '(n_points, n_features)\n', (2437, 2459), True, 'import numpy as np\n'), ((2471, 2512), 'numpy.random.randn', 'np.random.randn', (['n_components', 'n_features'], {}), '(n_components, n_features)\n', (2486, 2512), True, 'import numpy as np\n'), ((2521, 2572), 'megamix.utils_testing.generate.generate_mixing_coefficients', 'generate.generate_mixing_coefficients', (['n_components'], {}), '(n_components)\n', (2558, 2572), False, 'from megamix.utils_testing import generate\n'), ((2584, 2630), 'megamix.utils_testing.generate.generate_resp', 'generate.generate_resp', (['n_points', 'n_components'], {}), '(n_points, n_components)\n', (2606, 2630), False, 'from megamix.utils_testing import generate\n'), ((2724, 2746), 'numpy.empty', 'np.empty', (['n_components'], {}), '(n_components)\n', (2732, 2746), True, 'import numpy as np\n'), ((3117, 3188), 'megamix.online.base._spherical_covariance_matrices', '_spherical_covariance_matrices', (['points', 'means', 'weights', 'resp', 'reg_covar'], {}), '(points, means, weights, resp, reg_covar)\n', (3147, 3188), False, 'from megamix.online.base import _full_covariance_matrices, _spherical_covariance_matrices\n'), ((3198, 3292), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['expected_full_covariance_matrices', 'predected_full_covariance_matrices'], {}), '(expected_full_covariance_matrices,\n predected_full_covariance_matrices)\n', (3217, 3292), False, 'from numpy.testing import assert_almost_equal\n'), ((662, 697), 'scipy.linalg.cholesky', 'linalg.cholesky', (['cov[i]'], {'lower': '(True)'}), '(cov[i], lower=True)\n', (677, 697), False, 'from scipy import linalg\n'), ((754, 772), 'numpy.linalg.det', 'np.linalg.det', (['cov'], {}), '(cov)\n', (767, 772), True, 'import numpy as np\n'), ((1004, 1018), 'numpy.diagonal', 'np.diagonal', (['y'], {}), '(y)\n', (1015, 1018), True, 'import numpy as np\n'), ((950, 979), 'numpy.dot', 'np.dot', (['precisions[i]', 'diff.T'], {}), '(precisions[i], diff.T)\n', (956, 979), True, 'import numpy as np\n'), ((1934, 1963), 'numpy.dot', 'np.dot', (['diff_weighted.T', 'diff'], {}), '(diff_weighted.T, diff)\n', (1940, 1963), True, 'import numpy as np\n'), ((2945, 2960), 'numpy.sum', 'np.sum', (['product'], {}), '(product)\n', (2951, 2960), True, 'import numpy as np\n'), ((1082, 1099), 'numpy.log', 'np.log', (['(2 * np.pi)'], {}), '(2 * np.pi)\n', (1088, 1099), True, 'import numpy as np\n')]
|
# =============================================================================
# Copyright 2020 NVIDIA. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import random
import numpy as np
from nemo import logging
from nemo.collections.nlp.utils.callback_utils import (
get_classification_report,
get_f1_scores,
list2str,
plot_confusion_matrix,
tensor2list,
)
__all__ = ['eval_iter_callback', 'eval_epochs_done_callback']
def eval_iter_callback(tensors, global_vars):
if "all_intent_preds" not in global_vars.keys():
global_vars["all_intent_preds"] = []
if "all_intent_labels" not in global_vars.keys():
global_vars["all_intent_labels"] = []
if "all_slot_preds" not in global_vars.keys():
global_vars["all_slot_preds"] = []
if "all_slot_labels" not in global_vars.keys():
global_vars["all_slot_labels"] = []
if "all_subtokens_mask" not in global_vars.keys():
global_vars["all_subtokens_mask"] = []
all_intent_logits, all_intent_labels = [], []
all_slot_logits, all_slot_labels = [], []
all_subtokens_mask = []
for kv, v in tensors.items():
if kv.startswith('intent_logits'):
for v_tensor in v:
for logit_tensor in v_tensor:
all_intent_logits.append(tensor2list(logit_tensor))
if kv.startswith('intents'):
for v_tensor in v:
for label_tensor in v_tensor:
all_intent_labels.append(tensor2list(label_tensor))
if kv.startswith('slot_logits'):
for v_tensor in v:
for logit_tensor in v_tensor:
all_slot_logits.append(tensor2list(logit_tensor))
if kv.startswith('slots'):
for v_tensor in v:
for label_tensor in v_tensor:
all_slot_labels.extend(tensor2list(label_tensor))
if kv.startswith('subtokens_mask'):
for v_tensor in v:
for subtokens_mask_tensor in v_tensor:
all_subtokens_mask.extend(tensor2list(subtokens_mask_tensor))
all_intent_preds = list(np.argmax(np.asarray(all_intent_logits), 1))
all_slot_preds = list(np.argmax(np.asarray(all_slot_logits), 2).flatten())
global_vars["all_intent_preds"].extend(all_intent_preds)
global_vars["all_intent_labels"].extend(all_intent_labels)
global_vars["all_slot_preds"].extend(all_slot_preds)
global_vars["all_slot_labels"].extend(all_slot_labels)
global_vars["all_subtokens_mask"].extend(all_subtokens_mask)
def eval_epochs_done_callback(global_vars, intents_label_ids, slots_label_ids, graph_fold=None, normalize_cm=True):
intent_labels = np.asarray(global_vars['all_intent_labels'])
intent_preds = np.asarray(global_vars['all_intent_preds'])
slot_labels = np.asarray(global_vars['all_slot_labels'])
slot_preds = np.asarray(global_vars['all_slot_preds'])
subtokens_mask = np.asarray(global_vars['all_subtokens_mask']) > 0.5
slot_labels = slot_labels[subtokens_mask]
slot_preds = slot_preds[subtokens_mask]
# print predictions and labels for a small random subset of data
sample_size = 20
i = 0
if intent_preds.shape[0] > sample_size + 1:
i = random.randint(0, intent_preds.shape[0] - sample_size - 1)
logging.info("Sampled i_preds: [%s]" % list2str(intent_preds[i : i + sample_size]))
logging.info("Sampled intents: [%s]" % list2str(intent_labels[i : i + sample_size]))
logging.info("Sampled s_preds: [%s]" % list2str(slot_preds[i : i + sample_size]))
logging.info("Sampled slots: [%s]" % list2str(slot_labels[i : i + sample_size]))
if graph_fold:
# calculate, plot and save the confusion_matrix
plot_confusion_matrix(
intent_labels, intent_preds, graph_fold, intents_label_ids, normalize=normalize_cm, prefix='Intent'
)
plot_confusion_matrix(
slot_labels, slot_preds, graph_fold, slots_label_ids, normalize=normalize_cm, prefix='Slot'
)
logging.info('Slot Prediction Results:')
slot_accuracy = np.mean(slot_labels == slot_preds)
logging.info(f'Slot Accuracy: {slot_accuracy}')
f1_scores = get_f1_scores(slot_labels, slot_preds, average_modes=['weighted', 'macro', 'micro'])
for k, v in f1_scores.items():
logging.info(f'{k}: {v}')
logging.info(f'\n {get_classification_report(slot_labels, slot_preds, label_ids=slots_label_ids)}')
logging.info('Intent Prediction Results:')
intent_accuracy = np.mean(intent_labels == intent_preds)
logging.info(f'Intent Accuracy: {intent_accuracy}')
f1_scores = get_f1_scores(intent_labels, intent_preds, average_modes=['weighted', 'macro', 'micro'])
for k, v in f1_scores.items():
logging.info(f'{k}: {v}')
logging.info(f'\n {get_classification_report(intent_labels, intent_preds, label_ids=intents_label_ids)}')
return dict({'intent_accuracy': intent_accuracy, 'slot_accuracy': slot_accuracy})
|
[
"random.randint",
"numpy.asarray",
"nemo.collections.nlp.utils.callback_utils.get_classification_report",
"nemo.collections.nlp.utils.callback_utils.plot_confusion_matrix",
"nemo.logging.info",
"numpy.mean",
"nemo.collections.nlp.utils.callback_utils.get_f1_scores",
"nemo.collections.nlp.utils.callback_utils.tensor2list",
"nemo.collections.nlp.utils.callback_utils.list2str"
] |
[((3299, 3343), 'numpy.asarray', 'np.asarray', (["global_vars['all_intent_labels']"], {}), "(global_vars['all_intent_labels'])\n", (3309, 3343), True, 'import numpy as np\n'), ((3363, 3406), 'numpy.asarray', 'np.asarray', (["global_vars['all_intent_preds']"], {}), "(global_vars['all_intent_preds'])\n", (3373, 3406), True, 'import numpy as np\n'), ((3426, 3468), 'numpy.asarray', 'np.asarray', (["global_vars['all_slot_labels']"], {}), "(global_vars['all_slot_labels'])\n", (3436, 3468), True, 'import numpy as np\n'), ((3486, 3527), 'numpy.asarray', 'np.asarray', (["global_vars['all_slot_preds']"], {}), "(global_vars['all_slot_preds'])\n", (3496, 3527), True, 'import numpy as np\n'), ((4639, 4679), 'nemo.logging.info', 'logging.info', (['"""Slot Prediction Results:"""'], {}), "('Slot Prediction Results:')\n", (4651, 4679), False, 'from nemo import logging\n'), ((4700, 4734), 'numpy.mean', 'np.mean', (['(slot_labels == slot_preds)'], {}), '(slot_labels == slot_preds)\n', (4707, 4734), True, 'import numpy as np\n'), ((4739, 4786), 'nemo.logging.info', 'logging.info', (['f"""Slot Accuracy: {slot_accuracy}"""'], {}), "(f'Slot Accuracy: {slot_accuracy}')\n", (4751, 4786), False, 'from nemo import logging\n'), ((4803, 4891), 'nemo.collections.nlp.utils.callback_utils.get_f1_scores', 'get_f1_scores', (['slot_labels', 'slot_preds'], {'average_modes': "['weighted', 'macro', 'micro']"}), "(slot_labels, slot_preds, average_modes=['weighted', 'macro',\n 'micro'])\n", (4816, 4891), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((5067, 5109), 'nemo.logging.info', 'logging.info', (['"""Intent Prediction Results:"""'], {}), "('Intent Prediction Results:')\n", (5079, 5109), False, 'from nemo import logging\n'), ((5132, 5170), 'numpy.mean', 'np.mean', (['(intent_labels == intent_preds)'], {}), '(intent_labels == intent_preds)\n', (5139, 5170), True, 'import numpy as np\n'), ((5175, 5226), 'nemo.logging.info', 'logging.info', (['f"""Intent Accuracy: {intent_accuracy}"""'], {}), "(f'Intent Accuracy: {intent_accuracy}')\n", (5187, 5226), False, 'from nemo import logging\n'), ((5243, 5335), 'nemo.collections.nlp.utils.callback_utils.get_f1_scores', 'get_f1_scores', (['intent_labels', 'intent_preds'], {'average_modes': "['weighted', 'macro', 'micro']"}), "(intent_labels, intent_preds, average_modes=['weighted',\n 'macro', 'micro'])\n", (5256, 5335), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((3549, 3594), 'numpy.asarray', 'np.asarray', (["global_vars['all_subtokens_mask']"], {}), "(global_vars['all_subtokens_mask'])\n", (3559, 3594), True, 'import numpy as np\n'), ((3853, 3911), 'random.randint', 'random.randint', (['(0)', '(intent_preds.shape[0] - sample_size - 1)'], {}), '(0, intent_preds.shape[0] - sample_size - 1)\n', (3867, 3911), False, 'import random\n'), ((4344, 4470), 'nemo.collections.nlp.utils.callback_utils.plot_confusion_matrix', 'plot_confusion_matrix', (['intent_labels', 'intent_preds', 'graph_fold', 'intents_label_ids'], {'normalize': 'normalize_cm', 'prefix': '"""Intent"""'}), "(intent_labels, intent_preds, graph_fold,\n intents_label_ids, normalize=normalize_cm, prefix='Intent')\n", (4365, 4470), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((4497, 4615), 'nemo.collections.nlp.utils.callback_utils.plot_confusion_matrix', 'plot_confusion_matrix', (['slot_labels', 'slot_preds', 'graph_fold', 'slots_label_ids'], {'normalize': 'normalize_cm', 'prefix': '"""Slot"""'}), "(slot_labels, slot_preds, graph_fold, slots_label_ids,\n normalize=normalize_cm, prefix='Slot')\n", (4518, 4615), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((4931, 4956), 'nemo.logging.info', 'logging.info', (['f"""{k}: {v}"""'], {}), "(f'{k}: {v}')\n", (4943, 4956), False, 'from nemo import logging\n'), ((5375, 5400), 'nemo.logging.info', 'logging.info', (['f"""{k}: {v}"""'], {}), "(f'{k}: {v}')\n", (5387, 5400), False, 'from nemo import logging\n'), ((2742, 2771), 'numpy.asarray', 'np.asarray', (['all_intent_logits'], {}), '(all_intent_logits)\n', (2752, 2771), True, 'import numpy as np\n'), ((3955, 3996), 'nemo.collections.nlp.utils.callback_utils.list2str', 'list2str', (['intent_preds[i:i + sample_size]'], {}), '(intent_preds[i:i + sample_size])\n', (3963, 3996), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((4043, 4085), 'nemo.collections.nlp.utils.callback_utils.list2str', 'list2str', (['intent_labels[i:i + sample_size]'], {}), '(intent_labels[i:i + sample_size])\n', (4051, 4085), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((4132, 4171), 'nemo.collections.nlp.utils.callback_utils.list2str', 'list2str', (['slot_preds[i:i + sample_size]'], {}), '(slot_preds[i:i + sample_size])\n', (4140, 4171), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((4216, 4256), 'nemo.collections.nlp.utils.callback_utils.list2str', 'list2str', (['slot_labels[i:i + sample_size]'], {}), '(slot_labels[i:i + sample_size])\n', (4224, 4256), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((4981, 5058), 'nemo.collections.nlp.utils.callback_utils.get_classification_report', 'get_classification_report', (['slot_labels', 'slot_preds'], {'label_ids': 'slots_label_ids'}), '(slot_labels, slot_preds, label_ids=slots_label_ids)\n', (5006, 5058), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((5425, 5513), 'nemo.collections.nlp.utils.callback_utils.get_classification_report', 'get_classification_report', (['intent_labels', 'intent_preds'], {'label_ids': 'intents_label_ids'}), '(intent_labels, intent_preds, label_ids=\n intents_label_ids)\n', (5450, 5513), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((2813, 2840), 'numpy.asarray', 'np.asarray', (['all_slot_logits'], {}), '(all_slot_logits)\n', (2823, 2840), True, 'import numpy as np\n'), ((1904, 1929), 'nemo.collections.nlp.utils.callback_utils.tensor2list', 'tensor2list', (['logit_tensor'], {}), '(logit_tensor)\n', (1915, 1929), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((2091, 2116), 'nemo.collections.nlp.utils.callback_utils.tensor2list', 'tensor2list', (['label_tensor'], {}), '(label_tensor)\n', (2102, 2116), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((2280, 2305), 'nemo.collections.nlp.utils.callback_utils.tensor2list', 'tensor2list', (['logit_tensor'], {}), '(logit_tensor)\n', (2291, 2305), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((2463, 2488), 'nemo.collections.nlp.utils.callback_utils.tensor2list', 'tensor2list', (['label_tensor'], {}), '(label_tensor)\n', (2474, 2488), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n'), ((2667, 2701), 'nemo.collections.nlp.utils.callback_utils.tensor2list', 'tensor2list', (['subtokens_mask_tensor'], {}), '(subtokens_mask_tensor)\n', (2678, 2701), False, 'from nemo.collections.nlp.utils.callback_utils import get_classification_report, get_f1_scores, list2str, plot_confusion_matrix, tensor2list\n')]
|
import threading
import numpy as np
from baselines.common.segment_tree import SumSegmentTree, MinSegmentTree
import math
from scipy.stats import rankdata
import json
class ReplayBuffer:
def __init__(self, buffer_shapes, size_in_transitions, T, sample_transitions):
"""Creates a replay buffer.
Args:
buffer_shapes (dict of ints): the shape for all buffers that are used in the replay
buffer
size_in_transitions (int): the size of the buffer, measured in transitions
T (int): the time horizon for episodes
sample_transitions (function): a function that samples from the replay buffer
"""
self.buffer_shapes = buffer_shapes
self.size = size_in_transitions // T
self.T = T
self.sample_transitions = sample_transitions
# self.buffers is {key: array(size_in_episodes x T or T+1 x dim_key)}
self.buffers = {key: np.empty([self.size, *shape])
for key, shape in buffer_shapes.items()}
# memory management
self.current_size = 0
self.n_transitions_stored = 0
self.lock = threading.Lock()
@property
def full(self):
with self.lock:
return self.current_size == self.size
def sample(self, batch_size):
"""Returns a dict {key: array(batch_size x shapes[key])}
"""
buffers = {}
with self.lock:
assert self.current_size > 0
for key in self.buffers.keys():
buffers[key] = self.buffers[key][:self.current_size]
buffers['o_2'] = buffers['o'][:, 1:, :]
buffers['ag_2'] = buffers['ag'][:, 1:, :]
transitions = self.sample_transitions(buffers, batch_size)
for key in (['r', 'o_2', 'ag_2'] + list(self.buffers.keys())):
assert key in transitions, "key %s missing from transitions" % key
return transitions
def store_episode(self, episode_batch):
"""episode_batch: array(batch_size x (T or T+1) x dim_key)
"""
batch_sizes = [len(episode_batch[key]) for key in episode_batch.keys()]
assert np.all(np.array(batch_sizes) == batch_sizes[0])
batch_size = batch_sizes[0]
with self.lock:
idxs = self._get_storage_idx(batch_size)
# load inputs into buffers
for key in self.buffers.keys():
self.buffers[key][idxs] = episode_batch[key]
self.n_transitions_stored += batch_size * self.T
def get_current_episode_size(self):
with self.lock:
return self.current_size
def get_current_size(self):
with self.lock:
return self.current_size * self.T
def get_transitions_stored(self):
with self.lock:
return self.n_transitions_stored
def clear_buffer(self):
with self.lock:
self.current_size = 0
def _get_storage_idx(self, inc=None):
inc = inc or 1 # size increment
assert inc <= self.size, "Batch committed to replay is too large!"
# go consecutively until you hit the end, and then go randomly.
if self.current_size+inc <= self.size:
idx = np.arange(self.current_size, self.current_size+inc)
elif self.current_size < self.size:
overflow = inc - (self.size - self.current_size)
idx_a = np.arange(self.current_size, self.size)
idx_b = np.random.randint(0, self.current_size, overflow)
idx = np.concatenate([idx_a, idx_b])
else:
idx = np.random.randint(0, self.size, inc)
# update replay size
self.current_size = min(self.size, self.current_size+inc)
if inc == 1:
idx = idx[0]
return idx
class ReplayBufferDiversity:
def __init__(self, buffer_shapes, size_in_transitions, T, sample_transitions, prioritization, env_name, goal_type):
"""
Creates a replay buffer for measuring the diversity
Args:
buffer_shapes (dict of ints): the shape for all buffers that are used in the replay
buffer
size_in_transitions (int): the size of the buffer, measured in transitions
T (int): the time horizon for episodes
sample_transitions (function): a function that samples from the replay buffer
"""
self.buffer_shapes = buffer_shapes
self.size = size_in_transitions // T
self.T = T
self.sample_transitions = sample_transitions
self.buffers = {key: np.empty([self.size, *shape])
for key, shape in buffer_shapes.items()}
self.buffers['div'] = np.empty([self.size, 1]) # diversity
# the prioritization is dpp now
self.prioritization = prioritization
self.env_name = env_name
# memory management
self.current_size = 0
self.n_transitions_stored = 0
self.current_size_test = 0
self.n_transitions_stored_test = 0
self.goal_type = goal_type
self.lock = threading.Lock()
@property
def full(self):
with self.lock:
return self.current_size == self.size
def sample(self, batch_size):
"""Returns a dict {key: array(batch_size x shapes[key])}
"""
buffers = {}
with self.lock:
assert self.current_size > 0
for key in self.buffers.keys():
buffers[key] = self.buffers[key][:self.current_size]
buffers['o_2'] = buffers['o'][:, 1:, :]
buffers['ag_2'] = buffers['ag'][:, 1:, :]
transitions = self.sample_transitions(buffers, batch_size)
for key in (['r', 'o_2', 'ag_2'] + list(self.buffers.keys())):
if not key == 'div':
assert key in transitions, "key %s missing from transitions" % key
return transitions
def store_episode(self, episode_batch, clip_div):
"""episode_batch: array(batch_size x (T or T+1) x dim_key)
"""
batch_sizes = [len(episode_batch[key]) for key in episode_batch.keys()]
assert np.all(np.array(batch_sizes) == batch_sizes[0])
batch_size = batch_sizes[0]
buffers = {}
for key in episode_batch.keys():
buffers[key] = episode_batch[key]
# start to calculate the diversity
if self.prioritization == 'diversity':
# we only consider the fetch environment now
if self.goal_type == 'full':
traj = buffers['ag'].copy().astype(np.float32)
elif self.goal_type == 'rotate':
# if use the rotate...
traj = buffers['ag'][:, :, 3:].copy().astype(np.float32)
else:
raise NotImplementedError
# normalize the vector
traj = traj / np.linalg.norm(traj, axis=2, keepdims=True)
diversity = []
for i in range(traj.shape[1] - 1):
result = np.einsum("ijk, ilk -> ijl" , traj[:, i:i+2, :], traj[:, i:i+2, :])
diversity.append(np.linalg.det(result))
diversity = np.array(diversity)
diversity[diversity < 0] = 0
diversity = np.sum(diversity, 0)
# calculate the accumulate rewards
mean_rewards = np.mean(buffers['info_is_success'].squeeze(), axis=1, keepdims=True)
# rewrad gains is useless here... can be removed
reward_gain = np.exp(mean_rewards)
# clip the diversity - 0.001
episode_batch['div'] = np.clip(diversity.reshape(-1, 1), 0, clip_div)
# write the data
with self.lock:
idxs = self._get_storage_idx(batch_size)
# load inputs into buffers
for key in self.buffers.keys():
self.buffers[key][idxs] = episode_batch[key]
self.n_transitions_stored += batch_size * self.T
def get_current_episode_size(self):
with self.lock:
return self.current_size
def get_current_size(self):
with self.lock:
return self.current_size * self.T
def get_transitions_stored(self):
with self.lock:
return self.n_transitions_stored
def clear_buffer(self):
with self.lock:
self.current_size = 0
def _get_storage_idx(self, inc=None):
inc = inc or 1 # size increment
assert inc <= self.size, "Batch committed to replay is too large!"
# go consecutively until you hit the end, and then go randomly.
if self.current_size+inc <= self.size:
idx = np.arange(self.current_size, self.current_size+inc)
elif self.current_size < self.size:
overflow = inc - (self.size - self.current_size)
idx_a = np.arange(self.current_size, self.size)
idx_b = np.random.randint(0, self.current_size, overflow)
idx = np.concatenate([idx_a, idx_b])
else:
# here we shouldn't randomly pick the trajectory to replace
idx = np.random.randint(0, self.size, inc)
# update replay size
self.current_size = min(self.size, self.current_size+inc)
if inc == 1:
idx = idx[0]
return idx
|
[
"numpy.sum",
"numpy.empty",
"numpy.einsum",
"threading.Lock",
"numpy.random.randint",
"numpy.arange",
"numpy.array",
"numpy.exp",
"numpy.linalg.norm",
"numpy.linalg.det",
"numpy.concatenate"
] |
[((1158, 1174), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (1172, 1174), False, 'import threading\n'), ((4693, 4717), 'numpy.empty', 'np.empty', (['[self.size, 1]'], {}), '([self.size, 1])\n', (4701, 4717), True, 'import numpy as np\n'), ((5077, 5093), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (5091, 5093), False, 'import threading\n'), ((947, 976), 'numpy.empty', 'np.empty', (['[self.size, *shape]'], {}), '([self.size, *shape])\n', (955, 976), True, 'import numpy as np\n'), ((3219, 3272), 'numpy.arange', 'np.arange', (['self.current_size', '(self.current_size + inc)'], {}), '(self.current_size, self.current_size + inc)\n', (3228, 3272), True, 'import numpy as np\n'), ((4568, 4597), 'numpy.empty', 'np.empty', (['[self.size, *shape]'], {}), '([self.size, *shape])\n', (4576, 4597), True, 'import numpy as np\n'), ((7135, 7154), 'numpy.array', 'np.array', (['diversity'], {}), '(diversity)\n', (7143, 7154), True, 'import numpy as np\n'), ((7220, 7240), 'numpy.sum', 'np.sum', (['diversity', '(0)'], {}), '(diversity, 0)\n', (7226, 7240), True, 'import numpy as np\n'), ((7471, 7491), 'numpy.exp', 'np.exp', (['mean_rewards'], {}), '(mean_rewards)\n', (7477, 7491), True, 'import numpy as np\n'), ((8619, 8672), 'numpy.arange', 'np.arange', (['self.current_size', '(self.current_size + inc)'], {}), '(self.current_size, self.current_size + inc)\n', (8628, 8672), True, 'import numpy as np\n'), ((2163, 2184), 'numpy.array', 'np.array', (['batch_sizes'], {}), '(batch_sizes)\n', (2171, 2184), True, 'import numpy as np\n'), ((3396, 3435), 'numpy.arange', 'np.arange', (['self.current_size', 'self.size'], {}), '(self.current_size, self.size)\n', (3405, 3435), True, 'import numpy as np\n'), ((3456, 3505), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.current_size', 'overflow'], {}), '(0, self.current_size, overflow)\n', (3473, 3505), True, 'import numpy as np\n'), ((3524, 3554), 'numpy.concatenate', 'np.concatenate', (['[idx_a, idx_b]'], {}), '([idx_a, idx_b])\n', (3538, 3554), True, 'import numpy as np\n'), ((3587, 3623), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.size', 'inc'], {}), '(0, self.size, inc)\n', (3604, 3623), True, 'import numpy as np\n'), ((6129, 6150), 'numpy.array', 'np.array', (['batch_sizes'], {}), '(batch_sizes)\n', (6137, 6150), True, 'import numpy as np\n'), ((6844, 6887), 'numpy.linalg.norm', 'np.linalg.norm', (['traj'], {'axis': '(2)', 'keepdims': '(True)'}), '(traj, axis=2, keepdims=True)\n', (6858, 6887), True, 'import numpy as np\n'), ((6987, 7057), 'numpy.einsum', 'np.einsum', (['"""ijk, ilk -> ijl"""', 'traj[:, i:i + 2, :]', 'traj[:, i:i + 2, :]'], {}), "('ijk, ilk -> ijl', traj[:, i:i + 2, :], traj[:, i:i + 2, :])\n", (6996, 7057), True, 'import numpy as np\n'), ((8796, 8835), 'numpy.arange', 'np.arange', (['self.current_size', 'self.size'], {}), '(self.current_size, self.size)\n', (8805, 8835), True, 'import numpy as np\n'), ((8856, 8905), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.current_size', 'overflow'], {}), '(0, self.current_size, overflow)\n', (8873, 8905), True, 'import numpy as np\n'), ((8924, 8954), 'numpy.concatenate', 'np.concatenate', (['[idx_a, idx_b]'], {}), '([idx_a, idx_b])\n', (8938, 8954), True, 'import numpy as np\n'), ((9059, 9095), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.size', 'inc'], {}), '(0, self.size, inc)\n', (9076, 9095), True, 'import numpy as np\n'), ((7088, 7109), 'numpy.linalg.det', 'np.linalg.det', (['result'], {}), '(result)\n', (7101, 7109), True, 'import numpy as np\n')]
|
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import mlpredict
gpu = 'V100'
opt = 'SGD'
MLP = mlpredict.import_tools.import_dnn('MLP')
MLP.describe()
batchsize = 2**np.arange(0,10,1)
time_layer = np.zeros([2,10])
time_total = np.zeros(10)
for i in range(len(batchsize)):
time_total[i], layer, time_layer[:,i] = MLP.predict(gpu = gpu,
optimizer = opt,
batchsize = batchsize[i])
print ("time_total = " ,time_total[i])
#l_unique = layer.copy()
#duplicates = [12,11,9,6]
#for d in duplicates:
# print(l_unique[d])
# l_unique.pop(d)
t_unique = time_layer
fig,ax = plt.subplots(1,1,figsize=[8,8])
plt.plot(batchsize,t_unique.transpose(),'o-')
ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
ax.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
ax.xaxis.set_minor_formatter(plt.NullFormatter())
ax.yaxis.set_minor_formatter(plt.NullFormatter())
matplotlib.rc('xtick', labelsize=25)
matplotlib.rc('ytick', labelsize=25)
plt.xlabel('batch size',fontsize=25)
plt.ylabel('predicted time (ms)',fontsize=25)
plt.legend(l_unique,bbox_to_anchor=(1.04,1), loc="upper left",fontsize=20)
plt.tight_layout()
plt.show()
|
[
"matplotlib.pyplot.tight_layout",
"matplotlib.rc",
"matplotlib.pyplot.show",
"matplotlib.pyplot.legend",
"numpy.zeros",
"matplotlib.ticker.ScalarFormatter",
"numpy.arange",
"matplotlib.pyplot.NullFormatter",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.subplots",
"mlpredict.import_tools.import_dnn"
] |
[((121, 161), 'mlpredict.import_tools.import_dnn', 'mlpredict.import_tools.import_dnn', (['"""MLP"""'], {}), "('MLP')\n", (154, 161), False, 'import mlpredict\n'), ((225, 242), 'numpy.zeros', 'np.zeros', (['[2, 10]'], {}), '([2, 10])\n', (233, 242), True, 'import numpy as np\n'), ((255, 267), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (263, 267), True, 'import numpy as np\n'), ((730, 764), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '[8, 8]'}), '(1, 1, figsize=[8, 8])\n', (742, 764), True, 'import matplotlib.pyplot as plt\n'), ((1054, 1090), 'matplotlib.rc', 'matplotlib.rc', (['"""xtick"""'], {'labelsize': '(25)'}), "('xtick', labelsize=25)\n", (1067, 1090), False, 'import matplotlib\n'), ((1091, 1127), 'matplotlib.rc', 'matplotlib.rc', (['"""ytick"""'], {'labelsize': '(25)'}), "('ytick', labelsize=25)\n", (1104, 1127), False, 'import matplotlib\n'), ((1129, 1166), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""batch size"""'], {'fontsize': '(25)'}), "('batch size', fontsize=25)\n", (1139, 1166), True, 'import matplotlib.pyplot as plt\n'), ((1166, 1212), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""predicted time (ms)"""'], {'fontsize': '(25)'}), "('predicted time (ms)', fontsize=25)\n", (1176, 1212), True, 'import matplotlib.pyplot as plt\n'), ((1213, 1290), 'matplotlib.pyplot.legend', 'plt.legend', (['l_unique'], {'bbox_to_anchor': '(1.04, 1)', 'loc': '"""upper left"""', 'fontsize': '(20)'}), "(l_unique, bbox_to_anchor=(1.04, 1), loc='upper left', fontsize=20)\n", (1223, 1290), True, 'import matplotlib.pyplot as plt\n'), ((1289, 1307), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1305, 1307), True, 'import matplotlib.pyplot as plt\n'), ((1309, 1319), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1317, 1319), True, 'import matplotlib.pyplot as plt\n'), ((194, 213), 'numpy.arange', 'np.arange', (['(0)', '(10)', '(1)'], {}), '(0, 10, 1)\n', (203, 213), True, 'import numpy as np\n'), ((844, 879), 'matplotlib.ticker.ScalarFormatter', 'matplotlib.ticker.ScalarFormatter', ([], {}), '()\n', (877, 879), False, 'import matplotlib\n'), ((916, 951), 'matplotlib.ticker.ScalarFormatter', 'matplotlib.ticker.ScalarFormatter', ([], {}), '()\n', (949, 951), False, 'import matplotlib\n'), ((982, 1001), 'matplotlib.pyplot.NullFormatter', 'plt.NullFormatter', ([], {}), '()\n', (999, 1001), True, 'import matplotlib.pyplot as plt\n'), ((1032, 1051), 'matplotlib.pyplot.NullFormatter', 'plt.NullFormatter', ([], {}), '()\n', (1049, 1051), True, 'import matplotlib.pyplot as plt\n')]
|
import cv2
import time
import numpy as np
from grabscreen import grab_screen
from directkeys import PressKey, ReleaseKey
from directkeys import W, A, D
from countdown import CountDown
'''
Most of the code in this script was taken from Sentdex's Python plays GTA-V
'''
def roi(img, vertices):
mask = np.zeros_like(img)
cv2.fillPoly(mask, vertices, 255)
masked = cv2.bitwise_and(img, mask)
return masked
def straight():
print('straight')
PressKey(W)
ReleaseKey(A)
ReleaseKey(D)
def left():
print('left')
PressKey(W)
PressKey(A)
time.sleep(0.05)
ReleaseKey(A)
def right():
print('right')
PressKey(W)
PressKey(D)
time.sleep(0.05)
ReleaseKey(D)
def auto_canny(image, sigma=0.33):
'''
Reference: https://www.pyimagesearch.com/
'''
v = np.median(image)
# apply automatic Canny edge detection using the computed median
lower = int(max(0, (1.0 - sigma) * v))
upper = int(min(255, (1.0 + sigma) * v))
edged = cv2.Canny(image, lower, upper)
# return the edged image
return edged
def draw_lanes(img, lines, color=[0, 255, 255], thickness=3):
# if this fails, go with some default line
try:
# finds the maximum y value for a lane marker
# (since we cannot assume the horizon will always be at the same point.)
ys = []
for i in lines:
for ii in i:
ys += [ii[1], ii[3]]
min_y = min(ys)
max_y = 150
new_lines = []
line_dict = {}
for idx, i in enumerate(lines):
for xyxy in i:
# These four lines:
# modified from http://stackoverflow.com/questions/21565994/method-to-return-the-equation-of-a-straight-line-given-two-points
# Used to calculate the definition of a line, given two sets of coords.
x_coords = (xyxy[0], xyxy[2])
y_coords = (xyxy[1], xyxy[3])
A = np.vstack([x_coords, np.ones(len(x_coords))]).T
m, b = np.linalg.lstsq(A, y_coords)[0]
# Calculating our new, and improved, xs
x1 = (min_y - b) / m
x2 = (max_y - b) / m
line_dict[idx] = [m, b, [int(x1), min_y, int(x2), max_y]]
new_lines.append([int(x1), min_y, int(x2), max_y])
final_lanes = {}
for idx in line_dict:
final_lanes_copy = final_lanes.copy()
m = line_dict[idx][0]
b = line_dict[idx][1]
line = line_dict[idx][2]
if len(final_lanes) == 0:
final_lanes[m] = [[m, b, line]]
else:
found_copy = False
for other_ms in final_lanes_copy:
if not found_copy:
if abs(other_ms * 1.2) > abs(m) > abs(other_ms * 0.8):
if abs(final_lanes_copy[other_ms][0][1] * 1.2) > abs(b) > abs(final_lanes_copy[other_ms][0][1] * 0.8):
final_lanes[other_ms].append([m, b, line])
found_copy = True
break
else:
final_lanes[m] = [[m, b, line]]
line_counter = {}
for lanes in final_lanes:
line_counter[lanes] = len(final_lanes[lanes])
top_lanes = sorted(line_counter.items(), key=lambda item: item[1])[::-1][:2]
lane1_id = top_lanes[0][0]
lane2_id = top_lanes[1][0]
def average_lane(lane_data):
x1s = []
y1s = []
x2s = []
y2s = []
for data in lane_data:
x1s.append(data[2][0])
y1s.append(data[2][1])
x2s.append(data[2][2])
y2s.append(data[2][3])
return int(np.mean(x1s)), int(np.mean(y1s)), int(np.mean(x2s)), int(np.mean(y2s))
l1_x1, l1_y1, l1_x2, l1_y2 = average_lane(final_lanes[lane1_id])
l2_x1, l2_y1, l2_x2, l2_y2 = average_lane(final_lanes[lane2_id])
return [l1_x1, l1_y1, l1_x2, l1_y2], [l2_x1, l2_y1, l2_x2, l2_y2], lane1_id, lane2_id
except Exception:
pass
def LaneFinder(image):
org_image = image
# convert to grayscale
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# gaussian blur
image = cv2.GaussianBlur(image, (3, 3), 0)
# edge detection
image = auto_canny(image)
# Masking Region of Interest
vertices = np.array([[0, 201], [0, 50], [381, 50], [381, 201]], np.int32)
image = roi(image, [vertices])
# probabilistic hough transform
lines = cv2.HoughLinesP(image, rho=1, theta=(np.pi / 180),
threshold=5, minLineLength=20, maxLineGap=5)
m1 = 0
m2 = 0
# drawing lines
try:
l1, l2, m1, m2 = draw_lanes(org_image, lines)
cv2.line(org_image, (l1[0], l1[1]), (l1[2], l1[3]), [0, 255, 0], 3)
cv2.line(org_image, (l2[0], l2[1]), (l2[2], l2[3]), [0, 255, 0], 3)
except Exception:
pass
try:
for coords in lines:
coords = coords[0]
try:
cv2.line(image, (coords[0], coords[1]), (coords[2], coords[3]), [255, 0, 0], 3)
except Exception:
pass
except Exception:
pass
return image, org_image, m1, m2
if __name__ == '__main__':
CountDown(5)
while True:
screen = grab_screen(region=(270, 250, 650, 450))
new_screen, original_image, m1, m2 = LaneFinder(screen)
# cv2.imshow('window', new_screen)
# cv2.imshow('window2', cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB))
if m1 < 0 and m2 < 0:
right()
elif m1 > 0 and m2 > 0:
left()
else:
straight()
if cv2.waitKey(25) == ord('q'):
cv2.destroyAllWindows()
break
|
[
"cv2.GaussianBlur",
"cv2.bitwise_and",
"cv2.fillPoly",
"numpy.mean",
"cv2.HoughLinesP",
"cv2.line",
"numpy.zeros_like",
"cv2.cvtColor",
"directkeys.ReleaseKey",
"directkeys.PressKey",
"cv2.destroyAllWindows",
"cv2.Canny",
"numpy.median",
"cv2.waitKey",
"countdown.CountDown",
"time.sleep",
"grabscreen.grab_screen",
"numpy.linalg.lstsq",
"numpy.array"
] |
[((306, 324), 'numpy.zeros_like', 'np.zeros_like', (['img'], {}), '(img)\n', (319, 324), True, 'import numpy as np\n'), ((329, 362), 'cv2.fillPoly', 'cv2.fillPoly', (['mask', 'vertices', '(255)'], {}), '(mask, vertices, 255)\n', (341, 362), False, 'import cv2\n'), ((376, 402), 'cv2.bitwise_and', 'cv2.bitwise_and', (['img', 'mask'], {}), '(img, mask)\n', (391, 402), False, 'import cv2\n'), ((466, 477), 'directkeys.PressKey', 'PressKey', (['W'], {}), '(W)\n', (474, 477), False, 'from directkeys import PressKey, ReleaseKey\n'), ((482, 495), 'directkeys.ReleaseKey', 'ReleaseKey', (['A'], {}), '(A)\n', (492, 495), False, 'from directkeys import PressKey, ReleaseKey\n'), ((500, 513), 'directkeys.ReleaseKey', 'ReleaseKey', (['D'], {}), '(D)\n', (510, 513), False, 'from directkeys import PressKey, ReleaseKey\n'), ((550, 561), 'directkeys.PressKey', 'PressKey', (['W'], {}), '(W)\n', (558, 561), False, 'from directkeys import PressKey, ReleaseKey\n'), ((566, 577), 'directkeys.PressKey', 'PressKey', (['A'], {}), '(A)\n', (574, 577), False, 'from directkeys import PressKey, ReleaseKey\n'), ((582, 598), 'time.sleep', 'time.sleep', (['(0.05)'], {}), '(0.05)\n', (592, 598), False, 'import time\n'), ((603, 616), 'directkeys.ReleaseKey', 'ReleaseKey', (['A'], {}), '(A)\n', (613, 616), False, 'from directkeys import PressKey, ReleaseKey\n'), ((655, 666), 'directkeys.PressKey', 'PressKey', (['W'], {}), '(W)\n', (663, 666), False, 'from directkeys import PressKey, ReleaseKey\n'), ((671, 682), 'directkeys.PressKey', 'PressKey', (['D'], {}), '(D)\n', (679, 682), False, 'from directkeys import PressKey, ReleaseKey\n'), ((687, 703), 'time.sleep', 'time.sleep', (['(0.05)'], {}), '(0.05)\n', (697, 703), False, 'import time\n'), ((708, 721), 'directkeys.ReleaseKey', 'ReleaseKey', (['D'], {}), '(D)\n', (718, 721), False, 'from directkeys import PressKey, ReleaseKey\n'), ((829, 845), 'numpy.median', 'np.median', (['image'], {}), '(image)\n', (838, 845), True, 'import numpy as np\n'), ((1015, 1045), 'cv2.Canny', 'cv2.Canny', (['image', 'lower', 'upper'], {}), '(image, lower, upper)\n', (1024, 1045), False, 'import cv2\n'), ((4318, 4357), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (4330, 4357), False, 'import cv2\n'), ((4390, 4424), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['image', '(3, 3)', '(0)'], {}), '(image, (3, 3), 0)\n', (4406, 4424), False, 'import cv2\n'), ((4524, 4586), 'numpy.array', 'np.array', (['[[0, 201], [0, 50], [381, 50], [381, 201]]', 'np.int32'], {}), '([[0, 201], [0, 50], [381, 50], [381, 201]], np.int32)\n', (4532, 4586), True, 'import numpy as np\n'), ((4670, 4768), 'cv2.HoughLinesP', 'cv2.HoughLinesP', (['image'], {'rho': '(1)', 'theta': '(np.pi / 180)', 'threshold': '(5)', 'minLineLength': '(20)', 'maxLineGap': '(5)'}), '(image, rho=1, theta=np.pi / 180, threshold=5, minLineLength\n =20, maxLineGap=5)\n', (4685, 4768), False, 'import cv2\n'), ((5424, 5436), 'countdown.CountDown', 'CountDown', (['(5)'], {}), '(5)\n', (5433, 5436), False, 'from countdown import CountDown\n'), ((4907, 4974), 'cv2.line', 'cv2.line', (['org_image', '(l1[0], l1[1])', '(l1[2], l1[3])', '[0, 255, 0]', '(3)'], {}), '(org_image, (l1[0], l1[1]), (l1[2], l1[3]), [0, 255, 0], 3)\n', (4915, 4974), False, 'import cv2\n'), ((4983, 5050), 'cv2.line', 'cv2.line', (['org_image', '(l2[0], l2[1])', '(l2[2], l2[3])', '[0, 255, 0]', '(3)'], {}), '(org_image, (l2[0], l2[1]), (l2[2], l2[3]), [0, 255, 0], 3)\n', (4991, 5050), False, 'import cv2\n'), ((5470, 5510), 'grabscreen.grab_screen', 'grab_screen', ([], {'region': '(270, 250, 650, 450)'}), '(region=(270, 250, 650, 450))\n', (5481, 5510), False, 'from grabscreen import grab_screen\n'), ((5850, 5865), 'cv2.waitKey', 'cv2.waitKey', (['(25)'], {}), '(25)\n', (5861, 5865), False, 'import cv2\n'), ((5891, 5914), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5912, 5914), False, 'import cv2\n'), ((5188, 5267), 'cv2.line', 'cv2.line', (['image', '(coords[0], coords[1])', '(coords[2], coords[3])', '[255, 0, 0]', '(3)'], {}), '(image, (coords[0], coords[1]), (coords[2], coords[3]), [255, 0, 0], 3)\n', (5196, 5267), False, 'import cv2\n'), ((2059, 2087), 'numpy.linalg.lstsq', 'np.linalg.lstsq', (['A', 'y_coords'], {}), '(A, y_coords)\n', (2074, 2087), True, 'import numpy as np\n'), ((3884, 3896), 'numpy.mean', 'np.mean', (['x1s'], {}), '(x1s)\n', (3891, 3896), True, 'import numpy as np\n'), ((3903, 3915), 'numpy.mean', 'np.mean', (['y1s'], {}), '(y1s)\n', (3910, 3915), True, 'import numpy as np\n'), ((3922, 3934), 'numpy.mean', 'np.mean', (['x2s'], {}), '(x2s)\n', (3929, 3934), True, 'import numpy as np\n'), ((3941, 3953), 'numpy.mean', 'np.mean', (['y2s'], {}), '(y2s)\n', (3948, 3953), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 21 10:52:40 2019
@author: guido
"""
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 21 10:30:25 2018
@author: guido
"""
import os
import pandas as pd
import numpy as np
from oneibl.one import ONE
from define_paths import analysis_path
from load_mouse_data import get_water_weight, get_behavior
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import scipy as sp
from os.path import join
def pf(x, alpha, beta, gamma):
return 0.5 + (1 - 0.5 - gamma) * (1. / (1 + np.exp( -(x-alpha)/beta)))
## CONNECT TO ONE
one = ONE() # initialize
ac = one._alyxClient
# get a list of all mice
#subjects = pd.DataFrame(one.alyx.get('/subjects?responsible_user=jeanpaul'))
#subjects = pd.DataFrame(one.alyx.get('/subjects?nickname=DY_001'))
#subjects = pd.DataFrame(one.alyx.get('/subjects?&alive=True&stock=False'))
#subjects = pd.DataFrame(one.alyx.get('/subjects?alive=True?&responsible_user=ines'))
subjects = pd.DataFrame(one.alyx.get('/subjects'))
# get folder to save plots
path = analysis_path()
if not os.path.exists(path):
os.mkdir(path)
print(subjects['nickname'].unique())
learning = pd.DataFrame(columns=['mouse','lab','delay','rise','asymp','date_start'])
for i, mouse in enumerate(subjects['nickname']):
print('Loading data for ' + mouse)
try:
# load in data
behav = get_behavior(mouse)
weight_water, baseline = get_water_weight(mouse)
sub = ac.rest('subjects','read',mouse)
except:
continue
if len(np.unique(behav['days'])) < 5:
continue
# calculate perc correct on easy trials and reaction times
behav['correct_easy'] = behav.correct
behav.loc[np.abs(behav['signedContrast']) < 50, 'correct_easy'] = np.NaN
perf = behav.groupby(['date'])['correct_easy'].mean().reset_index()
days = behav.groupby(['date'])['days'].median().reset_index()
perf['days'] = days['days']
trial_num = behav.groupby(['date'])['correct_easy'].size().reset_index()
perf['trial_num'] = trial_num['correct_easy']
# Remove weird first session
if perf['days'][1]-perf['days'][0] > 20:
perf = perf[1:]
perf['days'] = perf['days'] - perf['days'][1]
delay = np.nan
rise = np.nan
asymp = np.nan
if sum(perf['correct_easy'] > 0.75) > 2:
# Fit function
par0 = sp.array([20, 5, 0])
lms = sp.array([[0,0,0],[100,10,0.5]])
try:
par, mcov = curve_fit(pf, perf['days'], perf['correct_easy'], par0, bounds=lms)
except:
continue
vec_x = np.arange(0,max(perf['days'])+2,0.1)
fit_x = pf(vec_x, par[0], par[1], par[2])
norm_x = (fit_x-min(fit_x))/max(fit_x-min(fit_x))
delay = vec_x[np.argmin(np.abs(norm_x - 0.2))]
rise = vec_x[np.argmin(np.abs(norm_x - 0.8))]
asymp = vec_x[np.argmin(np.abs(norm_x - 0.99))]
plt.figure()
plt.plot(perf['days'], perf['correct_easy'], 'ro')
plt.plot(np.arange(0,max(perf['days'])+2,0.1), pf(np.arange(0,max(perf['days'])+2,0.1), par[0], par[1], par[2]), linewidth=2)
plt.title(mouse)
plt.xlabel('Training sessions (days)')
plt.ylabel('Performance (% correct easy trials)')
plt.plot([-2,delay], [pf(delay, par[0], par[1], par[2]), pf(delay, par[0], par[1], par[2])], '--' ,color=[0.5,0.5,0.5])
plt.plot([delay,delay], [pf(delay, par[0], par[1], par[2]), 0.4], '--' ,color=[0.5,0.5,0.5])
plt.plot([-2,rise], [pf(rise, par[0], par[1], par[2]), pf(rise, par[0], par[1], par[2])], '--' ,color=[0.5,0.5,0.5])
plt.plot([rise,rise], [pf(rise, par[0], par[1], par[2]), 0.4], '--' ,color=[0.5,0.5,0.5])
plt.plot([-2,asymp], [pf(asymp, par[0], par[1], par[2]), pf(asymp, par[0], par[1], par[2])], '--' ,color=[0.5,0.5,0.5])
plt.plot([asymp,asymp], [pf(asymp, par[0], par[1], par[2]), 0.4], '--' ,color=[0.5,0.5,0.5])
plt.savefig(join(path,'Learning','%s.pdf'%mouse))
#plt.show()
plt.close()
learning.loc[i] = [mouse, subjects.loc[i,'lab'], delay, rise, asymp, perf.loc[perf.index.values[0],'date']]
learning.to_pickle(join(path,'learning_rates'))
|
[
"matplotlib.pyplot.title",
"os.mkdir",
"numpy.abs",
"matplotlib.pyplot.figure",
"numpy.exp",
"os.path.join",
"numpy.unique",
"matplotlib.pyplot.xlabel",
"pandas.DataFrame",
"matplotlib.pyplot.close",
"os.path.exists",
"oneibl.one.ONE",
"scipy.optimize.curve_fit",
"matplotlib.pyplot.ylabel",
"load_mouse_data.get_water_weight",
"define_paths.analysis_path",
"matplotlib.pyplot.plot",
"scipy.array",
"load_mouse_data.get_behavior"
] |
[((635, 640), 'oneibl.one.ONE', 'ONE', ([], {}), '()\n', (638, 640), False, 'from oneibl.one import ONE\n'), ((1096, 1111), 'define_paths.analysis_path', 'analysis_path', ([], {}), '()\n', (1109, 1111), False, 'from define_paths import analysis_path\n'), ((1218, 1296), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['mouse', 'lab', 'delay', 'rise', 'asymp', 'date_start']"}), "(columns=['mouse', 'lab', 'delay', 'rise', 'asymp', 'date_start'])\n", (1230, 1296), True, 'import pandas as pd\n'), ((1119, 1139), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (1133, 1139), False, 'import os\n'), ((1145, 1159), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (1153, 1159), False, 'import os\n'), ((4248, 4276), 'os.path.join', 'join', (['path', '"""learning_rates"""'], {}), "(path, 'learning_rates')\n", (4252, 4276), False, 'from os.path import join\n'), ((1429, 1448), 'load_mouse_data.get_behavior', 'get_behavior', (['mouse'], {}), '(mouse)\n', (1441, 1448), False, 'from load_mouse_data import get_water_weight, get_behavior\n'), ((1482, 1505), 'load_mouse_data.get_water_weight', 'get_water_weight', (['mouse'], {}), '(mouse)\n', (1498, 1505), False, 'from load_mouse_data import get_water_weight, get_behavior\n'), ((2437, 2457), 'scipy.array', 'sp.array', (['[20, 5, 0]'], {}), '([20, 5, 0])\n', (2445, 2457), True, 'import scipy as sp\n'), ((2472, 2509), 'scipy.array', 'sp.array', (['[[0, 0, 0], [100, 10, 0.5]]'], {}), '([[0, 0, 0], [100, 10, 0.5]])\n', (2480, 2509), True, 'import scipy as sp\n'), ((2993, 3005), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3003, 3005), True, 'import matplotlib.pyplot as plt\n'), ((3014, 3064), 'matplotlib.pyplot.plot', 'plt.plot', (["perf['days']", "perf['correct_easy']", '"""ro"""'], {}), "(perf['days'], perf['correct_easy'], 'ro')\n", (3022, 3064), True, 'import matplotlib.pyplot as plt\n'), ((3207, 3223), 'matplotlib.pyplot.title', 'plt.title', (['mouse'], {}), '(mouse)\n', (3216, 3223), True, 'import matplotlib.pyplot as plt\n'), ((3232, 3270), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Training sessions (days)"""'], {}), "('Training sessions (days)')\n", (3242, 3270), True, 'import matplotlib.pyplot as plt\n'), ((3279, 3328), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Performance (% correct easy trials)"""'], {}), "('Performance (% correct easy trials)')\n", (3289, 3328), True, 'import matplotlib.pyplot as plt\n'), ((4096, 4107), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4105, 4107), True, 'import matplotlib.pyplot as plt\n'), ((1600, 1624), 'numpy.unique', 'np.unique', (["behav['days']"], {}), "(behav['days'])\n", (1609, 1624), True, 'import numpy as np\n'), ((2542, 2609), 'scipy.optimize.curve_fit', 'curve_fit', (['pf', "perf['days']", "perf['correct_easy']", 'par0'], {'bounds': 'lms'}), "(pf, perf['days'], perf['correct_easy'], par0, bounds=lms)\n", (2551, 2609), False, 'from scipy.optimize import curve_fit\n'), ((4030, 4070), 'os.path.join', 'join', (['path', '"""Learning"""', "('%s.pdf' % mouse)"], {}), "(path, 'Learning', '%s.pdf' % mouse)\n", (4034, 4070), False, 'from os.path import join\n'), ((1772, 1803), 'numpy.abs', 'np.abs', (["behav['signedContrast']"], {}), "(behav['signedContrast'])\n", (1778, 1803), True, 'import numpy as np\n'), ((2840, 2860), 'numpy.abs', 'np.abs', (['(norm_x - 0.2)'], {}), '(norm_x - 0.2)\n', (2846, 2860), True, 'import numpy as np\n'), ((2894, 2914), 'numpy.abs', 'np.abs', (['(norm_x - 0.8)'], {}), '(norm_x - 0.8)\n', (2900, 2914), True, 'import numpy as np\n'), ((2949, 2970), 'numpy.abs', 'np.abs', (['(norm_x - 0.99)'], {}), '(norm_x - 0.99)\n', (2955, 2970), True, 'import numpy as np\n'), ((583, 610), 'numpy.exp', 'np.exp', (['(-(x - alpha) / beta)'], {}), '(-(x - alpha) / beta)\n', (589, 610), True, 'import numpy as np\n')]
|
__author__ = "<NAME>"
# University of South Carolina
# <NAME>-Simpers group
# Starting Date: June, 2016
import matplotlib.pyplot as plt
import numpy as np
from scripts import ternary
def plt_ternary_save(data, tertitle='', labelNames=('Species A','Species B','Species C'), scale=100,
sv=False, svpth=r"C:/Users/Travis W/Pictures/", svflnm='Unnamed',
cbl='Scale', vmin=None, vmax=None, cmap='viridis', cb=True, style='h'):
"""
Overview
----------
This program makes use of the ternary package and creates a ternary colormap
Parameters
----------
data: 4-tup of (a,b,c,i) where a, b, and c are the ternary coordinates and i is the intensity
tertitle: chart title
labelNames: Names of a, b, and c for chart axes
scale: scale of chart (if 0-100, then scale is 100)
sv: Boolean, save chart when true, show chart when false
svpth: path to save ternary image
svflnm: file name for ternary diagram when saving
cbl: colorbar label
vmin: minimum value of colorbar (leave blank to set to min value in i)
vmax: maximum value of colorbar (leave blank to set to max value in i)
cmap: determines color map used
cb: use colorbar if true
style: h = hexagons, d = triangles for point shape
Returns
-------
"""
if sv:
font = {'size': 12} # Set font size for **kwargs
figsize = (3.4, 2.5)
ticksize = 6
lnwdth = 0.5
lnsty = '--'
alpha = 0.15
else:
font = {'size': 30} # Set font size for **kwargs
figsize = (30, 30)
ticksize = 20
lnwdth = 2
lnsty = ':'
alpha = 0.5
d = dict()
x = data[:, 1]
y = data[:, 0]
if cb:
i = data[:, 3]
for col in range(1, len(x)):
d[(x[col], y[col])] = i[col]
else:
for col in range(1, len(x)):
d[(x[col], y[col])] = 0.5
# Turn off normal axis, set figure size
figure, ax = plt.subplots(figsize=figsize)
ax.axis("off")
# Create ternary axes (tax)
figure, tax = ternary.figure(ax=ax, scale=scale)
# Axis Labels (bottom corrisponds to x values, left corrisponds to y values)
tax.bottom_axis_label(labelNames[1], offset=-0.1, **font)
tax.left_axis_label(labelNames[2], offset=0.17, **font)
tax.right_axis_label(labelNames[0], offset=0.17, **font)
# Plot data, boundary, gridlines, and ticks
tax.heatmap(d, style=style, cmap=cmap, cbarlabel=cbl, vmin=vmin, vmax=vmax, colorbar=cb)
tax.boundary(linewidth=1)
tax.gridlines(multiple=10, linewidth=lnwdth, alpha=alpha, linestyle=lnsty)
ticks = [round(i / float(scale), 1) for i in range(0, scale+1, 10)]
tax.ticks(ticks=ticks, axis='rlb', linewidth=1, clockwise=False, offset=0.03, textsize=ticksize)
# Set chart title
tax.set_title(tertitle)
# Make chart pretty
tax.clear_matplotlib_ticks()
tax._redraw_labels()
plt.tight_layout()
# Save or show
if sv:
plt.savefig(''.join([svpth, svflnm]), dpi=600)
else:
tax.show()
def plt_tern_scatter(data, tertitle='', labelNames=('Species A','Species B','Species C'), scale=100,
sv=False, svpth=r"C:/Users/Tr<NAME>/Pictures/", svflnm='Unnamed',
clr='k'):
font = {'size': 24}
# Turn off normal axis, set figure size
figsize = [10,10]
figure, ax = plt.subplots(figsize=figsize)
ax.axis("off")
figure, tax = ternary.figure(scale=scale)
tax.set_title(tertitle, fontsize=20)
tax.boundary(linewidth=2.0)
tax.gridlines(multiple=10, color="k")
# Axis Labels (bottom corrisponds to x values, left corrisponds to y values)
tax.bottom_axis_label(labelNames[1], offset=0, **font)
tax.left_axis_label(labelNames[2], offset=0.12, **font)
tax.right_axis_label(labelNames[0], offset=0.12, **font)
points = np.array([data[:,1], data[:,0]]).T
# for WAXS MG stuff
color = data[:, 3]
print(color.shape)
clrs = list()
for i, col in enumerate(color):
if col == 0:
clrs.append('aqua')
elif col == 1:
clrs.append('lawngreen')
else:
clrs.append('yellow')
# print(points, clrs)
# end wax MG stuff
tax.scatter(points, marker='o', color=clrs, s=100)
tax.ticks(axis='lbr', linewidth=1, multiple=10, textsize=14)
# Set chart title
tax.set_title(tertitle)
# Make chart pretty
tax.clear_matplotlib_ticks()
tax._redraw_labels()
plt.tight_layout()
plt.axis('off')
if sv:
plt.savefig(''.join([svpth, svflnm]), dpi=600)
else:
tax.show()
#
#data = np.genfromtxt('test_data.csv', delimiter=',')
##plt_ternary_save(data, tertitle='', labelNames=('Co','Fe','V'), scale=100,
## sv=False, svpth=r"C:/Users/Travis W/Pictures/", svflnm='Unnamed',
## cbl='Scale', vmin=1, vmax=5, cmap='viridis', cb=True, style='h')
#
|
[
"scripts.ternary.figure",
"matplotlib.pyplot.axis",
"matplotlib.pyplot.subplots",
"numpy.array",
"matplotlib.pyplot.tight_layout"
] |
[((2008, 2037), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (2020, 2037), True, 'import matplotlib.pyplot as plt\n'), ((2108, 2142), 'scripts.ternary.figure', 'ternary.figure', ([], {'ax': 'ax', 'scale': 'scale'}), '(ax=ax, scale=scale)\n', (2122, 2142), False, 'from scripts import ternary\n'), ((2970, 2988), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2986, 2988), True, 'import matplotlib.pyplot as plt\n'), ((3437, 3466), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (3449, 3466), True, 'import matplotlib.pyplot as plt\n'), ((3505, 3532), 'scripts.ternary.figure', 'ternary.figure', ([], {'scale': 'scale'}), '(scale=scale)\n', (3519, 3532), False, 'from scripts import ternary\n'), ((4556, 4574), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4572, 4574), True, 'import matplotlib.pyplot as plt\n'), ((4579, 4594), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (4587, 4594), True, 'import matplotlib.pyplot as plt\n'), ((3924, 3958), 'numpy.array', 'np.array', (['[data[:, 1], data[:, 0]]'], {}), '([data[:, 1], data[:, 0]])\n', (3932, 3958), True, 'import numpy as np\n')]
|
import requests
import json
import pandas as pd
import numpy as np
import sys
import logging
from pathlib import Path
logging.basicConfig(filename='logging_for_adding_group_permissions.log',level=logging.INFO)
"""
This python script is used to add group permissions based on the group_permissions_input file.
python3 add_group_permissions.py 0000000000000000000000000000000000000000000000000000000000000000
"""
def log_information(log_string):
logging.info(log_string)
print(log_string)
def get_group_permissions_template_input(file_name):
group_permissions_template_input = pd.read_csv(file_name)
return group_permissions_template_input
def get_group_permissions(AccountPermissions_file_name):
account_permissions = pd.read_csv(AccountPermissions_file_name)
group_permissions = []
for i in np.arange(0, np.shape(account_permissions)[0]):
group_permissions.append(account_permissions.iloc[i][0])
# print(group_permissions)
return group_permissions
def get_project_id(account_name, account_name_id_connector):
"""
Looks through all of the account names in the account_name_id_connector numpy array.
Then returns the project id for that account name
"""
for i in np.arange(0, np.shape(account_name_id_connector)[0]):
if str(account_name_id_connector[i][0]) == str(account_name):
return account_name_id_connector[i][1]
return None
def get_account_type(admin_api_key, env, project_id):
if check_invalid_env(env):
return None
api_url = env + "/api/account.json/get_account?access_key=" + str(admin_api_key) + "&account_id=" + str(project_id)
r7 = requests.get(api_url)
# TODO: expand this to work for Google. (not released yet)
if "Provider" in r7.json():
if "Type" in r7.json():
provider = r7.json()["Provider"]
account_type = r7.json()["Type"]
if provider == "Amazon Web Services":
if account_type == "General":
return "AwsPermissions"
else:
if account_type == "MultiView":
return "AwsMavPermissions"
else:
log_information("Could not match account type and provider for project_id: " + str(project_id))
log_information(r7.json())
return None
else:
if provider == "Microsoft Azure":
if account_type == "General":
return "AzurePermissions"
else:
if account_type == "MultiView":
return "AzureMavPermissions"
else:
log_information("Could not match account type and provider for project_id: " + str(project_id))
log_information(r7.json())
return None
else:
log_information("Could not match account type and provider for project_id: " + str(project_id))
log_information(r7.json())
return None
else:
log_information("Could not get account type for project_id: " + str(project_id))
log_information(r7.json())
return None
else:
log_information("Could not get provider for project_id: " + str(project_id))
log_information(r7.json())
return None
def add_group_permissions(admin_api_key, group_permissions_input_row, AccountPermissions, group_id, account_type):
env = group_permissions_input_row[0]
if check_invalid_env(env):
return None
api_url = env + "/api/account.json/add_access_control_lists_per_account_per_group"
# print(AccountPermissions)
add_acl_info = json.dumps({"group_id": group_id, "use_account": group_permissions_input_row[2], "acls": AccountPermissions})
r7 = requests.post(api_url, headers = {"Content-Type": "application/json", "access_key": admin_api_key}, data = add_acl_info)
if "Code" in r7.json():
log_information("Added the acls for AccountType: " + str(account_type) + " for group: " + group_permissions_input_row[1] + " (group_id: " + str(group_id) + ") for account: " + group_permissions_input_row[2])
log_information(r7.json())
log_information("")
else:
log_information("Failed to add the acls for group: " + group_permissions_input_row[1] + " (group_id: " + str(group_id) + ") for account: " + group_permissions_input_row[2])
log_information(r7.json())
def get_groups_connector(admin_api_key, env):
if check_invalid_env(env):
return None
api_url = env + "/api/account.json/get_groups_v2"
get_group_info = json.dumps({})
r7 = requests.post(api_url, headers = {"Content-Type": "application/json", "access_key": admin_api_key}, data = get_group_info)
if "Groups" in r7.json():
Groups = r7.json()["Groups"]
if len(Groups) > 0:
group_name_id_connector = np.zeros((len(Groups),2), dtype="U200")
for i in np.arange(0, len(Groups)):
if "Name" in Groups[i] and "Id" in Groups[i]:
group_name_id_connector[i][0] = Groups[i]["Name"]
group_name_id_connector[i][1] = Groups[i]["Id"]
else:
log_information("Could not find name or id of group")
log_information(str(Groups[i]))
return group_name_id_connector
else:
log_information("Could not find any Groups ")
log_information(r7.json())
return None
else:
log_information("Could not find any Groups")
log_information(r7.json())
return None
def get_group_id(group_name, group_name_id_connector):
"""
Looks through the numpy array of a list of group names and their associated id.
Then returns the group id for the inputted group name.
"""
# TODO: vectorize this search to make it quicker
for i in np.arange(0, np.shape(group_name_id_connector)[0]):
if str(group_name_id_connector[i][0]) == str(group_name):
return group_name_id_connector[i][1]
return None
def get_accounts_connector(admin_api_key, env):
"""
Gets the list of all accounts. Generates a list of account names to project id
"""
if check_invalid_env(env):
return None
api_url = env + "/api/account.json/get_accounts_v4?access_key=" + str(admin_api_key)
r7 = requests.get(api_url)
if "accounts_and_users" in r7.json():
accounts_and_users = r7.json()["accounts_and_users"]
account_name_id_connector = np.zeros((len(accounts_and_users),2), dtype="U400")
if len(accounts_and_users) > 0:
for i in np.arange(0, np.shape(accounts_and_users)[0]):
if "account_name" in accounts_and_users[i] and "cc_account_id" in accounts_and_users[i]:
account_name_id_connector[i][0] = accounts_and_users[i]["account_name"]
account_name_id_connector[i][1] = accounts_and_users[i]["cc_account_id"]
else:
log_information("Could not find an account_name or cc_account_id for this account")
log_information(str(accounts_and_users[i]))
return account_name_id_connector
else:
log_information("There are no accounts in this partner")
log_information(r7.json())
return None
else:
log_information("Could not find any accounts in this partner")
log_information(r7.json())
return None
def cycle_add_group_permissions(admin_api_key, group_permissions_template_input, Permissions):
"""
Finds the group id from the group name. Then adds the permissions to that group and account based on the input file.
"""
group_name_id_connector = get_groups_connector(admin_api_key, group_permissions_template_input.iloc[0][0])
# print(group_name_id_connector)
if group_name_id_connector is None:
log_information("Groups were not properly parsed, please contact Support")
return None
account_name_id_connector = get_accounts_connector(admin_api_key, group_permissions_template_input.iloc[0][0])
if account_name_id_connector is None:
return None
# TODO: use python objects and types to make this a proper type
AccountTypes = ["AwsPermissions", "AwsMavPermissions", "AzurePermissions", "AzureMavPermissions"]
for i in np.arange(0, np.shape(group_permissions_template_input)[0]):
project_id = get_project_id(group_permissions_template_input.iloc[i][2], account_name_id_connector)
if not(project_id is None):
account_type = get_account_type(admin_api_key, group_permissions_template_input.iloc[i][0], project_id)
if not(account_type is None):
if account_type in AccountTypes:
account_type_index = AccountTypes.index(account_type)
if Permissions[account_type_index] is None:
log_information("AccountType: " + str(account_type) + " has no permissions csv file, so skipping for group " + group_permissions_template_input.iloc[i][1] + " and account " + group_permissions_template_input.iloc[i][2])
else:
group_id = get_group_id(group_permissions_template_input.iloc[i][1], group_name_id_connector)
if not(group_id is None):
add_group_permissions(admin_api_key, group_permissions_template_input.iloc[i], Permissions[account_type_index], group_id, account_type)
else:
log_information("Could not find a group id for the group with name: " + str(group_permissions_template_input.iloc[i][1]) + " skipping row " + str(i + 2))
else:
log_information("Could not find a matching account type for " + str(account_type) + " skipping row " + str(i + 2))
else:
log_information("Could not get the account type for the account name: " + str(group_permissions_template_input.iloc[i][2]) + " for the project_id: " + str(project_id) + " skipping row " + str(i + 2))
else:
log_information("Could not find a project_id for the account " + str(group_permissions_template_input.iloc[i][2]) + " skipping row " + str(i + 2))
log_information("")
def get_groups(env, admin_api_key):
"""
You have to check for and handle duplicate groups because historically CloudCheckr used to allow for duplicate group creation.
"""
if check_invalid_env(env):
return None, None
api_url = env + "/api/account.json/get_groups"
r7 = requests.get(api_url, headers = {"Content-Type": "application/json", "access_key": admin_api_key})
groups_list = []
groups_duplicate_list = []
if "GroupNames" in r7.json():
GroupNames = r7.json()["GroupNames"]
for i in np.arange(0, len(GroupNames)):
groups_list.append(GroupNames[i])
for i in np.arange(0, len(GroupNames)):
if groups_list.count(GroupNames[i]) > 1:
groups_duplicate_list.append(GroupNames[i])
log_information("Found duplicate group: " + GroupNames[i] + ". We recommend renaming it through the UI to remove duplicates.")
return groups_list, groups_duplicate_list
else:
return groups_list, groups_duplicate_list
def check_invalid_env(env):
"""
This will check for an invalid enviroment. Currently it will only check for api, eu, au, or gov.
If you are using a standalone environment, then you MUST add that to this function
"""
Enviroments = ["https://api.cloudcheckr.com", "https://eu.cloudcheckr.com", "https://au.cloudcheckr.com", "https://gov.cloudcheckr.com", "https://qa.cloudcheckr.com"]
if not(env in Enviroments):
log_information("The environment " + str(env) + " is not valid. If this is a standalone environment, please add the url to the check_invalid_env function.")
return True
return False
def main():
file_name = "group_permissions_input.csv"
check_group_permissions_input_file = Path(file_name)
if check_group_permissions_input_file.is_file():
group_permissions_template_input = get_group_permissions_template_input(file_name)
else:
log_information("No group_permissions_input.csv found. Please write file for input")
return
AwsPermissions_file_name = "AwsPermissions.csv"
check_aws_permissions = Path(AwsPermissions_file_name)
AwsPermissions = None
if check_aws_permissions.is_file():
AwsPermissions = get_group_permissions(AwsPermissions_file_name)
else:
log_information("No Aws Permissions found")
AwsMavPermissions_file_name = "AwsMavPermissions.csv"
check_aws_mav_permissions = Path(AwsMavPermissions_file_name)
AwsMavPermissions = None
if check_aws_mav_permissions.is_file():
AwsMavPermissions = get_group_permissions(AwsMavPermissions_file_name)
else:
log_information("No Aws Mav Permissions found")
AzurePermissions_file_name = "AzurePermissions.csv"
check_azure_permissions = Path(AzurePermissions_file_name)
AzurePermissions = None
if check_azure_permissions.is_file():
AzurePermissions = get_group_permissions(AzurePermissions_file_name)
else:
log_information("No Azure Account Permissions found")
AzureMavPermissions_file_name = "AzureMavPermissions.csv"
check_azure_mav_permissions = Path(AzureMavPermissions_file_name)
AzureMavPermissions = None
if check_azure_mav_permissions.is_file():
AzureMavPermissions = get_group_permissions(AzureMavPermissions_file_name)
else:
log_information("No Azure Mav Account Permissions found")
try:
admin_api_key = sys.argv[1]
except IndexError:
print("Need admin_api_key in input")
return
groups_list, groups_duplicate_list = get_groups(group_permissions_template_input.iloc[0][0], admin_api_key)
if groups_list is None:
return
if len(groups_duplicate_list) > 0:
log_information("Please remove duplicate group names before proceeding.")
return
else:
log_information("No duplicate groups found, please proceed.")
cycle_add_group_permissions(admin_api_key, group_permissions_template_input, [AwsPermissions, AwsMavPermissions, AzurePermissions, AzureMavPermissions])
if __name__ == '__main__':
main()
|
[
"logging.basicConfig",
"pandas.read_csv",
"json.dumps",
"numpy.shape",
"logging.info",
"pathlib.Path",
"requests.get",
"requests.post"
] |
[((118, 214), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': '"""logging_for_adding_group_permissions.log"""', 'level': 'logging.INFO'}), "(filename='logging_for_adding_group_permissions.log',\n level=logging.INFO)\n", (137, 214), False, 'import logging\n'), ((450, 474), 'logging.info', 'logging.info', (['log_string'], {}), '(log_string)\n', (462, 474), False, 'import logging\n'), ((592, 614), 'pandas.read_csv', 'pd.read_csv', (['file_name'], {}), '(file_name)\n', (603, 614), True, 'import pandas as pd\n'), ((746, 787), 'pandas.read_csv', 'pd.read_csv', (['AccountPermissions_file_name'], {}), '(AccountPermissions_file_name)\n', (757, 787), True, 'import pandas as pd\n'), ((1667, 1688), 'requests.get', 'requests.get', (['api_url'], {}), '(api_url)\n', (1679, 1688), False, 'import requests\n'), ((3853, 3966), 'json.dumps', 'json.dumps', (["{'group_id': group_id, 'use_account': group_permissions_input_row[2],\n 'acls': AccountPermissions}"], {}), "({'group_id': group_id, 'use_account':\n group_permissions_input_row[2], 'acls': AccountPermissions})\n", (3863, 3966), False, 'import json\n'), ((3973, 4093), 'requests.post', 'requests.post', (['api_url'], {'headers': "{'Content-Type': 'application/json', 'access_key': admin_api_key}", 'data': 'add_acl_info'}), "(api_url, headers={'Content-Type': 'application/json',\n 'access_key': admin_api_key}, data=add_acl_info)\n", (3986, 4093), False, 'import requests\n'), ((4806, 4820), 'json.dumps', 'json.dumps', (['{}'], {}), '({})\n', (4816, 4820), False, 'import json\n'), ((4831, 4953), 'requests.post', 'requests.post', (['api_url'], {'headers': "{'Content-Type': 'application/json', 'access_key': admin_api_key}", 'data': 'get_group_info'}), "(api_url, headers={'Content-Type': 'application/json',\n 'access_key': admin_api_key}, data=get_group_info)\n", (4844, 4953), False, 'import requests\n'), ((6587, 6608), 'requests.get', 'requests.get', (['api_url'], {}), '(api_url)\n', (6599, 6608), False, 'import requests\n'), ((10870, 10970), 'requests.get', 'requests.get', (['api_url'], {'headers': "{'Content-Type': 'application/json', 'access_key': admin_api_key}"}), "(api_url, headers={'Content-Type': 'application/json',\n 'access_key': admin_api_key})\n", (10882, 10970), False, 'import requests\n'), ((12355, 12370), 'pathlib.Path', 'Path', (['file_name'], {}), '(file_name)\n', (12359, 12370), False, 'from pathlib import Path\n'), ((12715, 12745), 'pathlib.Path', 'Path', (['AwsPermissions_file_name'], {}), '(AwsPermissions_file_name)\n', (12719, 12745), False, 'from pathlib import Path\n'), ((13038, 13071), 'pathlib.Path', 'Path', (['AwsMavPermissions_file_name'], {}), '(AwsMavPermissions_file_name)\n', (13042, 13071), False, 'from pathlib import Path\n'), ((13377, 13409), 'pathlib.Path', 'Path', (['AzurePermissions_file_name'], {}), '(AzurePermissions_file_name)\n', (13381, 13409), False, 'from pathlib import Path\n'), ((13727, 13762), 'pathlib.Path', 'Path', (['AzureMavPermissions_file_name'], {}), '(AzureMavPermissions_file_name)\n', (13731, 13762), False, 'from pathlib import Path\n'), ((843, 872), 'numpy.shape', 'np.shape', (['account_permissions'], {}), '(account_permissions)\n', (851, 872), True, 'import numpy as np\n'), ((1251, 1286), 'numpy.shape', 'np.shape', (['account_name_id_connector'], {}), '(account_name_id_connector)\n', (1259, 1286), True, 'import numpy as np\n'), ((6116, 6149), 'numpy.shape', 'np.shape', (['group_name_id_connector'], {}), '(group_name_id_connector)\n', (6124, 6149), True, 'import numpy as np\n'), ((8620, 8662), 'numpy.shape', 'np.shape', (['group_permissions_template_input'], {}), '(group_permissions_template_input)\n', (8628, 8662), True, 'import numpy as np\n'), ((6875, 6903), 'numpy.shape', 'np.shape', (['accounts_and_users'], {}), '(accounts_and_users)\n', (6883, 6903), True, 'import numpy as np\n')]
|
import torch
import numpy as np
import pandas as pd
import torch.optim as optim
from agents.common.logger import Logger
from agents.common.replay_buffer import ReplayBuffer
from agents.common.utils import quantile_huber_loss
class EGreedyAgent():
def __init__(self,env,
network,
epsilon=0.05,
n_quantiles=20,
mean_prior=0,
std_prior=0.01,
logging=True,
train_freq=10,
updates_per_train=100,
batch_size=32,
start_train_step=10,
log_folder_details=None,
learning_rate=1e-3,
verbose=False
):
self.env = env
self.network = network(env.n_features, n_quantiles, mean_prior, std_prior)
self.logging = logging
self.replay_buffer = ReplayBuffer()
self.batch_size = batch_size
self.log_folder_details = log_folder_details
self.epsilon = epsilon
self.optimizer = optim.Adam(self.network.parameters(), lr=learning_rate, eps=1e-8)
self.n_quantiles = n_quantiles
self.train_freq = train_freq
self.start_train_step = start_train_step
self.updates_per_train = updates_per_train
self.verbose = verbose
self.n_samples = 0
self.train_parameters = {'epsilon':epsilon,
'n_quantiles':n_quantiles,
'mean_prior':mean_prior,
'std_prior':std_prior,
'train_freq':train_freq,
'updates_per_train':updates_per_train,
'batch_size':batch_size,
'start_train_step':start_train_step,
'learning_rate':learning_rate
}
def learn(self,n_steps):
self.train_parameters['n_steps']=n_steps
if self.logging:
self.logger = Logger(self.log_folder_details,self.train_parameters)
cumulative_regret = 0
for timestep in range(n_steps):
x = self.env.sample()
action = self.act(x.float())
reward = self.env.hit(action)
regret = self.env.regret(action)
cumulative_regret += regret
action = torch.as_tensor([action], dtype=torch.long)
reward = torch.as_tensor([reward], dtype=torch.float)
if action ==1:
self.n_samples += 1
self.replay_buffer.add(x, reward)
if self.logging:
self.logger.add_scalar('Cumulative_Regret', cumulative_regret, timestep)
self.logger.add_scalar('Mushrooms_Eaten', self.n_samples, timestep)
if timestep % self.train_freq == 0 and self.n_samples > self.start_train_step:
if self.verbose:
print('Timestep: {}, cumulative regret {}'.format(str(timestep),str(cumulative_regret)))
for update in range(self.updates_per_train):
samples = self.replay_buffer.sample(np.min([self.n_samples,self.batch_size]))
self.train_step(samples)
if self.logging:
self.logger.save()
def train_step(self,samples):
states, rewards = samples
target = rewards.repeat(1,self.n_quantiles)
q_value = self.network(states.float()).view(np.min([self.n_samples,self.batch_size]),self.n_quantiles)
loss = quantile_huber_loss(q_value.squeeze(), target.squeeze())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def act(self,x):
if np.random.uniform() >= self.epsilon:
action = self.predict(x)
else:
action = np.random.randint(0, 2)
return action
@torch.no_grad()
def predict(self,x):
estimated_value = torch.mean(self.network(x))
if estimated_value > 0:
action = 1
else:
action = 0
return action
|
[
"numpy.random.uniform",
"numpy.min",
"numpy.random.randint",
"torch.as_tensor",
"agents.common.replay_buffer.ReplayBuffer",
"torch.no_grad",
"agents.common.logger.Logger"
] |
[((3554, 3569), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3567, 3569), False, 'import torch\n'), ((719, 733), 'agents.common.replay_buffer.ReplayBuffer', 'ReplayBuffer', ([], {}), '()\n', (731, 733), False, 'from agents.common.replay_buffer import ReplayBuffer\n'), ((1680, 1734), 'agents.common.logger.Logger', 'Logger', (['self.log_folder_details', 'self.train_parameters'], {}), '(self.log_folder_details, self.train_parameters)\n', (1686, 1734), False, 'from agents.common.logger import Logger\n'), ((2034, 2077), 'torch.as_tensor', 'torch.as_tensor', (['[action]'], {'dtype': 'torch.long'}), '([action], dtype=torch.long)\n', (2049, 2077), False, 'import torch\n'), ((2099, 2143), 'torch.as_tensor', 'torch.as_tensor', (['[reward]'], {'dtype': 'torch.float'}), '([reward], dtype=torch.float)\n', (2114, 2143), False, 'import torch\n'), ((3135, 3176), 'numpy.min', 'np.min', (['[self.n_samples, self.batch_size]'], {}), '([self.n_samples, self.batch_size])\n', (3141, 3176), True, 'import numpy as np\n'), ((3393, 3412), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (3410, 3412), True, 'import numpy as np\n'), ((3502, 3525), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2)'], {}), '(0, 2)\n', (3519, 3525), True, 'import numpy as np\n'), ((2815, 2856), 'numpy.min', 'np.min', (['[self.n_samples, self.batch_size]'], {}), '([self.n_samples, self.batch_size])\n', (2821, 2856), True, 'import numpy as np\n')]
|
"""
NOTE: This file is not using to.testing.assert_allclose because most methods need to work for both torch and numpy.
"""
import pytest
import numpy as np
import torch as to
import itertools
import pickle
from typing import NamedTuple
from pyrado.algorithms.utils import ReplayMemory
from pyrado.sampling.step_sequence import StepSequence
from pyrado.sampling.data_format import to_format
from pyrado.sampling.step_sequence import discounted_value, gae_returns
from pyrado.sampling.rollout import rollout
from pyrado.environments.pysim.ball_on_beam import BallOnBeamSim
rewards = [
-200,
-100,
-50,
-25,
-17.5,
]
# Observations has one additional element
observations = [
np.array([3, 2, 7]),
np.array([3, 1, 7]),
np.array([2, 0, 7]),
np.array([3, 1, 3]),
np.array([0, 2, 4]),
np.array([1, 1, 1]),
]
# Actions come from PyTorch
actions = [
to.tensor([0, 1]),
to.tensor([0, 3]),
to.tensor([2, 4]),
to.tensor([3, 1]),
to.tensor([0, 0]),
]
# Policy infos as dict collapse test
policy_infos = [
{'mean': np.array([0, 1]), 'std': 0.4},
{'mean': np.array([0, 3]), 'std': 0.2},
{'mean': np.array([2, 4]), 'std': 0.1},
{'mean': np.array([3, 1]), 'std': 0.05},
{'mean': np.array([0, 0]), 'std': 0.025},
]
# Hidden is a tuple, like we see with LSTMs
hidden = [
(np.array([3, 2, 7]), np.array([2, 1])),
(np.array([4, 9, 8]), np.array([5, 6])),
(np.array([1, 4, 9]), np.array([7, 3])),
(np.array([0, 8, 2]), np.array([4, 9])),
(np.array([2, 7, 6]), np.array([8, 0])),
]
def test_create_rew_only():
# Don't require additional fields for this test
StepSequence.required_fields = {}
ro = StepSequence(rewards=rewards, data_format='numpy')
assert len(ro) == 5
assert (ro.rewards == np.array(rewards)).all()
@pytest.mark.parametrize(
'data_format, tensor_type', [('numpy', np.ndarray), ('torch', to.Tensor)], ids=['numpy', 'torch']
)
def test_create(data_format, tensor_type):
# With actions, observations and dicts
ro = StepSequence(rewards=rewards, observations=observations, actions=actions, policy_infos=policy_infos,
hidden=hidden, data_format=data_format)
assert len(ro) == 5
assert isinstance(ro.rewards, tensor_type)
assert isinstance(ro.observations, tensor_type)
assert isinstance(ro.actions, tensor_type)
assert isinstance(ro.policy_infos['mean'], tensor_type)
assert isinstance(ro.policy_infos['std'], tensor_type)
assert isinstance(ro.hidden[0], tensor_type)
# Done should always be a ndarray
assert isinstance(ro.done, np.ndarray)
assert not ro.done[:-1].any()
assert ro.done[-1]
@pytest.mark.parametrize(
'other_format, tensor_type', [('torch', np.ndarray), ('numpy', to.Tensor)],
ids=['numpy to torch', 'torch to numpy']
)
def test_convert(other_format, tensor_type):
ro = StepSequence(rewards=rewards, observations=observations, actions=actions, policy_infos=policy_infos,
hidden=hidden, data_format=other_format)
# convert
if other_format == 'numpy':
ro.torch()
elif other_format == 'torch':
ro.numpy()
# Verify
assert isinstance(ro.rewards, tensor_type)
assert isinstance(ro.observations, tensor_type)
assert isinstance(ro.actions, tensor_type)
assert isinstance(ro.policy_infos['mean'], tensor_type)
assert isinstance(ro.policy_infos['std'], tensor_type)
assert isinstance(ro.hidden[0], tensor_type)
# Done should always be a ndarray
assert isinstance(ro.done, np.ndarray)
@pytest.mark.parametrize(
'data_format', ['numpy', 'torch']
)
def test_step_iter(data_format):
ro = StepSequence(rewards=rewards, observations=observations, actions=actions, policy_infos=policy_infos,
hidden=hidden, data_format=data_format)
assert len(ro) == 5
for i, step in enumerate(ro):
assert step.reward == rewards[i]
# Check current and next
assert (step.observation == to_format(observations[i], data_format)).all()
assert (step.next_observation == to_format(observations[i + 1], data_format)).all()
# Check dict sub element
assert (step.policy_info.mean == to_format(policy_infos[i]['mean'], data_format)).all()
assert (step.hidden[0] == to_format(hidden[i][0], data_format)).all()
@pytest.mark.parametrize(
'sls', [slice(2, 4), slice(2, 5, 2), slice(3), slice(4, None)]
)
@pytest.mark.parametrize(
'data_format', ['numpy', 'torch']
)
def test_slice(sls, data_format):
ro = StepSequence(rewards=rewards, observations=observations, actions=actions, policy_infos=policy_infos,
hidden=hidden, data_format=data_format)
# Slice rollout
sliced = ro[sls]
# Slice reward list for verification
sliced_rew = rewards[sls]
for i, step in enumerate(sliced):
assert step.reward == sliced_rew[i]
@pytest.mark.parametrize(
'data_format', ['numpy', 'torch']
)
def test_add_data(data_format):
ro = StepSequence(
rewards=rewards,
observations=observations,
actions=actions,
policy_infos=policy_infos,
hidden=hidden,
data_format=data_format
)
# Add a data field
ro.add_data('return', discounted_value(ro, 0.9))
assert hasattr(ro, 'return')
# Query new data field from steps
assert abs(ro[2]['return'] - -86.675) < 0.01
@pytest.mark.parametrize(
'data_format', ['numpy', 'torch']
)
def test_concat(data_format):
# Create some rollouts with random rewards
ros = [
StepSequence(
rewards=np.random.randn(5),
observations=np.random.randn(6),
actions=np.random.randn(5),
policy_infos={'mean': np.random.randn(5)},
hidden=(np.random.randn(5), np.random.randn(5)),
data_format=data_format
),
StepSequence(
rewards=np.random.randn(5),
observations=np.random.randn(6),
actions=np.random.randn(5),
policy_infos={'mean': np.random.randn(5)},
hidden=(np.random.randn(5), np.random.randn(5)),
data_format=data_format
)
]
# Perform concatenation
cat = StepSequence.concat(ros)
assert cat.continuous
assert cat.rollout_count == 2
# Check steps
for step_ro, step_cat in zip(itertools.chain.from_iterable(ros), cat):
assert step_ro.reward == step_cat.reward
assert step_ro.observation == step_cat.observation
assert step_ro.done == step_cat.done
@pytest.mark.parametrize(
'data_format', ['numpy', 'torch']
)
def test_split_multi(data_format):
# Don't require additional fields for this test
StepSequence.required_fields = {}
ro = StepSequence(
rewards=np.arange(20),
rollout_bounds=[0, 4, 11, 17, 20],
data_format=data_format
)
# There should be four parts
assert ro.rollout_count == 4
# Of these sizes
assert list(ro.rollout_lengths) == [4, 7, 6, 3]
# Test selecting one
s1 = ro.get_rollout(1)
assert s1.rollout_count == 1
assert s1[0].reward == ro[4].reward
# Test selecting a slice
s2 = ro.get_rollout(slice(1, -1))
assert s2.rollout_count == 2
assert s2[0].reward == ro[4].reward
assert s2[7].reward == ro[11].reward
# Test selecting by list
s2 = ro.get_rollout([1, 3])
assert s2.rollout_count == 2
assert s2[0].reward == ro[4].reward
assert s2[7].reward == ro[17].reward
@pytest.mark.parametrize(
'data_format', ['numpy', 'torch']
)
def test_pickle(data_format):
ro = StepSequence(rewards=rewards, observations=observations, actions=actions, policy_infos=policy_infos,
hidden=hidden, data_format=data_format)
# Pickle/unpickle
ro2 = pickle.loads(pickle.dumps(ro, pickle.HIGHEST_PROTOCOL))
for step, step_pi in zip(ro, ro2):
assert step.reward == step_pi.reward
assert (step.observation == step_pi.observation).all()
assert (step.action == step_pi.action).all()
assert step.done == step_pi.done
@pytest.mark.parametrize(
'env', [
BallOnBeamSim(dt=0.01, max_steps=200),
], ids=['bob_linpol']
)
def test_advantage_calculation(env, linear_policy):
ro = rollout(env, linear_policy)
gamma = 0.99
lamb = 0.95
# Add dummy values
values = np.ones_like(ro.rewards)
if not ro.done[-1]:
values = to.cat([values, 0])
ro.add_data('values', values)
gae1 = gae_returns(ro, gamma, lamb)
# Compute the advantages
gae2 = np.empty_like(values)
for k in reversed(range(ro.length)):
if ro[k].done:
gae2[k] = ro[k].reward - values[k]
else:
gae2[k] = ro[k].reward + gamma*values[k + 1] - values[k] + \
gamma*lamb*gae2[k + 1]
assert (gae1 == gae2).all()
@pytest.mark.replay
@pytest.mark.parametrize(
'capacity', [
1, 2, 8,
], ids=['1', '2', '8']
)
def test_replay_memory(capacity):
rm = ReplayMemory(capacity)
# Create fake rollouts (of length 5)
ro1 = StepSequence(rewards=rewards, observations=observations, actions=actions, hidden=hidden)
ro2 = StepSequence(rewards=rewards, observations=observations, actions=actions, hidden=hidden)
# Concatenate them for testing only
ros = StepSequence.concat([ro1, ro2], truncate_last=True) # same truncate_last behavior as push function
# Check the lengths
rm.push(ro1)
assert len(rm) == len(ro1) or len(rm) == capacity
rm.push(ro2)
assert len(rm) == len(ro1) + len(ro1) or len(rm) == capacity
# Check the elements
shift = len(ros) - capacity
if shift < len(ro1):
assert all(rm.memory.observations[0] == ros.observations[shift])
assert all(rm.memory.observations[-1] == ro2.observations[-2]) # -2 since one was truncated
# A dummy namedtuple for testing
class DummyNT(NamedTuple):
part1: to.Tensor
part2: to.Tensor
@pytest.mark.parametrize(
'data_format', ['numpy', 'torch']
)
def test_namedtuple(data_format):
hid_nt = [DummyNT(*it) for it in hidden]
ro = StepSequence(
rewards=rewards,
hidden=hid_nt,
data_format=data_format
)
assert isinstance(ro.hidden, DummyNT)
for i, step in enumerate(ro):
assert isinstance(step.hidden, DummyNT)
assert (step.hidden.part1 == to_format(hid_nt[i].part1, data_format)).all()
|
[
"pyrado.sampling.step_sequence.StepSequence.concat",
"numpy.ones_like",
"pyrado.algorithms.utils.ReplayMemory",
"numpy.random.randn",
"numpy.empty_like",
"pyrado.sampling.step_sequence.StepSequence",
"torch.cat",
"pyrado.environments.pysim.ball_on_beam.BallOnBeamSim",
"numpy.array",
"pyrado.sampling.step_sequence.gae_returns",
"numpy.arange",
"pyrado.sampling.data_format.to_format",
"pyrado.sampling.rollout.rollout",
"pytest.mark.parametrize",
"pyrado.sampling.step_sequence.discounted_value",
"itertools.chain.from_iterable",
"torch.tensor",
"pickle.dumps"
] |
[((1826, 1952), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data_format, tensor_type"""', "[('numpy', np.ndarray), ('torch', to.Tensor)]"], {'ids': "['numpy', 'torch']"}), "('data_format, tensor_type', [('numpy', np.ndarray),\n ('torch', to.Tensor)], ids=['numpy', 'torch'])\n", (1849, 1952), False, 'import pytest\n'), ((2694, 2839), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""other_format, tensor_type"""', "[('torch', np.ndarray), ('numpy', to.Tensor)]"], {'ids': "['numpy to torch', 'torch to numpy']"}), "('other_format, tensor_type', [('torch', np.ndarray),\n ('numpy', to.Tensor)], ids=['numpy to torch', 'torch to numpy'])\n", (2717, 2839), False, 'import pytest\n'), ((3594, 3652), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data_format"""', "['numpy', 'torch']"], {}), "('data_format', ['numpy', 'torch'])\n", (3617, 3652), False, 'import pytest\n'), ((4478, 4536), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data_format"""', "['numpy', 'torch']"], {}), "('data_format', ['numpy', 'torch'])\n", (4501, 4536), False, 'import pytest\n'), ((4948, 5006), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data_format"""', "['numpy', 'torch']"], {}), "('data_format', ['numpy', 'torch'])\n", (4971, 5006), False, 'import pytest\n'), ((5449, 5507), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data_format"""', "['numpy', 'torch']"], {}), "('data_format', ['numpy', 'torch'])\n", (5472, 5507), False, 'import pytest\n'), ((6603, 6661), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data_format"""', "['numpy', 'torch']"], {}), "('data_format', ['numpy', 'torch'])\n", (6626, 6661), False, 'import pytest\n'), ((7556, 7614), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data_format"""', "['numpy', 'torch']"], {}), "('data_format', ['numpy', 'torch'])\n", (7579, 7614), False, 'import pytest\n'), ((8952, 9019), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""capacity"""', '[1, 2, 8]'], {'ids': "['1', '2', '8']"}), "('capacity', [1, 2, 8], ids=['1', '2', '8'])\n", (8975, 9019), False, 'import pytest\n'), ((10035, 10093), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data_format"""', "['numpy', 'torch']"], {}), "('data_format', ['numpy', 'torch'])\n", (10058, 10093), False, 'import pytest\n'), ((701, 720), 'numpy.array', 'np.array', (['[3, 2, 7]'], {}), '([3, 2, 7])\n', (709, 720), True, 'import numpy as np\n'), ((726, 745), 'numpy.array', 'np.array', (['[3, 1, 7]'], {}), '([3, 1, 7])\n', (734, 745), True, 'import numpy as np\n'), ((751, 770), 'numpy.array', 'np.array', (['[2, 0, 7]'], {}), '([2, 0, 7])\n', (759, 770), True, 'import numpy as np\n'), ((776, 795), 'numpy.array', 'np.array', (['[3, 1, 3]'], {}), '([3, 1, 3])\n', (784, 795), True, 'import numpy as np\n'), ((801, 820), 'numpy.array', 'np.array', (['[0, 2, 4]'], {}), '([0, 2, 4])\n', (809, 820), True, 'import numpy as np\n'), ((826, 845), 'numpy.array', 'np.array', (['[1, 1, 1]'], {}), '([1, 1, 1])\n', (834, 845), True, 'import numpy as np\n'), ((893, 910), 'torch.tensor', 'to.tensor', (['[0, 1]'], {}), '([0, 1])\n', (902, 910), True, 'import torch as to\n'), ((916, 933), 'torch.tensor', 'to.tensor', (['[0, 3]'], {}), '([0, 3])\n', (925, 933), True, 'import torch as to\n'), ((939, 956), 'torch.tensor', 'to.tensor', (['[2, 4]'], {}), '([2, 4])\n', (948, 956), True, 'import torch as to\n'), ((962, 979), 'torch.tensor', 'to.tensor', (['[3, 1]'], {}), '([3, 1])\n', (971, 979), True, 'import torch as to\n'), ((985, 1002), 'torch.tensor', 'to.tensor', (['[0, 0]'], {}), '([0, 0])\n', (994, 1002), True, 'import torch as to\n'), ((1697, 1747), 'pyrado.sampling.step_sequence.StepSequence', 'StepSequence', ([], {'rewards': 'rewards', 'data_format': '"""numpy"""'}), "(rewards=rewards, data_format='numpy')\n", (1709, 1747), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((2050, 2194), 'pyrado.sampling.step_sequence.StepSequence', 'StepSequence', ([], {'rewards': 'rewards', 'observations': 'observations', 'actions': 'actions', 'policy_infos': 'policy_infos', 'hidden': 'hidden', 'data_format': 'data_format'}), '(rewards=rewards, observations=observations, actions=actions,\n policy_infos=policy_infos, hidden=hidden, data_format=data_format)\n', (2062, 2194), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((2900, 3045), 'pyrado.sampling.step_sequence.StepSequence', 'StepSequence', ([], {'rewards': 'rewards', 'observations': 'observations', 'actions': 'actions', 'policy_infos': 'policy_infos', 'hidden': 'hidden', 'data_format': 'other_format'}), '(rewards=rewards, observations=observations, actions=actions,\n policy_infos=policy_infos, hidden=hidden, data_format=other_format)\n', (2912, 3045), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((3701, 3845), 'pyrado.sampling.step_sequence.StepSequence', 'StepSequence', ([], {'rewards': 'rewards', 'observations': 'observations', 'actions': 'actions', 'policy_infos': 'policy_infos', 'hidden': 'hidden', 'data_format': 'data_format'}), '(rewards=rewards, observations=observations, actions=actions,\n policy_infos=policy_infos, hidden=hidden, data_format=data_format)\n', (3713, 3845), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((4586, 4730), 'pyrado.sampling.step_sequence.StepSequence', 'StepSequence', ([], {'rewards': 'rewards', 'observations': 'observations', 'actions': 'actions', 'policy_infos': 'policy_infos', 'hidden': 'hidden', 'data_format': 'data_format'}), '(rewards=rewards, observations=observations, actions=actions,\n policy_infos=policy_infos, hidden=hidden, data_format=data_format)\n', (4598, 4730), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((5054, 5198), 'pyrado.sampling.step_sequence.StepSequence', 'StepSequence', ([], {'rewards': 'rewards', 'observations': 'observations', 'actions': 'actions', 'policy_infos': 'policy_infos', 'hidden': 'hidden', 'data_format': 'data_format'}), '(rewards=rewards, observations=observations, actions=actions,\n policy_infos=policy_infos, hidden=hidden, data_format=data_format)\n', (5066, 5198), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((6267, 6291), 'pyrado.sampling.step_sequence.StepSequence.concat', 'StepSequence.concat', (['ros'], {}), '(ros)\n', (6286, 6291), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((7660, 7804), 'pyrado.sampling.step_sequence.StepSequence', 'StepSequence', ([], {'rewards': 'rewards', 'observations': 'observations', 'actions': 'actions', 'policy_infos': 'policy_infos', 'hidden': 'hidden', 'data_format': 'data_format'}), '(rewards=rewards, observations=observations, actions=actions,\n policy_infos=policy_infos, hidden=hidden, data_format=data_format)\n', (7672, 7804), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((8331, 8358), 'pyrado.sampling.rollout.rollout', 'rollout', (['env', 'linear_policy'], {}), '(env, linear_policy)\n', (8338, 8358), False, 'from pyrado.sampling.rollout import rollout\n'), ((8429, 8453), 'numpy.ones_like', 'np.ones_like', (['ro.rewards'], {}), '(ro.rewards)\n', (8441, 8453), True, 'import numpy as np\n'), ((8561, 8589), 'pyrado.sampling.step_sequence.gae_returns', 'gae_returns', (['ro', 'gamma', 'lamb'], {}), '(ro, gamma, lamb)\n', (8572, 8589), False, 'from pyrado.sampling.step_sequence import discounted_value, gae_returns\n'), ((8631, 8652), 'numpy.empty_like', 'np.empty_like', (['values'], {}), '(values)\n', (8644, 8652), True, 'import numpy as np\n'), ((9084, 9106), 'pyrado.algorithms.utils.ReplayMemory', 'ReplayMemory', (['capacity'], {}), '(capacity)\n', (9096, 9106), False, 'from pyrado.algorithms.utils import ReplayMemory\n'), ((9159, 9251), 'pyrado.sampling.step_sequence.StepSequence', 'StepSequence', ([], {'rewards': 'rewards', 'observations': 'observations', 'actions': 'actions', 'hidden': 'hidden'}), '(rewards=rewards, observations=observations, actions=actions,\n hidden=hidden)\n', (9171, 9251), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((9258, 9350), 'pyrado.sampling.step_sequence.StepSequence', 'StepSequence', ([], {'rewards': 'rewards', 'observations': 'observations', 'actions': 'actions', 'hidden': 'hidden'}), '(rewards=rewards, observations=observations, actions=actions,\n hidden=hidden)\n', (9270, 9350), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((9397, 9448), 'pyrado.sampling.step_sequence.StepSequence.concat', 'StepSequence.concat', (['[ro1, ro2]'], {'truncate_last': '(True)'}), '([ro1, ro2], truncate_last=True)\n', (9416, 9448), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((10189, 10258), 'pyrado.sampling.step_sequence.StepSequence', 'StepSequence', ([], {'rewards': 'rewards', 'hidden': 'hid_nt', 'data_format': 'data_format'}), '(rewards=rewards, hidden=hid_nt, data_format=data_format)\n', (10201, 10258), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((1073, 1089), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (1081, 1089), True, 'import numpy as np\n'), ((1117, 1133), 'numpy.array', 'np.array', (['[0, 3]'], {}), '([0, 3])\n', (1125, 1133), True, 'import numpy as np\n'), ((1161, 1177), 'numpy.array', 'np.array', (['[2, 4]'], {}), '([2, 4])\n', (1169, 1177), True, 'import numpy as np\n'), ((1205, 1221), 'numpy.array', 'np.array', (['[3, 1]'], {}), '([3, 1])\n', (1213, 1221), True, 'import numpy as np\n'), ((1250, 1266), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (1258, 1266), True, 'import numpy as np\n'), ((1345, 1364), 'numpy.array', 'np.array', (['[3, 2, 7]'], {}), '([3, 2, 7])\n', (1353, 1364), True, 'import numpy as np\n'), ((1366, 1382), 'numpy.array', 'np.array', (['[2, 1]'], {}), '([2, 1])\n', (1374, 1382), True, 'import numpy as np\n'), ((1390, 1409), 'numpy.array', 'np.array', (['[4, 9, 8]'], {}), '([4, 9, 8])\n', (1398, 1409), True, 'import numpy as np\n'), ((1411, 1427), 'numpy.array', 'np.array', (['[5, 6]'], {}), '([5, 6])\n', (1419, 1427), True, 'import numpy as np\n'), ((1435, 1454), 'numpy.array', 'np.array', (['[1, 4, 9]'], {}), '([1, 4, 9])\n', (1443, 1454), True, 'import numpy as np\n'), ((1456, 1472), 'numpy.array', 'np.array', (['[7, 3]'], {}), '([7, 3])\n', (1464, 1472), True, 'import numpy as np\n'), ((1480, 1499), 'numpy.array', 'np.array', (['[0, 8, 2]'], {}), '([0, 8, 2])\n', (1488, 1499), True, 'import numpy as np\n'), ((1501, 1517), 'numpy.array', 'np.array', (['[4, 9]'], {}), '([4, 9])\n', (1509, 1517), True, 'import numpy as np\n'), ((1525, 1544), 'numpy.array', 'np.array', (['[2, 7, 6]'], {}), '([2, 7, 6])\n', (1533, 1544), True, 'import numpy as np\n'), ((1546, 1562), 'numpy.array', 'np.array', (['[8, 0]'], {}), '([8, 0])\n', (1554, 1562), True, 'import numpy as np\n'), ((5298, 5323), 'pyrado.sampling.step_sequence.discounted_value', 'discounted_value', (['ro', '(0.9)'], {}), '(ro, 0.9)\n', (5314, 5323), False, 'from pyrado.sampling.step_sequence import discounted_value, gae_returns\n'), ((6405, 6439), 'itertools.chain.from_iterable', 'itertools.chain.from_iterable', (['ros'], {}), '(ros)\n', (6434, 6439), False, 'import itertools\n'), ((7869, 7910), 'pickle.dumps', 'pickle.dumps', (['ro', 'pickle.HIGHEST_PROTOCOL'], {}), '(ro, pickle.HIGHEST_PROTOCOL)\n', (7881, 7910), False, 'import pickle\n'), ((8495, 8514), 'torch.cat', 'to.cat', (['[values, 0]'], {}), '([values, 0])\n', (8501, 8514), True, 'import torch as to\n'), ((8203, 8240), 'pyrado.environments.pysim.ball_on_beam.BallOnBeamSim', 'BallOnBeamSim', ([], {'dt': '(0.01)', 'max_steps': '(200)'}), '(dt=0.01, max_steps=200)\n', (8216, 8240), False, 'from pyrado.environments.pysim.ball_on_beam import BallOnBeamSim\n'), ((6833, 6846), 'numpy.arange', 'np.arange', (['(20)'], {}), '(20)\n', (6842, 6846), True, 'import numpy as np\n'), ((1798, 1815), 'numpy.array', 'np.array', (['rewards'], {}), '(rewards)\n', (1806, 1815), True, 'import numpy as np\n'), ((5645, 5663), 'numpy.random.randn', 'np.random.randn', (['(5)'], {}), '(5)\n', (5660, 5663), True, 'import numpy as np\n'), ((5690, 5708), 'numpy.random.randn', 'np.random.randn', (['(6)'], {}), '(6)\n', (5705, 5708), True, 'import numpy as np\n'), ((5730, 5748), 'numpy.random.randn', 'np.random.randn', (['(5)'], {}), '(5)\n', (5745, 5748), True, 'import numpy as np\n'), ((5955, 5973), 'numpy.random.randn', 'np.random.randn', (['(5)'], {}), '(5)\n', (5970, 5973), True, 'import numpy as np\n'), ((6000, 6018), 'numpy.random.randn', 'np.random.randn', (['(6)'], {}), '(6)\n', (6015, 6018), True, 'import numpy as np\n'), ((6040, 6058), 'numpy.random.randn', 'np.random.randn', (['(5)'], {}), '(5)\n', (6055, 6058), True, 'import numpy as np\n'), ((4034, 4073), 'pyrado.sampling.data_format.to_format', 'to_format', (['observations[i]', 'data_format'], {}), '(observations[i], data_format)\n', (4043, 4073), False, 'from pyrado.sampling.data_format import to_format\n'), ((4122, 4165), 'pyrado.sampling.data_format.to_format', 'to_format', (['observations[i + 1]', 'data_format'], {}), '(observations[i + 1], data_format)\n', (4131, 4165), False, 'from pyrado.sampling.data_format import to_format\n'), ((4247, 4294), 'pyrado.sampling.data_format.to_format', 'to_format', (["policy_infos[i]['mean']", 'data_format'], {}), "(policy_infos[i]['mean'], data_format)\n", (4256, 4294), False, 'from pyrado.sampling.data_format import to_format\n'), ((4336, 4372), 'pyrado.sampling.data_format.to_format', 'to_format', (['hidden[i][0]', 'data_format'], {}), '(hidden[i][0], data_format)\n', (4345, 4372), False, 'from pyrado.sampling.data_format import to_format\n'), ((5784, 5802), 'numpy.random.randn', 'np.random.randn', (['(5)'], {}), '(5)\n', (5799, 5802), True, 'import numpy as np\n'), ((5825, 5843), 'numpy.random.randn', 'np.random.randn', (['(5)'], {}), '(5)\n', (5840, 5843), True, 'import numpy as np\n'), ((5845, 5863), 'numpy.random.randn', 'np.random.randn', (['(5)'], {}), '(5)\n', (5860, 5863), True, 'import numpy as np\n'), ((6094, 6112), 'numpy.random.randn', 'np.random.randn', (['(5)'], {}), '(5)\n', (6109, 6112), True, 'import numpy as np\n'), ((6135, 6153), 'numpy.random.randn', 'np.random.randn', (['(5)'], {}), '(5)\n', (6150, 6153), True, 'import numpy as np\n'), ((6155, 6173), 'numpy.random.randn', 'np.random.randn', (['(5)'], {}), '(5)\n', (6170, 6173), True, 'import numpy as np\n'), ((10452, 10491), 'pyrado.sampling.data_format.to_format', 'to_format', (['hid_nt[i].part1', 'data_format'], {}), '(hid_nt[i].part1, data_format)\n', (10461, 10491), False, 'from pyrado.sampling.data_format import to_format\n')]
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020, 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
""" Test Gaussian """
import unittest
from test import QiskitMachineLearningTestCase
from test.datasets import get_deprecated_msg_ref
import warnings
import numpy as np
from qiskit_machine_learning.datasets import gaussian
class TestGaussian(QiskitMachineLearningTestCase):
"""Gaussian tests."""
def test_gaussian(self):
"""Gaussian test."""
with warnings.catch_warnings(record=True) as c_m:
warnings.simplefilter("always")
training_features, training_labels, test_features, test_labels = gaussian(
training_size=20, test_size=10, n=2, plot_data=False
)
with self.subTest("Test training_features"):
np.testing.assert_array_equal(training_features.shape, (40, 2))
with self.subTest("Test training_labels1"):
np.testing.assert_array_equal(training_labels.shape, (40, 2))
with self.subTest("Test training_labels2"):
np.testing.assert_array_equal(np.sum(training_labels, axis=0), np.array([20, 20]))
with self.subTest("Test training_labels3"):
np.testing.assert_array_equal(np.sum(training_labels, axis=1), np.ones(40))
with self.subTest("Test features.shape1"):
np.testing.assert_array_equal(test_features.shape, (20, 2))
with self.subTest("Test features.shape2"):
np.testing.assert_array_equal(test_features.shape, (20, 2))
with self.subTest("Test test_labels1"):
np.testing.assert_array_equal(np.sum(test_labels, axis=0), np.array([10, 10]))
with self.subTest("Test test_labels2"):
np.testing.assert_array_equal(np.sum(test_labels, axis=1), np.ones(20))
with self.subTest("Test deprecation msg"):
msg = str(c_m[0].message)
self.assertEqual(msg, get_deprecated_msg_ref("gaussian"))
if __name__ == "__main__":
unittest.main()
|
[
"unittest.main",
"numpy.sum",
"warnings.simplefilter",
"test.datasets.get_deprecated_msg_ref",
"numpy.testing.assert_array_equal",
"numpy.ones",
"warnings.catch_warnings",
"numpy.array",
"qiskit_machine_learning.datasets.gaussian"
] |
[((2435, 2450), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2448, 2450), False, 'import unittest\n'), ((860, 896), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (883, 896), False, 'import warnings\n'), ((917, 948), 'warnings.simplefilter', 'warnings.simplefilter', (['"""always"""'], {}), "('always')\n", (938, 948), False, 'import warnings\n'), ((1026, 1088), 'qiskit_machine_learning.datasets.gaussian', 'gaussian', ([], {'training_size': '(20)', 'test_size': '(10)', 'n': '(2)', 'plot_data': '(False)'}), '(training_size=20, test_size=10, n=2, plot_data=False)\n', (1034, 1088), False, 'from qiskit_machine_learning.datasets import gaussian\n'), ((1192, 1255), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['training_features.shape', '(40, 2)'], {}), '(training_features.shape, (40, 2))\n', (1221, 1255), True, 'import numpy as np\n'), ((1328, 1389), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['training_labels.shape', '(40, 2)'], {}), '(training_labels.shape, (40, 2))\n', (1357, 1389), True, 'import numpy as np\n'), ((1764, 1823), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['test_features.shape', '(20, 2)'], {}), '(test_features.shape, (20, 2))\n', (1793, 1823), True, 'import numpy as np\n'), ((1895, 1954), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['test_features.shape', '(20, 2)'], {}), '(test_features.shape, (20, 2))\n', (1924, 1954), True, 'import numpy as np\n'), ((2366, 2400), 'test.datasets.get_deprecated_msg_ref', 'get_deprecated_msg_ref', (['"""gaussian"""'], {}), "('gaussian')\n", (2388, 2400), False, 'from test.datasets import get_deprecated_msg_ref\n'), ((1492, 1523), 'numpy.sum', 'np.sum', (['training_labels'], {'axis': '(0)'}), '(training_labels, axis=0)\n', (1498, 1523), True, 'import numpy as np\n'), ((1525, 1543), 'numpy.array', 'np.array', (['[20, 20]'], {}), '([20, 20])\n', (1533, 1543), True, 'import numpy as np\n'), ((1647, 1678), 'numpy.sum', 'np.sum', (['training_labels'], {'axis': '(1)'}), '(training_labels, axis=1)\n', (1653, 1678), True, 'import numpy as np\n'), ((1680, 1691), 'numpy.ones', 'np.ones', (['(40)'], {}), '(40)\n', (1687, 1691), True, 'import numpy as np\n'), ((2053, 2080), 'numpy.sum', 'np.sum', (['test_labels'], {'axis': '(0)'}), '(test_labels, axis=0)\n', (2059, 2080), True, 'import numpy as np\n'), ((2082, 2100), 'numpy.array', 'np.array', (['[10, 10]'], {}), '([10, 10])\n', (2090, 2100), True, 'import numpy as np\n'), ((2200, 2227), 'numpy.sum', 'np.sum', (['test_labels'], {'axis': '(1)'}), '(test_labels, axis=1)\n', (2206, 2227), True, 'import numpy as np\n'), ((2229, 2240), 'numpy.ones', 'np.ones', (['(20)'], {}), '(20)\n', (2236, 2240), True, 'import numpy as np\n')]
|
from keras.datasets import boston_housing
from keras import models, layers
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
print("获取数据集")
(train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()
print("训练数据大小", train_data.shape)
print("测试数据大小", test_data.shape)
print("训练目标是房屋价格中位数,单位是千美元")
print(train_targets)
print("标准化数据,特征的平均值为 0,标准差为 1")
mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std
print("在工作流程中,不能使用在测试数据上计算得到的任何结果,标准化也不行")
test_data -= mean
test_data /= std
print("构建网络,较小的网络可以降低过拟合")
print("MSE - 均方误差,回归问题常用")
print("MAE - 平均绝对误差,比如 MAE 0.5 在这里意味着平均价格相差 500 美元")
def build_model():
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(train_data.shape[1], )))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
return model
print("在小样本上利用 K Fold 验证")
k = 4
num_val_samples = len(train_data) // k
num_epochs = 500
all_mae_histories = []
for i in range(k):
print("处理 Fold #", i)
val_start = i * num_val_samples
val_end = val_start + num_val_samples
# 验证数据
val_data = train_data[val_start: val_end]
val_targets = train_targets[val_start: val_end]
# 训练数据
partial_train_data = np.concatenate(
[train_data[:val_start],
train_data[val_end:]],axis=0)
partial_train_targets = np.concatenate(
[train_targets[:val_start],
train_targets[val_end:]],axis=0)
model = build_model()
history = model.fit(partial_train_data, partial_train_targets,
validation_data=(val_data, val_targets),
epochs=num_epochs, batch_size=1, verbose=0)
mae_history = history.history['val_mean_absolute_error']
all_mae_histories.append(mae_history)
print("计算所有轮次中 K 折验证分数平均值")
average_mae_history = [np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]
print("绘制验证分数")
plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()
print("重新绘制以看清规律。删除前十个点;将每个数据点替换为前面数据点的指数移动平均值")
def smooth_curve(points, factor=0.9):
smoothed_points = []
for point in points:
if smoothed_points:
previous = smoothed_points[-1]
smoothed_points.append(previous * factor + point * (1 - factor))
else:
smoothed_points.append(point)
return smoothed_points
smooth_mae_history = smooth_curve(average_mae_history[10:])
plt.clf()
plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE after Smoothing')
plt.show()
print("从图中可得 MAE 在 80 轮后不再降低,之后开始过拟合")
print("重新训练")
model = build_model()
model.fit(train_data, train_targets, epochs=80, batch_size=16, verbose=0)
test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)
print("Test MSE", test_mse_score)
print("Test MAE", test_mae_score)
|
[
"matplotlib.pyplot.show",
"matplotlib.pyplot.clf",
"keras.models.Sequential",
"matplotlib.use",
"numpy.mean",
"keras.layers.Dense",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xlabel",
"numpy.concatenate",
"keras.datasets.boston_housing.load_data"
] |
[((113, 136), 'matplotlib.use', 'matplotlib.use', (['"""TkAgg"""'], {}), "('TkAgg')\n", (127, 136), False, 'import matplotlib\n'), ((242, 268), 'keras.datasets.boston_housing.load_data', 'boston_housing.load_data', ([], {}), '()\n', (266, 268), False, 'from keras.datasets import boston_housing\n'), ((2150, 2170), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (2160, 2170), True, 'import matplotlib.pyplot as plt\n'), ((2171, 2199), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Validation MAE"""'], {}), "('Validation MAE')\n", (2181, 2199), True, 'import matplotlib.pyplot as plt\n'), ((2200, 2210), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2208, 2210), True, 'import matplotlib.pyplot as plt\n'), ((2641, 2650), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (2648, 2650), True, 'import matplotlib.pyplot as plt\n'), ((2719, 2739), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (2729, 2739), True, 'import matplotlib.pyplot as plt\n'), ((2740, 2784), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Validation MAE after Smoothing"""'], {}), "('Validation MAE after Smoothing')\n", (2750, 2784), True, 'import matplotlib.pyplot as plt\n'), ((2785, 2795), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2793, 2795), True, 'import matplotlib.pyplot as plt\n'), ((733, 752), 'keras.models.Sequential', 'models.Sequential', ([], {}), '()\n', (750, 752), False, 'from keras import models, layers\n'), ((1390, 1460), 'numpy.concatenate', 'np.concatenate', (['[train_data[:val_start], train_data[val_end:]]'], {'axis': '(0)'}), '([train_data[:val_start], train_data[val_end:]], axis=0)\n', (1404, 1460), True, 'import numpy as np\n'), ((1505, 1581), 'numpy.concatenate', 'np.concatenate', (['[train_targets[:val_start], train_targets[val_end:]]'], {'axis': '(0)'}), '([train_targets[:val_start], train_targets[val_end:]], axis=0)\n', (1519, 1581), True, 'import numpy as np\n'), ((1993, 2035), 'numpy.mean', 'np.mean', (['[x[i] for x in all_mae_histories]'], {}), '([x[i] for x in all_mae_histories])\n', (2000, 2035), True, 'import numpy as np\n'), ((767, 838), 'keras.layers.Dense', 'layers.Dense', (['(64)'], {'activation': '"""relu"""', 'input_shape': '(train_data.shape[1],)'}), "(64, activation='relu', input_shape=(train_data.shape[1],))\n", (779, 838), False, 'from keras import models, layers\n'), ((855, 890), 'keras.layers.Dense', 'layers.Dense', (['(64)'], {'activation': '"""relu"""'}), "(64, activation='relu')\n", (867, 890), False, 'from keras import models, layers\n'), ((906, 921), 'keras.layers.Dense', 'layers.Dense', (['(1)'], {}), '(1)\n', (918, 921), False, 'from keras import models, layers\n')]
|
import numpy as np
import re
def extract(filename1,filename2):
input_file = open(filename1)
output_file = open(filename2)
data = input_file.readlines()
out_data = output_file.readlines()
"""
Number of training data records
"""
ntrain = int(data[0].split()[0])
traindata = data[1:ntrain+1]
"""
Number of test data records
"""
ntest = int(data[int(data[0].split()[0])+1])
testdata = data[ntrain+2:ntrain+ntest+2]
features = []
labels = []
test_labels = []
test_features = []
for line in traindata:
formatted_line = line.strip("\n")
labels.append(formatted_line.split(" ")[1])
features.append(re.sub(r"(\d+):", "", formatted_line).split(" ")[2:])
features = np.array(features).astype(np.float)
labels = np.array(labels).astype(np.int)
for lines in testdata:
formatted_lines = lines.strip("\n")
test_features.append(re.sub(r"(\d+):", "", formatted_lines).split(" ")[1:])
for lines in out_data:
test_labels.append(lines.split()[1])
test_features = np.array(test_features).astype(np.float)
test_labels = np.array(test_labels).astype(np.int)
return features,labels,test_features,test_labels
|
[
"numpy.array",
"re.sub"
] |
[((770, 788), 'numpy.array', 'np.array', (['features'], {}), '(features)\n', (778, 788), True, 'import numpy as np\n'), ((819, 835), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (827, 835), True, 'import numpy as np\n'), ((1115, 1138), 'numpy.array', 'np.array', (['test_features'], {}), '(test_features)\n', (1123, 1138), True, 'import numpy as np\n'), ((1174, 1195), 'numpy.array', 'np.array', (['test_labels'], {}), '(test_labels)\n', (1182, 1195), True, 'import numpy as np\n'), ((696, 733), 're.sub', 're.sub', (['"""(\\\\d+):"""', '""""""', 'formatted_line'], {}), "('(\\\\d+):', '', formatted_line)\n", (702, 733), False, 'import re\n'), ((956, 994), 're.sub', 're.sub', (['"""(\\\\d+):"""', '""""""', 'formatted_lines'], {}), "('(\\\\d+):', '', formatted_lines)\n", (962, 994), False, 'import re\n')]
|
import cv2
import numpy as np
import copy
import imgaug.augmenters as iaa
from . import pallete_aug as pa
def pallete_augmentation(img, img_data, config):
if config.pallete:
csv_path = img_data['csvpath']
#Exception none value.
if csv_path is None or '':
print("CSV path is {}".format(csv_path))
return img
data = pa.open_path_array(csv_path)
#Preprocessing
pa.getHistogram(data, percentile=75)
normalizedImg = pa.normalize_thermal(data)
pa.getHistogram(normalizedImg, percentile=75)
# getHistogram(normalizedImg)
img = pa.heatMapConvert(normalizedImg,bboxes=None,
specific_cm=None,
tool='matplot',
is_random=True)
# img= pa.heatMapConvert(normalizedImg, bboxes=img_data['bboxes'],
# specific_cm=None,
# tool='matplot',
# is_random=True)
return img
def augment(img_data, config, augment=True):
assert 'filepath' in img_data
assert 'bboxes' in img_data
assert 'width' in img_data
assert 'height' in img_data
img_data_aug = copy.deepcopy(img_data)
aug_list = []
img = cv2.imread(img_data_aug['filepath'])
if augment:
rows, cols = img.shape[:2]
#[START] Pallete Augmentation
pallete_augmentation(img =img, img_data = img_data_aug, config=config)
#[END] Pallete Augmentation
if config.use_horizontal_flips and np.random.randint(0, 2) == 0:
img = cv2.flip(img, 1)
for bbox in img_data_aug['bboxes']:
x1 = bbox['x1']
x2 = bbox['x2']
bbox['x2'] = cols - x1
bbox['x1'] = cols - x2
if config.use_vertical_flips and np.random.randint(0, 2) == 0:
img = cv2.flip(img, 0)
for bbox in img_data_aug['bboxes']:
y1 = bbox['y1']
y2 = bbox['y2']
bbox['y2'] = rows - y1
bbox['y1'] = rows - y2
if config.rot_90:
angle = np.random.choice([0,90,180,270],1)[0]
if angle == 270:
img = np.transpose(img, (1,0,2))
img = cv2.flip(img, 0)
elif angle == 180:
img = cv2.flip(img, -1)
elif angle == 90:
img = np.transpose(img, (1,0,2))
img = cv2.flip(img, 1)
elif angle == 0:
pass
for bbox in img_data_aug['bboxes']:
x1 = bbox['x1']
x2 = bbox['x2']
y1 = bbox['y1']
y2 = bbox['y2']
if angle == 270:
bbox['x1'] = y1
bbox['x2'] = y2
bbox['y1'] = cols - x2
bbox['y2'] = cols - x1
elif angle == 180:
bbox['x2'] = cols - x1
bbox['x1'] = cols - x2
bbox['y2'] = rows - y1
bbox['y1'] = rows - y2
elif angle == 90:
bbox['x1'] = rows - y2
bbox['x2'] = rows - y1
bbox['y1'] = x1
bbox['y2'] = x2
elif angle == 0:
pass
if config.color:
aug_list.append(np.random.choice([iaa.MultiplyHueAndSaturation((0.5, 1.5), per_channel=True),
iaa.AddToHueAndSaturation((-50, 50), per_channel=True),
iaa.KMeansColorQuantization(),
iaa.UniformColorQuantization(),
iaa.Grayscale(alpha=(0.0, 1.0))]))
if config.contrast:
aug_list.append(np.random.choice([iaa.GammaContrast((0.5, 2.0), per_channel=True),
iaa.SigmoidContrast(gain=(3, 10), cutoff=(0.4, 0.6),per_channel=True),
iaa.LogContrast(gain=(0.6, 1.4), per_channel=True),
iaa.LinearContrast((0.4, 1.6), per_channel=True),
iaa.AllChannelsCLAHE(clip_limit=(1, 10), per_channel=True),
iaa.AllChannelsHistogramEqualization(),
iaa.HistogramEqualization()]))
## Augmentation
aug = iaa.SomeOf((0, None), aug_list, random_order=True)
seq = iaa.Sequential(aug)
img = seq.augment_image(img)
##
img_data_aug['width'] = img.shape[1]
img_data_aug['height'] = img.shape[0]
return img_data_aug, img
|
[
"imgaug.augmenters.SomeOf",
"imgaug.augmenters.KMeansColorQuantization",
"numpy.random.randint",
"imgaug.augmenters.LogContrast",
"imgaug.augmenters.AllChannelsHistogramEqualization",
"imgaug.augmenters.GammaContrast",
"numpy.transpose",
"numpy.random.choice",
"copy.deepcopy",
"imgaug.augmenters.LinearContrast",
"imgaug.augmenters.AllChannelsCLAHE",
"imgaug.augmenters.Sequential",
"imgaug.augmenters.MultiplyHueAndSaturation",
"cv2.flip",
"imgaug.augmenters.AddToHueAndSaturation",
"cv2.imread",
"imgaug.augmenters.Grayscale",
"imgaug.augmenters.UniformColorQuantization",
"imgaug.augmenters.SigmoidContrast",
"imgaug.augmenters.HistogramEqualization"
] |
[((1351, 1374), 'copy.deepcopy', 'copy.deepcopy', (['img_data'], {}), '(img_data)\n', (1364, 1374), False, 'import copy\n'), ((1403, 1439), 'cv2.imread', 'cv2.imread', (["img_data_aug['filepath']"], {}), "(img_data_aug['filepath'])\n", (1413, 1439), False, 'import cv2\n'), ((4948, 4998), 'imgaug.augmenters.SomeOf', 'iaa.SomeOf', (['(0, None)', 'aug_list'], {'random_order': '(True)'}), '((0, None), aug_list, random_order=True)\n', (4958, 4998), True, 'import imgaug.augmenters as iaa\n'), ((5013, 5032), 'imgaug.augmenters.Sequential', 'iaa.Sequential', (['aug'], {}), '(aug)\n', (5027, 5032), True, 'import imgaug.augmenters as iaa\n'), ((1737, 1753), 'cv2.flip', 'cv2.flip', (['img', '(1)'], {}), '(img, 1)\n', (1745, 1753), False, 'import cv2\n'), ((2034, 2050), 'cv2.flip', 'cv2.flip', (['img', '(0)'], {}), '(img, 0)\n', (2042, 2050), False, 'import cv2\n'), ((1689, 1712), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2)'], {}), '(0, 2)\n', (1706, 1712), True, 'import numpy as np\n'), ((1986, 2009), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2)'], {}), '(0, 2)\n', (2003, 2009), True, 'import numpy as np\n'), ((2288, 2326), 'numpy.random.choice', 'np.random.choice', (['[0, 90, 180, 270]', '(1)'], {}), '([0, 90, 180, 270], 1)\n', (2304, 2326), True, 'import numpy as np\n'), ((2377, 2405), 'numpy.transpose', 'np.transpose', (['img', '(1, 0, 2)'], {}), '(img, (1, 0, 2))\n', (2389, 2405), True, 'import numpy as np\n'), ((2426, 2442), 'cv2.flip', 'cv2.flip', (['img', '(0)'], {}), '(img, 0)\n', (2434, 2442), False, 'import cv2\n'), ((2496, 2513), 'cv2.flip', 'cv2.flip', (['img', '(-1)'], {}), '(img, -1)\n', (2504, 2513), False, 'import cv2\n'), ((2566, 2594), 'numpy.transpose', 'np.transpose', (['img', '(1, 0, 2)'], {}), '(img, (1, 0, 2))\n', (2578, 2594), True, 'import numpy as np\n'), ((2615, 2631), 'cv2.flip', 'cv2.flip', (['img', '(1)'], {}), '(img, 1)\n', (2623, 2631), False, 'import cv2\n'), ((3587, 3645), 'imgaug.augmenters.MultiplyHueAndSaturation', 'iaa.MultiplyHueAndSaturation', (['(0.5, 1.5)'], {'per_channel': '(True)'}), '((0.5, 1.5), per_channel=True)\n', (3615, 3645), True, 'import imgaug.augmenters as iaa\n'), ((3715, 3769), 'imgaug.augmenters.AddToHueAndSaturation', 'iaa.AddToHueAndSaturation', (['(-50, 50)'], {'per_channel': '(True)'}), '((-50, 50), per_channel=True)\n', (3740, 3769), True, 'import imgaug.augmenters as iaa\n'), ((3839, 3868), 'imgaug.augmenters.KMeansColorQuantization', 'iaa.KMeansColorQuantization', ([], {}), '()\n', (3866, 3868), True, 'import imgaug.augmenters as iaa\n'), ((3938, 3968), 'imgaug.augmenters.UniformColorQuantization', 'iaa.UniformColorQuantization', ([], {}), '()\n', (3966, 3968), True, 'import imgaug.augmenters as iaa\n'), ((4038, 4069), 'imgaug.augmenters.Grayscale', 'iaa.Grayscale', ([], {'alpha': '(0.0, 1.0)'}), '(alpha=(0.0, 1.0))\n', (4051, 4069), True, 'import imgaug.augmenters as iaa\n'), ((4148, 4195), 'imgaug.augmenters.GammaContrast', 'iaa.GammaContrast', (['(0.5, 2.0)'], {'per_channel': '(True)'}), '((0.5, 2.0), per_channel=True)\n', (4165, 4195), True, 'import imgaug.augmenters as iaa\n'), ((4265, 4335), 'imgaug.augmenters.SigmoidContrast', 'iaa.SigmoidContrast', ([], {'gain': '(3, 10)', 'cutoff': '(0.4, 0.6)', 'per_channel': '(True)'}), '(gain=(3, 10), cutoff=(0.4, 0.6), per_channel=True)\n', (4284, 4335), True, 'import imgaug.augmenters as iaa\n'), ((4404, 4454), 'imgaug.augmenters.LogContrast', 'iaa.LogContrast', ([], {'gain': '(0.6, 1.4)', 'per_channel': '(True)'}), '(gain=(0.6, 1.4), per_channel=True)\n', (4419, 4454), True, 'import imgaug.augmenters as iaa\n'), ((4524, 4572), 'imgaug.augmenters.LinearContrast', 'iaa.LinearContrast', (['(0.4, 1.6)'], {'per_channel': '(True)'}), '((0.4, 1.6), per_channel=True)\n', (4542, 4572), True, 'import imgaug.augmenters as iaa\n'), ((4642, 4700), 'imgaug.augmenters.AllChannelsCLAHE', 'iaa.AllChannelsCLAHE', ([], {'clip_limit': '(1, 10)', 'per_channel': '(True)'}), '(clip_limit=(1, 10), per_channel=True)\n', (4662, 4700), True, 'import imgaug.augmenters as iaa\n'), ((4770, 4808), 'imgaug.augmenters.AllChannelsHistogramEqualization', 'iaa.AllChannelsHistogramEqualization', ([], {}), '()\n', (4806, 4808), True, 'import imgaug.augmenters as iaa\n'), ((4878, 4905), 'imgaug.augmenters.HistogramEqualization', 'iaa.HistogramEqualization', ([], {}), '()\n', (4903, 4905), True, 'import imgaug.augmenters as iaa\n')]
|
import numpy as np
from colearning.game import Player
class BasePlayer(Player):
"""docstring for BasePlayer"""
#----Fields
team = None
individual_id = None
def initialize_player(self, team, individual_id):
""" Setup the player's external attributes """
self.team = team
self.individual_id = individual_id
def get_view(self, players, bullets):
"""
Returns what the player is able to see
Outputs:
Fov (in rad)
Num enemy
Num Ally in view
Num Ally ping in view
Enemy bullets in view
"""
output = np.zeros(5)
output[0] = self.fov_angle
for obj in players:
if(self.is_in_fov(obj.position)):
if(obj.team != self.team):
output[1] += 1
else:
output[2] += 1
if(obj.ping):
output[3] += 1
for obj in bullets:
if(self.is_in_fov(obj.position)):
output[4] += 1
return output
def pre_update(self, players, bullets):
""" Get a move from the model """
in_vals = self.get_view(players, bullets)
return self.get_move(in_vals)
#----VIRTUAL FUNTIONS
#----------------------------------------------------
def reset(self):
raise NotImplementedError('Player subclasses must reimplement reset')
def learn(self):
raise NotImplementedError('Player subclasses must reimplement learn')
def get_move(self, in_vals):
raise NotImplementedError('Player subclasses must reimplement get_move')
def set_params(self, params):
raise NotImplementedError('Player subclasses must reimplement set_params')
def get_params(self):
raise NotImplementedError('Player subclasses must reimplement set_params')
def param_dim(self):
raise NotImplementedError('Player subclasses must reimplement param_dim')
def reward(self, amount):
raise NotImplementedError('Player subclasses must reimplement reward')
|
[
"numpy.zeros"
] |
[((649, 660), 'numpy.zeros', 'np.zeros', (['(5)'], {}), '(5)\n', (657, 660), True, 'import numpy as np\n')]
|
import pickle
import logging
import numpy as np
import torch
import models
import utils
logger = logging.getLogger()
class BaseExperiment():
def __init__(self, args):
self.save_dir = args.save_dir
self.burn_in_steps = args.burn_in_steps
self.eval_freq = args.eval_freq
self.cpu = args.cpu
self.batch_size = args.batch_size
self.is_vi = args.is_vi
self.samp_num = args.mcmc_samp_num
self.exp_type = args.exp_type
self.resume_path = args.resume_path
if args.save_name is None:
self.save_name = args.exp_type
else:
self.save_name = args.save_name
self.log = dict()
self.log['user_time'] = 0
''' load dataset '''
dataset_list = utils.get_dataset(args.dataset)
self.trainset = dataset_list[0]
if len(dataset_list) == 2:
self.testset = dataset_list[1]
''' burn_in_sampler is provided only for `burn_in_stage` '''
self.burn_in_sampler = utils.DataSampler(
self.trainset, batch_size=args.batch_size)
''' train_sampler is provided only for `forget_stage` '''
self.train_sampler = utils.DataSampler(
self.trainset, batch_size=args.ifs_iter_bs)
''' train_loader is provided for evaluation '''
self.train_loader = utils.DataLoader(self.trainset, self.batch_size)
self.ifs_params = {
'scaling': args.ifs_scaling,
'iter_T': args.ifs_iter_T,
'samp_T': args.ifs_samp_T,
'iter_bs': args.ifs_iter_bs,
'rm_bs': args.ifs_rm_bs,
'kill_num': args.ifs_kill_num,
}
''' generate the indices of forgetted data '''
self.forgetted_train_idx = self.generate_forget_idx(
self.trainset, self.ifs_params['kill_num'],)
''' forgetting follows random order '''
self.forgetted_train_idx = np.random.permutation(self.forgetted_train_idx)
utils.add_log(self.log, 'forgetted_train_idx', self.forgetted_train_idx)
''' build a loader on forgetted data (for evaluation) '''
self.forgetted_train_loader = utils.DataLoader(self.trainset,
batch_size=self.batch_size, shuffle=False, drop_last=False)
self.forgetted_train_loader.set_sampler_indices(self.forgetted_train_idx)
self.optim_params = {
'opt': args.optim,
'lr': args.lr / len(self.trainset),
'weight_decay': args.weight_decay,
'momentum': args.momentum,
'sghmc_alpha': args.sghmc_alpha,
}
self.lr_params = {
'lr': args.lr / len(self.trainset),
'lr_decay_exp': args.lr_decay_exp,
'lr_decay_rate': args.lr_decay_rate,
'lr_decay_freq': args.lr_decay_freq,
}
def run(self):
real_save_name = '{}-ckpt'.format(self.save_name)
if self.exp_type == 'burn-in-remain':
self.burn_in_sampler.remove( self.forgetted_train_idx )
self.train_loader.remove( self.forgetted_train_idx )
self.burn_in_stage()
self.save_checkpoint(real_save_name)
elif self.exp_type == 'forget':
state_dict = torch.load(self.resume_path)
self.model.load_state_dict(state_dict['model_state_dict'])
self.optimizer.load_state_dict(state_dict['optimizer_state_dict'])
self.forget_stage()
self.save_checkpoint(real_save_name)
else:
raise ValueError('exp {} not found'.format(self.exp_type))
def burn_in_stage(self):
raise NotImplementedError
def forget_stage(self):
''' step 1, obtain the indices of forgetted data '''
self.forgetted_train_idx_loader = utils.IndexBatchSampler(
batch_size=self.ifs_params['rm_bs'],
indices=self.forgetted_train_idx)
''' step 2, obtain train loader (for evaluation) '''
self.train_loader.remove(self.forgetted_train_idx)
''' forgetting preprocessing end '''
def eval_one_epoch(self, model, loader):
raise NotImplementedError
def generate_forget_idx(self, dataset, kill_num):
raise NotImplementedError
def save_checkpoint(self, name, save_log=True, save_model=True):
save_dir = self.save_dir
log = self.log
model = self.model
optimizer = self.optimizer
if save_log:
with open('{}/{}-log.pkl'.format(save_dir, name), 'wb') as f:
pickle.dump(log, f)
if save_model:
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, '{}/{}-model.pkl'.format(save_dir, name))
|
[
"pickle.dump",
"utils.DataLoader",
"utils.DataSampler",
"torch.load",
"utils.add_log",
"numpy.random.permutation",
"utils.get_dataset",
"utils.IndexBatchSampler",
"logging.getLogger"
] |
[((100, 119), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (117, 119), False, 'import logging\n'), ((780, 811), 'utils.get_dataset', 'utils.get_dataset', (['args.dataset'], {}), '(args.dataset)\n', (797, 811), False, 'import utils\n'), ((1031, 1091), 'utils.DataSampler', 'utils.DataSampler', (['self.trainset'], {'batch_size': 'args.batch_size'}), '(self.trainset, batch_size=args.batch_size)\n', (1048, 1091), False, 'import utils\n'), ((1201, 1262), 'utils.DataSampler', 'utils.DataSampler', (['self.trainset'], {'batch_size': 'args.ifs_iter_bs'}), '(self.trainset, batch_size=args.ifs_iter_bs)\n', (1218, 1262), False, 'import utils\n'), ((1361, 1409), 'utils.DataLoader', 'utils.DataLoader', (['self.trainset', 'self.batch_size'], {}), '(self.trainset, self.batch_size)\n', (1377, 1409), False, 'import utils\n'), ((1946, 1993), 'numpy.random.permutation', 'np.random.permutation', (['self.forgetted_train_idx'], {}), '(self.forgetted_train_idx)\n', (1967, 1993), True, 'import numpy as np\n'), ((2003, 2075), 'utils.add_log', 'utils.add_log', (['self.log', '"""forgetted_train_idx"""', 'self.forgetted_train_idx'], {}), "(self.log, 'forgetted_train_idx', self.forgetted_train_idx)\n", (2016, 2075), False, 'import utils\n'), ((2181, 2276), 'utils.DataLoader', 'utils.DataLoader', (['self.trainset'], {'batch_size': 'self.batch_size', 'shuffle': '(False)', 'drop_last': '(False)'}), '(self.trainset, batch_size=self.batch_size, shuffle=False,\n drop_last=False)\n', (2197, 2276), False, 'import utils\n'), ((3798, 3897), 'utils.IndexBatchSampler', 'utils.IndexBatchSampler', ([], {'batch_size': "self.ifs_params['rm_bs']", 'indices': 'self.forgetted_train_idx'}), "(batch_size=self.ifs_params['rm_bs'], indices=self.\n forgetted_train_idx)\n", (3821, 3897), False, 'import utils\n'), ((3255, 3283), 'torch.load', 'torch.load', (['self.resume_path'], {}), '(self.resume_path)\n', (3265, 3283), False, 'import torch\n'), ((4554, 4573), 'pickle.dump', 'pickle.dump', (['log', 'f'], {}), '(log, f)\n', (4565, 4573), False, 'import pickle\n')]
|
import numpy as np
import cv2
import logging
from .utils.localization import LocResult
class CppLocalization:
def __init__(self, db_ids, local_db, global_descriptors, images, points):
import _hloc_cpp
self.hloc = _hloc_cpp.HLoc()
id_to_idx = {}
old_to_new_kpt = {}
for idx, i in enumerate(db_ids):
keypoints = local_db[i].keypoints.T.astype(np.float32).copy()
local_desc = local_db[i].descriptors.T.astype(np.float32).copy()
global_desc = global_descriptors[idx].astype(np.float32).copy()
# keypoints are NOT undistorted or nomalized
idx = self.hloc.addImage(global_desc, keypoints, local_desc)
id_to_idx[i] = idx
old_to_new_kpt[i] = {
k: j for j, k
in enumerate(np.where(images[i].point3D_ids >= 0)[0])}
for i, pt in points.items():
observations = np.array(
[[id_to_idx[im_id], old_to_new_kpt[im_id][kpt_id]]
for im_id, kpt_id in zip(pt.image_ids, pt.point2D_idxs)],
dtype=np.int32)
self.hloc.add3dPoint(
pt.xyz.astype(np.float32).copy(), observations.copy())
self.hloc.buildIndex()
def localize(self, query_info, query_item, global_transf, local_transf):
global_desc = global_transf(query_item.global_desc[np.newaxis])[0]
local_desc = local_transf(query_item.local_desc)
keypoints = cv2.undistortPoints(
query_item.keypoints[np.newaxis], query_info.K,
np.array([query_info.dist, 0, 0, 0]))[0]
logging.info('Localizing image %s', query_info.name)
ret = self.cpp_backend.localize(
global_desc.astype(np.float32),
keypoints.astype(np.float32).T.copy(),
local_desc.astype(np.float32).T.copy())
(success, num_components_total, num_components_tested,
last_component_size, num_db_landmarks, num_matches,
num_inliers, num_iters, global_ms, covis_ms, local_ms, pnp_ms) = ret
result = LocResult(success, num_inliers, 0, np.eye(4))
stats = {
'success': success,
'num_components_total': num_components_total,
'num_components_tested': num_components_tested,
'last_component_size': last_component_size,
'num_db_landmarks': num_db_landmarks,
'num_matches': num_matches,
'num_inliers': num_inliers,
'num_ransac_iters': num_iters,
'timings': {
'global': global_ms,
'covis': covis_ms,
'local': local_ms,
'pnp': pnp_ms,
}
}
return (result, stats)
|
[
"_hloc_cpp.HLoc",
"logging.info",
"numpy.where",
"numpy.array",
"numpy.eye"
] |
[((236, 252), '_hloc_cpp.HLoc', '_hloc_cpp.HLoc', ([], {}), '()\n', (250, 252), False, 'import _hloc_cpp\n'), ((1628, 1680), 'logging.info', 'logging.info', (['"""Localizing image %s"""', 'query_info.name'], {}), "('Localizing image %s', query_info.name)\n", (1640, 1680), False, 'import logging\n'), ((2124, 2133), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (2130, 2133), True, 'import numpy as np\n'), ((1578, 1614), 'numpy.array', 'np.array', (['[query_info.dist, 0, 0, 0]'], {}), '([query_info.dist, 0, 0, 0])\n', (1586, 1614), True, 'import numpy as np\n'), ((828, 864), 'numpy.where', 'np.where', (['(images[i].point3D_ids >= 0)'], {}), '(images[i].point3D_ids >= 0)\n', (836, 864), True, 'import numpy as np\n')]
|
import scipy.optimize as so
import numpy as np
import scipy as sp
import scipy.io as sio
import os
import sys
import matplotlib.pyplot as plt
localSize = 200
diagAdd = 0
maxIte = localSize
if len(sys.argv) > 1:
localSize = sys.argv[1]
if len(sys.argv) > 2:
diagAdd = sys.argv[2]
if len(sys.argv) > 3:
maxIte = sys.argv[3]
print('mpirun -n 2 --map-by numa ./BCQPSolver_test ' +
str(localSize)+' '+str(diagAdd)+' > ./testLog')
os.system('mpirun -n 2 --map-by numa ./BCQPSolver_test ' +
str(localSize)+' '+str(diagAdd)+' > ./testLog')
Amat = sio.mmread('Amat_TCMAT.mtx')
bvec = sio.mmread('bvec_TV.mtx').flatten()
lb = sio.mmread('lbvec_TV.mtx').flatten()
ub = sio.mmread('ubvec_TV.mtx').flatten()
xsolBBPGD = sio.mmread('xsolBBPGD_TV.mtx').flatten()
xsolAPGD = sio.mmread('xsolAPGD_TV.mtx').flatten()
xguess = np.zeros(len(xsolBBPGD))
def func(x):
return 0.5*x.dot((Amat.dot(x)))+bvec.dot(x)
def grad(x):
return Amat.dot(x)+bvec
# minimize f = x^T A x + b^T x, subject to lb <= x <= ub
bound = so.Bounds(lb, ub)
res = so.minimize(func, xguess, jac=grad, bounds=bound,
tol=1e-8, method='L-BFGS-B')
print('scipy optimization func eval:', res.nfev)
if res.success:
print('reference min:', res.fun)
print('BBPGD min:', func(xsolBBPGD))
print('APGD min:', func(xsolAPGD))
errorBBPGD = xsolBBPGD-res.x
errorAPGD = xsolAPGD-res.x
print('BBPGD error norm: ', np.linalg.norm(errorBBPGD))
print(' APGD error norm: ', np.linalg.norm(errorAPGD))
else:
print('scipy optimization failed')
# plot BBPGD and APGD history
os.system('grep BBPGD_HISTORY ./testLog > ./BBPGD.log')
os.system('grep APGD_HISTORY ./testLog > ./APGD.log')
bbhistory = np.genfromtxt('BBPGD.log', usecols=(5, 6), delimiter=',')
ahistory = np.genfromtxt('APGD.log', usecols=(5, 6), delimiter=',')
plt.semilogy(bbhistory[:, 1], bbhistory[:, 0], label='BBPGD')
plt.semilogy(ahistory[:, 1], ahistory[:, 0], label='APGD')
plt.ylabel('residual')
plt.xlabel('MV Count')
plt.legend()
plt.show()
plt.savefig('testBCQP.png', dpi=150)
plt.loglog(bbhistory[:, 1], bbhistory[:, 0], label='BBPGD')
plt.loglog(ahistory[:, 1], ahistory[:, 0], label='APGD')
plt.ylabel('residual')
plt.xlabel('MV Count')
plt.legend()
plt.show()
plt.savefig('testBCQP-log.png', dpi=150)
|
[
"matplotlib.pyplot.loglog",
"scipy.optimize.minimize",
"matplotlib.pyplot.show",
"matplotlib.pyplot.legend",
"numpy.genfromtxt",
"os.system",
"scipy.io.mmread",
"scipy.optimize.Bounds",
"numpy.linalg.norm",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.semilogy",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.savefig"
] |
[((572, 600), 'scipy.io.mmread', 'sio.mmread', (['"""Amat_TCMAT.mtx"""'], {}), "('Amat_TCMAT.mtx')\n", (582, 600), True, 'import scipy.io as sio\n'), ((1039, 1056), 'scipy.optimize.Bounds', 'so.Bounds', (['lb', 'ub'], {}), '(lb, ub)\n', (1048, 1056), True, 'import scipy.optimize as so\n'), ((1063, 1142), 'scipy.optimize.minimize', 'so.minimize', (['func', 'xguess'], {'jac': 'grad', 'bounds': 'bound', 'tol': '(1e-08)', 'method': '"""L-BFGS-B"""'}), "(func, xguess, jac=grad, bounds=bound, tol=1e-08, method='L-BFGS-B')\n", (1074, 1142), True, 'import scipy.optimize as so\n'), ((1603, 1658), 'os.system', 'os.system', (['"""grep BBPGD_HISTORY ./testLog > ./BBPGD.log"""'], {}), "('grep BBPGD_HISTORY ./testLog > ./BBPGD.log')\n", (1612, 1658), False, 'import os\n'), ((1659, 1712), 'os.system', 'os.system', (['"""grep APGD_HISTORY ./testLog > ./APGD.log"""'], {}), "('grep APGD_HISTORY ./testLog > ./APGD.log')\n", (1668, 1712), False, 'import os\n'), ((1726, 1783), 'numpy.genfromtxt', 'np.genfromtxt', (['"""BBPGD.log"""'], {'usecols': '(5, 6)', 'delimiter': '""","""'}), "('BBPGD.log', usecols=(5, 6), delimiter=',')\n", (1739, 1783), True, 'import numpy as np\n'), ((1795, 1851), 'numpy.genfromtxt', 'np.genfromtxt', (['"""APGD.log"""'], {'usecols': '(5, 6)', 'delimiter': '""","""'}), "('APGD.log', usecols=(5, 6), delimiter=',')\n", (1808, 1851), True, 'import numpy as np\n'), ((1853, 1914), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['bbhistory[:, 1]', 'bbhistory[:, 0]'], {'label': '"""BBPGD"""'}), "(bbhistory[:, 1], bbhistory[:, 0], label='BBPGD')\n", (1865, 1914), True, 'import matplotlib.pyplot as plt\n'), ((1915, 1973), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['ahistory[:, 1]', 'ahistory[:, 0]'], {'label': '"""APGD"""'}), "(ahistory[:, 1], ahistory[:, 0], label='APGD')\n", (1927, 1973), True, 'import matplotlib.pyplot as plt\n'), ((1974, 1996), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""residual"""'], {}), "('residual')\n", (1984, 1996), True, 'import matplotlib.pyplot as plt\n'), ((1997, 2019), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""MV Count"""'], {}), "('MV Count')\n", (2007, 2019), True, 'import matplotlib.pyplot as plt\n'), ((2020, 2032), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2030, 2032), True, 'import matplotlib.pyplot as plt\n'), ((2033, 2043), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2041, 2043), True, 'import matplotlib.pyplot as plt\n'), ((2044, 2080), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""testBCQP.png"""'], {'dpi': '(150)'}), "('testBCQP.png', dpi=150)\n", (2055, 2080), True, 'import matplotlib.pyplot as plt\n'), ((2082, 2141), 'matplotlib.pyplot.loglog', 'plt.loglog', (['bbhistory[:, 1]', 'bbhistory[:, 0]'], {'label': '"""BBPGD"""'}), "(bbhistory[:, 1], bbhistory[:, 0], label='BBPGD')\n", (2092, 2141), True, 'import matplotlib.pyplot as plt\n'), ((2142, 2198), 'matplotlib.pyplot.loglog', 'plt.loglog', (['ahistory[:, 1]', 'ahistory[:, 0]'], {'label': '"""APGD"""'}), "(ahistory[:, 1], ahistory[:, 0], label='APGD')\n", (2152, 2198), True, 'import matplotlib.pyplot as plt\n'), ((2199, 2221), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""residual"""'], {}), "('residual')\n", (2209, 2221), True, 'import matplotlib.pyplot as plt\n'), ((2222, 2244), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""MV Count"""'], {}), "('MV Count')\n", (2232, 2244), True, 'import matplotlib.pyplot as plt\n'), ((2245, 2257), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2255, 2257), True, 'import matplotlib.pyplot as plt\n'), ((2258, 2268), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2266, 2268), True, 'import matplotlib.pyplot as plt\n'), ((2269, 2309), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""testBCQP-log.png"""'], {'dpi': '(150)'}), "('testBCQP-log.png', dpi=150)\n", (2280, 2309), True, 'import matplotlib.pyplot as plt\n'), ((608, 633), 'scipy.io.mmread', 'sio.mmread', (['"""bvec_TV.mtx"""'], {}), "('bvec_TV.mtx')\n", (618, 633), True, 'import scipy.io as sio\n'), ((649, 675), 'scipy.io.mmread', 'sio.mmread', (['"""lbvec_TV.mtx"""'], {}), "('lbvec_TV.mtx')\n", (659, 675), True, 'import scipy.io as sio\n'), ((691, 717), 'scipy.io.mmread', 'sio.mmread', (['"""ubvec_TV.mtx"""'], {}), "('ubvec_TV.mtx')\n", (701, 717), True, 'import scipy.io as sio\n'), ((740, 770), 'scipy.io.mmread', 'sio.mmread', (['"""xsolBBPGD_TV.mtx"""'], {}), "('xsolBBPGD_TV.mtx')\n", (750, 770), True, 'import scipy.io as sio\n'), ((792, 821), 'scipy.io.mmread', 'sio.mmread', (['"""xsolAPGD_TV.mtx"""'], {}), "('xsolAPGD_TV.mtx')\n", (802, 821), True, 'import scipy.io as sio\n'), ((1440, 1466), 'numpy.linalg.norm', 'np.linalg.norm', (['errorBBPGD'], {}), '(errorBBPGD)\n', (1454, 1466), True, 'import numpy as np\n'), ((1500, 1525), 'numpy.linalg.norm', 'np.linalg.norm', (['errorAPGD'], {}), '(errorAPGD)\n', (1514, 1525), True, 'import numpy as np\n')]
|
import pytest
import numpy as np
from scipy.ndimage import gaussian_filter1d
import astropy.units as u
from astropy.utils.data import download_file
from astropy.tests.helper import assert_quantity_allclose
from ..io import EchelleSpectrum, Template, Spectrum
from ..ccf import cross_corr
lkca4_id = "1x3nIg1P5tYFQqJrwEpQU11XQOs3ImH3v"
proxima_id = "1I7E1x1XRjcxXNQXiuaajb_Jz7Wn2N_Eo"
# T=3000 K, Molecule=TiO:
template_id = "1eGUBfk7Q9zaXgJQJtVFB6pit7cmoGCpn"
base_url = "https://drive.google.com/uc?export=download&id={0}"
lkca4_url = base_url.format(lkca4_id)
proxima_url = base_url.format(proxima_id)
template_url = base_url.format(template_id)
@pytest.mark.remote_data
@pytest.mark.parametrize("url,", [
lkca4_url,
proxima_url,
])
def test_ingest_e2ds(url):
spectrum_path = download_file(url)
spectrum = EchelleSpectrum.from_e2ds(spectrum_path)
assert hasattr(spectrum.orders[0], 'wavelength')
assert hasattr(spectrum.orders[0], 'flux')
assert len(spectrum.orders) == 72
assert spectrum.header['DATE-OBS'].startswith('2004')
assert (spectrum.orders[1].wavelength.mean() >
spectrum.orders[0].wavelength.mean())
@pytest.mark.remote_data
@pytest.mark.parametrize("url,", [
lkca4_url,
proxima_url,
])
def test_continuum_normalize(url):
spectrum_path = download_file(url)
spectrum = EchelleSpectrum.from_e2ds(spectrum_path)
spectrum.continuum_normalize()
# Confirm that each echelle order is roughly continuum normalized (roughly
# distributed about unity):
for order in spectrum.orders:
assert abs(np.median(order.flux) - 1) < 1
@pytest.mark.remote_data
@pytest.mark.parametrize("url,", [
proxima_url,
])
def test_end_to_end(url):
spectrum_path = download_file(url)
spectrum = EchelleSpectrum.from_e2ds(spectrum_path)
spectrum.continuum_normalize()
template_3000_tio_path = download_file(template_url)
template_3000_tio = Template.from_npy(template_3000_tio_path)
ccf = cross_corr(spectrum.nearest_order(6800), template_3000_tio)
# Check that the TiO signal shows up at the radial velocity of the star
assert_quantity_allclose(ccf.rv, -22 * u.km / u.s, atol=4 * u.km / u.s)
# Check that the SNR of the detection is significant
assert ccf.signal_to_noise > 5
@pytest.mark.parametrize("seed, snr,", [
(42, 13),
(1984, 10),
])
def test_ccf(seed, snr):
# Make test reproducible:
np.random.seed(seed)
# Generate a wavelength grid:
wl = np.arange(6800, 6900, 0.1)
# Generate a pseudo-random absorption pattern
absorption_pattern = gaussian_filter1d(0.1 * np.random.randn(len(wl)), 5)
absorption_pattern = absorption_pattern - absorption_pattern.min()
# Roll the absorption pattern offset by 3 indices
index_offset = 3
fl = np.ones_like(wl) - np.roll(absorption_pattern, index_offset)
spectrum = Spectrum(wl, fl)
emission = absorption_pattern / np.trapz(absorption_pattern, wl)
template = Template(wl, emission)
ccf = cross_corr(spectrum, template, start_lam=-10, end_lam=10,
n_steps=100)
# Check that S/N is approximately correct:
assert abs(ccf.signal_to_noise - snr) < 1
# Check that the estimated radial velocity is equivalent to index offset
ref_wl = 6800 * u.Angstrom
measured_velocity_offset = (ccf.rv.to(u.Angstrom,
u.doppler_optical(ref_wl)) -
ref_wl) / ((wl[1] - wl[0])*u.Angstrom)
assert_quantity_allclose(measured_velocity_offset, index_offset, atol=1e-2)
|
[
"numpy.trapz",
"numpy.random.seed",
"numpy.ones_like",
"numpy.roll",
"numpy.median",
"astropy.tests.helper.assert_quantity_allclose",
"numpy.arange",
"astropy.units.doppler_optical",
"astropy.utils.data.download_file",
"pytest.mark.parametrize"
] |
[((681, 738), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""url,"""', '[lkca4_url, proxima_url]'], {}), "('url,', [lkca4_url, proxima_url])\n", (704, 738), False, 'import pytest\n'), ((1198, 1255), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""url,"""', '[lkca4_url, proxima_url]'], {}), "('url,', [lkca4_url, proxima_url])\n", (1221, 1255), False, 'import pytest\n'), ((1656, 1702), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""url,"""', '[proxima_url]'], {}), "('url,', [proxima_url])\n", (1679, 1702), False, 'import pytest\n'), ((2311, 2372), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed, snr,"""', '[(42, 13), (1984, 10)]'], {}), "('seed, snr,', [(42, 13), (1984, 10)])\n", (2334, 2372), False, 'import pytest\n'), ((797, 815), 'astropy.utils.data.download_file', 'download_file', (['url'], {}), '(url)\n', (810, 815), False, 'from astropy.utils.data import download_file\n'), ((1322, 1340), 'astropy.utils.data.download_file', 'download_file', (['url'], {}), '(url)\n', (1335, 1340), False, 'from astropy.utils.data import download_file\n'), ((1756, 1774), 'astropy.utils.data.download_file', 'download_file', (['url'], {}), '(url)\n', (1769, 1774), False, 'from astropy.utils.data import download_file\n'), ((1897, 1924), 'astropy.utils.data.download_file', 'download_file', (['template_url'], {}), '(template_url)\n', (1910, 1924), False, 'from astropy.utils.data import download_file\n'), ((2143, 2214), 'astropy.tests.helper.assert_quantity_allclose', 'assert_quantity_allclose', (['ccf.rv', '(-22 * u.km / u.s)'], {'atol': '(4 * u.km / u.s)'}), '(ccf.rv, -22 * u.km / u.s, atol=4 * u.km / u.s)\n', (2167, 2214), False, 'from astropy.tests.helper import assert_quantity_allclose\n'), ((2443, 2463), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (2457, 2463), True, 'import numpy as np\n'), ((2508, 2534), 'numpy.arange', 'np.arange', (['(6800)', '(6900)', '(0.1)'], {}), '(6800, 6900, 0.1)\n', (2517, 2534), True, 'import numpy as np\n'), ((3529, 3604), 'astropy.tests.helper.assert_quantity_allclose', 'assert_quantity_allclose', (['measured_velocity_offset', 'index_offset'], {'atol': '(0.01)'}), '(measured_velocity_offset, index_offset, atol=0.01)\n', (3553, 3604), False, 'from astropy.tests.helper import assert_quantity_allclose\n'), ((2820, 2836), 'numpy.ones_like', 'np.ones_like', (['wl'], {}), '(wl)\n', (2832, 2836), True, 'import numpy as np\n'), ((2839, 2880), 'numpy.roll', 'np.roll', (['absorption_pattern', 'index_offset'], {}), '(absorption_pattern, index_offset)\n', (2846, 2880), True, 'import numpy as np\n'), ((2951, 2983), 'numpy.trapz', 'np.trapz', (['absorption_pattern', 'wl'], {}), '(absorption_pattern, wl)\n', (2959, 2983), True, 'import numpy as np\n'), ((3424, 3449), 'astropy.units.doppler_optical', 'u.doppler_optical', (['ref_wl'], {}), '(ref_wl)\n', (3441, 3449), True, 'import astropy.units as u\n'), ((1597, 1618), 'numpy.median', 'np.median', (['order.flux'], {}), '(order.flux)\n', (1606, 1618), True, 'import numpy as np\n')]
|
import numpy as np
import scipy.linalg as la
import seaborn as sns
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
from plot_utils import *
nburnin = 500
nsample = 1000
niter = nburnin + nsample
##################
### 1-D Normal ###
##################
np.random.seed(2019)
sample_mean = 1
sample_sig2 = 1
X = np.random.normal(sample_mean, sample_sig2, size = 100)
U = lambda mu: mu**2/2 + np.sum((X-mu)**2/2)
gradU = lambda mu: mu + np.sum(mu-X)
# theoretical distribution
sig2_pos = 1/(1/1 + len(X) / np.cov(X))
mean_pos = (0 + X.mean()*len(X)/np.cov(X))/(1/1 + len(X) / np.cov(X))
dist = multivariate_normal(mean_pos, (sig2_pos))
sim = np.random.normal(mean_pos, np.sqrt(sig2_pos), nsample)
def leapfrog(gradU, p, r, eps = 0.01, L = 100, M_i = np.array([[1,0],[0,1]])):
"""
Using leapfrog to discretize
Args:
gradU: gradient of potential energy (posterior)
p: position (parameters)
r: momentum (auxiliary)
eps: stepsize
L: # of steps
M_i: inversion of preconditioned mass matrix (omitted since assumed to be identity)
"""
r = r - eps/2 * gradU(p)
for i in range(L-1):
p = p + eps * r
r = r - eps * gradU(p)
p = p + eps * r
r = r - eps/2 * gradU(p)
return p, r
def log_r(U, p0, r0, p, r, M_i = np.array([[1,0],[0,1]])):
"""log of acceptance ratio"""
return (U(p0) + 1/2*r0.dot(r0)) - (U(p0) + 1/2*r.dot(r))
eps = 0.01
L = 100
# M_i = np.array([[1]]) # for we assume Mass matrix M either to be identity or 1, it can be omitted.
samples = np.zeros(niter+1)
p = np.array([0.0])
samples[0] = p
for k in range(niter):
r0 = np.random.normal(0,1,1)
p, r = leapfrog(gradU, p, r0, eps, L)
# M-H
p0 = samples[k]
a = np.exp(log_r(U, p0, r0, p, r))
u = np.random.rand()
if u < a:
samples[k+1] = p
else:
samples[k+1] = p0
print("%.2f %%" % np.round((k+1)/niter*100,2), end = "\r")
plt.figure(figsize=(10,6))
sns.kdeplot(samples[nburnin+1:], label = 'Samples with HMC')
sns.kdeplot(sim, label = 'Samples from true posterior')
plt.title("HMC (univariate normal)")
# plt.savefig('HMC_1d.png');
##################
### 2-D Normal ###
##################
mean_or = np.array([1,-1])
sig_or = np.array([[1,0.75],[0.75,1]])
sig_or_i = la.inv(sig_or)
np.random.seed(2019)
data = multivariate_normal(mean_or, sig_or).rvs(100)
Sig_pos = la.inv(len(data)*la.inv(np.cov(data.T)) + np.eye(2))
mean_pos = (la.inv(len(data)*la.inv(np.cov(data.T)) + np.eye(2)) @
(len(data)*la.inv(np.cov(data.T))@np.mean(data,0) + np.eye(2)@np.zeros(2)))
sim = multivariate_normal(mean_pos, Sig_pos).rvs(nsample)
U = lambda mu: np.sum(np.diag((data - mu)@sig_or_i@(data - mu).T/2)) + 1/2 * mu.T @ mu
gradU = lambda mu: -sig_or_i.dot((data-mu).T).sum(1) + mu
eps = 0.01
L = 100
np.random.seed(2019)
orbit = np.zeros((niter+1, 2))
p = np.array([0,0.0])
orbit[0] = p
for k in range(niter):
r0 = np.random.normal(0,1,2)
p, r = leapfrog(gradU, p, r0, 0.01, L)
# accept-reject
p0 = orbit[k]
a = np.exp(log_r(U, p0, r0, p, r))
u = np.random.rand()
if u < a:
orbit[k+1] = p
else:
orbit[k+1] = p0
print("%.2f %%" % np.round((k+1)/niter*100,2), end = "\r")
kde_stack(orbit[nburnin+1:,0], orbit[nburnin+1:,1], sim[:,0], sim[:,1])
|
[
"matplotlib.pyplot.title",
"numpy.random.seed",
"seaborn.kdeplot",
"numpy.sum",
"numpy.zeros",
"scipy.stats.multivariate_normal",
"scipy.linalg.inv",
"matplotlib.pyplot.figure",
"numpy.mean",
"numpy.array",
"numpy.random.normal",
"numpy.random.rand",
"numpy.eye",
"numpy.cov",
"numpy.round",
"numpy.diag",
"numpy.sqrt"
] |
[((322, 342), 'numpy.random.seed', 'np.random.seed', (['(2019)'], {}), '(2019)\n', (336, 342), True, 'import numpy as np\n'), ((379, 431), 'numpy.random.normal', 'np.random.normal', (['sample_mean', 'sample_sig2'], {'size': '(100)'}), '(sample_mean, sample_sig2, size=100)\n', (395, 431), True, 'import numpy as np\n'), ((662, 701), 'scipy.stats.multivariate_normal', 'multivariate_normal', (['mean_pos', 'sig2_pos'], {}), '(mean_pos, sig2_pos)\n', (681, 701), False, 'from scipy.stats import multivariate_normal\n'), ((1644, 1663), 'numpy.zeros', 'np.zeros', (['(niter + 1)'], {}), '(niter + 1)\n', (1652, 1663), True, 'import numpy as np\n'), ((1666, 1681), 'numpy.array', 'np.array', (['[0.0]'], {}), '([0.0])\n', (1674, 1681), True, 'import numpy as np\n'), ((2034, 2061), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (2044, 2061), True, 'import matplotlib.pyplot as plt\n'), ((2061, 2121), 'seaborn.kdeplot', 'sns.kdeplot', (['samples[nburnin + 1:]'], {'label': '"""Samples with HMC"""'}), "(samples[nburnin + 1:], label='Samples with HMC')\n", (2072, 2121), True, 'import seaborn as sns\n'), ((2122, 2175), 'seaborn.kdeplot', 'sns.kdeplot', (['sim'], {'label': '"""Samples from true posterior"""'}), "(sim, label='Samples from true posterior')\n", (2133, 2175), True, 'import seaborn as sns\n'), ((2178, 2214), 'matplotlib.pyplot.title', 'plt.title', (['"""HMC (univariate normal)"""'], {}), "('HMC (univariate normal)')\n", (2187, 2214), True, 'import matplotlib.pyplot as plt\n'), ((2316, 2333), 'numpy.array', 'np.array', (['[1, -1]'], {}), '([1, -1])\n', (2324, 2333), True, 'import numpy as np\n'), ((2342, 2374), 'numpy.array', 'np.array', (['[[1, 0.75], [0.75, 1]]'], {}), '([[1, 0.75], [0.75, 1]])\n', (2350, 2374), True, 'import numpy as np\n'), ((2383, 2397), 'scipy.linalg.inv', 'la.inv', (['sig_or'], {}), '(sig_or)\n', (2389, 2397), True, 'import scipy.linalg as la\n'), ((2398, 2418), 'numpy.random.seed', 'np.random.seed', (['(2019)'], {}), '(2019)\n', (2412, 2418), True, 'import numpy as np\n'), ((2917, 2937), 'numpy.random.seed', 'np.random.seed', (['(2019)'], {}), '(2019)\n', (2931, 2937), True, 'import numpy as np\n'), ((2947, 2971), 'numpy.zeros', 'np.zeros', (['(niter + 1, 2)'], {}), '((niter + 1, 2))\n', (2955, 2971), True, 'import numpy as np\n'), ((2974, 2992), 'numpy.array', 'np.array', (['[0, 0.0]'], {}), '([0, 0.0])\n', (2982, 2992), True, 'import numpy as np\n'), ((737, 754), 'numpy.sqrt', 'np.sqrt', (['sig2_pos'], {}), '(sig2_pos)\n', (744, 754), True, 'import numpy as np\n'), ((820, 846), 'numpy.array', 'np.array', (['[[1, 0], [0, 1]]'], {}), '([[1, 0], [0, 1]])\n', (828, 846), True, 'import numpy as np\n'), ((1390, 1416), 'numpy.array', 'np.array', (['[[1, 0], [0, 1]]'], {}), '([[1, 0], [0, 1]])\n', (1398, 1416), True, 'import numpy as np\n'), ((1729, 1754), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', '(1)'], {}), '(0, 1, 1)\n', (1745, 1754), True, 'import numpy as np\n'), ((1873, 1889), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1887, 1889), True, 'import numpy as np\n'), ((3037, 3062), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', '(2)'], {}), '(0, 1, 2)\n', (3053, 3062), True, 'import numpy as np\n'), ((3190, 3206), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (3204, 3206), True, 'import numpy as np\n'), ((460, 485), 'numpy.sum', 'np.sum', (['((X - mu) ** 2 / 2)'], {}), '((X - mu) ** 2 / 2)\n', (466, 485), True, 'import numpy as np\n'), ((504, 518), 'numpy.sum', 'np.sum', (['(mu - X)'], {}), '(mu - X)\n', (510, 518), True, 'import numpy as np\n'), ((2426, 2462), 'scipy.stats.multivariate_normal', 'multivariate_normal', (['mean_or', 'sig_or'], {}), '(mean_or, sig_or)\n', (2445, 2462), False, 'from scipy.stats import multivariate_normal\n'), ((2526, 2535), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (2532, 2535), True, 'import numpy as np\n'), ((2699, 2737), 'scipy.stats.multivariate_normal', 'multivariate_normal', (['mean_pos', 'Sig_pos'], {}), '(mean_pos, Sig_pos)\n', (2718, 2737), False, 'from scipy.stats import multivariate_normal\n'), ((574, 583), 'numpy.cov', 'np.cov', (['X'], {}), '(X)\n', (580, 583), True, 'import numpy as np\n'), ((617, 626), 'numpy.cov', 'np.cov', (['X'], {}), '(X)\n', (623, 626), True, 'import numpy as np\n'), ((644, 653), 'numpy.cov', 'np.cov', (['X'], {}), '(X)\n', (650, 653), True, 'import numpy as np\n'), ((1988, 2022), 'numpy.round', 'np.round', (['((k + 1) / niter * 100)', '(2)'], {}), '((k + 1) / niter * 100, 2)\n', (1996, 2022), True, 'import numpy as np\n'), ((2591, 2600), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (2597, 2600), True, 'import numpy as np\n'), ((2650, 2666), 'numpy.mean', 'np.mean', (['data', '(0)'], {}), '(data, 0)\n', (2657, 2666), True, 'import numpy as np\n'), ((2668, 2677), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (2674, 2677), True, 'import numpy as np\n'), ((2678, 2689), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (2686, 2689), True, 'import numpy as np\n'), ((2774, 2825), 'numpy.diag', 'np.diag', (['((data - mu) @ sig_or_i @ (data - mu).T / 2)'], {}), '((data - mu) @ sig_or_i @ (data - mu).T / 2)\n', (2781, 2825), True, 'import numpy as np\n'), ((3301, 3335), 'numpy.round', 'np.round', (['((k + 1) / niter * 100)', '(2)'], {}), '((k + 1) / niter * 100, 2)\n', (3309, 3335), True, 'import numpy as np\n'), ((2508, 2522), 'numpy.cov', 'np.cov', (['data.T'], {}), '(data.T)\n', (2514, 2522), True, 'import numpy as np\n'), ((2573, 2587), 'numpy.cov', 'np.cov', (['data.T'], {}), '(data.T)\n', (2579, 2587), True, 'import numpy as np\n'), ((2634, 2648), 'numpy.cov', 'np.cov', (['data.T'], {}), '(data.T)\n', (2640, 2648), True, 'import numpy as np\n')]
|
# coding: utf-8
# ## Pothole Detection
# #### Load important libraries
# In[1]:
import cv2
import numpy as np
import pygame
import time
import smtplib
import sys
from matplotlib import pyplot as plt
# In[2]:
file_name = 'pothole.jpg'
#file name can be passed as an commandline argument.
if sys.argv[1] != None:
file_name = sys.argv[1]
# Show the image
# Open a new thread to manage the external cv2 interaction
cv2.startWindowThread()
def plt_show(image, title=""):
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
plt.axis("off")
plt.title(title)
# plt.imshow(image, cmap="Greys_r")
# plt.imshow(image, cmap=plt.cm.Spectral)
plt.imshow(image, cmap=plt.cm.Greys_r)
plt.show()
# #### Resize the image
# In[3]:
def image_resize(image, width = None, height = None, inter = cv2.INTER_AREA):
# initialize the dimensions of the image to be resized and
# grab the image size
dim = None
(h, w) = image.shape[:2]
# if both the width and height are None, then return the
# original image
if width is None and height is None:
return image
# check to see if the width is None
if width is None:
# calculate the ratio of the height and construct the
# dimensions
r = height / float(h)
dim = (int(w * r), height)
# otherwise, the height is None
else:
# calculate the ratio of the width and construct the
# dimensions
r = width / float(w)
dim = (width, int(h * r))
# resize the image
resized = cv2.resize(image, dim, interpolation = inter)
# return the resized image
return resized
# In[4]:
r_image1 = cv2.imread(file_name)
r_image2 = image_resize(r_image1, width = 275, height = 180)
# In[5]:
plt_show(r_image2)
# In[6]:
plt.title("Pothole Image")
plt.imshow(r_image2)
plt.show()
#resize_image = cv2.resize(r_image1, (275,180))
#plt_show(resize_image)
# In[7]:
#im = cv2.imread('index4.jpg')
im = r_image2
plt_show(im)
# In[8]:
# Convert the GrayScale
gray1 = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
plt_show(gray1)
# In[9]:
# save the image
cv2.imwrite('grayImg.jpg', gray1)
# #### Contour Detection Code
# In[10]:
imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
plt_show(imgray)
# In[11]:
ret,thresh = cv2.threshold(imgray,127,255,0)
# In[12]:
#contours1, _, a = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
image1, contours1, hierarchy1 = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
# In[13]:
plt_show(image1)
# In[14]:
#print(contours1)
#contours1.shape
# plt.title("Pothole Image")
# plt.imshow(image1)
# plt.show()
# In[15]:
image2, contours2, hierarchy2 = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# In[16]:
plt_show(image2)
# In[17]:
# copy the real image
img2 = im.copy()
# In[18]:
plt_show(img2)
# In[19]:
out = cv2.drawContours(img2, contours2, -1, (0,250,0),1)
# In[20]:
plt.title("drawContours Pothole Image")
plt.imshow(out)
plt.show()
# #### Detec the pothole
# In[21]:
cv2.imshow('img1',img2)
cv2.waitKey(0)
plt.subplot(331),plt.imshow(im),plt.title('GRAY')
plt.xticks([]), plt.yticks([])
# In[22]:
img = cv2.imread('index2.jpg',0)
# In[23]:
plt_show(img)
# In[24]:
ret,thresh = cv2.threshold(img,127,255,0)
# In[25]:
image, contours, hierarchy = cv2.findContours(thresh, 1, 2)
# In[26]:
cnt = contours[0]
M = cv2.moments(cnt)
print(M)
# In[27]:
perimeter = cv2.arcLength(cnt,True)
print (perimeter)
# In[28]:
area = cv2.contourArea(cnt)
print (area)
# In[29]:
epsilon = 0.1*cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt,epsilon,True)
print (epsilon)
print (approx)
# In[30]:
for c in contours:
rect = cv2.boundingRect(c)
if rect[2] < 100 or rect[3] < 100: continue
#print cv2.contourArea(c)
x,y,w,h = rect
cv2.rectangle(img2,(x,y),(x+w,y+h),(0,255,0),8)
cv2.putText(img2,'Moth Detected',(x+w+40,y+h),0,2.0,(0,255,0))
plt.title("Moth Detected Pothole Image")
plt.imshow(img2)
plt.show()
cv2.imshow("Show",img2)
#cv2.imshow('img' , resize_img)
x = cv2.waitKey(0)
if x == 27:
cv2.destroyWindow('img')
cv2.waitKey()
cv2.destroyAllWindows()
# In[31]:
k = cv2.isContourConvex(cnt)
print(k)
# In[32]:
#blur
blur = cv2.blur(im,(5,5))
# In[33]:
plt_show(blur)
# In[34]:
#guassian blur
gblur = cv2.GaussianBlur(im,(5,5),0)
plt_show(gblur)
# In[35]:
#median
median = cv2.medianBlur(im,5)
plt_show(median)
# In[36]:
#erosion
kernel = np.ones((5,5),np.uint8)
erosion = cv2.erode(median,kernel,iterations = 1)
# In[37]:
dilation = cv2.dilate(erosion,kernel,iterations = 5)
# In[38]:
#erosion followed dilation
closing = cv2.morphologyEx(dilation, cv2.MORPH_CLOSE, kernel)
# In[39]:
#canny edge detection
edges = cv2.Canny(dilation,9,220)
# In[40]:
#plotting using matplotlib
plt.subplot(332),plt.imshow(blur),plt.title('BLURRED')
plt.xticks([]), plt.yticks([])
plt.show()
# In[41]:
plt.subplot(333),plt.imshow(gblur),plt.title('guassianblur')
plt.xticks([]), plt.yticks([])
plt.show()
# In[42]:
plt.subplot(334),plt.imshow(median),plt.title('Medianblur')
plt.xticks([]), plt.yticks([])
plt.show()
# In[43]:
plt.subplot(337),plt.imshow(img,cmap = 'gray')
plt.title('dilated Image'), plt.xticks([]), plt.yticks([])
plt.show()
# In[44]:
plt.subplot(338),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
plt.show()
# In[45]:
plt.subplot(335),plt.imshow(erosion),plt.title('EROSION')
plt.xticks([]), plt.yticks([])
plt.show()
# In[46]:
plt.subplot(336),plt.imshow(closing),plt.title('closing')
plt.xticks([]), plt.yticks([])
plt.show()
#
# #### Plot all images
# In[47]:
#plotting using matplotlib
plt.subplot(332),plt.imshow(blur),plt.title('BLURRED')
plt.xticks([]), plt.yticks([])
plt.subplot(333),plt.imshow(gblur),plt.title('guassianblur')
plt.xticks([]), plt.yticks([])
plt.subplot(334),plt.imshow(median),plt.title('Medianblur')
plt.xticks([]), plt.yticks([])
plt.subplot(337),plt.imshow(img,cmap = 'gray')
plt.title('dilated Image'), plt.xticks([]), plt.yticks([])
plt.subplot(338),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
plt.subplot(335),plt.imshow(erosion),plt.title('EROSION')
plt.xticks([]), plt.yticks([])
plt.subplot(336),plt.imshow(closing),plt.title('closing')
plt.xticks([]), plt.yticks([])
plt.show()
# #### alerting the driver
# In[48]:
pygame.init()
pygame.mixer.music.load("buzz.mp3")
pygame.mixer.music.play()
time.sleep(5)
# # End of Pothhole Detection Project
# In[ ]:
|
[
"matplotlib.pyplot.title",
"cv2.GaussianBlur",
"cv2.approxPolyDP",
"cv2.arcLength",
"cv2.medianBlur",
"numpy.ones",
"cv2.isContourConvex",
"cv2.startWindowThread",
"cv2.rectangle",
"cv2.erode",
"cv2.imshow",
"cv2.contourArea",
"cv2.dilate",
"cv2.cvtColor",
"matplotlib.pyplot.imshow",
"cv2.imwrite",
"matplotlib.pyplot.yticks",
"pygame.mixer.music.play",
"cv2.drawContours",
"cv2.destroyAllWindows",
"matplotlib.pyplot.xticks",
"cv2.boundingRect",
"cv2.resize",
"cv2.Canny",
"matplotlib.pyplot.show",
"cv2.waitKey",
"cv2.morphologyEx",
"pygame.init",
"time.sleep",
"matplotlib.pyplot.subplot",
"cv2.putText",
"cv2.threshold",
"cv2.moments",
"matplotlib.pyplot.axis",
"cv2.blur",
"cv2.imread",
"cv2.destroyWindow",
"pygame.mixer.music.load",
"cv2.findContours"
] |
[((426, 449), 'cv2.startWindowThread', 'cv2.startWindowThread', ([], {}), '()\n', (447, 449), False, 'import cv2\n'), ((1707, 1728), 'cv2.imread', 'cv2.imread', (['file_name'], {}), '(file_name)\n', (1717, 1728), False, 'import cv2\n'), ((1835, 1861), 'matplotlib.pyplot.title', 'plt.title', (['"""Pothole Image"""'], {}), "('Pothole Image')\n", (1844, 1861), True, 'from matplotlib import pyplot as plt\n'), ((1862, 1882), 'matplotlib.pyplot.imshow', 'plt.imshow', (['r_image2'], {}), '(r_image2)\n', (1872, 1882), True, 'from matplotlib import pyplot as plt\n'), ((1883, 1893), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1891, 1893), True, 'from matplotlib import pyplot as plt\n'), ((2082, 2118), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_BGR2GRAY'], {}), '(im, cv2.COLOR_BGR2GRAY)\n', (2094, 2118), False, 'import cv2\n'), ((2165, 2198), 'cv2.imwrite', 'cv2.imwrite', (['"""grayImg.jpg"""', 'gray1'], {}), "('grayImg.jpg', gray1)\n", (2176, 2198), False, 'import cv2\n'), ((2253, 2289), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_BGR2GRAY'], {}), '(im, cv2.COLOR_BGR2GRAY)\n', (2265, 2289), False, 'import cv2\n'), ((2333, 2367), 'cv2.threshold', 'cv2.threshold', (['imgray', '(127)', '(255)', '(0)'], {}), '(imgray, 127, 255, 0)\n', (2346, 2367), False, 'import cv2\n'), ((2491, 2553), 'cv2.findContours', 'cv2.findContours', (['thresh', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_NONE'], {}), '(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)\n', (2507, 2553), False, 'import cv2\n'), ((2741, 2805), 'cv2.findContours', 'cv2.findContours', (['thresh', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (2757, 2805), False, 'import cv2\n'), ((2937, 2990), 'cv2.drawContours', 'cv2.drawContours', (['img2', 'contours2', '(-1)', '(0, 250, 0)', '(1)'], {}), '(img2, contours2, -1, (0, 250, 0), 1)\n', (2953, 2990), False, 'import cv2\n'), ((3002, 3041), 'matplotlib.pyplot.title', 'plt.title', (['"""drawContours Pothole Image"""'], {}), "('drawContours Pothole Image')\n", (3011, 3041), True, 'from matplotlib import pyplot as plt\n'), ((3042, 3057), 'matplotlib.pyplot.imshow', 'plt.imshow', (['out'], {}), '(out)\n', (3052, 3057), True, 'from matplotlib import pyplot as plt\n'), ((3058, 3068), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3066, 3068), True, 'from matplotlib import pyplot as plt\n'), ((3109, 3133), 'cv2.imshow', 'cv2.imshow', (['"""img1"""', 'img2'], {}), "('img1', img2)\n", (3119, 3133), False, 'import cv2\n'), ((3133, 3147), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (3144, 3147), False, 'import cv2\n'), ((3249, 3276), 'cv2.imread', 'cv2.imread', (['"""index2.jpg"""', '(0)'], {}), "('index2.jpg', 0)\n", (3259, 3276), False, 'import cv2\n'), ((3331, 3362), 'cv2.threshold', 'cv2.threshold', (['img', '(127)', '(255)', '(0)'], {}), '(img, 127, 255, 0)\n', (3344, 3362), False, 'import cv2\n'), ((3403, 3433), 'cv2.findContours', 'cv2.findContours', (['thresh', '(1)', '(2)'], {}), '(thresh, 1, 2)\n', (3419, 3433), False, 'import cv2\n'), ((3470, 3486), 'cv2.moments', 'cv2.moments', (['cnt'], {}), '(cnt)\n', (3481, 3486), False, 'import cv2\n'), ((3522, 3546), 'cv2.arcLength', 'cv2.arcLength', (['cnt', '(True)'], {}), '(cnt, True)\n', (3535, 3546), False, 'import cv2\n'), ((3585, 3605), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (3600, 3605), False, 'import cv2\n'), ((3680, 3716), 'cv2.approxPolyDP', 'cv2.approxPolyDP', (['cnt', 'epsilon', '(True)'], {}), '(cnt, epsilon, True)\n', (3696, 3716), False, 'import cv2\n'), ((4109, 4133), 'cv2.imshow', 'cv2.imshow', (['"""Show"""', 'img2'], {}), "('Show', img2)\n", (4119, 4133), False, 'import cv2\n'), ((4169, 4183), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (4180, 4183), False, 'import cv2\n'), ((4225, 4238), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (4236, 4238), False, 'import cv2\n'), ((4239, 4262), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (4260, 4262), False, 'import cv2\n'), ((4281, 4305), 'cv2.isContourConvex', 'cv2.isContourConvex', (['cnt'], {}), '(cnt)\n', (4300, 4305), False, 'import cv2\n'), ((4342, 4362), 'cv2.blur', 'cv2.blur', (['im', '(5, 5)'], {}), '(im, (5, 5))\n', (4350, 4362), False, 'import cv2\n'), ((4427, 4458), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['im', '(5, 5)', '(0)'], {}), '(im, (5, 5), 0)\n', (4443, 4458), False, 'import cv2\n'), ((4503, 4524), 'cv2.medianBlur', 'cv2.medianBlur', (['im', '(5)'], {}), '(im, 5)\n', (4517, 4524), False, 'import cv2\n'), ((4573, 4598), 'numpy.ones', 'np.ones', (['(5, 5)', 'np.uint8'], {}), '((5, 5), np.uint8)\n', (4580, 4598), True, 'import numpy as np\n'), ((4607, 4646), 'cv2.erode', 'cv2.erode', (['median', 'kernel'], {'iterations': '(1)'}), '(median, kernel, iterations=1)\n', (4616, 4646), False, 'import cv2\n'), ((4672, 4713), 'cv2.dilate', 'cv2.dilate', (['erosion', 'kernel'], {'iterations': '(5)'}), '(erosion, kernel, iterations=5)\n', (4682, 4713), False, 'import cv2\n'), ((4765, 4816), 'cv2.morphologyEx', 'cv2.morphologyEx', (['dilation', 'cv2.MORPH_CLOSE', 'kernel'], {}), '(dilation, cv2.MORPH_CLOSE, kernel)\n', (4781, 4816), False, 'import cv2\n'), ((4861, 4888), 'cv2.Canny', 'cv2.Canny', (['dilation', '(9)', '(220)'], {}), '(dilation, 9, 220)\n', (4870, 4888), False, 'import cv2\n'), ((5014, 5024), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5022, 5024), True, 'from matplotlib import pyplot as plt\n'), ((5131, 5141), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5139, 5141), True, 'from matplotlib import pyplot as plt\n'), ((5247, 5257), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5255, 5257), True, 'from matplotlib import pyplot as plt\n'), ((5378, 5388), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5386, 5388), True, 'from matplotlib import pyplot as plt\n'), ((5508, 5518), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5516, 5518), True, 'from matplotlib import pyplot as plt\n'), ((5622, 5632), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5630, 5632), True, 'from matplotlib import pyplot as plt\n'), ((5736, 5746), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5744, 5746), True, 'from matplotlib import pyplot as plt\n'), ((6472, 6482), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6480, 6482), True, 'from matplotlib import pyplot as plt\n'), ((6525, 6538), 'pygame.init', 'pygame.init', ([], {}), '()\n', (6536, 6538), False, 'import pygame\n'), ((6539, 6574), 'pygame.mixer.music.load', 'pygame.mixer.music.load', (['"""buzz.mp3"""'], {}), "('buzz.mp3')\n", (6562, 6574), False, 'import pygame\n'), ((6575, 6600), 'pygame.mixer.music.play', 'pygame.mixer.music.play', ([], {}), '()\n', (6598, 6600), False, 'import pygame\n'), ((6601, 6614), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (6611, 6614), False, 'import time\n'), ((570, 585), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (578, 585), True, 'from matplotlib import pyplot as plt\n'), ((590, 606), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (599, 606), True, 'from matplotlib import pyplot as plt\n'), ((697, 735), 'matplotlib.pyplot.imshow', 'plt.imshow', (['image'], {'cmap': 'plt.cm.Greys_r'}), '(image, cmap=plt.cm.Greys_r)\n', (707, 735), True, 'from matplotlib import pyplot as plt\n'), ((740, 750), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (748, 750), True, 'from matplotlib import pyplot as plt\n'), ((1586, 1629), 'cv2.resize', 'cv2.resize', (['image', 'dim'], {'interpolation': 'inter'}), '(image, dim, interpolation=inter)\n', (1596, 1629), False, 'import cv2\n'), ((3148, 3164), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(331)'], {}), '(331)\n', (3159, 3164), True, 'from matplotlib import pyplot as plt\n'), ((3165, 3179), 'matplotlib.pyplot.imshow', 'plt.imshow', (['im'], {}), '(im)\n', (3175, 3179), True, 'from matplotlib import pyplot as plt\n'), ((3180, 3197), 'matplotlib.pyplot.title', 'plt.title', (['"""GRAY"""'], {}), "('GRAY')\n", (3189, 3197), True, 'from matplotlib import pyplot as plt\n'), ((3198, 3212), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (3208, 3212), True, 'from matplotlib import pyplot as plt\n'), ((3214, 3228), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (3224, 3228), True, 'from matplotlib import pyplot as plt\n'), ((3647, 3671), 'cv2.arcLength', 'cv2.arcLength', (['cnt', '(True)'], {}), '(cnt, True)\n', (3660, 3671), False, 'import cv2\n'), ((3790, 3809), 'cv2.boundingRect', 'cv2.boundingRect', (['c'], {}), '(c)\n', (3806, 3809), False, 'import cv2\n'), ((3911, 3970), 'cv2.rectangle', 'cv2.rectangle', (['img2', '(x, y)', '(x + w, y + h)', '(0, 255, 0)', '(8)'], {}), '(img2, (x, y), (x + w, y + h), (0, 255, 0), 8)\n', (3924, 3970), False, 'import cv2\n'), ((3963, 4039), 'cv2.putText', 'cv2.putText', (['img2', '"""Moth Detected"""', '(x + w + 40, y + h)', '(0)', '(2.0)', '(0, 255, 0)'], {}), "(img2, 'Moth Detected', (x + w + 40, y + h), 0, 2.0, (0, 255, 0))\n", (3974, 4039), False, 'import cv2\n'), ((4031, 4071), 'matplotlib.pyplot.title', 'plt.title', (['"""Moth Detected Pothole Image"""'], {}), "('Moth Detected Pothole Image')\n", (4040, 4071), True, 'from matplotlib import pyplot as plt\n'), ((4076, 4092), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img2'], {}), '(img2)\n', (4086, 4092), True, 'from matplotlib import pyplot as plt\n'), ((4097, 4107), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4105, 4107), True, 'from matplotlib import pyplot as plt\n'), ((4200, 4224), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""img"""'], {}), "('img')\n", (4217, 4224), False, 'import cv2\n'), ((4928, 4944), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(332)'], {}), '(332)\n', (4939, 4944), True, 'from matplotlib import pyplot as plt\n'), ((4945, 4961), 'matplotlib.pyplot.imshow', 'plt.imshow', (['blur'], {}), '(blur)\n', (4955, 4961), True, 'from matplotlib import pyplot as plt\n'), ((4962, 4982), 'matplotlib.pyplot.title', 'plt.title', (['"""BLURRED"""'], {}), "('BLURRED')\n", (4971, 4982), True, 'from matplotlib import pyplot as plt\n'), ((4983, 4997), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (4993, 4997), True, 'from matplotlib import pyplot as plt\n'), ((4999, 5013), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (5009, 5013), True, 'from matplotlib import pyplot as plt\n'), ((5039, 5055), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(333)'], {}), '(333)\n', (5050, 5055), True, 'from matplotlib import pyplot as plt\n'), ((5056, 5073), 'matplotlib.pyplot.imshow', 'plt.imshow', (['gblur'], {}), '(gblur)\n', (5066, 5073), True, 'from matplotlib import pyplot as plt\n'), ((5074, 5099), 'matplotlib.pyplot.title', 'plt.title', (['"""guassianblur"""'], {}), "('guassianblur')\n", (5083, 5099), True, 'from matplotlib import pyplot as plt\n'), ((5100, 5114), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (5110, 5114), True, 'from matplotlib import pyplot as plt\n'), ((5116, 5130), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (5126, 5130), True, 'from matplotlib import pyplot as plt\n'), ((5156, 5172), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(334)'], {}), '(334)\n', (5167, 5172), True, 'from matplotlib import pyplot as plt\n'), ((5173, 5191), 'matplotlib.pyplot.imshow', 'plt.imshow', (['median'], {}), '(median)\n', (5183, 5191), True, 'from matplotlib import pyplot as plt\n'), ((5192, 5215), 'matplotlib.pyplot.title', 'plt.title', (['"""Medianblur"""'], {}), "('Medianblur')\n", (5201, 5215), True, 'from matplotlib import pyplot as plt\n'), ((5216, 5230), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (5226, 5230), True, 'from matplotlib import pyplot as plt\n'), ((5232, 5246), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (5242, 5246), True, 'from matplotlib import pyplot as plt\n'), ((5272, 5288), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(337)'], {}), '(337)\n', (5283, 5288), True, 'from matplotlib import pyplot as plt\n'), ((5289, 5317), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {'cmap': '"""gray"""'}), "(img, cmap='gray')\n", (5299, 5317), True, 'from matplotlib import pyplot as plt\n'), ((5319, 5345), 'matplotlib.pyplot.title', 'plt.title', (['"""dilated Image"""'], {}), "('dilated Image')\n", (5328, 5345), True, 'from matplotlib import pyplot as plt\n'), ((5347, 5361), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (5357, 5361), True, 'from matplotlib import pyplot as plt\n'), ((5363, 5377), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (5373, 5377), True, 'from matplotlib import pyplot as plt\n'), ((5403, 5419), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(338)'], {}), '(338)\n', (5414, 5419), True, 'from matplotlib import pyplot as plt\n'), ((5420, 5450), 'matplotlib.pyplot.imshow', 'plt.imshow', (['edges'], {'cmap': '"""gray"""'}), "(edges, cmap='gray')\n", (5430, 5450), True, 'from matplotlib import pyplot as plt\n'), ((5452, 5475), 'matplotlib.pyplot.title', 'plt.title', (['"""Edge Image"""'], {}), "('Edge Image')\n", (5461, 5475), True, 'from matplotlib import pyplot as plt\n'), ((5477, 5491), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (5487, 5491), True, 'from matplotlib import pyplot as plt\n'), ((5493, 5507), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (5503, 5507), True, 'from matplotlib import pyplot as plt\n'), ((5533, 5549), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(335)'], {}), '(335)\n', (5544, 5549), True, 'from matplotlib import pyplot as plt\n'), ((5550, 5569), 'matplotlib.pyplot.imshow', 'plt.imshow', (['erosion'], {}), '(erosion)\n', (5560, 5569), True, 'from matplotlib import pyplot as plt\n'), ((5570, 5590), 'matplotlib.pyplot.title', 'plt.title', (['"""EROSION"""'], {}), "('EROSION')\n", (5579, 5590), True, 'from matplotlib import pyplot as plt\n'), ((5591, 5605), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (5601, 5605), True, 'from matplotlib import pyplot as plt\n'), ((5607, 5621), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (5617, 5621), True, 'from matplotlib import pyplot as plt\n'), ((5647, 5663), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(336)'], {}), '(336)\n', (5658, 5663), True, 'from matplotlib import pyplot as plt\n'), ((5664, 5683), 'matplotlib.pyplot.imshow', 'plt.imshow', (['closing'], {}), '(closing)\n', (5674, 5683), True, 'from matplotlib import pyplot as plt\n'), ((5684, 5704), 'matplotlib.pyplot.title', 'plt.title', (['"""closing"""'], {}), "('closing')\n", (5693, 5704), True, 'from matplotlib import pyplot as plt\n'), ((5705, 5719), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (5715, 5719), True, 'from matplotlib import pyplot as plt\n'), ((5721, 5735), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (5731, 5735), True, 'from matplotlib import pyplot as plt\n'), ((5814, 5830), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(332)'], {}), '(332)\n', (5825, 5830), True, 'from matplotlib import pyplot as plt\n'), ((5831, 5847), 'matplotlib.pyplot.imshow', 'plt.imshow', (['blur'], {}), '(blur)\n', (5841, 5847), True, 'from matplotlib import pyplot as plt\n'), ((5848, 5868), 'matplotlib.pyplot.title', 'plt.title', (['"""BLURRED"""'], {}), "('BLURRED')\n", (5857, 5868), True, 'from matplotlib import pyplot as plt\n'), ((5869, 5883), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (5879, 5883), True, 'from matplotlib import pyplot as plt\n'), ((5885, 5899), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (5895, 5899), True, 'from matplotlib import pyplot as plt\n'), ((5900, 5916), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(333)'], {}), '(333)\n', (5911, 5916), True, 'from matplotlib import pyplot as plt\n'), ((5917, 5934), 'matplotlib.pyplot.imshow', 'plt.imshow', (['gblur'], {}), '(gblur)\n', (5927, 5934), True, 'from matplotlib import pyplot as plt\n'), ((5935, 5960), 'matplotlib.pyplot.title', 'plt.title', (['"""guassianblur"""'], {}), "('guassianblur')\n", (5944, 5960), True, 'from matplotlib import pyplot as plt\n'), ((5961, 5975), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (5971, 5975), True, 'from matplotlib import pyplot as plt\n'), ((5977, 5991), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (5987, 5991), True, 'from matplotlib import pyplot as plt\n'), ((5992, 6008), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(334)'], {}), '(334)\n', (6003, 6008), True, 'from matplotlib import pyplot as plt\n'), ((6009, 6027), 'matplotlib.pyplot.imshow', 'plt.imshow', (['median'], {}), '(median)\n', (6019, 6027), True, 'from matplotlib import pyplot as plt\n'), ((6028, 6051), 'matplotlib.pyplot.title', 'plt.title', (['"""Medianblur"""'], {}), "('Medianblur')\n", (6037, 6051), True, 'from matplotlib import pyplot as plt\n'), ((6052, 6066), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (6062, 6066), True, 'from matplotlib import pyplot as plt\n'), ((6068, 6082), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (6078, 6082), True, 'from matplotlib import pyplot as plt\n'), ((6083, 6099), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(337)'], {}), '(337)\n', (6094, 6099), True, 'from matplotlib import pyplot as plt\n'), ((6100, 6128), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {'cmap': '"""gray"""'}), "(img, cmap='gray')\n", (6110, 6128), True, 'from matplotlib import pyplot as plt\n'), ((6130, 6156), 'matplotlib.pyplot.title', 'plt.title', (['"""dilated Image"""'], {}), "('dilated Image')\n", (6139, 6156), True, 'from matplotlib import pyplot as plt\n'), ((6158, 6172), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (6168, 6172), True, 'from matplotlib import pyplot as plt\n'), ((6174, 6188), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (6184, 6188), True, 'from matplotlib import pyplot as plt\n'), ((6189, 6205), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(338)'], {}), '(338)\n', (6200, 6205), True, 'from matplotlib import pyplot as plt\n'), ((6206, 6236), 'matplotlib.pyplot.imshow', 'plt.imshow', (['edges'], {'cmap': '"""gray"""'}), "(edges, cmap='gray')\n", (6216, 6236), True, 'from matplotlib import pyplot as plt\n'), ((6238, 6261), 'matplotlib.pyplot.title', 'plt.title', (['"""Edge Image"""'], {}), "('Edge Image')\n", (6247, 6261), True, 'from matplotlib import pyplot as plt\n'), ((6263, 6277), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (6273, 6277), True, 'from matplotlib import pyplot as plt\n'), ((6279, 6293), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (6289, 6293), True, 'from matplotlib import pyplot as plt\n'), ((6294, 6310), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(335)'], {}), '(335)\n', (6305, 6310), True, 'from matplotlib import pyplot as plt\n'), ((6311, 6330), 'matplotlib.pyplot.imshow', 'plt.imshow', (['erosion'], {}), '(erosion)\n', (6321, 6330), True, 'from matplotlib import pyplot as plt\n'), ((6331, 6351), 'matplotlib.pyplot.title', 'plt.title', (['"""EROSION"""'], {}), "('EROSION')\n", (6340, 6351), True, 'from matplotlib import pyplot as plt\n'), ((6352, 6366), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (6362, 6366), True, 'from matplotlib import pyplot as plt\n'), ((6368, 6382), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (6378, 6382), True, 'from matplotlib import pyplot as plt\n'), ((6383, 6399), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(336)'], {}), '(336)\n', (6394, 6399), True, 'from matplotlib import pyplot as plt\n'), ((6400, 6419), 'matplotlib.pyplot.imshow', 'plt.imshow', (['closing'], {}), '(closing)\n', (6410, 6419), True, 'from matplotlib import pyplot as plt\n'), ((6420, 6440), 'matplotlib.pyplot.title', 'plt.title', (['"""closing"""'], {}), "('closing')\n", (6429, 6440), True, 'from matplotlib import pyplot as plt\n'), ((6441, 6455), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (6451, 6455), True, 'from matplotlib import pyplot as plt\n'), ((6457, 6471), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (6467, 6471), True, 'from matplotlib import pyplot as plt\n'), ((527, 565), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (539, 565), False, 'import cv2\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 5 22:36:16 2017
@author: root
"""
import nltk
import numpy as np
import tflearn
import tensorflow as tf
import random
# restore all of our data structures
import pickle
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
data = pickle.load( open( "F:/Projects II/speech/responseEngine/training_data.p", "rb" ) )
words = data['words']
classes = data['classes']
train_x = data['train_x']
train_y = data['train_y']
# import our chat-bot intents file
import json
with open('F:/Projects II/speech/responseEngine/intents.json') as json_data:
intents = json.load(json_data)
# load our saved model
tf.reset_default_graph()
# Build neural network
net = tflearn.input_data(shape=[None, len(train_x[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(train_y[0]), activation='softmax')
net = tflearn.regression(net)
# Define model and setup tensorboard
new_model = tflearn.DNN(net, tensorboard_verbose=3)
new_model.load('F:/Projects II/speech/responseEngine/model.tflearn')
def clean_up_sentence(sentence):
# tokenize the pattern
sentence_words = nltk.word_tokenize(sentence)
# stem each word
sentence_words = [stemmer.stem(word.lower()) for word in sentence_words]
return sentence_words
# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
def bow(sentence, words, show_details=False):
# tokenize the pattern
sentence_words = clean_up_sentence(sentence)
# bag of words
bag = [0]*len(words)
for s in sentence_words:
for i,w in enumerate(words):
if w == s:
bag[i] = 1
if show_details:
print ("found in bag: %s" % w)
return(np.array(bag))
# create a data structure to hold user context
context = {}
ERROR_THRESHOLD = 0.25
def classify(sentence):
# generate probabilities from the model
results = new_model.predict([bow(sentence, words)])[0]
# filter out predictions below a threshold
results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append((classes[r[0]], r[1]))
# return tuple of intent and probability
return return_list
def response(sentence, userID='123', show_details=False):
results = classify(sentence)
# if we have a classification then find the matching intent tag
if results:
# loop as long as there are matches to process
while results:
for i in intents['intents']:
# find a tag matching the first result
if i['tag'] == results[0][0]:
# set context for this intent if necessary
if 'context_set' in i:
if show_details: print ('context:', i['context_set'])
context[userID] = i['context_set']
# check if this intent is contextual and applies to this user's conversation
if not 'context_filter' in i or \
(userID in context and 'context_filter' in i and i['context_filter'] == context[userID]):
if show_details: print ('tag:', i['tag'])
# a random response from the intent
return(random.choice(i['responses']))
results.pop(0)
if i['tag'] == results[0][0]:
# set context for this intent if necessary
if 'context_set' in i:
if show_details: print ('context:', i['context_set'])
context[userID] = i['context_set']
# check if this intent is contextual and applies to this user's conversation
if not 'context_filter' in i or \
(userID in context and 'context_filter' in i and i['context_filter'] == context[userID]):
if show_details: print ('tag:', i['tag'])
# a random response from the intent
return(random.choice(i['responses']))
def botActs(statement):
#engine=pyttsx3.init()
#message =all_ears()
# while(1):
# message=input("You:")
# category= [x[0] for x in classify(message)]
# print(category[0])
# reply=response(message)
# print("Classifier:-", reply)
# if (category[0] =='goodbye'):
# break
category= [x[0] for x in classify(statement)]
print(category[0])
reply=response(statement)
print("Classifier:-", reply)
|
[
"json.load",
"tflearn.fully_connected",
"tensorflow.reset_default_graph",
"random.choice",
"tflearn.regression",
"nltk.stem.lancaster.LancasterStemmer",
"tflearn.DNN",
"numpy.array",
"nltk.word_tokenize"
] |
[((302, 320), 'nltk.stem.lancaster.LancasterStemmer', 'LancasterStemmer', ([], {}), '()\n', (318, 320), False, 'from nltk.stem.lancaster import LancasterStemmer\n'), ((697, 721), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (719, 721), True, 'import tensorflow as tf\n'), ((807, 838), 'tflearn.fully_connected', 'tflearn.fully_connected', (['net', '(8)'], {}), '(net, 8)\n', (830, 838), False, 'import tflearn\n'), ((845, 876), 'tflearn.fully_connected', 'tflearn.fully_connected', (['net', '(8)'], {}), '(net, 8)\n', (868, 876), False, 'import tflearn\n'), ((957, 980), 'tflearn.regression', 'tflearn.regression', (['net'], {}), '(net)\n', (975, 980), False, 'import tflearn\n'), ((1031, 1070), 'tflearn.DNN', 'tflearn.DNN', (['net'], {'tensorboard_verbose': '(3)'}), '(net, tensorboard_verbose=3)\n', (1042, 1070), False, 'import tflearn\n'), ((652, 672), 'json.load', 'json.load', (['json_data'], {}), '(json_data)\n', (661, 672), False, 'import json\n'), ((1224, 1252), 'nltk.word_tokenize', 'nltk.word_tokenize', (['sentence'], {}), '(sentence)\n', (1242, 1252), False, 'import nltk\n'), ((1848, 1861), 'numpy.array', 'np.array', (['bag'], {}), '(bag)\n', (1856, 1861), True, 'import numpy as np\n'), ((4275, 4304), 'random.choice', 'random.choice', (["i['responses']"], {}), "(i['responses'])\n", (4288, 4304), False, 'import random\n'), ((3507, 3536), 'random.choice', 'random.choice', (["i['responses']"], {}), "(i['responses'])\n", (3520, 3536), False, 'import random\n')]
|
"""
N-dimensional grids.
"""
__author__ = "<NAME>"
__copyright__ = "Copyright 2014, Stanford University"
__license__ = "3-clause BSD"
import numpy as np
class Grid(object):
"""
N-dimensional grid.
Parameters
----------
shape : tuple
Number of grid points in each dimension.
center : tuple, optional (defaults to the origin)
Grid center.
spacing : float, optional (defaults to 1.)
Space between grid points.
dtype : numpy dtype, optional (defaults to float)
Grid data type.
"""
def __init__(self, shape, center=None, spacing=1., dtype=float):
self.grid = np.zeros(shape, dtype=dtype)
self.shape = self.grid.shape
self.size = self.grid.size
self.ndim = self.grid.ndim
if center is None:
self.center = np.zeros_like(self.shape, dtype=float)
else:
self.center = np.asarray(center, dtype=float)
self.spacing = float(spacing)
def __getitem__(self, item):
rval = self.grid[item]
return rval
def __setitem__(self, key, value):
self.grid[key] = value
def get_real_shape(self):
"""
Get the shape of the grid in real-space.
"""
return tuple(np.asarray(self.shape) * self.spacing)
def grid_point_in_grid(self, grid_point):
"""
Check whether a grid point is in the grid.
Parameters
----------
grid_point : tuple
Grid point.
"""
# get the maximum indices and see if they exist
test_point = np.amax(np.atleast_2d(grid_point), axis=0)
try:
_ = self.grid[test_point]
return True
except IndexError:
return False
def coords_in_grid(self, coords):
"""
Check whether a real-space point is in the grid.
Parameters
----------
coords : tuple
Real-space coordinates.
"""
try:
self.get_grid_point(coords)
except IndexError:
return False
else:
return True
def get_coords(self, grid_points):
"""
Get real-space coordinates for one or more grid points.
Procedure
---------
1. Get the real-space coordinates of the grid point relative to the
grid origin (grid[0, ..., 0]).
2. Get the real-space translation of the grid center relative to the
grid origin.
3. Subtract (2) from (1) to get the real-space coordinates of the grid
point relative to the grid center rather than the grid origin.
4. Translate the coordinates from (3) so they are relative to the
real-space grid center.
Parameters
----------
grid_points : array_like
Grid point(s).
"""
assert np.atleast_2d(grid_points).ndim == 2
if not self.grid_point_in_grid(grid_points):
raise IndexError("Invalid grid point '{}'".format(grid_points))
coords = np.array(grid_points, dtype=float) * self.spacing
grid_center = (np.asarray(self.shape) - 1) / 2. * self.spacing
coords -= grid_center # move from grid_origin to grid_center
coords += self.center # move to real-space center
return coords
def get_all_coords(self):
"""
Get real-space coordinates for all grid points.
"""
# construct an array whose entries correspond to each index of the grid
# e.g. grid_points[1, 2, 3] -> [1, 2, 3]
grid_points = np.zeros((self.grid.shape + (self.grid.ndim,)),
dtype=int)
for i, indices in enumerate(np.indices(grid_points.shape[:-1])):
grid_points[..., i] = indices
# reshape so grid_points is 2D and each row is a grid point
grid_points = grid_points.reshape((self.size, self.ndim))
# get real-space coordinates for all grid points
# reshape to match shape of the grid
# e.g. coords[1, 2, 3] -> self.get_coords([1, 2, 3])
coords = self.get_coords(grid_points).reshape(
(self.grid.shape + (self.grid.ndim,)))
return coords
def get_grid_point(self, coords):
"""
Get the grid point(s) closest to a set of real-space coordinates.
Parameters
----------
coords : array_like
Real-space coordinates.
"""
coords = np.array(coords, dtype=float)
coords -= self.center
center = (np.asarray(self.shape) - 1) / 2. * self.spacing
coords += center
coords /= self.spacing
grid_points = np.asarray(np.rint(coords), dtype=int)
if not self.grid_point_in_grid(grid_points):
raise IndexError("Invalid grid point '{}'".format(grid_points))
return grid_points
|
[
"numpy.zeros_like",
"numpy.asarray",
"numpy.zeros",
"numpy.indices",
"numpy.rint",
"numpy.array",
"numpy.atleast_2d"
] |
[((639, 667), 'numpy.zeros', 'np.zeros', (['shape'], {'dtype': 'dtype'}), '(shape, dtype=dtype)\n', (647, 667), True, 'import numpy as np\n'), ((3600, 3656), 'numpy.zeros', 'np.zeros', (['(self.grid.shape + (self.grid.ndim,))'], {'dtype': 'int'}), '(self.grid.shape + (self.grid.ndim,), dtype=int)\n', (3608, 3656), True, 'import numpy as np\n'), ((4489, 4518), 'numpy.array', 'np.array', (['coords'], {'dtype': 'float'}), '(coords, dtype=float)\n', (4497, 4518), True, 'import numpy as np\n'), ((828, 866), 'numpy.zeros_like', 'np.zeros_like', (['self.shape'], {'dtype': 'float'}), '(self.shape, dtype=float)\n', (841, 866), True, 'import numpy as np\n'), ((907, 938), 'numpy.asarray', 'np.asarray', (['center'], {'dtype': 'float'}), '(center, dtype=float)\n', (917, 938), True, 'import numpy as np\n'), ((1595, 1620), 'numpy.atleast_2d', 'np.atleast_2d', (['grid_point'], {}), '(grid_point)\n', (1608, 1620), True, 'import numpy as np\n'), ((3065, 3099), 'numpy.array', 'np.array', (['grid_points'], {'dtype': 'float'}), '(grid_points, dtype=float)\n', (3073, 3099), True, 'import numpy as np\n'), ((3726, 3760), 'numpy.indices', 'np.indices', (['grid_points.shape[:-1]'], {}), '(grid_points.shape[:-1])\n', (3736, 3760), True, 'import numpy as np\n'), ((4704, 4719), 'numpy.rint', 'np.rint', (['coords'], {}), '(coords)\n', (4711, 4719), True, 'import numpy as np\n'), ((1258, 1280), 'numpy.asarray', 'np.asarray', (['self.shape'], {}), '(self.shape)\n', (1268, 1280), True, 'import numpy as np\n'), ((2882, 2908), 'numpy.atleast_2d', 'np.atleast_2d', (['grid_points'], {}), '(grid_points)\n', (2895, 2908), True, 'import numpy as np\n'), ((3138, 3160), 'numpy.asarray', 'np.asarray', (['self.shape'], {}), '(self.shape)\n', (3148, 3160), True, 'import numpy as np\n'), ((4567, 4589), 'numpy.asarray', 'np.asarray', (['self.shape'], {}), '(self.shape)\n', (4577, 4589), True, 'import numpy as np\n')]
|
import cv2
import os
import numpy as np
ROOT_PATH = 'G:\\MachineLearning\\unbalance\\core_500'
image_path = os.path.join(ROOT_PATH, 'Image') # 原图像保存位置
annotation_path = os.path.join(ROOT_PATH, 'Annotation') # 原目标框保存位置
image_save_path = os.path.join(ROOT_PATH, 'Image_new') # 原目标框保存位置
annotation_save_path = os.path.join(ROOT_PATH, 'Annotation_new') # 原目标框保存位置
def img_flip(img_path, annot_path, new_name):
img = cv2.imread(img_path)
img_h, img_w = img.shape[:2]
new_img = cv2.flip(img, 1) #水平翻转图片
img_name = 'core_battery' + new_name + '.jpg'
new_img_path = os.path.join(image_save_path, img_name)
cv2.imwrite(new_img_path, new_img)
with open(annot_path, encoding='utf-8') as fp:
lines = fp.readlines()
annot_str = ''
for line in lines:
temp = line.split()
name = temp[1]
# 只读两类
if name != '带电芯充电宝' and name != '不带电芯充电宝':
continue
xmin = int(temp[2])
if xmin > img_w:
continue
if xmin < 0:
xmin = 0
ymin = int(temp[3])
if ymin < 0:
ymin = 0
xmax = int(temp[4])
if xmax > img_w: # 是这么个意思吧?
xmax = img_w
ymax = int(temp[5])
if ymax > img_h:
ymax = img_h
annot_w = xmax - xmin
new_xmin = img_w - xmin - annot_w
new_ymin = ymin
new_xmax = img_w - xmax + annot_w
new_ymax = ymax
annot_str += temp[0] + ' ' + temp[1] + ' ' + str(new_xmin) + ' ' + str(new_ymin) + ' ' + str(new_xmax) + ' ' + str(new_ymax) + '\n'
annot_name = 'core_battery' + new_name + '.txt'
new_annot_path = os.path.join(annotation_save_path, annot_name)
with open(new_annot_path, 'w', encoding='utf-8') as fp:
fp.write(annot_str)
return new_img_path, new_annot_path
def img_rot(img_path, annot_path, new_name):
img = cv2.imread(img_path)
img_h, img_w = img.shape[:2]
# 旋转图像
if img_w > img_h:
padding = (img_w - img_h) // 2
center = (img_w // 2, img_w // 2)
img_padded = np.zeros(shape=(img_w, img_w, 3), dtype=np.uint8)
img_padded[padding:padding + img_h, :, :] = img
M = cv2.getRotationMatrix2D(center, -90, 1)
rotated_padded = cv2.warpAffine(img_padded, M, (img_w, img_w))
new_img = rotated_padded[:, padding:padding + img_h, :]
else:
padding = (img_h - img_w) // 2
center = (img_h // 2, img_h // 2)
img_padded = np.zeros(shape=(img_h, img_h, 3), dtype=np.uint8)
img_padded[:, padding:padding + img_w, :] = img
M = cv2.getRotationMatrix2D(center, -90, 1)
rotated_padded = cv2.warpAffine(img_padded, M, (img_h, img_h))
new_img = rotated_padded[padding:padding + img_w, :, :]
img_name = 'core_battery' + new_name + '.jpg'
new_img_path = os.path.join(image_save_path, img_name)
cv2.imwrite(new_img_path, new_img)
with open(annot_path, encoding='utf-8') as fp:
lines = fp.readlines()
annot_str = ''
for line in lines:
temp = line.split()
name = temp[1]
# 只读两类
if name != '带电芯充电宝' and name != '不带电芯充电宝':
continue
xmin = int(temp[2])
if xmin > img_w:
continue
if xmin < 0:
xmin = 0
ymin = int(temp[3])
if ymin < 0:
ymin = 0
xmax = int(temp[4])
if xmax > img_w: # 是这么个意思吧?
xmax = img_w
ymax = int(temp[5])
if ymax > img_h:
ymax = img_h
annot_h = ymax - ymin
new_xmin = img_h - ymin - annot_h
new_ymin = xmin
new_xmax = img_h - ymax + annot_h
new_ymax = xmax
annot_str += temp[0] + ' ' + temp[1] + ' ' + str(new_xmin) + ' ' + str(new_ymin) + ' ' + str(new_xmax) + ' ' + str(new_ymax) + '\n'
annot_name = 'core_battery' + new_name + '.txt'
new_annot_path = os.path.join(annotation_save_path, annot_name)
with open(new_annot_path, 'w', encoding='utf-8') as fp:
fp.write(annot_str)
return new_img_path, new_annot_path
def show_image(img_path, annot_path):
with open(annot_path, encoding='utf-8') as fp:
lines = fp.readlines()
for line in lines:
temp = line.split()
name = temp[1]
# 只读两类
if name != '带电芯充电宝' and name != '不带电芯充电宝':
continue
xmin = int(temp[2])
ymin = int(temp[3])
xmax = int(temp[4])
ymax = int(temp[5])
img = cv2.imread(img_path)
img = cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2)
img = cv2.resize(img, (500, 500))
cv2.imshow('img', img)
cv2.waitKey()
def img_strength():
if not os.path.isdir(image_save_path):
os.mkdir(image_save_path)
if not os.path.isdir(annotation_save_path):
os.mkdir(annotation_save_path)
num_i = 10000000
step = 0
for txt_name in os.listdir(annotation_path):
step += 1
print('step:', str(step))
annot_path = os.path.join(annotation_path, txt_name)
img_name = txt_name.replace('.txt', '.jpg')
img_path = os.path.join(image_path, img_name)
img_path, annot_path = img_flip(img_path, annot_path, str(num_i))
num_i += 1
for i in range(3):
img_path, annot_path = img_rot(img_path, annot_path, str(num_i))
num_i += 1
img_path, annot_path = img_flip(img_path, annot_path, str(num_i))
num_i += 1
if __name__ == '__main__':
img_strength()
# index = 0
# for txt_name in os.listdir(annotation_save_path)[20:30]:
# annot_path = os.path.join(annotation_save_path, txt_name)
# img_name = txt_name.replace('.txt', '.jpg')
# img_path = os.path.join(image_save_path, img_name)
# show_image(img_path, annot_path)
|
[
"os.mkdir",
"cv2.getRotationMatrix2D",
"cv2.waitKey",
"cv2.imwrite",
"os.path.isdir",
"numpy.zeros",
"cv2.imread",
"cv2.warpAffine",
"cv2.rectangle",
"cv2.flip",
"cv2.imshow",
"os.path.join",
"os.listdir",
"cv2.resize"
] |
[((109, 141), 'os.path.join', 'os.path.join', (['ROOT_PATH', '"""Image"""'], {}), "(ROOT_PATH, 'Image')\n", (121, 141), False, 'import os\n'), ((171, 208), 'os.path.join', 'os.path.join', (['ROOT_PATH', '"""Annotation"""'], {}), "(ROOT_PATH, 'Annotation')\n", (183, 208), False, 'import os\n'), ((239, 275), 'os.path.join', 'os.path.join', (['ROOT_PATH', '"""Image_new"""'], {}), "(ROOT_PATH, 'Image_new')\n", (251, 275), False, 'import os\n'), ((311, 352), 'os.path.join', 'os.path.join', (['ROOT_PATH', '"""Annotation_new"""'], {}), "(ROOT_PATH, 'Annotation_new')\n", (323, 352), False, 'import os\n'), ((422, 442), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (432, 442), False, 'import cv2\n'), ((490, 506), 'cv2.flip', 'cv2.flip', (['img', '(1)'], {}), '(img, 1)\n', (498, 506), False, 'import cv2\n'), ((584, 623), 'os.path.join', 'os.path.join', (['image_save_path', 'img_name'], {}), '(image_save_path, img_name)\n', (596, 623), False, 'import os\n'), ((628, 662), 'cv2.imwrite', 'cv2.imwrite', (['new_img_path', 'new_img'], {}), '(new_img_path, new_img)\n', (639, 662), False, 'import cv2\n'), ((1655, 1701), 'os.path.join', 'os.path.join', (['annotation_save_path', 'annot_name'], {}), '(annotation_save_path, annot_name)\n', (1667, 1701), False, 'import os\n'), ((1886, 1906), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (1896, 1906), False, 'import cv2\n'), ((2844, 2883), 'os.path.join', 'os.path.join', (['image_save_path', 'img_name'], {}), '(image_save_path, img_name)\n', (2856, 2883), False, 'import os\n'), ((2888, 2922), 'cv2.imwrite', 'cv2.imwrite', (['new_img_path', 'new_img'], {}), '(new_img_path, new_img)\n', (2899, 2922), False, 'import cv2\n'), ((3914, 3960), 'os.path.join', 'os.path.join', (['annotation_save_path', 'annot_name'], {}), '(annotation_save_path, annot_name)\n', (3926, 3960), False, 'import os\n'), ((4493, 4513), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (4503, 4513), False, 'import cv2\n'), ((4524, 4586), 'cv2.rectangle', 'cv2.rectangle', (['img', '(xmin, ymin)', '(xmax, ymax)', '(0, 0, 255)', '(2)'], {}), '(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2)\n', (4537, 4586), False, 'import cv2\n'), ((4597, 4624), 'cv2.resize', 'cv2.resize', (['img', '(500, 500)'], {}), '(img, (500, 500))\n', (4607, 4624), False, 'import cv2\n'), ((4629, 4651), 'cv2.imshow', 'cv2.imshow', (['"""img"""', 'img'], {}), "('img', img)\n", (4639, 4651), False, 'import cv2\n'), ((4656, 4669), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (4667, 4669), False, 'import cv2\n'), ((4909, 4936), 'os.listdir', 'os.listdir', (['annotation_path'], {}), '(annotation_path)\n', (4919, 4936), False, 'import os\n'), ((2075, 2124), 'numpy.zeros', 'np.zeros', ([], {'shape': '(img_w, img_w, 3)', 'dtype': 'np.uint8'}), '(shape=(img_w, img_w, 3), dtype=np.uint8)\n', (2083, 2124), True, 'import numpy as np\n'), ((2194, 2233), 'cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', (['center', '(-90)', '(1)'], {}), '(center, -90, 1)\n', (2217, 2233), False, 'import cv2\n'), ((2259, 2304), 'cv2.warpAffine', 'cv2.warpAffine', (['img_padded', 'M', '(img_w, img_w)'], {}), '(img_padded, M, (img_w, img_w))\n', (2273, 2304), False, 'import cv2\n'), ((2481, 2530), 'numpy.zeros', 'np.zeros', ([], {'shape': '(img_h, img_h, 3)', 'dtype': 'np.uint8'}), '(shape=(img_h, img_h, 3), dtype=np.uint8)\n', (2489, 2530), True, 'import numpy as np\n'), ((2599, 2638), 'cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', (['center', '(-90)', '(1)'], {}), '(center, -90, 1)\n', (2622, 2638), False, 'import cv2\n'), ((2664, 2709), 'cv2.warpAffine', 'cv2.warpAffine', (['img_padded', 'M', '(img_h, img_h)'], {}), '(img_padded, M, (img_h, img_h))\n', (2678, 2709), False, 'import cv2\n'), ((4702, 4732), 'os.path.isdir', 'os.path.isdir', (['image_save_path'], {}), '(image_save_path)\n', (4715, 4732), False, 'import os\n'), ((4742, 4767), 'os.mkdir', 'os.mkdir', (['image_save_path'], {}), '(image_save_path)\n', (4750, 4767), False, 'import os\n'), ((4779, 4814), 'os.path.isdir', 'os.path.isdir', (['annotation_save_path'], {}), '(annotation_save_path)\n', (4792, 4814), False, 'import os\n'), ((4824, 4854), 'os.mkdir', 'os.mkdir', (['annotation_save_path'], {}), '(annotation_save_path)\n', (4832, 4854), False, 'import os\n'), ((5011, 5050), 'os.path.join', 'os.path.join', (['annotation_path', 'txt_name'], {}), '(annotation_path, txt_name)\n', (5023, 5050), False, 'import os\n'), ((5122, 5156), 'os.path.join', 'os.path.join', (['image_path', 'img_name'], {}), '(image_path, img_name)\n', (5134, 5156), False, 'import os\n')]
|
import tensorflow as tf
import numpy as np
import logging
from global_utils import *
import time
import json
from tensorflow.python.layers import core as layers_core
from parametrs import *
global data1, data2, vocab, dict_rev, data1_validation, data2_validation, test1, test2
def load_data(parameterClass, length=None):
# print('Loading Data...')
print('Loading Data...')
global data1, data2, vocab, dict_rev, data1_validation, data2_validation, test1, test2
# dataset_path = '../datasets/DailyDialog'
t = time.time()
vocab, dict_rev = load_vocab_from_csv(parameterClass.vocab_path)
print('Vocab loaded')
# if length is not None:
data1 = load_data_from_csv(parameterClass.train_questions_csv, length)
data2 = load_data_from_csv(parameterClass.train_answers_csv, length)
# else:
# data1 = load_data_from_csv(parameterClass.train_questions_csv)
# data2 = load_data_from_csv(parameterClass.train_answers_csv)
# data1_validation = load_data_from_csv(validation_questions_csv)
# data2_validation = load_data_from_csv(validation_answers_csv)
# data1_test = load_data_from_csv(test_questions_csv)
# data2_test = load_data_from_csv(test_answers_csv)
print('Data is Loaded in', time.time() - t)
print('Vocab Length is', len(dict_rev))
print('Number of Training Examples', len(data1))
print('Number of Training Examples', len(data2))
global json_loaded_data
global path
global train_op
global loss
global encoder_inputs_placeholder
global decoder_inputs_placeholder
global decoder_lengths
global translations
global decoder_targets_placeholder
global load
global merged_summary
def define_graph(parameterClass, address='saved_model', QA=True):
global train_op
global loss_op
global encoder_inputs_placeholder
global decoder_inputs_placeholder
global decoder_lengths
global translations
global decoder_targets_placeholder
global load
global merged_summary
global path
global json_loaded_data
path = address
if not os.path.exists(path):
os.makedirs(path)
print('Model is being created at :', path + parameterClass.config_file)
conf = {}
with open(path + parameterClass.config_file, 'w', encoding='utf-8') as f:
# global json_loaded_data
conf['iteration'] = 0
conf['embedding_size'] = parameterClass.embed_size
conf['hidden_num'] = parameterClass.hidden_size
print(conf)
json_string = json.dumps(conf)
print(json_string)
f.write(json_string)
f.flush()
json_loaded_data = json.loads(json_string)
load = False
else:
with open(path + parameterClass.config_file, 'r') as f:
# global json_loaded_data
stri = f.read()
print('content loaded :', stri)
json_loaded_data = json.loads(stri)
# load = False
load = True
src_vocab_size = len(dict_rev)
tgt_vocab_size = len(dict_rev)
print(json_loaded_data)
embedding_size = json_loaded_data['embedding_size']
hidden_num = json_loaded_data['hidden_num']
encoder_inputs_placeholder = tf.placeholder(shape=(None, None), dtype=tf.int32, name='encoder_inputs')
decoder_inputs_placeholder = tf.placeholder(shape=(None, None), dtype=tf.int32, name='decoder_inputs')
embeddings1 = tf.Variable(tf.random_uniform([src_vocab_size, embedding_size], -1.0, 1.0))
embeddings2 = None
if not QA:
embeddings2 = tf.Variable(tf.random_uniform([tgt_vocab_size, embedding_size], -1.0, 1.0))
decoder_inputs_embedded = tf.nn.embedding_lookup(embeddings2, decoder_inputs_placeholder)
else: # QA
decoder_inputs_embedded = tf.nn.embedding_lookup(embeddings1, decoder_inputs_placeholder)
embeddings2 = embeddings1
encoder_inputs_embedded = tf.nn.embedding_lookup(embeddings1, encoder_inputs_placeholder)
encoder_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(hidden_num)
for i in range(parameterClass.layer_num)])
encoder_outputs, encoder_final_state = tf.nn.dynamic_rnn(
encoder_cell, encoder_inputs_embedded,
dtype=tf.float32, time_major=True,
)
# del encoder_outputs
attention_states = tf.transpose(encoder_outputs, [1, 0, 2])
# Create an attention mechanism
attention_mechanism = tf.contrib.seq2seq.LuongAttention(
hidden_num, attention_states,
memory_sequence_length=None)
decoder_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(hidden_num)
for i in range(parameterClass.layer_num)])
decoder_cell = tf.contrib.seq2seq.AttentionWrapper(
decoder_cell, attention_mechanism,
attention_layer_size=hidden_num)
decoder_lengths = tf.placeholder(tf.int32, shape=parameterClass.batch_size, name="decoder_length")
print('decoder length ', decoder_lengths)
# batch_size = tf.shape( decoder_lengths)[0]
helper = tf.contrib.seq2seq.TrainingHelper(decoder_inputs_embedded, decoder_lengths, time_major=True)
projection_layer = layers_core.Dense(
tgt_vocab_size, use_bias=False)
initial_state = decoder_cell.zero_state(parameterClass.batch_size, tf.float32).clone(cell_state=encoder_final_state)
decoder = tf.contrib.seq2seq.BasicDecoder(
decoder_cell, helper, initial_state,
output_layer=projection_layer)
final_outputs, _final_state, _final_sequence_lengths = tf.contrib.seq2seq.dynamic_decode(decoder)
logits = final_outputs.rnn_output
decoder_targets_placeholder = tf.placeholder(dtype="int32",
shape=(parameterClass.batch_size, parameterClass.decoder_length))
# Loss
loss_op = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=decoder_targets_placeholder, logits=logits)
# Train
global_step = tf.Variable(0, name='global_step', trainable=False)
# Calculate and clip gradients
params = tf.trainable_variables()
gradients = tf.gradients(loss_op, params)
clipped_gradients, _ = tf.clip_by_global_norm(
gradients, max_gradient_norm)
# Optimization
## TODO: use specified learning rate
optimizer = tf.train.AdamOptimizer(lr)
train_op = optimizer.apply_gradients(
zip(clipped_gradients, params), global_step=global_step)
# Inference
inference_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(embeddings2,
tf.fill([parameterClass.batch_size],
int(dict_rev[start_token])),
dict_rev[end_token])
# Inference Decoder
inference_decoder = tf.contrib.seq2seq.BasicDecoder(
decoder_cell, inference_helper, initial_state,
output_layer=projection_layer)
# We should specify maximum_iterations, it can't stop otherwise.
# source_sequence_length = encoder_length
maximum_iterations = tf.round(tf.reduce_max(parameterClass.source_sequence_length) * 2)
# Dynamic decoding
outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(
inference_decoder, maximum_iterations=maximum_iterations)
translations = outputs.sample_id
def translate(src_sen, parameterClass):
src_sen_ = pad_sentence(src_sen.lower(), parameterClass.source_sequence_length)
by_index = sentence_by_id(src_sen_, dict_rev)
sequence = np.asarray(by_index)
print('seq ', sequence)
inference_encoder_inputs = np.empty((parameterClass.source_sequence_length, parameterClass.batch_size))
for i in range(0, parameterClass.batch_size):
inference_encoder_inputs[:, i] = sequence
feed_dict = {
encoder_inputs_placeholder: inference_encoder_inputs,
decoder_lengths: np.ones(parameterClass.batch_size, dtype=int) * parameterClass.decoder_length
}
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(tf.global_variables())
if load:
print('loading')
check_restore_parameters(sess, saver, path + parameterClass.model_file_name)
answer = sess.run([translations], feed_dict)
print(src_sen)
answer = np.reshape(answer, [-1, parameterClass.batch_size])
print(get_sentence_back(answer[0], vocab))
def compute_blue(questions, score_func, parameterClass, session=None):
with open(parameterClass.validation_answers, encoding='utf-8') as f:
A_lines = f.readlines()
answers_given = []
number_of_batches = int(len(A_lines) / parameterClass.batch_size)
if session is None:
session = tf.Session()
session.run(tf.global_variables_initializer())
saver = tf.train.Saver(tf.global_variables())
if load:
print('loading Model')
check_restore_parameters(session, saver, path + parameterClass.model_file_name)
with session as sess:
for j in range(0, number_of_batches):
enc_inp = np.zeros((parameterClass.source_sequence_length, parameterClass.batch_size), dtype='int')
for idx in range(parameterClass.batch_size):
enc_inp[:, idx] = questions[j * parameterClass.batch_size + idx][1:-1]
feed_dict = {
encoder_inputs_placeholder: enc_inp,
decoder_lengths: np.ones((batch_size), dtype=int) * (parameterClass.decoder_length)
}
trans = sess.run([translations], feed_dict=feed_dict)
# print('trans_shape :', np.shape(trans))
trans = np.reshape(trans, [-1, parameterClass.batch_size])
for sen in trans:
# print('sen', sen)
answers_given.append(get_sentence_back(sen, vocab))
score = score_func(A_lines[:number_of_batches * parameterClass.batch_size], answers_given)
return score
def train(logs_dir, parameterClass, use_tensorBoard=False):
global loss_op
global train_op
global iter_loss_placeholder
display_each = 200
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(tf.global_variables())
global path
if load:
check_restore_parameters(sess, saver, path + parameterClass.model_file_name)
num = get_trainable_variables_num()
print('Number of trainable variables ', num)
number_of_batches = int(len(data1) / parameterClass.batch_size)
print('There are ', number_of_batches, ' batches')
global json_loaded_data
start = json_loaded_data['iteration']
if use_tensorBoard:
writer = tf.summary.FileWriter(logs_dir)
writer.add_graph(sess.graph)
## TODO: do Early Stopping
for i in range(start, epoch_num):
iter_loss = 0
iter_time = time.time()
for j in range(number_of_batches):
enc_inp = np.zeros((parameterClass.source_sequence_length, parameterClass.batch_size), dtype='int')
dec_inp = np.zeros((parameterClass.decoder_length, parameterClass.batch_size), dtype='int')
dec_tgt = np.zeros((parameterClass.decoder_length, parameterClass.batch_size), dtype='int')
# dec_tgt = np.zeros((decoder_length - 1, batch_size, tgt_vocab_size), dtype='int')
for idx in range(parameterClass.batch_size):
# print('input :', data2[j * batch_size + idx])
dec_inp[:, idx] = data2[j * parameterClass.batch_size + idx][:-1]
dec_tgt[:, idx] = data2[j * parameterClass.batch_size + idx][1:]
enc_inp[:, idx] = data1[j * parameterClass.batch_size + idx][1:-1]
feed_dict = {
encoder_inputs_placeholder: enc_inp,
decoder_inputs_placeholder: dec_inp,
decoder_targets_placeholder: np.transpose(dec_tgt),
decoder_lengths: np.ones((parameterClass.batch_size), dtype=int) * (parameterClass.decoder_length)
}
_, loss = sess.run([train_op, loss_op], feed_dict=feed_dict)
# print(np.max(labe))
iter_loss += np.mean(loss)
if j % display_each == 0:
print('Mini batch loss is ', np.mean(loss))
average_loss = iter_loss / number_of_batches
print('Average loss in iteration ', i, ' is ', average_loss)
print("It took ", time.time() - iter_time)
print('Saving model...')
if use_tensorBoard:
tf.summary.scalar('loss', iter_loss)
iter_loss_placeholder = tf.placeholder(tf.float32, name='iter_loss')
tf.summary.scalar("loss", iter_loss_placeholder)
merged_summary = tf.summary.merge_all()
s = sess.run(merged_summary, feed_dict={iter_loss_placeholder: iter_loss / number_of_batches})
print(merged_summary)
writer.add_summary(s, i)
else:
# print(logs_dir + log_file_name)
with open(logs_dir + ".txt", 'a', encoding='utf-8') as f:
f.write(str(average_loss) + ',' + str(i) + '\n')
f.flush()
json_loaded_data['iteration'] = i + 1
with open(path + parameterClass.config_file, 'w', encoding='utf-8') as f:
f.write(json.dumps(json_loaded_data))
f.flush()
saver.save(sess, path + parameterClass.model_file_name)
print('Model saved')
|
[
"tensorflow.contrib.seq2seq.LuongAttention",
"tensorflow.trainable_variables",
"numpy.empty",
"numpy.ones",
"json.dumps",
"tensorflow.global_variables",
"tensorflow.Variable",
"numpy.mean",
"tensorflow.contrib.seq2seq.BasicDecoder",
"tensorflow.reduce_max",
"tensorflow.clip_by_global_norm",
"json.loads",
"tensorflow.python.layers.core.Dense",
"numpy.transpose",
"tensorflow.placeholder",
"tensorflow.summary.FileWriter",
"numpy.reshape",
"tensorflow.gradients",
"tensorflow.summary.merge_all",
"tensorflow.summary.scalar",
"tensorflow.nn.embedding_lookup",
"tensorflow.global_variables_initializer",
"numpy.asarray",
"tensorflow.Session",
"tensorflow.transpose",
"tensorflow.contrib.seq2seq.TrainingHelper",
"tensorflow.random_uniform",
"tensorflow.nn.dynamic_rnn",
"numpy.zeros",
"time.time",
"tensorflow.contrib.seq2seq.AttentionWrapper",
"tensorflow.contrib.seq2seq.dynamic_decode",
"tensorflow.contrib.rnn.LSTMCell",
"tensorflow.train.AdamOptimizer",
"tensorflow.nn.sparse_softmax_cross_entropy_with_logits"
] |
[((531, 542), 'time.time', 'time.time', ([], {}), '()\n', (540, 542), False, 'import time\n'), ((3225, 3298), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '(None, None)', 'dtype': 'tf.int32', 'name': '"""encoder_inputs"""'}), "(shape=(None, None), dtype=tf.int32, name='encoder_inputs')\n", (3239, 3298), True, 'import tensorflow as tf\n'), ((3332, 3405), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '(None, None)', 'dtype': 'tf.int32', 'name': '"""decoder_inputs"""'}), "(shape=(None, None), dtype=tf.int32, name='decoder_inputs')\n", (3346, 3405), True, 'import tensorflow as tf\n'), ((3914, 3977), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['embeddings1', 'encoder_inputs_placeholder'], {}), '(embeddings1, encoder_inputs_placeholder)\n', (3936, 3977), True, 'import tensorflow as tf\n'), ((4198, 4293), 'tensorflow.nn.dynamic_rnn', 'tf.nn.dynamic_rnn', (['encoder_cell', 'encoder_inputs_embedded'], {'dtype': 'tf.float32', 'time_major': '(True)'}), '(encoder_cell, encoder_inputs_embedded, dtype=tf.float32,\n time_major=True)\n', (4215, 4293), True, 'import tensorflow as tf\n'), ((4362, 4402), 'tensorflow.transpose', 'tf.transpose', (['encoder_outputs', '[1, 0, 2]'], {}), '(encoder_outputs, [1, 0, 2])\n', (4374, 4402), True, 'import tensorflow as tf\n'), ((4466, 4562), 'tensorflow.contrib.seq2seq.LuongAttention', 'tf.contrib.seq2seq.LuongAttention', (['hidden_num', 'attention_states'], {'memory_sequence_length': 'None'}), '(hidden_num, attention_states,\n memory_sequence_length=None)\n', (4499, 4562), True, 'import tensorflow as tf\n'), ((4771, 4878), 'tensorflow.contrib.seq2seq.AttentionWrapper', 'tf.contrib.seq2seq.AttentionWrapper', (['decoder_cell', 'attention_mechanism'], {'attention_layer_size': 'hidden_num'}), '(decoder_cell, attention_mechanism,\n attention_layer_size=hidden_num)\n', (4806, 4878), True, 'import tensorflow as tf\n'), ((4915, 5000), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': 'parameterClass.batch_size', 'name': '"""decoder_length"""'}), "(tf.int32, shape=parameterClass.batch_size, name='decoder_length'\n )\n", (4929, 5000), True, 'import tensorflow as tf\n'), ((5105, 5201), 'tensorflow.contrib.seq2seq.TrainingHelper', 'tf.contrib.seq2seq.TrainingHelper', (['decoder_inputs_embedded', 'decoder_lengths'], {'time_major': '(True)'}), '(decoder_inputs_embedded, decoder_lengths,\n time_major=True)\n', (5138, 5201), True, 'import tensorflow as tf\n'), ((5222, 5271), 'tensorflow.python.layers.core.Dense', 'layers_core.Dense', (['tgt_vocab_size'], {'use_bias': '(False)'}), '(tgt_vocab_size, use_bias=False)\n', (5239, 5271), True, 'from tensorflow.python.layers import core as layers_core\n'), ((5418, 5521), 'tensorflow.contrib.seq2seq.BasicDecoder', 'tf.contrib.seq2seq.BasicDecoder', (['decoder_cell', 'helper', 'initial_state'], {'output_layer': 'projection_layer'}), '(decoder_cell, helper, initial_state,\n output_layer=projection_layer)\n', (5449, 5521), True, 'import tensorflow as tf\n'), ((5595, 5637), 'tensorflow.contrib.seq2seq.dynamic_decode', 'tf.contrib.seq2seq.dynamic_decode', (['decoder'], {}), '(decoder)\n', (5628, 5637), True, 'import tensorflow as tf\n'), ((5710, 5809), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': '"""int32"""', 'shape': '(parameterClass.batch_size, parameterClass.decoder_length)'}), "(dtype='int32', shape=(parameterClass.batch_size,\n parameterClass.decoder_length))\n", (5724, 5809), True, 'import tensorflow as tf\n'), ((5881, 5983), 'tensorflow.nn.sparse_softmax_cross_entropy_with_logits', 'tf.nn.sparse_softmax_cross_entropy_with_logits', ([], {'labels': 'decoder_targets_placeholder', 'logits': 'logits'}), '(labels=\n decoder_targets_placeholder, logits=logits)\n', (5927, 5983), True, 'import tensorflow as tf\n'), ((6019, 6070), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'name': '"""global_step"""', 'trainable': '(False)'}), "(0, name='global_step', trainable=False)\n", (6030, 6070), True, 'import tensorflow as tf\n'), ((6120, 6144), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (6142, 6144), True, 'import tensorflow as tf\n'), ((6161, 6190), 'tensorflow.gradients', 'tf.gradients', (['loss_op', 'params'], {}), '(loss_op, params)\n', (6173, 6190), True, 'import tensorflow as tf\n'), ((6218, 6270), 'tensorflow.clip_by_global_norm', 'tf.clip_by_global_norm', (['gradients', 'max_gradient_norm'], {}), '(gradients, max_gradient_norm)\n', (6240, 6270), True, 'import tensorflow as tf\n'), ((6357, 6383), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['lr'], {}), '(lr)\n', (6379, 6383), True, 'import tensorflow as tf\n'), ((6921, 7034), 'tensorflow.contrib.seq2seq.BasicDecoder', 'tf.contrib.seq2seq.BasicDecoder', (['decoder_cell', 'inference_helper', 'initial_state'], {'output_layer': 'projection_layer'}), '(decoder_cell, inference_helper,\n initial_state, output_layer=projection_layer)\n', (6952, 7034), True, 'import tensorflow as tf\n'), ((7300, 7396), 'tensorflow.contrib.seq2seq.dynamic_decode', 'tf.contrib.seq2seq.dynamic_decode', (['inference_decoder'], {'maximum_iterations': 'maximum_iterations'}), '(inference_decoder, maximum_iterations=\n maximum_iterations)\n', (7333, 7396), True, 'import tensorflow as tf\n'), ((7631, 7651), 'numpy.asarray', 'np.asarray', (['by_index'], {}), '(by_index)\n', (7641, 7651), True, 'import numpy as np\n'), ((7712, 7788), 'numpy.empty', 'np.empty', (['(parameterClass.source_sequence_length, parameterClass.batch_size)'], {}), '((parameterClass.source_sequence_length, parameterClass.batch_size))\n', (7720, 7788), True, 'import numpy as np\n'), ((3437, 3499), 'tensorflow.random_uniform', 'tf.random_uniform', (['[src_vocab_size, embedding_size]', '(-1.0)', '(1.0)'], {}), '([src_vocab_size, embedding_size], -1.0, 1.0)\n', (3454, 3499), True, 'import tensorflow as tf\n'), ((3671, 3734), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['embeddings2', 'decoder_inputs_placeholder'], {}), '(embeddings2, decoder_inputs_placeholder)\n', (3693, 3734), True, 'import tensorflow as tf\n'), ((3785, 3848), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['embeddings1', 'decoder_inputs_placeholder'], {}), '(embeddings1, decoder_inputs_placeholder)\n', (3807, 3848), True, 'import tensorflow as tf\n'), ((8089, 8101), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (8099, 8101), True, 'import tensorflow as tf\n'), ((8447, 8498), 'numpy.reshape', 'np.reshape', (['answer', '[-1, parameterClass.batch_size]'], {}), '(answer, [-1, parameterClass.batch_size])\n', (8457, 8498), True, 'import numpy as np\n'), ((8864, 8876), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (8874, 8876), True, 'import tensorflow as tf\n'), ((10260, 10272), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (10270, 10272), True, 'import tensorflow as tf\n'), ((1256, 1267), 'time.time', 'time.time', ([], {}), '()\n', (1265, 1267), False, 'import time\n'), ((2532, 2548), 'json.dumps', 'json.dumps', (['conf'], {}), '(conf)\n', (2542, 2548), False, 'import json\n'), ((2666, 2689), 'json.loads', 'json.loads', (['json_string'], {}), '(json_string)\n', (2676, 2689), False, 'import json\n'), ((2927, 2943), 'json.loads', 'json.loads', (['stri'], {}), '(stri)\n', (2937, 2943), False, 'import json\n'), ((3573, 3635), 'tensorflow.random_uniform', 'tf.random_uniform', (['[tgt_vocab_size, embedding_size]', '(-1.0)', '(1.0)'], {}), '([tgt_vocab_size, embedding_size], -1.0, 1.0)\n', (3590, 3635), True, 'import tensorflow as tf\n'), ((4027, 4062), 'tensorflow.contrib.rnn.LSTMCell', 'tf.contrib.rnn.LSTMCell', (['hidden_num'], {}), '(hidden_num)\n', (4050, 4062), True, 'import tensorflow as tf\n'), ((4625, 4660), 'tensorflow.contrib.rnn.LSTMCell', 'tf.contrib.rnn.LSTMCell', (['hidden_num'], {}), '(hidden_num)\n', (4648, 4660), True, 'import tensorflow as tf\n'), ((7198, 7250), 'tensorflow.reduce_max', 'tf.reduce_max', (['parameterClass.source_sequence_length'], {}), '(parameterClass.source_sequence_length)\n', (7211, 7250), True, 'import tensorflow as tf\n'), ((7995, 8040), 'numpy.ones', 'np.ones', (['parameterClass.batch_size'], {'dtype': 'int'}), '(parameterClass.batch_size, dtype=int)\n', (8002, 8040), True, 'import numpy as np\n'), ((8128, 8161), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8159, 8161), True, 'import tensorflow as tf\n'), ((8194, 8215), 'tensorflow.global_variables', 'tf.global_variables', ([], {}), '()\n', (8213, 8215), True, 'import tensorflow as tf\n'), ((8897, 8930), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8928, 8930), True, 'import tensorflow as tf\n'), ((8963, 8984), 'tensorflow.global_variables', 'tf.global_variables', ([], {}), '()\n', (8982, 8984), True, 'import tensorflow as tf\n'), ((9226, 9319), 'numpy.zeros', 'np.zeros', (['(parameterClass.source_sequence_length, parameterClass.batch_size)'], {'dtype': '"""int"""'}), "((parameterClass.source_sequence_length, parameterClass.batch_size),\n dtype='int')\n", (9234, 9319), True, 'import numpy as np\n'), ((9795, 9845), 'numpy.reshape', 'np.reshape', (['trans', '[-1, parameterClass.batch_size]'], {}), '(trans, [-1, parameterClass.batch_size])\n', (9805, 9845), True, 'import numpy as np\n'), ((10299, 10332), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (10330, 10332), True, 'import tensorflow as tf\n'), ((10365, 10386), 'tensorflow.global_variables', 'tf.global_variables', ([], {}), '()\n', (10384, 10386), True, 'import tensorflow as tf\n'), ((10870, 10901), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['logs_dir'], {}), '(logs_dir)\n', (10891, 10901), True, 'import tensorflow as tf\n'), ((11071, 11082), 'time.time', 'time.time', ([], {}), '()\n', (11080, 11082), False, 'import time\n'), ((11156, 11249), 'numpy.zeros', 'np.zeros', (['(parameterClass.source_sequence_length, parameterClass.batch_size)'], {'dtype': '"""int"""'}), "((parameterClass.source_sequence_length, parameterClass.batch_size),\n dtype='int')\n", (11164, 11249), True, 'import numpy as np\n'), ((11272, 11358), 'numpy.zeros', 'np.zeros', (['(parameterClass.decoder_length, parameterClass.batch_size)'], {'dtype': '"""int"""'}), "((parameterClass.decoder_length, parameterClass.batch_size), dtype=\n 'int')\n", (11280, 11358), True, 'import numpy as np\n'), ((11380, 11466), 'numpy.zeros', 'np.zeros', (['(parameterClass.decoder_length, parameterClass.batch_size)'], {'dtype': '"""int"""'}), "((parameterClass.decoder_length, parameterClass.batch_size), dtype=\n 'int')\n", (11388, 11466), True, 'import numpy as np\n'), ((12451, 12464), 'numpy.mean', 'np.mean', (['loss'], {}), '(loss)\n', (12458, 12464), True, 'import numpy as np\n'), ((12841, 12877), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""loss"""', 'iter_loss'], {}), "('loss', iter_loss)\n", (12858, 12877), True, 'import tensorflow as tf\n'), ((12918, 12962), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""iter_loss"""'}), "(tf.float32, name='iter_loss')\n", (12932, 12962), True, 'import tensorflow as tf\n'), ((12979, 13027), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""loss"""', 'iter_loss_placeholder'], {}), "('loss', iter_loss_placeholder)\n", (12996, 13027), True, 'import tensorflow as tf\n'), ((13061, 13083), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', ([], {}), '()\n', (13081, 13083), True, 'import tensorflow as tf\n'), ((9574, 9604), 'numpy.ones', 'np.ones', (['batch_size'], {'dtype': 'int'}), '(batch_size, dtype=int)\n', (9581, 9604), True, 'import numpy as np\n'), ((12146, 12167), 'numpy.transpose', 'np.transpose', (['dec_tgt'], {}), '(dec_tgt)\n', (12158, 12167), True, 'import numpy as np\n'), ((12731, 12742), 'time.time', 'time.time', ([], {}), '()\n', (12740, 12742), False, 'import time\n'), ((13677, 13705), 'json.dumps', 'json.dumps', (['json_loaded_data'], {}), '(json_loaded_data)\n', (13687, 13705), False, 'import json\n'), ((12206, 12251), 'numpy.ones', 'np.ones', (['parameterClass.batch_size'], {'dtype': 'int'}), '(parameterClass.batch_size, dtype=int)\n', (12213, 12251), True, 'import numpy as np\n'), ((12556, 12569), 'numpy.mean', 'np.mean', (['loss'], {}), '(loss)\n', (12563, 12569), True, 'import numpy as np\n')]
|
# Some part borrowed from official tutorial https://github.com/pytorch/examples/blob/master/imagenet/main.py
from __future__ import print_function
from __future__ import absolute_import
import os
import numpy as np
import argparse
import importlib
import time
import logging
import warnings
from collections import OrderedDict
import torch
import torch.nn as nn
from torch.utils.data.dataset import Dataset
from torchvision import datasets, transforms
from torch.utils.tensorboard import SummaryWriter
from models import SupResNet, SSLResNet
import data
import trainers
from losses import SupConLoss
from utils import *
def main():
parser = argparse.ArgumentParser(description="SSD evaluation")
parser.add_argument(
"--results-dir",
type=str,
default="/data/data_vvikash/fall20/SSD/trained_models/",
) # change this
parser.add_argument("--exp-name", type=str, default="temp")
parser.add_argument(
"--training-mode", type=str, choices=("SimCLR", "SupCon", "SupCE")
)
# model
parser.add_argument("--arch", type=str, default="resnet50")
parser.add_argument("--num-classes", type=int, default=10)
# training
parser.add_argument("--dataset", type=str, default="cifar10")
parser.add_argument("--data-dir", type=str, default="/data/data_vvikash/datasets/")
parser.add_argument("--normalize", action="store_true", default=False)
parser.add_argument("--batch-size", type=int, default=512)
parser.add_argument("--size", type=int, default=32)
parser.add_argument("--epochs", type=int, default=500)
parser.add_argument("--lr", type=float, default=0.5)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--weight-decay", type=float, default=1e-4)
parser.add_argument("--warmup", action="store_true")
# ssl
parser.add_argument(
"--method", type=str, default="SupCon", choices=["SupCon", "SimCLR", "SupCE"]
)
parser.add_argument("--temperature", type=float, default=0.5)
# misc
parser.add_argument("--print-freq", type=int, default=100)
parser.add_argument("--save-freq", type=int, default=50)
parser.add_argument("--ckpt", type=str, help="checkpoint path")
parser.add_argument("--seed", type=int, default=12345)
args = parser.parse_args()
device = "cuda:0"
if args.batch_size > 256 and not args.warmup:
warnings.warn("Use warmup training for larger batch-sizes > 256")
if not os.path.isdir(args.results_dir):
os.mkdir(args.results_dir)
# create resutls dir (for logs, checkpoints, etc.)
result_main_dir = os.path.join(args.results_dir, args.exp_name)
if os.path.exists(result_main_dir):
n = len(next(os.walk(result_main_dir))[-2]) # prev experiments with same name
result_sub_dir = result_sub_dir = os.path.join(
result_main_dir,
"{}--dataset-{}-arch-{}-lr-{}_epochs-{}".format(
n + 1, args.dataset, args.arch, args.lr, args.epochs
),
)
else:
os.mkdir(result_main_dir)
result_sub_dir = result_sub_dir = os.path.join(
result_main_dir,
"1--dataset-{}-arch-{}-lr-{}_epochs-{}".format(
args.dataset, args.arch, args.lr, args.epochs
),
)
create_subdirs(result_sub_dir)
# add logger
logging.basicConfig(level=logging.INFO, format="%(message)s")
logger = logging.getLogger()
logger.addHandler(
logging.FileHandler(os.path.join(result_sub_dir, "setup.log"), "a")
)
logger.info(args)
# seed cuda
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
# Create model
if args.training_mode in ["SimCLR", "SupCon"]:
model = SSLResNet(arch=args.arch).to(device)
elif args.training_mode == "SupCE":
model = SupResNet(arch=args.arch, num_classes=args.num_classes).to(device)
else:
raise ValueError("training mode not supported")
# load feature extractor on gpu
model.encoder = torch.nn.DataParallel(model.encoder).to(device)
# Dataloader
train_loader, test_loader, _ = data.__dict__[args.dataset](
args.data_dir,
mode="ssl" if args.training_mode in ["SimCLR", "SupCon"] else "org",
normalize=args.normalize,
size=args.size,
batch_size=args.batch_size,
)
criterion = (
SupConLoss(temperature=args.temperature).cuda()
if args.training_mode in ["SimCLR", "SupCon"]
else nn.CrossEntropyLoss().cuda()
)
optimizer = torch.optim.SGD(
model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# select training and validation methods
trainer = (
trainers.ssl
if args.training_mode in ["SimCLR", "SupCon"]
else trainers.supervised
)
val = knn if args.training_mode in ["SimCLR", "SupCon"] else baseeval
# warmup
if args.warmup:
wamrup_epochs = 10
print(f"Warmup training for {wamrup_epochs} epochs")
warmup_lr_scheduler = torch.optim.lr_scheduler.CyclicLR(
optimizer,
base_lr=0.01,
max_lr=args.lr,
step_size_up=wamrup_epochs * len(train_loader),
)
for epoch in range(wamrup_epochs):
trainer(
model,
device,
train_loader,
criterion,
optimizer,
warmup_lr_scheduler,
epoch,
args,
)
best_prec1 = 0
for p in optimizer.param_groups:
p["lr"] = args.lr
p["initial_lr"] = args.lr
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, args.epochs * len(train_loader), 1e-4
)
for epoch in range(0, args.epochs):
trainer(
model, device, train_loader, criterion, optimizer, lr_scheduler, epoch, args
)
prec1, _ = val(model, device, test_loader, criterion, args, epoch)
# remember best accuracy and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
d = {
"epoch": epoch + 1,
"arch": args.arch,
"state_dict": model.state_dict(),
"best_prec1": best_prec1,
"optimizer": optimizer.state_dict(),
}
save_checkpoint(
d,
is_best,
os.path.join(result_sub_dir, "checkpoint"),
)
if not (epoch + 1) % args.save_freq:
save_checkpoint(
d,
is_best,
os.path.join(result_sub_dir, "checkpoint"),
filename=f"checkpoint_{epoch+1}.pth.tar",
)
logger.info(
f"Epoch {epoch}, validation accuracy {prec1}, best_prec {best_prec1}"
)
# clone results to latest subdir (sync after every epoch)
clone_results_to_latest_subdir(
result_sub_dir, os.path.join(result_main_dir, "latest_exp")
)
if __name__ == "__main__":
main()
|
[
"os.mkdir",
"numpy.random.seed",
"argparse.ArgumentParser",
"logging.basicConfig",
"os.path.isdir",
"torch.manual_seed",
"losses.SupConLoss",
"os.walk",
"os.path.exists",
"torch.cuda.manual_seed",
"torch.nn.CrossEntropyLoss",
"models.SupResNet",
"torch.cuda.manual_seed_all",
"models.SSLResNet",
"warnings.warn",
"torch.nn.DataParallel",
"os.path.join",
"logging.getLogger"
] |
[((650, 703), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""SSD evaluation"""'}), "(description='SSD evaluation')\n", (673, 703), False, 'import argparse\n'), ((2631, 2676), 'os.path.join', 'os.path.join', (['args.results_dir', 'args.exp_name'], {}), '(args.results_dir, args.exp_name)\n', (2643, 2676), False, 'import os\n'), ((2685, 2716), 'os.path.exists', 'os.path.exists', (['result_main_dir'], {}), '(result_main_dir)\n', (2699, 2716), False, 'import os\n'), ((3378, 3439), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': '"""%(message)s"""'}), "(level=logging.INFO, format='%(message)s')\n", (3397, 3439), False, 'import logging\n'), ((3453, 3472), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (3470, 3472), False, 'import logging\n'), ((3621, 3649), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (3638, 3649), False, 'import torch\n'), ((3654, 3687), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['args.seed'], {}), '(args.seed)\n', (3676, 3687), False, 'import torch\n'), ((3692, 3729), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['args.seed'], {}), '(args.seed)\n', (3718, 3729), False, 'import torch\n'), ((3734, 3759), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (3748, 3759), True, 'import numpy as np\n'), ((2407, 2472), 'warnings.warn', 'warnings.warn', (['"""Use warmup training for larger batch-sizes > 256"""'], {}), "('Use warmup training for larger batch-sizes > 256')\n", (2420, 2472), False, 'import warnings\n'), ((2485, 2516), 'os.path.isdir', 'os.path.isdir', (['args.results_dir'], {}), '(args.results_dir)\n', (2498, 2516), False, 'import os\n'), ((2526, 2552), 'os.mkdir', 'os.mkdir', (['args.results_dir'], {}), '(args.results_dir)\n', (2534, 2552), False, 'import os\n'), ((3063, 3088), 'os.mkdir', 'os.mkdir', (['result_main_dir'], {}), '(result_main_dir)\n', (3071, 3088), False, 'import os\n'), ((3524, 3565), 'os.path.join', 'os.path.join', (['result_sub_dir', '"""setup.log"""'], {}), "(result_sub_dir, 'setup.log')\n", (3536, 3565), False, 'import os\n'), ((4130, 4166), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model.encoder'], {}), '(model.encoder)\n', (4151, 4166), False, 'import torch\n'), ((6578, 6620), 'os.path.join', 'os.path.join', (['result_sub_dir', '"""checkpoint"""'], {}), "(result_sub_dir, 'checkpoint')\n", (6590, 6620), False, 'import os\n'), ((7132, 7175), 'os.path.join', 'os.path.join', (['result_main_dir', '"""latest_exp"""'], {}), "(result_main_dir, 'latest_exp')\n", (7144, 7175), False, 'import os\n'), ((3847, 3872), 'models.SSLResNet', 'SSLResNet', ([], {'arch': 'args.arch'}), '(arch=args.arch)\n', (3856, 3872), False, 'from models import SupResNet, SSLResNet\n'), ((4487, 4527), 'losses.SupConLoss', 'SupConLoss', ([], {'temperature': 'args.temperature'}), '(temperature=args.temperature)\n', (4497, 4527), False, 'from losses import SupConLoss\n'), ((4602, 4623), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (4621, 4623), True, 'import torch.nn as nn\n'), ((6767, 6809), 'os.path.join', 'os.path.join', (['result_sub_dir', '"""checkpoint"""'], {}), "(result_sub_dir, 'checkpoint')\n", (6779, 6809), False, 'import os\n'), ((2739, 2763), 'os.walk', 'os.walk', (['result_main_dir'], {}), '(result_main_dir)\n', (2746, 2763), False, 'import os\n'), ((3940, 3995), 'models.SupResNet', 'SupResNet', ([], {'arch': 'args.arch', 'num_classes': 'args.num_classes'}), '(arch=args.arch, num_classes=args.num_classes)\n', (3949, 3995), False, 'from models import SupResNet, SSLResNet\n')]
|
"""
pytorch (0.3.1) miss some transforms, will be removed after official support.
"""
import torch
import numpy as np
from PIL import Image
import torchvision.transforms.functional as F
import torch.nn.functional as Func
import random
imagenet_pca = {
'eigval': np.asarray([0.2175, 0.0188, 0.0045]),
'eigvec': np.asarray([
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
])
}
class Lighting(object):
def __init__(self, alphastd,
eigval=imagenet_pca['eigval'],
eigvec=imagenet_pca['eigvec']):
self.alphastd = alphastd
assert eigval.shape == (3,)
assert eigvec.shape == (3, 3)
self.eigval = eigval
self.eigvec = eigvec
def __call__(self, img):
if self.alphastd == 0.:
return img
rnd = np.random.randn(3) * self.alphastd
rnd = rnd.astype('float32')
v = rnd
old_dtype = np.asarray(img).dtype
v = v * self.eigval
v = v.reshape((3, 1))
inc = np.dot(self.eigvec, v).reshape((3,))
img = np.add(img, inc)
if old_dtype == np.uint8:
img = np.clip(img, 0, 255)
img = Image.fromarray(img.astype(old_dtype), 'RGB')
return img
def __repr__(self):
return self.__class__.__name__ + '()'
class InputList(object):
def __init__(self, scales):
self.scales = scales
def __call__(self, img):
# assert img.size[0] == self.scales[0], 'image shape should be equal to max scale'
# input_list = []
# for i in range(len(self.scales)):
# input_list.append(F.resize(img, self.scales[i]))
assert img.size()[1] == self.scales[0], 'image shape should be equal to max scale'
input_list = []
img = img[np.newaxis, :]
for i in range(len(self.scales)):
resized_img = Func.interpolate(img, (self.scales[i], self.scales[i]), mode='bilinear', align_corners=True)
resized_img = torch.squeeze(resized_img)
input_list.append(resized_img)
return input_list
class ListToTensor(object):
def __call__(self, input_list):
tensor_list = []
for i in range(len(input_list)):
pic = input_list[i]
tensor_list.append(F.to_tensor(pic).detach())
return tensor_list
class ListNormalize(object):
def __init__(self, mean, std, inplace=False):
self.mean = mean
self.std = std
self.inplace = inplace
def __call__(self, tensor_list):
norm_list = []
for i in range(len(tensor_list)):
norm_list.append(F.normalize(tensor_list[i], self.mean, self.std, self.inplace))
return norm_list
|
[
"torchvision.transforms.functional.to_tensor",
"numpy.random.randn",
"numpy.asarray",
"numpy.clip",
"torch.squeeze",
"numpy.dot",
"numpy.add",
"torch.nn.functional.interpolate",
"torchvision.transforms.functional.normalize"
] |
[((268, 304), 'numpy.asarray', 'np.asarray', (['[0.2175, 0.0188, 0.0045]'], {}), '([0.2175, 0.0188, 0.0045])\n', (278, 304), True, 'import numpy as np\n'), ((320, 419), 'numpy.asarray', 'np.asarray', (['[[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.814], [-0.5836, -0.6948, \n 0.4203]]'], {}), '([[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.814], [-0.5836,\n -0.6948, 0.4203]])\n', (330, 419), True, 'import numpy as np\n'), ((1122, 1138), 'numpy.add', 'np.add', (['img', 'inc'], {}), '(img, inc)\n', (1128, 1138), True, 'import numpy as np\n'), ((870, 888), 'numpy.random.randn', 'np.random.randn', (['(3)'], {}), '(3)\n', (885, 888), True, 'import numpy as np\n'), ((977, 992), 'numpy.asarray', 'np.asarray', (['img'], {}), '(img)\n', (987, 992), True, 'import numpy as np\n'), ((1191, 1211), 'numpy.clip', 'np.clip', (['img', '(0)', '(255)'], {}), '(img, 0, 255)\n', (1198, 1211), True, 'import numpy as np\n'), ((1920, 2016), 'torch.nn.functional.interpolate', 'Func.interpolate', (['img', '(self.scales[i], self.scales[i])'], {'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(img, (self.scales[i], self.scales[i]), mode='bilinear',\n align_corners=True)\n", (1936, 2016), True, 'import torch.nn.functional as Func\n'), ((2039, 2065), 'torch.squeeze', 'torch.squeeze', (['resized_img'], {}), '(resized_img)\n', (2052, 2065), False, 'import torch\n'), ((1071, 1093), 'numpy.dot', 'np.dot', (['self.eigvec', 'v'], {}), '(self.eigvec, v)\n', (1077, 1093), True, 'import numpy as np\n'), ((2676, 2738), 'torchvision.transforms.functional.normalize', 'F.normalize', (['tensor_list[i]', 'self.mean', 'self.std', 'self.inplace'], {}), '(tensor_list[i], self.mean, self.std, self.inplace)\n', (2687, 2738), True, 'import torchvision.transforms.functional as F\n'), ((2330, 2346), 'torchvision.transforms.functional.to_tensor', 'F.to_tensor', (['pic'], {}), '(pic)\n', (2341, 2346), True, 'import torchvision.transforms.functional as F\n')]
|
# -*- coding: utf-8 -*-
"""
Colored text tool for RNN visualization
"""
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
class ColoredText(object):
"""
text: a sequence of characters
vals: a float vector, (-1 , 1), The same length as text
width: image width
fontsize:
fontname: nonproportional fontname
disp_colorbar:
TODO:Fix margins.The margins are correct only for width=1080 and fontsize=14.
"""
def __init__(self, text, vals, width, fontsize,
fontname='Source Code Pro',
disp_colorbar=True):
assert len(text) == len(vals)
self.text = text
self.vals = (vals + 1) / 2 # (-1,1) to (0, 1)
self.figsize_x = width / 90
self.fontsize = fontsize
self.fontname = fontname
self.disp_colorbar = disp_colorbar
#
self.font_w = fontsize
self.font_h = 1.9 * self.font_w
self.text_w = 0.95 * width
self.cnt_oneline = int(self.text_w / self.font_w) - 1
self.text_h = np.ceil(len(text) / self.cnt_oneline) * self.font_h
if self.disp_colorbar:
self.text_h += .7 * self.font_h
self.height = self.text_h + 50
self.text_bottom = 20 / self.height
else:
self.height = self.text_h + 30
self.text_bottom = 0
self.text_rh = self.text_h / self.height
self.figsize_y = self.height / 90
self.suptitle_y = 1 - 10 / self.height
self.font_rw = self.font_w / self.text_w
self.font_rh = self.font_h / self.text_h
self.text_val = self.split(self.cnt_oneline)
def split(self, cnt):
text_val = [(self.text[i:i+cnt], self.vals[i:i+cnt])
for i in range(0, len(self.text), cnt)]
return text_val
def disp_one_line(self, ax, subtext, subvals, height):
cl_s = cm.bwr(subvals)
for i, (ch, cl) in enumerate(zip(subtext, cl_s)):
ax.text(0.01 + i * self.font_rw, height, ch,
fontname=self.fontname,
fontsize=self.fontsize,
bbox={'facecolor': cl, 'edgecolor': cl,
'alpha': 0.8, 'pad': 1})
return ax
def display(self, title=None, savefile=None):
fig = plt.figure(figsize=(self.figsize_x, self.figsize_y), dpi=90)
if title is not None:
fig.suptitle(title, y=self.suptitle_y, fontsize=self.fontsize + 2)
# colored text
ax = fig.add_axes([0.02, self.text_bottom, 0.97, self.text_rh])
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
for j, (subtext, subvals) in enumerate(self.text_val):
self.disp_one_line(ax, subtext, subvals,
1 - (j+0.6)*self.font_rh)
if self.disp_colorbar:
cax = fig.add_axes([0.02, self.text_bottom, 0.97, self.text_bottom])
gradient = np.linspace(0, 1, 101)
gradient = np.vstack((gradient, gradient))
cax.imshow(gradient, aspect='auto', cmap=plt.get_cmap('bwr'))
cax.set_xticks([0, 25, 50, 75, 100])
cax.set_xticklabels(map(str, (cax.get_xticks() - 50) / 50))
cax.get_yaxis().set_visible(False)
if savefile is None:
plt.show()
else:
plt.savefig(savefile)
plt.close()
if __name__ == '__main__':
from itertools import product
SAVE = True
savefile = None
paramsgrid = product([10, 113, 375, 819], # num of chars
[540, 1080], # image width
[10, 14, 18], # fontsize
[True, False]) # disp_colorbar
for n, width, fontsize, disp_colorbar in paramsgrid:
text = ''.join([str(i % 10) for i in range(n)])
vals = (np.random.randn(n) / 5).clip(-1, 1)
title = 'n:{:d} width:{:d} fontsize:{:d} cbar:{:d}'.format(
n, width, fontsize, disp_colorbar)
if SAVE:
savefile = 'img/' + title.replace(':', '').replace(' ', '_')
ct = ColoredText(text, vals, width, fontsize,
disp_colorbar=disp_colorbar)
ct.display(title=title, savefile=savefile)
|
[
"matplotlib.pyplot.savefig",
"matplotlib.pyplot.show",
"matplotlib.pyplot.get_cmap",
"numpy.random.randn",
"matplotlib.pyplot.close",
"matplotlib.cm.bwr",
"matplotlib.pyplot.figure",
"numpy.linspace",
"itertools.product",
"numpy.vstack"
] |
[((3643, 3713), 'itertools.product', 'product', (['[10, 113, 375, 819]', '[540, 1080]', '[10, 14, 18]', '[True, False]'], {}), '([10, 113, 375, 819], [540, 1080], [10, 14, 18], [True, False])\n', (3650, 3713), False, 'from itertools import product\n'), ((1974, 1989), 'matplotlib.cm.bwr', 'cm.bwr', (['subvals'], {}), '(subvals)\n', (1980, 1989), True, 'import matplotlib.cm as cm\n'), ((2397, 2457), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(self.figsize_x, self.figsize_y)', 'dpi': '(90)'}), '(figsize=(self.figsize_x, self.figsize_y), dpi=90)\n', (2407, 2457), True, 'import matplotlib.pyplot as plt\n'), ((3508, 3519), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3517, 3519), True, 'import matplotlib.pyplot as plt\n'), ((3068, 3090), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(101)'], {}), '(0, 1, 101)\n', (3079, 3090), True, 'import numpy as np\n'), ((3115, 3146), 'numpy.vstack', 'np.vstack', (['(gradient, gradient)'], {}), '((gradient, gradient))\n', (3124, 3146), True, 'import numpy as np\n'), ((3438, 3448), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3446, 3448), True, 'import matplotlib.pyplot as plt\n'), ((3477, 3498), 'matplotlib.pyplot.savefig', 'plt.savefig', (['savefile'], {}), '(savefile)\n', (3488, 3498), True, 'import matplotlib.pyplot as plt\n'), ((3201, 3220), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""bwr"""'], {}), "('bwr')\n", (3213, 3220), True, 'import matplotlib.pyplot as plt\n'), ((4007, 4025), 'numpy.random.randn', 'np.random.randn', (['n'], {}), '(n)\n', (4022, 4025), True, 'import numpy as np\n')]
|
import sys
import os
from typing import Tuple
from numpy.random.mtrand import random
sys.path.append('C:\\Users\\coton\\Desktop\\github\\fema\\src\\')
import numpy as np
import math
from fem_basis import Basis
class FEMaSemiSupervisedClassifier:
"""
Class responsible to perform the classification using FEMa approach
"""
def __init__(self):
self.train_x = None
self.train_y = None
self.uknw_x = None
self.num_train_samples = 0
self.num_uknw_samples = 0
self.num_features = 0
self.num_classes = 0
self.k = 1
self.basis = None
self.probability_class = None
def __init__(self, k:int=2, basis=Basis.shepardBasis) -> None:
"""Constructor that receives the parameter to run the FEMa
Args:
k (int): Define the number of neighboor used to interpolate
basis = The finite element basis
"""
self.train_x = None
self.train_y = None
self.uknw_x = None
self.num_train_samples = 0
self.num_uknw_samples = 0
self.num_features = 0
self.num_classes = 0
self.k = k
self.basis = basis
self.probability_classes = None
def fit(self, train_x:np.array, train_y:np.array, uknw_x:np.array, uknw_y:np.array=None, *args) -> None:
"""AI is creating summary for fit
Args:
train_x (np.array): [description]
train_y (np.array): [description]
uknw_x (np.array): [description]
uknw_y (np.array, optional): [description]. Defaults to None.
"""
self.train_x = train_x
self.train_y = train_y
self.uknw_x = uknw_x
self.uknw_y = uknw_y
self.num_train_samples = len(train_y)
self.num_uknw_samples = uknw_x.shape[0]
self.num_features = self.train_x.shape[1]
self.num_classes = len(set(train_y[:,0]))
self.probability_classes = np.zeros((self.num_classes,self.num_train_samples))
for i in range(self.num_classes):
self.probability_classes[i,:] = train_y[:,0] == i
self.uknw_yhat = np.zeros(self.num_uknw_samples)
self.uknw_confidence_level = np.zeros((self.num_uknw_samples, self.num_classes))
for i in range(self.num_uknw_samples):
self.uknw_confidence_level[i,:] = [self.basis(train_x=self.train_x, train_y=self.probability_classes[c], test_one_sample=self.uknw_x[i], k=self.k, z=args[0]) for c in range(self.num_classes)]
#self.uknw_yhat[i] = np.argmax(self.uknw_confidence_level[i,:])
def predict(self, test_x:np.array, *args) -> Tuple[np.array, np.array]:
"""AI is creating summary for predict
Args:
test_x (np.array): [description]
Returns:
Tuple[np.array, np.array]: [description]
"""
new_train_x = np.append(self.train_x, self.uknw_x,axis=0)
new_probability_classes = np.append(self.probability_classes,self.uknw_confidence_level,axis=0)
num_test_samples = len(test_x)
labels = np.zeros(num_test_samples)
confidence_level = np.zeros((num_test_samples, self.num_classes))
for i in range(num_test_samples):
confidence_level[i,:] = [self.basis(train_x=new_train_x, train_y=new_probability_classes[c], test_one_sample=test_x[i], k=self.k, z=args[0]) for c in range(self.num_classes)]
labels[i] = np.argmax(confidence_level[i,:])
return labels, confidence_level
|
[
"sys.path.append",
"numpy.append",
"numpy.zeros",
"numpy.argmax"
] |
[((88, 153), 'sys.path.append', 'sys.path.append', (['"""C:\\\\Users\\\\coton\\\\Desktop\\\\github\\\\fema\\\\src\\\\"""'], {}), "('C:\\\\Users\\\\coton\\\\Desktop\\\\github\\\\fema\\\\src\\\\')\n", (103, 153), False, 'import sys\n'), ((1993, 2045), 'numpy.zeros', 'np.zeros', (['(self.num_classes, self.num_train_samples)'], {}), '((self.num_classes, self.num_train_samples))\n', (2001, 2045), True, 'import numpy as np\n'), ((2176, 2207), 'numpy.zeros', 'np.zeros', (['self.num_uknw_samples'], {}), '(self.num_uknw_samples)\n', (2184, 2207), True, 'import numpy as np\n'), ((2245, 2296), 'numpy.zeros', 'np.zeros', (['(self.num_uknw_samples, self.num_classes)'], {}), '((self.num_uknw_samples, self.num_classes))\n', (2253, 2296), True, 'import numpy as np\n'), ((2935, 2979), 'numpy.append', 'np.append', (['self.train_x', 'self.uknw_x'], {'axis': '(0)'}), '(self.train_x, self.uknw_x, axis=0)\n', (2944, 2979), True, 'import numpy as np\n'), ((3021, 3092), 'numpy.append', 'np.append', (['self.probability_classes', 'self.uknw_confidence_level'], {'axis': '(0)'}), '(self.probability_classes, self.uknw_confidence_level, axis=0)\n', (3030, 3092), True, 'import numpy as np\n'), ((3147, 3173), 'numpy.zeros', 'np.zeros', (['num_test_samples'], {}), '(num_test_samples)\n', (3155, 3173), True, 'import numpy as np\n'), ((3201, 3247), 'numpy.zeros', 'np.zeros', (['(num_test_samples, self.num_classes)'], {}), '((num_test_samples, self.num_classes))\n', (3209, 3247), True, 'import numpy as np\n'), ((3502, 3535), 'numpy.argmax', 'np.argmax', (['confidence_level[i, :]'], {}), '(confidence_level[i, :])\n', (3511, 3535), True, 'import numpy as np\n')]
|
import numpy as np
import math
# TODO: Use anytree to represent the tree
class TreeNode:
def __init__(self, lb, ub, num_split, rand = False):
self.lb = lb
self.ub = ub
self.x = 0.5 * (lb + ub) if not rand else np.random.uniform(lb, ub)
self.y = np.nan
self.children = []
self.num_split = num_split
if not np.all(self.lb < self.ub):
print("Error in the bound of node");
sys.exit(1)
pass
def is_leaf(self):
return (not self.children)
def expand(self, rand = False):
if not self.is_leaf():
print("Can not expand node, the node is not a leaf")
sys.exit(1)
id = np.argmax(self.ub - self.lb)
len = (self.ub[id] - self.lb[id]) / self.num_split
for i in range(self.num_split):
lb = self.lb.copy()
ub = self.ub.copy()
lb[id] = self.lb[id] + len * i;
ub[id] = self.lb[id] + len * (i+1);
self.children.append(TreeNode(lb, ub, self.num_split, rand))
def children_leaves(self):
return list(filter(lambda c : c.is_leaf(), self.children))
def depth(self):
if self.is_leaf():
return 1;
else:
max_sub_depth = 0;
for c in self.children:
max_sub_depth = max(max_sub_depth, c.depth())
return 1 + max_sub_depth
|
[
"numpy.random.uniform",
"numpy.all",
"numpy.argmax"
] |
[((726, 754), 'numpy.argmax', 'np.argmax', (['(self.ub - self.lb)'], {}), '(self.ub - self.lb)\n', (735, 754), True, 'import numpy as np\n'), ((247, 272), 'numpy.random.uniform', 'np.random.uniform', (['lb', 'ub'], {}), '(lb, ub)\n', (264, 272), True, 'import numpy as np\n'), ((383, 408), 'numpy.all', 'np.all', (['(self.lb < self.ub)'], {}), '(self.lb < self.ub)\n', (389, 408), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
""" verlat numerical integration methods """
import numpy as np
def velocity_verlat(x_init, acc, step, time):
""" the velocity verlat method """
# finding count
count = int(time / step)
# initialization
x = np.zeros(count)
x_dot = np.zeros(count)
x[0] = x_init
x_dot[0] = 0
for i in range(count - 1):
x[i + 1] = x[i] + x_dot[i] * step + 0.5 * step ** 2 * acc(x[i])
x_dot[i + 1] = x_dot[i] + 0.5 * (acc(x[i + 1]) + acc(x[i])) * step
return x, x_dot, count
def verlat(x_init, acc, step, time):
""" the original verlat method """
# calc ing count
count = int(time / step)
# initialization
x = np.zeros(count + 2)
x_dot = np.zeros(count + 1)
x[0:2] = x_init, x_init
for i in range(1, count + 1):
x[i + 1] = 2 * x[i] - x[i - 1] + acc(x[i]) * step ** 2
x_dot[i] = (x[i + 1] - x[i - 1]) / (2 * step)
# tidy up
x = np.delete(x, [0, -1])
x_dot = np.delete(x_dot, 0)
return x, x_dot, count
def euler(x_init, acc, step, time):
""" euer method """
# finding count
count = int(time / step)
# initialization
x = np.zeros(count)
x_dot = np.zeros(count)
x[0] = x_init
for i in range(count - 1):
x[i + 1] = x[i] + x_dot[i] * step
x_dot[i + 1] = x_dot[i] + acc(x[i]) * step
return x, x_dot, count
def euler_cromer(x_init, acc, step, time):
""" euer method """
# finding count
count = int(time / step)
# initialization
x = np.zeros(count)
x_dot = np.zeros(count)
x[0] = x_init
for i in range(count - 1):
x_dot[i + 1] = x_dot[i] + acc(x[i]) * step
x[i + 1] = x[i] + x_dot[i + 1] * step
return x, x_dot, count
def beeman(x_init, acc, step, time):
""" beeman method """
# find count
count = int(time / step)
# initialize
x = np.zeros(count + 1)
x_dot = np.zeros(count + 1)
x[0:2] = x_init
x_dot[0] = 0
for i in range(1, count):
x[i + 1] = x[i] + x_dot[i] * step + 1.0 / 6 \
* (4 * acc(x[i]) - acc(x[i - 1])) * step ** 2
x_dot[i + 1] = x_dot[i] + 1 / 6.0 \
* ( 2 * acc(x[i + 1]) + 5 * acc(x[i]) - acc(x[i - 1])) * step
# clean x and x_dot
x = np.delete(x, 0)
x_dot = np.delete(x_dot, 0)
return x, x_dot, count
|
[
"numpy.zeros",
"numpy.delete"
] |
[((254, 269), 'numpy.zeros', 'np.zeros', (['count'], {}), '(count)\n', (262, 269), True, 'import numpy as np\n'), ((282, 297), 'numpy.zeros', 'np.zeros', (['count'], {}), '(count)\n', (290, 297), True, 'import numpy as np\n'), ((698, 717), 'numpy.zeros', 'np.zeros', (['(count + 2)'], {}), '(count + 2)\n', (706, 717), True, 'import numpy as np\n'), ((730, 749), 'numpy.zeros', 'np.zeros', (['(count + 1)'], {}), '(count + 1)\n', (738, 749), True, 'import numpy as np\n'), ((953, 974), 'numpy.delete', 'np.delete', (['x', '[0, -1]'], {}), '(x, [0, -1])\n', (962, 974), True, 'import numpy as np\n'), ((987, 1006), 'numpy.delete', 'np.delete', (['x_dot', '(0)'], {}), '(x_dot, 0)\n', (996, 1006), True, 'import numpy as np\n'), ((1176, 1191), 'numpy.zeros', 'np.zeros', (['count'], {}), '(count)\n', (1184, 1191), True, 'import numpy as np\n'), ((1204, 1219), 'numpy.zeros', 'np.zeros', (['count'], {}), '(count)\n', (1212, 1219), True, 'import numpy as np\n'), ((1539, 1554), 'numpy.zeros', 'np.zeros', (['count'], {}), '(count)\n', (1547, 1554), True, 'import numpy as np\n'), ((1567, 1582), 'numpy.zeros', 'np.zeros', (['count'], {}), '(count)\n', (1575, 1582), True, 'import numpy as np\n'), ((1894, 1913), 'numpy.zeros', 'np.zeros', (['(count + 1)'], {}), '(count + 1)\n', (1902, 1913), True, 'import numpy as np\n'), ((1926, 1945), 'numpy.zeros', 'np.zeros', (['(count + 1)'], {}), '(count + 1)\n', (1934, 1945), True, 'import numpy as np\n'), ((2282, 2297), 'numpy.delete', 'np.delete', (['x', '(0)'], {}), '(x, 0)\n', (2291, 2297), True, 'import numpy as np\n'), ((2310, 2329), 'numpy.delete', 'np.delete', (['x_dot', '(0)'], {}), '(x_dot, 0)\n', (2319, 2329), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cv2
import numpy as np
camera = cv2.VideoCapture(0)
gray = None
while True:
ret, frame = camera.read()
if ret is False:
print("Camera open failed")
break
newgray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
display_img = newgray
if gray is not None:
#display_img =cv2.absdiff(newgray, gray)
"""
diff two picture, movement will be detected
"""
display_img =np.where(newgray > gray, newgray - gray, gray - newgray)
gray = newgray
cv2.imshow('hello', display_img)
if cv2.waitKey(1) == ord('q'):
break
camera.release()
|
[
"cv2.cvtColor",
"cv2.waitKey",
"cv2.VideoCapture",
"numpy.where",
"cv2.imshow"
] |
[((87, 106), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (103, 106), False, 'import cv2\n'), ((247, 286), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2GRAY'], {}), '(frame, cv2.COLOR_BGR2GRAY)\n', (259, 286), False, 'import cv2\n'), ((565, 597), 'cv2.imshow', 'cv2.imshow', (['"""hello"""', 'display_img'], {}), "('hello', display_img)\n", (575, 597), False, 'import cv2\n'), ((484, 540), 'numpy.where', 'np.where', (['(newgray > gray)', '(newgray - gray)', '(gray - newgray)'], {}), '(newgray > gray, newgray - gray, gray - newgray)\n', (492, 540), True, 'import numpy as np\n'), ((606, 620), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (617, 620), False, 'import cv2\n')]
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
import numpy as np
from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt
from Quaternion import Quat
def radec2eci(ra, dec):
"""
Convert from RA,Dec to ECI. The input ``ra`` and ``dec`` values can be 1-d
arrays of length N in which case the output ``ECI`` will be an array with
shape (3,N).
:param ra: Right Ascension (degrees)
:param dec: Declination (degrees)
:returns: numpy array ECI (3-vector or 3xN array)
"""
r = radians(ra)
d = radians(dec)
return np.array([cos(r) * cos(d), sin(r) * cos(d), sin(d)])
def eci2radec(eci):
"""
Convert from ECI vector(s) to RA, Dec. The input ``eci`` value
can be an array of 3-vectors having shape (3,N) in which case
the output RA, Dec will be arrays of length N.
:param eci: ECI as 3-vector or (3,N) array
:rtype: list ra, dec (degrees)
"""
ra = degrees(arctan2(eci[1], eci[0]))
dec = degrees(arctan2(eci[2], sqrt(eci[1]**2 + eci[0]**2)))
ok = ra < 0
if isinstance(ok, np.ndarray):
ra[ok] += 360
elif ok:
ra += 360
return ra, dec
def radec2yagzag(ra, dec, q):
"""
Given RA, Dec, and pointing quaternion, determine ACA Y-ang, Z-ang. The
input ``ra`` and ``dec`` values can be 1-d arrays in which case the output
``yag`` and ``zag`` will be corresponding arrays of the same length.
:param ra: Right Ascension (degrees)
:param dec: Declination (degrees)
:param q: Quaternion
:rtype: list yag, zag (degrees)
"""
eci = radec2eci(ra, dec)
d_aca = np.dot(q.transform.transpose(), eci)
yag = degrees(arctan2(d_aca[1], d_aca[0]))
zag = degrees(arctan2(d_aca[2], d_aca[0]))
return yag, zag
def yagzag2radec(yag, zag, q):
"""
Given ACA Y-ang, Z-ang and pointing quaternion determine RA, Dec. The
input ``yag`` and ``zag`` values can be 1-d arrays in which case the output
``ra`` and ``dec`` will be corresponding arrays of the same length.
:param yag: ACA Y angle (degrees)
:param zag: ACA Z angle (degrees)
:param q: Quaternion
:rtype: list ra, dec (degrees)
"""
try:
one = np.ones(len(yag))
except TypeError:
one = 1.0
d_aca = np.array([one, tan(radians(yag)), tan(radians(zag))])
d_aca *= 1.0 / np.sum(d_aca**2)
eci = np.dot(q.transform, d_aca)
return eci2radec(eci)
def norm(vec):
return vec / np.sqrt(np.sum(vec**2))
def quat_x_to_vec(vec, method='radec'):
"""Generate quaternion that rotates X-axis into ``vec``.
The ``method`` parameter can take one of three values: "shortest",
"keep_z", or "radec" (default). The "shortest" method takes the shortest
path between the two vectors. The "radec" method does the transformation
as the corresponding (RA, Dec, Roll=0) attitude. The "keep_z" method does
a roll about X-axis (followed by the "shortest" path) such that the
transformed Z-axis is in the original X-Z plane. In equations::
T: "shortest" quaternion taking X-axis to vec
Rx(theta): Rotation by theta about X-axis = [[1,0,0], [0,c,s], [0,-s,c]]
Z: Z-axis [0,0,1]
[T * Rx(theta) * Z]_y = 0
T[1,1] * sin(theta) + T[1,2]*cos(theta) = 0
theta = atan2(T[1,2], T[1,1])
:param vec: Input 3-vector
:param method: method for determining path (shortest|keep_z|radec)
:returns: Quaternion object
"""
x = np.array([1., 0, 0])
vec = norm(np.array(vec))
if method in ("shortest", "keep_z"):
dot = np.dot(x, vec)
if abs(dot) > 1 - 1e-8:
x = norm(np.array([1., 0., 1e-7]))
dot = np.dot(vec, x)
angle = np.arccos(dot)
axis = norm(np.cross(x, vec))
sin_a = np.sin(angle / 2)
cos_a = np.cos(angle / 2)
q = Quat([axis[0] * sin_a,
axis[1] * sin_a,
axis[2] * sin_a,
cos_a])
if method == "keep_z":
T = q.transform
theta = np.arctan2(T[1, 2], T[1, 1])
qroll = Quat([0, 0, degrees(theta)])
q = q * qroll
else:
ra = np.degrees(np.arctan2(vec[1], vec[0]))
dec = np.degrees(np.arcsin(vec[2]))
q = Quat([ra, dec, 0])
return q
|
[
"numpy.radians",
"numpy.sum",
"numpy.arctan2",
"Quaternion.Quat",
"numpy.degrees",
"numpy.cross",
"numpy.arcsin",
"numpy.sin",
"numpy.array",
"numpy.cos",
"numpy.dot",
"numpy.arccos",
"numpy.sqrt"
] |
[((535, 546), 'numpy.radians', 'radians', (['ra'], {}), '(ra)\n', (542, 546), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((555, 567), 'numpy.radians', 'radians', (['dec'], {}), '(dec)\n', (562, 567), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((2382, 2408), 'numpy.dot', 'np.dot', (['q.transform', 'd_aca'], {}), '(q.transform, d_aca)\n', (2388, 2408), True, 'import numpy as np\n'), ((3470, 3491), 'numpy.array', 'np.array', (['[1.0, 0, 0]'], {}), '([1.0, 0, 0])\n', (3478, 3491), True, 'import numpy as np\n'), ((955, 978), 'numpy.arctan2', 'arctan2', (['eci[1]', 'eci[0]'], {}), '(eci[1], eci[0])\n', (962, 978), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((1681, 1708), 'numpy.arctan2', 'arctan2', (['d_aca[1]', 'd_aca[0]'], {}), '(d_aca[1], d_aca[0])\n', (1688, 1708), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((1728, 1755), 'numpy.arctan2', 'arctan2', (['d_aca[2]', 'd_aca[0]'], {}), '(d_aca[2], d_aca[0])\n', (1735, 1755), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((2355, 2373), 'numpy.sum', 'np.sum', (['(d_aca ** 2)'], {}), '(d_aca ** 2)\n', (2361, 2373), True, 'import numpy as np\n'), ((3506, 3519), 'numpy.array', 'np.array', (['vec'], {}), '(vec)\n', (3514, 3519), True, 'import numpy as np\n'), ((3576, 3590), 'numpy.dot', 'np.dot', (['x', 'vec'], {}), '(x, vec)\n', (3582, 3590), True, 'import numpy as np\n'), ((3719, 3733), 'numpy.arccos', 'np.arccos', (['dot'], {}), '(dot)\n', (3728, 3733), True, 'import numpy as np\n'), ((3788, 3805), 'numpy.sin', 'np.sin', (['(angle / 2)'], {}), '(angle / 2)\n', (3794, 3805), True, 'import numpy as np\n'), ((3822, 3839), 'numpy.cos', 'np.cos', (['(angle / 2)'], {}), '(angle / 2)\n', (3828, 3839), True, 'import numpy as np\n'), ((3852, 3916), 'Quaternion.Quat', 'Quat', (['[axis[0] * sin_a, axis[1] * sin_a, axis[2] * sin_a, cos_a]'], {}), '([axis[0] * sin_a, axis[1] * sin_a, axis[2] * sin_a, cos_a])\n', (3856, 3916), False, 'from Quaternion import Quat\n'), ((4273, 4291), 'Quaternion.Quat', 'Quat', (['[ra, dec, 0]'], {}), '([ra, dec, 0])\n', (4277, 4291), False, 'from Quaternion import Quat\n'), ((623, 629), 'numpy.sin', 'sin', (['d'], {}), '(d)\n', (626, 629), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((1014, 1045), 'numpy.sqrt', 'sqrt', (['(eci[1] ** 2 + eci[0] ** 2)'], {}), '(eci[1] ** 2 + eci[0] ** 2)\n', (1018, 1045), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((2477, 2493), 'numpy.sum', 'np.sum', (['(vec ** 2)'], {}), '(vec ** 2)\n', (2483, 2493), True, 'import numpy as np\n'), ((3688, 3702), 'numpy.dot', 'np.dot', (['vec', 'x'], {}), '(vec, x)\n', (3694, 3702), True, 'import numpy as np\n'), ((3754, 3770), 'numpy.cross', 'np.cross', (['x', 'vec'], {}), '(x, vec)\n', (3762, 3770), True, 'import numpy as np\n'), ((4051, 4079), 'numpy.arctan2', 'np.arctan2', (['T[1, 2]', 'T[1, 1]'], {}), '(T[1, 2], T[1, 1])\n', (4061, 4079), True, 'import numpy as np\n'), ((4189, 4215), 'numpy.arctan2', 'np.arctan2', (['vec[1]', 'vec[0]'], {}), '(vec[1], vec[0])\n', (4199, 4215), True, 'import numpy as np\n'), ((4242, 4259), 'numpy.arcsin', 'np.arcsin', (['vec[2]'], {}), '(vec[2])\n', (4251, 4259), True, 'import numpy as np\n'), ((589, 595), 'numpy.cos', 'cos', (['r'], {}), '(r)\n', (592, 595), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((598, 604), 'numpy.cos', 'cos', (['d'], {}), '(d)\n', (601, 604), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((606, 612), 'numpy.sin', 'sin', (['r'], {}), '(r)\n', (609, 612), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((615, 621), 'numpy.cos', 'cos', (['d'], {}), '(d)\n', (618, 621), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((2301, 2313), 'numpy.radians', 'radians', (['yag'], {}), '(yag)\n', (2308, 2313), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((2320, 2332), 'numpy.radians', 'radians', (['zag'], {}), '(zag)\n', (2327, 2332), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n'), ((3644, 3671), 'numpy.array', 'np.array', (['[1.0, 0.0, 1e-07]'], {}), '([1.0, 0.0, 1e-07])\n', (3652, 3671), True, 'import numpy as np\n'), ((4112, 4126), 'numpy.degrees', 'degrees', (['theta'], {}), '(theta)\n', (4119, 4126), False, 'from numpy import sin, cos, tan, arctan2, radians, degrees, sqrt\n')]
|
import torch
from torch import nn
from torch.nn import functional as F
from Utils.flags import FLAGS
import numpy as np
from torch.autograd import Variable
crossentropy = nn.CrossEntropyLoss()
softmax = nn.Softmax(1)
logsoftmax = nn.LogSoftmax(1)
# some utils TODO
def update_average(model_tgt, model_src, beta=0.999):
param_dict_src = dict(model_src.named_parameters())
for p_name, p_tgt in model_tgt.named_parameters():
p_src = param_dict_src[p_name]
assert p_src is not p_tgt
p_tgt.data.mul_(beta).add_((1 - beta) * p_src.data)
def sigmoid_rampup(global_step, rampup_length):
global_step = np.clip(global_step, 0, rampup_length)
phase = 1.0 - global_step / rampup_length
return np.exp(-5.0 * phase * phase)
def sigmoid_rampdown(global_step, rampdown_length, training_length):
if global_step >= training_length - rampdown_length:
phase = 1.0 - (training_length - global_step) / rampdown_length
return np.exp(-12.5 * phase * phase)
else:
return 1.0
def linear_rampup(current, rampup_length):
"""Linear rampup"""
assert current >= 0 and rampup_length >= 0
if current >= rampup_length:
return 1.0
else:
return current / rampup_length
def cosine_rampdown(current, rampdown_length, training_length):
"""Cosine rampdown from https://arxiv.org/abs/1608.03983"""
assert 0 <= current <= training_length
if current >= training_length - rampdown_length:
return float(0.5 * (np.cos(np.pi * current / training_length) + 1))
else:
return 1.0
def cosine_rampdown_1(current, rampdown_length):
"""Cosine rampdown from https://arxiv.org/abs/1608.03983"""
assert 0 <= current <= rampdown_length
return max(0.0, float(0.5 * (np.cos(np.pi * current / rampdown_length) + 1)))
# losses
def entropy(logits):
prob = softmax(logits)
logprob = logsoftmax(logits)
return -torch.sum(prob * logprob, dim=1)
def loss_cross_entropy(logits, label):
loss = crossentropy(logits, label)
return loss
def loss_elr(netC, it, iter_l, device):
data, label = iter_l.__next__()
data, label = data.to(device), label.to(device)
logit_l = netC(data)
loss_l = loss_cross_entropy(logit_l, label)
return loss_l
def loss_elr_wrap(netC, netC_T, it, iter_l, itr, device):
data, label = iter_l.__next__()
data, label = data.to(device), label.to(device)
logit_l = netC(data)
loss_l = loss_cross_entropy(logit_l, label)
return loss_l, loss_l, loss_l
def loss_supervised(netC, netC_T, it, iter_l, iter_u, device):
data, label = iter_l.__next__()
data_u, _ = iter_u.__next__()
data_u = data_u.to(device)
logit_ut = netC_T(data_u).detach()
data, label = data.to(device), label.to(device)
logit_l = netC(data)
loss_l = loss_cross_entropy(logit_l, label)
return loss_l, loss_l.detach(), torch.zeros_like(loss_l.detach())
def loss_entropy_ssl(netC, netC_T, it, iter_l, iter_u, device):
data, label = iter_l.__next__()
data, label = data.to(device), label.to(device)
data_u, _ = iter_u.__next__()
data_u = data_u.to(device)
logit_l = netC(data)
logit_u = netC(data_u)
logit_ut = netC_T(data_u).detach()
loss_l = loss_cross_entropy(logit_l, label)
loss_u = FLAGS.alpha_entropy * torch.mean(entropy(logit_u), dim=0)
return loss_l + loss_u, loss_l.detach(), loss_u.detach()
def loss_MT_double_ssl(netC, netC_T, it, iter_l, iter_u, device):
if it == 0:
print("Using Double MT SSL")
data, label = iter_l.__next__()
data, label = data.to(device), label.to(device)
data_u, _ = iter_u.__next__()
data_u = data_u.to(device)
sigmoid_rampup_value = sigmoid_rampup(it, FLAGS.rampup_length)
cons_coefficient = sigmoid_rampup_value * FLAGS.max_consistency_cost
logit_l = netC(data)
logit_u_1, logit_u_2 = netC(data_u, double=True)
logit_ut = netC_T(data_u).detach()
loss_l = loss_cross_entropy(logit_l, label)
prob_u_2 = softmax(logit_u_2)
prob_t = softmax(logit_ut)
loss_u = cons_coefficient * torch.mean((prob_u_2 - prob_t) ** 2, dim=[0, 1])
loss_u = loss_u + FLAGS.alpha_mse * torch.mean(
(logit_u_2 - logit_u_1) ** 2, dim=[0, 1]
)
return loss_l + loss_u, loss_l.detach(), loss_u.detach()
def loss_MT_ssl(netC, netC_T, it, iter_l, iter_u, device):
data, label = iter_l.__next__()
data, label = data.to(device), label.to(device)
data_u, _ = iter_u.__next__()
data_u = data_u.to(device)
sigmoid_rampup_value = sigmoid_rampup(it, FLAGS.rampup_length)
cons_coefficient = sigmoid_rampup_value * FLAGS.max_consistency_cost
lpi = FLAGS.num_label_per_batch
batch_input = torch.cat([data[:lpi], data_u[lpi:]], dim=0)
logit = netC(batch_input)
logit_ut = netC_T(batch_input).detach()
logit_l = logit[:lpi]
logit_u = logit
# logit_l = netC(data)
# logit_u = netC(data_u)
# logit_ut = netC_T(data_u).detach()
loss_l = loss_cross_entropy(logit_l, label[:lpi])
prob = softmax(logit_u)
prob_t = softmax(logit_ut)
loss_u = cons_coefficient * torch.mean((prob - prob_t) ** 2, dim=[0, 1])
return loss_l + loss_u, loss_l.detach(), loss_u.detach()
def step_ramp(optim_c, netC, netC_T, it, tloss):
sigmoid_rampup_value = sigmoid_rampup(it, FLAGS.rampup_length_lr)
sigmoid_rampdown_value = sigmoid_rampdown(it, FLAGS.rampdown_length, FLAGS.n_iter)
lr = FLAGS.c_lr * sigmoid_rampup_value * sigmoid_rampdown_value
adam_beta_1 = (
sigmoid_rampdown_value * FLAGS.adam_beta_1_before_rampdown
+ (1 - sigmoid_rampdown_value) * FLAGS.adam_beta_1_after_rampdown
)
if it < FLAGS.rampup_length:
adam_beta_2 = FLAGS.adam_beta_2_during_rampup
ema_decay = FLAGS.ema_decay_during_rampup
else:
adam_beta_2 = FLAGS.adam_beta_2_after_rampup
ema_decay = FLAGS.ema_decay_after_rampup
# update adam
optim_c.param_groups[0]["betas"] = (adam_beta_1, adam_beta_2)
optim_c.param_groups[0]["lr"] = lr
# update student
optim_c.zero_grad()
tloss.backward()
if FLAGS.clip_value > 0:
torch.nn.utils.clip_grad_norm_(netC.parameters(), FLAGS.clip_value)
optim_c.step()
# update teacher
update_average(netC_T, netC, ema_decay)
def step_ramp_swa(optim_c, swa_optim, netC, netC_T, it, tloss):
ema_decay = FLAGS.ema_decay_after_rampup
linear_rampup_value = linear_rampup(it, FLAGS.rampup_length_lr)
if it >= FLAGS.swa_start and (it - FLAGS.swa_start) % FLAGS.cycle_interval == 0:
swa_optim.update(netC)
if it < FLAGS.swa_start:
# Cosine LR rampdown from https://arxiv.org/abs/1608.03983
assert FLAGS.rampdown_length >= FLAGS.swa_start
cosine_rampdown_value = cosine_rampdown_1(it, FLAGS.rampdown_length)
elif it >= FLAGS.swa_start:
cosine_rampdown_value = cosine_rampdown_1(
(FLAGS.swa_start - FLAGS.cycle_interval)
+ ((it - FLAGS.swa_start) % FLAGS.cycle_interval),
FLAGS.rampdown_length,
)
cosine_rampdown_value = cosine_rampdown(it, FLAGS.rampdown_length, FLAGS.n_iter)
lr = FLAGS.c_lr * linear_rampup_value * cosine_rampdown_value
# update adam
optim_c.param_groups[0]["lr"] = lr
# update student
optim_c.zero_grad()
tloss.backward()
if FLAGS.clip_value > 0:
torch.nn.utils.clip_grad_norm_(netC.parameters(), FLAGS.clip_value)
optim_c.step()
# update teacher
update_average(netC_T, netC, ema_decay)
def step_ramp_linear(optim_c, netC, netC_T, it, tloss):
ema_decay = FLAGS.ema_decay_after_rampup
linear_rampup_value = linear_rampup(it, FLAGS.rampup_length_lr)
cosine_rampdown_value = cosine_rampdown(it, FLAGS.rampdown_length, FLAGS.n_iter)
lr = FLAGS.c_lr * linear_rampup_value * cosine_rampdown_value
# update adam
optim_c.param_groups[0]["lr"] = lr
# update student
optim_c.zero_grad()
tloss.backward()
if FLAGS.clip_value > 0:
torch.nn.utils.clip_grad_norm_(netC.parameters(), FLAGS.clip_value)
optim_c.step()
# update teacher
update_average(netC_T, netC, ema_decay)
def step_vat(optim_c, netC, netC_T, it, tloss):
ema_decay = FLAGS.ema_decay_after_rampup
if it > FLAGS.lr_anneal_num:
decayed_lr = (
(FLAGS.n_iter - it) * FLAGS.c_lr / (FLAGS.n_iter - FLAGS.lr_anneal_num)
)
optim_c.param_groups[0]["lr"] = decayed_lr
# update student
optim_c.zero_grad()
tloss.backward()
if FLAGS.clip_value > 0:
torch.nn.utils.clip_grad_norm_(netC.parameters(), FLAGS.clip_value)
optim_c.step()
# update teacher
update_average(netC_T, netC, ema_decay)
def step_regular(optim_c, netC, netC_T, it, tloss):
ema_decay = FLAGS.ema_decay_after_rampup
if it > FLAGS.lr_anneal_num:
times = (it - FLAGS.lr_anneal_num) // FLAGS.lr_anneal_interval
lr = FLAGS.c_lr * (FLAGS.lr_anneal_coe ** times)
optim_c.param_groups[0]["lr"] = lr
# update student
optim_c.zero_grad()
tloss.backward()
if FLAGS.clip_value > 0:
torch.nn.utils.clip_grad_norm_(netC.parameters(), FLAGS.clip_value)
optim_c.step()
# update teacher
update_average(netC_T, netC, ema_decay)
def kl_div_with_logit(q_logit, p_logit):
q = F.softmax(q_logit, dim=1)
logq = F.log_softmax(q_logit, dim=1)
logp = F.log_softmax(p_logit, dim=1)
qlogq = (q * logq).sum(dim=1).mean(dim=0)
qlogp = (q * logp).sum(dim=1).mean(dim=0)
return qlogq - qlogp
def vat_loss_ssl(netC, netC_T, it, iter_l, iter_u, device):
data, label = iter_l.__next__()
data, label = data.to(device), label.to(device)
data_u, _ = iter_u.__next__()
data_u = data_u.to(device)
logit_l = netC(data)
logit_u = netC(data_u)
loss_u = vat_loss(
netC, data_u, logit_u, FLAGS.vat_xi, FLAGS.vat_eps, FLAGS.vat_iters
)
loss_u = loss_u + torch.mean(entropy(logit_u), dim=0)
loss_l = loss_cross_entropy(logit_l, label)
return loss_l + loss_u, loss_l.detach(), loss_u.detach()
def _l2_normalize(d):
d = d.numpy()
d /= np.sqrt(np.sum(d ** 2, axis=(1, 2, 3))).reshape((-1, 1, 1, 1)) + 1e-16
return torch.from_numpy(d)
def vat_loss(model, ul_x, ul_y, xi=1e-6, eps=2.5, num_iters=1):
# find r_adv
d = torch.Tensor(ul_x.size()).normal_()
for i in range(num_iters):
d = xi * _l2_normalize(d)
d = Variable(d.cuda(), requires_grad=True)
y_hat = model(ul_x + d)
delta_kl = kl_div_with_logit(ul_y.detach(), y_hat)
delta_kl.backward()
d = d.grad.data.clone().cpu()
model.zero_grad()
d = _l2_normalize(d)
d = Variable(d.cuda())
r_adv = eps * d
# compute lds
y_hat = model(ul_x + r_adv.detach())
delta_kl = kl_div_with_logit(ul_y.detach(), y_hat)
return delta_kl
c_loss_dict = {
"crossentropy": loss_supervised,
"entropyssl": loss_entropy_ssl,
"mtssl": loss_MT_ssl,
"mtdoublessl": loss_MT_double_ssl,
"vatssl": vat_loss_ssl,
"loss_elr_wrap": loss_elr_wrap,
}
c_step_func = {
"ramp": step_ramp,
"ramp_linear": step_ramp_linear,
"regular": step_regular,
"step_vat": step_vat,
"ramp_swa": step_ramp_swa,
}
|
[
"torch.mean",
"numpy.sum",
"torch.nn.LogSoftmax",
"torch.nn.CrossEntropyLoss",
"torch.cat",
"numpy.clip",
"torch.nn.functional.softmax",
"torch.nn.Softmax",
"numpy.exp",
"torch.nn.functional.log_softmax",
"numpy.cos",
"torch.sum",
"torch.from_numpy"
] |
[((173, 194), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (192, 194), False, 'from torch import nn\n'), ((205, 218), 'torch.nn.Softmax', 'nn.Softmax', (['(1)'], {}), '(1)\n', (215, 218), False, 'from torch import nn\n'), ((232, 248), 'torch.nn.LogSoftmax', 'nn.LogSoftmax', (['(1)'], {}), '(1)\n', (245, 248), False, 'from torch import nn\n'), ((635, 673), 'numpy.clip', 'np.clip', (['global_step', '(0)', 'rampup_length'], {}), '(global_step, 0, rampup_length)\n', (642, 673), True, 'import numpy as np\n'), ((731, 759), 'numpy.exp', 'np.exp', (['(-5.0 * phase * phase)'], {}), '(-5.0 * phase * phase)\n', (737, 759), True, 'import numpy as np\n'), ((4729, 4773), 'torch.cat', 'torch.cat', (['[data[:lpi], data_u[lpi:]]'], {'dim': '(0)'}), '([data[:lpi], data_u[lpi:]], dim=0)\n', (4738, 4773), False, 'import torch\n'), ((9358, 9383), 'torch.nn.functional.softmax', 'F.softmax', (['q_logit'], {'dim': '(1)'}), '(q_logit, dim=1)\n', (9367, 9383), True, 'from torch.nn import functional as F\n'), ((9395, 9424), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['q_logit'], {'dim': '(1)'}), '(q_logit, dim=1)\n', (9408, 9424), True, 'from torch.nn import functional as F\n'), ((9436, 9465), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['p_logit'], {'dim': '(1)'}), '(p_logit, dim=1)\n', (9449, 9465), True, 'from torch.nn import functional as F\n'), ((10261, 10280), 'torch.from_numpy', 'torch.from_numpy', (['d'], {}), '(d)\n', (10277, 10280), False, 'import torch\n'), ((975, 1004), 'numpy.exp', 'np.exp', (['(-12.5 * phase * phase)'], {}), '(-12.5 * phase * phase)\n', (981, 1004), True, 'import numpy as np\n'), ((1926, 1958), 'torch.sum', 'torch.sum', (['(prob * logprob)'], {'dim': '(1)'}), '(prob * logprob, dim=1)\n', (1935, 1958), False, 'import torch\n'), ((4102, 4150), 'torch.mean', 'torch.mean', (['((prob_u_2 - prob_t) ** 2)'], {'dim': '[0, 1]'}), '((prob_u_2 - prob_t) ** 2, dim=[0, 1])\n', (4112, 4150), False, 'import torch\n'), ((5137, 5181), 'torch.mean', 'torch.mean', (['((prob - prob_t) ** 2)'], {'dim': '[0, 1]'}), '((prob - prob_t) ** 2, dim=[0, 1])\n', (5147, 5181), False, 'import torch\n'), ((4191, 4243), 'torch.mean', 'torch.mean', (['((logit_u_2 - logit_u_1) ** 2)'], {'dim': '[0, 1]'}), '((logit_u_2 - logit_u_1) ** 2, dim=[0, 1])\n', (4201, 4243), False, 'import torch\n'), ((1505, 1546), 'numpy.cos', 'np.cos', (['(np.pi * current / training_length)'], {}), '(np.pi * current / training_length)\n', (1511, 1546), True, 'import numpy as np\n'), ((1773, 1814), 'numpy.cos', 'np.cos', (['(np.pi * current / rampdown_length)'], {}), '(np.pi * current / rampdown_length)\n', (1779, 1814), True, 'import numpy as np\n'), ((10187, 10217), 'numpy.sum', 'np.sum', (['(d ** 2)'], {'axis': '(1, 2, 3)'}), '(d ** 2, axis=(1, 2, 3))\n', (10193, 10217), True, 'import numpy as np\n')]
|
"""libaray for multi-modal dataset loaders.
Acknowledgements:
`image_to_caption_collate_fn` is based on
https://github.com/yalesong/pvse/blob/master/data.py
"""
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from datasets.coco import CocoCaptionsCap
from datasets.cub import CUBCaption, CUBSampler
from datasets.vocab import Vocabulary
from datasets._transforms import imagenet_transform, caption_transform
def image_to_caption_collate_fn(data):
"""Build mini-batch tensors from a list of (image, sentence) tuples.
Args:
data: list of (image, sentence) tuple.
- image: torch tensor of shape (3, 256, 256) or (?, 3, 256, 256).
- sentence: torch tensor of shape (?); variable length.
Returns:
images: torch tensor of shape (batch_size, 3, 256, 256) or
(batch_size, padded_length, 3, 256, 256).
targets: torch tensor of shape (batch_size, padded_length).
lengths: list; valid length for each padded sentence.
"""
# Sort a data list by sentence length
data.sort(key=lambda x: len(x[1]), reverse=True)
images, sentences, ann_ids, image_ids = zip(*data)
# Merge images (convert tuple of 3D tensor to 4D tensor)
images = torch.stack(images, 0)
# Merge sentences (convert tuple of 1D tensor to 2D tensor)
cap_lengths = [len(cap) for cap in sentences]
targets = torch.zeros(len(sentences), max(cap_lengths)).long()
for i, cap in enumerate(sentences):
end = cap_lengths[i]
targets[i, :end] = cap[:end]
cap_lengths = torch.Tensor(cap_lengths).long()
return images, targets, cap_lengths, ann_ids, image_ids
def load_vocab(vocab_path):
if isinstance(vocab_path, str):
vocab = Vocabulary()
vocab.load_from_pickle(vocab_path)
else:
vocab = vocab_path
return vocab
def _get_cub_file_paths(dataset_name, dataset_root, caption_root):
"""Select proper train / val classes and omit id files.
The split is based on CVPR'17 Zero-Shot Learning -- The Good, the Bad and the Ugly
See more details in
https://arxiv.org/abs/1703.04394
https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/research/zero-shot-learning/zero-shot-learning-the-good-the-bad-and-the-ugly
Args:
dataset_name: name of dataset
- cub_trainval{idx} (idx in [1, 2, 3]):
3-fold validation splits to search hyperparameters.
Each split contains 100 train classes / 50 validation classes.
- cub:
The final split used for the final benchmark.
This split conntains 150 train classes / 50 unseen test classes (not in trainval)
"""
if dataset_name == 'cub_trainval1':
train_classes = './datasets/annotations/cub/trainclasses1.txt'
val_classes = './datasets/annotations/cub/valclasses1.txt'
omit_ids = './datasets/annotations/cub/seen_test_images.txt'
elif dataset_name == 'cub_trainval2':
train_classes = './datasets/annotations/cub/trainclasses2.txt'
val_classes = './datasets/annotations/cub/valclasses2.txt'
omit_ids = './datasets/annotations/cub/seen_test_images.txt'
elif dataset_name == 'cub_trainval3':
train_classes = './datasets/annotations/cub/trainclasses3.txt'
val_classes = './datasets/annotations/cub/valclasses3.txt'
omit_ids = './datasets/annotations/cub/seen_test_images.txt'
elif dataset_name == 'cub':
train_classes = './datasets/annotations/cub/trainvalclasses.txt'
val_classes = './datasets/annotations/cub/testclasses.txt'
omit_ids = './datasets/annotations/cub/seen_test_images.txt'
else:
raise ValueError(f'Invalide dataset_name: {dataset_name}')
image_root = os.path.join(dataset_root, 'images/')
return train_classes, val_classes, omit_ids, image_root, caption_root
def _get_cub_loader(image_root, caption_root,
data_classes, vocab,
num_workers,
batch_size=64,
train=False,
omit_ids=None,
ids=None,
cutout_prob=0.0,
caption_drop_prob=0.0):
cub_dataset = CUBCaption(image_root, caption_root,
data_classes,
imagenet_transform(random_erasing_prob=cutout_prob),
caption_transform(vocab, caption_drop_prob),
omit_ids=omit_ids,
ids=ids)
if train:
sampler = CUBSampler(cub_dataset, len(cub_dataset.target_classes))
dataloader = DataLoader(cub_dataset, batch_sampler=sampler,
num_workers=num_workers,
collate_fn=image_to_caption_collate_fn,
pin_memory=True)
else:
dataloader = DataLoader(cub_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
collate_fn=image_to_caption_collate_fn,
pin_memory=True)
print(f'Loading CUB Caption: n_images {cub_dataset.n_images} n_captions {len(cub_dataset.targets)}...')
return dataloader
def prepare_cub_dataloaders(dataloader_config,
dataset_name,
dataset_root,
caption_root,
vocab_path='./vocabs/cub_vocab.pkl',
num_workers=6):
"""Prepare CUB Caption train / val / test dataloaders
CUB Caption loader has a fixed batch size
- train loader: # classes (trainval = 100, full = 150)
- test loader: 64 (hard coded at L#203)
Args:
dataloader_config (dict): configuration file which should contain "batch_size"
dataset_name (str): name of dataset
- cub_trainval{idx} (idx in [1, 2, 3]):
3-fold validation splits to search hyperparameters.
Each split contains 100 train classes / 50 validation classes.
- cub:
The final split used for the final benchmark.
This split conntains 150 train classes / 50 unseen test classes (not in trainval)
dataset_root (str): root of your CUB images (see README.md for detailed dataset hierarchy)
caption_root (str): root of your CUB captions (see README.md for detailed dataset hierarchy)
vocab_path (str, optional): path for vocab pickle file (default: ./vocabs/cub_vocab.pkl).
num_workers (int, optional): num_workers for the dataloaders (default: 6)
Returns:
dataloaders (dict): keys = ["train", "val", "val_in"], values are the corresponding dataloaders.
vocab (Vocabulary object): vocab object
"""
vocab = load_vocab(vocab_path)
train_classes, val_classes, omit_ids, image_root, caption_root = _get_cub_file_paths(
dataset_name, dataset_root, caption_root)
cutout_prob = dataloader_config.get('random_erasing_prob', 0.0)
caption_drop_prob = dataloader_config.get('caption_drop_prob', 0.0)
dataloaders = {}
dataloaders['train'] = _get_cub_loader(
image_root, caption_root,
train_classes,
vocab, num_workers,
train=True,
omit_ids=omit_ids,
cutout_prob=cutout_prob,
caption_drop_prob=caption_drop_prob,
)
dataloaders['val'] = _get_cub_loader(
image_root, caption_root,
val_classes,
vocab, num_workers,
train=False,
)
dataloaders['val_in'] = _get_cub_loader(
image_root, caption_root,
train_classes,
vocab, num_workers,
train=False,
ids=omit_ids
)
return dataloaders, vocab
def _get_coco_loader(image_root,
annotation_path,
ids, vocab,
num_workers,
batch_size=64,
train=False,
extra_ids=None,
extra_annotation_path=None,
cutout_prob=0.0,
caption_drop_prob=0.0):
_image_transform = imagenet_transform(
random_resize_crop=train,
random_erasing_prob=cutout_prob,
)
_caption_transform = caption_transform(vocab,
caption_drop_prob)
coco_dataset = CocoCaptionsCap(image_root, annotation_path,
extra_annFile=extra_annotation_path,
ids=ids,
extra_ids=extra_ids,
transform=_image_transform,
target_transform=_caption_transform)
dataloader = DataLoader(coco_dataset,
batch_size=batch_size,
shuffle=train,
num_workers=num_workers,
collate_fn=image_to_caption_collate_fn,
pin_memory=True)
print(f'Loading COCO Caption: n_images {coco_dataset.n_images} n_captions {len(coco_dataset)}...')
return dataloader
def _get_coco_file_paths(dataset_root):
"""Select proper train / val classes and omit id files.
"""
train_ids = np.load('./datasets/annotations/coco_train_ids.npy')
train_extra_ids = np.load('./datasets/annotations/coco_restval_ids.npy')
val_ids = np.load('./datasets/annotations/coco_dev_ids.npy')[:5000]
te_ids = np.load('./datasets/annotations/coco_test_ids.npy')
image_root = os.path.join(dataset_root, 'images/trainval35k')
train_ann = os.path.join(dataset_root, 'annotations/annotations/captions_train2014.json')
val_ann = os.path.join(dataset_root, 'annotations/annotations/captions_val2014.json')
return train_ids, train_extra_ids, val_ids, te_ids, image_root, train_ann, val_ann
def prepare_coco_dataloaders(dataloader_config,
dataset_root,
vocab_path='./vocabs/coco_vocab.pkl',
num_workers=6):
"""Prepare MS-COCO Caption train / val / test dataloaders
Args:
dataloader_config (dict): configuration file which should contain "batch_size"
dataset_root (str): root of your MS-COCO dataset (see README.md for detailed dataset hierarchy)
vocab_path (str, optional): path for vocab pickle file (default: ./vocabs/coco_vocab.pkl).
num_workers (int, optional): num_workers for the dataloaders (default: 6)
Returns:
dataloaders (dict): keys = ["train", "val", "te"], values are the corresponding dataloaders.
vocab (Vocabulary object): vocab object
"""
batch_size = dataloader_config['batch_size']
tr_cutout_prob = dataloader_config.get('random_erasing_prob', 0.0)
tr_caption_drop_prob = dataloader_config.get('caption_drop_prob', 0.0)
eval_batch_size = dataloader_config.get('eval_batch_size', batch_size)
vocab = load_vocab(vocab_path)
train_ids, train_extra_ids, val_ids, te_ids, image_root, train_ann, val_ann = _get_coco_file_paths(dataset_root)
dataloaders = {}
dataloaders['train'] = _get_coco_loader(
image_root, train_ann, train_ids, vocab,
num_workers=num_workers, batch_size=batch_size,
train=True,
extra_annotation_path=val_ann,
extra_ids=train_extra_ids,
cutout_prob=tr_cutout_prob,
caption_drop_prob=tr_caption_drop_prob,
)
dataloaders['val'] = _get_coco_loader(
image_root, val_ann, val_ids, vocab,
num_workers=num_workers, batch_size=eval_batch_size,
train=False,
)
dataloaders['te'] = _get_coco_loader(
image_root, val_ann, te_ids, vocab,
num_workers=num_workers, batch_size=eval_batch_size,
train=False,
)
return dataloaders, vocab
|
[
"numpy.load",
"torch.stack",
"torch.utils.data.DataLoader",
"datasets.coco.CocoCaptionsCap",
"datasets._transforms.imagenet_transform",
"datasets.vocab.Vocabulary",
"torch.Tensor",
"datasets._transforms.caption_transform",
"os.path.join"
] |
[((1247, 1269), 'torch.stack', 'torch.stack', (['images', '(0)'], {}), '(images, 0)\n', (1258, 1269), False, 'import torch\n'), ((3785, 3822), 'os.path.join', 'os.path.join', (['dataset_root', '"""images/"""'], {}), "(dataset_root, 'images/')\n", (3797, 3822), False, 'import os\n'), ((8301, 8378), 'datasets._transforms.imagenet_transform', 'imagenet_transform', ([], {'random_resize_crop': 'train', 'random_erasing_prob': 'cutout_prob'}), '(random_resize_crop=train, random_erasing_prob=cutout_prob)\n', (8319, 8378), False, 'from datasets._transforms import imagenet_transform, caption_transform\n'), ((8427, 8470), 'datasets._transforms.caption_transform', 'caption_transform', (['vocab', 'caption_drop_prob'], {}), '(vocab, caption_drop_prob)\n', (8444, 8470), False, 'from datasets._transforms import imagenet_transform, caption_transform\n'), ((8534, 8720), 'datasets.coco.CocoCaptionsCap', 'CocoCaptionsCap', (['image_root', 'annotation_path'], {'extra_annFile': 'extra_annotation_path', 'ids': 'ids', 'extra_ids': 'extra_ids', 'transform': '_image_transform', 'target_transform': '_caption_transform'}), '(image_root, annotation_path, extra_annFile=\n extra_annotation_path, ids=ids, extra_ids=extra_ids, transform=\n _image_transform, target_transform=_caption_transform)\n', (8549, 8720), False, 'from datasets.coco import CocoCaptionsCap\n'), ((8904, 9053), 'torch.utils.data.DataLoader', 'DataLoader', (['coco_dataset'], {'batch_size': 'batch_size', 'shuffle': 'train', 'num_workers': 'num_workers', 'collate_fn': 'image_to_caption_collate_fn', 'pin_memory': '(True)'}), '(coco_dataset, batch_size=batch_size, shuffle=train, num_workers=\n num_workers, collate_fn=image_to_caption_collate_fn, pin_memory=True)\n', (8914, 9053), False, 'from torch.utils.data import DataLoader\n'), ((9440, 9492), 'numpy.load', 'np.load', (['"""./datasets/annotations/coco_train_ids.npy"""'], {}), "('./datasets/annotations/coco_train_ids.npy')\n", (9447, 9492), True, 'import numpy as np\n'), ((9515, 9569), 'numpy.load', 'np.load', (['"""./datasets/annotations/coco_restval_ids.npy"""'], {}), "('./datasets/annotations/coco_restval_ids.npy')\n", (9522, 9569), True, 'import numpy as np\n'), ((9655, 9706), 'numpy.load', 'np.load', (['"""./datasets/annotations/coco_test_ids.npy"""'], {}), "('./datasets/annotations/coco_test_ids.npy')\n", (9662, 9706), True, 'import numpy as np\n'), ((9725, 9773), 'os.path.join', 'os.path.join', (['dataset_root', '"""images/trainval35k"""'], {}), "(dataset_root, 'images/trainval35k')\n", (9737, 9773), False, 'import os\n'), ((9790, 9867), 'os.path.join', 'os.path.join', (['dataset_root', '"""annotations/annotations/captions_train2014.json"""'], {}), "(dataset_root, 'annotations/annotations/captions_train2014.json')\n", (9802, 9867), False, 'import os\n'), ((9882, 9957), 'os.path.join', 'os.path.join', (['dataset_root', '"""annotations/annotations/captions_val2014.json"""'], {}), "(dataset_root, 'annotations/annotations/captions_val2014.json')\n", (9894, 9957), False, 'import os\n'), ((1752, 1764), 'datasets.vocab.Vocabulary', 'Vocabulary', ([], {}), '()\n', (1762, 1764), False, 'from datasets.vocab import Vocabulary\n'), ((4361, 4412), 'datasets._transforms.imagenet_transform', 'imagenet_transform', ([], {'random_erasing_prob': 'cutout_prob'}), '(random_erasing_prob=cutout_prob)\n', (4379, 4412), False, 'from datasets._transforms import imagenet_transform, caption_transform\n'), ((4443, 4486), 'datasets._transforms.caption_transform', 'caption_transform', (['vocab', 'caption_drop_prob'], {}), '(vocab, caption_drop_prob)\n', (4460, 4486), False, 'from datasets._transforms import imagenet_transform, caption_transform\n'), ((4684, 4816), 'torch.utils.data.DataLoader', 'DataLoader', (['cub_dataset'], {'batch_sampler': 'sampler', 'num_workers': 'num_workers', 'collate_fn': 'image_to_caption_collate_fn', 'pin_memory': '(True)'}), '(cub_dataset, batch_sampler=sampler, num_workers=num_workers,\n collate_fn=image_to_caption_collate_fn, pin_memory=True)\n', (4694, 4816), False, 'from torch.utils.data import DataLoader\n'), ((4940, 5088), 'torch.utils.data.DataLoader', 'DataLoader', (['cub_dataset'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': 'num_workers', 'collate_fn': 'image_to_caption_collate_fn', 'pin_memory': '(True)'}), '(cub_dataset, batch_size=batch_size, shuffle=False, num_workers=\n num_workers, collate_fn=image_to_caption_collate_fn, pin_memory=True)\n', (4950, 5088), False, 'from torch.utils.data import DataLoader\n'), ((9584, 9634), 'numpy.load', 'np.load', (['"""./datasets/annotations/coco_dev_ids.npy"""'], {}), "('./datasets/annotations/coco_dev_ids.npy')\n", (9591, 9634), True, 'import numpy as np\n'), ((1577, 1602), 'torch.Tensor', 'torch.Tensor', (['cap_lengths'], {}), '(cap_lengths)\n', (1589, 1602), False, 'import torch\n')]
|
"""
This module contains functions to average mdtraj-object data
"""
from copy import deepcopy
import numpy as np
from ase.data import chemical_symbols as symbols
def average_energies(mdtraj_list, tstart):
"""
function to compute averages of a selection of mdtraj objects
sorted by their composition
Parameters
----------
mdtraj_list : list
list of mdtraj objects
tstart : int
time after when to evalute (in time units of mdtraj)
Returns
-------
edat : dictionay
dictionary with entries `ekin`, `epot`, `etot` and each composition
including the average and standard deviation
"""
# get trajectory composition and bundle trajectories
ekeys = ['etot', 'epot', 'ekin']
comps = {traj.get_traj_composition():[] for traj in mdtraj_list}
edat = {ek:deepcopy(comps) for ek in ekeys}
for traj in mdtraj_list:
comp = traj.get_traj_composition()
ed = traj.get_traj_energies()
for ek in ekeys:
edat[ek][comp].append(np.mean(ed[ek][tstart:]))
for ek in edat:
for comp in edat[ek]:
edat[ek][comp] = {'mean':np.mean(edat[ek][comp]), \
'std':np.std(edat[ek][comp])/np.sqrt(len(edat[ek][comp]))}
return(edat)
def sort_energies(mdtraj_list):
"""
function to sort energy data and return it sorted by composition
Parameters
----------
mdtraj_list : list
list of mdtraj objects
Returns
-------
edat : dictionay
dictionary with with entries `ekin`, `epot`, `etot` per composition
"""
ekeys = ['etot', 'epot', 'ekin']
comps = {traj.get_traj_composition():[] for traj in mdtraj_list}
edat = {ek:deepcopy(comps) for ek in ekeys}
timedat = {'timestep':[],'timeunit':[]}
for traj in mdtraj_list:
comp = traj.get_traj_composition()
ed = traj.get_traj_energies()
for ek in ekeys:
edat[ek][comp].append(ed[ek])
# store time data
for k in timedat:
timedat[k].append(ed[k])
# check consistency in time data:
for k in timedat:
assert len(list(set(timedat[k]))) == 1
for k in timedat:
edat.update({k:list(set(timedat[k]))[0]})
return(edat)
def average_densities(mdtraj_list, height_axis=2, tstart=0):
"""
function to average density profiles. Densities are aligned
to end of substrate
Parameters
----------
mdtraj_list : list
list of mdtraj objects
height_axis : int
axis along which to process the density profile
tstart : int
time after when to evalute (in time units of mdtraj)
Returns
-------
dens_data : dictionary
included: `binc` center of bins of density, `hists` histograms of
density for each element and separated solvent (tag=solv)
in mol/cm3
"""
# sort mdtraj_list by composition
comps = [traj.get_traj_composition() for traj in mdtraj_list]
comp_dict= {c:[mdtraj_list[i] for i in range(len(mdtraj_list)) \
if comps[i] == c] for c in set(comps)}
comp_dens = {}
# compute densities for each composition and average
for comp in comp_dict:
av_dens = {'hists':{}, 'binc':[]}
for mdsub in comp_dict[comp]:
# get inividual density
dens = mdsub.get_density_profile(height_axis=height_axis, \
tstart=tstart, savepkl=True)
# determine substrate species
esub = [symbols[i] for i in mdsub.get_substrate_types()]
if len(esub) > 1:
raise NotImplementedError("multi-elemental substrate found")
dens = align_density_to_substrate(dens, esub[0])
# update av_dens with bin centers
if len(av_dens['binc']) == 0:
av_dens['binc'] = deepcopy(dens['binc'])
# sum-up values - first profile determines shape
for k in dens['hists'].keys():
if k not in av_dens['hists']:
av_dens['hists'].update({k:np.zeros(dens['hists'][k].shape)})
lk = min(dens['hists'][k].size, av_dens['hists'][k].size)
av_dens['hists'][k][:lk] += dens['hists'][k][:lk]
# average by number of summed up histograms
for k in av_dens['hists']:
av_dens['hists'][k] /= len(comp_dict[comp])
# add k_substrate - should all be same
av_dens.update({'k_substrate':dens['k_substrate']})
comp_dens.update({comp:av_dens})
return(comp_dens)
def align_density_to_substrate(dens, esub):
"""
helper function to align density histogram including substrate
"""
# find where substrate is in density profile
indm = np.where(dens['hists'][esub] != 0.0)[0]
dens['binc'] = dens['binc'][indm[0]:]
for k in dens['hists']:
dens['hists'][k] = dens['hists'][k][indm[0]:]
return(dens)
|
[
"copy.deepcopy",
"numpy.std",
"numpy.zeros",
"numpy.mean",
"numpy.where"
] |
[((876, 891), 'copy.deepcopy', 'deepcopy', (['comps'], {}), '(comps)\n', (884, 891), False, 'from copy import deepcopy\n'), ((1781, 1796), 'copy.deepcopy', 'deepcopy', (['comps'], {}), '(comps)\n', (1789, 1796), False, 'from copy import deepcopy\n'), ((4878, 4914), 'numpy.where', 'np.where', (["(dens['hists'][esub] != 0.0)"], {}), "(dens['hists'][esub] != 0.0)\n", (4886, 4914), True, 'import numpy as np\n'), ((1083, 1107), 'numpy.mean', 'np.mean', (['ed[ek][tstart:]'], {}), '(ed[ek][tstart:])\n', (1090, 1107), True, 'import numpy as np\n'), ((1197, 1220), 'numpy.mean', 'np.mean', (['edat[ek][comp]'], {}), '(edat[ek][comp])\n', (1204, 1220), True, 'import numpy as np\n'), ((3947, 3969), 'copy.deepcopy', 'deepcopy', (["dens['binc']"], {}), "(dens['binc'])\n", (3955, 3969), False, 'from copy import deepcopy\n'), ((1246, 1268), 'numpy.std', 'np.std', (['edat[ek][comp]'], {}), '(edat[ek][comp])\n', (1252, 1268), True, 'import numpy as np\n'), ((4180, 4212), 'numpy.zeros', 'np.zeros', (["dens['hists'][k].shape"], {}), "(dens['hists'][k].shape)\n", (4188, 4212), True, 'import numpy as np\n')]
|
import re
import os
import glob
import shutil
import random
import logging
import torch
import numpy as np
logger = logging.getLogger(__name__)
def _rotate_checkpoints(args, checkpoint_prefix, use_mtime=False):
if not args.save_total_limit:
return
if args.save_total_limit <= 0:
return
# Check if we should delete older checkpoint(s)
glob_checkpoints = glob.glob(os.path.join(
args.output_dir, '{}-*'.format(checkpoint_prefix)))
if len(glob_checkpoints) <= args.save_total_limit:
return
ordering_and_checkpoint_path = []
for path in glob_checkpoints:
if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else:
regex_match = re.match(
'.*{}-([0-9]+)'.format(checkpoint_prefix), path)
if regex_match and regex_match.groups():
ordering_and_checkpoint_path.append(
(int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
number_of_checkpoints_to_delete = max(
0, len(checkpoints_sorted) - args.save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info(
"Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
shutil.rmtree(checkpoint)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
|
[
"numpy.random.seed",
"torch.manual_seed",
"torch.cuda.manual_seed_all",
"torch.cuda.is_available",
"random.seed",
"os.path.getmtime",
"shutil.rmtree",
"logging.getLogger"
] |
[((118, 145), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (135, 145), False, 'import logging\n'), ((1551, 1573), 'random.seed', 'random.seed', (['args.seed'], {}), '(args.seed)\n', (1562, 1573), False, 'import random\n'), ((1578, 1603), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (1592, 1603), True, 'import numpy as np\n'), ((1608, 1636), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (1625, 1636), False, 'import torch\n'), ((1644, 1669), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1667, 1669), False, 'import torch\n'), ((1499, 1524), 'shutil.rmtree', 'shutil.rmtree', (['checkpoint'], {}), '(checkpoint)\n', (1512, 1524), False, 'import shutil\n'), ((1679, 1716), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['args.seed'], {}), '(args.seed)\n', (1705, 1716), False, 'import torch\n'), ((688, 710), 'os.path.getmtime', 'os.path.getmtime', (['path'], {}), '(path)\n', (704, 710), False, 'import os\n')]
|
import numpy as np
from numba import jit
np.random.seed(1)
class rocket_engine():
def __init__(self, dimensions = 3, temperature = 10000, N = 1E5, mass = 1.67e-27, length = 1e-6):
self.k = 1.38064852e-23
self.T = temperature
self.N = N
self.m = mass
self.L = length
self.dim = dimensions
self.sigma = np.sqrt((self.k*self.T)/self.m)
self.x = self.position()
self.v = self.velocities()
def velocities(self):
return np.random.normal(0,self.sigma, size=(int(self.N),self.dim))
def position(self):
return np.random.uniform(0,self.L, size=(int(self.N),self.dim))
#Calculating the mean velocity
@jit(nopython=True)
def meanvel(self):
self.v_s = 0
for i in range(int(self.N)):
self.v_s += np.sqrt(self.v[i,0]**2+self.v[i,1]**2+self.v[i,2]**2)
return self.v_s
def meankin(self):
m = self.m
vel = 0
for i in range(int(self.N)):
vel += self.v[i,0]**2 + self.v[i,1]**2 + self.v[i,2]**2
return 0.5 * m * vel
def test_mean(self):
"""
making a test function that runs meankin() and meanvel() and checks the
computed velocity and kinetic energy and the relative error between them
anything below 1% is perfectly acceptable
"""
m = self.m
analytical_mean = 1.5*self.T*self.k
computed_mean = 0
for j in self.v:
computed_mean += self.meankin()
computed_mean = computed_mean/self.N
relative_error = abs(analytical_mean - computed_mean)/analytical_mean
print("----------Kinetic energy----------")
print("{:<20}{:g}".format("Computed mean:", computed_mean))
print("{:<20}{:g}".format("Analytical mean:", analytical_mean))
print("{:<20}{:.2f}%".format("Relative error:", relative_error * 100))
print("-----------------------------")
break
assert relative_error < 0.002, "the mean kinetic energy is off"
print("----------Velocity----------")
analytical_vel = np.sqrt(8*self.k*self.T/(np.pi*m))
computed_vel = 0
for i in self.v:
computed_vel += self.meanvel()
computed_vel = computed_vel/self.N
relative_error = abs(analytical_vel - computed_vel)/analytical_vel
print("{:<20}{:g}".format("Computed velocity:", computed_vel))
print("{:<20}{:g}".format("Analytical velocity:", analytical_vel))
print("{:<20}{:.2f}%".format("Relative error:", relative_error *100))
print("-----------------------------")
break
assert relative_error < 0.02, "the mean velocity is off"
def box_escape(self, steps = 1e4, t_end = 1e-9, dt = 1e-12):
"""
Checking how much of the particles actually escape the rocket
steps:
t_end:
dt:
"""
x, v = self.x,self.v
exiting = 0.0
exiting_velocities = 0.0
for t in range(int(t_end/dt)):
x += v * dt
v_exiting = np.abs(v[:,2])
collision_points = np.logical_or(np.less_equal(x, 0.), np.greater_equal(x, self.L))
x_mask = np.logical_or(np.greater_equal(x[:,0], 0.25*self.L), np.less_equal(x[:,0], 0.75*self.L))
y_mask = np.logical_and(np.greater_equal(x[:,0], 0.25*self.L), np.less_equal(x[:,0], 0.75*self.L))
exit_points = np.logical_and(x_mask, y_mask)
exit_points = np.logical_and(np.less_equal(x[:,2], 0), exit_points)
exit_indices = np.where(exit_points == True)
not_exit_indices = np.where(exit_points == False)
v_exiting[not_exit_indices] = 0.
exiting_velocities += np.sum(v_exiting)
collision_indices = np.where(collision_points == True)
exiting += len(exit_indices[0])
s_matrix = np.ones_like(x)
s_matrix[collision_indices] = -1
s_matrix[:,2][exit_indices] = 1
r_matrix = np.zeros_like(x)
x[:,2][exit_indices] += 0.99*self.L
v = np.multiply(v,s_matrix)
particle_per_second = exiting_velocities/t_end
return exiting_velocities, exiting, particle_per_second
if __name__ == "__main__":
A = rocket_engine()
#result2 = A.box_escape()
result3 = A.test_mean()
|
[
"numpy.less_equal",
"numpy.zeros_like",
"numpy.abs",
"numpy.random.seed",
"numpy.logical_and",
"numpy.sum",
"numpy.ones_like",
"numpy.multiply",
"numpy.where",
"numba.jit",
"numpy.greater_equal",
"numpy.sqrt"
] |
[((43, 60), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (57, 60), True, 'import numpy as np\n'), ((734, 752), 'numba.jit', 'jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (737, 752), False, 'from numba import jit\n'), ((379, 412), 'numpy.sqrt', 'np.sqrt', (['(self.k * self.T / self.m)'], {}), '(self.k * self.T / self.m)\n', (386, 412), True, 'import numpy as np\n'), ((2227, 2269), 'numpy.sqrt', 'np.sqrt', (['(8 * self.k * self.T / (np.pi * m))'], {}), '(8 * self.k * self.T / (np.pi * m))\n', (2234, 2269), True, 'import numpy as np\n'), ((862, 928), 'numpy.sqrt', 'np.sqrt', (['(self.v[i, 0] ** 2 + self.v[i, 1] ** 2 + self.v[i, 2] ** 2)'], {}), '(self.v[i, 0] ** 2 + self.v[i, 1] ** 2 + self.v[i, 2] ** 2)\n', (869, 928), True, 'import numpy as np\n'), ((3268, 3283), 'numpy.abs', 'np.abs', (['v[:, 2]'], {}), '(v[:, 2])\n', (3274, 3283), True, 'import numpy as np\n'), ((3632, 3662), 'numpy.logical_and', 'np.logical_and', (['x_mask', 'y_mask'], {}), '(x_mask, y_mask)\n', (3646, 3662), True, 'import numpy as np\n'), ((3772, 3801), 'numpy.where', 'np.where', (['(exit_points == True)'], {}), '(exit_points == True)\n', (3780, 3801), True, 'import numpy as np\n'), ((3834, 3864), 'numpy.where', 'np.where', (['(exit_points == False)'], {}), '(exit_points == False)\n', (3842, 3864), True, 'import numpy as np\n'), ((3947, 3964), 'numpy.sum', 'np.sum', (['v_exiting'], {}), '(v_exiting)\n', (3953, 3964), True, 'import numpy as np\n'), ((4000, 4034), 'numpy.where', 'np.where', (['(collision_points == True)'], {}), '(collision_points == True)\n', (4008, 4034), True, 'import numpy as np\n'), ((4104, 4119), 'numpy.ones_like', 'np.ones_like', (['x'], {}), '(x)\n', (4116, 4119), True, 'import numpy as np\n'), ((4236, 4252), 'numpy.zeros_like', 'np.zeros_like', (['x'], {}), '(x)\n', (4249, 4252), True, 'import numpy as np\n'), ((4321, 4345), 'numpy.multiply', 'np.multiply', (['v', 's_matrix'], {}), '(v, s_matrix)\n', (4332, 4345), True, 'import numpy as np\n'), ((3329, 3350), 'numpy.less_equal', 'np.less_equal', (['x', '(0.0)'], {}), '(x, 0.0)\n', (3342, 3350), True, 'import numpy as np\n'), ((3351, 3378), 'numpy.greater_equal', 'np.greater_equal', (['x', 'self.L'], {}), '(x, self.L)\n', (3367, 3378), True, 'import numpy as np\n'), ((3416, 3456), 'numpy.greater_equal', 'np.greater_equal', (['x[:, 0]', '(0.25 * self.L)'], {}), '(x[:, 0], 0.25 * self.L)\n', (3432, 3456), True, 'import numpy as np\n'), ((3455, 3492), 'numpy.less_equal', 'np.less_equal', (['x[:, 0]', '(0.75 * self.L)'], {}), '(x[:, 0], 0.75 * self.L)\n', (3468, 3492), True, 'import numpy as np\n'), ((3528, 3568), 'numpy.greater_equal', 'np.greater_equal', (['x[:, 0]', '(0.25 * self.L)'], {}), '(x[:, 0], 0.25 * self.L)\n', (3544, 3568), True, 'import numpy as np\n'), ((3567, 3604), 'numpy.less_equal', 'np.less_equal', (['x[:, 0]', '(0.75 * self.L)'], {}), '(x[:, 0], 0.75 * self.L)\n', (3580, 3604), True, 'import numpy as np\n'), ((3705, 3730), 'numpy.less_equal', 'np.less_equal', (['x[:, 2]', '(0)'], {}), '(x[:, 2], 0)\n', (3718, 3730), True, 'import numpy as np\n')]
|
import numpy as np
import pickle
import sys
import seaborn as sns
import pandas as pd
# import pkg_resources
# pkg_resources.require("scanpy==1.3")
import scanpy as sc
print(sc.__version__)
import os
import scipy.stats
import scipy.sparse
import matplotlib.pyplot as plt
import sklearn.preprocessing
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from scipy import interp
from sklearn.metrics import roc_auc_score
from multiprocessing import Pool
from sklearn.preprocessing import binarize
import gc
def average_for_each_cluster(X, y_cluster):
X = pd.DataFrame(X)
X.index = y_cluster
X.index = X.index.rename('index')
mX = X.reset_index().groupby(by='index').mean()
return mX.values, mX.index
def average_for_each_cluster_less_memory(X, y_cluster):
print('Cluster_computation')
index = sorted(list(set(y_cluster)))
conv_mat = np.array([[1 if i == y else 0 for y in y_cluster] for i in index])
weight = conv_mat.sum(axis=0)
print('averaging', conv_mat.shape, X.shape)
mX = np.dot(conv_mat, X.reshape((X.shape[0], (X.shape[1] if len(X.shape) == 2 else 1))))
mX = np.array([(mX[i,:]/weight[i]).reshape(-1)[0] for i in range(mX.shape[0])])
mX = np.squeeze(mX)
return mX, index
def compute_pvalue(gene, answer, pdata, ndata, header):
pp, np, pn, nn = sum(pdata), len(pdata)-sum(pdata), sum(ndata), len(ndata)-sum(ndata)
assert len(pdata) >= sum(pdata) and len(ndata)-sum(ndata)
oddsratio, pvalue = scipy.stats.fisher_exact([[pp, np], [pn, nn]])
return 'pvalue '+header+' '+gene+' '+str(pvalue)+' '+str(oddsratio)
def compute_auc(gene, answer, pdata, ndata, header):
fpr, tpr, _ = roc_curve(answer, np.concatenate((pdata, ndata), axis=0))
roc_auc = auc(fpr, tpr)
del pdata
del ndata
del fpr
del tpr
return 'auc '+header+' '+gene+' '+str(roc_auc)
def convert_sparse_to_array(mat):
if isinstance(mat, np.number):
return np.asarray([mat])
if scipy.sparse.issparse(mat):
return np.squeeze(np.asarray(mat.todense()))
else:
return np.squeeze(np.asarray(mat))
def compute_auc_parallel(adata, positive, negative, column, header, cores=4, fisher=False):
pdata = adata[adata.obs[column] == positive,:]
pool = Pool(processes=cores)
if negative is not None:
ndata = adata[adata.obs[column] == negative,:]
else:
ndata = adata[adata.obs[column] != positive,:]
ndata = ndata[[((x == x) & ('NA' not in x)) for x in ndata.obs[column]],:]
y_true = np.array(([1]*pdata.shape[0])+([0]*ndata.shape[0]))
# print(adata.obs[column])
# print(pdata.shape, ndata.shape)
# print(adata.shape)
# print(adata.var)
# print(adata.var.loc[:,'cov'])
# print(adata.obs[column])
# print(adata.var.loc[:,'cov'].mean(), adata.var.loc[:,'cov'].max(), adata.var.loc[:,'cov'].median())
if 'cov' in adata.var.columns:
genes = [gene for gene in adata.var.index if adata.var.loc[gene,'cov'] > 5]
else:
genes = [gene for gene in adata.var.index]
step = 500
# print(len(genes))
with open(header, 'w') as f:
for start in range(0, len(genes), step):
tgenes = genes[start:min(len(genes), start+step)]
print('#', start, len(tgenes))
if cores > 1:
if fisher:
results = pool.starmap(compute_auc, [(gene, y_true, convert_sparse_to_array(pdata[:,gene].X), convert_sparse_to_array(ndata[:,gene].X), header) for gene in tgenes])
else:
results = pool.starmap(compute_pvalue, [(gene, y_true, convert_sparse_to_array(pdata[:,gene].X), convert_sparse_to_array(ndata[:,gene].X), header) for gene in tgenes])
else:
if fisher:
results = [compute_pvalue(gene, y_true, convert_sparse_to_array(pdata[:,gene].X), convert_sparse_to_array(ndata[:,gene].X), header) for gene in tgenes]
else:
results = [compute_auc(gene, y_true, convert_sparse_to_array(pdata[:,gene].X), convert_sparse_to_array(ndata[:,gene].X), header) for gene in tgenes]
gc.collect()
count = 0
for res in results:
f.write(res+'\n')
count += 1
assert count == step or count == len(genes)-start
pool.close()
pool.join()
del pool
del ndata, pdata
def reset_celltype(adata):
def get_celltype(celltype):
if celltype == celltype:
if celltype in ['IN', 'EX']: return celltype
else: return 'NN'
else:
return 'NA'
df = pd.read_csv('/data/rkawaguc/data/191003_BICCN_sf_marker_more/cluster_annotation/GSE111586_icluster_celltype_annotation_curated.csv')
print(df)
celltype_labels = adata.obs.cluster
celltype_dict = dict([(row['cluster'], get_celltype(row['celltype'])) for i, row in df.iterrows()])
adata.obs.loc[:,'celltype'] = [celltype_dict[x] for x in celltype_labels]
return adata
def convert_celltype_labels_to_target(cluster, celltype_labels):
if cluster in ['cluster', 'celltype']:
return celltype_labels
elif cluster == 'neuron':
dict = {'EX':'P', 'IN':'P', 'NN':'N', 'NA':'NA'}
return [dict[x] if x in dict else x for x in celltype_labels]
elif cluster == 'inex':
dict = {'EX':'EX', 'IN':'IN', 'NN':'NA'}
return [dict[x] if x in dict else x for x in celltype_labels]
def convert_to_raw_celltype(X):
celltype_without_num = [x.split('_')[-1] if x == x else x for x in X]
celltype_without_var = [x if x in ['IN', 'EX'] else 'NA' if x != x or x in ['NA', 'Mis'] else 'NN' for x in celltype_without_num]
return celltype_without_var
def set_celltyppe_for_all_problems(cdata, gse, curration=False):
cdata.obs['celltype'] = convert_to_raw_celltype(cdata.obs['celltype'].values)
if gse == 'GSE111' and GSE111_NEWANN:
cdata = reset_celltype(cdata)
cdata.obs['neuron'] = convert_celltype_labels_to_target('neuron', cdata.obs['celltype'])
cdata.obs['inex'] = convert_celltype_labels_to_target('inex', cdata.obs['celltype'])
print(cdata.obs)
return cdata
def initialize_argument(argv):
celltype_list = ['celltype', 'neuron', 'inex']
cell_list = ['EX', 'IN', 'NN']
CLUSTER, PEAK, PVALUE = False, False, False
gse_set = None
if len(argv) >= 2:
gse_set = argv[1]
if len(argv) >= 3:
if argv[2] == 'cell':
pass
elif argv[2] == 'cluster':
CLUSTER = True
elif argv[2] == 'peak':
PEAK = True
elif argv[2] == 'pvalue':
PEAK, PVALUE = True, True
if len(argv) >= 4:
if argv[3] in ['IN', 'EX', 'NN']:
celltype_list = ['celltype']
cell_list = [argv[3]]
else:
celltype_list = [argv[3]]
return gse_set, PEAK, CLUSTER, PVALUE, celltype_list, cell_list
dir = "output/scobj/"
cluster_annotation = ["GSE111586_icluster_celltype_annotation.csv", "GSE123576_cluster_celltype_annotation.csv", "GSE126074_icluster_celltype_annotation.csv", "GSE127257_cluster_celltype_annotation.csv", "BICCN2_cluster_celltype_annotation.csv", "GSE1303990_cluster_celltype_annotation.csv"]
clust_dir = "/data/rkawaguc/data/191003_BICCN_sf_marker_more/cluster_annotation/"
cores = 1
GSE111_CORTEX = False
GSE111_NEWANN = False
gses = ['GSE111', 'GSE123', 'GSE126', 'GSE127', 'BICCN2', 'GSE130']
scobjs = ["GSE111586_"+('cortex' if GSE111_CORTEX else 'gene')+"_id_order_gene__all_scanpy_obj.pyn", "GSE123576_gene_id_order_gene__all_scanpy_obj.pyn", "GSE126074_gene_id_order_gene__all_scanpy_obj.pyn", "GSE127257_distal_id_gene_order__all_scanpy_obj.pyn", "BICCN2_gene_id_order_gene__all_scanpy_obj.pyn", "GSE1303990_gene_id_order_gene__all_scanpy_obj.pyn"]
gse_set, PEAK, CLUSTER, PVALUE, celltype_list, cell_list = initialize_argument(sys.argv)
if PEAK:
scobj_dict = {'GSE111':'GSE111586', 'GSE123':'GSE123576', 'GSE126':'GSE126074', 'GSE130':'GSE1303990', 'BICCN2':'BICCN2'}
for gse, scobj in zip(gses, scobjs):
if gse_set is not None and gse != gse_set:
continue
if CLUSTER: # cluster-level analysis
with open(os.path.join("output/scobj/", scobj), "rb") as f:
print(scobj)
anndata=pickle.load(f)
mX, index = average_for_each_cluster_less_memory(anndata.X.todense(), anndata.obs['Ident'] if 'Ident' in anndata.obs.columns and gse != 'GSE130' else anndata.obs['cluster'])
print(anndata.obs.loc[:,['cluster', 'Ident']])
cluster_annotation_list = pd.read_csv(os.path.join(clust_dir, cluster_annotation[gses.index(gse)]), index_col=0)
clust_cell = [cluster_annotation_list.loc[x,:][0] for x in index]
print(len(clust_cell), mX.shape)
obs = pd.DataFrame([index, clust_cell], index=['cluster', 'celltype']).transpose()
cdata = sc.AnnData(mX, obs)
cdata.var = anndata.var
cdata = set_celltype_for_all_problems(cdata, gse, GSE111_NEWANN)
for ann in celltype_list:
if ann == 'celltype':
for x in cdata.obs['celltype'].unique():
if x != x or 'NA' in x: continue
if x not in cell_list: continue
positive, negative = x, None
compute_auc_parallel(cdata, positive, negative, ann, gse+'_'+ann+'_'+str(x)+'_cluster', cores)
else:
if ann == 'neuron':
positive, negative = 'P', 'N'
else:
positive, negative = 'IN', 'EX'
compute_auc_parallel(cdata, positive, negative, ann, gse+'_'+ann+'_cluster', cores)
else: # cell-level analysis
if PEAK and gse == 'GSE127':
continue
peak_scobj = scobj_dict[gse]+'_'+('cortex' if gse == 'GSE111' and GSE111_CORTEX else 'gene')+'_global_index_5000__all_scanpy_obj.pyn'
with open(os.path.join("output/scobj/", peak_scobj), "rb") as f:
print(peak_scobj)
anndata=pickle.load(f)
if PEAK:
anndata.X = binarize(anndata.X, threshold=1).astype(int)
anndata = anndata[:,anndata.var.index[~pd.isnull(anndata.var.loc[:,'chr'])]]
anndata.var.index = [str(row['chr'])+'_'+str(int(np.round(row['start'])))+'_'+str(int(np.round(row['end']))) for i, row in anndata.var.iterrows()]
anndata = set_celltype_for_all_problems(anndata, gse, GSE111_NEWANN)
tail = ('_peak' if PEAK else '')
for ann in celltype_list:
if ann == 'celltype':
for x in anndata.obs['celltype'].unique():
if x != x or 'NA' in x: continue
if x not in cell_list: continue
positive, negative = x, None
compute_auc_parallel(anndata, positive, negative, ann, gse+'_'+ann+'_'+str(x)+tail, cores, fisher=(PEAK and PVALUE))
else:
if ann == 'neuron':
positive, negative = 'P', 'N'
else:
positive, negative = 'IN', 'EX'
compute_auc_parallel(anndata, positive, negative, ann, gse+'_'+ann+tail, cores, fisher=(PEAK and PVALUE))
|
[
"pandas.DataFrame",
"scanpy.AnnData",
"sklearn.preprocessing.binarize",
"pandas.read_csv",
"numpy.asarray",
"pandas.isnull",
"sklearn.metrics.auc",
"gc.collect",
"pickle.load",
"numpy.array",
"multiprocessing.Pool",
"numpy.squeeze",
"numpy.round",
"os.path.join",
"numpy.concatenate"
] |
[((703, 718), 'pandas.DataFrame', 'pd.DataFrame', (['X'], {}), '(X)\n', (715, 718), True, 'import pandas as pd\n'), ((1010, 1078), 'numpy.array', 'np.array', (['[[(1 if i == y else 0) for y in y_cluster] for i in index]'], {}), '([[(1 if i == y else 0) for y in y_cluster] for i in index])\n', (1018, 1078), True, 'import numpy as np\n'), ((1345, 1359), 'numpy.squeeze', 'np.squeeze', (['mX'], {}), '(mX)\n', (1355, 1359), True, 'import numpy as np\n'), ((1877, 1890), 'sklearn.metrics.auc', 'auc', (['fpr', 'tpr'], {}), '(fpr, tpr)\n', (1880, 1890), False, 'from sklearn.metrics import roc_curve, auc\n'), ((2393, 2414), 'multiprocessing.Pool', 'Pool', ([], {'processes': 'cores'}), '(processes=cores)\n', (2397, 2414), False, 'from multiprocessing import Pool\n'), ((2660, 2713), 'numpy.array', 'np.array', (['([1] * pdata.shape[0] + [0] * ndata.shape[0])'], {}), '([1] * pdata.shape[0] + [0] * ndata.shape[0])\n', (2668, 2713), True, 'import numpy as np\n'), ((4766, 4908), 'pandas.read_csv', 'pd.read_csv', (['"""/data/rkawaguc/data/191003_BICCN_sf_marker_more/cluster_annotation/GSE111586_icluster_celltype_annotation_curated.csv"""'], {}), "(\n '/data/rkawaguc/data/191003_BICCN_sf_marker_more/cluster_annotation/GSE111586_icluster_celltype_annotation_curated.csv'\n )\n", (4777, 4908), True, 'import pandas as pd\n'), ((1823, 1861), 'numpy.concatenate', 'np.concatenate', (['(pdata, ndata)'], {'axis': '(0)'}), '((pdata, ndata), axis=0)\n', (1837, 1861), True, 'import numpy as np\n'), ((2079, 2096), 'numpy.asarray', 'np.asarray', (['[mat]'], {}), '([mat])\n', (2089, 2096), True, 'import numpy as np\n'), ((9112, 9131), 'scanpy.AnnData', 'sc.AnnData', (['mX', 'obs'], {}), '(mX, obs)\n', (9122, 9131), True, 'import scanpy as sc\n'), ((2221, 2236), 'numpy.asarray', 'np.asarray', (['mat'], {}), '(mat)\n', (2231, 2236), True, 'import numpy as np\n'), ((8517, 8531), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (8528, 8531), False, 'import pickle\n'), ((10264, 10278), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (10275, 10278), False, 'import pickle\n'), ((4280, 4292), 'gc.collect', 'gc.collect', ([], {}), '()\n', (4290, 4292), False, 'import gc\n'), ((8422, 8458), 'os.path.join', 'os.path.join', (['"""output/scobj/"""', 'scobj'], {}), "('output/scobj/', scobj)\n", (8434, 8458), False, 'import os\n'), ((9019, 9083), 'pandas.DataFrame', 'pd.DataFrame', (['[index, clust_cell]'], {'index': "['cluster', 'celltype']"}), "([index, clust_cell], index=['cluster', 'celltype'])\n", (9031, 9083), True, 'import pandas as pd\n'), ((10159, 10200), 'os.path.join', 'os.path.join', (['"""output/scobj/"""', 'peak_scobj'], {}), "('output/scobj/', peak_scobj)\n", (10171, 10200), False, 'import os\n'), ((10320, 10352), 'sklearn.preprocessing.binarize', 'binarize', (['anndata.X'], {'threshold': '(1)'}), '(anndata.X, threshold=1)\n', (10328, 10352), False, 'from sklearn.preprocessing import binarize\n'), ((10416, 10452), 'pandas.isnull', 'pd.isnull', (["anndata.var.loc[:, 'chr']"], {}), "(anndata.var.loc[:, 'chr'])\n", (10425, 10452), True, 'import pandas as pd\n'), ((10552, 10572), 'numpy.round', 'np.round', (["row['end']"], {}), "(row['end'])\n", (10560, 10572), True, 'import numpy as np\n'), ((10515, 10537), 'numpy.round', 'np.round', (["row['start']"], {}), "(row['start'])\n", (10523, 10537), True, 'import numpy as np\n')]
|
"""Tests for the log_normal_distribution module"""
# Copyright 2019 <NAME>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import unittest
from ..log_normal_distribution import LogNormalDistribution
from .assertions import assert_close
class TestLogNormalDistribution(unittest.TestCase):
"""Tests for the LogNormalDistribution class"""
def setUp(self):
np.seterr(all="raise")
self.assert_close = assert_close.__get__(self, self.__class__)
def test_get_derivatives_var_1(self):
"""Test LogNormalDistribution(mu, 1).get_derivatives()"""
mu = np.array([0.0, 1.0, 2.0])
x = np.array([1.0, 1.0, 1.0])
dist = LogNormalDistribution(mu, 1.0)
d1, d2 = dist.get_derivatives(x)
self.assert_close([0.0, 1.0, 2.0], d1, "d1")
self.assert_close([-1.0, -1.0, -1.0], d2, "d2")
def test_get_derivatives_var_2(self):
"""Test LogNormalDistribution(0, 2).get_derivatives()"""
x = np.exp([0.0, 1.0, 2.0])
dist = LogNormalDistribution(0.0, 2.0)
d1, d2 = dist.get_derivatives(x)
self.assert_close([0.0, -0.5, -1.0], d1, "d1")
self.assert_close([-0.5, -0.5, -0.5], d2, "d2")
|
[
"numpy.seterr",
"numpy.array",
"numpy.exp"
] |
[((891, 913), 'numpy.seterr', 'np.seterr', ([], {'all': '"""raise"""'}), "(all='raise')\n", (900, 913), True, 'import numpy as np\n'), ((1107, 1132), 'numpy.array', 'np.array', (['[0.0, 1.0, 2.0]'], {}), '([0.0, 1.0, 2.0])\n', (1115, 1132), True, 'import numpy as np\n'), ((1145, 1170), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0])\n', (1153, 1170), True, 'import numpy as np\n'), ((1487, 1510), 'numpy.exp', 'np.exp', (['[0.0, 1.0, 2.0]'], {}), '([0.0, 1.0, 2.0])\n', (1493, 1510), True, 'import numpy as np\n')]
|
import os, fnmatch, sys
import dill as pickle
import scipy.interpolate as interp
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import bead_util as bu
import configuration as config
dir1 = '/data/20180618/bead1/tf_20180618/freq_comb_elec5_10V'
dir1 = '/data/20180618/bead1/discharge/fine3/'
dir1 = '/data/20180625/bead1/grav_data/shield/X50-75um_Z15-25um_17Hz'
dir1 = '/data/20180625/bead1/tf_20180625/freq_comb_elec3'
files = bu.find_all_fnames(dir1)
for file in files:
df = bu.DataFile()
df.load(file)
freqs = np.fft.rfftfreq(len(df.amp[0]), d=1.0/df.fsamp)
plt.figure(1)
plt.loglog(freqs, np.abs(np.fft.rfft(df.pos_data_3[0])) * 1000, label='offline X')
plt.loglog(freqs, np.abs(np.fft.rfft(df.pos_data_2[0])) * 1000, label='FPGA X2')
plt.loglog(freqs, np.abs(np.fft.rfft(df.pos_data[0])), label='FPGA X1')
plt.xlabel('Frequency [Hz]')
plt.ylabel('sqrt(PSD) [arb]')
plt.legend()
plt.figure(4)
plt.loglog(freqs, np.abs(np.fft.rfft(df.electrode_data[3])))
plt.xlabel('Frequency [Hz]')
plt.ylabel('sqrt(PSD) [arb]')
fig, axarr = plt.subplots(2,1,sharex=True,sharey=False)
fig2, axarr2 = plt.subplots(2,1,sharex=True,sharey=False)
for quad in [0,1,2,3]:
print(type(df.amp[quad]))
fft = np.fft.rfft(df.amp[quad])
fft2 = np.fft.rfft(df.phase[quad])
#plt.figure(2)
axarr[0].plot(df.amp[quad])
#plt.figure(3)
axarr2[0].loglog(freqs, np.abs(fft), label='Quadrant ' + str(quad))
#plt.figure(5)
axarr[1].plot(df.phase[quad])
#plt.figure(6)
axarr2[1].loglog(freqs, np.abs(fft2), label='Quadrant ' + str(quad))
plt.legend()
plt.figure(3)
plt.xlabel('Frequency [Hz]')
plt.ylabel('sqrt(PSD) [arb]')
plt.show()
|
[
"numpy.fft.rfft",
"matplotlib.pyplot.show",
"numpy.abs",
"matplotlib.pyplot.legend",
"bead_util.find_all_fnames",
"matplotlib.pyplot.figure",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.subplots",
"bead_util.DataFile"
] |
[((470, 494), 'bead_util.find_all_fnames', 'bu.find_all_fnames', (['dir1'], {}), '(dir1)\n', (488, 494), True, 'import bead_util as bu\n'), ((524, 537), 'bead_util.DataFile', 'bu.DataFile', ([], {}), '()\n', (535, 537), True, 'import bead_util as bu\n'), ((622, 635), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (632, 635), True, 'import matplotlib.pyplot as plt\n'), ((888, 916), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frequency [Hz]"""'], {}), "('Frequency [Hz]')\n", (898, 916), True, 'import matplotlib.pyplot as plt\n'), ((921, 950), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""sqrt(PSD) [arb]"""'], {}), "('sqrt(PSD) [arb]')\n", (931, 950), True, 'import matplotlib.pyplot as plt\n'), ((955, 967), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (965, 967), True, 'import matplotlib.pyplot as plt\n'), ((973, 986), 'matplotlib.pyplot.figure', 'plt.figure', (['(4)'], {}), '(4)\n', (983, 986), True, 'import matplotlib.pyplot as plt\n'), ((1056, 1084), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frequency [Hz]"""'], {}), "('Frequency [Hz]')\n", (1066, 1084), True, 'import matplotlib.pyplot as plt\n'), ((1089, 1118), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""sqrt(PSD) [arb]"""'], {}), "('sqrt(PSD) [arb]')\n", (1099, 1118), True, 'import matplotlib.pyplot as plt\n'), ((1137, 1182), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {'sharex': '(True)', 'sharey': '(False)'}), '(2, 1, sharex=True, sharey=False)\n', (1149, 1182), True, 'import matplotlib.pyplot as plt\n'), ((1199, 1244), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {'sharex': '(True)', 'sharey': '(False)'}), '(2, 1, sharex=True, sharey=False)\n', (1211, 1244), True, 'import matplotlib.pyplot as plt\n'), ((1717, 1729), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1727, 1729), True, 'import matplotlib.pyplot as plt\n'), ((1735, 1748), 'matplotlib.pyplot.figure', 'plt.figure', (['(3)'], {}), '(3)\n', (1745, 1748), True, 'import matplotlib.pyplot as plt\n'), ((1753, 1781), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frequency [Hz]"""'], {}), "('Frequency [Hz]')\n", (1763, 1781), True, 'import matplotlib.pyplot as plt\n'), ((1786, 1815), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""sqrt(PSD) [arb]"""'], {}), "('sqrt(PSD) [arb]')\n", (1796, 1815), True, 'import matplotlib.pyplot as plt\n'), ((1821, 1831), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1829, 1831), True, 'import matplotlib.pyplot as plt\n'), ((1322, 1347), 'numpy.fft.rfft', 'np.fft.rfft', (['df.amp[quad]'], {}), '(df.amp[quad])\n', (1333, 1347), True, 'import numpy as np\n'), ((1363, 1390), 'numpy.fft.rfft', 'np.fft.rfft', (['df.phase[quad]'], {}), '(df.phase[quad])\n', (1374, 1390), True, 'import numpy as np\n'), ((837, 864), 'numpy.fft.rfft', 'np.fft.rfft', (['df.pos_data[0]'], {}), '(df.pos_data[0])\n', (848, 864), True, 'import numpy as np\n'), ((1016, 1049), 'numpy.fft.rfft', 'np.fft.rfft', (['df.electrode_data[3]'], {}), '(df.electrode_data[3])\n', (1027, 1049), True, 'import numpy as np\n'), ((1506, 1517), 'numpy.abs', 'np.abs', (['fft'], {}), '(fft)\n', (1512, 1517), True, 'import numpy as np\n'), ((1667, 1679), 'numpy.abs', 'np.abs', (['fft2'], {}), '(fft2)\n', (1673, 1679), True, 'import numpy as np\n'), ((665, 694), 'numpy.fft.rfft', 'np.fft.rfft', (['df.pos_data_3[0]'], {}), '(df.pos_data_3[0])\n', (676, 694), True, 'import numpy as np\n'), ((752, 781), 'numpy.fft.rfft', 'np.fft.rfft', (['df.pos_data_2[0]'], {}), '(df.pos_data_2[0])\n', (763, 781), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
u"""
:copyright: Copyright (c) 2020 RadiaSoft LLC. All Rights Reserved.
:license: http://www.apache.org/licenses/LICENSE-2.0.html
"""
from __future__ import absolute_import, division, print_function
import time
import os
import yaml
import numpy as np
def record_time(func, time_list, *args, **kwargs):
t1 = time.time()
func(*args, **kwargs)
t2 = time.time()
time_list.append(t2 - t1)
class SteadyState:
def __init__(self, top, cond, interval, tol=0.1):
# Analyze if we are in steady-state regime by means of FFT.
# Use estimated crossing time as the interval period and then look at
self.top = top
self.cond = cond
self.tol = tol
self.n = 0
self.level = 1
tstart = (self.top.it - interval) * self.top.dt
_, collector_current = cond.get_current_history(js=None, l_lost=1, l_emit=0,
l_image=0, tmin=tstart, tmax=None, nt=top.it)
self.y0 = np.abs(np.fft.rfft(collector_current)[1])
def __call__(self, interval):
tstart = (self.top.it - interval) * self.top.dt
_, collector_current = self.cond.get_current_history(js=None, l_lost=1, l_emit=0,
l_image=0, tmin=tstart, tmax=None, nt=interval)
y = np.abs(np.fft.rfft(collector_current)[1])
self.level = y / self.y0
if self.level <= self.tol:
return 1
else:
return -1
class ExternalCircuit:
def __init__(self, top, solver, rho, contact_potential, area, conductors, voltage_stride=20, debug=False):
self.top = top
self.solver = solver
self.rho = rho
self.contact_potential = contact_potential
self.area = area # in cm**2
self.voltage_stride = voltage_stride
self.debug = debug
# TODO: these seem to remain empty when running warp in parallel
self.voltage_history = []
self.current_history = []
try:
conductors[0]
self.conductors = conductors
except TypeError:
self.conductors = [conductors]
def getvolt(self, t):
# t is dummy variable
if self.top.it % self.voltage_stride == 0:
# This will tell the solver to update voltage on all conductors
self.solver.gridmode = 0
tmin = (self.top.it - self.voltage_stride) * self.top.dt
for cond in self.conductors:
times, current = cond.get_current_history(js=None, l_lost=1, l_emit=0,
l_image=0, tmin=tmin, tmax=None, nt=1)
# Using many bins for the current sometimes gives erroneous zeros.
# Using a single bin has consistently given a result ~1/2 expected current, hence the sum of the two values
current = np.sum(current)
voltage = self.contact_potential + current / self.area * self.rho
self.voltage_history.append(voltage)
self.current_history.append(current / self.area)
if self.debug:
print("Current/voltage at step: {} = {}, {}".format(self.top.it, current / self.area, voltage))
return voltage
def write_parameter_file(pars, filename=None):
path, filename = os.path.split(filename)
if not filename:
try:
filename = 'run_attributes_{}.yaml'.format(pars['run_id'], pars['run_id'])
except KeyError:
print("No Filename or run_id, attributes will not be saved")
return
if path:
filename = os.path.join(path, filename)
else:
if os.path.splitext(filename)[-1] != '.yaml':
filename = os.path.splitext(filename)[0] + '.yaml'
if path:
filename = os.path.join(path, filename)
else:
filename = os.path.join(path, filename)
tec_keys = ['x_struts', 'y_struts', 'V_grid', 'grid_height', 'strut_width', 'strut_height',
'rho_ew', 'T_em', 'phi_em', 'T_coll', 'phi_coll', 'rho_cw', 'gap_distance', 'rho_load',
'run_id']
simulation_keys = ['injection_type', 'random_seed', 'install_grid', 'install_circuit', 'max_wall_time',
'particle_diagnostic_switch', 'field_diagnostic_switch', 'lost_diagnostic_switch', 'channel_width']
tec_parameters = {}
simulation_parameters = {}
other_parameters = {}
for key in pars:
if key in tec_keys:
tec_parameters[key] = pars[key]
elif key in simulation_keys:
simulation_parameters[key] = pars[key]
else:
other_parameters[key] = pars[key]
pars = {'tec': tec_parameters, 'simulation': simulation_parameters, 'other': other_parameters}
with open(filename, 'w') as outputfile:
yaml.dump(pars, outputfile, default_flow_style=False)
def read_parameter_file(filename):
parameters = yaml.safe_load(open(filename, 'r'))
input_deck = {}
for key0 in parameters:
for key1, val in parameters[key0].items():
input_deck[key1] = val
return input_deck
|
[
"numpy.fft.rfft",
"numpy.sum",
"yaml.dump",
"time.time",
"os.path.splitext",
"os.path.split",
"os.path.join"
] |
[((340, 351), 'time.time', 'time.time', ([], {}), '()\n', (349, 351), False, 'import time\n'), ((387, 398), 'time.time', 'time.time', ([], {}), '()\n', (396, 398), False, 'import time\n'), ((3357, 3380), 'os.path.split', 'os.path.split', (['filename'], {}), '(filename)\n', (3370, 3380), False, 'import os\n'), ((4885, 4938), 'yaml.dump', 'yaml.dump', (['pars', 'outputfile'], {'default_flow_style': '(False)'}), '(pars, outputfile, default_flow_style=False)\n', (4894, 4938), False, 'import yaml\n'), ((2919, 2934), 'numpy.sum', 'np.sum', (['current'], {}), '(current)\n', (2925, 2934), True, 'import numpy as np\n'), ((3659, 3687), 'os.path.join', 'os.path.join', (['path', 'filename'], {}), '(path, filename)\n', (3671, 3687), False, 'import os\n'), ((3855, 3883), 'os.path.join', 'os.path.join', (['path', 'filename'], {}), '(path, filename)\n', (3867, 3883), False, 'import os\n'), ((3921, 3949), 'os.path.join', 'os.path.join', (['path', 'filename'], {}), '(path, filename)\n', (3933, 3949), False, 'import os\n'), ((1032, 1062), 'numpy.fft.rfft', 'np.fft.rfft', (['collector_current'], {}), '(collector_current)\n', (1043, 1062), True, 'import numpy as np\n'), ((1376, 1406), 'numpy.fft.rfft', 'np.fft.rfft', (['collector_current'], {}), '(collector_current)\n', (1387, 1406), True, 'import numpy as np\n'), ((3709, 3735), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (3725, 3735), False, 'import os\n'), ((3775, 3801), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (3791, 3801), False, 'import os\n')]
|
import numpy as np
from abc import ABCMeta, abstractmethod
from ratcave.utils.observers import IterObservable
import itertools
from operator import setitem
from scipy.spatial.transform import Rotation as R
class Coordinates(IterObservable):
coords = {'x': 0, 'y': 1, 'z': 2}
def __init__(self, *args, **kwargs):
" Returns a Coordinates object"
super(Coordinates, self).__init__(**kwargs)
self._array = np.array(args, dtype=np.float32)
self._init_coord_properties()
def __repr__(self):
arg_str = ', '.join(['{}={}'.format(*el) for el in zip('xyz', self._array)])
return "{cls}({coords})".format(cls=self.__class__.__name__, coords=arg_str)
def _init_coord_properties(self):
"""
Generates combinations of named coordinate values, mapping them to the internal array.
For Example: x, xy, xyz, y, yy, zyx, etc
"""
def gen_getter_setter_funs(*args):
indices = [self.coords[coord] for coord in args]
def getter(self):
return tuple(self._array[indices]) if len(args) > 1 else self._array[indices[0]]
def setter(self, value):
setitem(self._array, indices, value)
self.notify_observers()
return getter, setter
for n_repeats in range(1, len(self.coords)+1):
for args in itertools.product(self.coords.keys(), repeat=n_repeats):
getter, setter = gen_getter_setter_funs(*args)
setattr(self.__class__, ''.join(args), property(fget=getter, fset=setter))
def __getitem__(self, item):
if type(item) == slice:
return tuple(self._array[item])
else:
return self._array[item]
def __setitem__(self, idx, value):
self._array[idx] = value
super(Coordinates, self).__setitem__(idx, value)
class RotationBase(object):
__metaclass__ = ABCMeta
@abstractmethod
def to_quaternion(self): pass
@abstractmethod
def to_euler(self, units='rad'): pass
@abstractmethod
def to_matrix(self): pass
@classmethod
def from_matrix(cls, matrix): pass
def rotate(self, vector):
"""Takes a vector and returns it rotated by self."""
return np.dot(self.to_matrix()[:3, :3], vector).flatten()
class RotationEuler(RotationBase, Coordinates):
def __init__(self, x, y, z, axes='rxyz', **kwargs):
super(RotationEuler, self).__init__(x, y, z, **kwargs)
self.axes = axes
class RotationEulerRadians(RotationEuler):
def to_radians(self):
return self
def to_degrees(self):
return RotationEulerDegrees(*np.degrees(self._array), axes=self.axes)
def to_quaternion(self):
return RotationQuaternion(*R.from_euler(self._axes[1:],self._array,degrees=False).as_quat())
def to_matrix(self):
mat = np.eye(4)
mat[:3, :3] = R.from_euler(self.axes[1:],self._array,degrees=False).as_dcm() # scipy as_matrix() not available
return mat
def to_euler(self, units='rad'):
assert units.lower() in ['rad', 'deg']
if units.lower() == 'rad':
return RotationEulerRadians(*self._array, axes=self.axes)
else:
return RotationEulerDegrees(*np.degrees(self._array), axes=self.axes)
@classmethod
def from_matrix(cls, matrix, axes='rxyz'):
coords = R.from_matrix(matrix[:3, :3]).as_euler(axes[1:], degrees=False)
return cls(*coords)
class RotationEulerDegrees(RotationEuler):
def to_radians(self):
return RotationEulerRadians(*np.radians(self._array), axes=self.axes)
def to_degrees(self):
return self
def to_quaternion(self):
return self.to_radians().to_quaternion()
def to_euler(self, units='rad'):
return self.to_radians().to_euler(units=units)
def to_matrix(self):
return self.to_radians().to_matrix()
@classmethod
def from_matrix(cls, matrix, axes='rxyz'):
coords = R.from_matrix(matrix[:3, :3]).as_euler(axes[1:], degrees=True)
return cls(*coords)
class RotationQuaternion(RotationBase, Coordinates):
coords = {'w': 0, 'x': 1, 'y': 2, 'z': 3}
def __init__(self, w, x, y, z, **kwargs):
super(RotationQuaternion, self).__init__(w, x, y, z)
def __repr__(self):
arg_str = ', '.join(['{}={}'.format(*el) for el in zip('wxyz', self._array)])
return "{cls}({coords})".format(cls=self.__class__.__name__, coords=arg_str)
def to_quaternion(self):
return self
def to_matrix(self):
mat = np.eye(4, 4)
mat[:3, :3] = R.from_quat(self).as_matrix()
return mat
def to_euler(self, units='rad'):
euler_data = R.from_quat(self).as_euler(axes='xyz',degrees=False)
assert units.lower() in ['rad', 'deg']
if units.lower() == 'rad':
return RotationEulerRadians(*euler_data)
else:
return RotationEulerDegrees(*np.degrees(euler_data))
@classmethod
def from_matrix(cls, matrix):
return cls(*R.from_matrix(matrix[:3, :3]).as_quat())
class Translation(Coordinates):
def __init__(self, *args, **kwargs):
assert len(args) == 3, "Must be xyz coordinates"
super(Translation, self).__init__(*args, **kwargs)
def __add__(self, other):
oth = other.xyz if isinstance(other, Translation) else other
if len(oth) != 3:
raise ValueError("Other must have length of 3")
return Translation(*tuple(a + b for (a, b) in zip(self.xyz, oth)))
def __sub__(self, other):
oth = other.xyz if isinstance(other, Translation) else other
if len(oth) != 3:
raise ValueError("Other must have length of 3")
return Translation(*tuple(a - b for (a, b) in zip(self.xyz, other.xyz)))
def to_matrix(self):
mat = np.eye(4,4)
mat[:3,3] = self._array
return mat
@classmethod
def from_matrix(cls, matrix):
"""Returns a Translation from a 4x4 model matrix (the first three rows of the last column)."""
return cls(*matrix[:3, 3])
class Scale(Coordinates):
def __init__(self, *args, **kwargs):
vals = args * 3 if len(args) == 1 else args
assert len(vals) == 3, "Must be xyz coordinates"
super(self.__class__, self).__init__(*vals, **kwargs)
def to_matrix(self):
return np.diag((self._array[0], self._array[1], self._array[2], 1.))
@classmethod
def from_matrix(cls, matrix):
return cls(*np.linalg.norm(matrix[:3, :3], axis=0))
def cross_product_matrix(vec):
"""Returns a 3x3 cross-product matrix from a 3-element vector."""
return np.array([[0, -vec[2], vec[1]],
[vec[2], 0, -vec[0]],
[-vec[1], vec[0], 0]])
def rotation_matrix_between_vectors(from_vec, to_vec):
"""
Returns a rotation matrix to rotate from 3d vector "from_vec" to 3d vector "to_vec".
Equation from https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d
"""
a, b = (vec/np.linalg.norm(vec) for vec in (from_vec, to_vec))
v = np.cross(a, b)
cos = np.dot(a, b)
if cos == -1.:
raise ValueError("Orientation in complete opposite direction")
v_cpm = cross_product_matrix(v)
rot_mat = np.identity(3) + v_cpm + np.dot(v_cpm, v_cpm) * (1. / 1. + cos)
return rot_mat
|
[
"numpy.radians",
"numpy.eye",
"numpy.degrees",
"scipy.spatial.transform.Rotation.from_euler",
"numpy.cross",
"numpy.identity",
"numpy.array",
"numpy.linalg.norm",
"scipy.spatial.transform.Rotation.from_matrix",
"scipy.spatial.transform.Rotation.from_quat",
"numpy.dot",
"operator.setitem",
"numpy.diag"
] |
[((6717, 6793), 'numpy.array', 'np.array', (['[[0, -vec[2], vec[1]], [vec[2], 0, -vec[0]], [-vec[1], vec[0], 0]]'], {}), '([[0, -vec[2], vec[1]], [vec[2], 0, -vec[0]], [-vec[1], vec[0], 0]])\n', (6725, 6793), True, 'import numpy as np\n'), ((7202, 7216), 'numpy.cross', 'np.cross', (['a', 'b'], {}), '(a, b)\n', (7210, 7216), True, 'import numpy as np\n'), ((7227, 7239), 'numpy.dot', 'np.dot', (['a', 'b'], {}), '(a, b)\n', (7233, 7239), True, 'import numpy as np\n'), ((437, 469), 'numpy.array', 'np.array', (['args'], {'dtype': 'np.float32'}), '(args, dtype=np.float32)\n', (445, 469), True, 'import numpy as np\n'), ((2895, 2904), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (2901, 2904), True, 'import numpy as np\n'), ((4611, 4623), 'numpy.eye', 'np.eye', (['(4)', '(4)'], {}), '(4, 4)\n', (4617, 4623), True, 'import numpy as np\n'), ((5893, 5905), 'numpy.eye', 'np.eye', (['(4)', '(4)'], {}), '(4, 4)\n', (5899, 5905), True, 'import numpy as np\n'), ((6428, 6490), 'numpy.diag', 'np.diag', (['(self._array[0], self._array[1], self._array[2], 1.0)'], {}), '((self._array[0], self._array[1], self._array[2], 1.0))\n', (6435, 6490), True, 'import numpy as np\n'), ((7142, 7161), 'numpy.linalg.norm', 'np.linalg.norm', (['vec'], {}), '(vec)\n', (7156, 7161), True, 'import numpy as np\n'), ((7380, 7394), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (7391, 7394), True, 'import numpy as np\n'), ((7405, 7425), 'numpy.dot', 'np.dot', (['v_cpm', 'v_cpm'], {}), '(v_cpm, v_cpm)\n', (7411, 7425), True, 'import numpy as np\n'), ((1196, 1232), 'operator.setitem', 'setitem', (['self._array', 'indices', 'value'], {}), '(self._array, indices, value)\n', (1203, 1232), False, 'from operator import setitem\n'), ((2683, 2706), 'numpy.degrees', 'np.degrees', (['self._array'], {}), '(self._array)\n', (2693, 2706), True, 'import numpy as np\n'), ((2927, 2982), 'scipy.spatial.transform.Rotation.from_euler', 'R.from_euler', (['self.axes[1:]', 'self._array'], {'degrees': '(False)'}), '(self.axes[1:], self._array, degrees=False)\n', (2939, 2982), True, 'from scipy.spatial.transform import Rotation as R\n'), ((3411, 3440), 'scipy.spatial.transform.Rotation.from_matrix', 'R.from_matrix', (['matrix[:3, :3]'], {}), '(matrix[:3, :3])\n', (3424, 3440), True, 'from scipy.spatial.transform import Rotation as R\n'), ((3612, 3635), 'numpy.radians', 'np.radians', (['self._array'], {}), '(self._array)\n', (3622, 3635), True, 'import numpy as np\n'), ((4025, 4054), 'scipy.spatial.transform.Rotation.from_matrix', 'R.from_matrix', (['matrix[:3, :3]'], {}), '(matrix[:3, :3])\n', (4038, 4054), True, 'from scipy.spatial.transform import Rotation as R\n'), ((4646, 4663), 'scipy.spatial.transform.Rotation.from_quat', 'R.from_quat', (['self'], {}), '(self)\n', (4657, 4663), True, 'from scipy.spatial.transform import Rotation as R\n'), ((4754, 4771), 'scipy.spatial.transform.Rotation.from_quat', 'R.from_quat', (['self'], {}), '(self)\n', (4765, 4771), True, 'from scipy.spatial.transform import Rotation as R\n'), ((6562, 6600), 'numpy.linalg.norm', 'np.linalg.norm', (['matrix[:3, :3]'], {'axis': '(0)'}), '(matrix[:3, :3], axis=0)\n', (6576, 6600), True, 'import numpy as np\n'), ((3288, 3311), 'numpy.degrees', 'np.degrees', (['self._array'], {}), '(self._array)\n', (3298, 3311), True, 'import numpy as np\n'), ((4997, 5019), 'numpy.degrees', 'np.degrees', (['euler_data'], {}), '(euler_data)\n', (5007, 5019), True, 'import numpy as np\n'), ((2789, 2845), 'scipy.spatial.transform.Rotation.from_euler', 'R.from_euler', (['self._axes[1:]', 'self._array'], {'degrees': '(False)'}), '(self._axes[1:], self._array, degrees=False)\n', (2801, 2845), True, 'from scipy.spatial.transform import Rotation as R\n'), ((5093, 5122), 'scipy.spatial.transform.Rotation.from_matrix', 'R.from_matrix', (['matrix[:3, :3]'], {}), '(matrix[:3, :3])\n', (5106, 5122), True, 'from scipy.spatial.transform import Rotation as R\n')]
|
import numpy as np
'''
Includes blood glucose level proxy for diabetes: 0-3
(lo2 - counts as abnormal, lo1, normal, hi1, hi2 - counts as abnormal)
Initial distribution:
[.05, .15, .6, .15, .05] for non-diabetics and [.01, .05, .15, .6, .19] for diabetics
'''
class State(object):
NUM_OBS_STATES = 720
NUM_HID_STATES = 2 # Binary value of diabetes
NUM_PROJ_OBS_STATES = int(NUM_OBS_STATES / 5) # Marginalizing over glucose
NUM_FULL_STATES = int(NUM_OBS_STATES * NUM_HID_STATES)
PHI_DIM = 5 # the phi(s,a) dimension. See get_phi_vector()
# Used for min-max normalization. The last dim is just uniform noise
PHI_MAX = [2, 2, 1, 4, 1]
PHI_MIN = [0, 0, 0, 0, 0]
def __init__(self,
state_idx = None, idx_type = 'obs',
diabetic_idx = None, state_categs = None):
assert state_idx is not None or state_categs is not None
assert ((diabetic_idx is not None and diabetic_idx in [0, 1]) or
(state_idx is not None and idx_type == 'full'))
assert idx_type in ['obs', 'full', 'proj_obs']
if state_idx is not None:
self.set_state_by_idx(
state_idx, idx_type=idx_type, diabetic_idx=diabetic_idx)
elif state_categs is not None:
self.set_state_by_categs(state_categs, diabetic_idx)
def check_absorbing_state(self):
num_abnormal = self.get_num_abnormal()
if num_abnormal >= 3:
return True
elif num_abnormal == 0 and not self.on_treatment():
return True
return False
def set_state_by_categs(self, state_categs, diabetic_idx):
assert len(state_categs) == 7, "must specify 7 state variables"
self.hr_state = state_categs[0]
self.sysbp_state = state_categs[1]
self.percoxyg_state = state_categs[2]
self.glucose_state = state_categs[3]
self.antibiotic_state = state_categs[4]
self.vaso_state = state_categs[5]
self.vent_state = state_categs[6]
self.diabetic_idx = diabetic_idx
def set_state_by_idx(self, state_idx, idx_type, diabetic_idx=None):
"""set_state_by_idx
The state index is determined by using "bit" arithmetic, with the
complication that not every state is binary
:param state_idx: Given index
:param idx_type: Index type, either observed (720), projected (144) or
full (1440)
:param diabetic_idx: If full state index not given, this is required
"""
if idx_type == 'obs':
term_base = self.NUM_OBS_STATES/3 # Starts with heart rate
elif idx_type == 'proj_obs':
term_base = self.NUM_PROJ_OBS_STATES/3
elif idx_type == 'full':
term_base = self.NUM_FULL_STATES/2 # Starts with diab
# Start with the given state index
mod_idx = state_idx
if idx_type == 'full':
self.diabetic_idx = np.floor(mod_idx/term_base).astype(int)
mod_idx %= term_base
term_base /= 3 # This is for heart rate, the next item
else:
assert diabetic_idx is not None
self.diabetic_idx = diabetic_idx
self.hr_state = np.floor(mod_idx/term_base).astype(int)
mod_idx %= term_base
term_base /= 3
self.sysbp_state = np.floor(mod_idx/term_base).astype(int)
mod_idx %= term_base
term_base /= 2
self.percoxyg_state = np.floor(mod_idx/term_base).astype(int)
if idx_type == 'proj_obs':
self.glucose_state = 2
else:
mod_idx %= term_base
term_base /= 5
self.glucose_state = np.floor(mod_idx/term_base).astype(int)
mod_idx %= term_base
term_base /= 2
self.antibiotic_state = np.floor(mod_idx/term_base).astype(int)
mod_idx %= term_base
term_base /= 2
self.vaso_state = np.floor(mod_idx/term_base).astype(int)
mod_idx %= term_base
term_base /= 2
self.vent_state = np.floor(mod_idx/term_base).astype(int)
def get_state_idx(self, idx_type='obs'):
'''
returns integer index of state: significance order as in categorical array
'''
if idx_type == 'obs':
categ_num = np.array([3,3,2,5,2,2,2])
state_categs = [
self.hr_state,
self.sysbp_state,
self.percoxyg_state,
self.glucose_state,
self.antibiotic_state,
self.vaso_state,
self.vent_state]
elif idx_type == 'proj_obs':
categ_num = np.array([3,3,2,2,2,2])
state_categs = [
self.hr_state,
self.sysbp_state,
self.percoxyg_state,
self.antibiotic_state,
self.vaso_state,
self.vent_state]
elif idx_type == 'full':
categ_num = np.array([2,3,3,2,5,2,2,2])
state_categs = [
self.diabetic_idx,
self.hr_state,
self.sysbp_state,
self.percoxyg_state,
self.glucose_state,
self.antibiotic_state,
self.vaso_state,
self.vent_state]
sum_idx = 0
prev_base = 1
for i in range(len(state_categs)):
idx = len(state_categs) - 1 - i
sum_idx += prev_base*state_categs[idx]
prev_base *= categ_num[idx]
return sum_idx
def __eq__(self, other):
'''
override equals: two states equal if all internal states same
'''
return isinstance(other, self.__class__) and \
self.hr_state == other.hr_state and \
self.sysbp_state == other.sysbp_state and \
self.percoxyg_state == other.percoxyg_state and \
self.glucose_state == other.glucose_state and \
self.antibiotic_state == other.antibiotic_state and \
self.vaso_state == other.vaso_state and \
self.vent_state == other.vent_state
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return self.get_state_idx()
def get_num_abnormal(self):
'''
returns number of abnormal conditions
'''
num_abnormal = 0
if self.hr_state != 1:
num_abnormal += 1
if self.sysbp_state != 1:
num_abnormal += 1
if self.percoxyg_state != 1:
num_abnormal += 1
if self.glucose_state != 2:
num_abnormal += 1
return num_abnormal
def on_treatment(self):
'''
returns True iff any of 3 treatments active
'''
if self.antibiotic_state == 0 and \
self.vaso_state == 0 and self.vent_state == 0:
return False
return True
def on_antibiotics(self):
'''
returns True iff antibiotics active
'''
return self.antibiotic_state == 1
def on_vasopressors(self):
'''
returns True iff vasopressors active
'''
return self.vaso_state == 1
def on_ventilation(self):
'''
returns True iff ventilation active
'''
return self.vent_state == 1
def copy_state(self):
return self.__class__(state_categs = [
self.hr_state,
self.sysbp_state,
self.percoxyg_state,
self.glucose_state,
self.antibiotic_state,
self.vaso_state,
self.vent_state],
diabetic_idx=self.diabetic_idx)
def get_state_vector(self):
return np.array([self.hr_state,
self.sysbp_state,
self.percoxyg_state,
self.glucose_state,
self.antibiotic_state,
self.vaso_state,
self.vent_state,
self.diabetic_idx]).astype(int)
def get_phi_vector(self):
'''
My own definition for phi that only includes states but
not treatments. Used in IRL
'''
obs = self.get_state_vector()[:4]
noise_obs = np.random.rand()
obs = np.concatenate([obs, [noise_obs]]) # add noise dim
return obs
class ConfoundState(State):
'''
We add a spurious correlation that the reward is correlated with such feature.
- Need new transitions?
- A reward causing which states it will get? A new transition model in disc state?
'''
NUM_OBS_STATES = State.NUM_OBS_STATES * 2
NUM_HID_STATES = 2 # Binary value of diabetes
NUM_PROJ_OBS_STATES = int(NUM_OBS_STATES / 5) # Marginalizing over glucose
NUM_FULL_STATES = int(NUM_OBS_STATES * NUM_HID_STATES)
PHI_DIM = 5 # the phi(s,a) dimension. See get_phi_vector()
# Used for min-max normalization. The last dim is the confounded state
PHI_MAX = [2, 2, 1, 4, 1]
PHI_MIN = [0, 0, 0, 0, 0]
# def __init__(self, *args, **kwargs):
# super().__init__(*args, **kwargs)
def set_state_by_idx(self, state_idx, idx_type, diabetic_idx=None):
"""set_state_by_idx
The state index is determined by using "bit" arithmetic, with the
complication that not every state is binary
:param state_idx: Given index
:param idx_type: Index type, either observed (720), projected (144) or
full (1440)
:param diabetic_idx: If full state index not given, this is required
"""
term_base = (self.NUM_FULL_STATES // 2)
self.confound_state = state_idx // term_base
state_idx = state_idx % term_base
return super().set_state_by_idx(state_idx, idx_type, diabetic_idx=diabetic_idx)
def set_state_by_categs(self, state_categs, diabetic_idx):
assert len(state_categs) == 8, "must specify 8 state variables"
self.confound_state = state_categs[-1]
return super().set_state_by_categs(
state_categs=state_categs[:-1],
diabetic_idx=diabetic_idx,
)
def get_phi_vector(self):
'''
My own definition for phi that only includes states but
not treatments. Used in IRL
'''
obs = self.get_state_vector()[:4]
# Add an additional
obs = np.concatenate([obs, [self.confound_state]])
return obs
def copy_state(self):
return self.__class__(state_categs = [
self.hr_state,
self.sysbp_state,
self.percoxyg_state,
self.glucose_state,
self.antibiotic_state,
self.vaso_state,
self.vent_state,
self.confound_state],
diabetic_idx=self.diabetic_idx)
|
[
"numpy.random.rand",
"numpy.floor",
"numpy.array",
"numpy.concatenate"
] |
[((8262, 8278), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (8276, 8278), True, 'import numpy as np\n'), ((8293, 8327), 'numpy.concatenate', 'np.concatenate', (['[obs, [noise_obs]]'], {}), '([obs, [noise_obs]])\n', (8307, 8327), True, 'import numpy as np\n'), ((10379, 10423), 'numpy.concatenate', 'np.concatenate', (['[obs, [self.confound_state]]'], {}), '([obs, [self.confound_state]])\n', (10393, 10423), True, 'import numpy as np\n'), ((4283, 4314), 'numpy.array', 'np.array', (['[3, 3, 2, 5, 2, 2, 2]'], {}), '([3, 3, 2, 5, 2, 2, 2])\n', (4291, 4314), True, 'import numpy as np\n'), ((3212, 3241), 'numpy.floor', 'np.floor', (['(mod_idx / term_base)'], {}), '(mod_idx / term_base)\n', (3220, 3241), True, 'import numpy as np\n'), ((3332, 3361), 'numpy.floor', 'np.floor', (['(mod_idx / term_base)'], {}), '(mod_idx / term_base)\n', (3340, 3361), True, 'import numpy as np\n'), ((3455, 3484), 'numpy.floor', 'np.floor', (['(mod_idx / term_base)'], {}), '(mod_idx / term_base)\n', (3463, 3484), True, 'import numpy as np\n'), ((3798, 3827), 'numpy.floor', 'np.floor', (['(mod_idx / term_base)'], {}), '(mod_idx / term_base)\n', (3806, 3827), True, 'import numpy as np\n'), ((3917, 3946), 'numpy.floor', 'np.floor', (['(mod_idx / term_base)'], {}), '(mod_idx / term_base)\n', (3925, 3946), True, 'import numpy as np\n'), ((4036, 4065), 'numpy.floor', 'np.floor', (['(mod_idx / term_base)'], {}), '(mod_idx / term_base)\n', (4044, 4065), True, 'import numpy as np\n'), ((4670, 4698), 'numpy.array', 'np.array', (['[3, 3, 2, 2, 2, 2]'], {}), '([3, 3, 2, 2, 2, 2])\n', (4678, 4698), True, 'import numpy as np\n'), ((7788, 7957), 'numpy.array', 'np.array', (['[self.hr_state, self.sysbp_state, self.percoxyg_state, self.glucose_state,\n self.antibiotic_state, self.vaso_state, self.vent_state, self.diabetic_idx]'], {}), '([self.hr_state, self.sysbp_state, self.percoxyg_state, self.\n glucose_state, self.antibiotic_state, self.vaso_state, self.vent_state,\n self.diabetic_idx])\n', (7796, 7957), True, 'import numpy as np\n'), ((2944, 2973), 'numpy.floor', 'np.floor', (['(mod_idx / term_base)'], {}), '(mod_idx / term_base)\n', (2952, 2973), True, 'import numpy as np\n'), ((3673, 3702), 'numpy.floor', 'np.floor', (['(mod_idx / term_base)'], {}), '(mod_idx / term_base)\n', (3681, 3702), True, 'import numpy as np\n'), ((5011, 5045), 'numpy.array', 'np.array', (['[2, 3, 3, 2, 5, 2, 2, 2]'], {}), '([2, 3, 3, 2, 5, 2, 2, 2])\n', (5019, 5045), True, 'import numpy as np\n')]
|
'''
Assorted functions used in the machine learning codes during the Blue Stars project
Created by: <NAME> (<EMAIL>)
'''
#External packages and functions used
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.optimizers import Adam
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import RFE
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import RepeatedKFold
from sklearn.pipeline import Pipeline
from sklearn.metrics import (mean_absolute_error, r2_score, max_error, mean_squared_error)
from itertools import combinations
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import tensorflow as tf
import time
#Sets of filters and corrections used
Filters = {'JPLUS': ['uJAVA', 'J0378', 'J0395', 'J0410', 'J0430', 'gSDSS',
'J0515', 'rSDSS', 'J0660', 'iSDSS', 'J0861', 'zSDSS'],
'WISE': ['W1', 'W2', 'W3', 'W4'],
'GALEX': ['NUVmag'],
'GAIA': ['G', 'BP', 'RP']
}
Corrections = {'JPLUS': [('Ax_' + Filter) for Filter in Filters['JPLUS']]}
def MagnitudeCorrection(df, FilterSet, CorrectionSet, NewDF):
'''
Correct the magnitudes of a set of filters inside a dataframe
Keyword Arguments:
df - Dataframe with uncorrected magnitudes
FilterSet - Set of filters to correct
CorrectionSet - Set of corrections
NewDF - If True, a new dataframe is returned with just the corrected values;
If False, the function returns the complete original dataframe with the uncorrected values replaced by the corrected ones.
'''
if NewDF == True:
TempDF = pd.DataFrame()
for Index in range(0, len(FilterSet)):
TempDF[FilterSet[Index]] = df[FilterSet[Index]] - df[CorrectionSet[Index]]
return TempDF
else:
for Index in range(0, len(FilterSet)):
df[FilterSet[Index]] = df[FilterSet[Index]] - df[CorrectionSet[Index]]
return df
def CreateColors(df, FilterSet, NewDF):
'''
Create all the possible filter combinations (colors) for a set of filters inside a dataframe
Keyword arguments:
df - Dataframe with the magnitudes
FilterSet - Set of filters to combine
NewDF - If True, a new dataframe is returned with just the combined values;
If False, the function returns the complete original dataframe with the combinations added.
'''
CombinationsList = list(combinations(FilterSet, 2))
if NewDF == True:
TempDF = pd.DataFrame()
for Combination in CombinationsList:
CombinationName = '(' + Combination[0] + ' - ' + Combination[1] + ')'
TempDF[CombinationName] = (df[Combination[0]] - df[Combination[1]])
return TempDF
else:
for Combination in CombinationsList:
CombinationName = '(' + Combination[0] + ' - ' + Combination[1] + ')'
df[CombinationName] = (df[Combination[0]] - df[Combination[1]])
return df
def CreateCombinations(df, FilterSet, NewDF):
'''
Create all the possible color combinations for a set of filters inside a dataframe
Keyword arguments:
df - Dataframe with the magnitudes
FilterSet - Set of filters to combine
NewDF - If True, a new dataframe is returned with just the combined values;
If False, the function returns the complete original dataframe with the combinations added.
'''
CombinationsList = list(combinations(FilterSet, 4))
if NewDF == True:
TempDF = pd.DataFrame()
for Combination in CombinationsList:
CombinationName = '(' + Combination[0] + ' - ' + Combination[1] + ') - (' + Combination[2] + ' - ' + Combination[3] + ')'
TempDF[CombinationName] = (df[Combination[0]] - df[Combination[1]]) - (df[Combination[2]] - df[Combination[3]])
return TempDF
else:
for Combination in CombinationsList:
CombinationName = '(' + Combination[0] + ' - ' + Combination[1] + ') - (' + Combination[2] + ' - ' + Combination[3] + ')'
df[CombinationName] = (df[Combination[0]] - df[Combination[1]]) - (df[Combination[2]] - df[Combination[3]])
return df
def ReindexDF(df):
'''
Create a column by combining the TILE_ID and the NUMBER of each star and set it as the new index of the dataframe
Keyword arguments:
df - Dataframe to reindex
'''
#Function to create the new column
def CreateID(df):
return (str(df[0]) + ', ' + str(df[1]))
#Create a new column with the TILE_ID and the NUMBER to identify each star individually
df['ID NUMBER'] = df[['TILE_ID', 'NUMBER']].apply(CreateID, axis = 1)
#Set the ID NUMBER column as the new index
df = df.set_index('ID NUMBER', drop = False)
#Drop any duplicates
df = df.drop_duplicates(subset = ['ID NUMBER'])
return df
def AssembleWorkingDF(df, addWISE, addGALEX, addGAIA, Colors, Combinations):
'''
Assemble a dataframe with JPLUS magnitudes and, when asked, colors and color combinations.
Keyword arguments:
df - Dataframe with the magnitudes
addWISE - If True, WISE filters will also be used to make the colors and combinations
Colors - If True, all the possible colors will be added to the returnde dataframe
Combinations - If True all the possible color combinations will be added to the returned dataframe
'''
#Set the index of the dataframe as a combination of the TILE_ID and NUMBER of each star
df = ReindexDF(df)
magnitudes_df = df[Filters['JPLUS']]
#If asked for, the WISE filters are added to the dataframe
if addWISE is True:
magnitudes_df = pd.concat([magnitudes_df, df[Filters['WISE']]], axis = 1)
#If asked for, the GALEX filters are added to the dataframe
if addGALEX is True:
magnitudes_df = pd.concat([magnitudes_df, df[Filters['GALEX']]], axis = 1)
if addGAIA is True:
magnitudes_df = pd.concat([magnitudes_df, df[Filters['GAIA']]], axis = 1)
WorkingDF = magnitudes_df
#If asked for, create a dataframe with all the possible colors and add it to the working dataframe
if Colors is True:
ColorsDF = CreateColors(magnitudes_df, magnitudes_df.columns, NewDF = True)
WorkingDF = pd.concat([WorkingDF, ColorsDF], axis = 1)
#If asked for, create a dataframe with all the possible color combinations and add it to the working dataframe
if Combinations is True:
CombinationsDF = CreateCombinations(magnitudes_df, magnitudes_df.columns, NewDF = True)
WorkingDF = pd.concat([WorkingDF, CombinationsDF], axis = 1)
#Return the resulting dataframe
return (df, WorkingDF)
def NeuralNetRegressor(InputSize, Layers, learning_rate, beta1, beta2, epsilon):
'''
Create, compile and return a regressor neural network with a specified input size and internal layer structure.
Keyword arguments:
InputSize - Number of features given to the network as input
LayerStructure - A list where each item is the number of nodes in the respective internal layer (e.g., for a network with
two layers of 8 nodes each, the list passed would be LayerStructure = [8, 8])
learning_rate - Learning rate to be used on the network optimizer
'''
# Initialize the neural Network object
NeuralNet = Sequential()
# Add the input and first internal layers
NeuralNet.add(Dense(Layers[0], input_dim = InputSize,
activation = tf.keras.layers.LeakyReLU()))
# Start a loop to add all the other internal layers
for LayerSize in Layers[1:]:
# For each item in the LayerStructure list, add a new layer
NeuralNet.add(Dense(LayerSize, activation = tf.keras.layers.LeakyReLU()))
# Add the output layer
NeuralNet.add(Dense(1, activation = 'linear'))
# Compile the Neutal Network with the mean squared error as the loss metric and the adam optimizer
optimizer = tf.keras.optimizers.Adam(learning_rate = learning_rate, beta_1 = beta1, beta_2 = beta2, epsilon = epsilon)
NeuralNet.compile(loss='mse', optimizer=optimizer)
# Return the compiled Neural Network
return NeuralNet
def rf_evaluator(HyperParams, X, y, n_splits, n_repeats, verbose = 0):
'''
Evaluate a STEPE-RF model (Feature Selector + Random Forest) initialized with a
certain combination of hyperparameters by using a k-fold n-repeat cross validation
and return the average values and standard deviations of a set of
metrics (MAE, RMSE, MaxError, R2 Score and elapsed time).
Keyword arguments:
Hyperparams - A list containing the combination of hyperpameters to test, in the
format [n_features, n_trees, min_samples_leaf, max_features, criterion]
X - Dataframe containing the input values of the development sample
(will be split into training and validation samples)
y - Dataframe containing the target values of the development sample
(will be split into training and validation samples)
n_splits - Number of samples that the data will be split into during the k-fold,
n-repeat cross-validation (corresponds to k)
n_repeats - Number of times that the data will be shuffled and split again during
the k-fold, n-repeat cross-validation (corresponds to n)
verbose - Indicates whether the function will print information on the screen or not
'''
# Get the hyperparameters from the list
n_features, n_trees, min_samples_leaf, max_features, criterion = HyperParams
# If asked for, print a message indicating the combination beign evaluated
if verbose == 1:
init_message = ('Starting Random Forest {}-Fold, {} repeat CV with: n_features = {}, ' +
'n_trees = {}, min_samples_leaf = {} , max_features = {}, criterion = {}...')
print(init_message.format(n_splits, n_repeats, n_features, n_trees, min_samples_leaf, max_features, criterion))
# Initialize a list for each error metric and the time
MAEs = []
RMSEs = []
MaxEs = []
R2s = []
Times = []
# Initialize the cross-validation function
KFSplitter = RepeatedKFold(n_splits = n_splits, n_repeats = n_repeats)
# Initialize a variable to count the current iteration
Index = 0
# Loop through all the training/validation combinations given by the cross-validation function
for train_index, validation_index in KFSplitter.split(X):
Index = Index + 1
# If asked for, print a message indication the current iteration
if verbose == 1:
print('Current Fold: {}/{}'.format(Index, n_splits * n_repeats))
# Get the training and validation samples
x_train, x_validation = X.iloc[train_index], X.iloc[validation_index]
y_train, y_validation = y.iloc[train_index], y.iloc[validation_index]
# Initialize the feature selector using the given hyperparameters
FeatureSelector = RFE(estimator=DecisionTreeRegressor(),
n_features_to_select = n_features,
verbose = 0, step = 20)
# Initialize the random forest using the given hyperparameters
RF = RandomForestRegressor(n_estimators=n_trees,
min_samples_leaf = min_samples_leaf,
max_features=max_features,
criterion=criterion)
# Create a pipeline with the feature selector and the random forest
RFPipeline = Pipeline(steps = [('Feature Selector', FeatureSelector),('Model', RF)])
# Start a timer to time the process
StartTime = time.time()
# Fit the pipeline to the training data
RFPipeline = RFPipeline.fit(x_train, y_train.values.reshape(len(y_train)))
# Predict the target values of the validation sample
Predictions = RFPipeline.predict(x_validation)
# Stop the timer
EndTime = time.time()
# Calculate the error metrics and append them to their lists
MAE = mean_absolute_error(y_validation, Predictions)
RMSE = np.sqrt(mean_squared_error(y_validation, Predictions))
MaxE = max_error(y_validation, Predictions)
R2 = r2_score(y_validation, Predictions)
MAEs.append(MAE)
RMSEs.append(RMSE)
MaxEs.append(MaxE)
R2s.append(R2)
# Append the value of the elapsed time to its list
Times.append(EndTime - StartTime)
# Calculate the mean and standard deviation for all the error metrics
MAEs = np.array(MAEs)
MeanMAE = MAEs.mean()
StdMAE = MAEs.std()
RMSEs = np.array(RMSEs)
MeanRMSE = RMSEs.mean()
StdRMSE = RMSEs.std()
MaxEs = np.array(MaxEs)
MeanMaxE = MaxEs.mean()
StdMaxE = MaxEs.std()
R2s = np.array(R2s)
MeanR2 = R2s.mean()
StdR2 = R2s.std()
Times = np.array(Times)
MeanTime = Times.mean()
StdTime = Times.std()
# If asked for, print the results to the screen
if verbose == 1:
print('CV Process Finished! Results:')
print('Mean Absolute Error: {:.3f} ({:.3f})'.format(MeanMAE, StdMAE))
print('Root Mean Squared Error: {:.3f} ({:.3f})'.format(MeanRMSE, StdRMSE))
print('Max Error: {:.3f} ({:.3f})'.format(MeanMaxE, StdMaxE))
print('R2 Score: {:.3f} ({:.3f})'.format(MeanR2, StdR2))
print('Time Elapsed: {:.3f} ({:.3f}) s'.format(MeanTime, StdTime))
print('\n')
# Return the results
return MeanMAE, StdMAE, MeanRMSE, StdRMSE, MeanMaxE, StdMaxE, MeanR2, StdR2, MeanTime, StdTime
def nn_evaluator(HyperParams, X, y, n_splits, n_repeats, verbose = 0):
'''
Evaluate a STEPE-NN model (Scaler + Feature Selector + Neural Network) initialized
with a certain combination of hyperparameters by using a k-fold n-repeat
cross-validation and return the average values and standard deviations of a set of
metrics (MAE, RMSE, MaxError, R2 Score and elapsed time).
Keyword arguments:
Hyperparams - A list containing the combination of hyperpameters to test, in the
format [FeaturesSize, Epochs, BatchSize, learning_rate,
beta1, beta2, epsilon, structure]
X - Dataframe containing the input values of the development sample
(will be split into training and validation samples)
y - Dataframe containing the target values of the development sample
(will be split into training and validation samples)
n_splits - Number of samples that the data will be split into during the k-fold,
n-repeat cross-validation (corresponds to k)
n_repeats - Number of times that the data will be shuffled and split again during
the k-fold, n-repeat cross-validation (corresponds to n)
verbose - Indicates whether the function will print information on the screen or not
'''
# Get the hyperparameters from the list
FeaturesSize, Epochs, BatchSize, learning_rate, beta1, beta2, epsilon, structure = HyperParams
# If asked for, print a message indicating the combination beign evaluated
if verbose == 1:
init_message = ('Starting Neural Network {}-Fold, {} repeat CV process with: FeaturesSize = {}, ' +
'Epochs = {}, BatchSize = {}, LearningRate = {}, Beta1 = {}, ' +
'Beta2 = {}, epsilon = {}, structure = {}')
print(init_message.format(n_splits, n_repeats, FeaturesSize, Epochs, BatchSize, learning_rate, beta1, beta2, epsilon, structure))
# Initialize a list for each error metric and the time
MAEs = []
RMSEs = []
MaxEs = []
R2s = []
Times = []
# Initialize the cross-validation function
KFSplitter = RepeatedKFold(n_splits = n_splits, n_repeats = n_repeats)
# Initialize a variable to count the current iteration
Index = 0
# Loop through all the training/validation combinations given by the cross-validation function
for train_index, validation_index in KFSplitter.split(X):
Index = Index + 1
# If asked for, print a message indication the current iteration
if verbose == 1:
print('Current Fold: {}/{}'.format(Index, int(n_splits * n_repeats)))
# Get the training and validation samples
x_train, x_validation = X.iloc[train_index], X.iloc[validation_index]
y_train, y_validation = y.iloc[train_index], y.iloc[validation_index]
# Start a timer to time the process
StartTime = time.time()
# Initialize the standard scaler
Scaler = StandardScaler()
# Fit the scaler to the training data
Scaler.fit(x_train)
# Scale the training and validation data
x_train = Scaler.transform(x_train)
x_validation = Scaler.transform(x_validation)
# Initialize the feature selector using the given hyperparameters
FeatureSelector = RFE(estimator=DecisionTreeRegressor(),
n_features_to_select = FeaturesSize,
verbose = 0, step = 200)
# Fit the feature selector to the training data
FeatureSelector.fit(x_train, y_train)
# Transform the training data according with the fitted feature selector
x_train = FeatureSelector.transform(x_train)
x_validation = FeatureSelector.transform(x_validation)
# Initialize the neural network with the given hyperparameters
NeuralNet = NeuralNetRegressor(FeaturesSize, structure, learning_rate, beta1, beta2, epsilon)
# Fit the neural network to the training data using the given hyperparameters
NeuralNet.fit(x=x_train, y=y_train.values,
validation_data=(x_validation, y_validation.values),
batch_size=BatchSize, epochs=Epochs, verbose=0)
# Predict the target values of the validation sample and reshape the result
Predictions = NeuralNet.predict(x_validation)
Predictions = Predictions.reshape(len(Predictions))
# Stop the timer
EndTime = time.time()
# Calculate the error metrics and append them to their lists
MAE = mean_absolute_error(y_validation, Predictions)
RMSE = np.sqrt(mean_squared_error(y_validation, Predictions))
MaxE = max_error(y_validation, Predictions)
R2 = r2_score(y_validation, Predictions)
MAEs.append(MAE)
RMSEs.append(RMSE)
MaxEs.append(MaxE)
R2s.append(R2)
# Append the value of the elapsed time to its list
Times.append(EndTime - StartTime)
# Calculate the mean and standard deviation for all the error metrics
MAEs = np.array(MAEs)
MeanMAE = MAEs.mean()
StdMAE = MAEs.std()
RMSEs = np.array(RMSEs)
MeanRMSE = RMSEs.mean()
StdRMSE = RMSEs.std()
MaxEs = np.array(MaxEs)
MeanMaxE = MaxEs.mean()
StdMaxE = MaxEs.std()
R2s = np.array(R2s)
MeanR2 = R2s.mean()
StdR2 = R2s.std()
Times = np.array(Times)
MeanTime = Times.mean()
StdTime = Times.std()
# If asked for, print the results to the screen
if verbose == 1:
print('CV Process Finished! Results:')
print('Mean Absolute Error: {:.3f} ({:.3f})'.format(MeanMAE, StdMAE))
print('Root Mean Squared Error: {:.3f} ({:.3f})'.format(MeanRMSE, StdRMSE))
print('Max Error: {:.3f} ({:.3f})'.format(MeanMaxE, StdMaxE))
print('R2 Score: {:.3f} ({:.3f})'.format(MeanR2, StdR2))
print('Time Elapsed: {:.3f} ({:.3f}) s'.format(MeanTime, StdTime))
print('\n')
# Return the results
return MeanMAE, StdMAE, MeanRMSE, StdRMSE, MeanMaxE, StdMaxE, MeanR2, StdR2, MeanTime, StdTime
def create_heatmap_matrix(data, conditions, x_axis, y_axis, value_label):
'''
Create a dataframe containing a certain type of value and with the given x and y axes
by applying a set of conditions to another dataframe
Keyword arguments:
data - Dataframe from which the final dataframe will be created
conditions - Dictionary containing a set of conditions that, when applied to the
dataframe, results in a len(x_axis) x len(y_axis) dataframe. The format
for this dict is {"variable_1": value_1, "variable_2": value_2}
x_axis - Dictionary containing the name of the variable and a list of values to use
as the x-axis. The format for this dict is {"variable_x": [x_1, x_2, ...]}
y_axis - Dictionary containing the name of the variable and a list of values to use
as the y-axis. The format for this dict is {"variable_y": [y_1, y_2, ...]}
value_label - The label of the variable that will be inside the final dataframe
'''
# Get the label and the values of each axis
x_label, x_values = list(x_axis.items())[0]
y_label, y_values = list(y_axis.items())[0]
# Initialize an empty dataframe that will receive the values
heatmap = pd.DataFrame(index = y_values,
columns = x_values,
dtype = float)
# Loop through all the given conditions and apply them to the initial dataframe
for condition_label in conditions:
condition_value = conditions[condition_label]
data = data[data[condition_label] == condition_value]
# Loop through all the positions inside the final dataframe
for x_value in x_values:
for y_value in y_values:
# For each position, get the corresponsing value inside the initial dataframe
matrix_value = data[(data[x_label] == x_value) &
(data[y_label] == y_value)][value_label]
# If there is a value inside the initial dataframe, put it inside the final
# one, and if there isn't, put 0.
try:
heatmap.at[y_value, x_value] = matrix_value.values[0]
except:
heatmap.at[y_value, x_value] = 0
# Return the final dataframe
return heatmap
def plot_heatmaps(left_top_matrix, left_top_label,
left_bottom_matrix, left_bottom_label,
right_top_matrix, right_top_label,
right_bottom_matrix, right_bottom_label,
x_label, y_label,
value_format, cmap, v_min, v_max,
colorbar_label, colorbar_ticks):
hp_space_heatmap = plt.figure(figsize=(10.0, 10.0))
hp_space_heatmap.patch.set_facecolor('white')
left_top_ax = hp_space_heatmap.add_axes([0.075, 0.575, 0.38, 0.375])
left_bottom_ax = hp_space_heatmap.add_axes([0.075, 0.075, 0.38, 0.375])
right_top_ax = hp_space_heatmap.add_axes([0.475, 0.575, 0.38, 0.375])
right_bottom_ax = hp_space_heatmap.add_axes([0.475, 0.075, 0.38, 0.375])
cbar_ax = hp_space_heatmap.add_axes([0.9, 0.075, 0.025, 0.875])
left_top_heatmap = sns.heatmap(data = left_top_matrix, vmin = v_min, vmax = v_max, ax = left_top_ax, cbar = 1, cbar_ax = cbar_ax,
cbar_kws = {'ticks':np.linspace(v_min, v_max, colorbar_ticks)}, linewidths=1.0,
annot = True, fmt = value_format, annot_kws = {'size': 14}, cmap = cmap)
left_top_ax.set_xticklabels(left_top_matrix.columns, size = 14)
left_top_ax.set_yticklabels(left_top_matrix.index, rotation = 0, size = 14)
left_top_ax.set_title(left_top_label, fontsize = 20, pad = 5)
left_top_ax.set_xlabel(x_label, fontsize = 18)
left_top_ax.set_ylabel(y_label, fontsize = 18)
left_bottom_heatmap = sns.heatmap(data = left_bottom_matrix, vmin = v_min, vmax = v_max, ax = left_bottom_ax, cbar = 0,
linewidths=1.0, annot = True, fmt = value_format, annot_kws = {'size': 14}, cmap = cmap)
left_bottom_ax.set_xticklabels(left_bottom_matrix.columns, size = 14)
left_bottom_ax.set_yticklabels(left_bottom_matrix.index, rotation = 0, size = 14)
left_bottom_ax.set_title(left_bottom_label, fontsize = 20, pad = 5)
left_bottom_ax.set_xlabel(x_label, fontsize = 18)
left_bottom_ax.set_ylabel(y_label, fontsize = 18)
right_top_heatmap = sns.heatmap(data = right_top_matrix, vmin = v_min, vmax = v_max, ax = right_top_ax, cbar = 0,
annot = True, yticklabels = False, fmt = value_format, linewidths=1.0,
annot_kws = {'size': 14}, cmap = cmap)
right_top_ax.set_xticklabels(right_top_matrix.columns, size = 14)
right_top_ax.set_title(right_top_label, fontsize = 20, pad = 5)
right_top_ax.set_xlabel(x_label, fontsize = 18)
right_top_ax.set_ylabel('', fontsize = 0)
right_bottom_heatmap = sns.heatmap(data = right_bottom_matrix, vmin = v_min, vmax = v_max, ax = right_bottom_ax, cbar = 0,
annot = True, yticklabels = False, fmt = value_format, linewidths=1.0,
annot_kws = {'size': 14}, cmap = cmap)
right_bottom_ax.set_xticklabels(right_bottom_matrix.columns, size = 14)
right_bottom_ax.set_title(right_bottom_label, fontsize = 20, pad = 5)
right_bottom_ax.set_xlabel(x_label, fontsize = 18)
right_bottom_ax.set_ylabel('', fontsize = 0)
cbar = left_top_heatmap.collections[0].colorbar
cbar.ax.tick_params(labelsize=14)
cbar_ax.set_title(colorbar_label, fontsize = 16, pad = 15)
return hp_space_heatmap
def plot_heatmaps_single_line(left_matrix, left_label, right_matrix, right_label, x_label, y_label,
value_format, cmap, v_min, v_max, colorbar_label, colorbar_ticks):
hp_space_heatmap = plt.figure(figsize=(10.0, 5.0))
hp_space_heatmap.patch.set_facecolor('white')
left_ax = hp_space_heatmap.add_axes([0.075, 0.125, 0.38, 0.77])
right_ax = hp_space_heatmap.add_axes([0.475, 0.125, 0.38, 0.77])
cbar_ax = hp_space_heatmap.add_axes([0.875, 0.125, 0.025, 0.77])
left_heatmap = sns.heatmap(data = left_matrix, vmin = v_min, vmax = v_max, ax = left_ax, cbar = 1, cbar_ax = cbar_ax,
cbar_kws = {'ticks':np.linspace(v_min, v_max, colorbar_ticks)}, linewidths=1.0,
annot = True, fmt = value_format, annot_kws = {'size': 14}, cmap = cmap)
left_ax.set_xticklabels(left_matrix.columns, size = 14)
left_ax.set_yticklabels(left_matrix.index, rotation = 0, size = 14)
left_ax.set_title(left_label, fontsize = 20, pad = 15)
left_ax.set_xlabel(x_label, fontsize = 18)
left_ax.set_ylabel(y_label, fontsize = 18)
right_heatmap = sns.heatmap(data = right_matrix, vmin = v_min, vmax = v_max, ax = right_ax, cbar = 0,
annot = True, yticklabels = False, fmt = value_format, linewidths=1.0,
annot_kws = {'size': 14}, cmap = cmap)
right_ax.set_xticklabels(left_matrix.columns, size = 14)
right_ax.set_title(right_label, fontsize = 20, pad = 15)
right_ax.set_xlabel(x_label, fontsize = 18)
right_ax.set_ylabel('', fontsize = 0)
cbar = left_heatmap.collections[0].colorbar
cbar.ax.tick_params(labelsize=14)
cbar_ax.set_title(colorbar_label, fontsize = 16, pad = 15)
return hp_space_heatmap
def plot_test_graphs(y_test, predictions, parameter_label, parameter_range, error_range, color):
test_graphs = plt.figure(1, figsize = [12.8, 6.4])
test_graphs.patch.set_facecolor('white')
predictions_plot = test_graphs.add_axes([0.1, 0.325, 0.45, 0.625])
errors_plot = test_graphs.add_axes([0.1, 0.1, 0.45, 0.2])
errors_distribution = test_graphs.add_axes([0.64, 0.1, 0.35, 0.85])
predictions_plot.scatter(x = y_test, y = predictions, color = color, s = 2.5, alpha = 0.25)
predictions_plot.plot([parameter_range[0], parameter_range[1]], [parameter_range[0], parameter_range[1]], color = 'k', linewidth = 1.25)
predictions_plot.grid()
predictions_plot.set_xlim(parameter_range[0], parameter_range[1])
predictions_plot.tick_params(axis = 'x', labelsize = 0)
predictions_plot.set_ylim(parameter_range[0], parameter_range[1])
predictions_plot.tick_params(axis = 'y', labelsize = 16)
predictions_plot.set_ylabel(r'Predicted ' + parameter_label, fontsize = 20, labelpad = 15)
errors_plot.scatter(x = y_test, y = y_test - predictions, color = color, s = 2.5, alpha = 0.25)
errors_plot.plot([parameter_range[0], parameter_range[1]], [0, 0], color = 'k', linewidth = 1.25)
errors_plot.grid()
errors_plot.set_xlim(parameter_range[0], parameter_range[1])
errors_plot.tick_params(axis = 'x', labelsize = 16)
errors_plot.set_xlabel(r'LAMOST ' + parameter_label, fontsize = 20)
errors_plot.set_ylim(error_range[0], error_range[1])
errors_plot.tick_params(axis = 'y', labelsize = 16)
errors_plot.set_ylabel(r'Error', fontsize = 20)
errors_distribution.hist(y_test - predictions, bins = 50, histtype = 'bar', ec = 'black', color = color)
errors_distribution.set_xlim(error_range[0], error_range[1])
errors_distribution.tick_params(axis = 'x', labelsize = 16)
errors_distribution.set_xlabel(r'Error', fontsize = 20)
errors_distribution.tick_params(axis = 'y', labelsize = 16)
errors_distribution.set_ylabel(r'Count', fontsize = 20)
return test_graphs
|
[
"seaborn.heatmap",
"sklearn.preprocessing.StandardScaler",
"tensorflow.keras.layers.Dense",
"sklearn.metrics.r2_score",
"sklearn.metrics.mean_absolute_error",
"tensorflow.keras.layers.LeakyReLU",
"matplotlib.pyplot.figure",
"sklearn.metrics.max_error",
"tensorflow.keras.models.Sequential",
"sklearn.model_selection.RepeatedKFold",
"pandas.DataFrame",
"sklearn.tree.DecisionTreeRegressor",
"tensorflow.keras.optimizers.Adam",
"numpy.linspace",
"pandas.concat",
"sklearn.metrics.mean_squared_error",
"sklearn.ensemble.RandomForestRegressor",
"itertools.combinations",
"sklearn.pipeline.Pipeline",
"time.time",
"numpy.array"
] |
[((7666, 7678), 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), '()\n', (7676, 7678), False, 'from tensorflow.keras.models import Sequential\n'), ((8303, 8406), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {'learning_rate': 'learning_rate', 'beta_1': 'beta1', 'beta_2': 'beta2', 'epsilon': 'epsilon'}), '(learning_rate=learning_rate, beta_1=beta1, beta_2=\n beta2, epsilon=epsilon)\n', (8327, 8406), True, 'import tensorflow as tf\n'), ((10557, 10610), 'sklearn.model_selection.RepeatedKFold', 'RepeatedKFold', ([], {'n_splits': 'n_splits', 'n_repeats': 'n_repeats'}), '(n_splits=n_splits, n_repeats=n_repeats)\n', (10570, 10610), False, 'from sklearn.model_selection import RepeatedKFold\n'), ((13089, 13103), 'numpy.array', 'np.array', (['MAEs'], {}), '(MAEs)\n', (13097, 13103), True, 'import numpy as np\n'), ((13171, 13186), 'numpy.array', 'np.array', (['RMSEs'], {}), '(RMSEs)\n', (13179, 13186), True, 'import numpy as np\n'), ((13258, 13273), 'numpy.array', 'np.array', (['MaxEs'], {}), '(MaxEs)\n', (13266, 13273), True, 'import numpy as np\n'), ((13343, 13356), 'numpy.array', 'np.array', (['R2s'], {}), '(R2s)\n', (13351, 13356), True, 'import numpy as np\n'), ((13420, 13435), 'numpy.array', 'np.array', (['Times'], {}), '(Times)\n', (13428, 13435), True, 'import numpy as np\n'), ((16315, 16368), 'sklearn.model_selection.RepeatedKFold', 'RepeatedKFold', ([], {'n_splits': 'n_splits', 'n_repeats': 'n_repeats'}), '(n_splits=n_splits, n_repeats=n_repeats)\n', (16328, 16368), False, 'from sklearn.model_selection import RepeatedKFold\n'), ((19275, 19289), 'numpy.array', 'np.array', (['MAEs'], {}), '(MAEs)\n', (19283, 19289), True, 'import numpy as np\n'), ((19357, 19372), 'numpy.array', 'np.array', (['RMSEs'], {}), '(RMSEs)\n', (19365, 19372), True, 'import numpy as np\n'), ((19444, 19459), 'numpy.array', 'np.array', (['MaxEs'], {}), '(MaxEs)\n', (19452, 19459), True, 'import numpy as np\n'), ((19529, 19542), 'numpy.array', 'np.array', (['R2s'], {}), '(R2s)\n', (19537, 19542), True, 'import numpy as np\n'), ((19606, 19621), 'numpy.array', 'np.array', (['Times'], {}), '(Times)\n', (19614, 19621), True, 'import numpy as np\n'), ((21575, 21634), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'y_values', 'columns': 'x_values', 'dtype': 'float'}), '(index=y_values, columns=x_values, dtype=float)\n', (21587, 21634), True, 'import pandas as pd\n'), ((23017, 23049), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10.0, 10.0)'}), '(figsize=(10.0, 10.0))\n', (23027, 23049), True, 'import matplotlib.pyplot as plt\n'), ((24180, 24357), 'seaborn.heatmap', 'sns.heatmap', ([], {'data': 'left_bottom_matrix', 'vmin': 'v_min', 'vmax': 'v_max', 'ax': 'left_bottom_ax', 'cbar': '(0)', 'linewidths': '(1.0)', 'annot': '(True)', 'fmt': 'value_format', 'annot_kws': "{'size': 14}", 'cmap': 'cmap'}), "(data=left_bottom_matrix, vmin=v_min, vmax=v_max, ax=\n left_bottom_ax, cbar=0, linewidths=1.0, annot=True, fmt=value_format,\n annot_kws={'size': 14}, cmap=cmap)\n", (24191, 24357), True, 'import seaborn as sns\n'), ((24775, 24966), 'seaborn.heatmap', 'sns.heatmap', ([], {'data': 'right_top_matrix', 'vmin': 'v_min', 'vmax': 'v_max', 'ax': 'right_top_ax', 'cbar': '(0)', 'annot': '(True)', 'yticklabels': '(False)', 'fmt': 'value_format', 'linewidths': '(1.0)', 'annot_kws': "{'size': 14}", 'cmap': 'cmap'}), "(data=right_top_matrix, vmin=v_min, vmax=v_max, ax=right_top_ax,\n cbar=0, annot=True, yticklabels=False, fmt=value_format, linewidths=1.0,\n annot_kws={'size': 14}, cmap=cmap)\n", (24786, 24966), True, 'import seaborn as sns\n'), ((25319, 25518), 'seaborn.heatmap', 'sns.heatmap', ([], {'data': 'right_bottom_matrix', 'vmin': 'v_min', 'vmax': 'v_max', 'ax': 'right_bottom_ax', 'cbar': '(0)', 'annot': '(True)', 'yticklabels': '(False)', 'fmt': 'value_format', 'linewidths': '(1.0)', 'annot_kws': "{'size': 14}", 'cmap': 'cmap'}), "(data=right_bottom_matrix, vmin=v_min, vmax=v_max, ax=\n right_bottom_ax, cbar=0, annot=True, yticklabels=False, fmt=\n value_format, linewidths=1.0, annot_kws={'size': 14}, cmap=cmap)\n", (25330, 25518), True, 'import seaborn as sns\n'), ((26275, 26306), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10.0, 5.0)'}), '(figsize=(10.0, 5.0))\n', (26285, 26306), True, 'import matplotlib.pyplot as plt\n'), ((27218, 27401), 'seaborn.heatmap', 'sns.heatmap', ([], {'data': 'right_matrix', 'vmin': 'v_min', 'vmax': 'v_max', 'ax': 'right_ax', 'cbar': '(0)', 'annot': '(True)', 'yticklabels': '(False)', 'fmt': 'value_format', 'linewidths': '(1.0)', 'annot_kws': "{'size': 14}", 'cmap': 'cmap'}), "(data=right_matrix, vmin=v_min, vmax=v_max, ax=right_ax, cbar=0,\n annot=True, yticklabels=False, fmt=value_format, linewidths=1.0,\n annot_kws={'size': 14}, cmap=cmap)\n", (27229, 27401), True, 'import seaborn as sns\n'), ((28001, 28035), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': '[12.8, 6.4]'}), '(1, figsize=[12.8, 6.4])\n', (28011, 28035), True, 'import matplotlib.pyplot as plt\n'), ((1801, 1815), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1813, 1815), True, 'import pandas as pd\n'), ((2629, 2655), 'itertools.combinations', 'combinations', (['FilterSet', '(2)'], {}), '(FilterSet, 2)\n', (2641, 2655), False, 'from itertools import combinations\n'), ((2701, 2715), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (2713, 2715), True, 'import pandas as pd\n'), ((3684, 3710), 'itertools.combinations', 'combinations', (['FilterSet', '(4)'], {}), '(FilterSet, 4)\n', (3696, 3710), False, 'from itertools import combinations\n'), ((3756, 3770), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (3768, 3770), True, 'import pandas as pd\n'), ((5951, 6006), 'pandas.concat', 'pd.concat', (["[magnitudes_df, df[Filters['WISE']]]"], {'axis': '(1)'}), "([magnitudes_df, df[Filters['WISE']]], axis=1)\n", (5960, 6006), True, 'import pandas as pd\n'), ((6127, 6183), 'pandas.concat', 'pd.concat', (["[magnitudes_df, df[Filters['GALEX']]]"], {'axis': '(1)'}), "([magnitudes_df, df[Filters['GALEX']]], axis=1)\n", (6136, 6183), True, 'import pandas as pd\n'), ((6243, 6298), 'pandas.concat', 'pd.concat', (["[magnitudes_df, df[Filters['GAIA']]]"], {'axis': '(1)'}), "([magnitudes_df, df[Filters['GAIA']]], axis=1)\n", (6252, 6298), True, 'import pandas as pd\n'), ((6575, 6615), 'pandas.concat', 'pd.concat', (['[WorkingDF, ColorsDF]'], {'axis': '(1)'}), '([WorkingDF, ColorsDF], axis=1)\n', (6584, 6615), True, 'import pandas as pd\n'), ((6887, 6933), 'pandas.concat', 'pd.concat', (['[WorkingDF, CombinationsDF]'], {'axis': '(1)'}), '([WorkingDF, CombinationsDF], axis=1)\n', (6896, 6933), True, 'import pandas as pd\n'), ((8146, 8175), 'tensorflow.keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""linear"""'}), "(1, activation='linear')\n", (8151, 8175), False, 'from tensorflow.keras.layers import Dense, Activation\n'), ((11638, 11769), 'sklearn.ensemble.RandomForestRegressor', 'RandomForestRegressor', ([], {'n_estimators': 'n_trees', 'min_samples_leaf': 'min_samples_leaf', 'max_features': 'max_features', 'criterion': 'criterion'}), '(n_estimators=n_trees, min_samples_leaf=\n min_samples_leaf, max_features=max_features, criterion=criterion)\n', (11659, 11769), False, 'from sklearn.ensemble import RandomForestRegressor\n'), ((11981, 12051), 'sklearn.pipeline.Pipeline', 'Pipeline', ([], {'steps': "[('Feature Selector', FeatureSelector), ('Model', RF)]"}), "(steps=[('Feature Selector', FeatureSelector), ('Model', RF)])\n", (11989, 12051), False, 'from sklearn.pipeline import Pipeline\n'), ((12126, 12137), 'time.time', 'time.time', ([], {}), '()\n', (12135, 12137), False, 'import time\n'), ((12455, 12466), 'time.time', 'time.time', ([], {}), '()\n', (12464, 12466), False, 'import time\n'), ((12560, 12606), 'sklearn.metrics.mean_absolute_error', 'mean_absolute_error', (['y_validation', 'Predictions'], {}), '(y_validation, Predictions)\n', (12579, 12606), False, 'from sklearn.metrics import mean_absolute_error, r2_score, max_error, mean_squared_error\n'), ((12692, 12728), 'sklearn.metrics.max_error', 'max_error', (['y_validation', 'Predictions'], {}), '(y_validation, Predictions)\n', (12701, 12728), False, 'from sklearn.metrics import mean_absolute_error, r2_score, max_error, mean_squared_error\n'), ((12742, 12777), 'sklearn.metrics.r2_score', 'r2_score', (['y_validation', 'Predictions'], {}), '(y_validation, Predictions)\n', (12750, 12777), False, 'from sklearn.metrics import mean_absolute_error, r2_score, max_error, mean_squared_error\n'), ((17088, 17099), 'time.time', 'time.time', ([], {}), '()\n', (17097, 17099), False, 'import time\n'), ((17159, 17175), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (17173, 17175), False, 'from sklearn.preprocessing import StandardScaler\n'), ((18662, 18673), 'time.time', 'time.time', ([], {}), '()\n', (18671, 18673), False, 'import time\n'), ((18758, 18804), 'sklearn.metrics.mean_absolute_error', 'mean_absolute_error', (['y_validation', 'Predictions'], {}), '(y_validation, Predictions)\n', (18777, 18804), False, 'from sklearn.metrics import mean_absolute_error, r2_score, max_error, mean_squared_error\n'), ((18890, 18926), 'sklearn.metrics.max_error', 'max_error', (['y_validation', 'Predictions'], {}), '(y_validation, Predictions)\n', (18899, 18926), False, 'from sklearn.metrics import mean_absolute_error, r2_score, max_error, mean_squared_error\n'), ((18940, 18975), 'sklearn.metrics.r2_score', 'r2_score', (['y_validation', 'Predictions'], {}), '(y_validation, Predictions)\n', (18948, 18975), False, 'from sklearn.metrics import mean_absolute_error, r2_score, max_error, mean_squared_error\n'), ((12630, 12675), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_validation', 'Predictions'], {}), '(y_validation, Predictions)\n', (12648, 12675), False, 'from sklearn.metrics import mean_absolute_error, r2_score, max_error, mean_squared_error\n'), ((18828, 18873), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_validation', 'Predictions'], {}), '(y_validation, Predictions)\n', (18846, 18873), False, 'from sklearn.metrics import mean_absolute_error, r2_score, max_error, mean_squared_error\n'), ((7826, 7853), 'tensorflow.keras.layers.LeakyReLU', 'tf.keras.layers.LeakyReLU', ([], {}), '()\n', (7851, 7853), True, 'import tensorflow as tf\n'), ((11403, 11426), 'sklearn.tree.DecisionTreeRegressor', 'DecisionTreeRegressor', ([], {}), '()\n', (11424, 11426), False, 'from sklearn.tree import DecisionTreeRegressor\n'), ((17514, 17537), 'sklearn.tree.DecisionTreeRegressor', 'DecisionTreeRegressor', ([], {}), '()\n', (17535, 17537), False, 'from sklearn.tree import DecisionTreeRegressor\n'), ((23669, 23710), 'numpy.linspace', 'np.linspace', (['v_min', 'v_max', 'colorbar_ticks'], {}), '(v_min, v_max, colorbar_ticks)\n', (23680, 23710), True, 'import numpy as np\n'), ((26743, 26784), 'numpy.linspace', 'np.linspace', (['v_min', 'v_max', 'colorbar_ticks'], {}), '(v_min, v_max, colorbar_ticks)\n', (26754, 26784), True, 'import numpy as np\n'), ((8066, 8093), 'tensorflow.keras.layers.LeakyReLU', 'tf.keras.layers.LeakyReLU', ([], {}), '()\n', (8091, 8093), True, 'import tensorflow as tf\n')]
|
import argparse
import cv2
import numpy as np
from typing import Tuple
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def depth2colorjet(depth: np.ndarray) -> np.ndarray:
"""
Given a 2d numpy array of floats ranging from 0 - 1,
turn it into a uint8 2d numpy array with jet color mapping
"""
depth = -1 * np.log(depth)
depth = (depth / np.max(depth) * 255).astype(np.uint8)
rgb = cv2.applyColorMap(depth, cv2.COLORMAP_JET)
return rgb
def flip(img: np.ndarray, steering_angle: float) -> Tuple[np.ndarray, float]:
return np.fliplr(img), -steering_angle
def crop_roi(img: np.ndarray, min_x: int, min_y: int, max_x: int, max_y: int):
return img[min_x:max_x, min_y:max_y]
def random_flip(image, steering_angle):
"""
Randomly flipt the image left <-> right, and adjust the steering angle.
"""
if np.random.rand() < 0.5:
image = cv2.flip(image, 1)
steering_angle = -steering_angle
return image, steering_angle
def depthToLogDepth(depth_image):
output = np.log(depth_image)
output = 1 - (output / np.min(output))
return output
if __name__ == '__main__':
from pathlib import Path
import glob
import os
img_dir = Path("/data/output_oct_10/front_depth")
img_paths = [p for p in sorted(img_dir.glob("*.npy", ), key=os.path.getmtime)]
for img_path in img_paths:
im = np.load(img_path.as_posix())
cv2.imshow("depth image", im)
cv2.imshow("log depth", depthToLogDepth(im))
k = cv2.waitKey(1)
if k == ord('q') or k == 27:
break
|
[
"numpy.log",
"cv2.waitKey",
"numpy.fliplr",
"pathlib.Path",
"numpy.min",
"numpy.max",
"cv2.applyColorMap",
"numpy.random.rand",
"cv2.flip",
"cv2.imshow",
"argparse.ArgumentTypeError"
] |
[((651, 693), 'cv2.applyColorMap', 'cv2.applyColorMap', (['depth', 'cv2.COLORMAP_JET'], {}), '(depth, cv2.COLORMAP_JET)\n', (668, 693), False, 'import cv2\n'), ((1276, 1295), 'numpy.log', 'np.log', (['depth_image'], {}), '(depth_image)\n', (1282, 1295), True, 'import numpy as np\n'), ((1458, 1497), 'pathlib.Path', 'Path', (['"""/data/output_oct_10/front_depth"""'], {}), "('/data/output_oct_10/front_depth')\n", (1462, 1497), False, 'from pathlib import Path\n'), ((568, 581), 'numpy.log', 'np.log', (['depth'], {}), '(depth)\n', (574, 581), True, 'import numpy as np\n'), ((800, 814), 'numpy.fliplr', 'np.fliplr', (['img'], {}), '(img)\n', (809, 814), True, 'import numpy as np\n'), ((1095, 1111), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1109, 1111), True, 'import numpy as np\n'), ((1135, 1153), 'cv2.flip', 'cv2.flip', (['image', '(1)'], {}), '(image, 1)\n', (1143, 1153), False, 'import cv2\n'), ((1663, 1692), 'cv2.imshow', 'cv2.imshow', (['"""depth image"""', 'im'], {}), "('depth image', im)\n", (1673, 1692), False, 'import cv2\n'), ((1758, 1772), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1769, 1772), False, 'import cv2\n'), ((306, 359), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (['"""Boolean value expected."""'], {}), "('Boolean value expected.')\n", (332, 359), False, 'import argparse\n'), ((1323, 1337), 'numpy.min', 'np.min', (['output'], {}), '(output)\n', (1329, 1337), True, 'import numpy as np\n'), ((603, 616), 'numpy.max', 'np.max', (['depth'], {}), '(depth)\n', (609, 616), True, 'import numpy as np\n')]
|
#!/usr/bin/python3
import random
import math
import numpy as np
def softmax(z):
return np.exp(z) / np.sum(np.exp(z))
########################################################################################################################
# Input & Data Normalization
class Input(object):
def __init__(self, input):
self.input = input
def normalize(self):
pass
# return self.input / self.maximum
def denormalize(self):
pass
# return self.input * self.maximum
@property
def input(self):
return self.input
@input.setter
def input(self, input):
self.input = input
class CategoricalInput(Input):
def __init__(self, input):
super().__init__(input)
class NumericalInput(Input):
def __init__(self, input):
super().__init__(input)
@property
def maximum(self):
raise NotImplementedError("Input class requires a maximum property to be defined!")
class PriceInput(NumericalInput):
def __init__(self, input):
super().__init__(input)
@property
def maximum(self):
return 100
class CategoryInput(CategoricalInput):
pass
class DiscountInput(NumericalInput):
def __init__(self, input):
super().__init__(input)
# log normalization: z = x * y => ln(z) = ln(x) + ln(y)
# min-max normalization
########################################################################################################################
# Neural Network
class Connection(object):
def __init__(self):
self.weight = random.random()
self.delta = 0.0
class Neuron(object):
def __init__(self, nid, lid=0):
self.nid = nid
self.lid = lid
self.output = 0.0
self.connections = []
self.gradient = 0.0
self.activate = None
self.derivate = None
def weights(self, weights=None):
if weights is None:
output = [0.0] * len(self.connections)
for c in range(len(self.connections)):
output[c] = self.connections[c].weight
return output
else:
assert len(weights) == len(self.connections)
for c in range(len(self.connections)):
self.connections[c].weight = weights[c]
class Network(object):
eta = 0.9 # learning rate - too low and it will take forever, too big and it will oscillate forever
alpha = 0.9 # momentum - how much of the previous value should be taken in account
scale = 1.0 # weight scale
def __init__(self):
self.layers = []
self.error = 0.0
self.average = 0.0
self.smoothing = 100.0
self.outputs = []
def setup(self):
if Network.scale is not None:
for l in range(1, len(self.layers)): # 1: skip input
for n in range(len(self.layers[l])): # w/o bias
for c in range(len(self.layers[l][n].connections)):
self.layers[l][n].connections[c].weight *= Network.scale
Network.scale = None
def train(self, inputs, targets, batch_size=1):
self.setup()
assert batch_size > 0
if batch_size > 1: # batch_size = 2, 3, 4, ... # inputs=((1,2,3),(2,3,4)) targets=((1,2),(2,3))
pass
print('TODO: implement logic for training in batches')
else: # batch_size = 1 # inputs=(1,2,3) targets=(1,2)
assert len(inputs) == len(self.layers[0])-1 # input values == input neurons(-1 bias)
assert len(targets) == len(self.layers[-1])-1 # target values == output neurons(-1 bias)
# set input values to input neurons
for i in range(len(inputs)):
self.layers[0][i].output = inputs[i]
# feed forward to hidden
for l in range(1, len(self.layers)): # 1: skip input
for n in range(len(self.layers[l])-1): # w/o bias
Network.forward(self.layers[l-1], self.layers[l][n])
# outputs after feed forward
self.outputs.clear()
for n in range(len(self.layers[-1]) - 1): # w/o bias(-1)
self.outputs.append(self.layers[-1][n].output)
# calculate overall error(RMS)
self.error = 0.0
for n in range(len(self.layers[-1])-1):
delta = targets[n] - self.layers[-1][n].output
self.error += delta*delta
self.error /= len(self.layers[-1])-1
self.error = math.sqrt(self.error) # RMS
self.average = (self.average * self.smoothing + self.error) / (self.smoothing + 1.0)
# back propagate from output to 1st hidden
# calculate output layer gradients
for n in range(len(self.layers[-1])-1): # w/o bias(-1)
Network.gradient(self.layers[-1][n], targets[n]) # output gradients
# calculate hidden layer gradients
for l in range(len(self.layers)-2,0,-1): # from last hidden layer -> the first hidden layer [hn...h0]
for n in range(len(self.layers[l])): # loop each neuron...calc gradinet using next layer neurons
Network.gradient(self.layers[l][n], self.layers[l+1])
# update hidden layer outputs
for l in range(len(self.layers)-1,0,-1): # from output layer -> first hidden layer [o...h0]
for n in range(len(self.layers[l])-1): # w/o bias(-1)
Network.update(self.layers[l-1], self.layers[l][n]) # should it be Layer.udpate(const neuron) ?
# return output layer outputs
return self.outputs
def predict(self, inputs, batch_size=1):
assert batch_size > 0
if batch_size > 1:
pass
else:
assert len(inputs) == len(self.layers[0]) - 1 # input values == input neurons(-1 bias)
# set input values to input neurons
for n in range(len(inputs)): # 0 # set input values
self.layers[0][n].output = inputs[n]
# feed forward to hidden
for l in range(1, len(self.layers)): # [1..output] # input layer already done
for n in range(len(self.layers[l]) - 1): # w/o bias
Network.forward(self.layers[l-1], self.layers[l][n])
# read outputs from the last layer
self.outputs.clear()
for n in range(len(self.layers[-1]) - 1): # w/o bias(-1)
self.outputs.append(self.layers[-1][n].output)
return self.outputs
@staticmethod
def forward(layer, neuron): # forward input from prev layer to neuron
assert type(neuron) is Neuron # move these 2 asserts
assert type(layer) is list
total = 0.0
for n in range(len(layer)): # including bias
total += layer[n].output * layer[n].connections[neuron.nid].weight
neuron.output = neuron.activate(total)
@staticmethod
def gradient(neuron, target): # target or next layer
if type(target) is list:
total = 0.0
for n in range(len(target)-1): # w/o bias(-1)
total += neuron.connections[n].weight * target[n].gradient
neuron.gradient = total * neuron.derivate(neuron.output) # output neuron gradient
else:
delta = target - neuron.output
neuron.gradient = delta * neuron.derivate(neuron.output) # hidden neuron gradient
@staticmethod
def update(layer, neuron): # update layer using a neuron(from next layer)
for n in range(len(layer)): # prev layer
olddelta = layer[n].connections[neuron.nid].delta
newdelta = Network.eta * layer[n].output * neuron.gradient + Network.alpha * olddelta
layer[n].connections[neuron.nid].delta = newdelta
layer[n].connections[neuron.nid].weight += newdelta
@staticmethod
def cost(targets, outputs):
assert len(targets) == len(outputs)
cost = 0.0
for i in range(len(targets)):
cost += 0.5*(targets[i]-outputs[i])**2
return cost
########################################################################################################################
# Builder
class Activation(object):
@staticmethod
def activate(x):
raise NotImplementedError("Activation class requires .activate() method to be defined to be defined!")
@staticmethod
def derivate(x):
raise NotImplementedError("Activation class requires .derivate() method to be defined to be defined!")
class TanhActivation(Activation):
@staticmethod
def activate(x):
return math.tanh(x)
@staticmethod
def derivate(x):
return 1 - x*x # approx for tanh derivative
class SigmoidActivation(Activation):
@staticmethod
def activate(x):
return 1 / (1 + np.exp(-x))
@staticmethod
def derivate(x):
a = SigmoidActivation.activate(x)
return (1 - a) * a
class SoftplusActivation(Activation):
@staticmethod
def activate(x):
return math.log1p(1 + math.exp(x))
@staticmethod
def derivate(x):
return 1 / (1 + math.exp(-x))
class BinaryActivation(Activation):
@staticmethod
def activate(x):
return 0 if x < 0 else 1
@staticmethod
def derivate(x):
return 0 if x != 0 else math.nan
class ReluActivation(Activation):
@staticmethod
def activate(x):
return 0 if x < 0 else x
@staticmethod
def derivate(x):
return 0 if x < 0 else 1
class LinearActivation(Activation):
@staticmethod
def activate(x):
return x
@staticmethod
def derivate(x):
return 1
class Distribution(object):
@staticmethod
def apply(neuron):
raise NotImplementedError('Distribution type class requires .apply method to be implemented!')
class UniformDistribution(Distribution):
@staticmethod
def apply(neuron):
left = 1.0
for c in range(len(neuron.connections)):
if c == len(neuron.connections)-1:
neuron.connections[c].weight = left
break
neuron.connections[c].weight = random.uniform(0.00001, left)
left -= neuron.connections[c].weight
return neuron
class LacunDristribution(Distribution):
# @todo LaCun 98
pass
class Layer(object):
def __init__(self, neurons=1, activation=None, distribution=None):
self.neurons = neurons
self.distribution = activation if issubclass(activation, Distribution) else distribution
self.activation = activation if issubclass(activation, Activation) else None
def __getitem__(self, item):
pass
class Builder(object):
builder = None
# activations
TANH = TanhActivation
LINEAR = LinearActivation
RELU = ReluActivation
SIGMOID = SigmoidActivation
SOFTPLUS = SoftplusActivation
#distributions
UNIFORM = UniformDistribution
def __init__(self):
self.layers = []
def __getitem__(self, item):
return self.layers[item]
@staticmethod
def instance():
if Builder.builder is None:
Builder.builder = Builder()
return Builder.builder
def set(self, item, layer):
self.layers[item] = layer
return Builder.builder
def add(self, layer):
self.layers.append(layer)
return Builder.builder
def compile(self):
# init empty network
_nn = Network()
# 1 input, n hidden, 1 output
_num_layers = len(self.layers)
# assert num of layers, MUST be >= 3
assert _num_layers >= 3
# add layers
for l in range(_num_layers):
assert type(self.layers[l]) is Layer
# IF last => 0 conn ELSE next layer neuron count (w/o bias)
_num_connections = 0 if l == _num_layers-1 else self.layers[l+1].neurons
_num_neurons = self.layers[l].neurons
# current layer + layer id for reference
_layer = []
# neurons for the current layer
for n in range(_num_neurons+1): # +1 bias
# create neuron
_neuron = Neuron(n,l)
# add connnections
for _ in range(_num_connections):
_connection = Connection()
_neuron.connections.append(_connection)
# apply distribution on neuron weights
if l < _num_layers-1 and self.layers[l].distribution is not None:
_neuron = self.layers[l].distribution.apply(_neuron)
# setup neuron activation functions
if l > 0:
_neuron.activate = self.layers[l].activation.activate
_neuron.derivate = self.layers[l].activation.derivate
# if bias: output = 1 else: 0
_neuron.output = 1.0 if n == _num_neurons else _neuron.output
_layer.append(_neuron)
# add layer to network's layers
_nn.layers.append(_layer)
return _nn
########################################################################################################################
# Testing
nn = Builder.instance().add(Layer(2, Builder.UNIFORM)).add(Layer(1, Builder.SIGMOID, Builder.UNIFORM)).add(Layer(1, Builder.SIGMOID)).compile()
m = 1
for i in range(100): # +
a = random.randint(0, m)
b = random.randint(0, m)
t = (a or b)
o, = nn.train((a, b), (t,))
print('train ', (a, b), (a or b), [o], ' error ', nn.error)
for _ in range(4):
a = random.randint(0, m)
b = random.randint(0, m)
o, = nn.predict((a, b))
print('predict', (a, b), (a or b), [o])
########################################################################################################################
# Notes
# @note
# hidden layer activation: tanh
# output layer activation: linear(no constraints), logistic(for [0,1]) or exp(strictly positive)
# @note
# bias neurons allow network output to be translated to the desired output range
# @note
# normalization: match inputs to the range to that of the activation function
# denormalize outputs to their original desired state
# @notes
# gpgpu w/ opencl neural network
# meta reinforced learning: use nn to learn the best nn structure
# framework for input normalization/standardization/denormalization
# @notes @relu
# [0,n] float inputs: relu + linear NOT good; the weights, gradients and outputs become too large(+ or -)
# [0,n] float inputs: relu=max(0,x) in the hidden layer prevents weights from blancing out(cause of the 0)
# @notes @sigmoid
# addition: w/ enough layers, iterations and w/ input normalization to [0,1] output will converge to the correct result
|
[
"math.exp",
"random.randint",
"math.sqrt",
"math.tanh",
"random.uniform",
"random.random",
"numpy.exp"
] |
[((13660, 13680), 'random.randint', 'random.randint', (['(0)', 'm'], {}), '(0, m)\n', (13674, 13680), False, 'import random\n'), ((13690, 13710), 'random.randint', 'random.randint', (['(0)', 'm'], {}), '(0, m)\n', (13704, 13710), False, 'import random\n'), ((13854, 13874), 'random.randint', 'random.randint', (['(0)', 'm'], {}), '(0, m)\n', (13868, 13874), False, 'import random\n'), ((13884, 13904), 'random.randint', 'random.randint', (['(0)', 'm'], {}), '(0, m)\n', (13898, 13904), False, 'import random\n'), ((94, 103), 'numpy.exp', 'np.exp', (['z'], {}), '(z)\n', (100, 103), True, 'import numpy as np\n'), ((1583, 1598), 'random.random', 'random.random', ([], {}), '()\n', (1596, 1598), False, 'import random\n'), ((8839, 8851), 'math.tanh', 'math.tanh', (['x'], {}), '(x)\n', (8848, 8851), False, 'import math\n'), ((113, 122), 'numpy.exp', 'np.exp', (['z'], {}), '(z)\n', (119, 122), True, 'import numpy as np\n'), ((4631, 4652), 'math.sqrt', 'math.sqrt', (['self.error'], {}), '(self.error)\n', (4640, 4652), False, 'import math\n'), ((10385, 10412), 'random.uniform', 'random.uniform', (['(1e-05)', 'left'], {}), '(1e-05, left)\n', (10399, 10412), False, 'import random\n'), ((9051, 9061), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (9057, 9061), True, 'import numpy as np\n'), ((9281, 9292), 'math.exp', 'math.exp', (['x'], {}), '(x)\n', (9289, 9292), False, 'import math\n'), ((9358, 9370), 'math.exp', 'math.exp', (['(-x)'], {}), '(-x)\n', (9366, 9370), False, 'import math\n')]
|
import os
import numpy as np
import h5py
import tensorflow as tf
import keras
import keras.backend as K
############################################
### Function to load data in h5py format ###
############################################
def load_data(path_to_data):
data = h5py.File(path_to_data,'r')
X_test_seq = np.transpose(np.array(data['test_in_seq']),axes=(0,2,1))
X_test_region = np.transpose(np.array(data['test_in_region']),axes=(0, 2, 1))
y_test_RBP = np.array(data['test_out'])
y_test_name= np.array(data['test_name'])
y_train= np.array(data['train_out'])
data.close()
return X_test_seq, X_test_region, y_test_RBP, y_test_name, y_train
########################
### custume metrics ####
########################
def precision(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
#TPs=K.sum(K.round(K.clip(y_true * y_pred , 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def recall(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
#TPs=K.sum(K.round(K.clip(y_ture * y_pred , 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
##########################################################
### Function to convert the sequence to one-hot encode ###
##########################################################
def seq_to_mat(seq):
seq_len = len(seq)
seq = seq.replace('A','0')
seq = seq.replace('a','0')
seq = seq.replace('C','1')
seq = seq.replace('c','1')
seq = seq.replace('G','2')
seq = seq.replace('g','2')
seq = seq.replace('T','3')
seq = seq.replace('t','3')
seq = seq.replace('U','3')
seq = seq.replace('u','3')
seq = seq.replace('N','4') #some cases have N in sequence
seq = seq.replace('n','4')
seq_code = np.zeros((4,seq_len), dtype='float16')
for i in range(seq_len):
if int(seq[i]) != 4:
seq_code[int(seq[i]),i] = 1
else:
seq_code[0:4,i] = np.tile(0.25,4)
return np.transpose(seq_code)
def seq_to_1hot(seq,randomsel=True):
'converts the sequence to one-hot encoding'
import random
seq_len = len(seq)
seq= seq.upper()
seq_code = np.zeros((4,seq_len), dtype='int')
for i in range(seq_len):
nt = seq[i]
if nt == 'A':
seq_code[0,i] = 1
elif nt == 'C':
seq_code[1,i] = 1
elif nt == 'G':
seq_code[2,i] = 1
elif nt == 'T':
seq_code[3,i] = 1
elif randomsel:
rn = random.randint(0,3)
seq_code[rn,i] = 1
return seq_code
##########################################################
### Function to convert the region to one-hot encode ###
##########################################################
def region_to_mat(region):
region_len = len(region)
region= region.replace('i','0')
region= region.replace('c','1')
region= region.replace('3','2')
region= region.replace('5','3')
region= region.replace('N','4')
region_code = np.zeros((4,region_len), dtype='float16')
for i in range(region_len):
if int(region[i]) != 4:
region_code[int(region[i]),i] = 1
else:
region_code[0:4,i] = np.tile(0.25,4)
return np.transpose(region_code)
######################################################################################
######### function to find the top k and bottom K frequent 6MERs functions############
######################################################################################
def getkmer(X,y,pred,RBP_index,k):
import rpy2
from rpy2.robjects.packages import importr
base = importr('base')
Biostrings= importr("Biostrings")
multi_ind_high=[i[0] for i in sorted(enumerate(pred[:,RBP_index]), key=lambda x:x[1],reverse=True) if y[i[0],RBP_index]==1][0:k]
multi_ind_low=[i[0] for i in sorted(enumerate(pred[:,RBP_index]), key=lambda x:x[1]) if y[i[0],RBP_index]==1][0:k]
multi_fastaseq_low=vecs2dna(np.transpose(X[multi_ind_low],axes=(0,2,1)))
multi_fastaseq_high=vecs2dna(np.transpose(X[multi_ind_high],axes=(0,2,1)))
multi_fastaseq_high=base.unlist(multi_fastaseq_high)
multi_fastaseq_low=base.unlist(multi_fastaseq_low)
kmer_freqs_low = base.rowSums(base.sapply(Biostrings.DNAStringSet(multi_fastaseq_low),Biostrings.oligonucleotideFrequency,width = 6, step = 1))
kmer_freqs_high = base.rowSums(base.sapply(Biostrings.DNAStringSet(multi_fastaseq_high),Biostrings.oligonucleotideFrequency,width = 6, step = 1))
return kmer_freqs_low, kmer_freqs_high
###############################################################################
######### function to convert one hot encoded sequence to sequence ############
###############################################################################
def vecs2dna(seq_vecs):
if len(seq_vecs.shape) == 2:
seq_vecs = np.reshape(seq_vecs, (seq_vecs.shape[0], 4, -1))
elif len(seq_vecs.shape) == 4:
seq_vecs = np.reshape(seq_vecs, (seq_vecs.shape[0], 4, -1))
seqs = []
for i in range(seq_vecs.shape[0]):
seq_list = ['']*seq_vecs.shape[2]
for j in range(seq_vecs.shape[2]):
if seq_vecs[i,0,j] == 1:
seq_list[j] = 'A'
elif seq_vecs[i,1,j] == 1:
seq_list[j] = 'C'
elif seq_vecs[i,2,j] == 1:
seq_list[j] = 'G'
elif seq_vecs[i,3,j] == 1:
seq_list[j] = 'T'
elif seq_vecs[i,:,j].sum() == 1:
seq_list[j] = 'N'
else:
print('Malformed position vector: ', seq_vecs[i,:,j], 'for sequence %d position %d' % (i,j), file=sys.stderr)
seqs.append(''.join(seq_list))
return seqs
|
[
"h5py.File",
"rpy2.robjects.packages.importr",
"random.randint",
"keras.backend.epsilon",
"numpy.zeros",
"numpy.transpose",
"numpy.array",
"numpy.reshape",
"numpy.tile",
"keras.backend.clip"
] |
[((282, 310), 'h5py.File', 'h5py.File', (['path_to_data', '"""r"""'], {}), "(path_to_data, 'r')\n", (291, 310), False, 'import h5py\n'), ((483, 509), 'numpy.array', 'np.array', (["data['test_out']"], {}), "(data['test_out'])\n", (491, 509), True, 'import numpy as np\n'), ((527, 554), 'numpy.array', 'np.array', (["data['test_name']"], {}), "(data['test_name'])\n", (535, 554), True, 'import numpy as np\n'), ((568, 595), 'numpy.array', 'np.array', (["data['train_out']"], {}), "(data['train_out'])\n", (576, 595), True, 'import numpy as np\n'), ((1977, 2016), 'numpy.zeros', 'np.zeros', (['(4, seq_len)'], {'dtype': '"""float16"""'}), "((4, seq_len), dtype='float16')\n", (1985, 2016), True, 'import numpy as np\n'), ((2185, 2207), 'numpy.transpose', 'np.transpose', (['seq_code'], {}), '(seq_code)\n', (2197, 2207), True, 'import numpy as np\n'), ((2356, 2391), 'numpy.zeros', 'np.zeros', (['(4, seq_len)'], {'dtype': '"""int"""'}), "((4, seq_len), dtype='int')\n", (2364, 2391), True, 'import numpy as np\n'), ((3118, 3160), 'numpy.zeros', 'np.zeros', (['(4, region_len)'], {'dtype': '"""float16"""'}), "((4, region_len), dtype='float16')\n", (3126, 3160), True, 'import numpy as np\n'), ((3344, 3369), 'numpy.transpose', 'np.transpose', (['region_code'], {}), '(region_code)\n', (3356, 3369), True, 'import numpy as np\n'), ((3742, 3757), 'rpy2.robjects.packages.importr', 'importr', (['"""base"""'], {}), "('base')\n", (3749, 3757), False, 'from rpy2.robjects.packages import importr\n'), ((3774, 3795), 'rpy2.robjects.packages.importr', 'importr', (['"""Biostrings"""'], {}), "('Biostrings')\n", (3781, 3795), False, 'from rpy2.robjects.packages import importr\n'), ((340, 369), 'numpy.array', 'np.array', (["data['test_in_seq']"], {}), "(data['test_in_seq'])\n", (348, 369), True, 'import numpy as np\n'), ((417, 449), 'numpy.array', 'np.array', (["data['test_in_region']"], {}), "(data['test_in_region'])\n", (425, 449), True, 'import numpy as np\n'), ((4082, 4128), 'numpy.transpose', 'np.transpose', (['X[multi_ind_low]'], {'axes': '(0, 2, 1)'}), '(X[multi_ind_low], axes=(0, 2, 1))\n', (4094, 4128), True, 'import numpy as np\n'), ((4160, 4207), 'numpy.transpose', 'np.transpose', (['X[multi_ind_high]'], {'axes': '(0, 2, 1)'}), '(X[multi_ind_high], axes=(0, 2, 1))\n', (4172, 4207), True, 'import numpy as np\n'), ((4980, 5028), 'numpy.reshape', 'np.reshape', (['seq_vecs', '(seq_vecs.shape[0], 4, -1)'], {}), '(seq_vecs, (seq_vecs.shape[0], 4, -1))\n', (4990, 5028), True, 'import numpy as np\n'), ((825, 854), 'keras.backend.clip', 'K.clip', (['(y_true * y_pred)', '(0)', '(1)'], {}), '(y_true * y_pred, 0, 1)\n', (831, 854), True, 'import keras.backend as K\n'), ((947, 967), 'keras.backend.clip', 'K.clip', (['y_pred', '(0)', '(1)'], {}), '(y_pred, 0, 1)\n', (953, 967), True, 'import keras.backend as K\n'), ((1023, 1034), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (1032, 1034), True, 'import keras.backend as K\n'), ((1115, 1144), 'keras.backend.clip', 'K.clip', (['(y_true * y_pred)', '(0)', '(1)'], {}), '(y_true * y_pred, 0, 1)\n', (1121, 1144), True, 'import keras.backend as K\n'), ((1236, 1256), 'keras.backend.clip', 'K.clip', (['y_true', '(0)', '(1)'], {}), '(y_true, 0, 1)\n', (1242, 1256), True, 'import keras.backend as K\n'), ((1308, 1319), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (1317, 1319), True, 'import keras.backend as K\n'), ((2158, 2174), 'numpy.tile', 'np.tile', (['(0.25)', '(4)'], {}), '(0.25, 4)\n', (2165, 2174), True, 'import numpy as np\n'), ((3317, 3333), 'numpy.tile', 'np.tile', (['(0.25)', '(4)'], {}), '(0.25, 4)\n', (3324, 3333), True, 'import numpy as np\n'), ((5083, 5131), 'numpy.reshape', 'np.reshape', (['seq_vecs', '(seq_vecs.shape[0], 4, -1)'], {}), '(seq_vecs, (seq_vecs.shape[0], 4, -1))\n', (5093, 5131), True, 'import numpy as np\n'), ((2626, 2646), 'random.randint', 'random.randint', (['(0)', '(3)'], {}), '(0, 3)\n', (2640, 2646), False, 'import random\n')]
|
#!/usr/bin/env python
"""
main.py
"""
import sys
import json
import argparse
import numpy as np
from helpers import compute_scores
P_AT_01_THRESHOLD = 0.475
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--cache-path', type=str, default='data/cache')
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
# --
# Check correctness
X_valid = np.load('%s_valid.npy' % args.cache_path, allow_pickle=True)
topk = np.loadtxt('results/topk')
scores = compute_scores(topk, X_valid)
# --
# Log
print(json.dumps({
"status" : "PASS" if scores[1] >= P_AT_01_THRESHOLD else "FAIL",
"p_at_01" : scores[1],
"p_at_05" : scores[5],
"p_at_10" : scores[10],
}))
does_pass = "PASS" if scores[1] >= P_AT_01_THRESHOLD else "FAIL"
open('results/.pass', 'w').write(str(does_pass))
|
[
"numpy.load",
"argparse.ArgumentParser",
"helpers.compute_scores",
"json.dumps",
"numpy.loadtxt"
] |
[((196, 221), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (219, 221), False, 'import argparse\n'), ((434, 494), 'numpy.load', 'np.load', (["('%s_valid.npy' % args.cache_path)"], {'allow_pickle': '(True)'}), "('%s_valid.npy' % args.cache_path, allow_pickle=True)\n", (441, 494), True, 'import numpy as np\n'), ((509, 535), 'numpy.loadtxt', 'np.loadtxt', (['"""results/topk"""'], {}), "('results/topk')\n", (519, 535), True, 'import numpy as np\n'), ((554, 583), 'helpers.compute_scores', 'compute_scores', (['topk', 'X_valid'], {}), '(topk, X_valid)\n', (568, 583), False, 'from helpers import compute_scores\n'), ((623, 770), 'json.dumps', 'json.dumps', (["{'status': 'PASS' if scores[1] >= P_AT_01_THRESHOLD else 'FAIL', 'p_at_01':\n scores[1], 'p_at_05': scores[5], 'p_at_10': scores[10]}"], {}), "({'status': 'PASS' if scores[1] >= P_AT_01_THRESHOLD else 'FAIL',\n 'p_at_01': scores[1], 'p_at_05': scores[5], 'p_at_10': scores[10]})\n", (633, 770), False, 'import json\n')]
|
import torch
import numpy as np
from smplx import SMPL as _SMPL
from smplx.body_models import ModelOutput
from smplx.lbs import vertices2joints
import config
class SMPL(_SMPL):
"""
Extension of the official SMPL (from the smplx python package) implementation to
support more joints.
"""
def __init__(self, *args, **kwargs):
super(SMPL, self).__init__(*args, **kwargs)
J_regressor_extra = np.load(config.J_REGRESSOR_EXTRA_PATH)
J_regressor_cocoplus = np.load(config.COCOPLUS_REGRESSOR_PATH)
J_regressor_h36m = np.load(config.H36M_REGRESSOR_PATH)
self.register_buffer('J_regressor_extra', torch.tensor(J_regressor_extra,
dtype=torch.float32))
self.register_buffer('J_regressor_cocoplus', torch.tensor(J_regressor_cocoplus,
dtype=torch.float32))
self.register_buffer('J_regressor_h36m', torch.tensor(J_regressor_h36m,
dtype=torch.float32))
def forward(self, *args, **kwargs):
kwargs['get_skin'] = True
smpl_output = super(SMPL, self).forward(*args, **kwargs)
extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices)
cocoplus_joints = vertices2joints(self.J_regressor_cocoplus, smpl_output.vertices)
h36m_joints = vertices2joints(self.J_regressor_h36m, smpl_output.vertices)
all_joints = torch.cat([smpl_output.joints, extra_joints, cocoplus_joints,
h36m_joints], dim=1)
output = ModelOutput(vertices=smpl_output.vertices,
global_orient=smpl_output.global_orient,
body_pose=smpl_output.body_pose,
joints=all_joints,
betas=smpl_output.betas,
full_pose=smpl_output.full_pose)
return output
|
[
"numpy.load",
"smplx.body_models.ModelOutput",
"torch.cat",
"smplx.lbs.vertices2joints",
"torch.tensor"
] |
[((427, 465), 'numpy.load', 'np.load', (['config.J_REGRESSOR_EXTRA_PATH'], {}), '(config.J_REGRESSOR_EXTRA_PATH)\n', (434, 465), True, 'import numpy as np\n'), ((497, 536), 'numpy.load', 'np.load', (['config.COCOPLUS_REGRESSOR_PATH'], {}), '(config.COCOPLUS_REGRESSOR_PATH)\n', (504, 536), True, 'import numpy as np\n'), ((564, 599), 'numpy.load', 'np.load', (['config.H36M_REGRESSOR_PATH'], {}), '(config.H36M_REGRESSOR_PATH)\n', (571, 599), True, 'import numpy as np\n'), ((1270, 1331), 'smplx.lbs.vertices2joints', 'vertices2joints', (['self.J_regressor_extra', 'smpl_output.vertices'], {}), '(self.J_regressor_extra, smpl_output.vertices)\n', (1285, 1331), False, 'from smplx.lbs import vertices2joints\n'), ((1358, 1422), 'smplx.lbs.vertices2joints', 'vertices2joints', (['self.J_regressor_cocoplus', 'smpl_output.vertices'], {}), '(self.J_regressor_cocoplus, smpl_output.vertices)\n', (1373, 1422), False, 'from smplx.lbs import vertices2joints\n'), ((1445, 1505), 'smplx.lbs.vertices2joints', 'vertices2joints', (['self.J_regressor_h36m', 'smpl_output.vertices'], {}), '(self.J_regressor_h36m, smpl_output.vertices)\n', (1460, 1505), False, 'from smplx.lbs import vertices2joints\n'), ((1527, 1613), 'torch.cat', 'torch.cat', (['[smpl_output.joints, extra_joints, cocoplus_joints, h36m_joints]'], {'dim': '(1)'}), '([smpl_output.joints, extra_joints, cocoplus_joints, h36m_joints],\n dim=1)\n', (1536, 1613), False, 'import torch\n'), ((1659, 1861), 'smplx.body_models.ModelOutput', 'ModelOutput', ([], {'vertices': 'smpl_output.vertices', 'global_orient': 'smpl_output.global_orient', 'body_pose': 'smpl_output.body_pose', 'joints': 'all_joints', 'betas': 'smpl_output.betas', 'full_pose': 'smpl_output.full_pose'}), '(vertices=smpl_output.vertices, global_orient=smpl_output.\n global_orient, body_pose=smpl_output.body_pose, joints=all_joints,\n betas=smpl_output.betas, full_pose=smpl_output.full_pose)\n', (1670, 1861), False, 'from smplx.body_models import ModelOutput\n'), ((650, 702), 'torch.tensor', 'torch.tensor', (['J_regressor_extra'], {'dtype': 'torch.float32'}), '(J_regressor_extra, dtype=torch.float32)\n', (662, 702), False, 'import torch\n'), ((820, 875), 'torch.tensor', 'torch.tensor', (['J_regressor_cocoplus'], {'dtype': 'torch.float32'}), '(J_regressor_cocoplus, dtype=torch.float32)\n', (832, 875), False, 'import torch\n'), ((992, 1043), 'torch.tensor', 'torch.tensor', (['J_regressor_h36m'], {'dtype': 'torch.float32'}), '(J_regressor_h36m, dtype=torch.float32)\n', (1004, 1043), False, 'import torch\n')]
|
from __future__ import print_function
import argparse
import json
import logging
import os
import pandas as pd
import numpy as np
import pickle as pkl
from sagemaker_containers import entry_point
from sagemaker_xgboost_container.data_utils import get_dmatrix
import xgboost as xgb
from xgboost.sklearn import XGBClassifier # how do we make sure we are using this
from sklearn import metrics #Additional scklearn functions
def CreateBalancedSampleWeights(y_train, largest_class_weight_coef):
classes = y_train.unique()
classes.sort()
class_samples = np.bincount(y_train)
total_samples = class_samples.sum()
n_classes = len(class_samples)
weights = total_samples / (n_classes * class_samples * 1.0)
class_weight_dict = {key : value for (key, value) in zip(classes, weights)}
class_weight_dict[classes[1]] = class_weight_dict[classes[1]] * largest_class_weight_coef
sample_weights = [class_weight_dict[y] for y in y_train]
return sample_weights
def input_fn(request_body, request_content_type):
"""An input_fn that loads a numpy array"""
if request_content_type == "text/csv":
input_features =[]
for i in request_body.split('\n'): # the first element is the id, the rest is payload
if len(i) == 0: continue
input_features.append([float(j) for j in i.split(",")])
return np.array(input_features)
else:
pass
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Hyperparameters are described here
parser.add_argument('--n_estimators', type=int, default=1000)
parser.add_argument('--n_jobs', type=int, default=4)
parser.add_argument('--max_depth', type=int, default=5)
parser.add_argument('--learning_rate', type=float, default=0.01)
parser.add_argument('--objective', type=str, default='multi:softmax')
parser.add_argument('--subsample', type=float, default=1)
parser.add_argument('--reg_lambda', type=float, default=0.1)
parser.add_argument('--eval_metric', type=str, default='merror') #- looks like we don't include this in fact, worth checking later
parser.add_argument('--colsample_bytree', type=float, default=1)
parser.add_argument('--gamma', type=float, default=1)
# SageMaker specific arguments. Defaults are set in the environment variables.
parser.add_argument('--output_data_dir', type=str, default=os.environ.get('SM_OUTPUT_DATA_DIR'))
parser.add_argument('--model_dir', type=str, default=os.environ.get('SM_MODEL_DIR'))
parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAIN'])
parser.add_argument('--validation', type=str, default=os.environ['SM_CHANNEL_VALIDATION'])
args = parser.parse_args()
# Take the set of files and read them all into a single pandas dataframe
input_files1 = [ os.path.join(args.train, file1) for file1 in os.listdir(args.train) ]
if len(input_files1) == 0:
raise ValueError(('There are no files in {}.\n' +
'This usually indicates that the channel was incorrectly specified,\n' +
'the data specification in S3 was incorrectly specified or the role specified\n' +
'does not have permission to access the data.').format(args.train))
raw_data1 = [pd.read_csv(file1, header=None, engine='python') for file1 in input_files1]
training_data = pd.concat(raw_data1)
input_files2 = [ os.path.join(args.validation, file2) for file2 in os.listdir(args.validation) ]
if len(input_files2) == 0:
raise ValueError(('There are no files in {}.\n' +
'This usually indicates that the channel was incorrectly specified,\n' +
'the data specification in S3 was incorrectly specified or the role specified\n' +
'does not have permission to access the data.').format(args.validation))
raw_data2 = [pd.read_csv(file2, header=None, engine='python') for file2 in input_files2]
validing_data = pd.concat(raw_data2)
y_train = training_data.iloc[:,0].values
X_train = training_data.iloc[:,1:].values
y_test = validing_data.iloc[:,0].values
X_test = validing_data.iloc[:,1:].values
largest_class_weight_coef = max(training_data.iloc[:,0].value_counts().values)/training_data.shape[0]
w_train = CreateBalancedSampleWeights(training_data.iloc[:,0], largest_class_weight_coef=largest_class_weight_coef)
clf = xgb.XGBClassifier(n_estimators=args.n_estimators,
n_jobs=args.n_jobs,
max_depth=args.max_depth,
learning_rate=args.learning_rate,
subsample=args.subsample,
objective=args.objective)
clf = clf.fit(X_train, y_train,
sample_weight=w_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
eval_metric='merror',
verbose=True)
evals_result = clf.evals_result()
# save the model
model_location = args.model_dir + '/xgboost-model'
pkl.dump(clf, open(model_location, 'wb'))
logging.info("Stored trained model at {}".format(model_location))
def model_fn(model_dir):
"""Deserialize and return fitted model.
Note that this should have the same name as the serialized model in the _xgb_train method
"""
model_file = 'xgboost-model'
clf = pkl.load(open(os.path.join(model_dir, model_file), 'rb'))
return clf
|
[
"os.listdir",
"argparse.ArgumentParser",
"pandas.read_csv",
"os.environ.get",
"numpy.array",
"xgboost.XGBClassifier",
"numpy.bincount",
"os.path.join",
"pandas.concat"
] |
[((568, 588), 'numpy.bincount', 'np.bincount', (['y_train'], {}), '(y_train)\n', (579, 588), True, 'import numpy as np\n'), ((1479, 1504), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1502, 1504), False, 'import argparse\n'), ((3426, 3446), 'pandas.concat', 'pd.concat', (['raw_data1'], {}), '(raw_data1)\n', (3435, 3446), True, 'import pandas as pd\n'), ((4058, 4078), 'pandas.concat', 'pd.concat', (['raw_data2'], {}), '(raw_data2)\n', (4067, 4078), True, 'import pandas as pd\n'), ((4504, 4694), 'xgboost.XGBClassifier', 'xgb.XGBClassifier', ([], {'n_estimators': 'args.n_estimators', 'n_jobs': 'args.n_jobs', 'max_depth': 'args.max_depth', 'learning_rate': 'args.learning_rate', 'subsample': 'args.subsample', 'objective': 'args.objective'}), '(n_estimators=args.n_estimators, n_jobs=args.n_jobs,\n max_depth=args.max_depth, learning_rate=args.learning_rate, subsample=\n args.subsample, objective=args.objective)\n', (4521, 4694), True, 'import xgboost as xgb\n'), ((1386, 1410), 'numpy.array', 'np.array', (['input_features'], {}), '(input_features)\n', (1394, 1410), True, 'import numpy as np\n'), ((2852, 2883), 'os.path.join', 'os.path.join', (['args.train', 'file1'], {}), '(args.train, file1)\n', (2864, 2883), False, 'import os\n'), ((3330, 3378), 'pandas.read_csv', 'pd.read_csv', (['file1'], {'header': 'None', 'engine': '"""python"""'}), "(file1, header=None, engine='python')\n", (3341, 3378), True, 'import pandas as pd\n'), ((3469, 3505), 'os.path.join', 'os.path.join', (['args.validation', 'file2'], {}), '(args.validation, file2)\n', (3481, 3505), False, 'import os\n'), ((3962, 4010), 'pandas.read_csv', 'pd.read_csv', (['file2'], {'header': 'None', 'engine': '"""python"""'}), "(file2, header=None, engine='python')\n", (3973, 4010), True, 'import pandas as pd\n'), ((2414, 2450), 'os.environ.get', 'os.environ.get', (['"""SM_OUTPUT_DATA_DIR"""'], {}), "('SM_OUTPUT_DATA_DIR')\n", (2428, 2450), False, 'import os\n'), ((2509, 2539), 'os.environ.get', 'os.environ.get', (['"""SM_MODEL_DIR"""'], {}), "('SM_MODEL_DIR')\n", (2523, 2539), False, 'import os\n'), ((2897, 2919), 'os.listdir', 'os.listdir', (['args.train'], {}), '(args.train)\n', (2907, 2919), False, 'import os\n'), ((3519, 3546), 'os.listdir', 'os.listdir', (['args.validation'], {}), '(args.validation)\n', (3529, 3546), False, 'import os\n'), ((5333, 5368), 'os.path.join', 'os.path.join', (['model_dir', 'model_file'], {}), '(model_dir, model_file)\n', (5345, 5368), False, 'import os\n')]
|
import os
from subprocess import PIPE, Popen
import numpy as np
import pytest
import vtk
import vtki
from vtki import examples
from vtki.plotting import running_xserver
TEST_DOWNLOADS = False
try:
if os.environ['TEST_DOWNLOADS'] == 'True':
TEST_DOWNLOADS = True
except KeyError:
pass
@pytest.mark.skipif(not running_xserver(), reason="Requires X11")
def test_docexample_advancedplottingwithnumpy():
import vtki
import numpy as np
# Make a grid
x, y, z = np.meshgrid(np.linspace(-5, 5, 20),
np.linspace(-5, 5, 20),
np.linspace(-5, 5, 5))
points = np.empty((x.size, 3))
points[:, 0] = x.ravel('F')
points[:, 1] = y.ravel('F')
points[:, 2] = z.ravel('F')
# Compute a direction for the vector field
direction = np.sin(points)**3
# plot using the plotting class
plotter = vtki.Plotter(off_screen=True)
plotter.add_arrows(points, direction, 0.5)
plotter.set_background([0, 0, 0]) # RGB set to black
plotter.plot(auto_close=False)
np.any(plotter.screenshot())
plotter.close()
@pytest.mark.skipif(not running_xserver(), reason="Requires X11")
def test_creatingagifmovie(tmpdir, off_screen=True):
if tmpdir:
filename = str(tmpdir.mkdir("tmpdir").join('wave.gif'))
else:
filename = '/tmp/wave.gif'
x = np.arange(-10, 10, 0.25)
y = np.arange(-10, 10, 0.25)
x, y = np.meshgrid(x, y)
r = np.sqrt(x**2 + y**2)
z = np.sin(r)
# Create and structured surface
grid = vtki.StructuredGrid(x, y, z)
# Make copy of points
pts = grid.points.copy()
# Start a plotter object and set the scalars to the Z height
plotter = vtki.Plotter(off_screen=off_screen)
plotter.add_mesh(grid, scalars=z.ravel())
plotter.plot(auto_close=False)
# Open a gif
plotter.open_gif(filename)
# Update Z and write a frame for each updated position
nframe = 5
for phase in np.linspace(0, 2*np.pi, nframe + 1)[:nframe]:
z = np.sin(r + phase)
pts[:, -1] = z.ravel()
plotter.update_coordinates(pts)
plotter.update_scalars(z.ravel())
plotter.write_frame()
# Close movie and delete object
plotter.close()
@pytest.mark.skipif(not running_xserver(), reason="Requires X11")
def test_plot_wave():
points = examples.plot_wave(wavetime=0.1, off_screen=True)
assert isinstance(points, np.ndarray)
@pytest.mark.skipif(not running_xserver(), reason="Requires X11")
def test_beam_example():
examples.beam_example(off_screen=True)
@pytest.mark.skipif(not running_xserver(), reason="Requires X11")
def test_plot_ants_plane():
examples.plot_ants_plane(off_screen=True)
def test_load_ant():
""" Load ply ant mesh """
mesh = examples.load_ant()
assert mesh.n_points
def test_load_airplane():
""" Load ply airplane mesh """
mesh = examples.load_airplane()
assert mesh.n_points
def test_load_sphere():
""" Loads sphere ply mesh """
mesh = examples.load_sphere()
assert mesh.n_points
def test_load_channels():
""" Loads geostat training image """
mesh = examples.load_channels()
assert mesh.n_points
if TEST_DOWNLOADS:
def test_download_masonry_texture():
data = examples.download_masonry_texture()
assert isinstance(data, vtk.vtkTexture)
def test_download_usa_texture():
data = examples.download_usa_texture()
assert isinstance(data, vtk.vtkTexture)
def test_download_usa():
data = examples.download_usa()
assert np.any(data.points)
def test_download_st_helens():
data = examples.download_st_helens()
assert data.n_points
def test_download_bunny():
data = examples.download_bunny()
assert data.n_points
def test_download_cow():
data = examples.download_cow()
assert data.n_points
def test_download_faults():
data = examples.download_faults()
assert data.n_points
def test_download_tensors():
data = examples.download_tensors()
assert data.n_points
def test_download_head():
data = examples.download_head()
assert data.n_points
def test_download_bolt_nut():
data = examples.download_bolt_nut()
assert isinstance(data, vtki.MultiBlock)
def test_download_clown():
data = examples.download_clown()
assert data.n_points
def test_download_exodus():
data = examples.download_exodus()
assert data.n_blocks
def test_download_nefertiti():
data = examples.download_nefertiti()
assert data.n_cells
# End of download tests
|
[
"vtki.examples.load_sphere",
"numpy.empty",
"vtki.examples.download_faults",
"vtki.examples.download_bolt_nut",
"numpy.sin",
"numpy.arange",
"vtki.examples.plot_wave",
"vtki.StructuredGrid",
"vtki.Plotter",
"numpy.meshgrid",
"vtki.examples.download_masonry_texture",
"numpy.linspace",
"vtki.examples.load_ant",
"vtki.examples.download_usa",
"vtki.examples.download_clown",
"vtki.plotting.running_xserver",
"vtki.examples.download_nefertiti",
"vtki.examples.download_exodus",
"vtki.examples.download_st_helens",
"vtki.examples.load_channels",
"vtki.examples.download_cow",
"vtki.examples.download_head",
"vtki.examples.load_airplane",
"vtki.examples.download_tensors",
"vtki.examples.download_usa_texture",
"numpy.any",
"vtki.examples.beam_example",
"vtki.examples.download_bunny",
"vtki.examples.plot_ants_plane",
"numpy.sqrt"
] |
[((641, 662), 'numpy.empty', 'np.empty', (['(x.size, 3)'], {}), '((x.size, 3))\n', (649, 662), True, 'import numpy as np\n'), ((892, 921), 'vtki.Plotter', 'vtki.Plotter', ([], {'off_screen': '(True)'}), '(off_screen=True)\n', (904, 921), False, 'import vtki\n'), ((1368, 1392), 'numpy.arange', 'np.arange', (['(-10)', '(10)', '(0.25)'], {}), '(-10, 10, 0.25)\n', (1377, 1392), True, 'import numpy as np\n'), ((1401, 1425), 'numpy.arange', 'np.arange', (['(-10)', '(10)', '(0.25)'], {}), '(-10, 10, 0.25)\n', (1410, 1425), True, 'import numpy as np\n'), ((1437, 1454), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), '(x, y)\n', (1448, 1454), True, 'import numpy as np\n'), ((1463, 1487), 'numpy.sqrt', 'np.sqrt', (['(x ** 2 + y ** 2)'], {}), '(x ** 2 + y ** 2)\n', (1470, 1487), True, 'import numpy as np\n'), ((1492, 1501), 'numpy.sin', 'np.sin', (['r'], {}), '(r)\n', (1498, 1501), True, 'import numpy as np\n'), ((1550, 1578), 'vtki.StructuredGrid', 'vtki.StructuredGrid', (['x', 'y', 'z'], {}), '(x, y, z)\n', (1569, 1578), False, 'import vtki\n'), ((1715, 1750), 'vtki.Plotter', 'vtki.Plotter', ([], {'off_screen': 'off_screen'}), '(off_screen=off_screen)\n', (1727, 1750), False, 'import vtki\n'), ((2352, 2401), 'vtki.examples.plot_wave', 'examples.plot_wave', ([], {'wavetime': '(0.1)', 'off_screen': '(True)'}), '(wavetime=0.1, off_screen=True)\n', (2370, 2401), False, 'from vtki import examples\n'), ((2541, 2579), 'vtki.examples.beam_example', 'examples.beam_example', ([], {'off_screen': '(True)'}), '(off_screen=True)\n', (2562, 2579), False, 'from vtki import examples\n'), ((2680, 2721), 'vtki.examples.plot_ants_plane', 'examples.plot_ants_plane', ([], {'off_screen': '(True)'}), '(off_screen=True)\n', (2704, 2721), False, 'from vtki import examples\n'), ((2786, 2805), 'vtki.examples.load_ant', 'examples.load_ant', ([], {}), '()\n', (2803, 2805), False, 'from vtki import examples\n'), ((2905, 2929), 'vtki.examples.load_airplane', 'examples.load_airplane', ([], {}), '()\n', (2927, 2929), False, 'from vtki import examples\n'), ((3026, 3048), 'vtki.examples.load_sphere', 'examples.load_sphere', ([], {}), '()\n', (3046, 3048), False, 'from vtki import examples\n'), ((3154, 3178), 'vtki.examples.load_channels', 'examples.load_channels', ([], {}), '()\n', (3176, 3178), False, 'from vtki import examples\n'), ((504, 526), 'numpy.linspace', 'np.linspace', (['(-5)', '(5)', '(20)'], {}), '(-5, 5, 20)\n', (515, 526), True, 'import numpy as np\n'), ((554, 576), 'numpy.linspace', 'np.linspace', (['(-5)', '(5)', '(20)'], {}), '(-5, 5, 20)\n', (565, 576), True, 'import numpy as np\n'), ((604, 625), 'numpy.linspace', 'np.linspace', (['(-5)', '(5)', '(5)'], {}), '(-5, 5, 5)\n', (615, 625), True, 'import numpy as np\n'), ((823, 837), 'numpy.sin', 'np.sin', (['points'], {}), '(points)\n', (829, 837), True, 'import numpy as np\n'), ((329, 346), 'vtki.plotting.running_xserver', 'running_xserver', ([], {}), '()\n', (344, 346), False, 'from vtki.plotting import running_xserver\n'), ((1973, 2010), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(nframe + 1)'], {}), '(0, 2 * np.pi, nframe + 1)\n', (1984, 2010), True, 'import numpy as np\n'), ((2031, 2048), 'numpy.sin', 'np.sin', (['(r + phase)'], {}), '(r + phase)\n', (2037, 2048), True, 'import numpy as np\n'), ((1140, 1157), 'vtki.plotting.running_xserver', 'running_xserver', ([], {}), '()\n', (1155, 1157), False, 'from vtki.plotting import running_xserver\n'), ((2275, 2292), 'vtki.plotting.running_xserver', 'running_xserver', ([], {}), '()\n', (2290, 2292), False, 'from vtki.plotting import running_xserver\n'), ((2470, 2487), 'vtki.plotting.running_xserver', 'running_xserver', ([], {}), '()\n', (2485, 2487), False, 'from vtki.plotting import running_xserver\n'), ((2606, 2623), 'vtki.plotting.running_xserver', 'running_xserver', ([], {}), '()\n', (2621, 2623), False, 'from vtki.plotting import running_xserver\n'), ((3281, 3316), 'vtki.examples.download_masonry_texture', 'examples.download_masonry_texture', ([], {}), '()\n', (3314, 3316), False, 'from vtki import examples\n'), ((3418, 3449), 'vtki.examples.download_usa_texture', 'examples.download_usa_texture', ([], {}), '()\n', (3447, 3449), False, 'from vtki import examples\n'), ((3543, 3566), 'vtki.examples.download_usa', 'examples.download_usa', ([], {}), '()\n', (3564, 3566), False, 'from vtki import examples\n'), ((3582, 3601), 'numpy.any', 'np.any', (['data.points'], {}), '(data.points)\n', (3588, 3601), True, 'import numpy as np\n'), ((3653, 3682), 'vtki.examples.download_st_helens', 'examples.download_st_helens', ([], {}), '()\n', (3680, 3682), False, 'from vtki import examples\n'), ((3759, 3784), 'vtki.examples.download_bunny', 'examples.download_bunny', ([], {}), '()\n', (3782, 3784), False, 'from vtki import examples\n'), ((3859, 3882), 'vtki.examples.download_cow', 'examples.download_cow', ([], {}), '()\n', (3880, 3882), False, 'from vtki import examples\n'), ((3960, 3986), 'vtki.examples.download_faults', 'examples.download_faults', ([], {}), '()\n', (3984, 3986), False, 'from vtki import examples\n'), ((4065, 4092), 'vtki.examples.download_tensors', 'examples.download_tensors', ([], {}), '()\n', (4090, 4092), False, 'from vtki import examples\n'), ((4168, 4192), 'vtki.examples.download_head', 'examples.download_head', ([], {}), '()\n', (4190, 4192), False, 'from vtki import examples\n'), ((4272, 4300), 'vtki.examples.download_bolt_nut', 'examples.download_bolt_nut', ([], {}), '()\n', (4298, 4300), False, 'from vtki import examples\n'), ((4397, 4422), 'vtki.examples.download_clown', 'examples.download_clown', ([], {}), '()\n', (4420, 4422), False, 'from vtki import examples\n'), ((4500, 4526), 'vtki.examples.download_exodus', 'examples.download_exodus', ([], {}), '()\n', (4524, 4526), False, 'from vtki import examples\n'), ((4607, 4636), 'vtki.examples.download_nefertiti', 'examples.download_nefertiti', ([], {}), '()\n', (4634, 4636), False, 'from vtki import examples\n')]
|
import numpy as np
import matplotlib.pyplot as plt
from convolution_matrices.convmat2D import *
#generate a picture array with a circle
Nx = 2*256
Ny = 2*256;
A = 9*np.ones((Nx,Ny));
ci = Nx/2-1; cj= Ny/2-1;
cr = np.round(0.35*Nx);
I,J=np.meshgrid(np.arange(A.shape[0]),np.arange(A.shape[1]));
dist = np.sqrt((I-ci)**2 + (J-cj)**2);
A[np.where(dist<cr)] = 1;
plt.imshow(A);
plt.show()
##fft
P = 1; Q = 1;
C1 = convmat2D(A, P, Q);
C2 = convmat2D_o(A, 3,3);
print(np.linalg.norm(C1-C2)) #make sure the two ways of writing convmat are the same...
print(C1.shape)
np.set_printoptions(precision=2)
print(C1)
plt.imshow(np.abs(C1));
plt.show()
## test 2d convmat on a homogeneous medium, should return a scaled identity matrix
eps_grid = np.ones((Nx,Ny));
C_uniform = convmat2D(eps_grid,3,3)
print(C_uniform)
|
[
"numpy.set_printoptions",
"matplotlib.pyplot.show",
"numpy.abs",
"matplotlib.pyplot.imshow",
"numpy.ones",
"numpy.where",
"numpy.arange",
"numpy.linalg.norm",
"numpy.round",
"numpy.sqrt"
] |
[((214, 233), 'numpy.round', 'np.round', (['(0.35 * Nx)'], {}), '(0.35 * Nx)\n', (222, 233), True, 'import numpy as np\n'), ((303, 341), 'numpy.sqrt', 'np.sqrt', (['((I - ci) ** 2 + (J - cj) ** 2)'], {}), '((I - ci) ** 2 + (J - cj) ** 2)\n', (310, 341), True, 'import numpy as np\n'), ((362, 375), 'matplotlib.pyplot.imshow', 'plt.imshow', (['A'], {}), '(A)\n', (372, 375), True, 'import matplotlib.pyplot as plt\n'), ((377, 387), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (385, 387), True, 'import matplotlib.pyplot as plt\n'), ((564, 596), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(2)'}), '(precision=2)\n', (583, 596), True, 'import numpy as np\n'), ((631, 641), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (639, 641), True, 'import matplotlib.pyplot as plt\n'), ((738, 755), 'numpy.ones', 'np.ones', (['(Nx, Ny)'], {}), '((Nx, Ny))\n', (745, 755), True, 'import numpy as np\n'), ((166, 183), 'numpy.ones', 'np.ones', (['(Nx, Ny)'], {}), '((Nx, Ny))\n', (173, 183), True, 'import numpy as np\n'), ((249, 270), 'numpy.arange', 'np.arange', (['A.shape[0]'], {}), '(A.shape[0])\n', (258, 270), True, 'import numpy as np\n'), ((271, 292), 'numpy.arange', 'np.arange', (['A.shape[1]'], {}), '(A.shape[1])\n', (280, 292), True, 'import numpy as np\n'), ((337, 356), 'numpy.where', 'np.where', (['(dist < cr)'], {}), '(dist < cr)\n', (345, 356), True, 'import numpy as np\n'), ((466, 489), 'numpy.linalg.norm', 'np.linalg.norm', (['(C1 - C2)'], {}), '(C1 - C2)\n', (480, 489), True, 'import numpy as np\n'), ((618, 628), 'numpy.abs', 'np.abs', (['C1'], {}), '(C1)\n', (624, 628), True, 'import numpy as np\n')]
|
# coding: utf-8
# In[1]:
import torch
import torch.nn as nn
import torchvision
import torch.nn.functional as F
from torchvision import datasets, transforms, models
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
import sys, os
from glob import glob
import imageio
import argparse
import torch.distributed as dist
from tqdm import tqdm
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel
# In[2]:
arch_train_dir = '../../Arch_train/'
arch_test_dir = '../../Arch_test/'
# print("Dataset dir: %s %s" % (arch_train_dir, arch_test_dir))
weight_save_root = "logs"
if not os.path.exists(weight_save_root):
os.mkdir(weight_save_root)
# In[6]:
# conv_1_dim = int(sys.argv[1]) if len(sys.argv) > 1 else 64 ### 384
# conv_m_dim = int(sys.argv[2]) if len(sys.argv) > 2 else 64 ### 512
# conv_h_dim = int(sys.argv[3]) if len(sys.argv) > 2 else 64 ### 256
def init_dist_pytorch(args, backend="nccl"):
args.rank = int(os.environ['LOCAL_RANK'])
args.ngpus_per_node = torch.cuda.device_count()
args.gpu = args.rank
args.world_size = args.ngpus_per_node
torch.cuda.set_device(args.gpu)
dist.init_process_group(backend=backend)
def synchronize():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
class HAF(nn.Module):
def __init__(self,lower_branch,middle_branch,higher_branch,args):
super(HAF,self).__init__()
### add batch norm
# self.conv_1=nn.Sequential(
# lower_branch,
# nn.UpsamplingNearest2d(scale_factor=2),
# nn.Conv2d(256, args.branch_1_dim, kernel_size=1), ### 384 # 64
# nn.BatchNorm2d(args.branch_1_dim)
# )
# self.conv_m=nn.Sequential(
# middle_branch,
# nn.UpsamplingNearest2d(scale_factor=4),
# nn.Conv2d(512, args.branch_m_dim, kernel_size=1), ### 512 # 64
# nn.BatchNorm2d(args.branch_m_dim)
# )
# self.conv_h=nn.Sequential(
# higher_branch,
# nn.UpsamplingNearest2d(scale_factor=8),
# nn.Conv2d(512, args.branch_h_dim, kernel_size=1), ### 256 # 64
# nn.BatchNorm2d(args.branch_h_dim)
# )
self.conv_1=nn.Sequential(
lower_branch,
nn.UpsamplingNearest2d(scale_factor=2),
nn.Conv2d(256, args.branch_1_dim, kernel_size=1) ### 384 # 64
)
self.conv_m=nn.Sequential(
middle_branch,
nn.UpsamplingNearest2d(scale_factor=4),
nn.Conv2d(512, args.branch_m_dim, kernel_size=1) ### 512 # 64
)
self.conv_h=nn.Sequential(
higher_branch,
nn.UpsamplingNearest2d(scale_factor=8),
nn.Conv2d(512, args.branch_h_dim, kernel_size=1) ### 256 # 64
)
# self.fc=nn.Sequential(
# nn.Linear(in_features=1024*(args.branch_1_dim+args.branch_m_dim+args.branch_h_dim), out_features=4096, bias=True), ### 196608
# nn.ReLU(inplace=True),
# nn.Dropout(p=0.5, inplace=False),
# nn.Linear(in_features=4096, out_features=4096, bias=True),
# nn.ReLU(inplace=True),
# nn.Dropout(p=0.5, inplace=False),
# nn.Linear(in_features=4096, out_features=1000, bias=True) ### 1000
# )
self.gap = nn.AdaptiveMaxPool2d(1)
self.fc=nn.Sequential(
nn.Linear(in_features=args.branch_1_dim+args.branch_m_dim+args.branch_h_dim, out_features=2048, bias=True),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5, inplace=False),
nn.Linear(in_features=2048, out_features=1000, bias=True) ### 1000
)
def forward(self, x):
# print(x.shape)
h_x = self.conv_1(x)
m_x = self.conv_m(x)
l_x = self.conv_h(x)
# ## concat features
out = torch.cat((l_x,m_x,h_x), 1)
# out=F.relu(out)
# out = out.view(out.size(0), -1)# flatten
out = self.gap(out)
out = out.view(out.size(0), -1)
out=self.fc(out)
return out
def batch_gd(model, criterion, optimizer, train_loader, test_loader, epochs, device, args):
train_losses = np.zeros(epochs)
test_losses = np.zeros(epochs)
best_test_acc = 0
for it in range(epochs):
t0 = datetime.now()
train_loss = []
model.train()
for inputs, targets in tqdm(train_loader, desc="%d/%d (GPU-%d)" % (it+1, epochs, args.gpu)):
# move data to GPU
inputs, targets = inputs.to(device), targets.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, targets)
# Backward and optimize
loss.backward()
optimizer.step()
train_loss.append(loss.item())
model.eval()
test_loss = []
n_test_correct = 0.
n_test_total = 0.
n_train_correct = 0.
n_train_total = 0.
for inputs, targets in test_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
_, predictions = torch.max(outputs, 1)
loss = criterion(outputs, targets)
test_loss.append(loss.item())
n_test_correct += (predictions == targets).sum().item()
n_test_total+= targets.shape[0]
test_acc = n_test_correct / n_test_total
test_loss = np.mean(test_loss)
synchronize()
# torch.save(model.state_dict(), os.path.join(weight_save_path, "model_%d.pth" % (it+1)))
if test_acc > best_test_acc:
if (args.rank==0):
torch.save(model.module.conv_1.state_dict(), os.path.join(weight_save_root, "haf_vgg16_conv_1_dim-%d.pth" % args.branch_1_dim))
torch.save(model.module.conv_m.state_dict(), os.path.join(weight_save_root, "haf_vgg16_conv_m_dim-%d.pth" % args.branch_m_dim))
torch.save(model.module.conv_h.state_dict(), os.path.join(weight_save_root, "haf_vgg16_conv_h_dim-%d.pth" % args.branch_h_dim))
print("model weights are saved to haf_vgg16_conv_1_dim-%d.pth, haf_vgg16_conv_m_dim-%d.pth, haf_vgg16_conv_h_dim-%d.pth" % (args.branch_1_dim, args.branch_m_dim, args.branch_h_dim) )
best_test_acc = test_acc
# Get train loss and test loss
train_loss = np.mean(train_loss) # a little misleading
if it % args.test_epoch != 0:
continue
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
_, predictions = torch.max(outputs, 1)
n_train_correct += (predictions == targets).sum().item()
n_train_total+= targets.shape[0]
# Save losses
synchronize()
train_acc = n_train_correct / n_train_total
train_losses[it] = train_loss
test_losses[it] = test_loss
dt = datetime.now() - t0
# print(f'Epoch {it+1}/{epochs}, Train Loss: {train_loss:.4f}, Train Acc:{train_acc:.4f},\
# Test Loss: {test_loss:.4f}, Test Acc:{test_acc:.4f}')
print('Epoch %d/%d, Train Loss: %f, Train Acc:%f, Test Loss: %f, Test Acc:%f' % (it+1, epochs, train_loss, train_acc, test_loss, test_acc))
return train_losses, test_losses
def main_worker(args):
global start_epoch, best_recall5
init_dist_pytorch(args)
synchronize()
print("Use GPU: {} for training, rank no.{} of world_size {}"
.format(args.gpu, args.rank, args.world_size))
if (args.rank==0):
# sys.stdout = Logger(osp.join(args.logs_dir, 'log_feature_branch.txt'))
print("==========\nArgs:{}\n==========".format(args))
# In[3]:
# Note: normalize mean and std are standardized for ImageNet
# https://github.com/pytorch/examples/blob/97304e232807082c2e7b54c597615dc0ad8f6173/imagenet/main.py#L197-L198
train_transform = transforms.Compose([
transforms.Resize(size=(128,128)),
transforms.ToTensor()
])
test_transform = transforms.Compose([
transforms.Resize(size=(128,128)),
transforms.ToTensor()
])
# print("Loading dataset")
train_dataset = datasets.ImageFolder(
arch_train_dir,
transform=train_transform
)
test_dataset = datasets.ImageFolder(
arch_test_dir,
transform=train_transform
)
if (args.rank==0):
print("train dataset size:", len(train_dataset.imgs))
train_data_sampler = DistributedSampler(train_dataset, num_replicas=args.world_size, rank=dist.get_rank())
test_data_sampler = DistributedSampler(test_dataset, num_replicas=args.world_size, rank=dist.get_rank())
batch_size = 16
# train_loader = torch.utils.data.DataLoader(
# train_dataset,
# batch_size=batch_size,
# sampler=train_data_sampler,
# shuffle=True
# )
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
sampler=train_data_sampler
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=batch_size,
sampler=test_data_sampler
)
# In[4]:
# for inputs,tars in train_loader:
# print(inputs[0].shape)
# plt.imshow(inputs[0].permute(1,2,0))
# print(tars[0])
# break
# K=0
# # print(os.getcwd())
# for i in os.listdir(arch_test_dir):
# K+=1
# print(K)
# In[5]:
# Define the model
pre_model = models.vgg16(pretrained=True)
features=pre_model.classifier[0].in_features
# pre_model
lower_branch=pre_model.features[:17] ### 16,16-- 2
middle_branch=pre_model.features[:24] ### 8,8-- 4
higher_branch=pre_model.features ### 4,4-- 8
for param in lower_branch.parameters():
param.requires_grad = False
for param in middle_branch.parameters():
param.requires_grad = False
for param in higher_branch.parameters():
param.requires_grad = False
haf = HAF(lower_branch,middle_branch,higher_branch,args)
device = torch.device("cuda:%d" % args.gpu if torch.cuda.is_available() else "cpu")
# print(device)
# haf.to(device)
haf.cuda(args.gpu)
haf = DistributedDataParallel(haf, device_ids=[args.gpu], output_device=args.gpu, find_unused_parameters=True)
# In[9]:
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, haf.parameters()), lr=0.0001, betas=(0.9, 0.999), eps=1e-08, weight_decay=1e-5)
train_losses, test_losses = batch_gd(
haf,
criterion,
optimizer,
train_loader,
test_loader,
epochs=100,
device=device,
args=args
)
# c=0
# for i,t in train_loader:
# plt.imshow(i[3].permute(1,2,0))
# outs=cnn_model(i[3].unsqueeze(0).to(device))
# _,pred=torch.max(outs,1)
# print(pred == t[3])
# plt.title(f'Pred:{pred.cpu().numpy()}---Label:{t[3]}')
# break
# # In[ ]:
# plt.plot(train_losses, label='train loss')
# plt.plot(test_losses, label='test loss')
# plt.legend()
# plt.show()
# # In[ ]:
# torch.save(cnn_model.state_dict(),"trained_arc.pt")
def main():
args = parser.parse_args()
main_worker(args)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="NetVLAD/SARE training")
parser.add_argument('--launcher', type=str,
choices=['none', 'pytorch', 'slurm'],
default='none', help='job launcher')
parser.add_argument('--tcp-port', type=str, default='5017')
parser.add_argument('--branch-1-dim', type=int, default=64)
parser.add_argument('--branch-m-dim', type=int, default=64)
parser.add_argument('--branch-h-dim', type=int, default=64)
parser.add_argument('--test-epoch', type=int, default=5)
main()
|
[
"torch.distributed.is_initialized",
"os.mkdir",
"torch.nn.Dropout",
"argparse.ArgumentParser",
"torch.nn.AdaptiveMaxPool2d",
"torch.cat",
"torch.cuda.device_count",
"numpy.mean",
"torch.distributed.get_world_size",
"os.path.join",
"torch.utils.data.DataLoader",
"torch.distributed.get_rank",
"torch.nn.parallel.DistributedDataParallel",
"os.path.exists",
"torch.nn.Linear",
"torch.cuda.set_device",
"torch.distributed.is_available",
"torchvision.models.vgg16",
"datetime.datetime.now",
"tqdm.tqdm",
"torch.nn.Conv2d",
"torchvision.datasets.ImageFolder",
"torch.max",
"torch.cuda.is_available",
"torchvision.transforms.Resize",
"torch.distributed.init_process_group",
"torch.nn.UpsamplingNearest2d",
"torch.nn.ReLU",
"torch.distributed.barrier",
"numpy.zeros",
"torch.nn.CrossEntropyLoss",
"torchvision.transforms.ToTensor"
] |
[((670, 702), 'os.path.exists', 'os.path.exists', (['weight_save_root'], {}), '(weight_save_root)\n', (684, 702), False, 'import sys, os\n'), ((708, 734), 'os.mkdir', 'os.mkdir', (['weight_save_root'], {}), '(weight_save_root)\n', (716, 734), False, 'import sys, os\n'), ((1076, 1101), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (1099, 1101), False, 'import torch\n'), ((1173, 1204), 'torch.cuda.set_device', 'torch.cuda.set_device', (['args.gpu'], {}), '(args.gpu)\n', (1194, 1204), False, 'import torch\n'), ((1209, 1249), 'torch.distributed.init_process_group', 'dist.init_process_group', ([], {'backend': 'backend'}), '(backend=backend)\n', (1232, 1249), True, 'import torch.distributed as dist\n'), ((1501, 1522), 'torch.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (1520, 1522), True, 'import torch.distributed as dist\n'), ((1566, 1580), 'torch.distributed.barrier', 'dist.barrier', ([], {}), '()\n', (1578, 1580), True, 'import torch.distributed as dist\n'), ((4266, 4282), 'numpy.zeros', 'np.zeros', (['epochs'], {}), '(epochs)\n', (4274, 4282), True, 'import numpy as np\n'), ((4299, 4315), 'numpy.zeros', 'np.zeros', (['epochs'], {}), '(epochs)\n', (4307, 4315), True, 'import numpy as np\n'), ((8152, 8215), 'torchvision.datasets.ImageFolder', 'datasets.ImageFolder', (['arch_train_dir'], {'transform': 'train_transform'}), '(arch_train_dir, transform=train_transform)\n', (8172, 8215), False, 'from torchvision import datasets, transforms, models\n'), ((8257, 8319), 'torchvision.datasets.ImageFolder', 'datasets.ImageFolder', (['arch_test_dir'], {'transform': 'train_transform'}), '(arch_test_dir, transform=train_transform)\n', (8277, 8319), False, 'from torchvision import datasets, transforms, models\n'), ((8866, 8964), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['train_dataset'], {'batch_size': 'batch_size', 'sampler': 'train_data_sampler'}), '(train_dataset, batch_size=batch_size, sampler=\n train_data_sampler)\n', (8893, 8964), False, 'import torch\n'), ((9008, 9104), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['test_dataset'], {'batch_size': 'batch_size', 'sampler': 'test_data_sampler'}), '(test_dataset, batch_size=batch_size, sampler=\n test_data_sampler)\n', (9035, 9104), False, 'import torch\n'), ((9472, 9501), 'torchvision.models.vgg16', 'models.vgg16', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (9484, 9501), False, 'from torchvision import datasets, transforms, models\n'), ((10193, 10301), 'torch.nn.parallel.DistributedDataParallel', 'DistributedDataParallel', (['haf'], {'device_ids': '[args.gpu]', 'output_device': 'args.gpu', 'find_unused_parameters': '(True)'}), '(haf, device_ids=[args.gpu], output_device=args.gpu,\n find_unused_parameters=True)\n', (10216, 10301), False, 'from torch.nn.parallel import DistributedDataParallel\n'), ((10330, 10351), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (10349, 10351), True, 'import torch.nn as nn\n'), ((11336, 11396), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""NetVLAD/SARE training"""'}), "(description='NetVLAD/SARE training')\n", (11359, 11396), False, 'import argparse\n'), ((1399, 1418), 'torch.distributed.is_available', 'dist.is_available', ([], {}), '()\n', (1416, 1418), True, 'import torch.distributed as dist\n'), ((1446, 1467), 'torch.distributed.is_initialized', 'dist.is_initialized', ([], {}), '()\n', (1465, 1467), True, 'import torch.distributed as dist\n'), ((3471, 3494), 'torch.nn.AdaptiveMaxPool2d', 'nn.AdaptiveMaxPool2d', (['(1)'], {}), '(1)\n', (3491, 3494), True, 'import torch.nn as nn\n'), ((3962, 3991), 'torch.cat', 'torch.cat', (['(l_x, m_x, h_x)', '(1)'], {}), '((l_x, m_x, h_x), 1)\n', (3971, 3991), False, 'import torch\n'), ((4378, 4392), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4390, 4392), False, 'from datetime import datetime\n'), ((4458, 4528), 'tqdm.tqdm', 'tqdm', (['train_loader'], {'desc': "('%d/%d (GPU-%d)' % (it + 1, epochs, args.gpu))"}), "(train_loader, desc='%d/%d (GPU-%d)' % (it + 1, epochs, args.gpu))\n", (4462, 4528), False, 'from tqdm import tqdm\n'), ((5447, 5465), 'numpy.mean', 'np.mean', (['test_loss'], {}), '(test_loss)\n', (5454, 5465), True, 'import numpy as np\n'), ((6321, 6340), 'numpy.mean', 'np.mean', (['train_loss'], {}), '(train_loss)\n', (6328, 6340), True, 'import numpy as np\n'), ((2490, 2528), 'torch.nn.UpsamplingNearest2d', 'nn.UpsamplingNearest2d', ([], {'scale_factor': '(2)'}), '(scale_factor=2)\n', (2512, 2528), True, 'import torch.nn as nn\n'), ((2538, 2586), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', 'args.branch_1_dim'], {'kernel_size': '(1)'}), '(256, args.branch_1_dim, kernel_size=1)\n', (2547, 2586), True, 'import torch.nn as nn\n'), ((2669, 2707), 'torch.nn.UpsamplingNearest2d', 'nn.UpsamplingNearest2d', ([], {'scale_factor': '(4)'}), '(scale_factor=4)\n', (2691, 2707), True, 'import torch.nn as nn\n'), ((2717, 2765), 'torch.nn.Conv2d', 'nn.Conv2d', (['(512)', 'args.branch_m_dim'], {'kernel_size': '(1)'}), '(512, args.branch_m_dim, kernel_size=1)\n', (2726, 2765), True, 'import torch.nn as nn\n'), ((2848, 2886), 'torch.nn.UpsamplingNearest2d', 'nn.UpsamplingNearest2d', ([], {'scale_factor': '(8)'}), '(scale_factor=8)\n', (2870, 2886), True, 'import torch.nn as nn\n'), ((2896, 2944), 'torch.nn.Conv2d', 'nn.Conv2d', (['(512)', 'args.branch_h_dim'], {'kernel_size': '(1)'}), '(512, args.branch_h_dim, kernel_size=1)\n', (2905, 2944), True, 'import torch.nn as nn\n'), ((3532, 3647), 'torch.nn.Linear', 'nn.Linear', ([], {'in_features': '(args.branch_1_dim + args.branch_m_dim + args.branch_h_dim)', 'out_features': '(2048)', 'bias': '(True)'}), '(in_features=args.branch_1_dim + args.branch_m_dim + args.\n branch_h_dim, out_features=2048, bias=True)\n', (3541, 3647), True, 'import torch.nn as nn\n'), ((3650, 3671), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (3657, 3671), True, 'import torch.nn as nn\n'), ((3683, 3715), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': '(0.5)', 'inplace': '(False)'}), '(p=0.5, inplace=False)\n', (3693, 3715), True, 'import torch.nn as nn\n'), ((3727, 3784), 'torch.nn.Linear', 'nn.Linear', ([], {'in_features': '(2048)', 'out_features': '(1000)', 'bias': '(True)'}), '(in_features=2048, out_features=1000, bias=True)\n', (3736, 3784), True, 'import torch.nn as nn\n'), ((5182, 5203), 'torch.max', 'torch.max', (['outputs', '(1)'], {}), '(outputs, 1)\n', (5191, 5203), False, 'import torch\n'), ((6579, 6600), 'torch.max', 'torch.max', (['outputs', '(1)'], {}), '(outputs, 1)\n', (6588, 6600), False, 'import torch\n'), ((6878, 6892), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (6890, 6892), False, 'from datetime import datetime\n'), ((7893, 7927), 'torchvision.transforms.Resize', 'transforms.Resize', ([], {'size': '(128, 128)'}), '(size=(128, 128))\n', (7910, 7927), False, 'from torchvision import datasets, transforms, models\n'), ((7940, 7961), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (7959, 7961), False, 'from torchvision import datasets, transforms, models\n'), ((8024, 8058), 'torchvision.transforms.Resize', 'transforms.Resize', ([], {'size': '(128, 128)'}), '(size=(128, 128))\n', (8041, 8058), False, 'from torchvision import datasets, transforms, models\n'), ((8071, 8092), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (8090, 8092), False, 'from torchvision import datasets, transforms, models\n'), ((8523, 8538), 'torch.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (8536, 8538), True, 'import torch.distributed as dist\n'), ((8632, 8647), 'torch.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (8645, 8647), True, 'import torch.distributed as dist\n'), ((10081, 10106), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (10104, 10106), False, 'import torch\n'), ((5691, 5777), 'os.path.join', 'os.path.join', (['weight_save_root', "('haf_vgg16_conv_1_dim-%d.pth' % args.branch_1_dim)"], {}), "(weight_save_root, 'haf_vgg16_conv_1_dim-%d.pth' % args.\n branch_1_dim)\n", (5703, 5777), False, 'import sys, os\n'), ((5827, 5913), 'os.path.join', 'os.path.join', (['weight_save_root', "('haf_vgg16_conv_m_dim-%d.pth' % args.branch_m_dim)"], {}), "(weight_save_root, 'haf_vgg16_conv_m_dim-%d.pth' % args.\n branch_m_dim)\n", (5839, 5913), False, 'import sys, os\n'), ((5963, 6049), 'os.path.join', 'os.path.join', (['weight_save_root', "('haf_vgg16_conv_h_dim-%d.pth' % args.branch_h_dim)"], {}), "(weight_save_root, 'haf_vgg16_conv_h_dim-%d.pth' % args.\n branch_h_dim)\n", (5975, 6049), False, 'import sys, os\n')]
|
import numpy as np
from termcolor import colored
from pyfiglet import *
print(colored("Advent of Code - Day 25", "yellow").center(80, "-"))
print(colored(figlet_format("Sea Cucumber",font="small",justify="center"), 'green'))
print(colored("Output","yellow").center(80, "-"))
g = np.array([[{".": 0, ">": 2, "v": 1}[a] for a in a.strip()] for a in open("../Input/day25.txt")])
i = 0
while True:
i += 1
a = (g == 2) & (np.roll(g, -1, 1) == 0)
g[a], g[np.roll(a, 1, 1)] = 0, 2
b = (g == 1) & (np.roll(g, -1, 0) == 0)
g[b], g[np.roll(b, 1, 0)] = 0, 1
if not (a|b).any():
break
print("\nPuzzle 1: ",i)
print("Puzzle 1: Completed :))",end = "\n\n")
print(colored("=".center(71, "="), "yellow"))
|
[
"termcolor.colored",
"numpy.roll"
] |
[((78, 122), 'termcolor.colored', 'colored', (['"""Advent of Code - Day 25"""', '"""yellow"""'], {}), "('Advent of Code - Day 25', 'yellow')\n", (85, 122), False, 'from termcolor import colored\n'), ((231, 258), 'termcolor.colored', 'colored', (['"""Output"""', '"""yellow"""'], {}), "('Output', 'yellow')\n", (238, 258), False, 'from termcolor import colored\n'), ((421, 438), 'numpy.roll', 'np.roll', (['g', '(-1)', '(1)'], {}), '(g, -1, 1)\n', (428, 438), True, 'import numpy as np\n'), ((454, 470), 'numpy.roll', 'np.roll', (['a', '(1)', '(1)'], {}), '(a, 1, 1)\n', (461, 470), True, 'import numpy as np\n'), ((496, 513), 'numpy.roll', 'np.roll', (['g', '(-1)', '(0)'], {}), '(g, -1, 0)\n', (503, 513), True, 'import numpy as np\n'), ((529, 545), 'numpy.roll', 'np.roll', (['b', '(1)', '(0)'], {}), '(b, 1, 0)\n', (536, 545), True, 'import numpy as np\n')]
|
import numpy as np
import os
import json
import quantities as pq
from mpi4py import MPI
import elephant.spade as spade
import argparse
import yaml
from utils import mkdirp, split_path
with open("configfile.yaml", 'r') as stream:
config = yaml.load(stream)
# max. time window width in number of bins
winlen = config['winlen']
# resolution in ms
binsize = config['binsize'] * pq.ms
# Multiple of the binsize to dither data
dither = config['dither'] * binsize
# number of surrogates for psf
n_surr = config['n_surr']
# Spectrum ('#' for 2d-spectrum '3d#' for 3d-spectrum
spectrum = config['spectrum']
# Minimum size of pattern to analyze
min_spikes = config['min_xi']
# Minimum num occ pattern to analyze
min_occ = config['min_occ']
param = {'winlen':winlen, 'n_surr':n_surr, 'binsize':binsize,
'spectrum':spectrum, 'min_spikes':min_spikes, 'min_occ':min_occ, 'dither':dither}
# Parsing data parameter
parser = argparse.ArgumentParser(description='Compute spade on artificial data '
'for the given winlen and spectrum parameters')
parser.add_argument('data_idx', metavar='data_idx', type=int,
help='idx of the data to analyze (integer between 0 and 3)')
parser.add_argument('xi', metavar='xi', type=int,
help='size of injected pattern (integer between 3 and 10')
parser.add_argument('occ', metavar='occ', type=int,
help='number of occurrences of injected pattern (integer between 3 and 10')
args = parser.parse_args()
data_idx = args.data_idx
xi = args.xi
occ = args.occ
results = {}
# Loading data
data_path = '../data/stp_data%i.npy' % data_idx
if not os.path.exists(data_path):
raise ValueError('Data path not existing')
datafile = np.load(data_path, encoding='latin1').item()
# MPI parameters
comm = MPI.COMM_WORLD # create MPI communicator
rank = comm.Get_rank() # get rank of current MPI task
size = comm.Get_size() # get tot number of MPI tasks
print(size)
# Analyzing the 100 realization of data
for rep in range(100):
print(("Doing rep", rep))
# Selecting data
spikedata = datafile['sts_%iocc_%ixi' % (occ, xi)][rep]
# SPADE analysis
if xi==0 and occ ==0 and rep == 0:
output = spade.spade(spikedata, binsize, winlen, dither=dither,
n_surr=n_surr, min_spikes=min_spikes, min_occ=min_occ, spectrum=spectrum)
else:
output = spade.spade(spikedata, binsize, winlen, dither=dither,
n_surr=0, min_spikes=min_spikes,
min_occ=min_occ, spectrum=spectrum)
# Storing data
if rank == 0:
results[rep] = output
if rank == 0:
# Storing results
path = '../results/results_data{}'.format(data_idx)
path_temp = './'
for folder in split_path(path):
path_temp = path_temp + '/' + folder
mkdirp(path_temp)
if xi == 0 and occ ==0:
np.save(
path + '/result_ind'.format(xi, occ), [results, param])
else:
np.save(
path+'/result_xi{}_occ{}'.format(xi,occ), [results, param])
|
[
"utils.mkdirp",
"yaml.load",
"numpy.load",
"argparse.ArgumentParser",
"os.path.exists",
"elephant.spade.spade",
"utils.split_path"
] |
[((926, 1052), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Compute spade on artificial data for the given winlen and spectrum parameters"""'}), "(description=\n 'Compute spade on artificial data for the given winlen and spectrum parameters'\n )\n", (949, 1052), False, 'import argparse\n'), ((244, 261), 'yaml.load', 'yaml.load', (['stream'], {}), '(stream)\n', (253, 261), False, 'import yaml\n'), ((1673, 1698), 'os.path.exists', 'os.path.exists', (['data_path'], {}), '(data_path)\n', (1687, 1698), False, 'import os\n'), ((2796, 2812), 'utils.split_path', 'split_path', (['path'], {}), '(path)\n', (2806, 2812), False, 'from utils import mkdirp, split_path\n'), ((1758, 1795), 'numpy.load', 'np.load', (['data_path'], {'encoding': '"""latin1"""'}), "(data_path, encoding='latin1')\n", (1765, 1795), True, 'import numpy as np\n'), ((2244, 2376), 'elephant.spade.spade', 'spade.spade', (['spikedata', 'binsize', 'winlen'], {'dither': 'dither', 'n_surr': 'n_surr', 'min_spikes': 'min_spikes', 'min_occ': 'min_occ', 'spectrum': 'spectrum'}), '(spikedata, binsize, winlen, dither=dither, n_surr=n_surr,\n min_spikes=min_spikes, min_occ=min_occ, spectrum=spectrum)\n', (2255, 2376), True, 'import elephant.spade as spade\n'), ((2416, 2544), 'elephant.spade.spade', 'spade.spade', (['spikedata', 'binsize', 'winlen'], {'dither': 'dither', 'n_surr': '(0)', 'min_spikes': 'min_spikes', 'min_occ': 'min_occ', 'spectrum': 'spectrum'}), '(spikedata, binsize, winlen, dither=dither, n_surr=0, min_spikes\n =min_spikes, min_occ=min_occ, spectrum=spectrum)\n', (2427, 2544), True, 'import elephant.spade as spade\n'), ((2867, 2884), 'utils.mkdirp', 'mkdirp', (['path_temp'], {}), '(path_temp)\n', (2873, 2884), False, 'from utils import mkdirp, split_path\n')]
|
# **************************************************************************** #
# #
# ::: :::::::: #
# config.py :+: :+: :+: #
# +:+ +:+ +:+ #
# By: winshare <<EMAIL>> +#+ +:+ +#+ #
# +#+#+#+#+#+ +#+ #
# Created: 2020/02/28 11:45:40 by winshare #+# #+# #
# Updated: 2020/05/28 15:01:24 by winshare ### ########.fr #
# #
# **************************************************************************** #
# Copyright 2020 winshare
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import json
import numpy as np
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import torch
import torchvision.datasets as dataset
# ---------------------------- Official Reference ---------------------------- #
from Data.DataSets.NPY.segmentation_dataset import Costum_NPY_DataSet
from Data.DataSets.CitysCapes.cityscapes import CityscapesSegmentation
from Data.DataSets.COCO.coco import CocoDataset
from Data.DataSets.PascalVoc.pascal import VOCSegmentation
# ------------------------------ Local Reference ----------------------------- #
class CFG():
def __init__(self):
# ---------------------------------------------------------------------------- #
# init process #
# ---------------------------------------------------------------------------- #
for i in range(5):
print("#####------------------------------------------------------------------#####")
print("#####-------------------------<===== WSNET =====>----------------------#####")
for i in range(5):
print("#####------------------------------------------------------------------#####")
print("\n\n# -----Decode Config File :",self.configfile,"-----#")
# ---------------------------------------------------------------------------- #
# init process #
# ---------------------------------------------------------------------------- #
# ---------------------------------------------------------------------------- #
# Pytorch Function Dictionary #
# ---------------------------------------------------------------------------- #
self.datasets_function_dict={
"Classification":{
"MINST":dataset.MNIST,
"FashionMINST":dataset.FashionMNIST,
"KMINST":dataset.KMNIST,
"EMINST":dataset.EMNIST,
"CIFAR10":dataset.CIFAR10,
"CIFAR100":dataset.CIFAR100,
"ImageNet":dataset.ImageNet
},
"Detection":{
"CocoDetection":CocoDataset,
"VOC_Detection":dataset.VOCDetection
},
"Segmentation":{
"VOC_Segmentation":dataset.VOCSegmentation,
"Cityscapes":dataset.Cityscapes,
"Costum_NPY_DataSet":Costum_NPY_DataSet,
"CocoSegmentation":CocoDataset
},
"Caption":{
"CocoCaptions":dataset.CocoCaptions
},
"InstenceSegmentation":{
"CocoDetection":CocoDataset
}
}
self.dataset_support_list=self.datasets_function_dict.keys()
# ---------------------------------------------------------------------------- #
self.OptimDict={
"SGD":optim.SGD,
"ASGD":optim.ASGD,
"Adam":optim.Adam,
"Adadelta":optim.Adadelta,
"Adagrad":optim.Adagrad,
"AdamW":optim.AdamW,
"LBFGS":optim.LBFGS,
"RMSprop":optim.RMSprop,
"SparseAdam":optim.SparseAdam,
"Adamax":optim.Adamax
}
# ---------------------------------------------------------------------------- #
self.Loss_Function_Dict={
"AdaptiveLogSoftmaxWithLoss":nn.AdaptiveLogSoftmaxWithLoss
,"BCELoss":nn.BCELoss
,"BCEWithLogitsLoss":nn.BCEWithLogitsLoss
,"CosineEmbeddingLoss":nn.CosineEmbeddingLoss
,"CrossEntropyLoss":nn.CrossEntropyLoss
,"CTCLoss":nn.CTCLoss
,"cosine_embedding_loss":F.cosine_embedding_loss
,"ctc_loss":F.ctc_loss
,"hinge_embedding_loss":F.hinge_embedding_loss
,"l1_loss":F.l1_loss
,"margin_ranking_loss":F.margin_ranking_loss
,"mse_loss":F.mse_loss
,"multi_margin_loss":F.mse_loss
,"multilabel_margin_loss":F.multilabel_margin_loss
,"multilabel_soft_margin_loss":F.multilabel_margin_loss
,"nll_loss":F.nll_loss
,"poisson_nll_loss":F.poisson_nll_loss
,"smooth_l1_loss":F.smooth_l1_loss
,"soft_margin_loss":F.soft_margin_loss
,"triplet_margin_loss":F.triplet_margin_loss
,"HingeEmbeddingLoss":nn.HingeEmbeddingLoss
,"KLDivLoss":nn.KLDivLoss
,"L1Loss":nn.L1Loss
,"MarginRankingLoss":nn.MarginRankingLoss
,"MSELoss":nn.MSELoss
,"MultiLabelMarginLoss":nn.MultiLabelMarginLoss
,"MultiLabelSoftMarginLoss":nn.MultiLabelSoftMarginLoss
,"MultiMarginLoss":nn.MultiMarginLoss
,"NLLLoss":nn.MultiMarginLoss
,"PoissonNLLLoss":nn.PoissonNLLLoss
,"SmoothL1Loss":nn.SmoothL1Loss
,"SoftMarginLoss":nn.SoftMarginLoss
,"TripletMarginLoss":nn.TripletMarginLoss
}
# ---------------------------------------------------------------------------- #
self.Lr_Dict={
"StepLR":optim.lr_scheduler.StepLR,
"MultiStepLR":optim.lr_scheduler.MultiStepLR,
"ExponentialLR":optim.lr_scheduler.ExponentialLR,
"CosineAnnealingLR":optim.lr_scheduler.CosineAnnealingLR,
"ReduceLROnPlateau":optim.lr_scheduler.ReduceLROnPlateau,
"CyclicLR":optim.lr_scheduler.CyclicLR,
"OneCycleLR":optim.lr_scheduler.OneCycleLR,
"CosineAnnealingWarmRestarts":optim.lr_scheduler.CosineAnnealingWarmRestarts
}
# ---------------------------------------------------------------------------- #
# Config in 3 Level #
# ---------------------------------------------------------------------------- #
# -------------------------------- File Level -------------------------------- #
self.__configfile=self.configfile
self.__json=json.load(open(self.__configfile,'r'))
self.usegpu=False
self.MissionType=self.__json['MissionType']
self.InstanceID=self.__json['instance_id']
self.Content=self.__json['content']
# ------------------------------- Second Level ------------------------------- #
self.Net=self.Content['Net']
self.DataSetConfig=self.Content['Dataset']
self.Config=self.Content['Config']
print('\n\n# ---------------------------------- config ---------------------------------- #')
print("# ------------------------------ NETWORK CONFIG ------------------------------ #")
self.print_dict(self.Net)
print("# ------------------------------ NETWORK CONFIG ------------------------------ #")
print("# ------------------------------ DATASET CONFIG ------------------------------ #")
self.print_dict(self.DataSetConfig)
print("# ------------------------------ DATASET CONFIG ------------------------------ #")
print("# ------------------------------ GENERAL CONFIG ------------------------------ #")
self.print_dict(self.Config)
print("# ------------------------------ GENERAL CONFIG ------------------------------ #")
print('# ---------------------------------- config ---------------------------------- #')
# -------------------------------- Third Level ------------------------------- #
# ---------------------------------------------------------------------------- #
# NET #
# ---------------------------------------------------------------------------- #
# self.NetType=self.Net['NetType']
self.DefaultNetwork=self.Net["DefaultNetwork"]
self.BatchSize=self.Net['BatchSize']
if self.Net['BackBone']=='None':
self.BackBone=None
else:
self.BackBone=self.Net['BackBone']
self.NetType=self.Net["NetType"]
# --------------------------------- Optimizer -------------------------------- #
self.optimizer=self.OptimDict[self.Net['Optimizer']]
self.learning_rate=self.Net['learning_rate']
self.momentum=self.Net['momentum']
self.weight_decay=self.Net['weight_decay']
# ------------------------------- lr_scheduler ------------------------------- #
self.lr_scheduler=self.Net['lr_scheduler']
self.lr_steps=self.Net['lr_steps']
self.lr_gamma=self.Net['lr_gamma']
self.lr_scheduler=self.Lr_Dict[self.lr_scheduler]
self.class_num=self.Net['class_num']
# ------------------------------- Loss Function ------------------------------ #
self.Loss_Function=self.Loss_Function_Dict[self.Net['Loss_Function']]()
# ---------------------------------------------------------------------------- #
# Dataset #
# ---------------------------------------------------------------------------- #
self.DataSetType=self.DataSetConfig['Type']
self.DataSet_Root=self.DataSetConfig['root']
self.Dataset_Train_file=os.path.join(self.DataSet_Root,self.DataSetConfig['train_index_file'])
self.Dataset_Val_file=os.path.join(self.DataSet_Root,self.DataSetConfig['val_index_file'])
self.DefaultDataset=self.DataSetConfig['DefaultDataset']
self.NPY=self.DataSetConfig["NPY"]
if os.path.exists(self.NPY):
self.NPY_Data=np.load(self.NPY,allow_pickle=True)
self.SFT_Enable=self.DataSetConfig["SFT_Enable"]
# --------------------------------- Transform (Aborted)------------------------#
# ---------------------------------------------------------------------------- #
"""
Because the defalut detection network has transform flow
so the image list should include 3d tensors
[
[C, H, W],
[C, H, W].....
]
Target should be
list of dict :
{
boxes: list of box tensor[n,4] (float32)
masks: list of segmentation mask points [n,n] (float32)
keypoints: list of key pointss[n,n] (float32)
labels: list of index of label[n] (int64)
}
For Default Detection:
The transformations it perform are:
- input normalization (mean subtraction and std division)
- input / target resizing to match min_size / max_size
It returns a ImageList for the inputs, and a List[Dict[Tensor]] for the targets
"""
# print('\n\n--------------------------------- Transform --------------------------------')
# self.TransformDict=self.DataSetConfig['Transform']
# functionlist=[list(i.keys())[0] for i in self.TransformDict]
# paralist=[list(i.values())[0] for i in self.TransformDict]
# self.transforms=GeneralTransform(self.TransformDict)
# ---------------------------------------------------------------------------- #
# Config #
# ---------------------------------------------------------------------------- #
self.DistributedDataParallel=self.Config['DistributedDataParallel']
self.resume=self.Config['Resume']
self.checkpoint=self.Config['checkpoint_path']
self.MultiScale_Training=self.Config['multiscale_training']
self.logdir=self.Config['logdir']
self.devices=self.Config['devices']
self.pre_estimation=self.Config['pre_estimation']
if not os.path.exists(self.checkpoint):
os.makedirs(self.checkpoint)
if self.devices=='GPU':
self.usegpu=True
self.gpu_id=self.Config['gpu_id']
# os.environ['CUDA_VISIBLE_DEVICES']=str(self.gpu_id)
self.device = torch.device("cuda:"+str(self.gpu_id) if torch.cuda.is_available() else "cpu")
print('#-----Device:\n',self.device)
if self.devices=='CPU':
self.device=torch.device("cpu")
self.download_pretrain_model=self.Config['down_pretrain_model']
self.visualization=self.Config['visualization']
self.worker_num=self.Config['worker_num']
self.epochs=self.Config['epochs']
self.aspect_ratio_factor=self.Config['group_factor']
print("# ---------------------------------------------------------------------------- #")
print("# Configure Class Init Successful #")
print("# ---------------------------------------------------------------------------- #")
self.Enviroment_Info()
# ---------------------------------------------------------------------------- #
# Config Class Function #
# ---------------------------------------------------------------------------- #
def GenerateDefaultConfig(self,mode='detection'):
print('Generate Default Config with mode :',mode)
def configinfo(self):
print('***** Already read Config file ,'+self.__configfile,'*****')
print('***** Instance ID : ',self.InstanceID,'*****')
print('***** Mission Type : ',self.MissionType,'*****')
def Enviroment_Info(self):
print("\n\n# --------------------------------- NVCC INFO -------------------------------- #\n\n")
os.system('nvcc -V')
print("\n\n# --------------------------------- NVCC INFO -------------------------------- #\n\n")
print("\n\n# --------------------------------- GPU INFO --------------------------------- #")
os.system('nvidia-smi')
print("# --------------------------------- GPU INFO --------------------------------- #\n\n")
def print_dict(self,d,n=0):
length=74
for k,v in d.items():
# print ('\t'*n)
if type(v)==type({}):
print("%s : {" % k)
self.print_dict(v,n+1)
else:
strl=len(str(k))+len(str(v))
space=length-strl
print("# %s : %s" % (k,v)+" "*space+"#")
if n!=0:
print('\t'*(n-1)+ '}')
|
[
"numpy.load",
"os.makedirs",
"os.path.exists",
"os.system",
"torch.cuda.is_available",
"torch.device",
"os.path.join"
] |
[((11130, 11201), 'os.path.join', 'os.path.join', (['self.DataSet_Root', "self.DataSetConfig['train_index_file']"], {}), "(self.DataSet_Root, self.DataSetConfig['train_index_file'])\n", (11142, 11201), False, 'import os\n'), ((11231, 11300), 'os.path.join', 'os.path.join', (['self.DataSet_Root', "self.DataSetConfig['val_index_file']"], {}), "(self.DataSet_Root, self.DataSetConfig['val_index_file'])\n", (11243, 11300), False, 'import os\n'), ((11419, 11443), 'os.path.exists', 'os.path.exists', (['self.NPY'], {}), '(self.NPY)\n', (11433, 11443), False, 'import os\n'), ((15609, 15629), 'os.system', 'os.system', (['"""nvcc -V"""'], {}), "('nvcc -V')\n", (15618, 15629), False, 'import os\n'), ((15855, 15878), 'os.system', 'os.system', (['"""nvidia-smi"""'], {}), "('nvidia-smi')\n", (15864, 15878), False, 'import os\n'), ((11471, 11507), 'numpy.load', 'np.load', (['self.NPY'], {'allow_pickle': '(True)'}), '(self.NPY, allow_pickle=True)\n', (11478, 11507), True, 'import numpy as np\n'), ((13743, 13774), 'os.path.exists', 'os.path.exists', (['self.checkpoint'], {}), '(self.checkpoint)\n', (13757, 13774), False, 'import os\n'), ((13788, 13816), 'os.makedirs', 'os.makedirs', (['self.checkpoint'], {}), '(self.checkpoint)\n', (13799, 13816), False, 'import os\n'), ((14220, 14239), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (14232, 14239), False, 'import torch\n'), ((14068, 14093), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (14091, 14093), False, 'import torch\n')]
|
"""
measurement.py
MeasurementModel wraps up a halo.HaloDensityProfile instance with both a set of
observables (e.g., {r, DeltaSigma, DeltaSigma_err}) and a prior on the model
parameters of interest.
"""
from collections import OrderedDict
import numpy as np
from scipy import optimize
from colossus.halo.profile_base import HaloDensityProfile
from modds.parameter import Parameter
__all__ = ['MeasurementModel']
def lnlike_gauss(q_model, q, q_err):
"""
Log of Gaussian likelihood.
Parameters
----------
q_model : array_like
predicted value
q : array_like
observed value
q_err : array_like
observational uncertainty
Returns
-------
lnl : array_like
log likehood array, same size as input observations
"""
var = q_err**2
return -0.5 * (np.log(2 * np.pi * var) + (q - q_model)**2 / var)
class MeasurementModel():
"""
A wrapped up halo density profile with data constraints and priors.
Parameters
----------
profile : halo.profile_bass.HaloDensityProfile
observables : dict or iterable
Should have keys of 'r', 'q', 'q_err', else it is assumed to be an
iterable containing three arrays in the order r, q, q_err.
quantity : str
One of {'rho', 'M', 'Sigma', 'DeltaSigma'}, with standard colossus
units. Denotes volume mass density, enclosed mass, surface density,
and surface density deviation (i.e., the weak lensing observable)
respectively.
parameters : list of colossus.modeling.Parameter instances
constants : dict
Map from constant name (str) to fixed physical value (float).
Should contain redshift (named "z") if not defined as a parameter
lnlike : callable, optional
Map from (q_model, q, q_err) to log likelihood at each point. Defaults
to a Gaussian likelihood, i.e., q ~ N(q_model, q_err**2)
priors : iterable, optional
List of functions, f(profile, **kwargs) -> log prior.
Additional priors to consider (e.g., halo mass concentration relation,
See examples in joint_priors.py.
Keywords should be either constants or parameters of the model.
"""
# mapping of inputtable quantities to colossus halo profile function name
_quantities = dict(rho='density', density='density', m='enclosedMass',
mass='enclosedMass', enclosedmass='enclosedMass',
sigma='surfaceDensity', surfacedensity='surfaceDensity',
deltasigma='deltaSigma')
_obskeys = ['r', 'q', 'q_err']
def __init__(self, profile, observables, quantity, parameters,
constants=None, lnlike=lnlike_gauss, priors=None):
# check this is an actual halo density profile
assert isinstance(profile, HaloDensityProfile)
self.profile = profile
# check this is an allowed quantity
quantity = quantity.replace(' ', '').lower()
assert quantity in self._quantities
self.quantity = self._quantities[quantity]
# construct ordered dict of observables
if isinstance(observables, OrderedDict):
assert all([key in observables for key in self._obskeys])
self.observables = observables
elif isinstance(observables, dict):
assert all([key in observables for key in self._obskeys])
self.observables = OrderedDict([(key, observables[key])
for key in self._obskeys])
else:
self.observables = OrderedDict(zip(self._obskeys, observables))
# check that everything is a proper parameter
assert all([isinstance(p, Parameter) for p in parameters])
self.parameters = OrderedDict([(p.name, p) for p in parameters])
self.ndim = len(parameters)
# set default constants to empty dictionary
if constants is None:
constants = {}
self.constants = constants
self.lnlike = lnlike
self.priors = priors
assert ("z" in self.constants) or ("z" in self.parameters)
def _get_required_parameters(self, sample):
"""The parameters the sampler sees are different than what colossus
needs. This glues the two together. `sample` is what the sampler
sees.
"""
# construct array for profile prediction
new_pars = np.zeros(len(self.profile.par))
for i, required_param in enumerate(self.profile.par_names):
try:
new_pars[i] = self.constants[required_param]
except KeyError:
# must be a free parameter, transform if need be
p = self.parameters[required_param]
# index into values for free parameters
idx = list(self.parameters.keys()).index(required_param)
if p.transform is None:
new_pars[i] = sample[idx]
else:
# need to do the inverse transform to physical values
new_pars[i] = p.inverse_transform(sample[idx])
return new_pars
def _get_kwargs(self, sample):
"""Construct a dictionary of keyword arguments from a point in sample
space. Includes constant values.
"""
kwargs = {}
for i, (name, p) in enumerate(self.parameters.items()):
if p.transform is not None:
kwargs[name] = p.inverse_transform(sample[i])
else:
kwargs[name] = sample[i]
kwargs = {**kwargs, **self.constants}
return kwargs
def update(self, sample):
"""Update the profile with the passed values.
Parameters
----------
sample : array_like
Size of ndim, values as the sampler would see them (i.e.,
transformed)
Returns
-------
bool
True if successful
"""
# set new profile parameters and update
new_pars = self._get_required_parameters(sample)
if 'z' in self.parameters:
# update redshift with new value
p = self.parameters['z']
idx = list(self.parameters.keys()).index('z')
if p.transform is not None:
z = p.inverse_transform(sample[idx])
else:
z = sample[idx]
self.profile.opt['z'] = z
else:
assert self.profile.opt['z'] == self.constants['z']
self.profile.setParameterArray(new_pars)
try:
self.profile.update()
return True
except:
# TODO: catch the specific exception
# handle case where the halo density is too small
return False
def __call__(self, sample,
return_lnlike=False,
return_profile=False,
return_vir=False,
return_sp=False,
r_grid=None,
mdef="vir",
log_rsp_search_min=2.5,
log_rsp_search_max=3.5):
"""
Calculate the log posterior probability for the model.
Parameters
----------
sample : array_like
length ndim array of transformed parameters
return_lnlike : bool, optional
if True, also return the log likelihood
return_profile : bool, optional
if True, also return the model interpolated on the specified grid
return_vir : bool, optional
if True, also return the halo virial mass and concentration
return_sp : bool, optional
if True, also return the halo splashback radius and steepest slope
r_grid : array_like, optional
Radial interpolation grid for when caching the posterior prediction
mdef : str, optional
halo virial mass definition
log_rsp_search_min : float, optional
log of kpc, minimum radius to search for rsp
log_rsp_search_max : float, optional
log of kpc, maximum radius to search for rsp
Returns
-------
lnpost : float
log of posterior probability
blobs : tuple
tuple of optional returns, ordered as (lnlike, profile, Mvir, cvir,
rsp, gamma_min)
"""
return_blobs = np.any([return_lnlike, return_profile, return_vir,
return_sp])
# update profile with new values
successful_update = self.update(sample)
# calculate log prior, returning early on bad values
lnp = 0
for i, p in enumerate(self.parameters.values()):
lnp += p(sample[i])
if self.priors is not None:
for prior in self.priors:
lnp += prior(self.profile, **self._get_kwargs(sample))
if not np.isfinite(lnp) or not successful_update:
if return_blobs:
# construct rejected blobs
blobs = []
if return_lnlike:
blobs.append(np.nan)
if return_profile:
blobs.append(np.nan * np.ones(r_grid.shape))
if return_vir:
blobs.append(np.nan)
blobs.append(np.nan)
if return_sp:
blobs.append(np.nan)
blobs.append(np.nan)
return -np.inf, tuple(blobs)
# calculate log likelihood
r = self.observables['r']
q = self.observables['q']
q_err = self.observables['q_err']
try:
q_model = getattr(self.profile, self.quantity)(r)
except:
# TODO: selectively catch interpolation failure
# try with interpolation off
try:
kwargs = dict(interpolate=False,
interpolate_surface_density=False)
q_model = getattr(self.profile, self.quantity)(r, **kwargs)
except:
# and fail somewhat gracefully if that doesn't work
q_model = np.nan * r
lnl = np.sum(self.lnlike(q_model, q, q_err))
if return_blobs:
kwargs = self._get_kwargs(sample)
blobs = []
if return_lnlike:
blobs.append(lnl)
if return_profile:
q_grid = np.interp(r_grid, r, q_model)
blobs.append(q_grid)
if return_vir:
z = kwargs['z']
rvir, Mvir = self.profile.RMDelta(z=z, mdef=mdef)
rs = kwargs['rs']
cvir = rvir / rs
blobs.append(Mvir)
blobs.append(cvir)
if return_sp:
rsp = optimize.fminbound(self.profile.densityDerivativeLog,
10**log_rsp_search_min,
10**log_rsp_search_max)
gamma_min = self.profile.densityDerivativeLog(rsp)
blobs.append(rsp)
blobs.append(gamma_min)
return lnp + lnl, tuple(blobs)
else:
return lnp + lnl
|
[
"numpy.log",
"numpy.interp",
"numpy.isfinite",
"numpy.ones",
"numpy.any",
"scipy.optimize.fminbound",
"collections.OrderedDict"
] |
[((3773, 3819), 'collections.OrderedDict', 'OrderedDict', (['[(p.name, p) for p in parameters]'], {}), '([(p.name, p) for p in parameters])\n', (3784, 3819), False, 'from collections import OrderedDict\n'), ((8424, 8486), 'numpy.any', 'np.any', (['[return_lnlike, return_profile, return_vir, return_sp]'], {}), '([return_lnlike, return_profile, return_vir, return_sp])\n', (8430, 8486), True, 'import numpy as np\n'), ((830, 853), 'numpy.log', 'np.log', (['(2 * np.pi * var)'], {}), '(2 * np.pi * var)\n', (836, 853), True, 'import numpy as np\n'), ((3428, 3491), 'collections.OrderedDict', 'OrderedDict', (['[(key, observables[key]) for key in self._obskeys]'], {}), '([(key, observables[key]) for key in self._obskeys])\n', (3439, 3491), False, 'from collections import OrderedDict\n'), ((8951, 8967), 'numpy.isfinite', 'np.isfinite', (['lnp'], {}), '(lnp)\n', (8962, 8967), True, 'import numpy as np\n'), ((10477, 10506), 'numpy.interp', 'np.interp', (['r_grid', 'r', 'q_model'], {}), '(r_grid, r, q_model)\n', (10486, 10506), True, 'import numpy as np\n'), ((10870, 10979), 'scipy.optimize.fminbound', 'optimize.fminbound', (['self.profile.densityDerivativeLog', '(10 ** log_rsp_search_min)', '(10 ** log_rsp_search_max)'], {}), '(self.profile.densityDerivativeLog, 10 **\n log_rsp_search_min, 10 ** log_rsp_search_max)\n', (10888, 10979), False, 'from scipy import optimize\n'), ((9245, 9266), 'numpy.ones', 'np.ones', (['r_grid.shape'], {}), '(r_grid.shape)\n', (9252, 9266), True, 'import numpy as np\n')]
|
"""
Solver D1Q2Q2 for the shallow water system on [0, 1]
d_t(h) + d_x(q) = 0, t > 0, 0 < x < 1,
d_t(q) + d_x(q^2/h+gh^2/2) = 0, t > 0, 0 < x < 1,
h(t=0,x) = h0(x), q(t=0,x) = q0(x),
d_t(h)(t,x=0) = d_t(h)(t,x=1) = 0
d_t(q)(t,x=0) = d_t(q)(t,x=1) = 0
the initial condition is a picewise constant function
in order to visualize the simulation of elementary waves
test: True
"""
import sympy as sp
import numpy as np
import pylbm
h, q, X, LA, g = sp.symbols('h, q, X, LA, g')
def Riemann_pb(x, xmin, xmax, uL, uR):
xm = 0.5*(xmin+xmax)
u = np.empty(x.shape)
u[x < xm] = uL
u[x == xm] = .5*(uL+uR)
u[x > xm] = uR
return u
def run(dx, Tf, generator="numpy", sorder=None, withPlot=True):
"""
Parameters
----------
dx: double
spatial step
Tf: double
final time
generator: pylbm generator
sorder: list
storage order
withPlot: boolean
if True plot the solution otherwise just compute the solution
"""
# parameters
xmin, xmax = 0., 1. # bounds of the domain
la = 2. # velocity of the scheme
s = 1.5 # relaxation parameter
hL, hR, qL, qR = 1., .25, 0.10, 0.10
ymina, ymaxa, yminb, ymaxb = 0., 1., 0., .5
dico = {
'box': {
'x': [xmin, xmax],
'label': 0
},
'space_step': dx,
'scheme_velocity': la,
'schemes': [
{
'velocities': [1, 2],
'conserved_moments': h,
'polynomials': [1, LA*X],
'relaxation_parameters': [0, s],
'equilibrium': [h, q],
},
{
'velocities': [1, 2],
'conserved_moments': q,
'polynomials': [1, LA*X],
'relaxation_parameters': [0, s],
'equilibrium': [q, q**2/h+.5*g*h**2],
},
],
'init': {h: (Riemann_pb, (xmin, xmax, hL, hR)),
q: (Riemann_pb, (xmin, xmax, qL, qR))},
'boundary_conditions': {
0: {
'method': {
0: pylbm.bc.Neumann,
1: pylbm.bc.Neumann
}
},
},
'generator': generator,
'parameters': {LA: la, g: 1.},
}
sol = pylbm.Simulation(dico, sorder=sorder)
if withPlot:
# create the viewer to plot the solution
viewer = pylbm.viewer.matplotlib_viewer
fig = viewer.Fig(2, 1)
ax1 = fig[0]
ax1.axis(xmin, xmax, .9*ymina, 1.1*ymaxa)
ax2 = fig[1]
ax2.axis(xmin, xmax, .9*yminb, 1.1*ymaxb)
x = sol.domain.x
l1 = ax1.plot(x, sol.m[h], color='b')[0]
l2 = ax2.plot(x, sol.m[q], color='r')[0]
def update(iframe):
if sol.t<Tf:
sol.one_time_step()
l1.set_data(x, sol.m[h])
l2.set_data(x, sol.m[q])
ax1.title = r'$h$ at $t = {0:f}$'.format(sol.t)
ax2.title = r'$q$ at $t = {0:f}$'.format(sol.t)
fig.animate(update)
fig.show()
else:
while sol.t < Tf:
sol.one_time_step()
return sol
if __name__ == '__main__':
dx = 1./256
Tf = .25
run(dx, Tf)
|
[
"sympy.symbols",
"pylbm.Simulation",
"numpy.empty"
] |
[((460, 488), 'sympy.symbols', 'sp.symbols', (['"""h, q, X, LA, g"""'], {}), "('h, q, X, LA, g')\n", (470, 488), True, 'import sympy as sp\n'), ((562, 579), 'numpy.empty', 'np.empty', (['x.shape'], {}), '(x.shape)\n', (570, 579), True, 'import numpy as np\n'), ((2339, 2376), 'pylbm.Simulation', 'pylbm.Simulation', (['dico'], {'sorder': 'sorder'}), '(dico, sorder=sorder)\n', (2355, 2376), False, 'import pylbm\n')]
|
# Copyright 2019 Xilinx Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
# PART OF THIS FILE AT ALL TIMES.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from dataset import dataset_common
def parse_rec(image_boxes_info):
objects = []
xmin = image_boxes_info[3][0]
ymin = image_boxes_info[3][1]
xmax = image_boxes_info[3][2]
ymax = image_boxes_info[3][3]
label = image_boxes_info[3][4]
difficult = image_boxes_info[3][5]
for i in range(len(xmin)):
obj_struct = {}
obj_struct['name'] = label[i]
obj_struct['difficult'] = difficult[i]
obj_struct['bbox'] = [int(xmin[i]) - 1,
int(ymin[i]) - 1,
int(xmax[i]) - 1,
int(ymax[i]) - 1]
objects.append(obj_struct)
return objects
def do_python_eval(det_bboxes_by_class, gt_bboxes_by_imagename, use_07=True):
aps = []
use_07_metric = use_07
print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
for cls_name, cls_pair in dataset_common.EDD_LABELS.items():
if 'none' in cls_name:
continue
cls_id = cls_pair[0]
rec, prec, ap = voc_eval(det_bboxes_by_class, gt_bboxes_by_imagename, cls_id,
ovthresh=0.5, use_07_metric=use_07_metric)
aps += [ap]
print('AP for {} = {:.4f}'.format(cls_name, ap))
print ('MAP = {:.4f}'.format(np.mean(aps)))
return np.mean(aps)
def voc_ap(rec, prec, use_07_metric=True):
if use_07_metric:
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
i = np.where(mrec[1:] != mrec[:-1])[0]
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def voc_eval(det_bboxes_by_class, gt_bboxes_dict_by_imagename, class_id, ovthresh=0.5, use_07_metric=True):
imagenames = gt_bboxes_dict_by_imagename.keys()
recs = {}
for i, imagename in enumerate(imagenames):
recs[imagename] = parse_rec(gt_bboxes_dict_by_imagename[imagename])
class_recs = {}
npos = 0
for imagename in imagenames:
R = [obj for obj in recs[imagename] if obj['name'] == class_id]
bbox = np.array([x['bbox'] for x in R])
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
det = [False] * len(R)
npos = npos + sum(~difficult)
class_recs[imagename] = {'bbox': bbox,
'difficult': difficult,
'det': det}
if class_id not in det_bboxes_by_class.keys():
rec = -1.
prec = -1.
ap = -1.
else:
det_bboxes = det_bboxes_by_class[class_id]
if any(det_bboxes) == 1:
image_ids = [x[0] for x in det_bboxes]
confidence = np.array([float(x[1]) for x in det_bboxes])
BB = np.array([[float(z) for z in x[2:]] for x in det_bboxes])
sorted_ind = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
BB = BB[sorted_ind, :]
image_ids = [image_ids[x] for x in sorted_ind]
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
R = class_recs[image_ids[d]]
bb = BB[d, :].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float)
if BBGT.size > 0:
ixmin = np.maximum(BBGT[:, 0], bb[0])
iymin = np.maximum(BBGT[:, 1], bb[1])
ixmax = np.minimum(BBGT[:, 2], bb[2])
iymax = np.minimum(BBGT[:, 3], bb[3])
iw = np.maximum(ixmax - ixmin, 0.)
ih = np.maximum(iymax - iymin, 0.)
inters = iw * ih
uni = ((bb[2] - bb[0]) * (bb[3] - bb[1]) +
(BBGT[:, 2] - BBGT[:, 0]) *
(BBGT[:, 3] - BBGT[:, 1]) - inters)
overlaps = inters / uni
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps)
if ovmax > ovthresh:
if not R['difficult'][jmax]:
if not R['det'][jmax]:
tp[d] = 1.
R['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = voc_ap(rec, prec, use_07_metric)
else:
rec = -1.
prec = -1.
ap = -1.
return rec, prec, ap
if __name__ == '__main__':
do_python_eval()
|
[
"numpy.minimum",
"numpy.sum",
"numpy.maximum",
"numpy.argmax",
"numpy.zeros",
"numpy.argsort",
"numpy.sort",
"numpy.cumsum",
"numpy.mean",
"numpy.arange",
"numpy.array",
"numpy.where",
"dataset.dataset_common.EDD_LABELS.items",
"numpy.max",
"numpy.finfo",
"numpy.concatenate"
] |
[((1699, 1732), 'dataset.dataset_common.EDD_LABELS.items', 'dataset_common.EDD_LABELS.items', ([], {}), '()\n', (1730, 1732), False, 'from dataset import dataset_common\n'), ((2096, 2108), 'numpy.mean', 'np.mean', (['aps'], {}), '(aps)\n', (2103, 2108), True, 'import numpy as np\n'), ((2208, 2232), 'numpy.arange', 'np.arange', (['(0.0)', '(1.1)', '(0.1)'], {}), '(0.0, 1.1, 0.1)\n', (2217, 2232), True, 'import numpy as np\n'), ((2409, 2444), 'numpy.concatenate', 'np.concatenate', (['([0.0], rec, [1.0])'], {}), '(([0.0], rec, [1.0]))\n', (2423, 2444), True, 'import numpy as np\n'), ((2458, 2494), 'numpy.concatenate', 'np.concatenate', (['([0.0], prec, [0.0])'], {}), '(([0.0], prec, [0.0]))\n', (2472, 2494), True, 'import numpy as np\n'), ((2658, 2703), 'numpy.sum', 'np.sum', (['((mrec[i + 1] - mrec[i]) * mpre[i + 1])'], {}), '((mrec[i + 1] - mrec[i]) * mpre[i + 1])\n', (2664, 2703), True, 'import numpy as np\n'), ((3170, 3202), 'numpy.array', 'np.array', (["[x['bbox'] for x in R]"], {}), "([x['bbox'] for x in R])\n", (3178, 3202), True, 'import numpy as np\n'), ((2070, 2082), 'numpy.mean', 'np.mean', (['aps'], {}), '(aps)\n', (2077, 2082), True, 'import numpy as np\n'), ((2565, 2597), 'numpy.maximum', 'np.maximum', (['mpre[i - 1]', 'mpre[i]'], {}), '(mpre[i - 1], mpre[i])\n', (2575, 2597), True, 'import numpy as np\n'), ((2610, 2641), 'numpy.where', 'np.where', (['(mrec[1:] != mrec[:-1])'], {}), '(mrec[1:] != mrec[:-1])\n', (2618, 2641), True, 'import numpy as np\n'), ((3924, 3947), 'numpy.argsort', 'np.argsort', (['(-confidence)'], {}), '(-confidence)\n', (3934, 3947), True, 'import numpy as np\n'), ((3976, 3996), 'numpy.sort', 'np.sort', (['(-confidence)'], {}), '(-confidence)\n', (3983, 3996), True, 'import numpy as np\n'), ((4140, 4152), 'numpy.zeros', 'np.zeros', (['nd'], {}), '(nd)\n', (4148, 4152), True, 'import numpy as np\n'), ((4170, 4182), 'numpy.zeros', 'np.zeros', (['nd'], {}), '(nd)\n', (4178, 4182), True, 'import numpy as np\n'), ((5471, 5484), 'numpy.cumsum', 'np.cumsum', (['fp'], {}), '(fp)\n', (5480, 5484), True, 'import numpy as np\n'), ((5502, 5515), 'numpy.cumsum', 'np.cumsum', (['tp'], {}), '(tp)\n', (5511, 5515), True, 'import numpy as np\n'), ((2248, 2264), 'numpy.sum', 'np.sum', (['(rec >= t)'], {}), '(rec >= t)\n', (2254, 2264), True, 'import numpy as np\n'), ((2331, 2353), 'numpy.max', 'np.max', (['prec[rec >= t]'], {}), '(prec[rec >= t])\n', (2337, 2353), True, 'import numpy as np\n'), ((3223, 3260), 'numpy.array', 'np.array', (["[x['difficult'] for x in R]"], {}), "([x['difficult'] for x in R])\n", (3231, 3260), True, 'import numpy as np\n'), ((4445, 4474), 'numpy.maximum', 'np.maximum', (['BBGT[:, 0]', 'bb[0]'], {}), '(BBGT[:, 0], bb[0])\n', (4455, 4474), True, 'import numpy as np\n'), ((4503, 4532), 'numpy.maximum', 'np.maximum', (['BBGT[:, 1]', 'bb[1]'], {}), '(BBGT[:, 1], bb[1])\n', (4513, 4532), True, 'import numpy as np\n'), ((4561, 4590), 'numpy.minimum', 'np.minimum', (['BBGT[:, 2]', 'bb[2]'], {}), '(BBGT[:, 2], bb[2])\n', (4571, 4590), True, 'import numpy as np\n'), ((4619, 4648), 'numpy.minimum', 'np.minimum', (['BBGT[:, 3]', 'bb[3]'], {}), '(BBGT[:, 3], bb[3])\n', (4629, 4648), True, 'import numpy as np\n'), ((4674, 4704), 'numpy.maximum', 'np.maximum', (['(ixmax - ixmin)', '(0.0)'], {}), '(ixmax - ixmin, 0.0)\n', (4684, 4704), True, 'import numpy as np\n'), ((4729, 4759), 'numpy.maximum', 'np.maximum', (['(iymax - iymin)', '(0.0)'], {}), '(iymax - iymin, 0.0)\n', (4739, 4759), True, 'import numpy as np\n'), ((5049, 5065), 'numpy.max', 'np.max', (['overlaps'], {}), '(overlaps)\n', (5055, 5065), True, 'import numpy as np\n'), ((5093, 5112), 'numpy.argmax', 'np.argmax', (['overlaps'], {}), '(overlaps)\n', (5102, 5112), True, 'import numpy as np\n'), ((5595, 5615), 'numpy.finfo', 'np.finfo', (['np.float64'], {}), '(np.float64)\n', (5603, 5615), True, 'import numpy as np\n')]
|
"""
This module recognizes shapes in pictures
"""
import numpy as np
import sys
np.set_printoptions(threshold=sys.maxsize)
import matplotlib.image as img
import matplotlib.pyplot as plt
# sample user interaction idea
# img = library.image('pic1.png')
# img_contour = img.draw_contours()
class Picture:
"""
Runs through ``orbitize`` methods in a standardized way.
Args:
input_data: Either a relative path to data file or astropy.table.Table object
in the orbitize format. See ``orbitize.read_input``
sampler_str (str): algorithm to use for orbit computation. "MCMC" for
Markov Chain Monte Carlo, "OFTI" for Orbits for the Impatient
num_secondary_bodies (int): number of secondary bodies in the system.
Should be at least 1.
system_mass (float): mean total mass of the system [M_sol]
plx (float): mean parallax of the system [mas]
mass_err (float, optional): uncertainty on ``system_mass`` [M_sol]
plx_err (float, optional): uncertainty on ``plx`` [mas]
lnlike (str, optional): name of function in ``orbitize.lnlike`` that will
be used to compute likelihood. (default="chi2_lnlike")
system_kwargs (dict, optional): ``restrict_angle_ranges``, ``ref_tau_epoch``,
``results`` for ``orbitize.system.System``.
mcmc_kwargs (dict, optional): ``num_temps``, ``num_walkers``, and ``num_threads``
kwargs for ``orbitize.sampler.MCMC``
Written: <NAME>, 2018
"""
def __init__(self, file_name, threshold = 0.1):
"""class __init__ method
Note:
Do not include the `self` parameter in the ``Args`` section.
Args:
file_name (str): The name of the image file to be loaded as a Picture object.
threshold (float): Threshold value to determine whether or not an edge is present. This is passed as an attribute and then called in by the highlight_edges_grad method. Default value is 0.1 .
Attributes:
file_name (str): file name of the loaded image
image (np.array): [R G B] values of each pixel in the image
contours (np.array): copy of the [R G B] values of each pixel in the image, will be used to draw the detected edge over the original image
height (int): height of the image in px
width (int): width of the image in px
edges (np.array): array of zeros with same dimensions as the image. whenever an edge is found, the "color difference" value is stored in the corresponding pixel
threshold (float): threshold to the "color difference" to determine the presence of an edge
alpha (bool): True if the loaded image has an alpha channel, False otherwise
"""
self.file_name = file_name
self.image = img.imread(file_name) # numpy array of r-g-b values
self.contours = img.imread(file_name) # image copy for including highligthed edges
self.height= len(self.image)
self.width = len(self.image[0])
self.edges = np.zeros((self.height, self.width)) # numpy array with 1s as edges
self.threshold = threshold
if len(self.image[0][0]) == 4:
self.alpha = True
else:
self.alpha = False
def __len__(self):
"""
Special len method
Returns:
int: total number of pixels
"""
return self.height * self.width
def __str__(self):
"""
Special str method
Returns:
str: string with info on filename and image size
"""
return f'File name: {self.file_name}; width: {self.width}px, height: {self.height}px'
def __del__(self):
"""
Special del method
It deletes a picture object and prints a report of the deletion
"""
print(f'I just deleted {self.file_name}')
def assess_difference(self, pixel_a, pixel_b):
"""
This function checks if two adjacent pixels have the exact same RGB value
Args:
pixel_a (float, list): [r,g,b] values for pixel A
pixel_b (float, list): [r,g,b] values for pixel B
Returns:
bool: True if the two pixel have the same RGB values
"""
return np.array_equal(pixel_a, pixel_b)
def horizontal_scan(self, row_index):
"""
This function performs a linear scan over a given row
Args:
row_index (int): index of row to scan in self.image
"""
for i in range(1, self.width):
# compare each pixel to the previous one
if not self.assess_difference(self.image[row_index][i-1], self.image[row_index][i]):
self.edges[row_index][i] = 1
def vertical_scan(self, col_index):
'''
This function performs a linear scan over a given column
Args:
col_index - index of column in self.image to scan
'''
for i in range(1, self.height):
# compare each pixel to the previous one
if not self.assess_difference(self.image[i-1][col_index], self.image[i][col_index]):
self.edges[i][col_index] = 1
def find_edges(self):
'''
...
'''
for i in range(self.width):
self.vertical_scan(i)
for i in range(self.height):
self.horizontal_scan(i)
def highlight_edges(self):
'''
'''
if self.alpha:
for i in range(self.height):
for j in range(self.width):
if self.edges[i][j] == 0:
# print(self.contours[i][j])
self.contours[i][j] = [0, 0, 0, 1]
else:
# print(self.contours[i][j])
self.contours[i][j] = [1, 1, 1, 1]
else:
for i in range(self.height):
for j in range(self.width):
if self.edges[i][j] == 0:
# print(self.contours[i][j])
self.contours[i][j] = [0, 0, 0]
else:
# print(self.contours[i][j])
self.contours[i][j] = [1, 1, 1]
def assess_gradient(self, pixel_a, pixel_b):
'''
This function checks if two adjacent pixels have the exact same RGB value
Args:
pixel_a - list: [r,g,b] values for pixel A
pixel_b - list: [r,g,b] values for pixel B
'''
diff = np.abs(pixel_a - pixel_b).sum()
# grad = diff / self.scale
return diff
def horizontal_scan_grad(self, row_index):
'''
This function performs a linear scan over a given row
Args:
row_index - index of row in self.image to scan
'''
for i in range(1, self.width):
# compare each pixel to the previous one
hor_grad = self.assess_gradient(self.image[row_index][i-1], self.image[row_index][i])
self.edges[row_index][i] = max(self.edges[row_index][i], hor_grad)
def vertical_scan_grad(self, col_index):
'''
This function performs a linear scan over a given column
Args:
col_index - index of column in self.image to scan
'''
for i in range(1, self.height):
# compare each pixel to the previous one
vert_grad = self.assess_gradient(self.image[i-1][col_index], self.image[i][col_index])
self.edges[i][col_index] = max(self.edges[i][col_index], vert_grad)
def find_edges_grad(self):
'''
...
'''
for i in range(self.width):
self.vertical_scan_grad(i)
for i in range(self.height):
self.horizontal_scan_grad(i)
def highlight_edges_grad(self):
'''
'''
if self.alpha:
for i in range(self.height):
for j in range(self.width):
if self.edges[i][j] < self.threshold:
# print(self.contours[i][j])
self.contours[i][j] = [0, 0, 0, 1] #drawing black
else:
# print(self.contours[i][j])
# if self.contours[i][j]
self.contours[i][j] = [1, 1, 1, 1] #drawing the edge
else:
for i in range(self.height):
for j in range(self.width):
if self.edges[i][j] < self.threshold:
# print(self.contours[i][j])
self.contours[i][j] = [0, 0, 0]
else:
# print(self.contours[i][j])
self.contours[i][j] = [1, 1, 1]
def check_num_edges(self):
'''
'''
tot_edges = 0
for row in self.edges:
tot_edges += sum(row)
return tot_edges
def paint_contours(self, grad = False):
print('Working on the following image:')
print(self)
if grad:
self.find_edges_grad()
print(f'I found {self.check_num_edges()} edges.')
self.highlight_edges_grad()
else:
self.find_edges()
print(f'I found {self.check_num_edges()} edges.')
self.highlight_edges()
plt.imshow(self.contours)
# for th in np.linspace(0.1, 1., 10, endpoint=True):
# print(f'Threshold is {th}')
# image_to_process = Picture('pic6.png', threshold = th)
image_to_process = Picture('pic6.png')
image_to_process.paint_contours(grad=True)
plt.show()
|
[
"matplotlib.image.imread",
"numpy.set_printoptions",
"matplotlib.pyplot.show",
"numpy.abs",
"matplotlib.pyplot.imshow",
"numpy.zeros",
"numpy.array_equal"
] |
[((80, 122), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'sys.maxsize'}), '(threshold=sys.maxsize)\n', (99, 122), True, 'import numpy as np\n'), ((9988, 9998), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9996, 9998), True, 'import matplotlib.pyplot as plt\n'), ((2870, 2891), 'matplotlib.image.imread', 'img.imread', (['file_name'], {}), '(file_name)\n', (2880, 2891), True, 'import matplotlib.image as img\n'), ((2946, 2967), 'matplotlib.image.imread', 'img.imread', (['file_name'], {}), '(file_name)\n', (2956, 2967), True, 'import matplotlib.image as img\n'), ((3111, 3146), 'numpy.zeros', 'np.zeros', (['(self.height, self.width)'], {}), '((self.height, self.width))\n', (3119, 3146), True, 'import numpy as np\n'), ((4427, 4459), 'numpy.array_equal', 'np.array_equal', (['pixel_a', 'pixel_b'], {}), '(pixel_a, pixel_b)\n', (4441, 4459), True, 'import numpy as np\n'), ((9690, 9715), 'matplotlib.pyplot.imshow', 'plt.imshow', (['self.contours'], {}), '(self.contours)\n', (9700, 9715), True, 'import matplotlib.pyplot as plt\n'), ((6773, 6798), 'numpy.abs', 'np.abs', (['(pixel_a - pixel_b)'], {}), '(pixel_a - pixel_b)\n', (6779, 6798), True, 'import numpy as np\n')]
|
import torch
from itertools import accumulate
from fairseq.data import (
data_utils,
FairseqDataset,
Dictionary,
IdDataset,
NestedDictionaryDataset,
NumelDataset,
NumSamplesDataset,
)
from functools import lru_cache
import numpy as np
from seqp.hdf5 import Hdf5RecordReader
from typing import List
from morphodropout.binarize import (
SRC_SUBWORD_KEY,
SRC_SUBWORD_LENGTHS_KEY,
SRC_MORPH_KEY,
SRC_MORPH_LENGTHS_KEY,
SRC_LEMMA_KEY,
)
class MorphoDataset(FairseqDataset):
"""A dataset that provides helpers for batching."""
def __init__(self,
dictionary: Dictionary,
data_files: List[str],
morpho_dropout: float = 0.5):
self.dictionary = dictionary
self.pad_idx = dictionary.pad_index
self.data_files = data_files
self.reader = Hdf5RecordReader(data_files)
self.morpho_dropout = morpho_dropout
def __getstate__(self):
state = self.__dict__.copy()
# Don't pickle the reader (see https://github.com/h5py/h5py/issues/1092)
del state["reader"]
return state
def __setstate__(self, state):
self.__dict__.update(state)
# Add reader back since it doesn't exist in the pickle
self.reader = Hdf5RecordReader(self.data_files)
@lru_cache(maxsize=8)
def __getitem__(self, index):
record = self.reader.retrieve(index)
lemmas = record[SRC_LEMMA_KEY]
subwords = record[SRC_SUBWORD_KEY]
morphos = record[SRC_MORPH_KEY]
morpho_lengths = record[SRC_MORPH_LENGTHS_KEY].tolist()
sw_lengths = record[SRC_SUBWORD_LENGTHS_KEY].tolist()
use_subwords = np.random.binomial(size=len(lemmas), n=1, p=self.morpho_dropout).astype(bool)
EOS_POS = -1
sw_pos = list(accumulate(sw_lengths))
morpho_pos = list(accumulate(morpho_lengths))
start_end = zip([0] + sw_pos[:EOS_POS - 1],
sw_pos[:EOS_POS],
[0] + morpho_pos[:-1],
morpho_pos)
pad = [self.dictionary.pad_index]
eos = [self.dictionary.eos_index]
result: List[np.ndarray] = list()
max_depth = 0
for k, (sw_start, sw_end, morpho_start, morpho_end) in enumerate(start_end):
if use_subwords[k] or lemmas[k] in [self.dictionary.unk_index, self.dictionary.pad_index]:
word_subwords = subwords[sw_start:sw_end]
result.extend([np.array([sw], dtype=np.int64) for sw in word_subwords])
max_depth = max(max_depth, 1)
else:
clean_morphos = [m if m != self.dictionary.unk_index else self.dictionary.pad_index
for m in morphos[morpho_start:morpho_end]]
word_linguistic_info = [lemmas[k]] + clean_morphos
result.append(np.array(word_linguistic_info, dtype=np.int64))
max_depth = max(max_depth, len(word_linguistic_info))
result.append(np.array(eos, dtype=np.int64))
# Add padding and convert to tensors
result = [torch.LongTensor(np.concatenate((r, pad * (max_depth - len(r))))) for r in result]
# Combine padded tensors into a single 2d tensor
result = torch.stack(result)
return result
def __len__(self):
return self.reader.num_records()
def num_tokens(self, index):
return self.reader.length(index)
def size(self, index):
return self.reader.length(index)
def ordered_indices(self):
return [idx for idx, length in self.reader.indexes_and_lengths()]
@property
def sizes(self):
return [length for idx, length in self.reader.indexes_and_lengths()]
def get_dummy_batch(self, num_tokens, max_positions):
return self.dictionary.dummy_sentence(num_tokens).unsqueeze(dim=2)
@property
def supports_prefetch(self):
return False
def prefetch(self, indices):
raise NotImplementedError
def collater(self, samples):
size = max(v.size(0) for v in samples)
depth = max(v.size(1) for v in samples)
res = samples[0].new(len(samples), size, depth).fill_(self.pad_idx)
def copy_tensor(src, dst):
assert dst.numel() == src.numel()
dst.copy_(src)
for i, v in enumerate(samples):
copy_tensor(v, res[i, :v.size(0), :v.size(1)])
return res
class MonolingualDataset(FairseqDataset):
"""A dataset that provides helpers for batching."""
def __init__(self,
dictionary: Dictionary,
data_files: List[str],
left_pad=False,
move_eos_to_beginning=False):
self.dictionary = dictionary
self.data_files = data_files
self.reader = Hdf5RecordReader(data_files)
self.left_pad = left_pad
self.move_eos_to_beginning = move_eos_to_beginning
def __getstate__(self):
state = self.__dict__.copy()
# Don't pickle the reader (see https://github.com/h5py/h5py/issues/1092)
del state["reader"]
return state
def __setstate__(self, state):
self.__dict__.update(state)
# Add reader back since it doesn't exist in the pickle
self.reader = Hdf5RecordReader(self.data_files)
def __getitem__(self, index):
elem = self.reader.retrieve(index)
elem = torch.LongTensor(elem.astype(np.int64))
return elem
def __len__(self):
return self.reader.num_records()
def collater(self, samples):
tokens = data_utils.collate_tokens(
[s for s in samples],
self.dictionary.pad_index,
self.dictionary.eos_index,
self.left_pad,
move_eos_to_beginning=self.move_eos_to_beginning)
return tokens
def get_dummy_batch(self, num_tokens, max_positions):
return self.dictionary.dummy_sentence(num_tokens)
def num_tokens(self, index):
return self.reader.length(index)
def size(self, index):
return self.reader.length(index)
def ordered_indices(self):
return [idx for idx, length in self.reader.indexes_and_lengths()]
@property
def sizes(self):
return [length for idx, length in self.reader.indexes_and_lengths()]
@property
def supports_prefetch(self):
return False
def prefetch(self, indices):
raise NotImplementedError
def build_combined_dataset(
src_dictionary: Dictionary,
src_data_files: List[str],
src_morpho_dropout: float,
tgt_dictionary: Dictionary,
tgt_hdf5_files: List[str],
seed: int,
epoch: int,
) -> FairseqDataset:
src = MorphoDataset(src_dictionary,
src_data_files,
src_morpho_dropout)
target = MonolingualDataset(tgt_dictionary,
tgt_hdf5_files,
move_eos_to_beginning=False)
prev_output_tokens = MonolingualDataset(tgt_dictionary,
tgt_hdf5_files,
move_eos_to_beginning=True)
return NestedDictionaryDataset(
{
'id': IdDataset(),
'net_input': {
'src_tokens': src,
'src_lengths': NumelDataset(src, reduce=False),
'prev_output_tokens': prev_output_tokens,
},
'target': target,
'nsentences': NumSamplesDataset(),
'ntokens': NumelDataset(src, reduce=True),
},
sizes=[src.sizes],
)
|
[
"fairseq.data.data_utils.collate_tokens",
"fairseq.data.NumelDataset",
"torch.stack",
"seqp.hdf5.Hdf5RecordReader",
"itertools.accumulate",
"fairseq.data.NumSamplesDataset",
"numpy.array",
"fairseq.data.IdDataset",
"functools.lru_cache"
] |
[((1335, 1355), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': '(8)'}), '(maxsize=8)\n', (1344, 1355), False, 'from functools import lru_cache\n'), ((868, 896), 'seqp.hdf5.Hdf5RecordReader', 'Hdf5RecordReader', (['data_files'], {}), '(data_files)\n', (884, 896), False, 'from seqp.hdf5 import Hdf5RecordReader\n'), ((1295, 1328), 'seqp.hdf5.Hdf5RecordReader', 'Hdf5RecordReader', (['self.data_files'], {}), '(self.data_files)\n', (1311, 1328), False, 'from seqp.hdf5 import Hdf5RecordReader\n'), ((3297, 3316), 'torch.stack', 'torch.stack', (['result'], {}), '(result)\n', (3308, 3316), False, 'import torch\n'), ((4853, 4881), 'seqp.hdf5.Hdf5RecordReader', 'Hdf5RecordReader', (['data_files'], {}), '(data_files)\n', (4869, 4881), False, 'from seqp.hdf5 import Hdf5RecordReader\n'), ((5327, 5360), 'seqp.hdf5.Hdf5RecordReader', 'Hdf5RecordReader', (['self.data_files'], {}), '(self.data_files)\n', (5343, 5360), False, 'from seqp.hdf5 import Hdf5RecordReader\n'), ((5630, 5805), 'fairseq.data.data_utils.collate_tokens', 'data_utils.collate_tokens', (['[s for s in samples]', 'self.dictionary.pad_index', 'self.dictionary.eos_index', 'self.left_pad'], {'move_eos_to_beginning': 'self.move_eos_to_beginning'}), '([s for s in samples], self.dictionary.pad_index,\n self.dictionary.eos_index, self.left_pad, move_eos_to_beginning=self.\n move_eos_to_beginning)\n', (5655, 5805), False, 'from fairseq.data import data_utils, FairseqDataset, Dictionary, IdDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset\n'), ((1828, 1850), 'itertools.accumulate', 'accumulate', (['sw_lengths'], {}), '(sw_lengths)\n', (1838, 1850), False, 'from itertools import accumulate\n'), ((1878, 1904), 'itertools.accumulate', 'accumulate', (['morpho_lengths'], {}), '(morpho_lengths)\n', (1888, 1904), False, 'from itertools import accumulate\n'), ((3044, 3073), 'numpy.array', 'np.array', (['eos'], {'dtype': 'np.int64'}), '(eos, dtype=np.int64)\n', (3052, 3073), True, 'import numpy as np\n'), ((7389, 7400), 'fairseq.data.IdDataset', 'IdDataset', ([], {}), '()\n', (7398, 7400), False, 'from fairseq.data import data_utils, FairseqDataset, Dictionary, IdDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset\n'), ((7713, 7732), 'fairseq.data.NumSamplesDataset', 'NumSamplesDataset', ([], {}), '()\n', (7730, 7732), False, 'from fairseq.data import data_utils, FairseqDataset, Dictionary, IdDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset\n'), ((7765, 7795), 'fairseq.data.NumelDataset', 'NumelDataset', (['src'], {'reduce': '(True)'}), '(src, reduce=True)\n', (7777, 7795), False, 'from fairseq.data import data_utils, FairseqDataset, Dictionary, IdDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset\n'), ((7519, 7550), 'fairseq.data.NumelDataset', 'NumelDataset', (['src'], {'reduce': '(False)'}), '(src, reduce=False)\n', (7531, 7550), False, 'from fairseq.data import data_utils, FairseqDataset, Dictionary, IdDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset\n'), ((2904, 2950), 'numpy.array', 'np.array', (['word_linguistic_info'], {'dtype': 'np.int64'}), '(word_linguistic_info, dtype=np.int64)\n', (2912, 2950), True, 'import numpy as np\n'), ((2510, 2540), 'numpy.array', 'np.array', (['[sw]'], {'dtype': 'np.int64'}), '([sw], dtype=np.int64)\n', (2518, 2540), True, 'import numpy as np\n')]
|
from tqdm.auto import tqdm
import click
import numpy as np
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
from sklearn.metrics.pairwise import cosine_similarity
import torch
import math
import json
def load_vectors(path, max_n=200_000):
with open(path) as f:
ids = {}
dim = int(f.readline().strip().split()[1])
vectors = np.zeros((max_n, dim))
i = 0
for line in tqdm(f, total=max_n):
if i == max_n:
break
parts = line.split()
name = parts[0]
if name in ids:
continue
try:
values = np.array([float(x) for x in parts[1:]])
vectors[i] = values
ids[name] = i
i += 1
except ValueError:
pass
return vectors, ids
def get_tokenizer_embeddings(tokenizer, vectors, ids, freqs):
embs = {value: ([], [], set()) for value in tokenizer.get_vocab().values()}
for lower_key, value in tqdm(ids.items()):
for key in [lower_key, lower_key.title()]:
tokenized = tokenizer.encode(
key, add_special_tokens=False
) + tokenizer.encode(" " + key, add_special_tokens=False)
for token_id in tokenized:
if key not in embs[token_id][2] and key in freqs:
embs[token_id][0].append(vectors[value])
embs[token_id][1].append(freqs[key])
embs[token_id][2].add(key)
embs_matrix = np.zeros((len(embs), vectors.shape[1]))
for i in range(len(embs_matrix)):
if len(embs[i][2]) == 0:
continue
freqs = np.array(embs[i][1], dtype=np.float32)
freqs /= freqs.sum()
embs_matrix[i] = (np.stack(embs[i][0]) * freqs[:, np.newaxis]).sum(axis=0)
return embs_matrix
@click.command()
@click.option("--german_tokenizer", help="Name or path of trained German tokenizer.")
@click.option("--english_tokenizer", help="Name or path of trained English tokenizer.")
@click.option(
"--gpt2_model", help="Name or path of trained English GPT2 model to use WTE from."
)
@click.option(
"--german_freqs", help="Path to a .json file with frequencies of german words."
)
@click.option(
"--english_freqs", help="Path to a .json file with frequencies of english words."
)
@click.option(
"--german_vecs",
help="German aligned word vectors from https://fasttext.cc/docs/en/aligned-vectors.html.",
)
@click.option(
"--english_vecs",
help="English aligned word vectors from https://fasttext.cc/docs/en/aligned-vectors.html.",
)
@click.option(
"--out_path", help="Path to store the German WTE matrix at as .pt file.",
)
def main(
german_tokenizer,
english_tokenizer,
gpt2_model,
german_freqs,
english_freqs,
german_vecs,
english_vecs,
out_path,
):
german_freqs = json.load(open(german_freqs))
english_freqs = json.load(open(english_freqs))
de_vectors, de_ids = load_vectors(german_vecs)
en_vectors, en_ids = load_vectors(english_vecs)
german_tokenizer = GPT2TokenizerFast.from_pretrained(german_tokenizer)
english_tokenizer = GPT2TokenizerFast.from_pretrained(english_tokenizer)
model = GPT2LMHeadModel.from_pretrained(gpt2_model)
en_tok_embs = get_tokenizer_embeddings(
english_tokenizer, en_vectors, en_ids, english_freqs
)
de_tok_embs = get_tokenizer_embeddings(
german_tokenizer, de_vectors, de_ids, german_freqs
)
def get_closest(token_id, similarities=None):
if (de_tok_embs[token_id] == 0).all():
return None, None
if similarities is None:
similarities = cosine_similarity(
de_tok_embs[token_id][np.newaxis, :], en_tok_embs
)[0]
best = np.argsort(similarities)[::-1]
best = english_tokenizer.convert_ids_to_tokens(best)
de_token = german_tokenizer.convert_ids_to_tokens([token_id])[0]
space_before = de_token.startswith("Ġ")
best = [x for x in best if x.startswith("Ġ") == space_before]
en_token = best[0]
return en_token, de_token
print("Some sample mappings:")
for token_id in np.random.choice(list(german_tokenizer.get_vocab().values()), 30):
en_token, de_token = get_closest(token_id)
print(f"{de_token} -> {en_token}")
german_wte_weight = torch.zeros_like(model.transformer.wte.weight)
mean, std = (
model.transformer.wte.weight.mean().item(),
model.transformer.wte.weight.std().item(),
)
en_vocab = english_tokenizer.get_vocab()
n_matched = 0
batch_size = 1024
for i in tqdm(range(int(math.ceil(len(german_wte_weight) / batch_size)))):
start, end = i * batch_size, min((i + 1) * batch_size, len(german_wte_weight))
similarities = cosine_similarity(de_tok_embs[start:end], en_tok_embs)
for token_id in range(start, end):
en_token, _ = get_closest(
token_id, similarities=similarities[token_id - start]
)
if en_token is None:
german_wte_weight[token_id] = torch.normal(
mean, std, size=(german_wte_weight.shape[1],)
)
else:
en_token_id = en_vocab[en_token]
german_wte_weight[token_id] = model.transformer.wte.weight[en_token_id]
n_matched += 1
print(f"Matching token found for {n_matched} of {len(en_vocab)} tokens.")
torch.save(german_wte_weight, out_path)
if __name__ == "__main__":
main()
|
[
"numpy.stack",
"sklearn.metrics.pairwise.cosine_similarity",
"torch.zeros_like",
"transformers.GPT2TokenizerFast.from_pretrained",
"transformers.GPT2LMHeadModel.from_pretrained",
"click.option",
"numpy.zeros",
"click.command",
"torch.save",
"tqdm.auto.tqdm",
"numpy.argsort",
"torch.normal",
"numpy.array"
] |
[((1882, 1897), 'click.command', 'click.command', ([], {}), '()\n', (1895, 1897), False, 'import click\n'), ((1899, 1988), 'click.option', 'click.option', (['"""--german_tokenizer"""'], {'help': '"""Name or path of trained German tokenizer."""'}), "('--german_tokenizer', help=\n 'Name or path of trained German tokenizer.')\n", (1911, 1988), False, 'import click\n'), ((1985, 2076), 'click.option', 'click.option', (['"""--english_tokenizer"""'], {'help': '"""Name or path of trained English tokenizer."""'}), "('--english_tokenizer', help=\n 'Name or path of trained English tokenizer.')\n", (1997, 2076), False, 'import click\n'), ((2073, 2174), 'click.option', 'click.option', (['"""--gpt2_model"""'], {'help': '"""Name or path of trained English GPT2 model to use WTE from."""'}), "('--gpt2_model', help=\n 'Name or path of trained English GPT2 model to use WTE from.')\n", (2085, 2174), False, 'import click\n'), ((2177, 2275), 'click.option', 'click.option', (['"""--german_freqs"""'], {'help': '"""Path to a .json file with frequencies of german words."""'}), "('--german_freqs', help=\n 'Path to a .json file with frequencies of german words.')\n", (2189, 2275), False, 'import click\n'), ((2278, 2378), 'click.option', 'click.option', (['"""--english_freqs"""'], {'help': '"""Path to a .json file with frequencies of english words."""'}), "('--english_freqs', help=\n 'Path to a .json file with frequencies of english words.')\n", (2290, 2378), False, 'import click\n'), ((2381, 2511), 'click.option', 'click.option', (['"""--german_vecs"""'], {'help': '"""German aligned word vectors from https://fasttext.cc/docs/en/aligned-vectors.html."""'}), "('--german_vecs', help=\n 'German aligned word vectors from https://fasttext.cc/docs/en/aligned-vectors.html.'\n )\n", (2393, 2511), False, 'import click\n'), ((2514, 2646), 'click.option', 'click.option', (['"""--english_vecs"""'], {'help': '"""English aligned word vectors from https://fasttext.cc/docs/en/aligned-vectors.html."""'}), "('--english_vecs', help=\n 'English aligned word vectors from https://fasttext.cc/docs/en/aligned-vectors.html.'\n )\n", (2526, 2646), False, 'import click\n'), ((2649, 2740), 'click.option', 'click.option', (['"""--out_path"""'], {'help': '"""Path to store the German WTE matrix at as .pt file."""'}), "('--out_path', help=\n 'Path to store the German WTE matrix at as .pt file.')\n", (2661, 2740), False, 'import click\n'), ((3131, 3182), 'transformers.GPT2TokenizerFast.from_pretrained', 'GPT2TokenizerFast.from_pretrained', (['german_tokenizer'], {}), '(german_tokenizer)\n', (3164, 3182), False, 'from transformers import GPT2LMHeadModel, GPT2TokenizerFast\n'), ((3207, 3259), 'transformers.GPT2TokenizerFast.from_pretrained', 'GPT2TokenizerFast.from_pretrained', (['english_tokenizer'], {}), '(english_tokenizer)\n', (3240, 3259), False, 'from transformers import GPT2LMHeadModel, GPT2TokenizerFast\n'), ((3273, 3316), 'transformers.GPT2LMHeadModel.from_pretrained', 'GPT2LMHeadModel.from_pretrained', (['gpt2_model'], {}), '(gpt2_model)\n', (3304, 3316), False, 'from transformers import GPT2LMHeadModel, GPT2TokenizerFast\n'), ((4436, 4482), 'torch.zeros_like', 'torch.zeros_like', (['model.transformer.wte.weight'], {}), '(model.transformer.wte.weight)\n', (4452, 4482), False, 'import torch\n'), ((5556, 5595), 'torch.save', 'torch.save', (['german_wte_weight', 'out_path'], {}), '(german_wte_weight, out_path)\n', (5566, 5595), False, 'import torch\n'), ((364, 386), 'numpy.zeros', 'np.zeros', (['(max_n, dim)'], {}), '((max_n, dim))\n', (372, 386), True, 'import numpy as np\n'), ((422, 442), 'tqdm.auto.tqdm', 'tqdm', (['f'], {'total': 'max_n'}), '(f, total=max_n)\n', (426, 442), False, 'from tqdm.auto import tqdm\n'), ((1703, 1741), 'numpy.array', 'np.array', (['embs[i][1]'], {'dtype': 'np.float32'}), '(embs[i][1], dtype=np.float32)\n', (1711, 1741), True, 'import numpy as np\n'), ((4887, 4941), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['de_tok_embs[start:end]', 'en_tok_embs'], {}), '(de_tok_embs[start:end], en_tok_embs)\n', (4904, 4941), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((3845, 3869), 'numpy.argsort', 'np.argsort', (['similarities'], {}), '(similarities)\n', (3855, 3869), True, 'import numpy as np\n'), ((3727, 3795), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['de_tok_embs[token_id][np.newaxis, :]', 'en_tok_embs'], {}), '(de_tok_embs[token_id][np.newaxis, :], en_tok_embs)\n', (3744, 3795), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((5188, 5247), 'torch.normal', 'torch.normal', (['mean', 'std'], {'size': '(german_wte_weight.shape[1],)'}), '(mean, std, size=(german_wte_weight.shape[1],))\n', (5200, 5247), False, 'import torch\n'), ((1798, 1818), 'numpy.stack', 'np.stack', (['embs[i][0]'], {}), '(embs[i][0])\n', (1806, 1818), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
from itertools import product
from pathlib import Path
import numpy as np
import pygame
import os
# основные используемые цвета
background_color = (100, 100, 100)
layout_color = (120, 120, 120)
lighter_color = (150, 150, 150)
text_color = (200, 200, 200)
colors = {
# игровое поле и шрифт
0: (170, 170, 170),
# фигуры
1: (230, 100, 100),
2: (230, 210, 100),
3: (210, 230, 100),
4: (100, 230, 100),
5: (100, 230, 210),
6: (100, 210, 230),
7: (100, 100, 230),
8: (210, 100, 230),
9: (230, 100, 200)
}
figures = [
# коробки всех размеров
np.array([[True] * 3, [True] * 3, [True] * 3]).T,
np.array([[True, True], [True, True]]).T,
np.array([[True]]).T,
# # прямые линии
np.array([[True] * 5]),
np.array([[True] * 4]),
np.array([[True] * 3]),
np.array([[True] * 2]),
# остальные фигуры
np.array([[True, False, False], [True, False, False], [True, True, True]]),
np.array([[True, False, False], [True, False, False], [True, True, False]]),
np.array([[True, False], [True, True]]),
]
# сдвига начала координат
shift_pos = (10, 10)
# размер одного тайла
TILE_SIZE = 32
# сдвиги и пробелы между тайлами для отрисовки
TILE_SHIFT = 8
TILE_SKIP = 28
# размер корзины для фигур
MAX_BASKET_TILES = 5
# количество ячеек в корзине для фигур
MAX_BASKET_SIZE = 3
# размер игровой доски
BOARD_SIZE = 10
# идентификаторы кнопок мыши в pygame
LEFT_MOUSE = 1
RIGHT_MOUSE = 3
# координаты с корзинам с фигурами
basket_pos = [[x + shift_pos[0], TILE_SIZE * 11 + shift_pos[1]]
for x in np.arange(0, 3 * MAX_BASKET_TILES * TILE_SIZE, TILE_SIZE * 6)]
# автоматический размер окна
game_width = basket_pos[2][0] + (basket_pos[1][0] - basket_pos[0][0]) - shift_pos[0]
game_height = TILE_SIZE * (BOARD_SIZE + MAX_BASKET_TILES + 2) + shift_pos[1] - shift_pos[1]
# gameover params
game_over_text = 'КОНЕЦ ИГРЫ'
gmx, gmy = len(game_over_text) * 30, 48
gmx_pos = ((game_width - gmx) // 2, (game_height - gmy) // 2)
rect1 = (gmx_pos[0] - 10, gmx_pos[1], gmx + 15, gmy + 13)
rect2 = (gmx_pos[0] - 5, gmx_pos[1] + 5, gmx + 5, gmy + 3)
def remove_zeros(arr):
# находим строки и столбцы полностью пустые
empty_cols, empty_rows = arr.sum(axis=0), arr.sum(axis=1)
# и убираем их из текущей фигуры
return arr[empty_rows != False, :][:, empty_cols != False]
def rotate(figure):
# помещаем фигуру в квадрат side_size x side_size
side_size = max(figure.shape)
zeros = np.zeros((side_size, side_size), dtype=bool)
zeros[:figure.shape[0], :figure.shape[1]] = figure
figure = zeros
# создаём новый массив повёрнутый на 90 градусов
nf = np.empty(figure.shape, dtype=bool)
for i in range(side_size):
for j in range(side_size):
nf[side_size - i - 1][j] = figure[j][i]
return remove_zeros(nf)
def prepare_figures(figures):
result = figures[:3]
# генерируем все положения для линейных фигур (2 варианта)
for figure in figures[3:][:4]:
r_figure = rotate(figure)
# INFO: не убирать .T (нужно для корректного отображения фигур)
result += [remove_zeros(figure.T), r_figure.T]
# генерируем угловые фигуры (4 варианта)
for figure in figures[-3:]:
# INFO: не убирать .T (нужно для корректного отображения фигур)
result.append(remove_zeros(figure.T))
for _ in range(3):
figure = rotate(figure)
result.append(figure.T)
return result
def AAfilledRoundedRect(surface, rect, color, radius=0.2):
"""
surface : destination
rect : rectangle
color : rgb or rgba
radius : 0 <= radius <= 1
"""
rect, color = pygame.Rect(rect), pygame.Color(*color)
alpha = color.a
color.a = 0
pos = rect.topleft
rect.topleft = 0, 0
rectangle = pygame.Surface(rect.size, pygame.SRCALPHA)
circle = pygame.Surface([min(rect.size) * 3] * 2, pygame.SRCALPHA)
pygame.draw.ellipse(circle, (0, 0, 0), circle.get_rect(), 0)
circle = pygame.transform.smoothscale(
circle, [int(min(rect.size) * radius)] * 2)
radius = rectangle.blit(circle, (0, 0))
radius.bottomright = rect.bottomright
rectangle.blit(circle, radius)
radius.topright = rect.topright
rectangle.blit(circle, radius)
radius.bottomleft = rect.bottomleft
rectangle.blit(circle, radius)
rectangle.fill((0, 0, 0), rect.inflate(-radius.w, 0))
rectangle.fill((0, 0, 0), rect.inflate(0, -radius.h))
rectangle.fill(color, special_flags=pygame.BLEND_RGBA_MAX)
rectangle.fill((255, 255, 255, alpha), special_flags=pygame.BLEND_RGBA_MIN)
return surface.blit(rectangle, pos)
def draw_text(r, font, color, position, shift_y, text):
xp, yp = position
# режем строку на блоки
for line in text.split('\n'):
# рисуем строку
text = font.render(line, True, color)
# переносим на отрисовочный слой
r.blit(text, (xp, yp))
# переводим указатель на новую строку
yp += shift_y
class Board:
def __init__(self, size_x=10, size_y=10):
self.width = size_x
self.height = size_y
self.cells = np.zeros((size_y, size_y))
def clear(self):
self.cells = np.zeros((self.width, self.height))
def set(self, pos, figure, color=1):
width, height = len(figure), len(figure[0])
x_pos, y_pos = pos[0], pos[1]
for y in range(y_pos, y_pos + height):
for x in range(x_pos, x_pos + width):
if figure[x - x_pos][y - y_pos]:
self.cells[y, x] = color * figure[x - x_pos][y - y_pos]
def can_set(self, pos, figure):
width, height = len(figure), len(figure[0])
x_pos, y_pos = pos[0], pos[1]
# проверка на выход из границ игрового поля
pole_cond = x_pos >= 0 and x_pos + width <= self.width and\
y_pos >= 0 and y_pos + height <= self.height
if not pole_cond:
return False
for y in range(y_pos, y_pos + height):
for x in range(x_pos, x_pos + width):
if self.cells[y, x] * figure[x - x_pos, y - y_pos] != 0:
return False
return True
def draw(self, display):
for j, row in enumerate(self.cells):
for i, item in enumerate(row):
rect = (shift_pos[0] + i * TILE_SIZE + TILE_SHIFT,
shift_pos[1] + j * TILE_SIZE + TILE_SHIFT, TILE_SKIP, TILE_SKIP)
AAfilledRoundedRect(display, rect, colors[item])
def get_lines(self):
items = []
for row in self.cells:
if np.all(row > 0):
items.append(row)
for col in self.cells.T:
if np.all(col > 0):
items.append(col)
return items
board = Board(size_x=BOARD_SIZE, size_y=BOARD_SIZE)
figures = prepare_figures(figures)
class App:
MAX_COUNTDOWN = 1
GAME_FPS = 60
def __init__(self, width=game_width, height=game_height):
self.figure_drag = False
self.figure_index = -1
self.generate_figures()
self.width = width
self.height = height
self._running = True
self._display_surf = None
self.game_over = False
self.clock = pygame.time.Clock()
self.cwd = Path(os.path.dirname(os.path.abspath(__file__)))
self.remove_animation = False
self.remove_countdown = App.MAX_COUNTDOWN
self.game_score = 0
self.score_file = self.cwd / 'gamescore.txt'
game_score_value = 0
if self.score_file.exists():
try:
game_score_value = int(self.score_file.open('r').read())
except ValueError:
pass
self.game_highscore = game_score_value
self.lines = None
def generate_figures(self):
self.basket_figures = np.random.choice(figures, size=MAX_BASKET_SIZE)
self.basket_colors = np.random.randint(1, len(colors), size=MAX_BASKET_SIZE)
self.basket_count = 0
def on_init(self):
pygame.init()
pygame.display.set_caption('1010')
self._display_surf = pygame.display.set_mode((self.width, self.height), pygame.HWSURFACE)
self._running = True
path_to_font = str(self.cwd / 'resources' / 'FiraMono-Regular.ttf')
self.font = pygame.font.Font(path_to_font, 20)
self.bigfont = pygame.font.Font(path_to_font, 48)
def on_event(self, event):
if event.type == pygame.QUIT:
self._running = False
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_ESCAPE:
self._running = False
if self.remove_animation:
return
if event.type == pygame.MOUSEBUTTONDOWN:
if event.button == LEFT_MOUSE:
x, y = pygame.mouse.get_pos()
if not self.figure_drag and y >= basket_pos[0][1]:
self.figure_index = x // (game_width // MAX_BASKET_SIZE)
self.figure_drag = True
elif self.figure_drag:
# проверка на вхождения xy в границы игрового поля
figure_in = x > shift_pos[0] and x < (shift_pos[0] + TILE_SIZE * board.width) and\
y > shift_pos[1] and y < (shift_pos[1] + TILE_SIZE * board.height)
if figure_in:
index_x = int(np.ceil((x - shift_pos[0] + TILE_SHIFT) / TILE_SIZE) - 1)
index_y = int(np.ceil((y - shift_pos[1] + TILE_SHIFT) / TILE_SIZE) - 1)
# можно ли установить фигуру на поле
if board.can_set((index_x, index_y), self.basket_figures[self.figure_index]):
self.game_score += int(self.basket_figures[self.figure_index].sum())
board.set(
(index_x, index_y),
self.basket_figures[self.figure_index],
color=self.basket_colors[self.figure_index])
# удаляем фигуру из ячейки корзины
self.basket_figures[self.figure_index] = np.array([[]])
self.basket_count += 1
# генерируем новые фигуры, если корзина пуста
if self.basket_count == MAX_BASKET_SIZE:
self.generate_figures()
self.figure_drag = False
self.figure_index = -1
if self.game_over:
board.clear()
self.generate_figures()
self.game_highscore = max(self.game_score, self.game_highscore)
self.save_game_score()
self.game_over = False
self.game_score = 0
def on_loop(self):
if not self.remove_animation:
# помещение блоков для анимации
items = board.get_lines()
if len(items) > 0:
self.lines = items
self.remove_animation = True
if not self.game_over and not self.remove_animation:
# проверка игры на проигрыш
figure_cant_set = True
for figure in self.basket_figures:
if not figure_cant_set:
break
if figure.sum() == 0:
continue
for x, y in product(range(board.width), range(board.height)):
if board.can_set((x, y), figure):
figure_cant_set = False
break
if figure_cant_set:
self.game_over = True
else:
# реализация анимации удаления заполенной полосы
if self.remove_countdown == 0:
all_clear = True
for item in self.lines:
if item.sum() > 0:
all_clear = False
item[item.astype('bool').argmax()] = 0
self.game_score += 1
if all_clear:
self.remove_animation = False
self.lines = None
self.remove_countdown = App.MAX_COUNTDOWN
else:
self.remove_countdown -= 1
self.game_highscore = max(self.game_score, self.game_highscore)
def on_render(self):
# рисование подложки
pygame.draw.rect(self._display_surf, background_color, (0, 0, self.width, self.height))
# рисование основого игрового поля
board.draw(self._display_surf)
# рисование подложки для фигур
for k in range(MAX_BASKET_SIZE):
for j in range(MAX_BASKET_TILES):
for i in range(MAX_BASKET_TILES):
rect = [shift_pos[0], shift_pos[1], TILE_SKIP, TILE_SKIP]
rect[0] += k * TILE_SIZE * (MAX_BASKET_TILES + 1) + i * TILE_SIZE + TILE_SHIFT
rect[1] += (board.height + 1) * TILE_SIZE + j * TILE_SIZE + TILE_SHIFT
AAfilledRoundedRect(self._display_surf, rect, layout_color)
# рисование фигура в корзинах
for index, (x, y) in enumerate(basket_pos):
if index == self.figure_index:
x, y = pygame.mouse.get_pos()
x -= TILE_SIZE // 2
y -= TILE_SIZE // 2
for j, row in enumerate(self.basket_figures[index].T):
for i, item in enumerate(row):
if item > 0:
rect = (x + i * TILE_SIZE + TILE_SHIFT, y + j *
TILE_SIZE + TILE_SHIFT, TILE_SKIP, TILE_SKIP)
AAfilledRoundedRect(
self._display_surf, rect, colors[self.basket_colors[index]])
# вывод игровых очков
text_pos = (TILE_SIZE * (board.width + 1), shift_pos[1] + 1)
render_text = f'набранный рекорд\n{self.game_highscore}\nтекущий счёт\n{self.game_score}'
draw_text(self._display_surf, self.font, text_color, text_pos, 30, render_text)
if self.game_over:
AAfilledRoundedRect(self._display_surf, rect1, colors[1], 0.2)
AAfilledRoundedRect(self._display_surf, rect2, layout_color, 0.2)
draw_text(self._display_surf, self.bigfont, text_color, gmx_pos, 0, game_over_text)
pygame.display.flip()
def save_game_score(self):
self.score_file.open('w').write(str(self.game_highscore))
def on_cleanup(self):
pygame.quit()
def on_execute(self):
if self.on_init() is False:
self._running = False
while self._running:
for event in pygame.event.get():
self.on_event(event)
self.on_loop()
self.on_render()
self.clock.tick(App.GAME_FPS)
self.save_game_score()
self.on_cleanup()
if __name__ == '__main__':
app = App()
app.on_execute()
|
[
"pygame.event.get",
"numpy.empty",
"pygame.Rect",
"numpy.arange",
"pygame.font.Font",
"pygame.mouse.get_pos",
"os.path.abspath",
"pygame.display.set_mode",
"numpy.random.choice",
"pygame.display.set_caption",
"pygame.quit",
"pygame.Surface",
"numpy.ceil",
"pygame.draw.rect",
"pygame.init",
"pygame.time.Clock",
"numpy.all",
"pygame.Color",
"numpy.zeros",
"pygame.display.flip",
"numpy.array"
] |
[((764, 786), 'numpy.array', 'np.array', (['[[True] * 5]'], {}), '([[True] * 5])\n', (772, 786), True, 'import numpy as np\n'), ((792, 814), 'numpy.array', 'np.array', (['[[True] * 4]'], {}), '([[True] * 4])\n', (800, 814), True, 'import numpy as np\n'), ((820, 842), 'numpy.array', 'np.array', (['[[True] * 3]'], {}), '([[True] * 3])\n', (828, 842), True, 'import numpy as np\n'), ((848, 870), 'numpy.array', 'np.array', (['[[True] * 2]'], {}), '([[True] * 2])\n', (856, 870), True, 'import numpy as np\n'), ((899, 973), 'numpy.array', 'np.array', (['[[True, False, False], [True, False, False], [True, True, True]]'], {}), '([[True, False, False], [True, False, False], [True, True, True]])\n', (907, 973), True, 'import numpy as np\n'), ((979, 1054), 'numpy.array', 'np.array', (['[[True, False, False], [True, False, False], [True, True, False]]'], {}), '([[True, False, False], [True, False, False], [True, True, False]])\n', (987, 1054), True, 'import numpy as np\n'), ((1060, 1099), 'numpy.array', 'np.array', (['[[True, False], [True, True]]'], {}), '([[True, False], [True, True]])\n', (1068, 1099), True, 'import numpy as np\n'), ((2500, 2544), 'numpy.zeros', 'np.zeros', (['(side_size, side_size)'], {'dtype': 'bool'}), '((side_size, side_size), dtype=bool)\n', (2508, 2544), True, 'import numpy as np\n'), ((2681, 2715), 'numpy.empty', 'np.empty', (['figure.shape'], {'dtype': 'bool'}), '(figure.shape, dtype=bool)\n', (2689, 2715), True, 'import numpy as np\n'), ((3832, 3874), 'pygame.Surface', 'pygame.Surface', (['rect.size', 'pygame.SRCALPHA'], {}), '(rect.size, pygame.SRCALPHA)\n', (3846, 3874), False, 'import pygame\n'), ((617, 663), 'numpy.array', 'np.array', (['[[True] * 3, [True] * 3, [True] * 3]'], {}), '([[True] * 3, [True] * 3, [True] * 3])\n', (625, 663), True, 'import numpy as np\n'), ((671, 709), 'numpy.array', 'np.array', (['[[True, True], [True, True]]'], {}), '([[True, True], [True, True]])\n', (679, 709), True, 'import numpy as np\n'), ((717, 735), 'numpy.array', 'np.array', (['[[True]]'], {}), '([[True]])\n', (725, 735), True, 'import numpy as np\n'), ((1604, 1665), 'numpy.arange', 'np.arange', (['(0)', '(3 * MAX_BASKET_TILES * TILE_SIZE)', '(TILE_SIZE * 6)'], {}), '(0, 3 * MAX_BASKET_TILES * TILE_SIZE, TILE_SIZE * 6)\n', (1613, 1665), True, 'import numpy as np\n'), ((3693, 3710), 'pygame.Rect', 'pygame.Rect', (['rect'], {}), '(rect)\n', (3704, 3710), False, 'import pygame\n'), ((3712, 3732), 'pygame.Color', 'pygame.Color', (['*color'], {}), '(*color)\n', (3724, 3732), False, 'import pygame\n'), ((5163, 5189), 'numpy.zeros', 'np.zeros', (['(size_y, size_y)'], {}), '((size_y, size_y))\n', (5171, 5189), True, 'import numpy as np\n'), ((5233, 5268), 'numpy.zeros', 'np.zeros', (['(self.width, self.height)'], {}), '((self.width, self.height))\n', (5241, 5268), True, 'import numpy as np\n'), ((7275, 7294), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (7292, 7294), False, 'import pygame\n'), ((7878, 7925), 'numpy.random.choice', 'np.random.choice', (['figures'], {'size': 'MAX_BASKET_SIZE'}), '(figures, size=MAX_BASKET_SIZE)\n', (7894, 7925), True, 'import numpy as np\n'), ((8073, 8086), 'pygame.init', 'pygame.init', ([], {}), '()\n', (8084, 8086), False, 'import pygame\n'), ((8095, 8129), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""1010"""'], {}), "('1010')\n", (8121, 8129), False, 'import pygame\n'), ((8159, 8227), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(self.width, self.height)', 'pygame.HWSURFACE'], {}), '((self.width, self.height), pygame.HWSURFACE)\n', (8182, 8227), False, 'import pygame\n'), ((8354, 8388), 'pygame.font.Font', 'pygame.font.Font', (['path_to_font', '(20)'], {}), '(path_to_font, 20)\n', (8370, 8388), False, 'import pygame\n'), ((8412, 8446), 'pygame.font.Font', 'pygame.font.Font', (['path_to_font', '(48)'], {}), '(path_to_font, 48)\n', (8428, 8446), False, 'import pygame\n'), ((12543, 12634), 'pygame.draw.rect', 'pygame.draw.rect', (['self._display_surf', 'background_color', '(0, 0, self.width, self.height)'], {}), '(self._display_surf, background_color, (0, 0, self.width,\n self.height))\n', (12559, 12634), False, 'import pygame\n'), ((14493, 14514), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (14512, 14514), False, 'import pygame\n'), ((14648, 14661), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (14659, 14661), False, 'import pygame\n'), ((6631, 6646), 'numpy.all', 'np.all', (['(row > 0)'], {}), '(row > 0)\n', (6637, 6646), True, 'import numpy as np\n'), ((6730, 6745), 'numpy.all', 'np.all', (['(col > 0)'], {}), '(col > 0)\n', (6736, 6745), True, 'import numpy as np\n'), ((14813, 14831), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (14829, 14831), False, 'import pygame\n'), ((7335, 7360), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (7350, 7360), False, 'import os\n'), ((8843, 8865), 'pygame.mouse.get_pos', 'pygame.mouse.get_pos', ([], {}), '()\n', (8863, 8865), False, 'import pygame\n'), ((13396, 13418), 'pygame.mouse.get_pos', 'pygame.mouse.get_pos', ([], {}), '()\n', (13416, 13418), False, 'import pygame\n'), ((10216, 10230), 'numpy.array', 'np.array', (['[[]]'], {}), '([[]])\n', (10224, 10230), True, 'import numpy as np\n'), ((9430, 9482), 'numpy.ceil', 'np.ceil', (['((x - shift_pos[0] + TILE_SHIFT) / TILE_SIZE)'], {}), '((x - shift_pos[0] + TILE_SHIFT) / TILE_SIZE)\n', (9437, 9482), True, 'import numpy as np\n'), ((9526, 9578), 'numpy.ceil', 'np.ceil', (['((y - shift_pos[1] + TILE_SHIFT) / TILE_SIZE)'], {}), '((y - shift_pos[1] + TILE_SHIFT) / TILE_SIZE)\n', (9533, 9578), True, 'import numpy as np\n')]
|
#--------------------------------------------------------------
# This is a demo file intended to show the use of the SNIC algorithm
# Please compile the C files of snic.h and snic.c using:
# "python snic.c" on the command prompt prior to using this file.
#
# To see the demo use: "python SNICdemo.py" on the command prompt
#------------------------------------------------------------------
import os
import subprocess
from PIL import Image
from skimage.io import imread,imshow
import numpy as np
from timeit import default_timer as timer
from _snic.lib import SNIC_main
from cffi import FFI
def segment(imgname,numsuperpixels,compactness,doRGBtoLAB):
#--------------------------------------------------------------
# read image and change image shape from (h,w,c) to (c,h,w)
#--------------------------------------------------------------
img = Image.open(imgname)
# img = imread(imgname)
img = np.asarray(img)
print(img.shape)
dims = img.shape
h,w,c = dims[0],dims[1],1
if len(dims) > 1:
c = dims[2]
img = img.transpose(2,0,1)
print(c, "channels")
#--------------------------------------------------------------
# Reshape image to a single dimensional vector
#--------------------------------------------------------------
img = img.reshape(-1).astype(np.double)
labels = np.zeros((h,w), dtype = np.int32)
numlabels = np.zeros(1,dtype = np.int32)
#--------------------------------------------------------------
# Prepare the pointers to pass to the C function
#--------------------------------------------------------------
ffibuilder = FFI()
pinp = ffibuilder.cast("double*", ffibuilder.from_buffer(img))
plabels = ffibuilder.cast("int*", ffibuilder.from_buffer(labels.reshape(-1)))
pnumlabels = ffibuilder.cast("int*", ffibuilder.from_buffer(numlabels))
start = timer()
SNIC_main(pinp,w,h,c,numsuperpixels,compactness,doRGBtoLAB,plabels,pnumlabels)
end = timer()
#--------------------------------------------------------------
# Collect labels
#--------------------------------------------------------------
print("number of superpixels: ", numlabels[0])
print("time taken in seconds: ", end-start)
return labels.reshape(h,w),numlabels[0]
# lib.SNICmain.argtypes = [np.ctypeslib.ndpointer(dtype=POINTER(c_double),ndim=2)]+[c_int]*4 +[c_double,c_bool,ctypes.data_as(POINTER(c_int)),ctypes.data_as(POINTER(c_int))]
def drawBoundaries(imgname,labels,numlabels):
img = Image.open(imgname)
# img = imread(imgname)
img = np.array(img)
print(img.shape)
ht,wd = labels.shape
for y in range(1,ht-1):
for x in range(1,wd-1):
if labels[y,x-1] != labels[y,x+1] or labels[y-1,x] != labels[y+1,x]:
img[y,x,:] = 0
return img
# Before calling this function, please compile the C code using
# "python compile.py" on the command line
def snicdemo():
#--------------------------------------------------------------
# Set parameters and call the C function
#--------------------------------------------------------------
numsuperpixels = 500
compactness = 20.0
doRGBtoLAB = True # only works if it is a three channel image
# imgname = "/Users/achanta/Pictures/classics/lena.png"
imgname = "bee.png"
labels,numlabels = segment(imgname,numsuperpixels,compactness,doRGBtoLAB)
#--------------------------------------------------------------
# Display segmentation result
#------------------------------------------------------------
segimg = drawBoundaries(imgname,labels,numlabels)
# Image.fromarray(segimg).show()
Image.fromarray(segimg).save("bee_snic.png")
return
snicdemo()
|
[
"cffi.FFI",
"timeit.default_timer",
"numpy.asarray",
"numpy.zeros",
"PIL.Image.open",
"numpy.array",
"PIL.Image.fromarray",
"_snic.lib.SNIC_main"
] |
[((854, 873), 'PIL.Image.open', 'Image.open', (['imgname'], {}), '(imgname)\n', (864, 873), False, 'from PIL import Image\n'), ((906, 921), 'numpy.asarray', 'np.asarray', (['img'], {}), '(img)\n', (916, 921), True, 'import numpy as np\n'), ((1302, 1334), 'numpy.zeros', 'np.zeros', (['(h, w)'], {'dtype': 'np.int32'}), '((h, w), dtype=np.int32)\n', (1310, 1334), True, 'import numpy as np\n'), ((1349, 1376), 'numpy.zeros', 'np.zeros', (['(1)'], {'dtype': 'np.int32'}), '(1, dtype=np.int32)\n', (1357, 1376), True, 'import numpy as np\n'), ((1572, 1577), 'cffi.FFI', 'FFI', ([], {}), '()\n', (1575, 1577), False, 'from cffi import FFI\n'), ((1806, 1813), 'timeit.default_timer', 'timer', ([], {}), '()\n', (1811, 1813), True, 'from timeit import default_timer as timer\n'), ((1815, 1905), '_snic.lib.SNIC_main', 'SNIC_main', (['pinp', 'w', 'h', 'c', 'numsuperpixels', 'compactness', 'doRGBtoLAB', 'plabels', 'pnumlabels'], {}), '(pinp, w, h, c, numsuperpixels, compactness, doRGBtoLAB, plabels,\n pnumlabels)\n', (1824, 1905), False, 'from _snic.lib import SNIC_main\n'), ((1901, 1908), 'timeit.default_timer', 'timer', ([], {}), '()\n', (1906, 1908), True, 'from timeit import default_timer as timer\n'), ((2425, 2444), 'PIL.Image.open', 'Image.open', (['imgname'], {}), '(imgname)\n', (2435, 2444), False, 'from PIL import Image\n'), ((2477, 2490), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (2485, 2490), True, 'import numpy as np\n'), ((3487, 3510), 'PIL.Image.fromarray', 'Image.fromarray', (['segimg'], {}), '(segimg)\n', (3502, 3510), False, 'from PIL import Image\n')]
|
"""
@brief test log(time=16s)
"""
import unittest
import numpy
from pandas import DataFrame
from pyquickhelper.pycode import ExtTestCase
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import BernoulliNB
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
from mlprodict.onnxrt import OnnxInference
from mlprodict.tools.asv_options_helper import get_opset_number_from_onnx, get_ir_version_from_onnx
from mlprodict.testing.test_utils import _capture_output
class TestRtValidateNaive(ExtTestCase):
def fit_classification_model(self, model, n_classes, is_int=False,
pos_features=False, label_string=False):
X, y = make_classification(n_classes=n_classes, n_features=100,
n_samples=1000,
random_state=42, n_informative=7)
if label_string:
y = numpy.array(['cl%d' % cl for cl in y])
X = X.astype(numpy.int64) if is_int else X.astype(numpy.float32)
if pos_features:
X = numpy.abs(X)
X_train, X_test, y_train, _ = train_test_split(X, y, test_size=0.5,
random_state=42)
model.fit(X_train, y_train)
return model, X_test
def test_model_bernoulli_nb_bc_python(self):
model, X = self.fit_classification_model(BernoulliNB(), 2)
model_onnx = convert_sklearn(
model, "?", [("input", FloatTensorType([None, X.shape[1]]))])
exp1 = model.predict(X)
exp = model.predict_proba(X)
oinf = OnnxInference(model_onnx, runtime='python')
got = oinf.run({'input': X})
self.assertEqualArray(exp1, got['output_label'])
got2 = DataFrame(got['output_probability']).values
self.assertEqualArray(exp, got2, decimal=4)
def test_model_bernoulli_nb_bc_onnxruntime1(self):
model, X = self.fit_classification_model(BernoulliNB(), 2)
model_onnx = convert_sklearn(
model, "?", [("input", FloatTensorType([None, X.shape[1]]))],
target_opset=get_opset_number_from_onnx())
exp1 = model.predict(X)
exp = model.predict_proba(X)
model_onnx.ir_version = get_ir_version_from_onnx()
oinf = _capture_output(
lambda: OnnxInference(model_onnx, runtime='onnxruntime1'),
'c')[0]
got = oinf.run({'input': X})
self.assertEqualArray(exp1, got['output_label'])
got2 = DataFrame(got['output_probability']).values
self.assertEqualArray(exp, got2, decimal=4)
def test_model_bernoulli_nb_bc_onnxruntime2(self):
model, X = self.fit_classification_model(BernoulliNB(), 2)
model_onnx = convert_sklearn(
model, "?", [("input", FloatTensorType([None, X.shape[1]]))],
options={id(model): {'zipmap': False}},
target_opset=get_opset_number_from_onnx())
exp1 = model.predict(X)
exp = model.predict_proba(X)
model_onnx.ir_version = get_ir_version_from_onnx()
oinf = _capture_output(
lambda: OnnxInference(model_onnx, runtime='onnxruntime2'),
'c')[0]
got = oinf.run({'input': X})
self.assertEqualArray(exp1, got['label'])
got2 = DataFrame(got['probabilities']).values
self.assertEqualArray(exp, got2, decimal=4)
if __name__ == "__main__":
unittest.main()
|
[
"unittest.main",
"pandas.DataFrame",
"mlprodict.tools.asv_options_helper.get_opset_number_from_onnx",
"numpy.abs",
"sklearn.model_selection.train_test_split",
"mlprodict.tools.asv_options_helper.get_ir_version_from_onnx",
"sklearn.datasets.make_classification",
"skl2onnx.common.data_types.FloatTensorType",
"numpy.array",
"mlprodict.onnxrt.OnnxInference",
"sklearn.naive_bayes.BernoulliNB"
] |
[((3510, 3525), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3523, 3525), False, 'import unittest\n'), ((783, 893), 'sklearn.datasets.make_classification', 'make_classification', ([], {'n_classes': 'n_classes', 'n_features': '(100)', 'n_samples': '(1000)', 'random_state': '(42)', 'n_informative': '(7)'}), '(n_classes=n_classes, n_features=100, n_samples=1000,\n random_state=42, n_informative=7)\n', (802, 893), False, 'from sklearn.datasets import make_classification\n'), ((1205, 1259), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.5)', 'random_state': '(42)'}), '(X, y, test_size=0.5, random_state=42)\n', (1221, 1259), False, 'from sklearn.model_selection import train_test_split\n'), ((1694, 1737), 'mlprodict.onnxrt.OnnxInference', 'OnnxInference', (['model_onnx'], {'runtime': '"""python"""'}), "(model_onnx, runtime='python')\n", (1707, 1737), False, 'from mlprodict.onnxrt import OnnxInference\n'), ((2335, 2361), 'mlprodict.tools.asv_options_helper.get_ir_version_from_onnx', 'get_ir_version_from_onnx', ([], {}), '()\n', (2359, 2361), False, 'from mlprodict.tools.asv_options_helper import get_opset_number_from_onnx, get_ir_version_from_onnx\n'), ((3134, 3160), 'mlprodict.tools.asv_options_helper.get_ir_version_from_onnx', 'get_ir_version_from_onnx', ([], {}), '()\n', (3158, 3160), False, 'from mlprodict.tools.asv_options_helper import get_opset_number_from_onnx, get_ir_version_from_onnx\n'), ((1001, 1041), 'numpy.array', 'numpy.array', (["[('cl%d' % cl) for cl in y]"], {}), "([('cl%d' % cl) for cl in y])\n", (1012, 1041), False, 'import numpy\n'), ((1154, 1166), 'numpy.abs', 'numpy.abs', (['X'], {}), '(X)\n', (1163, 1166), False, 'import numpy\n'), ((1479, 1492), 'sklearn.naive_bayes.BernoulliNB', 'BernoulliNB', ([], {}), '()\n', (1490, 1492), False, 'from sklearn.naive_bayes import BernoulliNB\n'), ((1847, 1883), 'pandas.DataFrame', 'DataFrame', (["got['output_probability']"], {}), "(got['output_probability'])\n", (1856, 1883), False, 'from pandas import DataFrame\n'), ((2048, 2061), 'sklearn.naive_bayes.BernoulliNB', 'BernoulliNB', ([], {}), '()\n', (2059, 2061), False, 'from sklearn.naive_bayes import BernoulliNB\n'), ((2594, 2630), 'pandas.DataFrame', 'DataFrame', (["got['output_probability']"], {}), "(got['output_probability'])\n", (2603, 2630), False, 'from pandas import DataFrame\n'), ((2795, 2808), 'sklearn.naive_bayes.BernoulliNB', 'BernoulliNB', ([], {}), '()\n', (2806, 2808), False, 'from sklearn.naive_bayes import BernoulliNB\n'), ((3386, 3417), 'pandas.DataFrame', 'DataFrame', (["got['probabilities']"], {}), "(got['probabilities'])\n", (3395, 3417), False, 'from pandas import DataFrame\n'), ((2203, 2231), 'mlprodict.tools.asv_options_helper.get_opset_number_from_onnx', 'get_opset_number_from_onnx', ([], {}), '()\n', (2229, 2231), False, 'from mlprodict.tools.asv_options_helper import get_opset_number_from_onnx, get_ir_version_from_onnx\n'), ((3002, 3030), 'mlprodict.tools.asv_options_helper.get_opset_number_from_onnx', 'get_opset_number_from_onnx', ([], {}), '()\n', (3028, 3030), False, 'from mlprodict.tools.asv_options_helper import get_opset_number_from_onnx, get_ir_version_from_onnx\n'), ((1570, 1605), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (1585, 1605), False, 'from skl2onnx.common.data_types import FloatTensorType\n'), ((2139, 2174), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (2154, 2174), False, 'from skl2onnx.common.data_types import FloatTensorType\n'), ((2414, 2463), 'mlprodict.onnxrt.OnnxInference', 'OnnxInference', (['model_onnx'], {'runtime': '"""onnxruntime1"""'}), "(model_onnx, runtime='onnxruntime1')\n", (2427, 2463), False, 'from mlprodict.onnxrt import OnnxInference\n'), ((2886, 2921), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (2901, 2921), False, 'from skl2onnx.common.data_types import FloatTensorType\n'), ((3213, 3262), 'mlprodict.onnxrt.OnnxInference', 'OnnxInference', (['model_onnx'], {'runtime': '"""onnxruntime2"""'}), "(model_onnx, runtime='onnxruntime2')\n", (3226, 3262), False, 'from mlprodict.onnxrt import OnnxInference\n')]
|
import numpy as np
from mushroom.algorithms.agent import Agent
from mushroom.approximators import Regressor
from mushroom.approximators.parametric import LinearApproximator
class SAC(Agent):
"""
Stochastic Actor critic in the episodic setting as presented in:
"Model-Free Reinforcement Learning with Continuous Action in Practice".
Degris T. et al.. 2012.
"""
def __init__(self, policy, mdp_info, alpha_theta, alpha_v, lambda_par=.9,
value_function_features=None, policy_features=None):
"""
Constructor.
Args:
policy (ParametricPolicy): a differentiable stochastic policy;
mdp_info: information about the MDP;
alpha_theta (Parameter): learning rate for policy update;
alpha_v (Parameter): learning rate for the value function;
lambda_par (float, 0.9): trace decay parameter;
value_function_features (Features, None): features used by the value
function approximator;
policy_features (Features, None): features used by the policy.
"""
self._psi = value_function_features
self._alpha_theta = alpha_theta
self._alpha_v = alpha_v
self._lambda = lambda_par
super().__init__(policy, mdp_info, policy_features)
if self._psi is not None:
input_shape = (self._psi.size,)
else:
input_shape = mdp_info.observation_space.shape
self._V = Regressor(LinearApproximator, input_shape=input_shape,
output_shape=(1,))
self._e_v = np.zeros(self._V.weights_size)
self._e_theta = np.zeros(self.policy.weights_size)
def episode_start(self):
self._e_v = np.zeros(self._V.weights_size)
self._e_theta = np.zeros(self.policy.weights_size)
super().episode_start()
def fit(self, dataset):
for step in dataset:
s, a, r, ss, absorbing, _ = step
s_phi = self.phi(s) if self.phi is not None else s
s_psi = self._psi(s) if self._psi is not None else s
ss_psi = self._psi(ss) if self._psi is not None else ss
v_next = self._V(ss_psi) if not absorbing else 0
# Compute TD error
delta = r + self.mdp_info.gamma * v_next - self._V(s_psi)
# Update traces
self._e_v = self.mdp_info.gamma * self._lambda * self._e_v + s_psi
self._e_theta = self.mdp_info.gamma * self._lambda * \
self._e_theta + self.policy.diff_log(s_phi, a)
# Update value function
delta_v = self._alpha_v(s, a) * delta * self._e_v
v_new = self._V.get_weights() + delta_v
self._V.set_weights(v_new)
# Update policy
delta_theta = self._alpha_theta(s, a) * delta * self._e_theta
theta_new = self.policy.get_weights() + delta_theta
self.policy.set_weights(theta_new)
class SAC_AVG(Agent):
"""
Stochastic Actor critic in the average reward setting as presented in:
"Model-Free Reinforcement Learning with Continuous Action in Practice".
<NAME>. et al.. 2012.
"""
def __init__(self, policy, mdp_info, alpha_theta, alpha_v, alpha_r,
lambda_par=.9, value_function_features=None,
policy_features=None):
"""
Constructor.
Args:
policy (ParametricPolicy): a differentiable stochastic policy;
mdp_info: information about the MDP;
alpha_theta (Parameter): learning rate for policy update;
alpha_v (Parameter): learning rate for the value function;
alpha_r (Parameter): learning rate for the reward trace;
lambda_par (float, 0.9): trace decay parameter;
value_function_features (Features, None): features used by the
value function approximator;
policy_features (Features, None): features used by the policy.
"""
self._psi = value_function_features
self._alpha_theta = alpha_theta
self._alpha_v = alpha_v
self._alpha_r = alpha_r
self._lambda = lambda_par
super().__init__(policy, mdp_info, policy_features)
if self._psi is not None:
input_shape = (self._psi.size,)
else:
input_shape = mdp_info.observation_space.shape
self._V = Regressor(LinearApproximator, input_shape=input_shape,
output_shape=(1,))
self._e_v = np.zeros(self._V.weights_size)
self._e_theta = np.zeros(self.policy.weights_size)
self._r_bar = 0
def episode_start(self):
self._e_v = np.zeros(self._V.weights_size)
self._e_theta = np.zeros(self.policy.weights_size)
super().episode_start()
def fit(self, dataset):
for step in dataset:
s, a, r, ss, absorbing, _ = step
s_phi = self.phi(s) if self.phi is not None else s
s_psi = self._psi(s) if self._psi is not None else s
ss_psi = self._psi(ss) if self._psi is not None else ss
v_next = self._V(ss_psi) if not absorbing else 0
# Compute TD error
delta = r - self._r_bar + v_next - self._V(s_psi)
# Update traces
self._r_bar += self._alpha_r() * delta
self._e_v = self._lambda * self._e_v + s_psi
self._e_theta = self._lambda * self._e_theta + \
self.policy.diff_log(s_phi, a)
# Update value function
delta_v = self._alpha_v(s, a) * delta * self._e_v
v_new = self._V.get_weights() + delta_v
self._V.set_weights(v_new)
# Update policy
delta_theta = self._alpha_theta(s, a) * delta * self._e_theta
theta_new = self.policy.get_weights() + delta_theta
self.policy.set_weights(theta_new)
|
[
"numpy.zeros",
"mushroom.approximators.Regressor"
] |
[((1497, 1570), 'mushroom.approximators.Regressor', 'Regressor', (['LinearApproximator'], {'input_shape': 'input_shape', 'output_shape': '(1,)'}), '(LinearApproximator, input_shape=input_shape, output_shape=(1,))\n', (1506, 1570), False, 'from mushroom.approximators import Regressor\n'), ((1620, 1650), 'numpy.zeros', 'np.zeros', (['self._V.weights_size'], {}), '(self._V.weights_size)\n', (1628, 1650), True, 'import numpy as np\n'), ((1675, 1709), 'numpy.zeros', 'np.zeros', (['self.policy.weights_size'], {}), '(self.policy.weights_size)\n', (1683, 1709), True, 'import numpy as np\n'), ((1760, 1790), 'numpy.zeros', 'np.zeros', (['self._V.weights_size'], {}), '(self._V.weights_size)\n', (1768, 1790), True, 'import numpy as np\n'), ((1815, 1849), 'numpy.zeros', 'np.zeros', (['self.policy.weights_size'], {}), '(self.policy.weights_size)\n', (1823, 1849), True, 'import numpy as np\n'), ((4447, 4520), 'mushroom.approximators.Regressor', 'Regressor', (['LinearApproximator'], {'input_shape': 'input_shape', 'output_shape': '(1,)'}), '(LinearApproximator, input_shape=input_shape, output_shape=(1,))\n', (4456, 4520), False, 'from mushroom.approximators import Regressor\n'), ((4570, 4600), 'numpy.zeros', 'np.zeros', (['self._V.weights_size'], {}), '(self._V.weights_size)\n', (4578, 4600), True, 'import numpy as np\n'), ((4625, 4659), 'numpy.zeros', 'np.zeros', (['self.policy.weights_size'], {}), '(self.policy.weights_size)\n', (4633, 4659), True, 'import numpy as np\n'), ((4734, 4764), 'numpy.zeros', 'np.zeros', (['self._V.weights_size'], {}), '(self._V.weights_size)\n', (4742, 4764), True, 'import numpy as np\n'), ((4789, 4823), 'numpy.zeros', 'np.zeros', (['self.policy.weights_size'], {}), '(self.policy.weights_size)\n', (4797, 4823), True, 'import numpy as np\n')]
|
from Binary.Scripts.utils import *
import scipy.optimize as opt
from scipy import stats
from sklearn.linear_model import LinearRegression
import numpy as np
np.random.seed(1234)
#
#
def obj_fun(theta, x, y_):
pre_dis = np.dot(x, theta)
loss = np.sum((pre_dis - y_) ** 2)
return loss
class xai_rnn(object):
"""class for explaining the rnn prediction"""
def __init__(self, model, data,):
"""
Args:
model: target rnn model.
data: data sample needed to be explained.
label: label of the data sample.
start: value of function start.
"""
self.model = model
self.data = data
self.seq_len = data.shape[1]
self.seq_len = data[0].shape[0]
def xai_feature(self, samp_num, option= 'None'):
"""extract the important features from the input data
Arg:
fea_num: number of features that needed by the user
samp_num: number of data used for explanation
return:
fea: extracted features
"""
# cen = int(self.seq_len/2)
# half_tl = int(self.tl/2)
sample = np.random.randint(0, FEANUM, samp_num)
data_explain = np.zeros([samp_num, 200])
for i, size in enumerate(sample, start=0):
inactive = np.random.choice(FEANUM, size, replace=False)
tmp_sampled = np.copy(self.data)
tmp_sampled[0,inactive] = 0 # np.random.choice(range(257), size, replace = True) #1 - tmp_sampled[0,inactive]
data_explain[i] = tmp_sampled
# label_sampled = label_sampled.reshape(label_sampled.shape[0], 1)
label_sampled = self.model.predict(data_explain, batch_size = 500, verbose = 0)[:, 100, 1:2]
linreg = LinearRegression(fit_intercept=False)
linreg.fit(data_explain, label_sampled)
result = np.argsort(np.abs(linreg.coef_)).reshape([FEANUM])
importance_score = result[::-1]
return importance_score
def gauss_mix_model(self, X, y, model_num, min_err=0.1):
[data_num, fea_num] = np.shape(X)
mean = np.random.random([model_num, 1]) * 100
sigma = np.random.random([model_num, 1]) * 100
pi = np.ones([model_num, 1]) / model_num
new_mean = np.zeros_like(mean)
new_sigma = np.zeros_like(sigma)
new_pi = np.zeros_like(pi)
new_z = np.zeros([data_num, model_num])
err = np.linalg.norm(mean - new_mean)
nk = np.zeros((model_num, 1))
while (err > min_err):
for index in range(data_num):
for kindex in range(model_num):
new_z[index, kindex] = pi[kindex] * stats.norm(mean[kindex, 0], sigma[kindex, 0]).pdf(y[index])
new_z[index, :] = new_z[index, :] / np.sum(new_z[index, :])
for kindex in range(model_num):
nk[kindex] = np.sum(new_z[:, kindex])
new_pi[kindex, 0] = np.sum(new_z[:, kindex]) / data_num
sum_mean = 0
sum_sigma = 0
for nindex in range(data_num):
tmp = new_z[nindex, kindex] * y[nindex]
sum_mean = sum_mean + tmp
new_mean[kindex, :] = sum_mean / nk[kindex]
for nindex in range(data_num):
vec = (y[nindex] - new_mean[kindex, 0])
tmp = new_z[nindex, kindex] * (vec * vec)
sum_sigma = sum_sigma + tmp
new_sigma[kindex, 0] = sum_sigma / nk[kindex]
err = np.linalg.norm(new_mean - mean)
sigma = new_sigma
pi = new_pi
mean = new_mean
weight = np.zeros(fea_num)
s = 1e4
init_k = np.ones([fea_num, 1])
cons = ({'type': 'ineq',
'fun': lambda x: np.array([s - (x[0] - x[1]) ** 2 - (x[1] - x[2]) ** 2])})
# for iindex in range(fea_num):
# for kindex in range(model_num):
# result = opt.minimize(obj_fun, init_k, args=(np.array(X), np.array(mean[kindex, :])),
# constraints=cons)
# weight[iindex] = result.x[iindex] * pi[kindex] + weight[iindex]
result = opt.minimize(obj_fun, init_k, args=(np.array(X), np.array(mean[kindex, :])),
constraints=cons)
weight = result.x
######################################################################################
# X = r.matrix(X, nrow=data_explain.shape[0], ncol=data_explain.shape[1])
# Y = r.matrix(label_sampled, nrow=label_sampled.shape[0], ncol=label_sampled.shape[1])
#
# n = r.nrow(X)
# p = r.ncol(X)
# results = r.fusedlasso1d(y=Y, X=X) # eps = 1e4
#
# result = np.array(r.coef(results, np.sqrt(n * np.log(p)))[0])[:, -1]
return weight
|
[
"numpy.zeros_like",
"numpy.random.seed",
"numpy.sum",
"numpy.copy",
"numpy.abs",
"scipy.stats.norm",
"numpy.zeros",
"numpy.ones",
"sklearn.linear_model.LinearRegression",
"numpy.shape",
"numpy.random.randint",
"numpy.linalg.norm",
"numpy.random.random",
"numpy.array",
"numpy.random.choice",
"numpy.dot"
] |
[((157, 177), 'numpy.random.seed', 'np.random.seed', (['(1234)'], {}), '(1234)\n', (171, 177), True, 'import numpy as np\n'), ((233, 249), 'numpy.dot', 'np.dot', (['x', 'theta'], {}), '(x, theta)\n', (239, 249), True, 'import numpy as np\n'), ((261, 288), 'numpy.sum', 'np.sum', (['((pre_dis - y_) ** 2)'], {}), '((pre_dis - y_) ** 2)\n', (267, 288), True, 'import numpy as np\n'), ((1175, 1213), 'numpy.random.randint', 'np.random.randint', (['(0)', 'FEANUM', 'samp_num'], {}), '(0, FEANUM, samp_num)\n', (1192, 1213), True, 'import numpy as np\n'), ((1237, 1262), 'numpy.zeros', 'np.zeros', (['[samp_num, 200]'], {}), '([samp_num, 200])\n', (1245, 1262), True, 'import numpy as np\n'), ((1794, 1831), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {'fit_intercept': '(False)'}), '(fit_intercept=False)\n', (1810, 1831), False, 'from sklearn.linear_model import LinearRegression\n'), ((2112, 2123), 'numpy.shape', 'np.shape', (['X'], {}), '(X)\n', (2120, 2123), True, 'import numpy as np\n'), ((2302, 2321), 'numpy.zeros_like', 'np.zeros_like', (['mean'], {}), '(mean)\n', (2315, 2321), True, 'import numpy as np\n'), ((2342, 2362), 'numpy.zeros_like', 'np.zeros_like', (['sigma'], {}), '(sigma)\n', (2355, 2362), True, 'import numpy as np\n'), ((2380, 2397), 'numpy.zeros_like', 'np.zeros_like', (['pi'], {}), '(pi)\n', (2393, 2397), True, 'import numpy as np\n'), ((2415, 2446), 'numpy.zeros', 'np.zeros', (['[data_num, model_num]'], {}), '([data_num, model_num])\n', (2423, 2446), True, 'import numpy as np\n'), ((2461, 2492), 'numpy.linalg.norm', 'np.linalg.norm', (['(mean - new_mean)'], {}), '(mean - new_mean)\n', (2475, 2492), True, 'import numpy as np\n'), ((2506, 2530), 'numpy.zeros', 'np.zeros', (['(model_num, 1)'], {}), '((model_num, 1))\n', (2514, 2530), True, 'import numpy as np\n'), ((3716, 3733), 'numpy.zeros', 'np.zeros', (['fea_num'], {}), '(fea_num)\n', (3724, 3733), True, 'import numpy as np\n'), ((3767, 3788), 'numpy.ones', 'np.ones', (['[fea_num, 1]'], {}), '([fea_num, 1])\n', (3774, 3788), True, 'import numpy as np\n'), ((1337, 1382), 'numpy.random.choice', 'np.random.choice', (['FEANUM', 'size'], {'replace': '(False)'}), '(FEANUM, size, replace=False)\n', (1353, 1382), True, 'import numpy as np\n'), ((1410, 1428), 'numpy.copy', 'np.copy', (['self.data'], {}), '(self.data)\n', (1417, 1428), True, 'import numpy as np\n'), ((2139, 2171), 'numpy.random.random', 'np.random.random', (['[model_num, 1]'], {}), '([model_num, 1])\n', (2155, 2171), True, 'import numpy as np\n'), ((2194, 2226), 'numpy.random.random', 'np.random.random', (['[model_num, 1]'], {}), '([model_num, 1])\n', (2210, 2226), True, 'import numpy as np\n'), ((2246, 2269), 'numpy.ones', 'np.ones', (['[model_num, 1]'], {}), '([model_num, 1])\n', (2253, 2269), True, 'import numpy as np\n'), ((3584, 3615), 'numpy.linalg.norm', 'np.linalg.norm', (['(new_mean - mean)'], {}), '(new_mean - mean)\n', (3598, 3615), True, 'import numpy as np\n'), ((2917, 2941), 'numpy.sum', 'np.sum', (['new_z[:, kindex]'], {}), '(new_z[:, kindex])\n', (2923, 2941), True, 'import numpy as np\n'), ((3856, 3911), 'numpy.array', 'np.array', (['[s - (x[0] - x[1]) ** 2 - (x[1] - x[2]) ** 2]'], {}), '([s - (x[0] - x[1]) ** 2 - (x[1] - x[2]) ** 2])\n', (3864, 3911), True, 'import numpy as np\n'), ((1908, 1928), 'numpy.abs', 'np.abs', (['linreg.coef_'], {}), '(linreg.coef_)\n', (1914, 1928), True, 'import numpy as np\n'), ((2820, 2843), 'numpy.sum', 'np.sum', (['new_z[index, :]'], {}), '(new_z[index, :])\n', (2826, 2843), True, 'import numpy as np\n'), ((2978, 3002), 'numpy.sum', 'np.sum', (['new_z[:, kindex]'], {}), '(new_z[:, kindex])\n', (2984, 3002), True, 'import numpy as np\n'), ((4297, 4308), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (4305, 4308), True, 'import numpy as np\n'), ((4310, 4335), 'numpy.array', 'np.array', (['mean[kindex, :]'], {}), '(mean[kindex, :])\n', (4318, 4335), True, 'import numpy as np\n'), ((2708, 2753), 'scipy.stats.norm', 'stats.norm', (['mean[kindex, 0]', 'sigma[kindex, 0]'], {}), '(mean[kindex, 0], sigma[kindex, 0])\n', (2718, 2753), False, 'from scipy import stats\n')]
|
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scikitplot.metrics import plot_confusion_matrix, plot_roc
class Plotting():
def plot_losses(self, training_losses, validation_losses):
plt.figure()
epochs = range(len(training_losses))
line1 = plt.plot(epochs, training_losses, label = "Training Loss")
line2 = plt.plot(epochs, validation_losses, label = "Validation Loss")
plt.xlabel("Epochs")
plt.ylabel("Losses")
plt.legend(loc = "upper right")
plt.title("Training/Validation Loss Comparison")
plt.savefig("plots/training_validation_loss_comp.png")
plt.show()
def stats_table(self, metrics):
headers = list(metrics[0].keys())
table = pd.DataFrame(columns = headers)
for metric in range(len(metrics)):
table = table.append(metrics[metric], ignore_index = True)
return table
def visualise_images(self, images, labels, class_labels, fig_size = (25, 15),
row_num = 5, col_num = 35):
fig = plt.figure(figsize = fig_size)
for i in np.arange(col_num):
ax = fig.add_subplot(row_num, int(np.ceil(col_num / row_num)), i + 1,
xticks = [], yticks = [])
self._imshow(images[i])
ax.set_title(class_labels[labels[i]])
def _imshow(self, image):
image = image / 2 + 0.5 #unnormalise image
plt.imshow(np.transpose(image, (1, 2, 0)))
def plot_roc_curve(self, model, probabilities, labels, figsize):
plot_roc(labels, probabilities, figsize=figsize, title="ROC Curve")
plt.savefig("plots/roc_curve.png")
def plot_cm(self, model, predictions, labels, class_labels, figsize):
plot_confusion_matrix(labels, predictions, figsize=figsize, labels=class_labels,
x_tick_rotation=90, title="Confusion Matrix")
plt.savefig("plots/confusion_matrix.png")
|
[
"matplotlib.pyplot.title",
"pandas.DataFrame",
"matplotlib.pyplot.show",
"numpy.ceil",
"matplotlib.pyplot.plot",
"scikitplot.metrics.plot_roc",
"matplotlib.pyplot.legend",
"numpy.transpose",
"matplotlib.pyplot.figure",
"numpy.arange",
"matplotlib.pyplot.ylabel",
"scikitplot.metrics.plot_confusion_matrix",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.savefig"
] |
[((225, 237), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (235, 237), True, 'import matplotlib.pyplot as plt\n'), ((299, 355), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs', 'training_losses'], {'label': '"""Training Loss"""'}), "(epochs, training_losses, label='Training Loss')\n", (307, 355), True, 'import matplotlib.pyplot as plt\n'), ((374, 434), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs', 'validation_losses'], {'label': '"""Validation Loss"""'}), "(epochs, validation_losses, label='Validation Loss')\n", (382, 434), True, 'import matplotlib.pyplot as plt\n'), ((445, 465), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (455, 465), True, 'import matplotlib.pyplot as plt\n'), ((474, 494), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Losses"""'], {}), "('Losses')\n", (484, 494), True, 'import matplotlib.pyplot as plt\n'), ((503, 532), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (513, 532), True, 'import matplotlib.pyplot as plt\n'), ((543, 591), 'matplotlib.pyplot.title', 'plt.title', (['"""Training/Validation Loss Comparison"""'], {}), "('Training/Validation Loss Comparison')\n", (552, 591), True, 'import matplotlib.pyplot as plt\n'), ((600, 654), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""plots/training_validation_loss_comp.png"""'], {}), "('plots/training_validation_loss_comp.png')\n", (611, 654), True, 'import matplotlib.pyplot as plt\n'), ((663, 673), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (671, 673), True, 'import matplotlib.pyplot as plt\n'), ((769, 798), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': 'headers'}), '(columns=headers)\n', (781, 798), True, 'import pandas as pd\n'), ((1091, 1119), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'fig_size'}), '(figsize=fig_size)\n', (1101, 1119), True, 'import matplotlib.pyplot as plt\n'), ((1140, 1158), 'numpy.arange', 'np.arange', (['col_num'], {}), '(col_num)\n', (1149, 1158), True, 'import numpy as np\n'), ((1611, 1678), 'scikitplot.metrics.plot_roc', 'plot_roc', (['labels', 'probabilities'], {'figsize': 'figsize', 'title': '"""ROC Curve"""'}), "(labels, probabilities, figsize=figsize, title='ROC Curve')\n", (1619, 1678), False, 'from scikitplot.metrics import plot_confusion_matrix, plot_roc\n'), ((1687, 1721), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""plots/roc_curve.png"""'], {}), "('plots/roc_curve.png')\n", (1698, 1721), True, 'import matplotlib.pyplot as plt\n'), ((1809, 1940), 'scikitplot.metrics.plot_confusion_matrix', 'plot_confusion_matrix', (['labels', 'predictions'], {'figsize': 'figsize', 'labels': 'class_labels', 'x_tick_rotation': '(90)', 'title': '"""Confusion Matrix"""'}), "(labels, predictions, figsize=figsize, labels=\n class_labels, x_tick_rotation=90, title='Confusion Matrix')\n", (1830, 1940), False, 'from scikitplot.metrics import plot_confusion_matrix, plot_roc\n'), ((1974, 2015), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""plots/confusion_matrix.png"""'], {}), "('plots/confusion_matrix.png')\n", (1985, 2015), True, 'import matplotlib.pyplot as plt\n'), ((1497, 1527), 'numpy.transpose', 'np.transpose', (['image', '(1, 2, 0)'], {}), '(image, (1, 2, 0))\n', (1509, 1527), True, 'import numpy as np\n'), ((1206, 1232), 'numpy.ceil', 'np.ceil', (['(col_num / row_num)'], {}), '(col_num / row_num)\n', (1213, 1232), True, 'import numpy as np\n')]
|
import meshio
import numpy as np
from src.htc_calculator.reference_face import ReferenceFace
from src.htc_calculator.activated_reference_face import ActivatedReferenceFace
from src.htc_calculator.construction import Material, Layer, ComponentConstruction
from src.htc_calculator.meshing.mesh_setup import MeshSetup
from src.htc_calculator.activated_reference_face import test_mesh_creation
vertices = np.array([[0, 0, 0],
[5, 0, 0],
[5, 5, 0],
[0, 5, 0]])
concrete = Material(name='concrete',
density=2600,
specific_heat_capacity=1000,
heat_conductivity=2.5)
rockwool = Material(name='rockwool',
density=250,
specific_heat_capacity=840,
heat_conductivity=0.034)
plaster = Material(name='plaster',
density=1500,
specific_heat_capacity=960,
heat_conductivity=0.60)
layer0 = Layer(name='layer0_plaster', material=plaster, thickness=0.02)
layer1 = Layer(name='layer1_concrete', material=concrete, thickness=0.3)
layer2 = Layer(name='layer2_rockwool', material=rockwool, thickness=0.3)
layer3 = Layer(name='layer3_plaster', material=plaster, thickness=0.02)
test_construction = ComponentConstruction(name='test_construction',
layers=[layer1, layer2],
side_1_offset=0.00)
mesh_setup = MeshSetup(name='simple_mesh_setup')
face = ReferenceFace(vertices=vertices,
component_construction=test_construction,
mesh_setup=mesh_setup)
face.generate_reference_geometry()
face.generate_3d_geometry()
face.save_fcstd('/tmp/test.FCStd')
face.export_step('/tmp/simple_test_geo.stp')
# face.export_stl('TEST_MIT_Tomas.stl')
# face.generate_mesh()
#
# print(face)
#
#
tabs1 = ActivatedReferenceFace(vertices=vertices,
component_construction=test_construction,
start_edge=0,
tube_diameter=0.1,
tube_distance=0.25,
tube_edge_distance=0.3,
bending_radius=0.1,
tube_side_1_offset=0.15,
name='test1')
#
tabs1.generate_reference_geometry()
tabs1.generate_3d_geometry()
# tabs1.export_step('tabs_layers.stp')
tabs1.generate_tube_spline()
tabs1.generate_solid_pipe()
# tabs1.export_solid_pipe('solid_pipe_test.stp')
tabs1.generate_hole_part()
tabs1.save_fcstd('/tmp/activated_test.FCStd')
tabs1.export_step('/tmp/simple_test_geo_activated.stp')
tabs1.export_solid_pipe('/tmp/solid_pipe.stp')
tabs1.export_solids('/tmp/solids.FCStd')
tabs1.generate_mesh()
tabs1.export_step('finished.stp')
|
[
"src.htc_calculator.reference_face.ReferenceFace",
"src.htc_calculator.construction.Layer",
"src.htc_calculator.meshing.mesh_setup.MeshSetup",
"numpy.array",
"src.htc_calculator.construction.Material",
"src.htc_calculator.construction.ComponentConstruction",
"src.htc_calculator.activated_reference_face.ActivatedReferenceFace"
] |
[((410, 464), 'numpy.array', 'np.array', (['[[0, 0, 0], [5, 0, 0], [5, 5, 0], [0, 5, 0]]'], {}), '([[0, 0, 0], [5, 0, 0], [5, 5, 0], [0, 5, 0]])\n', (418, 464), True, 'import numpy as np\n'), ((545, 640), 'src.htc_calculator.construction.Material', 'Material', ([], {'name': '"""concrete"""', 'density': '(2600)', 'specific_heat_capacity': '(1000)', 'heat_conductivity': '(2.5)'}), "(name='concrete', density=2600, specific_heat_capacity=1000,\n heat_conductivity=2.5)\n", (553, 640), False, 'from src.htc_calculator.construction import Material, Layer, ComponentConstruction\n'), ((714, 809), 'src.htc_calculator.construction.Material', 'Material', ([], {'name': '"""rockwool"""', 'density': '(250)', 'specific_heat_capacity': '(840)', 'heat_conductivity': '(0.034)'}), "(name='rockwool', density=250, specific_heat_capacity=840,\n heat_conductivity=0.034)\n", (722, 809), False, 'from src.htc_calculator.construction import Material, Layer, ComponentConstruction\n'), ((882, 975), 'src.htc_calculator.construction.Material', 'Material', ([], {'name': '"""plaster"""', 'density': '(1500)', 'specific_heat_capacity': '(960)', 'heat_conductivity': '(0.6)'}), "(name='plaster', density=1500, specific_heat_capacity=960,\n heat_conductivity=0.6)\n", (890, 975), False, 'from src.htc_calculator.construction import Material, Layer, ComponentConstruction\n'), ((1045, 1107), 'src.htc_calculator.construction.Layer', 'Layer', ([], {'name': '"""layer0_plaster"""', 'material': 'plaster', 'thickness': '(0.02)'}), "(name='layer0_plaster', material=plaster, thickness=0.02)\n", (1050, 1107), False, 'from src.htc_calculator.construction import Material, Layer, ComponentConstruction\n'), ((1118, 1181), 'src.htc_calculator.construction.Layer', 'Layer', ([], {'name': '"""layer1_concrete"""', 'material': 'concrete', 'thickness': '(0.3)'}), "(name='layer1_concrete', material=concrete, thickness=0.3)\n", (1123, 1181), False, 'from src.htc_calculator.construction import Material, Layer, ComponentConstruction\n'), ((1192, 1255), 'src.htc_calculator.construction.Layer', 'Layer', ([], {'name': '"""layer2_rockwool"""', 'material': 'rockwool', 'thickness': '(0.3)'}), "(name='layer2_rockwool', material=rockwool, thickness=0.3)\n", (1197, 1255), False, 'from src.htc_calculator.construction import Material, Layer, ComponentConstruction\n'), ((1266, 1328), 'src.htc_calculator.construction.Layer', 'Layer', ([], {'name': '"""layer3_plaster"""', 'material': 'plaster', 'thickness': '(0.02)'}), "(name='layer3_plaster', material=plaster, thickness=0.02)\n", (1271, 1328), False, 'from src.htc_calculator.construction import Material, Layer, ComponentConstruction\n'), ((1353, 1448), 'src.htc_calculator.construction.ComponentConstruction', 'ComponentConstruction', ([], {'name': '"""test_construction"""', 'layers': '[layer1, layer2]', 'side_1_offset': '(0.0)'}), "(name='test_construction', layers=[layer1, layer2],\n side_1_offset=0.0)\n", (1374, 1448), False, 'from src.htc_calculator.construction import Material, Layer, ComponentConstruction\n'), ((1548, 1583), 'src.htc_calculator.meshing.mesh_setup.MeshSetup', 'MeshSetup', ([], {'name': '"""simple_mesh_setup"""'}), "(name='simple_mesh_setup')\n", (1557, 1583), False, 'from src.htc_calculator.meshing.mesh_setup import MeshSetup\n'), ((1594, 1695), 'src.htc_calculator.reference_face.ReferenceFace', 'ReferenceFace', ([], {'vertices': 'vertices', 'component_construction': 'test_construction', 'mesh_setup': 'mesh_setup'}), '(vertices=vertices, component_construction=test_construction,\n mesh_setup=mesh_setup)\n', (1607, 1695), False, 'from src.htc_calculator.reference_face import ReferenceFace\n'), ((1987, 2219), 'src.htc_calculator.activated_reference_face.ActivatedReferenceFace', 'ActivatedReferenceFace', ([], {'vertices': 'vertices', 'component_construction': 'test_construction', 'start_edge': '(0)', 'tube_diameter': '(0.1)', 'tube_distance': '(0.25)', 'tube_edge_distance': '(0.3)', 'bending_radius': '(0.1)', 'tube_side_1_offset': '(0.15)', 'name': '"""test1"""'}), "(vertices=vertices, component_construction=\n test_construction, start_edge=0, tube_diameter=0.1, tube_distance=0.25,\n tube_edge_distance=0.3, bending_radius=0.1, tube_side_1_offset=0.15,\n name='test1')\n", (2009, 2219), False, 'from src.htc_calculator.activated_reference_face import ActivatedReferenceFace\n')]
|
import numpy as np
from PuzzleLib.Backend import gpuarray
from PuzzleLib.Backend.gpuarray import memoryPool as memPool
from PuzzleLib.Backend.Kernels import Pad
from PuzzleLib.Modules.Module import ModuleError, Module
from PuzzleLib.Modules.Pad2D import PadMode
class Pad1D(Module):
def __init__(self, pad, mode="constant", fillValue=None, name=None):
super().__init__(name)
self.registerBlueprint(locals())
self.mode = PadMode(mode)
self.pad = self.repeat(pad, 2)
self.fillValue = 0 if fillValue is None else fillValue
def updateData(self, data):
if self.mode == PadMode.constant:
insize = data.shape[2]
lpad, rpad = self.pad
outsize = insize + lpad + rpad
self.data = gpuarray.empty(data.shape[:2] + (outsize, ), dtype=np.float32, allocator=memPool)
self.data.fill(self.fillValue)
self.data[:, :, lpad:self.data.shape[2] - rpad] = data
elif self.mode == PadMode.reflect:
self.data = Pad.reflectpad1d(data, self.pad)
else:
raise NotImplementedError(self.mode)
def updateGrad(self, grad):
if self.mode == PadMode.constant:
size = grad.shape[2]
lpad, rpad = self.pad
self.grad = grad[:, :, lpad:size - rpad].copy(allocator=memPool)
elif self.mode == PadMode.reflect:
self.grad = Pad.reflectpad1dBackward(grad, self.pad)
else:
raise NotImplementedError(self.mode)
def checkDataShape(self, shape):
if len(shape) != 3:
raise ModuleError("Data must be 3d tensor")
lpad, rpad = self.pad
size = shape[2]
pad = max(lpad, rpad)
if size < pad + 1:
raise ModuleError("Data maps size is too small (got %d, expected >= %d)" % (size, pad + 1))
def checkGradShape(self, shape):
if len(shape) != 3:
raise ModuleError("Grad must be 3d tensor")
lpad, rpad = self.pad
size = shape[2]
if size < lpad + rpad + 1:
raise ModuleError("Grad maps size is too small (got %d, expected >= %d)" % (size, lpad + rpad + 1))
def dataShapeFrom(self, shape):
batchsize, maps, size = shape
lpad, rpad = self.pad
return batchsize, maps, size + lpad + rpad
def gradShapeFrom(self, shape):
batchsize, maps, size = shape
lpad, rpad = self.pad
return batchsize, maps, size - lpad - rpad
def calcMode(self, T):
dtypes = {dtype for dtype, _ in gpuarray.dtypesSupported()}
if T not in dtypes:
raise ModuleError("Unsupported dtype %s" % T)
self.calctype = T
def unittest():
constantTest()
reflectTest()
def constantTest():
data = gpuarray.to_gpu(np.random.randn(3, 4, 5).astype(np.float32))
lpad, rpad = 0, 1
fillValue = -0.1
padmod = Pad1D(pad=(lpad, rpad), mode=PadMode.constant, fillValue=fillValue)
padmod(data)
assert padmod.dataShapeFrom(data.shape) == padmod.data.shape
hostData, hostOutData = data.get(), padmod.data.get()
assert np.allclose(hostOutData[:, :, lpad:hostOutData.shape[2] - rpad], hostData)
assert np.isclose(hostOutData[0, 0, hostOutData.shape[2] - 1], fillValue)
grad = gpuarray.to_gpu(np.random.randn(*hostOutData.shape).astype(np.float32))
padmod.backward(grad)
assert padmod.gradShapeFrom(grad.shape) == data.shape
assert np.allclose(padmod.grad.get(), grad.get()[:, :, lpad:grad.shape[2] - rpad])
def reflectTest():
batchsize, maps, insize = 4, 8, 48
lpad, rpad = 2, 3
data = gpuarray.to_gpu(np.random.randn(batchsize, maps, insize).astype(np.float32))
reflectpad = Pad1D(pad=(lpad, rpad), mode=PadMode.reflect)
reflectpad(data)
hostData, hostOutData = data.get(), reflectpad.data.get()
outsize = hostOutData.shape[2]
assert np.allclose(hostOutData[:, :, lpad:insize + lpad], hostData)
assert np.allclose(hostOutData[:, :, :lpad][:, :, ::-1], hostData[:, :, 1:lpad+1])
assert np.allclose(hostOutData[:, :, insize + lpad:][:, :, ::-1], hostData[:, :, insize - 1 - rpad:insize - 1])
grad = gpuarray.to_gpu(np.random.randn(batchsize, maps, outsize).astype(np.float32))
reflectpad.backward(grad)
hostGrad, hostInGrad = grad.get(), reflectpad.grad.get()
assert np.allclose(hostInGrad[:, :, lpad + 1:insize - rpad - 1],
hostGrad[:, :, 2 * lpad + 1:outsize - 2 * rpad - 1])
assert np.allclose(hostInGrad[:, :, 1:lpad + 1], hostGrad[:, :, :lpad][:, :, ::-1] +
hostGrad[:, :, lpad + 1:2 * lpad + 1])
assert np.allclose(hostInGrad[:, :, insize - rpad - 1:insize - 1], hostGrad[:, :, outsize - rpad:][:, :, ::-1] +
hostGrad[:, :, outsize - 2 * rpad - 1:outsize - rpad - 1])
if __name__ == "__main__":
unittest()
|
[
"PuzzleLib.Modules.Pad2D.PadMode",
"PuzzleLib.Backend.Kernels.Pad.reflectpad1dBackward",
"numpy.random.randn",
"numpy.allclose",
"PuzzleLib.Backend.gpuarray.empty",
"numpy.isclose",
"PuzzleLib.Backend.gpuarray.dtypesSupported",
"PuzzleLib.Backend.Kernels.Pad.reflectpad1d",
"PuzzleLib.Modules.Module.ModuleError"
] |
[((2767, 2841), 'numpy.allclose', 'np.allclose', (['hostOutData[:, :, lpad:hostOutData.shape[2] - rpad]', 'hostData'], {}), '(hostOutData[:, :, lpad:hostOutData.shape[2] - rpad], hostData)\n', (2778, 2841), True, 'import numpy as np\n'), ((2851, 2917), 'numpy.isclose', 'np.isclose', (['hostOutData[0, 0, hostOutData.shape[2] - 1]', 'fillValue'], {}), '(hostOutData[0, 0, hostOutData.shape[2] - 1], fillValue)\n', (2861, 2917), True, 'import numpy as np\n'), ((3504, 3564), 'numpy.allclose', 'np.allclose', (['hostOutData[:, :, lpad:insize + lpad]', 'hostData'], {}), '(hostOutData[:, :, lpad:insize + lpad], hostData)\n', (3515, 3564), True, 'import numpy as np\n'), ((3573, 3650), 'numpy.allclose', 'np.allclose', (['hostOutData[:, :, :lpad][:, :, ::-1]', 'hostData[:, :, 1:lpad + 1]'], {}), '(hostOutData[:, :, :lpad][:, :, ::-1], hostData[:, :, 1:lpad + 1])\n', (3584, 3650), True, 'import numpy as np\n'), ((3657, 3766), 'numpy.allclose', 'np.allclose', (['hostOutData[:, :, insize + lpad:][:, :, ::-1]', 'hostData[:, :, insize - 1 - rpad:insize - 1]'], {}), '(hostOutData[:, :, insize + lpad:][:, :, ::-1], hostData[:, :, \n insize - 1 - rpad:insize - 1])\n', (3668, 3766), True, 'import numpy as np\n'), ((3944, 4058), 'numpy.allclose', 'np.allclose', (['hostInGrad[:, :, lpad + 1:insize - rpad - 1]', 'hostGrad[:, :, 2 * lpad + 1:outsize - 2 * rpad - 1]'], {}), '(hostInGrad[:, :, lpad + 1:insize - rpad - 1], hostGrad[:, :, 2 *\n lpad + 1:outsize - 2 * rpad - 1])\n', (3955, 4058), True, 'import numpy as np\n'), ((4071, 4191), 'numpy.allclose', 'np.allclose', (['hostInGrad[:, :, 1:lpad + 1]', '(hostGrad[:, :, :lpad][:, :, ::-1] + hostGrad[:, :, lpad + 1:2 * lpad + 1])'], {}), '(hostInGrad[:, :, 1:lpad + 1], hostGrad[:, :, :lpad][:, :, ::-1] +\n hostGrad[:, :, lpad + 1:2 * lpad + 1])\n', (4082, 4191), True, 'import numpy as np\n'), ((4204, 4378), 'numpy.allclose', 'np.allclose', (['hostInGrad[:, :, insize - rpad - 1:insize - 1]', '(hostGrad[:, :, outsize - rpad:][:, :, ::-1] + hostGrad[:, :, outsize - 2 *\n rpad - 1:outsize - rpad - 1])'], {}), '(hostInGrad[:, :, insize - rpad - 1:insize - 1], hostGrad[:, :, \n outsize - rpad:][:, :, ::-1] + hostGrad[:, :, outsize - 2 * rpad - 1:\n outsize - rpad - 1])\n', (4215, 4378), True, 'import numpy as np\n'), ((432, 445), 'PuzzleLib.Modules.Pad2D.PadMode', 'PadMode', (['mode'], {}), '(mode)\n', (439, 445), False, 'from PuzzleLib.Modules.Pad2D import PadMode\n'), ((705, 790), 'PuzzleLib.Backend.gpuarray.empty', 'gpuarray.empty', (['(data.shape[:2] + (outsize,))'], {'dtype': 'np.float32', 'allocator': 'memPool'}), '(data.shape[:2] + (outsize,), dtype=np.float32, allocator=memPool\n )\n', (719, 790), False, 'from PuzzleLib.Backend import gpuarray\n'), ((1410, 1447), 'PuzzleLib.Modules.Module.ModuleError', 'ModuleError', (['"""Data must be 3d tensor"""'], {}), "('Data must be 3d tensor')\n", (1421, 1447), False, 'from PuzzleLib.Modules.Module import ModuleError, Module\n'), ((1547, 1636), 'PuzzleLib.Modules.Module.ModuleError', 'ModuleError', (["('Data maps size is too small (got %d, expected >= %d)' % (size, pad + 1))"], {}), "('Data maps size is too small (got %d, expected >= %d)' % (size,\n pad + 1))\n", (1558, 1636), False, 'from PuzzleLib.Modules.Module import ModuleError, Module\n'), ((1700, 1737), 'PuzzleLib.Modules.Module.ModuleError', 'ModuleError', (['"""Grad must be 3d tensor"""'], {}), "('Grad must be 3d tensor')\n", (1711, 1737), False, 'from PuzzleLib.Modules.Module import ModuleError, Module\n'), ((1820, 1917), 'PuzzleLib.Modules.Module.ModuleError', 'ModuleError', (["('Grad maps size is too small (got %d, expected >= %d)' % (size, lpad +\n rpad + 1))"], {}), "('Grad maps size is too small (got %d, expected >= %d)' % (size,\n lpad + rpad + 1))\n", (1831, 1917), False, 'from PuzzleLib.Modules.Module import ModuleError, Module\n'), ((2308, 2347), 'PuzzleLib.Modules.Module.ModuleError', 'ModuleError', (["('Unsupported dtype %s' % T)"], {}), "('Unsupported dtype %s' % T)\n", (2319, 2347), False, 'from PuzzleLib.Modules.Module import ModuleError, Module\n'), ((933, 965), 'PuzzleLib.Backend.Kernels.Pad.reflectpad1d', 'Pad.reflectpad1d', (['data', 'self.pad'], {}), '(data, self.pad)\n', (949, 965), False, 'from PuzzleLib.Backend.Kernels import Pad\n'), ((1253, 1293), 'PuzzleLib.Backend.Kernels.Pad.reflectpad1dBackward', 'Pad.reflectpad1dBackward', (['grad', 'self.pad'], {}), '(grad, self.pad)\n', (1277, 1293), False, 'from PuzzleLib.Backend.Kernels import Pad\n'), ((2248, 2274), 'PuzzleLib.Backend.gpuarray.dtypesSupported', 'gpuarray.dtypesSupported', ([], {}), '()\n', (2272, 2274), False, 'from PuzzleLib.Backend import gpuarray\n'), ((2464, 2488), 'numpy.random.randn', 'np.random.randn', (['(3)', '(4)', '(5)'], {}), '(3, 4, 5)\n', (2479, 2488), True, 'import numpy as np\n'), ((2943, 2978), 'numpy.random.randn', 'np.random.randn', (['*hostOutData.shape'], {}), '(*hostOutData.shape)\n', (2958, 2978), True, 'import numpy as np\n'), ((3263, 3303), 'numpy.random.randn', 'np.random.randn', (['batchsize', 'maps', 'insize'], {}), '(batchsize, maps, insize)\n', (3278, 3303), True, 'import numpy as np\n'), ((3787, 3828), 'numpy.random.randn', 'np.random.randn', (['batchsize', 'maps', 'outsize'], {}), '(batchsize, maps, outsize)\n', (3802, 3828), True, 'import numpy as np\n')]
|
import sys
import os
import numpy as np
import tensorflow as tf
import math
import random
from tensorflow import keras
'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
'''
import matplotlib.pyplot as plt
class FittedQAgent():
'''
abstract class for the Torch and Keras implimentations, dont use directly
'''
def get_action(self, state, explore_rate):
'''
Choses action based on enivormental state, explore rate and current value estimates
Parameters:
state: environmental state
explore_rate
Returns:
action
'''
if np.random.random() < explore_rate:
action = np.random.choice(range(self.layer_sizes[-1]))
else:
values = self.predict(state)
self.values.append(values)
action = np.argmax(values)
assert action < self.n_actions, 'Invalid action'
return action
def get_inputs_targets(self):
'''
gets fitted Q inputs and calculates targets for training the Q-network for episodic training
'''
inputs = []
targets = []
# DO THIS WITH NUMPY TO MAKE IT FASTER
for trajectory in self.memory:
for transition in trajectory:
# CHEKC TARGET IS BUILT CORRECTLY
state, action, cost, next_state, done = transition
inputs.append(state)
# construct target
values = self.predict(state)
next_values = self.predict(next_state)
assert len(values) == self.n_actions, 'neural network returning wrong number of values'
assert len(next_values) == self.n_actions, 'neural network returning wrong number of values'
#update the value for the taken action using cost function and current Q
if not done:
values[action] = cost + self.gamma*np.max(next_values) # could introduce step size here, maybe not needed for neural agent
else:
values[action] = cost
targets.append(values)
# shuffle inputs and target for IID
inputs, targets = np.array(inputs), np.array(targets)
randomize = np.arange(len(inputs))
np.random.shuffle(randomize)
inputs = inputs[randomize]
targets = targets[randomize]
assert inputs.shape[1] == self.state_size, 'inputs to network wrong size'
assert targets.shape[1] == self.n_actions, 'targets for network wrong size'
return inputs, targets
def fitted_Q_update(self, inputs = None, targets = None):
'''
Uses a set of inputs and targets to update the Q network
'''
if inputs is None and targets is None:
inputs, targets = self.get_inputs_targets()
#
#tf.initialize_all_variables() # resinitialise netowrk without adding to tensorflow graph
# try RMSprop and adam and maybe some from here https://arxiv.org/abs/1609.04747
self.reset_weights()
history = self.fit(inputs, targets)
#print('losses: ', history.history['loss'][0], history.history['loss'][-1])
return history
def run_episode(self, env, explore_rate, tmax, train = True, remember = True):
'''
Runs one fitted Q episode
Parameters:
env: the enirovment to train on and control
explore_rate: explore rate for this episodes
tmax: number of timesteps in the episode
train: does the agent learn?
remember: does the agent store eperience in its memory?
Returns:
env.sSol: time evolution of environmental states
episode reward: total reward for this episode
'''
# run trajectory with current policy and add to memory
trajectory = []
actions = []
#self.values = []
state = env.get_state()
episode_reward = 0
self.single_ep_reward = []
for i in range(tmax):
action = self.get_action(state, explore_rate)
actions.append(action)
next_state, reward, done, info = env.step(action)
#cost = -cost # as cartpole default returns a reward
assert len(next_state) == self.state_size, 'env return state of wrong size'
self.single_ep_reward.append(reward)
if done:
print(reward)
# scale populations
transition = (state, action, reward, next_state, done)
state = next_state
trajectory.append(transition)
episode_reward += reward
if done: break
if remember:
self.memory.append(trajectory)
if train:
self.actions = actions
self.episode_lengths.append(i)
self.episode_rewards.append(episode_reward)
if len(self.memory[0]) * len(self.memory) < 100:
#n_iters = 4
n_iters = 4
elif len(self.memory[0]) * len(self.memory) < 200:
#n_iters = 5
n_iters = 5
else:
n_iters = 10
#n_iters = 0
for _ in range(n_iters):
self.fitted_Q_update()
#env.plot_trajectory()
#plt.show()
return env.sSol, episode_reward
def neural_fitted_Q(self, env, n_episodes, tmax):
'''
runs a whole neural fitted Q experiment
Parameters:
env: environment to train on
n_episodes: number of episodes
tmax: timesteps in each episode
'''
times = []
for i in range(n_episodes):
print()
print('EPISODE', i)
# CONSTANT EXPLORE RATE OF 0.1 worked well
explore_rate = self.get_rate(i, 0, 1, 2.5)
#explore_rate = 0.1
#explore_rate = 0
print('explore_rate:', explore_rate)
env.reset()
trajectory, reward = self.run_episode(env, explore_rate, tmax)
time = len(trajectory)
print('Time: ', time)
times.append(time)
print(times)
def plot_rewards(self):
'''
Plots the total reward gained in each episode on a matplotlib figure
'''
plt.figure(figsize = (16.0,12.0))
plt.plot(self.episode_rewards)
def save_results(self, save_path):
'''
saves numpy arrays of results of training
'''
np.save(save_path + '/survival_times', self.episode_lengths)
np.save(save_path + '/episode_rewards', self.episode_rewards)
def get_rate(self, episode, MIN_LEARNING_RATE, MAX_LEARNING_RATE, denominator):
'''
Calculates the logarithmically decreasing explore or learning rate
Parameters:
episode: the current episode
MIN_LEARNING_RATE: the minimum possible step size
MAX_LEARNING_RATE: maximum step size
denominator: controls the rate of decay of the step size
Returns:
step_size: the Q-learning step size
'''
# input validation
if not 0 <= MIN_LEARNING_RATE <= 1:
raise ValueError("MIN_LEARNING_RATE needs to be bewteen 0 and 1")
if not 0 <= MAX_LEARNING_RATE <= 1:
raise ValueError("MAX_LEARNING_RATE needs to be bewteen 0 and 1")
if not 0 < denominator:
raise ValueError("denominator needs to be above 0")
rate = max(MIN_LEARNING_RATE, min(MAX_LEARNING_RATE, 1.0 - math.log10((episode+1)/denominator)))
return rate
class KerasFittedQAgent(FittedQAgent):
def __init__(self, layer_sizes = [2,20,20,4]):
self.memory = []
self.layer_sizes = layer_sizes
self.network = self.initialise_network(layer_sizes)
self.gamma = 0.9
self.state_size = layer_sizes[0]
self.n_actions = layer_sizes[-1]
self.episode_lengths = []
self.episode_rewards = []
self.single_ep_reward = []
self.total_loss = 0
self.values = []
def initialise_network(self, layer_sizes):
'''
Creates Q network
'''
tf.keras.backend.clear_session()
initialiser = keras.initializers.RandomUniform(minval = -0.5, maxval = 0.5, seed = None)
positive_initialiser = keras.initializers.RandomUniform(minval = 0., maxval = 0.35, seed = None)
regulariser = keras.regularizers.l1_l2(l1=0.01, l2=0.01)
network = keras.Sequential([
keras.layers.InputLayer([layer_sizes[0]]),
keras.layers.Dense(layer_sizes[1], activation = tf.nn.relu),
keras.layers.Dense(layer_sizes[2], activation = tf.nn.relu),
keras.layers.Dense(layer_sizes[3]) # linear output layer
])
network.compile(optimizer = 'adam', loss = 'mean_squared_error') # TRY DIFFERENT OPTIMISERS
return network
def predict(self, state):
'''
Predicts value estimates for each action base on currrent states
'''
return self.network.predict(state.reshape(1,-1))[0]
def fit(self, inputs, targets):
'''
trains the Q network on a set of inputs and targets
'''
history = self.network.fit(inputs, targets, epochs = 300, verbose = 0) # TRY DIFFERENT EPOCHS
return history
def reset_weights(model):
'''
Reinitialises weights to random values
'''
sess = tf.keras.backend.get_session()
sess.run(tf.global_variables_initializer())
def save_network(self, save_path):
'''
Saves current network weights
'''
self.network.save(save_path + '/saved_network.h5')
def save_network_tensorflow(self, save_path):
'''
Saves current network weights using pure tensorflow, kerassaver seems to crash sometimes
'''
saver = tf.train.Saver()
sess = tf.keras.backend.get_session()
path = saver.save(sess, save_path + "/saved/model.cpkt")
def load_network_tensorflow(self, save_path):
'''
Loads network weights from file using pure tensorflow, kerassaver seems to crash sometimes
'''
saver = tf.train.Saver()
sess = tf.keras.backend.get_session()
saver.restore(sess, save_path +"/saved/model.cpkt")
def load_network(self, load_path): #tested
'''
Loads network weights from file
'''
try:
self.network = keras.models.load_model(load_path + '/saved_network.h5') # sometimes this crashes, apparently a bug in keras
except:
self.network.load_weights(load_path + '/saved_network.h5') # this requires model to be initialised exactly the same
|
[
"numpy.save",
"tensorflow.keras.models.load_model",
"matplotlib.pyplot.plot",
"tensorflow.train.Saver",
"numpy.argmax",
"tensorflow.global_variables_initializer",
"tensorflow.keras.backend.clear_session",
"tensorflow.keras.layers.Dense",
"tensorflow.keras.layers.InputLayer",
"matplotlib.pyplot.figure",
"tensorflow.keras.initializers.RandomUniform",
"numpy.random.random",
"tensorflow.keras.backend.get_session",
"numpy.array",
"tensorflow.keras.regularizers.l1_l2",
"math.log10",
"numpy.max",
"numpy.random.shuffle"
] |
[((2357, 2385), 'numpy.random.shuffle', 'np.random.shuffle', (['randomize'], {}), '(randomize)\n', (2374, 2385), True, 'import numpy as np\n'), ((6431, 6463), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16.0, 12.0)'}), '(figsize=(16.0, 12.0))\n', (6441, 6463), True, 'import matplotlib.pyplot as plt\n'), ((6474, 6504), 'matplotlib.pyplot.plot', 'plt.plot', (['self.episode_rewards'], {}), '(self.episode_rewards)\n', (6482, 6504), True, 'import matplotlib.pyplot as plt\n'), ((6627, 6687), 'numpy.save', 'np.save', (["(save_path + '/survival_times')", 'self.episode_lengths'], {}), "(save_path + '/survival_times', self.episode_lengths)\n", (6634, 6687), True, 'import numpy as np\n'), ((6696, 6757), 'numpy.save', 'np.save', (["(save_path + '/episode_rewards')", 'self.episode_rewards'], {}), "(save_path + '/episode_rewards', self.episode_rewards)\n", (6703, 6757), True, 'import numpy as np\n'), ((8335, 8367), 'tensorflow.keras.backend.clear_session', 'tf.keras.backend.clear_session', ([], {}), '()\n', (8365, 8367), True, 'import tensorflow as tf\n'), ((8390, 8458), 'tensorflow.keras.initializers.RandomUniform', 'keras.initializers.RandomUniform', ([], {'minval': '(-0.5)', 'maxval': '(0.5)', 'seed': 'None'}), '(minval=-0.5, maxval=0.5, seed=None)\n', (8422, 8458), False, 'from tensorflow import keras\n'), ((8496, 8564), 'tensorflow.keras.initializers.RandomUniform', 'keras.initializers.RandomUniform', ([], {'minval': '(0.0)', 'maxval': '(0.35)', 'seed': 'None'}), '(minval=0.0, maxval=0.35, seed=None)\n', (8528, 8564), False, 'from tensorflow import keras\n'), ((8592, 8634), 'tensorflow.keras.regularizers.l1_l2', 'keras.regularizers.l1_l2', ([], {'l1': '(0.01)', 'l2': '(0.01)'}), '(l1=0.01, l2=0.01)\n', (8616, 8634), False, 'from tensorflow import keras\n'), ((9630, 9660), 'tensorflow.keras.backend.get_session', 'tf.keras.backend.get_session', ([], {}), '()\n', (9658, 9660), True, 'import tensorflow as tf\n'), ((10062, 10078), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (10076, 10078), True, 'import tensorflow as tf\n'), ((10094, 10124), 'tensorflow.keras.backend.get_session', 'tf.keras.backend.get_session', ([], {}), '()\n', (10122, 10124), True, 'import tensorflow as tf\n'), ((10382, 10398), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (10396, 10398), True, 'import tensorflow as tf\n'), ((10415, 10445), 'tensorflow.keras.backend.get_session', 'tf.keras.backend.get_session', ([], {}), '()\n', (10443, 10445), True, 'import tensorflow as tf\n'), ((673, 691), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (689, 691), True, 'import numpy as np\n'), ((892, 909), 'numpy.argmax', 'np.argmax', (['values'], {}), '(values)\n', (901, 909), True, 'import numpy as np\n'), ((2267, 2283), 'numpy.array', 'np.array', (['inputs'], {}), '(inputs)\n', (2275, 2283), True, 'import numpy as np\n'), ((2285, 2302), 'numpy.array', 'np.array', (['targets'], {}), '(targets)\n', (2293, 2302), True, 'import numpy as np\n'), ((9678, 9711), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (9709, 9711), True, 'import tensorflow as tf\n'), ((10659, 10715), 'tensorflow.keras.models.load_model', 'keras.models.load_model', (["(load_path + '/saved_network.h5')"], {}), "(load_path + '/saved_network.h5')\n", (10682, 10715), False, 'from tensorflow import keras\n'), ((8684, 8725), 'tensorflow.keras.layers.InputLayer', 'keras.layers.InputLayer', (['[layer_sizes[0]]'], {}), '([layer_sizes[0]])\n', (8707, 8725), False, 'from tensorflow import keras\n'), ((8739, 8796), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['layer_sizes[1]'], {'activation': 'tf.nn.relu'}), '(layer_sizes[1], activation=tf.nn.relu)\n', (8757, 8796), False, 'from tensorflow import keras\n'), ((8812, 8869), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['layer_sizes[2]'], {'activation': 'tf.nn.relu'}), '(layer_sizes[2], activation=tf.nn.relu)\n', (8830, 8869), False, 'from tensorflow import keras\n'), ((8885, 8919), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['layer_sizes[3]'], {}), '(layer_sizes[3])\n', (8903, 8919), False, 'from tensorflow import keras\n'), ((7688, 7727), 'math.log10', 'math.log10', (['((episode + 1) / denominator)'], {}), '((episode + 1) / denominator)\n', (7698, 7727), False, 'import math\n'), ((2003, 2022), 'numpy.max', 'np.max', (['next_values'], {}), '(next_values)\n', (2009, 2022), True, 'import numpy as np\n')]
|
from __future__ import print_function
import unittest
import numpy as np
from openmdao.api import Problem, IndepVarComp, Group
from openmdao.utils.assert_utils import assert_rel_error, assert_check_partials
from CADRE.battery_dymos import BatterySOCComp
class TestBatteryDymos(unittest.TestCase):
@classmethod
def setUpClass(cls):
nn = 6
cls.p = Problem(model=Group())
ivc = cls.p.model.add_subsystem('ivc', IndepVarComp(), promotes_outputs=['*'])
ivc.add_output('temperature', val=np.ones((nn,5)))
ivc.add_output('P_bat', val=np.ones((nn,)))
ivc.add_output('SOC', val=np.ones((nn,)))
cls.p.model.add_subsystem('battery_soc_comp', BatterySOCComp(num_nodes=nn),
promotes_inputs=['*'], promotes_outputs=['*'])
cls.p.setup(check=True, force_alloc_complex=True)
cls.p['temperature'] = 273 + np.random.rand(nn, 5) * 100
cls.p['P_bat'] = np.random.rand(nn) * 100
cls.p['SOC'] = np.random.rand(nn)
cls.p.run_model()
def test_results(self):
self.assertTrue(np.all(self.p['dXdt:SOC'] < 0))
def test_partials(self):
np.set_printoptions(linewidth=1024)
cpd = self.p.check_partials(method='cs')
assert_check_partials(cpd)
|
[
"openmdao.api.IndepVarComp",
"numpy.set_printoptions",
"CADRE.battery_dymos.BatterySOCComp",
"openmdao.api.Group",
"numpy.ones",
"openmdao.utils.assert_utils.assert_check_partials",
"numpy.random.rand",
"numpy.all"
] |
[((1013, 1031), 'numpy.random.rand', 'np.random.rand', (['nn'], {}), '(nn)\n', (1027, 1031), True, 'import numpy as np\n'), ((1182, 1217), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'linewidth': '(1024)'}), '(linewidth=1024)\n', (1201, 1217), True, 'import numpy as np\n'), ((1275, 1301), 'openmdao.utils.assert_utils.assert_check_partials', 'assert_check_partials', (['cpd'], {}), '(cpd)\n', (1296, 1301), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_check_partials\n'), ((448, 462), 'openmdao.api.IndepVarComp', 'IndepVarComp', ([], {}), '()\n', (460, 462), False, 'from openmdao.api import Problem, IndepVarComp, Group\n'), ((704, 732), 'CADRE.battery_dymos.BatterySOCComp', 'BatterySOCComp', ([], {'num_nodes': 'nn'}), '(num_nodes=nn)\n', (718, 732), False, 'from CADRE.battery_dymos import BatterySOCComp\n'), ((965, 983), 'numpy.random.rand', 'np.random.rand', (['nn'], {}), '(nn)\n', (979, 983), True, 'import numpy as np\n'), ((1112, 1142), 'numpy.all', 'np.all', (["(self.p['dXdt:SOC'] < 0)"], {}), "(self.p['dXdt:SOC'] < 0)\n", (1118, 1142), True, 'import numpy as np\n'), ((391, 398), 'openmdao.api.Group', 'Group', ([], {}), '()\n', (396, 398), False, 'from openmdao.api import Problem, IndepVarComp, Group\n'), ((530, 546), 'numpy.ones', 'np.ones', (['(nn, 5)'], {}), '((nn, 5))\n', (537, 546), True, 'import numpy as np\n'), ((583, 597), 'numpy.ones', 'np.ones', (['(nn,)'], {}), '((nn,))\n', (590, 597), True, 'import numpy as np\n'), ((633, 647), 'numpy.ones', 'np.ones', (['(nn,)'], {}), '((nn,))\n', (640, 647), True, 'import numpy as np\n'), ((912, 933), 'numpy.random.rand', 'np.random.rand', (['nn', '(5)'], {}), '(nn, 5)\n', (926, 933), True, 'import numpy as np\n')]
|
""" This module computes alignment solutions between all "a priori" solutions
for a dataset and GAIA.
"""
import pytest
import numpy as np
from drizzlepac.haputils import testutils
from ..resources import BaseACS, BaseWFC3
def compare_apriori(dataset):
"""This test will perform fits between ALL a priori solutions and GAIA.
Success criteria:
* Successful fit to GAIA for dataset
* Fit was not compromised (fit_qual != 5)
* radial offset for new WCS < radial offset for IDC_* WCS
* scale for new WCS within 0.1% of scale for IDC_* WCS
* rotation for new WCS is within 0.1% of rotation from IDC_* WCS
ASSUMPTIONS:
* OPUS-based WCS solutions are ignored
* Some WCS's may be defined for one image in an ASN but not another,
in which case, that WCS is ignored (silently).
"""
# Perform alignment of all WCS solutions with GAIA
results_dict = testutils.compare_wcs_alignment(dataset)
limit = 0.001
# Now compare results to see whether the a priori solutions succeeded
# in improving the astrometry compared to default telescope pointing
# reported by pipeline-defined WCS (IDC_* solution)
wcsnames = list(results_dict.keys())
for idc_name in wcsnames:
if 'IDC' in idc_name and '-' not in idc_name:
wcsnames.remove(idc_name)
break
else:
raise ValueError
# Define pipeline-default fit
pipeline_results = results_dict[idc_name]
pipeline_offset = np.sqrt(pipeline_results['offset_x']**2 +
pipeline_results['offset_y']**2)
success = False
# compare each WCS fit results with pipeline-default fit
for wcs in wcsnames:
print("Comparing fit for WCS='{}'...".format(wcs), end=' ')
results = results_dict[wcs]
# Check that fit for this WCS was successful
status = (results['status'] == 0).all()
# check that fit was not compromised or otherwise invalid
fit_qual = (results['fit_qual'] < 5).all()
# Check radial offset for this WCS compared to radial offset for
# IDC* WCS
offset = np.sqrt(results['offset_x']**2 + results['offset_y']**2)
delta = ((offset < pipeline_offset).all() or
np.allclose(offset, pipeline_offset, rtol=0, atol=1))
# Check that rotation and scale are within
rot = np.allclose(results['rotation'], pipeline_results['rotation'],
rtol=limit, atol=0)
scale = np.allclose(results['scale'], pipeline_results['scale'],
rtol=limit, atol=0)
# Determine success/failure of this dataset's fit
if all([status, fit_qual, delta, rot, scale]):
# If at least one WCS succeeds, overall success
# needs to be set to True
success = True
print("SUCCESS")
else:
print("FAILED due to:")
if not status:
print("\t* invalid STATUS")
if not fit_qual:
print("\t* invalid fit quality")
if not delta:
print("\t* increased offset from GAIA.")
if not rot:
print("\t* larger rotation from fit.")
if not scale:
print("\t* larger scale from fit.")
assert success
class TestAcsApriori(BaseACS):
""" Tests which validate whether mosaics can be aligned to an astrometric standard,
evaluate the quality of the fit, and generate a new WCS.
* These can only be run using the pytest option:
pytest --bigdata
* This test is also compatible with pytest-xdist.
"""
@pytest.mark.bigdata
@pytest.mark.parametrize('dataset', ['jb1601020', 'J9I408010'])
def test_apriori(self, dataset):
compare_apriori(dataset)
class TestWFC3Apriori(BaseWFC3):
""" Tests which validate whether mosaics can be aligned to an astrometric
standard, evaluate the quality of the fit, and generate a new WCS.
* These can only be run using the pytest option:
pytest --bigdata
* This test is also compatible with pytest-xdist.
"""
@pytest.mark.bigdata
@pytest.mark.parametrize(
'dataset', ['ic0g0l010', 'icnw34040']
)
def test_apriori(self, dataset):
compare_apriori(dataset)
|
[
"pytest.mark.parametrize",
"numpy.allclose",
"numpy.sqrt",
"drizzlepac.haputils.testutils.compare_wcs_alignment"
] |
[((925, 965), 'drizzlepac.haputils.testutils.compare_wcs_alignment', 'testutils.compare_wcs_alignment', (['dataset'], {}), '(dataset)\n', (956, 965), False, 'from drizzlepac.haputils import testutils\n'), ((1506, 1584), 'numpy.sqrt', 'np.sqrt', (["(pipeline_results['offset_x'] ** 2 + pipeline_results['offset_y'] ** 2)"], {}), "(pipeline_results['offset_x'] ** 2 + pipeline_results['offset_y'] ** 2)\n", (1513, 1584), True, 'import numpy as np\n'), ((3728, 3790), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dataset"""', "['jb1601020', 'J9I408010']"], {}), "('dataset', ['jb1601020', 'J9I408010'])\n", (3751, 3790), False, 'import pytest\n'), ((4236, 4298), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dataset"""', "['ic0g0l010', 'icnw34040']"], {}), "('dataset', ['ic0g0l010', 'icnw34040'])\n", (4259, 4298), False, 'import pytest\n'), ((2151, 2211), 'numpy.sqrt', 'np.sqrt', (["(results['offset_x'] ** 2 + results['offset_y'] ** 2)"], {}), "(results['offset_x'] ** 2 + results['offset_y'] ** 2)\n", (2158, 2211), True, 'import numpy as np\n'), ((2398, 2484), 'numpy.allclose', 'np.allclose', (["results['rotation']", "pipeline_results['rotation']"], {'rtol': 'limit', 'atol': '(0)'}), "(results['rotation'], pipeline_results['rotation'], rtol=limit,\n atol=0)\n", (2409, 2484), True, 'import numpy as np\n'), ((2523, 2599), 'numpy.allclose', 'np.allclose', (["results['scale']", "pipeline_results['scale']"], {'rtol': 'limit', 'atol': '(0)'}), "(results['scale'], pipeline_results['scale'], rtol=limit, atol=0)\n", (2534, 2599), True, 'import numpy as np\n'), ((2278, 2330), 'numpy.allclose', 'np.allclose', (['offset', 'pipeline_offset'], {'rtol': '(0)', 'atol': '(1)'}), '(offset, pipeline_offset, rtol=0, atol=1)\n', (2289, 2330), True, 'import numpy as np\n')]
|
"""
Filter kernels (Szeliski 3.2)
"""
import numpy as np
KERNEL_BILINEAR = 1.0/16 * np.array(((1, 2, 1),
(2, 4, 2),
(1, 2, 1)))
KERNEL_GAUSSIAN = 1.0/256 * np.array(((1, 4, 6, 4, 1),
(4, 16, 24, 16, 4),
(6, 24, 36, 24, 6),
(4, 16, 24, 16, 4),
(1, 4, 6, 4, 1)))
KERNEL_SOBEL = 1.0/8 * np.array(((-1, 0, 1),
(-2, 0, 2),
(-1, 0, 1)))
KERNEL_CORNER = 1.0/4 * np.array((( 1, -2, 1),
(-2, 4, -2),
( 1, -2, 1)))
def gaussian_kernel(sigma_x, sigma_y=None):
"""
Normalized Gaussian kernel
"""
if not sigma_y:
sigma_y = sigma_x
X, Y = np.meshgrid(np.arange(-sigma_x, sigma_x+1, dtype=float),
np.arange(-sigma_y, sigma_y+1, dtype=float))
G = np.exp(- (X**2 / (2*sigma_x**2) + Y**2 / (2*sigma_y**2)))
# Normalize
return G / G.sum()
|
[
"numpy.arange",
"numpy.array",
"numpy.exp"
] |
[((86, 129), 'numpy.array', 'np.array', (['((1, 2, 1), (2, 4, 2), (1, 2, 1))'], {}), '(((1, 2, 1), (2, 4, 2), (1, 2, 1)))\n', (94, 129), True, 'import numpy as np\n'), ((231, 340), 'numpy.array', 'np.array', (['((1, 4, 6, 4, 1), (4, 16, 24, 16, 4), (6, 24, 36, 24, 6), (4, 16, 24, 16, 4\n ), (1, 4, 6, 4, 1))'], {}), '(((1, 4, 6, 4, 1), (4, 16, 24, 16, 4), (6, 24, 36, 24, 6), (4, 16, \n 24, 16, 4), (1, 4, 6, 4, 1)))\n', (239, 340), True, 'import numpy as np\n'), ((518, 564), 'numpy.array', 'np.array', (['((-1, 0, 1), (-2, 0, 2), (-1, 0, 1))'], {}), '(((-1, 0, 1), (-2, 0, 2), (-1, 0, 1)))\n', (526, 564), True, 'import numpy as np\n'), ((656, 703), 'numpy.array', 'np.array', (['((1, -2, 1), (-2, 4, -2), (1, -2, 1))'], {}), '(((1, -2, 1), (-2, 4, -2), (1, -2, 1)))\n', (664, 703), True, 'import numpy as np\n'), ((1060, 1128), 'numpy.exp', 'np.exp', (['(-(X ** 2 / (2 * sigma_x ** 2) + Y ** 2 / (2 * sigma_y ** 2)))'], {}), '(-(X ** 2 / (2 * sigma_x ** 2) + Y ** 2 / (2 * sigma_y ** 2)))\n', (1066, 1128), True, 'import numpy as np\n'), ((939, 984), 'numpy.arange', 'np.arange', (['(-sigma_x)', '(sigma_x + 1)'], {'dtype': 'float'}), '(-sigma_x, sigma_x + 1, dtype=float)\n', (948, 984), True, 'import numpy as np\n'), ((1007, 1052), 'numpy.arange', 'np.arange', (['(-sigma_y)', '(sigma_y + 1)'], {'dtype': 'float'}), '(-sigma_y, sigma_y + 1, dtype=float)\n', (1016, 1052), True, 'import numpy as np\n')]
|
import numpy as np
import torch
import torch.nn as nn
from torch.distributions.log_normal import LogNormal
from geometry import get_ang,get_dih,get_cb
fold_params = {
"SG7" : np.array([[[-2,3,6,7,6,3,-2]]])/21,
"SG9" : np.array([[[-21,14,39,54,59,54,39,14,-21]]])/231,
"DCUT" : 19.5,
"ALPHA" : 1.57,
# TODO: add Cb to the motif
"NCAC" : np.array([[-0.676, -1.294, 0. ],
[ 0. , 0. , 0. ],
[ 1.5 , -0.174, 0. ]], dtype=np.float32),
"CLASH" : 2.0,
"PCUT" : 0.5,
"DSTEP" : 0.5,
"ASTEP" : np.deg2rad(10.0),
"WANG" : 0.1,
"WCST" : 0.1
}
fold_params["SG"] = fold_params["SG9"]
def perturb_init(xyz, batch, noise=0.5):
L = xyz.shape[0]
pert = torch.tensor(np.random.uniform(noise, size=(batch, L, 3)), dtype=xyz.dtype, device=xyz.device)
xyz = xyz.unsqueeze(0) + pert.detach()
return xyz
def init_xyz_edm(mu,sigma,batch=1,steps=50):
'''generate initial Ca trace from mu,sigma of
predicted log-normal distributions'''
device = mu.device
L = mu.shape[-1]
m = mu.detach()
s = sigma.detach()
# approximate initial distances by the mode
# of lognormal distributions
D = torch.exp(m-s*s)
sampler = LogNormal(mu[0],sigma[0])
Ds = sampler.sample((batch,))
Ds[0] = D[0]
# convert distance matrix to a Gramm matrix
J = torch.eye(L,device=device)-torch.ones((L,L),device=device)/L
G = -0.5*J@Ds**2@J
# use three leading eigenvectors to approximate
# initial coordinates
e,v = torch.symeig(G,eigenvectors=True)
ca = v[:,:,-3:]*e[:,-3:].unsqueeze(1)**0.5
def nll(xyz):
dist = torch.cdist(xyz,xyz)+1e-6*torch.eye(L,device=device)
nll = (0.5*((torch.log(dist)-m)/s + torch.log(dist*s*(2*np.pi)**0.5))**2).mean()
return nll
nll0 = nll(ca)
nll1 = nll0
# fine-tuning by minimization of log-likelihoods
shift = torch.zeros_like(ca,device=device,requires_grad=True)
if steps>0:
minimizer = torch.optim.Adam([shift], lr=0.5)
for i in range(steps):
minimizer.zero_grad()
nll1 = nll(ca+shift)
nll1.backward()
minimizer.step()
return ca+shift #,nll0,nll1
def Q2R(Q):
'''convert quaternions to rotation matrices'''
b,l,_ = Q.shape
w,x,y,z = Q[...,0],Q[...,1],Q[...,2],Q[...,3]
xx,xy,xz,xw = x*x, x*y, x*z, x*w
yy,yz,yw = y*y, y*z, y*w
zz,zw = z*z, z*w
R = torch.stack([1-2*yy-2*zz, 2*xy-2*zw, 2*xz+2*yw,
2*xy+2*zw, 1-2*xx-2*zz, 2*yz-2*xw,
2*xz-2*yw, 2*yz+2*xw, 1-2*xx-2*yy],dim=-1).view(b,l,3,3)
return R
class TRFold():
def __init__(self, pred, params=fold_params):
self.pred = pred
self.params = params
self.device = self.pred[0].device
# dfire background correction for distograms
self.bkgd = (torch.linspace(4.25,19.75,32,device=self.device)/
self.params['DCUT'])**self.params['ALPHA']
# background correction for phi
ang = torch.linspace(0,np.pi,19,device=self.device)[:-1]
self.bkgp = 0.5*(torch.cos(ang)-torch.cos(ang+np.deg2rad(10.0)))
# Sav-Gol filter
self.sg = torch.from_numpy(self.params['SG']).float().to(self.device)
# paddings for distograms:
# left - linear clash; right - zeroes
padRsize = self.sg.shape[-1]//2+3
padLsize = padRsize + 8
padR = torch.zeros(padRsize,device=self.device)
padL = torch.arange(1,padLsize+1,device=self.device).flip(0)*self.params['CLASH']
self.padR = padR[:,None]
self.padL = padL[:,None]
# backbone motif
self.ncac = torch.from_numpy(self.params['NCAC']).to(self.device)
def akima(self, y,h):
''' Akima spline coefficients (boundaries trimmed to [2:-2])
https://doi.org/10.1145/321607.321609 '''
m = (y[:,1:]-y[:,:-1])/h
#m += 1e-3*torch.randn(m.shape, device=m.device)
m4m3 = torch.abs(m[:,3:]-m[:,2:-1])
m2m1 = torch.abs(m[:,1:-2]-m[:,:-3])
t = (m4m3*m[:,1:-2] + m2m1*m[:,2:-1])/(m4m3+m2m1)
t[torch.isnan(t)] = 0.0
dy = y[:,3:-2]-y[:,2:-3]
coef = torch.stack([y[:,2:-3],
t[:,:-1],
(3*dy/h - 2*t[:,:-1] - t[:,1:])/h,
(t[:,:-1]+t[:,1:] - 2*dy/h)/h**2], dim=-1)
return coef
def fold(self, lognorm=None, ca_trace=None, batch=32, lr=0.2, nsteps=100):
pd,po,pt,pp = self.pred
L = pd.shape[-1]
p20 = (6.0-pd[-1]-po[-1]-pt[-1]-pp[-1]-(pt[-1]+pp[-1]).T)/6
i,j = torch.triu_indices(L,L,1,device=self.device)
sel = torch.where(p20[i,j]>self.params['PCUT'])[0]
# indices for dist and omega (symmetric)
i_s,j_s = i[sel], j[sel]
# indices for theta and phi (asymmetric)
i_a,j_a = torch.hstack([i_s,j_s]), torch.hstack([j_s,i_s])
# background-corrected initial restraints
cstd = -torch.log(pd[4:36,i_s,j_s]/self.bkgd[:,None])
csto = -torch.log(po[0:36,i_s,j_s]/(1./36)) # omega and theta
cstt = -torch.log(pt[0:36,i_a,j_a]/(1./36)) # are almost uniform
cstp = -torch.log(pp[0:18,i_a,j_a]/self.bkgp[:,None])
# padded restraints
pad = self.sg.shape[-1]//2+3
cstd = torch.cat([self.padL+cstd[0],cstd,self.padR+cstd[-1]],dim=0)
csto = torch.cat([csto[-pad:],csto,csto[:pad]],dim=0)
cstt = torch.cat([cstt[-pad:],cstt,cstt[:pad]],dim=0)
cstp = torch.cat([cstp[:pad].flip(0),cstp,cstp[-pad:].flip(0)],dim=0)
# smoothed restraints
cstd,csto,cstt,cstp = [nn.functional.conv1d(cst.T.unsqueeze(1),self.sg)[:,0]
for cst in [cstd,csto,cstt,cstp]]
# force distance restraints vanish at long distances
cstd = cstd-cstd[:,-1][:,None]
# akima spline coefficients
coefd = self.akima(cstd, self.params['DSTEP']).detach()
coefo = self.akima(csto, self.params['ASTEP']).detach()
coeft = self.akima(cstt, self.params['ASTEP']).detach()
coefp = self.akima(cstp, self.params['ASTEP']).detach()
astep = self.params['ASTEP']
ko = torch.arange(i_s.shape[0],device=self.device).repeat(batch)
kt = torch.arange(i_a.shape[0],device=self.device).repeat(batch)
# initial Ca placement
if lognorm is not None:
# using EDM+minimization
mu = lognorm[...,0]
sigma = lognorm[...,1]
xyz = init_xyz_edm(mu,sigma,batch,50)
elif ca_trace is not None:
# using predicted backbone
xyz = perturb_init(ca_trace, batch) # (batch, L, 3)
else:
sys.exit('Either "xyz" or "ca_trace" should be specified.')
# optimization variables: T - shift vectors, Q - rotation quaternions
T = torch.zeros_like(xyz,device=self.device,requires_grad=True)
Q = torch.randn([batch,L,4],device=self.device,requires_grad=True)
bb0 = self.ncac[None,:,None,:].repeat(batch,1,L,1)
opt = torch.optim.Adam([T,Q], lr=lr)
for step in range(nsteps):
R = Q2R(Q/torch.norm(Q,dim=-1,keepdim=True))
bb = torch.einsum("blij,bklj->bkli",R,bb0)+(xyz+T)[:,None]
# TODO: include Cb in the motif
N,Ca,C = bb[:,0],bb[:,1],bb[:,2]
Cb = get_cb(N,Ca,C)
o = get_dih(Ca[:,i_s],Cb[:,i_s],Cb[:,j_s],Ca[:,j_s]) + np.pi
t = get_dih(N[:,i_a],Ca[:,i_a],Cb[:,i_a],Cb[:,j_a]) + np.pi
p = get_ang(Ca[:,i_a],Cb[:,i_a],Cb[:,j_a])
dij = torch.norm(Cb[:,i_s]-Cb[:,j_s],dim=-1)
b,k = torch.where(dij<20.0)
dk = dij[b,k]
kbin = torch.ceil((dk-0.25)/0.5).long()
dx = (dk-0.25)%0.5
c = coefd[k,kbin]
lossd = c[:,0]+c[:,1]*dx+c[:,2]*dx**2+c[:,3]*dx**3
# omega
obin = torch.ceil((o.view(-1)-astep/2)/astep).long()
do = (o.view(-1)-astep/2)%astep
co = coefo[ko,obin]
losso = (co[:,0]+co[:,1]*do+co[:,2]*do**2+co[:,3]*do**3).view(batch,-1) #.mean(1)
# theta
tbin = torch.ceil((t.view(-1)-astep/2)/astep).long()
dt = (t.view(-1)-astep/2)%astep
ct = coeft[kt,tbin]
losst = (ct[:,0]+ct[:,1]*dt+ct[:,2]*dt**2+ct[:,3]*dt**3).view(batch,-1) #.mean(1)
# phi
pbin = torch.ceil((p.view(-1)-astep/2)/astep).long()
dp = (p.view(-1)-astep/2)%astep
cp = coefp[kt,pbin]
lossp = (cp[:,0]+cp[:,1]*dp+cp[:,2]*dp**2+cp[:,3]*dp**3).view(batch,-1) #.mean(1)
# restrain geometry of peptide bonds
loss_nc = (torch.norm(C[:,:-1]-N[:,1:],dim=-1)-1.32868)**2
loss_cacn = (get_ang(Ca[:,:-1], C[:,:-1], N[:,1:]) - 2.02807)**2
loss_canc = (get_ang(Ca[:,1:], N[:,1:], C[:,:-1]) - 2.12407)**2
loss_geom = loss_nc.mean(1) + loss_cacn.mean(1) + loss_canc.mean(1)
loss_ang = losst.mean(1) + losso.mean(1) + lossp.mean(1)
# coefficient for ramping up geometric restraints during minimization
coef = (1.0+step)/nsteps
loss = lossd.mean() + self.params['WANG']*loss_ang.mean() + coef*self.params['WCST']*loss_geom.mean()
opt.zero_grad()
loss.backward()
opt.step()
lossd = torch.stack([lossd[b==i].mean() for i in range(batch)])
loss = lossd + self.params['WANG']*loss_ang + self.params['WCST']*loss_geom
minidx = torch.argmin(loss)
return bb[minidx] #.permute(1,0,2)
|
[
"torch.eye",
"geometry.get_cb",
"torch.cat",
"torch.randn",
"torch.cos",
"torch.ceil",
"torch.arange",
"torch.isnan",
"torch.ones",
"torch.hstack",
"torch.triu_indices",
"geometry.get_dih",
"torch.exp",
"geometry.get_ang",
"torch.zeros",
"torch.log",
"torch.zeros_like",
"torch.where",
"torch.norm",
"torch.distributions.log_normal.LogNormal",
"torch.abs",
"torch.einsum",
"torch.optim.Adam",
"torch.from_numpy",
"numpy.random.uniform",
"torch.stack",
"torch.symeig",
"numpy.deg2rad",
"torch.cdist",
"numpy.array",
"torch.linspace",
"torch.argmin"
] |
[((379, 471), 'numpy.array', 'np.array', (['[[-0.676, -1.294, 0.0], [0.0, 0.0, 0.0], [1.5, -0.174, 0.0]]'], {'dtype': 'np.float32'}), '([[-0.676, -1.294, 0.0], [0.0, 0.0, 0.0], [1.5, -0.174, 0.0]],\n dtype=np.float32)\n', (387, 471), True, 'import numpy as np\n'), ((618, 634), 'numpy.deg2rad', 'np.deg2rad', (['(10.0)'], {}), '(10.0)\n', (628, 634), True, 'import numpy as np\n'), ((1267, 1287), 'torch.exp', 'torch.exp', (['(m - s * s)'], {}), '(m - s * s)\n', (1276, 1287), False, 'import torch\n'), ((1298, 1324), 'torch.distributions.log_normal.LogNormal', 'LogNormal', (['mu[0]', 'sigma[0]'], {}), '(mu[0], sigma[0])\n', (1307, 1324), False, 'from torch.distributions.log_normal import LogNormal\n'), ((1613, 1647), 'torch.symeig', 'torch.symeig', (['G'], {'eigenvectors': '(True)'}), '(G, eigenvectors=True)\n', (1625, 1647), False, 'import torch\n'), ((2003, 2058), 'torch.zeros_like', 'torch.zeros_like', (['ca'], {'device': 'device', 'requires_grad': '(True)'}), '(ca, device=device, requires_grad=True)\n', (2019, 2058), False, 'import torch\n'), ((184, 221), 'numpy.array', 'np.array', (['[[[-2, 3, 6, 7, 6, 3, -2]]]'], {}), '([[[-2, 3, 6, 7, 6, 3, -2]]])\n', (192, 221), True, 'import numpy as np\n'), ((236, 288), 'numpy.array', 'np.array', (['[[[-21, 14, 39, 54, 59, 54, 39, 14, -21]]]'], {}), '([[[-21, 14, 39, 54, 59, 54, 39, 14, -21]]])\n', (244, 288), True, 'import numpy as np\n'), ((806, 850), 'numpy.random.uniform', 'np.random.uniform', (['noise'], {'size': '(batch, L, 3)'}), '(noise, size=(batch, L, 3))\n', (823, 850), True, 'import numpy as np\n'), ((1436, 1463), 'torch.eye', 'torch.eye', (['L'], {'device': 'device'}), '(L, device=device)\n', (1445, 1463), False, 'import torch\n'), ((2093, 2126), 'torch.optim.Adam', 'torch.optim.Adam', (['[shift]'], {'lr': '(0.5)'}), '([shift], lr=0.5)\n', (2109, 2126), False, 'import torch\n'), ((3593, 3634), 'torch.zeros', 'torch.zeros', (['padRsize'], {'device': 'self.device'}), '(padRsize, device=self.device)\n', (3604, 3634), False, 'import torch\n'), ((4145, 4177), 'torch.abs', 'torch.abs', (['(m[:, 3:] - m[:, 2:-1])'], {}), '(m[:, 3:] - m[:, 2:-1])\n', (4154, 4177), False, 'import torch\n'), ((4189, 4222), 'torch.abs', 'torch.abs', (['(m[:, 1:-2] - m[:, :-3])'], {}), '(m[:, 1:-2] - m[:, :-3])\n', (4198, 4222), False, 'import torch\n'), ((4357, 4496), 'torch.stack', 'torch.stack', (['[y[:, 2:-3], t[:, :-1], (3 * dy / h - 2 * t[:, :-1] - t[:, 1:]) / h, (t[:,\n :-1] + t[:, 1:] - 2 * dy / h) / h ** 2]'], {'dim': '(-1)'}), '([y[:, 2:-3], t[:, :-1], (3 * dy / h - 2 * t[:, :-1] - t[:, 1:]) /\n h, (t[:, :-1] + t[:, 1:] - 2 * dy / h) / h ** 2], dim=-1)\n', (4368, 4496), False, 'import torch\n'), ((4802, 4849), 'torch.triu_indices', 'torch.triu_indices', (['L', 'L', '(1)'], {'device': 'self.device'}), '(L, L, 1, device=self.device)\n', (4820, 4849), False, 'import torch\n'), ((5522, 5589), 'torch.cat', 'torch.cat', (['[self.padL + cstd[0], cstd, self.padR + cstd[-1]]'], {'dim': '(0)'}), '([self.padL + cstd[0], cstd, self.padR + cstd[-1]], dim=0)\n', (5531, 5589), False, 'import torch\n'), ((5598, 5647), 'torch.cat', 'torch.cat', (['[csto[-pad:], csto, csto[:pad]]'], {'dim': '(0)'}), '([csto[-pad:], csto, csto[:pad]], dim=0)\n', (5607, 5647), False, 'import torch\n'), ((5660, 5709), 'torch.cat', 'torch.cat', (['[cstt[-pad:], cstt, cstt[:pad]]'], {'dim': '(0)'}), '([cstt[-pad:], cstt, cstt[:pad]], dim=0)\n', (5669, 5709), False, 'import torch\n'), ((7112, 7173), 'torch.zeros_like', 'torch.zeros_like', (['xyz'], {'device': 'self.device', 'requires_grad': '(True)'}), '(xyz, device=self.device, requires_grad=True)\n', (7128, 7173), False, 'import torch\n'), ((7184, 7250), 'torch.randn', 'torch.randn', (['[batch, L, 4]'], {'device': 'self.device', 'requires_grad': '(True)'}), '([batch, L, 4], device=self.device, requires_grad=True)\n', (7195, 7250), False, 'import torch\n'), ((7329, 7360), 'torch.optim.Adam', 'torch.optim.Adam', (['[T, Q]'], {'lr': 'lr'}), '([T, Q], lr=lr)\n', (7345, 7360), False, 'import torch\n'), ((9913, 9931), 'torch.argmin', 'torch.argmin', (['loss'], {}), '(loss)\n', (9925, 9931), False, 'import torch\n'), ((1463, 1496), 'torch.ones', 'torch.ones', (['(L, L)'], {'device': 'device'}), '((L, L), device=device)\n', (1473, 1496), False, 'import torch\n'), ((1732, 1753), 'torch.cdist', 'torch.cdist', (['xyz', 'xyz'], {}), '(xyz, xyz)\n', (1743, 1753), False, 'import torch\n'), ((2549, 2743), 'torch.stack', 'torch.stack', (['[1 - 2 * yy - 2 * zz, 2 * xy - 2 * zw, 2 * xz + 2 * yw, 2 * xy + 2 * zw, 1 -\n 2 * xx - 2 * zz, 2 * yz - 2 * xw, 2 * xz - 2 * yw, 2 * yz + 2 * xw, 1 -\n 2 * xx - 2 * yy]'], {'dim': '(-1)'}), '([1 - 2 * yy - 2 * zz, 2 * xy - 2 * zw, 2 * xz + 2 * yw, 2 * xy +\n 2 * zw, 1 - 2 * xx - 2 * zz, 2 * yz - 2 * xw, 2 * xz - 2 * yw, 2 * yz +\n 2 * xw, 1 - 2 * xx - 2 * yy], dim=-1)\n', (2560, 2743), False, 'import torch\n'), ((3178, 3226), 'torch.linspace', 'torch.linspace', (['(0)', 'np.pi', '(19)'], {'device': 'self.device'}), '(0, np.pi, 19, device=self.device)\n', (3192, 3226), False, 'import torch\n'), ((4287, 4301), 'torch.isnan', 'torch.isnan', (['t'], {}), '(t)\n', (4298, 4301), False, 'import torch\n'), ((4861, 4905), 'torch.where', 'torch.where', (["(p20[i, j] > self.params['PCUT'])"], {}), "(p20[i, j] > self.params['PCUT'])\n", (4872, 4905), False, 'import torch\n'), ((5065, 5089), 'torch.hstack', 'torch.hstack', (['[i_s, j_s]'], {}), '([i_s, j_s])\n', (5077, 5089), False, 'import torch\n'), ((5090, 5114), 'torch.hstack', 'torch.hstack', (['[j_s, i_s]'], {}), '([j_s, i_s])\n', (5102, 5114), False, 'import torch\n'), ((5182, 5232), 'torch.log', 'torch.log', (['(pd[4:36, i_s, j_s] / self.bkgd[:, None])'], {}), '(pd[4:36, i_s, j_s] / self.bkgd[:, None])\n', (5191, 5232), False, 'import torch\n'), ((5244, 5286), 'torch.log', 'torch.log', (['(po[0:36, i_s, j_s] / (1.0 / 36))'], {}), '(po[0:36, i_s, j_s] / (1.0 / 36))\n', (5253, 5286), False, 'import torch\n'), ((5314, 5356), 'torch.log', 'torch.log', (['(pt[0:36, i_a, j_a] / (1.0 / 36))'], {}), '(pt[0:36, i_a, j_a] / (1.0 / 36))\n', (5323, 5356), False, 'import torch\n'), ((5387, 5437), 'torch.log', 'torch.log', (['(pp[0:18, i_a, j_a] / self.bkgp[:, None])'], {}), '(pp[0:18, i_a, j_a] / self.bkgp[:, None])\n', (5396, 5437), False, 'import torch\n'), ((7632, 7648), 'geometry.get_cb', 'get_cb', (['N', 'Ca', 'C'], {}), '(N, Ca, C)\n', (7638, 7648), False, 'from geometry import get_ang, get_dih, get_cb\n'), ((7821, 7864), 'geometry.get_ang', 'get_ang', (['Ca[:, i_a]', 'Cb[:, i_a]', 'Cb[:, j_a]'], {}), '(Ca[:, i_a], Cb[:, i_a], Cb[:, j_a])\n', (7828, 7864), False, 'from geometry import get_ang, get_dih, get_cb\n'), ((7891, 7934), 'torch.norm', 'torch.norm', (['(Cb[:, i_s] - Cb[:, j_s])'], {'dim': '(-1)'}), '(Cb[:, i_s] - Cb[:, j_s], dim=-1)\n', (7901, 7934), False, 'import torch\n'), ((7948, 7971), 'torch.where', 'torch.where', (['(dij < 20.0)'], {}), '(dij < 20.0)\n', (7959, 7971), False, 'import torch\n'), ((1758, 1785), 'torch.eye', 'torch.eye', (['L'], {'device': 'device'}), '(L, device=device)\n', (1767, 1785), False, 'import torch\n'), ((3001, 3052), 'torch.linspace', 'torch.linspace', (['(4.25)', '(19.75)', '(32)'], {'device': 'self.device'}), '(4.25, 19.75, 32, device=self.device)\n', (3015, 3052), False, 'import torch\n'), ((3254, 3268), 'torch.cos', 'torch.cos', (['ang'], {}), '(ang)\n', (3263, 3268), False, 'import torch\n'), ((3840, 3877), 'torch.from_numpy', 'torch.from_numpy', (["self.params['NCAC']"], {}), "(self.params['NCAC'])\n", (3856, 3877), False, 'import torch\n'), ((6421, 6467), 'torch.arange', 'torch.arange', (['i_s.shape[0]'], {'device': 'self.device'}), '(i_s.shape[0], device=self.device)\n', (6433, 6467), False, 'import torch\n'), ((6494, 6540), 'torch.arange', 'torch.arange', (['i_a.shape[0]'], {'device': 'self.device'}), '(i_a.shape[0], device=self.device)\n', (6506, 6540), False, 'import torch\n'), ((7471, 7510), 'torch.einsum', 'torch.einsum', (['"""blij,bklj->bkli"""', 'R', 'bb0'], {}), "('blij,bklj->bkli', R, bb0)\n", (7483, 7510), False, 'import torch\n'), ((7676, 7731), 'geometry.get_dih', 'get_dih', (['Ca[:, i_s]', 'Cb[:, i_s]', 'Cb[:, j_s]', 'Ca[:, j_s]'], {}), '(Ca[:, i_s], Cb[:, i_s], Cb[:, j_s], Ca[:, j_s])\n', (7683, 7731), False, 'from geometry import get_ang, get_dih, get_cb\n'), ((7749, 7803), 'geometry.get_dih', 'get_dih', (['N[:, i_a]', 'Ca[:, i_a]', 'Cb[:, i_a]', 'Cb[:, j_a]'], {}), '(N[:, i_a], Ca[:, i_a], Cb[:, i_a], Cb[:, j_a])\n', (7756, 7803), False, 'from geometry import get_ang, get_dih, get_cb\n'), ((3649, 3698), 'torch.arange', 'torch.arange', (['(1)', '(padLsize + 1)'], {'device': 'self.device'}), '(1, padLsize + 1, device=self.device)\n', (3661, 3698), False, 'import torch\n'), ((7419, 7454), 'torch.norm', 'torch.norm', (['Q'], {'dim': '(-1)', 'keepdim': '(True)'}), '(Q, dim=-1, keepdim=True)\n', (7429, 7454), False, 'import torch\n'), ((8016, 8045), 'torch.ceil', 'torch.ceil', (['((dk - 0.25) / 0.5)'], {}), '((dk - 0.25) / 0.5)\n', (8026, 8045), False, 'import torch\n'), ((9036, 9076), 'torch.norm', 'torch.norm', (['(C[:, :-1] - N[:, 1:])'], {'dim': '(-1)'}), '(C[:, :-1] - N[:, 1:], dim=-1)\n', (9046, 9076), False, 'import torch\n'), ((9109, 9149), 'geometry.get_ang', 'get_ang', (['Ca[:, :-1]', 'C[:, :-1]', 'N[:, 1:]'], {}), '(Ca[:, :-1], C[:, :-1], N[:, 1:])\n', (9116, 9149), False, 'from geometry import get_ang, get_dih, get_cb\n'), ((9186, 9225), 'geometry.get_ang', 'get_ang', (['Ca[:, 1:]', 'N[:, 1:]', 'C[:, :-1]'], {}), '(Ca[:, 1:], N[:, 1:], C[:, :-1])\n', (9193, 9225), False, 'from geometry import get_ang, get_dih, get_cb\n'), ((3283, 3299), 'numpy.deg2rad', 'np.deg2rad', (['(10.0)'], {}), '(10.0)\n', (3293, 3299), True, 'import numpy as np\n'), ((3354, 3389), 'torch.from_numpy', 'torch.from_numpy', (["self.params['SG']"], {}), "(self.params['SG'])\n", (3370, 3389), False, 'import torch\n'), ((1829, 1869), 'torch.log', 'torch.log', (['(dist * s * (2 * np.pi) ** 0.5)'], {}), '(dist * s * (2 * np.pi) ** 0.5)\n', (1838, 1869), False, 'import torch\n'), ((1806, 1821), 'torch.log', 'torch.log', (['dist'], {}), '(dist)\n', (1815, 1821), False, 'import torch\n')]
|
# coding: utf-8
# In[6]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
get_ipython().magic('matplotlib inline')
#D:\Book4.csv
data = input('enter the data path ')
sep = input('enter the seperater ')
df = pd.read_csv(data,sep)
#select all non-num data
ap=df.select_dtypes(exclude=['number'])
#convert into array
df2=ap.as_matrix()
#numpy array
ap_2d = np.array(df2)
#list of all non-numerical col
first_col = list(ap)
print(first_col)
#plot
for a in first_col:
df.boxplot(by=a,figsize=(20,10))
|
[
"pandas.read_csv",
"numpy.array"
] |
[((235, 257), 'pandas.read_csv', 'pd.read_csv', (['data', 'sep'], {}), '(data, sep)\n', (246, 257), True, 'import pandas as pd\n'), ((385, 398), 'numpy.array', 'np.array', (['df2'], {}), '(df2)\n', (393, 398), True, 'import numpy as np\n')]
|
import numpy as np
from os import path
import MCPM
class TpfRectangles(object):
"""
Keeps information on rectangles that are used in TPF files.
Note that there may be multple rectangles for a single TPF,
some rectangles are not full,
and some may have width or height of 1 pixel
"""
def __init__(self, campaign, channel):
self.campaign = campaign
self.channel = channel
file_name = "tpf_rectangles_{:}_{:}.data".format(campaign, channel)
if int(self.campaign) in [91, 92]:
subdir = 'K2C9'
elif int(self.campaign) in [111, 112]:
subdir = 'K2C11'
else:
msg = 'expected campaigns: 91, 92, 111, or 112; got {:}'
raise ValueError(msg.format(self.campaign))
directory = path.join(MCPM.MODULE_PATH, 'data', subdir)
path_ = path.join(directory, 'tpf_rectangles', file_name)
load = np.loadtxt(path_, unpack=True, dtype=int)
(epic, self.min_x, self.max_x, self.min_y, self.max_y) = load
self.epic = np.array(epic, dtype=str)
self.center_x = (self.max_x + self.min_x) / 2.
self.center_y = (self.max_y + self.min_y) / 2.
self.half_size_x = self.max_x - self.center_x
self.half_size_y = self.max_y - self.center_y
def point_distances(self, x, y):
"""get distance from given (x,y) point to all the rectangles"""
dx = np.maximum(np.abs(x - self.center_x) - self.half_size_x, 0.)
dy = np.maximum(np.abs(y - self.center_y) - self.half_size_y, 0.)
return np.sqrt(dx**2 + dy**2)
def closest_epics(self, x, y):
"""for given point (x,y), calculate all the distances and then sort
them so that sorted list of epics is returned; takes into account
only the closest rectangle from given epic"""
distances = self.point_distances(x=x, y=y)
indexes = np.argsort(distances)
out_epic = []
out_distance = []
for i in indexes:
if self.epic[i] in out_epic:
continue
out_epic.append(self.epic[i])
out_distance.append(distances[i])
return (np.array(out_epic), np.array(out_distance))
def get_epic_id_for_pixel(self, x, y):
"""find in which TPF given pixel lies"""
distances = self.point_distances(x=x, y=y)
selection = (distances == 0.)
if not selection.any():
return None
else:
return self.epic[np.argmax(selection)]
def get_nearest_epic(self, x, y):
"""find the nearest epic; return its id and distance
(0 if point is inside it)"""
distances = self.point_distances(x=x, y=y)
index = np.argmin(distances)
return (self.epic[index], distances[index])
|
[
"numpy.abs",
"numpy.argmax",
"numpy.argmin",
"numpy.argsort",
"numpy.array",
"numpy.loadtxt",
"os.path.join",
"numpy.sqrt"
] |
[((814, 857), 'os.path.join', 'path.join', (['MCPM.MODULE_PATH', '"""data"""', 'subdir'], {}), "(MCPM.MODULE_PATH, 'data', subdir)\n", (823, 857), False, 'from os import path\n'), ((875, 924), 'os.path.join', 'path.join', (['directory', '"""tpf_rectangles"""', 'file_name'], {}), "(directory, 'tpf_rectangles', file_name)\n", (884, 924), False, 'from os import path\n'), ((940, 981), 'numpy.loadtxt', 'np.loadtxt', (['path_'], {'unpack': '(True)', 'dtype': 'int'}), '(path_, unpack=True, dtype=int)\n', (950, 981), True, 'import numpy as np\n'), ((1072, 1097), 'numpy.array', 'np.array', (['epic'], {'dtype': 'str'}), '(epic, dtype=str)\n', (1080, 1097), True, 'import numpy as np\n'), ((1615, 1641), 'numpy.sqrt', 'np.sqrt', (['(dx ** 2 + dy ** 2)'], {}), '(dx ** 2 + dy ** 2)\n', (1622, 1641), True, 'import numpy as np\n'), ((1957, 1978), 'numpy.argsort', 'np.argsort', (['distances'], {}), '(distances)\n', (1967, 1978), True, 'import numpy as np\n'), ((2789, 2809), 'numpy.argmin', 'np.argmin', (['distances'], {}), '(distances)\n', (2798, 2809), True, 'import numpy as np\n'), ((2223, 2241), 'numpy.array', 'np.array', (['out_epic'], {}), '(out_epic)\n', (2231, 2241), True, 'import numpy as np\n'), ((2243, 2265), 'numpy.array', 'np.array', (['out_distance'], {}), '(out_distance)\n', (2251, 2265), True, 'import numpy as np\n'), ((1476, 1501), 'numpy.abs', 'np.abs', (['(x - self.center_x)'], {}), '(x - self.center_x)\n', (1482, 1501), True, 'import numpy as np\n'), ((1550, 1575), 'numpy.abs', 'np.abs', (['(y - self.center_y)'], {}), '(y - self.center_y)\n', (1556, 1575), True, 'import numpy as np\n'), ((2551, 2571), 'numpy.argmax', 'np.argmax', (['selection'], {}), '(selection)\n', (2560, 2571), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""
Created on Tue May 19 17:54:12 2020
@author: Shaji,Charu,Selva
"""
import scipy
import numpy as np
import pandas as pd
from sklearn.impute import KNNImputer
pd.set_option('mode.chained_assignment', None)
from . import helper
from . import exceptions
def get_distance(dataset,
start_latitude,
start_longitude,
end_latitude,
end_longitude):
"""
Usage: [arg1]:[Pandas DataFrame],[arg2]:[column-start_latitude],[arg3]:[column-start_longitude],[arg4]:[column-end_latitude],[arg5]:[column-end_longitude]
Returns: DataFrame with additional column [Distance in kilometers]
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
dataset['kms_'+start_latitude+'_'+end_latitude]=dataset.apply(lambda row: helper.distance_calculator(row[start_latitude], row[start_longitude],row[end_latitude],row[end_longitude]),axis=1)
return dataset
def get_timediff(dataset,
start_time,
end_time):
"""
Usage: [arg1]:[Pandas DataFrame],[arg2]:[column-start_time],[arg3]:[column-end_time]
Returns: DataFrame with additional column [Duration in seconds]
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
dataset['secs_diff_'+start_time+'_'+end_time]=(dataset[end_time]-dataset[start_time]).dt.total_seconds()
return dataset
def derive_from_datetime(dataset):
"""
Usage: [arg1]:[pandas dataframe]
Prerequisite: Type for datetime columns to be defined correctly
Description: Derives the hour, weekday, year and month from a datetime column
Returns: Dataframe [with new columns derived from datetime columns]
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
for column,dtype in dataset.dtypes.items():
if 'datetime' in str(dtype):
dataset['hour_of_'+column]=dataset[column].apply(lambda x: x.hour)
dataset['weekday_of_'+column]=dataset[column].apply(lambda x: x.weekday())
dataset['year_of_'+column]=dataset[column].apply(lambda x: x.year)
dataset['month_of_'+column]=dataset[column].apply(lambda x: x.month)
return dataset
def log_transform(dataset,method='yeojohnson',categorical_threshold=0.3):
"""
Usage: [arg1]:[pandas dataframe],[method]=['yeojohnson'/'added_constant']
Description: Checks if the a continuous column is skewed and does log transformation
Returns: Dataframe [with all skewed columns normalized using appropriate approach]
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
for col in dataset.columns:
if helper.check_categorical_col(dataset[col],categorical_threshold=categorical_threshold)==False and helper.check_numeric_col(dataset[col]) and np.abs(scipy.stats.skew(dataset[col]))>1:
print('Log Normalization('+method+') applied for '+col)
if method=='yeojohnson':
dataset[col]=dataset[col].apply(lambda x: helper.yeojohnsonlog(x))
elif method=='added_constant':
dataset=helper.added_constant_log(dataset,col)
return dataset
def drop_null_fields(dataset,
dropna_threshold=0.7):
"""
Usage: [arg1]:[pandas dataframe],[dropna_threshold(default=0.7)]:[What percentage of nulls should account for the column top be removed]
Description: Drop columns that has more null values
Returns: Dataframe [with null dominated columns removed]
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
no_of_records=dataset.shape[0]
select_cols=[]
for index,val in dataset.isnull().sum().items():
if val/no_of_records<dropna_threshold:
select_cols.append(index)
else:
print('Dropping null dominated column(s) '+index)
return(dataset[select_cols])
def drop_single_valued_cols(dataset):
"""
Usage: [arg1]:[pandas dataframe]
Description: Drop columns that has only one value in it
Returns: Dataframe [without single valued columns]
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
single_valued_cols=[]
for col in dataset.columns:
if helper.single_valued_col(dataset[col]):
single_valued_cols.append(col)
if len(single_valued_cols)>0:
print('Dropping single valued column(s) '+','.join(single_valued_cols))
dataset=dataset.drop(single_valued_cols,axis=1)
return dataset
def get_ohe_df(dataset,
target_variable=None,
ignore_cols=[],
categorical_threshold=0.3):
"""
Usage: [arg1]:[pandas dataframe],[target_variable(default=None)]:[Dependent variable for Regression/Classification],[ignore_cols]:[categorical columns where one hot encoding need not be done],[categorical_threshold(default=0.3)]:[Threshold for determining categorical column based on the percentage of unique values(optional)]
Description: Auto identifies categorical features in the dataframe and does one hot encoding
Note: Consumes more system mermory if the size of the dataset is huge
Returns: Dataframe [with separate column for each categorical values]
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
for col in dataset.columns:
if helper.check_categorical_col(dataset[col],categorical_threshold=categorical_threshold) and col!=target_variable and col not in ignore_cols:
print('One hot encoding '+col)
dataset=helper.one_hot_encoding(dataset,[col])
return dataset
def drop_non_numeric(dataset):
"""
Usage: [arg1]:[pandas dataframe]
Description: Drop columns that are not numeric
Returns: Dataframe [only numeric features]
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
drop_cols=[]
for col in dataset.columns:
if helper.check_numeric_col(dataset[col])==False:
drop_cols.append(col)
if len(drop_cols)>0:
print("Dropping non categorical/continuous column(s):"+','.join(drop_cols))
dataset=dataset.drop(drop_cols,axis=1)
return dataset
def impute_nulls(dataset,
method='central_tendency'):
"""
Usage: [arg1]:[pandas dataframe],[method(default=central_tendency)]:[Choose either central_tendency or KNN]
Description: Auto identifies the type of distribution in the column and imputes null values
Note: KNN consumes more system mermory if the size of the dataset is huge
Returns: Dataframe [with separate column for each categorical values]
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
if str.lower(method)=='knn':
k_knn=int(np.ceil(np.sqrt(dataset.shape[0])))
if k_knn%2==0:
k_knn+=1
imputer = KNNImputer(n_neighbors=k_knn)
knn_imputed_array = imputer.fit_transform(dataset)
dataset=pd.DataFrame(knn_imputed_array,columns=dataset.columns)
return dataset
elif method=='central_tendency':
for col,value in dataset.isnull().sum().items():
if value>0:
if helper.check_categorical_col(dataset[col]):
print("Replaced nulls in "+col+" with mode")
mode_val=dataset[col].mode()[0]
dataset[col]=dataset[col].fillna(mode_val)
elif helper.check_numeric_col(dataset[col]):
if np.abs(scipy.stats.skew(dataset[col]))>1:
print("Replaced nulls in "+col+" with median")
median_val=dataset[col].median()
dataset[col]=dataset[col].fillna(median_val)
else:
print("Replaced nulls in "+col+" with mean")
mean_val=dataset[col].mean()
dataset[col]=dataset[col].fillna(mean_val)
return dataset
else:
print('Method should be either central_tendency or knn')
raise exceptions.ParameterError
def label_encode(dataset,
col):
"""
Usage: [arg1]:[pandas dataframe],[arg1]:[column to be encoded]
Description: Labelling categorical features with numbers from 0 to n categories
Returns: Label Dict , Dataframe
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
mode_val=dataset[col].mode()[0]
dataset[col]=dataset[col].apply(lambda x:str(x).strip()).astype(str).fillna(mode_val)
label_dict=dict(zip(dataset[col].unique(),np.arange(dataset[col].unique().shape[0])))
dataset=dataset.replace({col:label_dict})
dataset[col]=dataset[col].astype('int')
dataset[col]=dataset[col].astype('category')
return label_dict,dataset
def remove_outlier_df(dataset,
cols):
"""
Usage: [arg1]:[pandas dataframe],[arg2]:[list of columns to check and remove outliers]
Description: The column needs to be continuous
Returns: DataFrame with outliers removed for the specific columns
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
for col in cols:
outlier_temp_dataset=pd.DataFrame(dataset[col])
outlier_temp_dataset=impute_nulls(outlier_temp_dataset)
Q1 = outlier_temp_dataset.quantile(0.25)
Q3 = outlier_temp_dataset.quantile(0.75)
IQR = Q3 - Q1
outlier_bool_dataset=((outlier_temp_dataset > (Q1 - 1.5 * IQR)) & (outlier_temp_dataset < (Q3 + 1.5 * IQR)))
select_index=outlier_bool_dataset.index[outlier_bool_dataset[col] == True]
print('No. of outlier rows removed based on '+col+' is '+str(outlier_temp_dataset.shape[0]-len(select_index)))
dataset=dataset.iloc[select_index].reset_index(drop=True)
return dataset
def auto_remove_outliers(dataset,
ignore_cols=[],
categorical_threshold=0.3):
"""
Usage: [arg1]:[pandas dataframe],[ignore_cols]:[list of columns to be ignored],[categorical_threshold(default=0.3)]:[Threshold for determining categorical column based on the percentage of unique values(optional)]
Description: Checks if the column is continuous and removes outliers
Returns: DataFrame with outliers removed
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
continuous_columns=[]
for col in dataset.columns:
if helper.check_categorical_col(dataset[col],categorical_threshold=categorical_threshold)==False and helper.check_numeric_col(dataset[col])==True:
continuous_columns.append(col)
dataset=remove_outlier_df(dataset,continuous_columns)
return dataset
def get_label_encoded_df(dataset,
categorical_threshold=0.3):
"""
Usage: [arg1]:[pandas dataframe],[categorical_threshold(default=0.3)]:[Threshold for determining categorical column based on the percentage of unique values(optional)]
Description: Auto identifies categorical features in the dataframe and does label encoding
Returns: Dataframe [with separate column for each categorical values]
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
column_labels=dict()
for col in dataset.columns:
if helper.check_numeric_col(dataset[col]):
pass
elif helper.check_categorical_col(dataset[col],categorical_threshold=categorical_threshold):
labels,dataset=label_encode(dataset,col)
print('Labels for '+col+': '+str(labels))
column_labels[col]=labels
return column_labels,dataset
def cramersv_corr(x, y):
"""
Usage: [arg1]:[categorical series],[arg2]:[categorical series]
Description: Cramer's V Correlation is a measure of association between two categorical variables
Returns: A value between 0 and +1
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
confusion_matrix = pd.crosstab(x,y)
chi2 = scipy.stats.chi2_contingency(confusion_matrix)[0]
n = confusion_matrix.sum().sum()
phi2 = chi2/n
r,k = confusion_matrix.shape
phi2corr = max(0, phi2-((k-1)*(r-1))/(n-1))
rcorr = r-((r-1)**2)/(n-1)
kcorr = k-((k-1)**2)/(n-1)
return np.sqrt(phi2corr/min((kcorr-1),(rcorr-1)))
def kendalltau_corr(x, y):
"""
Usage: [arg1]:[continuous series],[arg2]:[categorical series]
Description: Kendall Tau Correlation is a measure of association between a continuous variable and a categorical variable
Returns: A value between -1 and +1
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
x_arr=np.array(impute_nulls(pd.DataFrame(x)))
y_arr=np.array(impute_nulls(pd.DataFrame(y)))
corr,_=scipy.stats.kendalltau(x_arr,y_arr)
return corr
def pearson_corr(x, y):
"""
Usage: [arg1]:[continuous series],[arg2]:[continuous series]
Description: Pearson Correlation is a measure of association between two continuous variables
Returns: A value between -1 and +1
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
x=pd.to_numeric(x)
y=pd.to_numeric(y)
return np.corrcoef(x,y)[0,1]
def get_correlated_features(dataset,
target_col,
target_type,
categorical_threshold=0.3):
"""
Usage: [arg1]:[pandas dataframe],[arg2]:[target/dependent variable],[arg3]:['continuous'/'categorical'],,[categorical_threshold(default=0.3)]:[Threshold for determining categorical column based on the percentage of unique values(optional)]
Description: Only for supervised learning to select independent variables that has some correlation with target/dependent variable (Uses Pearson correlation between two continuous variables, CramersV correlation between two categorical variables, Kendalls Tau correlation between a categorical and a continuos variable)
Returns: Dictionary of correlation coefficients, List of columns that have considerable correlation
"""
print("This module (ctrl4ai.preprocessing) will be depreciated by the end of 2021. Please plan to switch to the same functions in ctrl4ai.prepdata")
categorical_cols=[]
continuous_cols=[]
col_corr=dict()
for col in dataset:
if col!=target_col:
if helper.check_categorical_col(dataset[col],categorical_threshold=categorical_threshold):
categorical_cols.append(col)
elif helper.check_numeric_col(dataset[col]):
continuous_cols.append(col)
if target_type=='continuous':
for col in continuous_cols:
coeff=pearson_corr(dataset[col],dataset[target_col])
col_corr[col]=coeff
for col in categorical_cols:
coeff=kendalltau_corr(dataset[col],dataset[target_col])
col_corr[col]=coeff
if target_type=='categorical':
for col in continuous_cols:
coeff=kendalltau_corr(dataset[col],dataset[target_col])
col_corr[col]=coeff
for col in categorical_cols:
coeff=cramersv_corr(dataset[col],dataset[target_col])
col_corr[col]=coeff
selected_features=[]
for col in col_corr.keys():
if float(col_corr[col])>np.abs(2/np.sqrt(dataset.shape[0])):
selected_features.append(col)
return col_corr,selected_features
|
[
"pandas.DataFrame",
"pandas.crosstab",
"numpy.corrcoef",
"scipy.stats.skew",
"sklearn.impute.KNNImputer",
"scipy.stats.chi2_contingency",
"scipy.stats.kendalltau",
"pandas.set_option",
"pandas.to_numeric",
"numpy.sqrt"
] |
[((187, 233), 'pandas.set_option', 'pd.set_option', (['"""mode.chained_assignment"""', 'None'], {}), "('mode.chained_assignment', None)\n", (200, 233), True, 'import pandas as pd\n'), ((12490, 12507), 'pandas.crosstab', 'pd.crosstab', (['x', 'y'], {}), '(x, y)\n', (12501, 12507), True, 'import pandas as pd\n'), ((13326, 13362), 'scipy.stats.kendalltau', 'scipy.stats.kendalltau', (['x_arr', 'y_arr'], {}), '(x_arr, y_arr)\n', (13348, 13362), False, 'import scipy\n'), ((13765, 13781), 'pandas.to_numeric', 'pd.to_numeric', (['x'], {}), '(x)\n', (13778, 13781), True, 'import pandas as pd\n'), ((13786, 13802), 'pandas.to_numeric', 'pd.to_numeric', (['y'], {}), '(y)\n', (13799, 13802), True, 'import pandas as pd\n'), ((7310, 7339), 'sklearn.impute.KNNImputer', 'KNNImputer', ([], {'n_neighbors': 'k_knn'}), '(n_neighbors=k_knn)\n', (7320, 7339), False, 'from sklearn.impute import KNNImputer\n'), ((7407, 7463), 'pandas.DataFrame', 'pd.DataFrame', (['knn_imputed_array'], {'columns': 'dataset.columns'}), '(knn_imputed_array, columns=dataset.columns)\n', (7419, 7463), True, 'import pandas as pd\n'), ((9604, 9630), 'pandas.DataFrame', 'pd.DataFrame', (['dataset[col]'], {}), '(dataset[col])\n', (9616, 9630), True, 'import pandas as pd\n'), ((12516, 12562), 'scipy.stats.chi2_contingency', 'scipy.stats.chi2_contingency', (['confusion_matrix'], {}), '(confusion_matrix)\n', (12544, 12562), False, 'import scipy\n'), ((13812, 13829), 'numpy.corrcoef', 'np.corrcoef', (['x', 'y'], {}), '(x, y)\n', (13823, 13829), True, 'import numpy as np\n'), ((13251, 13266), 'pandas.DataFrame', 'pd.DataFrame', (['x'], {}), '(x)\n', (13263, 13266), True, 'import pandas as pd\n'), ((13299, 13314), 'pandas.DataFrame', 'pd.DataFrame', (['y'], {}), '(y)\n', (13311, 13314), True, 'import pandas as pd\n'), ((7234, 7259), 'numpy.sqrt', 'np.sqrt', (['dataset.shape[0]'], {}), '(dataset.shape[0])\n', (7241, 7259), True, 'import numpy as np\n'), ((3084, 3114), 'scipy.stats.skew', 'scipy.stats.skew', (['dataset[col]'], {}), '(dataset[col])\n', (3100, 3114), False, 'import scipy\n'), ((15799, 15824), 'numpy.sqrt', 'np.sqrt', (['dataset.shape[0]'], {}), '(dataset.shape[0])\n', (15806, 15824), True, 'import numpy as np\n'), ((7866, 7896), 'scipy.stats.skew', 'scipy.stats.skew', (['dataset[col]'], {}), '(dataset[col])\n', (7882, 7896), False, 'import scipy\n')]
|
import cv2 as cv
import os
import glob
import numpy as np
# Checkerboard contains 25mm squares - 8x6 vertices, 9x7 squares
# 28mm (equivalent) f/1.8 lens with OIS
# https://www.camerafv5.com/devices/manufacturers/google/pixel_3a_xl_bonito_0/
# 12.2Mp 1/2.55-inch sensor with 1.4µm pixel width
pixel_size = 1.4e-6 # number of pixels in 1 square mm
# termination criteria
criteria = (cv.TermCriteria_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# object points
checker_square_size = np.mean([23.36, 23.35, 23.32, 23.22, 23.43, 23.20, 23.28]) # size in mm
objp = np.zeros((8 * 6, 3), np.float32)
objp[:, :2] = np.mgrid[0:8, 0:6].T.reshape(-1, 2)
objp = checker_square_size * objp
objpoints = [] # 3D point in world coords
imgpoints = [] # 2D point in image coords
path = "F:/Documents/Python Scripts/Phone Calibration Images/"
os.chdir(path)
images = glob.glob("*.jpg")
patternSize = (8, 6)
flags = None
for i, fname in enumerate(images):
img = cv.imread(fname)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
ret, corners = cv.findChessboardCorners(gray, patternSize, flags)
print(f'Completed {i + 1} images.')
if ret is True:
objpoints.append(objp)
corners2 = cv.cornerSubPix(gray, corners, winSize=(11, 11), zeroZone=(-1, -1), criteria=criteria)
imgpoints.append(corners)
cv.drawChessboardCorners(img, patternSize, corners2, ret)
# cv.imshow('img', img)
cv.waitKey(100)
cv.destroyAllWindows()
os.chdir("F:/Documents/Python Scripts/")
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
# mtx[:2, :] = mtx[:2, :] * (pixel_size * 1e3) # Converts focal length to mm
mean_error = 0
for i in range(len(objpoints)):
imgpoints2, _ = cv.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv.norm(imgpoints[i], imgpoints2, cv.NORM_L2)/len(imgpoints2)
mean_error += error
total_reproj_err = mean_error/len(objpoints)
print("total error: {}".format(total_reproj_err))
np.savez('calibration_data', ret=ret, calibratoin_matrix=mtx, distortion_params=dist,
rotation_vecs=rvecs, translation_vecs=tvecs, reprojection_error=total_reproj_err)
cv.namedWindow("original", cv.WINDOW_NORMAL) # Create window with freedom of dimensions
im = cv.imread("PXL_20210407_172636685.jpg") # Read image
imS = cv.resize(im, (1240, 1080)) # Resize image
cv.imshow("original", imS) # Show image
cv.waitKey(100) # Display the image infinitely until any keypress
img = cv.imread('PXL_20210407_172636685.jpg')
h, w = img.shape[:2]
newcameramtx, roi = cv.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h))
dst = cv.undistort(img, mtx, dist, None, newcameramtx)
x, y, w, h = roi
dst = dst[y:y+h, x:x+w]
cv.imwrite('calibresult.png', dst)
|
[
"numpy.mean",
"glob.glob",
"cv2.imshow",
"os.chdir",
"cv2.undistort",
"cv2.cvtColor",
"cv2.imwrite",
"cv2.destroyAllWindows",
"cv2.resize",
"cv2.getOptimalNewCameraMatrix",
"cv2.waitKey",
"cv2.projectPoints",
"cv2.calibrateCamera",
"cv2.norm",
"numpy.savez",
"cv2.drawChessboardCorners",
"cv2.findChessboardCorners",
"numpy.zeros",
"cv2.cornerSubPix",
"cv2.imread",
"cv2.namedWindow"
] |
[((501, 558), 'numpy.mean', 'np.mean', (['[23.36, 23.35, 23.32, 23.22, 23.43, 23.2, 23.28]'], {}), '([23.36, 23.35, 23.32, 23.22, 23.43, 23.2, 23.28])\n', (508, 558), True, 'import numpy as np\n'), ((584, 616), 'numpy.zeros', 'np.zeros', (['(8 * 6, 3)', 'np.float32'], {}), '((8 * 6, 3), np.float32)\n', (592, 616), True, 'import numpy as np\n'), ((860, 874), 'os.chdir', 'os.chdir', (['path'], {}), '(path)\n', (868, 874), False, 'import os\n'), ((885, 903), 'glob.glob', 'glob.glob', (['"""*.jpg"""'], {}), "('*.jpg')\n", (894, 903), False, 'import glob\n'), ((1501, 1523), 'cv2.destroyAllWindows', 'cv.destroyAllWindows', ([], {}), '()\n', (1521, 1523), True, 'import cv2 as cv\n'), ((1525, 1565), 'os.chdir', 'os.chdir', (['"""F:/Documents/Python Scripts/"""'], {}), "('F:/Documents/Python Scripts/')\n", (1533, 1565), False, 'import os\n'), ((1600, 1670), 'cv2.calibrateCamera', 'cv.calibrateCamera', (['objpoints', 'imgpoints', 'gray.shape[::-1]', 'None', 'None'], {}), '(objpoints, imgpoints, gray.shape[::-1], None, None)\n', (1618, 1670), True, 'import cv2 as cv\n'), ((2086, 2261), 'numpy.savez', 'np.savez', (['"""calibration_data"""'], {'ret': 'ret', 'calibratoin_matrix': 'mtx', 'distortion_params': 'dist', 'rotation_vecs': 'rvecs', 'translation_vecs': 'tvecs', 'reprojection_error': 'total_reproj_err'}), "('calibration_data', ret=ret, calibratoin_matrix=mtx,\n distortion_params=dist, rotation_vecs=rvecs, translation_vecs=tvecs,\n reprojection_error=total_reproj_err)\n", (2094, 2261), True, 'import numpy as np\n'), ((2267, 2311), 'cv2.namedWindow', 'cv.namedWindow', (['"""original"""', 'cv.WINDOW_NORMAL'], {}), "('original', cv.WINDOW_NORMAL)\n", (2281, 2311), True, 'import cv2 as cv\n'), ((2368, 2407), 'cv2.imread', 'cv.imread', (['"""PXL_20210407_172636685.jpg"""'], {}), "('PXL_20210407_172636685.jpg')\n", (2377, 2407), True, 'import cv2 as cv\n'), ((2435, 2462), 'cv2.resize', 'cv.resize', (['im', '(1240, 1080)'], {}), '(im, (1240, 1080))\n', (2444, 2462), True, 'import cv2 as cv\n'), ((2497, 2523), 'cv2.imshow', 'cv.imshow', (['"""original"""', 'imS'], {}), "('original', imS)\n", (2506, 2523), True, 'import cv2 as cv\n'), ((2563, 2578), 'cv2.waitKey', 'cv.waitKey', (['(100)'], {}), '(100)\n', (2573, 2578), True, 'import cv2 as cv\n'), ((2674, 2713), 'cv2.imread', 'cv.imread', (['"""PXL_20210407_172636685.jpg"""'], {}), "('PXL_20210407_172636685.jpg')\n", (2683, 2713), True, 'import cv2 as cv\n'), ((2757, 2815), 'cv2.getOptimalNewCameraMatrix', 'cv.getOptimalNewCameraMatrix', (['mtx', 'dist', '(w, h)', '(1)', '(w, h)'], {}), '(mtx, dist, (w, h), 1, (w, h))\n', (2785, 2815), True, 'import cv2 as cv\n'), ((2825, 2873), 'cv2.undistort', 'cv.undistort', (['img', 'mtx', 'dist', 'None', 'newcameramtx'], {}), '(img, mtx, dist, None, newcameramtx)\n', (2837, 2873), True, 'import cv2 as cv\n'), ((2918, 2952), 'cv2.imwrite', 'cv.imwrite', (['"""calibresult.png"""', 'dst'], {}), "('calibresult.png', dst)\n", (2928, 2952), True, 'import cv2 as cv\n'), ((991, 1007), 'cv2.imread', 'cv.imread', (['fname'], {}), '(fname)\n', (1000, 1007), True, 'import cv2 as cv\n'), ((1020, 1055), 'cv2.cvtColor', 'cv.cvtColor', (['img', 'cv.COLOR_BGR2GRAY'], {}), '(img, cv.COLOR_BGR2GRAY)\n', (1031, 1055), True, 'import cv2 as cv\n'), ((1078, 1128), 'cv2.findChessboardCorners', 'cv.findChessboardCorners', (['gray', 'patternSize', 'flags'], {}), '(gray, patternSize, flags)\n', (1102, 1128), True, 'import cv2 as cv\n'), ((1822, 1883), 'cv2.projectPoints', 'cv.projectPoints', (['objpoints[i]', 'rvecs[i]', 'tvecs[i]', 'mtx', 'dist'], {}), '(objpoints[i], rvecs[i], tvecs[i], mtx, dist)\n', (1838, 1883), True, 'import cv2 as cv\n'), ((1249, 1339), 'cv2.cornerSubPix', 'cv.cornerSubPix', (['gray', 'corners'], {'winSize': '(11, 11)', 'zeroZone': '(-1, -1)', 'criteria': 'criteria'}), '(gray, corners, winSize=(11, 11), zeroZone=(-1, -1),\n criteria=criteria)\n', (1264, 1339), True, 'import cv2 as cv\n'), ((1382, 1439), 'cv2.drawChessboardCorners', 'cv.drawChessboardCorners', (['img', 'patternSize', 'corners2', 'ret'], {}), '(img, patternSize, corners2, ret)\n', (1406, 1439), True, 'import cv2 as cv\n'), ((1482, 1497), 'cv2.waitKey', 'cv.waitKey', (['(100)'], {}), '(100)\n', (1492, 1497), True, 'import cv2 as cv\n'), ((1897, 1942), 'cv2.norm', 'cv.norm', (['imgpoints[i]', 'imgpoints2', 'cv.NORM_L2'], {}), '(imgpoints[i], imgpoints2, cv.NORM_L2)\n', (1904, 1942), True, 'import cv2 as cv\n')]
|
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import codecademylib3
null_outcomes = []
for i in range(10000):
simulated_monthly_visitors = np.random.choice(['y', 'n'], size=500, p=[0.1, 0.9])
num_purchased = np.sum(simulated_monthly_visitors == 'y')
null_outcomes.append(num_purchased)
#calculate the 90% interval here:
null_90CI = np.percentile(null_outcomes, [5,95])
print(null_90CI)
|
[
"numpy.percentile",
"numpy.sum",
"numpy.random.choice"
] |
[((368, 405), 'numpy.percentile', 'np.percentile', (['null_outcomes', '[5, 95]'], {}), '(null_outcomes, [5, 95])\n', (381, 405), True, 'import numpy as np\n'), ((168, 220), 'numpy.random.choice', 'np.random.choice', (["['y', 'n']"], {'size': '(500)', 'p': '[0.1, 0.9]'}), "(['y', 'n'], size=500, p=[0.1, 0.9])\n", (184, 220), True, 'import numpy as np\n'), ((240, 281), 'numpy.sum', 'np.sum', (["(simulated_monthly_visitors == 'y')"], {}), "(simulated_monthly_visitors == 'y')\n", (246, 281), True, 'import numpy as np\n')]
|
import json
import logging
import multiprocessing as mp
import sys
import pandas as pd
import random
import daisy
import numpy as np
from pymongo import MongoClient
from scipy.spatial import KDTree
import sqlite3
from funlib.math import cantor_number
from . import database, synapse, evaluation
logger = logging.getLogger(__name__)
try:
from lsd import local_segmentation
except ImportError:
local_segmentation = None
logger.warning('Could not import lsd, mapping using a local segmentation is not possible')
def get_random_links(num_samples, cursor, table='synlinks', fast=False):
cols = ['pre_x', 'pre_y', 'pre_z', 'post_x', 'post_y',
'post_z', 'scores', 'segmentid_pre', 'segmentid_post',
'cleft_scores']
if fast:
com = 'SELECT {} FROM {} WHERE random() % 1000 = 0 LIMIT {};'.format(
','.join(cols), table, num_samples)
else:
com = 'SELECT {} FROM {} ORDER BY Random() LIMIT {};'.format(
','.join(cols), table, num_samples)
cursor.execute(com)
return pd.DataFrame(cursor.fetchall(), columns=cols)
class SynapseMapping(object):
'''Maps synapses to ground truth skeletons and writes them into a
database.
It uses euclidean distance to cope with ambigious cases, eg. if one
segment contains multiple skeletons, the pre/post site is mapped to
the closest skeleton in euclidean space. If distance_upper_bound is set,
only synapses are mapped to a skeleton if it closer than
distance_upper_bound. Synapses that have been not mapped because of
distance_upper_bound are marked with a skel_id of -2 (but still written
out to database).
Args:
skel_db_name (``str``):
Skeletons used for mapping.
skel_db_host (``str``):
Skeletons used for mapping.
skel_db_col (``str``):
Skeletons used for mapping.
output_db_name (``str``):
Mongodb name to which synapses are written out. If not provided
syn_db_name is used.
output_db_host (``str``)":
If not provided, syn_db_host is used.
output_db_col (``str``):
If not provided, syn_db_col is used and distance_upper_bound is added.
syndir (``str``):
Synapses to be mapped stored in hirachical directory structure.
syn_db_name (``str``):
Synapses to be mapped stored in mongodb.
syn_db_host (``str``):
Synapses to be mapped stored in mongodb.
syn_db_col (``str``):
Synapses to be mapped stored in mongodb.
gtsyn_db_name (``str``):
If provided, those synapses are used as additional "skeletons" to
which the synapses can be mapped to. Those nodes are ignored by
num_skel_nodes_ignore eg. they are always used for mapping.
gtsyn_db_host (``str``).
gtsyn_db_col (``str``)
seg_agglomeration_json (``str``): Jsonfile to produce a local segmentation.
distance_upper_bound (float): If synapses are further away than
distance_upper_bound, they are not mapped to the skeleton, although
they are intersecting the same segment.
num_skel_nodes_ignore (``int``): Ignore skeletons that intersect with
number of skeletons: num_skel_nodes_ignore or less. This is used
to account for noisy/incorrectly placed skeleton nodes, which
should be ignored during mapping.
multiprocess (``bool``): Whether to parallelize synapse mapping using
the python-package multiprocessing
mp_processes (``int``): Number of processes when multiprocess is set to
true.
draw_random_from_sql (``str``): sql database, from which randomly
synapses are drawn. If this is set, syn_db_name is not used, instead,
synapse direction vectors are drawn at random from provided database.
Can be used to generate a "baseline" experiment. Only synapses are
written out that have different pre and post skeleton ids
(to reduce #of synapses).
random_density (``float``): if draw_random_sql is set, provide the
density in # synapses / cubic micron
'''
def __init__(self, skel_db_name, skel_db_host, skel_db_col,
output_db_name=None, output_db_host=None,
output_db_col=None,
syndir=None, syn_db_name=None, syn_db_host=None,
syn_db_col=None, gtsyn_db_name=None, gtsyn_db_host=None,
gtsyn_db_col=None,
seg_agglomeration_json=None,
distance_upper_bound=None, num_skel_nodes_ignore=0,
multiprocess=False, mp_processes=40,
draw_random_from_sql=None,
random_density=10):
assert syndir is not None or syn_db_col is not None or draw_random_from_sql is not None, 'synapses have to be ' \
'provided either in syndir format or db format'
self.skel_db_name = skel_db_name
self.skel_db_host = skel_db_host
self.skel_db_col = skel_db_col
self.syn_db_name = syn_db_name
self.syn_db_host = syn_db_host
self.syn_db_col = syn_db_col
self.syndir = syndir
self.gtsyn_db_name = gtsyn_db_name
self.gtsyn_db_host = gtsyn_db_host
self.gtsyn_db_col = gtsyn_db_col
self.output_db_name = output_db_name if output_db_name is not None else self.syn_db_name
self.output_db_host = output_db_host if output_db_host is not None else self.syn_db_host
output_db_col = output_db_col if output_db_col is not None else self.syn_db_col
self.output_db_col = output_db_col + '_skel_{}'.format('inf' if
distance_upper_bound is None else distance_upper_bound)
self.seg_agglomeration_json = seg_agglomeration_json
self.distance_upper_bound = distance_upper_bound
self.num_skel_nodes_ignore = num_skel_nodes_ignore
self.multiprocess = multiprocess
self.mp_processes = mp_processes
self.skel_df = pd.DataFrame()
self.draw_random_from_sql = draw_random_from_sql
self.random_density = random_density
def __match_position_to_closest_skeleton(self, position, seg_id, skel_ids):
distances = []
for skel_id in skel_ids:
locations = list(self.skel_df[(self.skel_df.seg_id == seg_id) & (self.skel_df.neuron_id == skel_id)].position.apply(np.array))
tree = KDTree(locations)
dist = tree.query(x=np.array(position), k=1, eps=0, p=2,
distance_upper_bound=np.inf)[0]
distances.append(dist)
indexmin = np.argmin(np.array(distances))
logger.debug('matching node to skeleton with distance: %0.2f '
'compared to average distance: %0.2f' % (
distances[indexmin], np.mean(distances)))
if self.distance_upper_bound is not None:
if distances[indexmin] > self.distance_upper_bound:
logger.debug(
'synapse not mapped because distance {:0.2} '
'bigger than {:}'.format(
distances[indexmin], self.distance_upper_bound))
return -2
return skel_ids[indexmin]
def match_synapses_to_skeleton(self, synapses):
for ii, syn in enumerate(synapses):
logger.debug('{}/{}'.format(ii, len(synapses)))
# Which skeletons intersect with segmentation id ?
skel_ids = list(np.unique(self.skel_df[self.skel_df['seg_id'] == syn.id_segm_pre]['neuron_id']))
if self.num_skel_nodes_ignore > 0:
for skel_id in skel_ids:
# With how many nodes does the skeleton intersect
# current segment ?
num_nodes = len(np.unique(self.skel_df[(self.skel_df[
'seg_id'] == syn.id_segm_pre) & (
self.skel_df[
'neuron_id'] == skel_id)][
'id']))
node_types = np.unique(self.skel_df[(self.skel_df[
'seg_id'] == syn.id_segm_pre) & (
self.skel_df[
'neuron_id'] == skel_id)][
'type'])
include_node = 'connector' in node_types or 'post_tree_node' in node_types
# Exclude skeletons when they have fewer numbers inside the
# segment than num_skel_nodes_ignore.
if 0 < num_nodes <= self.num_skel_nodes_ignore and not include_node:
logger.debug(
'ignoring skel id: {} syn id: {}'.format(
skel_id, syn.id))
skel_ids.remove(skel_id)
if len(skel_ids) > 0:
skel_ids = [
self.__match_position_to_closest_skeleton(syn.location_pre,
syn.id_segm_pre,
skel_ids)]
syn.id_skel_pre = skel_ids[0] if len(skel_ids) > 0 else None
skel_ids = list(np.unique(self.skel_df[self.skel_df['seg_id'] == syn.id_segm_post]['neuron_id']))
for skel_id in skel_ids:
num_nodes = len(np.unique(self.skel_df[(self.skel_df[
'seg_id'] == syn.id_segm_post) & (
self.skel_df[
'neuron_id'] == skel_id)][
'id']))
node_types = np.unique(self.skel_df[(self.skel_df[
'seg_id'] == syn.id_segm_post) & (
self.skel_df[
'neuron_id'] == skel_id)][
'type'])
include_node = 'connector' in node_types or 'post_tree_node' in node_types
# Exclude skeletons when they have fewer numbers inside the
# segment than num_skel_nodes_ignore.
if 0 < num_nodes <= self.num_skel_nodes_ignore and not include_node:
logger.debug(
'ignoring skel id: {} syn id: {}'.format(
skel_id, syn.id))
skel_ids.remove(skel_id)
if len(skel_ids) > 0:
skel_ids = [
self.__match_position_to_closest_skeleton(syn.location_post,
syn.id_segm_post,
skel_ids)]
syn.id_skel_post = skel_ids[0] if len(skel_ids) > 0 else None
syn_db = database.SynapseDatabase(self.output_db_name,
db_host=self.output_db_host,
db_col_name=self.output_db_col,
mode='r+')
if self.draw_random_from_sql is not None:
synapses = [syn for syn in synapses if syn.id_skel_pre != syn.id_skel_post]
syn_db.write_synapses(synapses)
logger.info('wrote mapped synapses')
def add_skel_ids_daisy(self, roi_core, roi_context, seg_thr,
seg_ids_ignore):
"""Maps synapses using a local segmentation.
Args:
roi_core: (``daisy.ROI``): The ROI that is used to read in the
synapses.
roi_context (``daisy.ROI``): The ROI that is used to read in
skeletons and ground truth synapses, that are used for mapping.
seg_thr (``float``): Edge score threshold used for agglomerating
fragments to produce a local segmentation used for mapping.
seg_ids_ignore (``list`` of ``int``):
List of ids that are not used for mapping. Eg. all skeletons
whose seg id are in seg_ids_ignore are removed and not used
for mapping.
"""
with open(self.seg_agglomeration_json) as f:
seg_config = json.load(f)
# Get actual segmentation ROI
seg = daisy.open_ds(seg_config['fragments_file'],
seg_config['fragments_dataset'])
# This reads in all synapses, where postsynaptic site is in ROI, but
# it is not guaranteed, that presynaptic site is also in ROI.
if self.draw_random_from_sql is None:
if self.syndir is not None:
synapses = synapse.read_synapses_in_roi(self.syndir,
roi_core)
else:
syn_db = database.SynapseDatabase(self.syn_db_name,
db_host=self.syn_db_host,
db_col_name=self.syn_db_col,
mode='r')
synapses = syn_db.read_synapses(roi=roi_core)
synapses = synapse.create_synapses_from_db(synapses)
else:
size_cubmicrons = roi_core.size()/1000**3
num_of_synapses = int(size_cubmicrons*self.random_density)
# Generate num_of_synapses postsynaptic random locations.
# if N of possible points gets really big, this solution is not nice :(
zlist = range(int(roi_core.get_begin()[0]/seg.voxel_size[0]), int(roi_core.get_end()[0]/seg.voxel_size[0]))
ylist = range(int(roi_core.get_begin()[1]/seg.voxel_size[1]), int(roi_core.get_end()[1]/seg.voxel_size[1]))
xlist = range(int(roi_core.get_begin()[2]/seg.voxel_size[2]), int(roi_core.get_end()[2]/seg.voxel_size[2]))
coords = [[z, y, x] for x in xlist for y in ylist for z in zlist]
post_sites = random.sample(coords, num_of_synapses)
conn = sqlite3.connect(self.draw_random_from_sql)
c = conn.cursor()
links = get_random_links(num_of_synapses, c) # returns pandas dataframe
synapses = []
for ii, location_post in enumerate(post_sites):
id = cantor_number(location_post)
location_post *= np.array(seg.voxel_size)
link = links.loc[ii]
dir_vec = np.array((link.pre_z, link.pre_y, link.pre_x))-np.array((link.post_z, link.post_y, link.post_x))
syn = synapse.Synapse(
id=np.int64(id),
score=link.scores,
location_pre=location_post+dir_vec,
location_post=location_post
)
synapses.append(syn)
# Make sure to only look at synapses that are inside segmentation ROI.
synapses = [syn for syn in synapses if
seg.roi.contains(syn.location_pre)
and seg.roi.contains(syn.location_post)]
if len(synapses) == 0:
logger.debug('no synapse in roi')
return 0
pre_locations = [daisy.Coordinate(syn.location_pre) for syn in synapses]
post_locations = [daisy.Coordinate(syn.location_post) for syn in
synapses]
# Compute Bounding box for pre_locations
z_min, y_min, x_min = np.min(np.array(pre_locations), axis=0)
z_max, y_max, x_max = np.min(np.array(pre_locations), axis=0)
roi_big = daisy.Roi((z_min, y_min, x_min),
(z_max - z_min, y_max - y_min, x_max - x_min))
roi_big = roi_big.union(roi_context)
roi_big = roi_big.snap_to_grid(seg.voxel_size)
roi_big = seg.roi.intersect(roi_big)
# Load skeletons.
gt_db = database.DAGDatabase(self.skel_db_name,
db_host=self.skel_db_host,
db_col_name=self.skel_db_col,
mode='r')
nodes = gt_db.read_nodes(roi_context)
logger.info('number of skel nodes {}'.format(len(nodes)))
if self.gtsyn_db_name is not None:
gt_db = database.SynapseDatabase(self.gtsyn_db_name,
db_host=self.gtsyn_db_host,
db_col_name=self.gtsyn_db_col,
mode='r')
gt_synapses = gt_db.read_synapses(pre_post_roi=roi_big)
gt_synapses = pd.DataFrame(gt_synapses)
else:
gt_synapses = pd.DataFrame([])
if len(nodes) == 0 and len(gt_synapses) == 0:
logger.info('Neither skeleton nor synapse node found.')
return 0
logger.debug('creating a local segmentation')
locseg = local_segmentation.LocalSegmentationExtractor(**seg_config)
seg = locseg.get_local_segmentation(roi_big, seg_thr)
nodes_df = pd.DataFrame(nodes)
if len(nodes_df) > 0:
nodes_df = nodes_df[nodes_df.apply(
lambda row: seg.roi.contains(daisy.Coordinate(row['position'])),
axis=1)]
nodes_df['seg_id'] = nodes_df.apply(lambda row:
seg[daisy.Coordinate(row['position'])], axis=1)
# # Also add ground truth connectors.
if self.gtsyn_db_name is not None:
use_tree_node = True
if not 'pre_node_id' in gt_synapses:
logger.warning(
'No tree nodes available, assining new node ids. '
'Neuron nodes and synapse nodes might be counted multiple times.')
use_tree_node = False
if len(gt_synapses) == 0:
logger.debug('No Ground Truth synapses')
else:
logger.info(
'number of catmaid synapses: {}'.format(len(gt_synapses)))
pre_nodes = pd.DataFrame()
pre_nodes['neuron_id'] = gt_synapses['pre_skel_id']
pre_nodes['position'] = list(
zip(gt_synapses['pre_z'], gt_synapses['pre_y'],
gt_synapses['pre_x']))
pre_nodes['type'] = 'connector'
pre_nodes['id'] = gt_synapses.pre_node_id if use_tree_node else list(range(len(gt_synapses)))
post_nodes = pd.DataFrame()
post_nodes['neuron_id'] = gt_synapses['post_skel_id']
post_nodes['position'] = list(
zip(gt_synapses['post_z'], gt_synapses['post_y'],
gt_synapses['post_x']))
post_nodes['type'] = 'post_tree_node'
post_nodes['id'] = gt_synapses.post_node_id if use_tree_node else list(range(len(gt_synapses), 2*len(gt_synapses)))
syn_nodes = pd.concat([pre_nodes, post_nodes])
syn_nodes = syn_nodes[syn_nodes.apply(
lambda row: seg.roi.contains(daisy.Coordinate(row['position'])),
axis=1)]
syn_nodes['seg_id'] = syn_nodes.apply(lambda row:
seg[daisy.Coordinate(
row['position'])], axis=1)
nodes_df = nodes_df.append(syn_nodes, sort=False)
# if len(nodes_df) == 0:
# logger.info('Neither skeleton nor synapse node found.')
# return 0
nodes_df = nodes_df[~nodes_df.seg_id.isin(seg_ids_ignore)]
pre_ids = [seg[pre_loc] for pre_loc in pre_locations]
post_ids = [seg[post_loc] for post_loc in post_locations]
syn_on_skels = []
for ii, syn in enumerate(synapses):
pre_id = pre_ids[ii]
post_id = post_ids[ii]
# Test whether segment intersects with a skeleton
skel_syn_pre = not nodes_df[nodes_df.seg_id == pre_id].empty
skel_syn_post = not nodes_df[nodes_df.seg_id == post_id].empty
if skel_syn_pre or skel_syn_post:
syn.id_segm_pre = pre_id
syn.id_segm_post = post_id
syn_on_skels.append(syn)
self.skel_df = nodes_df
logger.debug(
'matching {} synapses to skeletons, original number of synapses {}'.format(
len(syn_on_skels), len(synapses)))
self.match_synapses_to_skeleton(syn_on_skels)
def add_skel_ids(self, seg_ids_ignore=[]):
"""Maps synapses to ground truth skeletons and writes them into a
database.
It is assumend that each ground truth neuron and each pre and
postsynaptic site has already a segmentation ID assigned.
Args:
seg_ids_ignore (``list`` of ``int``):
List of ids that are not used for mapping. Eg. all skeletons
whose seg id are in seg_ids_ignore are removed and not used
for mapping.
"""
gt_db = database.DAGDatabase(self.skel_db_name,
db_host=self.skel_db_host,
db_col_name=self.skel_db_col,
mode='r')
pred_db = database.SynapseDatabase(self.syn_db_name,
db_host=self.syn_db_host,
db_col_name=self.syn_db_col,
mode='r')
nodes = gt_db.read_nodes()
nodes_df = pd.DataFrame(nodes)
# Also add ground truth connectors.
if self.gtsyn_db_name is not None:
gt_db = database.SynapseDatabase(self.gtsyn_db_name,
db_host=self.gtsyn_db_host,
db_col_name=self.gtsyn_db_col,
mode='r')
gt_synapses = gt_db.read_synapses()
gt_synapses = pd.DataFrame(gt_synapses)
use_tree_node = True
if not 'pre_node_id' in gt_synapses:
logger.warning(
'No tree nodes available, assining new node ids. '
'Neuron nodes and synapse nodes might be counted multiple times.')
use_tree_node = False
if len(gt_synapses) == 0:
logger.debug('No Ground Truth synapses')
else:
logger.info(
'number of catmaid synapses: {}'.format(len(gt_synapses)))
pre_nodes = pd.DataFrame()
pre_nodes['neuron_id'] = gt_synapses['pre_skel_id']
pre_nodes['position'] = list(
zip(gt_synapses['pre_z'], gt_synapses['pre_y'],
gt_synapses['pre_x']))
pre_nodes['type'] = 'connector'
pre_nodes['id'] = gt_synapses.pre_node_id if use_tree_node else list(range(len(gt_synapses)))
pre_nodes['seg_id'] = gt_synapses.pre_seg_id
post_nodes = pd.DataFrame()
post_nodes['neuron_id'] = gt_synapses['post_skel_id']
post_nodes['position'] = list(
zip(gt_synapses['post_z'], gt_synapses['post_y'],
gt_synapses['post_x']))
post_nodes['type'] = 'post_tree_node'
post_nodes['id'] = gt_synapses.post_node_id if use_tree_node else list(range(len(gt_synapses), 2*len(gt_synapses)))
post_nodes['seg_id'] = gt_synapses.post_seg_id
syn_nodes = pd.concat([pre_nodes, post_nodes])
nodes_df = nodes_df.append(syn_nodes, sort=False)
if len(nodes_df) == 0:
logger.info('Neither skeleton nor synapse node found.')
return 0
nodes_df = nodes_df[~nodes_df.seg_id.isin(seg_ids_ignore)]
self.skel_df = nodes_df
seg_ids = list(np.unique(nodes_df.seg_id))
seg_ids = [int(id) for id in seg_ids]
synapses = pred_db.synapses.find({'$or': [
{'pre_seg_id': {'$in': seg_ids}},
{'post_seg_id': {'$in': seg_ids}},
]})
synapses = synapse.create_synapses_from_db(synapses)
logger.info('found {} synapses '.format(len(synapses)))
logger.info('Overwriting {}/{}/{}'.format(self.output_db_name,
self.output_db_host,
self.output_db_col))
syn_db = database.SynapseDatabase(self.output_db_name,
db_host=self.output_db_host,
db_col_name=self.output_db_col,
mode='w')
batch_size = 100
args = []
for ii in range(0, len(synapses), batch_size):
if self.multiprocess:
args.append(synapses[ii:ii + batch_size])
else:
self.match_synapses_to_skeleton(synapses[ii:ii + batch_size])
if self.multiprocess:
pool = mp.Pool(self.mp_processes)
pool.map(self.match_synapses_to_skeleton, args)
pool.close()
pool.join()
|
[
"pandas.DataFrame",
"daisy.open_ds",
"json.load",
"daisy.Coordinate",
"random.sample",
"numpy.unique",
"lsd.local_segmentation.LocalSegmentationExtractor",
"daisy.Roi",
"numpy.mean",
"numpy.array",
"sqlite3.connect",
"scipy.spatial.KDTree",
"multiprocessing.Pool",
"funlib.math.cantor_number",
"numpy.int64",
"pandas.concat",
"logging.getLogger"
] |
[((307, 334), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (324, 334), False, 'import logging\n'), ((6222, 6236), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (6234, 6236), True, 'import pandas as pd\n'), ((12961, 13037), 'daisy.open_ds', 'daisy.open_ds', (["seg_config['fragments_file']", "seg_config['fragments_dataset']"], {}), "(seg_config['fragments_file'], seg_config['fragments_dataset'])\n", (12974, 13037), False, 'import daisy\n'), ((16210, 16289), 'daisy.Roi', 'daisy.Roi', (['(z_min, y_min, x_min)', '(z_max - z_min, y_max - y_min, x_max - x_min)'], {}), '((z_min, y_min, x_min), (z_max - z_min, y_max - y_min, x_max - x_min))\n', (16219, 16289), False, 'import daisy\n'), ((17542, 17601), 'lsd.local_segmentation.LocalSegmentationExtractor', 'local_segmentation.LocalSegmentationExtractor', ([], {}), '(**seg_config)\n', (17587, 17601), False, 'from lsd import local_segmentation\n'), ((17684, 17703), 'pandas.DataFrame', 'pd.DataFrame', (['nodes'], {}), '(nodes)\n', (17696, 17703), True, 'import pandas as pd\n'), ((22261, 22280), 'pandas.DataFrame', 'pd.DataFrame', (['nodes'], {}), '(nodes)\n', (22273, 22280), True, 'import pandas as pd\n'), ((6634, 6651), 'scipy.spatial.KDTree', 'KDTree', (['locations'], {}), '(locations)\n', (6640, 6651), False, 'from scipy.spatial import KDTree\n'), ((6847, 6866), 'numpy.array', 'np.array', (['distances'], {}), '(distances)\n', (6855, 6866), True, 'import numpy as np\n'), ((12895, 12907), 'json.load', 'json.load', (['f'], {}), '(f)\n', (12904, 12907), False, 'import json\n'), ((14624, 14662), 'random.sample', 'random.sample', (['coords', 'num_of_synapses'], {}), '(coords, num_of_synapses)\n', (14637, 14662), False, 'import random\n'), ((14682, 14724), 'sqlite3.connect', 'sqlite3.connect', (['self.draw_random_from_sql'], {}), '(self.draw_random_from_sql)\n', (14697, 14724), False, 'import sqlite3\n'), ((15837, 15871), 'daisy.Coordinate', 'daisy.Coordinate', (['syn.location_pre'], {}), '(syn.location_pre)\n', (15853, 15871), False, 'import daisy\n'), ((15919, 15954), 'daisy.Coordinate', 'daisy.Coordinate', (['syn.location_post'], {}), '(syn.location_post)\n', (15935, 15954), False, 'import daisy\n'), ((16088, 16111), 'numpy.array', 'np.array', (['pre_locations'], {}), '(pre_locations)\n', (16096, 16111), True, 'import numpy as np\n'), ((16158, 16181), 'numpy.array', 'np.array', (['pre_locations'], {}), '(pre_locations)\n', (16166, 16181), True, 'import numpy as np\n'), ((17243, 17268), 'pandas.DataFrame', 'pd.DataFrame', (['gt_synapses'], {}), '(gt_synapses)\n', (17255, 17268), True, 'import pandas as pd\n'), ((17309, 17325), 'pandas.DataFrame', 'pd.DataFrame', (['[]'], {}), '([])\n', (17321, 17325), True, 'import pandas as pd\n'), ((22712, 22737), 'pandas.DataFrame', 'pd.DataFrame', (['gt_synapses'], {}), '(gt_synapses)\n', (22724, 22737), True, 'import pandas as pd\n'), ((24665, 24691), 'numpy.unique', 'np.unique', (['nodes_df.seg_id'], {}), '(nodes_df.seg_id)\n', (24674, 24691), True, 'import numpy as np\n'), ((25830, 25856), 'multiprocessing.Pool', 'mp.Pool', (['self.mp_processes'], {}), '(self.mp_processes)\n', (25837, 25856), True, 'import multiprocessing as mp\n'), ((7709, 7788), 'numpy.unique', 'np.unique', (["self.skel_df[self.skel_df['seg_id'] == syn.id_segm_pre]['neuron_id']"], {}), "(self.skel_df[self.skel_df['seg_id'] == syn.id_segm_pre]['neuron_id'])\n", (7718, 7788), True, 'import numpy as np\n'), ((9748, 9833), 'numpy.unique', 'np.unique', (["self.skel_df[self.skel_df['seg_id'] == syn.id_segm_post]['neuron_id']"], {}), "(self.skel_df[self.skel_df['seg_id'] == syn.id_segm_post]['neuron_id']\n )\n", (9757, 9833), True, 'import numpy as np\n'), ((10286, 10409), 'numpy.unique', 'np.unique', (["self.skel_df[(self.skel_df['seg_id'] == syn.id_segm_post) & (self.skel_df[\n 'neuron_id'] == skel_id)]['type']"], {}), "(self.skel_df[(self.skel_df['seg_id'] == syn.id_segm_post) & (self\n .skel_df['neuron_id'] == skel_id)]['type'])\n", (10295, 10409), True, 'import numpy as np\n'), ((14946, 14974), 'funlib.math.cantor_number', 'cantor_number', (['location_post'], {}), '(location_post)\n', (14959, 14974), False, 'from funlib.math import cantor_number\n'), ((15008, 15032), 'numpy.array', 'np.array', (['seg.voxel_size'], {}), '(seg.voxel_size)\n', (15016, 15032), True, 'import numpy as np\n'), ((18694, 18708), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (18706, 18708), True, 'import pandas as pd\n'), ((19126, 19140), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (19138, 19140), True, 'import pandas as pd\n'), ((19591, 19625), 'pandas.concat', 'pd.concat', (['[pre_nodes, post_nodes]'], {}), '([pre_nodes, post_nodes])\n', (19600, 19625), True, 'import pandas as pd\n'), ((23298, 23312), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (23310, 23312), True, 'import pandas as pd\n'), ((23791, 23805), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (23803, 23805), True, 'import pandas as pd\n'), ((24319, 24353), 'pandas.concat', 'pd.concat', (['[pre_nodes, post_nodes]'], {}), '([pre_nodes, post_nodes])\n', (24328, 24353), True, 'import pandas as pd\n'), ((7048, 7066), 'numpy.mean', 'np.mean', (['distances'], {}), '(distances)\n', (7055, 7066), True, 'import numpy as np\n'), ((8438, 8560), 'numpy.unique', 'np.unique', (["self.skel_df[(self.skel_df['seg_id'] == syn.id_segm_pre) & (self.skel_df[\n 'neuron_id'] == skel_id)]['type']"], {}), "(self.skel_df[(self.skel_df['seg_id'] == syn.id_segm_pre) & (self.\n skel_df['neuron_id'] == skel_id)]['type'])\n", (8447, 8560), True, 'import numpy as np\n'), ((9899, 10020), 'numpy.unique', 'np.unique', (["self.skel_df[(self.skel_df['seg_id'] == syn.id_segm_post) & (self.skel_df[\n 'neuron_id'] == skel_id)]['id']"], {}), "(self.skel_df[(self.skel_df['seg_id'] == syn.id_segm_post) & (self\n .skel_df['neuron_id'] == skel_id)]['id'])\n", (9908, 10020), True, 'import numpy as np\n'), ((15096, 15142), 'numpy.array', 'np.array', (['(link.pre_z, link.pre_y, link.pre_x)'], {}), '((link.pre_z, link.pre_y, link.pre_x))\n', (15104, 15142), True, 'import numpy as np\n'), ((15143, 15192), 'numpy.array', 'np.array', (['(link.post_z, link.post_y, link.post_x)'], {}), '((link.post_z, link.post_y, link.post_x))\n', (15151, 15192), True, 'import numpy as np\n'), ((6684, 6702), 'numpy.array', 'np.array', (['position'], {}), '(position)\n', (6692, 6702), True, 'import numpy as np\n'), ((8024, 8144), 'numpy.unique', 'np.unique', (["self.skel_df[(self.skel_df['seg_id'] == syn.id_segm_pre) & (self.skel_df[\n 'neuron_id'] == skel_id)]['id']"], {}), "(self.skel_df[(self.skel_df['seg_id'] == syn.id_segm_pre) & (self.\n skel_df['neuron_id'] == skel_id)]['id'])\n", (8033, 8144), True, 'import numpy as np\n'), ((15255, 15267), 'numpy.int64', 'np.int64', (['id'], {}), '(id)\n', (15263, 15267), True, 'import numpy as np\n'), ((18000, 18033), 'daisy.Coordinate', 'daisy.Coordinate', (["row['position']"], {}), "(row['position'])\n", (18016, 18033), False, 'import daisy\n'), ((17827, 17860), 'daisy.Coordinate', 'daisy.Coordinate', (["row['position']"], {}), "(row['position'])\n", (17843, 17860), False, 'import daisy\n'), ((19919, 19952), 'daisy.Coordinate', 'daisy.Coordinate', (["row['position']"], {}), "(row['position'])\n", (19935, 19952), False, 'import daisy\n'), ((19730, 19763), 'daisy.Coordinate', 'daisy.Coordinate', (["row['position']"], {}), "(row['position'])\n", (19746, 19763), False, 'import daisy\n')]
|
import numpy as np
import tensorflow as tf
class AbstractDiayn:
def __init__(self, n_skills, n_envs, train_on_trajectory=None):
assert train_on_trajectory is not None, "must pass argparse args"
self.train_on_trajectory = train_on_trajectory
self.n_skills = n_skills
self.n_envs = n_envs
pass
def augment(self, timestep, score=None):
# TODO add z to timestep or wtv
obs = timestep.observation
image = obs["image"]
direction = obs["direction"]
augmented_image = image.numpy() # tensorflow is an atrocity of a framework
for i in range(self.n_envs):
augmented_image[i,:,:,2] = self.skills[i]
from tensorflow.python.framework.ops import EagerTensor
augmented_image = tf.convert_to_tensor(augmented_image)
from collections import OrderedDict
augmented_obs = OrderedDict([("direction", direction), ("image",augmented_image)])
if score is not None:
score = tf.convert_to_tensor(score)
else:
score = timestep.reward
import tf_agents
augmented_timestep = tf_agents.trajectories.time_step.TimeStep(timestep.step_type, score, timestep.discount, augmented_obs)
return augmented_timestep
def score_and_augment(self, timestep, as_one_hot=True):
raise NotImplemented()
return augmented_scored_timestep
def train_on_trajectory(self, traj):
if self.train_on_trajectory:
self._train_on_trajectory(self, traj)
def train_on_single_event(self, traj):
if not self.train_on_trajectory:
self._train_on_trajectory(self, traj)
def _train_on_trajectory(self, traj):
raise NotImplemented()
def _reset_skills(self):
self.skills = np.arange(self.n_skills)
np.random.shuffle(self.skills)
self.skills = self.skills[:self.n_envs]
def reset(self, obs):
self._reset_skills()
return self.augment(obs) # NOTE: we don't score here!
def reset_agent(self):
raise NotImplemented()
|
[
"tensorflow.convert_to_tensor",
"numpy.arange",
"collections.OrderedDict",
"tf_agents.trajectories.time_step.TimeStep",
"numpy.random.shuffle"
] |
[((791, 828), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['augmented_image'], {}), '(augmented_image)\n', (811, 828), True, 'import tensorflow as tf\n'), ((898, 965), 'collections.OrderedDict', 'OrderedDict', (["[('direction', direction), ('image', augmented_image)]"], {}), "([('direction', direction), ('image', augmented_image)])\n", (909, 965), False, 'from collections import OrderedDict\n'), ((1149, 1255), 'tf_agents.trajectories.time_step.TimeStep', 'tf_agents.trajectories.time_step.TimeStep', (['timestep.step_type', 'score', 'timestep.discount', 'augmented_obs'], {}), '(timestep.step_type, score,\n timestep.discount, augmented_obs)\n', (1190, 1255), False, 'import tf_agents\n'), ((1809, 1833), 'numpy.arange', 'np.arange', (['self.n_skills'], {}), '(self.n_skills)\n', (1818, 1833), True, 'import numpy as np\n'), ((1842, 1872), 'numpy.random.shuffle', 'np.random.shuffle', (['self.skills'], {}), '(self.skills)\n', (1859, 1872), True, 'import numpy as np\n'), ((1016, 1043), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['score'], {}), '(score)\n', (1036, 1043), True, 'import tensorflow as tf\n')]
|
"""
PROJECT: IMAGE CLASSIFICATION FOR DOG - CAT IMAGEs FROM KAGGLE
"""
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
import numpy
import cv2
import os
import glob
# input images
for img in glob.glob("D:/SP19/CIS-559_data mining/PROJECT/train1/*.jpg"): #folder train1 contains multiple dog and cat images in .jpg
imagePaths = list(glob.glob("D:/SP19/CIS-559_data mining/PROJECT/train1/*.jpg"))
#Extract the image into vector
def image_vector(image, size=(128, 128)):
return cv2.resize(image, size).flatten()
# initialize the pixel intensities matrix, labels list
imagemaxtrix = []
imagelabels = []
#Build image vector matrix
for (i, path) in enumerate(imagePaths):
# load the image and extract the class label, image intensities
image = cv2.imread(path)
label = path.split(os.path.sep)[-1].split(".")[0]
pixels = image_vector(image)
# update the images and labels matricies respectively
imagemaxtrix.append(pixels)
imagelabels.append(label)
imagemaxtrix = numpy.array(imagemaxtrix)
imagelabels = numpy.array(imagelabels)
#Prepare data for training and testing
(train_img, test_img, train_label, test_label) = train_test_split(
imagemaxtrix, imagelabels, test_size=0.2, random_state=50)
'''SVM MODEL IN SKLEARN'''
model1 = SVC(max_iter=-1, kernel ='linear', class_weight='balanced', gamma ='scale')#kernel linear is better Gausian kernel here
model1.fit(train_img, train_label)
acc1 = model1.score(test_img, test_label)
print("SVM model accuracy: {:.2f}%".format(acc1 * 100))
#ww= model1.coef_
#print(ww)
#print(model1)
'''KNN MODEL IN SKLEARN'''
model2 = KNeighborsClassifier(n_neighbors=5, n_jobs=-1)
model2.fit(train_img, train_label)
acc2 = model2.score(test_img, test_label)
print("KNN model accuracy: {:.2f}%".format(acc2 * 100))
'''ANN MODEL IN SKLEARN'''
model3 = MLPClassifier(hidden_layer_sizes=(100,), max_iter=1000, alpha=1e-4,
solver='sgd', tol=1e-4, random_state=1,
learning_rate_init=.1)
model3.fit(train_img, train_label)
acc3 = model3.score(test_img, test_label)
acc4 = model3.score(train_img, train_label)
print(" TEST accuracy: {:.2f}%".format(acc3 * 100))
print(" TRAIN accuracy: {:.2f}%".format(acc4 * 100))
'''ANN MODEL IN TENSORFLOW AND KERAS'''
#change the label from [cat,dog] into [0,1]
for index, i in enumerate(train_label):
if i =='cat': train_label[index] = 1
else: train_label[index] = 0
train_label
for index, i in enumerate(test_label):
if i =='cat': test_label[index] = 1
else: test_label[index] = 0
test_label
from tensorflow.keras.models import Sequential
model = Sequential()
from tensorflow.keras.layers import Dense# Add the first hidden layer
model.add(Dense(50, activation='relu', input_dim=49152)) #Dense: many connect many
model.add(Dense(25, activation='relu'))# Add the second hidden layer
model.add(Dense(1, activation='sigmoid'))# Add the output layer
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) #loss (internal the model) vs. accuracy (accuracy of prediction)
# Train the model for 200 epochs
model.fit(train_img, train_label, epochs=200) #train (80%) , test (15%), validation (5%)
scores = model.evaluate(train_img, train_label)
print("Training Accuracy: %.2f%%\n" % (scores[1]*100))
scores = model.evaluate(test_img, test_label)
print("Testing Accuracy: %.2f%%\n" % (scores[1]*100))
'''PREDICATION SAMPLE'''
rawImages1=[]
pixel1= image_vector(cv2.imread("unseen_image.jpg"))
rawImages1.append(pixels)
rawImages1 = numpy.array(rawImages1)
prediction1 = model1.predict(rawImages1)
print(prediction1)
prediction2 = model2.predict(rawImages1)
print(prediction2)
|
[
"tensorflow.keras.layers.Dense",
"sklearn.model_selection.train_test_split",
"cv2.imread",
"sklearn.neighbors.KNeighborsClassifier",
"numpy.array",
"tensorflow.keras.models.Sequential",
"sklearn.neural_network.MLPClassifier",
"sklearn.svm.SVC",
"glob.glob",
"cv2.resize"
] |
[((341, 402), 'glob.glob', 'glob.glob', (['"""D:/SP19/CIS-559_data mining/PROJECT/train1/*.jpg"""'], {}), "('D:/SP19/CIS-559_data mining/PROJECT/train1/*.jpg')\n", (350, 402), False, 'import glob\n'), ((1147, 1172), 'numpy.array', 'numpy.array', (['imagemaxtrix'], {}), '(imagemaxtrix)\n', (1158, 1172), False, 'import numpy\n'), ((1188, 1212), 'numpy.array', 'numpy.array', (['imagelabels'], {}), '(imagelabels)\n', (1199, 1212), False, 'import numpy\n'), ((1305, 1380), 'sklearn.model_selection.train_test_split', 'train_test_split', (['imagemaxtrix', 'imagelabels'], {'test_size': '(0.2)', 'random_state': '(50)'}), '(imagemaxtrix, imagelabels, test_size=0.2, random_state=50)\n', (1321, 1380), False, 'from sklearn.model_selection import train_test_split\n'), ((1424, 1497), 'sklearn.svm.SVC', 'SVC', ([], {'max_iter': '(-1)', 'kernel': '"""linear"""', 'class_weight': '"""balanced"""', 'gamma': '"""scale"""'}), "(max_iter=-1, kernel='linear', class_weight='balanced', gamma='scale')\n", (1427, 1497), False, 'from sklearn.svm import SVC\n'), ((1769, 1815), 'sklearn.neighbors.KNeighborsClassifier', 'KNeighborsClassifier', ([], {'n_neighbors': '(5)', 'n_jobs': '(-1)'}), '(n_neighbors=5, n_jobs=-1)\n', (1789, 1815), False, 'from sklearn.neighbors import KNeighborsClassifier\n'), ((1994, 2133), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {'hidden_layer_sizes': '(100,)', 'max_iter': '(1000)', 'alpha': '(0.0001)', 'solver': '"""sgd"""', 'tol': '(0.0001)', 'random_state': '(1)', 'learning_rate_init': '(0.1)'}), "(hidden_layer_sizes=(100,), max_iter=1000, alpha=0.0001,\n solver='sgd', tol=0.0001, random_state=1, learning_rate_init=0.1)\n", (2007, 2133), False, 'from sklearn.neural_network import MLPClassifier\n'), ((2817, 2829), 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), '()\n', (2827, 2829), False, 'from tensorflow.keras.models import Sequential\n'), ((3763, 3786), 'numpy.array', 'numpy.array', (['rawImages1'], {}), '(rawImages1)\n', (3774, 3786), False, 'import numpy\n'), ((912, 928), 'cv2.imread', 'cv2.imread', (['path'], {}), '(path)\n', (922, 928), False, 'import cv2\n'), ((2912, 2957), 'tensorflow.keras.layers.Dense', 'Dense', (['(50)'], {'activation': '"""relu"""', 'input_dim': '(49152)'}), "(50, activation='relu', input_dim=49152)\n", (2917, 2957), False, 'from tensorflow.keras.layers import Dense\n'), ((2996, 3024), 'tensorflow.keras.layers.Dense', 'Dense', (['(25)'], {'activation': '"""relu"""'}), "(25, activation='relu')\n", (3001, 3024), False, 'from tensorflow.keras.layers import Dense\n'), ((3066, 3096), 'tensorflow.keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (3071, 3096), False, 'from tensorflow.keras.layers import Dense\n'), ((3689, 3719), 'cv2.imread', 'cv2.imread', (['"""unseen_image.jpg"""'], {}), "('unseen_image.jpg')\n", (3699, 3719), False, 'import cv2\n'), ((487, 548), 'glob.glob', 'glob.glob', (['"""D:/SP19/CIS-559_data mining/PROJECT/train1/*.jpg"""'], {}), "('D:/SP19/CIS-559_data mining/PROJECT/train1/*.jpg')\n", (496, 548), False, 'import glob\n'), ((636, 659), 'cv2.resize', 'cv2.resize', (['image', 'size'], {}), '(image, size)\n', (646, 659), False, 'import cv2\n')]
|
#!/usr/bin/python3
"""
Simple artificial neuron with 2d input
- input two numerical values separated by ","
- usage: python neuron.py --input 1,0
"""
import argparse
import numpy as np
def sigmoid(x):
"""Sigmoid activation function: f(x) = 1 / (1 + e^(-x))
"""
return 1 / (1 + np.exp(-x))
class Neuron:
def __init__(self, weights, bias):
self.weights = weights
self.bias = bias
def feedforward(self, inputs):
""" Weight inputs, add bias, then use the activation function
"""
total = np.dot(self.weights, inputs) + self.bias
return sigmoid(total)
def main():
ap = argparse.ArgumentParser(description="[Info] neuron with two inputs")
ap.add_argument("-i", "--input", required=True, type=str, help="2d input array to neuron")
ap.add_argument("-b", "--bias", required=False, type=int, default=2, help="integer bias")
args = vars(ap.parse_args())
# parameters
x = np.array([float(i) for i in args["input"].split(",")])
w = np.array([0, 1])
b = args["bias"]
# instance
n = Neuron(w, b)
# inference
y_hat = n.feedforward(x)
print("[INFO] output is {}".format(round(y_hat, 3)))
# decision
if y_hat > .5:
print("[INFO] it is a dog")
else:
print("[INFO] it is a cat")
if __name__ == '__main__':
main()
|
[
"numpy.dot",
"numpy.exp",
"numpy.array",
"argparse.ArgumentParser"
] |
[((650, 718), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""[Info] neuron with two inputs"""'}), "(description='[Info] neuron with two inputs')\n", (673, 718), False, 'import argparse\n'), ((1034, 1050), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (1042, 1050), True, 'import numpy as np\n'), ((298, 308), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (304, 308), True, 'import numpy as np\n'), ((555, 583), 'numpy.dot', 'np.dot', (['self.weights', 'inputs'], {}), '(self.weights, inputs)\n', (561, 583), True, 'import numpy as np\n')]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.