code
stringlengths 31
1.05M
| apis
list | extract_api
stringlengths 97
1.91M
|
---|---|---|
#importing
import pandas as pd
import os
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import argparse
import csv
## parsing arguments
parser = argparse.ArgumentParser()
parser.add_argument("-n", "--nbins", type=int, help="The number of bins to divide each gene into")
parser.add_argument("-i", "--infile", help="Input file containing SNV data")
parser.add_argument("-s", "--sample", help="The name of the sample (will be applied to any output files)")
parser.add_argument("-a", "--gtf", help="The reference file in modified gtf format")
parser.add_argument("-o", "--outdir", help="The base directory for outputs")
args = parser.parse_args()
nbins = args.nbins
sample = args.sample
infile = args.infile
gtf = args.gtf
OUT_DIR = args.outdir
if not nbins:
nbin = 100
if not sample:
print("No sample name given. Outputs will be prefixed with 'sample'.")
sample = "sample"
if not gtf:
print("No annotation file given.")
quit()
if not infile:
print("No input file given.")
quit()
if not OUT_DIR:
OUT_DIR = "./"
##
## initializing variables
chr_no = 14 ## change this based on your organism of interest
total_hists = []
bin_sizes = []
def stack_genes(file, bin_no, ann_file): ## function that does the heavy lifting
global total_hists
global bin_sizes
print("Working...")
#import data, including only Region, Position, GeneID
data = pd.read_csv(file, sep="\t", header=0, usecols=["Position", "GeneID"])
unique_genes, gene_freq = np.unique(data["GeneID"], return_counts=True)
gene_freq_dict = dict(zip(unique_genes, gene_freq))
a = data.groupby("GeneID")
b = a["Position"].apply(lambda s: s.tolist())
pos_dict = b.to_dict()
#print(pos_dict)
nc_list = list(map(int, pos_dict["-"]))
print(len(nc_list))
## import reference data
gtf_data = pd.read_csv(ann_file, sep=",", header=0)
num_genes = len(np.unique(gtf_data["GeneID"]))
avg_length = np.average(gtf_data["Length"])
c = gtf_data.groupby("GeneID")
ref_dict = gtf_data.set_index("GeneID").T.to_dict("list")
#print(ref_dict)
counta_5 = [] ## will contain hits 1kb from start -- putative 5' UTR
counta_3 = [] ## will contain hits 1kb from end -- putative 3' UTR
unannoated_nc_hits = [] ## will contain hits not annotated by a gene or a UTR
lengths = []
histogram_dict = {} ## will contain gene, histogram pairs
hist_over_all_genes = [] ## is a list of histogram arrays, one for each gene
utr_dict = {}
stack_dict = {x:(pos_dict[x], ref_dict[x]) for x in pos_dict if x in ref_dict}
for gene, values in stack_dict.items():
snv_list, ref = values
#snv_list = list(map(int, snv_list))
#ref = list(map(int, ref))
#print(ref)
hist, bins = np.histogram(snv_list, bins = nbins, range = (ref[0], ref[1]))
hist_as_list = hist.tolist()
hist_over_all_genes.append(hist_as_list)
lengths.append(ref[1]-ref[0])
histogram_dict.update({gene : hist_as_list})
for i in nc_list:
if i in range(ref[0]-1000, ref[0]):
counta_5.append(i)
#nc_list.remove(i)
elif i in range(ref[1], ref[1]+1000):
counta_3.append(i)
#nc_list.remove(i)
else:
unannoated_nc_hits.append(i)
commonlist = []
for m in counta_5:
if m in counta_3:
commonlist.append(m)
genes_processed_list = []
n = len(pos_dict)
genes_processed_list.append(n)
#print("counta_3", len(counta_3))
#print("counta_5", len(counta_5))
#print("unannotated", len(unannoated_nc_hits))
avg_length = np.average(lengths)
bin_size = avg_length/nbins
bin_sizes.append(bin_size)
utr_dict.update({ "5'_UTR" : (len(counta_5)*bin_size/1000)})
utr_dict.update({ "3'_UTR" : (len(counta_3)*bin_size/1000)})
hist_df = pd.DataFrame.from_dict(data = histogram_dict, orient="index")
hist_df.reset_index(inplace=True)
#hist_df["Histogram"] = hist_df.values.to_list()
names = [i for i in range(1,nbins+1)]
names.insert(0, "GeneID")
hist_df.columns = names
#print(hist_df.head(5))
#hist_df.to_csv(sample+"_gene_histograms.txt", sep="\t", header = [i for i in range(1,nbins+1)], index=False)
utr_labels = [k for k in utr_dict.keys()]
utr_values = [v for v in utr_dict.values()]
avg_hist = np.average(hist_over_all_genes, axis=0)
avg_hist_list = avg_hist.tolist()
bins = [j for j in range(1, len(avg_hist_list)+1)]
plt.style.use("ggplot")
plt.ylabel("Frequency per Bin")
plt.xlabel("Bins")
plt.xlim([-1,len(bins)])
plt.xticks(fontsize = 7, rotation = 90, ha="center", weight = 'bold')
plt.semilogy(bins, avg_hist_list)
plt.savefig(file+"_SNV_graph.jpg")
plt.close()
total_hists.append(avg_hist_list)
stat_writer.writerow({"Chr": file, "#Unannotated Hits": len(nc_list), "#Genes Processed": n})
return()
##
TMP_DIR = sample+"_tmp/"
tmp_path = os.path.join(OUT_DIR, TMP_DIR)
try:
os.mkdir(tmp_path)
except FileExistsError:
pass
## split initial data file by chromosome number
with open(infile) as datafile:
data_reader = pd.read_csv(infile, sep= "\t", header = 0)
for chr_no in range (1, chr_no+1):
filename = data_reader[data_reader["Region"] == chr_no]
if chr_no <= 9:
filename.to_csv(tmp_path+sample+"chr"+str(0)+str(chr_no)+".txt", index = False, sep= '\t')
else:
filename.to_csv(tmp_path+sample+"chr"+str(chr_no)+".txt", index = False, sep= '\t')
## run stack_genes on the split files
with open(OUT_DIR+sample+"stats_file.txt", "a", newline="") as stats:
fields = ["Chr","#Unannotated Hits", "#Genes Processed"]
stat_writer = csv.DictWriter(stats, fieldnames= fields, delimiter = "\t")
stat_writer.writeheader()
for chr_file in os.listdir(tmp_path):
data_file = os.path.join(tmp_path,chr_file)
stack_genes(data_file, nbins, gtf)
avg_total_hist = np.average(total_hists, axis=0)
avg_total_hist_list = avg_total_hist.tolist()
bins = [i for i in range(1, (len(avg_total_hist)+1))]
bins[0] = "TSS"
bins[len(bins)-1] = "TTS"
## plotting
plt.style.use("ggplot")
plt.figure(figsize = (20, 7))
sns.barplot(x = bins, y = avg_total_hist_list, ci="sd", color="darkslateblue")
plt.errorbar(x = [str(i) for i in bins], y = avg_total_hist_list, yerr = np.std(total_hists, axis=0), ecolor="darkorange", elinewidth=1.5)
#plt.semilogy(bins, avg_total_hist_list, "-")
plt.title("SNV Distribution on Averaged Gene Body"+" ("+sample+")")
plt.ylabel("Frequency per Bin")
plt.xlabel("Bins")
plt.xlim([-1,len(bins)])
plt.xticks(fontsize = 8, rotation = 90, ha="center", weight = 'bold')
plt.savefig(OUT_DIR+"/"+sample+"_SNV_graph.jpg")
#plt.show()
## tabular record of plot data
plot_data = dict(zip(bins, avg_total_hist_list))
plot_df = pd.DataFrame.from_dict(data = plot_data, orient="index")
plot_df.reset_index(inplace=True)
plot_df.columns = ["Bin", "Freq"]
plot_df.to_csv(OUT_DIR+"/"+sample+"plot_data.txt", sep="\t", header = True, index = False)
## done, hopefully
|
[
"matplotlib.pyplot.title",
"os.mkdir",
"argparse.ArgumentParser",
"pandas.read_csv",
"matplotlib.pyplot.style.use",
"matplotlib.pyplot.figure",
"numpy.histogram",
"os.path.join",
"numpy.unique",
"csv.DictWriter",
"numpy.std",
"matplotlib.pyplot.close",
"matplotlib.pyplot.semilogy",
"matplotlib.pyplot.xticks",
"numpy.average",
"pandas.DataFrame.from_dict",
"seaborn.barplot",
"matplotlib.pyplot.ylabel",
"os.listdir",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.savefig"
] |
[((172, 197), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (195, 197), False, 'import argparse\n'), ((5090, 5120), 'os.path.join', 'os.path.join', (['OUT_DIR', 'TMP_DIR'], {}), '(OUT_DIR, TMP_DIR)\n', (5102, 5120), False, 'import os\n'), ((6074, 6105), 'numpy.average', 'np.average', (['total_hists'], {'axis': '(0)'}), '(total_hists, axis=0)\n', (6084, 6105), True, 'import numpy as np\n'), ((6262, 6285), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (6275, 6285), True, 'import matplotlib.pyplot as plt\n'), ((6286, 6313), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 7)'}), '(figsize=(20, 7))\n', (6296, 6313), True, 'import matplotlib.pyplot as plt\n'), ((6316, 6390), 'seaborn.barplot', 'sns.barplot', ([], {'x': 'bins', 'y': 'avg_total_hist_list', 'ci': '"""sd"""', 'color': '"""darkslateblue"""'}), "(x=bins, y=avg_total_hist_list, ci='sd', color='darkslateblue')\n", (6327, 6390), True, 'import seaborn as sns\n'), ((6580, 6653), 'matplotlib.pyplot.title', 'plt.title', (["('SNV Distribution on Averaged Gene Body' + ' (' + sample + ')')"], {}), "('SNV Distribution on Averaged Gene Body' + ' (' + sample + ')')\n", (6589, 6653), True, 'import matplotlib.pyplot as plt\n'), ((6648, 6679), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Frequency per Bin"""'], {}), "('Frequency per Bin')\n", (6658, 6679), True, 'import matplotlib.pyplot as plt\n'), ((6680, 6698), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Bins"""'], {}), "('Bins')\n", (6690, 6698), True, 'import matplotlib.pyplot as plt\n'), ((6724, 6787), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'fontsize': '(8)', 'rotation': '(90)', 'ha': '"""center"""', 'weight': '"""bold"""'}), "(fontsize=8, rotation=90, ha='center', weight='bold')\n", (6734, 6787), True, 'import matplotlib.pyplot as plt\n'), ((6794, 6848), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(OUT_DIR + '/' + sample + '_SNV_graph.jpg')"], {}), "(OUT_DIR + '/' + sample + '_SNV_graph.jpg')\n", (6805, 6848), True, 'import matplotlib.pyplot as plt\n'), ((6946, 7000), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', ([], {'data': 'plot_data', 'orient': '"""index"""'}), "(data=plot_data, orient='index')\n", (6968, 7000), True, 'import pandas as pd\n'), ((1409, 1478), 'pandas.read_csv', 'pd.read_csv', (['file'], {'sep': '"""\t"""', 'header': '(0)', 'usecols': "['Position', 'GeneID']"}), "(file, sep='\\t', header=0, usecols=['Position', 'GeneID'])\n", (1420, 1478), True, 'import pandas as pd\n'), ((1509, 1554), 'numpy.unique', 'np.unique', (["data['GeneID']"], {'return_counts': '(True)'}), "(data['GeneID'], return_counts=True)\n", (1518, 1554), True, 'import numpy as np\n'), ((1854, 1894), 'pandas.read_csv', 'pd.read_csv', (['ann_file'], {'sep': '""","""', 'header': '(0)'}), "(ann_file, sep=',', header=0)\n", (1865, 1894), True, 'import pandas as pd\n'), ((1963, 1993), 'numpy.average', 'np.average', (["gtf_data['Length']"], {}), "(gtf_data['Length'])\n", (1973, 1993), True, 'import numpy as np\n'), ((3743, 3762), 'numpy.average', 'np.average', (['lengths'], {}), '(lengths)\n', (3753, 3762), True, 'import numpy as np\n'), ((3970, 4029), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', ([], {'data': 'histogram_dict', 'orient': '"""index"""'}), "(data=histogram_dict, orient='index')\n", (3992, 4029), True, 'import pandas as pd\n'), ((4477, 4516), 'numpy.average', 'np.average', (['hist_over_all_genes'], {'axis': '(0)'}), '(hist_over_all_genes, axis=0)\n', (4487, 4516), True, 'import numpy as np\n'), ((4619, 4642), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (4632, 4642), True, 'import matplotlib.pyplot as plt\n'), ((4647, 4678), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Frequency per Bin"""'], {}), "('Frequency per Bin')\n", (4657, 4678), True, 'import matplotlib.pyplot as plt\n'), ((4683, 4701), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Bins"""'], {}), "('Bins')\n", (4693, 4701), True, 'import matplotlib.pyplot as plt\n'), ((4735, 4798), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'fontsize': '(7)', 'rotation': '(90)', 'ha': '"""center"""', 'weight': '"""bold"""'}), "(fontsize=7, rotation=90, ha='center', weight='bold')\n", (4745, 4798), True, 'import matplotlib.pyplot as plt\n'), ((4809, 4842), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['bins', 'avg_hist_list'], {}), '(bins, avg_hist_list)\n', (4821, 4842), True, 'import matplotlib.pyplot as plt\n'), ((4847, 4883), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(file + '_SNV_graph.jpg')"], {}), "(file + '_SNV_graph.jpg')\n", (4858, 4883), True, 'import matplotlib.pyplot as plt\n'), ((4886, 4897), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4895, 4897), True, 'import matplotlib.pyplot as plt\n'), ((5130, 5148), 'os.mkdir', 'os.mkdir', (['tmp_path'], {}), '(tmp_path)\n', (5138, 5148), False, 'import os\n'), ((5280, 5319), 'pandas.read_csv', 'pd.read_csv', (['infile'], {'sep': '"""\t"""', 'header': '(0)'}), "(infile, sep='\\t', header=0)\n", (5291, 5319), True, 'import pandas as pd\n'), ((5828, 5884), 'csv.DictWriter', 'csv.DictWriter', (['stats'], {'fieldnames': 'fields', 'delimiter': '"""\t"""'}), "(stats, fieldnames=fields, delimiter='\\t')\n", (5842, 5884), False, 'import csv\n'), ((5939, 5959), 'os.listdir', 'os.listdir', (['tmp_path'], {}), '(tmp_path)\n', (5949, 5959), False, 'import os\n'), ((1915, 1944), 'numpy.unique', 'np.unique', (["gtf_data['GeneID']"], {}), "(gtf_data['GeneID'])\n", (1924, 1944), True, 'import numpy as np\n'), ((2841, 2899), 'numpy.histogram', 'np.histogram', (['snv_list'], {'bins': 'nbins', 'range': '(ref[0], ref[1])'}), '(snv_list, bins=nbins, range=(ref[0], ref[1]))\n', (2853, 2899), True, 'import numpy as np\n'), ((5981, 6013), 'os.path.join', 'os.path.join', (['tmp_path', 'chr_file'], {}), '(tmp_path, chr_file)\n', (5993, 6013), False, 'import os\n'), ((6468, 6495), 'numpy.std', 'np.std', (['total_hists'], {'axis': '(0)'}), '(total_hists, axis=0)\n', (6474, 6495), True, 'import numpy as np\n')]
|
import sys
import numpy as np
import torch
import torch.nn as nn
class Net(nn.Module):
def __init__(self, state, event):
super().__init__()
self.event = event
self.state = state
self.fc = nn.Linear(1, 1)
self.welford = self.event.Welford()
self.state["net"] = self
event.optional.init_net_finished(self)
def forward(self, net):
count = np.prod([net.shape[s] for s in self.state["axes"]])
mean = net.double().mean(self.state["axes"])
var = net.double().var(self.state["axes"])
self.welford.updateWithMeanVar(count, mean, var)
return net.flatten(1)[:, :self.state["dataset.num_classes"]] * self.fc.weight
def after_epoch(state, event):
del event # unused
torch.set_printoptions(precision=8, linewidth=120)
print("dataset mean:", state["net"].welford.mean)
print("dataset var:", state["net"].welford.var)
print("dataset std:", state["net"].welford.std)
sys.exit(0)
def register(mf):
mf.load(["Welford", "noaugment"])
mf.register_defaults({
"axes": [0, 2, 3],
"print_precision": 8
})
mf.overwrite_globals({
"shuffle": False,
"mean": [0, 0, 0],
"std": [1, 1, 1]
})
mf.register_default_module('cpuloader', required_event='dataset', overwrite_globals={
"with_transform": False,
"val_prop": 0.0,
})
mf.register_event("init_net", Net, unique=True)
mf.register_event("after_epoch", after_epoch)
|
[
"torch.set_printoptions",
"numpy.prod",
"sys.exit",
"torch.nn.Linear"
] |
[((772, 822), 'torch.set_printoptions', 'torch.set_printoptions', ([], {'precision': '(8)', 'linewidth': '(120)'}), '(precision=8, linewidth=120)\n', (794, 822), False, 'import torch\n'), ((985, 996), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (993, 996), False, 'import sys\n'), ((226, 241), 'torch.nn.Linear', 'nn.Linear', (['(1)', '(1)'], {}), '(1, 1)\n', (235, 241), True, 'import torch.nn as nn\n'), ((412, 463), 'numpy.prod', 'np.prod', (["[net.shape[s] for s in self.state['axes']]"], {}), "([net.shape[s] for s in self.state['axes']])\n", (419, 463), True, 'import numpy as np\n')]
|
import tensorflow as tf
from config import *
from networks import vgg16, FormResNet
from ops import sobel
import os,csv
from PIL import Image
import numpy as np
from skimage.measure import compare_psnr as psnr
from skimage.measure import compare_ssim as ssim
from skimage import util
class Main:
def __init__(self):
self.clean_img = tf.placeholder(tf.float32, [None, None, None, IMG_C])
self.noised_img = tf.placeholder(tf.float32, [None, None, None, IMG_C])
self.train_phase = tf.placeholder(tf.bool)
form_resnet = FormResNet("FormResNet")
self.denoised_img, self.res = form_resnet(self.noised_img, self.train_phase)
self.L_pix = tf.reduce_mean(tf.reduce_sum(tf.square(self.denoised_img - self.clean_img), [1, 2, 3]))
# self.Phi = vgg16(tf.concat([self.denoised_img, self.denoised_img, self.denoised_img], 3))
# self.Phi_ = vgg16(tf.concat([self.clean_img, self.clean_img, self.clean_img], 3))
self.Phi = vgg16(self.denoised_img)
self.Phi_ = vgg16(self.clean_img)
self.L_feat = tf.reduce_mean(tf.square(self.Phi - self.Phi_))
self.L_grad = tf.reduce_mean(tf.reduce_sum(tf.abs(sobel(self.denoised_img)[0] - sobel(self.clean_img)[0]) +\
tf.abs(sobel(self.denoised_img)[1] - sobel(self.clean_img)[1]), [1, 2, 3]))
self.L_cross = (1 - ALPHA - BETA) * self.L_pix + ALPHA * self.L_feat + BETA * self.L_grad
self.Opt = tf.train.AdamOptimizer(1e-4).minimize(self.L_cross)
self.sess = tf.Session()
saver = tf.train.Saver()
# saver.restore(self.sess, "./save_para_3_sigma25_2/FormResNet25.ckpt")
saver.restore(self.sess, "./sigma50_6000/FormResNet50.ckpt")
#self.sess = tf.Session()
#self.sess.run(tf.global_variables_initializer())
def train(self):
filepath = "./TrainingSet//"
filenames = os.listdir(filepath)
saver = tf.train.Saver()
for epoch in range(EPOCHS):
for i in range(filenames.__len__()//BATCH_SIZE):
cleaned_batch = np.zeros([BATCH_SIZE, IMG_H, IMG_W, IMG_C], dtype=np.float32)
for idx, filename in enumerate(filenames[i*BATCH_SIZE:i*BATCH_SIZE+BATCH_SIZE]):
cleaned_batch[idx, :, :, 0] = np.array(Image.open(filepath+filename))
noised_batch = cleaned_batch + np.random.normal(0, SIGMA, cleaned_batch.shape)
noised_batch = np.clip(noised_batch,0,255)
self.sess.run(self.Opt, feed_dict={self.clean_img: cleaned_batch, self.noised_img: noised_batch, self.train_phase: True})
if i % 10 == 0:
[loss, denoised_img] = self.sess.run([self.L_cross, self.denoised_img], feed_dict={self.clean_img: cleaned_batch, self.noised_img: noised_batch, self.train_phase: False})
PSNR = psnr(np.uint8(cleaned_batch[0, :, :, 0]), np.uint8(denoised_img[0, :, :, 0]))
SSIM = ssim(np.uint8(cleaned_batch[0, :, :, 0]), np.uint8(denoised_img[0, :, :, 0]))
print("Epoch: %d, Step: %d, Loss: %g, psnr: %g, ssim: %g"%(epoch, i, loss, PSNR, SSIM))
compared = np.concatenate((cleaned_batch[0, :, :, 0], noised_batch[0, :, :, 0], denoised_img[0, :, :, 0]), 1)
Image.fromarray(np.uint8(compared)).save("./TrainingResults//"+str(epoch)+"_"+str(i)+".jpg")
if i % 500 == 0:
saver.save(self.sess, "./save_para_3_sigma25//FormResNet.ckpt")
np.random.shuffle(filenames)
def test(self, cleaned_path="./Kodak24_256//img02_1.png"):
cleaned_img = np.reshape(np.array(Image.open(cleaned_path), dtype=np.float32), [1, 256, 256, 3])
noised_img = cleaned_img + np.random.normal(0, SIGMA, cleaned_img.shape)
n_img = cleaned_img + np.random.normal(0, 15, cleaned_img.shape)
compared=np.concatenate((n_img[0, :, :, :], noised_img[0, :, :, :]), 1)
Image.fromarray(np.uint8(compared)).show()
# n_PSNR=n_SSIM=0
# for i in range(3):
# n_PSNR += psnr(np.uint8(cleaned_img[0, :, :, i]), np.uint8(noised_img[0, :, :, i]))
# n_SSIM += ssim(np.uint8(cleaned_img[0, :, :, i]), np.uint8(noised_img[0, :, :, i]))
# n_PSNR/=3.0
# n_SSIM/=3.0
# print("n_psnr: %g, n_ssim: %g" % (n_PSNR, n_SSIM))
# [denoised_img] = self.sess.run([self.denoised_img], feed_dict={self.clean_img: cleaned_img, self.noised_img: noised_img, self.train_phase: False})
# PSNR=SSIM=0
# for i in range(3):
# PSNR += psnr(np.uint8(cleaned_img[0, :, :, i]), np.uint8(denoised_img[0, :, :, i]))
# SSIM += ssim(np.uint8(cleaned_img[0, :, :, i]), np.uint8(denoised_img[0, :, :, i]))
# PSNR/=3.0
# SSIM/=3.0
# print("psnr: %g, ssim: %g" % (PSNR, SSIM))
# compared = np.concatenate((cleaned_img[0, :, :, :], noised_img[0, :, :, :], denoised_img[0, :, :, :]), 1)
# Image.fromarray(np.uint8(compared)).show()
def test_all(self, cleaned_path="./BSD500_256//"):
filenames = os.listdir(cleaned_path)
csvname = 'sigma50_bsd_6000.csv'
csvfile = open(csvname, 'w', newline="")
writer = csv.writer(csvfile,dialect='excel')
writer.writerow(["num","PSNR","n_PSNR","c_SSIM","n_SSIM"])
idx = 0
tn_PSNR=tn_SSIM=tc_PSNR=tc_SSIM=0
for f in filenames:
idx+=1
path = cleaned_path+f
cleaned_img = np.reshape(np.array(Image.open(path), dtype=np.float32), [1, 256, 256, 3])
noised_img = cleaned_img + np.random.normal(0, SIGMA, cleaned_img.shape)
noised_img = np.clip(noised_img,0,255)
# c_batch = cleaned_img.astype('float32')/255.
# noised_img=util.random_noise(c_batch,mode='poisson')
# noised_img = noised_img.astype('float32')*255.
n_PSNR=n_SSIM=0
for i in range(3):
n_PSNR += psnr(np.uint8(cleaned_img[0, :, :, i]), np.uint8(noised_img[0, :, :, i]))
n_SSIM += ssim(np.uint8(cleaned_img[0, :, :, i]), np.uint8(noised_img[0, :, :, i]))
n_PSNR/=3.0
n_SSIM/=3.0
tn_PSNR+=n_PSNR
tn_SSIM+=n_SSIM
# print("n_psnr: %g, n_ssim: %g" % (n_PSNR, n_SSIM))
[denoised_img] = self.sess.run([self.denoised_img], feed_dict={self.clean_img: cleaned_img, self.noised_img: noised_img, self.train_phase: False})
PSNR=SSIM=0
for i in range(3):
PSNR += psnr(np.uint8(cleaned_img[0, :, :, i]), np.uint8(denoised_img[0, :, :, i]))
SSIM += ssim(np.uint8(cleaned_img[0, :, :, i]), np.uint8(denoised_img[0, :, :, i]))
PSNR/=3.0
SSIM/=3.0
tc_PSNR+=PSNR
tc_SSIM+=SSIM
# print("psnr: %g, ssim: %g" % (PSNR, SSIM))
writer.writerow([idx,PSNR,n_PSNR,SSIM,n_SSIM])
tn_PSNR/=idx
tn_SSIM/=idx
tc_PSNR/=idx
tc_SSIM/=idx
writer.writerow(["average",tc_PSNR,tn_PSNR,tc_SSIM,tn_SSIM])
if __name__ == "__main__":
m = Main()
# m.test()
m.test_all()
|
[
"numpy.uint8",
"networks.vgg16",
"csv.writer",
"tensorflow.train.Saver",
"numpy.random.shuffle",
"ops.sobel",
"tensorflow.Session",
"numpy.zeros",
"numpy.clip",
"PIL.Image.open",
"tensorflow.placeholder",
"networks.FormResNet",
"tensorflow.square",
"numpy.random.normal",
"tensorflow.train.AdamOptimizer",
"os.listdir",
"numpy.concatenate"
] |
[((347, 400), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, None, None, IMG_C]'], {}), '(tf.float32, [None, None, None, IMG_C])\n', (361, 400), True, 'import tensorflow as tf\n'), ((427, 480), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, None, None, IMG_C]'], {}), '(tf.float32, [None, None, None, IMG_C])\n', (441, 480), True, 'import tensorflow as tf\n'), ((508, 531), 'tensorflow.placeholder', 'tf.placeholder', (['tf.bool'], {}), '(tf.bool)\n', (522, 531), True, 'import tensorflow as tf\n'), ((554, 578), 'networks.FormResNet', 'FormResNet', (['"""FormResNet"""'], {}), "('FormResNet')\n", (564, 578), False, 'from networks import vgg16, FormResNet\n'), ((984, 1008), 'networks.vgg16', 'vgg16', (['self.denoised_img'], {}), '(self.denoised_img)\n', (989, 1008), False, 'from networks import vgg16, FormResNet\n'), ((1029, 1050), 'networks.vgg16', 'vgg16', (['self.clean_img'], {}), '(self.clean_img)\n', (1034, 1050), False, 'from networks import vgg16, FormResNet\n'), ((1525, 1537), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1535, 1537), True, 'import tensorflow as tf\n'), ((1554, 1570), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (1568, 1570), True, 'import tensorflow as tf\n'), ((1891, 1911), 'os.listdir', 'os.listdir', (['filepath'], {}), '(filepath)\n', (1901, 1911), False, 'import os, csv\n'), ((1928, 1944), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (1942, 1944), True, 'import tensorflow as tf\n'), ((3897, 3959), 'numpy.concatenate', 'np.concatenate', (['(n_img[0, :, :, :], noised_img[0, :, :, :])', '(1)'], {}), '((n_img[0, :, :, :], noised_img[0, :, :, :]), 1)\n', (3911, 3959), True, 'import numpy as np\n'), ((5109, 5133), 'os.listdir', 'os.listdir', (['cleaned_path'], {}), '(cleaned_path)\n', (5119, 5133), False, 'import os, csv\n'), ((5241, 5277), 'csv.writer', 'csv.writer', (['csvfile'], {'dialect': '"""excel"""'}), "(csvfile, dialect='excel')\n", (5251, 5277), False, 'import os, csv\n'), ((1088, 1119), 'tensorflow.square', 'tf.square', (['(self.Phi - self.Phi_)'], {}), '(self.Phi - self.Phi_)\n', (1097, 1119), True, 'import tensorflow as tf\n'), ((3528, 3556), 'numpy.random.shuffle', 'np.random.shuffle', (['filenames'], {}), '(filenames)\n', (3545, 3556), True, 'import numpy as np\n'), ((3761, 3806), 'numpy.random.normal', 'np.random.normal', (['(0)', 'SIGMA', 'cleaned_img.shape'], {}), '(0, SIGMA, cleaned_img.shape)\n', (3777, 3806), True, 'import numpy as np\n'), ((3837, 3879), 'numpy.random.normal', 'np.random.normal', (['(0)', '(15)', 'cleaned_img.shape'], {}), '(0, 15, cleaned_img.shape)\n', (3853, 3879), True, 'import numpy as np\n'), ((5694, 5721), 'numpy.clip', 'np.clip', (['noised_img', '(0)', '(255)'], {}), '(noised_img, 0, 255)\n', (5701, 5721), True, 'import numpy as np\n'), ((714, 759), 'tensorflow.square', 'tf.square', (['(self.denoised_img - self.clean_img)'], {}), '(self.denoised_img - self.clean_img)\n', (723, 759), True, 'import tensorflow as tf\n'), ((1453, 1483), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['(0.0001)'], {}), '(0.0001)\n', (1475, 1483), True, 'import tensorflow as tf\n'), ((2074, 2135), 'numpy.zeros', 'np.zeros', (['[BATCH_SIZE, IMG_H, IMG_W, IMG_C]'], {'dtype': 'np.float32'}), '([BATCH_SIZE, IMG_H, IMG_W, IMG_C], dtype=np.float32)\n', (2082, 2135), True, 'import numpy as np\n'), ((2449, 2478), 'numpy.clip', 'np.clip', (['noised_batch', '(0)', '(255)'], {}), '(noised_batch, 0, 255)\n', (2456, 2478), True, 'import numpy as np\n'), ((3663, 3687), 'PIL.Image.open', 'Image.open', (['cleaned_path'], {}), '(cleaned_path)\n', (3673, 3687), False, 'from PIL import Image\n'), ((5623, 5668), 'numpy.random.normal', 'np.random.normal', (['(0)', 'SIGMA', 'cleaned_img.shape'], {}), '(0, SIGMA, cleaned_img.shape)\n', (5639, 5668), True, 'import numpy as np\n'), ((2370, 2417), 'numpy.random.normal', 'np.random.normal', (['(0)', 'SIGMA', 'cleaned_batch.shape'], {}), '(0, SIGMA, cleaned_batch.shape)\n', (2386, 2417), True, 'import numpy as np\n'), ((3187, 3289), 'numpy.concatenate', 'np.concatenate', (['(cleaned_batch[0, :, :, 0], noised_batch[0, :, :, 0], denoised_img[0, :, :, 0])', '(1)'], {}), '((cleaned_batch[0, :, :, 0], noised_batch[0, :, :, 0],\n denoised_img[0, :, :, 0]), 1)\n', (3201, 3289), True, 'import numpy as np\n'), ((3984, 4002), 'numpy.uint8', 'np.uint8', (['compared'], {}), '(compared)\n', (3992, 4002), True, 'import numpy as np\n'), ((5529, 5545), 'PIL.Image.open', 'Image.open', (['path'], {}), '(path)\n', (5539, 5545), False, 'from PIL import Image\n'), ((5997, 6030), 'numpy.uint8', 'np.uint8', (['cleaned_img[0, :, :, i]'], {}), '(cleaned_img[0, :, :, i])\n', (6005, 6030), True, 'import numpy as np\n'), ((6032, 6064), 'numpy.uint8', 'np.uint8', (['noised_img[0, :, :, i]'], {}), '(noised_img[0, :, :, i])\n', (6040, 6064), True, 'import numpy as np\n'), ((6097, 6130), 'numpy.uint8', 'np.uint8', (['cleaned_img[0, :, :, i]'], {}), '(cleaned_img[0, :, :, i])\n', (6105, 6130), True, 'import numpy as np\n'), ((6132, 6164), 'numpy.uint8', 'np.uint8', (['noised_img[0, :, :, i]'], {}), '(noised_img[0, :, :, i])\n', (6140, 6164), True, 'import numpy as np\n'), ((6578, 6611), 'numpy.uint8', 'np.uint8', (['cleaned_img[0, :, :, i]'], {}), '(cleaned_img[0, :, :, i])\n', (6586, 6611), True, 'import numpy as np\n'), ((6613, 6647), 'numpy.uint8', 'np.uint8', (['denoised_img[0, :, :, i]'], {}), '(denoised_img[0, :, :, i])\n', (6621, 6647), True, 'import numpy as np\n'), ((6678, 6711), 'numpy.uint8', 'np.uint8', (['cleaned_img[0, :, :, i]'], {}), '(cleaned_img[0, :, :, i])\n', (6686, 6711), True, 'import numpy as np\n'), ((6713, 6747), 'numpy.uint8', 'np.uint8', (['denoised_img[0, :, :, i]'], {}), '(denoised_img[0, :, :, i])\n', (6721, 6747), True, 'import numpy as np\n'), ((2292, 2323), 'PIL.Image.open', 'Image.open', (['(filepath + filename)'], {}), '(filepath + filename)\n', (2302, 2323), False, 'from PIL import Image\n'), ((2870, 2905), 'numpy.uint8', 'np.uint8', (['cleaned_batch[0, :, :, 0]'], {}), '(cleaned_batch[0, :, :, 0])\n', (2878, 2905), True, 'import numpy as np\n'), ((2907, 2941), 'numpy.uint8', 'np.uint8', (['denoised_img[0, :, :, 0]'], {}), '(denoised_img[0, :, :, 0])\n', (2915, 2941), True, 'import numpy as np\n'), ((2975, 3010), 'numpy.uint8', 'np.uint8', (['cleaned_batch[0, :, :, 0]'], {}), '(cleaned_batch[0, :, :, 0])\n', (2983, 3010), True, 'import numpy as np\n'), ((3012, 3046), 'numpy.uint8', 'np.uint8', (['denoised_img[0, :, :, 0]'], {}), '(denoised_img[0, :, :, 0])\n', (3020, 3046), True, 'import numpy as np\n'), ((1179, 1203), 'ops.sobel', 'sobel', (['self.denoised_img'], {}), '(self.denoised_img)\n', (1184, 1203), False, 'from ops import sobel\n'), ((1209, 1230), 'ops.sobel', 'sobel', (['self.clean_img'], {}), '(self.clean_img)\n', (1214, 1230), False, 'from ops import sobel\n'), ((1267, 1291), 'ops.sobel', 'sobel', (['self.denoised_img'], {}), '(self.denoised_img)\n', (1272, 1291), False, 'from ops import sobel\n'), ((1297, 1318), 'ops.sobel', 'sobel', (['self.clean_img'], {}), '(self.clean_img)\n', (1302, 1318), False, 'from ops import sobel\n'), ((3322, 3340), 'numpy.uint8', 'np.uint8', (['compared'], {}), '(compared)\n', (3330, 3340), True, 'import numpy as np\n')]
|
"""
This module provides the core object-oriented framework for generating
synthetic data sets with clusters. The classes contained here are mainly
abstract superclasses. They require subclasses to concretely implement
much of the specified functionality.
CLASSES AND METHODS
ClusterData : top-level object for generating data
__init__(self, n_clusters, n_dim, n_samples, class_bal, cov_geom,
center_geom, data_dist, ...)
generate_data(self, ...)
to_csv(self, filename)
CovGeom : sample cluster shapes
__init__(self)
make_cov(self, clusterdata)
make_orthonormal_axes(self, n_dim, n_axes)
CenterGeom : place cluster centers
__init__(self)
make_centers(self, clusterdata)
ClassBal : sample number of points for each cluster
__init__(self)
make_class_sizes(self, clusterdata)
DataDist : draw synthetic data for each cluster
__init__(self)
sample(self, clusterdata)
sample_cluster(self, cluster_size, mean, axes, sd)
"""
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from scipy.spatial.distance import mahalanobis
class ClusterData:
"""
Instances of this class are data generators for sampling synthetic data sets
with clusters. All generated data sets are different, but possess similar
geometric characteristics, as specified by an instance of this class.
Attributes
----------
center_geom : CenterGeom
Algorithm for placing cluster centers
centers : ndarray
Cluster centers arranged in a matrix (each row is a center)
class_bal : ClassBal
Algorithm for sampling class sizes (number of points in each cluster)
class_sizes : ndarray, dtype=int
Number of points in each cluster
cluster_axes : list of ndarray
The i-th element stores the principal axes of the i-th cluster,
arranged in matrix form so that each row is an axis
cluster_sd : list of ndarray
The i-th element stores the standard deviations along the principal
axes of the i-th cluster
cov : list of ndarray
The i-th element stores the covariance matrix of the i-th cluster
cov_geom : CovGeom
Algorithm for sampling cluster shapes (covariance structures)
cov_inv : list of ndarray
The i-th element stores the inverse covariance matrix of the i-th
cluster
data : ndarray or None
Data set sampled most recently with ClusterData.generate_data()
data_dist : DataDist
Distribution for drawing synthetic data
labels : ndarray, dtype=int
Cluster labels / class labels
n_clusters : int
Number of clusters to sample
n_dim : int
Dimensionality of the data
n_samples : int
Total number of samples to generate in each data set
scale : float
Reference length scale for generated data
Methdods
--------
__init__(self, n_clusters, n_dim, n_samples, class_bal, cov_geom,
center_geom, data_dist, ...)
generate_data(self, ...)
to_csv(self, filename)
"""
def __init__(self, n_clusters, n_dim, n_samples, class_bal, cov_geom,
center_geom, data_dist, scale=1.0):
"""
Instantiate a ClusterData object.
Parameters
----------
n_clusters : int
Number of clusters
n_dim : int
Dimensionality of data points
n_samples : int
Total number of data points
class_bal : ClassBal object
Samples number of points per cluster
cov_geom : CovGeom object
Samples cluster shapes (covariance structures)
center_geom : CenterGeom object
Places cluster centers
data_dist : DataDist object
Draws synthetic data for each cluster
scale : float, optional
Sets reference length scale for generated data
Returns
-------
self : ClusterData
An instance of ClusterData
"""
self.n_clusters = n_clusters
self.n_dim = n_dim
self.n_samples = n_samples
self.class_bal = class_bal
self.cov_geom = cov_geom
self.center_geom = center_geom
self.data_dist = data_dist
self.data = None
self.labels = None
self.centers = None
self.class_sizes = None
self.cov = None
self.cov_inv = None
self.cluster_axes = None
self.cluster_sd = None
self.scale = scale
def to_csv(self, filename):
"""
Write the most recently generated data to a csv file.
Parameters
----------
self : ClusterData
The underlying data generator
filename : str
Filepath for storing data
Returns
-------
None
Side effects
------------
.csv file is created at the location indicated by filename
"""
if (self.data is None):
raise Exception('No data has been generated. Use ClusterData.generate_data to generate data.')
else:
np.savetxt(filename, self.data, delimiter=',')
def modify_cov_structure(self,cov,cov_inv, cluster_axes, cluster_sd):
"""
Modify the covariance structure of a ClusterData object.
Need to specify ALL attributes of the covariance structure.
"""
self.cov = cov
self.cov_inv = cov_inv
self.cluster_axes = cluster_axes
self.cluster_sd = cluster_sd
def draw_model(self,s=30,alpha_max=0.125, sd_max_bare=2,sd_max_density=4, mode='bare', h=0.1,dr=0.1,
cluster_labels=True):
"""
Plot a sketch of the geometry underlying a probabilistic mixture model sampled by a ClusterData object.
Parameters
----------
clusterdata : ClusterData object
s : float
alpha_max :
sd_max_bare :
sd_max_density :
mode : str
Specify the desired type of drawing. The options are
'bare' : draw each cluster as a central point and elliptical contour,
which is located two standard deviations away from the mean
'density' : draw each cluster as a probability density that fades out
gradually until the elliptical contour four standard
deviations away from the mean
'arrows' : as in 'bare', except that arrows are added along the principal axes
NOT IMPLEMENTED YET
"""
centers = self.centers
sd = self.cluster_sd
axes = self.cluster_axes
for i in range(centers.shape[0]):
# plot cluster center
x_c = centers[i,0]
y_c = centers[i,1]
plt.scatter(x_c,y_c,c='k',s=s)
if cluster_labels:
plt.text(x_c,y_c,' ' + str(i),fontsize=16,va='center')
if mode=='bare':
# plot only a single elliptical contour and the cluster center
r = sd_max_bare
x = [r*sd[i][0]*np.cos(theta) for theta in np.arange(0,2*np.pi+h,h)]
y = [r*sd[i][1]*np.sin(theta) for theta in np.arange(0,2*np.pi+h,h)]
Z = np.transpose(axes[i]) @ np.array([x,y])
plt.plot(Z[0]+x_c,Z[1]+y_c,linewidth=2.5,linestyle='-',c='k')
elif mode=='density':
# plot elliptical density
for j,r in enumerate(np.linspace(0,sd_max_density,int(sd_max_density/dr))):
# plot ellipse
x = [r*sd[i][0]*np.cos(theta) for theta in np.arange(0,2*np.pi+h,h)]
y = [r*sd[i][1]*np.sin(theta) for theta in np.arange(0,2*np.pi+h,h)]
Z = np.transpose(axes[i]) @ np.array([x,y])
plt.gca().fill(Z[0]+x_c,Z[1]+y_c,c='b',alpha=alpha_max*np.exp(-np.sqrt(r)),edgecolor=None)
elif mode=='arrows':
# plot cluster center, a single elliptical contour, and arrows along the principal axes
raise NotImplementedError('the ability to plot arrows along the principal axes is coming soon')
print('hello dair')
return (plt.gcf(), plt.gca())
def generate_data(self,add_noise_vars=False, snr=None, p_over_n=None,seed=None,verbose=True):
"""
Sample a dataset with clusters. The output data set possesses the
geometric characteristics specified by this ClusterData object.
Info on adding noise features
-----------------------------
Noise features can be added to the data. The arguments snr and p_over_n
determine how many noise features are added.
The argument snr refers to the desired ratio of meaningful features to
noise features, whereas the argument p_over_n is the desired ratio of
the total number of features (p) to the total number of samples (n).
Thus, snr controls how "sparse" the resulting data is, whereas p_over_n
determines how high-dimensional the data is (in the statistical sense).
One or both of snr and p_over_n can be specified. If only one is given,
add the desired number of noise features exactly. If both snr and
p_over_n are given, add the least number of noise features that meets or
exceeds the desired values of snr and p_over_n. Thus, the output data
is as noisy or noisier than specified by either snr or p_over_n alone.
Parameters
----------
self : ClusterData
The underlying data generator
add_noise_vars : bool
If true, add noise features to the data. Need to set snr and/or
p_over_n to control the amount of noise added. If both snr and
p_over_n are given, add the least number of noise features that
meets or exceeds both thresholds (snr and the p_over_n).
snr : float
Set the ratio between the number of meaningful features and the
number of noise features. Only relevant when add_noise_vars=True.
p_over_n : float
Set the ratio between the total number of features (p) and the
number of samples (n). Only relevant when add_noise_vars=True.
seed : int or None
Sets the seed for random data generation, if an int is given.
Returns
-------
X : ndarray
Data matrix whose rows are the data points.
y : ndarray
Vector of cluster labels.
"""
if verbose: print('Compute class sizes...')
self.class_sizes = self.class_bal.make_class_sizes(self,seed=seed)
if verbose: print('Compute covariance structures...')
axes, sd, cov, cov_inv = self.cov_geom.make_cov(self,seed=seed)
self.cluster_axes = axes
self.cluster_sd = sd
self.cov = cov
self.cov_inv = cov_inv
if verbose: print('Place cluster centers...')
self.centers = (self.center_geom).place_centers(self,seed=seed, verbose=False)
# compute and report the max and min overlaps beween clusters
overlap_mat = CenterGeom.overlap_matrix(self.centers,self.cov_inv)
self.alpha_min_obs = CenterGeom.alpha_min_obs(overlap_mat)
self.alpha_max_obs = CenterGeom.alpha_max_obs(overlap_mat)
if verbose: print('Sample data...')
self.data, self.labels = (self.data_dist).sample(self,seed=seed)
if verbose: print('Success!')
if add_noise_vars:
self.data = self.add_noise(self.data,snr=snr,p_over_n=p_over_n,seed=seed)
return (self.data, self.labels)
def add_noise(self, data, snr, p_over_n, model='gauss_mimic', margin=0.1,
print_warning=True,seed=None):
"""
Add noise features to given data.
Choosing snr determines how "sparse" the resulting data is, whereas
p_over_n determines how high-dimensional the data is. If only one of snr
and p_over_n is given, add the exact number of noise features required
to meet the threshold. If both snr and p_over_n are given, add the least
number of noise features that meets or exceeds both thresholds. Thus, the
resulting data is as noisy or noisier than required by either threshold.
Parameters
----------
self : ClusterData
The underlying data generator
data :
The data to which noise features are added.
snr : float
Set the ratio between the number of meaningful features and the
number of noise features.
p_over_n : float
Set the ratio between the total number of features (p) and the
number of samples (n).
model : str
Determine how noise features are calculated.
seed : int or None
Sets the seed for randomized data generation, if an int is given.
Returns
-------
out : ndarray
Input data with added noise features.
"""
np.random.seed(seed)
n_dim = data.shape[1]
n_samples = data.shape[0]
if (not snr) and (not p_over_n):
raise Exception('Must provide either snr or p_over_n to determine ' +
'number of noise features to add.')
else:
if snr and not p_over_n:
# add enough noise features to meet snr threshold
n_noise_vars = int(np.ceil(n_dim / snr))
if p_over_n and not snr:
# add enough noise features to meet p_over_n threshold
if n_dim/n_samples <= p_over_n:
n_noise_vars = int(np.ceil(p_over_n * n_samples)) - n_dim
else:
noise_vars = []
if print_warning:
print('Warning: data already sufficiently high-dimensional,' +
' no noise features added.')
if snr and p_over_n:
# add enough noise features to meet both snr and p_over_n thresholds
n_noise_vars = np.max([int(np.ceil(n_dim/snr)),
int(np.ceil(n_samples*p_over_n))-n_dim])
# create noise
feature_std = np.std(data,axis=0)
feature_mean = np.mean(data,axis=0)
# take a random feature, construct a Gaussian noise feature with the same mean+std
Z = np.zeros((n,noise_dim))
for i in range(noise_dim):
feature_idx = np.random.randint(0,p)
mean = feature_mean[feature_idx]
std = feature_std[feature_idx]
Z[:,i] = np.random.normal(loc=mean,scale=std,size=n)
# return data with noise features added
return np.concatenate([data,Z],axis=1)
class CovGeom:
"""
Specifies the covariance structure for ClusterData.
This is largely an abstract superclass. To learn about a concrete
implementation, see the documentation for maxmin.MaxMinCov.
Methods
-------
__init__(self) : abstract method
make_cov(self,clusterdata) : abstract method
make_orthonormal_axes(self,n_dim,n_axes) : implemented here
"""
def __init__(self):
raise NotImplementedError('Cannot instantiate abstract CovGeom.'+
' Choose a provided implementation,'+
' e.g. maxmin.MaxMinCov, or code your'+
' own algorithm for defining cluster'+
' covariance structure.')
def make_cov(self, clusterdata):
raise NotImplementedError('Cannot sample covariance structure from'+
' abstract CovGeom. Choose a provided'
' implementation, e.g. maxmin.MaxMinCov' +
', or code your own algorithm for defining'
' cluster covariance structure.')
def make_orthonormal_axes(self, n_dim, n_axes, seed=None):
"""
Sample orthonormal axes for cluster generation.
Create n_axes orthonormal axes in n_dim-dimensional space.
Parameters
----------
self : CovGeom
This instance of CovGeom
n_dim : int
Dimensionality of the data space
n_axes : int
Number of axes to generate
seed : int or None
Sets the seed for randomized axis generation, if an int is given.
Returns
-------
out : (n_axes, n_dim) ndarray
Axes arranged as a matrix, each row is an axis
"""
ortho_matrix = stats.ortho_group.rvs(n_dim,random_state=seed)
return ortho_matrix[:n_axes, :]
class CenterGeom:
"""
Place cluster centers for ClusterData.
This is an abstract superclass. To learn about a concrete
implementation, see the documentation for centers.BoundedSepCenters.
Methods
-------
__init__(self) : abstract method
make_centers(self, clusterdata) : abstract method
compute_overlap :
overlap_matrix :
"""
def __init__(self):
raise NotImplementedError('Cannot instantiate abstract CenterGeom.'+
' Choose a provided implementation,'+
' e.g. centers.BoundedSepCenters, or code your'+
' own algorithm for placing cluster centers.')
def make_centers(self, clusterdata):
raise NotImplementedError('Cannot sample cluster centers from abstract'+
' CenterGeom. Choose a provided implementation,'+
' e.g. centers.BoundedSepCenters, or code your'+
' own algorithm for placing cluster centers.')
def compute_overlap(center_1,cov_inv_1,center_2,cov_inv_2):
"""
Compute the level alpha of overlap between two clusters.
"""
# compute the mahalanobis distances and calculate the chi2_quantile
dist1 = mahalanobis(center_1,center_2,cov_inv_1)
dist2 = mahalanobis(center_1,center_2,cov_inv_2)
chi2_quantile = (1/((1/dist1) + (1/dist2)))**2
# compute probability P(chi2 <= chi2_quantile) and get alpha
df = len(center_1)
alpha = 1 - (stats.chi2(df=df).cdf(chi2_quantile))
return alpha
def overlap_matrix(centers,cov_inv):
"""
Compute the matrix of overlaps between pairs of clusters.
"""
n_centers = centers.shape[0]
pw_overlap = np.zeros((n_centers,n_centers))
for i in range(n_centers):
for j in range(i+1,n_centers):
pw_overlap[i,j] = CenterGeom.compute_overlap(centers[i,:], cov_inv[i],
centers[j,:], cov_inv[j])
#print('overlap', pw_overlap[i,j], ' by ', i,j)
pw_overlap = pw_overlap + np.transpose(pw_overlap)
return pw_overlap
def alpha_max_obs(overlap_mat):
"""
Compute maximum overlap between pairs of cluster centers.
"""
return np.max(overlap_mat.flatten())
def alpha_min_obs(overlap_mat):
"""
Compute the minimax overlap between cluster centers. That is,
for each cluster center, compute the maximum overlap (overlap with
the nearest other center) and take the minimum of these overlaps.
The resulting metric quantifies the degree of isolation of the most
isolated cluster.
"""
n_centers = overlap_mat.shape[0]
Z = overlap_mat.copy()
#Z[np.arange(n_centers),np.arange(n_centers)] = np.Inf
return np.min(np.max(Z,axis=1))
class ClassBal:
"""
Sample class sizes (number of data points in each cluster) for ClusterData.
This is an abstract superclass. To learn about a concrete
implementation, see the documentation for maxmin.MaxMinBal.
Methods
-------
__init__(self) : abstract method
make_class_sizes(self, clusterdata) : abstract method
"""
def __init__(self):
raise NotImplementedError('Cannot instantiate abstract ClassBal.' +
' Choose a provided implementation, e.g.'+
'maxmin.MaxMinBal, or code your own '+
'algorithm for sampling class sizes.')
def make_class_sizes(self, clusterdata):
raise NotImplementedError('Cannot sample class sizes from abstract'+
' ClassBal. Choose a provided implementation,'+
' e.g. maxmin.MaxMinBal, or code your own '+
'algorithm for sampling class sizes.')
class DataDist:
"""
Specify data distribution for ClusterData.
This is largely an abstract superclass. To learn about concrete
implementations, see the documentations for distributions.GaussianDist,
distributions.ExpDist, or distributions.tDist.
Methods
-------
__init__(self) : abstract method
sample(self, clusterdata) : implemented here
sample_cluster(self, cluster_size, mean, axes, sd) : abstract method
"""
def __init__(self):
raise NotImplementedError('Cannot instantiate abstract DataDist. Choose '+
' a provided implementation, e.g. GaussianDist,' +
' or code your own data distribution.')
def sample(self, clusterdata, seed=None):
n_clusters = clusterdata.n_clusters
n_samples = clusterdata.n_samples
n_dim = clusterdata.n_dim
class_sizes = clusterdata.class_sizes
centers = clusterdata.centers
axes = clusterdata.cluster_axes
sd = clusterdata.cluster_sd
X = np.full(shape=(n_samples, n_dim), fill_value=np.nan)
y = np.full(n_samples, fill_value=np.nan).astype(int)
start = 0
for i in range(n_clusters):
end = start + class_sizes[i]
# Set class label
y[start:end] = i
# Sample data
X[start:end,:] = self.sample_cluster(class_size=class_sizes[i],
mean=centers[i], axes=axes[i],
sd=sd[i],seed=seed+i if seed else seed)
start = end
return (X, y)
def sample_cluster(self, cluster_size, mean, axes, sd, seed=None):
raise NotImplementedError('Cannot sample cluster from abstract DataDist. '+
'Choose a provided implementation, e.g. '
'GaussianDist, or code your own data distribution.')
|
[
"numpy.random.seed",
"scipy.spatial.distance.mahalanobis",
"numpy.mean",
"numpy.random.randint",
"numpy.arange",
"numpy.random.normal",
"matplotlib.pyplot.gca",
"numpy.sin",
"numpy.full",
"numpy.std",
"numpy.savetxt",
"numpy.transpose",
"numpy.max",
"scipy.stats.ortho_group.rvs",
"numpy.ceil",
"scipy.stats.chi2",
"numpy.cos",
"matplotlib.pyplot.gcf",
"numpy.concatenate",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.scatter",
"numpy.zeros",
"numpy.array",
"numpy.sqrt"
] |
[((11365, 11385), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (11379, 11385), True, 'import numpy as np\n'), ((14294, 14341), 'scipy.stats.ortho_group.rvs', 'stats.ortho_group.rvs', (['n_dim'], {'random_state': 'seed'}), '(n_dim, random_state=seed)\n', (14315, 14341), True, 'import scipy.stats as stats\n'), ((15487, 15529), 'scipy.spatial.distance.mahalanobis', 'mahalanobis', (['center_1', 'center_2', 'cov_inv_1'], {}), '(center_1, center_2, cov_inv_1)\n', (15498, 15529), False, 'from scipy.spatial.distance import mahalanobis\n'), ((15538, 15580), 'scipy.spatial.distance.mahalanobis', 'mahalanobis', (['center_1', 'center_2', 'cov_inv_2'], {}), '(center_1, center_2, cov_inv_2)\n', (15549, 15580), False, 'from scipy.spatial.distance import mahalanobis\n'), ((15941, 15973), 'numpy.zeros', 'np.zeros', (['(n_centers, n_centers)'], {}), '((n_centers, n_centers))\n', (15949, 15973), True, 'import numpy as np\n'), ((18701, 18753), 'numpy.full', 'np.full', ([], {'shape': '(n_samples, n_dim)', 'fill_value': 'np.nan'}), '(shape=(n_samples, n_dim), fill_value=np.nan)\n', (18708, 18753), True, 'import numpy as np\n'), ((4485, 4531), 'numpy.savetxt', 'np.savetxt', (['filename', 'self.data'], {'delimiter': '""","""'}), "(filename, self.data, delimiter=',')\n", (4495, 4531), True, 'import numpy as np\n'), ((5910, 5943), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_c', 'y_c'], {'c': '"""k"""', 's': 's'}), "(x_c, y_c, c='k', s=s)\n", (5921, 5943), True, 'import matplotlib.pyplot as plt\n'), ((7111, 7120), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (7118, 7120), True, 'import matplotlib.pyplot as plt\n'), ((7122, 7131), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (7129, 7131), True, 'import matplotlib.pyplot as plt\n'), ((12317, 12337), 'numpy.std', 'np.std', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (12323, 12337), True, 'import numpy as np\n'), ((12355, 12376), 'numpy.mean', 'np.mean', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (12362, 12376), True, 'import numpy as np\n'), ((12470, 12494), 'numpy.zeros', 'np.zeros', (['(n, noise_dim)'], {}), '((n, noise_dim))\n', (12478, 12494), True, 'import numpy as np\n'), ((12749, 12782), 'numpy.concatenate', 'np.concatenate', (['[data, Z]'], {'axis': '(1)'}), '([data, Z], axis=1)\n', (12763, 12782), True, 'import numpy as np\n'), ((16237, 16261), 'numpy.transpose', 'np.transpose', (['pw_overlap'], {}), '(pw_overlap)\n', (16249, 16261), True, 'import numpy as np\n'), ((16899, 16916), 'numpy.max', 'np.max', (['Z'], {'axis': '(1)'}), '(Z, axis=1)\n', (16905, 16916), True, 'import numpy as np\n'), ((6341, 6410), 'matplotlib.pyplot.plot', 'plt.plot', (['(Z[0] + x_c)', '(Z[1] + y_c)'], {'linewidth': '(2.5)', 'linestyle': '"""-"""', 'c': '"""k"""'}), "(Z[0] + x_c, Z[1] + y_c, linewidth=2.5, linestyle='-', c='k')\n", (6349, 6410), True, 'import matplotlib.pyplot as plt\n'), ((12543, 12566), 'numpy.random.randint', 'np.random.randint', (['(0)', 'p'], {}), '(0, p)\n', (12560, 12566), True, 'import numpy as np\n'), ((12651, 12696), 'numpy.random.normal', 'np.random.normal', ([], {'loc': 'mean', 'scale': 'std', 'size': 'n'}), '(loc=mean, scale=std, size=n)\n', (12667, 12696), True, 'import numpy as np\n'), ((18760, 18797), 'numpy.full', 'np.full', (['n_samples'], {'fill_value': 'np.nan'}), '(n_samples, fill_value=np.nan)\n', (18767, 18797), True, 'import numpy as np\n'), ((6292, 6313), 'numpy.transpose', 'np.transpose', (['axes[i]'], {}), '(axes[i])\n', (6304, 6313), True, 'import numpy as np\n'), ((6316, 6332), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (6324, 6332), True, 'import numpy as np\n'), ((11705, 11725), 'numpy.ceil', 'np.ceil', (['(n_dim / snr)'], {}), '(n_dim / snr)\n', (11712, 11725), True, 'import numpy as np\n'), ((15728, 15745), 'scipy.stats.chi2', 'stats.chi2', ([], {'df': 'df'}), '(df=df)\n', (15738, 15745), True, 'import scipy.stats as stats\n'), ((6158, 6171), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (6164, 6171), True, 'import numpy as np\n'), ((6185, 6215), 'numpy.arange', 'np.arange', (['(0)', '(2 * np.pi + h)', 'h'], {}), '(0, 2 * np.pi + h, h)\n', (6194, 6215), True, 'import numpy as np\n'), ((6231, 6244), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (6237, 6244), True, 'import numpy as np\n'), ((6258, 6288), 'numpy.arange', 'np.arange', (['(0)', '(2 * np.pi + h)', 'h'], {}), '(0, 2 * np.pi + h, h)\n', (6267, 6288), True, 'import numpy as np\n'), ((6724, 6745), 'numpy.transpose', 'np.transpose', (['axes[i]'], {}), '(axes[i])\n', (6736, 6745), True, 'import numpy as np\n'), ((6748, 6764), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (6756, 6764), True, 'import numpy as np\n'), ((11875, 11904), 'numpy.ceil', 'np.ceil', (['(p_over_n * n_samples)'], {}), '(p_over_n * n_samples)\n', (11882, 11904), True, 'import numpy as np\n'), ((12203, 12223), 'numpy.ceil', 'np.ceil', (['(n_dim / snr)'], {}), '(n_dim / snr)\n', (12210, 12223), True, 'import numpy as np\n'), ((6588, 6601), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (6594, 6601), True, 'import numpy as np\n'), ((6615, 6645), 'numpy.arange', 'np.arange', (['(0)', '(2 * np.pi + h)', 'h'], {}), '(0, 2 * np.pi + h, h)\n', (6624, 6645), True, 'import numpy as np\n'), ((6662, 6675), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (6668, 6675), True, 'import numpy as np\n'), ((6689, 6719), 'numpy.arange', 'np.arange', (['(0)', '(2 * np.pi + h)', 'h'], {}), '(0, 2 * np.pi + h, h)\n', (6698, 6719), True, 'import numpy as np\n'), ((6770, 6779), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (6777, 6779), True, 'import matplotlib.pyplot as plt\n'), ((12241, 12270), 'numpy.ceil', 'np.ceil', (['(n_samples * p_over_n)'], {}), '(n_samples * p_over_n)\n', (12248, 12270), True, 'import numpy as np\n'), ((6833, 6843), 'numpy.sqrt', 'np.sqrt', (['r'], {}), '(r)\n', (6840, 6843), True, 'import numpy as np\n')]
|
import os
from tqdm import tqdm
from datetime import datetime
import pandas as pd
import numpy as np
from scipy.io import wavfile
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten
from tensorflow.keras.layers import LSTM, TimeDistributed
from tensorflow.keras.layers import Dropout, SpatialDropout2D, Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
from tensorflow.keras.utils import to_categorical
from sklearn.utils.class_weight import compute_class_weight
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
import pickle
from python_speech_features import mfcc
import librosa
from librosa.feature import melspectrogram
from cfg import Config
from buildfeats import build_rand_feat
def get_conv_model():
model = Sequential()
model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu',
strides=(1,1), padding='same', input_shape=input_shape))
model.add(Conv2D(16, (3, 3), activation='relu', strides=(1,1),padding='same'))
model.add(Conv2D(32, (3, 3), activation='relu', strides=(1,1),padding='same'))
# model.add(Conv2D(128, (3, 3), activation='relu', strides=(1,1), padding='same'))
model.add(MaxPool2D((2,2)))
model.add(Dropout(0.5))
model.add(Flatten())
# model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(32, activation='relu'))
# model.add(Dropout(0.5))
model.add(Dense(5, activation='softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
def get_recurrent_model():
#shape of data for RNN is (n, time, feat)
model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape=input_shape))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(0.5))
model.add(TimeDistributed(Dense(64, activation='relu')))
model.add(TimeDistributed(Dense(32, activation='relu')))
model.add(TimeDistributed(Dense(16, activation='relu')))
model.add(TimeDistributed(Dense(8, activation='relu')))
model.add(Flatten())
model.add(Dense(5, activation='softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
config = Config(mode='conv')
cur_df = pd.read_csv('data/train/roadsound_labels.csv', index_col=0)
noisy_df = pd.read_csv('data/train_noisy/roadsound_labels.csv', index_col=0)
df = pd.concat([cur_df, noisy_df], sort=True)
df.set_index('fname', inplace=True)
for f in df.index:
rate, signal = wavfile.read('clean/'+f)
df.at[f, 'length'] = signal.shape[0]/rate
df = df[df.length > config.step/rate]
classes = list(np.unique(df.labels))
class_dist = df.groupby(['labels'])['length'].mean()
# n_samples = 2 * int(df['length'].sum() / 0.1) # 40 * total length of audio
prob_dist = class_dist / class_dist.sum()
choices = np.random.choice(class_dist.index, p=prob_dist)
df, test_df, _, _ = train_test_split(df, df.labels)
if config.mode == 'conv':
X, y = build_rand_feat(config.p_path, df, 'train')
X_test, y_test = build_rand_feat(config.val_p_path, test_df, 'val')
y_flat = np.argmax(y, axis=1) # create an array of integer labels
input_shape = (X.shape[1], X.shape[2])
model = get_conv_model()
elif config.mode == 'time':
print('mode is time(recurrent)')
X, y = build_rand_feat(config.p_path, df, 'train')
X_test, y_test = build_rand_feat(config.val_p_path, test_df, 'val')
y_flat = np.argmax(y, axis=1)
input_shape = (X.shape[1], X.shape[2])
model = get_recurrent_model()
class_weight = compute_class_weight('balanced',
np.unique(y_flat),
y_flat)
n_epochs = 2
batch_size = 128
checkpoint = ModelCheckpoint(config.model_path, monitor='val_acc', verbose=1, mode='max',
save_best_only=True, save_weights_only=False, period=1)
log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard = TensorBoard(log_dir=log_dir, histogram_freq=2,
batch_size=batch_size, write_graph=True,
write_grads=True, write_images=True)
model.fit(X, y, epochs=n_epochs, batch_size=batch_size,
shuffle=True, class_weight=class_weight,
validation_data =(X_test, y_test) , callbacks=[checkpoint, tensorboard])
#if best model, save to config.model_path
model.save(model, config.model_path)
#save all models anyway
datetime_model_path = "./models/{}epochs_{}.h5".format(n_epochs, datetime.now().strftime("%Y%m%d")) # _%H%M%S
model.save(model, datetime_model_path)
|
[
"numpy.argmax",
"pandas.read_csv",
"sklearn.model_selection.train_test_split",
"tensorflow.keras.layers.Dense",
"datetime.datetime.datetime.now",
"tensorflow.keras.callbacks.ModelCheckpoint",
"scipy.io.wavfile.read",
"tensorflow.keras.layers.MaxPool2D",
"tensorflow.keras.models.Sequential",
"numpy.unique",
"tensorflow.keras.layers.Flatten",
"buildfeats.build_rand_feat",
"numpy.random.choice",
"datetime.datetime.now",
"pandas.concat",
"cfg.Config",
"tensorflow.keras.layers.Dropout",
"tensorflow.keras.layers.Conv2D",
"tensorflow.keras.layers.LSTM",
"tensorflow.keras.callbacks.TensorBoard"
] |
[((2472, 2491), 'cfg.Config', 'Config', ([], {'mode': '"""conv"""'}), "(mode='conv')\n", (2478, 2491), False, 'from cfg import Config\n'), ((2502, 2561), 'pandas.read_csv', 'pd.read_csv', (['"""data/train/roadsound_labels.csv"""'], {'index_col': '(0)'}), "('data/train/roadsound_labels.csv', index_col=0)\n", (2513, 2561), True, 'import pandas as pd\n'), ((2573, 2638), 'pandas.read_csv', 'pd.read_csv', (['"""data/train_noisy/roadsound_labels.csv"""'], {'index_col': '(0)'}), "('data/train_noisy/roadsound_labels.csv', index_col=0)\n", (2584, 2638), True, 'import pandas as pd\n'), ((2644, 2684), 'pandas.concat', 'pd.concat', (['[cur_df, noisy_df]'], {'sort': '(True)'}), '([cur_df, noisy_df], sort=True)\n', (2653, 2684), True, 'import pandas as pd\n'), ((3090, 3137), 'numpy.random.choice', 'np.random.choice', (['class_dist.index'], {'p': 'prob_dist'}), '(class_dist.index, p=prob_dist)\n', (3106, 3137), True, 'import numpy as np\n'), ((3159, 3190), 'sklearn.model_selection.train_test_split', 'train_test_split', (['df', 'df.labels'], {}), '(df, df.labels)\n', (3175, 3190), False, 'from sklearn.model_selection import train_test_split\n'), ((3986, 4122), 'tensorflow.keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['config.model_path'], {'monitor': '"""val_acc"""', 'verbose': '(1)', 'mode': '"""max"""', 'save_best_only': '(True)', 'save_weights_only': '(False)', 'period': '(1)'}), "(config.model_path, monitor='val_acc', verbose=1, mode='max',\n save_best_only=True, save_weights_only=False, period=1)\n", (4001, 4122), False, 'from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard\n'), ((4235, 4363), 'tensorflow.keras.callbacks.TensorBoard', 'TensorBoard', ([], {'log_dir': 'log_dir', 'histogram_freq': '(2)', 'batch_size': 'batch_size', 'write_graph': '(True)', 'write_grads': '(True)', 'write_images': '(True)'}), '(log_dir=log_dir, histogram_freq=2, batch_size=batch_size,\n write_graph=True, write_grads=True, write_images=True)\n', (4246, 4363), False, 'from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard\n'), ((870, 882), 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), '()\n', (880, 882), False, 'from tensorflow.keras.models import Sequential\n'), ((1825, 1837), 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1835, 1837), False, 'from tensorflow.keras.models import Sequential\n'), ((2760, 2786), 'scipy.io.wavfile.read', 'wavfile.read', (["('clean/' + f)"], {}), "('clean/' + f)\n", (2772, 2786), False, 'from scipy.io import wavfile\n'), ((2886, 2906), 'numpy.unique', 'np.unique', (['df.labels'], {}), '(df.labels)\n', (2895, 2906), True, 'import numpy as np\n'), ((3229, 3272), 'buildfeats.build_rand_feat', 'build_rand_feat', (['config.p_path', 'df', '"""train"""'], {}), "(config.p_path, df, 'train')\n", (3244, 3272), False, 'from buildfeats import build_rand_feat\n'), ((3294, 3344), 'buildfeats.build_rand_feat', 'build_rand_feat', (['config.val_p_path', 'test_df', '"""val"""'], {}), "(config.val_p_path, test_df, 'val')\n", (3309, 3344), False, 'from buildfeats import build_rand_feat\n'), ((3358, 3378), 'numpy.argmax', 'np.argmax', (['y'], {'axis': '(1)'}), '(y, axis=1)\n', (3367, 3378), True, 'import numpy as np\n'), ((3878, 3895), 'numpy.unique', 'np.unique', (['y_flat'], {}), '(y_flat)\n', (3887, 3895), True, 'import numpy as np\n'), ((897, 1015), 'tensorflow.keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(16)', 'kernel_size': '(3, 3)', 'activation': '"""relu"""', 'strides': '(1, 1)', 'padding': '"""same"""', 'input_shape': 'input_shape'}), "(filters=16, kernel_size=(3, 3), activation='relu', strides=(1, 1),\n padding='same', input_shape=input_shape)\n", (903, 1015), False, 'from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten\n'), ((1050, 1119), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(16)', '(3, 3)'], {'activation': '"""relu"""', 'strides': '(1, 1)', 'padding': '"""same"""'}), "(16, (3, 3), activation='relu', strides=(1, 1), padding='same')\n", (1056, 1119), False, 'from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten\n'), ((1134, 1203), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(32)', '(3, 3)'], {'activation': '"""relu"""', 'strides': '(1, 1)', 'padding': '"""same"""'}), "(32, (3, 3), activation='relu', strides=(1, 1), padding='same')\n", (1140, 1203), False, 'from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten\n'), ((1304, 1321), 'tensorflow.keras.layers.MaxPool2D', 'MaxPool2D', (['(2, 2)'], {}), '((2, 2))\n', (1313, 1321), False, 'from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten\n'), ((1336, 1348), 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (1343, 1348), False, 'from tensorflow.keras.layers import Dropout, SpatialDropout2D, Dense\n'), ((1364, 1373), 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (1371, 1373), False, 'from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten\n'), ((1436, 1448), 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (1443, 1448), False, 'from tensorflow.keras.layers import Dropout, SpatialDropout2D, Dense\n'), ((1464, 1492), 'tensorflow.keras.layers.Dense', 'Dense', (['(32)'], {'activation': '"""relu"""'}), "(32, activation='relu')\n", (1469, 1492), False, 'from tensorflow.keras.layers import Dropout, SpatialDropout2D, Dense\n'), ((1538, 1568), 'tensorflow.keras.layers.Dense', 'Dense', (['(5)'], {'activation': '"""softmax"""'}), "(5, activation='softmax')\n", (1543, 1568), False, 'from tensorflow.keras.layers import Dropout, SpatialDropout2D, Dense\n'), ((1852, 1909), 'tensorflow.keras.layers.LSTM', 'LSTM', (['(128)'], {'return_sequences': '(True)', 'input_shape': 'input_shape'}), '(128, return_sequences=True, input_shape=input_shape)\n', (1856, 1909), False, 'from tensorflow.keras.layers import LSTM, TimeDistributed\n'), ((1925, 1957), 'tensorflow.keras.layers.LSTM', 'LSTM', (['(128)'], {'return_sequences': '(True)'}), '(128, return_sequences=True)\n', (1929, 1957), False, 'from tensorflow.keras.layers import LSTM, TimeDistributed\n'), ((1973, 1985), 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (1980, 1985), False, 'from tensorflow.keras.layers import Dropout, SpatialDropout2D, Dense\n'), ((2244, 2253), 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (2251, 2253), False, 'from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten\n'), ((2269, 2299), 'tensorflow.keras.layers.Dense', 'Dense', (['(5)'], {'activation': '"""softmax"""'}), "(5, activation='softmax')\n", (2274, 2299), False, 'from tensorflow.keras.layers import Dropout, SpatialDropout2D, Dense\n'), ((3564, 3607), 'buildfeats.build_rand_feat', 'build_rand_feat', (['config.p_path', 'df', '"""train"""'], {}), "(config.p_path, df, 'train')\n", (3579, 3607), False, 'from buildfeats import build_rand_feat\n'), ((3629, 3679), 'buildfeats.build_rand_feat', 'build_rand_feat', (['config.val_p_path', 'test_df', '"""val"""'], {}), "(config.val_p_path, test_df, 'val')\n", (3644, 3679), False, 'from buildfeats import build_rand_feat\n'), ((3693, 3713), 'numpy.argmax', 'np.argmax', (['y'], {'axis': '(1)'}), '(y, axis=1)\n', (3702, 3713), True, 'import numpy as np\n'), ((2017, 2045), 'tensorflow.keras.layers.Dense', 'Dense', (['(64)'], {'activation': '"""relu"""'}), "(64, activation='relu')\n", (2022, 2045), False, 'from tensorflow.keras.layers import Dropout, SpatialDropout2D, Dense\n'), ((2078, 2106), 'tensorflow.keras.layers.Dense', 'Dense', (['(32)'], {'activation': '"""relu"""'}), "(32, activation='relu')\n", (2083, 2106), False, 'from tensorflow.keras.layers import Dropout, SpatialDropout2D, Dense\n'), ((2139, 2167), 'tensorflow.keras.layers.Dense', 'Dense', (['(16)'], {'activation': '"""relu"""'}), "(16, activation='relu')\n", (2144, 2167), False, 'from tensorflow.keras.layers import Dropout, SpatialDropout2D, Dense\n'), ((2200, 2227), 'tensorflow.keras.layers.Dense', 'Dense', (['(8)'], {'activation': '"""relu"""'}), "(8, activation='relu')\n", (2205, 2227), False, 'from tensorflow.keras.layers import Dropout, SpatialDropout2D, Dense\n'), ((4171, 4194), 'datetime.datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4192, 4194), False, 'from datetime import datetime\n'), ((4774, 4788), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4786, 4788), False, 'from datetime import datetime\n')]
|
# Author: <NAME>
# License: BSD
import numpy as np
from seglearn.datasets import load_watch
from seglearn.base import TS_Data
from seglearn import util
def test_util():
df = load_watch()
data = TS_Data(df['X'], df['side'])
Xt, Xc = util.get_ts_data_parts(data)
assert np.array_equal(Xc, df['side'])
assert np.all([np.array_equal(Xt[i], df['X'][i]) for i in range(len(df['X']))])
util.check_ts_data(data, df['y'])
util.check_ts_data(df['X'], df['y'])
util.ts_stats(df['X'], df['y'], fs=1., class_labels=df['y_labels'])
|
[
"seglearn.base.TS_Data",
"seglearn.util.check_ts_data",
"seglearn.util.ts_stats",
"seglearn.util.get_ts_data_parts",
"seglearn.datasets.load_watch",
"numpy.array_equal"
] |
[((182, 194), 'seglearn.datasets.load_watch', 'load_watch', ([], {}), '()\n', (192, 194), False, 'from seglearn.datasets import load_watch\n'), ((207, 235), 'seglearn.base.TS_Data', 'TS_Data', (["df['X']", "df['side']"], {}), "(df['X'], df['side'])\n", (214, 235), False, 'from seglearn.base import TS_Data\n'), ((249, 277), 'seglearn.util.get_ts_data_parts', 'util.get_ts_data_parts', (['data'], {}), '(data)\n', (271, 277), False, 'from seglearn import util\n'), ((290, 320), 'numpy.array_equal', 'np.array_equal', (['Xc', "df['side']"], {}), "(Xc, df['side'])\n", (304, 320), True, 'import numpy as np\n'), ((410, 443), 'seglearn.util.check_ts_data', 'util.check_ts_data', (['data', "df['y']"], {}), "(data, df['y'])\n", (428, 443), False, 'from seglearn import util\n'), ((448, 484), 'seglearn.util.check_ts_data', 'util.check_ts_data', (["df['X']", "df['y']"], {}), "(df['X'], df['y'])\n", (466, 484), False, 'from seglearn import util\n'), ((490, 558), 'seglearn.util.ts_stats', 'util.ts_stats', (["df['X']", "df['y']"], {'fs': '(1.0)', 'class_labels': "df['y_labels']"}), "(df['X'], df['y'], fs=1.0, class_labels=df['y_labels'])\n", (503, 558), False, 'from seglearn import util\n'), ((340, 373), 'numpy.array_equal', 'np.array_equal', (['Xt[i]', "df['X'][i]"], {}), "(Xt[i], df['X'][i])\n", (354, 373), True, 'import numpy as np\n')]
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Dict, Optional
import numpy as np
from synthetic_problems import (
Branin1DEmbedding,
Branin2DBase,
Hartmann5DEmbedding,
Hartmann6DBase,
)
def get_benchmark_problem(
name: str,
num_contexts: int,
benchmark_problem_args: Optional[Dict[str, Any]] = None,
):
"""generate benchmark problems.
Args:
1. name: benchmark name
2. num_contexts: number of contexts n
3. args for creating benchmark
- context_name_list. List of str. Default is [c0, c1, ..., cn]
- context_weights. [w0, w1, ..., wn]. sum of w_i = 1. Default is [1/n]
- context_embedding.
"""
benchmark_problem_args = benchmark_problem_args or {}
context_name_list = benchmark_problem_args.get(
"context_name_list", [f"c{i}" for i in range(num_contexts)]
)
context_weights = np.array(
benchmark_problem_args.get(
"context_weights", np.ones(num_contexts) / num_contexts
)
)
if name == "Branin2D":
benchmark_problem = Branin2DBase(
context_name_list=context_name_list, context_weights=context_weights
)
elif name == "Hartmann6D":
benchmark_problem = Hartmann6DBase(
context_name_list=context_name_list, context_weights=context_weights
)
elif name == "Branin1DEmbedding":
benchmark_problem = Branin1DEmbedding(
context_name_list=context_name_list,
context_weights=context_weights,
context_embedding=np.arange(0.0, 15.0, 15.0 / num_contexts).reshape(
num_contexts, 1
),
)
elif name == "Hartmann5DEmbedding":
context_embedding = np.array(
benchmark_problem_args.get(
"context_embedding", np.arange(0.0, 1.0, 1.0 / num_contexts)
)
)
benchmark_problem = Hartmann5DEmbedding(
context_name_list=context_name_list,
context_weights=context_weights,
context_embedding=context_embedding.reshape(num_contexts, 1),
)
return benchmark_problem
|
[
"synthetic_problems.Hartmann6DBase",
"numpy.arange",
"numpy.ones",
"synthetic_problems.Branin2DBase"
] |
[((1242, 1329), 'synthetic_problems.Branin2DBase', 'Branin2DBase', ([], {'context_name_list': 'context_name_list', 'context_weights': 'context_weights'}), '(context_name_list=context_name_list, context_weights=\n context_weights)\n', (1254, 1329), False, 'from synthetic_problems import Branin1DEmbedding, Branin2DBase, Hartmann5DEmbedding, Hartmann6DBase\n'), ((1406, 1495), 'synthetic_problems.Hartmann6DBase', 'Hartmann6DBase', ([], {'context_name_list': 'context_name_list', 'context_weights': 'context_weights'}), '(context_name_list=context_name_list, context_weights=\n context_weights)\n', (1420, 1495), False, 'from synthetic_problems import Branin1DEmbedding, Branin2DBase, Hartmann5DEmbedding, Hartmann6DBase\n'), ((1134, 1155), 'numpy.ones', 'np.ones', (['num_contexts'], {}), '(num_contexts)\n', (1141, 1155), True, 'import numpy as np\n'), ((1985, 2024), 'numpy.arange', 'np.arange', (['(0.0)', '(1.0)', '(1.0 / num_contexts)'], {}), '(0.0, 1.0, 1.0 / num_contexts)\n', (1994, 2024), True, 'import numpy as np\n'), ((1722, 1763), 'numpy.arange', 'np.arange', (['(0.0)', '(15.0)', '(15.0 / num_contexts)'], {}), '(0.0, 15.0, 15.0 / num_contexts)\n', (1731, 1763), True, 'import numpy as np\n')]
|
import random
import numpy as np
def int_to_bin(number: int, length=8) -> str:
b = bin(number)[2:]
return ('0' * (-len(b) % length)) + b
def bin_to_int(number: str) -> int:
return int(number, base=2)
def random_string(length=8):
return ''.join([chr(random.randint(0, 127)) for _ in range(length)])
def max_message_length(I: np.ndarray) -> int:
return (get_image_volume_optimum(I) - get_image_data_volume_bit_len(I)) // 8
def get_image_data_volume_bit_len(I: np.ndarray) -> int:
return int(np.ceil(np.log2(get_image_volume_optimum(I) / 8)))
def get_image_volume_optimum(I: np.ndarray) -> int:
""":returns the number of bits of information we can store in an image"""
return 2 * np.prod(I.shape)
def get_bit_stream_from_plaintext(plaintext: str) -> list:
stream = []
for letter in plaintext:
letter_bin = int_to_bin(ord(letter))
for bit in letter_bin:
stream.append(bit)
return stream
def add_bit_stream_to_color_channel(stream: list, C: list, start_point: int, position=7) -> None:
for i, bit in enumerate(stream):
pixel_bin = int_to_bin(C[i + start_point])
pixel_bin = pixel_bin[0:position] + bit + pixel_bin[position + 1:]
C[i + start_point] = bin_to_int(pixel_bin)
def get_channel_stream(I) -> list:
B, R, G = np.ravel(I[:, :, 0]).tolist(), np.ravel(I[:, :, 2]).tolist(), np.ravel(I[:, :, 1]).tolist()
return B + R + G
def lsb_encrypt(I, plaintext: str):
image_shape = I.shape[0:2]
C = get_channel_stream(I)
plaintext_len_bit_size = get_image_data_volume_bit_len(I)
plaintext_len_bin = int_to_bin(len(plaintext), length=plaintext_len_bit_size)
# adding length bits to the image
for i in range(plaintext_len_bit_size):
pixel_bin = int_to_bin(C[i])
pixel_bin = pixel_bin[0:7] + plaintext_len_bin[i]
C[i] = bin_to_int(pixel_bin)
# creating bit stream from plaintext
stream = get_bit_stream_from_plaintext(plaintext)
# adding the plaintext stream to the channel stream
add_bit_stream_to_color_channel(stream[:np.prod(I.shape) - plaintext_len_bit_size], C, start_point=plaintext_len_bit_size, position=7)
add_bit_stream_to_color_channel(stream[(np.prod(I.shape) - plaintext_len_bit_size):], C, start_point=0, position=6)
B, R, G = C[:len(C) // 3], C[len(C) // 3: 2 * len(C) // 3], C[2 * len(C) // 3:]
B = np.array(B).reshape(image_shape)
R = np.array(R).reshape(image_shape)
G = np.array(G).reshape(image_shape)
# Adding the pixel layers back to the Image
I[:, :, 0] = B
I[:, :, 2] = R
I[:, :, 1] = G
return I
def plaintext_from_bit_stream(stream: list) -> str:
plaintext = ''
for i in range(len(stream) // 8):
byte = ''.join(stream[8 * i: 8 * i + 8])
letter = bin_to_int(byte)
plaintext += chr(letter)
return plaintext
def get_stream_from_channel(channel: list, position: int) -> list:
stream = []
for pixel in channel:
pixel_bin = int_to_bin(pixel, length=8)
pixel_bit = pixel_bin[position]
stream.append(pixel_bit)
return stream
def lsb_decrypt(I) -> str:
# Obtaining the B G R channel stream
C = get_channel_stream(I)
plaintext_len_bit_size = get_image_data_volume_bit_len(I)
plaintext_len_bin = ''.join([int_to_bin(C[i])[7] for i in range(plaintext_len_bit_size)])
plaintext_len = bin_to_int(plaintext_len_bin)
# creating the bit stream from the plaintext_len
stream = get_stream_from_channel(channel=C, position=7) + get_stream_from_channel(channel=C, position=6)
stream = stream[plaintext_len_bit_size:plaintext_len_bit_size + plaintext_len * 8]
# creating plaintext from bit stream
plaintext = plaintext_from_bit_stream(stream)
return plaintext
|
[
"numpy.array",
"random.randint",
"numpy.prod",
"numpy.ravel"
] |
[((722, 738), 'numpy.prod', 'np.prod', (['I.shape'], {}), '(I.shape)\n', (729, 738), True, 'import numpy as np\n'), ((2411, 2422), 'numpy.array', 'np.array', (['B'], {}), '(B)\n', (2419, 2422), True, 'import numpy as np\n'), ((2452, 2463), 'numpy.array', 'np.array', (['R'], {}), '(R)\n', (2460, 2463), True, 'import numpy as np\n'), ((2493, 2504), 'numpy.array', 'np.array', (['G'], {}), '(G)\n', (2501, 2504), True, 'import numpy as np\n'), ((272, 294), 'random.randint', 'random.randint', (['(0)', '(127)'], {}), '(0, 127)\n', (286, 294), False, 'import random\n'), ((1335, 1355), 'numpy.ravel', 'np.ravel', (['I[:, :, 0]'], {}), '(I[:, :, 0])\n', (1343, 1355), True, 'import numpy as np\n'), ((1366, 1386), 'numpy.ravel', 'np.ravel', (['I[:, :, 2]'], {}), '(I[:, :, 2])\n', (1374, 1386), True, 'import numpy as np\n'), ((1397, 1417), 'numpy.ravel', 'np.ravel', (['I[:, :, 1]'], {}), '(I[:, :, 1])\n', (1405, 1417), True, 'import numpy as np\n'), ((2103, 2119), 'numpy.prod', 'np.prod', (['I.shape'], {}), '(I.shape)\n', (2110, 2119), True, 'import numpy as np\n'), ((2242, 2258), 'numpy.prod', 'np.prod', (['I.shape'], {}), '(I.shape)\n', (2249, 2258), True, 'import numpy as np\n')]
|
"""Use of Bertran to calculate sparse segments."""
import numpy as np
import chaospy as cp
def sparse_segment(cords):
r"""
Create a segment of a sparse grid.
Convert a ol-index to sparse grid coordinates on ``[0, 1]^N`` hyper-cube.
A sparse grid of order ``D`` coencide with the set of sparse_segments where
``||cords||_1 <= D``.
More specifically, a segment of:
.. math::
\cup_{cords \in C} sparse_segment(cords) == sparse_grid(M)
where:
.. math::
C = {cords: M=sum(cords)}
Args:
cords (numpy.ndarray):
The segment to extract. ``cord`` must consist of non-negative
integers.
Returns:
Q (numpy.ndarray):
Sparse segment where ``Q.shape==(K, sum(M))`` and ``K`` is segment
specific.
Examples:
>>> chaospy.bertran.sparse_segment([0, 2])
array([[0.5 , 0.125],
[0.5 , 0.375],
[0.5 , 0.625],
[0.5 , 0.875]])
>>> chaospy.bertran.sparse_segment([0, 1, 0, 0])
array([[0.5 , 0.25, 0.5 , 0.5 ],
[0.5 , 0.75, 0.5 , 0.5 ]])
"""
cords = np.array(cords)+1
slices = []
for cord in cords:
slices.append(slice(1, 2**cord+1, 2))
grid = np.mgrid[slices]
indices = grid.reshape(len(cords), np.prod(grid.shape[1:])).T
sgrid = indices*2.**-cords
return sgrid
|
[
"numpy.array",
"numpy.prod"
] |
[((1165, 1180), 'numpy.array', 'np.array', (['cords'], {}), '(cords)\n', (1173, 1180), True, 'import numpy as np\n'), ((1336, 1359), 'numpy.prod', 'np.prod', (['grid.shape[1:]'], {}), '(grid.shape[1:])\n', (1343, 1359), True, 'import numpy as np\n')]
|
import ipinfo
import numpy as np
import re
from rich.console import Console
from rich.table import Column, Table
import sys
import time
IPINFO_TOKEN = "<PASSWORD>_TOKEN"
def parse_line(line: str):
regex = r'[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}.[0-9]{3}Z CLOSE host=([a-zA-Z0-9]{0,4}:[a-zA-Z0-9]{0,4}:[a-zA-Z0-9]{0,4}:[a-zA-Z0-9]{0,4}(:|.)[a-zA-Z0-9]{0,4}(:|.)[a-zA-Z0-9]{0,4}(:|.)[a-zA-Z0-9]{0,4}) port=[0-9]{1,5} fd=[0-9]{1,4} time=([0-9]{1,7}.[0-9]{1,3}) bytes=([0-9]{1,6})'
search = re.search(regex, line, re.IGNORECASE)
ip = search.group(1)
time = float(search.group(5))
sent_bytes = int(search.group(6))
return (ip, time, sent_bytes)
def main(filename: str):
print("reading")
with open(filename, "r") as f:
lines = f.readlines()
handler = ipinfo.getHandler(IPINFO_TOKEN)
times = []
sent_bytes = []
countries = {}
ip_batch = []
# prep countries counter
for c in handler.countries.keys():
countries[c] = 0
print("parsing")
for l in lines:
if "CLOSE host=" in l:
try:
result = parse_line(l)
except AttributeError:
continue
ip_batch.append(result[0].replace("::ffff:", "") + "/country")
times.append(result[1])
sent_bytes.append(result[2])
print("getting countries")
batch_result = handler.getBatchDetails(ip_batch)
for i in ip_batch:
result = batch_result[i]
if isinstance(result, str):
countries[result] = countries[result] + 1
ordered_countries = sorted(countries.items(), key=lambda x:x[1], reverse=True)
time_format_string = '%H:%M:%S'
max_time = time.strftime(time_format_string, time.gmtime(max(times)))
min_time = time.strftime(time_format_string, time.gmtime(min(times)))
median_time = time.strftime(time_format_string, time.gmtime(np.median(times)))
mean_time = time.strftime(time_format_string, time.gmtime(np.mean(times)))
std_time = time.strftime(time_format_string, time.gmtime(np.std(times)))
max_bytes = max(sent_bytes)
min_bytes = min(sent_bytes)
median_bytes = np.median(sent_bytes)
mean_bytes = np.mean(sent_bytes)
std_bytes = np.std(sent_bytes)
console = Console()
table = Table(show_header=True, header_style="bold dim")
table.add_column("Top 5 Countries")
table.add_column("Wasted Time Stats")
table.add_column("Sent Bytes Stats")
table.add_row(f"{handler.countries[ordered_countries[0][0]]}: [bold]{ordered_countries[0][1]}[/bold]",
f"↑ [bold]{max_time}[/bold]",
f"↑ [bold]{max_bytes}[/bold]")
table.add_row(f"{handler.countries[ordered_countries[1][0]]}: [bold]{ordered_countries[1][1]}[/bold]",
f"M [bold]{median_time}[/bold]",
f"M [bold]{median_bytes:.2f}[/bold]")
table.add_row(f"{handler.countries[ordered_countries[2][0]]}: [bold]{ordered_countries[2][1]}[/bold]",
f"x̄ [bold]{mean_time}[/bold]",
f"x̄ [bold]{mean_bytes:.2f}[/bold]")
table.add_row(f"{handler.countries[ordered_countries[3][0]]}: [bold]{ordered_countries[3][1]}[/bold]",
f"σ [bold]{std_time}[/bold]",
f"σ [bold]{std_bytes:.2f}[/bold]")
table.add_row(f"{handler.countries[ordered_countries[4][0]]}: [bold]{ordered_countries[4][1]}[/bold]",
f"↓ [bold]{min_time}[/bold]",
f"↓ [bold]{min_bytes}[/bold]")
console.print(table)
if __name__ == "__main__":
main(sys.argv[1])
|
[
"numpy.median",
"numpy.std",
"numpy.mean",
"rich.console.Console",
"re.search",
"rich.table.Table",
"ipinfo.getHandler"
] |
[((515, 552), 're.search', 're.search', (['regex', 'line', 're.IGNORECASE'], {}), '(regex, line, re.IGNORECASE)\n', (524, 552), False, 'import re\n'), ((825, 856), 'ipinfo.getHandler', 'ipinfo.getHandler', (['IPINFO_TOKEN'], {}), '(IPINFO_TOKEN)\n', (842, 856), False, 'import ipinfo\n'), ((2220, 2241), 'numpy.median', 'np.median', (['sent_bytes'], {}), '(sent_bytes)\n', (2229, 2241), True, 'import numpy as np\n'), ((2259, 2278), 'numpy.mean', 'np.mean', (['sent_bytes'], {}), '(sent_bytes)\n', (2266, 2278), True, 'import numpy as np\n'), ((2295, 2313), 'numpy.std', 'np.std', (['sent_bytes'], {}), '(sent_bytes)\n', (2301, 2313), True, 'import numpy as np\n'), ((2333, 2342), 'rich.console.Console', 'Console', ([], {}), '()\n', (2340, 2342), False, 'from rich.console import Console\n'), ((2356, 2404), 'rich.table.Table', 'Table', ([], {'show_header': '(True)', 'header_style': '"""bold dim"""'}), "(show_header=True, header_style='bold dim')\n", (2361, 2404), False, 'from rich.table import Column, Table\n'), ((1957, 1973), 'numpy.median', 'np.median', (['times'], {}), '(times)\n', (1966, 1973), True, 'import numpy as np\n'), ((2038, 2052), 'numpy.mean', 'np.mean', (['times'], {}), '(times)\n', (2045, 2052), True, 'import numpy as np\n'), ((2116, 2129), 'numpy.std', 'np.std', (['times'], {}), '(times)\n', (2122, 2129), True, 'import numpy as np\n')]
|
import numpy as np
from utils.distributions import bernoulli
# ----------------------------------------------------------------------------------------------------------------------
class Recombination(object):
def __init__(self):
pass
def recombination(self, x):
pass
# ----------------------------------------------------------------------------------------------------------------------
class DifferentialRecombination(Recombination):
def __init__(self, type='de', bounds=(-np.infty, np.infty), params=None):
super().__init__()
self.type = type
self.bounds = bounds
assert (0. <= params['F'] <= 2.), 'F must be in [0, 2]'
assert (0. < params['CR'] <= 1.), 'CR must be in (0, 1]'
assert type in ['de', 'ade', 'revde', 'dex3'], 'type must be one in {de, dex3, ade, revde}'
self.F = params['F']
self.CR = params['CR']
def recombination(self, x):
indices_1 = np.arange(x.shape[0])
# take first parent
x_1 = x[indices_1]
# assign second parent (ensure)
indices_2 = np.random.permutation(x.shape[0])
x_2 = x_1[indices_2]
# assign third parent
indices_3 = np.random.permutation(x.shape[0])
x_3 = x_2[indices_3]
if self.type == 'de':
y_1 = np.clip(x_1 + self.F * (x_2 - x_3), self.bounds[0], self.bounds[1])
# uniform crossover
if self.CR < 1.:
p_1 = bernoulli(self.CR, y_1.shape)
y_1 = p_1 * y_1 + (1. - p_1) * x_1
return (y_1), (indices_1, indices_2, indices_3)
elif self.type == 'revde':
y_1 = np.clip(x_1 + self.F * (x_2 - x_3), self.bounds[0], self.bounds[1])
y_2 = np.clip(x_2 + self.F * (x_3 - y_1), self.bounds[0], self.bounds[1])
y_3 = np.clip(x_3 + self.F * (y_1 - y_2), self.bounds[0], self.bounds[1])
# uniform crossover
if self.CR < 1.:
p_1 = bernoulli(self.CR, y_1.shape)
p_2 = bernoulli(self.CR, y_2.shape)
p_3 = bernoulli(self.CR, y_3.shape)
y_1 = p_1 * y_1 + (1. - p_1) * x_1
y_2 = p_2 * y_2 + (1. - p_2) * x_2
y_3 = p_3 * y_3 + (1. - p_3) * x_3
return (y_1, y_2, y_3), (indices_1, indices_2, indices_3)
elif self.type == 'ade':
y_1 = np.clip(x_1 + self.F * (x_2 - x_3), self.bounds[0], self.bounds[1])
y_2 = np.clip(x_2 + self.F * (x_3 - x_1), self.bounds[0], self.bounds[1])
y_3 = np.clip(x_3 + self.F * (x_1 - x_2), self.bounds[0], self.bounds[1])
# uniform crossover
if self.CR < 1.:
p_1 = bernoulli(self.CR, y_1.shape)
p_2 = bernoulli(self.CR, y_2.shape)
p_3 = bernoulli(self.CR, y_3.shape)
y_1 = p_1 * y_1 + (1. - p_1) * x_1
y_2 = p_2 * y_2 + (1. - p_2) * x_2
y_3 = p_3 * y_3 + (1. - p_3) * x_3
return (y_1, y_2, y_3), (indices_1, indices_2, indices_3)
if self.type == 'dex3':
# y1
y_1 = np.clip(x_1 + self.F * (x_2 - x_3), self.bounds[0], self.bounds[1])
# uniform crossover
if self.CR < 1.:
p_1 = bernoulli(self.CR, y_1.shape)
y_1 = p_1 * y_1 + (1. - p_1) * x_1
# y2
indices_1p = np.arange(x.shape[0])
# take first parent
x_1 = x[indices_1p]
# assign second parent (ensure)
indices_2p = np.random.permutation(x.shape[0])
x_2 = x_1[indices_2p]
# assign third parent
indices_3p = np.random.permutation(x.shape[0])
x_3 = x_2[indices_3p]
y_2 = np.clip(x_1 + self.F * (x_2 - x_3), self.bounds[0], self.bounds[1])
# uniform crossover
if self.CR < 1.:
p_2 = bernoulli(self.CR, y_2.shape)
y_2 = p_2 * y_2 + (1. - p_2) * x_1
# y3
indices_1p = np.arange(x.shape[0])
# take first parent
x_1 = x[indices_1p]
# assign second parent (ensure)
indices_2p = np.random.permutation(x.shape[0])
x_2 = x_1[indices_2p]
# assign third parent
indices_3p = np.random.permutation(x.shape[0])
x_3 = x_2[indices_3p]
y_3 = np.clip(x_1 + self.F * (x_2 - x_3), self.bounds[0], self.bounds[1])
# uniform crossover
if self.CR < 1.:
p_3 = bernoulli(self.CR, y_3.shape)
y_3 = p_3 * y_3 + (1. - p_3) * x_1
return (y_1, y_2, y_3), (indices_1, indices_2, indices_3)
else:
raise ValueError('Wrong name of the differential mutation!')
|
[
"numpy.random.permutation",
"numpy.arange",
"utils.distributions.bernoulli",
"numpy.clip"
] |
[((970, 991), 'numpy.arange', 'np.arange', (['x.shape[0]'], {}), '(x.shape[0])\n', (979, 991), True, 'import numpy as np\n'), ((1107, 1140), 'numpy.random.permutation', 'np.random.permutation', (['x.shape[0]'], {}), '(x.shape[0])\n', (1128, 1140), True, 'import numpy as np\n'), ((1220, 1253), 'numpy.random.permutation', 'np.random.permutation', (['x.shape[0]'], {}), '(x.shape[0])\n', (1241, 1253), True, 'import numpy as np\n'), ((1332, 1399), 'numpy.clip', 'np.clip', (['(x_1 + self.F * (x_2 - x_3))', 'self.bounds[0]', 'self.bounds[1]'], {}), '(x_1 + self.F * (x_2 - x_3), self.bounds[0], self.bounds[1])\n', (1339, 1399), True, 'import numpy as np\n'), ((3164, 3231), 'numpy.clip', 'np.clip', (['(x_1 + self.F * (x_2 - x_3))', 'self.bounds[0]', 'self.bounds[1]'], {}), '(x_1 + self.F * (x_2 - x_3), self.bounds[0], self.bounds[1])\n', (3171, 3231), True, 'import numpy as np\n'), ((3440, 3461), 'numpy.arange', 'np.arange', (['x.shape[0]'], {}), '(x.shape[0])\n', (3449, 3461), True, 'import numpy as np\n'), ((3595, 3628), 'numpy.random.permutation', 'np.random.permutation', (['x.shape[0]'], {}), '(x.shape[0])\n', (3616, 3628), True, 'import numpy as np\n'), ((3722, 3755), 'numpy.random.permutation', 'np.random.permutation', (['x.shape[0]'], {}), '(x.shape[0])\n', (3743, 3755), True, 'import numpy as np\n'), ((3809, 3876), 'numpy.clip', 'np.clip', (['(x_1 + self.F * (x_2 - x_3))', 'self.bounds[0]', 'self.bounds[1]'], {}), '(x_1 + self.F * (x_2 - x_3), self.bounds[0], self.bounds[1])\n', (3816, 3876), True, 'import numpy as np\n'), ((4085, 4106), 'numpy.arange', 'np.arange', (['x.shape[0]'], {}), '(x.shape[0])\n', (4094, 4106), True, 'import numpy as np\n'), ((4240, 4273), 'numpy.random.permutation', 'np.random.permutation', (['x.shape[0]'], {}), '(x.shape[0])\n', (4261, 4273), True, 'import numpy as np\n'), ((4367, 4400), 'numpy.random.permutation', 'np.random.permutation', (['x.shape[0]'], {}), '(x.shape[0])\n', (4388, 4400), True, 'import numpy as np\n'), ((4454, 4521), 'numpy.clip', 'np.clip', (['(x_1 + self.F * (x_2 - x_3))', 'self.bounds[0]', 'self.bounds[1]'], {}), '(x_1 + self.F * (x_2 - x_3), self.bounds[0], self.bounds[1])\n', (4461, 4521), True, 'import numpy as np\n'), ((1484, 1513), 'utils.distributions.bernoulli', 'bernoulli', (['self.CR', 'y_1.shape'], {}), '(self.CR, y_1.shape)\n', (1493, 1513), False, 'from utils.distributions import bernoulli\n'), ((1680, 1747), 'numpy.clip', 'np.clip', (['(x_1 + self.F * (x_2 - x_3))', 'self.bounds[0]', 'self.bounds[1]'], {}), '(x_1 + self.F * (x_2 - x_3), self.bounds[0], self.bounds[1])\n', (1687, 1747), True, 'import numpy as np\n'), ((1766, 1833), 'numpy.clip', 'np.clip', (['(x_2 + self.F * (x_3 - y_1))', 'self.bounds[0]', 'self.bounds[1]'], {}), '(x_2 + self.F * (x_3 - y_1), self.bounds[0], self.bounds[1])\n', (1773, 1833), True, 'import numpy as np\n'), ((1852, 1919), 'numpy.clip', 'np.clip', (['(x_3 + self.F * (y_1 - y_2))', 'self.bounds[0]', 'self.bounds[1]'], {}), '(x_3 + self.F * (y_1 - y_2), self.bounds[0], self.bounds[1])\n', (1859, 1919), True, 'import numpy as np\n'), ((3316, 3345), 'utils.distributions.bernoulli', 'bernoulli', (['self.CR', 'y_1.shape'], {}), '(self.CR, y_1.shape)\n', (3325, 3345), False, 'from utils.distributions import bernoulli\n'), ((3961, 3990), 'utils.distributions.bernoulli', 'bernoulli', (['self.CR', 'y_2.shape'], {}), '(self.CR, y_2.shape)\n', (3970, 3990), False, 'from utils.distributions import bernoulli\n'), ((4606, 4635), 'utils.distributions.bernoulli', 'bernoulli', (['self.CR', 'y_3.shape'], {}), '(self.CR, y_3.shape)\n', (4615, 4635), False, 'from utils.distributions import bernoulli\n'), ((2004, 2033), 'utils.distributions.bernoulli', 'bernoulli', (['self.CR', 'y_1.shape'], {}), '(self.CR, y_1.shape)\n', (2013, 2033), False, 'from utils.distributions import bernoulli\n'), ((2056, 2085), 'utils.distributions.bernoulli', 'bernoulli', (['self.CR', 'y_2.shape'], {}), '(self.CR, y_2.shape)\n', (2065, 2085), False, 'from utils.distributions import bernoulli\n'), ((2108, 2137), 'utils.distributions.bernoulli', 'bernoulli', (['self.CR', 'y_3.shape'], {}), '(self.CR, y_3.shape)\n', (2117, 2137), False, 'from utils.distributions import bernoulli\n'), ((2414, 2481), 'numpy.clip', 'np.clip', (['(x_1 + self.F * (x_2 - x_3))', 'self.bounds[0]', 'self.bounds[1]'], {}), '(x_1 + self.F * (x_2 - x_3), self.bounds[0], self.bounds[1])\n', (2421, 2481), True, 'import numpy as np\n'), ((2500, 2567), 'numpy.clip', 'np.clip', (['(x_2 + self.F * (x_3 - x_1))', 'self.bounds[0]', 'self.bounds[1]'], {}), '(x_2 + self.F * (x_3 - x_1), self.bounds[0], self.bounds[1])\n', (2507, 2567), True, 'import numpy as np\n'), ((2586, 2653), 'numpy.clip', 'np.clip', (['(x_3 + self.F * (x_1 - x_2))', 'self.bounds[0]', 'self.bounds[1]'], {}), '(x_3 + self.F * (x_1 - x_2), self.bounds[0], self.bounds[1])\n', (2593, 2653), True, 'import numpy as np\n'), ((2738, 2767), 'utils.distributions.bernoulli', 'bernoulli', (['self.CR', 'y_1.shape'], {}), '(self.CR, y_1.shape)\n', (2747, 2767), False, 'from utils.distributions import bernoulli\n'), ((2790, 2819), 'utils.distributions.bernoulli', 'bernoulli', (['self.CR', 'y_2.shape'], {}), '(self.CR, y_2.shape)\n', (2799, 2819), False, 'from utils.distributions import bernoulli\n'), ((2842, 2871), 'utils.distributions.bernoulli', 'bernoulli', (['self.CR', 'y_3.shape'], {}), '(self.CR, y_3.shape)\n', (2851, 2871), False, 'from utils.distributions import bernoulli\n')]
|
from __future__ import annotations
from typing import Optional
import numpy as np
from .transformation import Transformation
class TransformationWithCovariance(Transformation):
"""Light weight transformation class with added covariance propagation."""
def __init__(self,
*,
tran_w_cov: Optional[TransformationWithCovariance] = None,
covariance: Optional[np.ndarray] = None,
init_cov_to_zero: bool = False,
**kwargs) -> None:
"""Constructor with several options
Args:
tran_w_cov (Optional[TransformationWithCovariance]): an existing instance of this class. (copy construction)
covariance (np.ndarray): the covariance matrix
init_cov_to_zero (bool): whether or not to initialize covariance to zero; defaults to False.
"""
# copy construction
if tran_w_cov is not None:
self._covariance = np.copy(tran_w_cov.cov())
self._covariance_set = tran_w_cov.covariance_set()
super().__init__(transformation=tran_w_cov)
return
super().__init__(**kwargs)
# construction from a given covariance matrix
if covariance is not None:
# TODO assert that the covariance shape is consistent with the underlying transformation
self._covariance = covariance
self._covariance_set = True
return
# default construction
self._covariance = np.zeros((6, 6)) # TODO make this the same shape as the underlying transformation
self._covariance_set = init_cov_to_zero
def cov(self) -> np.ndarray:
"""Returns a reference to the covariance matrix."""
if not self._covariance_set:
raise RuntimeError("Covariance accessed before being set.")
return self._covariance
def covariance_set(self) -> bool:
"""Returns whether the covariance has been set."""
return self._covariance_set
def set_covariance(self, cov: np.ndarray) -> None:
"""Sets the 6x6 covariance matrix.
Args:
cov: the 6x6 covariance matrix
"""
assert cov.shape[:-2] == self._C_ba.shape[:-2] and cov.shape[-2:] == (6, 6)
self._covariance = cov
self._covariance_set = True
def set_zero_covariance(self) -> None:
"""Sets the covariance to zero."""
self._covariance = np.zeros_like(*self._C_ba.shape[:-2], 6, 6)
self._covariance_set = True
def inverse(self) -> TransformationWithCovariance:
"""Returns the inverse of this transformation including the covariance."""
temp = TransformationWithCovariance(transformation=super().inverse())
adjoint_of_inverse = temp.adjoint()
temp.set_covariance(adjoint_of_inverse @ self._covariance @ adjoint_of_inverse.swapaxes(-2, -1))
temp.covariance_set = self._covariance_set
return temp
|
[
"numpy.zeros_like",
"numpy.zeros"
] |
[((1403, 1419), 'numpy.zeros', 'np.zeros', (['(6, 6)'], {}), '((6, 6))\n', (1411, 1419), True, 'import numpy as np\n'), ((2260, 2303), 'numpy.zeros_like', 'np.zeros_like', (['*self._C_ba.shape[:-2]', '(6)', '(6)'], {}), '(*self._C_ba.shape[:-2], 6, 6)\n', (2273, 2303), True, 'import numpy as np\n')]
|
# <NAME>
# 17CS30033
# The functions are written in the order of the questions and solution to, for example 1a is named as _1a_plot
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from copy import copy
import json
# loading training data
try:
train_data = pd.read_csv('train.csv')
except FileNotFoundError:
train_data = pd.read_csv(input('Enter path to training data: '))
train_data_feature = train_data['Feature'].to_numpy()
train_data_label = train_data[' Label'].to_numpy()
# loading testing data
try:
test_data = pd.read_csv('test.csv')
except FileNotFoundError:
test_data = pd.read_csv(input('Enter path to test data: '))
test_data_feature = test_data['Feature'].to_numpy()
test_data_label = test_data[' Label'].to_numpy()
# global variable to store training error, test error and predicted parameters
# index 0 corresponds to polynomial of degree 1 and so on
all_train_error = []
all_test_error = []
predicted_parameters = []
# highest degree polynomial to build starting from 0
till_n = 9
learning_rate = 0.05
# size of the training data
m = train_data_feature.size
# ======================
# Helper Functions Below
# ======================
# calculates polynomial based on given values and coefficients
def poly_calc(x, coeffs):
o = len(coeffs)
y = 0
for i in range(o):
y += coeffs[i]*x**i
return y
# taking variables, returns the cost
def cost_function(X, Y, m, coeffs):
# calculates sigma of polynomial values over all X minus Y
sum_ = sum([(poly_calc(X.iloc[ind], coeffs)-Y.iloc[ind])**2 for ind in range(m)])
return sum_ / (2*m)
# returns best, worst curve based on training data error
def get_extreme_curves():
# loading data from json files
with open("test_error.json", 'r') as f:
all_test_error = json.load(f)
with open("train_error.json", 'r') as f:
all_train_error = json.load(f)
with open("parameters.json", 'r') as f:
predicted_parameters = json.load(f)
best_train_curve = None
worst_train_curve = None
min_train_error = min(all_train_error)
max_train_error = max(all_train_error)
for index, train_error in enumerate(all_train_error):
if train_error == min_train_error:
best_train_curve = predicted_parameters[index]
if train_error == max_train_error:
worst_train_curve = predicted_parameters[index]
return np.array(best_train_curve), np.array(worst_train_curve)
# =========================
# Solutions Functions Below
# =========================
# plotting data, answer to 1a
def _1a_plot():
training = True
for data in [train_data, test_data]:
# print(train_data.describe())
plt.scatter(data['Feature'], data[' Label'])
plt.xlabel("Feature")
plt.ylabel("Label")
if training:
plt.title("Training Data")
training = False
else:
plt.title("Testing Data")
plt.show()
# fitting curve with learning rate 0.05, answer to 1b
def _1b_fitting():
# varying n from 1 to 9
for n in range(1, till_n+1):
print(f"=========== Polynomial Degree {n} ===========")
# creating numpy vector with feature data
X = np.zeros(shape=(m,n+1))
for i in range(m):
for j in range(n+1):
X[i][j] = np.power(train_data_feature[i], j)
# setting initial value of the parameters as 1
coeff_vals = np.ones(n+1)
# stores previous cost
prev_jtheta = None
# calculate loss
loss = np.dot(X, coeff_vals) - train_data_label
# current cost
cur_jtheta = np.sum(loss ** 2) / (2 * m)
# setting convergence when the difference between consecutive error is less than 0.00000001
while (prev_jtheta is None or abs(prev_jtheta - cur_jtheta) > 0.00000001):
# gradient descent with vector notation, simultaneous calculation
descent_vals = np.dot(X.transpose(), loss) * (learning_rate / m)
# update all coefficients with descent
coeff_vals = coeff_vals - descent_vals
prev_jtheta = cur_jtheta
# calculate new cost
loss = np.dot(X, coeff_vals) - train_data_label
cur_jtheta = np.sum(loss ** 2) / (2 * m)
print(f"Difference between consecutive costs: {abs(prev_jtheta - cur_jtheta)}\t", end="\r", flush=True)
predicted_parameters.append(coeff_vals.tolist())
all_train_error.append(cur_jtheta.tolist())
test_error = cost_function(test_data['Feature'], test_data[' Label'], len(test_data.index), coeff_vals)
all_test_error.append(test_error)
print(f"Parameters: {coeff_vals}\t\t")
print(f"Squared Error on Test Data: {test_error}\n")
# generating predicted values and saving as predicted_labels_n.csv where n is the degree of polynomial
data = [[x, poly_calc(x, coeff_vals)] for x in test_data['Feature']]
predicted_labels = pd.DataFrame(data, columns=["Feature", "Label"])
predicted_labels.to_csv(f'predicted_labels_{n}.csv', index=False)
# storing all predicted polynomials in "predicted_parameters.txt"
with open("predicted_parameters.txt", "w+") as f:
for index, parameter in enumerate(predicted_parameters):
f.write(f"Predicted Parameters for Degree {index+1}: {parameter}\n")
# saving parameters to load in later functions
with open("parameters.json", 'w+') as f:
json.dump(predicted_parameters, f)
# saving train errors to load in later functions
with open("train_error.json", 'w+') as f:
json.dump(all_train_error, f)
# saving test errors to load in later functions
with open("test_error.json", 'w+') as f:
json.dump(all_test_error, f)
# plotting the predicted polynomials, answer to 2a
def _2a_plots():
# loading data from json file
with open("parameters.json", 'r') as f:
predicted_parameters = json.load(f)
for index, coeffs in enumerate(predicted_parameters):
plot_on = np.linspace(train_data['Feature'].min(), train_data['Feature'].max())
plt.plot(plot_on, poly_calc(plot_on, coeffs))
plt.xlabel("Feature")
plt.ylabel("Label")
plt.title(f"Polynomial of Degree {index+1}")
# print(f"Plot for polynomial with coefficients {coeffs}")
plt.show()
# plotting the squared error for training and test data for the values of n
def _2b_plots():
# loading data from json files
with open("test_error.json", 'r') as f:
all_test_error = json.load(f)
with open("train_error.json", 'r') as f:
all_train_error = json.load(f)
labels = [str(x) for x in range(1,till_n+1)]
x = np.arange(len(labels)) # the label locations
width = 0.5 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, all_train_error, width, label='Train Error')
rects2 = ax.bar(x + width/2, all_test_error, width, label='Test Error')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Error')
ax.set_xlabel('n -->')
ax.set_title('Train and Test Errors For Varying n')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
# Attach a text label above each bar in *rects*, displaying its height
def autolabel(rects):
for rect in rects:
height = rect.get_height()
ax.annotate('{0:.7f}'.format(height),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')
autolabel(rects1)
autolabel(rects2)
fig.tight_layout()
plt.show()
# solution to part 3a, lasso regularisation
# the function is very similar to 2b fitting except that we do not start from all 1s
# and used the improvised cost function
def _3a_lasso():
best_curve, worst_curve = get_extreme_curves()
result_curves = []
lasso_training_errors = []
lasso_test_errors = []
is_best = True
for curve in [best_curve, worst_curve]:
if is_best:
curve_type = "Best Curve"
is_best = False
else:
curve_type = "Worst Curve"
n = len(curve) - 1
# create numpy vector from feature data
X = np.zeros(shape=(m,n+1))
for i in range(m):
for j in range(n+1):
X[i][j] = np.power(train_data_feature[i], j)
curves = []
train_errors = []
test_errors = []
for lambd in [.25, .5, .75, 1]:
print(f"=========== Lasso Regularisation {curve_type}: Polynomial Degree {n} Lambda {lambd} ===========")
print(f"Polynomial is: {curve}")
coeff_vals = copy(curve)
prev_jtheta = None
loss = np.dot(X, coeff_vals) - train_data_label
cur_jtheta = (np.sum(loss ** 2) + (lambd * sum([abs(x) for x in coeff_vals])))/ (2 * m)
# setting convergence when the difference between consecutive error is less than 0.00000001
while (prev_jtheta is None or abs(prev_jtheta - cur_jtheta) > 0.00000001):
descent_vals = np.dot(X.transpose(), loss) * (learning_rate / m)
# using regularised descent values, saving zeroth term to put back as in later on.
initial_coeff = coeff_vals[0]
coeff_vals = (coeff_vals * (1-learning_rate *(lambd/m))) - descent_vals
coeff_vals[0] = initial_coeff - descent_vals[0]
prev_jtheta = cur_jtheta
loss = np.dot(X, coeff_vals) - train_data_label
cur_jtheta = (np.sum(loss ** 2) + (lambd * sum([abs(x) for x in coeff_vals])))/ (2 * m)
print(f"Difference between consecutive costs: {abs(prev_jtheta - cur_jtheta)}\t", end="\r", flush=True)
curves.append(coeff_vals)
test_error = cost_function(test_data['Feature'], test_data[' Label'], len(test_data.index), coeff_vals) + ((lambd * sum([abs(x) for x in coeff_vals])) / (2 * len(test_data.index)))
# storing squared (not lasso) train and test errors for later use in plotting
train_errors.append(cur_jtheta - ((lambd * sum([abs(x) for x in coeff_vals])) / (2 * m)))
test_errors.append(test_error - ((lambd * sum([abs(x) for x in coeff_vals])) / (2 * len(test_data.index))))
print(f"New Parameters: {coeff_vals}\t\t")
print(f"Lasso Error on Test Data: {test_error}")
print(f"Squared Error on Test Data: {test_error - ((lambd * sum([abs(x) for x in coeff_vals])) / (2 * len(test_data.index)))}\n")
result_curves.append(curves)
lasso_training_errors.append(train_errors)
lasso_test_errors.append(test_errors)
# creating the graphs for all lambda for each of the two curves
for i in range(2):
# plotting test and train error for varying lambda
labels = [0.25, 0.5, 0.75, 1]
x = np.arange(len(labels)) # the label locations
width = 0.5 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, lasso_training_errors[i], width, label='Lasso Train Error')
rects2 = ax.bar(x + width/2, lasso_test_errors[i], width, label='Lasso Test Error')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Error')
ax.set_xlabel('lambda -->')
if i == 0:
title = 'Best Curve: Train and Test Errors For Varying Lambda With Lasso'
if i == 1:
title = 'Worst Curve: Train and Test Errors For Varying Lambda With Lasso'
ax.set_title(title)
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
# display height of reactange
def autolabel(rects):
for rect in rects:
height = rect.get_height()
ax.annotate('{0:.7f}'.format(height),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
autolabel(rects1)
autolabel(rects2)
fig.tight_layout()
plt.show()
# solution to part 3b, ridge regularisation
# the function is very similar to 2b fitting except that we do not start from all 1s
# and used the improvised cost function
def _3b_ridge():
best_curve, worst_curve = get_extreme_curves()
result_curves = []
ridge_training_errors = []
ridge_test_errors = []
is_best = True
for curve in [best_curve, worst_curve]:
n = len(curve) - 1
X = np.zeros(shape=(m,n+1))
for i in range(m):
for j in range(n+1):
X[i][j] = np.power(train_data_feature[i], j)
if is_best:
curve_type = "Best Curve"
is_best = False
else:
curve_type = "Worst Curve"
curves = []
train_errors = []
test_errors = []
for lambd in [.25, .5, .75, 1]:
print(f"=========== Ridge Regularisation {curve_type}: Polynomial Degree {n} Lambda {lambd} ===========")
print(f"Polynomial is: {curve}")
coeff_vals = copy(curve)
prev_jtheta = None
loss = np.dot(X, coeff_vals) - train_data_label
cur_jtheta = (np.sum(loss ** 2) + (lambd * sum([x**2 for x in coeff_vals])))/ (2 * m)
# setting convergence when the difference between consecutive error is less than 0.00000001
while (prev_jtheta is None or abs(prev_jtheta - cur_jtheta) > 0.00000001):
descent_vals = np.dot(X.transpose(), loss) * (learning_rate / m)
# using regularised descent values, saving zeroth term to put back as in later on.
initial_coeff = coeff_vals[0]
coeff_vals = (coeff_vals * (1-learning_rate * (lambd/m))) - descent_vals
coeff_vals[0] = initial_coeff - descent_vals[0]
prev_jtheta = cur_jtheta
loss = np.dot(X, coeff_vals) - train_data_label
cur_jtheta = (np.sum(loss ** 2) + (lambd * sum([x**2 for x in coeff_vals])))/ (2 * m)
print(f"Difference between consecutive costs: {abs(prev_jtheta - cur_jtheta)}\t", end="\r", flush=True)
test_error = cost_function(test_data['Feature'], test_data[' Label'], len(test_data.index), coeff_vals) + ((lambd * sum([x**2 for x in coeff_vals])) / (2 * len(test_data.index)))
curves.append(coeff_vals)
# storing squared train and test error for plotting
train_errors.append(cur_jtheta - ((lambd * sum([x**2 for x in coeff_vals])) / (2 * m)))
test_errors.append(test_error - ((lambd * sum([x**2 for x in coeff_vals])) / (2 * len(test_data.index))))
print(f"New Parameters: {coeff_vals}\t\t")
print(f"Ridge Error on Test Data: {test_error}")
print(f"Squared Error on Test Data: {test_error - ((lambd * sum([x**2 for x in coeff_vals])) / (2 * len(test_data.index)))}\n")
result_curves.append(curves)
ridge_training_errors.append(train_errors)
ridge_test_errors.append(test_errors)
# creating the graphs for all lambda for each of the two curves
for i in range(2):
# plotting test and train error for varying lambda
labels = [0.25, 0.5, 0.75, 1]
x = np.arange(len(labels)) # the label locations
width = 0.5 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, ridge_training_errors[i], width, label='Ridge Train Error')
rects2 = ax.bar(x + width/2, ridge_test_errors[i], width, label='Ridge Test Error')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Error')
ax.set_xlabel('lambda -->')
if i == 0:
title = 'Best Curve: Train and Test Errors For Varying Lambda With Ridge'
if i == 1:
title = 'Worst Curve: Train and Test Errors For Varying Lambda With Ridge'
ax.set_title(title)
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
# display height of reactange
def autolabel(rects):
for rect in rects:
height = rect.get_height()
ax.annotate('{0:.7f}'.format(height),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
autolabel(rects1)
autolabel(rects2)
fig.tight_layout()
plt.show()
# Comment parts which are not to be run.
# Note: Parts 2a, 2b, 3a, 3b depend on part 1b and hence if they are run without part 1b, they'll load data from JSON files.
_1a_plot()
_1b_fitting()
_2a_plots()
_2b_plots()
_3a_lasso()
_3b_ridge()
|
[
"pandas.DataFrame",
"json.dump",
"matplotlib.pyplot.title",
"json.load",
"matplotlib.pyplot.show",
"numpy.sum",
"pandas.read_csv",
"matplotlib.pyplot.scatter",
"numpy.power",
"numpy.zeros",
"numpy.ones",
"copy.copy",
"numpy.array",
"numpy.dot",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.subplots"
] |
[((290, 314), 'pandas.read_csv', 'pd.read_csv', (['"""train.csv"""'], {}), "('train.csv')\n", (301, 314), True, 'import pandas as pd\n'), ((560, 583), 'pandas.read_csv', 'pd.read_csv', (['"""test.csv"""'], {}), "('test.csv')\n", (571, 583), True, 'import pandas as pd\n'), ((6868, 6882), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (6880, 6882), True, 'from matplotlib import pyplot as plt\n'), ((7791, 7801), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7799, 7801), True, 'from matplotlib import pyplot as plt\n'), ((1820, 1832), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1829, 1832), False, 'import json\n'), ((1904, 1916), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1913, 1916), False, 'import json\n'), ((1992, 2004), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2001, 2004), False, 'import json\n'), ((2422, 2448), 'numpy.array', 'np.array', (['best_train_curve'], {}), '(best_train_curve)\n', (2430, 2448), True, 'import numpy as np\n'), ((2450, 2477), 'numpy.array', 'np.array', (['worst_train_curve'], {}), '(worst_train_curve)\n', (2458, 2477), True, 'import numpy as np\n'), ((2718, 2762), 'matplotlib.pyplot.scatter', 'plt.scatter', (["data['Feature']", "data[' Label']"], {}), "(data['Feature'], data[' Label'])\n", (2729, 2762), True, 'from matplotlib import pyplot as plt\n'), ((2771, 2792), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Feature"""'], {}), "('Feature')\n", (2781, 2792), True, 'from matplotlib import pyplot as plt\n'), ((2801, 2820), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Label"""'], {}), "('Label')\n", (2811, 2820), True, 'from matplotlib import pyplot as plt\n'), ((2970, 2980), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2978, 2980), True, 'from matplotlib import pyplot as plt\n'), ((3242, 3268), 'numpy.zeros', 'np.zeros', ([], {'shape': '(m, n + 1)'}), '(shape=(m, n + 1))\n', (3250, 3268), True, 'import numpy as np\n'), ((3463, 3477), 'numpy.ones', 'np.ones', (['(n + 1)'], {}), '(n + 1)\n', (3470, 3477), True, 'import numpy as np\n'), ((5013, 5061), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {'columns': "['Feature', 'Label']"}), "(data, columns=['Feature', 'Label'])\n", (5025, 5061), True, 'import pandas as pd\n'), ((5510, 5544), 'json.dump', 'json.dump', (['predicted_parameters', 'f'], {}), '(predicted_parameters, f)\n', (5519, 5544), False, 'import json\n'), ((5652, 5681), 'json.dump', 'json.dump', (['all_train_error', 'f'], {}), '(all_train_error, f)\n', (5661, 5681), False, 'import json\n'), ((5787, 5815), 'json.dump', 'json.dump', (['all_test_error', 'f'], {}), '(all_test_error, f)\n', (5796, 5815), False, 'import json\n'), ((6003, 6015), 'json.load', 'json.load', (['f'], {}), '(f)\n', (6012, 6015), False, 'import json\n'), ((6224, 6245), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Feature"""'], {}), "('Feature')\n", (6234, 6245), True, 'from matplotlib import pyplot as plt\n'), ((6254, 6273), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Label"""'], {}), "('Label')\n", (6264, 6273), True, 'from matplotlib import pyplot as plt\n'), ((6282, 6328), 'matplotlib.pyplot.title', 'plt.title', (['f"""Polynomial of Degree {index + 1}"""'], {}), "(f'Polynomial of Degree {index + 1}')\n", (6291, 6328), True, 'from matplotlib import pyplot as plt\n'), ((6402, 6412), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6410, 6412), True, 'from matplotlib import pyplot as plt\n'), ((6611, 6623), 'json.load', 'json.load', (['f'], {}), '(f)\n', (6620, 6623), False, 'import json\n'), ((6695, 6707), 'json.load', 'json.load', (['f'], {}), '(f)\n', (6704, 6707), False, 'import json\n'), ((8410, 8436), 'numpy.zeros', 'np.zeros', ([], {'shape': '(m, n + 1)'}), '(shape=(m, n + 1))\n', (8418, 8436), True, 'import numpy as np\n'), ((11206, 11220), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (11218, 11220), True, 'from matplotlib import pyplot as plt\n'), ((12359, 12369), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12367, 12369), True, 'from matplotlib import pyplot as plt\n'), ((12791, 12817), 'numpy.zeros', 'np.zeros', ([], {'shape': '(m, n + 1)'}), '(shape=(m, n + 1))\n', (12799, 12817), True, 'import numpy as np\n'), ((15689, 15703), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (15701, 15703), True, 'from matplotlib import pyplot as plt\n'), ((16842, 16852), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (16850, 16852), True, 'from matplotlib import pyplot as plt\n'), ((2854, 2880), 'matplotlib.pyplot.title', 'plt.title', (['"""Training Data"""'], {}), "('Training Data')\n", (2863, 2880), True, 'from matplotlib import pyplot as plt\n'), ((2936, 2961), 'matplotlib.pyplot.title', 'plt.title', (['"""Testing Data"""'], {}), "('Testing Data')\n", (2945, 2961), True, 'from matplotlib import pyplot as plt\n'), ((3574, 3595), 'numpy.dot', 'np.dot', (['X', 'coeff_vals'], {}), '(X, coeff_vals)\n', (3580, 3595), True, 'import numpy as np\n'), ((3659, 3676), 'numpy.sum', 'np.sum', (['(loss ** 2)'], {}), '(loss ** 2)\n', (3665, 3676), True, 'import numpy as np\n'), ((8854, 8865), 'copy.copy', 'copy', (['curve'], {}), '(curve)\n', (8858, 8865), False, 'from copy import copy\n'), ((13374, 13385), 'copy.copy', 'copy', (['curve'], {}), '(curve)\n', (13378, 13385), False, 'from copy import copy\n'), ((3352, 3386), 'numpy.power', 'np.power', (['train_data_feature[i]', 'j'], {}), '(train_data_feature[i], j)\n', (3360, 3386), True, 'import numpy as np\n'), ((4216, 4237), 'numpy.dot', 'np.dot', (['X', 'coeff_vals'], {}), '(X, coeff_vals)\n', (4222, 4237), True, 'import numpy as np\n'), ((4282, 4299), 'numpy.sum', 'np.sum', (['(loss ** 2)'], {}), '(loss ** 2)\n', (4288, 4299), True, 'import numpy as np\n'), ((8520, 8554), 'numpy.power', 'np.power', (['train_data_feature[i]', 'j'], {}), '(train_data_feature[i], j)\n', (8528, 8554), True, 'import numpy as np\n'), ((8916, 8937), 'numpy.dot', 'np.dot', (['X', 'coeff_vals'], {}), '(X, coeff_vals)\n', (8922, 8937), True, 'import numpy as np\n'), ((12901, 12935), 'numpy.power', 'np.power', (['train_data_feature[i]', 'j'], {}), '(train_data_feature[i], j)\n', (12909, 12935), True, 'import numpy as np\n'), ((13436, 13457), 'numpy.dot', 'np.dot', (['X', 'coeff_vals'], {}), '(X, coeff_vals)\n', (13442, 13457), True, 'import numpy as np\n'), ((8983, 9000), 'numpy.sum', 'np.sum', (['(loss ** 2)'], {}), '(loss ** 2)\n', (8989, 9000), True, 'import numpy as np\n'), ((9690, 9711), 'numpy.dot', 'np.dot', (['X', 'coeff_vals'], {}), '(X, coeff_vals)\n', (9696, 9711), True, 'import numpy as np\n'), ((13503, 13520), 'numpy.sum', 'np.sum', (['(loss ** 2)'], {}), '(loss ** 2)\n', (13509, 13520), True, 'import numpy as np\n'), ((14209, 14230), 'numpy.dot', 'np.dot', (['X', 'coeff_vals'], {}), '(X, coeff_vals)\n', (14215, 14230), True, 'import numpy as np\n'), ((9761, 9778), 'numpy.sum', 'np.sum', (['(loss ** 2)'], {}), '(loss ** 2)\n', (9767, 9778), True, 'import numpy as np\n'), ((14280, 14297), 'numpy.sum', 'np.sum', (['(loss ** 2)'], {}), '(loss ** 2)\n', (14286, 14297), True, 'import numpy as np\n')]
|
import h5py
from tqdm import tqdm
import librosa
import numpy as np
from keras.utils.np_utils import to_categorical
from sklearn.utils import shuffle
import cv2
import torch
germanBats = {
"Rhinolophus ferrumequinum": 0,
"Rhinolophus hipposideros": 1,
"Myotis daubentonii": 2,
"Myotis brandtii": 3,
"Myotis mystacinus": 4,
"Myotis emarginatus": 5,
"Myotis nattereri": 6,
#"Myotis bechsteinii": 7,
"Myotis myotis": 7,
"Myotis dasycneme": 8,
"Nyctalus noctula": 9,
"Nyctalus leisleri": 10,
"Pipistrellus pipistrellus": 11,
"Pipistrellus nathusii": 12,
"Pipistrellus kuhlii": 13,
"Eptesicus serotinus": 14,
"Eptesicus nilssonii": 15,
#"Plecotus auritus": 16,
#"Plecotus austriacus": 16,
#"Barbastella barbastellus": 16,
#"Tadarida teniotis": 16,
"Miniopterus schreibersii": 16,
#"Hypsugo savii": 18,
"Vespertilio murinus": 17,
}
def slideWindow(a, size, step, resize):
b = []
i = 0
pos = 0
while pos + size < len(a):
pos = int(i * step)
tile = a[pos : pos + size]
if resize is not None:
tile = cv2.resize(tile, dsize=resize, interpolation=cv2.INTER_NEAREST)
b.append(tile)
i+=1
return b
def peak_detect(spectrogram, threshold):
env = np.mean(spectrogram, axis=1)
env[env < threshold] = 0
peaks = librosa.util.peak_pick(env, pre_max=3, post_max=5, pre_avg=3, post_avg=5, delta=0.6, wait=20)
return env, peaks
def getIndividuals(spectrogram, patch_len, mode, resize, threshold):
if mode == 'slide':
individuals = slideWindow(spectrogram, patch_len, int(patch_len/2), resize)[:-1] # last one is not full
return individuals
elif mode == 'peak_detect':
individuals = []
_, peaks = peak_detect(spectrogram, threshold)
for p in peaks:
pos = p - int(patch_len / 2)
if (pos >= 0 and len(spectrogram) >= pos+patch_len):
ind = spectrogram[pos:pos+patch_len]
if resize is not None:
ind = cv2.resize(ind, dsize=resize, interpolation=cv2.INTER_NEAREST)
individuals.append(ind)
return individuals
def prepareSet(prepared_set, labels, patch_len, mode, scale_factor, resize, one_hot, threshold):
X_ind = []
Y_ind = []
for species in tqdm(list(labels)):
S_db = np.asarray(prepared_set.get(species))
new_size = (int(S_db.shape[1] * scale_factor), int(S_db.shape[0] * scale_factor))
S_db = cv2.resize(S_db, dsize=new_size, interpolation=cv2.INTER_NEAREST)
label = to_categorical(labels[species], num_classes=len(labels)) if one_hot else labels[species]
ind = getIndividuals(S_db, patch_len, mode, resize, threshold)
X_ind.extend(ind)
Y_ind.extend([label] * len(ind))
if not mode == 'slide':
X_ind, Y_ind = shuffle(X_ind, Y_ind, random_state=42)
return np.asarray(X_ind), np.asarray(Y_ind)
def prepare(file, labels, patch_len, mode='peak_detect', scale_factor=1.0, resize=None, one_hot=False, threshold=0):
prepared_hf = h5py.File(file, 'r')
X_train, Y_train = prepareSet(prepared_hf.require_group("train"), labels, patch_len, mode, scale_factor,
resize, one_hot, threshold)
X_test, Y_test = prepareSet(prepared_hf.require_group("test"), labels, patch_len, mode, scale_factor,
resize, one_hot, threshold)
X_val, Y_val = prepareSet(prepared_hf.require_group("val"), labels, patch_len, mode, scale_factor,
resize, one_hot, threshold)
return X_train, Y_train, X_test, Y_test, X_val, Y_val
|
[
"h5py.File",
"librosa.util.peak_pick",
"numpy.asarray",
"numpy.mean",
"sklearn.utils.shuffle",
"cv2.resize"
] |
[((1306, 1334), 'numpy.mean', 'np.mean', (['spectrogram'], {'axis': '(1)'}), '(spectrogram, axis=1)\n', (1313, 1334), True, 'import numpy as np\n'), ((1376, 1473), 'librosa.util.peak_pick', 'librosa.util.peak_pick', (['env'], {'pre_max': '(3)', 'post_max': '(5)', 'pre_avg': '(3)', 'post_avg': '(5)', 'delta': '(0.6)', 'wait': '(20)'}), '(env, pre_max=3, post_max=5, pre_avg=3, post_avg=5,\n delta=0.6, wait=20)\n', (1398, 1473), False, 'import librosa\n'), ((3135, 3155), 'h5py.File', 'h5py.File', (['file', '"""r"""'], {}), "(file, 'r')\n", (3144, 3155), False, 'import h5py\n'), ((2546, 2611), 'cv2.resize', 'cv2.resize', (['S_db'], {'dsize': 'new_size', 'interpolation': 'cv2.INTER_NEAREST'}), '(S_db, dsize=new_size, interpolation=cv2.INTER_NEAREST)\n', (2556, 2611), False, 'import cv2\n'), ((2912, 2950), 'sklearn.utils.shuffle', 'shuffle', (['X_ind', 'Y_ind'], {'random_state': '(42)'}), '(X_ind, Y_ind, random_state=42)\n', (2919, 2950), False, 'from sklearn.utils import shuffle\n'), ((2962, 2979), 'numpy.asarray', 'np.asarray', (['X_ind'], {}), '(X_ind)\n', (2972, 2979), True, 'import numpy as np\n'), ((2981, 2998), 'numpy.asarray', 'np.asarray', (['Y_ind'], {}), '(Y_ind)\n', (2991, 2998), True, 'import numpy as np\n'), ((1141, 1204), 'cv2.resize', 'cv2.resize', (['tile'], {'dsize': 'resize', 'interpolation': 'cv2.INTER_NEAREST'}), '(tile, dsize=resize, interpolation=cv2.INTER_NEAREST)\n', (1151, 1204), False, 'import cv2\n'), ((2090, 2152), 'cv2.resize', 'cv2.resize', (['ind'], {'dsize': 'resize', 'interpolation': 'cv2.INTER_NEAREST'}), '(ind, dsize=resize, interpolation=cv2.INTER_NEAREST)\n', (2100, 2152), False, 'import cv2\n')]
|
# 隐马尔可夫模型
# 2020/09/27
import re
import jieba
import numpy as np
def trainParameter(filename):
"""
依据训练文本统计 PI, A, B
:param filename: 训练文本
:return: 模型参数
"""
statusDict = {'B': 0, 'M': 1, 'E': 2, 'S': 3}
# 初始化模型参数
PI = np.zeros(4)
A = np.zeros((4, 4))
B = np.zeros((4, 65536))
with open(filename, encoding='utf8') as f:
for line in f.readlines():
line = jieba.cut(line, cut_all=True)
line = ' '.join(line)
line = line.strip().split()
print(line)
wordLabel = []
for i in range(len(list(line))):
if len(line[i]) == 1:
Label = 'S'
else:
Label = 'B' + 'M' * (len(line[i]) - 2) + 'E'
if i == 0:
PI[statusDict[Label[0]]] += 1
for j in range(len(Label)):
B[statusDict[Label[j]]][ord(line[i][j])] += 1
wordLabel.extend(Label)
# print(wordLabel)
for i in range(1, len(wordLabel)):
A[statusDict[wordLabel[i-1]]][statusDict[wordLabel[i]]] += 1
S = np.sum(PI)
for i in range(len(PI)):
if PI[i] == 0:
PI[i] = -3.14e+100
else:
PI[i] = np.log(PI[i]/S)
for i in range(len(A)):
S = np.sum(A[i])
for j in range(len(A[i])):
if A[i][j] == 0:
A[i][j] = -3.14e+100
else:
A[i][j] = np.log(A[i][j]/S)
for i in range(len(B)):
S = np.sum(len(B[i]))
for j in range(len(B[i])):
if B[i][j] == 0:
B[i][j] = -3.14e+100
else:
B[i][j] = np.log(B[i][j]/S)
return PI, A, B
def loadArticle(filename):
"""
加载文章
:param filename: 文件路径
:return: 文章内容
"""
artical = []
with open(filename, encoding='utf8') as f:
for line in f.readlines():
line = line.strip()
if not line:
continue
# 将该行放入文章列表中
artical.append(line)
return artical
def participle(artical, PI, A, B):
"""
分词
:param artical: 分词文本
:param PI: 初始状态概率向量PI
:param A: 状态转移矩阵
:param B: 观测概率矩阵
:return: 分词后的文章
"""
retActical = []
for line in artical:
delta = [[0 for _ in range(4)] for _ in range(len(line))]
for i in range(4):
delta[0][i] = PI[i] + B[i][ord(line[0])]
psi = [[0 for _ in range(4)] for _ in range(len(line))]
for t in range(1, len(line)):
for i in range(4):
tmpDelta = [0] * 4
for j in range(4):
tmpDelta[j] = delta[t-1][j] + A[j][i]
maxDelta = max(tmpDelta)
maxDeltaIndex = tmpDelta.index(maxDelta)
delta[t][i] = maxDelta + B[i][ord(line[t])]
psi[t][i] = maxDeltaIndex
sequence = []
i_opt = delta[len(line)-1].index(max(delta[len(line)-1]))
sequence.append(i_opt)
for t in range(len(line)-1, 0, -1):
i_opt = psi[t][i_opt]
sequence.append(i_opt)
sequence.reverse()
curline = ''
for i in range(len(line)):
curline += line[i]
if (sequence[i] == 3 or sequence[i] == 2) and i != (len(line)-1):
curline += '|'
retActical.append(curline)
return retActical
if __name__ == '__main__':
PI, A, B = trainParameter('./data/HMMTrainSet.txt')
# 读取测试文章
artical = loadArticle('./data/testArtical.txt')
# 打印原文
print('-------------------原文----------------------')
for line in artical:
print(line)
# 进行分词
print('-------------------分词后----------------------')
ret_artical = participle(artical, PI, A, B)
for line in ret_artical:
print(line)
|
[
"jieba.cut",
"numpy.log",
"numpy.zeros",
"numpy.sum"
] |
[((269, 280), 'numpy.zeros', 'np.zeros', (['(4)'], {}), '(4)\n', (277, 280), True, 'import numpy as np\n'), ((290, 306), 'numpy.zeros', 'np.zeros', (['(4, 4)'], {}), '((4, 4))\n', (298, 306), True, 'import numpy as np\n'), ((316, 336), 'numpy.zeros', 'np.zeros', (['(4, 65536)'], {}), '((4, 65536))\n', (324, 336), True, 'import numpy as np\n'), ((1224, 1234), 'numpy.sum', 'np.sum', (['PI'], {}), '(PI)\n', (1230, 1234), True, 'import numpy as np\n'), ((445, 474), 'jieba.cut', 'jieba.cut', (['line'], {'cut_all': '(True)'}), '(line, cut_all=True)\n', (454, 474), False, 'import jieba\n'), ((1445, 1457), 'numpy.sum', 'np.sum', (['A[i]'], {}), '(A[i])\n', (1451, 1457), True, 'import numpy as np\n'), ((1377, 1394), 'numpy.log', 'np.log', (['(PI[i] / S)'], {}), '(PI[i] / S)\n', (1383, 1394), True, 'import numpy as np\n'), ((1628, 1647), 'numpy.log', 'np.log', (['(A[i][j] / S)'], {}), '(A[i][j] / S)\n', (1634, 1647), True, 'import numpy as np\n'), ((1886, 1905), 'numpy.log', 'np.log', (['(B[i][j] / S)'], {}), '(B[i][j] / S)\n', (1892, 1905), True, 'import numpy as np\n')]
|
import threading
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import models
import cv2
import numpy as np
import matplotlib.pyplot as plt
import math
import random
import tkinter as tk
##### Input trainned model #####
model = keras.models.load_model('mnist_model1.h5')
model2 = keras.models.load_model('alpha_model.h5')
def find_license(image_name):
imagepath = str(image_name)
image = cv2.imread(imagepath)
RGB_image = image[:,:,::-1]
gray = cv2.cvtColor(RGB_image, cv2.COLOR_RGB2GRAY)
low_threshold = 100
high_threshold = 200
edges = cv2.Canny(gray, low_threshold, high_threshold)
'''gaussianblur'''
kernel_size = 3
img = cv2.GaussianBlur(edges,(kernel_size, kernel_size), 0)
'''make the color of the image including only white and black'''
for i in range (len(img)):
for j in range (len(img[0])):
if img[i][j] > 0:
img[i][j] = 255
'''the kernal to dilate and erode'''
element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 7))
element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 3))
element3 = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 5))
element4 = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 10))
element5 = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
'''use open and close'''
img = cv2.dilate(img, element1, iterations = 2)
img = cv2.erode(img, element1, iterations = 2)
img = cv2.erode(img, element2, iterations = 10)
img = cv2.erode(img, element5, iterations = 5)
img = cv2.dilate(img, element5, iterations = 5)
img = cv2.dilate(img, element2, iterations = 10)
img = cv2.erode(img, element3, iterations = 10)
img = cv2.dilate(img, element3, iterations = 10)
img = cv2.erode(img, element4, iterations = 5)
img = cv2.dilate(img, element4, iterations = 5)
'''get the license plate'''
img_final = np.zeros((len(gray),len(gray[0]),3),np.uint32)
for i in range (len(img_final)):
for j in range (len(img_final[0])):
if img[i][j] == 255:
img_final[i][j] = RGB_image[i][j]
else:
img_final[i][j] = 0
'''get the coordinate of license plate'''
i_site = []
j_site = []
for i in range (len(img_final)):
for j in range (len(img_final[0])):
if img_final[i][j][0] != 0:
i_site.append(i)
j_site.append(j)
i_first = i_site[0]
j_first = j_site[0]
i_last = i_site[-1]
j_last = j_site[-1]
'''print the license plate'''
card = img_final[i_first:i_last,j_first:j_last]
card_gray = cv2.cvtColor(np.float32(card), cv2.COLOR_RGB2GRAY)
ret,card_bw = cv2.threshold(card_gray,127,255,cv2.THRESH_BINARY)
element = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
card_bw = cv2.dilate(card_bw, element, iterations = 2)
card_bw = cv2.erode(card_bw, element, iterations = 2)
'''erase the part of all white above'''
i_allzero = []
for i in range (len(card)):
count = 0
for j in range (len(card_bw[0])):
if card_bw[i][j] == 0:
count += 1
i_allzero.append(count)
i_probable = []
for i in range (len(i_allzero)):
if (int(i_allzero[i])) == 0:
i_probable.append(i)
'''cut the white space'''
i_min = 0
i_max = 0
max_count = 0
for i in range (len(i_probable)-1):
count = i_probable[i+1] - i_probable[i]
if count > max_count:
max_count = count
i_min = i_probable[i]
i_max = i_probable[i+1]
card_bw = card_bw[i_min:i_max,:]
'''find the white part of all i'''
j_allzero = []
for i in range (len(card_bw[0])):
count = 0
for j in range (len(card_bw)):
if card_bw[j][i] == 0:
count += 1
j_allzero.append(count)
j_probable = []
for i in range (len(j_allzero)):
if (int(j_allzero[i])) == 0:
j_probable.append(i)
'''get the word of license plate'''
j_final = []
for i in range (len(j_probable)-1):
if j_probable[i+1] - j_probable[i] > 1:
j_final.append(j_probable[i])
j_final.append(j_probable[-1])
'''find dash,english word,number'''
value = []
for i in range (len(j_final)-1):
value.append(j_final[i+1]-j_final[i])
dash = min(value)
index = 0
for i in range (len(value)):
if value[i] == dash:
dash_index = j_final[i:i+2]
index = i
length1 = j_final[index] - j_final[0]
length2 = j_final[-1] - j_final[index+1]
if length2 > length1:
if len(j_final) == 9:
card_eng = card_bw[:,j_final[0]:j_final[3]]
card_dash = card_bw[:,j_final[3]:j_final[4]]
card_num = card_bw[:,j_final[4]:]
'''get the number and word of license plate'''
num_1 = card_num[:,0:int((1/4)*len(card_num[0]))]
num_2 = card_num[:,int((1/4)*len(card_num[0])):int((2/4)*len(card_num[0]))]
num_3 = card_num[:,int((2/4)*len(card_num[0])):int((3/4)*len(card_num[0]))]
num_4 = card_num[:,int((3/4)*len(card_num[0])):len(card_num[0])]
alphabet_1 = card_eng[:,0:int((1/3)*len(card_eng[0]))]
alphabet_2 = card_eng[:,int((1/3)*len(card_eng[0])):int((2/3)*len(card_eng[0]))]
alphabet_3 = card_eng[:,int((2/3)*len(card_eng[0])):len(card_eng[0])]
''' save the numbers and alphabet'''
plt.imshow(num_1)
cv2.imwrite('num_1.jpg', num_1)
plt.imshow(num_2)
cv2.imwrite('num_2.jpg', num_2)
plt.imshow(num_3)
cv2.imwrite('num_3.jpg', num_3)
plt.imshow(num_4)
cv2.imwrite('num_4.jpg', num_4)
plt.imshow(alphabet_1)
plt.savefig('alphabet_1.png')
plt.imshow(alphabet_2)
plt.savefig('alphabet_2.png')
plt.imshow(alphabet_3)
plt.savefig('alphabet_3.png')
'''input the number into CNN to predict'''
def test_img(imagepath):
image = cv2.imread(imagepath)
image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
image = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY)
ret,thresh1 = cv2.threshold(image,127,255,cv2.THRESH_BINARY)
img = cv2.resize(image,(28,28))
img = 255 - img
im_array = np.array(img)
im_array = np.reshape(im_array, (1,28,28,1))
im_array = im_array.astype('float32')/255
predict = model.predict_classes(im_array)
ans.append(predict[0])
def test_alphabet(imagepath):
alphabet = ["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z"]
element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
image = cv2.imread(imagepath)
image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
image = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY)
image = cv2.dilate(image, element1, iterations = 5)
img = cv2.resize(image,(28,28))
img = 255 - img
for i in range(len(img)):
for j in range(len(img[0])):
if img[i][j] < 100:
img[i][j] = 0
im_array = np.array(img)
im_array = np.reshape(im_array, (1,28,28,1))
im_array = im_array.astype('float32')/255
predict = model2.predict_classes(im_array)
ans.append(str(alphabet[predict[0]]))
'''using thread to increase rcognition speed'''
global ans
ans = []
alps = ['alphabet_1.png','alphabet_2.png','alphabet_3.png']
nums = ['num_1.jpg','num_2.jpg','num_3.jpg','num_4.jpg']
threads = []
for i in range(7):
if i <= 2:
threads.append(threading.Thread(target = test_alphabet(alps[i])))
threads[i].start()
else:
threads.append(threading.Thread(target = test_img(nums[i-3])))
threads[i].start()
for i in range(7):
threads[i].join()
final = ""
for i in range(len(ans)):
final += str(ans[i])
if i == 2:
final += '-'
return(final)
def get_final():
name = var2.get()
ans = find_license(name)
t = tk.Text(root, width=22, height=4, font=("Helvetica", 15), selectforeground='red')
t.place(x=27, y=180)
t.insert('insert',ans)
'''simple gui by tkinter'''
root = tk.Tk()
root.title('License plate recognition')
root.geometry('300x300')
line0 = tk.Label(root, bg = 'light cyan', text = "Image : ", font = ("Helvetica", 12))
line0.place(x=30, y=45)
var2 = tk.StringVar()
b2 = tk.Entry(root, textvariable = var2, font=("Helvetica", 12), show=None, width=20)
b2.place(x=85, y=45)
a = tk.Button(root, bg='light cyan', text="Get license!", width=25, height=2, command=get_final)
a.place(x=60, y=95)
root.mainloop()
|
[
"tkinter.StringVar",
"cv2.GaussianBlur",
"tkinter.Text",
"cv2.erode",
"tkinter.Label",
"cv2.dilate",
"tkinter.Button",
"cv2.cvtColor",
"matplotlib.pyplot.imshow",
"tkinter.Entry",
"cv2.imwrite",
"numpy.reshape",
"tkinter.Tk",
"cv2.resize",
"cv2.Canny",
"tensorflow.keras.models.load_model",
"cv2.getStructuringElement",
"cv2.threshold",
"numpy.float32",
"cv2.imread",
"numpy.array",
"matplotlib.pyplot.savefig"
] |
[((269, 311), 'tensorflow.keras.models.load_model', 'keras.models.load_model', (['"""mnist_model1.h5"""'], {}), "('mnist_model1.h5')\n", (292, 311), False, 'from tensorflow import keras\n'), ((322, 363), 'tensorflow.keras.models.load_model', 'keras.models.load_model', (['"""alpha_model.h5"""'], {}), "('alpha_model.h5')\n", (345, 363), False, 'from tensorflow import keras\n'), ((8504, 8511), 'tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (8509, 8511), True, 'import tkinter as tk\n'), ((8590, 8662), 'tkinter.Label', 'tk.Label', (['root'], {'bg': '"""light cyan"""', 'text': '"""Image : """', 'font': "('Helvetica', 12)"}), "(root, bg='light cyan', text='Image : ', font=('Helvetica', 12))\n", (8598, 8662), True, 'import tkinter as tk\n'), ((8705, 8719), 'tkinter.StringVar', 'tk.StringVar', ([], {}), '()\n', (8717, 8719), True, 'import tkinter as tk\n'), ((8726, 8804), 'tkinter.Entry', 'tk.Entry', (['root'], {'textvariable': 'var2', 'font': "('Helvetica', 12)", 'show': 'None', 'width': '(20)'}), "(root, textvariable=var2, font=('Helvetica', 12), show=None, width=20)\n", (8734, 8804), True, 'import tkinter as tk\n'), ((8836, 8932), 'tkinter.Button', 'tk.Button', (['root'], {'bg': '"""light cyan"""', 'text': '"""Get license!"""', 'width': '(25)', 'height': '(2)', 'command': 'get_final'}), "(root, bg='light cyan', text='Get license!', width=25, height=2,\n command=get_final)\n", (8845, 8932), True, 'import tkinter as tk\n'), ((443, 464), 'cv2.imread', 'cv2.imread', (['imagepath'], {}), '(imagepath)\n', (453, 464), False, 'import cv2\n'), ((510, 553), 'cv2.cvtColor', 'cv2.cvtColor', (['RGB_image', 'cv2.COLOR_RGB2GRAY'], {}), '(RGB_image, cv2.COLOR_RGB2GRAY)\n', (522, 553), False, 'import cv2\n'), ((618, 664), 'cv2.Canny', 'cv2.Canny', (['gray', 'low_threshold', 'high_threshold'], {}), '(gray, low_threshold, high_threshold)\n', (627, 664), False, 'import cv2\n'), ((723, 777), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['edges', '(kernel_size, kernel_size)', '(0)'], {}), '(edges, (kernel_size, kernel_size), 0)\n', (739, 777), False, 'import cv2\n'), ((1044, 1093), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(9, 7)'], {}), '(cv2.MORPH_RECT, (9, 7))\n', (1069, 1093), False, 'import cv2\n'), ((1110, 1159), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(5, 3)'], {}), '(cv2.MORPH_RECT, (5, 3))\n', (1135, 1159), False, 'import cv2\n'), ((1176, 1226), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(15, 5)'], {}), '(cv2.MORPH_RECT, (15, 5))\n', (1201, 1226), False, 'import cv2\n'), ((1243, 1293), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(5, 10)'], {}), '(cv2.MORPH_RECT, (5, 10))\n', (1268, 1293), False, 'import cv2\n'), ((1310, 1359), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(5, 5)'], {}), '(cv2.MORPH_RECT, (5, 5))\n', (1335, 1359), False, 'import cv2\n'), ((1403, 1442), 'cv2.dilate', 'cv2.dilate', (['img', 'element1'], {'iterations': '(2)'}), '(img, element1, iterations=2)\n', (1413, 1442), False, 'import cv2\n'), ((1456, 1494), 'cv2.erode', 'cv2.erode', (['img', 'element1'], {'iterations': '(2)'}), '(img, element1, iterations=2)\n', (1465, 1494), False, 'import cv2\n'), ((1508, 1547), 'cv2.erode', 'cv2.erode', (['img', 'element2'], {'iterations': '(10)'}), '(img, element2, iterations=10)\n', (1517, 1547), False, 'import cv2\n'), ((1561, 1599), 'cv2.erode', 'cv2.erode', (['img', 'element5'], {'iterations': '(5)'}), '(img, element5, iterations=5)\n', (1570, 1599), False, 'import cv2\n'), ((1613, 1652), 'cv2.dilate', 'cv2.dilate', (['img', 'element5'], {'iterations': '(5)'}), '(img, element5, iterations=5)\n', (1623, 1652), False, 'import cv2\n'), ((1666, 1706), 'cv2.dilate', 'cv2.dilate', (['img', 'element2'], {'iterations': '(10)'}), '(img, element2, iterations=10)\n', (1676, 1706), False, 'import cv2\n'), ((1720, 1759), 'cv2.erode', 'cv2.erode', (['img', 'element3'], {'iterations': '(10)'}), '(img, element3, iterations=10)\n', (1729, 1759), False, 'import cv2\n'), ((1773, 1813), 'cv2.dilate', 'cv2.dilate', (['img', 'element3'], {'iterations': '(10)'}), '(img, element3, iterations=10)\n', (1783, 1813), False, 'import cv2\n'), ((1827, 1865), 'cv2.erode', 'cv2.erode', (['img', 'element4'], {'iterations': '(5)'}), '(img, element4, iterations=5)\n', (1836, 1865), False, 'import cv2\n'), ((1879, 1918), 'cv2.dilate', 'cv2.dilate', (['img', 'element4'], {'iterations': '(5)'}), '(img, element4, iterations=5)\n', (1889, 1918), False, 'import cv2\n'), ((2796, 2849), 'cv2.threshold', 'cv2.threshold', (['card_gray', '(127)', '(255)', 'cv2.THRESH_BINARY'], {}), '(card_gray, 127, 255, cv2.THRESH_BINARY)\n', (2809, 2849), False, 'import cv2\n'), ((2862, 2911), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(2, 2)'], {}), '(cv2.MORPH_RECT, (2, 2))\n', (2887, 2911), False, 'import cv2\n'), ((2927, 2969), 'cv2.dilate', 'cv2.dilate', (['card_bw', 'element'], {'iterations': '(2)'}), '(card_bw, element, iterations=2)\n', (2937, 2969), False, 'import cv2\n'), ((2987, 3028), 'cv2.erode', 'cv2.erode', (['card_bw', 'element'], {'iterations': '(2)'}), '(card_bw, element, iterations=2)\n', (2996, 3028), False, 'import cv2\n'), ((5631, 5648), 'matplotlib.pyplot.imshow', 'plt.imshow', (['num_1'], {}), '(num_1)\n', (5641, 5648), True, 'import matplotlib.pyplot as plt\n'), ((5654, 5685), 'cv2.imwrite', 'cv2.imwrite', (['"""num_1.jpg"""', 'num_1'], {}), "('num_1.jpg', num_1)\n", (5665, 5685), False, 'import cv2\n'), ((5691, 5708), 'matplotlib.pyplot.imshow', 'plt.imshow', (['num_2'], {}), '(num_2)\n', (5701, 5708), True, 'import matplotlib.pyplot as plt\n'), ((5714, 5745), 'cv2.imwrite', 'cv2.imwrite', (['"""num_2.jpg"""', 'num_2'], {}), "('num_2.jpg', num_2)\n", (5725, 5745), False, 'import cv2\n'), ((5751, 5768), 'matplotlib.pyplot.imshow', 'plt.imshow', (['num_3'], {}), '(num_3)\n', (5761, 5768), True, 'import matplotlib.pyplot as plt\n'), ((5774, 5805), 'cv2.imwrite', 'cv2.imwrite', (['"""num_3.jpg"""', 'num_3'], {}), "('num_3.jpg', num_3)\n", (5785, 5805), False, 'import cv2\n'), ((5811, 5828), 'matplotlib.pyplot.imshow', 'plt.imshow', (['num_4'], {}), '(num_4)\n', (5821, 5828), True, 'import matplotlib.pyplot as plt\n'), ((5834, 5865), 'cv2.imwrite', 'cv2.imwrite', (['"""num_4.jpg"""', 'num_4'], {}), "('num_4.jpg', num_4)\n", (5845, 5865), False, 'import cv2\n'), ((5871, 5893), 'matplotlib.pyplot.imshow', 'plt.imshow', (['alphabet_1'], {}), '(alphabet_1)\n', (5881, 5893), True, 'import matplotlib.pyplot as plt\n'), ((5899, 5928), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""alphabet_1.png"""'], {}), "('alphabet_1.png')\n", (5910, 5928), True, 'import matplotlib.pyplot as plt\n'), ((5934, 5956), 'matplotlib.pyplot.imshow', 'plt.imshow', (['alphabet_2'], {}), '(alphabet_2)\n', (5944, 5956), True, 'import matplotlib.pyplot as plt\n'), ((5962, 5991), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""alphabet_2.png"""'], {}), "('alphabet_2.png')\n", (5973, 5991), True, 'import matplotlib.pyplot as plt\n'), ((5997, 6019), 'matplotlib.pyplot.imshow', 'plt.imshow', (['alphabet_3'], {}), '(alphabet_3)\n', (6007, 6019), True, 'import matplotlib.pyplot as plt\n'), ((6025, 6054), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""alphabet_3.png"""'], {}), "('alphabet_3.png')\n", (6036, 6054), True, 'import matplotlib.pyplot as plt\n'), ((8329, 8415), 'tkinter.Text', 'tk.Text', (['root'], {'width': '(22)', 'height': '(4)', 'font': "('Helvetica', 15)", 'selectforeground': '"""red"""'}), "(root, width=22, height=4, font=('Helvetica', 15), selectforeground=\n 'red')\n", (8336, 8415), True, 'import tkinter as tk\n'), ((2739, 2755), 'numpy.float32', 'np.float32', (['card'], {}), '(card)\n', (2749, 2755), True, 'import numpy as np\n'), ((6152, 6173), 'cv2.imread', 'cv2.imread', (['imagepath'], {}), '(imagepath)\n', (6162, 6173), False, 'import cv2\n'), ((6191, 6229), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (6203, 6229), False, 'import cv2\n'), ((6246, 6285), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_RGB2GRAY'], {}), '(image, cv2.COLOR_RGB2GRAY)\n', (6258, 6285), False, 'import cv2\n'), ((6308, 6357), 'cv2.threshold', 'cv2.threshold', (['image', '(127)', '(255)', 'cv2.THRESH_BINARY'], {}), '(image, 127, 255, cv2.THRESH_BINARY)\n', (6321, 6357), False, 'import cv2\n'), ((6370, 6397), 'cv2.resize', 'cv2.resize', (['image', '(28, 28)'], {}), '(image, (28, 28))\n', (6380, 6397), False, 'import cv2\n'), ((6441, 6454), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (6449, 6454), True, 'import numpy as np\n'), ((6475, 6511), 'numpy.reshape', 'np.reshape', (['im_array', '(1, 28, 28, 1)'], {}), '(im_array, (1, 28, 28, 1))\n', (6485, 6511), True, 'import numpy as np\n'), ((6826, 6875), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(3, 3)'], {}), '(cv2.MORPH_RECT, (3, 3))\n', (6851, 6875), False, 'import cv2\n'), ((6893, 6914), 'cv2.imread', 'cv2.imread', (['imagepath'], {}), '(imagepath)\n', (6903, 6914), False, 'import cv2\n'), ((6932, 6970), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (6944, 6970), False, 'import cv2\n'), ((6987, 7026), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_RGB2GRAY'], {}), '(image, cv2.COLOR_RGB2GRAY)\n', (6999, 7026), False, 'import cv2\n'), ((7043, 7084), 'cv2.dilate', 'cv2.dilate', (['image', 'element1'], {'iterations': '(5)'}), '(image, element1, iterations=5)\n', (7053, 7084), False, 'import cv2\n'), ((7102, 7129), 'cv2.resize', 'cv2.resize', (['image', '(28, 28)'], {}), '(image, (28, 28))\n', (7112, 7129), False, 'import cv2\n'), ((7322, 7335), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (7330, 7335), True, 'import numpy as np\n'), ((7356, 7392), 'numpy.reshape', 'np.reshape', (['im_array', '(1, 28, 28, 1)'], {}), '(im_array, (1, 28, 28, 1))\n', (7366, 7392), True, 'import numpy as np\n')]
|
# Copyright 2021 <NAME>
# SPDX-License-Identifier: Apache-2.0
'colorex numpy'
import numpy as np
from colorex.cex_constants import (
REC_709_LUMA_WEIGHTS,
MAX_COMPONENT_VALUE,
SMALL_COMPONENT_VALUE,
M_RGB_TO_XYZ_T,
M_XYZ_TO_RGB_T,
D50_TO_D65_T,
)
def gamma_correct(values, gamma):
'apply a gamma power curve'
#pylint: disable=assignment-from-no-return
return np.power(values, gamma)
def srgb_to_rgb_aprox_gamma_22(srgb_img):
'''
approximate srgb conversion using a gamma correct with power 2.2
this approach is very common in vfx where srgb is used rarely
'''
return gamma_correct(srgb_img, gamma=2.2)
def rgb_to_srgb_aprox_gamma_22(rgb_img):
'''
approximate inverse srgb conversion using a gamma correct with power 1.0/2.2
this approach is very common in vfx where srgb is used rarely
'''
return gamma_correct(rgb_img, gamma=1.0 / 2.2)
def srgb_to_rgb2(srgb_img):
'''
2.4 gamma and linear below .04045
very close to the approach taken internally to skimagewhen when converting:
srgb > rgb > xyz
skimage does not expose the srgb > rgb transform
'''
arr = srgb_img.copy()
mask = arr > 0.04045
arr[mask] = np.power((arr[mask] + 0.055) / 1.055, 2.4)
arr[~mask] /= 12.92
return arr
def srgb_to_rgb(srgb):
'''
convert from a gamma 2.4 color space to linear rgb
this code can be directly adapted to keras or another autodiff framework
'''
srgb = np.clip(srgb, SMALL_COMPONENT_VALUE, MAX_COMPONENT_VALUE)
linear_mask = (srgb <= 0.04045).astype(np.float32)
exponential_mask = (srgb > 0.04045).astype(np.float32)
linear_pixels = srgb / 12.92
exponential_pixels = np.power((srgb + 0.055) / 1.055, 2.4)
return linear_pixels * linear_mask + exponential_pixels * exponential_mask
def rgb_to_srgb(rgb):
'''
convert from linear rgb to a gamma 2.4 color space
this code can be directly adapted to keras or another autodiff framework
'''
rgb = np.clip(rgb, SMALL_COMPONENT_VALUE, MAX_COMPONENT_VALUE)
linear_mask = (rgb <= 0.0031308).astype(np.float32)
exponential_mask = (rgb > 0.0031308).astype(np.float32)
linear_pixels = rgb * 12.92
exponential_pixels = 1.055 * np.power(rgb, 1.0 / 2.4) - 0.055
return linear_pixels * linear_mask + exponential_pixels * exponential_mask
def rgb_to_luminance(rgb, luma_weights=REC_709_LUMA_WEIGHTS):
'luminance of a color array, or higher dim color images'
r, g, b = rgb[..., 0], rgb[..., 1], rgb[..., 2]
return r * luma_weights[0] + g * luma_weights[1] + b * luma_weights[2]
def xyz_to_xyy(XYZ):
'''
convert from XYZ color space to xyY
XYZ: consistent units for each component
xyY: normalized chromaticity with xy in 0-1, Y in 0-inf
https://en.wikipedia.org/wiki/CIE_1931_color_space
http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_xyY.html
'''
X, Y, Z = XYZ[..., 0], XYZ[..., 1], XYZ[..., 2]
XYZ_sum = X + Y + Z
invalid_mask = (XYZ_sum < SMALL_COMPONENT_VALUE).astype(np.float32)
valid_mask = 1.0 - invalid_mask
# if xyz_sum == 0, set to 1.0
XYZ_sum = invalid_mask + valid_mask * XYZ_sum
x = X / XYZ_sum
y = Y / XYZ_sum
x *= valid_mask
y *= valid_mask
Y *= valid_mask
return np.stack([x, y, Y], axis=-1)
def xyy_to_xyz(xyY):
'''
convert from xyY color space to XYZ
xyY: normalized chromaticity with xy in 0-1, Y in 0-inf
XYZ: consistent units for each component
https://en.wikipedia.org/wiki/CIE_1931_color_space
http://www.brucelindbloom.com/index.html?Eqn_xyY_to_XYZ.html
'''
x, y, Y = xyY[..., 0], xyY[..., 1], xyY[..., 2]
invalid_mask = (y < SMALL_COMPONENT_VALUE).astype(np.float32)
valid_mask = 1.0 - invalid_mask
y = invalid_mask + valid_mask * y
norm = Y / y
X = x * norm
Z = (1 - x - y) * norm
X *= valid_mask
Y *= valid_mask
Z *= valid_mask
return np.stack([X, Y, Z], axis=-1)
def point_or_points_or_image_wrapper(func):
'''
a decorated function will be called with reshaped input and output to support
a single 3d point: pt.shape = (3,)
an array of 3d points: pts.shape = (N,3)
an image of 3d points: pts.shape = (H,W,3)
wrapped functions should internally support the array of 3d points case (N,3)
'''
def inner(point_or_points_or_image, *args, **kwargs):
result_shape = list(point_or_points_or_image.shape)
if len(result_shape) == 1:
img_shape = [1, 1] + result_shape
elif len(result_shape) == 2:
img_shape = [1] + result_shape
elif len(result_shape) == 3:
img_shape = list(result_shape)
assert img_shape[-1] == 3
points_shape = (img_shape[0] * img_shape[1], img_shape[2])
points = point_or_points_or_image.reshape(points_shape)
result = func(points, *args, **kwargs)
return result.reshape(result_shape)
return inner
@point_or_points_or_image_wrapper
def D50_to_D65(points):
'matrix transformation from D50 whitepoint to D65'
return np.matmul(points, D50_TO_D65_T)
@point_or_points_or_image_wrapper
def rgb_to_xyz(points):
'matrix transformation from linear RGB to XYZ color space'
return np.matmul(points, M_RGB_TO_XYZ_T)
@point_or_points_or_image_wrapper
def xyz_to_rgb(points):
'matrix transformation from XYZ to linear RGB color space'
return np.matmul(points, M_XYZ_TO_RGB_T)
|
[
"numpy.stack",
"numpy.power",
"numpy.matmul",
"numpy.clip"
] |
[((392, 415), 'numpy.power', 'np.power', (['values', 'gamma'], {}), '(values, gamma)\n', (400, 415), True, 'import numpy as np\n'), ((1184, 1226), 'numpy.power', 'np.power', (['((arr[mask] + 0.055) / 1.055)', '(2.4)'], {}), '((arr[mask] + 0.055) / 1.055, 2.4)\n', (1192, 1226), True, 'import numpy as np\n'), ((1437, 1494), 'numpy.clip', 'np.clip', (['srgb', 'SMALL_COMPONENT_VALUE', 'MAX_COMPONENT_VALUE'], {}), '(srgb, SMALL_COMPONENT_VALUE, MAX_COMPONENT_VALUE)\n', (1444, 1494), True, 'import numpy as np\n'), ((1663, 1700), 'numpy.power', 'np.power', (['((srgb + 0.055) / 1.055)', '(2.4)'], {}), '((srgb + 0.055) / 1.055, 2.4)\n', (1671, 1700), True, 'import numpy as np\n'), ((1952, 2008), 'numpy.clip', 'np.clip', (['rgb', 'SMALL_COMPONENT_VALUE', 'MAX_COMPONENT_VALUE'], {}), '(rgb, SMALL_COMPONENT_VALUE, MAX_COMPONENT_VALUE)\n', (1959, 2008), True, 'import numpy as np\n'), ((3201, 3229), 'numpy.stack', 'np.stack', (['[x, y, Y]'], {'axis': '(-1)'}), '([x, y, Y], axis=-1)\n', (3209, 3229), True, 'import numpy as np\n'), ((3832, 3860), 'numpy.stack', 'np.stack', (['[X, Y, Z]'], {'axis': '(-1)'}), '([X, Y, Z], axis=-1)\n', (3840, 3860), True, 'import numpy as np\n'), ((4916, 4947), 'numpy.matmul', 'np.matmul', (['points', 'D50_TO_D65_T'], {}), '(points, D50_TO_D65_T)\n', (4925, 4947), True, 'import numpy as np\n'), ((5078, 5111), 'numpy.matmul', 'np.matmul', (['points', 'M_RGB_TO_XYZ_T'], {}), '(points, M_RGB_TO_XYZ_T)\n', (5087, 5111), True, 'import numpy as np\n'), ((5242, 5275), 'numpy.matmul', 'np.matmul', (['points', 'M_XYZ_TO_RGB_T'], {}), '(points, M_XYZ_TO_RGB_T)\n', (5251, 5275), True, 'import numpy as np\n'), ((2186, 2210), 'numpy.power', 'np.power', (['rgb', '(1.0 / 2.4)'], {}), '(rgb, 1.0 / 2.4)\n', (2194, 2210), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
import sys
from cvangysel import argparse_utils, logging_utils, sklearn_utils, trec_utils
from sert import inference, math_utils, models
import argparse
import collections
import io
import logging
import numpy as np
import os
import operator
import pickle
import scipy
import scipy.spatial
import sklearn.neighbors
#
# Main driver.
#
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--loglevel', type=str, default='INFO')
parser.add_argument('--meta',
type=argparse_utils.existing_file_path, required=True)
parser.add_argument('--model',
type=argparse_utils.existing_file_path, required=True)
parser.add_argument('--topics',
type=argparse_utils.existing_file_path, nargs='+')
parser.add_argument('--top',
type=argparse_utils.positive_int,
default=None)
parser.add_argument('--run_out',
type=argparse_utils.nonexisting_file_path,
required=True)
args = parser.parse_args()
try:
logging_utils.configure_logging(args)
except IOError:
return -1
with open(args.model, 'rb') as f:
# Load model arguments and learned mapping.
model_args, predict_fn = (pickle.load(f) for _ in range(2))
# Load word representations.
word_representations = pickle.load(f)
try:
entity_representations = pickle.load(f)
except EOFError:
entity_representations = None
with open(args.meta, 'rb') as f:
(data_args,
words, tokens,
entity_indices_inv, entity_assocs) = (
pickle.load(f) for _ in range(5))
# Parse topic files.
topic_f = list(map(lambda filename: open(filename, 'r'), args.topics))
topics = trec_utils.parse_topics(topic_f)
[f_.close() for f_ in topic_f]
model_name = os.path.basename(args.model)
# Entity profiling.
topics_per_entity = collections.defaultdict(list)
# Entity finding.
entities_per_topic = collections.defaultdict(list)
def ranker_callback(topic_id, top_ranked_indices, top_ranked_values):
for rank, (entity_internal_id, relevance) in enumerate(
zip(top_ranked_indices, top_ranked_values)):
entity_id = entity_indices_inv[entity_internal_id]
# Entity profiling.
topics_per_entity[entity_id].append((relevance, topic_id))
# Entity finding.
entities_per_topic[topic_id].append((relevance, entity_id))
with open('{0}_debug'.format(args.run_out), 'w') as f_debug_out:
if model_args.type == models.LanguageModel:
result_callback = LogLinearCallback(
args, model_args, tokens,
f_debug_out,
ranker_callback)
elif model_args.type == models.VectorSpaceLanguageModel:
result_callback = VectorSpaceCallback(
entity_representations,
args, model_args, tokens,
f_debug_out,
ranker_callback)
batcher = inference.create(
predict_fn, word_representations,
model_args.batch_size, data_args.window_size, len(words),
result_callback)
logging.info('Batching queries using %s.', batcher)
for q_id, (topic_id, terms) in enumerate(topics.items()):
if topic_id not in topics:
logging.error('Topic "%s" not found in topic list.', topic_id)
continue
# Do not replace numeric tokens in queries.
query_terms = trec_utils.parse_query(terms)
query_tokens = []
logging.debug('Query (%d/%d) %s: %s (%s)',
q_id + 1, len(topics),
topic_id, query_terms, terms)
for term in query_terms:
if term not in words:
logging.debug('Term "%s" is OOV.', term)
continue
term_token = words[term].id
query_tokens.append(term_token)
if not query_tokens:
logging.warning('Skipping query with terms "%s".', terms)
continue
batcher.submit(query_tokens, topic_id=topic_id)
batcher.process()
# Entity profiling.
with io.open('{0}_ep'.format(args.run_out),
'w', encoding='utf8') as out_ep_run:
trec_utils.write_run(model_name, topics_per_entity, out_ep_run)
# Entity finding.
with io.open('{0}_ef'.format(args.run_out),
'w', encoding='utf8') as out_ef_run:
trec_utils.write_run(model_name, entities_per_topic, out_ef_run)
logging.info('Saved run to %s.', args.run_out)
#
# Ranker callbacks.
#
class Callback(object):
def __init__(self, args, model_args, tokens,
f_debug_out,
rank_callback):
self.args = args
self.model_args = model_args
self.tokens = tokens
self.f_debug_out = f_debug_out
self.rank_callback = rank_callback
self.topic_projections = {}
def __call__(self, payload, result, topic_id):
assert topic_id not in self.topic_projections
self.topic_projections[topic_id] = result.ravel()
distribution = result
logging.debug('Result of shape %s for topic "%s".',
distribution.shape, topic_id)
self.process(payload, distribution, topic_id)
def process(self, payload, distribution, topic_id):
raise NotImplementedError()
def should_average_input(self):
raise NotImplementedError()
class LogLinearCallback(Callback):
def __init__(self, *args, **kwargs):
super(LogLinearCallback, self).__init__(*args, **kwargs)
def process(self, payload, distribution, topic_id):
terms = list(map(lambda id: self.tokens[id], payload))
term_entropies = compute_normalised_entropy(
distribution, base=2)
distribution = inference.aggregate_distribution(
distribution, mode='product', axis=0)
assert distribution.ndim == 1
distribution /= distribution.sum()
if not np.isclose(distribution.sum(), 1.0):
logging.error('Encountered non-normalized '
'distribution for topic "%s" '
'(mass=%.10f).',
topic_id, distribution.sum())
self.f_debug_out.write('Topic {0} {1}: {2}\n'.format(
topic_id,
math_utils.entropy(
distribution, base=2, normalize=True),
zip(terms, term_entropies)))
ranked_indices = np.argsort(distribution)
top_ranked_indices = ranked_indices[::-1]
top_ranked_values = distribution[top_ranked_indices]
self.rank_callback(topic_id, top_ranked_indices, top_ranked_values)
def should_average_input(self):
return False
class VectorSpaceCallback(Callback):
def __init__(self, entity_representations, *args, **kwargs):
super(VectorSpaceCallback, self).__init__(*args, **kwargs)
logging.info(
'Initializing k-NN for entity representations of shape %s.',
entity_representations.shape)
n_neighbors = self.args.top
if n_neighbors is None:
logging.warning(
'Parameter k not set; defaulting to all entities (k=%d).',
entity_representations.shape[0])
elif n_neighbors > entity_representations.shape[0]:
logging.warning(
'Parameter k exceeds number of entities; '
'defaulting to all entities (k=%d).',
entity_representations.shape[0])
n_neighbors = None
self.entity_representation_distance = 'cosine'
if self.entity_representation_distance == 'cosine':
self.entity_representation_distance = 'euclidean'
self.normalize_representations = True
else:
self.normalize_representations = False
if self.normalize_representations:
entity_repr_l2_norms = np.linalg.norm(
entity_representations, axis=1)[:, np.newaxis]
entity_representations /= entity_repr_l2_norms
logging.debug('Term projections will be normalized.')
self.entity_representations = entity_representations
if n_neighbors:
nn_impl = sklearn_utils.neighbors_algorithm(
self.entity_representation_distance)
logging.info('Using %s as distance metric in entity space '
'with NearestNeighbors %s implementation.',
self.entity_representation_distance, nn_impl)
self.entity_neighbors = sklearn.neighbors.NearestNeighbors(
n_neighbors=n_neighbors,
algorithm=nn_impl,
metric=self.entity_representation_distance)
self.entity_neighbors.fit(entity_representations)
self.entity_avg = entity_representations.mean(axis=1)
logging.info('Entity k-NN params: %s',
self.entity_neighbors.get_params())
else:
logging.info('Using %s as distance metric in entity space.',
self.entity_representation_distance)
self.entity_neighbors = None
def query(self, centroids):
if self.entity_neighbors is not None:
distances, indices = self.entity_neighbors.kneighbors(centroids)
return distances, indices
else:
pairwise_distances = scipy.spatial.distance.cdist(
centroids, self.entity_representations,
metric=self.entity_representation_distance)
distances = np.sort(pairwise_distances, axis=1)
indices = pairwise_distances.argsort(axis=1)\
.argsort(axis=1).argsort(axis=1)
return distances, indices
def process(self, payload, result, topic_id):
terms = list(map(lambda id: self.tokens[id], payload))
term_projections = inference.aggregate_distribution(
result, mode='identity', axis=0)
if term_projections.ndim == 1:
term_projections = term_projections.reshape(1, -1)
_, entity_representation_size = term_projections.shape
assert(entity_representation_size ==
self.model_args.entity_representation_size)
if self.normalize_representations:
term_projections_l2_norm = \
np.linalg.norm(term_projections, axis=1)[:, np.newaxis]
term_projections /= term_projections_l2_norm
logging.debug('Querying kneighbors for %s.', terms)
distances, indices = self.query(term_projections)
assert indices.shape[0] == term_projections.shape[0]
candidates = collections.defaultdict(float)
assert indices.shape[0] == 1
for term in range(indices.shape[0]):
term_indices = indices[term, :]
for rank, candidate in enumerate(term_indices):
matching_score = np.sum(
self.entity_representations[candidate, :] *
term_projections[term, :])
if self.normalize_representations:
matching_score = (matching_score + 1.0) / 2.0
candidates[candidate] += matching_score
top_ranked_indices, top_ranked_values = \
map(np.array, zip(
*sorted(candidates.items(),
reverse=True,
key=operator.itemgetter(1))))
self.rank_callback(topic_id, top_ranked_indices, top_ranked_values)
def should_average_input(self):
return True
def compute_normalised_entropy(distribution, base=2):
assert distribution.ndim == 2
assert np.allclose(distribution.sum(axis=1), 1.0)
entropies = [
math_utils.entropy(distribution[i, :], base=base, normalize=True)
for i in range(distribution.shape[0])]
return entropies
if __name__ == "__main__":
sys.exit(main())
|
[
"numpy.sum",
"argparse.ArgumentParser",
"collections.defaultdict",
"numpy.argsort",
"pickle.load",
"numpy.linalg.norm",
"logging.error",
"logging.warning",
"cvangysel.trec_utils.write_run",
"cvangysel.sklearn_utils.neighbors_algorithm",
"scipy.spatial.distance.cdist",
"os.path.basename",
"cvangysel.trec_utils.parse_topics",
"numpy.sort",
"logging.debug",
"cvangysel.logging_utils.configure_logging",
"logging.info",
"cvangysel.trec_utils.parse_query",
"sert.math_utils.entropy",
"sert.inference.aggregate_distribution",
"operator.itemgetter"
] |
[((387, 412), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (410, 412), False, 'import argparse\n'), ((1883, 1915), 'cvangysel.trec_utils.parse_topics', 'trec_utils.parse_topics', (['topic_f'], {}), '(topic_f)\n', (1906, 1915), False, 'from cvangysel import argparse_utils, logging_utils, sklearn_utils, trec_utils\n'), ((1969, 1997), 'os.path.basename', 'os.path.basename', (['args.model'], {}), '(args.model)\n', (1985, 1997), False, 'import os\n'), ((2047, 2076), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (2070, 2076), False, 'import collections\n'), ((2125, 2154), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (2148, 2154), False, 'import collections\n'), ((4804, 4850), 'logging.info', 'logging.info', (['"""Saved run to %s."""', 'args.run_out'], {}), "('Saved run to %s.', args.run_out)\n", (4816, 4850), False, 'import logging\n'), ((1141, 1178), 'cvangysel.logging_utils.configure_logging', 'logging_utils.configure_logging', (['args'], {}), '(args)\n', (1172, 1178), False, 'from cvangysel import argparse_utils, logging_utils, sklearn_utils, trec_utils\n'), ((1445, 1459), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1456, 1459), False, 'import pickle\n'), ((3351, 3402), 'logging.info', 'logging.info', (['"""Batching queries using %s."""', 'batcher'], {}), "('Batching queries using %s.', batcher)\n", (3363, 3402), False, 'import logging\n'), ((4537, 4600), 'cvangysel.trec_utils.write_run', 'trec_utils.write_run', (['model_name', 'topics_per_entity', 'out_ep_run'], {}), '(model_name, topics_per_entity, out_ep_run)\n', (4557, 4600), False, 'from cvangysel import argparse_utils, logging_utils, sklearn_utils, trec_utils\n'), ((4734, 4798), 'cvangysel.trec_utils.write_run', 'trec_utils.write_run', (['model_name', 'entities_per_topic', 'out_ef_run'], {}), '(model_name, entities_per_topic, out_ef_run)\n', (4754, 4798), False, 'from cvangysel import argparse_utils, logging_utils, sklearn_utils, trec_utils\n'), ((5432, 5517), 'logging.debug', 'logging.debug', (['"""Result of shape %s for topic "%s"."""', 'distribution.shape', 'topic_id'], {}), '(\'Result of shape %s for topic "%s".\', distribution.shape,\n topic_id)\n', (5445, 5517), False, 'import logging\n'), ((6132, 6202), 'sert.inference.aggregate_distribution', 'inference.aggregate_distribution', (['distribution'], {'mode': '"""product"""', 'axis': '(0)'}), "(distribution, mode='product', axis=0)\n", (6164, 6202), False, 'from sert import inference, math_utils, models\n'), ((6803, 6827), 'numpy.argsort', 'np.argsort', (['distribution'], {}), '(distribution)\n', (6813, 6827), True, 'import numpy as np\n'), ((7256, 7363), 'logging.info', 'logging.info', (['"""Initializing k-NN for entity representations of shape %s."""', 'entity_representations.shape'], {}), "('Initializing k-NN for entity representations of shape %s.',\n entity_representations.shape)\n", (7268, 7363), False, 'import logging\n'), ((10259, 10324), 'sert.inference.aggregate_distribution', 'inference.aggregate_distribution', (['result'], {'mode': '"""identity"""', 'axis': '(0)'}), "(result, mode='identity', axis=0)\n", (10291, 10324), False, 'from sert import inference, math_utils, models\n'), ((10832, 10883), 'logging.debug', 'logging.debug', (['"""Querying kneighbors for %s."""', 'terms'], {}), "('Querying kneighbors for %s.', terms)\n", (10845, 10883), False, 'import logging\n'), ((11027, 11057), 'collections.defaultdict', 'collections.defaultdict', (['float'], {}), '(float)\n', (11050, 11057), False, 'import collections\n'), ((12098, 12163), 'sert.math_utils.entropy', 'math_utils.entropy', (['distribution[i, :]'], {'base': 'base', 'normalize': '(True)'}), '(distribution[i, :], base=base, normalize=True)\n', (12116, 12163), False, 'from sert import inference, math_utils, models\n'), ((1342, 1356), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1353, 1356), False, 'import pickle\n'), ((1511, 1525), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1522, 1525), False, 'import pickle\n'), ((1735, 1749), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1746, 1749), False, 'import pickle\n'), ((3697, 3726), 'cvangysel.trec_utils.parse_query', 'trec_utils.parse_query', (['terms'], {}), '(terms)\n', (3719, 3726), False, 'from cvangysel import argparse_utils, logging_utils, sklearn_utils, trec_utils\n'), ((7467, 7578), 'logging.warning', 'logging.warning', (['"""Parameter k not set; defaulting to all entities (k=%d)."""', 'entity_representations.shape[0]'], {}), "('Parameter k not set; defaulting to all entities (k=%d).',\n entity_representations.shape[0])\n", (7482, 7578), False, 'import logging\n'), ((8416, 8469), 'logging.debug', 'logging.debug', (['"""Term projections will be normalized."""'], {}), "('Term projections will be normalized.')\n", (8429, 8469), False, 'import logging\n'), ((8579, 8649), 'cvangysel.sklearn_utils.neighbors_algorithm', 'sklearn_utils.neighbors_algorithm', (['self.entity_representation_distance'], {}), '(self.entity_representation_distance)\n', (8612, 8649), False, 'from cvangysel import argparse_utils, logging_utils, sklearn_utils, trec_utils\n'), ((8680, 8836), 'logging.info', 'logging.info', (['"""Using %s as distance metric in entity space with NearestNeighbors %s implementation."""', 'self.entity_representation_distance', 'nn_impl'], {}), "(\n 'Using %s as distance metric in entity space with NearestNeighbors %s implementation.'\n , self.entity_representation_distance, nn_impl)\n", (8692, 8836), False, 'import logging\n'), ((9357, 9459), 'logging.info', 'logging.info', (['"""Using %s as distance metric in entity space."""', 'self.entity_representation_distance'], {}), "('Using %s as distance metric in entity space.', self.\n entity_representation_distance)\n", (9369, 9459), False, 'import logging\n'), ((9764, 9881), 'scipy.spatial.distance.cdist', 'scipy.spatial.distance.cdist', (['centroids', 'self.entity_representations'], {'metric': 'self.entity_representation_distance'}), '(centroids, self.entity_representations, metric\n =self.entity_representation_distance)\n', (9792, 9881), False, 'import scipy\n'), ((9935, 9970), 'numpy.sort', 'np.sort', (['pairwise_distances'], {'axis': '(1)'}), '(pairwise_distances, axis=1)\n', (9942, 9970), True, 'import numpy as np\n'), ((3525, 3587), 'logging.error', 'logging.error', (['"""Topic "%s" not found in topic list."""', 'topic_id'], {}), '(\'Topic "%s" not found in topic list.\', topic_id)\n', (3538, 3587), False, 'import logging\n'), ((4230, 4287), 'logging.warning', 'logging.warning', (['"""Skipping query with terms "%s"."""', 'terms'], {}), '(\'Skipping query with terms "%s".\', terms)\n', (4245, 4287), False, 'import logging\n'), ((6661, 6717), 'sert.math_utils.entropy', 'math_utils.entropy', (['distribution'], {'base': '(2)', 'normalize': '(True)'}), '(distribution, base=2, normalize=True)\n', (6679, 6717), False, 'from sert import inference, math_utils, models\n'), ((7680, 7816), 'logging.warning', 'logging.warning', (['"""Parameter k exceeds number of entities; defaulting to all entities (k=%d)."""', 'entity_representations.shape[0]'], {}), "(\n 'Parameter k exceeds number of entities; defaulting to all entities (k=%d).'\n , entity_representations.shape[0])\n", (7695, 7816), False, 'import logging\n'), ((8264, 8310), 'numpy.linalg.norm', 'np.linalg.norm', (['entity_representations'], {'axis': '(1)'}), '(entity_representations, axis=1)\n', (8278, 8310), True, 'import numpy as np\n'), ((10710, 10750), 'numpy.linalg.norm', 'np.linalg.norm', (['term_projections'], {'axis': '(1)'}), '(term_projections, axis=1)\n', (10724, 10750), True, 'import numpy as np\n'), ((11280, 11357), 'numpy.sum', 'np.sum', (['(self.entity_representations[candidate, :] * term_projections[term, :])'], {}), '(self.entity_representations[candidate, :] * term_projections[term, :])\n', (11286, 11357), True, 'import numpy as np\n'), ((4015, 4055), 'logging.debug', 'logging.debug', (['"""Term "%s" is OOV."""', 'term'], {}), '(\'Term "%s" is OOV.\', term)\n', (4028, 4055), False, 'import logging\n'), ((11766, 11788), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (11785, 11788), False, 'import operator\n')]
|
import numpy as np
rslt_binomial_0 = np.array([0, 6.618737, 0.004032037, 0.01433665, 0.01265635,
0.006173346, 0.01067706])
rslt_binomial_1 = np.array([0, 1.029661, 0.02180239, 0.07769613, 0.06756466,
0.03156418, 0.05851878])
rslt_binomial_2 = np.array([0, 0.1601819, 0.07111087, 0.2544921, 0.2110318,
0.08577924, 0.1984383])
rslt_binomial_3 = np.array([0.5, 0.05343991, 0.004990061, 0.2838563, 0.2167881,
0.02370156, 0.2096612])
rslt_binomial_4 = np.array([0.5, 0.02313286, 0.0708914, 0.3791042, 0.2938332,
0.07506391, 0.2982251])
rslt_binomial_5 = np.array([0.5, 0.009124078, 0.106681, 0.4327268, 0.3362166,
0.1019452, 0.3479955])
rslt_binomial_6 = np.array([1, 0.02932512, 0, 0.3085764, 0.2300801, 0.01143652,
0.2291531])
rslt_binomial_7 = np.array([1, 0.01269414, 0.07022348, 0.396642, 0.3044255,
0.07151663, 0.31301])
rslt_binomial_8 = np.array([1, 0.005494992, 0.1049623, 0.4385186, 0.3391729,
0.09907393, 0.3527401])
rslt_poisson_0 = np.array([0, 23.5349, 0.009251658, 0.003730997, 0.01266164,
0.003439135, 0.0141719])
rslt_poisson_1 = np.array([0, 3.661269, 0.04842557, 0.02095708, 0.06550316,
0.02029514, 0.07300782])
rslt_poisson_2 = np.array([0, 0.5695749, 0.1440462, 0.07208017, 0.182649,
0.07511376, 0.2018242])
rslt_poisson_3 = np.array([0.5, 0.1577593, 0.1247603, 0.02857521, 0.185693,
0.03840622, 0.2200925])
rslt_poisson_4 = np.array([0.5, 0.05669575, 0.187629, 0.08842012, 0.2348627,
0.09736964, 0.2628845])
rslt_poisson_5 = np.array([0.5, 0.0185653, 0.2118078, 0.1121067, 0.2534181,
0.1204543, 0.2784761])
rslt_poisson_6 = np.array([1, 0.07887965, 0.1339927, 0.0322772, 0.1969884,
0.0439019, 0.2339252])
rslt_poisson_7 = np.array([1, 0.02834788, 0.1927163, 0.09160406, 0.2398164,
0.1010126, 0.2682158])
rslt_poisson_8 = np.array([1, 0.0101877, 0.2126847, 0.1123439, 0.2544153,
0.1208601, 0.2796794])
|
[
"numpy.array"
] |
[((38, 128), 'numpy.array', 'np.array', (['[0, 6.618737, 0.004032037, 0.01433665, 0.01265635, 0.006173346, 0.01067706]'], {}), '([0, 6.618737, 0.004032037, 0.01433665, 0.01265635, 0.006173346, \n 0.01067706])\n', (46, 128), True, 'import numpy as np\n'), ((171, 259), 'numpy.array', 'np.array', (['[0, 1.029661, 0.02180239, 0.07769613, 0.06756466, 0.03156418, 0.05851878]'], {}), '([0, 1.029661, 0.02180239, 0.07769613, 0.06756466, 0.03156418, \n 0.05851878])\n', (179, 259), True, 'import numpy as np\n'), ((302, 388), 'numpy.array', 'np.array', (['[0, 0.1601819, 0.07111087, 0.2544921, 0.2110318, 0.08577924, 0.1984383]'], {}), '([0, 0.1601819, 0.07111087, 0.2544921, 0.2110318, 0.08577924, \n 0.1984383])\n', (310, 388), True, 'import numpy as np\n'), ((431, 521), 'numpy.array', 'np.array', (['[0.5, 0.05343991, 0.004990061, 0.2838563, 0.2167881, 0.02370156, 0.2096612]'], {}), '([0.5, 0.05343991, 0.004990061, 0.2838563, 0.2167881, 0.02370156, \n 0.2096612])\n', (439, 521), True, 'import numpy as np\n'), ((564, 652), 'numpy.array', 'np.array', (['[0.5, 0.02313286, 0.0708914, 0.3791042, 0.2938332, 0.07506391, 0.2982251]'], {}), '([0.5, 0.02313286, 0.0708914, 0.3791042, 0.2938332, 0.07506391, \n 0.2982251])\n', (572, 652), True, 'import numpy as np\n'), ((695, 782), 'numpy.array', 'np.array', (['[0.5, 0.009124078, 0.106681, 0.4327268, 0.3362166, 0.1019452, 0.3479955]'], {}), '([0.5, 0.009124078, 0.106681, 0.4327268, 0.3362166, 0.1019452, \n 0.3479955])\n', (703, 782), True, 'import numpy as np\n'), ((825, 898), 'numpy.array', 'np.array', (['[1, 0.02932512, 0, 0.3085764, 0.2300801, 0.01143652, 0.2291531]'], {}), '([1, 0.02932512, 0, 0.3085764, 0.2300801, 0.01143652, 0.2291531])\n', (833, 898), True, 'import numpy as np\n'), ((946, 1025), 'numpy.array', 'np.array', (['[1, 0.01269414, 0.07022348, 0.396642, 0.3044255, 0.07151663, 0.31301]'], {}), '([1, 0.01269414, 0.07022348, 0.396642, 0.3044255, 0.07151663, 0.31301])\n', (954, 1025), True, 'import numpy as np\n'), ((1073, 1160), 'numpy.array', 'np.array', (['[1, 0.005494992, 0.1049623, 0.4385186, 0.3391729, 0.09907393, 0.3527401]'], {}), '([1, 0.005494992, 0.1049623, 0.4385186, 0.3391729, 0.09907393, \n 0.3527401])\n', (1081, 1160), True, 'import numpy as np\n'), ((1202, 1291), 'numpy.array', 'np.array', (['[0, 23.5349, 0.009251658, 0.003730997, 0.01266164, 0.003439135, 0.0141719]'], {}), '([0, 23.5349, 0.009251658, 0.003730997, 0.01266164, 0.003439135, \n 0.0141719])\n', (1210, 1291), True, 'import numpy as np\n'), ((1332, 1420), 'numpy.array', 'np.array', (['[0, 3.661269, 0.04842557, 0.02095708, 0.06550316, 0.02029514, 0.07300782]'], {}), '([0, 3.661269, 0.04842557, 0.02095708, 0.06550316, 0.02029514, \n 0.07300782])\n', (1340, 1420), True, 'import numpy as np\n'), ((1461, 1546), 'numpy.array', 'np.array', (['[0, 0.5695749, 0.1440462, 0.07208017, 0.182649, 0.07511376, 0.2018242]'], {}), '([0, 0.5695749, 0.1440462, 0.07208017, 0.182649, 0.07511376, 0.2018242]\n )\n', (1469, 1546), True, 'import numpy as np\n'), ((1587, 1674), 'numpy.array', 'np.array', (['[0.5, 0.1577593, 0.1247603, 0.02857521, 0.185693, 0.03840622, 0.2200925]'], {}), '([0.5, 0.1577593, 0.1247603, 0.02857521, 0.185693, 0.03840622, \n 0.2200925])\n', (1595, 1674), True, 'import numpy as np\n'), ((1715, 1803), 'numpy.array', 'np.array', (['[0.5, 0.05669575, 0.187629, 0.08842012, 0.2348627, 0.09736964, 0.2628845]'], {}), '([0.5, 0.05669575, 0.187629, 0.08842012, 0.2348627, 0.09736964, \n 0.2628845])\n', (1723, 1803), True, 'import numpy as np\n'), ((1844, 1930), 'numpy.array', 'np.array', (['[0.5, 0.0185653, 0.2118078, 0.1121067, 0.2534181, 0.1204543, 0.2784761]'], {}), '([0.5, 0.0185653, 0.2118078, 0.1121067, 0.2534181, 0.1204543, \n 0.2784761])\n', (1852, 1930), True, 'import numpy as np\n'), ((1971, 2056), 'numpy.array', 'np.array', (['[1, 0.07887965, 0.1339927, 0.0322772, 0.1969884, 0.0439019, 0.2339252]'], {}), '([1, 0.07887965, 0.1339927, 0.0322772, 0.1969884, 0.0439019, 0.2339252]\n )\n', (1979, 2056), True, 'import numpy as np\n'), ((2097, 2183), 'numpy.array', 'np.array', (['[1, 0.02834788, 0.1927163, 0.09160406, 0.2398164, 0.1010126, 0.2682158]'], {}), '([1, 0.02834788, 0.1927163, 0.09160406, 0.2398164, 0.1010126, \n 0.2682158])\n', (2105, 2183), True, 'import numpy as np\n'), ((2224, 2303), 'numpy.array', 'np.array', (['[1, 0.0101877, 0.2126847, 0.1123439, 0.2544153, 0.1208601, 0.2796794]'], {}), '([1, 0.0101877, 0.2126847, 0.1123439, 0.2544153, 0.1208601, 0.2796794])\n', (2232, 2303), True, 'import numpy as np\n')]
|
import matplotlib.patches as mpatches
from nilearn import plotting, image, datasets
from nilearn.input_data import NiftiSpheresMasker
from nilearn.connectome import ConnectivityMeasure
import numpy as np
import pandas as pd
from common.paths import POWER
POWER_NUM_NODES = 264
POWER_DATASET = datasets.fetch_coords_power_2011()
POWER_COORDS = np.vstack((POWER_DATASET.rois['x'], POWER_DATASET.rois['y'], POWER_DATASET.rois['z'])).T
POWER_LABELS = pd.read_csv(POWER, index_col='ROI')
POWER_NODE_COLORS = POWER_LABELS['Color'].values.tolist()
POWER_NETWORKS = {
'VIS': 'Visual',
'FPN': 'Fronto-parietal Task Control',
'DMN': 'Default mode',
'SMH': 'Sensory/somatomotor Hand',
'SMM': 'Sensory/somatomotor Mouth',
'CON': 'Cingulo-opercular Task Control',
'AUD': 'Auditory',
'SAL': 'Salience',
'MEM': 'Memory retrieval',
'VAN': 'Ventral attention',
'CBR': 'Cerebellar',
'SUB': 'Subcortical',
'DAN': 'Dorsal attention',
}
# The following legend has been changed from the default Power atlas legend
# - Extrapolated uncertain ROIs using the label of the closest ROI
# - Changed colors: Pale blue -> lightsteelblue, Black -> navy, Teal -> lime
POWER_LEGEND = {
'Blue': POWER_NETWORKS['VIS'],
'Yellow': POWER_NETWORKS['FPN'],
'Red': POWER_NETWORKS['DMN'],
'Cyan': POWER_NETWORKS['SMH'],
'Orange': POWER_NETWORKS['SMM'],
'Purple': POWER_NETWORKS['CON'],
'Pink': POWER_NETWORKS['AUD'],
'navy': POWER_NETWORKS['SAL'],
'Gray': POWER_NETWORKS['MEM'],
'lime': POWER_NETWORKS['VAN'],
'lightsteelblue': POWER_NETWORKS['CBR'],
'Brown': POWER_NETWORKS['SUB'],
'Green': POWER_NETWORKS['DAN'],
}
def generate_power_fc_matrix(file):
"""
Generates a Power functional connectivity matrix from a set of fMRI (nifti) images.
Assumes the Pearson correlation metric.
"""
spheres_masker = NiftiSpheresMasker(seeds=POWER_COORDS, smoothing_fwhm=6, radius=5., standardize=True)
time_series = spheres_masker.fit_transform(file)
correlation_measure = ConnectivityMeasure(kind='correlation')
correlation_matrix = correlation_measure.fit_transform([time_series])[0]
return correlation_matrix
def to_power_fc_matrix(fc_vector):
"""
Converts a Power connectivity vector (34716 x 1) to a matrix (264 x 264).
Sets the diagonal to zero and makes the matrix symmetric about the diagonal.
"""
fc_matrix = np.zeros((POWER_NUM_NODES, POWER_NUM_NODES))
fc_matrix[np.triu_indices_from(fc_matrix, k=1)] = fc_vector
fc_matrix = fc_matrix + fc_matrix.T
return fc_matrix
def to_power_fc_vector(fc_matrix):
"""
Converts a Power connectivity matrix (264 x 264) to a vector (34716 x 1).
Discards diagonal values and assumes a symmetric matrix.
"""
return fc_matrix[np.triu_indices(POWER_NUM_NODES, k=1)]
def get_power_fc_matrix_labels(return_system=False):
"""
Gets a matrix (264 x 264) where each element is a pair representing the endpoints of that connection.
The pair can either be ROI-to-ROI (1, 2) or Sytem-to-System ('Cerebellar', 'Cerebellar').
"""
labels = POWER_LABELS['System'].values if return_system else POWER_LABELS.index
label_matrix = []
for row_label in labels:
row_labels = []
label_matrix.append([(row_label, col_label) for col_label in labels])
return np.array(label_matrix)
def get_power_fc_vector_labels(return_system=False):
"""
Gets a vector (34716 x 1) where each element is a pair representing the endpoints of that connection.
"""
power_fc_matrix_labels = get_power_fc_matrix_labels(return_system)
power_fc_vector_labels = to_power_fc_vector(power_fc_matrix_labels)
return power_fc_vector_labels
def get_power_mpl_legend():
"""
Gets the Power legend as a list of Matplotlib legend patches mapping color to system/network.
"""
power_legend_patches = []
for color, system in POWER_LEGEND.items():
power_legend_patches.append(mpatches.Patch(color=color, label=system))
return power_legend_patches
|
[
"nilearn.connectome.ConnectivityMeasure",
"pandas.read_csv",
"nilearn.input_data.NiftiSpheresMasker",
"nilearn.datasets.fetch_coords_power_2011",
"numpy.zeros",
"numpy.triu_indices",
"numpy.array",
"numpy.triu_indices_from",
"matplotlib.patches.Patch",
"numpy.vstack"
] |
[((295, 329), 'nilearn.datasets.fetch_coords_power_2011', 'datasets.fetch_coords_power_2011', ([], {}), '()\n', (327, 329), False, 'from nilearn import plotting, image, datasets\n'), ((449, 484), 'pandas.read_csv', 'pd.read_csv', (['POWER'], {'index_col': '"""ROI"""'}), "(POWER, index_col='ROI')\n", (460, 484), True, 'import pandas as pd\n'), ((345, 436), 'numpy.vstack', 'np.vstack', (["(POWER_DATASET.rois['x'], POWER_DATASET.rois['y'], POWER_DATASET.rois['z'])"], {}), "((POWER_DATASET.rois['x'], POWER_DATASET.rois['y'], POWER_DATASET.\n rois['z']))\n", (354, 436), True, 'import numpy as np\n'), ((1895, 1985), 'nilearn.input_data.NiftiSpheresMasker', 'NiftiSpheresMasker', ([], {'seeds': 'POWER_COORDS', 'smoothing_fwhm': '(6)', 'radius': '(5.0)', 'standardize': '(True)'}), '(seeds=POWER_COORDS, smoothing_fwhm=6, radius=5.0,\n standardize=True)\n', (1913, 1985), False, 'from nilearn.input_data import NiftiSpheresMasker\n'), ((2065, 2104), 'nilearn.connectome.ConnectivityMeasure', 'ConnectivityMeasure', ([], {'kind': '"""correlation"""'}), "(kind='correlation')\n", (2084, 2104), False, 'from nilearn.connectome import ConnectivityMeasure\n'), ((2450, 2494), 'numpy.zeros', 'np.zeros', (['(POWER_NUM_NODES, POWER_NUM_NODES)'], {}), '((POWER_NUM_NODES, POWER_NUM_NODES))\n', (2458, 2494), True, 'import numpy as np\n'), ((3416, 3438), 'numpy.array', 'np.array', (['label_matrix'], {}), '(label_matrix)\n', (3424, 3438), True, 'import numpy as np\n'), ((2509, 2545), 'numpy.triu_indices_from', 'np.triu_indices_from', (['fc_matrix'], {'k': '(1)'}), '(fc_matrix, k=1)\n', (2529, 2545), True, 'import numpy as np\n'), ((2838, 2875), 'numpy.triu_indices', 'np.triu_indices', (['POWER_NUM_NODES'], {'k': '(1)'}), '(POWER_NUM_NODES, k=1)\n', (2853, 2875), True, 'import numpy as np\n'), ((4060, 4101), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': 'color', 'label': 'system'}), '(color=color, label=system)\n', (4074, 4101), True, 'import matplotlib.patches as mpatches\n')]
|
"""
Unit tests for PowerExpansion class
"""
__author__ = '<NAME>'
import unittest
import numpy as np
from scipy.special import sph_harm
import onsager.PowerExpansion as PE
T3D = PE.Taylor3D
T2D = PE.Taylor2D
class PowerExpansionTests(unittest.TestCase):
"""Tests to make sure our power expansions are constructed correctly and behaving as advertised"""
def setUp(self):
"""initial setup for testing"""
self.phi = np.pi * 0.2234
self.theta = np.pi * 0.7261
self.c = T3D()
self.basis = [(np.eye(2), np.array([0.5, -np.sqrt(0.75), 0.])),
(np.eye(2), np.array([0.5, np.sqrt(0.75), 0.])),
(np.eye(2), np.array([-1., 0., 0.])),
(np.eye(2), np.array([-0.5, -np.sqrt(0.75), 0.])),
(np.eye(2), np.array([-0.5, np.sqrt(0.75), 0.])),
(np.eye(2), np.array([1., 0., 0.])),
(np.eye(2) * 2, np.array([0., 0., 1.])),
(np.eye(2) * 2, np.array([0., 0., -1.])),
]
def testExpansionYlmpow(self):
"""Test the expansion of Ylm into powers"""
for (phi, theta) in [(self.phi + dp, self.theta + dt)
for dp in (0., 0.25 * np.pi, 0.5 * np.pi, 0.75 * np.pi)
for dt in (0., 0.5 * np.pi, np.pi, 1.5 * np.pi)]:
utest, umagn = T3D.powexp(np.array([np.sin(phi) * np.cos(theta),
np.sin(phi) * np.sin(theta),
np.cos(phi)]))
self.assertAlmostEqual(umagn, 1)
Ylm0 = np.zeros(T3D.NYlm, dtype=complex)
# Ylm as power expansions
for lm in range(T3D.NYlm):
l, m = T3D.ind2Ylm[lm, 0], T3D.ind2Ylm[lm, 1]
Ylm0[lm] = sph_harm(m, l, theta, phi)
Ylmexp = np.dot(T3D.Ylmpow[lm], utest)
self.assertAlmostEqual(Ylm0[lm], Ylmexp,
msg="Failure for Ylmpow "
"l={} m={}; theta={}, phi={}\n{} != {}".format(l, m, theta, phi, Ylm0[lm], Ylmexp))
# power expansions in Ylm's
for p in range(T3D.NYlm):
pYlm = np.dot(T3D.powYlm[p], Ylm0)
self.assertAlmostEqual(utest[p], pYlm,
msg="Failure for powYlm "
"{}; theta={}, phi={}\n{} != {}".format(T3D.ind2pow[p], theta, phi, utest[p], pYlm))
# projection (note that Lproj is not symmetric): so this test ensures that v.u and (proj.v).u
# give the same value
uproj = np.tensordot(T3D.Lproj[-1], utest, axes=(0, 0))
for p in range(T3D.NYlm):
self.assertAlmostEqual(utest[p], uproj[p],
msg="Projection failure for "
"{}\n{} != {}".format(T3D.ind2pow[p], uproj[p], utest[p]))
def testProjection(self):
"""Test that the L-projections are correct"""
# Try to do this sequentially
for tup in [(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)]:
v = np.zeros(T3D.Npower)
v[T3D.pow2ind[tup]] = 1.
Pv = np.tensordot(T3D.Lproj[-1], v, axes=1)
# now, try with multiplying by x^2+y^2+z^2:
vxyz = np.zeros(T3D.Npower)
vxyz[T3D.pow2ind[tup[0] + 2, tup[1], tup[2]]] = 1.
vxyz[T3D.pow2ind[tup[0], tup[1] + 2, tup[2]]] = 1.
vxyz[T3D.pow2ind[tup[0], tup[1], tup[2] + 2]] = 1.
Pvxyz = np.tensordot(T3D.Lproj[-1], vxyz, axes=1)
self.assertTrue(np.allclose(v, Pv))
self.assertTrue(np.allclose(v, Pvxyz))
for l in range(T3D.Lmax + 1):
Pv = np.tensordot(T3D.Lproj[l], v, axes=1)
Pvxyz = np.tensordot(T3D.Lproj[l], vxyz, axes=1)
if l == sum(tup):
self.assertTrue(np.allclose(v, Pv))
self.assertTrue(np.allclose(v, Pvxyz))
else:
self.assertTrue(np.allclose(Pv, 0))
self.assertTrue(np.allclose(Pvxyz, 0))
def testEvaluation(self):
"""Test out the evaluation functions in an expansion, including with scalar multiply and addition"""
def approxexp(u):
"""4th order expansion of exp(u)"""
return 1 + u * (1 + u * (0.5 + u * (1 / 6 + u / 24)))
def createExpansion(n):
return lambda u: u ** n / PE.factorial(n, True)
c = T3D()
for coeff in c.constructexpansion(self.basis):
c.addterms(coeff)
for (n, l) in c.nl():
self.assertEqual(n, l)
fnu = {(n, l): createExpansion(n) for (n, l) in c.nl()} # or could do this in previous loop
# c2 = 2*c
c2 = c.copy()
c2 *= 2
c3 = c + c
c4 = c2 - c
### NOTE! We have to do it *this way*; otherwise, it will try to use the sum in np.array,
### and that WILL NOT WORK with our expansion.
c5 = c + np.eye(2)
prod = np.array([[-4.2, 2.67], [1.3, 3.21]])
c6 = c.ldot(prod)
c7 = c.copy()
c7.irdot(prod)
sum([c, c2, c3]) # tests whether we can use sum
for u in [np.zeros(3), np.array([1., 0., 0.]), np.array([0., 1., 0.]), np.array([0., 0., 1.]),
np.array([0.234, -0.85, 1.25]),
np.array([1.24, 0.71, -0.98])]:
umagn = np.sqrt(np.dot(u, u))
fval = {nl: f(umagn) for nl, f in fnu.items()}
# comparison value:
value = sum(pre * approxexp(np.dot(u, vec)) for pre, vec in self.basis)
valsum = c(u, fval)
funcsum = c(u, fnu)
dictsum = sum(fval[k] * v for k, v in c(u).items())
self.assertTrue(np.allclose(value, valsum),
msg="Failure for call with values for {}\n{} != {}".format(u, value, valsum))
self.assertTrue(np.allclose(value, funcsum),
msg="Failure for call with function for {}\n{} != {}".format(u, value, funcsum))
self.assertTrue(np.allclose(value, dictsum),
msg="Failure for call with dictionary for {}\n{} != {}".format(u, value, dictsum))
self.assertTrue(np.allclose(2 * value, c2(u, fval)),
msg="Failure with scalar multiply?")
self.assertTrue(np.allclose(2 * value, c3(u, fval)),
msg="Failure with addition?")
self.assertTrue(np.allclose(value, c4(u, fval)),
msg="Failure with subtraction?")
self.assertTrue(np.allclose(value + np.eye(2), c5(u, fval)),
msg="Failure with scalar addition?")
self.assertTrue(np.allclose(np.dot(prod, value), c6(u, fval)),
msg="Failure with tensor dot product?")
self.assertTrue(np.allclose(np.dot(value, prod), c7(u, fval)),
msg="Failure with tensor dot product inplace?")
def testProduct(self):
"""Test out the evaluation functions in an expansion, using coefficient products"""
def approxexp(u):
"""2nd order expansion of exp(u)"""
# return 1 + u*(1 + u*(0.5 + u*(1/6 + u/24)))
return 1 + u * (1 + u * 0.5)
def createExpansion(n):
return lambda u: u ** n
c = T3D()
for coeff in c.constructexpansion(self.basis, N=2):
c.addterms(coeff)
c *= {(n, l): 1. / PE.factorial(n, True) for (n, l) in
c.nl()} # scalar multiply to create a Taylor expansion for exp
c2 = c * c
for (n, l) in c2.nl():
self.assertEqual(n, l)
fnu = {(n, l): createExpansion(n) for (n, l) in c2.nl()} # or could do this in previous loop
for u in [np.zeros(3), np.array([1., 0., 0.]), np.array([0., 1., 0.]), np.array([0., 0., 1.]),
np.array([0.234, -0.85, 1.25]),
np.array([1.24, 0.71, -0.98])]:
umagn = np.sqrt(np.dot(u, u))
fval = {nl: f(umagn) for nl, f in fnu.items()}
# comparison value:
value = sum(pre * approxexp(np.dot(u, vec)) for pre, vec in self.basis)
valsum = c(u, fval)
funcsum = c(u, fnu)
dictsum = sum(fval[k] * v for k, v in c(u).items())
value2 = np.dot(value, value)
valsum2 = c2(u, fval)
funcsum2 = c2(u, fnu)
dictsum2 = sum(fval[k] * v for k, v in c2(u).items())
self.assertTrue(np.allclose(value, valsum),
msg="Failure for call with values for {}\n{} != {}".format(u, value, valsum))
self.assertTrue(np.allclose(value, funcsum),
msg="Failure for call with function for {}\n{} != {}".format(u, value, funcsum))
self.assertTrue(np.allclose(value, dictsum),
msg="Failure for call with dictionary for {}\n{} != {}".format(u, value, dictsum))
self.assertTrue(np.allclose(value2, valsum2),
msg="Failure for call with values for {}\n{} != {}".format(u, value2, valsum2))
self.assertTrue(np.allclose(value2, funcsum2),
msg="Failure for call with function for {}\n{} != {}".format(u, value2, funcsum2))
self.assertTrue(np.allclose(value2, dictsum2),
msg="Failure for call with dictionary for {}\n{} != {}".format(u, value2, dictsum2))
def testReduceExpand(self):
"""Test our reduction and expansion operations"""
def approxexp(u):
"""4th order expansion of exp(u)"""
return 1 + u * (1 + u * (0.5 + u * (1 / 6 + u / 24)))
def createExpansion(n):
return lambda u: u ** n
c = T3D([c[0] for c in T3D.constructexpansion(self.basis, N=4, pre=(0, 1, 1 / 2, 1 / 6, 1 / 24))])
self.assertEqual(len(c.coefflist), 5) # should have all n from 0 to 4
c2 = c.copy()
c2.reduce()
# check the reduction: should be just two terms remaining: n=2, n=4
self.assertEqual(len(c2.coefflist), 2)
for n, l, coeff in c2.coefflist:
self.assertTrue(n == 2 or n == 4)
if n == 2:
self.assertEqual(l, 2)
else:
self.assertEqual(l, 4)
c3 = c2.copy()
c3.separate()
# print("c2:\n{}".format(c2))
# print("c3:\n{}".format(c3))
# now should have 2 + 3 = 5 terms
self.assertEqual(len(c3.coefflist), 5)
for n, l, coeff in c3.coefflist:
self.assertTrue(n == 2 or n == 4)
if n == 2:
self.assertTrue(l == 0 or l == 2)
else:
self.assertTrue(l == 0 or l == 2 or l == 4)
# also check that the only non-zero terms for a given l are value are those values
if l == 0:
lmin = 0
else:
lmin = T3D.powlrange[l - 1]
lmax = T3D.powlrange[l]
# self.assertTrue(np.allclose(coeff[0:lmin], 0))
self.assertTrue(np.allclose(coeff[lmax:T3D.Npower], 0))
self.assertFalse(np.allclose(coeff[lmin:lmax], 0))
Ylmcoeff = np.tensordot(T3D.powYlm[:T3D.powlrange[l], :], coeff, axes=(0, 0)) # now in Ylm
lmin = l ** 2
lmax = (l + 1) ** 2
self.assertTrue(np.allclose(Ylmcoeff[0:lmin], 0))
self.assertFalse(np.allclose(Ylmcoeff[lmin:lmax], 0))
self.assertTrue(np.allclose(Ylmcoeff[lmax:T3D.NYlm], 0))
# a little tricky to make sure we get ALL the functions (instead of making multiple dictionaries)
fnu = {(n, l): createExpansion(n) for (n, l) in c.nl()} # or could do this in previous loop
for (n, l) in c3.nl():
if (n, l) not in fnu:
fnu[(n, l)] = createExpansion(n)
for u in [np.zeros(3), np.array([1., 0., 0.]), np.array([0., 1., 0.]), np.array([0., 0., 1.]),
np.array([0.234, -0.85, 1.25]),
np.array([1.24, 0.71, -0.98])]:
umagn = np.sqrt(np.dot(u, u))
# compare values:
self.assertTrue(np.allclose(c(u, fnu), c2(u, fnu)),
msg="Failure on reduce:\n{} != {}".format(c(u, fnu), c2(u, fnu)))
self.assertTrue(np.allclose(c(u, fnu), c3(u, fnu)),
msg="Failure on expand:\n{} != {}".format(c(u, fnu), c3(u, fnu)))
# do a test of projection using some random coefficients
coeffrand = np.random.uniform(-1, 1, T3D.Npower)
coeffrand.shape = (T3D.Npower, 1, 1)
crand = T3D([(0, T3D.Lmax, coeffrand)])
crand.separate()
for (n, l, c) in crand.coefflist:
Ylmcoeff = np.tensordot(T3D.powYlm[:T3D.powlrange[l], :], c, axes=(0, 0)) # now in Ylm
lmin = l ** 2
lmax = (l + 1) ** 2
self.assertTrue(np.allclose(Ylmcoeff[0:lmin], 0))
self.assertFalse(np.allclose(Ylmcoeff[lmin:lmax], 0))
self.assertTrue(np.allclose(Ylmcoeff[lmax:T3D.NYlm], 0))
def testInverse(self):
"""Test our inverse expansion"""
# This is *very tricky* because the inverse expansion is *strictly* a Taylor series;
# it won't be exact. Should be up to order u^2
def approxexp(u):
"""4th order expansion of exp(u)"""
return 1 + u * (1 + u * (0.5 + u * (1 / 6 + u / 24)))
def createExpansion(n):
return lambda u: u ** n
cubicbasis = [(np.eye(2), np.array([1., 0., 0.])),
(np.eye(2), np.array([-1., 0., 0.])),
(np.eye(2), np.array([0., 1., 0.])),
(np.eye(2), np.array([0., -1., 0.])),
(np.eye(2), np.array([0., 0., 1.])),
(np.eye(2), np.array([0., 0., -1.]))
]
c = T3D([c[0] for c in T3D.constructexpansion(cubicbasis, N=4, pre=(0, 1, 1 / 2, 1 / 6, 1 / 24))])
c.reduce()
cinv = c.inv(Nmax=0) # since c ~ x^2, cinv ~ 1/x^2, and L=4 should take us to x^0
fnu = {(n, l): createExpansion(n) for (n, l) in c.nl()} # or could do this in previous loop
for (n, l) in cinv.nl():
if (n, l) not in fnu:
fnu[(n, l)] = createExpansion(n)
for u in [np.array([0.25, 0., 0.]), np.array([0., 0.1, 0.]), np.array([0., 0., 0.1]),
np.array([0.0234, -0.085, 0.125]),
np.array([0.124, 0.071, -0.098])]:
umagn = np.sqrt(np.dot(u, u))
cval = c(u, fnu)
cinvval = cinv(u, fnu)
cval_inv = np.dot(cval, cinvval) - np.eye(2)
# cval_directinv = np.linalg.inv(cval)
self.assertTrue(np.all(abs(cval_inv) < (1 / 120) * umagn ** 4),
msg="cinv * c != 1?\nc={}\ncinv={}\nc*cinv-1={}".format(cval, cinvval, cval_inv))
def testTruncation(self):
"""Make sure truncation works how we expect"""
c = T3D([nlc[0] for nlc in T3D.constructexpansion(self.basis, N=4)])
c.reduce()
self.assertEqual(max(n for n, l, c in c.coefflist), 4)
c2 = c.truncate(2)
self.assertEqual(max(n for n, l, c in c2.coefflist), 2)
self.assertEqual(max(n for n, l, c in c.coefflist), 4)
c.truncate(2, inplace=True)
self.assertEqual(max(n for n, l, c in c.coefflist), 2)
def testIndexingSlicing(self):
"""Can we index into our expansions to get a new expansion? Can we slice? Can we assign?"""
def createExpansion(n):
return lambda u: u ** n
newbasis = [(np.array([[1., 6., 5.], [5., 2., 4.], [5., 4., 3.]]), np.array([2 / 3., 1 / 3, -1 / 2]))]
c = T3D([nlc[0] for nlc in T3D.constructexpansion(newbasis, N=4)])
fnu = {(n, l): createExpansion(n) for n in range(5) for l in range(5)}
# now we have something to work with. We should have a basis from n=0 up to n=4 of 3x3 matrices.
c00 = c[0, 0]
for u in [np.array([0.25, 0., 0.]), np.array([0., 0.1, 0.]), np.array([0., 0., 0.1]),
np.array([0.0234, -0.085, 0.125]),
np.array([0.124, 0.071, -0.098])]:
cval = c(u, fnu)
c00val = c00(u, fnu)
self.assertEqual(cval[0, 0], c00val)
# now, an assignment test. This will be funky; first, we do a "copy" operation so that
# c00 is clean--it is no longer a "view" or slice of c, but it's own thing.
c00 = c00.copy()
# now, set the 0,0 value to be twice what it was before:
c[0, 0] = 2. * c00
for u in [np.array([0.25, 0., 0.]), np.array([0., 0.1, 0.]), np.array([0., 0., 0.1]),
np.array([0.0234, -0.085, 0.125]),
np.array([0.124, 0.071, -0.098])]:
cval = c(u, fnu)
c00val = c00(u, fnu)
self.assertEqual(cval[0, 0], 2. * c00val)
c00inv = c00.inv(Nmax=4)
c00inv.reduce()
for u in [np.array([0.025, 0., 0.]), np.array([0., 0.025, 0.]), np.array([0., 0., 0.025]),
np.array([0.0234, -0.05, 0.05]),
np.array([-0.024, 0.041, -0.033])]:
c00val = c00(u, fnu)
c00invval = c00inv(u, fnu)
self.assertAlmostEqual(c00val * c00invval, 1)
def testRotation(self):
"""Set of tests for rotating directions"""
def createExpansion(n):
return lambda u: u ** n
newbasis = [(0.89 * np.eye(1), np.array([2 / 3., 1 / 3, -1 / 2]))]
c = T3D([nlc[0] for nlc in T3D.constructexpansion(newbasis, N=4)])
# does this still work if we do this?
# c.reduce()
fnu = {(n, l): createExpansion(n) for n in range(5) for l in range(5)}
for rot in [np.eye(3), 2. * np.eye(3), 0.5 * np.eye(3),
np.array([[1.25, 0.5, 0.25], [-0.25, 0.9, 0.5], [-0.75, -0.4, 0.6]]),
np.array([[0., 1., 0.], [-1., 0., 0.], [0., 0., 1.]])]:
rotbasis = [(newbasis[0][0], np.dot(newbasis[0][1], rot))]
crotdirect = T3D([nlc[0] for nlc in T3D.constructexpansion(rotbasis, N=4)])
crot = c.rotate(c.rotatedirections(rot))
for u in [np.array([1.2, 0., 0.]),
np.array([0., 1.2, 0.]),
np.array([0., 0., 1.2]),
np.array([0.234, -0.5, 0.5]),
np.array([-0.24, 0.41, -1.3])]:
self.assertAlmostEqual(crot(u, fnu)[0, 0], crotdirect(u, fnu)[0, 0],
msg="Failed before reduce()")
# now, a more detailed test: do a reduce.
c2 = c.copy()
c.reduce()
for rot in [np.eye(3), 2. * np.eye(3), 0.5 * np.eye(3),
np.array([[1.25, 0.5, 0.25], [-0.25, 0.9, 0.5], [-0.75, -0.4, 0.6]]),
np.array([[0., 1., 0.], [-1., 0., 0.], [0., 0., 1.]])]:
rotbasis = [(newbasis[0][0], np.dot(newbasis[0][1], rot))]
crotdirect = T3D([nlc[0] for nlc in T3D.constructexpansion(rotbasis, N=4)])
crot = c.rotate(c.rotatedirections(rot))
for u in [np.array([1.2, 0., 0.]),
np.array([0., 1.2, 0.]),
np.array([0., 0., 1.2]),
np.array([0.234, -0.5, 0.5]),
np.array([-0.24, 0.41, -1.3])]:
self.assertAlmostEqual(c(u, fnu)[0, 0], c2(u, fnu)[0, 0],
msg="Failure in reduce() to produce equal function values?")
self.assertAlmostEqual(crot(u, fnu)[0, 0], crotdirect(u, fnu)[0, 0],
msg="Failed after reduce() for\n{}".format(rot))
def FourierCoeff(l, theta):
"""This is the equivalent of sph_harm for the two-dimensional case"""
return np.exp(1j*l*theta)
class PowerExpansion2DTests(unittest.TestCase):
"""Tests to make sure our power expansions are constructed correctly and behaving as advertised"""
def setUp(self):
"""initial setup for testing"""
self.theta = np.pi * 0.2234
self.c = T2D()
self.basis = [(np.eye(2), np.array([0.5, -np.sqrt(0.75)])),
(np.eye(2), np.array([0.5, np.sqrt(0.75)])),
(2.*np.eye(2), np.array([-1., 0.])),
(np.eye(2), np.array([-0.5, -np.sqrt(0.75)])),
(np.eye(2), np.array([-0.5, np.sqrt(0.75)])),
(2.*np.eye(2), np.array([1., 0.]))
]
def testIndexing(self):
for ind, l in enumerate(self.c.ind2FC):
self.assertEqual(ind, self.c.FC2ind[l])
for l in range(-self.c.Lmax, self.c.Lmax+1):
self.assertEqual(l, self.c.ind2FC[self.c.FC2ind[l]])
def testExpansionFCpow(self):
"""Test the expansion of FC into powers"""
for theta in [self.theta + dt*np.pi for dt in np.linspace(0, 2, num=16, endpoint=False)]:
utest, umagn = T2D.powexp(np.array([np.cos(theta), np.sin(theta)]))
self.assertAlmostEqual(umagn, 1)
FC0 = np.zeros(T2D.NFC, dtype=complex)
# FC as power expansions
for lind in range(T2D.NFC):
l = T2D.ind2FC[lind]
FC0[lind] = FourierCoeff(l, theta)
FCexp = np.dot(T2D.FCpow[lind], utest)
self.assertAlmostEqual(FC0[lind], FCexp,
msg="Failure for FCpow "
"l={}; theta={}\n{} != {}".format(l, theta, FC0[lind], FCexp))
# power expansions in FC's
for p in range(T2D.NFC):
pFC = np.dot(T2D.powFC[p], FC0)
self.assertAlmostEqual(utest[p], pFC,
msg="Failure for powFC "
"{}; theta={}\n{} != {}".format(T2D.ind2pow[p], theta, utest[p], pFC))
# projection (note that Lproj is not symmetric): so this test ensures that v.u and (proj.v).u
# give the same value
uproj = np.tensordot(T2D.Lproj[-1], utest, axes=(0, 0))
for p in range(T2D.NFC):
self.assertAlmostEqual(utest[p], uproj[p],
msg="Projection failure for "
"{}\n{} != {}".format(T2D.ind2pow[p], uproj[p], utest[p]))
def testProjection(self):
"""Test that the L-projections are correct"""
# Try to do this sequentially
for tup in [(0, 0), (1, 0), (0, 1)]:
v = np.zeros(T2D.Npower)
v[T2D.pow2ind[tup]] = 1.
Pv = np.tensordot(T2D.Lproj[-1], v, axes=1)
# now, try with multiplying by x^2+y^2+z^2:
vxy = np.zeros(T2D.Npower)
vxy[T2D.pow2ind[tup[0] + 2, tup[1]]] = 1.
vxy[T2D.pow2ind[tup[0], tup[1] + 2]] = 1.
Pvxy = np.tensordot(T2D.Lproj[-1], vxy, axes=1)
self.assertTrue(np.allclose(v, Pv))
self.assertTrue(np.allclose(v, Pvxy))
for l in range(T2D.Lmax + 1):
Pv = np.tensordot(T2D.Lproj[l], v, axes=1)
Pvxy = np.tensordot(T2D.Lproj[l], vxy, axes=1)
if l == sum(tup):
self.assertTrue(np.allclose(v, Pv))
self.assertTrue(np.allclose(v, Pvxy))
else:
self.assertTrue(np.allclose(Pv, 0))
self.assertTrue(np.allclose(Pvxy, 0))
def testEvaluation(self):
"""Test out the evaluation functions in an expansion, including with scalar multiply and addition"""
def approxexp(u):
"""4th order expansion of exp(u)"""
return 1 + u * (1 + u * (0.5 + u * (1 / 6 + u / 24)))
def createExpansion(n):
return lambda u: u ** n / PE.factorial(n, True)
c = T2D()
for coeff in c.constructexpansion(self.basis):
c.addterms(coeff)
for (n, l) in c.nl():
self.assertEqual(n, l)
fnu = {(n, l): createExpansion(n) for (n, l) in c.nl()} # or could do this in previous loop
# c2 = 2*c
c2 = c.copy()
c2 *= 2
c3 = c + c
c4 = c2 - c
### NOTE! We have to do it *this way*; otherwise, it will try to use the sum in np.array,
### and that WILL NOT WORK with our expansion.
c5 = c + np.eye(2)
prod = np.array([[-4.2, 2.67], [1.3, 3.21]])
c6 = c.ldot(prod)
c7 = c.copy()
c7.irdot(prod)
sum([c, c2, c3]) # tests whether we can use sum
for u in [np.zeros(2), np.array([1., 0.]), np.array([0., 1.]), np.array([0., 0.]),
np.array([0.234, -0.85]),
np.array([1.24, 0.71])]:
umagn = np.sqrt(np.dot(u, u))
fval = {nl: f(umagn) for nl, f in fnu.items()}
# comparison value:
value = sum(pre * approxexp(np.dot(u, vec)) for pre, vec in self.basis)
valsum = c(u, fval)
funcsum = c(u, fnu)
dictsum = sum(fval[k] * v for k, v in c(u).items())
self.assertTrue(np.allclose(value, valsum),
msg="Failure for call with values for {}\n{} != {}".format(u, value, valsum))
self.assertTrue(np.allclose(value, funcsum),
msg="Failure for call with function for {}\n{} != {}".format(u, value, funcsum))
self.assertTrue(np.allclose(value, dictsum),
msg="Failure for call with dictionary for {}\n{} != {}".format(u, value, dictsum))
self.assertTrue(np.allclose(2 * value, c2(u, fval)),
msg="Failure with scalar multiply?")
self.assertTrue(np.allclose(2 * value, c3(u, fval)),
msg="Failure with addition?")
self.assertTrue(np.allclose(value, c4(u, fval)),
msg="Failure with subtraction?")
self.assertTrue(np.allclose(value + np.eye(2), c5(u, fval)),
msg="Failure with scalar addition?")
self.assertTrue(np.allclose(np.dot(prod, value), c6(u, fval)),
msg="Failure with tensor dot product?")
self.assertTrue(np.allclose(np.dot(value, prod), c7(u, fval)),
msg="Failure with tensor dot product inplace?")
def testProduct(self):
"""Test out the evaluation functions in an expansion, using coefficient products"""
def approxexp(u):
"""2nd order expansion of exp(u)"""
# return 1 + u*(1 + u*(0.5 + u*(1/6 + u/24)))
return 1 + u * (1 + u * 0.5)
def createExpansion(n):
return lambda u: u ** n
c = T2D()
for coeff in c.constructexpansion(self.basis, N=2):
c.addterms(coeff)
c *= {(n, l): 1. / PE.factorial(n, True) for (n, l) in
c.nl()} # scalar multiply to create a Taylor expansion for exp
c2 = c * c
for (n, l) in c2.nl():
self.assertEqual(n, l)
fnu = {(n, l): createExpansion(n) for (n, l) in c2.nl()} # or could do this in previous loop
for u in [np.zeros(2), np.array([1., 0.]), np.array([0., 1.]),
np.array([0.234, -0.85]), np.array([1.24, 0.71])]:
umagn = np.sqrt(np.dot(u, u))
fval = {nl: f(umagn) for nl, f in fnu.items()}
# comparison value:
value = sum(pre * approxexp(np.dot(u, vec)) for pre, vec in self.basis)
valsum = c(u, fval)
funcsum = c(u, fnu)
dictsum = sum(fval[k] * v for k, v in c(u).items())
value2 = np.dot(value, value)
valsum2 = c2(u, fval)
funcsum2 = c2(u, fnu)
dictsum2 = sum(fval[k] * v for k, v in c2(u).items())
self.assertTrue(np.allclose(value, valsum),
msg="Failure for call with values for {}\n{} != {}".format(u, value, valsum))
self.assertTrue(np.allclose(value, funcsum),
msg="Failure for call with function for {}\n{} != {}".format(u, value, funcsum))
self.assertTrue(np.allclose(value, dictsum),
msg="Failure for call with dictionary for {}\n{} != {}".format(u, value, dictsum))
self.assertTrue(np.allclose(value2, valsum2),
msg="Failure for call with values for {}\n{} != {}".format(u, value2, valsum2))
self.assertTrue(np.allclose(value2, funcsum2),
msg="Failure for call with function for {}\n{} != {}".format(u, value2, funcsum2))
self.assertTrue(np.allclose(value2, dictsum2),
msg="Failure for call with dictionary for {}\n{} != {}".format(u, value2, dictsum2))
def testReduceExpand(self):
"""Test our reduction and expansion operations"""
def approxexp(u):
"""4th order expansion of exp(u)"""
return 1 + u * (1 + u * (0.5 + u * (1 / 6 + u / 24)))
def createExpansion(n):
return lambda u: u ** n
c = T2D([c[0] for c in T2D.constructexpansion(self.basis, N=4, pre=(0, 1, 1 / 2, 1 / 6, 1 / 24))])
self.assertEqual(len(c.coefflist), 5) # should have all n from 0 to 4
c2 = c.copy()
c2.reduce()
# check the reduction: should be just two terms remaining: n=2, n=4
self.assertEqual(len(c2.coefflist), 2)
for n, l, coeff in c2.coefflist:
self.assertTrue(n == 2 or n == 4)
if n == 2:
self.assertEqual(l, 2)
else:
self.assertEqual(l, 4)
c3 = c2.copy()
c3.separate()
# print("c2:\n{}".format(c2))
# print("c3:\n{}".format(c3))
# now should have 2 + 3 = 5 terms
self.assertEqual(len(c3.coefflist), 5)
for n, l, coeff in c3.coefflist:
self.assertTrue(n == 2 or n == 4)
if n == 2:
self.assertTrue(l == 0 or l == 2)
else:
self.assertTrue(l == 0 or l == 2 or l == 4)
# also check that the only non-zero terms for a given l are value are those values
lmin, lmax = T2D.powlrange[l-1], T2D.powlrange[l]
self.assertTrue(np.allclose(coeff[0:lmin], 0))
self.assertTrue(np.allclose(coeff[lmax:T2D.Npower], 0))
self.assertFalse(np.allclose(coeff[lmin:lmax], 0))
# check directly the Fourier transform:
FCcoeff = np.tensordot(T2D.powFC[:T2D.powlrange[l], :], coeff, axes=(0, 0)) # now in FC
# only the lplus and lminus should be non-zero:
lp, lm = T2D.FC2ind[l], T2D.FC2ind[-l]
for lind in range(T2D.NFC):
if lind != lp and lind != lm:
self.assertAlmostEqual(np.sum(np.abs(FCcoeff[lind])), 0)
self.assertNotAlmostEqual(np.sum(np.abs(FCcoeff[lp])+np.abs(FCcoeff[lm])), 0)
# a little tricky to make sure we get ALL the functions (instead of making multiple dictionaries)
fnu = {(n, l): createExpansion(n) for (n, l) in c.nl()} # or could do this in previous loop
for (n, l) in c3.nl():
if (n, l) not in fnu:
fnu[(n, l)] = createExpansion(n)
for u in [np.zeros(2), np.array([1., 0.]), np.array([0., 1.]),
np.array([0.234, -0.85]), np.array([1.24, 0.71])]:
umagn = np.sqrt(np.dot(u, u))
# compare values:
self.assertTrue(np.allclose(c(u, fnu), c2(u, fnu)),
msg="Failure on reduce:\n{} != {}".format(c(u, fnu), c2(u, fnu)))
self.assertTrue(np.allclose(c(u, fnu), c3(u, fnu)),
msg="Failure on expand:\n{} != {}".format(c(u, fnu), c3(u, fnu)))
# do a test of projection using some random coefficients
coeffrand = np.random.uniform(-1, 1, T2D.Npower)
coeffrand.shape = (T2D.Npower, 1, 1)
crand = T2D([(0, T2D.Lmax, coeffrand)])
crand.separate()
for (n, l, c) in crand.coefflist:
FCcoeff = np.tensordot(T2D.powFC[:T2D.powlrange[l], :], c, axes=(0, 0)) # now in FC
# only the lplus and lminus should be non-zero:
lp, lm = T2D.FC2ind[l], T2D.FC2ind[-l]
for lind in range(T2D.NFC):
if lind != lp and lind != lm:
self.assertAlmostEqual(np.sum(np.abs(FCcoeff[lind])), 0)
self.assertNotAlmostEqual(np.sum(np.abs(FCcoeff[lp])+np.abs(FCcoeff[lm])), 0)
def testInverse(self):
"""Test our inverse expansion"""
# This is *very tricky* because the inverse expansion is *strictly* a Taylor series;
# it won't be exact. Should be up to order u^2
def approxexp(u):
"""4th order expansion of exp(u)"""
return 1 + u * (1 + u * (0.5 + u * (1 / 6 + u / 24)))
def createExpansion(n):
return lambda u: u ** n
cubicbasis = [(np.eye(2), np.array([1., 0.])),
(np.eye(2), np.array([-1., 0.])),
(np.eye(2), np.array([0., 1.])),
(np.eye(2), np.array([0., -1.]))
]
c = T2D([c[0] for c in T2D.constructexpansion(cubicbasis, N=4, pre=(0, 1, 1 / 2, 1 / 6, 1 / 24))])
c.reduce()
cinv = c.inv(Nmax=0) # since c ~ x^2, cinv ~ 1/x^2, and L=4 should take us to x^0
fnu = {(n, l): createExpansion(n) for (n, l) in c.nl()} # or could do this in previous loop
for (n, l) in cinv.nl():
if (n, l) not in fnu:
fnu[(n, l)] = createExpansion(n)
for u in [np.array([0.25, 0.]), np.array([0., 0.1]),
np.array([0.0234, -0.085]), np.array([0.124, 0.071])]:
umagn = np.sqrt(np.dot(u, u))
cval = c(u, fnu)
cinvval = cinv(u, fnu)
cval_inv = np.dot(cval, cinvval) - np.eye(2)
# cval_directinv = np.linalg.inv(cval)
self.assertTrue(np.all(abs(cval_inv) < (1 / 120) * umagn ** 4),
msg="cinv * c != 1?\nc={}\ncinv={}\nc*cinv-1={}".format(cval, cinvval, cval_inv))
def testTruncation(self):
"""Make sure truncation works how we expect"""
c = T2D([nlc[0] for nlc in T2D.constructexpansion(self.basis, N=4)])
c.reduce()
self.assertEqual(max(n for n, l, c in c.coefflist), 4)
c2 = c.truncate(2)
self.assertEqual(max(n for n, l, c in c2.coefflist), 2)
self.assertEqual(max(n for n, l, c in c.coefflist), 4)
c.truncate(2, inplace=True)
self.assertEqual(max(n for n, l, c in c.coefflist), 2)
def testIndexingSlicing(self):
"""Can we index into our expansions to get a new expansion? Can we slice? Can we assign?"""
def createExpansion(n):
return lambda u: u ** n
newbasis = [(np.array([[1., -2.], [-2., 2.]]), np.array([2 / 3., 1 / 3]))]
c = T2D([nlc[0] for nlc in T2D.constructexpansion(newbasis, N=4)])
fnu = {(n, l): createExpansion(n) for n in range(5) for l in range(5)}
# now we have something to work with. We should have a basis from n=0 up to n=4 of 2x2 matrices.
c00 = c[0, 0]
for u in [np.array([0.25, 0.]), np.array([0., 0.1]),
np.array([0.0234, -0.085]), np.array([0.124, 0.071])]:
cval = c(u, fnu)
c00val = c00(u, fnu)
self.assertEqual(cval[0, 0], c00val)
# now, an assignment test. This will be funky; first, we do a "copy" operation so that
# c00 is clean--it is no longer a "view" or slice of c, but it's own thing.
c00 = c00.copy()
# now, set the 0,0 value to be twice what it was before:
c[0, 0] = 2. * c00
for u in [np.array([0.25, 0.]), np.array([0., 0.1]),
np.array([0.0234, -0.085]), np.array([0.124, 0.071])]:
cval = c(u, fnu)
c00val = c00(u, fnu)
self.assertEqual(cval[0, 0], 2. * c00val)
c00inv = c00.inv(Nmax=4)
c00inv.reduce()
for u in [np.array([0.025, 0.]), np.array([0., 0.01]),
np.array([0.0234, -0.085]), np.array([0.0124, 0.071])]:
c00val = c00(u, fnu)
c00invval = c00inv(u, fnu)
self.assertAlmostEqual(c00val * c00invval, 1)
def testRotation(self):
"""Set of tests for rotating directions"""
def createExpansion(n):
return lambda u: u ** n
newbasis = [(0.89 * np.eye(1), np.array([2 / 3., 1 / 3]))]
c = T2D([nlc[0] for nlc in T2D.constructexpansion(newbasis, N=4)])
# does this still work if we do this?
# c.reduce()
fnu = {(n, l): createExpansion(n) for n in range(5) for l in range(5)}
for rot in [np.eye(2), 2. * np.eye(2), 0.5 * np.eye(2),
np.array([[1.25, 0.5], [-0.25, 0.9]]),
np.array([[0., 1.], [-1., 0.]])]:
rotbasis = [(newbasis[0][0], np.dot(newbasis[0][1], rot))]
crotdirect = T2D([nlc[0] for nlc in T2D.constructexpansion(rotbasis, N=4)])
crot = c.rotate(c.rotatedirections(rot))
for u in [np.array([1.2, 0.]),
np.array([0., 1.2]),
np.array([0., 0.]),
np.array([0.234, -0.5]),
np.array([-0.24, 0.41])]:
self.assertAlmostEqual(crot(u, fnu)[0, 0], crotdirect(u, fnu)[0, 0],
msg="Failed before reduce()")
# now, a more detailed test: do a reduce.
c2 = c.copy()
c.reduce()
for rot in [np.eye(2), 2. * np.eye(2), 0.5 * np.eye(2),
np.array([[1.25, 0.5], [-0.25, 0.9]]),
np.array([[0., 1.], [-1., 0.]])]:
rotbasis = [(newbasis[0][0], np.dot(newbasis[0][1], rot))]
crotdirect = T2D([nlc[0] for nlc in T2D.constructexpansion(rotbasis, N=4)])
crot = c.rotate(c.rotatedirections(rot))
for u in [np.array([1.2, 0.]),
np.array([0., 1.2]),
np.array([0., 0.]),
np.array([0.234, -0.5]),
np.array([-0.24, 0.41])]:
self.assertAlmostEqual(c(u, fnu)[0, 0], c2(u, fnu)[0, 0],
msg="Failure in reduce() to produce equal function values?")
self.assertAlmostEqual(crot(u, fnu)[0, 0], crotdirect(u, fnu)[0, 0],
msg="Failed after reduce() for\n{}".format(rot))
|
[
"scipy.special.sph_harm",
"numpy.random.uniform",
"numpy.abs",
"numpy.tensordot",
"numpy.allclose",
"numpy.zeros",
"numpy.sin",
"numpy.array",
"numpy.exp",
"numpy.linspace",
"numpy.cos",
"numpy.dot",
"numpy.eye",
"onsager.PowerExpansion.factorial",
"numpy.sqrt"
] |
[((20126, 20150), 'numpy.exp', 'np.exp', (['(1.0j * l * theta)'], {}), '(1.0j * l * theta)\n', (20132, 20150), True, 'import numpy as np\n'), ((5139, 5176), 'numpy.array', 'np.array', (['[[-4.2, 2.67], [1.3, 3.21]]'], {}), '([[-4.2, 2.67], [1.3, 3.21]])\n', (5147, 5176), True, 'import numpy as np\n'), ((12788, 12824), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(1)', 'T3D.Npower'], {}), '(-1, 1, T3D.Npower)\n', (12805, 12824), True, 'import numpy as np\n'), ((24693, 24730), 'numpy.array', 'np.array', (['[[-4.2, 2.67], [1.3, 3.21]]'], {}), '([[-4.2, 2.67], [1.3, 3.21]])\n', (24701, 24730), True, 'import numpy as np\n'), ((32263, 32299), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(1)', 'T2D.Npower'], {}), '(-1, 1, T2D.Npower)\n', (32280, 32299), True, 'import numpy as np\n'), ((1669, 1702), 'numpy.zeros', 'np.zeros', (['T3D.NYlm'], {'dtype': 'complex'}), '(T3D.NYlm, dtype=complex)\n', (1677, 1702), True, 'import numpy as np\n'), ((2693, 2740), 'numpy.tensordot', 'np.tensordot', (['T3D.Lproj[-1]', 'utest'], {'axes': '(0, 0)'}), '(T3D.Lproj[-1], utest, axes=(0, 0))\n', (2705, 2740), True, 'import numpy as np\n'), ((3191, 3211), 'numpy.zeros', 'np.zeros', (['T3D.Npower'], {}), '(T3D.Npower)\n', (3199, 3211), True, 'import numpy as np\n'), ((3266, 3304), 'numpy.tensordot', 'np.tensordot', (['T3D.Lproj[-1]', 'v'], {'axes': '(1)'}), '(T3D.Lproj[-1], v, axes=1)\n', (3278, 3304), True, 'import numpy as np\n'), ((3380, 3400), 'numpy.zeros', 'np.zeros', (['T3D.Npower'], {}), '(T3D.Npower)\n', (3388, 3400), True, 'import numpy as np\n'), ((3610, 3651), 'numpy.tensordot', 'np.tensordot', (['T3D.Lproj[-1]', 'vxyz'], {'axes': '(1)'}), '(T3D.Lproj[-1], vxyz, axes=1)\n', (3622, 3651), True, 'import numpy as np\n'), ((5114, 5123), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (5120, 5123), True, 'import numpy as np\n'), ((5324, 5335), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (5332, 5335), True, 'import numpy as np\n'), ((5337, 5362), 'numpy.array', 'np.array', (['[1.0, 0.0, 0.0]'], {}), '([1.0, 0.0, 0.0])\n', (5345, 5362), True, 'import numpy as np\n'), ((5361, 5386), 'numpy.array', 'np.array', (['[0.0, 1.0, 0.0]'], {}), '([0.0, 1.0, 0.0])\n', (5369, 5386), True, 'import numpy as np\n'), ((5385, 5410), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 1.0])\n', (5393, 5410), True, 'import numpy as np\n'), ((5427, 5457), 'numpy.array', 'np.array', (['[0.234, -0.85, 1.25]'], {}), '([0.234, -0.85, 1.25])\n', (5435, 5457), True, 'import numpy as np\n'), ((5477, 5506), 'numpy.array', 'np.array', (['[1.24, 0.71, -0.98]'], {}), '([1.24, 0.71, -0.98])\n', (5485, 5506), True, 'import numpy as np\n'), ((7977, 7988), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (7985, 7988), True, 'import numpy as np\n'), ((7990, 8015), 'numpy.array', 'np.array', (['[1.0, 0.0, 0.0]'], {}), '([1.0, 0.0, 0.0])\n', (7998, 8015), True, 'import numpy as np\n'), ((8014, 8039), 'numpy.array', 'np.array', (['[0.0, 1.0, 0.0]'], {}), '([0.0, 1.0, 0.0])\n', (8022, 8039), True, 'import numpy as np\n'), ((8038, 8063), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 1.0])\n', (8046, 8063), True, 'import numpy as np\n'), ((8080, 8110), 'numpy.array', 'np.array', (['[0.234, -0.85, 1.25]'], {}), '([0.234, -0.85, 1.25])\n', (8088, 8110), True, 'import numpy as np\n'), ((8130, 8159), 'numpy.array', 'np.array', (['[1.24, 0.71, -0.98]'], {}), '([1.24, 0.71, -0.98])\n', (8138, 8159), True, 'import numpy as np\n'), ((8529, 8549), 'numpy.dot', 'np.dot', (['value', 'value'], {}), '(value, value)\n', (8535, 8549), True, 'import numpy as np\n'), ((11453, 11519), 'numpy.tensordot', 'np.tensordot', (['T3D.powYlm[:T3D.powlrange[l], :]', 'coeff'], {'axes': '(0, 0)'}), '(T3D.powYlm[:T3D.powlrange[l], :], coeff, axes=(0, 0))\n', (11465, 11519), True, 'import numpy as np\n'), ((12130, 12141), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (12138, 12141), True, 'import numpy as np\n'), ((12143, 12168), 'numpy.array', 'np.array', (['[1.0, 0.0, 0.0]'], {}), '([1.0, 0.0, 0.0])\n', (12151, 12168), True, 'import numpy as np\n'), ((12167, 12192), 'numpy.array', 'np.array', (['[0.0, 1.0, 0.0]'], {}), '([0.0, 1.0, 0.0])\n', (12175, 12192), True, 'import numpy as np\n'), ((12191, 12216), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 1.0])\n', (12199, 12216), True, 'import numpy as np\n'), ((12233, 12263), 'numpy.array', 'np.array', (['[0.234, -0.85, 1.25]'], {}), '([0.234, -0.85, 1.25])\n', (12241, 12263), True, 'import numpy as np\n'), ((12283, 12312), 'numpy.array', 'np.array', (['[1.24, 0.71, -0.98]'], {}), '([1.24, 0.71, -0.98])\n', (12291, 12312), True, 'import numpy as np\n'), ((13008, 13070), 'numpy.tensordot', 'np.tensordot', (['T3D.powYlm[:T3D.powlrange[l], :]', 'c'], {'axes': '(0, 0)'}), '(T3D.powYlm[:T3D.powlrange[l], :], c, axes=(0, 0))\n', (13020, 13070), True, 'import numpy as np\n'), ((14603, 14629), 'numpy.array', 'np.array', (['[0.25, 0.0, 0.0]'], {}), '([0.25, 0.0, 0.0])\n', (14611, 14629), True, 'import numpy as np\n'), ((14629, 14654), 'numpy.array', 'np.array', (['[0.0, 0.1, 0.0]'], {}), '([0.0, 0.1, 0.0])\n', (14637, 14654), True, 'import numpy as np\n'), ((14654, 14679), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.1]'], {}), '([0.0, 0.0, 0.1])\n', (14662, 14679), True, 'import numpy as np\n'), ((14697, 14730), 'numpy.array', 'np.array', (['[0.0234, -0.085, 0.125]'], {}), '([0.0234, -0.085, 0.125])\n', (14705, 14730), True, 'import numpy as np\n'), ((14750, 14782), 'numpy.array', 'np.array', (['[0.124, 0.071, -0.098]'], {}), '([0.124, 0.071, -0.098])\n', (14758, 14782), True, 'import numpy as np\n'), ((16299, 16325), 'numpy.array', 'np.array', (['[0.25, 0.0, 0.0]'], {}), '([0.25, 0.0, 0.0])\n', (16307, 16325), True, 'import numpy as np\n'), ((16325, 16350), 'numpy.array', 'np.array', (['[0.0, 0.1, 0.0]'], {}), '([0.0, 0.1, 0.0])\n', (16333, 16350), True, 'import numpy as np\n'), ((16350, 16375), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.1]'], {}), '([0.0, 0.0, 0.1])\n', (16358, 16375), True, 'import numpy as np\n'), ((16393, 16426), 'numpy.array', 'np.array', (['[0.0234, -0.085, 0.125]'], {}), '([0.0234, -0.085, 0.125])\n', (16401, 16426), True, 'import numpy as np\n'), ((16446, 16478), 'numpy.array', 'np.array', (['[0.124, 0.071, -0.098]'], {}), '([0.124, 0.071, -0.098])\n', (16454, 16478), True, 'import numpy as np\n'), ((16906, 16932), 'numpy.array', 'np.array', (['[0.25, 0.0, 0.0]'], {}), '([0.25, 0.0, 0.0])\n', (16914, 16932), True, 'import numpy as np\n'), ((16932, 16957), 'numpy.array', 'np.array', (['[0.0, 0.1, 0.0]'], {}), '([0.0, 0.1, 0.0])\n', (16940, 16957), True, 'import numpy as np\n'), ((16957, 16982), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.1]'], {}), '([0.0, 0.0, 0.1])\n', (16965, 16982), True, 'import numpy as np\n'), ((17000, 17033), 'numpy.array', 'np.array', (['[0.0234, -0.085, 0.125]'], {}), '([0.0234, -0.085, 0.125])\n', (17008, 17033), True, 'import numpy as np\n'), ((17053, 17085), 'numpy.array', 'np.array', (['[0.124, 0.071, -0.098]'], {}), '([0.124, 0.071, -0.098])\n', (17061, 17085), True, 'import numpy as np\n'), ((17279, 17306), 'numpy.array', 'np.array', (['[0.025, 0.0, 0.0]'], {}), '([0.025, 0.0, 0.0])\n', (17287, 17306), True, 'import numpy as np\n'), ((17306, 17333), 'numpy.array', 'np.array', (['[0.0, 0.025, 0.0]'], {}), '([0.0, 0.025, 0.0])\n', (17314, 17333), True, 'import numpy as np\n'), ((17333, 17360), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.025]'], {}), '([0.0, 0.0, 0.025])\n', (17341, 17360), True, 'import numpy as np\n'), ((17378, 17409), 'numpy.array', 'np.array', (['[0.0234, -0.05, 0.05]'], {}), '([0.0234, -0.05, 0.05])\n', (17386, 17409), True, 'import numpy as np\n'), ((17429, 17462), 'numpy.array', 'np.array', (['[-0.024, 0.041, -0.033]'], {}), '([-0.024, 0.041, -0.033])\n', (17437, 17462), True, 'import numpy as np\n'), ((18061, 18070), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (18067, 18070), True, 'import numpy as np\n'), ((18125, 18193), 'numpy.array', 'np.array', (['[[1.25, 0.5, 0.25], [-0.25, 0.9, 0.5], [-0.75, -0.4, 0.6]]'], {}), '([[1.25, 0.5, 0.25], [-0.25, 0.9, 0.5], [-0.75, -0.4, 0.6]])\n', (18133, 18193), True, 'import numpy as np\n'), ((18215, 18277), 'numpy.array', 'np.array', (['[[0.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, 1.0]]'], {}), '([[0.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, 1.0]])\n', (18223, 18277), True, 'import numpy as np\n'), ((18995, 19004), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (19001, 19004), True, 'import numpy as np\n'), ((19059, 19127), 'numpy.array', 'np.array', (['[[1.25, 0.5, 0.25], [-0.25, 0.9, 0.5], [-0.75, -0.4, 0.6]]'], {}), '([[1.25, 0.5, 0.25], [-0.25, 0.9, 0.5], [-0.75, -0.4, 0.6]])\n', (19067, 19127), True, 'import numpy as np\n'), ((19149, 19211), 'numpy.array', 'np.array', (['[[0.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, 1.0]]'], {}), '([[0.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, 1.0]])\n', (19157, 19211), True, 'import numpy as np\n'), ((21405, 21437), 'numpy.zeros', 'np.zeros', (['T2D.NFC'], {'dtype': 'complex'}), '(T2D.NFC, dtype=complex)\n', (21413, 21437), True, 'import numpy as np\n'), ((22357, 22404), 'numpy.tensordot', 'np.tensordot', (['T2D.Lproj[-1]', 'utest'], {'axes': '(0, 0)'}), '(T2D.Lproj[-1], utest, axes=(0, 0))\n', (22369, 22404), True, 'import numpy as np\n'), ((22834, 22854), 'numpy.zeros', 'np.zeros', (['T2D.Npower'], {}), '(T2D.Npower)\n', (22842, 22854), True, 'import numpy as np\n'), ((22909, 22947), 'numpy.tensordot', 'np.tensordot', (['T2D.Lproj[-1]', 'v'], {'axes': '(1)'}), '(T2D.Lproj[-1], v, axes=1)\n', (22921, 22947), True, 'import numpy as np\n'), ((23022, 23042), 'numpy.zeros', 'np.zeros', (['T2D.Npower'], {}), '(T2D.Npower)\n', (23030, 23042), True, 'import numpy as np\n'), ((23170, 23210), 'numpy.tensordot', 'np.tensordot', (['T2D.Lproj[-1]', 'vxy'], {'axes': '(1)'}), '(T2D.Lproj[-1], vxy, axes=1)\n', (23182, 23210), True, 'import numpy as np\n'), ((24668, 24677), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (24674, 24677), True, 'import numpy as np\n'), ((24878, 24889), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (24886, 24889), True, 'import numpy as np\n'), ((24891, 24911), 'numpy.array', 'np.array', (['[1.0, 0.0]'], {}), '([1.0, 0.0])\n', (24899, 24911), True, 'import numpy as np\n'), ((24911, 24931), 'numpy.array', 'np.array', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (24919, 24931), True, 'import numpy as np\n'), ((24931, 24951), 'numpy.array', 'np.array', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (24939, 24951), True, 'import numpy as np\n'), ((24969, 24993), 'numpy.array', 'np.array', (['[0.234, -0.85]'], {}), '([0.234, -0.85])\n', (24977, 24993), True, 'import numpy as np\n'), ((25013, 25035), 'numpy.array', 'np.array', (['[1.24, 0.71]'], {}), '([1.24, 0.71])\n', (25021, 25035), True, 'import numpy as np\n'), ((27506, 27517), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (27514, 27517), True, 'import numpy as np\n'), ((27519, 27539), 'numpy.array', 'np.array', (['[1.0, 0.0]'], {}), '([1.0, 0.0])\n', (27527, 27539), True, 'import numpy as np\n'), ((27539, 27559), 'numpy.array', 'np.array', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (27547, 27559), True, 'import numpy as np\n'), ((27577, 27601), 'numpy.array', 'np.array', (['[0.234, -0.85]'], {}), '([0.234, -0.85])\n', (27585, 27601), True, 'import numpy as np\n'), ((27603, 27625), 'numpy.array', 'np.array', (['[1.24, 0.71]'], {}), '([1.24, 0.71])\n', (27611, 27625), True, 'import numpy as np\n'), ((27995, 28015), 'numpy.dot', 'np.dot', (['value', 'value'], {}), '(value, value)\n', (28001, 28015), True, 'import numpy as np\n'), ((30884, 30949), 'numpy.tensordot', 'np.tensordot', (['T2D.powFC[:T2D.powlrange[l], :]', 'coeff'], {'axes': '(0, 0)'}), '(T2D.powFC[:T2D.powlrange[l], :], coeff, axes=(0, 0))\n', (30896, 30949), True, 'import numpy as np\n'), ((31668, 31679), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (31676, 31679), True, 'import numpy as np\n'), ((31681, 31701), 'numpy.array', 'np.array', (['[1.0, 0.0]'], {}), '([1.0, 0.0])\n', (31689, 31701), True, 'import numpy as np\n'), ((31701, 31721), 'numpy.array', 'np.array', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (31709, 31721), True, 'import numpy as np\n'), ((31739, 31763), 'numpy.array', 'np.array', (['[0.234, -0.85]'], {}), '([0.234, -0.85])\n', (31747, 31763), True, 'import numpy as np\n'), ((31765, 31787), 'numpy.array', 'np.array', (['[1.24, 0.71]'], {}), '([1.24, 0.71])\n', (31773, 31787), True, 'import numpy as np\n'), ((32482, 32543), 'numpy.tensordot', 'np.tensordot', (['T2D.powFC[:T2D.powlrange[l], :]', 'c'], {'axes': '(0, 0)'}), '(T2D.powFC[:T2D.powlrange[l], :], c, axes=(0, 0))\n', (32494, 32543), True, 'import numpy as np\n'), ((34049, 34070), 'numpy.array', 'np.array', (['[0.25, 0.0]'], {}), '([0.25, 0.0])\n', (34057, 34070), True, 'import numpy as np\n'), ((34071, 34091), 'numpy.array', 'np.array', (['[0.0, 0.1]'], {}), '([0.0, 0.1])\n', (34079, 34091), True, 'import numpy as np\n'), ((34110, 34136), 'numpy.array', 'np.array', (['[0.0234, -0.085]'], {}), '([0.0234, -0.085])\n', (34118, 34136), True, 'import numpy as np\n'), ((34138, 34162), 'numpy.array', 'np.array', (['[0.124, 0.071]'], {}), '([0.124, 0.071])\n', (34146, 34162), True, 'import numpy as np\n'), ((35651, 35672), 'numpy.array', 'np.array', (['[0.25, 0.0]'], {}), '([0.25, 0.0])\n', (35659, 35672), True, 'import numpy as np\n'), ((35673, 35693), 'numpy.array', 'np.array', (['[0.0, 0.1]'], {}), '([0.0, 0.1])\n', (35681, 35693), True, 'import numpy as np\n'), ((35712, 35738), 'numpy.array', 'np.array', (['[0.0234, -0.085]'], {}), '([0.0234, -0.085])\n', (35720, 35738), True, 'import numpy as np\n'), ((35740, 35764), 'numpy.array', 'np.array', (['[0.124, 0.071]'], {}), '([0.124, 0.071])\n', (35748, 35764), True, 'import numpy as np\n'), ((36192, 36213), 'numpy.array', 'np.array', (['[0.25, 0.0]'], {}), '([0.25, 0.0])\n', (36200, 36213), True, 'import numpy as np\n'), ((36214, 36234), 'numpy.array', 'np.array', (['[0.0, 0.1]'], {}), '([0.0, 0.1])\n', (36222, 36234), True, 'import numpy as np\n'), ((36253, 36279), 'numpy.array', 'np.array', (['[0.0234, -0.085]'], {}), '([0.0234, -0.085])\n', (36261, 36279), True, 'import numpy as np\n'), ((36281, 36305), 'numpy.array', 'np.array', (['[0.124, 0.071]'], {}), '([0.124, 0.071])\n', (36289, 36305), True, 'import numpy as np\n'), ((36499, 36521), 'numpy.array', 'np.array', (['[0.025, 0.0]'], {}), '([0.025, 0.0])\n', (36507, 36521), True, 'import numpy as np\n'), ((36522, 36543), 'numpy.array', 'np.array', (['[0.0, 0.01]'], {}), '([0.0, 0.01])\n', (36530, 36543), True, 'import numpy as np\n'), ((36562, 36588), 'numpy.array', 'np.array', (['[0.0234, -0.085]'], {}), '([0.0234, -0.085])\n', (36570, 36588), True, 'import numpy as np\n'), ((36590, 36615), 'numpy.array', 'np.array', (['[0.0124, 0.071]'], {}), '([0.0124, 0.071])\n', (36598, 36615), True, 'import numpy as np\n'), ((37206, 37215), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (37212, 37215), True, 'import numpy as np\n'), ((37270, 37307), 'numpy.array', 'np.array', (['[[1.25, 0.5], [-0.25, 0.9]]'], {}), '([[1.25, 0.5], [-0.25, 0.9]])\n', (37278, 37307), True, 'import numpy as np\n'), ((37329, 37364), 'numpy.array', 'np.array', (['[[0.0, 1.0], [-1.0, 0.0]]'], {}), '([[0.0, 1.0], [-1.0, 0.0]])\n', (37337, 37364), True, 'import numpy as np\n'), ((38063, 38072), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (38069, 38072), True, 'import numpy as np\n'), ((38127, 38164), 'numpy.array', 'np.array', (['[[1.25, 0.5], [-0.25, 0.9]]'], {}), '([[1.25, 0.5], [-0.25, 0.9]])\n', (38135, 38164), True, 'import numpy as np\n'), ((38186, 38221), 'numpy.array', 'np.array', (['[[0.0, 1.0], [-1.0, 0.0]]'], {}), '([[0.0, 1.0], [-1.0, 0.0]])\n', (38194, 38221), True, 'import numpy as np\n'), ((539, 548), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (545, 548), True, 'import numpy as np\n'), ((611, 620), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (617, 620), True, 'import numpy as np\n'), ((682, 691), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (688, 691), True, 'import numpy as np\n'), ((693, 719), 'numpy.array', 'np.array', (['[-1.0, 0.0, 0.0]'], {}), '([-1.0, 0.0, 0.0])\n', (701, 719), True, 'import numpy as np\n'), ((742, 751), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (748, 751), True, 'import numpy as np\n'), ((815, 824), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (821, 824), True, 'import numpy as np\n'), ((887, 896), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (893, 896), True, 'import numpy as np\n'), ((898, 923), 'numpy.array', 'np.array', (['[1.0, 0.0, 0.0]'], {}), '([1.0, 0.0, 0.0])\n', (906, 923), True, 'import numpy as np\n'), ((961, 986), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 1.0])\n', (969, 986), True, 'import numpy as np\n'), ((1024, 1050), 'numpy.array', 'np.array', (['[0.0, 0.0, -1.0]'], {}), '([0.0, 0.0, -1.0])\n', (1032, 1050), True, 'import numpy as np\n'), ((1869, 1895), 'scipy.special.sph_harm', 'sph_harm', (['m', 'l', 'theta', 'phi'], {}), '(m, l, theta, phi)\n', (1877, 1895), False, 'from scipy.special import sph_harm\n'), ((1921, 1950), 'numpy.dot', 'np.dot', (['T3D.Ylmpow[lm]', 'utest'], {}), '(T3D.Ylmpow[lm], utest)\n', (1927, 1950), True, 'import numpy as np\n'), ((2279, 2306), 'numpy.dot', 'np.dot', (['T3D.powYlm[p]', 'Ylm0'], {}), '(T3D.powYlm[p], Ylm0)\n', (2285, 2306), True, 'import numpy as np\n'), ((3680, 3698), 'numpy.allclose', 'np.allclose', (['v', 'Pv'], {}), '(v, Pv)\n', (3691, 3698), True, 'import numpy as np\n'), ((3728, 3749), 'numpy.allclose', 'np.allclose', (['v', 'Pvxyz'], {}), '(v, Pvxyz)\n', (3739, 3749), True, 'import numpy as np\n'), ((3814, 3851), 'numpy.tensordot', 'np.tensordot', (['T3D.Lproj[l]', 'v'], {'axes': '(1)'}), '(T3D.Lproj[l], v, axes=1)\n', (3826, 3851), True, 'import numpy as np\n'), ((3876, 3916), 'numpy.tensordot', 'np.tensordot', (['T3D.Lproj[l]', 'vxyz'], {'axes': '(1)'}), '(T3D.Lproj[l], vxyz, axes=1)\n', (3888, 3916), True, 'import numpy as np\n'), ((5537, 5549), 'numpy.dot', 'np.dot', (['u', 'u'], {}), '(u, u)\n', (5543, 5549), True, 'import numpy as np\n'), ((5883, 5909), 'numpy.allclose', 'np.allclose', (['value', 'valsum'], {}), '(value, valsum)\n', (5894, 5909), True, 'import numpy as np\n'), ((6045, 6072), 'numpy.allclose', 'np.allclose', (['value', 'funcsum'], {}), '(value, funcsum)\n', (6056, 6072), True, 'import numpy as np\n'), ((6211, 6238), 'numpy.allclose', 'np.allclose', (['value', 'dictsum'], {}), '(value, dictsum)\n', (6222, 6238), True, 'import numpy as np\n'), ((7657, 7678), 'onsager.PowerExpansion.factorial', 'PE.factorial', (['n', '(True)'], {}), '(n, True)\n', (7669, 7678), True, 'import onsager.PowerExpansion as PE\n'), ((8190, 8202), 'numpy.dot', 'np.dot', (['u', 'u'], {}), '(u, u)\n', (8196, 8202), True, 'import numpy as np\n'), ((8713, 8739), 'numpy.allclose', 'np.allclose', (['value', 'valsum'], {}), '(value, valsum)\n', (8724, 8739), True, 'import numpy as np\n'), ((8875, 8902), 'numpy.allclose', 'np.allclose', (['value', 'funcsum'], {}), '(value, funcsum)\n', (8886, 8902), True, 'import numpy as np\n'), ((9041, 9068), 'numpy.allclose', 'np.allclose', (['value', 'dictsum'], {}), '(value, dictsum)\n', (9052, 9068), True, 'import numpy as np\n'), ((9210, 9238), 'numpy.allclose', 'np.allclose', (['value2', 'valsum2'], {}), '(value2, valsum2)\n', (9221, 9238), True, 'import numpy as np\n'), ((9376, 9405), 'numpy.allclose', 'np.allclose', (['value2', 'funcsum2'], {}), '(value2, funcsum2)\n', (9387, 9405), True, 'import numpy as np\n'), ((9546, 9575), 'numpy.allclose', 'np.allclose', (['value2', 'dictsum2'], {}), '(value2, dictsum2)\n', (9557, 9575), True, 'import numpy as np\n'), ((11327, 11365), 'numpy.allclose', 'np.allclose', (['coeff[lmax:T3D.Npower]', '(0)'], {}), '(coeff[lmax:T3D.Npower], 0)\n', (11338, 11365), True, 'import numpy as np\n'), ((11396, 11428), 'numpy.allclose', 'np.allclose', (['coeff[lmin:lmax]', '(0)'], {}), '(coeff[lmin:lmax], 0)\n', (11407, 11428), True, 'import numpy as np\n'), ((11620, 11652), 'numpy.allclose', 'np.allclose', (['Ylmcoeff[0:lmin]', '(0)'], {}), '(Ylmcoeff[0:lmin], 0)\n', (11631, 11652), True, 'import numpy as np\n'), ((11683, 11718), 'numpy.allclose', 'np.allclose', (['Ylmcoeff[lmin:lmax]', '(0)'], {}), '(Ylmcoeff[lmin:lmax], 0)\n', (11694, 11718), True, 'import numpy as np\n'), ((11748, 11787), 'numpy.allclose', 'np.allclose', (['Ylmcoeff[lmax:T3D.NYlm]', '(0)'], {}), '(Ylmcoeff[lmax:T3D.NYlm], 0)\n', (11759, 11787), True, 'import numpy as np\n'), ((12343, 12355), 'numpy.dot', 'np.dot', (['u', 'u'], {}), '(u, u)\n', (12349, 12355), True, 'import numpy as np\n'), ((13171, 13203), 'numpy.allclose', 'np.allclose', (['Ylmcoeff[0:lmin]', '(0)'], {}), '(Ylmcoeff[0:lmin], 0)\n', (13182, 13203), True, 'import numpy as np\n'), ((13234, 13269), 'numpy.allclose', 'np.allclose', (['Ylmcoeff[lmin:lmax]', '(0)'], {}), '(Ylmcoeff[lmin:lmax], 0)\n', (13245, 13269), True, 'import numpy as np\n'), ((13299, 13338), 'numpy.allclose', 'np.allclose', (['Ylmcoeff[lmax:T3D.NYlm]', '(0)'], {}), '(Ylmcoeff[lmax:T3D.NYlm], 0)\n', (13310, 13338), True, 'import numpy as np\n'), ((13791, 13800), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (13797, 13800), True, 'import numpy as np\n'), ((13802, 13827), 'numpy.array', 'np.array', (['[1.0, 0.0, 0.0]'], {}), '([1.0, 0.0, 0.0])\n', (13810, 13827), True, 'import numpy as np\n'), ((13850, 13859), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (13856, 13859), True, 'import numpy as np\n'), ((13861, 13887), 'numpy.array', 'np.array', (['[-1.0, 0.0, 0.0]'], {}), '([-1.0, 0.0, 0.0])\n', (13869, 13887), True, 'import numpy as np\n'), ((13910, 13919), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (13916, 13919), True, 'import numpy as np\n'), ((13921, 13946), 'numpy.array', 'np.array', (['[0.0, 1.0, 0.0]'], {}), '([0.0, 1.0, 0.0])\n', (13929, 13946), True, 'import numpy as np\n'), ((13969, 13978), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (13975, 13978), True, 'import numpy as np\n'), ((13980, 14006), 'numpy.array', 'np.array', (['[0.0, -1.0, 0.0]'], {}), '([0.0, -1.0, 0.0])\n', (13988, 14006), True, 'import numpy as np\n'), ((14029, 14038), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (14035, 14038), True, 'import numpy as np\n'), ((14040, 14065), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 1.0])\n', (14048, 14065), True, 'import numpy as np\n'), ((14088, 14097), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (14094, 14097), True, 'import numpy as np\n'), ((14099, 14125), 'numpy.array', 'np.array', (['[0.0, 0.0, -1.0]'], {}), '([0.0, 0.0, -1.0])\n', (14107, 14125), True, 'import numpy as np\n'), ((14813, 14825), 'numpy.dot', 'np.dot', (['u', 'u'], {}), '(u, u)\n', (14819, 14825), True, 'import numpy as np\n'), ((14914, 14935), 'numpy.dot', 'np.dot', (['cval', 'cinvval'], {}), '(cval, cinvval)\n', (14920, 14935), True, 'import numpy as np\n'), ((14938, 14947), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (14944, 14947), True, 'import numpy as np\n'), ((15910, 15971), 'numpy.array', 'np.array', (['[[1.0, 6.0, 5.0], [5.0, 2.0, 4.0], [5.0, 4.0, 3.0]]'], {}), '([[1.0, 6.0, 5.0], [5.0, 2.0, 4.0], [5.0, 4.0, 3.0]])\n', (15918, 15971), True, 'import numpy as np\n'), ((15964, 15998), 'numpy.array', 'np.array', (['[2 / 3.0, 1 / 3, -1 / 2]'], {}), '([2 / 3.0, 1 / 3, -1 / 2])\n', (15972, 15998), True, 'import numpy as np\n'), ((17784, 17818), 'numpy.array', 'np.array', (['[2 / 3.0, 1 / 3, -1 / 2]'], {}), '([2 / 3.0, 1 / 3, -1 / 2])\n', (17792, 17818), True, 'import numpy as np\n'), ((18077, 18086), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (18083, 18086), True, 'import numpy as np\n'), ((18094, 18103), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (18100, 18103), True, 'import numpy as np\n'), ((18505, 18530), 'numpy.array', 'np.array', (['[1.2, 0.0, 0.0]'], {}), '([1.2, 0.0, 0.0])\n', (18513, 18530), True, 'import numpy as np\n'), ((18552, 18577), 'numpy.array', 'np.array', (['[0.0, 1.2, 0.0]'], {}), '([0.0, 1.2, 0.0])\n', (18560, 18577), True, 'import numpy as np\n'), ((18599, 18624), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.2]'], {}), '([0.0, 0.0, 1.2])\n', (18607, 18624), True, 'import numpy as np\n'), ((18646, 18674), 'numpy.array', 'np.array', (['[0.234, -0.5, 0.5]'], {}), '([0.234, -0.5, 0.5])\n', (18654, 18674), True, 'import numpy as np\n'), ((18698, 18727), 'numpy.array', 'np.array', (['[-0.24, 0.41, -1.3]'], {}), '([-0.24, 0.41, -1.3])\n', (18706, 18727), True, 'import numpy as np\n'), ((19011, 19020), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (19017, 19020), True, 'import numpy as np\n'), ((19028, 19037), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (19034, 19037), True, 'import numpy as np\n'), ((19439, 19464), 'numpy.array', 'np.array', (['[1.2, 0.0, 0.0]'], {}), '([1.2, 0.0, 0.0])\n', (19447, 19464), True, 'import numpy as np\n'), ((19486, 19511), 'numpy.array', 'np.array', (['[0.0, 1.2, 0.0]'], {}), '([0.0, 1.2, 0.0])\n', (19494, 19511), True, 'import numpy as np\n'), ((19533, 19558), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.2]'], {}), '([0.0, 0.0, 1.2])\n', (19541, 19558), True, 'import numpy as np\n'), ((19580, 19608), 'numpy.array', 'np.array', (['[0.234, -0.5, 0.5]'], {}), '([0.234, -0.5, 0.5])\n', (19588, 19608), True, 'import numpy as np\n'), ((19632, 19661), 'numpy.array', 'np.array', (['[-0.24, 0.41, -1.3]'], {}), '([-0.24, 0.41, -1.3])\n', (19640, 19661), True, 'import numpy as np\n'), ((20442, 20451), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (20448, 20451), True, 'import numpy as np\n'), ((20510, 20519), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (20516, 20519), True, 'import numpy as np\n'), ((20591, 20612), 'numpy.array', 'np.array', (['[-1.0, 0.0]'], {}), '([-1.0, 0.0])\n', (20599, 20612), True, 'import numpy as np\n'), ((20636, 20645), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (20642, 20645), True, 'import numpy as np\n'), ((20705, 20714), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (20711, 20714), True, 'import numpy as np\n'), ((20787, 20807), 'numpy.array', 'np.array', (['[1.0, 0.0]'], {}), '([1.0, 0.0])\n', (20795, 20807), True, 'import numpy as np\n'), ((21218, 21259), 'numpy.linspace', 'np.linspace', (['(0)', '(2)'], {'num': '(16)', 'endpoint': '(False)'}), '(0, 2, num=16, endpoint=False)\n', (21229, 21259), True, 'import numpy as np\n'), ((21627, 21657), 'numpy.dot', 'np.dot', (['T2D.FCpow[lind]', 'utest'], {}), '(T2D.FCpow[lind], utest)\n', (21633, 21657), True, 'import numpy as np\n'), ((21961, 21986), 'numpy.dot', 'np.dot', (['T2D.powFC[p]', 'FC0'], {}), '(T2D.powFC[p], FC0)\n', (21967, 21986), True, 'import numpy as np\n'), ((23239, 23257), 'numpy.allclose', 'np.allclose', (['v', 'Pv'], {}), '(v, Pv)\n', (23250, 23257), True, 'import numpy as np\n'), ((23287, 23307), 'numpy.allclose', 'np.allclose', (['v', 'Pvxy'], {}), '(v, Pvxy)\n', (23298, 23307), True, 'import numpy as np\n'), ((23372, 23409), 'numpy.tensordot', 'np.tensordot', (['T2D.Lproj[l]', 'v'], {'axes': '(1)'}), '(T2D.Lproj[l], v, axes=1)\n', (23384, 23409), True, 'import numpy as np\n'), ((23433, 23472), 'numpy.tensordot', 'np.tensordot', (['T2D.Lproj[l]', 'vxy'], {'axes': '(1)'}), '(T2D.Lproj[l], vxy, axes=1)\n', (23445, 23472), True, 'import numpy as np\n'), ((25066, 25078), 'numpy.dot', 'np.dot', (['u', 'u'], {}), '(u, u)\n', (25072, 25078), True, 'import numpy as np\n'), ((25412, 25438), 'numpy.allclose', 'np.allclose', (['value', 'valsum'], {}), '(value, valsum)\n', (25423, 25438), True, 'import numpy as np\n'), ((25574, 25601), 'numpy.allclose', 'np.allclose', (['value', 'funcsum'], {}), '(value, funcsum)\n', (25585, 25601), True, 'import numpy as np\n'), ((25740, 25767), 'numpy.allclose', 'np.allclose', (['value', 'dictsum'], {}), '(value, dictsum)\n', (25751, 25767), True, 'import numpy as np\n'), ((27186, 27207), 'onsager.PowerExpansion.factorial', 'PE.factorial', (['n', '(True)'], {}), '(n, True)\n', (27198, 27207), True, 'import onsager.PowerExpansion as PE\n'), ((27656, 27668), 'numpy.dot', 'np.dot', (['u', 'u'], {}), '(u, u)\n', (27662, 27668), True, 'import numpy as np\n'), ((28179, 28205), 'numpy.allclose', 'np.allclose', (['value', 'valsum'], {}), '(value, valsum)\n', (28190, 28205), True, 'import numpy as np\n'), ((28341, 28368), 'numpy.allclose', 'np.allclose', (['value', 'funcsum'], {}), '(value, funcsum)\n', (28352, 28368), True, 'import numpy as np\n'), ((28507, 28534), 'numpy.allclose', 'np.allclose', (['value', 'dictsum'], {}), '(value, dictsum)\n', (28518, 28534), True, 'import numpy as np\n'), ((28676, 28704), 'numpy.allclose', 'np.allclose', (['value2', 'valsum2'], {}), '(value2, valsum2)\n', (28687, 28704), True, 'import numpy as np\n'), ((28842, 28871), 'numpy.allclose', 'np.allclose', (['value2', 'funcsum2'], {}), '(value2, funcsum2)\n', (28853, 28871), True, 'import numpy as np\n'), ((29012, 29041), 'numpy.allclose', 'np.allclose', (['value2', 'dictsum2'], {}), '(value2, dictsum2)\n', (29023, 29041), True, 'import numpy as np\n'), ((30648, 30677), 'numpy.allclose', 'np.allclose', (['coeff[0:lmin]', '(0)'], {}), '(coeff[0:lmin], 0)\n', (30659, 30677), True, 'import numpy as np\n'), ((30707, 30745), 'numpy.allclose', 'np.allclose', (['coeff[lmax:T2D.Npower]', '(0)'], {}), '(coeff[lmax:T2D.Npower], 0)\n', (30718, 30745), True, 'import numpy as np\n'), ((30776, 30808), 'numpy.allclose', 'np.allclose', (['coeff[lmin:lmax]', '(0)'], {}), '(coeff[lmin:lmax], 0)\n', (30787, 30808), True, 'import numpy as np\n'), ((31818, 31830), 'numpy.dot', 'np.dot', (['u', 'u'], {}), '(u, u)\n', (31824, 31830), True, 'import numpy as np\n'), ((33372, 33381), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (33378, 33381), True, 'import numpy as np\n'), ((33383, 33403), 'numpy.array', 'np.array', (['[1.0, 0.0]'], {}), '([1.0, 0.0])\n', (33391, 33403), True, 'import numpy as np\n'), ((33427, 33436), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (33433, 33436), True, 'import numpy as np\n'), ((33438, 33459), 'numpy.array', 'np.array', (['[-1.0, 0.0]'], {}), '([-1.0, 0.0])\n', (33446, 33459), True, 'import numpy as np\n'), ((33483, 33492), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (33489, 33492), True, 'import numpy as np\n'), ((33494, 33514), 'numpy.array', 'np.array', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (33502, 33514), True, 'import numpy as np\n'), ((33538, 33547), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (33544, 33547), True, 'import numpy as np\n'), ((33549, 33570), 'numpy.array', 'np.array', (['[0.0, -1.0]'], {}), '([0.0, -1.0])\n', (33557, 33570), True, 'import numpy as np\n'), ((34193, 34205), 'numpy.dot', 'np.dot', (['u', 'u'], {}), '(u, u)\n', (34199, 34205), True, 'import numpy as np\n'), ((34294, 34315), 'numpy.dot', 'np.dot', (['cval', 'cinvval'], {}), '(cval, cinvval)\n', (34300, 34315), True, 'import numpy as np\n'), ((34318, 34327), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (34324, 34327), True, 'import numpy as np\n'), ((35290, 35326), 'numpy.array', 'np.array', (['[[1.0, -2.0], [-2.0, 2.0]]'], {}), '([[1.0, -2.0], [-2.0, 2.0]])\n', (35298, 35326), True, 'import numpy as np\n'), ((35324, 35350), 'numpy.array', 'np.array', (['[2 / 3.0, 1 / 3]'], {}), '([2 / 3.0, 1 / 3])\n', (35332, 35350), True, 'import numpy as np\n'), ((36937, 36963), 'numpy.array', 'np.array', (['[2 / 3.0, 1 / 3]'], {}), '([2 / 3.0, 1 / 3])\n', (36945, 36963), True, 'import numpy as np\n'), ((37222, 37231), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (37228, 37231), True, 'import numpy as np\n'), ((37239, 37248), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (37245, 37248), True, 'import numpy as np\n'), ((37597, 37617), 'numpy.array', 'np.array', (['[1.2, 0.0]'], {}), '([1.2, 0.0])\n', (37605, 37617), True, 'import numpy as np\n'), ((37640, 37660), 'numpy.array', 'np.array', (['[0.0, 1.2]'], {}), '([0.0, 1.2])\n', (37648, 37660), True, 'import numpy as np\n'), ((37683, 37703), 'numpy.array', 'np.array', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (37691, 37703), True, 'import numpy as np\n'), ((37725, 37748), 'numpy.array', 'np.array', (['[0.234, -0.5]'], {}), '([0.234, -0.5])\n', (37733, 37748), True, 'import numpy as np\n'), ((37772, 37795), 'numpy.array', 'np.array', (['[-0.24, 0.41]'], {}), '([-0.24, 0.41])\n', (37780, 37795), True, 'import numpy as np\n'), ((38079, 38088), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (38085, 38088), True, 'import numpy as np\n'), ((38096, 38105), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (38102, 38105), True, 'import numpy as np\n'), ((38454, 38474), 'numpy.array', 'np.array', (['[1.2, 0.0]'], {}), '([1.2, 0.0])\n', (38462, 38474), True, 'import numpy as np\n'), ((38497, 38517), 'numpy.array', 'np.array', (['[0.0, 1.2]'], {}), '([0.0, 1.2])\n', (38505, 38517), True, 'import numpy as np\n'), ((38540, 38560), 'numpy.array', 'np.array', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (38548, 38560), True, 'import numpy as np\n'), ((38582, 38605), 'numpy.array', 'np.array', (['[0.234, -0.5]'], {}), '([0.234, -0.5])\n', (38590, 38605), True, 'import numpy as np\n'), ((38629, 38652), 'numpy.array', 'np.array', (['[-0.24, 0.41]'], {}), '([-0.24, 0.41])\n', (38637, 38652), True, 'import numpy as np\n'), ((946, 955), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (952, 955), True, 'import numpy as np\n'), ((1009, 1018), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (1015, 1018), True, 'import numpy as np\n'), ((4555, 4576), 'onsager.PowerExpansion.factorial', 'PE.factorial', (['n', '(True)'], {}), '(n, True)\n', (4567, 4576), True, 'import onsager.PowerExpansion as PE\n'), ((6904, 6923), 'numpy.dot', 'np.dot', (['prod', 'value'], {}), '(prod, value)\n', (6910, 6923), True, 'import numpy as np\n'), ((7047, 7066), 'numpy.dot', 'np.dot', (['value', 'prod'], {}), '(value, prod)\n', (7053, 7066), True, 'import numpy as np\n'), ((17773, 17782), 'numpy.eye', 'np.eye', (['(1)'], {}), '(1)\n', (17779, 17782), True, 'import numpy as np\n'), ((18312, 18339), 'numpy.dot', 'np.dot', (['newbasis[0][1]', 'rot'], {}), '(newbasis[0][1], rot)\n', (18318, 18339), True, 'import numpy as np\n'), ((19246, 19273), 'numpy.dot', 'np.dot', (['newbasis[0][1]', 'rot'], {}), '(newbasis[0][1], rot)\n', (19252, 19273), True, 'import numpy as np\n'), ((20580, 20589), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (20586, 20589), True, 'import numpy as np\n'), ((20776, 20785), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (20782, 20785), True, 'import numpy as np\n'), ((24109, 24130), 'onsager.PowerExpansion.factorial', 'PE.factorial', (['n', '(True)'], {}), '(n, True)\n', (24121, 24130), True, 'import onsager.PowerExpansion as PE\n'), ((26433, 26452), 'numpy.dot', 'np.dot', (['prod', 'value'], {}), '(prod, value)\n', (26439, 26452), True, 'import numpy as np\n'), ((26576, 26595), 'numpy.dot', 'np.dot', (['value', 'prod'], {}), '(value, prod)\n', (26582, 26595), True, 'import numpy as np\n'), ((36926, 36935), 'numpy.eye', 'np.eye', (['(1)'], {}), '(1)\n', (36932, 36935), True, 'import numpy as np\n'), ((37404, 37431), 'numpy.dot', 'np.dot', (['newbasis[0][1]', 'rot'], {}), '(newbasis[0][1], rot)\n', (37410, 37431), True, 'import numpy as np\n'), ((38261, 38288), 'numpy.dot', 'np.dot', (['newbasis[0][1]', 'rot'], {}), '(newbasis[0][1], rot)\n', (38267, 38288), True, 'import numpy as np\n'), ((637, 650), 'numpy.sqrt', 'np.sqrt', (['(0.75)'], {}), '(0.75)\n', (644, 650), True, 'import numpy as np\n'), ((842, 855), 'numpy.sqrt', 'np.sqrt', (['(0.75)'], {}), '(0.75)\n', (849, 855), True, 'import numpy as np\n'), ((1590, 1601), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (1596, 1601), True, 'import numpy as np\n'), ((3987, 4005), 'numpy.allclose', 'np.allclose', (['v', 'Pv'], {}), '(v, Pv)\n', (3998, 4005), True, 'import numpy as np\n'), ((4043, 4064), 'numpy.allclose', 'np.allclose', (['v', 'Pvxyz'], {}), '(v, Pvxyz)\n', (4054, 4064), True, 'import numpy as np\n'), ((4124, 4142), 'numpy.allclose', 'np.allclose', (['Pv', '(0)'], {}), '(Pv, 0)\n', (4135, 4142), True, 'import numpy as np\n'), ((4180, 4201), 'numpy.allclose', 'np.allclose', (['Pvxyz', '(0)'], {}), '(Pvxyz, 0)\n', (4191, 4201), True, 'import numpy as np\n'), ((6774, 6783), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (6780, 6783), True, 'import numpy as np\n'), ((20536, 20549), 'numpy.sqrt', 'np.sqrt', (['(0.75)'], {}), '(0.75)\n', (20543, 20549), True, 'import numpy as np\n'), ((20732, 20745), 'numpy.sqrt', 'np.sqrt', (['(0.75)'], {}), '(0.75)\n', (20739, 20745), True, 'import numpy as np\n'), ((21310, 21323), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (21316, 21323), True, 'import numpy as np\n'), ((21325, 21338), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (21331, 21338), True, 'import numpy as np\n'), ((23543, 23561), 'numpy.allclose', 'np.allclose', (['v', 'Pv'], {}), '(v, Pv)\n', (23554, 23561), True, 'import numpy as np\n'), ((23599, 23619), 'numpy.allclose', 'np.allclose', (['v', 'Pvxy'], {}), '(v, Pvxy)\n', (23610, 23619), True, 'import numpy as np\n'), ((23679, 23697), 'numpy.allclose', 'np.allclose', (['Pv', '(0)'], {}), '(Pv, 0)\n', (23690, 23697), True, 'import numpy as np\n'), ((23735, 23755), 'numpy.allclose', 'np.allclose', (['Pvxy', '(0)'], {}), '(Pvxy, 0)\n', (23746, 23755), True, 'import numpy as np\n'), ((26303, 26312), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (26309, 26312), True, 'import numpy as np\n'), ((31282, 31301), 'numpy.abs', 'np.abs', (['FCcoeff[lp]'], {}), '(FCcoeff[lp])\n', (31288, 31301), True, 'import numpy as np\n'), ((31302, 31321), 'numpy.abs', 'np.abs', (['FCcoeff[lm]'], {}), '(FCcoeff[lm])\n', (31308, 31321), True, 'import numpy as np\n'), ((32876, 32895), 'numpy.abs', 'np.abs', (['FCcoeff[lp]'], {}), '(FCcoeff[lp])\n', (32882, 32895), True, 'import numpy as np\n'), ((32896, 32915), 'numpy.abs', 'np.abs', (['FCcoeff[lm]'], {}), '(FCcoeff[lm])\n', (32902, 32915), True, 'import numpy as np\n'), ((566, 579), 'numpy.sqrt', 'np.sqrt', (['(0.75)'], {}), '(0.75)\n', (573, 579), True, 'import numpy as np\n'), ((770, 783), 'numpy.sqrt', 'np.sqrt', (['(0.75)'], {}), '(0.75)\n', (777, 783), True, 'import numpy as np\n'), ((1436, 1447), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (1442, 1447), True, 'import numpy as np\n'), ((1450, 1463), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1456, 1463), True, 'import numpy as np\n'), ((1513, 1524), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (1519, 1524), True, 'import numpy as np\n'), ((1527, 1540), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1533, 1540), True, 'import numpy as np\n'), ((5682, 5696), 'numpy.dot', 'np.dot', (['u', 'vec'], {}), '(u, vec)\n', (5688, 5696), True, 'import numpy as np\n'), ((8335, 8349), 'numpy.dot', 'np.dot', (['u', 'vec'], {}), '(u, vec)\n', (8341, 8349), True, 'import numpy as np\n'), ((20469, 20482), 'numpy.sqrt', 'np.sqrt', (['(0.75)'], {}), '(0.75)\n', (20476, 20482), True, 'import numpy as np\n'), ((20664, 20677), 'numpy.sqrt', 'np.sqrt', (['(0.75)'], {}), '(0.75)\n', (20671, 20677), True, 'import numpy as np\n'), ((25211, 25225), 'numpy.dot', 'np.dot', (['u', 'vec'], {}), '(u, vec)\n', (25217, 25225), True, 'import numpy as np\n'), ((27801, 27815), 'numpy.dot', 'np.dot', (['u', 'vec'], {}), '(u, vec)\n', (27807, 27815), True, 'import numpy as np\n'), ((31210, 31231), 'numpy.abs', 'np.abs', (['FCcoeff[lind]'], {}), '(FCcoeff[lind])\n', (31216, 31231), True, 'import numpy as np\n'), ((32804, 32825), 'numpy.abs', 'np.abs', (['FCcoeff[lind]'], {}), '(FCcoeff[lind])\n', (32810, 32825), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""
author: <NAME>
"""
import numpy as np
import imageio
class MNISTImageReader():
"""
brief: read image data from .idx3-ubyte file as numpy array
use cases:
# case 1
with MNISTImageReader('t10k-images.idx3-ubyte') as reader:
# the reader was designed as an iterable object.
for index, image in reader:
...
# case 2
reader = MNISTImageReader('t10k-images.idx3-ubyte')
reader.open()
# read 10 images from source file.
# there will be two returned value, the first one is an index list corresponding to returned images,
# the second one is a multi-dimensional numpy array which hold the image data.
index, images = reader.read(10)
reader.close()
# case 3
with MNISTImageReader('t10k-images.idx3-ubyte') as reader:
index, images = reader.read(10) # Of course, you can access images using read() within 'with' context.
"""
_expected_magic = 2051
_current_index = 0
def __init__(self, path):
if not path.endswith('.idx3-ubyte'):
raise NameError("File must be a '.idx3-ubyte' extension")
self.__path = path
self.__file_object = None
def __enter__(self):
self.__file_object = open(self.__path, 'rb')
magic_number = int.from_bytes(self.__file_object.read(4), byteorder='big')
if magic_number != self._expected_magic:
raise TypeError("The File is not a properly formatted .idx3-ubyte file!")
self.__num_of_images = int.from_bytes(self.__file_object.read(4), byteorder='big')
print(f'Total {self.__num_of_images} images ...')
self.__num_of_rows = int.from_bytes(self.__file_object.read(4), byteorder='big')
self.__num_of_cols = int.from_bytes(self.__file_object.read(4), byteorder='big')
return self
def __exit__(self, type, val, tb):
self.__file_object.close()
def __iter__(self):
return self
def __next__(self):
raw_image_data = self.__file_object.read(self.__num_of_rows * self.__num_of_cols)
if self.__file_object is None or raw_image_data == b'':
raise StopIteration
else:
self._current_index += 1
return self._current_index, np.frombuffer(raw_image_data, dtype=np.uint8).reshape((self.__num_of_rows, self.__num_of_cols))
def read(self, num):
feasible_num = num if self.__num_of_images - self._current_index >= num else self.__num_of_images - self._current_index
raw_image_data = self.__file_object.read(self.__num_of_rows * self.__num_of_cols * feasible_num)
index = range(self._current_index + 1, self._current_index + feasible_num + 1)
return index, np.frombuffer(raw_image_data, dtype=np.uint8).reshape((feasible_num, self.__num_of_rows, self.__num_of_cols))
def open(self):
self.__file_object = open(self.__path, 'rb')
magic_number = int.from_bytes(self.__file_object.read(4), byteorder='big')
if magic_number != self._expected_magic:
raise TypeError("The File is not a properly formatted .idx3-ubyte file!")
self.__num_of_images = int.from_bytes(self.__file_object.read(4), byteorder='big')
print(f'Total {self.__num_of_images} images ...')
self.__num_of_rows = int.from_bytes(self.__file_object.read(4), byteorder='big')
self.__num_of_cols = int.from_bytes(self.__file_object.read(4), byteorder='big')
def close(self):
self.__file_object.close()
class MNISTLabelReader():
"""
brief: read label data from .idx1-ubyte file as integer (0, 1, ..., 9)
use cases:
# case 1
with MNISTLabelReader('t10k-labels.idx1-ubyte') as reader:
# the reader was designed as an iterable object.
for index, label in reader:
...
# case 2
reader = MNISTLabelReader('t10k-labels.idx1-ubyte')
reader.open()
# read 10 labels from source file.
# there will be two returned value, the first one is an index list corresponding to returned labels,
# the second one is a numpy array which hold the label data.
index, labels = reader.read(10)
reader.close()
# case 3
with MNISTImageReader('t10k-images.idx3-ubyte') as reader:
index, labels = reader.read(10) # Of course, you can access labels using read() within 'with' context.
"""
_expected_magic = 2049
_current_index = 0
def __init__(self, path):
if not path.endswith('.idx1-ubyte'):
raise NameError("File must be a '.idx1-ubyte' extension")
self.__file_path = path
self.__file_object = None
def __enter__(self):
self.__file_object = open(self.__file_path, 'rb')
magic_number = int.from_bytes(self.__file_object.read(4), byteorder='big')
if magic_number != self._expected_magic:
raise TypeError("The File is not a properly formatted .idx1-ubyte file!")
self.__num_of_labels = int.from_bytes(self.__file_object.read(4), byteorder='big')
print(f'Total {self.__num_of_labels} labels ...')
return self
def __exit__(self, *args, **kwargs):
self.__file_object.close()
def __iter__(self):
return self
def __next__(self):
raw_label = self.__file_object.read(1)
if self.__file_object is None or raw_label == b'':
raise StopIteration
else:
self._current_index += 1
return self._current_index, int.from_bytes(raw_label, byteorder='big')
def read(self, num):
feasible_num = num if self.__num_of_labels - self._current_index >= num else self.__num_of_labels - self._current_index
raw_label_data = self.__file_object.read(feasible_num)
index = range(self._current_index + 1, self._current_index + feasible_num + 1)
return index, np.frombuffer(raw_label_data, dtype=np.uint8).reshape((feasible_num,))
def open(self):
self.__file_object = open(self.__file_path, 'rb')
magic_number = int.from_bytes(self.__file_object.read(4), byteorder='big')
if magic_number != self._expected_magic:
raise TypeError("The File is not a properly formatted .idx1-ubyte file!")
self.__num_of_labels = int.from_bytes(self.__file_object.read(4), byteorder='big')
print(f'Total {self.__num_of_labels} labels ...')
def close(self):
self.__file_object.close()
|
[
"numpy.frombuffer"
] |
[((2822, 2867), 'numpy.frombuffer', 'np.frombuffer', (['raw_image_data'], {'dtype': 'np.uint8'}), '(raw_image_data, dtype=np.uint8)\n', (2835, 2867), True, 'import numpy as np\n'), ((6043, 6088), 'numpy.frombuffer', 'np.frombuffer', (['raw_label_data'], {'dtype': 'np.uint8'}), '(raw_label_data, dtype=np.uint8)\n', (6056, 6088), True, 'import numpy as np\n'), ((2358, 2403), 'numpy.frombuffer', 'np.frombuffer', (['raw_image_data'], {'dtype': 'np.uint8'}), '(raw_image_data, dtype=np.uint8)\n', (2371, 2403), True, 'import numpy as np\n')]
|
"""
MIT License
Copyright (c) 2019 Chodera lab // Memorial Sloan Kettering Cancer Center,
Weill Cornell Medical College, Nicea Research, and Authors
Authors:
<NAME>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from sklearn import metrics
import tensorflow as tf
import gin
import lime
import time
import pandas as pd
import numpy as np
import os
N_EPOCH = 30
df = pd.read_csv('data/Lipophilicity.csv')
df = df[~df['smiles'].str.contains('B')]
df = df[~df['smiles'].str.contains('\%')]
df = df[~df['smiles'].str.contains('\.')]
df = df[~df['smiles'].str.contains('Se')]
df = df[~df['smiles'].str.contains('Si')]
df = df[~df['smiles'].str.contains('S@@')]
df = df[~df['smiles'].str.contains('6')]
df = df[~df['smiles'].str.contains('7')]
df = df[~df['smiles'].str.contains('8')]
df = df[~df['smiles'].str.contains('9')]
df = df[~df['smiles'].str.contains('\+')]
df = df[~df['smiles'].str.contains('\-')]
x_array = df[['smiles']].values.flatten()
y_array = df[['exp']].values.flatten()
y_array = (y_array - np.mean(y_array) / np.std(y_array))
n_samples = y_array.shape[0]
ds_all = gin.i_o.from_smiles.to_mols_with_attributes(x_array, y_array)
ds_all = ds_all.shuffle(n_samples)
ds_all = gin.probabilistic.gn.GraphNet.batch(ds_all, 256).cache(
str(os.getcwd()) + '/temp')
n_batched_samples_total = gin.probabilistic.gn.GraphNet.get_number_batches(
ds_all)
n_batched_samples_total = int(n_batched_samples_total)
n_global_te = int(0.2 * n_batched_samples_total)
ds_global_tr = ds_all.skip(n_global_te)
ds_global_te = ds_all.take(n_global_te)
config_space = {
'D_E': [32, 64, 128],
'D_V': [32, 64, 128],
'D_U': [32, 64, 128],
'phi_e_0': [32, 64, 128],
'phi_e_a_0': ['elu', 'relu', 'leaky_relu', 'tanh', 'sigmoid'],
'phi_e_1': [32, 64, 128],
'phi_e_a_1': ['elu', 'relu', 'leaky_relu', 'tanh', 'sigmoid'],
'phi_v_0': [32, 64, 128],
'phi_v_a_0': ['elu', 'relu', 'leaky_relu', 'tanh', 'sigmoid'],
'phi_v_1': [32, 64, 128],
'phi_v_a_1': ['elu', 'relu', 'leaky_relu', 'tanh', 'sigmoid'],
'phi_u_0': [32, 64, 128],
'phi_u_a_0': ['elu', 'relu', 'leaky_relu', 'tanh', 'sigmoid'],
'phi_u_1': [32, 64, 128],
'phi_u_a_1': ['elu', 'relu', 'leaky_relu', 'tanh', 'sigmoid'],
'f_r_0': [32, 64, 128],
'f_r_a_0': ['elu', 'relu', 'leaky_relu', 'tanh', 'sigmoid'],
'f_r_1': [32, 64, 128],
'f_r_a_1': ['elu', 'relu', 'leaky_relu', 'tanh', 'sigmoid'],
'gru_unit': [64, 128, 256, 512],
'learning_rate': [1e-5, 1e-4, 1e-3, 1e-2]
}
def init(point):
global gn
global optimizer
class f_r(tf.keras.Model):
def __init__(
self,
config=(
point['f_r_0'],
point['f_r_a_0'],
point['f_r_1'],
point['f_r_a_1']
)):
super(f_r, self).__init__()
self.d0 = tf.keras.layers.Dense(config[0], activation=config[1])
self.d1 = tf.keras.layers.Dense(config[2], activation=config[3])
@tf.function
def call(self, h_e, h_v, h_u,
h_e_history, h_v_history, h_u_history,
atom_in_mol, bond_in_mol):
x = self.d0(h_u)
x = self.d1(x)
return x
class f_e(tf.keras.Model):
""" Featurization of edges.
Here we split the $\sigma$ and $\pi$ component of bonds
into two channels, and featurize them seperately.
"""
def __init__(
self,
d_sigma_units=point['d_sigma_units'],
d_pi_units=point['d_pi_units'],
D_E=point['D_E']):
super(f_e, self).__init__()
self.D_E = D_E
# sigma
self.d_sigma_0 = tf.Variable(
tf.zeros(
shape=(1, d_sigma_units),
dtype=tf.float32))
self.d_sigma_1 = tf.keras.layers.Dense(
int(self.D_E // 2))
# pi
self.d_pi_0 = tf.keras.layers.Dense(
d_pi_units)
self.d_pi_1 = tf.keras.layers.Dense(
int(self.D_E // 2))
@tf.function
def call(self, x):
# determine whether there is $\pi$ component in the bond
has_pi = tf.greater(
x,
tf.constant(1, dtype=tf.float32))
# calculate the sigma component of the bond
x_sigma = tf.tile(
self.d_sigma_1(self.d_sigma_0),
[tf.shape(x, tf.int64)[0], 1])
# calculate the pi component of the bond
x_pi = tf.where(
has_pi,
# if has pi:
self.d_pi_1(
self.d_pi_0(
tf.math.subtract(
x,
tf.constant(1, dtype=tf.float32)))),
# else:
tf.zeros(
shape=(self.D_E // 2, ),
dtype=tf.float32))
x = tf.concat(
[
x_sigma,
x_pi
],
axis=1)
return x
class f_v(tf.keras.Model):
def __init__(self, units=point['D_V']):
super(f_v, self).__init__()
self.d = tf.keras.layers.Dense(units)
@tf.function
def call(self, x):
x = tf.one_hot(x, 8)
x.set_shape([None, 8])
return self.d(x)
class phi_u(tf.keras.Model):
def __init__(
self,
config=(
point['phi_u_0'],
point['phi_u_a_0'],
point['phi_u_1'],
point['phi_u_a_1']
),
gru_units=point['D_U']):
super(phi_u, self).__init__()
self.d = lime.nets.for_gn.ConcatenateThenFullyConnect(config)
self.gru = tf.keras.layers.GRU(
units=gru_units,
stateful=True)
@tf.function
def call(self, h_u, h_u_0, h_e_bar, h_v_bar):
x = self.d(h_u, h_u_0, h_e_bar, h_v_bar)
if tf.equal(
h_u,
h_u_0):
self.gru.reset_states()
x = self.gru(
tf.expand_dims(
x,
1))
return x
class phi_v(tf.keras.Model):
def __init__(
self,
config=(
point['phi_v_0'],
point['phi_v_a_0'],
point['phi_v_1'],
point['phi_v_a_1']
),
gru_units=point['D_V']):
super(phi_v, self).__init__()
self.d = lime.nets.for_gn.ConcatenateThenFullyConnect(config)
self.gru = tf.keras.layers.GRU(
units=gru_units,
stateful=True)
@tf.function
def call(self, h_v, h_v_0, h_e_bar_i, h_u_i):
x = self.d(h_v, h_v_0, h_e_bar_i, h_u_i)
if tf.equal(
h_v,
h_v_0):
self.gru.reset_states()
x = self.gru(
tf.expand_dims(
x,
1))
return x
class phi_e(tf.keras.Model):
def __init__(
self,
config=(
point['phi_e_0'],
point['phi_e_a_0'],
point['phi_e_1'],
point['phi_e_a_1']
),
gru_units=point['D_E']):
super(phi_e, self).__init__()
self.d = lime.nets.for_gn.ConcatenateThenFullyConnect(config)
self.gru = tf.keras.layers.GRU(
units=gru_units,
stateful=True)
@tf.function
def call(self, h_e, h_e_0, h_left, h_right, h_u_i):
x = self.d(h_e, h_e_0, h_left, h_right, h_u_i)
if tf.equal(
h_e,
h_e_0):
self.gru.reset_states()
x = self.gru(
tf.expand_dims(
x,
1))
return x
gn = gin.probabilistic.gn.GraphNet(
f_e=f_e(),
f_v=f_v(),
f_u=(lambda atoms, adjacency_map, batched_attr_in_mol: \
tf.tile(
tf.zeros((1, point['D_U'])),
[
tf.math.count_nonzero(batched_attr_in_mol),
1
]
)),
phi_e=phi_e(),
phi_v=phi_v(),
phi_u=phi_u(),
f_r=f_r(),
repeat=5)
optimizer = tf.keras.optimizers.Adam(point['learning_rate'])
def obj_fn(point):
point = dict(zip(config_space.keys(), point))
n_te = int(0.2 * 0.8 * n_batched_samples_total)
ds = ds_global_tr.shuffle(int(0.8 * n_batched_samples_total))
r2_train = []
r2_test = []
mse_train = []
mse_test = []
for idx in range(5):
init(point)
y_true_train = tf.constant([-1], dtype=tf.float32)
y_pred_train = tf.constant([-1], dtype=tf.float32)
y_true_test = tf.constant([-1], dtype=tf.float32)
y_pred_test = tf.constant([-1], dtype=tf.float32)
ds_tr = ds.take(idx * n_te).concatenate(
ds.skip((idx + 1) * n_te).take((4 - idx) * n_te))
ds_te = ds.skip(idx * n_te).take(n_te)
for dummy_idx in range(N_EPOCH):
for atoms, adjacency_map, atom_in_mol, bond_in_mol, y, y_mask \
in ds_tr:
with tf.GradientTape() as tape:
y_hat = gn(
atoms,
adjacency_map,
atom_in_mol=atom_in_mol,
bond_in_mol=bond_in_mol,
batched_attr_in_mol=y_mask)
y = tf.boolean_mask(
y,
y_mask)
loss = tf.losses.mean_squared_error(y, y_hat)
variables = gn.variables
grad = tape.gradient(loss, variables)
optimizer.apply_gradients(
zip(grad, variables))
gn.switch(True)
for atoms, adjacency_map, atom_in_mol, bond_in_mol, y, y_mask \
in ds_te:
y_hat = gn(
atoms,
adjacency_map,
atom_in_mol=atom_in_mol,
bond_in_mol=bond_in_mol,
batched_attr_in_mol=y_mask)
y = tf.boolean_mask(
y,
y_mask)
y_true_test = tf.concat(
[
y_true_test,
tf.reshape(y, [-1])
],
axis=0)
y_pred_test = tf.concat(
[
y_pred_test,
tf.reshape(y_hat, [-1])
],
axis=0)
for atoms, adjacency_map, atom_in_mol, bond_in_mol, y, y_mask \
in ds_tr:
y_hat = gn(
atoms,
adjacency_map,
atom_in_mol=atom_in_mol,
bond_in_mol=bond_in_mol,
batched_attr_in_mol=y_mask)
y = tf.boolean_mask(
y,
y_mask)
y_true_train = tf.concat(
[
y_true_train,
tf.reshape(y, [-1])
],
axis=0)
y_pred_train = tf.concat(
[
y_pred_train,
tf.reshape(y_hat, [-1])
],
axis=0)
y_true_train = y_true_train[1:]
y_pred_train = y_pred_train[1:]
y_true_test = y_true_test[1:]
y_pred_test = y_pred_test[1:]
r2_train.append(metrics.r2_score(y_true_train, y_pred_train))
r2_test.append(metrics.r2_score(y_true_test, y_pred_test))
mse_train.append(
tf.losses.mean_squared_error(
y_true_train,
y_pred_train).numpy())
mse_test.append(
tf.losses.mean_squared_error(
y_true_test,
y_pred_test).numpy())
y_true_global_test = tf.constant([-1], dtype=tf.float32)
y_pred_global_test = tf.constant([-1], dtype=tf.float32)
init(point)
time0 = time.time()
for dummy_idx in range(N_EPOCH):
for atoms, adjacency_map, atom_in_mol, bond_in_mol, y, y_mask \
in ds_global_tr:
with tf.GradientTape() as tape:
y_hat = gn.call(
atoms,
adjacency_map,
atom_in_mol=atom_in_mol,
bond_in_mol=bond_in_mol,
batched_attr_in_mol=y_mask)
y = tf.boolean_mask(
y,
y_mask)
loss = tf.losses.mean_squared_error(y, y_hat)
variables = gn.variables
grad = tape.gradient(loss, variables)
optimizer.apply_gradients(
zip(grad, variables))
time1 = time.time()
gn.switch(True)
for atoms, adjacency_map, atom_in_mol, bond_in_mol, y, y_mask \
in ds_global_te:
y_hat = gn(
atoms,
adjacency_map,
atom_in_mol=atom_in_mol,
bond_in_mol=bond_in_mol,
batched_attr_in_mol=y_mask)
y = tf.boolean_mask(
y,
y_mask)
y_true_global_test = tf.concat(
[
y_true_global_test,
tf.reshape(y, [-1])
],
axis=0)
y_pred_global_test = tf.concat(
[
y_pred_global_test,
tf.reshape(y_hat, [-1])
],
axis=0)
y_true_global_test = y_true_global_test[1:]
y_pred_global_test = y_pred_global_test[1:]
mse_global_test = tf.losses.mean_squared_error(y_true_global_test,
y_pred_global_test)
r2_global_test = metrics.r2_score(y_true_global_test,
y_pred_global_test)
print(point, flush=True)
print('training time %s ' % (time1 - time0), flush=True)
print('mse_train %s +- %s' % (np.mean(mse_train), np.std(mse_train)),
flush=True)
print('r2_train %s +- %s' % (np.mean(r2_train), np.std(r2_train)),
flush=True)
print('mse_test %s +- %s' % (np.mean(mse_train), np.std(mse_train)),
flush=True)
print('r2_test %s +- %s' % (np.mean(r2_test), np.std(r2_test)),
flush=True)
print('mse_global_test %s' % mse_global_test.numpy(),
flush=True)
print('r2_global_test %s ' % r2_global_test, flush=True)
return mse_test
lime.optimize.dummy.optimize(obj_fn, config_space.values(), 1000)
|
[
"tensorflow.keras.layers.Dense",
"pandas.read_csv",
"sklearn.metrics.r2_score",
"tensorflow.reshape",
"gin.probabilistic.gn.GraphNet.batch",
"numpy.mean",
"lime.nets.for_gn.ConcatenateThenFullyConnect",
"tensorflow.one_hot",
"numpy.std",
"tensorflow.concat",
"tensorflow.keras.optimizers.Adam",
"tensorflow.equal",
"tensorflow.losses.mean_squared_error",
"gin.i_o.from_smiles.to_mols_with_attributes",
"tensorflow.keras.layers.GRU",
"tensorflow.constant",
"tensorflow.math.count_nonzero",
"gin.probabilistic.gn.GraphNet.get_number_batches",
"tensorflow.expand_dims",
"os.getcwd",
"time.time",
"tensorflow.shape",
"tensorflow.zeros",
"tensorflow.boolean_mask",
"tensorflow.GradientTape"
] |
[((1353, 1390), 'pandas.read_csv', 'pd.read_csv', (['"""data/Lipophilicity.csv"""'], {}), "('data/Lipophilicity.csv')\n", (1364, 1390), True, 'import pandas as pd\n'), ((2069, 2130), 'gin.i_o.from_smiles.to_mols_with_attributes', 'gin.i_o.from_smiles.to_mols_with_attributes', (['x_array', 'y_array'], {}), '(x_array, y_array)\n', (2112, 2130), False, 'import gin\n'), ((2291, 2347), 'gin.probabilistic.gn.GraphNet.get_number_batches', 'gin.probabilistic.gn.GraphNet.get_number_batches', (['ds_all'], {}), '(ds_all)\n', (2339, 2347), False, 'import gin\n'), ((9715, 9763), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', (["point['learning_rate']"], {}), "(point['learning_rate'])\n", (9739, 9763), True, 'import tensorflow as tf\n'), ((13333, 13368), 'tensorflow.constant', 'tf.constant', (['[-1]'], {'dtype': 'tf.float32'}), '([-1], dtype=tf.float32)\n', (13344, 13368), True, 'import tensorflow as tf\n'), ((13394, 13429), 'tensorflow.constant', 'tf.constant', (['[-1]'], {'dtype': 'tf.float32'}), '([-1], dtype=tf.float32)\n', (13405, 13429), True, 'import tensorflow as tf\n'), ((13460, 13471), 'time.time', 'time.time', ([], {}), '()\n', (13469, 13471), False, 'import time\n'), ((14218, 14229), 'time.time', 'time.time', ([], {}), '()\n', (14227, 14229), False, 'import time\n'), ((15039, 15107), 'tensorflow.losses.mean_squared_error', 'tf.losses.mean_squared_error', (['y_true_global_test', 'y_pred_global_test'], {}), '(y_true_global_test, y_pred_global_test)\n', (15067, 15107), True, 'import tensorflow as tf\n'), ((15137, 15193), 'sklearn.metrics.r2_score', 'metrics.r2_score', (['y_true_global_test', 'y_pred_global_test'], {}), '(y_true_global_test, y_pred_global_test)\n', (15153, 15193), False, 'from sklearn import metrics\n'), ((1994, 2010), 'numpy.mean', 'np.mean', (['y_array'], {}), '(y_array)\n', (2001, 2010), True, 'import numpy as np\n'), ((2013, 2028), 'numpy.std', 'np.std', (['y_array'], {}), '(y_array)\n', (2019, 2028), True, 'import numpy as np\n'), ((2176, 2224), 'gin.probabilistic.gn.GraphNet.batch', 'gin.probabilistic.gn.GraphNet.batch', (['ds_all', '(256)'], {}), '(ds_all, 256)\n', (2211, 2224), False, 'import gin\n'), ((10095, 10130), 'tensorflow.constant', 'tf.constant', (['[-1]'], {'dtype': 'tf.float32'}), '([-1], dtype=tf.float32)\n', (10106, 10130), True, 'import tensorflow as tf\n'), ((10154, 10189), 'tensorflow.constant', 'tf.constant', (['[-1]'], {'dtype': 'tf.float32'}), '([-1], dtype=tf.float32)\n', (10165, 10189), True, 'import tensorflow as tf\n'), ((10212, 10247), 'tensorflow.constant', 'tf.constant', (['[-1]'], {'dtype': 'tf.float32'}), '([-1], dtype=tf.float32)\n', (10223, 10247), True, 'import tensorflow as tf\n'), ((10270, 10305), 'tensorflow.constant', 'tf.constant', (['[-1]'], {'dtype': 'tf.float32'}), '([-1], dtype=tf.float32)\n', (10281, 10305), True, 'import tensorflow as tf\n'), ((14539, 14565), 'tensorflow.boolean_mask', 'tf.boolean_mask', (['y', 'y_mask'], {}), '(y, y_mask)\n', (14554, 14565), True, 'import tensorflow as tf\n'), ((2240, 2251), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2249, 2251), False, 'import os\n'), ((3875, 3929), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['config[0]'], {'activation': 'config[1]'}), '(config[0], activation=config[1])\n', (3896, 3929), True, 'import tensorflow as tf\n'), ((3952, 4006), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['config[2]'], {'activation': 'config[3]'}), '(config[2], activation=config[3])\n', (3973, 4006), True, 'import tensorflow as tf\n'), ((5002, 5035), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['d_pi_units'], {}), '(d_pi_units)\n', (5023, 5035), True, 'import tensorflow as tf\n'), ((6030, 6064), 'tensorflow.concat', 'tf.concat', (['[x_sigma, x_pi]'], {'axis': '(1)'}), '([x_sigma, x_pi], axis=1)\n', (6039, 6064), True, 'import tensorflow as tf\n'), ((6320, 6348), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['units'], {}), '(units)\n', (6341, 6348), True, 'import tensorflow as tf\n'), ((6414, 6430), 'tensorflow.one_hot', 'tf.one_hot', (['x', '(8)'], {}), '(x, 8)\n', (6424, 6430), True, 'import tensorflow as tf\n'), ((6876, 6928), 'lime.nets.for_gn.ConcatenateThenFullyConnect', 'lime.nets.for_gn.ConcatenateThenFullyConnect', (['config'], {}), '(config)\n', (6920, 6928), False, 'import lime\n'), ((6952, 7003), 'tensorflow.keras.layers.GRU', 'tf.keras.layers.GRU', ([], {'units': 'gru_units', 'stateful': '(True)'}), '(units=gru_units, stateful=True)\n', (6971, 7003), True, 'import tensorflow as tf\n'), ((7181, 7201), 'tensorflow.equal', 'tf.equal', (['h_u', 'h_u_0'], {}), '(h_u, h_u_0)\n', (7189, 7201), True, 'import tensorflow as tf\n'), ((7785, 7837), 'lime.nets.for_gn.ConcatenateThenFullyConnect', 'lime.nets.for_gn.ConcatenateThenFullyConnect', (['config'], {}), '(config)\n', (7829, 7837), False, 'import lime\n'), ((7861, 7912), 'tensorflow.keras.layers.GRU', 'tf.keras.layers.GRU', ([], {'units': 'gru_units', 'stateful': '(True)'}), '(units=gru_units, stateful=True)\n', (7880, 7912), True, 'import tensorflow as tf\n'), ((8090, 8110), 'tensorflow.equal', 'tf.equal', (['h_v', 'h_v_0'], {}), '(h_v, h_v_0)\n', (8098, 8110), True, 'import tensorflow as tf\n'), ((8695, 8747), 'lime.nets.for_gn.ConcatenateThenFullyConnect', 'lime.nets.for_gn.ConcatenateThenFullyConnect', (['config'], {}), '(config)\n', (8739, 8747), False, 'import lime\n'), ((8771, 8822), 'tensorflow.keras.layers.GRU', 'tf.keras.layers.GRU', ([], {'units': 'gru_units', 'stateful': '(True)'}), '(units=gru_units, stateful=True)\n', (8790, 8822), True, 'import tensorflow as tf\n'), ((9012, 9032), 'tensorflow.equal', 'tf.equal', (['h_e', 'h_e_0'], {}), '(h_e, h_e_0)\n', (9020, 9032), True, 'import tensorflow as tf\n'), ((11602, 11628), 'tensorflow.boolean_mask', 'tf.boolean_mask', (['y', 'y_mask'], {}), '(y, y_mask)\n', (11617, 11628), True, 'import tensorflow as tf\n'), ((12327, 12353), 'tensorflow.boolean_mask', 'tf.boolean_mask', (['y', 'y_mask'], {}), '(y, y_mask)\n', (12342, 12353), True, 'import tensorflow as tf\n'), ((12921, 12965), 'sklearn.metrics.r2_score', 'metrics.r2_score', (['y_true_train', 'y_pred_train'], {}), '(y_true_train, y_pred_train)\n', (12937, 12965), False, 'from sklearn import metrics\n'), ((12990, 13032), 'sklearn.metrics.r2_score', 'metrics.r2_score', (['y_true_test', 'y_pred_test'], {}), '(y_true_test, y_pred_test)\n', (13006, 13032), False, 'from sklearn import metrics\n'), ((4775, 4827), 'tensorflow.zeros', 'tf.zeros', ([], {'shape': '(1, d_sigma_units)', 'dtype': 'tf.float32'}), '(shape=(1, d_sigma_units), dtype=tf.float32)\n', (4783, 4827), True, 'import tensorflow as tf\n'), ((5324, 5356), 'tensorflow.constant', 'tf.constant', (['(1)'], {'dtype': 'tf.float32'}), '(1, dtype=tf.float32)\n', (5335, 5356), True, 'import tensorflow as tf\n'), ((5919, 5969), 'tensorflow.zeros', 'tf.zeros', ([], {'shape': '(self.D_E // 2,)', 'dtype': 'tf.float32'}), '(shape=(self.D_E // 2,), dtype=tf.float32)\n', (5927, 5969), True, 'import tensorflow as tf\n'), ((7319, 7339), 'tensorflow.expand_dims', 'tf.expand_dims', (['x', '(1)'], {}), '(x, 1)\n', (7333, 7339), True, 'import tensorflow as tf\n'), ((8228, 8248), 'tensorflow.expand_dims', 'tf.expand_dims', (['x', '(1)'], {}), '(x, 1)\n', (8242, 8248), True, 'import tensorflow as tf\n'), ((9150, 9170), 'tensorflow.expand_dims', 'tf.expand_dims', (['x', '(1)'], {}), '(x, 1)\n', (9164, 9170), True, 'import tensorflow as tf\n'), ((13628, 13645), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (13643, 13645), True, 'import tensorflow as tf\n'), ((13909, 13935), 'tensorflow.boolean_mask', 'tf.boolean_mask', (['y', 'y_mask'], {}), '(y, y_mask)\n', (13924, 13935), True, 'import tensorflow as tf\n'), ((14001, 14039), 'tensorflow.losses.mean_squared_error', 'tf.losses.mean_squared_error', (['y', 'y_hat'], {}), '(y, y_hat)\n', (14029, 14039), True, 'import tensorflow as tf\n'), ((14698, 14717), 'tensorflow.reshape', 'tf.reshape', (['y', '[-1]'], {}), '(y, [-1])\n', (14708, 14717), True, 'import tensorflow as tf\n'), ((14860, 14883), 'tensorflow.reshape', 'tf.reshape', (['y_hat', '[-1]'], {}), '(y_hat, [-1])\n', (14870, 14883), True, 'import tensorflow as tf\n'), ((15327, 15345), 'numpy.mean', 'np.mean', (['mse_train'], {}), '(mse_train)\n', (15334, 15345), True, 'import numpy as np\n'), ((15347, 15364), 'numpy.std', 'np.std', (['mse_train'], {}), '(mse_train)\n', (15353, 15364), True, 'import numpy as np\n'), ((15420, 15437), 'numpy.mean', 'np.mean', (['r2_train'], {}), '(r2_train)\n', (15427, 15437), True, 'import numpy as np\n'), ((15439, 15455), 'numpy.std', 'np.std', (['r2_train'], {}), '(r2_train)\n', (15445, 15455), True, 'import numpy as np\n'), ((15511, 15529), 'numpy.mean', 'np.mean', (['mse_train'], {}), '(mse_train)\n', (15518, 15529), True, 'import numpy as np\n'), ((15531, 15548), 'numpy.std', 'np.std', (['mse_train'], {}), '(mse_train)\n', (15537, 15548), True, 'import numpy as np\n'), ((15603, 15619), 'numpy.mean', 'np.mean', (['r2_test'], {}), '(r2_test)\n', (15610, 15619), True, 'import numpy as np\n'), ((15621, 15636), 'numpy.std', 'np.std', (['r2_test'], {}), '(r2_test)\n', (15627, 15636), True, 'import numpy as np\n'), ((9418, 9445), 'tensorflow.zeros', 'tf.zeros', (["(1, point['D_U'])"], {}), "((1, point['D_U']))\n", (9426, 9445), True, 'import tensorflow as tf\n'), ((10631, 10648), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (10646, 10648), True, 'import tensorflow as tf\n'), ((10935, 10961), 'tensorflow.boolean_mask', 'tf.boolean_mask', (['y', 'y_mask'], {}), '(y, y_mask)\n', (10950, 10961), True, 'import tensorflow as tf\n'), ((11039, 11077), 'tensorflow.losses.mean_squared_error', 'tf.losses.mean_squared_error', (['y', 'y_hat'], {}), '(y, y_hat)\n', (11067, 11077), True, 'import tensorflow as tf\n'), ((11771, 11790), 'tensorflow.reshape', 'tf.reshape', (['y', '[-1]'], {}), '(y, [-1])\n', (11781, 11790), True, 'import tensorflow as tf\n'), ((11943, 11966), 'tensorflow.reshape', 'tf.reshape', (['y_hat', '[-1]'], {}), '(y_hat, [-1])\n', (11953, 11966), True, 'import tensorflow as tf\n'), ((12498, 12517), 'tensorflow.reshape', 'tf.reshape', (['y', '[-1]'], {}), '(y, [-1])\n', (12508, 12517), True, 'import tensorflow as tf\n'), ((12672, 12695), 'tensorflow.reshape', 'tf.reshape', (['y_hat', '[-1]'], {}), '(y_hat, [-1])\n', (12682, 12695), True, 'import tensorflow as tf\n'), ((13072, 13128), 'tensorflow.losses.mean_squared_error', 'tf.losses.mean_squared_error', (['y_true_train', 'y_pred_train'], {}), '(y_true_train, y_pred_train)\n', (13100, 13128), True, 'import tensorflow as tf\n'), ((13208, 13262), 'tensorflow.losses.mean_squared_error', 'tf.losses.mean_squared_error', (['y_true_test', 'y_pred_test'], {}), '(y_true_test, y_pred_test)\n', (13236, 13262), True, 'import tensorflow as tf\n'), ((5511, 5532), 'tensorflow.shape', 'tf.shape', (['x', 'tf.int64'], {}), '(x, tf.int64)\n', (5519, 5532), True, 'import tensorflow as tf\n'), ((9486, 9528), 'tensorflow.math.count_nonzero', 'tf.math.count_nonzero', (['batched_attr_in_mol'], {}), '(batched_attr_in_mol)\n', (9507, 9528), True, 'import tensorflow as tf\n'), ((5841, 5873), 'tensorflow.constant', 'tf.constant', (['(1)'], {'dtype': 'tf.float32'}), '(1, dtype=tf.float32)\n', (5852, 5873), True, 'import tensorflow as tf\n')]
|
import sys
import os.path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(sys.modules[__name__].__file__), "..")))
import matplotlib.pyplot as plt
import numpy as np
from sklearn.neighbors import KernelDensity
from tensorflow.python.keras.datasets import mnist
from data.data_handler import ProcessedNNHandler
from definitions import DATA_PATH
from evaluation.create_plot import save_plot
def configure_plt():
plt.rc('font', size=14)
plt.rc('axes', titlesize=14)
plt.rc('axes', labelsize=14)
plt.rc('xtick', labelsize=14)
plt.rc('ytick', labelsize=14)
plt.rc('legend', fontsize=14)
plt.rc('figure', titlesize=14)
def plot_mnist_samples(width: int = 6, height: int = 2):
(x_train, y_train), (_, _) = mnist.load_data()
fig, axs = plt.subplots(height, width, figsize=(width, height))
for i in range(height):
for j in range(width):
first_image = x_train[j + width * i + 120]
first_image = np.array(first_image, dtype='float')
pixels = first_image.reshape((28, 28))
axs[i, j].imshow(pixels, cmap='gray')
for ax in axs.flat:
ax.label_outer()
plt.subplots_adjust(wspace=0.2, hspace=0.2)
def plot_kernels():
fig, ax = plt.subplots(figsize=(8, 4),
subplot_kw={'facecolor': '#F4F4F4',
'axisbelow': True})
ax.grid(color='white', linestyle='-', linewidth=2)
for spine in ax.spines.values():
spine.set_color('#BBBBBB')
X_src = np.zeros((1, 1))
x_grid = np.linspace(-3, 3, 1000)
for kernel in ['gaussian', 'tophat', 'exponential', 'epanechnikov', 'linear', 'cosine']:
log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(x_grid[:, None])
if kernel is 'epanechnikov':
ax.plot(x_grid, np.exp(log_dens), lw=6, alpha=0.8, label=kernel)
else:
ax.plot(x_grid, np.exp(log_dens), lw=3, alpha=0.5, label=kernel)
ax.set_ylim(0, 1.05)
ax.set_xlim(-2.9, 2.9)
ax.legend()
def plot_histogram(path: str):
processed_nn: ProcessedNNHandler = ProcessedNNHandler(DATA_PATH + path)
samples: np.array = processed_nn.get_all_samples()
z_values: np.array = np.zeros(samples.shape[0])
for i, sample in enumerate(samples):
z_values[i] = sample[2]
z_values = z_values.reshape(-1, 1)
slots: int = 50
x_grid = np.linspace(-1.2, 1.2, int(slots * 1.2 * 4.0))
fig, ax = plt.subplots()
for bandwidth in [0.05, 0.18, 0.5]:
pdf = KernelDensity(kernel='epanechnikov', bandwidth=bandwidth).fit(z_values).score_samples(x_grid[:, None])
ax.plot(x_grid, np.exp(pdf), linewidth=2, alpha=0.6, label='bandwidth=%.2f' % bandwidth)
ax.hist(z_values, slots, facecolor='gray', histtype='stepfilled', alpha=0.4, density=True)
ax.legend(loc='upper right')
ax.set_xlim(-1.2, 1.2)
configure_plt()
plot_mnist_samples()
save_plot('mnist')
plt.show()
|
[
"data.data_handler.ProcessedNNHandler",
"matplotlib.pyplot.show",
"sklearn.neighbors.KernelDensity",
"numpy.zeros",
"numpy.array",
"tensorflow.python.keras.datasets.mnist.load_data",
"matplotlib.pyplot.rc",
"numpy.linspace",
"matplotlib.pyplot.subplots_adjust",
"numpy.exp",
"matplotlib.pyplot.subplots",
"evaluation.create_plot.save_plot"
] |
[((2940, 2958), 'evaluation.create_plot.save_plot', 'save_plot', (['"""mnist"""'], {}), "('mnist')\n", (2949, 2958), False, 'from evaluation.create_plot import save_plot\n'), ((2960, 2970), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2968, 2970), True, 'import matplotlib.pyplot as plt\n'), ((431, 454), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'size': '(14)'}), "('font', size=14)\n", (437, 454), True, 'import matplotlib.pyplot as plt\n'), ((459, 487), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'titlesize': '(14)'}), "('axes', titlesize=14)\n", (465, 487), True, 'import matplotlib.pyplot as plt\n'), ((492, 520), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'labelsize': '(14)'}), "('axes', labelsize=14)\n", (498, 520), True, 'import matplotlib.pyplot as plt\n'), ((525, 554), 'matplotlib.pyplot.rc', 'plt.rc', (['"""xtick"""'], {'labelsize': '(14)'}), "('xtick', labelsize=14)\n", (531, 554), True, 'import matplotlib.pyplot as plt\n'), ((559, 588), 'matplotlib.pyplot.rc', 'plt.rc', (['"""ytick"""'], {'labelsize': '(14)'}), "('ytick', labelsize=14)\n", (565, 588), True, 'import matplotlib.pyplot as plt\n'), ((593, 622), 'matplotlib.pyplot.rc', 'plt.rc', (['"""legend"""'], {'fontsize': '(14)'}), "('legend', fontsize=14)\n", (599, 622), True, 'import matplotlib.pyplot as plt\n'), ((627, 657), 'matplotlib.pyplot.rc', 'plt.rc', (['"""figure"""'], {'titlesize': '(14)'}), "('figure', titlesize=14)\n", (633, 657), True, 'import matplotlib.pyplot as plt\n'), ((750, 767), 'tensorflow.python.keras.datasets.mnist.load_data', 'mnist.load_data', ([], {}), '()\n', (765, 767), False, 'from tensorflow.python.keras.datasets import mnist\n'), ((783, 835), 'matplotlib.pyplot.subplots', 'plt.subplots', (['height', 'width'], {'figsize': '(width, height)'}), '(height, width, figsize=(width, height))\n', (795, 835), True, 'import matplotlib.pyplot as plt\n'), ((1169, 1212), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.2)', 'hspace': '(0.2)'}), '(wspace=0.2, hspace=0.2)\n', (1188, 1212), True, 'import matplotlib.pyplot as plt\n'), ((1249, 1337), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(8, 4)', 'subplot_kw': "{'facecolor': '#F4F4F4', 'axisbelow': True}"}), "(figsize=(8, 4), subplot_kw={'facecolor': '#F4F4F4',\n 'axisbelow': True})\n", (1261, 1337), True, 'import matplotlib.pyplot as plt\n'), ((1540, 1556), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (1548, 1556), True, 'import numpy as np\n'), ((1570, 1594), 'numpy.linspace', 'np.linspace', (['(-3)', '(3)', '(1000)'], {}), '(-3, 3, 1000)\n', (1581, 1594), True, 'import numpy as np\n'), ((2124, 2160), 'data.data_handler.ProcessedNNHandler', 'ProcessedNNHandler', (['(DATA_PATH + path)'], {}), '(DATA_PATH + path)\n', (2142, 2160), False, 'from data.data_handler import ProcessedNNHandler\n'), ((2241, 2267), 'numpy.zeros', 'np.zeros', (['samples.shape[0]'], {}), '(samples.shape[0])\n', (2249, 2267), True, 'import numpy as np\n'), ((2475, 2489), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (2487, 2489), True, 'import matplotlib.pyplot as plt\n'), ((976, 1012), 'numpy.array', 'np.array', (['first_image'], {'dtype': '"""float"""'}), "(first_image, dtype='float')\n", (984, 1012), True, 'import numpy as np\n'), ((2671, 2682), 'numpy.exp', 'np.exp', (['pdf'], {}), '(pdf)\n', (2677, 2682), True, 'import numpy as np\n'), ((1844, 1860), 'numpy.exp', 'np.exp', (['log_dens'], {}), '(log_dens)\n', (1850, 1860), True, 'import numpy as np\n'), ((1935, 1951), 'numpy.exp', 'np.exp', (['log_dens'], {}), '(log_dens)\n', (1941, 1951), True, 'import numpy as np\n'), ((1708, 1736), 'sklearn.neighbors.KernelDensity', 'KernelDensity', ([], {'kernel': 'kernel'}), '(kernel=kernel)\n', (1721, 1736), False, 'from sklearn.neighbors import KernelDensity\n'), ((2544, 2601), 'sklearn.neighbors.KernelDensity', 'KernelDensity', ([], {'kernel': '"""epanechnikov"""', 'bandwidth': 'bandwidth'}), "(kernel='epanechnikov', bandwidth=bandwidth)\n", (2557, 2601), False, 'from sklearn.neighbors import KernelDensity\n')]
|
import numpy as np
import pysam
import utils
import pdb
MIN_MAP_QUAL = 10
class Genome():
def __init__(self, fasta_filename, map_filename):
self._seq_handle = pysam.FastaFile(fasta_filename)
self._map_handles = [pysam.TabixFile(map_filename+'_%d.gz'%r)
for r in utils.READ_LENGTHS]
def get_sequence(self, transcripts):
sequences = []
for transcript in transcripts:
# get DNA sequence
seq = self._seq_handle.fetch(transcript.chromosome, transcript.start, transcript.stop).upper()
# get DNA sequence of transcript
# reverse complement, if necessary
if transcript.strand=="-":
seq = seq[::-1]
seq = ''.join(np.array(list(seq))[transcript.mask].tolist())
seq = utils.make_complement(seq)
else:
seq = ''.join(np.array(list(seq))[transcript.mask].tolist())
# get RNA sequence
seq = ''.join(['U' if s=='T' else s for s in seq])
sequences.append(seq)
return sequences
def get_mappability(self, transcripts):
mappabilities = []
for transcript in transcripts:
# get mappable positions
mappables = [np.zeros(transcript.mask.shape, dtype='bool')
for r in utils.READ_LENGTHS]
tbx_iters = [handle.fetch(transcript.chromosome, transcript.start, transcript.stop)
for handle in self._map_handles]
if transcript.strand=='+':
offsets = [1,1,1,1]
else:
offsets = utils.READ_LENGTHS
for tbx_iter,mappable,offset in zip(tbx_iters,mappables,offsets):
for tbx in tbx_iter:
row = tbx.split('\t')
start = int(row[1]) - transcript.start + offset - 1
end = int(row[2]) - transcript.start + offset - 1
mappable[start:end] = True
if transcript.strand=='+':
mappables = np.array(mappables).T.astype('bool')
else:
mappables = np.array(mappables).T.astype('bool')[::-1]
mappabilities.append(mappables[transcript.mask,:])
return mappabilities
def close(self):
self._seq_handle.close()
ig = [handle.close() for handle in self._map_handles]
class RiboSeq():
def __init__(self, file_prefix):
self._fwd_handles = [pysam.TabixFile(file_prefix+'_fwd.%d.gz'%r)
for r in utils.READ_LENGTHS]
self._rev_handles = [pysam.TabixFile(file_prefix+'_rev.%d.gz'%r)
for r in utils.READ_LENGTHS]
def get_counts(self, transcripts):
read_counts = []
for transcript in transcripts:
rcounts = [np.zeros(transcript.mask.shape, dtype='int') for r in utils.READ_LENGTHS]
if transcript.strand=='+':
tbx_iters = [handle.fetch(transcript.chromosome, transcript.start, transcript.stop) \
for handle in self._fwd_handles]
else:
tbx_iters = [handle.fetch(transcript.chromosome, transcript.start, transcript.stop) \
for handle in self._rev_handles]
for tbx_iter,counts in zip(tbx_iters,rcounts):
for tbx in tbx_iter:
row = tbx.split('\t')
count = int(row[3])
asite = int(row[1]) - transcript.start
counts[asite] = count
if transcript.strand=='+':
rcounts = np.array(rcounts).T.astype(np.uint64)
else:
rcounts = np.array(rcounts).T.astype(np.uint64)[::-1]
read_counts.append(rcounts[transcript.mask,:])
return read_counts
def get_total_counts(self, transcripts):
read_counts = self.get_counts(transcripts)
total_counts = np.array([counts.sum() for counts in read_counts])
return total_counts
def get_exon_total_counts(self, transcripts):
exon_counts = []
for transcript in transcripts:
rcounts = [np.zeros(transcript.mask.shape, dtype='int') for r in utils.READ_LENGTHS]
if transcript.strand=='+':
tbx_iters = [handle.fetch(transcript.chromosome, transcript.start, transcript.stop) \
for handle in self._fwd_handles]
else:
tbx_iters = [handle.fetch(transcript.chromosome, transcript.start, transcript.stop) \
for handle in self._rev_handles]
for tbx_iter,counts in zip(tbx_iters,rcounts):
for tbx in tbx_iter:
row = tbx.split('\t')
count = int(row[3])
asite = int(row[1]) - transcript.start
counts[asite] = count
rcounts = np.array(rcounts).T.astype(np.uint64)
exon_counts.append(np.array([rcounts[start:end,:].sum()
for start,end in transcript.exons]))
return exon_counts
def close(self):
ig = [handle.close() for handle in self._fwd_handles]
ig = [handle.close() for handle in self._rev_handles]
class RnaSeq():
def __init__(self, filename):
self._handle = pysam.TabixFile(filename+'.gz')
self.total = 0
for chrom in self._handle.contigs:
self.total += reduce(lambda x,y: x+y, (int(tbx.split('\t')[3]) for tbx in self._handle.fetch(chrom)))
def get_total_counts(self, transcripts):
total_counts = []
for transcript in transcripts:
tbx_iter = self._handle.fetch(transcript.chromosome, transcript.start, transcript.stop)
if transcript.strand=='+':
mask = transcript.mask
else:
mask = transcript.mask[::-1]
counts = 0
for tbx in tbx_iter:
row = tbx.split('\t')
site = int(row[1])-transcript.start
count = int(row[3])
if mask[site]:
counts += 1
total_counts.append(max([1,counts])*1e6/float(transcript.L*self.total))
total_counts = np.array(total_counts)
return total_counts
def close(self):
self._handle.close()
class Transcript():
def __init__(self, line, attr):
self.id = attr['transcript_id']
self.chromosome = line[0]
self.start = int(line[3])-1
self.stop = int(line[4])
# if not specified, transcript is on positive strand
if line[6] in ['+','-']:
self.strand = line[6]
else:
self.strand = '+'
self.cdstart = None
self.cdstop = None
self.exons = []
self.has_CDS = False
self.proteinid = ''
# add attribute fields that are available
try:
self.type = attr['transcript_type']
except KeyError:
pass
try:
self.type = attr['gene_biotype']
except KeyError:
pass
try:
self.geneid = attr['gene_id']
except KeyError:
pass
try:
self.genename = attr['gene_name']
except KeyError:
pass
try:
self.ref_transcript_id = attr['reference_id']
except KeyError:
pass
try:
self.ref_gene_id = attr['ref_gene_id']
except KeyError:
pass
try:
self.genename = attr['ref_gene_name']
except KeyError:
pass
def add_exon(self, line):
exon = (int(line[3])-1, int(line[4]))
self.exons.append(exon)
def generate_transcript_model(self):
if len(self.exons)>0:
# order exons
order = np.argsort(np.array([e[0] for e in self.exons]))
self.exons = [[self.exons[o][0],self.exons[o][1]] for o in order]
# extend transcript boundaries, if needed
self.start = min([self.start, self.exons[0][0]])
self.stop = max([self.stop, self.exons[-1][-1]])
# set transcript model
self.exons = [(e[0]-self.start, e[1]-self.start) for e in self.exons]
self.mask = np.zeros((self.stop-self.start,),dtype='bool')
ig = [self.mask.__setslice__(start,stop,True) for (start,stop) in self.exons]
if self.strand=='-':
self.mask = self.mask[::-1]
self.L = self.mask.sum()
else:
# no exons for transcript; remove
raise ValueError
def load_gtf(filename):
transcripts = dict()
handle = open(filename, "r")
for line in handle:
# remove comments
if line.startswith('#'):
continue
# read data
data = line.strip().split("\t")
attr = dict([(ln.split()[0],eval(ln.split()[1])) for ln in data[8].split(';')[:-1]])
# identify chromosome of the transcript
if data[0].startswith('c'):
chrom = data[0]
else:
chrom = 'chr%s'%data[0]
data[0] = chrom
transcript_id = attr['transcript_id']
try:
# if transcript is in dictionary, only parse exons
transcripts[transcript_id]
if data[2]=='exon':
transcripts[transcript_id].add_exon(data)
else:
pass
except KeyError:
if data[2]=='transcript':
# initialize new transcript
transcripts[transcript_id] = Transcript(data, attr)
handle.close()
# generate transcript models
keys = transcripts.keys()
for key in keys:
try:
transcripts[key].generate_transcript_model()
except ValueError:
del transcripts[key]
return transcripts
|
[
"pysam.FastaFile",
"pysam.TabixFile",
"numpy.zeros",
"utils.make_complement",
"numpy.array"
] |
[((175, 206), 'pysam.FastaFile', 'pysam.FastaFile', (['fasta_filename'], {}), '(fasta_filename)\n', (190, 206), False, 'import pysam\n'), ((5431, 5464), 'pysam.TabixFile', 'pysam.TabixFile', (["(filename + '.gz')"], {}), "(filename + '.gz')\n", (5446, 5464), False, 'import pysam\n'), ((6353, 6375), 'numpy.array', 'np.array', (['total_counts'], {}), '(total_counts)\n', (6361, 6375), True, 'import numpy as np\n'), ((236, 280), 'pysam.TabixFile', 'pysam.TabixFile', (["(map_filename + '_%d.gz' % r)"], {}), "(map_filename + '_%d.gz' % r)\n", (251, 280), False, 'import pysam\n'), ((2552, 2599), 'pysam.TabixFile', 'pysam.TabixFile', (["(file_prefix + '_fwd.%d.gz' % r)"], {}), "(file_prefix + '_fwd.%d.gz' % r)\n", (2567, 2599), False, 'import pysam\n'), ((2684, 2731), 'pysam.TabixFile', 'pysam.TabixFile', (["(file_prefix + '_rev.%d.gz' % r)"], {}), "(file_prefix + '_rev.%d.gz' % r)\n", (2699, 2731), False, 'import pysam\n'), ((8419, 8468), 'numpy.zeros', 'np.zeros', (['(self.stop - self.start,)'], {'dtype': '"""bool"""'}), "((self.stop - self.start,), dtype='bool')\n", (8427, 8468), True, 'import numpy as np\n'), ((842, 868), 'utils.make_complement', 'utils.make_complement', (['seq'], {}), '(seq)\n', (863, 868), False, 'import utils\n'), ((1306, 1351), 'numpy.zeros', 'np.zeros', (['transcript.mask.shape'], {'dtype': '"""bool"""'}), "(transcript.mask.shape, dtype='bool')\n", (1314, 1351), True, 'import numpy as np\n'), ((2916, 2960), 'numpy.zeros', 'np.zeros', (['transcript.mask.shape'], {'dtype': '"""int"""'}), "(transcript.mask.shape, dtype='int')\n", (2924, 2960), True, 'import numpy as np\n'), ((4259, 4303), 'numpy.zeros', 'np.zeros', (['transcript.mask.shape'], {'dtype': '"""int"""'}), "(transcript.mask.shape, dtype='int')\n", (4267, 4303), True, 'import numpy as np\n'), ((7984, 8020), 'numpy.array', 'np.array', (['[e[0] for e in self.exons]'], {}), '([e[0] for e in self.exons])\n', (7992, 8020), True, 'import numpy as np\n'), ((5005, 5022), 'numpy.array', 'np.array', (['rcounts'], {}), '(rcounts)\n', (5013, 5022), True, 'import numpy as np\n'), ((2116, 2135), 'numpy.array', 'np.array', (['mappables'], {}), '(mappables)\n', (2124, 2135), True, 'import numpy as np\n'), ((3705, 3722), 'numpy.array', 'np.array', (['rcounts'], {}), '(rcounts)\n', (3713, 3722), True, 'import numpy as np\n'), ((2199, 2218), 'numpy.array', 'np.array', (['mappables'], {}), '(mappables)\n', (2207, 2218), True, 'import numpy as np\n'), ((3787, 3804), 'numpy.array', 'np.array', (['rcounts'], {}), '(rcounts)\n', (3795, 3804), True, 'import numpy as np\n')]
|
import cv2
import numpy as np
from nnga.inference.base_predictor import BasePredictor
from nnga.utils.data_manipulation import adjust_image_shape, normalize_image
class SegmentationPredictor(BasePredictor):
"""Image predictor to NNGA models
Parameters
----------
model_dir : {str}
Path to NNGA folder from model dir.
cfg {yacs.config import CfgNode}
Experiment config data
"""
def __init__(self, model_dir, cfg):
super().__init__(model_dir, cfg)
self._image_shape = tuple(cfg.MODEL.INPUT_SHAPE)
self._preserve_ratio = cfg.DATASET.PRESERVE_IMG_RATIO
def _preprocessing(self, inpt):
"""Apply preprocessing input to be batch and model compatible.
Parameters
----------
inpt : {numpy.ndarray}
Input to be pre-processed
Returns
-------
numpy.ndarray
Input pre-processed
"""
return normalize_image(
adjust_image_shape(inpt, self._image_shape,)
)
def predict(self, inpts):
"""Make prediction and return class indexes.
Parameters
----------
inpts : {list}
List of {numpy.ndarray}, inputs for model
Returns
-------
type
tuple -- List of {numpy.ndarray} with class probabilities,
dict to translate class indexes to label name.
"""
batch = self._make_batch(inpts)
pred = self._model.predict(batch)
masks = []
for i in range(len(pred)):
predcit_mask = pred[i]
_, predcit_mask = cv2.threshold(predcit_mask, 0.5, 255, cv2.THRESH_BINARY)
masks.append(predcit_mask.astype('uint8'))
return self._posprocessing(np.array(masks)), self._decode
|
[
"cv2.threshold",
"nnga.utils.data_manipulation.adjust_image_shape",
"numpy.array"
] |
[((1045, 1088), 'nnga.utils.data_manipulation.adjust_image_shape', 'adjust_image_shape', (['inpt', 'self._image_shape'], {}), '(inpt, self._image_shape)\n', (1063, 1088), False, 'from nnga.utils.data_manipulation import adjust_image_shape, normalize_image\n'), ((1738, 1794), 'cv2.threshold', 'cv2.threshold', (['predcit_mask', '(0.5)', '(255)', 'cv2.THRESH_BINARY'], {}), '(predcit_mask, 0.5, 255, cv2.THRESH_BINARY)\n', (1751, 1794), False, 'import cv2\n'), ((1886, 1901), 'numpy.array', 'np.array', (['masks'], {}), '(masks)\n', (1894, 1901), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
from scipy.interpolate import interp1d
from scipy.signal import find_peaks, peak_widths
ALLOWED_STATISTICS = ["n_spikes",
"spike_rate",
"latency_to_first_spike",
"average_AP_overshoot",
"average_AHP_depth",
"average_AP_width",
"accommodation_index"]
class SpikeStats:
"""
threshold : :obj:`int` or :obj:`float`, optional
Required height of spikes. If `None`, the value is retrived from
the threshold attribute from the constructor (which defaults to `0`).
Default: `None`.
"""
def __init__(
self,
t_stim_on,
t_stim_off,
threshold=0,
rfp=12.2,
stats=None,
):
# check ALLOWED_STATISTIC
self._stats_provided = False
# error handling
if isinstance(stats, (list, tuple, np.ndarray)):
self._stats_provided = True
self._stats = stats[:]
for i, stat in enumerate(self._stats):
if not stat in ALLOWED_STATISTICS:
msg = (f"Unknown statistic '{stat}' provided. Refer to "
"documentation for a list of available statistics.")
raise ValueError(msg)
self._stats[i] = "_" + stat
self._t_stim_on = t_stim_on
self._t_stim_off = t_stim_off
self._duration = self._t_stim_off - self._t_stim_on
self._threshold = threshold
self._rfp = rfp
def __call__(self, V, t):
if not self._stats_provided:
msg = ("keyword argument 'stats' must be provided as a list of "
"statistic attributes in order to make the instance "
"callable.")
raise ValueError(msg)
self._V = V
self._t = t
self._spikes = self.find_spikes(self._V, self._t)
#self._n_spikes = self._spikes["n_spikes"]
sum_stats = [getattr(self, stat) for stat in self._stats]
return sum_stats
def find_spikes(self, V, t):
"""Find spikes in voltage trace.
Find spikes in voltage trace that are above a specified threshold
height.
Parameters
----------
V : :term:`array_like`
The voltage array of the voltage trace.
t : :term:`array_like`
The time array of the voltage trace.
Returns
-------
spikes : :obj:`dict`
Dictionary containing the:
* spike heights, key: `'spike_heights'`
* spike times, key: `'spike_times'`
* number of spikes, key: `'n_spikes'`
* spike widths, key: `'spike_widths'`
* spike positions in terms of indicies in voltage array, key: `'spike_idxs'`
* spike widths data in terms of indices in voltage array, key: `'spike_widths_data'`
"""
# set required distance between spikes based on refractory period
d = np.abs(t - self._rfp).argmin()
# find spikes in voltage trace
spike_idxs, properties = find_peaks(V,
height=self._threshold,
distance=d
)
# obtain data about width of spikes; note that returned widths will be
# in terms of index positions in voltage array
spike_widths_data = peak_widths(V, spike_idxs, rel_height=0.5)
# retrieve left and right interpolated positions specifying horizontal
# start and end positions of the found spike widths
left_ips, right_ips = spike_widths_data[2:]
# membrane potential as interpolation function
V_interpolate = interp1d(x=np.linspace(0, len(V), len(V)),
y=V
)
# voltage spike width in terms of physical units (instead of position
# in array)
spike_widths = V_interpolate(right_ips) - V_interpolate(left_ips)
# gather results in a dictionary
spikes = {"spike_heights": properties["peak_heights"],
"spike_times": t[spike_idxs],
"n_spikes": len(spike_idxs),
"spike_widths": spike_widths,
"spike_idxs": spike_idxs,
"spike_widths_data": spike_widths_data
}
return spikes
def width_lines(self, V, t):
"""Data for contour lines at which the widths where calculated.
The purpose of this function is to prepare spike width data for
plotting in terms of physical units.
Can be used for plotting the located spike widths via e.g.:
>>> features = SpikingFeatures(V, t, stim_duration, t_stim_on)
>>> plt.hlines(*features.width_lines)
Returns
-------
width_lines : 3-tuple of ndarrays
Contour lines.
"""
spikes = self.find_spikes(V, t)
spike_widths_data = spikes["spike_widths_data"]
# retrieve left and right interpolated positions specifying horizontal
# start and end positions of the found spike widths
left_ips, right_ips = spike_widths_data[2:]
# time as interpolation function
time_interpolate = interp1d(x=np.linspace(0, len(t), len(t)),
y=t)
# interpolated width positions in terms of physical units
left_ips_physical = time_interpolate(left_ips)
right_ips_physical = time_interpolate(right_ips)
# the height of the contour lines at which the widths where evaluated
width_heights = spike_widths_data[1]
# assemble data of contour lines at which the widths where calculated
spike_widths_data_physical = (width_heights,
left_ips_physical,
right_ips_physical)
return spike_widths_data_physical
def AHP_depth_positions(self, V, t):
"""Array of positions of after hyperpolarization depths in terms of
indices.
Returns
-------
AHP_depth_position : array_like
The positions of the minimum voltage values between consecutive
action potentials.
"""
'''
spikes = self.find_spikes(V, t)
spike_idxs = spikes["spike_idxs"]
ahp_depth_positions = []
for i in range(spikes["n_spikes"] - 1):
# search for minimum value between two spikes
spike1_idx = spike_idxs[i]
spike2_idx = spike_idxs[i + 1]
# slice out voltage trace between the spikes
V_slice = V[spike1_idx:spike2_idx]
# find index of min. value relative to first spike
min_rel_pos = np.argmin(V_slice)
# the position in total voltage trace
min_pos = spike1_idx + min_rel_pos
ahp_depth_positions.append(min_pos)
return ahp_depth_positions
'''
d = np.abs(t - self._rfp).argmin()
# find spikes in voltage trace
spike_idxs, _ = find_peaks(V,
height=self._threshold,
distance=d
)
# find depths after first spike
neg_spike_idxs, _ = find_peaks(-V[spike_idxs[0]:spike_idxs[-1]],
height=self._threshold,
distance=d
)
# shift found positions to match indicies in voltage trace arrays
ahp_depth_positions = neg_spike_idxs + spike_idxs[0]
return ahp_depth_positions
def isi(self, spike_times):
"""Interspike intervals (ISIs).
ISI is the time between subsequent action potentials.
Returns
-------
ISIs : array_like
Interspike intervals.
"""
isi = [spike_times[i + 1] - spike_times[i]
for i in range(len(spike_times) - 1)]
return np.array(isi)
def n_spikes(self, V, t):
"""The number of spikes in voltage trace.
Parameters
----------
V : :term:`array_like`
The voltage array of the voltage trace.
Returns
-------
n_spikes : :obj:`int`
Number of spikes.
"""
spikes = self.find_spikes(V, t)
return spikes["n_spikes"]
def spike_rate(self, V, t):
"""Compute the spike rate.
The spike rate, or the action potential firing rate, is the number of
action potentials (spikes) divided by stimulus duration.
Parameters
----------
V : :term:`array_like`
The voltage array of the voltage trace.
Returns
-------
spike_rate : :obj:`float`
Spike rate.
"""
spikes = self.find_spikes(V, t)
n_spikes = spikes["n_spikes"]
if n_spikes < 1:
return np.inf
return n_spikes / self._duration
def latency_to_first_spike(self, V, t):
"""
"""
spikes = self.find_spikes(V, t)
if spikes["n_spikes"] < 1:
return np.inf
return spikes["spike_times"][0] - self._t_stim_on
def average_AP_overshoot(self, V, t):
"""
"""
spikes = self.find_spikes(V, t)
n_spikes = spikes["n_spikes"]
if n_spikes < 1:
return np.inf
return np.sum(spikes["spike_heights"]) / n_spikes
def average_AHP_depth(self, V, t):
"""
"""
'''
spikes = self.find_spikes(V, t)
n_spikes = spikes["n_spikes"]
spike_idxs = spikes["spike_idxs"]
if n_spikes < 3:
return np.inf
sum_ahp_depth = sum([np.min(V[spike_idxs[i]:spike_idxs[i + 1]])
for i in range(n_spikes - 1)])
avg_ahp_depth = sum_ahp_depth / n_spikes
return avg_ahp_depth
'''
spikes = self.find_spikes(V, t)
n_spikes = spikes["n_spikes"]
if n_spikes < 3:
return np.inf
ahp_depth_pos = self.AHP_depth_positions(V, t)
avg_ahp_depth = np.mean(V[ahp_depth_pos])
return avg_ahp_depth
def average_AP_width(self, V, t):
"""
"""
spikes = self.find_spikes(V, t)
n_spikes = spikes["n_spikes"]
if n_spikes < 1:
return np.inf
return np.sum(spikes["spike_widths"]) / n_spikes
def accommodation_index(self, V, t):
"""
Excerpt from Druckmann et al. (2007):
k determines the number of ISIs that will be disregarded in order not
to take into account possible transient behavior as observed in
Markram et al. (2004). A reasonable value for k is either four ISIs or
one-fifth of the total number of ISIs, whichever is the smaller of the
two."
"""
spikes = self.find_spikes(V, t)
n_spikes = spikes["n_spikes"]
if n_spikes < 2:
return np.inf
isi = self.isi(spikes["spike_times"])
k = min(4, int(len(isi) / 5))
A = 0
for i in range(k + 1, n_spikes - 1):
A += (isi[i] - isi[i - 1]) / (isi[i] + isi[i - 1])
return A / (n_spikes - k - 1)
@property
def _n_spikes(self):
return self._spikes["n_spikes"]
@property
def _spike_rate(self):
if self._n_spikes < 1:
return np.inf
return self._n_spikes / self._duration
@property
def _latency_to_first_spike(self):
"""
"""
if self._n_spikes < 1:
return np.inf
return self._spikes["spike_times"][0] - self._t_stim_on
@property
def _average_AP_overshoot(self):
"""
"""
if self._n_spikes < 1:
return np.inf
return np.sum(self._spikes["spike_heights"]) / self._n_spikes
@property
def _average_AHP_depth(self):
"""
"""
spike_idxs = self._spikes["spike_idxs"]
if self._n_spikes < 3:
return np.inf
'''
sum_ahp_depth = sum([np.min(self._V[spike_idxs[i]:spike_idxs[i + 1]])
for i in range(self._n_spikes - 1)])
avg_ahp_depth = sum_ahp_depth / self._n_spikes
return avg_ahp_depth
'''
ahp_depth_pos = self.AHP_depth_positions(self._V, self._t)
avg_ahp_depth = np.mean(self._V[ahp_depth_pos])
return avg_ahp_depth
@property
def _average_AP_width(self):
"""
"""
if self._n_spikes < 1:
return np.inf
return np.sum(self._spikes["spike_widths"]) / self._n_spikes
@property
def _accommodation_index(self):
"""
"""
if self._n_spikes < 2:
return np.inf
isi = self.isi(self._spikes["spike_times"])
k = min(4, int(len(isi) / 5))
A = 0
for i in range(k + 1, self._n_spikes - 1):
A += (isi[i] - isi[i - 1]) / (isi[i] + isi[i - 1])
return A / (self._n_spikes - k - 1)
if __name__ == "__main__":
import matplotlib as mpl
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
import neuromodels as nm
import seaborn as sns
from matplotlib import gridspec
sns.set()
sns.set_context("paper")
sns.set_style("darkgrid", {"axes.facecolor": "0.96"})
# Set fontsizes in figures
params = {'legend.fontsize': 'large',
'axes.labelsize': 'large',
'axes.titlesize': 'large',
'xtick.labelsize': 'large',
'ytick.labelsize': 'large',
'legend.fontsize': 'large',
'legend.handlelength': 2}
plt.rcParams.update(params)
plt.rc('text', usetex=True)
# remove top and right axis from plots
mpl.rcParams['axes.spines.right'] = False
mpl.rcParams['axes.spines.top'] = False
# HH simulation
hh = nm.solvers.HodgkinHuxleySolver()
# simulation parameters
# simulation parameters
T = 120.
dt = 0.01
I_amp = 0.35 # 0.1 #0.31
t_stim_on = 10
t_stim_off = 110
r_soma = 40 # 15
# input stimulus
stimulus = nm.stimulus.constant(I_amp=I_amp,
T=T,
dt=dt,
t_stim_on=t_stim_on,
t_stim_off=t_stim_off,
r_soma=r_soma)
# print(stimulus["info"])
I = stimulus["I"]
I_stim = stimulus["I_stim"]
hh.solve(I, T, dt)
V = hh.V
t = hh.t
# Spike statistics, callable instance
stats = ["spike_rate",
"latency_to_first_spike",
"average_AP_overshoot",
"average_AHP_depth",
"average_AP_width",
"accommodation_index"]
sps = SpikeStats(t_stim_on=t_stim_on, t_stim_off=t_stim_off, stats=stats)
sum_stats = sps(V, t)
print(sum_stats)
# Spike statistics, class methods
print("SPIKE STATS")
sps = SpikeStats(t_stim_on=t_stim_on, t_stim_off=t_stim_off)
# number of spikes
n_spikes = sps.n_spikes(V, t)
print(f"{n_spikes=}")
# spike rate
spike_rate = sps.spike_rate(V, t)
print(f"{spike_rate=:.4f} mHz")
# latency to first spike
latency_to_first_spike = sps.latency_to_first_spike(V, t)
print(f"{latency_to_first_spike=:.4f} ms")
# average AP overshoot
average_AP_overshoot = sps.average_AP_overshoot(V, t)
print(f"{average_AP_overshoot=:.4f} mV")
# average AHP depth
average_AHP_depth = sps.average_AHP_depth(V, t)
print(f"{average_AHP_depth=:.4f} mV")
# average AP width
average_AP_width = sps.average_AP_width(V, t)
print(f"{average_AP_width=:.4f} mV")
# accommodation index
accommodation_index = sps.accommodation_index(V, t)
print(f"{accommodation_index=:.4f}")
# plot voltage trace with features
spikes = sps.find_spikes(V, t)
spike_idxs = spikes["spike_idxs"]
spike_heights = spikes["spike_heights"]
width_lines = sps.width_lines(V, t)
ahp_depth_idxs = sps.AHP_depth_positions(V, t)
fig = plt.figure(figsize=(8, 6), tight_layout=True, dpi=140)
gs = gridspec.GridSpec(2, 1, height_ratios=[4, 1])
ax = plt.subplot(gs[0])
# voltage trace
plt.plot(t, V, lw=1.5, label='Voltage trace')
# AP overshoot
plt.plot(t[spike_idxs], V[spike_idxs], "x",
ms=7, color='black', label='AP overshoot')
# AP widths
plt.hlines(*width_lines, color="red", lw=2, label='AP width')
# AHP depths
plt.plot(t[ahp_depth_idxs], V[ahp_depth_idxs], 'o',
ms=5, color='indianred', label='AHP depth')
# latency to first spike
plt.hlines(hh.V_rest, t_stim_on,
t[spike_idxs[0]], color='black', lw=1.5, ls=":")
plt.vlines(t[spike_idxs[0]], hh.V_rest, spike_heights[0],
color='black', lw=1.5, ls=":", label="Latency to first spike")
# the marked ISIs are used to compute the accommodation index
# ISI arrow legend
plt.plot([], [], color='g', marker=r'$\longleftrightarrow$',
linestyle='None', markersize=15, label='ISIs')
# ISI spike 1 -> 2
plt.vlines(t[spike_idxs[0]], V[spike_idxs[0]],
48, color='darkorange', ls='--', label='Spike rate')
plt.annotate('', xy=(t[spike_idxs[0]], 48), xycoords='data',
xytext=(t[spike_idxs[1]], 48), textcoords='data',
arrowprops={'arrowstyle': '<->', 'color': 'g'})
# ISI spike 2 -> 3
plt.vlines(t[spike_idxs[1]], V[spike_idxs[1]],
48, color='darkorange', ls='--')
plt.annotate('', xy=(t[spike_idxs[1]], 48), xycoords='data',
xytext=(t[spike_idxs[2]], 48), textcoords='data',
arrowprops={'arrowstyle': '<->', 'color': 'g'})
# ISI spike 3 -> 4
plt.vlines(t[spike_idxs[2]], V[spike_idxs[2]],
48, color='darkorange', lw=1.5, ls='--')
plt.annotate('', xy=(t[spike_idxs[2]], 48), xycoords='data',
xytext=(t[spike_idxs[3]], 48), textcoords='data',
arrowprops={'arrowstyle': '<->', 'color': 'g'})
# ISI spike 4 -> 5
plt.vlines(t[spike_idxs[3]], V[spike_idxs[3]],
48, color='darkorange', lw=1.5, ls='--')
plt.annotate('', xy=(t[spike_idxs[3]], 48), xycoords='data',
xytext=(t[spike_idxs[4]], 48), textcoords='data',
arrowprops={'arrowstyle': '<->', 'color': 'g'})
# ISI spike 5 -> 6
plt.vlines(t[spike_idxs[4]], V[spike_idxs[4]],
48, color='darkorange', lw=1.5, ls='--')
plt.vlines(t[spike_idxs[5]], V[spike_idxs[5]],
48, color='darkorange', lw=1.5, ls='--')
plt.annotate('', xy=(t[spike_idxs[4]], 48), xycoords='data',
xytext=(t[spike_idxs[5]], 48), textcoords='data',
arrowprops={'arrowstyle': '<->', 'color': 'g'})
plt.ylabel('Voltage (mV)')
plt.ylim(-90, 60)
ax.set_xticks([])
ax.set_yticks([-80, -20, 40])
handles, labels = ax.get_legend_handles_labels()
plt.legend(handles,
labels,
loc='center left',
bbox_to_anchor=(1.04, 0.5),
fancybox=True,
borderaxespad=0.1,
ncol=1
)
ax = plt.subplot(gs[1])
plt.plot(t, I_stim, 'k', lw=2)
plt.xlabel('Time (ms)')
plt.ylabel('Stimulus (nA)')
ax.set_xticks([0, np.max(t) / 2, np.max(t)])
ax.set_yticks([0, np.max(I_stim)])
ax.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter('%.2f'))
fig.suptitle("Spike Statistics")
plt.show()
|
[
"numpy.sum",
"numpy.abs",
"matplotlib.pyplot.figure",
"scipy.signal.find_peaks",
"numpy.mean",
"matplotlib.pyplot.hlines",
"scipy.signal.peak_widths",
"numpy.max",
"matplotlib.pyplot.rcParams.update",
"matplotlib.pyplot.rc",
"matplotlib.ticker.FormatStrFormatter",
"seaborn.set",
"seaborn.set_context",
"seaborn.set_style",
"matplotlib.pyplot.show",
"matplotlib.pyplot.ylim",
"matplotlib.pyplot.legend",
"neuromodels.solvers.HodgkinHuxleySolver",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.subplot",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.annotate",
"matplotlib.pyplot.vlines",
"numpy.array",
"neuromodels.stimulus.constant",
"matplotlib.gridspec.GridSpec",
"matplotlib.pyplot.xlabel"
] |
[((13594, 13603), 'seaborn.set', 'sns.set', ([], {}), '()\n', (13601, 13603), True, 'import seaborn as sns\n'), ((13608, 13632), 'seaborn.set_context', 'sns.set_context', (['"""paper"""'], {}), "('paper')\n", (13623, 13632), True, 'import seaborn as sns\n'), ((13637, 13690), 'seaborn.set_style', 'sns.set_style', (['"""darkgrid"""', "{'axes.facecolor': '0.96'}"], {}), "('darkgrid', {'axes.facecolor': '0.96'})\n", (13650, 13690), True, 'import seaborn as sns\n'), ((14017, 14044), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (['params'], {}), '(params)\n', (14036, 14044), True, 'import matplotlib.pyplot as plt\n'), ((14049, 14076), 'matplotlib.pyplot.rc', 'plt.rc', (['"""text"""'], {'usetex': '(True)'}), "('text', usetex=True)\n", (14055, 14076), True, 'import matplotlib.pyplot as plt\n'), ((14241, 14273), 'neuromodels.solvers.HodgkinHuxleySolver', 'nm.solvers.HodgkinHuxleySolver', ([], {}), '()\n', (14271, 14273), True, 'import neuromodels as nm\n'), ((14489, 14597), 'neuromodels.stimulus.constant', 'nm.stimulus.constant', ([], {'I_amp': 'I_amp', 'T': 'T', 'dt': 'dt', 't_stim_on': 't_stim_on', 't_stim_off': 't_stim_off', 'r_soma': 'r_soma'}), '(I_amp=I_amp, T=T, dt=dt, t_stim_on=t_stim_on,\n t_stim_off=t_stim_off, r_soma=r_soma)\n', (14509, 14597), True, 'import neuromodels as nm\n'), ((16475, 16529), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 6)', 'tight_layout': '(True)', 'dpi': '(140)'}), '(figsize=(8, 6), tight_layout=True, dpi=140)\n', (16485, 16529), True, 'import matplotlib.pyplot as plt\n'), ((16539, 16584), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(2)', '(1)'], {'height_ratios': '[4, 1]'}), '(2, 1, height_ratios=[4, 1])\n', (16556, 16584), False, 'from matplotlib import gridspec\n'), ((16594, 16612), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs[0]'], {}), '(gs[0])\n', (16605, 16612), True, 'import matplotlib.pyplot as plt\n'), ((16638, 16683), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'V'], {'lw': '(1.5)', 'label': '"""Voltage trace"""'}), "(t, V, lw=1.5, label='Voltage trace')\n", (16646, 16683), True, 'import matplotlib.pyplot as plt\n'), ((16708, 16799), 'matplotlib.pyplot.plot', 'plt.plot', (['t[spike_idxs]', 'V[spike_idxs]', '"""x"""'], {'ms': '(7)', 'color': '"""black"""', 'label': '"""AP overshoot"""'}), "(t[spike_idxs], V[spike_idxs], 'x', ms=7, color='black', label=\n 'AP overshoot')\n", (16716, 16799), True, 'import matplotlib.pyplot as plt\n'), ((16829, 16890), 'matplotlib.pyplot.hlines', 'plt.hlines', (['*width_lines'], {'color': '"""red"""', 'lw': '(2)', 'label': '"""AP width"""'}), "(*width_lines, color='red', lw=2, label='AP width')\n", (16839, 16890), True, 'import matplotlib.pyplot as plt\n'), ((16913, 17012), 'matplotlib.pyplot.plot', 'plt.plot', (['t[ahp_depth_idxs]', 'V[ahp_depth_idxs]', '"""o"""'], {'ms': '(5)', 'color': '"""indianred"""', 'label': '"""AHP depth"""'}), "(t[ahp_depth_idxs], V[ahp_depth_idxs], 'o', ms=5, color='indianred',\n label='AHP depth')\n", (16921, 17012), True, 'import matplotlib.pyplot as plt\n'), ((17056, 17141), 'matplotlib.pyplot.hlines', 'plt.hlines', (['hh.V_rest', 't_stim_on', 't[spike_idxs[0]]'], {'color': '"""black"""', 'lw': '(1.5)', 'ls': '""":"""'}), "(hh.V_rest, t_stim_on, t[spike_idxs[0]], color='black', lw=1.5,\n ls=':')\n", (17066, 17141), True, 'import matplotlib.pyplot as plt\n'), ((17157, 17282), 'matplotlib.pyplot.vlines', 'plt.vlines', (['t[spike_idxs[0]]', 'hh.V_rest', 'spike_heights[0]'], {'color': '"""black"""', 'lw': '(1.5)', 'ls': '""":"""', 'label': '"""Latency to first spike"""'}), "(t[spike_idxs[0]], hh.V_rest, spike_heights[0], color='black', lw\n =1.5, ls=':', label='Latency to first spike')\n", (17167, 17282), True, 'import matplotlib.pyplot as plt\n'), ((17387, 17499), 'matplotlib.pyplot.plot', 'plt.plot', (['[]', '[]'], {'color': '"""g"""', 'marker': '"""$\\\\longleftrightarrow$"""', 'linestyle': '"""None"""', 'markersize': '(15)', 'label': '"""ISIs"""'}), "([], [], color='g', marker='$\\\\longleftrightarrow$', linestyle=\n 'None', markersize=15, label='ISIs')\n", (17395, 17499), True, 'import matplotlib.pyplot as plt\n'), ((17536, 17640), 'matplotlib.pyplot.vlines', 'plt.vlines', (['t[spike_idxs[0]]', 'V[spike_idxs[0]]', '(48)'], {'color': '"""darkorange"""', 'ls': '"""--"""', 'label': '"""Spike rate"""'}), "(t[spike_idxs[0]], V[spike_idxs[0]], 48, color='darkorange', ls=\n '--', label='Spike rate')\n", (17546, 17640), True, 'import matplotlib.pyplot as plt\n'), ((17655, 17822), 'matplotlib.pyplot.annotate', 'plt.annotate', (['""""""'], {'xy': '(t[spike_idxs[0]], 48)', 'xycoords': '"""data"""', 'xytext': '(t[spike_idxs[1]], 48)', 'textcoords': '"""data"""', 'arrowprops': "{'arrowstyle': '<->', 'color': 'g'}"}), "('', xy=(t[spike_idxs[0]], 48), xycoords='data', xytext=(t[\n spike_idxs[1]], 48), textcoords='data', arrowprops={'arrowstyle': '<->',\n 'color': 'g'})\n", (17667, 17822), True, 'import matplotlib.pyplot as plt\n'), ((17876, 17955), 'matplotlib.pyplot.vlines', 'plt.vlines', (['t[spike_idxs[1]]', 'V[spike_idxs[1]]', '(48)'], {'color': '"""darkorange"""', 'ls': '"""--"""'}), "(t[spike_idxs[1]], V[spike_idxs[1]], 48, color='darkorange', ls='--')\n", (17886, 17955), True, 'import matplotlib.pyplot as plt\n'), ((17975, 18142), 'matplotlib.pyplot.annotate', 'plt.annotate', (['""""""'], {'xy': '(t[spike_idxs[1]], 48)', 'xycoords': '"""data"""', 'xytext': '(t[spike_idxs[2]], 48)', 'textcoords': '"""data"""', 'arrowprops': "{'arrowstyle': '<->', 'color': 'g'}"}), "('', xy=(t[spike_idxs[1]], 48), xycoords='data', xytext=(t[\n spike_idxs[2]], 48), textcoords='data', arrowprops={'arrowstyle': '<->',\n 'color': 'g'})\n", (17987, 18142), True, 'import matplotlib.pyplot as plt\n'), ((18196, 18288), 'matplotlib.pyplot.vlines', 'plt.vlines', (['t[spike_idxs[2]]', 'V[spike_idxs[2]]', '(48)'], {'color': '"""darkorange"""', 'lw': '(1.5)', 'ls': '"""--"""'}), "(t[spike_idxs[2]], V[spike_idxs[2]], 48, color='darkorange', lw=\n 1.5, ls='--')\n", (18206, 18288), True, 'import matplotlib.pyplot as plt\n'), ((18303, 18470), 'matplotlib.pyplot.annotate', 'plt.annotate', (['""""""'], {'xy': '(t[spike_idxs[2]], 48)', 'xycoords': '"""data"""', 'xytext': '(t[spike_idxs[3]], 48)', 'textcoords': '"""data"""', 'arrowprops': "{'arrowstyle': '<->', 'color': 'g'}"}), "('', xy=(t[spike_idxs[2]], 48), xycoords='data', xytext=(t[\n spike_idxs[3]], 48), textcoords='data', arrowprops={'arrowstyle': '<->',\n 'color': 'g'})\n", (18315, 18470), True, 'import matplotlib.pyplot as plt\n'), ((18523, 18615), 'matplotlib.pyplot.vlines', 'plt.vlines', (['t[spike_idxs[3]]', 'V[spike_idxs[3]]', '(48)'], {'color': '"""darkorange"""', 'lw': '(1.5)', 'ls': '"""--"""'}), "(t[spike_idxs[3]], V[spike_idxs[3]], 48, color='darkorange', lw=\n 1.5, ls='--')\n", (18533, 18615), True, 'import matplotlib.pyplot as plt\n'), ((18630, 18797), 'matplotlib.pyplot.annotate', 'plt.annotate', (['""""""'], {'xy': '(t[spike_idxs[3]], 48)', 'xycoords': '"""data"""', 'xytext': '(t[spike_idxs[4]], 48)', 'textcoords': '"""data"""', 'arrowprops': "{'arrowstyle': '<->', 'color': 'g'}"}), "('', xy=(t[spike_idxs[3]], 48), xycoords='data', xytext=(t[\n spike_idxs[4]], 48), textcoords='data', arrowprops={'arrowstyle': '<->',\n 'color': 'g'})\n", (18642, 18797), True, 'import matplotlib.pyplot as plt\n'), ((18850, 18942), 'matplotlib.pyplot.vlines', 'plt.vlines', (['t[spike_idxs[4]]', 'V[spike_idxs[4]]', '(48)'], {'color': '"""darkorange"""', 'lw': '(1.5)', 'ls': '"""--"""'}), "(t[spike_idxs[4]], V[spike_idxs[4]], 48, color='darkorange', lw=\n 1.5, ls='--')\n", (18860, 18942), True, 'import matplotlib.pyplot as plt\n'), ((18957, 19049), 'matplotlib.pyplot.vlines', 'plt.vlines', (['t[spike_idxs[5]]', 'V[spike_idxs[5]]', '(48)'], {'color': '"""darkorange"""', 'lw': '(1.5)', 'ls': '"""--"""'}), "(t[spike_idxs[5]], V[spike_idxs[5]], 48, color='darkorange', lw=\n 1.5, ls='--')\n", (18967, 19049), True, 'import matplotlib.pyplot as plt\n'), ((19064, 19231), 'matplotlib.pyplot.annotate', 'plt.annotate', (['""""""'], {'xy': '(t[spike_idxs[4]], 48)', 'xycoords': '"""data"""', 'xytext': '(t[spike_idxs[5]], 48)', 'textcoords': '"""data"""', 'arrowprops': "{'arrowstyle': '<->', 'color': 'g'}"}), "('', xy=(t[spike_idxs[4]], 48), xycoords='data', xytext=(t[\n spike_idxs[5]], 48), textcoords='data', arrowprops={'arrowstyle': '<->',\n 'color': 'g'})\n", (19076, 19231), True, 'import matplotlib.pyplot as plt\n'), ((19262, 19288), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Voltage (mV)"""'], {}), "('Voltage (mV)')\n", (19272, 19288), True, 'import matplotlib.pyplot as plt\n'), ((19293, 19310), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-90)', '(60)'], {}), '(-90, 60)\n', (19301, 19310), True, 'import matplotlib.pyplot as plt\n'), ((19424, 19544), 'matplotlib.pyplot.legend', 'plt.legend', (['handles', 'labels'], {'loc': '"""center left"""', 'bbox_to_anchor': '(1.04, 0.5)', 'fancybox': '(True)', 'borderaxespad': '(0.1)', 'ncol': '(1)'}), "(handles, labels, loc='center left', bbox_to_anchor=(1.04, 0.5),\n fancybox=True, borderaxespad=0.1, ncol=1)\n", (19434, 19544), True, 'import matplotlib.pyplot as plt\n'), ((19657, 19675), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs[1]'], {}), '(gs[1])\n', (19668, 19675), True, 'import matplotlib.pyplot as plt\n'), ((19680, 19710), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'I_stim', '"""k"""'], {'lw': '(2)'}), "(t, I_stim, 'k', lw=2)\n", (19688, 19710), True, 'import matplotlib.pyplot as plt\n'), ((19715, 19738), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (ms)"""'], {}), "('Time (ms)')\n", (19725, 19738), True, 'import matplotlib.pyplot as plt\n'), ((19743, 19770), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Stimulus (nA)"""'], {}), "('Stimulus (nA)')\n", (19753, 19770), True, 'import matplotlib.pyplot as plt\n'), ((19973, 19983), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (19981, 19983), True, 'import matplotlib.pyplot as plt\n'), ((3223, 3272), 'scipy.signal.find_peaks', 'find_peaks', (['V'], {'height': 'self._threshold', 'distance': 'd'}), '(V, height=self._threshold, distance=d)\n', (3233, 3272), False, 'from scipy.signal import find_peaks, peak_widths\n'), ((3569, 3611), 'scipy.signal.peak_widths', 'peak_widths', (['V', 'spike_idxs'], {'rel_height': '(0.5)'}), '(V, spike_idxs, rel_height=0.5)\n', (3580, 3611), False, 'from scipy.signal import find_peaks, peak_widths\n'), ((7290, 7339), 'scipy.signal.find_peaks', 'find_peaks', (['V'], {'height': 'self._threshold', 'distance': 'd'}), '(V, height=self._threshold, distance=d)\n', (7300, 7339), False, 'from scipy.signal import find_peaks, peak_widths\n'), ((7515, 7600), 'scipy.signal.find_peaks', 'find_peaks', (['(-V[spike_idxs[0]:spike_idxs[-1]])'], {'height': 'self._threshold', 'distance': 'd'}), '(-V[spike_idxs[0]:spike_idxs[-1]], height=self._threshold, distance=d\n )\n', (7525, 7600), False, 'from scipy.signal import find_peaks, peak_widths\n'), ((8248, 8261), 'numpy.array', 'np.array', (['isi'], {}), '(isi)\n', (8256, 8261), True, 'import numpy as np\n'), ((10426, 10451), 'numpy.mean', 'np.mean', (['V[ahp_depth_pos]'], {}), '(V[ahp_depth_pos])\n', (10433, 10451), True, 'import numpy as np\n'), ((12705, 12736), 'numpy.mean', 'np.mean', (['self._V[ahp_depth_pos]'], {}), '(self._V[ahp_depth_pos])\n', (12712, 12736), True, 'import numpy as np\n'), ((19892, 19929), 'matplotlib.ticker.FormatStrFormatter', 'mpl.ticker.FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (19921, 19929), True, 'import matplotlib as mpl\n'), ((9698, 9729), 'numpy.sum', 'np.sum', (["spikes['spike_heights']"], {}), "(spikes['spike_heights'])\n", (9704, 9729), True, 'import numpy as np\n'), ((10691, 10721), 'numpy.sum', 'np.sum', (["spikes['spike_widths']"], {}), "(spikes['spike_widths'])\n", (10697, 10721), True, 'import numpy as np\n'), ((12122, 12159), 'numpy.sum', 'np.sum', (["self._spikes['spike_heights']"], {}), "(self._spikes['spike_heights'])\n", (12128, 12159), True, 'import numpy as np\n'), ((12913, 12949), 'numpy.sum', 'np.sum', (["self._spikes['spike_widths']"], {}), "(self._spikes['spike_widths'])\n", (12919, 12949), True, 'import numpy as np\n'), ((19808, 19817), 'numpy.max', 'np.max', (['t'], {}), '(t)\n', (19814, 19817), True, 'import numpy as np\n'), ((19842, 19856), 'numpy.max', 'np.max', (['I_stim'], {}), '(I_stim)\n', (19848, 19856), True, 'import numpy as np\n'), ((3119, 3140), 'numpy.abs', 'np.abs', (['(t - self._rfp)'], {}), '(t - self._rfp)\n', (3125, 3140), True, 'import numpy as np\n'), ((7195, 7216), 'numpy.abs', 'np.abs', (['(t - self._rfp)'], {}), '(t - self._rfp)\n', (7201, 7216), True, 'import numpy as np\n'), ((19793, 19802), 'numpy.max', 'np.max', (['t'], {}), '(t)\n', (19799, 19802), True, 'import numpy as np\n')]
|
import numpy as np
lin = open("__21_d25.txt").read().splitlines(); gm = np.array([list(line) for line in lin])
def st(hN, gm):
tM = gm == hN; gS = np.roll(gm, -1, 1 if hN == ">" else 0)
tM[gS != '.'] = False; gm[tM] = '.'; tS = np.roll(tM, 1, 1 if hN == ">" else 0)
gm[tS] = hN; return len(gm[tM])
count = 1
while st('>', gm) + st('v', gm) > 0: count += 1
print(count)
|
[
"numpy.roll"
] |
[((150, 188), 'numpy.roll', 'np.roll', (['gm', '(-1)', "(1 if hN == '>' else 0)"], {}), "(gm, -1, 1 if hN == '>' else 0)\n", (157, 188), True, 'import numpy as np\n'), ((232, 269), 'numpy.roll', 'np.roll', (['tM', '(1)', "(1 if hN == '>' else 0)"], {}), "(tM, 1, 1 if hN == '>' else 0)\n", (239, 269), True, 'import numpy as np\n')]
|
"""A domain for real-world experiments."""
import time
from itertools import combinations
from pathlib import Path
from typing import Tuple, Union
from inquire.environments.gym_wrapper_environment import Environment
from inquire.interactions.feedback import Trajectory
from numba import jit
import numpy as np
import pandas as pd
class Pizza(Environment):
"""Create a pepperoni pizza by placing toppings."""
def __init__(
self,
seed: int = None,
max_topping_count: int = 25,
topping_sample_count: int = 1500,
optimization_iteration_count: int = 300,
pizza_form: dict = None,
basis_functions: list = None,
output_path: str = str(Path.cwd()) + "/output/pizza_environment/",
verbose: bool = False,
):
"""Initialize a domain for creating pizzas.
::inputs:
::topping_max: The total number of toppings a pizza can have; akin
to a trajectory length.
::pizza_form: The high-level attributes of a pizza.
"""
self._seed = seed
self._max_topping_count = max_topping_count
self._topping_sample_count = topping_sample_count
self._pizza_form = pizza_form
self._optimization_iteration_count = optimization_iteration_count
self._output_path = output_path
self._verbose = verbose
self._rng = np.random.default_rng(self._seed)
crust_and_topping_factor = (self._pizza_form["crust_thickness"]) + (
self._pizza_form["topping_diam"] / 2.0
)
self._viable_surface_radius = (
self._pizza_form["diameter"] / 2.0 - crust_and_topping_factor
)
self._viable_surface_area = np.pi * self._viable_surface_radius ** 2
self._area_per_topping = (
np.pi * (self._pizza_form["topping_diam"] / 2.0) ** 2
)
self._x_coordinate_range = np.linspace(
-self._viable_surface_radius,
self._viable_surface_radius,
1000,
endpoint=True,
)
self._y_coordinate_range = np.array(
self._x_coordinate_range, copy=True
)
self.w_dim = len(basis_functions)
self._basis_functions = basis_functions
basis_fn_memory_blocks = []
# Make a composition of basis functions:
for b in basis_functions:
if b == "approximate_coverage":
basis_fn_memory_blocks.append(
self.approximate_surface_coverage
)
elif b == "approximate_overlap_last_to_all":
basis_fn_memory_blocks.append(self.approximate_overlap_last)
elif b == "avg_magnitude_last_to_all":
basis_fn_memory_blocks.append(self.avg_magnitude_last_to_all)
elif b == "last_point_x_variance":
basis_fn_memory_blocks.append(self.last_point_x_variance)
elif b == "last_point_y_variance":
basis_fn_memory_blocks.append(self.last_point_y_variance)
elif b == "markovian_magnitude":
basis_fn_memory_blocks.append(self.markovian_magnitude)
# The feature function is a composition of the basis functions:
def feature_fn(topping_coords: np.ndarray) -> np.ndarray:
"""Compute the features of a set of topping placements."""
feature_values = np.array([])
# For each basis function in this feature function:
for i, b in enumerate(basis_fn_memory_blocks):
# Compute the feature value:
feature_values = np.append(feature_values, b(topping_coords))
return feature_values
self.compute_features = feature_fn
@property
def basis_functions(self) -> dict:
"""Return dictionary of high-level attributes."""
return self._basis_functions.copy()
@property
def pizza_form(self) -> dict:
"""Return dictionary of high-level attributes."""
return self._pizza_form.copy()
@property
def viable_surface_radius(self) -> float:
"""Return radius of surface upon which toppings can be placed."""
return self._viable_surface_radius
@property
def max_topping_count(self) -> int:
"""Return the maximum number of toppings to include on any pizza."""
return self._max_topping_count
def generate_random_state(self, random_state) -> np.ndarray:
"""Generate a random set of toppings to put on a pizza.
::inputs:
::random_state: A number generator object; instead use
self._rng
"""
pizza_topping_count = self._rng.integers(
low=1, high=self._max_topping_count - 1
)
# Generate pizza_topping_count x,y coordinates:
topping_coordinates = generate_2D_points(
radius=self._viable_surface_radius, count=pizza_topping_count
)
return topping_coordinates
def generate_random_reward(self, random_state) -> int:
"""Generate a random vector of weights.
::inputs:
::random_state: A number generator object; instead use this
class' rng instance attribute.
"""
weights = self._rng.random((self.w_dim,))
for i in range(weights.shape[0]):
sign = self._rng.choice((-1, 1), 1)
weights[i] = sign * weights[i]
weights = weights / np.linalg.norm(weights)
# weights = weights / np.sum(weights)
return weights.squeeze()
def optimal_trajectory_from_w(
self, start_state: np.ndarray, w: Union[list, np.ndarray]
) -> np.ndarray:
"""Find placement of next topping which yields greatest reward.
::inputs:
::start_state: A set of (x,y) coordinates of topping placements.
::w: A vector of weights corresponding to the domain's features.
"""
start = time.perf_counter()
toppings = np.array(start_state, copy=True)
best_reward = None
best_toppings = None
best_features = None
for i in range(self._optimization_iteration_count):
# Generate a bunch of potential positions for the next slice:
new_toppings = generate_2D_points(
self._viable_surface_radius, self._topping_sample_count
)
# See which of new_toppings yields the greatest reward:
for j in range(new_toppings.shape[1]):
temp_toppings = np.hstack(
(toppings, new_toppings[:, j].reshape(-1, 1))
)
temp_features = self.features(
new_toppings[:, j], temp_toppings
).squeeze()
new_reward = w.dot(temp_features.T)
if best_reward is None:
best_reward = new_reward
if new_reward > best_reward:
best_reward = new_reward
best_toppings = np.array(temp_toppings, copy=True)
best_features = np.array(temp_features, copy=True)
best_topping_placements = Trajectory(best_toppings, best_features)
if self._verbose:
elapsed = time.perf_counter() - start
print(
f"It took {elapsed:.2} seconds to find next topping placement."
)
return best_topping_placements
def features(
self, action: Union[np.ndarray, list], state: Union[list, np.ndarray]
) -> np.ndarray:
"""Compute the features of state reached by action.
::inputs:
::action: The (x,y) coordinate of the topping that was most
recently placed on the pizza.
::state: The (x, y) coordinates of all toppings. Shape: 2-by-n.
"""
# If there are no toppings or just one topping, we have no features
# to compute:
if state.shape[1] == 1:
return np.zeros((self.w_dim,))
else:
# Copy to avoid mutating:
coords = np.array(state, copy=True)
coords_features = self.compute_features(coords)
return coords_features.squeeze()
def available_actions(self, current_state: np.ndarray) -> list:
"""Return the possible topping placements given current_state."""
if self.is_terminal_state(current_state):
return []
else:
return [self._x_coordinate_range, self._y_coordinate_range]
def next_state(
self, current_state: np.ndarray, action: list
) -> np.ndarray:
"""Generate state after transition from current_state via action."""
next_topping = np.array(action, copy=True).reshape(-1, 1)
new_state = np.append(current_state, next_topping, axis=1)
return new_state
def is_terminal_state(self, current_state: np.ndarray) -> bool:
"""Check if more toppings can be added."""
if current_state.shape[1] >= self._max_topping_count:
return True
else:
return False
def all_actions(self) -> list:
"""All possible topping placements."""
return [self._x_coordinate_range, self._y_coordinate_range]
def state_space_dim(self):
"""Observation space is continuous; return None."""
return np.inf
def state_space(self):
"""Observation space is continuous; return None."""
return np.inf
def state_index(self, state):
"""Observation space is continuous; return None."""
return None
def trajectory_from_states(self, states, features):
return Trajectory(states, np.sum(features, axis=0))
def distance_between_trajectories(self, a, b):
return None
"""
The proceeding code consists of domain-specific helper functions. No part
of the Inquire framework should need to be modified to accommodate these
functions.
"""
def approximate_surface_coverage(
self, state: Union[list, np.ndarray]
) -> float:
"""Compute the approximate surface-area coverage."""
coords = np.array(state, copy=True)
topping_diam = self._pizza_form["topping_diam"]
# ID the toppings actually ON the viable surface via:
# ||object - surface origin||_2:
sq_sum = np.sqrt(coords[0, :] ** 2 + coords[1, :] ** 2)
inds = np.argwhere(sq_sum <= self._viable_surface_radius)[:, 0]
overlapping_area = 0
# If there's more than one topping, approximate their overlap:
if coords.shape[1] > 1:
xy_combos = np.array(list(combinations(coords[:, inds].T, 2)))
x1 = xy_combos[:, 0, 0]
x2 = xy_combos[:, 1, 0]
y1 = xy_combos[:, 0, 1]
y2 = xy_combos[:, 1, 1]
xs = (x1 - x2) ** 2
ys = (y1 - y2) ** 2
topping_dists = np.sqrt(xs + ys)
# Avoid division-by-zero errors:
topping_dists = np.where(
topping_dists == 0, 0.00001, topping_dists
)
# Heuristically compute total overlap area:
overlapping_area = np.where(
topping_dists < topping_diam,
self._area_per_topping * np.exp(-topping_dists),
0,
)
overlapping_area = np.sum(overlapping_area)
# Compute the coverage approximation:
approx_absolute_coverage = (
self._area_per_topping * inds.shape[0] - overlapping_area
)
coverage = approx_absolute_coverage / self._viable_surface_area
return coverage
def approximate_overlap_last(
self, state: Union[list, np.ndarray]
) -> float:
"""Approximate area last topping overlaps others."""
coords = np.array(state, copy=True)
# If there's more than one topping, approximate last topping's
# overlap with each of the others:
overlapping_area = 0
if coords.shape[1] > 1:
# Vectorize the last topping for efficient operations:
most_recent = (
coords[:, -1].reshape(2, 1).repeat(coords.shape[1], axis=1)
)
dists = (most_recent - coords)[:, :-1]
mags = np.sqrt((dists ** 2).sum(axis=0))
# Avoid division-by-zero errors:
topping_dists = np.where(mags == 0, 0.00001, mags)
# Heuristically compute total overlap area:
overlapping_area = np.where(
topping_dists < self._pizza_form["topping_diam"],
self._area_per_topping * np.exp(-topping_dists),
0,
)
overlapping_area = overlapping_area.sum()
# return overlapping_area
return -np.exp(-overlapping_area)
def last_point_x_variance(self, state: Union[list, np.ndarray]) -> float:
"""Compute x variance of last point.
Upper bound of discrete, uniform random variable is (b-a)**2 / 4
"""
coords = np.array(state, copy=True)
if coords.shape[1] <= 1:
return 0
last_x = coords[0, -1].repeat(coords.shape[1]).reshape(1, -1)
diffs = (last_x - coords[0, :])[0, :-1].reshape(1, -1)
if diffs.shape[1] <= 1:
var_x_to_last = np.sum(diffs ** 2)
else:
var_x_to_last = np.sum(diffs ** 2) / (diffs.shape[1] - 1)
return var_x_to_last
def last_point_y_variance(self, state: Union[list, np.ndarray]) -> float:
"""Compute y variance of last point."""
coords = np.array(state, copy=True)
if coords.shape[1] <= 1:
return 0
last_y = coords[1, -1].repeat(coords.shape[1]).reshape(1, -1)
diffs = (last_y - coords[1, :])[0, :-1].reshape(1, -1)
if diffs.shape[1] <= 1:
var_y_to_last = np.sum(diffs ** 2)
else:
var_y_to_last = np.sum(diffs ** 2) / (diffs.shape[1] - 1)
return var_y_to_last
def markovian_magnitude(self, state: Union[list, np.ndarray]) -> float:
"""Compute magnitude between latest topping and one preceding it."""
coords = np.array(state, copy=True)
if coords.shape[1] <= 1:
return 0
x_dist = coords[0, -1] - coords[0, -2]
y_dist = coords[1, -1] - coords[1, -2]
mag = np.sqrt(x_dist ** 2 + y_dist ** 2)
return mag
def avg_magnitude_last_to_all(
self, state: Union[list, np.ndarray]
) -> float:
"""Compute average magnitude between latest topping and all others."""
coords = np.array(state, copy=True)
# If there are no toppings or just one, return 0:
if coords.shape[1] <= 1:
return 0
# Vectorize the last topping for efficient operations:
most_recent = (
coords[:, -1].reshape(2, 1).repeat(coords.shape[1], axis=1)
)
# Compute the distances; ignore the last distance which is the distance
# from itself:
dists = (most_recent - coords)[:, :-1]
mags = np.sqrt((dists ** 2).sum(axis=0))
avg_mag = mags.sum() / mags.shape[0]
return avg_mag
"""
The proceeding are Numba-optimized helper functions. No part of the Inquire
framework should need to be modified to accommodate these functions.
"""
@jit(nopython=True)
def generate_2D_points(radius: float, count: int) -> np.ndarray:
"""Uniformly sample points from a circle."""
pts = np.empty((2, count))
for i in range(count):
r = radius * np.sqrt(np.random.uniform(0, 1))
theta = 2 * np.pi * np.random.uniform(0, 1)
x = r * np.cos(theta)
y = r * np.sin(theta)
pts[:, i] = np.array([x, y])
return pts
|
[
"numpy.sum",
"numpy.empty",
"numpy.random.default_rng",
"numpy.sin",
"numpy.linalg.norm",
"numpy.exp",
"numpy.append",
"numpy.linspace",
"time.perf_counter",
"itertools.combinations",
"numpy.cos",
"numpy.argwhere",
"numpy.random.uniform",
"numpy.zeros",
"numpy.where",
"numba.jit",
"numpy.array",
"pathlib.Path.cwd",
"inquire.interactions.feedback.Trajectory",
"numpy.sqrt"
] |
[((15354, 15372), 'numba.jit', 'jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (15357, 15372), False, 'from numba import jit\n'), ((15497, 15517), 'numpy.empty', 'np.empty', (['(2, count)'], {}), '((2, count))\n', (15505, 15517), True, 'import numpy as np\n'), ((1407, 1440), 'numpy.random.default_rng', 'np.random.default_rng', (['self._seed'], {}), '(self._seed)\n', (1428, 1440), True, 'import numpy as np\n'), ((1926, 2021), 'numpy.linspace', 'np.linspace', (['(-self._viable_surface_radius)', 'self._viable_surface_radius', '(1000)'], {'endpoint': '(True)'}), '(-self._viable_surface_radius, self._viable_surface_radius, 1000,\n endpoint=True)\n', (1937, 2021), True, 'import numpy as np\n'), ((2112, 2157), 'numpy.array', 'np.array', (['self._x_coordinate_range'], {'copy': '(True)'}), '(self._x_coordinate_range, copy=True)\n', (2120, 2157), True, 'import numpy as np\n'), ((5987, 6006), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (6004, 6006), False, 'import time\n'), ((6026, 6058), 'numpy.array', 'np.array', (['start_state'], {'copy': '(True)'}), '(start_state, copy=True)\n', (6034, 6058), True, 'import numpy as np\n'), ((7189, 7229), 'inquire.interactions.feedback.Trajectory', 'Trajectory', (['best_toppings', 'best_features'], {}), '(best_toppings, best_features)\n', (7199, 7229), False, 'from inquire.interactions.feedback import Trajectory\n'), ((8805, 8851), 'numpy.append', 'np.append', (['current_state', 'next_topping'], {'axis': '(1)'}), '(current_state, next_topping, axis=1)\n', (8814, 8851), True, 'import numpy as np\n'), ((10168, 10194), 'numpy.array', 'np.array', (['state'], {'copy': '(True)'}), '(state, copy=True)\n', (10176, 10194), True, 'import numpy as np\n'), ((10371, 10417), 'numpy.sqrt', 'np.sqrt', (['(coords[0, :] ** 2 + coords[1, :] ** 2)'], {}), '(coords[0, :] ** 2 + coords[1, :] ** 2)\n', (10378, 10417), True, 'import numpy as np\n'), ((11838, 11864), 'numpy.array', 'np.array', (['state'], {'copy': '(True)'}), '(state, copy=True)\n', (11846, 11864), True, 'import numpy as np\n'), ((13055, 13081), 'numpy.array', 'np.array', (['state'], {'copy': '(True)'}), '(state, copy=True)\n', (13063, 13081), True, 'import numpy as np\n'), ((13605, 13631), 'numpy.array', 'np.array', (['state'], {'copy': '(True)'}), '(state, copy=True)\n', (13613, 13631), True, 'import numpy as np\n'), ((14182, 14208), 'numpy.array', 'np.array', (['state'], {'copy': '(True)'}), '(state, copy=True)\n', (14190, 14208), True, 'import numpy as np\n'), ((14371, 14405), 'numpy.sqrt', 'np.sqrt', (['(x_dist ** 2 + y_dist ** 2)'], {}), '(x_dist ** 2 + y_dist ** 2)\n', (14378, 14405), True, 'import numpy as np\n'), ((14619, 14645), 'numpy.array', 'np.array', (['state'], {'copy': '(True)'}), '(state, copy=True)\n', (14627, 14645), True, 'import numpy as np\n'), ((15731, 15747), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (15739, 15747), True, 'import numpy as np\n'), ((3415, 3427), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3423, 3427), True, 'import numpy as np\n'), ((5487, 5510), 'numpy.linalg.norm', 'np.linalg.norm', (['weights'], {}), '(weights)\n', (5501, 5510), True, 'import numpy as np\n'), ((8016, 8039), 'numpy.zeros', 'np.zeros', (['(self.w_dim,)'], {}), '((self.w_dim,))\n', (8024, 8039), True, 'import numpy as np\n'), ((8113, 8139), 'numpy.array', 'np.array', (['state'], {'copy': '(True)'}), '(state, copy=True)\n', (8121, 8139), True, 'import numpy as np\n'), ((9703, 9727), 'numpy.sum', 'np.sum', (['features'], {'axis': '(0)'}), '(features, axis=0)\n', (9709, 9727), True, 'import numpy as np\n'), ((10433, 10483), 'numpy.argwhere', 'np.argwhere', (['(sq_sum <= self._viable_surface_radius)'], {}), '(sq_sum <= self._viable_surface_radius)\n', (10444, 10483), True, 'import numpy as np\n'), ((10934, 10950), 'numpy.sqrt', 'np.sqrt', (['(xs + ys)'], {}), '(xs + ys)\n', (10941, 10950), True, 'import numpy as np\n'), ((11024, 11074), 'numpy.where', 'np.where', (['(topping_dists == 0)', '(1e-05)', 'topping_dists'], {}), '(topping_dists == 0, 1e-05, topping_dists)\n', (11032, 11074), True, 'import numpy as np\n'), ((11379, 11403), 'numpy.sum', 'np.sum', (['overlapping_area'], {}), '(overlapping_area)\n', (11385, 11403), True, 'import numpy as np\n'), ((12402, 12434), 'numpy.where', 'np.where', (['(mags == 0)', '(1e-05)', 'mags'], {}), '(mags == 0, 1e-05, mags)\n', (12410, 12434), True, 'import numpy as np\n'), ((12802, 12827), 'numpy.exp', 'np.exp', (['(-overlapping_area)'], {}), '(-overlapping_area)\n', (12808, 12827), True, 'import numpy as np\n'), ((13329, 13347), 'numpy.sum', 'np.sum', (['(diffs ** 2)'], {}), '(diffs ** 2)\n', (13335, 13347), True, 'import numpy as np\n'), ((13879, 13897), 'numpy.sum', 'np.sum', (['(diffs ** 2)'], {}), '(diffs ** 2)\n', (13885, 13897), True, 'import numpy as np\n'), ((15627, 15650), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (15644, 15650), True, 'import numpy as np\n'), ((15667, 15680), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (15673, 15680), True, 'import numpy as np\n'), ((15697, 15710), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (15703, 15710), True, 'import numpy as np\n'), ((707, 717), 'pathlib.Path.cwd', 'Path.cwd', ([], {}), '()\n', (715, 717), False, 'from pathlib import Path\n'), ((7278, 7297), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (7295, 7297), False, 'import time\n'), ((8742, 8769), 'numpy.array', 'np.array', (['action'], {'copy': '(True)'}), '(action, copy=True)\n', (8750, 8769), True, 'import numpy as np\n'), ((13390, 13408), 'numpy.sum', 'np.sum', (['(diffs ** 2)'], {}), '(diffs ** 2)\n', (13396, 13408), True, 'import numpy as np\n'), ((13940, 13958), 'numpy.sum', 'np.sum', (['(diffs ** 2)'], {}), '(diffs ** 2)\n', (13946, 13958), True, 'import numpy as np\n'), ((15574, 15597), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (15591, 15597), True, 'import numpy as np\n'), ((7049, 7083), 'numpy.array', 'np.array', (['temp_toppings'], {'copy': '(True)'}), '(temp_toppings, copy=True)\n', (7057, 7083), True, 'import numpy as np\n'), ((7120, 7154), 'numpy.array', 'np.array', (['temp_features'], {'copy': '(True)'}), '(temp_features, copy=True)\n', (7128, 7154), True, 'import numpy as np\n'), ((10661, 10695), 'itertools.combinations', 'combinations', (['coords[:, inds].T', '(2)'], {}), '(coords[:, inds].T, 2)\n', (10673, 10695), False, 'from itertools import combinations\n'), ((11291, 11313), 'numpy.exp', 'np.exp', (['(-topping_dists)'], {}), '(-topping_dists)\n', (11297, 11313), True, 'import numpy as np\n'), ((12641, 12663), 'numpy.exp', 'np.exp', (['(-topping_dists)'], {}), '(-topping_dists)\n', (12647, 12663), True, 'import numpy as np\n')]
|
"""grid_world.py
A simple grid world environment. Edges of the map are treated like obstacles
Map must be a image file whose values represent free (255, white), occupied (0, black).
"""
from __future__ import print_function, absolute_import, division
import cv2
import numpy as np
from bc_exploration.mapping.costmap import Costmap
from bc_exploration.utilities.util import wrap_angles, compute_connected_pixels
from bc_exploration.utilities.util import xy_to_rc
class GridWorld:
"""
A simple grid world environment. Edges of the map are treated like obstacles
Map must be a image file whose values represent free (255, white), occupied (0, black).
"""
def __init__(self,
map_filename,
map_resolution,
sensor,
footprint,
start_state=None,
render_size=(500, 500),
thicken_obstacles=True):
"""
Creates an interactive grid world environment structured similar to open ai gym.
Allows for moving, sensing, and visualizing within the space. Map loaded is based off the map_filename.
:param map_filename str: path of image file whose values represent free (255, white), occupied (0, black).
:param map_resolution float: resolution of which to represent the map
:param sensor Sensor: sensor to use to sense the environment
:param footprint Footprint: footprint of the robot
:param start_state bool: if None, will randomly sample a free space point as the starting point
else it must be [row, column] of the position you want the robot to start.
it must be a valid location (free space and footprint must fit)
:param render_size Tuple(int): size of which to render the map (for visualization env.render() )
:param thicken_obstacles bool: thicken the obstacles in the map by 1 pixel, to avoid 1 pixel thick walls
"""
self.footprint = footprint
self.footprint_no_inflation = footprint.no_inflation()
self.map_resolution = map_resolution
self.render_size = render_size
assert render_size.shape[0] == 2 if isinstance(render_size, np.ndarray) else len(render_size) == 2
self.state = None
self.map = None
self.truth_free_coords = None
self._load_map(map_filename, map_resolution, thicken_obstacles=thicken_obstacles)
self.start_state = np.array(start_state).astype(np.float) \
if start_state is not None else self._get_random_start_state()
assert self.start_state.shape[0] == 3
self.sensor = sensor
assert self.map is not None
self.sensor.set_map(occupancy_map=self.map)
self.reset()
assert self._is_state_valid(self.start_state)
def _get_random_start_state(self):
"""
Samples a random valid state from the map
:return array(3)[float]: state [x, y, theta] of the robot
"""
valid_points = self.map_resolution * np.argwhere(self.map.data == Costmap.FREE)[:, ::-1]
choice = np.random.randint(valid_points.shape[0])
valid = False
while not valid:
choice = np.random.randint(valid_points.shape[0])
valid = self._is_state_valid(np.concatenate((valid_points[choice], [0])))
# todo add random angle
return np.concatenate((valid_points[choice], [0])).astype(np.float)
def _is_state_valid(self, state, use_inflation=True):
"""
Make sure state is not out of bounds or on an obstacle (footprint check)
:param state array(3)[float]: [x, y, theta], the position/orientation of the robot
:param use_inflation bool: whether to use the inflated footprint to collision check, or the normal footprint.
usually the environment will need use the actual footprint of the robot (because thats the
physical limitation we want to simulate)
:return bool: whether it is valid or not
"""
return 0 <= state[0] < self.map.get_size()[0] and 0 <= state[1] < self.map.get_size()[1] \
and not (self.footprint.check_for_collision(state=state, occupancy_map=self.map)
if use_inflation else self.footprint_no_inflation.check_for_collision(state=state, occupancy_map=self.map))
def _load_map(self, filename, map_resolution, thicken_obstacles=True):
"""
Loads map from file into costmap object
:param filename str: location of the map file
:param map_resolution float: desired resolution of the loaded map
:param thicken_obstacles bool: thicken the obstacles in the map by 1 pixel, to avoid 1 pixel thick walls
"""
map_data = cv2.imread(filename)
assert map_data is not None and "map file not able to be loaded. Does the file exist?"
map_data = cv2.cvtColor(map_data, cv2.COLOR_RGB2GRAY)
map_data = map_data.astype(np.uint8)
assert np.max(map_data) == 255
if thicken_obstacles:
occupied_coords = np.argwhere(map_data == Costmap.OCCUPIED)
occupied_mask = np.zeros_like(map_data)
occupied_mask[occupied_coords[:, 0], occupied_coords[:, 1]] = 1
occupied_mask = cv2.dilate(occupied_mask, cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3)))
occupied_coords = np.argwhere(occupied_mask == 1)
map_data[occupied_coords[:, 0], occupied_coords[:, 1]] = Costmap.OCCUPIED
self.map = Costmap(data=map_data, resolution=map_resolution, origin=[0., 0.])
def compare_maps(self, occupancy_map):
"""
Does a comparison of the ground truth map with the input map,
and will return a percentage completed
:param occupancy_map Costmap: input map to be compared with ground truth
:return float: percentage covered of the input map to the ground truth map
"""
if self.truth_free_coords is None:
start_state_px = xy_to_rc(self.start_state, self.map)
self.truth_free_coords = compute_connected_pixels(start_state_px, self.map.data)
free_coords = np.argwhere(occupancy_map.data == Costmap.FREE)
return free_coords.shape[0] / float(self.truth_free_coords.shape[0])
def step(self, desired_state):
"""
Execute the given action with the robot in the environment, return the next robot position,
and the output of sensor.measure() (sensor data)
:param desired_state array(3)[float]: desired next state of the robot
:return array(3)[float]: new_state (new robot position), sensor_data (output from sensor)
"""
new_state = np.array(desired_state, dtype=np.float)
new_state[2] = wrap_angles(desired_state[2])
# # todo maybe keep angle of desired state
if not self._is_state_valid(new_state + self.start_state, use_inflation=False):
new_state = self.state.copy()
# compute sensor_data
measure_state = new_state.copy()
measure_state[:2] += self.start_state[:2]
sensor_data = self.sensor.measure(measure_state)
# set state
self.state = new_state
return new_state.copy(), sensor_data
def reset(self):
"""
Resets the robot to the starting state in the environment
:return array(3)[float]: robot position, sensor data from start state
"""
self.state = np.array((0, 0, self.start_state[2]))
sensor_data = self.sensor.measure(self.start_state)
return self.state.copy(), sensor_data
def render(self, wait_key=0):
"""
Renders the environment and the robots position
:param wait_key int: the opencv waitKey arg
"""
# convert to colored image
map_vis = cv2.cvtColor(self.map.data.copy(), cv2.COLOR_GRAY2BGR)
state_px = xy_to_rc(self.state + self.start_state, self.map)[:2].astype(np.int)
map_vis[state_px[0], state_px[1]] = [127, 122, 10]
# # todo figure out programmatic way to pick circle size (that works well)
# cv2.circle(map_vis, tuple(self.state[:2][::-1].astype(int)), 1, [127, 122, 10], thickness=-1)
# resize map
map_vis = cv2.resize(map_vis, tuple(self.render_size), interpolation=cv2.INTER_NEAREST)
# visualize map
cv2.namedWindow('map', cv2.WINDOW_GUI_NORMAL)
cv2.imshow('map', map_vis)
cv2.resizeWindow('map', *self.render_size)
cv2.waitKey(wait_key)
def get_sensor(self):
"""
Gets the sensor object
:return Sensor: the sensor used by the grid world
"""
return self.sensor
def get_map_shape(self):
"""
Returns the shape of the map
:return Tuple(int): map shape
"""
return self.map.get_shape()
def get_map_size(self):
"""
Returns the size of the map (x, y) in meters
:return Tuple(float): map size (meters)
"""
return self.map.get_size()
def get_map_resolution(self):
"""
Returns the resolution of the map
:return float: resolution
"""
return self.map_resolution
def __del__(self):
"""
Destructor, delete opencv windows
"""
cv2.destroyAllWindows()
|
[
"numpy.zeros_like",
"bc_exploration.utilities.util.xy_to_rc",
"numpy.concatenate",
"cv2.cvtColor",
"cv2.waitKey",
"cv2.destroyAllWindows",
"cv2.getStructuringElement",
"cv2.imread",
"numpy.max",
"numpy.random.randint",
"numpy.array",
"bc_exploration.utilities.util.compute_connected_pixels",
"numpy.argwhere",
"cv2.resizeWindow",
"cv2.imshow",
"bc_exploration.mapping.costmap.Costmap",
"cv2.namedWindow",
"bc_exploration.utilities.util.wrap_angles"
] |
[((3156, 3196), 'numpy.random.randint', 'np.random.randint', (['valid_points.shape[0]'], {}), '(valid_points.shape[0])\n', (3173, 3196), True, 'import numpy as np\n'), ((4845, 4865), 'cv2.imread', 'cv2.imread', (['filename'], {}), '(filename)\n', (4855, 4865), False, 'import cv2\n'), ((4980, 5022), 'cv2.cvtColor', 'cv2.cvtColor', (['map_data', 'cv2.COLOR_RGB2GRAY'], {}), '(map_data, cv2.COLOR_RGB2GRAY)\n', (4992, 5022), False, 'import cv2\n'), ((5612, 5680), 'bc_exploration.mapping.costmap.Costmap', 'Costmap', ([], {'data': 'map_data', 'resolution': 'map_resolution', 'origin': '[0.0, 0.0]'}), '(data=map_data, resolution=map_resolution, origin=[0.0, 0.0])\n', (5619, 5680), False, 'from bc_exploration.mapping.costmap import Costmap\n'), ((6253, 6300), 'numpy.argwhere', 'np.argwhere', (['(occupancy_map.data == Costmap.FREE)'], {}), '(occupancy_map.data == Costmap.FREE)\n', (6264, 6300), True, 'import numpy as np\n'), ((6791, 6830), 'numpy.array', 'np.array', (['desired_state'], {'dtype': 'np.float'}), '(desired_state, dtype=np.float)\n', (6799, 6830), True, 'import numpy as np\n'), ((6854, 6883), 'bc_exploration.utilities.util.wrap_angles', 'wrap_angles', (['desired_state[2]'], {}), '(desired_state[2])\n', (6865, 6883), False, 'from bc_exploration.utilities.util import wrap_angles, compute_connected_pixels\n'), ((7554, 7591), 'numpy.array', 'np.array', (['(0, 0, self.start_state[2])'], {}), '((0, 0, self.start_state[2]))\n', (7562, 7591), True, 'import numpy as np\n'), ((8459, 8504), 'cv2.namedWindow', 'cv2.namedWindow', (['"""map"""', 'cv2.WINDOW_GUI_NORMAL'], {}), "('map', cv2.WINDOW_GUI_NORMAL)\n", (8474, 8504), False, 'import cv2\n'), ((8513, 8539), 'cv2.imshow', 'cv2.imshow', (['"""map"""', 'map_vis'], {}), "('map', map_vis)\n", (8523, 8539), False, 'import cv2\n'), ((8548, 8590), 'cv2.resizeWindow', 'cv2.resizeWindow', (['"""map"""', '*self.render_size'], {}), "('map', *self.render_size)\n", (8564, 8590), False, 'import cv2\n'), ((8599, 8620), 'cv2.waitKey', 'cv2.waitKey', (['wait_key'], {}), '(wait_key)\n', (8610, 8620), False, 'import cv2\n'), ((9410, 9433), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (9431, 9433), False, 'import cv2\n'), ((3266, 3306), 'numpy.random.randint', 'np.random.randint', (['valid_points.shape[0]'], {}), '(valid_points.shape[0])\n', (3283, 3306), True, 'import numpy as np\n'), ((5083, 5099), 'numpy.max', 'np.max', (['map_data'], {}), '(map_data)\n', (5089, 5099), True, 'import numpy as np\n'), ((5168, 5209), 'numpy.argwhere', 'np.argwhere', (['(map_data == Costmap.OCCUPIED)'], {}), '(map_data == Costmap.OCCUPIED)\n', (5179, 5209), True, 'import numpy as np\n'), ((5238, 5261), 'numpy.zeros_like', 'np.zeros_like', (['map_data'], {}), '(map_data)\n', (5251, 5261), True, 'import numpy as np\n'), ((5474, 5505), 'numpy.argwhere', 'np.argwhere', (['(occupied_mask == 1)'], {}), '(occupied_mask == 1)\n', (5485, 5505), True, 'import numpy as np\n'), ((6100, 6136), 'bc_exploration.utilities.util.xy_to_rc', 'xy_to_rc', (['self.start_state', 'self.map'], {}), '(self.start_state, self.map)\n', (6108, 6136), False, 'from bc_exploration.utilities.util import xy_to_rc\n'), ((6174, 6229), 'bc_exploration.utilities.util.compute_connected_pixels', 'compute_connected_pixels', (['start_state_px', 'self.map.data'], {}), '(start_state_px, self.map.data)\n', (6198, 6229), False, 'from bc_exploration.utilities.util import wrap_angles, compute_connected_pixels\n'), ((3087, 3129), 'numpy.argwhere', 'np.argwhere', (['(self.map.data == Costmap.FREE)'], {}), '(self.map.data == Costmap.FREE)\n', (3098, 3129), True, 'import numpy as np\n'), ((3348, 3391), 'numpy.concatenate', 'np.concatenate', (['(valid_points[choice], [0])'], {}), '((valid_points[choice], [0]))\n', (3362, 3391), True, 'import numpy as np\n'), ((3441, 3484), 'numpy.concatenate', 'np.concatenate', (['(valid_points[choice], [0])'], {}), '((valid_points[choice], [0]))\n', (3455, 3484), True, 'import numpy as np\n'), ((5392, 5442), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_CROSS', '(3, 3)'], {}), '(cv2.MORPH_CROSS, (3, 3))\n', (5417, 5442), False, 'import cv2\n'), ((2506, 2527), 'numpy.array', 'np.array', (['start_state'], {}), '(start_state)\n', (2514, 2527), True, 'import numpy as np\n'), ((7993, 8042), 'bc_exploration.utilities.util.xy_to_rc', 'xy_to_rc', (['(self.state + self.start_state)', 'self.map'], {}), '(self.state + self.start_state, self.map)\n', (8001, 8042), False, 'from bc_exploration.utilities.util import xy_to_rc\n')]
|
from __future__ import print_function
import save_novel
import tensorflow as tf
import os
import sys
import random
import numpy as np
import re
import MeCab
from glob import glob
from keras.optimizers import RMSprop
from keras.layers import LSTM
from keras.layers import Dense
from keras.models import Sequential
from keras.callbacks import LambdaCallback
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
for k in range(len(physical_devices)):
tf.config.experimental.set_memory_growth(physical_devices[k], True)
print('memory growth:', tf.config.experimental.get_memory_growth(
physical_devices[k]))
else:
print("Not enough GPU hardware devices available")
# ----------------------------------------------------------------
tagger = MeCab.Tagger("-Owakati")
def make_wakati(sentence):
sentence = tagger.parse(sentence)
sentence = re.sub(r'[0-90-9a-zA-Za-zA-Z]+', " ", sentence)
sentence = re.sub(
r'[\._-―─!@#$%^&\-‐|\\*\“()_■×+α※÷⇒—●★☆〇◎◆▼◇△□(:〜~+=)/*&^%$#@!~`){}[]…\[\]\"\'\”\’:;<>?<>〔〕〈〉?、。・,\./『』【】「」→←○《》≪≫\n\u3000]+', "", sentence)
wakati = sentence.split(" ")
wakati = list(filter(("").__ne__, wakati))
return wakati
bodies = ''
url = input(
'Enter the URL of the novel.\n(ex:https://ncode.syosetu.com/n2267be)\n>')
id = url[url.strip('/').rfind('/'):len(url)]
if not os.path.exists(save_novel.save_folder+id):
print('Path does not exist.')
exit()
for file in glob(save_novel.save_folder+id+'/*.txt'):
with open(file, mode="r", encoding='utf-8') as f:
bodies += f.read()
text = make_wakati(bodies)
print(len(text))
text = text[0:min(len(text), 25000)]
chars = text
count = 0
char_indices = {}
indices_char = {}
for word in chars:
if not word in char_indices:
char_indices[word] = count
count += 1
indices_char = dict([(value, key) for (key, value) in char_indices.items()])
maxlen = 5
step = 1
sentences = []
next_chars = []
for i in range(0, len(text) - maxlen, step):
sentences.append(text[i: i + maxlen])
next_chars.append(text[i + maxlen])
print('nb sequences:', len(sentences))
print('Vectorization...')
x = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
x[i, t, char_indices[char]] = 1
y[i, char_indices[next_chars[i]]] = 1
print('Build model...')
model = Sequential()
model.add(LSTM(128, input_shape=(maxlen, len(chars))))
model.add(Dense(len(chars), activation='softmax'))
optimizer = RMSprop(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)
def sample(preds, temperature=1.0):
preds = np.asarray(preds).astype('float64')
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial(1, preds, 1)
return np.argmax(probas)
def on_epoch_end(epoch, _):
print()
print('----- Generating text after Epoch: %d' % epoch)
start_index = random.randint(0, len(text) - maxlen - 1)
start_index = 0
for diversity in [0.2]:
print('----- diversity:', diversity)
generated = ''
sentence = text[start_index: start_index + maxlen]
generated += "".join(sentence)
print(sentence)
print('----- Generating with seed: "' + "".join(sentence) + '"')
sys.stdout.write(generated)
for i in range(400):
x_pred = np.zeros((1, maxlen, len(chars)))
for t, char in enumerate(sentence):
x_pred[0, t, char_indices[char]] = 1.
preds = model.predict(x_pred, verbose=0)[0]
next_index = sample(preds, diversity)
next_char = indices_char[next_index]
generated += next_char
sentence = sentence[1:]
sentence.append(next_char)
sys.stdout.write(next_char)
sys.stdout.flush()
print()
print_callback = LambdaCallback(on_epoch_end=on_epoch_end)
model.summary()
model.fit(x, y,
batch_size=128,
epochs=30,
callbacks=[print_callback])
|
[
"sys.stdout.write",
"numpy.sum",
"numpy.log",
"tensorflow.config.experimental.get_memory_growth",
"numpy.argmax",
"numpy.random.multinomial",
"numpy.asarray",
"os.path.exists",
"tensorflow.config.experimental.set_memory_growth",
"keras.callbacks.LambdaCallback",
"MeCab.Tagger",
"numpy.exp",
"sys.stdout.flush",
"glob.glob",
"keras.models.Sequential",
"keras.optimizers.RMSprop",
"tensorflow.config.experimental.list_physical_devices",
"re.sub"
] |
[((375, 426), 'tensorflow.config.experimental.list_physical_devices', 'tf.config.experimental.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (419, 426), True, 'import tensorflow as tf\n'), ((821, 845), 'MeCab.Tagger', 'MeCab.Tagger', (['"""-Owakati"""'], {}), "('-Owakati')\n", (833, 845), False, 'import MeCab\n'), ((1503, 1547), 'glob.glob', 'glob', (["(save_novel.save_folder + id + '/*.txt')"], {}), "(save_novel.save_folder + id + '/*.txt')\n", (1507, 1547), False, 'from glob import glob\n'), ((2514, 2526), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (2524, 2526), False, 'from keras.models import Sequential\n'), ((2646, 2662), 'keras.optimizers.RMSprop', 'RMSprop', ([], {'lr': '(0.01)'}), '(lr=0.01)\n', (2653, 2662), False, 'from keras.optimizers import RMSprop\n'), ((4071, 4112), 'keras.callbacks.LambdaCallback', 'LambdaCallback', ([], {'on_epoch_end': 'on_epoch_end'}), '(on_epoch_end=on_epoch_end)\n', (4085, 4112), False, 'from keras.callbacks import LambdaCallback\n'), ((928, 974), 're.sub', 're.sub', (['"""[0-90-9a-zA-Za-zA-Z]+"""', '""" """', 'sentence'], {}), "('[0-90-9a-zA-Za-zA-Z]+', ' ', sentence)\n", (934, 974), False, 'import re\n'), ((991, 1162), 're.sub', 're.sub', (['"""[\\\\._-―─!@#$%^&\\\\-‐|\\\\\\\\*\\\\“()_■×+α※÷⇒—●★☆〇◎◆▼◇△□(:〜~+=)/*&^%$#@!~`){}[]…\\\\[\\\\]\\\\"\\\\\'\\\\”\\\\’:;<>?<>〔〕〈〉?、。・,\\\\./『』【】「」→←○《》≪≫\\\\n\\\\u3000]+"""', '""""""', 'sentence'], {}), '(\n \'[\\\\._-―─!@#$%^&\\\\-‐|\\\\\\\\*\\\\“()_■×+α※÷⇒—●★☆〇◎◆▼◇△□(:〜~+=)/*&^%$#@!~`){}[]…\\\\[\\\\]\\\\"\\\\\\\'\\\\”\\\\’:;<>?<>〔〕〈〉?、。・,\\\\./『』【】「」→←○《》≪≫\\\\n\\\\u3000]+\'\n , \'\', sentence)\n', (997, 1162), False, 'import re\n'), ((1403, 1446), 'os.path.exists', 'os.path.exists', (['(save_novel.save_folder + id)'], {}), '(save_novel.save_folder + id)\n', (1417, 1446), False, 'import os\n'), ((2873, 2886), 'numpy.exp', 'np.exp', (['preds'], {}), '(preds)\n', (2879, 2886), True, 'import numpy as np\n'), ((2942, 2976), 'numpy.random.multinomial', 'np.random.multinomial', (['(1)', 'preds', '(1)'], {}), '(1, preds, 1)\n', (2963, 2976), True, 'import numpy as np\n'), ((2988, 3005), 'numpy.argmax', 'np.argmax', (['probas'], {}), '(probas)\n', (2997, 3005), True, 'import numpy as np\n'), ((508, 575), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['physical_devices[k]', '(True)'], {}), '(physical_devices[k], True)\n', (548, 575), True, 'import tensorflow as tf\n'), ((2829, 2842), 'numpy.log', 'np.log', (['preds'], {}), '(preds)\n', (2835, 2842), True, 'import numpy as np\n'), ((2911, 2928), 'numpy.sum', 'np.sum', (['exp_preds'], {}), '(exp_preds)\n', (2917, 2928), True, 'import numpy as np\n'), ((3486, 3513), 'sys.stdout.write', 'sys.stdout.write', (['generated'], {}), '(generated)\n', (3502, 3513), False, 'import sys\n'), ((608, 669), 'tensorflow.config.experimental.get_memory_growth', 'tf.config.experimental.get_memory_growth', (['physical_devices[k]'], {}), '(physical_devices[k])\n', (648, 669), True, 'import tensorflow as tf\n'), ((2781, 2798), 'numpy.asarray', 'np.asarray', (['preds'], {}), '(preds)\n', (2791, 2798), True, 'import numpy as np\n'), ((3977, 4004), 'sys.stdout.write', 'sys.stdout.write', (['next_char'], {}), '(next_char)\n', (3993, 4004), False, 'import sys\n'), ((4017, 4035), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (4033, 4035), False, 'import sys\n')]
|
import en_core_web_lg
import json
import pickle
import numpy as np
import rdflib
class FoodEmbeddingSims:
def run(self, *,
spacy_savefile = '../data/out/spacy_ing_sim.pkl',
w2v_savefile = '../data/out/w2v_ing_sim.pkl',
substitution_data_file = '../data/in/foodsubs_data.json',
w2v_file = '../data/in/r1m_word2vec/vocab.bin',
food_link_files = ['../data/in/foodon-links-1.ttl']):
g = rdflib.Graph()
for file in food_link_files:
g.parse(file, format='ttl')
food_to_foodon = dict()
unique_foodon = set()
for subj, obj in g.subject_objects(predicate=rdflib.URIRef('http://idea.rpi.edu/heals/kb/equivalentFoodOnClass')):
food_to_foodon[subj] = obj
unique_foodon.add(obj)
relevant_foods = set()
with open(substitution_data_file, 'r') as f:
scraped_subs_tups = json.load(f)
for i in range(len(scraped_subs_tups)):
scraped_subs_tups[i] = [rdflib.URIRef(scraped_subs_tups[i][0]), rdflib.URIRef(scraped_subs_tups[i][1])]
if scraped_subs_tups[i][0] in food_to_foodon.keys():
relevant_foods.add(scraped_subs_tups[i][0])
if scraped_subs_tups[i][1] in food_to_foodon.keys():
relevant_foods.add(scraped_subs_tups[i][1])
print('relevant foods: ', len(relevant_foods))
print('ingredient names: ', len(food_to_foodon.keys()))
print('foodon ingredients: ', len(unique_foodon))
def l2_norm(mat):
return np.sqrt(np.sum(np.multiply(mat, mat), axis=1))
###### SPACY
###############
############
print("starting spacy")
nlp = en_core_web_lg.load()
ing_to_vec = np.zeros(shape=(len(relevant_foods), 300))
print("getting vectors")
ing_to_index = dict()
ing_index = 0
use_ings = set()
for fromt_ing in relevant_foods:#food_to_foodon.keys():
ing = fromt_ing[44:]
ing_replaced = ing.replace("%20", " ")
vec_parts = []
doskip = False
for token in nlp(ing_replaced):
if np.sum(token.vector) == 0 or np.sum(token.vector) is np.nan:
print('ignoring ', ing)
doskip = True
vec_parts.append(token.vector)
if doskip:
continue
ing_to_index[fromt_ing] = ing_index
ing_to_vec[ing_index, :] = np.mean(vec_parts, axis=0).reshape(1, -1)
ing_index += 1
use_ings.add(fromt_ing)
if ing_index%1000 == 0:
print(ing_index)
l2n = l2_norm(ing_to_vec)
print('getting sims for ', len(use_ings), ' ingreds')
vec_ing_sim = dict()
for ing in use_ings:
index_1 = ing_to_index[ing]
foodon_ing1 = food_to_foodon[ing]
cosine_sim = np.dot(ing_to_vec[index_1].reshape(1, -1), ing_to_vec.T) / (l2_norm(ing_to_vec[index_1, :].reshape(1, -1))*(l2n))
res_dict = dict()
dist_list = []
for ing2 in use_ings:
index_2 = ing_to_index[ing2]
foodon_ing2 = food_to_foodon[ing2]
if ing == ing2:
res_dict[ing2] = 1
elif ing2 in vec_ing_sim.keys():
res_dict[ing2] = vec_ing_sim[ing2][ing]
else:
sim = cosine_sim[0, index_2]
res_dict[ing2] = sim
vec_ing_sim[ing] = res_dict
if len(vec_ing_sim.keys())%100 == 0:
print(len(vec_ing_sim.keys()))
print('finished setting up spacy sims, saving')
with open(spacy_savefile, 'wb') as f:
pickle.dump(vec_ing_sim, f)
from gensim.models import KeyedVectors
print("starting w2v")
w2v_model = KeyedVectors.load_word2vec_format(w2v_file, binary=True)
ing_to_vec = np.zeros(shape=(len(relevant_foods), 300))
print("getting vectors")
ing_to_index = dict()
ing_index = 0
use_ings = set()
for fromt_ing in relevant_foods:#food_to_foodon.keys():
ing = fromt_ing[44:]
ing_replaced = ing.replace("%20", "_")
if ing_replaced in w2v_model.vocab:
ing_to_vec[ing_index, :] = w2v_model[ing_replaced].reshape(1, -1)
else:
if ing_replaced.lower() in w2v_model.vocab:
ing_to_vec[ing_index, :] = w2v_model[ing_replaced.lower()].reshape(1, -1)
elif ing_replaced[0].upper()+ing_replaced[1:] in w2v_model.vocab:
ing_to_vec[ing_index, :] = w2v_model[ing_replaced[0].upper()+ing_replaced[1:]].reshape(1, -1)
else:
vec_parts = []
ing_parts = ing_replaced.split("_")
doskip = False
for ing_part in ing_parts:
if ing_part in w2v_model.vocab:
vec_parts.append(w2v_model[ing_part])
else:
if ing_part.lower() in w2v_model.vocab:
vec_parts.append(w2v_model[ing_part.lower()])
#print(ing_part, " in ", ing, "! lower")
elif ing_part[0].upper()+ing_part[1:] in w2v_model.vocab:
vec_parts.append(w2v_model[ing_part[0].upper()+ing_part[1:]])
else:
print('ignoring ', fromt_ing)
doskip = True
continue
if doskip:
continue
if len(vec_parts) != 0:
vec = np.array(vec_parts)
vec = np.mean(vec_parts, axis=0)
ing_to_vec[ing_index, :] = vec.reshape(1, -1)
ing_to_index[fromt_ing] = ing_index
ing_index += 1
use_ings.add(fromt_ing)
if ing_index%1000 == 0:
print(ing_index)
l2n = l2_norm(ing_to_vec)
print('getting sims for ', len(use_ings), ' ings')
vec_ing_sim = dict()
for ing in use_ings:
index_1 = ing_to_index[ing]
foodon_ing1 = food_to_foodon[ing]
cosine_sim = np.dot(ing_to_vec[index_1].reshape(1, -1), ing_to_vec.T) / (l2_norm(ing_to_vec[index_1, :].reshape(1, -1))*(l2n))
res_dict = dict()
dist_list = []
for ing2 in use_ings:
index_2 = ing_to_index[ing2]
foodon_ing2 = food_to_foodon[ing2]
if ing == ing2:
res_dict[ing2] = 1
elif ing2 in vec_ing_sim.keys():
res_dict[ing2] = vec_ing_sim[ing2][ing]
else:
sim = cosine_sim[0, index_2]
res_dict[ing2] = sim
vec_ing_sim[ing] = res_dict
if len(vec_ing_sim.keys())%100 == 0:
print(len(vec_ing_sim.keys()))
print('finished setting up w2v sims, saving')
with open(w2v_savefile, 'wb') as f:
pickle.dump(vec_ing_sim, f)
|
[
"pickle.dump",
"rdflib.Graph",
"json.load",
"numpy.multiply",
"numpy.sum",
"rdflib.URIRef",
"en_core_web_lg.load",
"numpy.mean",
"numpy.array",
"gensim.models.KeyedVectors.load_word2vec_format"
] |
[((459, 473), 'rdflib.Graph', 'rdflib.Graph', ([], {}), '()\n', (471, 473), False, 'import rdflib\n'), ((1741, 1762), 'en_core_web_lg.load', 'en_core_web_lg.load', ([], {}), '()\n', (1760, 1762), False, 'import en_core_web_lg\n'), ((3939, 3995), 'gensim.models.KeyedVectors.load_word2vec_format', 'KeyedVectors.load_word2vec_format', (['w2v_file'], {'binary': '(True)'}), '(w2v_file, binary=True)\n', (3972, 3995), False, 'from gensim.models import KeyedVectors\n'), ((928, 940), 'json.load', 'json.load', (['f'], {}), '(f)\n', (937, 940), False, 'import json\n'), ((3812, 3839), 'pickle.dump', 'pickle.dump', (['vec_ing_sim', 'f'], {}), '(vec_ing_sim, f)\n', (3823, 3839), False, 'import pickle\n'), ((7317, 7344), 'pickle.dump', 'pickle.dump', (['vec_ing_sim', 'f'], {}), '(vec_ing_sim, f)\n', (7328, 7344), False, 'import pickle\n'), ((666, 733), 'rdflib.URIRef', 'rdflib.URIRef', (['"""http://idea.rpi.edu/heals/kb/equivalentFoodOnClass"""'], {}), "('http://idea.rpi.edu/heals/kb/equivalentFoodOnClass')\n", (679, 733), False, 'import rdflib\n'), ((1025, 1063), 'rdflib.URIRef', 'rdflib.URIRef', (['scraped_subs_tups[i][0]'], {}), '(scraped_subs_tups[i][0])\n', (1038, 1063), False, 'import rdflib\n'), ((1065, 1103), 'rdflib.URIRef', 'rdflib.URIRef', (['scraped_subs_tups[i][1]'], {}), '(scraped_subs_tups[i][1])\n', (1078, 1103), False, 'import rdflib\n'), ((1596, 1617), 'numpy.multiply', 'np.multiply', (['mat', 'mat'], {}), '(mat, mat)\n', (1607, 1617), True, 'import numpy as np\n'), ((2525, 2551), 'numpy.mean', 'np.mean', (['vec_parts'], {'axis': '(0)'}), '(vec_parts, axis=0)\n', (2532, 2551), True, 'import numpy as np\n'), ((2203, 2223), 'numpy.sum', 'np.sum', (['token.vector'], {}), '(token.vector)\n', (2209, 2223), True, 'import numpy as np\n'), ((2232, 2252), 'numpy.sum', 'np.sum', (['token.vector'], {}), '(token.vector)\n', (2238, 2252), True, 'import numpy as np\n'), ((5884, 5903), 'numpy.array', 'np.array', (['vec_parts'], {}), '(vec_parts)\n', (5892, 5903), True, 'import numpy as np\n'), ((5934, 5960), 'numpy.mean', 'np.mean', (['vec_parts'], {'axis': '(0)'}), '(vec_parts, axis=0)\n', (5941, 5960), True, 'import numpy as np\n')]
|
import os
from numpy.testing import assert_allclose, assert_equal
from astropy.io import fits
import shutil
import numpy as np
def spectrum_answer_testing(spec, filename, answer_store, answer_dir):
testfile = os.path.join(answer_dir, filename)
if answer_store:
spec.write_h5_file(testfile, overwrite=True)
else:
answer_spec = type(spec).from_file(testfile)
assert_allclose(answer_spec.emid.value,
spec.emid.value)
assert_allclose(answer_spec.flux.value,
spec.flux.value)
assert answer_spec.flux.unit == spec.flux.unit
def file_answer_testing(hdu, filename, answer_store, answer_dir):
oldf = os.path.join(answer_dir, filename)
if answer_store:
shutil.copy(filename, answer_dir)
else:
f_old = fits.open(oldf)
f_new = fits.open(filename)
if hdu in ["IMAGE", "EXPMAP"]:
for k in f_old[hdu].header:
assert_equal(f_old[hdu].header[k], f_new[hdu].header[k])
dtype = f_old[hdu].data.dtype
if np.issubdtype(dtype, np.float32):
rtol = 1.0e-6
else:
rtol = 1.0e-8
assert_allclose(f_old[hdu].data, f_new[hdu].data, rtol=rtol)
else:
old_cols = f_old[hdu].data.names
new_cols = f_new[hdu].data.names
assert old_cols == new_cols
for name in old_cols:
dtype = f_old[hdu].data[name].dtype
if np.issubdtype(dtype, np.integer):
assert_equal(f_old[hdu].data[name], f_new[hdu].data[name])
else:
if np.issubdtype(dtype, np.float32):
rtol = 1.0e-6
else:
rtol = 1.0e-8
assert_allclose(f_old[hdu].data[name],
f_new[hdu].data[name],
rtol=rtol)
f_old.close()
f_new.close()
|
[
"astropy.io.fits.open",
"numpy.testing.assert_equal",
"shutil.copy",
"numpy.testing.assert_allclose",
"os.path.join",
"numpy.issubdtype"
] |
[((215, 249), 'os.path.join', 'os.path.join', (['answer_dir', 'filename'], {}), '(answer_dir, filename)\n', (227, 249), False, 'import os\n'), ((699, 733), 'os.path.join', 'os.path.join', (['answer_dir', 'filename'], {}), '(answer_dir, filename)\n', (711, 733), False, 'import os\n'), ((395, 451), 'numpy.testing.assert_allclose', 'assert_allclose', (['answer_spec.emid.value', 'spec.emid.value'], {}), '(answer_spec.emid.value, spec.emid.value)\n', (410, 451), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((484, 540), 'numpy.testing.assert_allclose', 'assert_allclose', (['answer_spec.flux.value', 'spec.flux.value'], {}), '(answer_spec.flux.value, spec.flux.value)\n', (499, 540), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((763, 796), 'shutil.copy', 'shutil.copy', (['filename', 'answer_dir'], {}), '(filename, answer_dir)\n', (774, 796), False, 'import shutil\n'), ((823, 838), 'astropy.io.fits.open', 'fits.open', (['oldf'], {}), '(oldf)\n', (832, 838), False, 'from astropy.io import fits\n'), ((855, 874), 'astropy.io.fits.open', 'fits.open', (['filename'], {}), '(filename)\n', (864, 874), False, 'from astropy.io import fits\n'), ((1084, 1116), 'numpy.issubdtype', 'np.issubdtype', (['dtype', 'np.float32'], {}), '(dtype, np.float32)\n', (1097, 1116), True, 'import numpy as np\n'), ((1208, 1268), 'numpy.testing.assert_allclose', 'assert_allclose', (['f_old[hdu].data', 'f_new[hdu].data'], {'rtol': 'rtol'}), '(f_old[hdu].data, f_new[hdu].data, rtol=rtol)\n', (1223, 1268), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((970, 1026), 'numpy.testing.assert_equal', 'assert_equal', (['f_old[hdu].header[k]', 'f_new[hdu].header[k]'], {}), '(f_old[hdu].header[k], f_new[hdu].header[k])\n', (982, 1026), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1518, 1550), 'numpy.issubdtype', 'np.issubdtype', (['dtype', 'np.integer'], {}), '(dtype, np.integer)\n', (1531, 1550), True, 'import numpy as np\n'), ((1572, 1630), 'numpy.testing.assert_equal', 'assert_equal', (['f_old[hdu].data[name]', 'f_new[hdu].data[name]'], {}), '(f_old[hdu].data[name], f_new[hdu].data[name])\n', (1584, 1630), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1676, 1708), 'numpy.issubdtype', 'np.issubdtype', (['dtype', 'np.float32'], {}), '(dtype, np.float32)\n', (1689, 1708), True, 'import numpy as np\n'), ((1832, 1904), 'numpy.testing.assert_allclose', 'assert_allclose', (['f_old[hdu].data[name]', 'f_new[hdu].data[name]'], {'rtol': 'rtol'}), '(f_old[hdu].data[name], f_new[hdu].data[name], rtol=rtol)\n', (1847, 1904), False, 'from numpy.testing import assert_allclose, assert_equal\n')]
|
# An example of using a tensorflow custom core estimator with contrib predictor for increased inference performance.
# Attempts to use up-to-date best practice for tensorflow development and keep dependencies to a minimum.
# Performs a regression using a deep neural network where the number of inputs and outputs can easily be tweaked by changing a couple of constants.
# Initial version written by <NAME>, Spinning Owl AS in may 2018.
# MIT license
import tensorflow as tf
import numpy as np
import datetime
import time
FEATURES_RANK = 3 # The number of inputs
LABELS_RANK = 2 # The number of outputs
# Returns a numpy array of rank LABELS_RANK based on the features argument.
# Can be used when creating a training dataset.
def features_to_labels(features):
sum_column = features.sum(1).reshape(features.shape[0], 1)
labels = np.hstack((sum_column*i for i in range(1, LABELS_RANK+1)))
return labels
def serving_input_fn():
x = tf.placeholder(dtype=tf.float32, shape=[None, FEATURES_RANK], name='x') # match dtype in input_fn
inputs = {'x': x }
return tf.estimator.export.ServingInputReceiver(inputs, inputs)
def model_fn(features, labels, mode):
net = features["x"] # input
for units in [4, 8, 4]: # hidden units
net = tf.layers.dense(net, units=units, activation=tf.nn.relu)
net = tf.layers.dropout(net, rate=0.1)
output = tf.layers.dense(net, LABELS_RANK, activation=None)
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode, predictions=output, export_outputs={"out": tf.estimator.export.PredictOutput(output)})
loss = tf.losses.mean_squared_error(labels, output)
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(mode, loss=loss)
optimizer = tf.train.AdagradOptimizer(learning_rate=0.1)
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
# expecting a numpy array of shape (1, FEATURE_RANK) for constant_feature argument
def input_fn(num_samples, constant_feature = None, is_infinite = True):
feature_values = np.full((num_samples, FEATURES_RANK), constant_feature) if isinstance(constant_feature, np.ndarray) else np.random.rand(num_samples, FEATURES_RANK)
feature_values = np.float32(feature_values) # match dtype in serving_input_fn
labels = features_to_labels(feature_values)
dataset = tf.data.Dataset.from_tensors(({"x": feature_values}, labels))
if is_infinite:
dataset = dataset.repeat()
return dataset.make_one_shot_iterator().get_next()
estimator = tf.estimator.Estimator(
model_fn=model_fn,
model_dir="model_dir\\estimator-predictor-test-{date:%Y-%m-%d %H.%M.%S}".format(date=datetime.datetime.now()))
train = estimator.train(input_fn=lambda : input_fn(50), steps=500)
evaluate = estimator.evaluate(input_fn=lambda : input_fn(20), steps=1)
predictor = tf.contrib.predictor.from_estimator(estimator, serving_input_fn)
consistency_check_features = np.random.rand(1, FEATURES_RANK)
consistency_check_labels = features_to_labels(consistency_check_features)
num_calls_predictor = 100
predictor_input = {"x": consistency_check_features}
start_time_predictor = time.clock()
for i in range(num_calls_predictor):
predictor_prediction = predictor(predictor_input)
delta_time_predictor = 1./num_calls_predictor*(time.clock() - start_time_predictor)
num_calls_estimator_predict = 10
estimator_input = lambda : input_fn(1, consistency_check_features, False)
start_time_estimator_predict = time.clock()
for i in range(num_calls_estimator_predict):
estimator_prediction = list(estimator.predict(input_fn=estimator_input))
delta_time_estimator = 1./num_calls_estimator_predict*(time.clock() - start_time_estimator_predict)
print("{} --> {}\n predictor={}\n estimator={}.\n".format(consistency_check_features, consistency_check_labels, predictor_prediction, estimator_prediction))
print("Time used per estimator.predict() call: {:.5f}s, predictor(): {:.5f}s ==> predictor is {:.0f}x faster!".format(delta_time_estimator, delta_time_predictor, delta_time_estimator/delta_time_predictor))
|
[
"numpy.full",
"tensorflow.estimator.export.PredictOutput",
"tensorflow.train.get_global_step",
"tensorflow.losses.mean_squared_error",
"tensorflow.estimator.export.ServingInputReceiver",
"tensorflow.layers.dense",
"tensorflow.train.AdagradOptimizer",
"numpy.float32",
"time.clock",
"tensorflow.layers.dropout",
"tensorflow.placeholder",
"tensorflow.contrib.predictor.from_estimator",
"numpy.random.rand",
"tensorflow.estimator.EstimatorSpec",
"datetime.datetime.now",
"tensorflow.data.Dataset.from_tensors"
] |
[((2948, 3012), 'tensorflow.contrib.predictor.from_estimator', 'tf.contrib.predictor.from_estimator', (['estimator', 'serving_input_fn'], {}), '(estimator, serving_input_fn)\n', (2983, 3012), True, 'import tensorflow as tf\n'), ((3045, 3077), 'numpy.random.rand', 'np.random.rand', (['(1)', 'FEATURES_RANK'], {}), '(1, FEATURES_RANK)\n', (3059, 3077), True, 'import numpy as np\n'), ((3259, 3271), 'time.clock', 'time.clock', ([], {}), '()\n', (3269, 3271), False, 'import time\n'), ((3590, 3602), 'time.clock', 'time.clock', ([], {}), '()\n', (3600, 3602), False, 'import time\n'), ((964, 1035), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '[None, FEATURES_RANK]', 'name': '"""x"""'}), "(dtype=tf.float32, shape=[None, FEATURES_RANK], name='x')\n", (978, 1035), True, 'import tensorflow as tf\n'), ((1099, 1155), 'tensorflow.estimator.export.ServingInputReceiver', 'tf.estimator.export.ServingInputReceiver', (['inputs', 'inputs'], {}), '(inputs, inputs)\n', (1139, 1155), True, 'import tensorflow as tf\n'), ((1390, 1440), 'tensorflow.layers.dense', 'tf.layers.dense', (['net', 'LABELS_RANK'], {'activation': 'None'}), '(net, LABELS_RANK, activation=None)\n', (1405, 1440), True, 'import tensorflow as tf\n'), ((1630, 1674), 'tensorflow.losses.mean_squared_error', 'tf.losses.mean_squared_error', (['labels', 'output'], {}), '(labels, output)\n', (1658, 1674), True, 'import tensorflow as tf\n'), ((1789, 1833), 'tensorflow.train.AdagradOptimizer', 'tf.train.AdagradOptimizer', ([], {'learning_rate': '(0.1)'}), '(learning_rate=0.1)\n', (1814, 1833), True, 'import tensorflow as tf\n'), ((1921, 1983), 'tensorflow.estimator.EstimatorSpec', 'tf.estimator.EstimatorSpec', (['mode'], {'loss': 'loss', 'train_op': 'train_op'}), '(mode, loss=loss, train_op=train_op)\n', (1947, 1983), True, 'import tensorflow as tf\n'), ((2329, 2355), 'numpy.float32', 'np.float32', (['feature_values'], {}), '(feature_values)\n', (2339, 2355), True, 'import numpy as np\n'), ((2448, 2509), 'tensorflow.data.Dataset.from_tensors', 'tf.data.Dataset.from_tensors', (["({'x': feature_values}, labels)"], {}), "(({'x': feature_values}, labels))\n", (2476, 2509), True, 'import tensorflow as tf\n'), ((1280, 1336), 'tensorflow.layers.dense', 'tf.layers.dense', (['net'], {'units': 'units', 'activation': 'tf.nn.relu'}), '(net, units=units, activation=tf.nn.relu)\n', (1295, 1336), True, 'import tensorflow as tf\n'), ((1346, 1378), 'tensorflow.layers.dropout', 'tf.layers.dropout', (['net'], {'rate': '(0.1)'}), '(net, rate=0.1)\n', (1363, 1378), True, 'import tensorflow as tf\n'), ((1728, 1771), 'tensorflow.estimator.EstimatorSpec', 'tf.estimator.EstimatorSpec', (['mode'], {'loss': 'loss'}), '(mode, loss=loss)\n', (1754, 1771), True, 'import tensorflow as tf\n'), ((2162, 2217), 'numpy.full', 'np.full', (['(num_samples, FEATURES_RANK)', 'constant_feature'], {}), '((num_samples, FEATURES_RANK), constant_feature)\n', (2169, 2217), True, 'import numpy as np\n'), ((2267, 2309), 'numpy.random.rand', 'np.random.rand', (['num_samples', 'FEATURES_RANK'], {}), '(num_samples, FEATURES_RANK)\n', (2281, 2309), True, 'import numpy as np\n'), ((3410, 3422), 'time.clock', 'time.clock', ([], {}), '()\n', (3420, 3422), False, 'import time\n'), ((3780, 3792), 'time.clock', 'time.clock', ([], {}), '()\n', (3790, 3792), False, 'import time\n'), ((1884, 1910), 'tensorflow.train.get_global_step', 'tf.train.get_global_step', ([], {}), '()\n', (1908, 1910), True, 'import tensorflow as tf\n'), ((2765, 2788), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2786, 2788), False, 'import datetime\n'), ((1574, 1615), 'tensorflow.estimator.export.PredictOutput', 'tf.estimator.export.PredictOutput', (['output'], {}), '(output)\n', (1607, 1615), True, 'import tensorflow as tf\n')]
|
from covariance import Covariance
import numpy as np
from scipy.special import gamma
"""Covariance run 1: COSMOS-like with no lensing fields"""
# Generate non-fit parameters.
# .. These values should be motivated to reflect actual data
# .. Postage stamp size
Nx = 150
Ny = 150
# .. Standard galaxy size (in pixels)
a = 30.
# .. I0
I0 = 5.
# .. noise1 and noise2
noise1 = 1.3e-3
noise2 = 0.
# .. Background
background = 0.
# Set lensing fields to zero
psi2 = [0,0,0]
psi3 = [0,0,0,0]
# Shape parameters
# .. Centroid (will be dithered within a pixel in Covariance)
xc = 0
yc = 0
# .. ns
ns = 2.5
# .. phi
phi = np.pi/6
# .. q
# .. .. We choose intrinsic ellipticity to have a magnitude of 0.2 (Schneider 1996)
eps_s = 0.2
q = (1+abs(eps_s))/(1-abs(eps_s))
# .. rs
rs = a/(np.sqrt(((1+q**2.)/2)))*np.sqrt(gamma(2.*ns)/gamma(4.*ns))
# Gather list of fiducial parameter values
fid_params = np.array((0.5, 0.5, # Centroid dithered from 0 to 1, so the fiducial value is trivially 0.5
ns, rs,
q, phi,
psi111, psi112, psi122, psi222))
# Run Covariance
Cov1 = Covariance(Nx=Nx, Ny=Ny,
xc=xc, yc=yc, ns=ns, rs=rs, q=q, phi=phi,
psi2=psi2, psi3=psi3,
marg=np.array((1,1,1,1,1,1,0,0,0,1,1,1,1)),
I0=I0, noise1=noise1, noise2=noise2, background=background,
N_iter=1000,
fid_params=fid_params,
stamp_col_label='COSMOS-like_no_lensing_ns_2.5_a_50')
# Simulate the stamp collection
Cov1.simulateGals()
# Run Lenser on this stamp collection
Cov1.lenserRun()
# Compute the covariance matrix for this stamp collection
Cov1_mat = Cov1.computeCovMat()
# Compute the 1-sigma uncertainty on each parameter
print(np.round(Cov1.error(Cov1_mat),7))
# Plot
Cov1.plot_error_matrix(Cov1_mat)
"""
# Create an instance of the Covariance class
# We would like to keep all default values, expect we will
# add a flat noisemap with a value of I0/1e4
Cov1=Covariance(noise1=0.1, marg=np.array((1,1,1,1,1,1,0,0,0,1,1,1,1)), catalogue_label='noise1_I0e-4')
# Simulate the catalogue with this noise
Cov1.simulateGals()
# Run Lenser on this catalogue
Cov1.lenserRun()
# Compute the covariance matrix for this catalogue
Cov1_mat = Cov1.computeCovMat()
# Compute the 1-sigma uncertainty on each parameter
print(np.round(Cov1.error(Cov1_mat),7))
# Plot
Cov1.plot_error_matrix(Cov1_mat)
# Now let us repeat this process but for a flat
# noisemap with double the previous noise,
# i.e. a value of 2*I0/1e4
Cov2=Covariance(noise1=0.2, marg=np.array((1,1,1,1,1,1,0,0,0,1,1,1,1)), catalogue_label='noise1_2I0e-4')
# Simulate the catalogue with this noise
Cov2.simulateGals()
# Run Lenser on this catalogue
Cov2.lenserRun()
# Compute the covariance matrix for this catalogue
Cov2_mat = Cov2.computeCovMat()
# Compute the 1-sigma uncertainty on each parameter
print(np.round(Cov2.error(Cov2_mat),7))
# Plot
Cov2.plot_error_matrix(Cov2_mat)
# Let's plot both of these covariance matrices
# together for combined visualization
Cov1_vs_Cov2=Covariance(marg=np.array((1,1,1,1,1,1,0,0,0,1,1,1,1)))
Cov1_vs_Cov2_mats=Cov1_vs_Cov2.covariance_array(Cov1_mat,Cov2_mat)
Cov1_vs_Cov2.plot_error_matrix_combined(Cov1_vs_Cov2_mats, filename='about/simulated_stamp_collections_noise1_I0e-4_and_noise1_2I0e-4_combined', labels=[r'$I_0/10^4$',r'$2I_0/10^4$'])
# Create an instance of the Covariance class
# We would like to keep all default values, expect we will
# add a flat noisemap with a value of I0/1e4
Cov3=Covariance(noise1=0.1, q=2.5, phi=2., psi3=[0.001,0.002,0.003,0.004],marg=[1,1,1,1,1,1,0,0,0,1,1,1,1],catalogue_label='noise1_I0e-4_phi_2_q_2.5_psi3_0.001_0.002_0.003_0.004')
#Cov3=Covariance(noise1=0.1, q=2.5, phi=0, psi3=[0,0,0,0],catalogue_label='noise1_I0e-4_phi_0_q_1_psiijk_0')
# Simulate the catalogue with this noise
Cov3.simulateGals(overwrite=True)
# Run Lenser on this catalogue
Cov3.lenserRun(overwrite=True)
# Compute the covariance matrix for this catalogue
Cov3_mat = Cov3.computeCovMat()
# Compute the 1-sigma uncertainty on each parameter
print(np.round(Cov3.error(Cov3_mat),7))
# Plot
Cov3.plot_error_matrix(Cov3_mat)
"""
|
[
"scipy.special.gamma",
"numpy.array",
"numpy.sqrt"
] |
[((891, 959), 'numpy.array', 'np.array', (['(0.5, 0.5, ns, rs, q, phi, psi111, psi112, psi122, psi222)'], {}), '((0.5, 0.5, ns, rs, q, phi, psi111, psi112, psi122, psi222))\n', (899, 959), True, 'import numpy as np\n'), ((775, 802), 'numpy.sqrt', 'np.sqrt', (['((1 + q ** 2.0) / 2)'], {}), '((1 + q ** 2.0) / 2)\n', (782, 802), True, 'import numpy as np\n'), ((1273, 1322), 'numpy.array', 'np.array', (['(1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1)'], {}), '((1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1))\n', (1281, 1322), True, 'import numpy as np\n'), ((807, 822), 'scipy.special.gamma', 'gamma', (['(2.0 * ns)'], {}), '(2.0 * ns)\n', (812, 822), False, 'from scipy.special import gamma\n'), ((820, 835), 'scipy.special.gamma', 'gamma', (['(4.0 * ns)'], {}), '(4.0 * ns)\n', (825, 835), False, 'from scipy.special import gamma\n')]
|
from behaviour_cloning import *
import tensorflow as tf
import pickle
import mujoco_py
import gym
import numpy as np
def main():
observations, actions = process_expert_data("Humanoid-v2")
comp_returns= np.zeros(shape=(20,20))
comp_avg_return=[]
for i in range (20):
train_model(observations, actions)
eval_observations, eval_actions, returns, avg_return = eval_model(observations, actions, "Humanoid-v2", 20)
print("returns=", returns, "avg return=", avg_return)
observations=np.concatenate((observations,eval_observations), axis=0)
actions=np.concatenate((actions,eval_actions), axis=0)
comp_returns[i]=returns
comp_avg_return.append(avg_return)
print("complete avg returns",comp_avg_return)
if __name__ == '__main__':
main()
|
[
"numpy.zeros",
"numpy.concatenate"
] |
[((211, 235), 'numpy.zeros', 'np.zeros', ([], {'shape': '(20, 20)'}), '(shape=(20, 20))\n', (219, 235), True, 'import numpy as np\n'), ((525, 582), 'numpy.concatenate', 'np.concatenate', (['(observations, eval_observations)'], {'axis': '(0)'}), '((observations, eval_observations), axis=0)\n', (539, 582), True, 'import numpy as np\n'), ((598, 645), 'numpy.concatenate', 'np.concatenate', (['(actions, eval_actions)'], {'axis': '(0)'}), '((actions, eval_actions), axis=0)\n', (612, 645), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
'''
<NAME>, <EMAIL>
2020/05/23
Python code to read the sensor data from the
Silicon Labs Thunderboard Sense2
command-line input parameters:
--time [seconds]
--sensor
outputs:
CSV of all sensor data
plot of all specific sensor
v0.1 : inital version
'''
import serial
import datetime
import time
import numpy as np
import matplotlib.pyplot as plt
import appnope
import glob
import pandas as pd
import platform
import sys
import argparse
if __name__ == '__main__':
now = datetime.datetime.now() # current date and time for saving files
date_time = now.strftime("%Y_%m_%d_%H_%M_%S")
os_platform = platform.system()
appnope.nope()
plt.style.use('ggplot')
# temporary sensor keys for input arguments (no spaces)
sensor_keys = ['TVOC', 'Pressure', 'SoundLevel', 'AmbLight',
'eCO2', 'HALL', 'Temp', 'Humidity', 'UVIndex']
sensor_list = ', '.join(sensor_keys)
parser = argparse.ArgumentParser()
parser.add_argument("--time",
help="The time for data collection in seconds",
default = 10)
parser.add_argument("--sensor",
help="The name of the sensor to plot and display (can be all)\nOptions are: {}".format(sensor_list),
default = 'Humidity')
args = parser.parse_args()
run_time = float(args.time) # seconds [TODO: input]
sensor_to_display = str(args.sensor) # 'Humidity' # [TODO: input]
if sensor_to_display == 'AmbLight':
sensor_to_display = 'Amb light'
if sensor_to_display == 'HALL':
sensor_to_display = 'HALL: Mag'
if sensor_to_display == 'UVIndex':
sensor_to_display = 'UV Index'
# fix sensor keys to match the strings from the Thunderboard
sensor_keys = ['TVOC', 'Pressure', 'SoundLevel', 'Amb light',
'eCO2', 'HALL: Mag', 'Temp', 'Humidity', 'UV Index']
def TimestampMillisec64():
return int((datetime.datetime.utcnow() - datetime.datetime(1970, 1, 1)).total_seconds() * 1000)
# serial parameters and serial opening
baudrate = 115200
import serial.tools.list_ports
ports = list(serial.tools.list_ports.comports())
pid = '1366'
hid = '1015'
for p in ports:
#print('Serial port found:')
#print(p[1])
#print('Port pid and hid')
#print(p.hwid)
hwid_save = p.hwid
if pid and hid in p.hwid:
print('Found the Thunderboard device to open with PID = {} and HID = {}!'.format(pid, hid))
try:
# ser_addr = [x for x in ports if x[1]=='J-Link OB'][0][0]
ser_addr = [x for x in ports if pid and hid in x.hwid][0][0]
except IndexError:
print('No serial address found.\n Is the thunderboard connected using USB?')
if os_platform in ['Darwin', 'Linux']:
print('Check for /dev/tty.usbmodem by $ ls /dev/tty.*')
elif os_platform in ['Windows']:
print('Check for COM in Device Manager')
sys.exit(1)
'''
if os_platform == 'Darwin': # MAC
print("Found these devices: " + glob.glob("/dev/tty.usbmodem*")[0])
ser_addr = glob.glob("/dev/tty.usbmodem*")[0]
elif os_platform == 'Windows':
print("Found these devices: " + glob.glob("/dev/tty.usbmodem*")[0])
ser_addr = glob.glob("/dev/tty.usbmodem*")[0]
elif os_platform == 'Linux':
print("Found these devices: " + glob.glob("/dev/tty.usbmodem*")[0])
ser_addr = glob.glob("/dev/tty.usbmodem*")[0]
'''
ser = serial.Serial(ser_addr, baudrate = baudrate, timeout = 2)
ser.is_open
time.sleep(0.15)
results = {}
for k in sensor_keys:
results[k] = {}
results[k]['value'] = np.array([])
results[k]['time'] = np.array([])
results[k]['units'] = np.array([])
# flush serial buffer
ser.read(ser.in_waiting)
t_junk = ser.readline()
t_start = TimestampMillisec64()
elapsed_time = (TimestampMillisec64() - t_start)/1000
while(elapsed_time < run_time):
t = str(ser.readline())
print(t) # add this
# Remove for iOS
# if len(t) == 3:
# print('Serial read timeout. \n Is the bluetooth app connected AND diplaying Environmental data?')
# # close serial port
# ser.close()
# sys.exit(2)
elapsed_time = (TimestampMillisec64() - t_start) / 1000
for k in sensor_keys:
if k in t:
if k == 'UV Index':
results[k]['value'] = np.append(results[k]['value'],
float(t.split('=')[1].split(' ')[1].replace("\\r\\n'",'')))
results[k]['units'] = np.append(results[k]['units'], 'index')
else:
results[k]['value'] = np.append(results[k]['value'],
float(t.split('=')[1].split(' ')[1]))
# fix units for TVOC and eCO2
if k == 'eCO2':
results[k]['units'] = np.append(results[k]['units'], 'ppm')
elif k == 'TVOC':
results[k]['units'] = np.append(results[k]['units'], 'ppb')
else:
results[k]['units'] = np.append(results[k]['units'],
t.split('=')[1].split(' ')[2].replace("\\r\\n'",''))
results[k]['time'] = np.append(results[k]['time'], elapsed_time)
if ((k == sensor_to_display) or (sensor_to_display == 'all')):
print('At {:2.2f} [s] Measured {} sensor: {:4.2f} {}'.format(elapsed_time,
k, results[k]['value'][-1], results[k]['units'][-1]))
# close serial port
ser.close()
# plot and save data
if sensor_to_display == 'all':
fig, axs = plt.subplots(3,3, figsize = (10, 10))
sensors_to_plot = sensor_keys
for idx,k in enumerate(sensors_to_plot):
axs[int(idx/3)][idx % 3].plot(results[k]['time'],
results[k]['value'], marker='x', label = k)
axs[int(idx/3)][idx % 3].legend()
axs[int(idx/3)][idx % 3].set_ylabel(results[k]['units'][-1])
axs[int(idx/3)][idx % 3].set_xlabel('Time [s]')
else:
sensors_to_plot = [sensor_to_display]
fig, axs = plt.subplots(figsize = (10, 10))
for idx,k in enumerate(sensors_to_plot):
axs.plot(results[k]['time'],
results[k]['value'], marker='x', label = k)
axs.set_ylabel(results[k]['units'][-1])
axs.set_xlabel('Time [s]')
axs.legend()
fig.tight_layout()
fig.savefig('measured_{}_{}.png'.format(sensor_to_display, date_time))
# blocking show
plt.ioff()
plt.show()
# https://stackoverflow.com/questions/13575090/construct-pandas-dataframe-from-items-in-nested-dictionary
# save dictionary to CSV file by first converting to a pandas dataframe
df = pd.DataFrame.from_dict({i + '_' + j: results[i][j]
for i in results.keys()
for j in results[i].keys()},
orient='index')
df = df.transpose()
df.to_csv('data_{}.csv'.format(date_time), index=False)
|
[
"serial.Serial",
"matplotlib.pyplot.show",
"argparse.ArgumentParser",
"matplotlib.pyplot.ioff",
"serial.tools.list_ports.comports",
"matplotlib.pyplot.subplots",
"time.sleep",
"datetime.datetime",
"numpy.append",
"matplotlib.pyplot.style.use",
"datetime.datetime.utcnow",
"numpy.array",
"platform.system",
"sys.exit",
"datetime.datetime.now",
"appnope.nope"
] |
[((509, 532), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (530, 532), False, 'import datetime\n'), ((638, 655), 'platform.system', 'platform.system', ([], {}), '()\n', (653, 655), False, 'import platform\n'), ((657, 671), 'appnope.nope', 'appnope.nope', ([], {}), '()\n', (669, 671), False, 'import appnope\n'), ((673, 696), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (686, 696), True, 'import matplotlib.pyplot as plt\n'), ((922, 947), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (945, 947), False, 'import argparse\n'), ((3225, 3278), 'serial.Serial', 'serial.Serial', (['ser_addr'], {'baudrate': 'baudrate', 'timeout': '(2)'}), '(ser_addr, baudrate=baudrate, timeout=2)\n', (3238, 3278), False, 'import serial\n'), ((3297, 3313), 'time.sleep', 'time.sleep', (['(0.15)'], {}), '(0.15)\n', (3307, 3313), False, 'import time\n'), ((5890, 5900), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (5898, 5900), True, 'import matplotlib.pyplot as plt\n'), ((5902, 5912), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5910, 5912), True, 'import matplotlib.pyplot as plt\n'), ((2007, 2041), 'serial.tools.list_ports.comports', 'serial.tools.list_ports.comports', ([], {}), '()\n', (2039, 2041), False, 'import serial\n'), ((3394, 3406), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3402, 3406), True, 'import numpy as np\n'), ((3430, 3442), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3438, 3442), True, 'import numpy as np\n'), ((3467, 3479), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3475, 3479), True, 'import numpy as np\n'), ((5101, 5137), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', '(3)'], {'figsize': '(10, 10)'}), '(3, 3, figsize=(10, 10))\n', (5113, 5137), True, 'import matplotlib.pyplot as plt\n'), ((5531, 5561), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (5543, 5561), True, 'import matplotlib.pyplot as plt\n'), ((2739, 2750), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2747, 2750), False, 'import sys\n'), ((4746, 4789), 'numpy.append', 'np.append', (["results[k]['time']", 'elapsed_time'], {}), "(results[k]['time'], elapsed_time)\n", (4755, 4789), True, 'import numpy as np\n'), ((4212, 4251), 'numpy.append', 'np.append', (["results[k]['units']", '"""index"""'], {}), "(results[k]['units'], 'index')\n", (4221, 4251), True, 'import numpy as np\n'), ((4456, 4493), 'numpy.append', 'np.append', (["results[k]['units']", '"""ppm"""'], {}), "(results[k]['units'], 'ppm')\n", (4465, 4493), True, 'import numpy as np\n'), ((1815, 1841), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (1839, 1841), False, 'import datetime\n'), ((1844, 1873), 'datetime.datetime', 'datetime.datetime', (['(1970)', '(1)', '(1)'], {}), '(1970, 1, 1)\n', (1861, 1873), False, 'import datetime\n'), ((4545, 4582), 'numpy.append', 'np.append', (["results[k]['units']", '"""ppb"""'], {}), "(results[k]['units'], 'ppb')\n", (4554, 4582), True, 'import numpy as np\n')]
|
import fridge.utilities.mcnpCreatorFunctions as MCF
import numpy as np
def test_getRCC():
surfaceCard = MCF.getRCC(0.5, 10, [0.0, 0.0, 0.5555555], 1, '$ Comment')
surfaceCardKnown = '1 RCC 0.0 0.0 0.55556 0 0 10 0.5 $ Comment'
assert surfaceCard == surfaceCardKnown
def test_getRHP():
surfaceCard = MCF.getRHP(0.5, 10, [0.0, 0.0, 0.5555555], 1, '$ Comment')
surfaceCardKnown = '1 RHP 0.0 0.0 0.55556 0 0 10 0.5 0 0 $ Comment'
assert surfaceCard == surfaceCardKnown
def test_getRHSRotated():
surfaceCard = MCF.getRHPRotated(0.5, 10, [0.0, 0.0, 0.5555555], 1, '$ Comment')
surfaceCardKnown = '1 RHP 0.0 0.0 0.55556 0 0 10 0 0.5 0 $ Comment'
assert surfaceCard == surfaceCardKnown
def test_getSingleCell():
cellCard = MCF.getSingleCell(1, 2, 0.06, 3, 10, '$ Comment')
cellCardKnown = '1 2 0.06 -3 u=10 imp:n=1 $ Comment'
assert cellCard == cellCardKnown
def test_getConcentricCell_Single():
cellCard = MCF.getConcentricCell(1, 2, 0.06, 4, 3, 10, '$ Comment')
cellCardKnown = '1 2 0.06 4 -3 u=10 imp:n=1 $ Comment'
assert cellCard == cellCardKnown
def test_getConcentricCell_Multiple():
cellCard = MCF.getConcentricCell(1, 2, 0.06, [4, 5, 6], 3, 10, '$ Comment')
cellCardKnown = '1 2 0.06 4 5 6 -3 u=10 imp:n=1 $ Comment'
assert cellCard == cellCardKnown
def test_getOutsideCell():
cellCard = MCF.getOutsideCell(1, 2, 0.06, 3, 10, '$ Comment')
cellCardKnown = '1 2 0.06 3 u=10 imp:n=1 $ Comment'
assert cellCard == cellCardKnown
def test_getFuelLatticeCell():
cellCard = MCF.getFuelLatticeCell(1, 2, 20, 10, '$ Comment')
cellCardKnown = '1 0 -2 u=20 fill=10 imp:n=1 $ Comment'
assert cellCard == cellCardKnown
def test_getAssemblyUniverseCell():
cellCard = MCF.getAssemblyUniverseCell(1, 2, 10, '$ Comment')
cellCardKnown = '1 0 -2 fill=10 imp:n=1 $ Comment'
assert cellCard == cellCardKnown
def test_getEverythingElseCard():
cellCard = MCF.getEverythingElseCard(1, 2, '$ Comment')
cellCardKnown = '1 0 2 imp:n=0 $ Comment'
assert cellCard == cellCardKnown
def test_smearedMaterial():
smearMaterialDict = {'LiquidNa': 0.5, 'Void': 0.5}
smearedMaterial = MCF.getSmearedMaterial(smearMaterialDict)
assert np.allclose(smearedMaterial.atomDensity, 0.01214, 5)
assert smearedMaterial.name == "['LiquidNa', 'Void']"
assert smearedMaterial.atomPercent[11023] == 1.0
def test_smearedMAterial_voided():
smearMaterialDict = {'LiquidNa': 0.5, 'Void': 0.5}
smearedMaterial = MCF.getSmearedMaterial(smearMaterialDict, voidMaterial='LiquidNa', voidPercent=0.1)
assert np.allclose(smearedMaterial.atomDensity, 0.001214, 5)
assert smearedMaterial.name == "['LiquidNa', 'Void']"
assert smearedMaterial.atomPercent[11023] == 1.0
def test_coolantWireWrapSmear():
info = [60, 0.53, 0.126, 2, 0.66144, 'LiquidNa', 'Void']
smearedDict = MCF.getCoolantWireWrapSmear(info)
knownSmearDict = {'LiquidNa': 0.918819, 'Void': 0.081181}
for k, v in knownSmearDict.items():
assert np.allclose(smearedDict[k], v, 5)
def test_getPosition_02A01():
position = MCF.getPosition('02A01', 2, 10)
knownAPosition = [-1.73205, 1.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getPosition_02B01():
position = MCF.getPosition('02B01', 2, 10)
knownAPosition = [0.0, 2.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getPosition_02C01():
position = MCF.getPosition('02C01', 2, 10)
knownAPosition = [1.73205, 1.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getPosition_02D01():
position = MCF.getPosition('02D01', 2, 10)
knownAPosition = [1.73205, -1.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getPosition_02E01():
position = MCF.getPosition('02E01', 2, 10)
knownAPosition = [0.0, -2.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getPosition_02F01():
position = MCF.getPosition('02F01', 2, 10)
knownAPosition = [-1.73205, -1.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getPosition_01A01():
position = MCF.getPosition('01A01', 2, 10)
knownPosition = [0, 0, 10]
assert position == knownPosition
def test_getPosition_03A02():
position = MCF.getPosition('03A02', 2, 10)
knownAPosition = [-1.73205, 3.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getPosition_03B02():
position = MCF.getPosition('03B02', 2, 10)
knownAPosition = [1.73205, 3.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getPosition_03C03():
position = MCF.getPosition('03C02', 2, 10)
knownAPosition = [3.46410, 0.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getPosition_D03():
position = MCF.getPosition('03D02', 2, 10)
knownAPosition = [1.73205, -3.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getPosition_E03():
position = MCF.getPosition('03E02', 2, 10)
knownAPosition = [-1.73205, -3.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getPosition_03F03():
position = MCF.getPosition('03F02', 2, 10)
knownAPosition = [-3.46410, 0.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getPosition_04B03():
position = MCF.getPosition('04B03', 2, 10)
knownAPosition = [3.4641, 4.0, 10]
for i, pos in enumerate(position):
assert np.allclose(knownAPosition[i], pos)
def test_getRCCVolume():
volume = MCF.getRCCVolume(0.2, 10)
assert np.allclose(volume, 1.25664, 5)
def test_getRHPVolume():
volume = MCF.getRCCVolume(5, 10)
assert np.allclose(volume, 216.506, 5)
def test_getToroidalVolume():
volume = MCF.getToroidalVolume(0.5, 0.05, 5, 10)
assert np.allclose(volume, 1.03631, 5)
|
[
"fridge.utilities.mcnpCreatorFunctions.getCoolantWireWrapSmear",
"fridge.utilities.mcnpCreatorFunctions.getRHP",
"fridge.utilities.mcnpCreatorFunctions.getSmearedMaterial",
"fridge.utilities.mcnpCreatorFunctions.getOutsideCell",
"fridge.utilities.mcnpCreatorFunctions.getAssemblyUniverseCell",
"fridge.utilities.mcnpCreatorFunctions.getEverythingElseCard",
"fridge.utilities.mcnpCreatorFunctions.getPosition",
"numpy.allclose",
"fridge.utilities.mcnpCreatorFunctions.getFuelLatticeCell",
"fridge.utilities.mcnpCreatorFunctions.getConcentricCell",
"fridge.utilities.mcnpCreatorFunctions.getSingleCell",
"fridge.utilities.mcnpCreatorFunctions.getToroidalVolume",
"fridge.utilities.mcnpCreatorFunctions.getRHPRotated",
"fridge.utilities.mcnpCreatorFunctions.getRCCVolume",
"fridge.utilities.mcnpCreatorFunctions.getRCC"
] |
[((110, 168), 'fridge.utilities.mcnpCreatorFunctions.getRCC', 'MCF.getRCC', (['(0.5)', '(10)', '[0.0, 0.0, 0.5555555]', '(1)', '"""$ Comment"""'], {}), "(0.5, 10, [0.0, 0.0, 0.5555555], 1, '$ Comment')\n", (120, 168), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((319, 377), 'fridge.utilities.mcnpCreatorFunctions.getRHP', 'MCF.getRHP', (['(0.5)', '(10)', '[0.0, 0.0, 0.5555555]', '(1)', '"""$ Comment"""'], {}), "(0.5, 10, [0.0, 0.0, 0.5555555], 1, '$ Comment')\n", (329, 377), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((539, 604), 'fridge.utilities.mcnpCreatorFunctions.getRHPRotated', 'MCF.getRHPRotated', (['(0.5)', '(10)', '[0.0, 0.0, 0.5555555]', '(1)', '"""$ Comment"""'], {}), "(0.5, 10, [0.0, 0.0, 0.5555555], 1, '$ Comment')\n", (556, 604), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((763, 812), 'fridge.utilities.mcnpCreatorFunctions.getSingleCell', 'MCF.getSingleCell', (['(1)', '(2)', '(0.06)', '(3)', '(10)', '"""$ Comment"""'], {}), "(1, 2, 0.06, 3, 10, '$ Comment')\n", (780, 812), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((961, 1017), 'fridge.utilities.mcnpCreatorFunctions.getConcentricCell', 'MCF.getConcentricCell', (['(1)', '(2)', '(0.06)', '(4)', '(3)', '(10)', '"""$ Comment"""'], {}), "(1, 2, 0.06, 4, 3, 10, '$ Comment')\n", (982, 1017), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((1170, 1234), 'fridge.utilities.mcnpCreatorFunctions.getConcentricCell', 'MCF.getConcentricCell', (['(1)', '(2)', '(0.06)', '[4, 5, 6]', '(3)', '(10)', '"""$ Comment"""'], {}), "(1, 2, 0.06, [4, 5, 6], 3, 10, '$ Comment')\n", (1191, 1234), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((1380, 1430), 'fridge.utilities.mcnpCreatorFunctions.getOutsideCell', 'MCF.getOutsideCell', (['(1)', '(2)', '(0.06)', '(3)', '(10)', '"""$ Comment"""'], {}), "(1, 2, 0.06, 3, 10, '$ Comment')\n", (1398, 1430), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((1572, 1621), 'fridge.utilities.mcnpCreatorFunctions.getFuelLatticeCell', 'MCF.getFuelLatticeCell', (['(1)', '(2)', '(20)', '(10)', '"""$ Comment"""'], {}), "(1, 2, 20, 10, '$ Comment')\n", (1594, 1621), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((1772, 1822), 'fridge.utilities.mcnpCreatorFunctions.getAssemblyUniverseCell', 'MCF.getAssemblyUniverseCell', (['(1)', '(2)', '(10)', '"""$ Comment"""'], {}), "(1, 2, 10, '$ Comment')\n", (1799, 1822), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((1966, 2010), 'fridge.utilities.mcnpCreatorFunctions.getEverythingElseCard', 'MCF.getEverythingElseCard', (['(1)', '(2)', '"""$ Comment"""'], {}), "(1, 2, '$ Comment')\n", (1991, 2010), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((2201, 2242), 'fridge.utilities.mcnpCreatorFunctions.getSmearedMaterial', 'MCF.getSmearedMaterial', (['smearMaterialDict'], {}), '(smearMaterialDict)\n', (2223, 2242), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((2254, 2306), 'numpy.allclose', 'np.allclose', (['smearedMaterial.atomDensity', '(0.01214)', '(5)'], {}), '(smearedMaterial.atomDensity, 0.01214, 5)\n', (2265, 2306), True, 'import numpy as np\n'), ((2531, 2618), 'fridge.utilities.mcnpCreatorFunctions.getSmearedMaterial', 'MCF.getSmearedMaterial', (['smearMaterialDict'], {'voidMaterial': '"""LiquidNa"""', 'voidPercent': '(0.1)'}), "(smearMaterialDict, voidMaterial='LiquidNa',\n voidPercent=0.1)\n", (2553, 2618), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((2626, 2679), 'numpy.allclose', 'np.allclose', (['smearedMaterial.atomDensity', '(0.001214)', '(5)'], {}), '(smearedMaterial.atomDensity, 0.001214, 5)\n', (2637, 2679), True, 'import numpy as np\n'), ((2904, 2937), 'fridge.utilities.mcnpCreatorFunctions.getCoolantWireWrapSmear', 'MCF.getCoolantWireWrapSmear', (['info'], {}), '(info)\n', (2931, 2937), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((3136, 3167), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""02A01"""', '(2)', '(10)'], {}), "('02A01', 2, 10)\n", (3151, 3167), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((3346, 3377), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""02B01"""', '(2)', '(10)'], {}), "('02B01', 2, 10)\n", (3361, 3377), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((3551, 3582), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""02C01"""', '(2)', '(10)'], {}), "('02C01', 2, 10)\n", (3566, 3582), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((3760, 3791), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""02D01"""', '(2)', '(10)'], {}), "('02D01', 2, 10)\n", (3775, 3791), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((3970, 4001), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""02E01"""', '(2)', '(10)'], {}), "('02E01', 2, 10)\n", (3985, 4001), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((4176, 4207), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""02F01"""', '(2)', '(10)'], {}), "('02F01', 2, 10)\n", (4191, 4207), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((4387, 4418), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""01A01"""', '(2)', '(10)'], {}), "('01A01', 2, 10)\n", (4402, 4418), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((4534, 4565), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""03A02"""', '(2)', '(10)'], {}), "('03A02', 2, 10)\n", (4549, 4565), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((4744, 4775), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""03B02"""', '(2)', '(10)'], {}), "('03B02', 2, 10)\n", (4759, 4775), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((4953, 4984), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""03C02"""', '(2)', '(10)'], {}), "('03C02', 2, 10)\n", (4968, 4984), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((5160, 5191), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""03D02"""', '(2)', '(10)'], {}), "('03D02', 2, 10)\n", (5175, 5191), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((5368, 5399), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""03E02"""', '(2)', '(10)'], {}), "('03E02', 2, 10)\n", (5383, 5399), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((5579, 5610), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""03F02"""', '(2)', '(10)'], {}), "('03F02', 2, 10)\n", (5594, 5610), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((5789, 5820), 'fridge.utilities.mcnpCreatorFunctions.getPosition', 'MCF.getPosition', (['"""04B03"""', '(2)', '(10)'], {}), "('04B03', 2, 10)\n", (5804, 5820), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((5990, 6015), 'fridge.utilities.mcnpCreatorFunctions.getRCCVolume', 'MCF.getRCCVolume', (['(0.2)', '(10)'], {}), '(0.2, 10)\n', (6006, 6015), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((6027, 6058), 'numpy.allclose', 'np.allclose', (['volume', '(1.25664)', '(5)'], {}), '(volume, 1.25664, 5)\n', (6038, 6058), True, 'import numpy as np\n'), ((6099, 6122), 'fridge.utilities.mcnpCreatorFunctions.getRCCVolume', 'MCF.getRCCVolume', (['(5)', '(10)'], {}), '(5, 10)\n', (6115, 6122), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((6134, 6165), 'numpy.allclose', 'np.allclose', (['volume', '(216.506)', '(5)'], {}), '(volume, 216.506, 5)\n', (6145, 6165), True, 'import numpy as np\n'), ((6211, 6250), 'fridge.utilities.mcnpCreatorFunctions.getToroidalVolume', 'MCF.getToroidalVolume', (['(0.5)', '(0.05)', '(5)', '(10)'], {}), '(0.5, 0.05, 5, 10)\n', (6232, 6250), True, 'import fridge.utilities.mcnpCreatorFunctions as MCF\n'), ((6262, 6293), 'numpy.allclose', 'np.allclose', (['volume', '(1.03631)', '(5)'], {}), '(volume, 1.03631, 5)\n', (6273, 6293), True, 'import numpy as np\n'), ((3055, 3088), 'numpy.allclose', 'np.allclose', (['smearedDict[k]', 'v', '(5)'], {}), '(smearedDict[k], v, 5)\n', (3066, 3088), True, 'import numpy as np\n'), ((3263, 3298), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (3274, 3298), True, 'import numpy as np\n'), ((3468, 3503), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (3479, 3503), True, 'import numpy as np\n'), ((3677, 3712), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (3688, 3712), True, 'import numpy as np\n'), ((3887, 3922), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (3898, 3922), True, 'import numpy as np\n'), ((4093, 4128), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (4104, 4128), True, 'import numpy as np\n'), ((4304, 4339), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (4315, 4339), True, 'import numpy as np\n'), ((4661, 4696), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (4672, 4696), True, 'import numpy as np\n'), ((4870, 4905), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (4881, 4905), True, 'import numpy as np\n'), ((5079, 5114), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (5090, 5114), True, 'import numpy as np\n'), ((5287, 5322), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (5298, 5322), True, 'import numpy as np\n'), ((5496, 5531), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (5507, 5531), True, 'import numpy as np\n'), ((5706, 5741), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (5717, 5741), True, 'import numpy as np\n'), ((5914, 5949), 'numpy.allclose', 'np.allclose', (['knownAPosition[i]', 'pos'], {}), '(knownAPosition[i], pos)\n', (5925, 5949), True, 'import numpy as np\n')]
|
import numpy as np
import matplotlib.pyplot as plt
def threshold_convolved_image(convolved_image):
tci = np.copy(convolved_image)
for i in range(3):
m = np.mean(convolved_image[:, :, i])
s = np.std(convolved_image[:, :, i])
thr = m
tci[convolved_image[:, :, i] < thr, i] = 0
plt.figure()
plt.subplot(2, 2, 1)
plt.imshow(tci[:, :, 0])
plt.subplot(2, 2, 2)
plt.imshow(tci[:, :, 1])
plt.subplot(2, 2, 3)
plt.imshow(tci[:, :, 2])
plt.subplot(2, 2, 4)
plt.imshow(np.sum(tci, axis=2))
plt.figure()
plt.subplot(2, 2, 1)
plt.imshow(convolved_image[:, :, 0])
plt.subplot(2, 2, 2)
plt.imshow(convolved_image[:, :, 1])
plt.subplot(2, 2, 3)
plt.imshow(convolved_image[:, :, 2])
plt.subplot(2, 2, 4)
plt.imshow(np.sum(convolved_image, axis=2))
plt.show()
print()
ci = np.load('../data/test/ci=0.npy')
k = np.load('../data/kernels/kernel=0.npy')
plt.figure()
plt.subplot(2, 2, 1)
plt.imshow(k[:, :, 0])
plt.subplot(2, 2, 2)
plt.imshow(k[:, :, 1])
plt.subplot(2, 2, 3)
plt.imshow(k[:, :, 2])
threshold_convolved_image(ci)
|
[
"matplotlib.pyplot.subplot",
"numpy.load",
"matplotlib.pyplot.show",
"numpy.sum",
"numpy.copy",
"numpy.std",
"matplotlib.pyplot.imshow",
"matplotlib.pyplot.figure",
"numpy.mean"
] |
[((883, 915), 'numpy.load', 'np.load', (['"""../data/test/ci=0.npy"""'], {}), "('../data/test/ci=0.npy')\n", (890, 915), True, 'import numpy as np\n'), ((920, 959), 'numpy.load', 'np.load', (['"""../data/kernels/kernel=0.npy"""'], {}), "('../data/kernels/kernel=0.npy')\n", (927, 959), True, 'import numpy as np\n'), ((960, 972), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (970, 972), True, 'import matplotlib.pyplot as plt\n'), ((973, 993), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (984, 993), True, 'import matplotlib.pyplot as plt\n'), ((994, 1016), 'matplotlib.pyplot.imshow', 'plt.imshow', (['k[:, :, 0]'], {}), '(k[:, :, 0])\n', (1004, 1016), True, 'import matplotlib.pyplot as plt\n'), ((1017, 1037), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (1028, 1037), True, 'import matplotlib.pyplot as plt\n'), ((1038, 1060), 'matplotlib.pyplot.imshow', 'plt.imshow', (['k[:, :, 1]'], {}), '(k[:, :, 1])\n', (1048, 1060), True, 'import matplotlib.pyplot as plt\n'), ((1061, 1081), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (1072, 1081), True, 'import matplotlib.pyplot as plt\n'), ((1082, 1104), 'matplotlib.pyplot.imshow', 'plt.imshow', (['k[:, :, 2]'], {}), '(k[:, :, 2])\n', (1092, 1104), True, 'import matplotlib.pyplot as plt\n'), ((112, 136), 'numpy.copy', 'np.copy', (['convolved_image'], {}), '(convolved_image)\n', (119, 136), True, 'import numpy as np\n'), ((325, 337), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (335, 337), True, 'import matplotlib.pyplot as plt\n'), ((342, 362), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (353, 362), True, 'import matplotlib.pyplot as plt\n'), ((367, 391), 'matplotlib.pyplot.imshow', 'plt.imshow', (['tci[:, :, 0]'], {}), '(tci[:, :, 0])\n', (377, 391), True, 'import matplotlib.pyplot as plt\n'), ((396, 416), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (407, 416), True, 'import matplotlib.pyplot as plt\n'), ((421, 445), 'matplotlib.pyplot.imshow', 'plt.imshow', (['tci[:, :, 1]'], {}), '(tci[:, :, 1])\n', (431, 445), True, 'import matplotlib.pyplot as plt\n'), ((450, 470), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (461, 470), True, 'import matplotlib.pyplot as plt\n'), ((475, 499), 'matplotlib.pyplot.imshow', 'plt.imshow', (['tci[:, :, 2]'], {}), '(tci[:, :, 2])\n', (485, 499), True, 'import matplotlib.pyplot as plt\n'), ((504, 524), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (515, 524), True, 'import matplotlib.pyplot as plt\n'), ((566, 578), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (576, 578), True, 'import matplotlib.pyplot as plt\n'), ((583, 603), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (594, 603), True, 'import matplotlib.pyplot as plt\n'), ((608, 644), 'matplotlib.pyplot.imshow', 'plt.imshow', (['convolved_image[:, :, 0]'], {}), '(convolved_image[:, :, 0])\n', (618, 644), True, 'import matplotlib.pyplot as plt\n'), ((649, 669), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (660, 669), True, 'import matplotlib.pyplot as plt\n'), ((674, 710), 'matplotlib.pyplot.imshow', 'plt.imshow', (['convolved_image[:, :, 1]'], {}), '(convolved_image[:, :, 1])\n', (684, 710), True, 'import matplotlib.pyplot as plt\n'), ((715, 735), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (726, 735), True, 'import matplotlib.pyplot as plt\n'), ((740, 776), 'matplotlib.pyplot.imshow', 'plt.imshow', (['convolved_image[:, :, 2]'], {}), '(convolved_image[:, :, 2])\n', (750, 776), True, 'import matplotlib.pyplot as plt\n'), ((781, 801), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (792, 801), True, 'import matplotlib.pyplot as plt\n'), ((854, 864), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (862, 864), True, 'import matplotlib.pyplot as plt\n'), ((173, 206), 'numpy.mean', 'np.mean', (['convolved_image[:, :, i]'], {}), '(convolved_image[:, :, i])\n', (180, 206), True, 'import numpy as np\n'), ((219, 251), 'numpy.std', 'np.std', (['convolved_image[:, :, i]'], {}), '(convolved_image[:, :, i])\n', (225, 251), True, 'import numpy as np\n'), ((540, 559), 'numpy.sum', 'np.sum', (['tci'], {'axis': '(2)'}), '(tci, axis=2)\n', (546, 559), True, 'import numpy as np\n'), ((817, 848), 'numpy.sum', 'np.sum', (['convolved_image'], {'axis': '(2)'}), '(convolved_image, axis=2)\n', (823, 848), True, 'import numpy as np\n')]
|
import copy
import warnings
from keras import backend as K
from keras import activations, regularizers
from keras.engine import InputSpec
from keras.layers import Recurrent
import numpy as np
from ...data.instances.text_classification.logical_form_instance import SHIFT_OP, REDUCE2_OP, REDUCE3_OP
class TreeCompositionLSTM(Recurrent):
'''
Conceptual differences from LSTM:
(1) Tree LSTM does not differentiate between x and h, because
tree composition is not applied at every time step (it is applied
when the input symbol is a reduce) and when it is applied, there is no
"current input".
(2) Input sequences are not the ones being composed, they are operations on
the buffer containing elements corresponding to tokens. There isn't one
token per timestep like LSTMs.
(3) Single vectors h and c are replaced by a stack and buffer of h and c
corresponding to the structure processed so far.
(4) Gates are applied on two or three elements at a time depending on the
type of reduce. Accordingly there are two classes of gates: G_2 (two
elements) and G_3 (three elements)
(5) G_2 has two forget gates, for each element that can be forgotten and
G_3 has three.
Notes
-----
This is almost certainly broken. We haven't really used this since it was written, and the
port to Keras 2 probably broke things, and we haven't had any motivation to fix it yet. You
have been warned.
'''
# pylint: disable=invalid-name
def __init__(self,
units,
stack_limit,
buffer_ops_limit,
initializer='glorot_uniform',
forget_bias_initializer='one',
activation='tanh',
inner_activation='hard_sigmoid',
W_regularizer=None,
U_regularizer=None,
V_regularizer=None,
b_regularizer=None,
**kwargs):
self.stack_limit = stack_limit
# buffer_ops_limit is the max of buffer_limit and num_ops. This needs to be one value since
# the initial buffer state and the list of operations need to be concatenated before passing
# them to TreeCompositionLSTM
self.buffer_ops_limit = buffer_ops_limit
self.output_dim = units
self.initializer = initializer
self.forget_bias_initializer = forget_bias_initializer
activation = kwargs.get("activation", "tanh")
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
# Make two deep copies each of W, U and b since regularizers.get() method modifes them!
W2_regularizer = copy.deepcopy(W_regularizer)
W3_regularizer = copy.deepcopy(W_regularizer)
U2_regularizer = copy.deepcopy(U_regularizer)
U3_regularizer = copy.deepcopy(U_regularizer)
b2_regularizer = copy.deepcopy(b_regularizer)
b3_regularizer = copy.deepcopy(b_regularizer)
# W, U and b get two copies of each corresponding regularizer
self.W_regularizers = [regularizers.get(W2_regularizer), regularizers.get(W3_regularizer)] \
if W_regularizer else None
self.U_regularizers = [regularizers.get(U2_regularizer), regularizers.get(U3_regularizer)] \
if U_regularizer else None
self.V_regularizer = regularizers.get(V_regularizer)
self.b_regularizers = [regularizers.get(b2_regularizer), regularizers.get(b3_regularizer)] \
if b_regularizer else None
# TODO(pradeep): Ensure output_dim = input_dim - 1
self.dropout_W = kwargs["dropout_W"] if "dropout_W" in kwargs else 0.
self.dropout_U = kwargs["dropout_U"] if "dropout_U" in kwargs else 0.
self.dropout_V = kwargs["dropout_V"] if "dropout_V" in kwargs else 0.
if self.dropout_W:
self.uses_learning_phase = True
# Pass any remaining arguments of the constructor to the super class' constructor
super(TreeCompositionLSTM, self).__init__(**kwargs)
if self.stateful:
warnings.warn("Current implementation cannot be stateful. \
Ignoring stateful=True", RuntimeWarning)
self.stateful = False
if self.return_sequences:
warnings.warn("Current implementation cannot return sequences.\
Ignoring return_sequences=True", RuntimeWarning)
self.return_sequences = False
def get_initial_states(self, inputs):
# The initial buffer is sent into the TreeLSTM as a part of the input.
# i.e., inputs is a concatenation of the transitions and the initial buffer.
# (batch_size, buffer_limit, output_dim+1)
# We will now separate the buffer and the transitions and initialize the
# buffer state of the TreeLSTM with the initial buffer value.
# The rest of the input is the transitions, which we do not need now.
# Take the buffer out.
init_h_for_buffer = inputs[:, :, 1:] # (batch_size, buffer_limit, output_dim)
# Initializing all c as zeros.
init_c_for_buffer = K.zeros_like(init_h_for_buffer)
# Each element in the buffer is a concatenation of h and c for the corresponding
# node
init_buffer = K.concatenate([init_h_for_buffer, init_c_for_buffer], axis=-1)
# We need a symbolic all zero tensor of size (samples, stack_limit, 2*output_dim) for
# init_stack The problem is the first dim (samples) is a place holder and not an actual
# value. So we'll use the following trick
temp_state = K.zeros_like(inputs) # (samples, buffer_ops_limit, input_dim)
temp_state = K.tile(K.sum(temp_state, axis=(1, 2)),
(self.stack_limit, 2*self.output_dim, 1)) # (stack_limit, 2*output_dim, samples)
init_stack = K.permute_dimensions(temp_state, (2, 0, 1)) # (samples, stack_limit, 2*output_dim)
return [init_buffer, init_stack]
def build(self, input_shape):
# pylint: disable=attribute-defined-outside-init,redefined-variable-type
# Defining two classes of parameters:
# 1) predicate, one argument composition (*2_*)
# 2) predicate, two arguments composition (*3_*)
#
# The naming scheme is an extension of the one used
# in the LSTM code of Keras. W is a weight and b is a bias
# *_i: input gate parameters
# *_fp: predicate forget gate parameters
# *_fa: argument forget gate parameters (one-arg only)
# *_fa1: argument-1 forget gate parameters (two-arg only)
# *_fa2: argument-2 forget gate parameters (two-arg only)
# *_u: update gate parameters
# *_o: output gate parameters
#
# Predicate, argument composition:
# W2_i, W2_fp, W2_fa, W2_o, W2_u
# U2_i, U2_fp, U2_fa, U2_o, U2_u
# b2_i, b2_fp, b2_fa, b2_o, b2_u
#
# Predicate, two argument composition:
# W3_i, W3_fp, W3_fa1, W3_fa2, W3_o, W3_u
# U3_i, U3_fp, U3_fa1, U3_fa2, U3_o, U3_u
# V3_i, V3_fp, V3_fa1, V3_fa2, V3_o, V3_u
# b3_i, b3_fp, b3_fa1, b3_fa2, b3_o, b3_u
self.input_spec = [InputSpec(shape=input_shape)]
self.input_dim = input_shape[2]
# initial states: buffer and stack. buffer has shape (samples, buff_limit, output_dim);
# stack has shape (samples, stack_limit, 2*output_dim)
self.states = [None, None]
# The first dims in all weight matrices are k * output_dim because of the recursive nature
# of treeLSTM
if self.implementation == 1:
# Input dimensionality for all W2s is output_dim, and there are 5 W2s: i, fp, fa, u, o
self.W2 = self.add_weight((self.output_dim, 5 * self.output_dim),
name='{}_W2'.format(self.name), initializer=self.initializer)
# Input dimensionality for all U2s is output_dim, and there are 5 U2s: i, fp, fa, u, o
self.U2 = self.add_weight((self.output_dim, 5 * self.output_dim),
name='{}_U2'.format(self.name), initializer=self.initializer)
# Input dimensionality for all W3s is output_dim, and there are 6 W2s: i, fp, fa1, fa2, u, o
self.W3 = self.add_weight((self.output_dim, 6 * self.output_dim),
name='{}_W3'.format(self.name), initializer=self.initializer)
# Input dimensionality for all U3s is output_dim, and there are 6 U3s: i, fp, fa1, fa2, u, o
self.U3 = self.add_weight((self.output_dim, 6 * self.output_dim),
name='{}_U3'.format(self.name), initializer=self.initializer)
# Input dimensionality for all V3s is output_dim, and there are 6 V3s: i, fp, fa1, fa2, u, o
self.V3 = self.add_weight((self.output_dim, 6 * self.output_dim),
name='{}_V3'.format(self.name), initializer=self.initializer)
self.b2 = K.variable(np.hstack((np.zeros(self.output_dim),
K.get_value(self.add_weight(self.output_dim,
initializer=self.forget_bias_initializer)),
K.get_value(self.add_weight(self.output_dim,
initializer=self.forget_bias_initializer)),
np.zeros(self.output_dim),
np.zeros(self.output_dim))),
name='{}_b2'.format(self.name))
self.b3 = K.variable(np.hstack((np.zeros(self.output_dim),
K.get_value(self.add_weight(self.output_dim,
initializer=self.forget_bias_initializer)),
K.get_value(self.add_weight(self.output_dim,
initializer=self.forget_bias_initializer)),
K.get_value(self.add_weight(self.output_dim,
initializer=self.forget_bias_initializer)),
np.zeros(self.output_dim),
np.zeros(self.output_dim))),
name='{}_b3'.format(self.name))
self.trainable_weights = [self.W2, self.U2, self.W3, self.U3, self.V3, self.b2, self.b3]
else:
self.W2_i = self.add_weight((self.output_dim, self.output_dim),
name='{}_W2_i'.format(self.name),
initializer=self.initializer)
self.U2_i = self.add_weight((self.output_dim, self.output_dim),
name='{}_U2_i'.format(self.name),
initializer=self.initializer)
self.W3_i = self.add_weight((self.output_dim, self.output_dim),
name='{}_W3_i'.format(self.name),
initializer=self.initializer)
self.U3_i = self.add_weight((self.output_dim, self.output_dim),
name='{}_U3_i'.format(self.name),
initializer=self.initializer)
self.V3_i = self.add_weight((self.output_dim, self.output_dim),
name='{}_V3_i'.format(self.name),
initializer=self.initializer)
self.b2_i = K.zeros((self.output_dim,), name='{}_b2_i'.format(self.name))
self.b3_i = K.zeros((self.output_dim,), name='{}_b3_i'.format(self.name))
self.W2_fp = self.add_weight((self.output_dim, self.output_dim),
name='{}_W2_fp'.format(self.name),
initializer=self.initializer)
self.U2_fp = self.add_weight((self.output_dim, self.output_dim),
name='{}_U2_fp'.format(self.name),
initializer=self.initializer)
self.W2_fa = self.add_weight((self.output_dim, self.output_dim),
name='{}_W2_fa'.format(self.name),
initializer=self.initializer)
self.U2_fa = self.add_weight((self.output_dim, self.output_dim),
name='{}_U2_fa'.format(self.name),
initializer=self.initializer)
self.W3_fp = self.add_weight((self.output_dim, self.output_dim),
name='{}_W3_fp'.format(self.name),
initializer=self.initializer)
self.U3_fp = self.add_weight((self.output_dim, self.output_dim),
name='{}_U3_fp'.format(self.name),
initializer=self.initializer)
self.V3_fp = self.add_weight((self.output_dim, self.output_dim),
name='{}_V3_fp'.format(self.name),
initializer=self.initializer)
self.W3_fa1 = self.add_weight((self.output_dim, self.output_dim),
name='{}_W3_fa1'.format(self.name),
initializer=self.initializer)
self.U3_fa1 = self.add_weight((self.output_dim, self.output_dim),
name='{}_U3_fa1'.format(self.name),
initializer=self.initializer)
self.V3_fa1 = self.add_weight((self.output_dim, self.output_dim),
name='{}_V3_fa1'.format(self.name),
initializer=self.initializer)
self.W3_fa2 = self.add_weight((self.output_dim, self.output_dim),
name='{}_W3_fa2'.format(self.name),
initializer=self.initializer)
self.U3_fa2 = self.add_weight((self.output_dim, self.output_dim),
name='{}_U3_fa2'.format(self.name),
initializer=self.initializer)
self.V3_fa2 = self.add_weight((self.output_dim, self.output_dim),
name='{}_V3_fa2'.format(self.name),
initializer=self.initializer)
self.b2_fp = self.add_weight((self.output_dim,), name='{}_b2_fp'.format(self.name),
initializer=self.forget_bias_initializer)
self.b2_fa = self.add_weight((self.output_dim,), name='{}_b2_fa'.format(self.name),
initializer=self.forget_bias_initializer)
self.b3_fp = self.add_weight((self.output_dim,), name='{}_b3_fp'.format(self.name),
initializer=self.forget_bias_initializer)
self.b3_fa1 = self.add_weight((self.output_dim,), name='{}_b3_fa1'.format(self.name),
initializer=self.forget_bias_initializer)
self.b3_fa2 = self.add_weight((self.output_dim,), name='{}_b3_fa2'.format(self.name),
initializer=self.forget_bias_initializer)
self.W2_u = self.add_weight((self.output_dim, self.output_dim),
name='{}_W2_u'.format(self.name),
initializer=self.initializer)
self.U2_u = self.add_weight((self.output_dim, self.output_dim),
name='{}_U2_u'.format(self.name),
initializer=self.initializer)
self.W3_u = self.add_weight((self.output_dim, self.output_dim),
name='{}_W3_u'.format(self.name),
initializer=self.initializer)
self.U3_u = self.add_weight((self.output_dim, self.output_dim),
name='{}_U3_u'.format(self.name),
initializer=self.initializer)
self.V3_u = self.add_weight((self.output_dim, self.output_dim),
name='{}_V3_u'.format(self.name),
initializer=self.initializer)
self.b2_u = K.zeros((self.output_dim,), name='{}_b2_u'.format(self.name))
self.b3_u = K.zeros((self.output_dim,), name='{}_b3_u'.format(self.name))
self.W2_o = self.add_weight((self.output_dim, self.output_dim),
name='{}_W2_o'.format(self.name),
initializer=self.initializer)
self.U2_o = self.add_weight((self.output_dim, self.output_dim),
name='{}_U2_o'.format(self.name),
initializer=self.initializer)
self.W3_o = self.add_weight((self.output_dim, self.output_dim),
name='{}_W3_o'.format(self.name),
initializer=self.initializer)
self.U3_o = self.add_weight((self.output_dim, self.output_dim),
name='{}_U3_o'.format(self.name),
initializer=self.initializer)
self.V3_o = self.add_weight((self.output_dim, self.output_dim),
name='{}_V3_o'.format(self.name),
initializer=self.initializer)
self.b2_o = K.zeros((self.output_dim,), name='{}_b2_o'.format(self.name))
self.b3_o = K.zeros((self.output_dim,), name='{}_b3_o'.format(self.name))
self.W2 = K.concatenate([self.W2_i, self.W2_fp, self.W2_fa, self.W2_u, self.W2_o])
self.U2 = K.concatenate([self.U2_i, self.U2_fp, self.U2_fa, self.U2_u, self.U2_o])
self.W3 = K.concatenate([self.W3_i, self.W3_fp, self.W3_fa1, self.W3_fa2, self.W3_u, self.W3_o])
self.U3 = K.concatenate([self.U3_i, self.U3_fp, self.U3_fa1, self.U3_fa2, self.U3_u, self.U3_o])
self.V3 = K.concatenate([self.V3_i, self.V3_fp, self.V3_fa1, self.V3_fa2, self.V3_u, self.V3_o])
self.b2 = K.concatenate([self.b2_i, self.b2_fp, self.b2_fa, self.b2_u, self.b2_o])
self.b3 = K.concatenate([self.b3_i, self.b3_fp, self.b3_fa1, self.b3_fa2, self.b3_u, self.b3_o])
self.regularizers = []
if self.W_regularizers:
self.W_regularizers[0].set_param(self.W2)
self.W_regularizers[1].set_param(self.W3)
self.regularizers.extend(self.W_regularizers)
if self.U_regularizers:
self.U_regularizers[0].set_param(self.U2)
self.U_regularizers[1].set_param(self.U3)
self.regularizers.extend(self.U_regularizers)
if self.V_regularizer:
self.V_regularizer.set_param(self.V3)
self.regularizers.append(self.V_regularizer)
if self.b_regularizers:
self.b_regularizers[0].set_param(self.b2)
self.b_regularizers[1].set_param(self.b3)
self.regularizers.extend(self.b_regularizers)
self.built = True
def _one_arg_compose(self, pred_arg):
# pred_arg: Tensors of size (batch_size, 2, dim) where
# pred_arg[:,0,:] are arg vectors (h,c) of all samples
# pred_arg[:,1,:] are pred vectors (h,c) of all samples
pred_h = pred_arg[:, 1, :self.output_dim]
pred_c = pred_arg[:, 1, self.output_dim:]
arg_h = pred_arg[:, 0, :self.output_dim]
arg_c = pred_arg[:, 0, self.output_dim:]
if self.implementation == 1:
# To optimize for GPU, we would want to make fewer
# matrix multiplications, but with bigger matrices.
# So we compute outputs of all gates simultaneously
# using the concatenated operators W2, U2 abd b2
z_all_gates = K.dot(pred_h, self.W2) + K.dot(arg_h, self.U2) + self.b2 # (batch_size, 5*output_dim)
# Now picking the appropriate parts for each gate.
# All five zs are of shape (batch_size, output_dim)
z_i = z_all_gates[:, :self.output_dim]
z_fp = z_all_gates[:, self.output_dim: 2*self.output_dim]
z_fa = z_all_gates[:, 2*self.output_dim: 3*self.output_dim]
z_u = z_all_gates[:, 3*self.output_dim: 4*self.output_dim]
z_o = z_all_gates[:, 4*self.output_dim: 5*self.output_dim]
else:
# We are optimizing for memory. Smaller matrices, and
# more computations. So we use the non-concatenated
# operators W2_i, U2_i, ..
z_i = K.dot(pred_h, self.W2_i) + K.dot(arg_h, self.U2_i) + self.b2_i
z_fp = K.dot(pred_h, self.W2_fp) + K.dot(arg_h, self.U2_fp) + self.b2_fp
z_fa = K.dot(pred_h, self.W2_fa) + K.dot(arg_h, self.U2_fa) + self.b2_fa
z_u = K.dot(pred_h, self.W2_u) + K.dot(arg_h, self.U2_u) + self.b2_u
z_o = K.dot(pred_h, self.W2_o) + K.dot(arg_h, self.U2_o) + self.b2_o
# Applying non-linearity to get outputs of each gate
i = self.inner_activation(z_i)
fp = self.inner_activation(z_fp)
fa = self.inner_activation(z_fa)
u = self.inner_activation(z_u)
c = (i * u) + (fp * pred_c) + (fa * arg_c)
o = self.inner_activation(z_o)
# Calculate the composition output. SPINN does not have a non-linearity in the
# following computation, but the original LSTM does.
h = o * self.activation(c)
# Finally return the composed representation for the stack, adding a time
# dimension and make number of dimensions same as the input
# to this function
return K.expand_dims(K.concatenate([h, c]), 1)
def _two_arg_compose(self, pred_args):
# pred_args: Matrix of size (samples, 3, dim) where
# pred_args[:,0,:] are arg2 vectors (h,c) of all samples
# pred_args[:,1,:] are arg1 vectors (h,c) of all samples
# pred_args[:,2,:] are pred vectors (h,c) of all samples
# This function is analogous to _one_arg_compose, except that it operates on
# two args instead of one. Accordingly, the operators are W3, U3, V3 and b3
# instead of W2, U2 and b2
pred_h = pred_args[:, 2, :self.output_dim]
pred_c = pred_args[:, 2, self.output_dim:]
arg1_h = pred_args[:, 1, :self.output_dim]
arg1_c = pred_args[:, 1, self.output_dim:]
arg2_h = pred_args[:, 0, :self.output_dim]
arg2_c = pred_args[:, 0, self.output_dim:]
if self.implementation == 1:
z_all_gates = K.dot(pred_h, self.W3) + K.dot(arg1_h, self.U3) + \
K.dot(arg2_h, self.V3) + self.b3 # (batch_size, 6*output_dim)
z_i = z_all_gates[:, :self.output_dim]
z_fp = z_all_gates[:, self.output_dim: 2*self.output_dim]
z_fa1 = z_all_gates[:, 2*self.output_dim: 3*self.output_dim]
z_fa2 = z_all_gates[:, 3*self.output_dim: 4*self.output_dim]
z_u = z_all_gates[:, 4*self.output_dim: 5*self.output_dim]
z_o = z_all_gates[:, 5*self.output_dim: 6*self.output_dim]
else:
z_i = K.dot(pred_h, self.W3_i) + K.dot(arg1_h, self.U3_i) + \
K.dot(arg2_h, self.V3_i) + self.b3_i
z_fp = K.dot(pred_h, self.W3_fp) + K.dot(arg1_h, self.U3_fp) + \
K.dot(arg2_h, self.V3_fp) + self.b3_fp
z_fa1 = K.dot(pred_h, self.W3_fa1) + K.dot(arg1_h, self.U3_fa1) + \
K.dot(arg2_h, self.V3_fa1) + self.b3_fa1
z_fa2 = K.dot(pred_h, self.W3_fa2) + K.dot(arg1_h, self.U3_fa2) + \
K.dot(arg2_h, self.V3_fa2) + self.b3_fa2
z_u = K.dot(pred_h, self.W3_u) + K.dot(arg1_h, self.U3_u) + \
K.dot(arg2_h, self.V3_u) + self.b3_u
z_o = K.dot(pred_h, self.W3_o) + K.dot(arg1_h, self.U3_o) + \
K.dot(arg2_h, self.V3_o) + self.b3_o
i = self.inner_activation(z_i)
fp = self.inner_activation(z_fp)
fa1 = self.inner_activation(z_fa1)
fa2 = self.inner_activation(z_fa2)
u = self.inner_activation(z_u)
c = (i * u) + (fp * pred_c) + (fa1 * arg1_c) + (fa2 * arg2_c)
o = self.inner_activation(z_o)
h = o * self.activation(c)
return K.expand_dims(K.concatenate([h, c]), 1)
def step(self, inputs, states):
# This function is called at each timestep. Before calling this, Keras' rnn
# dimshuffles the input to have time as the leading dimension, and iterates over
# it So,
# inputs: (samples, input_dim) = (samples, x_op + <current timestep's buffer input>)
#
# We do not need the current timestep's buffer input here, since the buffer
# state is the one that's relevant. We just want the current op from inputs.
buff = states[0] # Current state of buffer
stack = states[1] # Current state of stack
step_ops = inputs[:, 0] #(samples, 1), current ops for all samples.
# We need to make tensors from the ops vectors, one to apply to all dimensions
# of stack, and the other for the buffer.
# For the stack:
# Note stack's dimensionality is 2*output_dim because it holds both h and c
stack_tiled_step_ops = K.permute_dimensions(
K.tile(step_ops, (self.stack_limit, 2 * self.output_dim, 1)),
(2, 0, 1)) # (samples, stack_limit, 2*dim)
# For the buffer:
buff_tiled_step_ops = K.permute_dimensions(
K.tile(step_ops, (self.buffer_ops_limit, 2 * self.output_dim, 1)),
(2, 0, 1)) # (samples, buff_len, 2*dim)
shifted_stack = K.concatenate([buff[:, :1], stack], axis=1)[:, :self.stack_limit]
one_reduced_stack = K.concatenate([self._one_arg_compose(stack[:, :2]),
stack[:, 2:],
K.zeros_like(stack)[:, :1]],
axis=1)
two_reduced_stack = K.concatenate([self._two_arg_compose(stack[:, :3]),
stack[:, 3:],
K.zeros_like(stack)[:, :2]],
axis=1)
shifted_buff = K.concatenate([buff[:, 1:], K.zeros_like(buff)[:, :1]], axis=1)
stack = K.switch(K.equal(stack_tiled_step_ops, SHIFT_OP), shifted_stack, stack)
stack = K.switch(K.equal(stack_tiled_step_ops, REDUCE2_OP), one_reduced_stack, stack)
stack = K.switch(K.equal(stack_tiled_step_ops, REDUCE3_OP), two_reduced_stack, stack)
buff = K.switch(K.equal(buff_tiled_step_ops, SHIFT_OP), shifted_buff, buff)
stack_top_h = stack[:, 0, :self.output_dim] # first half of the top element for all samples
return stack_top_h, [buff, stack]
def get_constants(self, inputs, training=None):
# TODO(pradeep): The function in the LSTM implementation produces dropout multipliers
# to apply on the input if dropout is applied on the weights W and U. Ignoring
# dropout for now.
constants = []
if 0 < self.dropout_W < 1 or 0 < self.dropout_U < 1 or 0 < self.dropout_V < 1:
warnings.warn("Weight dropout not implemented yet. Ignoring them.", RuntimeWarning)
return constants
def get_config(self):
# This function is called to get the model configuration while serializing it
# Essentially has all the arguments in the __init__ method as a dict.
config = {'stack_limit': self.stack_limit,
'buffer_ops_limit': self.buffer_ops_limit,
'output_dim': self.output_dim,
'initializer': self.initializer,
'forget_bias_initializer': self.forget_bias_initializer,
'activation': self.activation.__name__, # pylint: disable=no-member
'inner_activation': self.inner_activation.__name__, # pylint: disable=no-member
'W_regularizer': self.W_regularizers[0].get_config() if self.W_regularizers else None,
'U_regularizer': self.U_regularizers[0].get_config() if self.U_regularizers else None,
'V_regularizer': self.V_regularizer.get_config() if self.V_regularizer else None,
'b_regularizer': self.b_regularizers[0].get_config() if self.b_regularizers else None,
'dropout_W': self.dropout_W,
'dropout_U': self.dropout_U,
'dropout_V': self.dropout_V}
base_config = super(TreeCompositionLSTM, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
|
[
"keras.backend.dot",
"copy.deepcopy",
"keras.backend.concatenate",
"keras.activations.get",
"keras.regularizers.get",
"keras.backend.zeros_like",
"keras.backend.sum",
"numpy.zeros",
"keras.backend.equal",
"keras.backend.tile",
"keras.engine.InputSpec",
"warnings.warn",
"keras.backend.permute_dimensions"
] |
[((2554, 2581), 'keras.activations.get', 'activations.get', (['activation'], {}), '(activation)\n', (2569, 2581), False, 'from keras import activations, regularizers\n'), ((2614, 2647), 'keras.activations.get', 'activations.get', (['inner_activation'], {}), '(inner_activation)\n', (2629, 2647), False, 'from keras import activations, regularizers\n'), ((2769, 2797), 'copy.deepcopy', 'copy.deepcopy', (['W_regularizer'], {}), '(W_regularizer)\n', (2782, 2797), False, 'import copy\n'), ((2823, 2851), 'copy.deepcopy', 'copy.deepcopy', (['W_regularizer'], {}), '(W_regularizer)\n', (2836, 2851), False, 'import copy\n'), ((2877, 2905), 'copy.deepcopy', 'copy.deepcopy', (['U_regularizer'], {}), '(U_regularizer)\n', (2890, 2905), False, 'import copy\n'), ((2931, 2959), 'copy.deepcopy', 'copy.deepcopy', (['U_regularizer'], {}), '(U_regularizer)\n', (2944, 2959), False, 'import copy\n'), ((2985, 3013), 'copy.deepcopy', 'copy.deepcopy', (['b_regularizer'], {}), '(b_regularizer)\n', (2998, 3013), False, 'import copy\n'), ((3039, 3067), 'copy.deepcopy', 'copy.deepcopy', (['b_regularizer'], {}), '(b_regularizer)\n', (3052, 3067), False, 'import copy\n'), ((3455, 3486), 'keras.regularizers.get', 'regularizers.get', (['V_regularizer'], {}), '(V_regularizer)\n', (3471, 3486), False, 'from keras import activations, regularizers\n'), ((5234, 5265), 'keras.backend.zeros_like', 'K.zeros_like', (['init_h_for_buffer'], {}), '(init_h_for_buffer)\n', (5246, 5265), True, 'from keras import backend as K\n'), ((5393, 5455), 'keras.backend.concatenate', 'K.concatenate', (['[init_h_for_buffer, init_c_for_buffer]'], {'axis': '(-1)'}), '([init_h_for_buffer, init_c_for_buffer], axis=-1)\n', (5406, 5455), True, 'from keras import backend as K\n'), ((5717, 5737), 'keras.backend.zeros_like', 'K.zeros_like', (['inputs'], {}), '(inputs)\n', (5729, 5737), True, 'from keras import backend as K\n'), ((5971, 6014), 'keras.backend.permute_dimensions', 'K.permute_dimensions', (['temp_state', '(2, 0, 1)'], {}), '(temp_state, (2, 0, 1))\n', (5991, 6014), True, 'from keras import backend as K\n'), ((4185, 4313), 'warnings.warn', 'warnings.warn', (['"""Current implementation cannot be stateful. Ignoring stateful=True"""', 'RuntimeWarning'], {}), "(\n 'Current implementation cannot be stateful. Ignoring stateful=True'\n , RuntimeWarning)\n", (4198, 4313), False, 'import warnings\n'), ((4386, 4526), 'warnings.warn', 'warnings.warn', (['"""Current implementation cannot return sequences. Ignoring return_sequences=True"""', 'RuntimeWarning'], {}), "(\n 'Current implementation cannot return sequences. Ignoring return_sequences=True'\n , RuntimeWarning)\n", (4399, 4526), False, 'import warnings\n'), ((5808, 5838), 'keras.backend.sum', 'K.sum', (['temp_state'], {'axis': '(1, 2)'}), '(temp_state, axis=(1, 2))\n', (5813, 5838), True, 'from keras import backend as K\n'), ((7326, 7354), 'keras.engine.InputSpec', 'InputSpec', ([], {'shape': 'input_shape'}), '(shape=input_shape)\n', (7335, 7354), False, 'from keras.engine import InputSpec\n'), ((18533, 18605), 'keras.backend.concatenate', 'K.concatenate', (['[self.W2_i, self.W2_fp, self.W2_fa, self.W2_u, self.W2_o]'], {}), '([self.W2_i, self.W2_fp, self.W2_fa, self.W2_u, self.W2_o])\n', (18546, 18605), True, 'from keras import backend as K\n'), ((18628, 18700), 'keras.backend.concatenate', 'K.concatenate', (['[self.U2_i, self.U2_fp, self.U2_fa, self.U2_u, self.U2_o]'], {}), '([self.U2_i, self.U2_fp, self.U2_fa, self.U2_u, self.U2_o])\n', (18641, 18700), True, 'from keras import backend as K\n'), ((18723, 18813), 'keras.backend.concatenate', 'K.concatenate', (['[self.W3_i, self.W3_fp, self.W3_fa1, self.W3_fa2, self.W3_u, self.W3_o]'], {}), '([self.W3_i, self.W3_fp, self.W3_fa1, self.W3_fa2, self.W3_u,\n self.W3_o])\n', (18736, 18813), True, 'from keras import backend as K\n'), ((18832, 18922), 'keras.backend.concatenate', 'K.concatenate', (['[self.U3_i, self.U3_fp, self.U3_fa1, self.U3_fa2, self.U3_u, self.U3_o]'], {}), '([self.U3_i, self.U3_fp, self.U3_fa1, self.U3_fa2, self.U3_u,\n self.U3_o])\n', (18845, 18922), True, 'from keras import backend as K\n'), ((18941, 19031), 'keras.backend.concatenate', 'K.concatenate', (['[self.V3_i, self.V3_fp, self.V3_fa1, self.V3_fa2, self.V3_u, self.V3_o]'], {}), '([self.V3_i, self.V3_fp, self.V3_fa1, self.V3_fa2, self.V3_u,\n self.V3_o])\n', (18954, 19031), True, 'from keras import backend as K\n'), ((19050, 19122), 'keras.backend.concatenate', 'K.concatenate', (['[self.b2_i, self.b2_fp, self.b2_fa, self.b2_u, self.b2_o]'], {}), '([self.b2_i, self.b2_fp, self.b2_fa, self.b2_u, self.b2_o])\n', (19063, 19122), True, 'from keras import backend as K\n'), ((19145, 19235), 'keras.backend.concatenate', 'K.concatenate', (['[self.b3_i, self.b3_fp, self.b3_fa1, self.b3_fa2, self.b3_u, self.b3_o]'], {}), '([self.b3_i, self.b3_fp, self.b3_fa1, self.b3_fa2, self.b3_u,\n self.b3_o])\n', (19158, 19235), True, 'from keras import backend as K\n'), ((22619, 22640), 'keras.backend.concatenate', 'K.concatenate', (['[h, c]'], {}), '([h, c])\n', (22632, 22640), True, 'from keras import backend as K\n'), ((25270, 25291), 'keras.backend.concatenate', 'K.concatenate', (['[h, c]'], {}), '([h, c])\n', (25283, 25291), True, 'from keras import backend as K\n'), ((26291, 26351), 'keras.backend.tile', 'K.tile', (['step_ops', '(self.stack_limit, 2 * self.output_dim, 1)'], {}), '(step_ops, (self.stack_limit, 2 * self.output_dim, 1))\n', (26297, 26351), True, 'from keras import backend as K\n'), ((26508, 26573), 'keras.backend.tile', 'K.tile', (['step_ops', '(self.buffer_ops_limit, 2 * self.output_dim, 1)'], {}), '(step_ops, (self.buffer_ops_limit, 2 * self.output_dim, 1))\n', (26514, 26573), True, 'from keras import backend as K\n'), ((26657, 26700), 'keras.backend.concatenate', 'K.concatenate', (['[buff[:, :1], stack]'], {'axis': '(1)'}), '([buff[:, :1], stack], axis=1)\n', (26670, 26700), True, 'from keras import backend as K\n'), ((27354, 27393), 'keras.backend.equal', 'K.equal', (['stack_tiled_step_ops', 'SHIFT_OP'], {}), '(stack_tiled_step_ops, SHIFT_OP)\n', (27361, 27393), True, 'from keras import backend as K\n'), ((27442, 27483), 'keras.backend.equal', 'K.equal', (['stack_tiled_step_ops', 'REDUCE2_OP'], {}), '(stack_tiled_step_ops, REDUCE2_OP)\n', (27449, 27483), True, 'from keras import backend as K\n'), ((27536, 27577), 'keras.backend.equal', 'K.equal', (['stack_tiled_step_ops', 'REDUCE3_OP'], {}), '(stack_tiled_step_ops, REDUCE3_OP)\n', (27543, 27577), True, 'from keras import backend as K\n'), ((27629, 27667), 'keras.backend.equal', 'K.equal', (['buff_tiled_step_ops', 'SHIFT_OP'], {}), '(buff_tiled_step_ops, SHIFT_OP)\n', (27636, 27667), True, 'from keras import backend as K\n'), ((28216, 28303), 'warnings.warn', 'warnings.warn', (['"""Weight dropout not implemented yet. Ignoring them."""', 'RuntimeWarning'], {}), "('Weight dropout not implemented yet. Ignoring them.',\n RuntimeWarning)\n", (28229, 28303), False, 'import warnings\n'), ((3169, 3201), 'keras.regularizers.get', 'regularizers.get', (['W2_regularizer'], {}), '(W2_regularizer)\n', (3185, 3201), False, 'from keras import activations, regularizers\n'), ((3203, 3235), 'keras.regularizers.get', 'regularizers.get', (['W3_regularizer'], {}), '(W3_regularizer)\n', (3219, 3235), False, 'from keras import activations, regularizers\n'), ((3313, 3345), 'keras.regularizers.get', 'regularizers.get', (['U2_regularizer'], {}), '(U2_regularizer)\n', (3329, 3345), False, 'from keras import activations, regularizers\n'), ((3347, 3379), 'keras.regularizers.get', 'regularizers.get', (['U3_regularizer'], {}), '(U3_regularizer)\n', (3363, 3379), False, 'from keras import activations, regularizers\n'), ((3518, 3550), 'keras.regularizers.get', 'regularizers.get', (['b2_regularizer'], {}), '(b2_regularizer)\n', (3534, 3550), False, 'from keras import activations, regularizers\n'), ((3552, 3584), 'keras.regularizers.get', 'regularizers.get', (['b3_regularizer'], {}), '(b3_regularizer)\n', (3568, 3584), False, 'from keras import activations, regularizers\n'), ((20769, 20791), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W2'], {}), '(pred_h, self.W2)\n', (20774, 20791), True, 'from keras import backend as K\n'), ((20794, 20815), 'keras.backend.dot', 'K.dot', (['arg_h', 'self.U2'], {}), '(arg_h, self.U2)\n', (20799, 20815), True, 'from keras import backend as K\n'), ((21521, 21545), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W2_i'], {}), '(pred_h, self.W2_i)\n', (21526, 21545), True, 'from keras import backend as K\n'), ((21548, 21571), 'keras.backend.dot', 'K.dot', (['arg_h', 'self.U2_i'], {}), '(arg_h, self.U2_i)\n', (21553, 21571), True, 'from keras import backend as K\n'), ((21603, 21628), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W2_fp'], {}), '(pred_h, self.W2_fp)\n', (21608, 21628), True, 'from keras import backend as K\n'), ((21631, 21655), 'keras.backend.dot', 'K.dot', (['arg_h', 'self.U2_fp'], {}), '(arg_h, self.U2_fp)\n', (21636, 21655), True, 'from keras import backend as K\n'), ((21688, 21713), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W2_fa'], {}), '(pred_h, self.W2_fa)\n', (21693, 21713), True, 'from keras import backend as K\n'), ((21716, 21740), 'keras.backend.dot', 'K.dot', (['arg_h', 'self.U2_fa'], {}), '(arg_h, self.U2_fa)\n', (21721, 21740), True, 'from keras import backend as K\n'), ((21772, 21796), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W2_u'], {}), '(pred_h, self.W2_u)\n', (21777, 21796), True, 'from keras import backend as K\n'), ((21799, 21822), 'keras.backend.dot', 'K.dot', (['arg_h', 'self.U2_u'], {}), '(arg_h, self.U2_u)\n', (21804, 21822), True, 'from keras import backend as K\n'), ((21853, 21877), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W2_o'], {}), '(pred_h, self.W2_o)\n', (21858, 21877), True, 'from keras import backend as K\n'), ((21880, 21903), 'keras.backend.dot', 'K.dot', (['arg_h', 'self.U2_o'], {}), '(arg_h, self.U2_o)\n', (21885, 21903), True, 'from keras import backend as K\n'), ((23590, 23612), 'keras.backend.dot', 'K.dot', (['arg2_h', 'self.V3'], {}), '(arg2_h, self.V3)\n', (23595, 23612), True, 'from keras import backend as K\n'), ((24172, 24196), 'keras.backend.dot', 'K.dot', (['arg2_h', 'self.V3_i'], {}), '(arg2_h, self.V3_i)\n', (24177, 24196), True, 'from keras import backend as K\n'), ((24306, 24331), 'keras.backend.dot', 'K.dot', (['arg2_h', 'self.V3_fp'], {}), '(arg2_h, self.V3_fp)\n', (24311, 24331), True, 'from keras import backend as K\n'), ((24445, 24471), 'keras.backend.dot', 'K.dot', (['arg2_h', 'self.V3_fa1'], {}), '(arg2_h, self.V3_fa1)\n', (24450, 24471), True, 'from keras import backend as K\n'), ((24586, 24612), 'keras.backend.dot', 'K.dot', (['arg2_h', 'self.V3_fa2'], {}), '(arg2_h, self.V3_fa2)\n', (24591, 24612), True, 'from keras import backend as K\n'), ((24721, 24745), 'keras.backend.dot', 'K.dot', (['arg2_h', 'self.V3_u'], {}), '(arg2_h, self.V3_u)\n', (24726, 24745), True, 'from keras import backend as K\n'), ((24852, 24876), 'keras.backend.dot', 'K.dot', (['arg2_h', 'self.V3_o'], {}), '(arg2_h, self.V3_o)\n', (24857, 24876), True, 'from keras import backend as K\n'), ((26903, 26922), 'keras.backend.zeros_like', 'K.zeros_like', (['stack'], {}), '(stack)\n', (26915, 26922), True, 'from keras import backend as K\n'), ((27162, 27181), 'keras.backend.zeros_like', 'K.zeros_like', (['stack'], {}), '(stack)\n', (27174, 27181), True, 'from keras import backend as K\n'), ((27292, 27310), 'keras.backend.zeros_like', 'K.zeros_like', (['buff'], {}), '(buff)\n', (27304, 27310), True, 'from keras import backend as K\n'), ((9198, 9223), 'numpy.zeros', 'np.zeros', (['self.output_dim'], {}), '(self.output_dim)\n', (9206, 9223), True, 'import numpy as np\n'), ((9679, 9704), 'numpy.zeros', 'np.zeros', (['self.output_dim'], {}), '(self.output_dim)\n', (9687, 9704), True, 'import numpy as np\n'), ((9750, 9775), 'numpy.zeros', 'np.zeros', (['self.output_dim'], {}), '(self.output_dim)\n', (9758, 9775), True, 'import numpy as np\n'), ((9888, 9913), 'numpy.zeros', 'np.zeros', (['self.output_dim'], {}), '(self.output_dim)\n', (9896, 9913), True, 'import numpy as np\n'), ((10574, 10599), 'numpy.zeros', 'np.zeros', (['self.output_dim'], {}), '(self.output_dim)\n', (10582, 10599), True, 'import numpy as np\n'), ((10645, 10670), 'numpy.zeros', 'np.zeros', (['self.output_dim'], {}), '(self.output_dim)\n', (10653, 10670), True, 'import numpy as np\n'), ((23518, 23540), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W3'], {}), '(pred_h, self.W3)\n', (23523, 23540), True, 'from keras import backend as K\n'), ((23543, 23565), 'keras.backend.dot', 'K.dot', (['arg1_h', 'self.U3'], {}), '(arg1_h, self.U3)\n', (23548, 23565), True, 'from keras import backend as K\n'), ((24096, 24120), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W3_i'], {}), '(pred_h, self.W3_i)\n', (24101, 24120), True, 'from keras import backend as K\n'), ((24123, 24147), 'keras.backend.dot', 'K.dot', (['arg1_h', 'self.U3_i'], {}), '(arg1_h, self.U3_i)\n', (24128, 24147), True, 'from keras import backend as K\n'), ((24228, 24253), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W3_fp'], {}), '(pred_h, self.W3_fp)\n', (24233, 24253), True, 'from keras import backend as K\n'), ((24256, 24281), 'keras.backend.dot', 'K.dot', (['arg1_h', 'self.U3_fp'], {}), '(arg1_h, self.U3_fp)\n', (24261, 24281), True, 'from keras import backend as K\n'), ((24365, 24391), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W3_fa1'], {}), '(pred_h, self.W3_fa1)\n', (24370, 24391), True, 'from keras import backend as K\n'), ((24394, 24420), 'keras.backend.dot', 'K.dot', (['arg1_h', 'self.U3_fa1'], {}), '(arg1_h, self.U3_fa1)\n', (24399, 24420), True, 'from keras import backend as K\n'), ((24506, 24532), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W3_fa2'], {}), '(pred_h, self.W3_fa2)\n', (24511, 24532), True, 'from keras import backend as K\n'), ((24535, 24561), 'keras.backend.dot', 'K.dot', (['arg1_h', 'self.U3_fa2'], {}), '(arg1_h, self.U3_fa2)\n', (24540, 24561), True, 'from keras import backend as K\n'), ((24645, 24669), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W3_u'], {}), '(pred_h, self.W3_u)\n', (24650, 24669), True, 'from keras import backend as K\n'), ((24672, 24696), 'keras.backend.dot', 'K.dot', (['arg1_h', 'self.U3_u'], {}), '(arg1_h, self.U3_u)\n', (24677, 24696), True, 'from keras import backend as K\n'), ((24776, 24800), 'keras.backend.dot', 'K.dot', (['pred_h', 'self.W3_o'], {}), '(pred_h, self.W3_o)\n', (24781, 24800), True, 'from keras import backend as K\n'), ((24803, 24827), 'keras.backend.dot', 'K.dot', (['arg1_h', 'self.U3_o'], {}), '(arg1_h, self.U3_o)\n', (24808, 24827), True, 'from keras import backend as K\n')]
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''checkplotserver_handlers.py - <NAME> (<EMAIL>) -
Jan 2017
These are Tornado handlers for serving checkplots and operating on them.
'''
####################
## SYSTEM IMPORTS ##
####################
import os
import os.path
import gzip
try:
import cPickle as pickle
except:
import pickle
import base64
import hashlib
import logging
from datetime import time
import time
from functools import reduce
try:
from cStringIO import StringIO as strio
except:
from io import BytesIO as strio
import numpy as np
from numpy import ndarray
######################################
## CUSTOM JSON ENCODER FOR FRONTEND ##
######################################
# we need this to send objects with the following types to the frontend:
# - bytes
# - ndarray
import json
class FrontendEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, bytes):
return obj.decode()
elif isinstance(obj, complex):
return (obj.real, obj.imag)
elif (isinstance(obj, (float, np.float64, np.float_)) and
not np.isfinite(obj)):
return None
elif isinstance(obj, (np.int8, np.int16, np.int32, np.int64)):
return int(obj)
else:
return json.JSONEncoder.default(self, obj)
# this replaces the default encoder and makes it so Tornado will do the right
# thing when it converts dicts to JSON when a
# tornado.web.RequestHandler.write(dict) is called.
json._default_encoder = FrontendEncoder()
#############
## LOGGING ##
#############
# get a logger
LOGGER = logging.getLogger(__name__)
#####################
## TORNADO IMPORTS ##
#####################
import tornado.ioloop
import tornado.httpserver
import tornado.web
from tornado.escape import xhtml_escape, xhtml_unescape, url_unescape
from tornado import gen
###################
## LOCAL IMPORTS ##
###################
from .. import lcmath
lcmath.set_logger_parent(__name__)
from .. import checkplot
checkplot.set_logger_parent(__name__)
from ..checkplot import checkplot_pickle_update, checkplot_pickle_to_png, \
_read_checkplot_picklefile, _base64_to_file, _write_checkplot_picklefile
# import these for updating plots due to user input
from ..checkplot import _pkl_finder_objectinfo, _pkl_periodogram, \
_pkl_magseries_plot, _pkl_phased_magseries_plot
from ..varclass import varfeatures
varfeatures.set_logger_parent(__name__)
from ..varbase import lcfit
lcfit.set_logger_parent(__name__)
from ..varbase import signals
signals.set_logger_parent(__name__)
from ..periodbase import zgls
zgls.set_logger_parent(__name__)
from ..periodbase import saov
saov.set_logger_parent(__name__)
from ..periodbase import smav
smav.set_logger_parent(__name__)
from ..periodbase import spdm
spdm.set_logger_parent(__name__)
from ..periodbase import kbls
kbls.set_logger_parent(__name__)
from ..periodbase import macf
macf.set_logger_parent(__name__)
#######################
## UTILITY FUNCTIONS ##
#######################
# this is the function map for arguments
CPTOOLMAP = {
# this is a special tool to remove all unsaved lctool results from the
# current checkplot pickle
'lctool-reset':{
'args':(),
'argtypes':(),
'kwargs':(),
'kwargtypes':(),
'kwargdefs':(),
'func':None,
'resloc':[],
},
# this is a special tool to get all unsaved lctool results from the
# current checkplot pickle
'lctool-results':{
'args':(),
'argtypes':(),
'kwargs':(),
'kwargtypes':(),
'kwargdefs':(),
'func':None,
'resloc':[],
},
## PERIOD SEARCH METHODS ##
'psearch-gls':{
'args':('times','mags','errs'),
'argtypes':(ndarray, ndarray, ndarray),
'kwargs':('startp','endp','magsarefluxes',
'autofreq','stepsize','nbestpeaks',
'sigclip[]', 'lctimefilters',
'lcmagfilters','periodepsilon'),
'kwargtypes':(float, float, bool,
bool, float, int,
list, str,
str, float),
'kwargdefs':(None, None, False,
True, 1.0e-4, 10,
None, None,
None, 0.1),
'func':zgls.pgen_lsp,
'resloc':['gls'],
},
'psearch-bls':{
'args':('times','mags','errs'),
'argtypes':(ndarray, ndarray, ndarray),
'kwargs':('startp','endp','magsarefluxes',
'autofreq','stepsize','nbestpeaks',
'sigclip[]','lctimefilters','lcmagfilters',
'periodepsilon','mintransitduration','maxtransitduration'),
'kwargtypes':(float, float, bool,
bool, float, int,
list, str, str,
float, float, float),
'kwargdefs':(0.1, 100.0, False,
True, 1.0e-4, 10,
None, None, None,
0.1, 0.01, 0.08),
'func':kbls.bls_parallel_pfind,
'resloc':['bls'],
},
'psearch-pdm':{
'args':('times','mags','errs'),
'argtypes':(ndarray, ndarray, ndarray),
'kwargs':('startp','endp','magsarefluxes',
'autofreq','stepsize','nbestpeaks',
'sigclip[]','lctimefilters','lcmagfilters',
'periodepsilon','phasebinsize','mindetperbin'),
'kwargtypes':(float, float, bool,
bool, float, int,
list, str, str,
float, float, int),
'kwargdefs':(None, None, False,
True, 1.0e-4, 10,
None, None, None,
0.1, 0.05, 9),
'func':spdm.stellingwerf_pdm,
'resloc':['pdm'],
},
'psearch-aov':{
'args':('times','mags','errs'),
'argtypes':(ndarray, ndarray, ndarray),
'kwargs':('startp','endp','magsarefluxes',
'autofreq','stepsize','nbestpeaks',
'sigclip[]','lctimefilters','lcmagfilters',
'periodepsilon','phasebinsize','mindetperbin'),
'kwargtypes':(float, float, bool,
bool, float, int,
list, str, str,
float, float, int),
'kwargdefs':(None, None, False,
True, 1.0e-4, 10,
None, None, None,
0.1, 0.05, 9),
'func':saov.aov_periodfind,
'resloc':['aov'],
},
'psearch-mav':{
'args':('times','mags','errs'),
'argtypes':(ndarray, ndarray, ndarray),
'kwargs':('startp','endp','magsarefluxes',
'autofreq','stepsize','nbestpeaks',
'sigclip[]','lctimefilters','lcmagfilters',
'periodepsilon','nharmonics'),
'kwargtypes':(float, float, bool,
bool, float, int,
list, str, str,
float, int),
'kwargdefs':(None, None, False,
True, 1.0e-4, 10,
None, None, None,
0.1, 6),
'func':smav.aovhm_periodfind,
'resloc':['mav'],
},
'psearch-acf':{
'args':('times','mags','errs'),
'argtypes':(ndarray, ndarray, ndarray),
'kwargs':('startp','endp','magsarefluxes',
'autofreq','stepsize','smoothacf',
'sigclip[]','lctimefilters', 'lcmagfilters',
'periodepsilon', 'fillgaps'),
'kwargtypes':(float, float, bool,
bool, float, int,
list, str, str,
float, float),
'kwargdefs':(None, None, False,
True, 1.0e-4, 721,
None, None, None,
0.1, 0.0),
'func':macf.macf_period_find,
'resloc':['acf'],
},
'psearch-win':{
'args':('times','mags','errs'),
'argtypes':(ndarray, ndarray, ndarray),
'kwargs':('startp','endp','magsarefluxes',
'autofreq','stepsize','nbestpeaks',
'sigclip[]','lctimefilters','lcmagfilters',
'periodepsilon'),
'kwargtypes':(float, float, bool,
bool, float, int,
list, str, str,
float),
'kwargdefs':(None, None, False,
True, 1.0e-4, 10,
None, None, None,
0.1),
'func':zgls.specwindow_lsp,
'resloc':['win'],
},
## PLOTTING A NEW PHASED LC ##
'phasedlc-newplot':{
'args':(None,'lspmethod','periodind',
'times','mags','errs','varperiod','varepoch'),
'argtypes':(None, str, int, ndarray, ndarray, ndarray, float, float),
'kwargs':('xliminsetmode','magsarefluxes',
'phasewrap','phasesort',
'phasebin','plotxlim[]',
'sigclip[]','lctimefilters','lcmagfilters'),
'kwargtypes':(bool, bool, bool, bool, float, list, list, str, str),
'kwargdefs':(False, False, True, True, 0.002, [-0.8,0.8],
None, None, None),
'func':_pkl_phased_magseries_plot,
'resloc':[],
},
# FIXME: add sigclip, lctimefilters, and lcmagfilters for all of these
## VARIABILITY TOOLS ##
'var-varfeatures':{
'args':('times','mags','errs'),
'argtypes':(ndarray,ndarray,ndarray),
'kwargs':(),
'kwargtypes':(),
'kwargdefs':(),
'func':varfeatures.all_nonperiodic_features,
'resloc':['varinfo','features'],
},
'var-prewhiten':{
'args':('times','mags','errs','whitenperiod', 'whitenparams[]'),
'argtypes':(ndarray, ndarray, ndarray, float, list),
'kwargs':('magsarefluxes',),
'kwargtypes':(bool,),
'kwargdefs':(False,),
'func':signals.prewhiten_magseries,
'resloc':['signals','prewhiten'],
},
'var-masksig':{
'args':('times','mags','errs','signalperiod','signalepoch'),
'argtypes':(ndarray, ndarray, ndarray, float, float),
'kwargs':('magsarefluxes','maskphases[]','maskphaselength'),
'kwargtypes':(bool, list, float),
'kwargdefs':(False, [0.0,0.5,1.0], 0.1),
'func':signals.mask_signal,
'resloc':['signals','mask'],
},
# FIXME: add sigclip, lctimefilters, and lcmagfilters for all of these
## FITTING FUNCTIONS TO LIGHT CURVES ##
# this is a special call to just subtract an already fit function from the
# current light curve
'lcfit-subtract':{
'args':('fitmethod', 'periodind'),
'argtypes':(str, int),
'kwargs':(),
'kwargtypes':(),
'kwargdefs':(),
'func':None,
'resloc':[],
},
'lcfit-fourier':{
'args':('times','mags','errs','period'),
'argtypes':(ndarray, ndarray, ndarray, float),
'kwargs':('fourierorder','magsarefluxes', 'fourierparams[]'),
'kwargtypes':(int, bool, list),
'kwargdefs':(6, False, []),
'func':lcfit.fourier_fit_magseries,
'resloc':['fitinfo','fourier'],
},
'lcfit-spline':{
'args':('times','mags','errs','period'),
'argtypes':(ndarray, ndarray, ndarray, float),
'kwargs':('maxknots','knotfraction','magsarefluxes'),
'kwargtypes':(int, float, bool),
'kwargdefs':(30, 0.01, False),
'func':lcfit.spline_fit_magseries,
'resloc':['fitinfo','spline'],
},
'lcfit-legendre':{
'args':('times','mags','errs','period'),
'argtypes':(ndarray, ndarray, ndarray, float),
'kwargs':('legendredeg','magsarefluxes'),
'kwargtypes':(int, bool),
'kwargdefs':(10, False),
'func':lcfit.legendre_fit_magseries,
'resloc':['fitinfo','legendre'],
},
'lcfit-savgol':{
'args':('times','mags','errs','period'),
'argtypes':(ndarray, ndarray, ndarray, float),
'kwargs':('windowlength','magsarefluxes'),
'kwargtypes':(int, bool),
'kwargdefs':(None, False),
'func':lcfit.savgol_fit_magseries,
'resloc':['fitinfo','savgol'],
},
}
############
## CONFIG ##
############
PFMETHODS = ['gls','pdm','acf','aov','mav','bls','win']
#####################
## HANDLER CLASSES ##
#####################
class IndexHandler(tornado.web.RequestHandler):
'''This handles the index page.
This page shows the current project.
'''
def initialize(self, currentdir, assetpath, cplist,
cplistfile, executor, readonly):
'''
handles initial setup.
'''
self.currentdir = currentdir
self.assetpath = assetpath
self.currentproject = cplist
self.cplistfile = cplistfile
self.executor = executor
self.readonly = readonly
def get(self):
'''This handles GET requests to the index page.
TODO: fix this so it loads a modified version of the usual index.html
template for readonly mode. This should replace all of the text boxes
with readonly versions.
TODO: maybe also provide the correct baseurl from the checkplotserver
options dict, so the frontend JS can just read that off immediately.
'''
# generate the project's list of checkplots
project_checkplots = self.currentproject['checkplots']
project_checkplotbasenames = [os.path.basename(x)
for x in project_checkplots]
project_checkplotindices = range(len(project_checkplots))
# get the sortkey and order
project_cpsortkey = self.currentproject['sortkey']
if self.currentproject['sortorder'] == 'asc':
project_cpsortorder = 'ascending'
elif self.currentproject['sortorder'] == 'desc':
project_cpsortorder = 'descending'
# get the filterkey and condition
project_cpfilterstatements = self.currentproject['filterstatements']
self.render('cpindex.html',
project_checkplots=project_checkplots,
project_cpsortorder=project_cpsortorder,
project_cpsortkey=project_cpsortkey,
project_cpfilterstatements=project_cpfilterstatements,
project_checkplotbasenames=project_checkplotbasenames,
project_checkplotindices=project_checkplotindices,
project_checkplotfile=self.cplistfile,
readonly=self.readonly)
class CheckplotHandler(tornado.web.RequestHandler):
'''This handles loading and saving checkplots.
This includes GET requests to get to and load a specific checkplot pickle
file and POST requests to save the checkplot changes back to the file.
'''
def initialize(self, currentdir, assetpath, cplist,
cplistfile, executor, readonly):
'''
handles initial setup.
'''
self.currentdir = currentdir
self.assetpath = assetpath
self.currentproject = cplist
self.cplistfile = cplistfile
self.executor = executor
self.readonly = readonly
@gen.coroutine
def get(self, checkplotfname):
'''This handles GET requests.
This is an AJAX endpoint; returns JSON that gets converted by the
frontend into things to render.
'''
if checkplotfname:
# do the usual safing
self.checkplotfname = xhtml_escape(
base64.b64decode(checkplotfname)
)
# see if this plot is in the current project
if self.checkplotfname in self.currentproject['checkplots']:
# make sure this file exists
cpfpath = os.path.join(
os.path.abspath(os.path.dirname(self.cplistfile)),
self.checkplotfname
)
LOGGER.info('loading %s...' % cpfpath)
if not os.path.exists(cpfpath):
msg = "couldn't find checkplot %s" % cpfpath
LOGGER.error(msg)
resultdict = {'status':'error',
'message':msg,
'result':None}
self.write(resultdict)
raise tornado.web.Finish()
# this is the async call to the executor
cpdict = yield self.executor.submit(
_read_checkplot_picklefile, cpfpath
)
#####################################
## continue after we're good to go ##
#####################################
LOGGER.info('loaded %s' % cpfpath)
# break out the initial info
objectid = cpdict['objectid']
objectinfo = cpdict['objectinfo']
varinfo = cpdict['varinfo']
if 'pfmethods' in cpdict:
pfmethods = cpdict['pfmethods']
else:
pfmethods = []
for pfm in PFMETHODS:
if pfm in cpdict:
pfmethods.append(pfm)
# handle neighbors for this object
neighbors = []
if ('neighbors' in cpdict and
cpdict['neighbors'] is not None and
len(cpdict['neighbors'])) > 0:
nbrlist = cpdict['neighbors']
# get each neighbor, its info, and its phased LCs
for nbr in nbrlist:
thisnbrdict = {
'objectid':nbr['objectid'],
'objectinfo':{
'ra':nbr['ra'],
'decl':nbr['decl'],
'xpix':nbr['xpix'],
'ypix':nbr['ypix'],
'distarcsec':nbr['dist'],
}
}
try:
nbr_magseries = nbr['magseries']['plot']
thisnbrdict['magseries'] = nbr_magseries
except Exception as e:
LOGGER.error(
"could not load magseries plot for "
"neighbor %s for object %s"
% (nbr['objectid'],
cpdict['objectid'])
)
try:
for pfm in pfmethods:
if pfm in nbr:
thisnbrdict[pfm] = {
'plot':nbr[pfm][0]['plot'],
'period':nbr[pfm][0]['period'],
'epoch':nbr[pfm][0]['epoch']
}
except Exception as e:
LOGGER.error(
"could not load phased LC plots for "
"neighbor %s for object %s"
% (nbr['objectid'],
cpdict['objectid'])
)
neighbors.append(thisnbrdict)
# load object comments
if 'comments' in cpdict:
objectcomments = cpdict['comments']
else:
objectcomments = None
# load the xmatch results, if any
if 'xmatch' in cpdict:
objectxmatch = cpdict['xmatch']
# get rid of those pesky nans
for xmcat in objectxmatch:
if isinstance(objectxmatch[xmcat]['info'], dict):
xminfo = objectxmatch[xmcat]['info']
for xmek in xminfo:
if (isinstance(xminfo[xmek], float) and
(not np.isfinite(xminfo[xmek]))):
xminfo[xmek] = None
else:
objectxmatch = None
# load the colormagdiagram object
if 'colormagdiagram' in cpdict:
colormagdiagram = cpdict['colormagdiagram']
else:
colormagdiagram = None
# these are base64 which can be provided directly to JS to
# generate images (neat!)
finderchart = cpdict['finderchart']
magseries = cpdict['magseries']['plot']
cpstatus = cpdict['status']
# load the uifilters if present
if 'uifilters' in cpdict:
uifilters = cpdict['uifilters']
else:
uifilters = {'psearch_magfilters':None,
'psearch_sigclip':None,
'psearch_timefilters':None}
# FIXME: add in other stuff required by the frontend
# - signals
# FIXME: the frontend should load these other things as well
# into the various elems on the period-search-tools and
# variability-tools tabs
# this is the initial dict
resultdict = {
'status':'ok',
'message':'found checkplot %s' % self.checkplotfname,
'readonly':self.readonly,
'result':{
'time0':'%.3f' % cpdict['magseries']['times'].min(),
'objectid':objectid,
'objectinfo':objectinfo,
'colormagdiagram':colormagdiagram,
'objectcomments':objectcomments,
'varinfo':varinfo,
'uifilters':uifilters,
'neighbors':neighbors,
'xmatch':objectxmatch,
'finderchart':finderchart,
'magseries':magseries,
# fallback in case objectinfo doesn't have ndet
'magseries_ndet':cpdict['magseries']['times'].size,
'cpstatus':cpstatus,
'pfmethods':pfmethods
}
}
# make sure to replace nans with Nones. frontend JS absolutely
# hates NaNs and for some reason, the JSON encoder defined at
# the top of this file doesn't deal with them even though it
# should
for key in resultdict['result']['objectinfo']:
if (isinstance(resultdict['result']['objectinfo'][key],
float) and
(not np.isfinite(resultdict['result'][
'objectinfo'
][key]))):
resultdict['result']['objectinfo'][key] = None
elif (isinstance(resultdict['result']['objectinfo'][key],
ndarray)):
thisval = resultdict['result']['objectinfo'][key]
thisval = thisval.tolist()
for i, v in enumerate(thisval):
if isinstance(v,float) and (not(np.isfinite(v))):
thisval[i] = None
resultdict['result']['objectinfo'][key] = thisval
# now get the periodograms and phased LCs
for key in pfmethods:
# get the periodogram for this method
periodogram = cpdict[key]['periodogram']
# get the phased LC with best period
phasedlc0plot = cpdict[key][0]['plot']
# get the associated fitinfo for this period if it
# exists
if ('lcfit' in cpdict[key][0] and
isinstance(cpdict[key][0]['lcfit'], dict)):
phasedlc0fit = {
'method':(
cpdict[key][0]['lcfit']['fittype']
),
'redchisq':(
cpdict[key][0]['lcfit']['fitredchisq']
),
'chisq':(
cpdict[key][0]['lcfit']['fitchisq']
),
'params':(
cpdict[key][0][
'lcfit'
]['fitinfo']['finalparams'] if
'finalparams' in
cpdict[key][0]['lcfit']['fitinfo'] else None
)
}
else:
phasedlc0fit = None
# get the phased LC with 2nd best period
phasedlc1plot = cpdict[key][1]['plot']
# get the associated fitinfo for this period if it
# exists
if ('lcfit' in cpdict[key][1] and
isinstance(cpdict[key][1]['lcfit'], dict)):
phasedlc1fit = {
'method':(
cpdict[key][1]['lcfit']['fittype']
),
'redchisq':(
cpdict[key][1]['lcfit']['fitredchisq']
),
'chisq':(
cpdict[key][1]['lcfit']['fitchisq']
),
'params':(
cpdict[key][1][
'lcfit'
]['fitinfo']['finalparams'] if
'finalparams' in
cpdict[key][1]['lcfit']['fitinfo'] else None
)
}
else:
phasedlc1fit = None
# get the phased LC with 3rd best period
phasedlc2plot = cpdict[key][2]['plot']
# get the associated fitinfo for this period if it
# exists
if ('lcfit' in cpdict[key][2] and
isinstance(cpdict[key][2]['lcfit'], dict)):
phasedlc2fit = {
'method':(
cpdict[key][2]['lcfit']['fittype']
),
'redchisq':(
cpdict[key][2]['lcfit']['fitredchisq']
),
'chisq':(
cpdict[key][2]['lcfit']['fitchisq']
),
'params':(
cpdict[key][2][
'lcfit'
]['fitinfo']['finalparams'] if
'finalparams' in
cpdict[key][2]['lcfit']['fitinfo'] else None
)
}
else:
phasedlc2fit = None
resultdict['result'][key] = {
'nbestperiods':cpdict[key]['nbestperiods'],
'periodogram':periodogram,
'bestperiod':cpdict[key]['bestperiod'],
'phasedlc0':{
'plot':phasedlc0plot,
'period':float(cpdict[key][0]['period']),
'epoch':float(cpdict[key][0]['epoch']),
'lcfit':phasedlc0fit,
},
'phasedlc1':{
'plot':phasedlc1plot,
'period':float(cpdict[key][1]['period']),
'epoch':float(cpdict[key][1]['epoch']),
'lcfit':phasedlc1fit,
},
'phasedlc2':{
'plot':phasedlc2plot,
'period':float(cpdict[key][2]['period']),
'epoch':float(cpdict[key][2]['epoch']),
'lcfit':phasedlc2fit,
},
}
#
# end of processing per pfmethod
#
# return the checkplot via JSON
self.write(resultdict)
self.finish()
else:
LOGGER.error('could not find %s' % self.checkplotfname)
resultdict = {'status':'error',
'message':"This checkplot doesn't exist.",
'readonly':self.readonly,
'result':None}
self.write(resultdict)
self.finish()
else:
resultdict = {'status':'error',
'message':'No checkplot provided to load.',
'readonly':self.readonly,
'result':None}
self.write(resultdict)
@gen.coroutine
def post(self, cpfile):
'''This handles POST requests.
Also an AJAX endpoint. Updates the persistent checkplot dict using the
changes from the UI, and then saves it back to disk. This could
definitely be faster by just loading the checkplot into a server-wide
shared dict or something.
'''
# if self.readonly is set, then don't accept any changes
# return immediately with a 400
if self.readonly:
msg = "checkplotserver is in readonly mode. no updates allowed."
resultdict = {'status':'error',
'message':msg,
'readonly':self.readonly,
'result':None}
self.write(resultdict)
raise tornado.web.Finish()
# now try to update the contents
try:
self.cpfile = base64.b64decode(cpfile).decode()
cpcontents = self.get_argument('cpcontents', default=None)
savetopng = self.get_argument('savetopng', default=None)
if not self.cpfile or not cpcontents:
msg = "did not receive a checkplot update payload"
resultdict = {'status':'error',
'message':msg,
'readonly':self.readonly,
'result':None}
self.write(resultdict)
raise tornado.web.Finish()
cpcontents = json.loads(cpcontents)
# the only keys in cpdict that can updated from the UI are from
# varinfo, objectinfo (objecttags), uifilters, and comments
updated = {'varinfo': cpcontents['varinfo'],
'objectinfo':cpcontents['objectinfo'],
'comments':cpcontents['comments'],
'uifilters':cpcontents['uifilters']}
# we need to reform the self.cpfile so it points to the full path
cpfpath = os.path.join(
os.path.abspath(os.path.dirname(self.cplistfile)),
self.cpfile
)
LOGGER.info('loading %s...' % cpfpath)
if not os.path.exists(cpfpath):
msg = "couldn't find checkplot %s" % cpfpath
LOGGER.error(msg)
resultdict = {'status':'error',
'message':msg,
'readonly':self.readonly,
'result':None}
self.write(resultdict)
raise tornado.web.Finish()
# dispatch the task
updated = yield self.executor.submit(checkplot_pickle_update,
cpfpath, updated)
# continue processing after this is done
if updated:
LOGGER.info('updated checkplot %s successfully' % updated)
resultdict = {'status':'success',
'message':'checkplot update successful',
'readonly':self.readonly,
'result':{'checkplot':updated,
'unixtime':time.time(),
'changes':cpcontents,
'cpfpng': None}}
# handle a savetopng trigger
if savetopng:
cpfpng = os.path.abspath(cpfpath.replace('.pkl','.png'))
pngdone = yield self.executor.submit(
checkplot_pickle_to_png,
cpfpath, cpfpng
)
if os.path.exists(cpfpng):
resultdict['result']['cpfpng'] = cpfpng
else:
resultdict['result']['cpfpng'] = 'png making failed'
self.write(resultdict)
self.finish()
else:
LOGGER.error('could not handle checkplot update for %s: %s' %
(self.cpfile, cpcontents))
msg = "checkplot update failed because of a backend error"
resultdict = {'status':'error',
'message':msg,
'readonly':self.readonly,
'result':None}
self.write(resultdict)
self.finish()
# if something goes wrong, inform the user
except Exception as e:
LOGGER.exception('could not handle checkplot update for %s: %s' %
(self.cpfile, cpcontents))
msg = "checkplot update failed because of an exception"
resultdict = {'status':'error',
'message':msg,
'readonly':self.readonly,
'result':None}
self.write(resultdict)
self.finish()
class CheckplotListHandler(tornado.web.RequestHandler):
'''This handles loading and saving the checkplot-filelist.json file.
GET requests just return the current contents of the checkplot-filelist.json
file. POST requests will put in changes that the user made from the
frontend.
'''
def initialize(self, currentdir, assetpath, cplist,
cplistfile, executor, readonly):
'''
handles initial setup.
'''
self.currentdir = currentdir
self.assetpath = assetpath
self.currentproject = cplist
self.cplistfile = cplistfile
self.executor = executor
self.readonly = readonly
def get(self):
'''
This handles GET requests. Used with AJAX from frontend.
'''
# add the reviewed key to the current dict if it doesn't exist
# this will hold all the reviewed objects for the frontend
if not 'reviewed' in self.currentproject:
self.currentproject['reviewed'] = {}
# just returns the current project as JSON
self.write(self.currentproject)
def post(self):
'''
This handles POST requests. Saves the changes made by the user.
'''
# if self.readonly is set, then don't accept any changes
# return immediately with a 400
if self.readonly:
msg = "checkplotserver is in readonly mode. no updates allowed."
resultdict = {'status':'error',
'message':msg,
'readonly':self.readonly,
'result':None}
self.write(resultdict)
raise tornado.web.Finish()
objectid = self.get_argument('objectid', None)
changes = self.get_argument('changes',None)
# if either of the above is invalid, return nothing
if not objectid or not changes:
msg = ("could not parse changes to the checkplot filelist "
"from the frontend")
LOGGER.error(msg)
resultdict = {'status':'error',
'message':msg,
'readonly':self.readonly,
'result':None}
self.write(resultdict)
raise tornado.web.Finish()
# otherwise, update the checkplot list JSON
objectid = xhtml_escape(objectid)
changes = json.loads(changes)
# update the dictionary
if 'reviewed' not in self.currentproject:
self.currentproject['reviewed'] = {}
self.currentproject['reviewed'][objectid] = changes
# update the JSON file
with open(self.cplistfile,'w') as outfd:
json.dump(self.currentproject, outfd)
# return status
msg = ("wrote all changes to the checkplot filelist "
"from the frontend for object: %s" % objectid)
LOGGER.info(msg)
resultdict = {'status':'success',
'message':msg,
'readonly':self.readonly,
'result':{'objectid':objectid,
'changes':changes}}
self.write(resultdict)
self.finish()
class LCToolHandler(tornado.web.RequestHandler):
'''This handles dispatching light curve analysis tasks.
GET requests run the light curve tools specified in the URI with arguments
as specified in the args to the URI.
POST requests write the results to the JSON file. The frontend JS object is
automatically updated by the frontend code.
'''
def initialize(self, currentdir, assetpath, cplist,
cplistfile, executor, readonly):
'''
handles initial setup.
'''
self.currentdir = currentdir
self.assetpath = assetpath
self.currentproject = cplist
self.cplistfile = cplistfile
self.executor = executor
self.readonly = readonly
@gen.coroutine
def get(self, cpfile):
'''This handles a GET request.
The URI structure is:
/tools/<cpfile>?[args]
where args are:
?lctool=<lctool>&argkey1=argval1&argkey2=argval2&...
&forcereload=true <- if this is present, then reload values from
original checkplot.
&objectid=<objectid>
lctool is one of the functions below
PERIODSEARCH FUNCTIONS
----------------------
psearch-gls: run Lomb-Scargle with given params
psearch-bls: run BLS with given params
psearch-pdm: run phase dispersion minimization with given params
psearch-aov: run analysis-of-variance with given params
psearch-mav: run analysis-of-variance (multi-harm) with given params
psearch-acf: run ACF period search with given params
psearch-win: run spectral window function search with given params
arguments:
startp=XX
endp=XX
magsarefluxes=True|False
autofreq=True|False
stepsize=XX
VARIABILITY FUNCTIONS
---------------------
var-varfeatures: gets the variability from the checkplot or recalculates
if it's not present
var-prewhiten: pre-whitens the light curve with a sinusoidal signal
var-masksig: masks a given phase location with given width from the
light curve
LIGHT CURVE FUNCTIONS
---------------------
phasedlc-newplot: make phased LC with new provided period/epoch
lcfit-fourier: fit a Fourier function to the phased LC
lcfit-spline: fit a spline function to the phased LC
lcfit-legendre: fit a Legendre polynomial to the phased LC
lcfit-savgol: fit a Savitsky-Golay polynomial to the phased LC
FIXME: figure out how to cache the results of these functions
temporarily and save them back to the checkplot after we click on save
in the frontend.
look for a checkplot-blah-blah.pkl-cps-processing file in the same
place as the usual pickle file. if this exists and is newer than the pkl
file, load it instead.
OR
have a checkplotdict['cpservertemp'] item.
'''
if cpfile:
self.cpfile = xhtml_escape(base64.b64decode(cpfile))
# see if this plot is in the current project
if self.cpfile in self.currentproject['checkplots']:
# make sure this file exists
cpfpath = os.path.join(
os.path.abspath(os.path.dirname(self.cplistfile)),
self.cpfile
)
# if we can't find the pickle, quit immediately
if not os.path.exists(cpfpath):
msg = "couldn't find checkplot %s" % cpfpath
LOGGER.error(msg)
resultdict = {'status':'error',
'message':msg,
'readonly':self.readonly,
'result':None}
self.write(resultdict)
raise tornado.web.Finish()
###########################
# now parse the arguments #
###########################
# check if we have to force-reload
forcereload = self.get_argument('forcereload',False)
if forcereload and xhtml_escape(forcereload):
forcereload = True if forcereload == 'true' else False
# get the objectid
cpobjectid = self.get_argument('objectid',None)
# get the light curve tool to use
lctool = self.get_argument('lctool', None)
# preemptive dict to fill out
resultdict = {'status':None,
'message':None,
'readonly':self.readonly,
'result':None}
# check if the lctool arg is provided
if lctool:
lctool = xhtml_escape(lctool)
lctoolargs = []
lctoolkwargs = {}
# check if this lctool is OK and has all the required args
if lctool in CPTOOLMAP:
try:
# all args should have been parsed
# successfully. parse the kwargs now
for xkwarg, xkwargtype, xkwargdef in zip(
CPTOOLMAP[lctool]['kwargs'],
CPTOOLMAP[lctool]['kwargtypes'],
CPTOOLMAP[lctool]['kwargdefs']
):
# get the kwarg
if xkwargtype is list:
wbkwarg = self.get_arguments(xkwarg)
if len(wbkwarg) > 0:
wbkwarg = [url_unescape(xhtml_escape(x))
for x in wbkwarg]
else:
wbkwarg = None
else:
wbkwarg = self.get_argument(xkwarg, None)
if wbkwarg is not None:
wbkwarg = url_unescape(
xhtml_escape(wbkwarg)
)
LOGGER.info('xkwarg = %s, wbkwarg = %s' %
(xkwarg, repr(wbkwarg)))
# if it's None, sub with the default
if wbkwarg is None:
wbkwarg = xkwargdef
# otherwise, cast it to the required type
else:
# special handling for lists of floats
if xkwargtype is list:
wbkwarg = [float(x) for x in wbkwarg]
# special handling for booleans
elif xkwargtype is bool:
if wbkwarg == 'false':
wbkwarg = False
elif wbkwarg == 'true':
wbkwarg = True
else:
wbkwarg = xkwargdef
# usual casting for other types
else:
wbkwarg = xkwargtype(wbkwarg)
# update the lctools kwarg dict
# make sure to remove any [] from the kwargs
# this was needed to parse the input query
# string correctly
if xkwarg.endswith('[]'):
xkwarg = xkwarg.rstrip('[]')
lctoolkwargs.update({xkwarg:wbkwarg})
except Exception as e:
LOGGER.exception('lctool %s, kwarg %s '
'will not work' %
(lctool, xkwarg))
resultdict['status'] = 'error'
resultdict['message'] = (
'lctool %s, kwarg %s '
'will not work' %
(lctool, xkwarg)
)
resultdict['result'] = {'objectid':cpobjectid}
self.write(resultdict)
raise tornado.web.Finish()
# if the tool is not in the CPTOOLSMAP
else:
LOGGER.error('lctool %s, does not exist' % lctool)
resultdict['status'] = 'error'
resultdict['message'] = (
'lctool %s does not exist' % lctool
)
resultdict['result'] = {'objectid':cpobjectid}
self.write(resultdict)
raise tornado.web.Finish()
# if no lctool arg is provided
else:
LOGGER.error('lctool argument not provided')
resultdict['status'] = 'error'
resultdict['message'] = (
'lctool argument not provided'
)
resultdict['result'] = {'objectid':cpobjectid}
self.write(resultdict)
raise tornado.web.Finish()
##############################################
## NOW WE'RE READY TO ACTUALLY DO SOMETHING ##
##############################################
LOGGER.info('loading %s...' % cpfpath)
# this loads the actual checkplot pickle
cpdict = yield self.executor.submit(
_read_checkplot_picklefile, cpfpath
)
# we check for the existence of a cpfpath + '-cpserver-temp'
# file first. this is where we store stuff before we write it
# back to the actual checkplot.
tempfpath = cpfpath + '-cpserver-temp'
# load the temp checkplot if it exists
if os.path.exists(tempfpath):
tempcpdict = yield self.executor.submit(
_read_checkplot_picklefile, tempfpath
)
# if it doesn't exist, read the times, mags, errs from the
# actual checkplot in prep for working on it
else:
tempcpdict = {
'objectid':cpdict['objectid'],
'magseries':{
'times':cpdict['magseries']['times'],
'mags':cpdict['magseries']['mags'],
'errs':cpdict['magseries']['errs'],
}
}
# if we're not forcing a rerun from the original checkplot dict
if not forcereload:
cptimes, cpmags, cperrs = (
tempcpdict['magseries']['times'],
tempcpdict['magseries']['mags'],
tempcpdict['magseries']['errs'],
)
LOGGER.info('forcereload = False')
# otherwise, reload the original times, mags, errs
else:
cptimes, cpmags, cperrs = (cpdict['magseries']['times'],
cpdict['magseries']['mags'],
cpdict['magseries']['errs'])
LOGGER.info('forcereload = True')
# collect the args
for xarg, xargtype in zip(CPTOOLMAP[lctool]['args'],
CPTOOLMAP[lctool]['argtypes']):
# handle special args
if xarg is None:
lctoolargs.append(None)
elif xarg == 'times':
lctoolargs.append(cptimes)
elif xarg == 'mags':
lctoolargs.append(cpmags)
elif xarg == 'errs':
lctoolargs.append(cperrs)
# handle other args
else:
try:
if xargtype is list:
wbarg = self.get_arguments(xarg)
else:
wbarg = url_unescape(
xhtml_escape(
self.get_argument(xarg, None)
)
)
# cast the arg to the required type
# special handling for lists
if xargtype is list:
wbarg = [float(x) for x in wbarg]
# special handling for epochs that can be optional
elif xargtype is float and xarg == 'varepoch':
try:
wbarg = xargtype(wbarg)
except:
wbarg = None
# usual casting for other types
else:
wbarg = xargtype(wbarg)
lctoolargs.append(wbarg)
except Exception as e:
LOGGER.exception('lctool %s, arg %s '
'will not work' %
(lctool, xarg))
resultdict['status'] = 'error'
resultdict['message'] = (
'lctool %s, arg %s '
'will not work' %
(lctool, xarg)
)
resultdict['result'] = {'objectid':cpobjectid}
self.write(resultdict)
raise tornado.web.Finish()
LOGGER.info(lctool)
LOGGER.info(lctoolargs)
LOGGER.info(lctoolkwargs)
############################
## handle the lctools now ##
############################
# make sure the results aren't there already.
# if they are and force-reload is not True,
# just return them instead.
resloc = CPTOOLMAP[lctool]['resloc']
# TODO: figure out a way to make the dispatched tasks
# cancellable. This can probably be done by having a global
# TOOLQUEUE object that gets imported on initialize(). In this
# object, we could put in key:vals like so:
#
# TOOLQUEUE['lctool-<toolname>-cpfpath'] = (
# yield self.executor.submit(blah, *blah_args, **blah_kwargs)
# )
#
# then we probably need some sort of frontend AJAX call that
# enqueues things and can then cancel stuff from the queue. see
# stuff we need to figure out:
# - if the above scheme actually yields so we remain async
# - if the Future object supports cancellation
# - if the Future object that isn't resolved actually works
# get the objectid. we'll send this along with every
# result. this should handle the case of the current objectid
# not being the same as the objectid being looked at by the
# user. in effect, this will allow the user to launch a
# long-running process and come back to it later since the
# frontend will load the older results when they are complete.
objectid = cpdict['objectid']
# if lctool is a periodogram method
if lctool in ('psearch-gls',
'psearch-bls',
'psearch-pdm',
'psearch-aov',
'psearch-mav',
'psearch-acf',
'psearch-win'):
lspmethod = resloc[0]
# if we can return the results from a previous run
if (lspmethod in tempcpdict and
isinstance(tempcpdict[lspmethod], dict) and
(not forcereload)):
# for a periodogram method, we need the
# following items
bestperiod = (
tempcpdict[lspmethod]['bestperiod']
)
nbestperiods = (
tempcpdict[lspmethod]['nbestperiods']
)
nbestlspvals = (
tempcpdict[lspmethod]['nbestlspvals']
)
periodogram = (
tempcpdict[lspmethod]['periodogram']
)
# get the first phased LC plot and its period
# and epoch
phasedlc0plot = (
tempcpdict[lspmethod][0]['plot']
)
phasedlc0period = float(
tempcpdict[lspmethod][0]['period']
)
phasedlc0epoch = float(
tempcpdict[lspmethod][0]['epoch']
)
LOGGER.warning(
'returning previously unsaved '
'results for lctool %s from %s' %
(lctool, tempfpath)
)
#
# assemble the returndict
#
resultdict['status'] = 'warning'
resultdict['message'] = (
'previous '
'unsaved results from %s' %
lctool
)
resultdict['result'] = {
'objectid':objectid,
lspmethod:{
'nbestperiods':nbestperiods,
'periodogram':periodogram,
'bestperiod':bestperiod,
'nbestpeaks':nbestlspvals,
'phasedlc0':{
'plot':phasedlc0plot,
'period':phasedlc0period,
'epoch':phasedlc0epoch,
}
}
}
self.write(resultdict)
self.finish()
# otherwise, we have to rerun the periodogram method
else:
# see if sigclip is set. if so, then do the sigclip on
# the times, mags, errs
if lctoolkwargs['sigclip'] is not None:
wtimes, wmags, werrs = lcmath.sigclip_magseries(
lctoolargs[0],
lctoolargs[1],
lctoolargs[2],
sigclip=lctoolkwargs['sigclip'],
magsarefluxes=lctoolkwargs['magsarefluxes']
)
lctoolargs[0] = wtimes
lctoolargs[1] = wmags
lctoolargs[2] = werrs
#
# process the LC filters now
#
# see if the lctimefilters are set
if lctoolkwargs['lctimefilters']:
wtimes, wmags, werrs = (lctoolargs[0],
lctoolargs[1],
lctoolargs[2])
filtermasks = [
np.full_like(wtimes, False, dtype=np.bool_)
]
# parse the time filter strings
filterstr = lctoolkwargs['lctimefilters']
filters = filterstr.split(',')
filters = [
x.strip().lstrip('(').rstrip(')').strip()
for x in filters
]
for filt in filters:
try:
thisfilt = filt.split(':')
if len(thisfilt) == 2:
filt_lo = float(thisfilt[0])
filt_hi = float(thisfilt[1])
filtermasks.append(
((wtimes - cptimes.min()) < filt_hi) &
((wtimes - cptimes.min()) > filt_lo)
)
elif (len(thisfilt) == 3 and
thisfilt[0].strip() == 'not'):
filt_lo = float(thisfilt[1])
filt_hi = float(thisfilt[2])
filtermasks.append(np.logical_not(
(((wtimes - cptimes.min()) < filt_hi) &
((wtimes - cptimes.min()) > filt_lo))
))
else:
continue
except:
continue
# finally, apply the filters if applicable
if len(filtermasks) > 0:
# apply the filters using an OR
filterind = np.column_stack(filtermasks)
filterind = np.any(filterind, axis=1)
lctoolargs[0] = wtimes[filterind]
lctoolargs[1] = wmags[filterind]
lctoolargs[2] = werrs[filterind]
# see if the lcmagfilters are set
if lctoolkwargs['lcmagfilters']:
wtimes, wmags, werrs = (lctoolargs[0],
lctoolargs[1],
lctoolargs[2])
filtermasks = [
np.full_like(wtimes, False, dtype=np.bool_)
]
# parse the time filter strings
filterstr = lctoolkwargs['lcmagfilters']
filters = filterstr.split(',')
filters = [
x.strip().strip()
for x in filters
]
for filt in filters:
try:
thisfilt = filt.split(':')
if len(thisfilt) == 2:
filt_lo = float(thisfilt[0])
filt_hi = float(thisfilt[1])
filtermasks.append(
(wmags < filt_hi) &
(wmags > filt_lo)
)
elif (len(thisfilt) == 3 and
thisfilt[0].strip() == 'not'):
filt_lo = float(thisfilt[1])
filt_hi = float(thisfilt[2])
filtermasks.append(np.logical_not(
((wmags < filt_hi) &
(wmags > filt_lo))
))
else:
continue
except:
continue
# finally, apply the filters if applicable
if len(filtermasks) > 0:
# apply the filters using an OR
filterind = np.column_stack(filtermasks)
filterind = np.any(filterind, axis=1)
lctoolargs[0] = wtimes[filterind]
lctoolargs[1] = wmags[filterind]
lctoolargs[2] = werrs[filterind]
# at the end of processing, remove from lctookwargs
# since the pfmethod doesn't know about this
del lctoolkwargs['lctimefilters']
del lctoolkwargs['lcmagfilters']
#
# now run the period finder and get results
#
# run the period finder
lctoolfunction = CPTOOLMAP[lctool]['func']
funcresults = yield self.executor.submit(
lctoolfunction,
*lctoolargs,
**lctoolkwargs,
)
# get what we need out of funcresults when it
# returns.
nbestperiods = funcresults['nbestperiods']
nbestlspvals = funcresults['nbestlspvals']
bestperiod = funcresults['bestperiod']
# generate the periodogram png
pgramres = yield self.executor.submit(
_pkl_periodogram,
funcresults,
)
# generate the phased LCs. we show these in the frontend
# along with the periodogram.
phasedlcargs0 = (None,
lspmethod,
-1,
lctoolargs[0],
lctoolargs[1],
lctoolargs[2],
nbestperiods[0],
'min')
phasedlcargs1 = (None,
lspmethod,
-1,
lctoolargs[0],
lctoolargs[1],
lctoolargs[2],
nbestperiods[1],
'min')
phasedlcargs2 = (None,
lspmethod,
-1,
lctoolargs[0],
lctoolargs[1],
lctoolargs[2],
nbestperiods[2],
'min')
# here, we set a bestperiodhighlight to distinguish this
# plot from the ones existing in the checkplot already
phasedlckwargs = {
'xliminsetmode':False,
'magsarefluxes':lctoolkwargs['magsarefluxes'],
'bestperiodhighlight':'#defa75',
}
# dispatch the plot functions
phasedlc0 = yield self.executor.submit(
_pkl_phased_magseries_plot,
*phasedlcargs0,
**phasedlckwargs
)
phasedlc1 = yield self.executor.submit(
_pkl_phased_magseries_plot,
*phasedlcargs1,
**phasedlckwargs
)
phasedlc2 = yield self.executor.submit(
_pkl_phased_magseries_plot,
*phasedlcargs2,
**phasedlckwargs
)
# save these to the tempcpdict
# save the pickle only if readonly is not true
if not self.readonly:
tempcpdict[lspmethod] = {
'periods':funcresults['periods'],
'lspvals':funcresults['lspvals'],
'bestperiod':funcresults['bestperiod'],
'nbestperiods':funcresults['nbestperiods'],
'nbestlspvals':funcresults['nbestlspvals'],
'periodogram':pgramres[lspmethod]['periodogram'],
0:phasedlc0,
1:phasedlc1,
2:phasedlc2,
}
savekwargs = {
'outfile':tempfpath,
'protocol':pickle.HIGHEST_PROTOCOL
}
savedcpf = yield self.executor.submit(
_write_checkplot_picklefile,
tempcpdict,
**savekwargs
)
LOGGER.info(
'saved temp results from '
'%s to checkplot: %s' %
(lctool, savedcpf)
)
else:
LOGGER.warning(
'not saving temp results to checkplot '
' because readonly = True'
)
#
# assemble the return dict
#
# the periodogram
periodogram = pgramres[lspmethod]['periodogram']
# phasedlc plot, period, and epoch for best 3 peaks
phasedlc0plot = phasedlc0['plot']
phasedlc0period = float(phasedlc0['period'])
phasedlc0epoch = float(phasedlc0['epoch'])
phasedlc1plot = phasedlc1['plot']
phasedlc1period = float(phasedlc1['period'])
phasedlc1epoch = float(phasedlc1['epoch'])
phasedlc2plot = phasedlc2['plot']
phasedlc2period = float(phasedlc2['period'])
phasedlc2epoch = float(phasedlc2['epoch'])
resultdict['status'] = 'success'
resultdict['message'] = (
'new results for %s' %
lctool
)
resultdict['result'] = {
'objectid':objectid,
lspmethod:{
'nbestperiods':nbestperiods,
'nbestpeaks':nbestlspvals,
'periodogram':periodogram,
'bestperiod':bestperiod,
'phasedlc0':{
'plot':phasedlc0plot,
'period':phasedlc0period,
'epoch':phasedlc0epoch,
},
'phasedlc1':{
'plot':phasedlc1plot,
'period':phasedlc1period,
'epoch':phasedlc1epoch,
},
'phasedlc2':{
'plot':phasedlc2plot,
'period':phasedlc2period,
'epoch':phasedlc2epoch,
}
}
}
# return to frontend
self.write(resultdict)
self.finish()
# if the lctool is a call to the phased LC plot itself
# this requires lots of parameters
# these should all be present in the frontend
elif lctool == 'phasedlc-newplot':
lspmethod = lctoolargs[1]
periodind = lctoolargs[2]
# if we can return the results from a previous run
if (not forcereload and lspmethod in tempcpdict and
isinstance(tempcpdict[lspmethod], dict) and
periodind in tempcpdict[lspmethod] and
isinstance(tempcpdict[lspmethod][periodind], dict)):
# we get phased LC at periodind from a previous run
phasedlc = tempcpdict[lspmethod][periodind]
LOGGER.warning(
'returning previously unsaved '
'results for lctool %s from %s' %
(lctool, tempfpath)
)
#
# assemble the returndict
#
resultdict['status'] = 'warning'
resultdict['message'] = (
'previous '
'unsaved results from %s' %
lctool
)
retkey = 'phasedlc%s' % periodind
resultdict['result'] = {
'objectid':objectid,
lspmethod:{
retkey:phasedlc
}
}
self.write(resultdict)
self.finish()
# otherwise, we need to dispatch the function
else:
# add the highlight to distinguish this plot from usual
# checkplot plots
# full disclosure: http://c0ffee.surge.sh/
lctoolkwargs['bestperiodhighlight'] = '#defa75'
# set the input periodind to -1 to make sure we still
# have the highlight on the plot. we use the correct
# periodind when returning
lctoolargs[2] = -1
# see if sigclip is set. if so, then do the sigclip on
# the times, mags, errs
if lctoolkwargs['sigclip'] is not None:
stimes, smags, serrs = lcmath.sigclip_magseries(
lctoolargs[3],
lctoolargs[4],
lctoolargs[5],
sigclip=lctoolkwargs['sigclip'],
magsarefluxes=lctoolkwargs['magsarefluxes']
)
else:
stimes, smags, serrs = (lctoolargs[3],
lctoolargs[4],
lctoolargs[5])
#
# process the LC filters now
#
# see if the lctimefilters are set
if lctoolkwargs['lctimefilters']:
wtimes, wmags, werrs = stimes, smags, serrs
filtermasks = [
np.full_like(wtimes, False, dtype=np.bool_)
]
# parse the time filter strings
filterstr = lctoolkwargs['lctimefilters']
filters = filterstr.split(',')
filters = [
x.strip().lstrip('(').rstrip(')').strip()
for x in filters
]
for filt in filters:
try:
thisfilt = filt.split(':')
if len(thisfilt) == 2:
filt_lo = float(thisfilt[0])
filt_hi = float(thisfilt[1])
filtermasks.append(
((wtimes - cptimes.min()) < filt_hi) &
((wtimes - cptimes.min()) > filt_lo)
)
elif (len(thisfilt) == 3 and
thisfilt[0].strip() == 'not'):
filt_lo = float(thisfilt[1])
filt_hi = float(thisfilt[2])
filtermasks.append(np.logical_not(
(((wtimes - cptimes.min()) < filt_hi) &
((wtimes - cptimes.min()) > filt_lo))
))
else:
continue
except:
continue
# finally, apply the filters if applicable
if len(filtermasks) > 0:
# apply the filters using an OR
filterind = np.column_stack(filtermasks)
filterind = np.any(filterind, axis=1)
stimes = wtimes[filterind]
smags = wmags[filterind]
serrs = werrs[filterind]
# see if the lcmagfilters are set
if lctoolkwargs['lcmagfilters']:
wtimes, wmags, werrs = stimes, smags, serrs
filtermasks = [
np.full_like(wtimes, False, dtype=np.bool_)
]
# parse the time filter strings
filterstr = lctoolkwargs['lcmagfilters']
filters = filterstr.split(',')
filters = [
x.strip().strip()
for x in filters
]
for filt in filters:
try:
thisfilt = filt.split(':')
if len(thisfilt) == 2:
filt_lo = float(thisfilt[0])
filt_hi = float(thisfilt[1])
filtermasks.append(
(wmags < filt_hi) &
(wmags > filt_lo)
)
elif (len(thisfilt) == 3 and
thisfilt[0].strip() == 'not'):
filt_lo = float(thisfilt[1])
filt_hi = float(thisfilt[2])
filtermasks.append(np.logical_not(
((wmags < filt_hi) &
(wmags > filt_lo))
))
else:
continue
except:
continue
# finally, apply the filters if applicable
if len(filtermasks) > 0:
# apply the filters using an OR
filterind = np.column_stack(filtermasks)
filterind = np.any(filterind, axis=1)
stimes = wtimes[filterind]
smags = wmags[filterind]
serrs = werrs[filterind]
# at the end of processing, remove from lctookwargs
# since the pfmethod doesn't know about this
del lctoolkwargs['lctimefilters']
del lctoolkwargs['lcmagfilters']
# if the varepoch is set to None, try to get the
# minimum-light epoch using a spline fit
if lctoolargs[-1] is None:
LOGGER.warning(
'automatically getting min epoch '
'for phased LC plot'
)
try:
spfit = lcfit.spline_fit_magseries(
stimes, # times
smags, # mags
serrs, # errs
lctoolargs[6], # period
magsarefluxes=lctoolkwargs['magsarefluxes'],
sigclip=None,
verbose=True
)
# set the epoch correctly now for the plot
lctoolargs[-1] = spfit['fitinfo']['fitepoch']
if len(spfit['fitinfo']['fitepoch']) != 1:
lctoolargs[-1] = (
spfit['fitinfo']['fitepoch'][0]
)
# if the spline fit fails, use the minimum of times as
# epoch as usual
except Exception as e:
LOGGER.exception(
'spline fit failed, '
'using min(times) as epoch'
)
lctoolargs[-1] = np.min(stimes)
# now run the phased LC function with provided args,
# kwargs
# final times, mags, errs
lctoolargs[3] = stimes
lctoolargs[4] = smags
lctoolargs[5] = serrs
# the sigclip kwarg isn't used here since we did this
# already earlier
del lctoolkwargs['sigclip']
lctoolfunction = CPTOOLMAP[lctool]['func']
funcresults = yield self.executor.submit(
lctoolfunction,
*lctoolargs,
**lctoolkwargs,
)
# save these to the tempcpdict
# save the pickle only if readonly is not true
if not self.readonly:
if (lspmethod in tempcpdict and
isinstance(tempcpdict[lspmethod], dict)):
if periodind in tempcpdict[lspmethod]:
tempcpdict[lspmethod][periodind] = (
funcresults
)
else:
tempcpdict[lspmethod].update(
{periodind: funcresults}
)
else:
tempcpdict[lspmethod] = {periodind: funcresults}
savekwargs = {
'outfile':tempfpath,
'protocol':pickle.HIGHEST_PROTOCOL
}
savedcpf = yield self.executor.submit(
_write_checkplot_picklefile,
tempcpdict,
**savekwargs
)
LOGGER.info(
'saved temp results from '
'%s to checkplot: %s' %
(lctool, savedcpf)
)
else:
LOGGER.warning(
'not saving temp results to checkplot '
' because readonly = True'
)
#
# assemble the return dict
#
resultdict['status'] = 'success'
resultdict['message'] = (
'new results for %s' %
lctool
)
retkey = 'phasedlc%s' % periodind
resultdict['result'] = {
'objectid':objectid,
lspmethod:{
retkey:funcresults
}
}
self.write(resultdict)
self.finish()
# if the lctool is var-varfeatures
elif lctool == 'var-varfeatures':
# see if we can return results from a previous iteration of
# this tool
if (not forcereload and
'varinfo' in tempcpdict and
isinstance(tempcpdict['varinfo'], dict) and
'varfeatures' in tempcpdict['varinfo'] and
isinstance(tempcpdict['varinfo']['varfeatures'], dict)):
LOGGER.warning(
'returning previously unsaved '
'results for lctool %s from %s' %
(lctool, tempfpath)
)
#
# assemble the returndict
#
resultdict['status'] = 'warning'
resultdict['message'] = (
'previous '
'unsaved results from %s' %
lctool
)
resultdict['result'] = {
'objectid':objectid,
'varinfo': {
'varfeatures': (
tempcpdict['varinfo']['varfeatures']
)
}
}
self.write(resultdict)
self.finish()
# otherwise, we need to dispatch the function
else:
lctoolfunction = CPTOOLMAP[lctool]['func']
funcresults = yield self.executor.submit(
lctoolfunction,
*lctoolargs,
**lctoolkwargs,
)
# save these to the tempcpdict
# save the pickle only if readonly is not true
if not self.readonly:
if ('varinfo' in tempcpdict and
isinstance(tempcpdict['varinfo'], dict)):
if 'varfeatures' in tempcpdict['varinfo']:
tempcpdict['varinfo']['varfeatures'] = (
funcresults
)
else:
tempcpdict['varinfo'].update(
{'varfeatures': funcresults}
)
else:
tempcpdict['varinfo'] = {'varfeatures':
funcresults}
savekwargs = {
'outfile':tempfpath,
'protocol':pickle.HIGHEST_PROTOCOL
}
savedcpf = yield self.executor.submit(
_write_checkplot_picklefile,
tempcpdict,
**savekwargs
)
LOGGER.info(
'saved temp results from '
'%s to checkplot: %s' %
(lctool, savedcpf)
)
else:
LOGGER.warning(
'not saving temp results to checkplot '
' because readonly = True'
)
#
# assemble the return dict
#
resultdict['status'] = 'success'
resultdict['message'] = (
'new results for %s' %
lctool
)
resultdict['result'] = {
'objectid':objectid,
'varinfo':{
'varfeatures':funcresults
}
}
self.write(resultdict)
self.finish()
# if the lctool is var-prewhiten or var-masksig
elif lctool in ('var-prewhiten','var-masksig'):
key1, key2 = resloc
# see if we can return results from a previous iteration of
# this tool
if (not forcereload and
key1 in tempcpdict and
isinstance(tempcpdict[key1], dict) and
key2 in tempcpdict[key1] and
isinstance(tempcpdict[key1][key2], dict)):
LOGGER.warning(
'returning previously unsaved '
'results for lctool %s from %s' %
(lctool, tempfpath)
)
#
# assemble the returndict
#
resultdict['status'] = 'warning'
resultdict['message'] = (
'previous '
'unsaved results from %s' %
lctool
)
resultdict['result'] = {
'objectid':objectid,
key1: {
key2: (
tempcpdict[key1][key2]
)
}
}
self.write(resultdict)
self.finish()
# otherwise, we need to dispatch the function
else:
lctoolfunction = CPTOOLMAP[lctool]['func']
# send in a stringio object for the fitplot kwarg
lctoolkwargs['plotfit'] = strio()
funcresults = yield self.executor.submit(
lctoolfunction,
*lctoolargs,
**lctoolkwargs,
)
# we turn the returned fitplotfile fd into a base64
# encoded string after reading it
fitfd = funcresults['fitplotfile']
fitfd.seek(0)
fitbin = fitfd.read()
fitb64 = base64.b64encode(fitbin)
fitfd.close()
funcresults['fitplotfile'] = fitb64
# save these to the tempcpdict
# save the pickle only if readonly is not true
if not self.readonly:
if (key1 in tempcpdict and
isinstance(tempcpdict[key1], dict)):
if key2 in tempcpdict[key1]:
tempcpdict[key1][key2] = (
funcresults
)
else:
tempcpdict[key1].update(
{key2: funcresults}
)
else:
tempcpdict[key1] = {key2: funcresults}
savekwargs = {
'outfile':tempfpath,
'protocol':pickle.HIGHEST_PROTOCOL
}
savedcpf = yield self.executor.submit(
_write_checkplot_picklefile,
tempcpdict,
**savekwargs
)
LOGGER.info(
'saved temp results from '
'%s to checkplot: %s' %
(lctool, savedcpf)
)
else:
LOGGER.warning(
'not saving temp results to checkplot '
' because readonly = True'
)
#
# assemble the return dict
#
# for this operation, we'll return:
# - fitplotfile
fitreturndict = {'fitplotfile':fitb64}
resultdict['status'] = 'success'
resultdict['message'] = (
'new results for %s' %
lctool
)
resultdict['result'] = {
'objectid':objectid,
key1:{
key2:fitreturndict
}
}
self.write(resultdict)
self.finish()
# if the lctool is a lcfit method
elif lctool in ('lcfit-fourier',
'lcfit-spline',
'lcfit-legendre',
'lcfit-savgol'):
key1, key2 = resloc
# see if we can return results from a previous iteration of
# this tool
if (not forcereload and
key1 in tempcpdict and
isinstance(tempcpdict[key1], dict) and
key2 in tempcpdict[key1] and
isinstance(tempcpdict[key1][key2], dict)):
LOGGER.warning(
'returning previously unsaved '
'results for lctool %s from %s' %
(lctool, tempfpath)
)
#
# assemble the returndict
#
resultdict['status'] = 'warning'
resultdict['message'] = (
'previous '
'unsaved results from %s' %
lctool
)
# these are the full results
phasedfitlc = tempcpdict[key1][key2]
# we only want a few things from them
fitresults = {
'method':phasedfitlc['lcfit']['fittype'],
'chisq':phasedfitlc['lcfit']['fitchisq'],
'redchisq':phasedfitlc['lcfit']['fitredchisq'],
'period':phasedfitlc['period'],
'epoch':phasedfitlc['epoch'],
'plot':phasedfitlc['plot'],
}
# add fitparams if there are any
if ('finalparams' in phasedfitlc['lcfit']['fitinfo'] and
phasedfitlc['lcfit']['fitinfo']['finalparams']
is not None):
fitresults['fitparams'] = (
phasedfitlc['lcfit']['fitinfo']['finalparams']
)
# this is the final result object
resultdict['result'] = {
'objectid':objectid,
key1: {
key2: (
fitresults
)
}
}
self.write(resultdict)
self.finish()
# otherwise, we need to dispatch the function
else:
lctoolfunction = CPTOOLMAP[lctool]['func']
funcresults = yield self.executor.submit(
lctoolfunction,
*lctoolargs,
**lctoolkwargs,
)
# now that we have the fit results, generate a fitplot.
# these args are for the special fitplot mode of
# _pkl_phased_magseries_plot
phasedlcargs = (None,
'lcfit',
-1,
cptimes,
cpmags,
cperrs,
lctoolargs[3], # this is the fit period
'min')
# here, we set a bestperiodhighlight to distinguish this
# plot from the ones existing in the checkplot already
# also add the overplotfit information
phasedlckwargs = {
'xliminsetmode':False,
'magsarefluxes':lctoolkwargs['magsarefluxes'],
'bestperiodhighlight':'#defa75',
'overplotfit':funcresults
}
# dispatch the plot function
phasedlc = yield self.executor.submit(
_pkl_phased_magseries_plot,
*phasedlcargs,
**phasedlckwargs
)
# save these to the tempcpdict
# save the pickle only if readonly is not true
if not self.readonly:
if (key1 in tempcpdict and
isinstance(tempcpdict[key1], dict)):
if key2 in tempcpdict[key1]:
tempcpdict[key1][key2] = (
phasedlc
)
else:
tempcpdict[key1].update(
{key2: phasedlc}
)
else:
tempcpdict[key1] = {key2: phasedlc}
savekwargs = {
'outfile':tempfpath,
'protocol':pickle.HIGHEST_PROTOCOL
}
savedcpf = yield self.executor.submit(
_write_checkplot_picklefile,
tempcpdict,
**savekwargs
)
LOGGER.info(
'saved temp results from '
'%s to checkplot: %s' %
(lctool, savedcpf)
)
else:
LOGGER.warning(
'not saving temp results to checkplot '
' because readonly = True'
)
#
# assemble the return dict
#
fitresults = {
'method':phasedlc['lcfit']['fittype'],
'chisq':phasedlc['lcfit']['fitchisq'],
'redchisq':phasedlc['lcfit']['fitredchisq'],
'period':phasedlc['period'],
'epoch':phasedlc['epoch'],
'plot':phasedlc['plot'],
}
# add fitparams if there are any
if ('finalparams' in funcresults['fitinfo'] and
funcresults['fitinfo']['finalparams'] is not None):
fitresults['fitparams'] = (
funcresults['fitinfo']['finalparams']
)
resultdict['status'] = 'success'
resultdict['message'] = (
'new results for %s' %
lctool
)
resultdict['result'] = {
'objectid':objectid,
key1:{
key2:fitresults
}
}
self.write(resultdict)
self.finish()
# if this is the special lcfit subtract tool
elif lctool == 'lcfit-subtract':
fitmethod, periodind = lctoolargs
# find the fit requested
# subtract it from the cptimes, cpmags, cperrs
# if not readonly, write back to cptimes, cpmags, cperrs
# make a new phasedlc plot for the current periodind using
# these new cptimes, cpmags, cperrs
# return this plot
# if this is the special full reset tool
elif lctool == 'lctool-reset':
if os.path.exists(tempfpath):
os.remove(tempfpath)
LOGWARNING('reset all LC tool results '
'for %s by removing %s' %
(tempfpath, cpfpath))
resultdict['status'] = 'success'
else:
resultdict['status'] = 'error'
LOGWARNING('tried to reset LC tool results for %s, '
'but temp checkplot result pickle %s '
'does not exist' %
(tempfpath, cpfpath))
resultdict['message'] = (
'all unsynced results for this object have been purged'
)
resultdict['result'] = {'objectid':cpobjectid}
self.write(resultdict)
self.finish()
# if this is the special load results tool
elif lctool == 'lctool-results':
target = self.get_argument('resultsfor',None)
if target is not None:
target = xhtml_escape(target)
# get rid of invalid targets
if (target not in CPTOOL or
target == 'lctool-reset' or
target == 'lctool-results' or
target == 'phasedlc-newplot' or
target == 'lcfit-subtract'):
LOGGER.error("can't get results for %s" % target)
resultdict['status'] = 'error'
resultdict['message'] = (
"can't get results for %s" % target
)
resultdict['result'] = {'objectid':cpobjectid}
self.write(resultdict)
raise tornado.web.Finish()
# if we're good to go, get the target location
targetloc = CPTOOLS[target]['resloc']
# first, search the cptempdict for this target
# if found, return it
# second, search the actual cpdict for this target
# if found, return it
# otherwise, we're being asked for everything
# return the whole
else:
pass
# otherwise, this is an unrecognized lctool
else:
LOGGER.error('lctool %s, does not exist' % lctool)
resultdict['status'] = 'error'
resultdict['message'] = (
'lctool %s does not exist' % lctool
)
resultdict['result'] = {'objectid':cpobjectid}
self.write(resultdict)
raise tornado.web.Finish()
# if the cpfile doesn't exist
else:
LOGGER.error('could not find %s' % self.cpfile)
resultdict = {'status':'error',
'message':"This checkplot doesn't exist.",
'readonly':self.readonly,
'result':None}
self.write(resultdict)
raise tornado.web.Finish()
# if no checkplot was provided to load
else:
resultdict = {'status':'error',
'message':'No checkplot provided to load.',
'readonly':self.readonly,
'result':None}
self.write(resultdict)
raise tornado.web.Finish()
def post(self, cpfile):
'''This handles a POST request.
This will save the results of the previous tool run to the checkplot
file and the JSON filelist.
This is only called when the user explicitly clicks on the 'permanently
update checkplot with results' button. If the server is in readonly
mode, this has no effect.
This will copy everything from the '.pkl-cpserver-temp' file to the
actual checkplot pickle and then remove that file.
'''
|
[
"os.remove",
"base64.b64decode",
"numpy.full_like",
"json.loads",
"os.path.dirname",
"numpy.logical_not",
"os.path.exists",
"numpy.isfinite",
"json.JSONEncoder.default",
"json.dump",
"io.BytesIO",
"os.path.basename",
"numpy.min",
"tornado.escape.xhtml_escape",
"time.time",
"numpy.any",
"base64.b64encode",
"numpy.column_stack",
"logging.getLogger"
] |
[((1733, 1760), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1750, 1760), False, 'import logging\n'), ((37454, 37476), 'tornado.escape.xhtml_escape', 'xhtml_escape', (['objectid'], {}), '(objectid)\n', (37466, 37476), False, 'from tornado.escape import xhtml_escape, xhtml_unescape, url_unescape\n'), ((37495, 37514), 'json.loads', 'json.loads', (['changes'], {}), '(changes)\n', (37505, 37514), False, 'import json\n'), ((13693, 13712), 'os.path.basename', 'os.path.basename', (['x'], {}), '(x)\n', (13709, 13712), False, 'import os\n'), ((31583, 31605), 'json.loads', 'json.loads', (['cpcontents'], {}), '(cpcontents)\n', (31593, 31605), False, 'import json\n'), ((37801, 37838), 'json.dump', 'json.dump', (['self.currentproject', 'outfd'], {}), '(self.currentproject, outfd)\n', (37810, 37838), False, 'import json\n'), ((15800, 15832), 'base64.b64decode', 'base64.b64decode', (['checkplotfname'], {}), '(checkplotfname)\n', (15816, 15832), False, 'import base64\n'), ((32288, 32311), 'os.path.exists', 'os.path.exists', (['cpfpath'], {}), '(cpfpath)\n', (32302, 32311), False, 'import os\n'), ((41390, 41414), 'base64.b64decode', 'base64.b64decode', (['cpfile'], {}), '(cpfile)\n', (41406, 41414), False, 'import base64\n'), ((48981, 49006), 'os.path.exists', 'os.path.exists', (['tempfpath'], {}), '(tempfpath)\n', (48995, 49006), False, 'import os\n'), ((16273, 16296), 'os.path.exists', 'os.path.exists', (['cpfpath'], {}), '(cpfpath)\n', (16287, 16296), False, 'import os\n'), ((30987, 31011), 'base64.b64decode', 'base64.b64decode', (['cpfile'], {}), '(cpfile)\n', (31003, 31011), False, 'import base64\n'), ((32139, 32171), 'os.path.dirname', 'os.path.dirname', (['self.cplistfile'], {}), '(self.cplistfile)\n', (32154, 32171), False, 'import os\n'), ((33784, 33806), 'os.path.exists', 'os.path.exists', (['cpfpng'], {}), '(cpfpng)\n', (33798, 33806), False, 'import os\n'), ((41834, 41857), 'os.path.exists', 'os.path.exists', (['cpfpath'], {}), '(cpfpath)\n', (41848, 41857), False, 'import os\n'), ((42553, 42578), 'tornado.escape.xhtml_escape', 'xhtml_escape', (['forcereload'], {}), '(forcereload)\n', (42565, 42578), False, 'from tornado.escape import xhtml_escape, xhtml_unescape, url_unescape\n'), ((43216, 43236), 'tornado.escape.xhtml_escape', 'xhtml_escape', (['lctool'], {}), '(lctool)\n', (43228, 43236), False, 'from tornado.escape import xhtml_escape, xhtml_unescape, url_unescape\n'), ((16100, 16132), 'os.path.dirname', 'os.path.dirname', (['self.cplistfile'], {}), '(self.cplistfile)\n', (16115, 16132), False, 'import os\n'), ((33304, 33315), 'time.time', 'time.time', ([], {}), '()\n', (33313, 33315), False, 'import time\n'), ((41661, 41693), 'os.path.dirname', 'os.path.dirname', (['self.cplistfile'], {}), '(self.cplistfile)\n', (41676, 41693), False, 'import os\n'), ((1235, 1251), 'numpy.isfinite', 'np.isfinite', (['obj'], {}), '(obj)\n', (1246, 1251), True, 'import numpy as np\n'), ((1410, 1445), 'json.JSONEncoder.default', 'json.JSONEncoder.default', (['self', 'obj'], {}), '(self, obj)\n', (1434, 1445), False, 'import json\n'), ((23350, 23402), 'numpy.isfinite', 'np.isfinite', (["resultdict['result']['objectinfo'][key]"], {}), "(resultdict['result']['objectinfo'][key])\n", (23361, 23402), True, 'import numpy as np\n'), ((59427, 59470), 'numpy.full_like', 'np.full_like', (['wtimes', '(False)'], {'dtype': 'np.bool_'}), '(wtimes, False, dtype=np.bool_)\n', (59439, 59470), True, 'import numpy as np\n'), ((61479, 61507), 'numpy.column_stack', 'np.column_stack', (['filtermasks'], {}), '(filtermasks)\n', (61494, 61507), True, 'import numpy as np\n'), ((61552, 61577), 'numpy.any', 'np.any', (['filterind'], {'axis': '(1)'}), '(filterind, axis=1)\n', (61558, 61577), True, 'import numpy as np\n'), ((62170, 62213), 'numpy.full_like', 'np.full_like', (['wtimes', '(False)'], {'dtype': 'np.bool_'}), '(wtimes, False, dtype=np.bool_)\n', (62182, 62213), True, 'import numpy as np\n'), ((64122, 64150), 'numpy.column_stack', 'np.column_stack', (['filtermasks'], {}), '(filtermasks)\n', (64137, 64150), True, 'import numpy as np\n'), ((64195, 64220), 'numpy.any', 'np.any', (['filterind'], {'axis': '(1)'}), '(filterind, axis=1)\n', (64201, 64220), True, 'import numpy as np\n'), ((76023, 76066), 'numpy.full_like', 'np.full_like', (['wtimes', '(False)'], {'dtype': 'np.bool_'}), '(wtimes, False, dtype=np.bool_)\n', (76035, 76066), True, 'import numpy as np\n'), ((78076, 78104), 'numpy.column_stack', 'np.column_stack', (['filtermasks'], {}), '(filtermasks)\n', (78091, 78104), True, 'import numpy as np\n'), ((78149, 78174), 'numpy.any', 'np.any', (['filterind'], {'axis': '(1)'}), '(filterind, axis=1)\n', (78155, 78174), True, 'import numpy as np\n'), ((78615, 78658), 'numpy.full_like', 'np.full_like', (['wtimes', '(False)'], {'dtype': 'np.bool_'}), '(wtimes, False, dtype=np.bool_)\n', (78627, 78658), True, 'import numpy as np\n'), ((80566, 80594), 'numpy.column_stack', 'np.column_stack', (['filtermasks'], {}), '(filtermasks)\n', (80581, 80594), True, 'import numpy as np\n'), ((80639, 80664), 'numpy.any', 'np.any', (['filterind'], {'axis': '(1)'}), '(filterind, axis=1)\n', (80645, 80664), True, 'import numpy as np\n'), ((92443, 92450), 'io.BytesIO', 'strio', ([], {}), '()\n', (92448, 92450), True, 'from io import BytesIO as strio\n'), ((92983, 93007), 'base64.b64encode', 'base64.b64encode', (['fitbin'], {}), '(fitbin)\n', (92999, 93007), False, 'import base64\n'), ((20486, 20511), 'numpy.isfinite', 'np.isfinite', (['xminfo[xmek]'], {}), '(xminfo[xmek])\n', (20497, 20511), True, 'import numpy as np\n'), ((23900, 23914), 'numpy.isfinite', 'np.isfinite', (['v'], {}), '(v)\n', (23911, 23914), True, 'import numpy as np\n'), ((82836, 82850), 'numpy.min', 'np.min', (['stimes'], {}), '(stimes)\n', (82842, 82850), True, 'import numpy as np\n'), ((44662, 44683), 'tornado.escape.xhtml_escape', 'xhtml_escape', (['wbkwarg'], {}), '(wbkwarg)\n', (44674, 44683), False, 'from tornado.escape import xhtml_escape, xhtml_unescape, url_unescape\n'), ((104113, 104138), 'os.path.exists', 'os.path.exists', (['tempfpath'], {}), '(tempfpath)\n', (104127, 104138), False, 'import os\n'), ((44194, 44209), 'tornado.escape.xhtml_escape', 'xhtml_escape', (['x'], {}), '(x)\n', (44206, 44209), False, 'from tornado.escape import xhtml_escape, xhtml_unescape, url_unescape\n'), ((63521, 63574), 'numpy.logical_not', 'np.logical_not', (['((wmags < filt_hi) & (wmags > filt_lo))'], {}), '((wmags < filt_hi) & (wmags > filt_lo))\n', (63535, 63574), True, 'import numpy as np\n'), ((104164, 104184), 'os.remove', 'os.remove', (['tempfpath'], {}), '(tempfpath)\n', (104173, 104184), False, 'import os\n'), ((79966, 80019), 'numpy.logical_not', 'np.logical_not', (['((wmags < filt_hi) & (wmags > filt_lo))'], {}), '((wmags < filt_hi) & (wmags > filt_lo))\n', (79980, 80019), True, 'import numpy as np\n'), ((105316, 105336), 'tornado.escape.xhtml_escape', 'xhtml_escape', (['target'], {}), '(target)\n', (105328, 105336), False, 'from tornado.escape import xhtml_escape, xhtml_unescape, url_unescape\n')]
|
# Newton-Raphson method for orbit calculations using numpy arrays;
from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi
def orbit(m0, e, a, inclination, ascension, n, acc=1.e-2):
m = linspace(m0, 2 * pi + m0, n)
ecc_anom = m
ecc_anom_old = 0
while acc < abs(ecc_anom - ecc_anom_old).max(): # Newton-Raphson solver for eccentric anomaly (E)
ecc_anom_old = ecc_anom # assigning previous value for accuracy comparison
ecc_anom -= (ecc_anom - m - e * sin(ecc_anom)) / (1. - e * cos(ecc_anom))
# function for E divided by its derivative w.r.t E
theta = 2. * arctan2(sqrt(1. + e) * sin(ecc_anom / 2.),
sqrt(1. - e) * cos(ecc_anom / 2.)) # true anomaly
r = a * (1 - e * cos(ecc_anom)) # radius
theasc = theta - ascension
# conversion to cartesian coordinates:
x = r * (cos(ascension) * cos(theasc) - sin(ascension) * sin(theasc) * cos(inclination))
z = r * (sin(ascension) * cos(theasc) + cos(ascension) * sin(theasc) * cos(inclination))
y = r * (sin(theta - ascension) * sin(inclination))
coord = array((x, y, z))
return coord # returning an array with the coordinates for one orbital period for a given celestial body
|
[
"numpy.abs",
"numpy.sin",
"numpy.array",
"numpy.linspace",
"numpy.cos",
"numpy.sqrt"
] |
[((204, 232), 'numpy.linspace', 'linspace', (['m0', '(2 * pi + m0)', 'n'], {}), '(m0, 2 * pi + m0, n)\n', (212, 232), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((1117, 1133), 'numpy.array', 'array', (['(x, y, z)'], {}), '((x, y, z))\n', (1122, 1133), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((1061, 1083), 'numpy.sin', 'sin', (['(theta - ascension)'], {}), '(theta - ascension)\n', (1064, 1083), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((1086, 1102), 'numpy.sin', 'sin', (['inclination'], {}), '(inclination)\n', (1089, 1102), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((287, 315), 'numpy.abs', 'abs', (['(ecc_anom - ecc_anom_old)'], {}), '(ecc_anom - ecc_anom_old)\n', (290, 315), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((625, 638), 'numpy.sqrt', 'sqrt', (['(1.0 + e)'], {}), '(1.0 + e)\n', (629, 638), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((640, 659), 'numpy.sin', 'sin', (['(ecc_anom / 2.0)'], {}), '(ecc_anom / 2.0)\n', (643, 659), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((685, 698), 'numpy.sqrt', 'sqrt', (['(1.0 - e)'], {}), '(1.0 - e)\n', (689, 698), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((700, 719), 'numpy.cos', 'cos', (['(ecc_anom / 2.0)'], {}), '(ecc_anom / 2.0)\n', (703, 719), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((758, 771), 'numpy.cos', 'cos', (['ecc_anom'], {}), '(ecc_anom)\n', (761, 771), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((873, 887), 'numpy.cos', 'cos', (['ascension'], {}), '(ascension)\n', (876, 887), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((890, 901), 'numpy.cos', 'cos', (['theasc'], {}), '(theasc)\n', (893, 901), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((935, 951), 'numpy.cos', 'cos', (['inclination'], {}), '(inclination)\n', (938, 951), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((967, 981), 'numpy.sin', 'sin', (['ascension'], {}), '(ascension)\n', (970, 981), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((984, 995), 'numpy.cos', 'cos', (['theasc'], {}), '(theasc)\n', (987, 995), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((1029, 1045), 'numpy.cos', 'cos', (['inclination'], {}), '(inclination)\n', (1032, 1045), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((498, 511), 'numpy.sin', 'sin', (['ecc_anom'], {}), '(ecc_anom)\n', (501, 511), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((525, 538), 'numpy.cos', 'cos', (['ecc_anom'], {}), '(ecc_anom)\n', (528, 538), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((904, 918), 'numpy.sin', 'sin', (['ascension'], {}), '(ascension)\n', (907, 918), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((921, 932), 'numpy.sin', 'sin', (['theasc'], {}), '(theasc)\n', (924, 932), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((998, 1012), 'numpy.cos', 'cos', (['ascension'], {}), '(ascension)\n', (1001, 1012), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n'), ((1015, 1026), 'numpy.sin', 'sin', (['theasc'], {}), '(theasc)\n', (1018, 1026), False, 'from numpy import linspace, abs, sqrt, sin, cos, arctan2, array, pi\n')]
|
# -*- encoding: utf-8 -*-
# Copyright (c) 2020 <NAME> <<EMAIL>>
# ISC License <https://choosealicense.com/licenses/isc>
"""Contains some common necessary frame transformation helper methods.
These transformation methods are useful for optimizing face detection in frames.
Typically face detection takes much longer the more pixels there are to consider.
Therefore, using :func:`~scale` or :func:`~resize` will help you speed up detection.
These helper transforms can be composed together to produce apply multiple operations on
a single frame.
For example, if we wanted to first downscale by half and then rotate a frame by 90
degrees, we could do something like the following:
.. code-block:: python
from facelift.transform import rotate, scale
transformed_frame = rotate(scale(frame, 0.5), 90)
Attributes:
DEFAULT_INTERPOLATION (int):
The default type of interpolation to use in transforms that require an
interpolation method. Defaults to ``cv2.INTER_AREA``.
"""
import warnings
from typing import Optional, Tuple
import cv2
import numpy
from .types import Frame
DEFAULT_INTERPOLATION: int = cv2.INTER_AREA
def copy(frame: Frame) -> Frame:
"""Copy the given frame to a new location in memory.
Examples:
>>> from facelift.transform import copy
>>> copied_frame = copy(frame)
>>> assert frame == copied_frame
>>> assert frame is not copied_frame
Args:
frame (:attr:`~.types.Frame`): The frame to copy
Returns:
:attr:`~.types.Frame`: An exact copy of the given frame
"""
return frame.copy()
def scale(
frame: Frame, factor: float, interpolation: int = DEFAULT_INTERPOLATION
) -> Frame:
"""Scale a given frame down or up depending on the given scale factor.
Examples:
Downscaling a frame can be performed with a ``scale`` factor >0 and <1.
For example, scaling a frame to half of its original size would require a scale
factor of 0.5.
>>> from facelift.transform import scale
>>> assert frame.shape[:1] == [512, 512]
>>> downscaled_frame = scale(frame, 0.5)
>>> assert downscaled_frame.shape[:1] == [256, 256]
Upscaling a frame with this method is **very** naive and suboptimal.
However, any value >1 will result in a upscaled frame.
For example, scaling a frame to double its original size would require a scale
factor of 2.
>>> from facelift.transform import scale
>>> assert frame.shape[:1] == [512, 512]
>>> upscaled_frame = scale(frame, 2)
>>> assert upscaled_frame.shape[:1] == [1024, 1024]
Following this logic, a scale factor of 1 would result in absolutely no change
to the given frame.
.. warning::
This transformation will return the **exact same frame instance** as the one
provided through the ``frame`` parameter in the following cases:
1. If a factor of exactly ``1`` is given.
In this case the scale operation would result in no change.
2. The given frame has factor less than ``1`` a width or height of 1px.
In this case we are attempting to scale down the given frame and we
cannot scale down the frame any further without producing a 0px frame.
Args:
frame (:attr:`~.types.Frame`): The frame to scale
factor (float): The factor to scale the given frame
interpolation (Optional[int], optional):
The type of interpolation to use in the scale operation.
Defaults to :attr:`~DEFAULT_INTERPOLATION`.
Raises:
ValueError: When the given scale factor is not positive
Returns:
:attr:`~.types.Frame`: The newly scaled frame
"""
if factor <= 0:
raise ValueError(
f"Factor should be a positive floating point, received {factor!r}"
)
if factor == 1:
return frame
height, width, *_ = frame.shape
if factor < 1 and (height == 1 or width == 1):
return frame
return cv2.resize(
src=frame,
dsize=None,
fx=factor,
fy=factor,
interpolation=interpolation,
)
def resize(
frame: Frame,
width: Optional[int] = None,
height: Optional[int] = None,
lock_aspect: bool = True,
interpolation: int = DEFAULT_INTERPOLATION,
) -> Frame:
"""Resize a given frame to a given width and/or height.
* If both width and height are given, the frame will be resized accordingly.
* If only one of width or height is given, the frame will be resized according to
the provided dimension (either width or height).
* As long as ``lock_aspect`` is truthy, the unprovided dimension will be
adjusted to maintain the original aspect-ratio of the frame.
* If ``lock_aspect`` is falsy, the resize operation will only scale the provided
dimension while keeping the original size of the unprovided dimension.
Examples:
Resize a frame's width while keeping the height relative:
>>> from facelift.transform import resize
>>> assert frame.shape[:1] == [512, 512]
>>> resized_frame = resize(frame, width=256, lock_aspect=True)
>>> assert resized_frame.shape[:1] == [256, 256]
Resize a frame's width while keeping the original height:
>>> from facelift.transform import resize
>>> assert frame.shape[:1] == [512, 512]
>>> resized_frame = resize(frame, width=256, lock_aspect=False)
>>> assert resized_frame.shape[:1] == [512, 256]
Resize both a frame's width and height:
>>> from facelift.transform import resize
>>> assert frame.shape[:1] == [512, 512]
>>> resized_frame = resize(frame, width=256, height=128)
>>> assert resized_frame.shape[:1] == [128, 256]
Args:
frame (:attr:`~.types.Frame`):
The frame to resize
width (Optional[int], optional):
The exact width to resize the frame to.
height (Optional[int], optional):
The exact height to resize the frame to.
lock_aspect (bool, optional):
Whether to keep the width and height relative when only given one value.
Defaults to True.
interpolation (int, optional):
The type of interpolation to use in the resize operation.
Defaults to :attr:`~DEFAULT_INTERPOLATION`.
Returns:
:attr:`~.types.Frame`: The newly resized frame
"""
if width == 0 or height == 0:
raise ValueError("Cannot resize frame to a width or height of 0")
if width is None and height is None:
return frame
if width and height:
return cv2.resize(
src=frame,
dsize=(width, height),
fx=None,
fy=None,
interpolation=interpolation,
)
frame_height, frame_width, *_ = frame.shape
if not lock_aspect:
return cv2.resize(
src=frame,
dsize=(width or frame_width, height or frame_height),
fx=None,
fy=None,
interpolation=interpolation,
)
if height is not None:
relative_width = int(frame_width * (height / float(frame_height))) or 1
return cv2.resize(
src=frame,
dsize=(relative_width, height),
fx=None,
fy=None,
interpolation=interpolation,
)
elif width is not None:
relative_height = int(frame_height * (width / float(frame_width))) or 1
return cv2.resize(
src=frame,
dsize=(width, relative_height),
fx=None,
fy=None,
interpolation=interpolation,
)
return frame # pragma: no cover
def rotate(
frame: Frame, degrees: int, interpolation: int = DEFAULT_INTERPOLATION
) -> Frame:
"""Rotate a frame while keeping the whole frame visible.
Examples:
>>> from facelift.transform import rotate
>>> rotated_90 = rotate(frame, 90)
>>> rotated_neg_90 = rotate(frame, -90)
.. warning::
This transform typically will produce larger frames since we are producing a
rotated frame while keeping the original frame completely visible.
This means if we do a perfect 45 degree rotation on a 512x512 frame we will
produce a 724x724 frame since the 512x512 frame is now on a angle that requires
a larger container.
Be cautious when using rotation.
Most of the time you do not need to rotate on any angles other than 90, 180, and
270 for decent face detection.
However, this isn't *always* true.
Args:
frame (:attr:`~.types.Frame`):
The frame to rotate
degrees (int):
The number of degrees to rotate the given frame
interpolation (int, optional):
The type of interpolation to use in the produced rotation matrix.
Defaults to :attr:`~DEFAULT_INTERPOLATION`.
Returns:
:attr:`~.types.Frame`: The newly rotated frame
"""
if abs(degrees) in (0, 360):
return frame
frame_height, frame_width, *_ = frame.shape
center_x, center_y = frame_width / 2, frame_height / 2
rotation_matrix = cv2.getRotationMatrix2D(
center=(center_x, center_y), angle=-degrees, scale=1.0
)
cos = numpy.abs(rotation_matrix[0, 0])
sin = numpy.abs(rotation_matrix[0, 1])
new_width = int((frame_height * sin) + (frame_width * cos))
new_height = int((frame_height * cos) + (frame_width * sin))
rotation_matrix[0, 2] += (new_width / 2) - center_x
rotation_matrix[1, 2] += (new_height / 2) - center_y
return cv2.warpAffine(
src=frame,
M=rotation_matrix,
dsize=(new_width, new_height),
flags=interpolation,
)
def crop(frame: Frame, start: Tuple[int, int], end: Tuple[int, int]) -> Frame:
"""Crop the given frame between two top-left to bottom-right points.
Examples:
Crop a frame from the first pixel to the center pixel.
>>> from facelift.transform import crop
>>> assert frame.shape[:1] == [512, 512]
>>> cropped_frame = crop(frame, (0, 0), (256, 256))
>>> assert cropped_frame.shape[:1] == [256, 256]
Args:
frame (:attr:`~.types.Frame`):
The frame to crop
start (Tuple[int, int]):
The top-left point to start the crop at
end (Tuple[int, int]):
The bottom-right point to end the crop at
Raises:
ValueError:
When the given starting crop point appears after the given ending crop point
Returns:
:attr:`~.types.Frame`: The newly cropped frame
"""
left, top = start
right, bottom = end
if right <= left or bottom <= top:
raise ValueError(
"Starting crop point cannot be greater than the ending crop point, "
f"(start={start}, end={end})"
)
width = right - left
height = bottom - top
return frame[top : top + height, left : left + width]
def translate(
frame: Frame,
delta_x: Optional[int] = None,
delta_y: Optional[int] = None,
interpolation: int = DEFAULT_INTERPOLATION,
) -> Frame:
"""Translate the given frame a specific distance away from its origin.
Examples:
>>> from facelift.transform import translate
>>> translated_neg_90_x_frame = translate(frame, delta_x=-90)
.. important::
This translation retains the original size of the given frame.
So a 512x512 frame translated 90px on the x-axis will still be 512x512 and space
where the frame use to take up will be essentially nulled out.
Args:
frame (:attr:`~.types.Frame`):
The frame to translate
delta_x (Optional[int], optional):
The pixel distance to translate the frame on the x-axis.
delta_y (Optional[int], optional):
The pixel distance to translate the frame on the y-axis.
interpolation (int, optional):
The type of interpolation to use during the translation.
Defaults to :attr:`~DEFAULT_INTERPOLATION`.
Returns:
:attr:`~.types.Frame`: The newly translated frame
"""
if delta_x is None and delta_y is None:
return frame
translation_matrix = numpy.float32([[1, 0, delta_x or 0], [0, 1, delta_y or 0]])
frame_height, frame_width, *_ = frame.shape
return cv2.warpAffine(
src=frame,
M=translation_matrix,
dsize=(frame_width, frame_height),
flags=interpolation,
)
def flip(frame: Frame, x_axis: bool = False, y_axis: bool = False) -> Frame:
"""Flip the given frame over either or both the x and y axis.
Examples:
>>> from facelift.transform import flip
>>> vertically_flipped_frame = flip(frame, x_axis=True)
>>> horizontally_flipped_frame = flip(frame, y_axis=True)
>>> inverted_frame = flip(frame, x_axis=True, y_axis=True)
Args:
frame (:attr:`~.types.Frame`):
The frame to flip
x_axis (bool, optional):
Flag indicating the frame should be flipped vertically.
Defaults to False.
y_axis (bool, optional):
Flag indicating the frame should be flipped horizontally.
Defaults to False.
Returns:
:attr:`~.types.Frame`: The newly flipped frame
"""
if not x_axis and not y_axis:
return frame
if x_axis and y_axis:
flip_code = -1
elif y_axis:
flip_code = 0
else:
flip_code = 1
return cv2.flip(src=frame, flipCode=flip_code)
def adjust(
frame: Frame,
brightness: Optional[int] = None,
sharpness: Optional[float] = None,
) -> Frame:
"""Adjust the brightness or sharpness of a frame.
Examples:
>>> from facelift.transform import adjust
>>> sharper_frame = adjust(frame, sharpness=1.4)
>>> brighter_frame = adjust(frame, brightness=10)
>>> sharper_and_brighter_frame = adjust(frame, sharpness=1.4, brightness=10)
Args:
frame (:attr:`~.types.Frame`): The frame to adjust
brightness (Optional[int], optional):
The new brightness of the frame (can be negative, default is 0).
Defaults to 0.
sharpness (Optional[float], optional):
The new sharpness of the frame (0.0 is black, default is 1.0).
Defaults to 1.0.
Returns:
:attr:`~.types.Frame`: The newly adjusted frame
"""
if brightness is None and sharpness is None:
return frame
if brightness is None:
brightness = 0
if sharpness is None:
sharpness = 1.0
return cv2.convertScaleAbs(src=frame, alpha=sharpness, beta=brightness)
def grayscale(frame: Frame) -> Frame:
"""Convert the given frame to grayscale.
This helper is useful *sometimes* for classification as color doesn't matter as much
during face encoding.
Examples:
>>> from facelift.transform import grayscale
>>> grayscale_frame = grayscale(bgr_frame)
Args:
frame (:attr:`~.types.Frame`): The BGR frame to convert to grayscale
Returns:
:attr:`~.types.Frame`: The newly grayscaled frame
"""
return cv2.cvtColor(src=frame, code=cv2.COLOR_BGR2GRAY)
def rgb(frame: Frame) -> Frame:
"""Convert the given frame to RGB.
This helper transform is typically needed when working with other image processing
libraries such as `pillow <https://pillow.readthedocs.io/en/stable/>`_ as they work
in RGB coordinates while OpenCV works in BGR coordinates.
Examples:
>>> from facelift.transform import rgb
>>> rgb_frame = rgb(bgr_frame)
Args:
frame (:attr:`~.types.Frame`): The BGR frame to convert to RGB
Returns:
:attr:`~.types.Frame`: The new RGB frame
"""
return cv2.cvtColor(src=frame, code=cv2.COLOR_BGR2RGB)
|
[
"numpy.abs",
"cv2.cvtColor",
"numpy.float32",
"cv2.warpAffine",
"cv2.convertScaleAbs",
"cv2.flip",
"cv2.getRotationMatrix2D",
"cv2.resize"
] |
[((4081, 4170), 'cv2.resize', 'cv2.resize', ([], {'src': 'frame', 'dsize': 'None', 'fx': 'factor', 'fy': 'factor', 'interpolation': 'interpolation'}), '(src=frame, dsize=None, fx=factor, fy=factor, interpolation=\n interpolation)\n', (4091, 4170), False, 'import cv2\n'), ((9345, 9424), 'cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', ([], {'center': '(center_x, center_y)', 'angle': '(-degrees)', 'scale': '(1.0)'}), '(center=(center_x, center_y), angle=-degrees, scale=1.0)\n', (9368, 9424), False, 'import cv2\n'), ((9450, 9482), 'numpy.abs', 'numpy.abs', (['rotation_matrix[0, 0]'], {}), '(rotation_matrix[0, 0])\n', (9459, 9482), False, 'import numpy\n'), ((9493, 9525), 'numpy.abs', 'numpy.abs', (['rotation_matrix[0, 1]'], {}), '(rotation_matrix[0, 1])\n', (9502, 9525), False, 'import numpy\n'), ((9782, 9882), 'cv2.warpAffine', 'cv2.warpAffine', ([], {'src': 'frame', 'M': 'rotation_matrix', 'dsize': '(new_width, new_height)', 'flags': 'interpolation'}), '(src=frame, M=rotation_matrix, dsize=(new_width, new_height),\n flags=interpolation)\n', (9796, 9882), False, 'import cv2\n'), ((12444, 12503), 'numpy.float32', 'numpy.float32', (['[[1, 0, delta_x or 0], [0, 1, delta_y or 0]]'], {}), '([[1, 0, delta_x or 0], [0, 1, delta_y or 0]])\n', (12457, 12503), False, 'import numpy\n'), ((12564, 12671), 'cv2.warpAffine', 'cv2.warpAffine', ([], {'src': 'frame', 'M': 'translation_matrix', 'dsize': '(frame_width, frame_height)', 'flags': 'interpolation'}), '(src=frame, M=translation_matrix, dsize=(frame_width,\n frame_height), flags=interpolation)\n', (12578, 12671), False, 'import cv2\n'), ((13724, 13763), 'cv2.flip', 'cv2.flip', ([], {'src': 'frame', 'flipCode': 'flip_code'}), '(src=frame, flipCode=flip_code)\n', (13732, 13763), False, 'import cv2\n'), ((14837, 14901), 'cv2.convertScaleAbs', 'cv2.convertScaleAbs', ([], {'src': 'frame', 'alpha': 'sharpness', 'beta': 'brightness'}), '(src=frame, alpha=sharpness, beta=brightness)\n', (14856, 14901), False, 'import cv2\n'), ((15402, 15450), 'cv2.cvtColor', 'cv2.cvtColor', ([], {'src': 'frame', 'code': 'cv2.COLOR_BGR2GRAY'}), '(src=frame, code=cv2.COLOR_BGR2GRAY)\n', (15414, 15450), False, 'import cv2\n'), ((16028, 16075), 'cv2.cvtColor', 'cv2.cvtColor', ([], {'src': 'frame', 'code': 'cv2.COLOR_BGR2RGB'}), '(src=frame, code=cv2.COLOR_BGR2RGB)\n', (16040, 16075), False, 'import cv2\n'), ((6762, 6857), 'cv2.resize', 'cv2.resize', ([], {'src': 'frame', 'dsize': '(width, height)', 'fx': 'None', 'fy': 'None', 'interpolation': 'interpolation'}), '(src=frame, dsize=(width, height), fx=None, fy=None,\n interpolation=interpolation)\n', (6772, 6857), False, 'import cv2\n'), ((7013, 7139), 'cv2.resize', 'cv2.resize', ([], {'src': 'frame', 'dsize': '(width or frame_width, height or frame_height)', 'fx': 'None', 'fy': 'None', 'interpolation': 'interpolation'}), '(src=frame, dsize=(width or frame_width, height or frame_height),\n fx=None, fy=None, interpolation=interpolation)\n', (7023, 7139), False, 'import cv2\n'), ((7330, 7434), 'cv2.resize', 'cv2.resize', ([], {'src': 'frame', 'dsize': '(relative_width, height)', 'fx': 'None', 'fy': 'None', 'interpolation': 'interpolation'}), '(src=frame, dsize=(relative_width, height), fx=None, fy=None,\n interpolation=interpolation)\n', (7340, 7434), False, 'import cv2\n'), ((7625, 7729), 'cv2.resize', 'cv2.resize', ([], {'src': 'frame', 'dsize': '(width, relative_height)', 'fx': 'None', 'fy': 'None', 'interpolation': 'interpolation'}), '(src=frame, dsize=(width, relative_height), fx=None, fy=None,\n interpolation=interpolation)\n', (7635, 7729), False, 'import cv2\n')]
|
#This code comes from: https://github.com/becomequantum/kryon
from PIL import Image,ImageDraw,ImageFont
import numpy as np
#This code is only about animation. 本代码只是和做演示动画相关.
VideoSize = (1280, 720)
DemoImageSize = (48, 36)
标题位置 = (60, 16)
注释1位置 = (1000, 76)
网格位置 = (32, 76)
比例 = 17
网格颜色 = (230, 230, 230)
网三位置 = (网格位置[0] + 比例 * DemoImageSize[0] + 比例 * 2, 网格位置[1])
网三比例 = 比例 * 2
坐标位置 = (网三位置[0], 网三位置[1] + 网三比例 * 3 + 5)
注释2位置 = (坐标位置[0], 坐标位置[1] + 比例 + 18)
副标题位置 = (注释2位置[0],注释2位置[1] + 350)
UnitTime = 0.1
ScanTime = 0.1
FinishTime = 0.1
frame_list = []
def 微软雅黑(Size):
return ImageFont.truetype("msyh.ttf", Size)
def 方框(x, y, 位置, 比例):
左上 = (位置[0] + x * 比例, 位置[1] + y * 比例)
右下 = (位置[0] + x * 比例 + 比例, 位置[1] + y * 比例 + 比例)
return [左上, 右下]
def 小方框(x, y, 位置, 比例):
左上 = (位置[0] + x * 比例 + 2, 位置[1] + y * 比例 + 2)
右下 = (位置[0] + x * 比例 + 比例 - 2, 位置[1] + y * 比例 + 比例 - 2)
return [左上, 右下]
def 方块(x, y, 位置, 比例):
左上 = (位置[0] + x * 比例 + 1, 位置[1] + y * 比例 + 1)
右下 = (位置[0] + x * 比例 + 比例 - 1, 位置[1] + y * 比例 + 比例 - 1)
return [左上, 右下]
def 完成框(ShapeInfo):
左上 = (网格位置[0] + ShapeInfo[2][0] * 比例 - 1, 网格位置[1] + ShapeInfo[2][1] * 比例 - 1)
右下 = (网格位置[0] + ShapeInfo[1][0] * 比例 + 比例 + 1, 网格位置[1] + ShapeInfo[1][1] * 比例 + 比例 + 1)
return [左上, 右下]
def 反色(color):
rcolor = (255 - color[0], 255 - color[1], 255 - color[2])
return rcolor
def InitBackGround(ExampleImage, Title, subtitle, textcolor = (0, 162, 232), subtitlecolor = "orange", BgColor = (255, 255, 255), FPGA = False):
back_ground_image = Image.new("RGB", VideoSize, BgColor)
画 = ImageDraw.Draw(back_ground_image)
画.text(标题位置,Title, fill = textcolor, font = 微软雅黑(30))
画.text(副标题位置, subtitle, fill = subtitlecolor, font=微软雅黑(25))
for y in range(DemoImageSize[1]):
for x in range(DemoImageSize[0]):
画.rectangle(方框(x, y, 网格位置, 比例), outline = 网格颜色) #画大背景网格
if not(ExampleImage[y, x ,0] == ExampleImage[y, x ,1] == ExampleImage[y, x ,0] == 255):
画.rectangle(方块(x, y, 网格位置, 比例), fill = "black") #画示例图片中的黑点
ExampleImage[y, x] = [0, 0, 0] #不是白点的都变成黑点
if x<= 2 and y <= 2 :
画.rectangle(方框(x, y, 网三位置, 网三比例), outline = 网格颜色) #画右边3x3小邻域网格
if FPGA and (y == 1 or (y == 2 and x == 0)):
画.rectangle(方框(x, y - 1, 网三位置, 网三比例), outline = "blue")
画.rectangle(方框(1, 1, 网三位置, 网三比例), outline = "red")
return back_ground_image
def AddClip(bg_image, x, y, Neighbourhood3x3, LabelColor = None, diff = False, duration = UnitTime, Shape_info = None, 注释1 =" ", 注释2 =" "):
标记 = ImageDraw.Draw(bg_image)
if LabelColor != None :
标记.rectangle(方块(x, y, 网格位置, 比例), fill = LabelColor, outline = None) #画标记色块
if diff: #周围有两个不同标号点时
标记.rectangle(小方框(x, y , 网格位置, 比例), outline = 反色(LabelColor))
temp_image = bg_image.copy()
画 = ImageDraw.Draw(temp_image)
if Shape_info != None :
标记.rectangle(完成框(Shape_info), outline = "red")
画.rectangle(完成框(Shape_info), outline = "red")
画.rectangle(方框(x, y, 网格位置, 比例), outline = "red") #画小红框
画.text(注释1位置, 注释1, fill = "purple", font = 微软雅黑(25))
画.text(注释2位置, 注释2, fill = LabelColor if (LabelColor != None) else "purple", font = 微软雅黑(25))
画.text(坐标位置, str((x, y)), fill = "black", font = 微软雅黑(25))
for y in range(3):
for x in range(3):
画.rectangle(方块(x, y, 网三位置, 网三比例), fill = tuple(Neighbourhood3x3[y, x]))
[frame_list.append(np.array(temp_image)) for n in range (int(duration / UnitTime))]
|
[
"PIL.ImageFont.truetype",
"PIL.ImageDraw.Draw",
"PIL.Image.new",
"numpy.array"
] |
[((603, 639), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['"""msyh.ttf"""', 'Size'], {}), "('msyh.ttf', Size)\n", (621, 639), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1592, 1628), 'PIL.Image.new', 'Image.new', (['"""RGB"""', 'VideoSize', 'BgColor'], {}), "('RGB', VideoSize, BgColor)\n", (1601, 1628), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1640, 1673), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['back_ground_image'], {}), '(back_ground_image)\n', (1654, 1673), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((2732, 2756), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['bg_image'], {}), '(bg_image)\n', (2746, 2756), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((3083, 3109), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['temp_image'], {}), '(temp_image)\n', (3097, 3109), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((3714, 3734), 'numpy.array', 'np.array', (['temp_image'], {}), '(temp_image)\n', (3722, 3734), True, 'import numpy as np\n')]
|
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import librosa
import librosa.display
import numpy as np
def summary(x):
if x.ndim == 1:
SUM = ('\n{0:>10s}: {1:>15.4f}').format('min', np.amin(x))
SUM += ('\n{0:>10s}: {1:>15.4f}').format('1st Quar', np.percentile(x, 25))
SUM += ('\n{0:>10s}: {1:>15.4f}').format('median', np.median(x))
SUM += ('\n{0:>10s}: {1:>15.4f}').format('mean', np.mean(x))
SUM += ('\n{0:>10s}: {1:>15.4f}').format('3rd Quar', np.percentile(x, 75))
SUM += ('\n{0:>10s}: {1:>15.4f}').format('max', np.amax(x))
SUM += ('\n{0:>10s}: {1:>15.4f}').format('sigma', np.std(x))
elif x.ndim == 2:
E = x[:,0]
D = x[:,1]
SUM = ('{0:>%ss} {1:>%ss}' % (27, 15)).format('L', 'R')
SUM += ('\n{0:>10s}: {1:>15.4f} {2:>15.4f}').format('min', np.amin(E), np.amin(D))
SUM += ('\n{0:>10s}: {1:>15.4f} {2:>15.4f}').format('1st Quar', np.percentile(E, 25), np.percentile(D, 25))
SUM += ('\n{0:>10s}: {1:>15.4f} {2:>15.4f}').format('median', np.median(E), np.median(D))
SUM += ('\n{0:>10s}: {1:>15.4f} {2:>15.4f}').format('mean', np.mean(E), np.mean(D))
SUM += ('\n{0:>10s}: {1:>15.4f} {2:>15.4f}').format('3rd Quar', np.percentile(E, 75), np.percentile(D, 75))
SUM += ('\n{0:>10s}: {1:>15.4f} {2:>15.4f}').format('max', np.amax(E), np.amax(D))
SUM += ('\n{0:>10s}: {1:>15.4f} {2:>15.4f}').format('sigma', np.std(E), np.std(D))
else:
raise ValueError('Invalid argument! It is not an audio..')
print(SUM)
def audiovis(x, fs=44100, **kwargs):
dx, dy = (1536, 512) if 'dims' not in kwargs else kwargs['dims']
dpi = 72 if 'dpi' not in kwargs else kwargs['dpi']
text = '' if 'text' not in kwargs else kwargs['text']
samples = x.shape[0]
time = samples/fs
if 'time' not in kwargs:
to, ti = [0, time]
else:
to, ti = kwargs['time'][[0, -1]]
tmin, tmax = (to, ti) if 'tlim' not in kwargs else kwargs['tlim']
t = np.linspace(to, ti, samples)
if x.ndim == 1:
print('audio mono')
fig = plt.figure(figsize=(dx/dpi, dy/dpi))
plt.plot(t, x)
plt.xlim([tmin, tmax])
elif x.ndim == 2:
print('audio stereo')
fig = plt.figure(figsize=(dx/dpi, 2*dy/dpi))
plt.subplot(2, 1, 1)
plt.plot(t, x[:, 0], color='#00ff88')
plt.xlim([tmin, tmax])
plt.subplot(2, 1, 2)
plt.plot(t, x[:, 1], color='#0088ff')
plt.xlim([tmin, tmax])
else:
raise ValueError('Invalid argument! It is not an audio..')
plt.title(text)
plt.show()
def spectrogram(x, fs=44100, **kwargs):
dx, dy = (1536, 512) if 'dims' not in kwargs else kwargs['dims']
dpi = 72 if 'dpi' not in kwargs else kwargs['dpi']
fmin, fmax = [0, 8000] if 'flim' not in kwargs else kwargs['flim']
text = '' if 'text' not in kwargs else kwargs['text']
x = x.astype(np.float32)
if x.ndim == 1:
print('audio mono')
fig = plt.figure(figsize=(dx/dpi, dy/dpi))
X = np.abs(librosa.stft(x))
X = librosa.amplitude_to_db(X, ref=np.max)
librosa.display.specshow(X, sr=fs, y_axis='linear')
plt.ylim([fmin, fmax])
plt.colorbar(format='%+2.0f dB')
elif x.ndim == 2:
print('audio stereo')
fig = plt.figure(figsize=(dx/dpi, 2*dy/dpi))
plt.subplot(2, 1, 1)
X = np.abs(librosa.stft(x[:, 0]))
X = librosa.amplitude_to_db(X, ref=np.max)
librosa.display.specshow(X, sr=fs, y_axis='linear')
plt.ylim([fmin, fmax])
plt.colorbar(format='%+2.0f dB')
plt.subplot(2, 1, 2)
X = np.abs(librosa.stft(x[:, 1]))
X = librosa.amplitude_to_db(X, ref=np.max)
librosa.display.specshow(X, sr=fs, y_axis='linear')
plt.ylim([fmin, fmax])
plt.colorbar(format='%+2.0f dB')
else:
raise ValueError('Invalid argument! It is not an audio..')
plt.title(text)
plt.show()
|
[
"matplotlib.pyplot.title",
"matplotlib.pyplot.xlim",
"matplotlib.pyplot.subplot",
"matplotlib.pyplot.show",
"numpy.amin",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.ylim",
"numpy.median",
"numpy.std",
"matplotlib.pyplot.colorbar",
"numpy.percentile",
"numpy.amax",
"matplotlib.pyplot.figure",
"numpy.mean",
"numpy.linspace",
"librosa.amplitude_to_db",
"librosa.display.specshow",
"librosa.stft"
] |
[((1882, 1910), 'numpy.linspace', 'np.linspace', (['to', 'ti', 'samples'], {}), '(to, ti, samples)\n', (1893, 1910), True, 'import numpy as np\n'), ((2373, 2388), 'matplotlib.pyplot.title', 'plt.title', (['text'], {}), '(text)\n', (2382, 2388), True, 'import matplotlib.pyplot as plt\n'), ((2390, 2400), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2398, 2400), True, 'import matplotlib.pyplot as plt\n'), ((3579, 3594), 'matplotlib.pyplot.title', 'plt.title', (['text'], {}), '(text)\n', (3588, 3594), True, 'import matplotlib.pyplot as plt\n'), ((3596, 3606), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3604, 3606), True, 'import matplotlib.pyplot as plt\n'), ((1959, 1999), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(dx / dpi, dy / dpi)'}), '(figsize=(dx / dpi, dy / dpi))\n', (1969, 1999), True, 'import matplotlib.pyplot as plt\n'), ((1998, 2012), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'x'], {}), '(t, x)\n', (2006, 2012), True, 'import matplotlib.pyplot as plt\n'), ((2015, 2037), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[tmin, tmax]'], {}), '([tmin, tmax])\n', (2023, 2037), True, 'import matplotlib.pyplot as plt\n'), ((2758, 2798), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(dx / dpi, dy / dpi)'}), '(figsize=(dx / dpi, dy / dpi))\n', (2768, 2798), True, 'import matplotlib.pyplot as plt\n'), ((2831, 2869), 'librosa.amplitude_to_db', 'librosa.amplitude_to_db', (['X'], {'ref': 'np.max'}), '(X, ref=np.max)\n', (2854, 2869), False, 'import librosa\n'), ((2872, 2923), 'librosa.display.specshow', 'librosa.display.specshow', (['X'], {'sr': 'fs', 'y_axis': '"""linear"""'}), "(X, sr=fs, y_axis='linear')\n", (2896, 2923), False, 'import librosa\n'), ((2926, 2948), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[fmin, fmax]'], {}), '([fmin, fmax])\n', (2934, 2948), True, 'import matplotlib.pyplot as plt\n'), ((2951, 2983), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'format': '"""%+2.0f dB"""'}), "(format='%+2.0f dB')\n", (2963, 2983), True, 'import matplotlib.pyplot as plt\n'), ((211, 221), 'numpy.amin', 'np.amin', (['x'], {}), '(x)\n', (218, 221), True, 'import numpy as np\n'), ((278, 298), 'numpy.percentile', 'np.percentile', (['x', '(25)'], {}), '(x, 25)\n', (291, 298), True, 'import numpy as np\n'), ((353, 365), 'numpy.median', 'np.median', (['x'], {}), '(x)\n', (362, 365), True, 'import numpy as np\n'), ((418, 428), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (425, 428), True, 'import numpy as np\n'), ((485, 505), 'numpy.percentile', 'np.percentile', (['x', '(75)'], {}), '(x, 75)\n', (498, 505), True, 'import numpy as np\n'), ((557, 567), 'numpy.amax', 'np.amax', (['x'], {}), '(x)\n', (564, 567), True, 'import numpy as np\n'), ((621, 630), 'numpy.std', 'np.std', (['x'], {}), '(x)\n', (627, 630), True, 'import numpy as np\n'), ((2089, 2133), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(dx / dpi, 2 * dy / dpi)'}), '(figsize=(dx / dpi, 2 * dy / dpi))\n', (2099, 2133), True, 'import matplotlib.pyplot as plt\n'), ((2130, 2150), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(1)'], {}), '(2, 1, 1)\n', (2141, 2150), True, 'import matplotlib.pyplot as plt\n'), ((2153, 2190), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'x[:, 0]'], {'color': '"""#00ff88"""'}), "(t, x[:, 0], color='#00ff88')\n", (2161, 2190), True, 'import matplotlib.pyplot as plt\n'), ((2193, 2215), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[tmin, tmax]'], {}), '([tmin, tmax])\n', (2201, 2215), True, 'import matplotlib.pyplot as plt\n'), ((2218, 2238), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(2)'], {}), '(2, 1, 2)\n', (2229, 2238), True, 'import matplotlib.pyplot as plt\n'), ((2241, 2278), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'x[:, 1]'], {'color': '"""#0088ff"""'}), "(t, x[:, 1], color='#0088ff')\n", (2249, 2278), True, 'import matplotlib.pyplot as plt\n'), ((2281, 2303), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[tmin, tmax]'], {}), '([tmin, tmax])\n', (2289, 2303), True, 'import matplotlib.pyplot as plt\n'), ((2808, 2823), 'librosa.stft', 'librosa.stft', (['x'], {}), '(x)\n', (2820, 2823), False, 'import librosa\n'), ((3035, 3079), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(dx / dpi, 2 * dy / dpi)'}), '(figsize=(dx / dpi, 2 * dy / dpi))\n', (3045, 3079), True, 'import matplotlib.pyplot as plt\n'), ((3076, 3096), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(1)'], {}), '(2, 1, 1)\n', (3087, 3096), True, 'import matplotlib.pyplot as plt\n'), ((3139, 3177), 'librosa.amplitude_to_db', 'librosa.amplitude_to_db', (['X'], {'ref': 'np.max'}), '(X, ref=np.max)\n', (3162, 3177), False, 'import librosa\n'), ((3180, 3231), 'librosa.display.specshow', 'librosa.display.specshow', (['X'], {'sr': 'fs', 'y_axis': '"""linear"""'}), "(X, sr=fs, y_axis='linear')\n", (3204, 3231), False, 'import librosa\n'), ((3234, 3256), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[fmin, fmax]'], {}), '([fmin, fmax])\n', (3242, 3256), True, 'import matplotlib.pyplot as plt\n'), ((3259, 3291), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'format': '"""%+2.0f dB"""'}), "(format='%+2.0f dB')\n", (3271, 3291), True, 'import matplotlib.pyplot as plt\n'), ((3294, 3314), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(2)'], {}), '(2, 1, 2)\n', (3305, 3314), True, 'import matplotlib.pyplot as plt\n'), ((3357, 3395), 'librosa.amplitude_to_db', 'librosa.amplitude_to_db', (['X'], {'ref': 'np.max'}), '(X, ref=np.max)\n', (3380, 3395), False, 'import librosa\n'), ((3398, 3449), 'librosa.display.specshow', 'librosa.display.specshow', (['X'], {'sr': 'fs', 'y_axis': '"""linear"""'}), "(X, sr=fs, y_axis='linear')\n", (3422, 3449), False, 'import librosa\n'), ((3452, 3474), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[fmin, fmax]'], {}), '([fmin, fmax])\n', (3460, 3474), True, 'import matplotlib.pyplot as plt\n'), ((3477, 3509), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'format': '"""%+2.0f dB"""'}), "(format='%+2.0f dB')\n", (3489, 3509), True, 'import matplotlib.pyplot as plt\n'), ((796, 806), 'numpy.amin', 'np.amin', (['E'], {}), '(E)\n', (803, 806), True, 'import numpy as np\n'), ((808, 818), 'numpy.amin', 'np.amin', (['D'], {}), '(D)\n', (815, 818), True, 'import numpy as np\n'), ((886, 906), 'numpy.percentile', 'np.percentile', (['E', '(25)'], {}), '(E, 25)\n', (899, 906), True, 'import numpy as np\n'), ((908, 928), 'numpy.percentile', 'np.percentile', (['D', '(25)'], {}), '(D, 25)\n', (921, 928), True, 'import numpy as np\n'), ((994, 1006), 'numpy.median', 'np.median', (['E'], {}), '(E)\n', (1003, 1006), True, 'import numpy as np\n'), ((1008, 1020), 'numpy.median', 'np.median', (['D'], {}), '(D)\n', (1017, 1020), True, 'import numpy as np\n'), ((1084, 1094), 'numpy.mean', 'np.mean', (['E'], {}), '(E)\n', (1091, 1094), True, 'import numpy as np\n'), ((1096, 1106), 'numpy.mean', 'np.mean', (['D'], {}), '(D)\n', (1103, 1106), True, 'import numpy as np\n'), ((1174, 1194), 'numpy.percentile', 'np.percentile', (['E', '(75)'], {}), '(E, 75)\n', (1187, 1194), True, 'import numpy as np\n'), ((1196, 1216), 'numpy.percentile', 'np.percentile', (['D', '(75)'], {}), '(D, 75)\n', (1209, 1216), True, 'import numpy as np\n'), ((1279, 1289), 'numpy.amax', 'np.amax', (['E'], {}), '(E)\n', (1286, 1289), True, 'import numpy as np\n'), ((1291, 1301), 'numpy.amax', 'np.amax', (['D'], {}), '(D)\n', (1298, 1301), True, 'import numpy as np\n'), ((1366, 1375), 'numpy.std', 'np.std', (['E'], {}), '(E)\n', (1372, 1375), True, 'import numpy as np\n'), ((1377, 1386), 'numpy.std', 'np.std', (['D'], {}), '(D)\n', (1383, 1386), True, 'import numpy as np\n'), ((3110, 3131), 'librosa.stft', 'librosa.stft', (['x[:, 0]'], {}), '(x[:, 0])\n', (3122, 3131), False, 'import librosa\n'), ((3328, 3349), 'librosa.stft', 'librosa.stft', (['x[:, 1]'], {}), '(x[:, 1])\n', (3340, 3349), False, 'import librosa\n')]
|
import sys
import os
from datetime import datetime
import traceback
import time
from pathlib import Path
import h5py
import pickle
import nept
import scipy
import numpy as np
import pandas as pd
from fooof import FOOOF
# cwd = Path(os.getcwd())
# pkg_dir = cwd.parent
# sys.path.append(str(pkg_dir))
import Utils.robust_stats as rs
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style='whitegrid', palette='muted')
########################################################################################################################
########################################################################################################################
############################################### Main Funcs #############################################################
########################################################################################################################
########################################################################################################################
def process_tetrode(task, save_format='npy', overwrite_flag=0):
# things to be saved: processed signal, tetrode info
chan_files = task['filenames']
session = task['session']
sp = Path(task['sp']) # save path
# Unpack the probe information.
tt_id = task['tt_id']
fn = 'tt_{}'.format(tt_id)
fn_info = fn + '_info.pickle'.format(tt_id)
if not ((sp / (fn + '.' + save_format)).exists() and (sp/fn_info).exists()) or overwrite_flag:
tt_info = get_tt_info(task)
# pre-allocate data
fs = tt_info['fs']
n_chans = tt_info['n_chans']
sig, time_samps = get_csc(str(chan_files[0]))
n_samps = len(sig)
tt_info['n_samps'] = n_samps
tt_info['tB'] = time_samps[0]
tt_info['tE'] = time_samps[-1]
del time_samps # time stamps can be recreated with gathered information.
raw_signals = np.empty((n_chans, n_samps))
raw_signals[0] = sig
for ch, chf in enumerate(chan_files[1:]):
raw_signals[ch + 1], _ = get_csc(str(chf))
del sig
tt_info['Raw'] = get_signal_info(raw_signals, tt_info, get_clipped_segs =True)
chan_th = ~np.isnan(tt_info['Raw']['PSD_table']['th_pk'].values.astype(float))
chan_60 = ~np.isnan(tt_info['Raw']['PSD_table']['60_pk'].values.astype(float))
chan_clp = tt_info['Raw']['PctChanClipped'] > tt_info['bad_chan_thr']
chan_code = chan_th * 4 + chan_60 * 2 + chan_clp
tt_info['chan_code'] = chan_code
tt_info['bad_chans'] = np.logical_and(chan_code > 0, chan_code < 4)
SOS, _ = get_sos_filter_bank(['HP', 'LP', 'Notch'], fs=fs)
f_signals = np.zeros_like(raw_signals)
t0 = time.time()
for ch in range(n_chans):
f_signals[ch] = scipy.signal.sosfiltfilt(SOS, raw_signals[ch])
print('', end='.')
t1 = time.time()
print('\nTime to filter tetrode {0:0.2f}s'.format(t1 - t0))
del raw_signals
f_signals = f_signals.astype(np.float16)
save_probe(f_signals, sp, fn, save_format)
# save tetrode info
with (sp/fn_info).open(mode='wb') as f_handle:
pickle.dump(tt_info, f_handle, protocol=pickle.HIGHEST_PROTOCOL)
def process_video(task, overwrite_flag=0):
raw_vt_file = task['filenames']
sp = Path(task['sp'])
vt_file = 'vt.h5'
if not (sp / vt_file).exists() or overwrite_flag:
t, x, y, ha = get_position(raw_vt_file)
with h5py.File(str(sp / vt_file), 'w') as hf:
hf.create_dataset("t", data=t)
hf.create_dataset("x", data=x)
hf.create_dataset("y", data=y)
hf.create_dataset("ha", data=ha)
else:
print('File exists and overwrite = false ')
def process_events(task, overwrite_flag=0):
try:
raw_ev_file = task['filenames']
sp = Path(task['sp'])
ss = task['subSessionID']
evFile = 'ev.h5'
if not (sp / evFile).exists() or overwrite_flag:
ev = get_events(raw_ev_file)
with h5py.File(str(sp / evFile), 'w') as hf:
for k, v in ev.items():
hf.create_dataset(k, data=v)
else:
print('File exists and overwrite = false ')
except:
print("Error processing events. ", sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2].tb_lineno)
def post_process_channel_table(subject_id, task_table):
# get mapping for session and task id
session2task = {}
dates = {}
for k in task_table.keys():
session = Path(task_table[k]['session_name']).name
session2task[session] = k
session_list = list(session2task.keys())
# sort sessions by date
session_dates = pd.DataFrame()
for session in session_list:
try:
session_dates.at[session, 'date'] = datetime.strptime(session.split('_')[2], '%m%d%y')
except:
pass
sorted_sessions = list(session_dates.sort_values(by='date').index)
channel_table = pd.DataFrame(columns=range(1, 17))
# obtain results for each session
for session_date in sorted_sessions:
task_id = session2task[session_date]
valid_session = task_table[task_id]['n_files'] >= 18
if valid_session:
# processed data paths
for subsession_id, subsession_path in task_table[task_id]['sp'].items():
session_name = Path(subsession_path).name
channel_table.loc[session_name] = -1
for tt in range(1, 17):
tt_info_file = Path(subsession_path, 'tt_{}_info.pickle'.format(tt))
if tt_info_file.exists():
with tt_info_file.open(mode='rb') as f:
tt_info = pickle.load(f)
channel_table.at[session_name, tt] = (~tt_info['bad_chans']).sum()
channel_table = channel_table.apply(pd.to_numeric)
save_path = Path(subsession_path).parent
if save_path.exists():
channel_table.to_csv(str(save_path / ('chan_table_{}.csv'.format(subject_id))))
########################################################################################################################
########################################################################################################################
############################################### Auxiliary Funcs ########################################################
########################################################################################################################
########################################################################################################################
def save_probe(data, save_path, fn, save_format):
if save_format == 'h5': # h5 format
with h5py.File(str(save_path / (fn + '.' + save_format)), 'w') as hf:
hf.create_dataset("tetrode", data=data)
elif save_format == 'npy': # numpy
np.save(str(save_path / (fn + '.' + save_format)), data)
elif save_format == 'csv': # comma separeted values
np.savetxt(str(save_path / (fn + '.' + save_format)), data, delimiter=',')
elif save_format == 'bin': # binary
data.tofile(str(save_path / (fn + '.' + save_format)))
else:
print('Unsuported save method specified {}, saving as .npy array.'.format(save_format))
np.save(str(save_path / (fn + '.' + save_format)), data)
print('{}: results saved to {}'.format(fn, str(save_path)))
print('')
def get_session_info(session):
return session.split('_')
def get_tt_info(task):
"""
Parameters
----------
files -> Path, directory for the data
ttNum -> tetrode number.
Returns
-------
dictionary with tetrode header information for each channel
"""
n_chans = 4
ads = np.zeros(n_chans)
ref_chan = np.zeros(n_chans)
chan_ids = np.zeros(n_chans)
input_range = np.zeros(n_chans)
# get headers:
try:
headers = []
for chf in task['filenames']:
headers.append(get_header(str(chf)))
except:
print('Header Files could not be loaded. Error reading files from')
return []
data_dir = Path(chf).parent
fs = headers[0]['fs']
for ch, header in enumerate(headers):
ads[ch] = header['AD']
ref_chan[ch] = header['RefChan']
chan_ids[ch] = header['ChanID']
input_range[ch] = header['InputRange']
tt_geom = np.zeros([4, 2])
tt_geom[1] = [0, 20]
tt_geom[2] = [20, 0]
tt_geom[3] = [20, 20]
return {'data_dir': str(data_dir), 'session': task['session'], 'fs': fs, 'tt_num': task['tt_id'],
'n_chans': n_chans,
'chan_files': task['filenames'], 'a_ds': ads, 'ref_chan': ref_chan, 'chan_ids': chan_ids,
'input_range': input_range, 'tt_geom': tt_geom, 'bad_chan_thr': 0.2}
def get_amp_hist(signals, tt_info, bin_step=50):
"""
Parameters
----------
signals -> numpy array of nchans x nsamples
tt_info -> dictionary containing the header information for the channels
bin_step -> amplitude binning step, 50 uV as default
Returns
-------
amp_hist -> counts at each bin
bin_centers -> center of amplitude bins
"""
n_chans = tt_info['n_chans']
max_amp = max(tt_info['input_range'])
bins = np.arange(-max_amp, max_amp + 1, bin_step)
bin_centers = bins[:-1] + bin_step / 2
amp_hist = np.zeros((n_chans, len(bin_centers)))
for ch in range(n_chans):
amp_hist[ch], _ = np.histogram(signals[ch], bins)
return amp_hist, bin_centers
def get_chans_psd(signals, fs, resamp=True):
# find next power of 2 based on fs: e
# for fs=32k, nperseg = 2**15 = 32768,
# the operation belows computes this efficiently for arbitrary fs
# assumes that sigs is nChans x nSamps
if np.argmax(signals.shape) == 0:
signals = signals.T
transpose_flag = 1
else:
transpose_flag = 0
fs = int(fs)
nperseg = (1 << (fs - 1).bit_length())
noverlap = 1 << int(fs * 0.05 - 1).bit_length() # for at least 5% overlap.
freqs, pxx = scipy.signal.welch(signals, fs=fs, nperseg=nperseg, noverlap=noverlap)
if resamp:
# resample log-linear
samps = np.arange(100)
maxExp = 4
for e in np.arange(2, maxExp):
samps = np.concatenate((samps, np.arange(10 ** e, 10 ** (e + 1), 10 ** (e - 1))))
freqs = freqs[samps]
if signals.ndim == 1:
pxx = pxx[samps]
else:
pxx = pxx[:, samps]
if transpose_flag:
pxx = pxx.T
return pxx, freqs
def get_tt_psd_peaks(freqs, pxx, theta_range=None):
if theta_range is None:
theta_range = [4, 12]
n_chans = pxx.shape[0]
sixty_range = [58, 62]
df = pd.DataFrame(columns=['th_pk', 'th_amp', '60_pk', '60_amp', '1/f_r2', 'rmse'])
for ch in range(n_chans):
fm = FOOOF(max_n_peaks=2, peak_threshold=2.0, peak_width_limits=[0.5, 6.0], verbose=False)
fm.fit(freqs, pxx[ch], [2, 100])
pks = fm.peak_params_.flatten()[::3]
amps = fm.peak_params_.flatten()[1::3]
idx = (pks >= theta_range[0]) & (pks <= theta_range[1])
theta_pk = pks[idx]
theta_amp = amps[idx]
idx = (pks >= sixty_range[0]) & (pks <= sixty_range[1])
sixty_pk = pks[idx]
sixty_amp = amps[idx]
if len(theta_pk) == 1:
df.at[ch, 'th_pk'] = np.around(theta_pk[0], decimals=2)
df.at[ch, 'th_amp'] = np.around(theta_amp[0], decimals=2)
elif len(theta_pk) > 1:
df.at[ch, 'th_pk'] = np.around(np.mean(theta_pk), decimals=2)
df.at[ch, 'th_amp'] = np.around(np.mean(theta_amp), decimals=2)
if len(sixty_pk) == 1:
df.at[ch, '60_pk'] = np.around(sixty_pk[0], decimals=2)
df.at[ch, '60_amp'] = np.around(sixty_amp[0], decimals=2)
elif len(sixty_pk) > 1:
df.at[ch, '60_pk'] = np.around(np.mean(sixty_pk), decimals=2)
df.at[ch, '60_amp'] = np.around(np.mean(sixty_amp), decimals=2)
df.at[ch, 'rmse'] = np.around(fm.error_, decimals=3)
df.at[ch, '1/f_r2'] = np.around(fm.r_squared_, decimals=3)
return df
def get_clipped_segments(signals, tt_info, thr=0.99, sec_buffer=0.5):
"""
function that takes signals and return segments of clipped signal buffered by fs*segBuffer.
Inputs:
signals -> nChans x nSamps np.array
ttInfo -> dict, must contain nChans, fs, and InputRange (maxAmplitude)
thr -> float, thr*InputRange is used threshold the signal
segBuffer -> float, seconds to buffer the clipped signal, segments take the buffer into account
Returns:
Segs -> list of length nChans, each is a np.array of clipped segments for that channel (start and end indexes by # segments) in samples
Durs -> list of length nChans, each element of the list is a np.array of length nSegs for that channel containing the durations in samples
"""
n_chans = tt_info['n_chans']
n_samps = tt_info['n_samps']
fs = tt_info['fs']
# binarize clipped segments
samps_buffer = int(np.floor(fs * sec_buffer))
Durs = [np.array([], dtype=int)] * n_chans
Segs = [np.array([], dtype=int)] * n_chans
for ch in range(n_chans):
durs = np.array([], dtype=int)
segs = np.array([], dtype=int)
try:
signal_mask = (np.abs(signals[ch]) >= tt_info['input_range'][ch] * thr).astype(int)
diff_sig = np.concatenate(([0], np.diff(signal_mask)))
idx_start = np.argwhere(diff_sig > 0).flatten()
idx_end = np.argwhere(diff_sig < 0).flatten()
# if idxStart and end match (ends>starts, #ends==#starts)
if len(idx_start) > 0:
if len(idx_start) == len(idx_end):
if np.all(idx_end > idx_start):
pass
else: # if some reason some starts > ends..
print('Some start/end masking indices mismatch for ch{}'.format(ch))
continue # channel loop
# edge case of clipping near the end of the recording
elif (len(idx_end) + 1) == len(idx_start):
if np.all(idx_end > idx_start[:-1]):
idx_end = np.concatenate((idx_end, np.array([n_samps])))
else:
print('start/end masking indices mismatch for ch{}'.format(ch))
continue # channel loop
# edge case of clipping at the beginning of recording
elif (len(idx_start) + 1) == len(idx_end):
if np.all(idx_end[1:] > idx_start):
idx_start = np.concatenate(([0], idx_start))
else:
print('start/end masking indices mismatch for ch{}'.format(ch))
continue # channel loop
else:
print('unknwon error in masks for ch{}, debug independently.'.format(ch))
print(len(idx_start), len(idx_end))
continue # channel loop
# add seg_buffer for all segments
idx_start = idx_start - samps_buffer
idx_end = idx_end + samps_buffer
# deal with start and end of recording
ii = 0
while True:
if idx_start[ii] - samps_buffer < 0:
idx_start[ii] = 0
else:
break # while
ii += 1
ii = 1
while True:
if idx_end[-ii] + samps_buffer > n_samps:
idx_end[-ii] = n_samps
else:
break # while
ii += 1
# consolidate segments after the buffering
cnt = 0
seg_cnt = 0
n_sub_segs = len(idx_start)
segs = [(idx_start[0], idx_end[0])]
# check if start of the next sub segment is inside the previous, and join if so
while cnt < (n_sub_segs - 1):
while cnt < (n_sub_segs - 1):
if idx_start[cnt + 1] <= idx_end[cnt]:
segs[seg_cnt] = (segs[seg_cnt][0], idx_end[cnt + 1])
cnt += 1
else:
cnt += 1
break # inner while
segs.append((idx_start[cnt], idx_end[cnt]))
seg_cnt += 1
# convert to np arrays
durs = np.array(([j - i for i, j in segs]))
segs = np.array(segs)
except:
print('Channel {} Error in getting clipped segments:'.format(ch))
print("Error", sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2].tb_lineno)
traceback.print_exc(file=sys.stdout)
# add channel to lists
Durs[ch] = durs
Segs[ch] = segs
return Segs, Durs
def create_chan_masks(Segs, n_samps):
n_chans = len(Segs)
masks = np.ones((n_chans, n_samps), dtype=bool)
for ch in range(n_chans):
for seg in Segs[ch]:
masks[ch][seg[0]:seg[1]] = False
return masks
def get_sos_filter_bank(f_types, fs=32000.0, hp_edge_freq=None, lp_edge_freq=None, sp_edge_freq=None, notch_freq=None,
notch_harmonics=2, notch_q=20, gpass=0.2, gstop=60.0):
"""
Function that creates default filters
fTypes -> list of filters that have to be ['HP', 'LP', 'Notch', 'Sp'].
fs -> integer, sampling frequency in samps/s defualt to 32000
*_EdgeFreq -> edge frequencies for each filter type.
Defaults are: HP-2Hz, LP-5000Hz, Sp->300Hz [High Pass], Notch->60Hz (3 Harmonics)
Notch_Harmonics -> int, # of harmonics from Notch_Freq to filter [as default]
gpass -> allowed oscillation gain in the pass bands [def. 0.2dB ~ to up to 1.03 multiplication of the pass band ]
gstop -> required suppresion in the stopband [def. 60dB ~ at least to 0.001 multiplication of the stop band - ]
returns SOS a N sections x 6 second order sections filter matrix.
"""
SOS = np.zeros((0, 6))
for f in f_types:
if f not in ['HP', 'LP', 'Notch', 'Sp']:
print('filter type {} not supported.'.format(f))
print('skipping filter.')
# settings for low pass and bandpass
if f in ['LP', 'HP']:
if f is 'LP':
if lp_edge_freq is None:
cut_freq = 5000.0
cut_buffer = 5500.0
else:
cut_freq = lp_edge_freq
cut_buffer = lp_edge_freq + lp_edge_freq * 0.1
elif f is 'HP':
if hp_edge_freq is None:
cut_freq = 2.0
cut_buffer = 0.2
else:
cut_freq = hp_edge_freq
cut_buffer = hp_edge_freq * 0.1
sos = scipy.signal.iirdesign(cut_freq / (fs / 2), cut_buffer / (fs / 2), gpass, gstop, output='sos')
SOS = np.vstack((SOS, sos))
if f is 'Notch':
n_notches = notch_harmonics + 1
if notch_freq is None:
cut_freq = np.arange(1, n_notches + 1) * 60.0
else:
cut_freq = np.arange(1, n_notches + 1) * notch_freq
if notch_q is None:
q = np.array(cut_freq) # changing Quality factor to keep notch bandwidth constant.
elif type(notch_q) is np.ndarray:
if len(notch_q) >= n_notches:
q = np.array(notch_q)
# if length of quality factor array don't match the number of harmonics default to the first one
elif len(notch_q) < n_notches:
q = np.ones(n_notches) * notch_q[0]
else:
# Q = np.ones(nNotches)*Notch_Q
q = np.arange(1, n_notches + 1) * notch_q
for i, notch in enumerate(cut_freq):
b, a = scipy.signal.iirnotch(notch, q[i], fs=fs)
sos = scipy.signal.tf2sos(b, a)
SOS = np.vstack((SOS, sos))
if f is 'Sp':
if sp_edge_freq is None:
cut_freq = 350.0
cut_buffer = 300.0
else:
cut_freq = sp_edge_freq
cut_buffer = sp_edge_freq - sp_edge_freq * 0.1
sos = scipy.signal.iirdesign(cut_freq / (fs / 2), cut_buffer / (fs / 2), gpass, gstop, output='sos')
SOS = np.vstack((SOS, sos))
zi = scipy.signal.sosfilt_zi(SOS)
return SOS, zi
def get_signal_info(signals, tt_info, get_hist=True, get_psd=True, get_clipped_segs=False):
out = {}
t0 = time.time()
if get_hist:
out['AmpHist'], out['HistBins'] = get_amp_hist(signals, tt_info)
print('Time to get amplitude histograms = {}s'.format(time.time() - t0))
t0 = time.time()
if get_psd:
out['PSD'], out['PSD_freqs'] = get_chans_psd(signals, tt_info['fs'], resamp=True)
df = get_tt_psd_peaks(out['PSD_freqs'], out['PSD'])
out['PSD_table'] = df
print('Time to get compute power spectral densities = {}s'.format(time.time() - t0))
t0 = time.time()
if get_clipped_segs:
Segs, Durs = get_clipped_segments(signals, tt_info)
out['ClippedSegs'] = Segs
out['ClippedDurs'] = Durs
out['PctChanClipped'] = np.array([np.sum(d) / tt_info['n_samps'] for d in Durs])
print('Time to get signal segment clips {}s'.format(time.time() - t0))
return out
def get_signals_mad(signals, mask=None):
if signals.ndim == 1:
if mask is None:
return rs.mad(signals)
else:
return rs.mad(signals[mask])
elif signals.ndim > 1:
n_chans, n_samps = signals.shape
sig_mad = np.zeros(n_chans)
if mask is None:
for ch in range(n_chans):
sig_mad[ch] = rs.mad(signals[ch])
elif mask.shape[0] == n_chans:
for ch in range(n_chans):
sig_mad[ch] = rs.mad(signals[ch, mask[ch]])
elif mask.ndim == 1 and len(mask) == n_samps:
for ch in range(n_chans):
sig_mad[ch] = rs.mad(signals[ch], mask)
else:
print('Mask does not match the data. Ignoring,')
for ch in range(n_chans):
sig_mad[ch] = rs.mad(signals[ch])
return sig_mad
########################################################################################################################
########################################################################################################################
############################################### Neuralynx Read Funcs ###################################################
########################################################################################################################
########################################################################################################################
def get_csc(fn):
''' returns signal in uV and time stamps'''
temp = nept.load_lfp(fn)
return np.float32(temp.data.flatten() * 1e6), temp.time
def get_header(fn):
h = nept.load_neuralynx_header(fn)
for line in h.split(b'\n'):
if line.strip().startswith(b'-ADBitVolts'):
try:
AD = np.array(float(line.split(b' ')[1].decode()))
except ValueError:
AD = 1
if line.strip().startswith(b'-ReferenceChannel'):
try:
RefChan = line.split(b' ')[3].decode()
RefChan = int(RefChan[:-2])
except ValueError:
RefChan = -1
if line.strip().startswith(b'-SamplingFrequency'):
try:
fs = int(line.split(b' ')[1].decode())
except ValueError:
fs = 32000
if line.strip().startswith(b'-ADChannel'):
try:
ChanID = int(line.split(b' ')[1].decode())
except ValueError:
ChanID = -1
if line.strip().startswith(b'-InputRange'):
try:
InputRange = int(line.split(b' ')[1].decode())
except ValueError:
InputRange = -1
header = {'AD': AD, 'RefChan': RefChan, 'fs': fs, 'ChanID': ChanID, 'InputRange': InputRange}
return header
def get_position(fn):
# Neuralynx files have a 16kbyte header
# copy and modified from Nept Pckg.
#
f = open(fn, 'rb')
header = f.read(2 ** 14).strip(b'\x00')
# The format for .nvt files according the the neuralynx docs is
# uint16 - beginning of the record
# uint16 - ID for the system
# uint16 - size of videorec in bytes
# uint64 - timestamp in microseconds
# uint32 x 400 - points with the color bitfield values
# int16 - unused
# int32 - extracted X location of target
# int32 - extracted Y location of target
# int32 - calculated head angle in degrees clockwise from the positive Y axis
# int32 x 50 - colored targets using the same bitfield format used to extract colors earlier
dt = np.dtype([('filler1', '<h', 3), ('time', '<Q'), ('points', '<i', 400),
('filler2', '<h'), ('x', '<i'), ('y', '<i'), ('head_angle', '<i'),
('targets', '<i', 50)])
data = np.fromfile(f, dt)
t = data['time'] * 1e-6
x = np.array(data['x'], dtype=float)
y = np.array(data['y'], dtype=float)
ha = np.array(data['head_angle'], dtype=float)
return t, x, y, ha
def get_events(fn):
events = {'DE1': 'DE1', 'DE2': 'DE2', 'DE3': 'DE3', 'DE4': 'DE4', 'DE5': 'DE5', 'DE6': 'DE6',
'L1': 'L1', 'L2': 'L2', 'L3': 'L3', 'L4': 'L4', 'L5': 'L5', 'L6': 'L6',
'RD': 'RD', 'CL': 'CL', 'CR': 'CR', 'Start': 'Starting Recording', 'Stop': 'Stopping Recording'}
ev = nept.load_events(fn, events)
return ev
########################################################################################################################
########################################################################################################################
######################################### Preprocessing Plottting Functions #######################################
########################################################################################################################
########################################################################################################################
def plot_test_sos_filter(SOS, fs, cos_f=None, cos_a=None, noise=None):
if noise is None:
noise = [0.1]
if cos_a is None:
cos_a = [0.2, 0.25]
if cos_f is None:
cos_f = [60, 8]
n_samps = int(fs * 5)
t = np.arange(n_samps) / fs
x = (np.arange(n_samps) < fs / 3) + ((np.arange(n_samps) > 1.5 * fs) & (np.arange(n_samps) < 2 * fs))
for ii in range(len(cos_f)):
x = x + cos_a[ii] * np.cos(2 * np.pi * cos_f[ii] * t)
for jj in range(len(noise)):
x = x + np.random.randn(n_samps) * noise[jj]
x[x >= 1] = 1
x[x <= -1] = -1
xf = scipy.signal.sosfiltfilt(SOS, x)
fig = plt.figure(figsize=(10, 8))
ax1 = plt.subplot2grid((2, 2), (0, 0), colspan=2)
ax2 = plt.subplot2grid((2, 2), (1, 0))
ax3 = plt.subplot2grid((2, 2), (1, 1))
fig.tight_layout(pad=1.5)
w, h = scipy.signal.sosfreqz(SOS,
worN=np.concatenate((np.arange(0, 200, 1 / 2 ** 8), np.arange(200, 6000, 1 / 2 ** 8))),
fs=fs)
_ = plot_freq_response(w / fs * (2 * np.pi), h, fs, ax=ax2)
ax1.plot(t, x, 'k-', label='x', alpha=0.5)
ax1.plot(t, xf, alpha=0.75, linewidth=2, label='filtfilt')
ax1.legend(loc='best', frameon=False)
ax1.set_title('Test signal')
ax1.set_xlabel(' time [s] ')
pxx, freqs = get_chans_psd(x, fs, resamp=False)
ax3.semilogx(freqs, 20 * np.log10(pxx))
pxx, freqs = get_chans_psd(xf, fs, resamp=False)
ax3.semilogx(freqs, 20 * np.log10(pxx))
ax3.set_xlim([0.1, fs / 2])
ax3.set_ylim([-200, 20])
ax3.set_xlabel('Frequency Hz')
def plot_freq_response(w, h, fs, ax=None):
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
ax.set_title('Digital filter frequency response')
ax.semilogx(w / np.pi * (fs / 2), 20 * np.log10(abs(h)), 'b')
ax.set_ylabel('Amplitude [dB]', color='b')
ax.set_xlabel('Frequency Hz')
ax.set_ylim([-120, 20])
ax.set_xlim([0.1, fs / 2])
return fig, ax
def plot_tt_psd(freqs, pxx, ax=None):
if ax is None:
fig, ax = plt.subplots(figsize=(5, 4))
ls = ['-', '--', ':', '-.']
n_chans = pxx.shape[0]
for ch in range(n_chans):
ax.semilogx(freqs, 20 * np.log10(pxx[ch]), alpha=0.75, linestyle=ls[ch], linewidth=3)
ax.legend(['Ch{}'.format(ch) for ch in range(n_chans)], frameon=False)
ax.set_xticks([1, 10, 100, 1000, 10000])
ax.set_xticklabels([1, 10, 100, 1000, 10000])
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel(r"PSD $\frac{V^2}{Hz}$")
ax.set_ylim(-100, ax.get_ylim()[1])
ax.set_title('Power Spectrum Density')
return ax
def plot_tt_psd_table(freqs, pxx, df, ax=None):
if ax is None:
f, ax = plt.subplots(2, 1, figsize=(5, 5))
ax[0] = plot_tt_psd(freqs, pxx, ax=ax[0])
ax[1].axis('off')
prop_cycle = plt.rcParams['axes.prop_cycle']
cl = prop_cycle.by_key()['color']
t = pd.plotting.table(ax[1], df.round(2), loc='center', rowColours=cl)
t.auto_set_font_size(False)
t.set_fontsize(14)
return ax
def plot_amp_hist(hist, bins, ax=None, **kwags):
if ax is None:
fig, ax = plt.subplots()
ax = ax.flatten()
else:
ax.bar(bins, np.log10(hist), width=(bins[1] - bins[0]), **kwags)
ax.set_xlabel(r'Amplitude $\mu V$')
ax.set_ylabel(r'$log_{10}(nSamps)$')
return ax
def plot_tt_amps_hists(hists, bin_centers, tt_info, ax=None):
n_chans = tt_info['n_chans']
xlim = np.max(tt_info['input_range']) * 1.1
fs = tt_info['fs']
ax_flag = 0
if ax is None:
fig, ax = plt.subplots(2, 2, figsize=(10, 8))
ax = ax.flatten()
elif len(ax) != n_chans:
print('Warning. # of signals mismatch # of given axes to plot historgrams, creating new figure.')
fig, ax = plt.subplots((2, 2), figsize=(10, 8))
ax = ax.flatten()
else:
ax_flag = 1
prop_cycle = plt.rcParams['axes.prop_cycle']
cl = prop_cycle.by_key()['color']
for ch in range(n_chans):
ax[ch] = plot_amp_hist(hists[ch], bin_centers, ax=ax[ch], color=cl[ch])
ax[ch].set_title('Channel {}'.format(ch))
if ax_flag == 0:
if ch < 2:
ax[ch].set_xlabel('')
ax[ch].set_xlim(-xlim, xlim)
ax[ch].axhline(np.log10(fs), color='k', linestyle='--', alpha=0.75)
return ax
def plot_tt_summary(tt_info, sig_type='Raw'):
fig, ax = plt.subplots(2, 3, figsize=(16, 8))
ax = ax.flatten()
_ = plot_tt_amps_hists(tt_info[sig_type]['AmpHist'], tt_info[sig_type]['HistBins'], tt_info, ax[[0, 1, 3, 4]])
ax[0].set_xlabel('')
ax[1].set_xlabel('')
for ch, ax_ii in enumerate([0, 1, 3, 4]):
clp = tt_info['Raw']['PctChanClipped'][ch] * 100
if clp > 25:
ax[ax_ii].text(x=0.65, y=0.75, s='Clipped %{0:0.1f}'.format(clp), color='r', transform=ax[ax_ii].transAxes)
else:
ax[ax_ii].text(x=0.65, y=0.75, s='Clipped %{0:0.1f}'.format(clp), transform=ax[ax_ii].transAxes)
_ = plot_tt_psd_table(tt_info[sig_type]['PSD_freqs'], tt_info[sig_type]['PSD'], tt_info[sig_type]['PSD_table'],
ax[[2, 5]])
fig.tight_layout(pad=1.0)
ax[5].set_position([0.66, 0.05, 0.33, 0.5])
return fig, ax
|
[
"pickle.dump",
"numpy.sum",
"scipy.signal.welch",
"numpy.abs",
"numpy.argmax",
"numpy.empty",
"matplotlib.pyplot.subplot2grid",
"numpy.floor",
"numpy.ones",
"numpy.around",
"pathlib.Path",
"matplotlib.pyplot.figure",
"numpy.arange",
"numpy.histogram",
"sys.exc_info",
"numpy.mean",
"pickle.load",
"pandas.DataFrame",
"scipy.signal.tf2sos",
"numpy.zeros_like",
"traceback.print_exc",
"numpy.random.randn",
"nept.load_neuralynx_header",
"scipy.signal.iirnotch",
"nept.load_lfp",
"Utils.robust_stats.mad",
"numpy.max",
"numpy.log10",
"matplotlib.pyplot.subplots",
"seaborn.set",
"scipy.signal.sosfilt_zi",
"nept.load_events",
"numpy.cos",
"numpy.argwhere",
"numpy.vstack",
"numpy.all",
"numpy.concatenate",
"numpy.logical_and",
"numpy.fromfile",
"scipy.signal.sosfiltfilt",
"numpy.dtype",
"numpy.zeros",
"time.time",
"scipy.signal.iirdesign",
"numpy.array",
"numpy.diff",
"fooof.FOOOF"
] |
[((391, 434), 'seaborn.set', 'sns.set', ([], {'style': '"""whitegrid"""', 'palette': '"""muted"""'}), "(style='whitegrid', palette='muted')\n", (398, 434), True, 'import seaborn as sns\n'), ((1238, 1254), 'pathlib.Path', 'Path', (["task['sp']"], {}), "(task['sp'])\n", (1242, 1254), False, 'from pathlib import Path\n'), ((3384, 3400), 'pathlib.Path', 'Path', (["task['sp']"], {}), "(task['sp'])\n", (3388, 3400), False, 'from pathlib import Path\n'), ((4793, 4807), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (4805, 4807), True, 'import pandas as pd\n'), ((7908, 7925), 'numpy.zeros', 'np.zeros', (['n_chans'], {}), '(n_chans)\n', (7916, 7925), True, 'import numpy as np\n'), ((7941, 7958), 'numpy.zeros', 'np.zeros', (['n_chans'], {}), '(n_chans)\n', (7949, 7958), True, 'import numpy as np\n'), ((7974, 7991), 'numpy.zeros', 'np.zeros', (['n_chans'], {}), '(n_chans)\n', (7982, 7991), True, 'import numpy as np\n'), ((8010, 8027), 'numpy.zeros', 'np.zeros', (['n_chans'], {}), '(n_chans)\n', (8018, 8027), True, 'import numpy as np\n'), ((8546, 8562), 'numpy.zeros', 'np.zeros', (['[4, 2]'], {}), '([4, 2])\n', (8554, 8562), True, 'import numpy as np\n'), ((9429, 9471), 'numpy.arange', 'np.arange', (['(-max_amp)', '(max_amp + 1)', 'bin_step'], {}), '(-max_amp, max_amp + 1, bin_step)\n', (9438, 9471), True, 'import numpy as np\n'), ((10226, 10296), 'scipy.signal.welch', 'scipy.signal.welch', (['signals'], {'fs': 'fs', 'nperseg': 'nperseg', 'noverlap': 'noverlap'}), '(signals, fs=fs, nperseg=nperseg, noverlap=noverlap)\n', (10244, 10296), False, 'import scipy\n'), ((10913, 10991), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['th_pk', 'th_amp', '60_pk', '60_amp', '1/f_r2', 'rmse']"}), "(columns=['th_pk', 'th_amp', '60_pk', '60_amp', '1/f_r2', 'rmse'])\n", (10925, 10991), True, 'import pandas as pd\n'), ((17380, 17419), 'numpy.ones', 'np.ones', (['(n_chans, n_samps)'], {'dtype': 'bool'}), '((n_chans, n_samps), dtype=bool)\n', (17387, 17419), True, 'import numpy as np\n'), ((18486, 18502), 'numpy.zeros', 'np.zeros', (['(0, 6)'], {}), '((0, 6))\n', (18494, 18502), True, 'import numpy as np\n'), ((20922, 20950), 'scipy.signal.sosfilt_zi', 'scipy.signal.sosfilt_zi', (['SOS'], {}), '(SOS)\n', (20945, 20950), False, 'import scipy\n'), ((21087, 21098), 'time.time', 'time.time', ([], {}), '()\n', (21096, 21098), False, 'import time\n'), ((21280, 21291), 'time.time', 'time.time', ([], {}), '()\n', (21289, 21291), False, 'import time\n'), ((21591, 21602), 'time.time', 'time.time', ([], {}), '()\n', (21600, 21602), False, 'import time\n'), ((22207, 22224), 'numpy.zeros', 'np.zeros', (['n_chans'], {}), '(n_chans)\n', (22215, 22224), True, 'import numpy as np\n'), ((23438, 23455), 'nept.load_lfp', 'nept.load_lfp', (['fn'], {}), '(fn)\n', (23451, 23455), False, 'import nept\n'), ((23546, 23576), 'nept.load_neuralynx_header', 'nept.load_neuralynx_header', (['fn'], {}), '(fn)\n', (23572, 23576), False, 'import nept\n'), ((25484, 25655), 'numpy.dtype', 'np.dtype', (["[('filler1', '<h', 3), ('time', '<Q'), ('points', '<i', 400), ('filler2',\n '<h'), ('x', '<i'), ('y', '<i'), ('head_angle', '<i'), ('targets', '<i',\n 50)]"], {}), "([('filler1', '<h', 3), ('time', '<Q'), ('points', '<i', 400), (\n 'filler2', '<h'), ('x', '<i'), ('y', '<i'), ('head_angle', '<i'), (\n 'targets', '<i', 50)])\n", (25492, 25655), True, 'import numpy as np\n'), ((25695, 25713), 'numpy.fromfile', 'np.fromfile', (['f', 'dt'], {}), '(f, dt)\n', (25706, 25713), True, 'import numpy as np\n'), ((25751, 25783), 'numpy.array', 'np.array', (["data['x']"], {'dtype': 'float'}), "(data['x'], dtype=float)\n", (25759, 25783), True, 'import numpy as np\n'), ((25792, 25824), 'numpy.array', 'np.array', (["data['y']"], {'dtype': 'float'}), "(data['y'], dtype=float)\n", (25800, 25824), True, 'import numpy as np\n'), ((25834, 25875), 'numpy.array', 'np.array', (["data['head_angle']"], {'dtype': 'float'}), "(data['head_angle'], dtype=float)\n", (25842, 25875), True, 'import numpy as np\n'), ((26226, 26254), 'nept.load_events', 'nept.load_events', (['fn', 'events'], {}), '(fn, events)\n', (26242, 26254), False, 'import nept\n'), ((27485, 27517), 'scipy.signal.sosfiltfilt', 'scipy.signal.sosfiltfilt', (['SOS', 'x'], {}), '(SOS, x)\n', (27509, 27517), False, 'import scipy\n'), ((27529, 27556), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 8)'}), '(figsize=(10, 8))\n', (27539, 27556), True, 'import matplotlib.pyplot as plt\n'), ((27567, 27610), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(2, 2)', '(0, 0)'], {'colspan': '(2)'}), '((2, 2), (0, 0), colspan=2)\n', (27583, 27610), True, 'import matplotlib.pyplot as plt\n'), ((27621, 27653), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(2, 2)', '(1, 0)'], {}), '((2, 2), (1, 0))\n', (27637, 27653), True, 'import matplotlib.pyplot as plt\n'), ((27664, 27696), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(2, 2)', '(1, 1)'], {}), '((2, 2), (1, 1))\n', (27680, 27696), True, 'import matplotlib.pyplot as plt\n'), ((31339, 31374), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(3)'], {'figsize': '(16, 8)'}), '(2, 3, figsize=(16, 8))\n', (31351, 31374), True, 'import matplotlib.pyplot as plt\n'), ((1940, 1968), 'numpy.empty', 'np.empty', (['(n_chans, n_samps)'], {}), '((n_chans, n_samps))\n', (1948, 1968), True, 'import numpy as np\n'), ((2590, 2634), 'numpy.logical_and', 'np.logical_and', (['(chan_code > 0)', '(chan_code < 4)'], {}), '(chan_code > 0, chan_code < 4)\n', (2604, 2634), True, 'import numpy as np\n'), ((2723, 2749), 'numpy.zeros_like', 'np.zeros_like', (['raw_signals'], {}), '(raw_signals)\n', (2736, 2749), True, 'import numpy as np\n'), ((2763, 2774), 'time.time', 'time.time', ([], {}), '()\n', (2772, 2774), False, 'import time\n'), ((2928, 2939), 'time.time', 'time.time', ([], {}), '()\n', (2937, 2939), False, 'import time\n'), ((3924, 3940), 'pathlib.Path', 'Path', (["task['sp']"], {}), "(task['sp'])\n", (3928, 3940), False, 'from pathlib import Path\n'), ((6013, 6034), 'pathlib.Path', 'Path', (['subsession_path'], {}), '(subsession_path)\n', (6017, 6034), False, 'from pathlib import Path\n'), ((8286, 8295), 'pathlib.Path', 'Path', (['chf'], {}), '(chf)\n', (8290, 8295), False, 'from pathlib import Path\n'), ((9626, 9657), 'numpy.histogram', 'np.histogram', (['signals[ch]', 'bins'], {}), '(signals[ch], bins)\n', (9638, 9657), True, 'import numpy as np\n'), ((9945, 9969), 'numpy.argmax', 'np.argmax', (['signals.shape'], {}), '(signals.shape)\n', (9954, 9969), True, 'import numpy as np\n'), ((10359, 10373), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (10368, 10373), True, 'import numpy as np\n'), ((10411, 10431), 'numpy.arange', 'np.arange', (['(2)', 'maxExp'], {}), '(2, maxExp)\n', (10420, 10431), True, 'import numpy as np\n'), ((11035, 11124), 'fooof.FOOOF', 'FOOOF', ([], {'max_n_peaks': '(2)', 'peak_threshold': '(2.0)', 'peak_width_limits': '[0.5, 6.0]', 'verbose': '(False)'}), '(max_n_peaks=2, peak_threshold=2.0, peak_width_limits=[0.5, 6.0],\n verbose=False)\n', (11040, 11124), False, 'from fooof import FOOOF\n'), ((12234, 12266), 'numpy.around', 'np.around', (['fm.error_'], {'decimals': '(3)'}), '(fm.error_, decimals=3)\n', (12243, 12266), True, 'import numpy as np\n'), ((12297, 12333), 'numpy.around', 'np.around', (['fm.r_squared_'], {'decimals': '(3)'}), '(fm.r_squared_, decimals=3)\n', (12306, 12333), True, 'import numpy as np\n'), ((13289, 13314), 'numpy.floor', 'np.floor', (['(fs * sec_buffer)'], {}), '(fs * sec_buffer)\n', (13297, 13314), True, 'import numpy as np\n'), ((13456, 13479), 'numpy.array', 'np.array', (['[]'], {'dtype': 'int'}), '([], dtype=int)\n', (13464, 13479), True, 'import numpy as np\n'), ((13495, 13518), 'numpy.array', 'np.array', (['[]'], {'dtype': 'int'}), '([], dtype=int)\n', (13503, 13518), True, 'import numpy as np\n'), ((27123, 27141), 'numpy.arange', 'np.arange', (['n_samps'], {}), '(n_samps)\n', (27132, 27141), True, 'import numpy as np\n'), ((28582, 28596), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (28594, 28596), True, 'import matplotlib.pyplot as plt\n'), ((28995, 29023), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(5, 4)'}), '(figsize=(5, 4))\n', (29007, 29023), True, 'import matplotlib.pyplot as plt\n'), ((29640, 29674), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {'figsize': '(5, 5)'}), '(2, 1, figsize=(5, 5))\n', (29652, 29674), True, 'import matplotlib.pyplot as plt\n'), ((30065, 30079), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (30077, 30079), True, 'import matplotlib.pyplot as plt\n'), ((30394, 30424), 'numpy.max', 'np.max', (["tt_info['input_range']"], {}), "(tt_info['input_range'])\n", (30400, 30424), True, 'import numpy as np\n'), ((30507, 30542), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(2)'], {'figsize': '(10, 8)'}), '(2, 2, figsize=(10, 8))\n', (30519, 30542), True, 'import matplotlib.pyplot as plt\n'), ((2837, 2883), 'scipy.signal.sosfiltfilt', 'scipy.signal.sosfiltfilt', (['SOS', 'raw_signals[ch]'], {}), '(SOS, raw_signals[ch])\n', (2861, 2883), False, 'import scipy\n'), ((3229, 3293), 'pickle.dump', 'pickle.dump', (['tt_info', 'f_handle'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(tt_info, f_handle, protocol=pickle.HIGHEST_PROTOCOL)\n', (3240, 3293), False, 'import pickle\n'), ((4624, 4659), 'pathlib.Path', 'Path', (["task_table[k]['session_name']"], {}), "(task_table[k]['session_name'])\n", (4628, 4659), False, 'from pathlib import Path\n'), ((11566, 11600), 'numpy.around', 'np.around', (['theta_pk[0]'], {'decimals': '(2)'}), '(theta_pk[0], decimals=2)\n', (11575, 11600), True, 'import numpy as np\n'), ((11635, 11670), 'numpy.around', 'np.around', (['theta_amp[0]'], {'decimals': '(2)'}), '(theta_amp[0], decimals=2)\n', (11644, 11670), True, 'import numpy as np\n'), ((11918, 11952), 'numpy.around', 'np.around', (['sixty_pk[0]'], {'decimals': '(2)'}), '(sixty_pk[0], decimals=2)\n', (11927, 11952), True, 'import numpy as np\n'), ((11987, 12022), 'numpy.around', 'np.around', (['sixty_amp[0]'], {'decimals': '(2)'}), '(sixty_amp[0], decimals=2)\n', (11996, 12022), True, 'import numpy as np\n'), ((13329, 13352), 'numpy.array', 'np.array', (['[]'], {'dtype': 'int'}), '([], dtype=int)\n', (13337, 13352), True, 'import numpy as np\n'), ((13376, 13399), 'numpy.array', 'np.array', (['[]'], {'dtype': 'int'}), '([], dtype=int)\n', (13384, 13399), True, 'import numpy as np\n'), ((19305, 19403), 'scipy.signal.iirdesign', 'scipy.signal.iirdesign', (['(cut_freq / (fs / 2))', '(cut_buffer / (fs / 2))', 'gpass', 'gstop'], {'output': '"""sos"""'}), "(cut_freq / (fs / 2), cut_buffer / (fs / 2), gpass,\n gstop, output='sos')\n", (19327, 19403), False, 'import scipy\n'), ((19418, 19439), 'numpy.vstack', 'np.vstack', (['(SOS, sos)'], {}), '((SOS, sos))\n', (19427, 19439), True, 'import numpy as np\n'), ((20777, 20875), 'scipy.signal.iirdesign', 'scipy.signal.iirdesign', (['(cut_freq / (fs / 2))', '(cut_buffer / (fs / 2))', 'gpass', 'gstop'], {'output': '"""sos"""'}), "(cut_freq / (fs / 2), cut_buffer / (fs / 2), gpass,\n gstop, output='sos')\n", (20799, 20875), False, 'import scipy\n'), ((20890, 20911), 'numpy.vstack', 'np.vstack', (['(SOS, sos)'], {}), '((SOS, sos))\n', (20899, 20911), True, 'import numpy as np\n'), ((22053, 22068), 'Utils.robust_stats.mad', 'rs.mad', (['signals'], {}), '(signals)\n', (22059, 22068), True, 'import Utils.robust_stats as rs\n'), ((22102, 22123), 'Utils.robust_stats.mad', 'rs.mad', (['signals[mask]'], {}), '(signals[mask])\n', (22108, 22123), True, 'import Utils.robust_stats as rs\n'), ((22306, 22325), 'Utils.robust_stats.mad', 'rs.mad', (['signals[ch]'], {}), '(signals[ch])\n', (22312, 22325), True, 'import Utils.robust_stats as rs\n'), ((27157, 27175), 'numpy.arange', 'np.arange', (['n_samps'], {}), '(n_samps)\n', (27166, 27175), True, 'import numpy as np\n'), ((28292, 28305), 'numpy.log10', 'np.log10', (['pxx'], {}), '(pxx)\n', (28300, 28305), True, 'import numpy as np\n'), ((28389, 28402), 'numpy.log10', 'np.log10', (['pxx'], {}), '(pxx)\n', (28397, 28402), True, 'import numpy as np\n'), ((30137, 30151), 'numpy.log10', 'np.log10', (['hist'], {}), '(hist)\n', (30145, 30151), True, 'import numpy as np\n'), ((30722, 30759), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2, 2)'], {'figsize': '(10, 8)'}), '((2, 2), figsize=(10, 8))\n', (30734, 30759), True, 'import matplotlib.pyplot as plt\n'), ((31210, 31222), 'numpy.log10', 'np.log10', (['fs'], {}), '(fs)\n', (31218, 31222), True, 'import numpy as np\n'), ((16888, 16924), 'numpy.array', 'np.array', (['[(j - i) for i, j in segs]'], {}), '([(j - i) for i, j in segs])\n', (16896, 16924), True, 'import numpy as np\n'), ((16948, 16962), 'numpy.array', 'np.array', (['segs'], {}), '(segs)\n', (16956, 16962), True, 'import numpy as np\n'), ((17164, 17200), 'traceback.print_exc', 'traceback.print_exc', ([], {'file': 'sys.stdout'}), '(file=sys.stdout)\n', (17183, 17200), False, 'import traceback\n'), ((19748, 19766), 'numpy.array', 'np.array', (['cut_freq'], {}), '(cut_freq)\n', (19756, 19766), True, 'import numpy as np\n'), ((20376, 20417), 'scipy.signal.iirnotch', 'scipy.signal.iirnotch', (['notch', 'q[i]'], {'fs': 'fs'}), '(notch, q[i], fs=fs)\n', (20397, 20417), False, 'import scipy\n'), ((20440, 20465), 'scipy.signal.tf2sos', 'scipy.signal.tf2sos', (['b', 'a'], {}), '(b, a)\n', (20459, 20465), False, 'import scipy\n'), ((20488, 20509), 'numpy.vstack', 'np.vstack', (['(SOS, sos)'], {}), '((SOS, sos))\n', (20497, 20509), True, 'import numpy as np\n'), ((22421, 22450), 'Utils.robust_stats.mad', 'rs.mad', (['signals[ch, mask[ch]]'], {}), '(signals[ch, mask[ch]])\n', (22427, 22450), True, 'import Utils.robust_stats as rs\n'), ((27190, 27208), 'numpy.arange', 'np.arange', (['n_samps'], {}), '(n_samps)\n', (27199, 27208), True, 'import numpy as np\n'), ((27224, 27242), 'numpy.arange', 'np.arange', (['n_samps'], {}), '(n_samps)\n', (27233, 27242), True, 'import numpy as np\n'), ((27315, 27348), 'numpy.cos', 'np.cos', (['(2 * np.pi * cos_f[ii] * t)'], {}), '(2 * np.pi * cos_f[ii] * t)\n', (27321, 27348), True, 'import numpy as np\n'), ((27399, 27423), 'numpy.random.randn', 'np.random.randn', (['n_samps'], {}), '(n_samps)\n', (27414, 27423), True, 'import numpy as np\n'), ((29146, 29163), 'numpy.log10', 'np.log10', (['pxx[ch]'], {}), '(pxx[ch])\n', (29154, 29163), True, 'import numpy as np\n'), ((4370, 4384), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (4382, 4384), False, 'import sys\n'), ((4389, 4403), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (4401, 4403), False, 'import sys\n'), ((5478, 5499), 'pathlib.Path', 'Path', (['subsession_path'], {}), '(subsession_path)\n', (5482, 5499), False, 'from pathlib import Path\n'), ((10476, 10524), 'numpy.arange', 'np.arange', (['(10 ** e)', '(10 ** (e + 1))', '(10 ** (e - 1))'], {}), '(10 ** e, 10 ** (e + 1), 10 ** (e - 1))\n', (10485, 10524), True, 'import numpy as np\n'), ((11746, 11763), 'numpy.mean', 'np.mean', (['theta_pk'], {}), '(theta_pk)\n', (11753, 11763), True, 'import numpy as np\n'), ((11821, 11839), 'numpy.mean', 'np.mean', (['theta_amp'], {}), '(theta_amp)\n', (11828, 11839), True, 'import numpy as np\n'), ((12098, 12115), 'numpy.mean', 'np.mean', (['sixty_pk'], {}), '(sixty_pk)\n', (12105, 12115), True, 'import numpy as np\n'), ((12173, 12191), 'numpy.mean', 'np.mean', (['sixty_amp'], {}), '(sixty_amp)\n', (12180, 12191), True, 'import numpy as np\n'), ((13672, 13692), 'numpy.diff', 'np.diff', (['signal_mask'], {}), '(signal_mask)\n', (13679, 13692), True, 'import numpy as np\n'), ((13719, 13744), 'numpy.argwhere', 'np.argwhere', (['(diff_sig > 0)'], {}), '(diff_sig > 0)\n', (13730, 13744), True, 'import numpy as np\n'), ((13777, 13802), 'numpy.argwhere', 'np.argwhere', (['(diff_sig < 0)'], {}), '(diff_sig < 0)\n', (13788, 13802), True, 'import numpy as np\n'), ((13993, 14020), 'numpy.all', 'np.all', (['(idx_end > idx_start)'], {}), '(idx_end > idx_start)\n', (13999, 14020), True, 'import numpy as np\n'), ((19574, 19601), 'numpy.arange', 'np.arange', (['(1)', '(n_notches + 1)'], {}), '(1, n_notches + 1)\n', (19583, 19601), True, 'import numpy as np\n'), ((19654, 19681), 'numpy.arange', 'np.arange', (['(1)', '(n_notches + 1)'], {}), '(1, n_notches + 1)\n', (19663, 19681), True, 'import numpy as np\n'), ((21251, 21262), 'time.time', 'time.time', ([], {}), '()\n', (21260, 21262), False, 'import time\n'), ((21562, 21573), 'time.time', 'time.time', ([], {}), '()\n', (21571, 21573), False, 'import time\n'), ((21798, 21807), 'numpy.sum', 'np.sum', (['d'], {}), '(d)\n', (21804, 21807), True, 'import numpy as np\n'), ((21905, 21916), 'time.time', 'time.time', ([], {}), '()\n', (21914, 21916), False, 'import time\n'), ((22561, 22586), 'Utils.robust_stats.mad', 'rs.mad', (['signals[ch]', 'mask'], {}), '(signals[ch], mask)\n', (22567, 22586), True, 'import Utils.robust_stats as rs\n'), ((22714, 22733), 'Utils.robust_stats.mad', 'rs.mad', (['signals[ch]'], {}), '(signals[ch])\n', (22720, 22733), True, 'import Utils.robust_stats as rs\n'), ((27820, 27849), 'numpy.arange', 'np.arange', (['(0)', '(200)', '(1 / 2 ** 8)'], {}), '(0, 200, 1 / 2 ** 8)\n', (27829, 27849), True, 'import numpy as np\n'), ((27851, 27883), 'numpy.arange', 'np.arange', (['(200)', '(6000)', '(1 / 2 ** 8)'], {}), '(200, 6000, 1 / 2 ** 8)\n', (27860, 27883), True, 'import numpy as np\n'), ((4408, 4422), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (4420, 4422), False, 'import sys\n'), ((13559, 13578), 'numpy.abs', 'np.abs', (['signals[ch]'], {}), '(signals[ch])\n', (13565, 13578), True, 'import numpy as np\n'), ((14411, 14443), 'numpy.all', 'np.all', (['(idx_end > idx_start[:-1])'], {}), '(idx_end > idx_start[:-1])\n', (14417, 14443), True, 'import numpy as np\n'), ((17085, 17099), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (17097, 17099), False, 'import sys\n'), ((17104, 17118), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (17116, 17118), False, 'import sys\n'), ((19945, 19962), 'numpy.array', 'np.array', (['notch_q'], {}), '(notch_q)\n', (19953, 19962), True, 'import numpy as np\n'), ((20265, 20292), 'numpy.arange', 'np.arange', (['(1)', '(n_notches + 1)'], {}), '(1, n_notches + 1)\n', (20274, 20292), True, 'import numpy as np\n'), ((5835, 5849), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (5846, 5849), False, 'import pickle\n'), ((14841, 14872), 'numpy.all', 'np.all', (['(idx_end[1:] > idx_start)'], {}), '(idx_end[1:] > idx_start)\n', (14847, 14872), True, 'import numpy as np\n'), ((17123, 17137), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (17135, 17137), False, 'import sys\n'), ((14910, 14942), 'numpy.concatenate', 'np.concatenate', (['([0], idx_start)'], {}), '(([0], idx_start))\n', (14924, 14942), True, 'import numpy as np\n'), ((20147, 20165), 'numpy.ones', 'np.ones', (['n_notches'], {}), '(n_notches)\n', (20154, 20165), True, 'import numpy as np\n'), ((14504, 14523), 'numpy.array', 'np.array', (['[n_samps]'], {}), '([n_samps])\n', (14512, 14523), True, 'import numpy as np\n')]
|
"""
Wisconsin Autonomous - https://www.wisconsinautonomous.org
Copyright (c) 2021 wisconsinautonomous.org
All rights reserved.
Use of this source code is governed by a BSD-style license that can be found
in the LICENSE file at the top level of the repo
"""
from abc import abstractmethod # Abstract Base Class
# WA Simulator
from wa_simulator.core import WA_GRAVITY, WAVector, WAQuaternion
from wa_simulator.base import WABase
from wa_simulator.utils import _load_json, _WAStaticAttribute, get_wa_data_file
# Other imports
import numpy as np
def load_properties_from_json(filename: str, prop: str) -> dict:
"""Load a specified property from a json specification file
Will load a json file and extract the passed property field for use
by the underyling vehicle object
Args:
filename (str): the filename location within the set WA data folder for the json file
property (str): the property to get. Ex: "Vehicle Properties"
Raises:
ValueError: The property field isn't found
Returns:
dict: the property field extracted from the json file
"""
j = _load_json(filename)
if prop not in j:
raise ValueError(f"{prop} not found in json.")
return j[prop]
class WAVehicle(WABase):
"""Base class for a WAVehicle.
To implement a new vehicle model, override this class. A WAVehicle should interact
with the terrain/assets/world and take three inputs: steering, throttle, braking.
Args:
system (WASystem): the system used to run the simulation
vehicle_inputs (WAVehicleInputs): The vehicle inputs
filename (str, optional): Filename to be used for visualization properties
"""
def __init__(self, system: 'WASystem', vehicle_inputs: 'WAVehicleInputs', filename=None):
self._system = system
self._vehicle_inputs = vehicle_inputs
self._vis_properties = (
dict()
if filename is None
else load_properties_from_json(filename, "Visualization Properties")
)
def get_visual_properties(self) -> dict:
"""Get visual properties for visualizing the vehicle
.. todo::
Define the visual properties required
Returns:
dict: the visual properties
"""
return self._vis_properties
@abstractmethod
def synchronize(self, time: float):
pass
@abstractmethod
def advance(self, step: float):
pass
def is_ok(self) -> bool:
return True
@abstractmethod
def get_pos(self) -> WAVector:
"""Get the center of mass (COM) position of the vehicle.
Returns:
WAVector: the position of the vehicle
"""
pass
@abstractmethod
def get_rot(self) -> WAQuaternion:
"""Get the rotation about the center of mass (COM) of the vehicle
Returns:
WAQuaternion: the vehicles orientation
"""
pass
@abstractmethod
def get_pos_dt(self) -> WAVector:
"""Get the instantaneous velocity of the vehicle
Returns:
WAVector: The velocity where X is forward, Z is up and Y is left (ISO standard)
"""
pass
@abstractmethod
def get_rot_dt(self) -> WAQuaternion:
"""Get the angular velocity of the vehicle
Returns:
WAQuaternion: The angular velocity
"""
pass
@abstractmethod
def get_pos_dtdt(self) -> WAVector:
"""Get the acceleration of the vehicle
Returns:
WAVector: The acceleration where X is forward, Z is up and Y is left (ISO standard)
"""
pass
@abstractmethod
def get_rot_dtdt(self) -> WAQuaternion:
"""Get the angular acceleration of the vehicle
Returns:
WAQuaternion: The angular acceleration
"""
pass
class WALinearKinematicBicycle(WAVehicle):
"""A linear, kinematic bicycle model
Args:
system (WASystem): the system used to run the simulation
vehicle_inputs (WAVehicleInputs): The vehicle inputs
filename (str): json specification file used to describe the parameters for the vehicle
init_pos (WAVector): initial position
init_rot (WAQuaternion): initial rotation
init_pos_dt (WAVector): initial velocity
"""
# Global filenames for vehicle models
_GO_KART_MODEL_FILE = "vehicles/GoKart/GoKart_KinematicBicycle.json"
GO_KART_MODEL_FILE = _WAStaticAttribute('_GO_KART_MODEL_FILE', get_wa_data_file)
def __init__(self, system: 'WASystem', vehicle_inputs: 'WAVehicleInputs', filename: str, init_pos: WAVector = WAVector(), init_rot: WAQuaternion = WAQuaternion.from_z_rotation(0), init_pos_dt: WAVector = WAVector()):
super().__init__(system, vehicle_inputs, filename)
# Simple state variables
self._x = init_pos.x
self._y = init_pos.y
self._yaw = init_rot.to_euler_yaw()
self._v = init_pos_dt.length
self._acc = 0.0
# Wheel angular velocity
self._omega = 0.0
self._omega_dot = 0.0
self._yaw_dt = 0.0
self._yaw_dtdt = 0.0
self._last_yaw = 0.0
properties = load_properties_from_json(filename, "Vehicle Properties")
self._initialize(properties)
def _initialize(self, vp):
"""Initialize the vehicle parameters
Expected properties:
"Wheelbase" (float): distance between the front and back tire
"Mass" (float): mass of the vehicle
"Gear Ratio" (float): gear ratio of the simulated powertrain
"Effective Radius" (float):
"Inertia" (float): Effective inertia for the vehicle
"Aerodynamic Coefficient" (float):
"Friction Coefficient" (float):
"C" (float)
"Max Force" (float)
"Torque Coefficients" (list)
"Steering" ([min, max]): Min and max throttle values
"Throttle" ([min, max]): Min and max throttle values
"Braking" ([min, max]): Min and max braking values
Args:
vp (dict): Vehicle preoperties (see above for expected keys)
"""
# Initialize vehicle properties
self._mass = vp["Mass"]
# Torque coefficients
self._a = vp["Torque Coefficients"]
# Gear ratio, effective radius and inertia
self._GR = vp["Gear Ratio"]
self._r_eff = vp["Effective Radius"]
self._J_e = vp["Inertia"]
# Aerodynamic and friction coefficients
self._c_a = vp["Aerodynamic Coefficient"]
self._c_rl = vp["Friction Coefficient"]
# Tire forces
self._c = vp["C"]
self._F_max = vp["Max Force"]
self._L = vp["Wheelbase"]
(self._min_steering, self._max_steering) = vp["Steering"]
(self._min_throttle, self._max_throttle) = vp["Throttle"]
(self._min_braking, self._max_braking) = vp["Braking"]
def synchronize(self, time):
s = self._vehicle_inputs.steering
t = self._vehicle_inputs.throttle
b = self._vehicle_inputs.braking
self._steering = np.clip(s, self._min_steering, self._max_steering)
self._throttle = np.clip(t, self._min_throttle, self._max_throttle)
self._braking = np.clip(b, self._min_braking, self._max_braking)
if self._braking > 1e-1:
self._throttle = -self._braking
def advance(self, step):
# TODO: COMMENT!
if self._v == 0 and self._throttle == 0:
F_x = 0
F_load = 0
T_e = 0
else:
if self._v == 0:
# Remove possibity of divide by zero error
self._v = 1e-8
self._omega = 1e-8
# Update engine and tire forces
F_aero = self._c_a * self._v ** 2
R_x = self._c_rl * self._v
F_g = self._mass * WA_GRAVITY * np.sin(0)
F_load = F_aero + R_x + F_g
T_e = self._throttle * (
self._a[0] + self._a[1] * self._omega +
self._a[2] * self._omega ** 2
)
omega_w = self._GR * self._omega # Wheel angular velocity
s = (omega_w * self._r_eff - self._v) / self._v # slip ratio
cs = self._c * s
if abs(s) < 1:
F_x = cs
else:
F_x = self._F_max
if self._throttle < 0:
if self._v <= 0:
F_x = 0
else:
F_x = -abs(F_x)
# Update state information
self._x += self._v * np.cos(self._yaw) * step
self._y += self._v * np.sin(self._yaw) * step
self._yaw += self._v / self._L * np.tan(self._steering) * step
self._v += self._acc * step
self._acc = (F_x - F_load) / self._mass
self._omega += self._omega_dot * step
self._omega_dot = (T_e - self._GR * self._r_eff * F_load) / self._J_e
v_epsilon = abs(self._v) > 0.1
self._yaw_dt = (self._last_yaw - self._yaw) / step if v_epsilon else 0
self._yaw_dtdt = (self._last_yaw - self._yaw) / step if v_epsilon else 0 # noqa
self._last_yaw = self._yaw
def get_pos(self) -> WAVector:
return WAVector([self._x, self._y, 0.0])
def get_rot(self) -> WAQuaternion:
return WAQuaternion.from_z_rotation(self._yaw)
def get_pos_dt(self) -> WAVector:
return WAVector([self._v * np.cos(self._yaw), self._v * np.sin(self._yaw), 0.0])
def get_rot_dt(self) -> WAQuaternion:
return WAQuaternion.from_z_rotation(self._yaw_dt)
def get_pos_dtdt(self) -> WAVector:
angle = np.tan(np.interp(self._steering, [-1, 1], [self._min_steering, self._max_steering])) # noqa
angle = angle if angle != 0 else 1e-3
tr = self._L / angle
tr = tr if tr != 0 else 1e-3
return WAVector([self._acc, self._v ** 2 / tr, WA_GRAVITY])
def get_rot_dtdt(self) -> WAQuaternion:
return WAQuaternion.from_z_rotation(self._yaw_dtdt)
|
[
"wa_simulator.utils._load_json",
"wa_simulator.core.WAVector",
"wa_simulator.utils._WAStaticAttribute",
"wa_simulator.core.WAQuaternion.from_z_rotation",
"numpy.clip",
"numpy.sin",
"numpy.tan",
"numpy.cos",
"numpy.interp"
] |
[((1120, 1140), 'wa_simulator.utils._load_json', '_load_json', (['filename'], {}), '(filename)\n', (1130, 1140), False, 'from wa_simulator.utils import _load_json, _WAStaticAttribute, get_wa_data_file\n'), ((4498, 4557), 'wa_simulator.utils._WAStaticAttribute', '_WAStaticAttribute', (['"""_GO_KART_MODEL_FILE"""', 'get_wa_data_file'], {}), "('_GO_KART_MODEL_FILE', get_wa_data_file)\n", (4516, 4557), False, 'from wa_simulator.utils import _load_json, _WAStaticAttribute, get_wa_data_file\n'), ((4673, 4683), 'wa_simulator.core.WAVector', 'WAVector', ([], {}), '()\n', (4681, 4683), False, 'from wa_simulator.core import WA_GRAVITY, WAVector, WAQuaternion\n'), ((4710, 4741), 'wa_simulator.core.WAQuaternion.from_z_rotation', 'WAQuaternion.from_z_rotation', (['(0)'], {}), '(0)\n', (4738, 4741), False, 'from wa_simulator.core import WA_GRAVITY, WAVector, WAQuaternion\n'), ((4767, 4777), 'wa_simulator.core.WAVector', 'WAVector', ([], {}), '()\n', (4775, 4777), False, 'from wa_simulator.core import WA_GRAVITY, WAVector, WAQuaternion\n'), ((7182, 7232), 'numpy.clip', 'np.clip', (['s', 'self._min_steering', 'self._max_steering'], {}), '(s, self._min_steering, self._max_steering)\n', (7189, 7232), True, 'import numpy as np\n'), ((7258, 7308), 'numpy.clip', 'np.clip', (['t', 'self._min_throttle', 'self._max_throttle'], {}), '(t, self._min_throttle, self._max_throttle)\n', (7265, 7308), True, 'import numpy as np\n'), ((7333, 7381), 'numpy.clip', 'np.clip', (['b', 'self._min_braking', 'self._max_braking'], {}), '(b, self._min_braking, self._max_braking)\n', (7340, 7381), True, 'import numpy as np\n'), ((9303, 9336), 'wa_simulator.core.WAVector', 'WAVector', (['[self._x, self._y, 0.0]'], {}), '([self._x, self._y, 0.0])\n', (9311, 9336), False, 'from wa_simulator.core import WA_GRAVITY, WAVector, WAQuaternion\n'), ((9392, 9431), 'wa_simulator.core.WAQuaternion.from_z_rotation', 'WAQuaternion.from_z_rotation', (['self._yaw'], {}), '(self._yaw)\n', (9420, 9431), False, 'from wa_simulator.core import WA_GRAVITY, WAVector, WAQuaternion\n'), ((9618, 9660), 'wa_simulator.core.WAQuaternion.from_z_rotation', 'WAQuaternion.from_z_rotation', (['self._yaw_dt'], {}), '(self._yaw_dt)\n', (9646, 9660), False, 'from wa_simulator.core import WA_GRAVITY, WAVector, WAQuaternion\n'), ((9938, 9990), 'wa_simulator.core.WAVector', 'WAVector', (['[self._acc, self._v ** 2 / tr, WA_GRAVITY]'], {}), '([self._acc, self._v ** 2 / tr, WA_GRAVITY])\n', (9946, 9990), False, 'from wa_simulator.core import WA_GRAVITY, WAVector, WAQuaternion\n'), ((10051, 10095), 'wa_simulator.core.WAQuaternion.from_z_rotation', 'WAQuaternion.from_z_rotation', (['self._yaw_dtdt'], {}), '(self._yaw_dtdt)\n', (10079, 10095), False, 'from wa_simulator.core import WA_GRAVITY, WAVector, WAQuaternion\n'), ((9725, 9801), 'numpy.interp', 'np.interp', (['self._steering', '[-1, 1]', '[self._min_steering, self._max_steering]'], {}), '(self._steering, [-1, 1], [self._min_steering, self._max_steering])\n', (9734, 9801), True, 'import numpy as np\n'), ((7969, 7978), 'numpy.sin', 'np.sin', (['(0)'], {}), '(0)\n', (7975, 7978), True, 'import numpy as np\n'), ((8651, 8668), 'numpy.cos', 'np.cos', (['self._yaw'], {}), '(self._yaw)\n', (8657, 8668), True, 'import numpy as np\n'), ((8705, 8722), 'numpy.sin', 'np.sin', (['self._yaw'], {}), '(self._yaw)\n', (8711, 8722), True, 'import numpy as np\n'), ((8771, 8793), 'numpy.tan', 'np.tan', (['self._steering'], {}), '(self._steering)\n', (8777, 8793), True, 'import numpy as np\n'), ((9506, 9523), 'numpy.cos', 'np.cos', (['self._yaw'], {}), '(self._yaw)\n', (9512, 9523), True, 'import numpy as np\n'), ((9535, 9552), 'numpy.sin', 'np.sin', (['self._yaw'], {}), '(self._yaw)\n', (9541, 9552), True, 'import numpy as np\n')]
|
# Copyright 2021 The Petuum Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This module tests for evaluation metrics."""
import unittest
import torch
import numpy as np
from texar.torch.data.data.data_iterators import DataIterator
from sklearn.metrics import roc_auc_score
from config import transforms, pathologies
from iu_xray_data import IU_XRay_Dataset
from models.cv_model import MLCTrainer
from evaluation_metrics import HammingLoss, MultiLabelConfusionMatrix, \
MultiLabelF1, MultiLabelPrecision, MultiLabelRecall, RocAuc
def safe_divide(numerator: np.ndarray, denominator: np.ndarray) \
-> np.ndarray:
# Credit: sklearn.metrics.classification._prf_divide
if numerator.size == 1:
if denominator == 0.0:
return np.array(0.0)
return numerator / denominator
mask = denominator == 0.0
denominator = denominator.copy()
denominator[mask] = 1.0
value = numerator / denominator
return value
class TestEvaluationMetrics(unittest.TestCase):
r"""
Unit test for Evaluation Metrics that are used for
multi-label classification
"""
def setUp(self):
self.batch_size = 2
self.num_label = len(pathologies)
data_hparams = {
"datasource":{
"img_root": "tests/test_iu_xray_data/iu_xray_images",
"text_root": "tests/test_iu_xray_data/text_root",
"vocab_path": "tests/test_iu_xray_data/test_vocab.txt",
"transforms": transforms,
"pathologies": pathologies,
},
"batch_size": self.batch_size,
"shuffle": False,
}
dataset = IU_XRay_Dataset(data_hparams)
dataset.to(torch.device('cpu'))
self.loader = DataIterator(dataset)
mlc_hparam = {
'num_tags': len(pathologies),
}
self.mlc_trainer = MLCTrainer(mlc_hparam)
def test_hamming_loss(self):
r"""Test the HammingLoss implementations"""
hm_loss = HammingLoss(
num_label=self.num_label, pred_name='preds')
simple_hm_loss = 0.
num_sample = 0
correct = np.zeros(self.num_label)
for batch in self.loader:
result = self.mlc_trainer(batch)
predicted = np.array(result['preds'])
label = np.array(batch.label)
batch_size = batch.batch_size
num_sample += batch_size
hm_loss.add(predicted, label)
correct += np.sum(predicted == label, axis=0)
simple_hm_loss = (num_sample - correct).mean() / num_sample
self.assertEqual(simple_hm_loss, hm_loss.value())
def test_confusion_matrix_related(self):
r"""Test the MultiLabelConfusionMatrix, MultiLabelPrecision
MultiLabelRecall, and MultiLabelF1 implementation"""
cf_matrix = MultiLabelConfusionMatrix(
num_label=self.num_label, pred_name='preds')
precision = MultiLabelPrecision(
num_label=self.num_label, pred_name="preds")
recall = MultiLabelRecall(
num_label=self.num_label, pred_name="preds")
f1 = MultiLabelF1(
num_label=self.num_label, pred_name="preds")
simple_cf_matrix = np.zeros([self.num_label, 2, 2])
for batch in self.loader:
result = self.mlc_trainer(batch)
predicted = np.array(result['preds'])
label = np.array(batch.label)
batch_size = batch.batch_size
true_and_pred = predicted * label
tp_sum = np.sum(true_and_pred, axis=0)
pred_sum = np.sum(predicted, axis=0)
true_sum = np.sum(label, axis=0)
fp = pred_sum - tp_sum
fn = true_sum - tp_sum
tp = tp_sum
tn = batch_size - tp - fp - fn
simple_cf_matrix += np.array([tn, fp, fn, tp]).T.reshape(-1, 2, 2)
cf_matrix.add(predicted, label)
precision.add(predicted, label)
recall.add(predicted, label)
f1.add(predicted, label)
tp = simple_cf_matrix[:, 1, 1]
tp_fp = simple_cf_matrix[:, 1, 1] + simple_cf_matrix[:, 0, 1]
tp_fn = simple_cf_matrix[:, 1, 1] + simple_cf_matrix[:, 1, 0]
simple_cf_matrix = np.mean(simple_cf_matrix, axis=0)
simple_precision = safe_divide(tp, tp_fp).mean()
simple_recall = safe_divide(tp, tp_fn).mean()
simple_f1 = safe_divide(
2 * simple_precision * simple_recall,
simple_precision + simple_recall
)
self.assertTrue(np.array_equal(
simple_cf_matrix, cf_matrix.value()
))
self.assertEqual(simple_precision, precision.value())
self.assertEqual(simple_recall, recall.value())
self.assertEqual(simple_f1, f1.value())
def test_roc_auc(self):
r"""Test the RocAuc implementation
NOTE: To test the ROC AUC, we have to modify the label
to make sure there is at list one sample for one label
is active/negative. The goal here is to make sure the
calculation is correct, i.e., the results from our
implementation should match some straight forward calculation.
"""
roc_auc = RocAuc(pred_name='preds')
predicted_list = []
label_list = []
for batch in self.loader:
result = self.mlc_trainer(batch)
predicted = np.array(result['preds'])
label = np.array(batch.label)
label[0] = np.ones_like(label[0]) - label[1]
label = label.astype(np.int)
roc_auc.add(predicted, label)
predicted_list.append(predicted)
label_list.append(label)
label = np.concatenate(label_list, axis=0)
predicted = np.concatenate(predicted_list, axis=0)
simple_roc_auc = roc_auc_score(label, predicted)
self.assertEqual(simple_roc_auc, roc_auc.value())
if __name__ == "__main__":
unittest.main()
|
[
"unittest.main",
"texar.torch.data.data.data_iterators.DataIterator",
"iu_xray_data.IU_XRay_Dataset",
"numpy.sum",
"numpy.ones_like",
"evaluation_metrics.HammingLoss",
"evaluation_metrics.MultiLabelF1",
"numpy.zeros",
"models.cv_model.MLCTrainer",
"sklearn.metrics.roc_auc_score",
"evaluation_metrics.MultiLabelConfusionMatrix",
"numpy.mean",
"evaluation_metrics.MultiLabelRecall",
"evaluation_metrics.RocAuc",
"numpy.array",
"torch.device",
"evaluation_metrics.MultiLabelPrecision",
"numpy.concatenate"
] |
[((6509, 6524), 'unittest.main', 'unittest.main', ([], {}), '()\n', (6522, 6524), False, 'import unittest\n'), ((2203, 2232), 'iu_xray_data.IU_XRay_Dataset', 'IU_XRay_Dataset', (['data_hparams'], {}), '(data_hparams)\n', (2218, 2232), False, 'from iu_xray_data import IU_XRay_Dataset\n'), ((2295, 2316), 'texar.torch.data.data.data_iterators.DataIterator', 'DataIterator', (['dataset'], {}), '(dataset)\n', (2307, 2316), False, 'from texar.torch.data.data.data_iterators import DataIterator\n'), ((2420, 2442), 'models.cv_model.MLCTrainer', 'MLCTrainer', (['mlc_hparam'], {}), '(mlc_hparam)\n', (2430, 2442), False, 'from models.cv_model import MLCTrainer\n'), ((2547, 2603), 'evaluation_metrics.HammingLoss', 'HammingLoss', ([], {'num_label': 'self.num_label', 'pred_name': '"""preds"""'}), "(num_label=self.num_label, pred_name='preds')\n", (2558, 2603), False, 'from evaluation_metrics import HammingLoss, MultiLabelConfusionMatrix, MultiLabelF1, MultiLabelPrecision, MultiLabelRecall, RocAuc\n'), ((2687, 2711), 'numpy.zeros', 'np.zeros', (['self.num_label'], {}), '(self.num_label)\n', (2695, 2711), True, 'import numpy as np\n'), ((3385, 3455), 'evaluation_metrics.MultiLabelConfusionMatrix', 'MultiLabelConfusionMatrix', ([], {'num_label': 'self.num_label', 'pred_name': '"""preds"""'}), "(num_label=self.num_label, pred_name='preds')\n", (3410, 3455), False, 'from evaluation_metrics import HammingLoss, MultiLabelConfusionMatrix, MultiLabelF1, MultiLabelPrecision, MultiLabelRecall, RocAuc\n'), ((3489, 3553), 'evaluation_metrics.MultiLabelPrecision', 'MultiLabelPrecision', ([], {'num_label': 'self.num_label', 'pred_name': '"""preds"""'}), "(num_label=self.num_label, pred_name='preds')\n", (3508, 3553), False, 'from evaluation_metrics import HammingLoss, MultiLabelConfusionMatrix, MultiLabelF1, MultiLabelPrecision, MultiLabelRecall, RocAuc\n'), ((3584, 3645), 'evaluation_metrics.MultiLabelRecall', 'MultiLabelRecall', ([], {'num_label': 'self.num_label', 'pred_name': '"""preds"""'}), "(num_label=self.num_label, pred_name='preds')\n", (3600, 3645), False, 'from evaluation_metrics import HammingLoss, MultiLabelConfusionMatrix, MultiLabelF1, MultiLabelPrecision, MultiLabelRecall, RocAuc\n'), ((3672, 3729), 'evaluation_metrics.MultiLabelF1', 'MultiLabelF1', ([], {'num_label': 'self.num_label', 'pred_name': '"""preds"""'}), "(num_label=self.num_label, pred_name='preds')\n", (3684, 3729), False, 'from evaluation_metrics import HammingLoss, MultiLabelConfusionMatrix, MultiLabelF1, MultiLabelPrecision, MultiLabelRecall, RocAuc\n'), ((3771, 3803), 'numpy.zeros', 'np.zeros', (['[self.num_label, 2, 2]'], {}), '([self.num_label, 2, 2])\n', (3779, 3803), True, 'import numpy as np\n'), ((4801, 4834), 'numpy.mean', 'np.mean', (['simple_cf_matrix'], {'axis': '(0)'}), '(simple_cf_matrix, axis=0)\n', (4808, 4834), True, 'import numpy as np\n'), ((5775, 5800), 'evaluation_metrics.RocAuc', 'RocAuc', ([], {'pred_name': '"""preds"""'}), "(pred_name='preds')\n", (5781, 5800), False, 'from evaluation_metrics import HammingLoss, MultiLabelConfusionMatrix, MultiLabelF1, MultiLabelPrecision, MultiLabelRecall, RocAuc\n'), ((6265, 6299), 'numpy.concatenate', 'np.concatenate', (['label_list'], {'axis': '(0)'}), '(label_list, axis=0)\n', (6279, 6299), True, 'import numpy as np\n'), ((6320, 6358), 'numpy.concatenate', 'np.concatenate', (['predicted_list'], {'axis': '(0)'}), '(predicted_list, axis=0)\n', (6334, 6358), True, 'import numpy as np\n'), ((6385, 6416), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['label', 'predicted'], {}), '(label, predicted)\n', (6398, 6416), False, 'from sklearn.metrics import roc_auc_score\n'), ((1294, 1307), 'numpy.array', 'np.array', (['(0.0)'], {}), '(0.0)\n', (1302, 1307), True, 'import numpy as np\n'), ((2252, 2271), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (2264, 2271), False, 'import torch\n'), ((2815, 2840), 'numpy.array', 'np.array', (["result['preds']"], {}), "(result['preds'])\n", (2823, 2840), True, 'import numpy as np\n'), ((2861, 2882), 'numpy.array', 'np.array', (['batch.label'], {}), '(batch.label)\n', (2869, 2882), True, 'import numpy as np\n'), ((3028, 3062), 'numpy.sum', 'np.sum', (['(predicted == label)'], {'axis': '(0)'}), '(predicted == label, axis=0)\n', (3034, 3062), True, 'import numpy as np\n'), ((3907, 3932), 'numpy.array', 'np.array', (["result['preds']"], {}), "(result['preds'])\n", (3915, 3932), True, 'import numpy as np\n'), ((3953, 3974), 'numpy.array', 'np.array', (['batch.label'], {}), '(batch.label)\n', (3961, 3974), True, 'import numpy as np\n'), ((4085, 4114), 'numpy.sum', 'np.sum', (['true_and_pred'], {'axis': '(0)'}), '(true_and_pred, axis=0)\n', (4091, 4114), True, 'import numpy as np\n'), ((4138, 4163), 'numpy.sum', 'np.sum', (['predicted'], {'axis': '(0)'}), '(predicted, axis=0)\n', (4144, 4163), True, 'import numpy as np\n'), ((4187, 4208), 'numpy.sum', 'np.sum', (['label'], {'axis': '(0)'}), '(label, axis=0)\n', (4193, 4208), True, 'import numpy as np\n'), ((5957, 5982), 'numpy.array', 'np.array', (["result['preds']"], {}), "(result['preds'])\n", (5965, 5982), True, 'import numpy as np\n'), ((6003, 6024), 'numpy.array', 'np.array', (['batch.label'], {}), '(batch.label)\n', (6011, 6024), True, 'import numpy as np\n'), ((6048, 6070), 'numpy.ones_like', 'np.ones_like', (['label[0]'], {}), '(label[0])\n', (6060, 6070), True, 'import numpy as np\n'), ((4380, 4406), 'numpy.array', 'np.array', (['[tn, fp, fn, tp]'], {}), '([tn, fp, fn, tp])\n', (4388, 4406), True, 'import numpy as np\n')]
|
# -*- encoding:utf-8 -*-
"""
选股示例因子:价格选股因子
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from .ABuPickStockBase import AbuPickStockBase, reversed_result
from ..TLineBu.ABuTL import AbuTLine
from ..CoreBu.ABuEnv import EMarketDataSplitMode
from ..MarketBu import ABuSymbolPd
from ..TradeBu import AbuBenchmark
__author__ = '阿布'
__weixin__ = 'abu_quant'
class AbuPickStockShiftDistance(AbuPickStockBase):
"""位移路程比选股因子示例类"""
def _init_self(self, **kwargs):
"""通过kwargs设置位移路程比选股条件,配置因子参数"""
self.threshold_sd = kwargs.pop('threshold_sd', 2.0)
self.threshold_max_cnt = kwargs.pop('threshold_max_cnt', 4)
self.threshold_min_cnt = kwargs.pop('threshold_min_cnt', 1)
@reversed_result
def fit_pick(self, kl_pd, target_symbol):
"""开始根据位移路程比边际参数进行选股"""
pick_line = AbuTLine(kl_pd.close, 'shift distance')
shift_distance = pick_line.show_shift_distance(step_x=1.2, show_log=False, show=False)
shift_distance = np.array(shift_distance)
# show_shift_distance返回的参数为四组数据,最后一组是每个时间段的位移路程比值
sd_arr = shift_distance[:, -1]
# 大于阀值的进行累加和计算
# noinspection PyUnresolvedReferences
threshold_cnt = (sd_arr >= self.threshold_sd).sum()
# 边际条件参数开始生效
if self.threshold_max_cnt > threshold_cnt >= self.threshold_min_cnt:
return True
return False
def fit_first_choice(self, pick_worker, choice_symbols, *args, **kwargs):
raise NotImplementedError('AbuPickStockShiftDistance fit_first_choice unsupported now!')
class AbuPickStockNTop(AbuPickStockBase):
"""根据一段时间内的涨幅选取top N个"""
def _init_self(self, **kwargs):
"""通过kwargs设置选股条件,配置因子参数"""
# 选股参数symbol_pool:进行涨幅比较的top n个symbol
self.symbol_pool = kwargs.pop('symbol_pool', [])
# 选股参数n_top:选取前n_top个symbol, 默认3
self.n_top = kwargs.pop('n_top', 3)
# 选股参数direction_top:选取前n_top个的方向,即选择涨的多的,还是选择跌的多的
self.direction_top = kwargs.pop('direction_top', 1)
@reversed_result
def fit_pick(self, kl_pd, target_symbol):
"""开始根据参数进行选股"""
if len(self.symbol_pool) == 0:
# 如果没有传递任何参照序列symbol,择默认为选中
return True
# 定义lambda函数计算周期内change
kl_change = lambda p_kl: \
p_kl.iloc[-1].close / p_kl.iloc[0].close if p_kl.iloc[0].close != 0 else 0
cmp_top_array = []
kl_pd.name = target_symbol
# AbuBenchmark直接传递一个kl
benchmark = AbuBenchmark(benchmark_kl_pd=kl_pd)
for symbol in self.symbol_pool:
if symbol != target_symbol:
# 使用benchmark模式进行获取
kl = ABuSymbolPd.make_kl_df(symbol, data_mode=EMarketDataSplitMode.E_DATA_SPLIT_UNDO,
benchmark=benchmark)
# kl = ABuSymbolPd.make_kl_df(symbol, start=start, end=end)
if kl is not None and kl.shape[0] > kl_pd.shape[0] * 0.75:
# 需要获取实际交易日数量,避免停盘等错误信号
cmp_top_array.append(kl_change(kl))
if self.n_top > len(cmp_top_array):
# 如果结果序列不足n_top个,直接认为选中
return True
# 与选股方向相乘,即结果只去top
cmp_top_array = np.array(cmp_top_array) * self.direction_top
# 计算本源的周期内涨跌幅度
target_change = kl_change(kl_pd) * self.direction_top
# sort排序小-》大, 非inplace
cmp_top_array.sort()
# [::-1]大-》小
# noinspection PyTypeChecker
if target_change > cmp_top_array[::-1][self.n_top - 1]:
# 如果比排序后的第self.n_top位置上的大就认为选中
return True
return False
def fit_first_choice(self, pick_worker, choice_symbols, *args, **kwargs):
raise NotImplementedError('AbuPickStockNTop fit_first_choice unsupported now!')
|
[
"numpy.array"
] |
[((1076, 1100), 'numpy.array', 'np.array', (['shift_distance'], {}), '(shift_distance)\n', (1084, 1100), True, 'import numpy as np\n'), ((3289, 3312), 'numpy.array', 'np.array', (['cmp_top_array'], {}), '(cmp_top_array)\n', (3297, 3312), True, 'import numpy as np\n')]
|
import matplotlib.pyplot as plt
import numpy as np
import cv2
from os import path
from math import floor
import os
cwd = os.getcwd()
dirname = path.join(cwd, path.dirname(__file__))
class DIP:
def bilinear_insert(self, img, gain_x=1.5, gain_y=1.5):
H, W, C = img.shape
gain_h = round(H*gain_x)
gain_w = round(W*gain_y)
h_ind = np.floor(np.arange(gain_h) / gain_x).astype(np.int)
w_ind = np.floor(np.arange(gain_w) / gain_y).astype(np.int)
out = img[:, w_ind][h_ind, :]
return out
if __name__ == '__main__':
dip = DIP()
img = cv2.imread(path.join(dirname, '../imori.jpg')).astype(np.float)
out = dip.bilinear_insert(img, gain_x=2, gain_y=2)
cv2.imwrite(path.join(dirname, './imori_out25.jpg'), out)
|
[
"os.getcwd",
"os.path.dirname",
"os.path.join",
"numpy.arange"
] |
[((123, 134), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (132, 134), False, 'import os\n'), ((160, 182), 'os.path.dirname', 'path.dirname', (['__file__'], {}), '(__file__)\n', (172, 182), False, 'from os import path\n'), ((739, 778), 'os.path.join', 'path.join', (['dirname', '"""./imori_out25.jpg"""'], {}), "(dirname, './imori_out25.jpg')\n", (748, 778), False, 'from os import path\n'), ((614, 648), 'os.path.join', 'path.join', (['dirname', '"""../imori.jpg"""'], {}), "(dirname, '../imori.jpg')\n", (623, 648), False, 'from os import path\n'), ((378, 395), 'numpy.arange', 'np.arange', (['gain_h'], {}), '(gain_h)\n', (387, 395), True, 'import numpy as np\n'), ((446, 463), 'numpy.arange', 'np.arange', (['gain_w'], {}), '(gain_w)\n', (455, 463), True, 'import numpy as np\n')]
|
import os
import cv2
import numpy as np
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout
from sklearn.model_selection import train_test_split
X = []
y = []
data_path = "./data"
for number in os.listdir(data_path):
for img_name in os.listdir(os.path.join(data_path, number)):
y.append(int(number))
img = cv2.imread(os.path.join(data_path, number, img_name))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#_, img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY)
X.append(img)
X = np.asarray(X)
X = X/255
X = X.reshape(X.shape[0], 28, 28, 1)
y = np.asarray(y)
y = np_utils.to_categorical(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = Sequential()
num_classes = 10
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy'])
print(model.summary())
batch_size = 32
epochs = 20
history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1)
print("\n\nTest metrics")
print(model.metrics_names)
print(model.evaluate(X_test, y_test))
model.save("./model", overwrite=True)
|
[
"cv2.cvtColor",
"sklearn.model_selection.train_test_split",
"numpy.asarray",
"keras.layers.MaxPooling2D",
"keras.layers.Dropout",
"keras.layers.Flatten",
"keras.utils.np_utils.to_categorical",
"keras.layers.Dense",
"keras.layers.Conv2D",
"keras.models.Sequential",
"os.path.join",
"os.listdir"
] |
[((284, 305), 'os.listdir', 'os.listdir', (['data_path'], {}), '(data_path)\n', (294, 305), False, 'import os\n'), ((613, 626), 'numpy.asarray', 'np.asarray', (['X'], {}), '(X)\n', (623, 626), True, 'import numpy as np\n'), ((678, 691), 'numpy.asarray', 'np.asarray', (['y'], {}), '(y)\n', (688, 691), True, 'import numpy as np\n'), ((696, 722), 'keras.utils.np_utils.to_categorical', 'np_utils.to_categorical', (['y'], {}), '(y)\n', (719, 722), False, 'from keras.utils import np_utils\n'), ((761, 798), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)'}), '(X, y, test_size=0.2)\n', (777, 798), False, 'from sklearn.model_selection import train_test_split\n'), ((808, 820), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (818, 820), False, 'from keras.models import Sequential\n'), ((849, 923), 'keras.layers.Conv2D', 'Conv2D', (['(32)'], {'kernel_size': '(3, 3)', 'activation': '"""relu"""', 'input_shape': '(28, 28, 1)'}), "(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1))\n", (855, 923), False, 'from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout\n'), ((935, 972), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'activation': '"""relu"""'}), "(64, (3, 3), activation='relu')\n", (941, 972), False, 'from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout\n'), ((984, 1014), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (996, 1014), False, 'from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout\n'), ((1026, 1039), 'keras.layers.Dropout', 'Dropout', (['(0.25)'], {}), '(0.25)\n', (1033, 1039), False, 'from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout\n'), ((1051, 1060), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (1058, 1060), False, 'from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout\n'), ((1072, 1101), 'keras.layers.Dense', 'Dense', (['(128)'], {'activation': '"""relu"""'}), "(128, activation='relu')\n", (1077, 1101), False, 'from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout\n'), ((1113, 1125), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (1120, 1125), False, 'from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout\n'), ((1137, 1177), 'keras.layers.Dense', 'Dense', (['num_classes'], {'activation': '"""softmax"""'}), "(num_classes, activation='softmax')\n", (1142, 1177), False, 'from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout\n'), ((338, 369), 'os.path.join', 'os.path.join', (['data_path', 'number'], {}), '(data_path, number)\n', (350, 369), False, 'import os\n'), ((484, 521), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2GRAY'], {}), '(img, cv2.COLOR_BGR2GRAY)\n', (496, 521), False, 'import cv2\n'), ((427, 468), 'os.path.join', 'os.path.join', (['data_path', 'number', 'img_name'], {}), '(data_path, number, img_name)\n', (439, 468), False, 'import os\n')]
|
from zenoh_service.core.zenoh_net import ZenohNet
from zenoh_service.zenoh_net_publisher import ZenohNetPublisher
import sys
import time
from datetime import datetime
import numpy as np
import cv2
import simplejson as json
from enum import Enum
import logging
import argparse
# from hurry.filesize import size as fsize
from pycore.extras.functions import humanbytes as fsize
try:
import nanocamera as nano
except:
print("[WARNING] Unable to load `nanocamera` module")
# Encoding parameter
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 70] # The default value for IMWRITE_JPEG_QUALITY is 95
# --- [START] Command line argument parsing --- --- --- --- --- ---
parser = argparse.ArgumentParser(
description='Zenoh Publisher example')
parser.add_argument('--camera', '-m', dest='camera', # e.g. 172.16.17.32 (Little Boy)
default=2, # `1`=JetsonNano; `2`=Normal Camera (PC/Laptop/etc)
type=int,
help='The name of the resource to publish.')
parser.add_argument('--peer', '-e', dest='peer', # e.g. 172.16.17.32 (Little Boy)
metavar='LOCATOR',
action='append',
type=str,
help='Peer locators used to initiate the zenoh session.')
parser.add_argument('--path', '-p', dest='path',
default='/eaglestitch/svc/zenoh-python-pub',
type=str,
help='The name of the resource to publish.')
parser.add_argument('--video', '-v', dest='video',
default="0",
type=str,
help='The name of the resource to publish.')
parser.add_argument('--cvout', dest='cvout', action='store_true', help="Use CV Out")
parser.set_defaults(cvout=False)
# parser.add_argument('--no-compress', dest='compress', action='store_false', help="Use CV Out")
# parser.set_defaults(compress=True)
args = parser.parse_args()
# --- [END] Command line argument parsing --- --- --- --- --- ---
###
L = logging.getLogger(__name__)
###
def encrypt_str(str_val, byteorder="little"):
encrypted_bytes = str_val.encode('utf-8')
encrypted_val = int.from_bytes(encrypted_bytes, byteorder) # `byteorder` must be either 'little' or 'big'
return encrypted_val # max 19 digit
def get_capture_camera(capt, cam_mode):
if cam_mode == 1:
return capt.isReady()
else:
return cap.isOpened()
peer = args.peer
if peer is not None:
peer = ",".join(args.peer)
video_path = args.video
if video_path == "0":
video_path = int(video_path)
# Enable / disable cvout
_enable_cv_out = args.cvout
# configure zenoh service
path = args.path
z_svc = ZenohNetPublisher(
_path=path, _session_type="PUBLISHER", _peer=peer
)
z_svc.init_connection()
# register and collect publisher object
z_svc.register()
publisher = z_svc.get_publisher()
#########################
# Zenoh related variables
itype = 3
encoder_format = [
('id', 'U10'),
('timestamp', 'f'),
('data', [('flatten', 'i')], (1, 6220800)),
('store_enabled', '?'),
]
window_title = "output-raw"
if args.camera == 1:
try:
cap = nano.Camera(camera_type=1)
except:
print("[ERROR] Unable to load `nano` package")
exit(0)
elif args.camera == 2:
cap = cv2.VideoCapture(video_path)
# cap = cv2.VideoCapture(0)
# cap = cv2.VideoCapture("/home/ardi/devel/nctu/IBM-Lab/eaglestitch/data/videos/0312_2_CUT.mp4")
# cap = cv2.VideoCapture("/home/tim/devel/eaglestitch/data/videos/samer/0312_1_LtoR_1.mp4")
# cap = cv2.VideoCapture("/home/ardi/devel/nctu/IBM-Lab/eaglestitch/data/videos/samer/0312_1_LtoR_1.mp4")
else:
print("[ERROR] Unrecognized camera mode")
exit(0)
if _enable_cv_out:
cv2.namedWindow(window_title, cv2.WND_PROP_FULLSCREEN)
# cv2.resizeWindow("Image", 1920, 1080) # Enter your size
cv2.resizeWindow(window_title, 800, 550) # Enter your size
_frame_id = 0
_wt, _ht = 1080, 1920 # target width and height
_w, _h = None, None # default detected width and height
# IMPORTANT
_is_compressed = True # it enables/disables image compression when sending image frames
# Extra information (to be tagged into the frame)
int_drone_id = encrypt_str("Drone 01") # contains 1 extra slot
t0_array = str(time.time()).split(".") # contains 2 extra slots
extra_len = 5 # contains 1 extra slot; another one slot is from `tagged_data_len` variable
# while cap.isOpened():
while get_capture_camera(cap, args.camera):
_frame_id += 1
# ret = a boolean return value from getting the frame, frame = the current frame being projected in the video
try:
if args.camera == 1: # jetson nano
ret, frame = True, cap.read()
else:
ret, frame = cap.read()
# do it ONCE
# detect width and height
if _w is None:
_w, _h, _ = frame.shape
t0_decoding = time.time()
# resize the frame; Default VGA (640 x 480) for Laptop camera
if _w != _wt:
frame = cv2.resize(frame, (1920, 1080))
# print size
print(" >>> FRAME Size BEFORE compression: {} or {}".format(frame.nbytes, fsize(frame.nbytes)))
# compress image (if enabled)
if _is_compressed:
# NEW encoding method
# print(" ### compress image (if enabled)")
encoder_format = None # disable custom encoder
itype = 4 # new type specially for compressed image
t0_img_compression = time.time()
_, compressed_img = cv2.imencode('.jpg', frame, encode_param)
compressed_img_len, _ = compressed_img.shape
t1_img_compression = (time.time() - t0_img_compression) * 1000
print(('[%s] Latency Image Compression (%.3f ms) ' % (
datetime.now().strftime("%H:%M:%S"), t1_img_compression)))
tagged_data_len = compressed_img_len + extra_len # `tagged_data_len` itself contains 1 extra slot
# cv2.imwrite("hasil.jpg", decimg)
# print size
print(" >>> FRAME Size AFTER compression: {} or {}".format(compressed_img.nbytes, fsize(compressed_img.nbytes)))
# vertically tag this frame with an extra inforamtion
t0_tag_extraction = time.time()
tagged_info = [
[int_drone_id],
[int(t0_array[0])],
[int(t0_array[1])],
[extra_len],
[tagged_data_len],
]
# print(" ----- OLD SHAPE compressed_img:", compressed_img.shape)
val = np.vstack([compressed_img, tagged_info])
t1_tag_extraction = (time.time() - t0_tag_extraction) * 1000
print(('[%s] Latency Image Taging (%.3f ms) ' % (datetime.now().strftime("%H:%M:%S"), t1_tag_extraction)))
else:
# OLD enconding method
val = [('Drone 1', time.time(), frame.tobytes())]
t1_decoding = (time.time() - t0_decoding) * 1000
print(('\n[%s] Latency tagging (%.3f ms) \n' % (datetime.now().strftime("%H:%M:%S"), t1_decoding)))
# OLD enconding method
# # img_1d = frame.reshape(1, -1)
# # val = [('Drone 1', time.time(), img_1d, False)]
# # val = [('Drone 1', time.time(), imgencode, False)]
# val = [('Drone 1', time.time(), imgencode.tobytes())]
# t1_decoding = (time.time() - t0_decoding) * 1000
# print(('\n[%s] Latency tagging (%.3f ms) \n' % (datetime.now().strftime("%H:%M:%S"), t1_decoding)))
# publish in every 2 frames
if ret and _frame_id % 2 == 0:
# publish data
z_svc.publish(
_val=val,
_itype=itype,
_encoder=encoder_format,
)
# time.sleep(1)
if _enable_cv_out:
cv2.imshow(window_title, frame)
print()
except Exception as e:
print("No more frame to show: `{}`".format(e))
break
if _enable_cv_out:
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if _enable_cv_out:
# The following frees up resources and closes all windows
cap.release()
cv2.destroyAllWindows()
#########################
# n_epoch = 5 # total number of publication processes
# # for i in range(n_epoch):
# while True:
# # publish data
# z_svc.publish(
# _val=val,
# _itype=itype,
# _encoder=encoder_format,
# )
#
# time.sleep(0.33)
# closing Zenoh publisher & session
z_svc.close_connection(publisher)
|
[
"cv2.resize",
"argparse.ArgumentParser",
"cv2.waitKey",
"nanocamera.Camera",
"cv2.imshow",
"logging.getLogger",
"time.time",
"cv2.VideoCapture",
"pycore.extras.functions.humanbytes",
"cv2.imencode",
"numpy.vstack",
"cv2.resizeWindow",
"cv2.destroyAllWindows",
"datetime.datetime.now",
"zenoh_service.zenoh_net_publisher.ZenohNetPublisher",
"cv2.namedWindow"
] |
[((674, 736), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Zenoh Publisher example"""'}), "(description='Zenoh Publisher example')\n", (697, 736), False, 'import argparse\n'), ((2016, 2043), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2033, 2043), False, 'import logging\n'), ((2653, 2721), 'zenoh_service.zenoh_net_publisher.ZenohNetPublisher', 'ZenohNetPublisher', ([], {'_path': 'path', '_session_type': '"""PUBLISHER"""', '_peer': 'peer'}), "(_path=path, _session_type='PUBLISHER', _peer=peer)\n", (2670, 2721), False, 'from zenoh_service.zenoh_net_publisher import ZenohNetPublisher\n'), ((3656, 3710), 'cv2.namedWindow', 'cv2.namedWindow', (['window_title', 'cv2.WND_PROP_FULLSCREEN'], {}), '(window_title, cv2.WND_PROP_FULLSCREEN)\n', (3671, 3710), False, 'import cv2\n'), ((3772, 3812), 'cv2.resizeWindow', 'cv2.resizeWindow', (['window_title', '(800)', '(550)'], {}), '(window_title, 800, 550)\n', (3788, 3812), False, 'import cv2\n'), ((7477, 7500), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (7498, 7500), False, 'import cv2\n'), ((3096, 3122), 'nanocamera.Camera', 'nano.Camera', ([], {'camera_type': '(1)'}), '(camera_type=1)\n', (3107, 3122), True, 'import nanocamera as nano\n'), ((3221, 3249), 'cv2.VideoCapture', 'cv2.VideoCapture', (['video_path'], {}), '(video_path)\n', (3237, 3249), False, 'import cv2\n'), ((4740, 4751), 'time.time', 'time.time', ([], {}), '()\n', (4749, 4751), False, 'import time\n'), ((4185, 4196), 'time.time', 'time.time', ([], {}), '()\n', (4194, 4196), False, 'import time\n'), ((4843, 4874), 'cv2.resize', 'cv2.resize', (['frame', '(1920, 1080)'], {}), '(frame, (1920, 1080))\n', (4853, 4874), False, 'import cv2\n'), ((5246, 5257), 'time.time', 'time.time', ([], {}), '()\n', (5255, 5257), False, 'import time\n'), ((5281, 5322), 'cv2.imencode', 'cv2.imencode', (['""".jpg"""', 'frame', 'encode_param'], {}), "('.jpg', frame, encode_param)\n", (5293, 5322), False, 'import cv2\n'), ((5912, 5923), 'time.time', 'time.time', ([], {}), '()\n', (5921, 5923), False, 'import time\n'), ((6134, 6174), 'numpy.vstack', 'np.vstack', (['[compressed_img, tagged_info]'], {}), '([compressed_img, tagged_info])\n', (6143, 6174), True, 'import numpy as np\n'), ((7189, 7220), 'cv2.imshow', 'cv2.imshow', (['window_title', 'frame'], {}), '(window_title, frame)\n', (7199, 7220), False, 'import cv2\n'), ((4967, 4986), 'pycore.extras.functions.humanbytes', 'fsize', (['frame.nbytes'], {}), '(frame.nbytes)\n', (4972, 4986), True, 'from pycore.extras.functions import humanbytes as fsize\n'), ((7338, 7352), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (7349, 7352), False, 'import cv2\n'), ((5396, 5407), 'time.time', 'time.time', ([], {}), '()\n', (5405, 5407), False, 'import time\n'), ((5800, 5828), 'pycore.extras.functions.humanbytes', 'fsize', (['compressed_img.nbytes'], {}), '(compressed_img.nbytes)\n', (5805, 5828), True, 'from pycore.extras.functions import humanbytes as fsize\n'), ((6199, 6210), 'time.time', 'time.time', ([], {}), '()\n', (6208, 6210), False, 'import time\n'), ((6405, 6416), 'time.time', 'time.time', ([], {}), '()\n', (6414, 6416), False, 'import time\n'), ((6454, 6465), 'time.time', 'time.time', ([], {}), '()\n', (6463, 6465), False, 'import time\n'), ((5499, 5513), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5511, 5513), False, 'from datetime import datetime\n'), ((6291, 6305), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (6303, 6305), False, 'from datetime import datetime\n'), ((6539, 6553), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (6551, 6553), False, 'from datetime import datetime\n')]
|
import numpy as np
from vec_io import fvecs_read
from sorter import parallel_sort
from lsh import SRP
from transform import spherical_transform, simple_lsh
def intersect(gs, ids):
rc = np.mean([
len(np.intersect1d(g, list(id)))
for g, id in zip(gs, ids)])
return rc
def recalls(index, q_, gt):
ks = [20, 100]
ts = [16, 128, 1024]
print(" Probed \t Items \t", end="")
for top_k in ks:
print("top-%d\t" % (top_k), end="")
print()
for t in ts:
ids = index.search(q_, t)
items = np.mean([len(id) for id in ids])
print("%6d \t %6d \t" % (t, items), end="")
for top_k in ks:
rc = intersect(gt[:, :top_k], ids)
print("%.4f \t" % (rc / float(top_k)), end="")
print()
def load_data():
dataset = "netflix"
base = "/home/xinyan/program/data/"
# dataset = "imagenet"
# base = "/research/jcheng2/xinyan/data/"
x_path = "{}{}/{}_base.fvecs".format(base, dataset, dataset)
q_path = "{}{}/{}_query.fvecs".format(base, dataset, dataset)
x = fvecs_read(x_path)
q = fvecs_read(q_path)[:1000]
return x, q
def main():
x, q = load_data()
n, d = x.shape
np.random.seed(808)
w = np.random.uniform(size=d)
w = w / np.linalg.norm(w)
gt = parallel_sort(x, q, w, metric="weighted")
ks = 256
print("==================spherical_transform====================")
x_, q_ = spherical_transform(x, q, w)
n_, d_ = x_.shape
np.random.seed(808)
index = SRP(k=ks, d=d_)
index.add(x_)
recalls(index, q_, gt)
if __name__ == "__main__":
main()
|
[
"numpy.random.uniform",
"numpy.random.seed",
"sorter.parallel_sort",
"vec_io.fvecs_read",
"transform.spherical_transform",
"numpy.linalg.norm",
"lsh.SRP"
] |
[((1078, 1096), 'vec_io.fvecs_read', 'fvecs_read', (['x_path'], {}), '(x_path)\n', (1088, 1096), False, 'from vec_io import fvecs_read\n'), ((1208, 1227), 'numpy.random.seed', 'np.random.seed', (['(808)'], {}), '(808)\n', (1222, 1227), True, 'import numpy as np\n'), ((1236, 1261), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'd'}), '(size=d)\n', (1253, 1261), True, 'import numpy as np\n'), ((1302, 1343), 'sorter.parallel_sort', 'parallel_sort', (['x', 'q', 'w'], {'metric': '"""weighted"""'}), "(x, q, w, metric='weighted')\n", (1315, 1343), False, 'from sorter import parallel_sort\n'), ((1443, 1471), 'transform.spherical_transform', 'spherical_transform', (['x', 'q', 'w'], {}), '(x, q, w)\n', (1462, 1471), False, 'from transform import spherical_transform, simple_lsh\n'), ((1498, 1517), 'numpy.random.seed', 'np.random.seed', (['(808)'], {}), '(808)\n', (1512, 1517), True, 'import numpy as np\n'), ((1530, 1545), 'lsh.SRP', 'SRP', ([], {'k': 'ks', 'd': 'd_'}), '(k=ks, d=d_)\n', (1533, 1545), False, 'from lsh import SRP\n'), ((1105, 1123), 'vec_io.fvecs_read', 'fvecs_read', (['q_path'], {}), '(q_path)\n', (1115, 1123), False, 'from vec_io import fvecs_read\n'), ((1274, 1291), 'numpy.linalg.norm', 'np.linalg.norm', (['w'], {}), '(w)\n', (1288, 1291), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""
Create my own style of colorbar
"""
__title__ = "Replace Hex Colors"
__author__ = "<NAME>"
__version__ = "1.1(19.02.2018)"
__email__ = "<EMAIL>"
#==============================================================================
# modules
import numpy as np
import matplotlib as mpl
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.colors as mpc
# import webcolors as wc
import ipdb
#==============================================================================
def ReplaceHexColor(cmaplist, cmin, cmax, color = '#FFFFFF', ticks=None, zeroR = None):
"""
Take a list of hex values, insert white in as a color, define some bounds
args:
cmapList
"""
# ========== Setup the parpmaters ==========
# Get the size
cmapsize = int(len(cmaplist))
# get the number of ticks
tickinter = (cmax-cmin)/(float(cmapsize))
# ========== add the color to the list ==========
cmaplist.insert(int(cmapsize/2), color)
# =========== Remove the weak colors ==========
# del cmaplist[cmapsize/2+1]
# del cmaplist[cmapsize/2-1]
# cmaplist.insert(0, cmaplist[0])
# cmaplist.insert(-1, cmaplist[-1])
# pdb.set_trace()
if zeroR is None:
if cmax < 0.01:
zerob = 0.000001
else:
zerob = 0.0001
else:
zerob = zeroR
# Set the tick values
try:
if ticks is None:
ticks = np.round(np.arange(cmin, (cmax+0.00001), tickinter), decimals=6)
spacing = 'proportional'
bounds = np.hstack(
(
ticks[:int(cmapsize/2)],
np.array([-zerob, zerob]),
ticks[int(cmapsize/2+1):]
)
)
else:
spacing = 'uniform'
bounds = np.hstack(
(
ticks[:int(cmapsize/2)],
np.array([-zerob, zerob]),
ticks[int(cmapsize/2+1):]
)
)
ticks = np.hstack(
(ticks[:int(cmapsize/2)],
np.array([-zerob,ticks[int(cmapsize/2)], zerob]),
ticks[int(cmapsize/2+1):]))
except Exception as e:
print(str(e))
ipdb.set_trace()
# ========== create the colormap ==========
cmap = mpl.colors.ListedColormap(cmaplist)
cmap.set_over(cmaplist[-1])
cmap.set_under(cmaplist[0])
# ========== Define the bounds and norm ==========
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
# ========== Return cmap and infomation ==========
return cmap, norm, ticks, bounds, spacing
|
[
"ipdb.set_trace",
"matplotlib.colors.BoundaryNorm",
"numpy.array",
"numpy.arange",
"matplotlib.colors.ListedColormap"
] |
[((2074, 2109), 'matplotlib.colors.ListedColormap', 'mpl.colors.ListedColormap', (['cmaplist'], {}), '(cmaplist)\n', (2099, 2109), True, 'import matplotlib as mpl\n'), ((2243, 2282), 'matplotlib.colors.BoundaryNorm', 'mpl.colors.BoundaryNorm', (['bounds', 'cmap.N'], {}), '(bounds, cmap.N)\n', (2266, 2282), True, 'import matplotlib as mpl\n'), ((1994, 2010), 'ipdb.set_trace', 'ipdb.set_trace', ([], {}), '()\n', (2008, 2010), False, 'import ipdb\n'), ((1405, 1445), 'numpy.arange', 'np.arange', (['cmin', '(cmax + 1e-05)', 'tickinter'], {}), '(cmin, cmax + 1e-05, tickinter)\n', (1414, 1445), True, 'import numpy as np\n'), ((1557, 1582), 'numpy.array', 'np.array', (['[-zerob, zerob]'], {}), '([-zerob, zerob])\n', (1565, 1582), True, 'import numpy as np\n'), ((1730, 1755), 'numpy.array', 'np.array', (['[-zerob, zerob]'], {}), '([-zerob, zerob])\n', (1738, 1755), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import json
import random
from typing import List, Optional, Tuple
import cv2
import numpy as np
import torchvision.transforms as T
from detectron2.config import CfgNode
from detectron2.data.transforms import Transform, TransformGen, NoOpTransform
from .build import TRANSFORM_OP_REGISTRY
class AffineTransform(Transform):
def __init__(
self,
M: np.ndarray,
img_w: int,
img_h: int,
flags: Optional[int] = None,
border_mode: Optional[int] = None,
is_inversed_M: bool = False,
):
"""
Args:
will transform img according to affine transform M
"""
super().__init__()
self._set_attributes(locals())
self.warp_kwargs = {}
if flags is not None:
self.warp_kwargs["flags"] = flags
if border_mode is not None:
self.warp_kwargs["borderMode"] = border_mode
def apply_image(self, img: np.ndarray) -> np.ndarray:
M = self.M
if self.is_inversed_M:
M = M[:2]
img = cv2.warpAffine(
img,
M,
(int(self.img_w), (self.img_h)),
**self.warp_kwargs,
)
return img
def apply_coords(self, coords: np.ndarray) -> np.ndarray:
# Add row of ones to enable matrix multiplication
coords = coords.T
ones = np.ones((1, coords.shape[1]))
coords = np.vstack((coords, ones))
M = self.M
if self.is_inversed_M:
M = np.linalg.inv(M)
coords = (M @ coords)[:2, :].T
return coords
class RandomPivotScaling(TransformGen):
"""
Uniformly pick a random pivot point inside image frame, scaling the image
around the pivot point using the scale factor sampled from a list of
given scales. The pivot point's location is unchanged after the transform.
Arguments:
scales: List[float]: each element can be any positive float number,
when larger than 1.0 objects become larger after transform
and vice versa.
"""
def __init__(self, scales: List[int]):
super().__init__()
self._init(locals())
self.scales = scales
def get_transform(self, img: np.ndarray) -> Transform:
img_h, img_w, _ = img.shape
img_h = float(img_h)
img_w = float(img_w)
pivot_y = self._rand_range(0.0, img_h)
pivot_x = self._rand_range(0.0, img_w)
def _interp(p1, p2, alpha):
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
p_x = p1[0] + alpha * dx
p_y = p1[1] + alpha * dy
return (p_x, p_y)
scale = np.random.choice(self.scales)
lt = (0.0, 0.0)
rb = (img_w, img_h)
pivot = (pivot_x, pivot_y)
pts1 = np.float32([lt, pivot, rb])
pts2 = np.float32(
[_interp(pivot, lt, scale), pivot, _interp(pivot, rb, scale)],
)
M = cv2.getAffineTransform(pts1, pts2)
return AffineTransform(M, img_w, img_h)
class RandomAffine(TransformGen):
"""
Apply random affine trasform to the image given
probabilities and ranges in each dimension.
"""
def __init__(
self,
prob: float = 0.5,
angle_range: Tuple[float, float] = (-90, 90),
translation_range: Tuple[float, float] = (0, 0),
scale_range: Tuple[float, float] = (1.0, 1.0),
shear_range: Tuple[float, float] = (0, 0),
):
"""
Args:
prob (float): probability of applying transform.
angle_range (tuple of integers): min/max rotation angle in degrees
between -180 and 180.
translation_range (tuple of integers): min/max translation
(post re-centered rotation).
scale_range (tuple of floats): min/max scale (post re-centered rotation).
shear_range (tuple of intgers): min/max shear angle value in degrees
between -180 to 180.
"""
super().__init__()
# Turn all locals into member variables.
self._init(locals())
def get_transform(self, img: np.ndarray) -> Transform:
im_h, im_w = img.shape[:2]
max_size = max(im_w, im_h)
center = [im_w / 2, im_h / 2]
angle = random.uniform(self.angle_range[0], self.angle_range[1])
translation = [
random.uniform(self.translation_range[0], self.translation_range[1]),
random.uniform(self.translation_range[0], self.translation_range[1]),
]
scale = random.uniform(self.scale_range[0], self.scale_range[1])
shear = [
random.uniform(self.shear_range[0], self.shear_range[1]),
random.uniform(self.shear_range[0], self.shear_range[1]),
]
dummy_translation = [0.0, 0.0]
dummy_scale = 1.0
M_inv = T.functional._get_inverse_affine_matrix(
center, angle, dummy_translation, dummy_scale, shear
)
M_inv.extend([0.0, 0.0, 1.0])
M_inv = np.array(M_inv).reshape((3, 3))
M = np.linalg.inv(M_inv)
# Center in output patch
img_corners = np.array(
[
[0, 0, im_w, im_w],
[0, im_h, 0, im_h],
[1, 1, 1, 1],
]
)
transformed_corners = M @ img_corners
x_min = np.amin(transformed_corners[0])
x_max = np.amax(transformed_corners[0])
x_range = np.ceil(x_max - x_min)
y_min = np.amin(transformed_corners[1])
y_max = np.amax(transformed_corners[1])
y_range = np.ceil(y_max - y_min)
# Apply translation and scale after centering in output patch
translation_adjustment = [(max_size - im_w) / 2, (max_size - im_h) / 2]
translation[0] += translation_adjustment[0]
translation[1] += translation_adjustment[1]
scale_adjustment = min(max_size / x_range, max_size / y_range)
scale *= scale_adjustment
M_inv = T.functional._get_inverse_affine_matrix(
center, angle, translation, scale, shear
)
# Convert to Numpy matrix so it can be inverted
M_inv.extend([0.0, 0.0, 1.0])
M_inv = np.array(M_inv).reshape((3, 3))
M = np.linalg.inv(M_inv)
do = self._rand_range() < self.prob
if do:
return AffineTransform(
M_inv,
max_size,
max_size,
flags=cv2.WARP_INVERSE_MAP + cv2.INTER_LINEAR,
border_mode=cv2.BORDER_REPLICATE,
is_inversed_M=True,
)
else:
return NoOpTransform()
# example repr: "RandomPivotScalingOp::[1.0, 0.75, 0.5]"
@TRANSFORM_OP_REGISTRY.register()
def RandomPivotScalingOp(cfg: CfgNode, arg_str: str, is_train: bool) -> List[Transform]:
assert is_train
scales = json.loads(arg_str)
assert isinstance(scales, list)
assert all(isinstance(scale, (float, int)) for scale in scales)
return [RandomPivotScaling(scales=scales)]
@TRANSFORM_OP_REGISTRY.register()
def RandomAffineOp(cfg: CfgNode, arg_str: str, is_train: bool) -> List[Transform]:
assert is_train
kwargs = json.loads(arg_str) if arg_str is not None else {}
assert isinstance(kwargs, dict)
return [RandomAffine(**kwargs)]
|
[
"json.loads",
"numpy.amin",
"random.uniform",
"numpy.ceil",
"numpy.float32",
"numpy.ones",
"detectron2.data.transforms.NoOpTransform",
"torchvision.transforms.functional._get_inverse_affine_matrix",
"numpy.amax",
"numpy.linalg.inv",
"cv2.getAffineTransform",
"numpy.array",
"numpy.random.choice",
"numpy.vstack"
] |
[((6971, 6990), 'json.loads', 'json.loads', (['arg_str'], {}), '(arg_str)\n', (6981, 6990), False, 'import json\n'), ((1468, 1497), 'numpy.ones', 'np.ones', (['(1, coords.shape[1])'], {}), '((1, coords.shape[1]))\n', (1475, 1497), True, 'import numpy as np\n'), ((1515, 1540), 'numpy.vstack', 'np.vstack', (['(coords, ones)'], {}), '((coords, ones))\n', (1524, 1540), True, 'import numpy as np\n'), ((2761, 2790), 'numpy.random.choice', 'np.random.choice', (['self.scales'], {}), '(self.scales)\n', (2777, 2790), True, 'import numpy as np\n'), ((2893, 2920), 'numpy.float32', 'np.float32', (['[lt, pivot, rb]'], {}), '([lt, pivot, rb])\n', (2903, 2920), True, 'import numpy as np\n'), ((3046, 3080), 'cv2.getAffineTransform', 'cv2.getAffineTransform', (['pts1', 'pts2'], {}), '(pts1, pts2)\n', (3068, 3080), False, 'import cv2\n'), ((4378, 4434), 'random.uniform', 'random.uniform', (['self.angle_range[0]', 'self.angle_range[1]'], {}), '(self.angle_range[0], self.angle_range[1])\n', (4392, 4434), False, 'import random\n'), ((4649, 4705), 'random.uniform', 'random.uniform', (['self.scale_range[0]', 'self.scale_range[1]'], {}), '(self.scale_range[0], self.scale_range[1])\n', (4663, 4705), False, 'import random\n'), ((4956, 5053), 'torchvision.transforms.functional._get_inverse_affine_matrix', 'T.functional._get_inverse_affine_matrix', (['center', 'angle', 'dummy_translation', 'dummy_scale', 'shear'], {}), '(center, angle, dummy_translation,\n dummy_scale, shear)\n', (4995, 5053), True, 'import torchvision.transforms as T\n'), ((5170, 5190), 'numpy.linalg.inv', 'np.linalg.inv', (['M_inv'], {}), '(M_inv)\n', (5183, 5190), True, 'import numpy as np\n'), ((5247, 5311), 'numpy.array', 'np.array', (['[[0, 0, im_w, im_w], [0, im_h, 0, im_h], [1, 1, 1, 1]]'], {}), '([[0, 0, im_w, im_w], [0, im_h, 0, im_h], [1, 1, 1, 1]])\n', (5255, 5311), True, 'import numpy as np\n'), ((5459, 5490), 'numpy.amin', 'np.amin', (['transformed_corners[0]'], {}), '(transformed_corners[0])\n', (5466, 5490), True, 'import numpy as np\n'), ((5507, 5538), 'numpy.amax', 'np.amax', (['transformed_corners[0]'], {}), '(transformed_corners[0])\n', (5514, 5538), True, 'import numpy as np\n'), ((5557, 5579), 'numpy.ceil', 'np.ceil', (['(x_max - x_min)'], {}), '(x_max - x_min)\n', (5564, 5579), True, 'import numpy as np\n'), ((5596, 5627), 'numpy.amin', 'np.amin', (['transformed_corners[1]'], {}), '(transformed_corners[1])\n', (5603, 5627), True, 'import numpy as np\n'), ((5644, 5675), 'numpy.amax', 'np.amax', (['transformed_corners[1]'], {}), '(transformed_corners[1])\n', (5651, 5675), True, 'import numpy as np\n'), ((5694, 5716), 'numpy.ceil', 'np.ceil', (['(y_max - y_min)'], {}), '(y_max - y_min)\n', (5701, 5716), True, 'import numpy as np\n'), ((6094, 6179), 'torchvision.transforms.functional._get_inverse_affine_matrix', 'T.functional._get_inverse_affine_matrix', (['center', 'angle', 'translation', 'scale', 'shear'], {}), '(center, angle, translation, scale,\n shear)\n', (6133, 6179), True, 'import torchvision.transforms as T\n'), ((6352, 6372), 'numpy.linalg.inv', 'np.linalg.inv', (['M_inv'], {}), '(M_inv)\n', (6365, 6372), True, 'import numpy as np\n'), ((7294, 7313), 'json.loads', 'json.loads', (['arg_str'], {}), '(arg_str)\n', (7304, 7313), False, 'import json\n'), ((1607, 1623), 'numpy.linalg.inv', 'np.linalg.inv', (['M'], {}), '(M)\n', (1620, 1623), True, 'import numpy as np\n'), ((4471, 4539), 'random.uniform', 'random.uniform', (['self.translation_range[0]', 'self.translation_range[1]'], {}), '(self.translation_range[0], self.translation_range[1])\n', (4485, 4539), False, 'import random\n'), ((4553, 4621), 'random.uniform', 'random.uniform', (['self.translation_range[0]', 'self.translation_range[1]'], {}), '(self.translation_range[0], self.translation_range[1])\n', (4567, 4621), False, 'import random\n'), ((4736, 4792), 'random.uniform', 'random.uniform', (['self.shear_range[0]', 'self.shear_range[1]'], {}), '(self.shear_range[0], self.shear_range[1])\n', (4750, 4792), False, 'import random\n'), ((4806, 4862), 'random.uniform', 'random.uniform', (['self.shear_range[0]', 'self.shear_range[1]'], {}), '(self.shear_range[0], self.shear_range[1])\n', (4820, 4862), False, 'import random\n'), ((6740, 6755), 'detectron2.data.transforms.NoOpTransform', 'NoOpTransform', ([], {}), '()\n', (6753, 6755), False, 'from detectron2.data.transforms import Transform, TransformGen, NoOpTransform\n'), ((5126, 5141), 'numpy.array', 'np.array', (['M_inv'], {}), '(M_inv)\n', (5134, 5141), True, 'import numpy as np\n'), ((6308, 6323), 'numpy.array', 'np.array', (['M_inv'], {}), '(M_inv)\n', (6316, 6323), True, 'import numpy as np\n')]
|
import logging
import warnings
import numpy as np
import pandas as pd
from scipy import integrate, stats
from scipy.interpolate import InterpolatedUnivariateSpline
from .util import log_err_func
def cal_chi_square(f_hat_array, f_array):
chi_square = np.sum((f_hat_array - f_array) ** 2 / f_hat_array)
return chi_square
def smoothing(x, y):
x = x[np.isfinite(y)]
y = y[np.isfinite(y)]
spl = InterpolatedUnivariateSpline(x, y)
return spl
def fx_r_from_gy_r(g, p, x, y_min, y_max):
f_r = np.zeros_like(x, dtype=float)
for i, x_i in enumerate(x):
f_r[i] = integrate.quad(lambda y: g(y) * p(x_i, y), y_min, y_max)[0]
return smoothing(x[f_r > 0], f_r[f_r > 0])
def gy_r1_from_fx_r(f_r, f_hat, g, p, y, x_min, x_max):
g_r1 = np.zeros_like(y, dtype=float)
for i, y_i in enumerate(y):
g_r1[i] = (
g(y_i)
* integrate.quad(
lambda x: f_hat(x) / f_r(x) * p(x, y_i), x_min, x_max, limit=100
)[0]
)
return smoothing(y[g_r1 > 0], g_r1[g_r1 > 0])
def fx_r_from_gy_r_bound(g, p, x, y_min, y_max):
f_r = np.zeros_like(x, dtype=float)
for i, x_i in enumerate(x):
f_r[i] = integrate.quad(
lambda y: g(y) * p(x_i, y), x_i, y_max, limit=100, points=[x_i]
)[0]
return smoothing(x[f_r > 0], f_r[f_r > 0])
def gy_r1_from_fx_r_bound(f_r, f_hat, g, p, y, x_min, x_max):
g_r1 = np.zeros_like(y, dtype=float)
for i, y_i in enumerate(y):
g_r1[i] = (
g(y_i)
* integrate.quad(
lambda x: f_hat(x) / f_r(x) * p(x, y_i),
x_min,
y_i,
limit=100,
points=[x_min, y_i],
)[0]
)
return smoothing(y[g_r1 > 0], g_r1[g_r1 > 0])
def lucy(p, f_hat, x_array, y_array, limit_i=50, p_ratio=0.97):
warnings.filterwarnings("ignore")
g = smoothing(x_array, np.ones_like(x_array) * np.max(f_hat(x_array)) / 2)
chi_square_p = +np.inf
i = 0
for i in range(limit_i):
f = fx_r_from_gy_r(g, p, x_array, y_min=min(y_array), y_max=max(y_array))
chi_square = cal_chi_square(f_hat(x_array), f(x_array))
if chi_square < chi_square_p * p_ratio:
chi_square_p = chi_square
g = gy_r1_from_fx_r(
f, f_hat, g, p, y_array, x_min=min(x_array), x_max=max(x_array)
)
else:
break
logging.info(f"{i} Lucy iterations")
return g
def lucy_bound(p, f_hat, x_array, y_array, limit_i=50, p_ratio=0.97):
warnings.filterwarnings("ignore")
g = smoothing(x_array, np.ones_like(x_array) * np.max(f_hat(x_array)) / 2)
chi_square_p = +np.inf
i = 0
for i in range(limit_i):
f = fx_r_from_gy_r_bound(g, p, x_array, y_min=min(y_array), y_max=max(y_array))
chi_square = cal_chi_square(f_hat(x_array), f(x_array))
if chi_square < chi_square_p * p_ratio:
chi_square_p = chi_square
g = gy_r1_from_fx_r_bound(
f, f_hat, g, p, y_array, x_min=min(x_array), x_max=max(x_array)
)
else:
break
logging.info(f"{i} Lucy iterations")
return g
def cal_v_eq_dist(vsini, popt, only_f=False, limit_i=50):
s = stats.gaussian_kde(vsini, "silverman")
f_hat = stats.gaussian_kde(np.log(vsini), "silverman")
def p(x, y):
return (
1
/ (np.sqrt(2 * np.pi) * log_err_func(x, *popt))
* np.exp(-1 / 2 * ((x - y) / log_err_func(x, *popt)) ** 2)
)
x = np.arange(2, 7, 0.05)
g = lucy(p, f_hat, x, x, limit_i=limit_i)
x = np.arange(10, 600, 5)
f_hat = smoothing(x, g(np.log(x)) / x)
x_output = np.arange(10, 600, 0.5)
def p(x, y):
if y > x:
return x / np.sqrt(y ** 2 - x ** 2) / y
else:
return 0
if not only_f:
g = lucy_bound(p, f_hat, x, x, limit_i=limit_i)
df = pd.DataFrame(
{"x": x_output, "s": s(x_output), "f": f_hat(x_output), "g": g(x_output)}
)
else:
df = pd.DataFrame({"x": x_output, "s": s(x_output), "f": f_hat(x_output)})
return df
def cal_omega_dist(omega, popt, only_f=False, limit_i=50):
s = stats.gaussian_kde(omega, "silverman")
def p(x, y):
return (
1
/ (np.sqrt(2 * np.pi) * np.polyval(popt, x))
* np.exp(-1 / 2 * ((x - y) / np.polyval(popt, x)) ** 2)
)
x = np.arange(0, 1.1, 0.02)
# g = lucy(p, s, x, x, limit_i=limit_i)
g = s
f = g
def p(x, y):
if y > x:
return x / np.sqrt(y ** 2 - x ** 2) / y
else:
return 0
if not only_f:
g = lucy_bound(p, g, x, x, limit_i=limit_i)
df = pd.DataFrame({"x": x, "s": s(x), "f": f(x), "g": g(x)})
else:
df = pd.DataFrame({"x": x, "s": s(x), "f": f(x)})
return df
if __name__ == "__main__":
pass
|
[
"numpy.zeros_like",
"numpy.sum",
"scipy.interpolate.InterpolatedUnivariateSpline",
"numpy.log",
"warnings.filterwarnings",
"numpy.ones_like",
"numpy.polyval",
"scipy.stats.gaussian_kde",
"numpy.isfinite",
"logging.info",
"numpy.arange",
"numpy.sqrt"
] |
[((259, 309), 'numpy.sum', 'np.sum', (['((f_hat_array - f_array) ** 2 / f_hat_array)'], {}), '((f_hat_array - f_array) ** 2 / f_hat_array)\n', (265, 309), True, 'import numpy as np\n'), ((417, 451), 'scipy.interpolate.InterpolatedUnivariateSpline', 'InterpolatedUnivariateSpline', (['x', 'y'], {}), '(x, y)\n', (445, 451), False, 'from scipy.interpolate import InterpolatedUnivariateSpline\n'), ((522, 551), 'numpy.zeros_like', 'np.zeros_like', (['x'], {'dtype': 'float'}), '(x, dtype=float)\n', (535, 551), True, 'import numpy as np\n'), ((777, 806), 'numpy.zeros_like', 'np.zeros_like', (['y'], {'dtype': 'float'}), '(y, dtype=float)\n', (790, 806), True, 'import numpy as np\n'), ((1127, 1156), 'numpy.zeros_like', 'np.zeros_like', (['x'], {'dtype': 'float'}), '(x, dtype=float)\n', (1140, 1156), True, 'import numpy as np\n'), ((1433, 1462), 'numpy.zeros_like', 'np.zeros_like', (['y'], {'dtype': 'float'}), '(y, dtype=float)\n', (1446, 1462), True, 'import numpy as np\n'), ((1876, 1909), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1899, 1909), False, 'import warnings\n'), ((2450, 2486), 'logging.info', 'logging.info', (['f"""{i} Lucy iterations"""'], {}), "(f'{i} Lucy iterations')\n", (2462, 2486), False, 'import logging\n'), ((2576, 2609), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (2599, 2609), False, 'import warnings\n'), ((3162, 3198), 'logging.info', 'logging.info', (['f"""{i} Lucy iterations"""'], {}), "(f'{i} Lucy iterations')\n", (3174, 3198), False, 'import logging\n'), ((3280, 3318), 'scipy.stats.gaussian_kde', 'stats.gaussian_kde', (['vsini', '"""silverman"""'], {}), "(vsini, 'silverman')\n", (3298, 3318), False, 'from scipy import integrate, stats\n'), ((3578, 3599), 'numpy.arange', 'np.arange', (['(2)', '(7)', '(0.05)'], {}), '(2, 7, 0.05)\n', (3587, 3599), True, 'import numpy as np\n'), ((3655, 3676), 'numpy.arange', 'np.arange', (['(10)', '(600)', '(5)'], {}), '(10, 600, 5)\n', (3664, 3676), True, 'import numpy as np\n'), ((3735, 3758), 'numpy.arange', 'np.arange', (['(10)', '(600)', '(0.5)'], {}), '(10, 600, 0.5)\n', (3744, 3758), True, 'import numpy as np\n'), ((4257, 4295), 'scipy.stats.gaussian_kde', 'stats.gaussian_kde', (['omega', '"""silverman"""'], {}), "(omega, 'silverman')\n", (4275, 4295), False, 'from scipy import integrate, stats\n'), ((4489, 4512), 'numpy.arange', 'np.arange', (['(0)', '(1.1)', '(0.02)'], {}), '(0, 1.1, 0.02)\n', (4498, 4512), True, 'import numpy as np\n'), ((365, 379), 'numpy.isfinite', 'np.isfinite', (['y'], {}), '(y)\n', (376, 379), True, 'import numpy as np\n'), ((391, 405), 'numpy.isfinite', 'np.isfinite', (['y'], {}), '(y)\n', (402, 405), True, 'import numpy as np\n'), ((3351, 3364), 'numpy.log', 'np.log', (['vsini'], {}), '(vsini)\n', (3357, 3364), True, 'import numpy as np\n'), ((1937, 1958), 'numpy.ones_like', 'np.ones_like', (['x_array'], {}), '(x_array)\n', (1949, 1958), True, 'import numpy as np\n'), ((2637, 2658), 'numpy.ones_like', 'np.ones_like', (['x_array'], {}), '(x_array)\n', (2649, 2658), True, 'import numpy as np\n'), ((3704, 3713), 'numpy.log', 'np.log', (['x'], {}), '(x)\n', (3710, 3713), True, 'import numpy as np\n'), ((3443, 3461), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi)'], {}), '(2 * np.pi)\n', (3450, 3461), True, 'import numpy as np\n'), ((3818, 3842), 'numpy.sqrt', 'np.sqrt', (['(y ** 2 - x ** 2)'], {}), '(y ** 2 - x ** 2)\n', (3825, 3842), True, 'import numpy as np\n'), ((4360, 4378), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi)'], {}), '(2 * np.pi)\n', (4367, 4378), True, 'import numpy as np\n'), ((4381, 4400), 'numpy.polyval', 'np.polyval', (['popt', 'x'], {}), '(popt, x)\n', (4391, 4400), True, 'import numpy as np\n'), ((4636, 4660), 'numpy.sqrt', 'np.sqrt', (['(y ** 2 - x ** 2)'], {}), '(y ** 2 - x ** 2)\n', (4643, 4660), True, 'import numpy as np\n'), ((4443, 4462), 'numpy.polyval', 'np.polyval', (['popt', 'x'], {}), '(popt, x)\n', (4453, 4462), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
"""
A simple python script for parsing CASTEP (http://www.castep.org/) output files especially for ELNES calculations.
This includes some functions for reading .cell, .castep, .bands, and .eels_mat files, calculating excitation energy, and forming core-loss spectra with Gaussian smearing.
Copyright (c) 2022 kiyou, nmdl-mizo
This software is released under the MIT License, see LICENSE.
Note
-----
This script is tested on input and output files of CASTEP version 8 and may not be incompatible to other versions.
In all papers using the CASTEP code, you should cite:
"First principles methods using CASTEP",
Zeitschrift fuer Kristallographie 220(5-6) pp. 567-570 (2005)
<NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>
If you use get_energies() for calculating excitation energy, please consider to cite:
<NAME>.; <NAME>.; <NAME>.; <NAME>.
"First-Principles Calculation of Spectral Features, Chemical Shift and Absolute Threshold of ELNES and XANES Using a Plane Wave Pseudopotential Method." \
J. Phys. Condens. Matter 2009, 21 (10), 104204.
"""
import os
import re
import struct
import numpy as np
import importlib.metadata
__version__ = importlib.metadata.version('castep_elnes_parser')
def split_castep(filename):
"""
Split .castep file into each calculation
Running CASTEP several times yields a single .castep file with concatenated output.
This function splits the outputs into a list of each calculation run.
Parameters
--------
filename : str
path to the .castep file
Returns
--------
run_list : list
list of lines of castep output for each run
"""
with open(filename, "rt") as f:
lines = f.readlines()
castep_header = [
' +-------------------------------------------------+\n',
' | |\n',
' | CCC AA SSS TTTTT EEEEE PPPP |\n',
' | C A A S T E P P |\n',
' | C AAAA SS T EEE PPPP |\n',
' | C A A S T E P |\n',
' | CCC A A SSS T EEEEE P |\n',
' | |\n',
' +-------------------------------------------------+\n'
]
header_position_list = list()
for l in range(len(lines) - 9):
if lines[l: l + 9] == castep_header:
header_position_list.append(l)
header_position_list.append(-1)
run_list = [lines[l_s:l_e] for l_s, l_e in zip(header_position_list[:-1], header_position_list[1:])]
return run_list
def get_final_energy_castep(lines):
"""
get the final energy of the system from .castep output
Parameters
--------
lines : list of str
Castep output for a calculation run.
Can be obtained by split_castep
Returns
--------
final_energy: float
final energy in eV
"""
for line in lines:
if "Final energy" in line:
final_energy = float(line.split()[-2])
break
else:
raise RuntimeError("Could not find Final energy")
return final_energy
def get_ae_energy_castep(lines, element="C", suffix=":ex"):
"""
get the atomic energy of the all-electron (ae) calculation from .castep output
Parameters
--------
lines : list of str
Castep output for a calculation run.
Can be obtained by split_castep
element : str, default "C"
element name. e.g. "C"
suffix : str, default ":ex"
suffix for the site name e.g. ":ex"
Returns
--------
ae_energy: float
ae energy in eV
"""
re_ac = re.compile(f"Atomic calculation performed for {element}{suffix}")
re_ae = re.compile("Converged in \d+ iterations to an ae energy of ([\d\.\-]+) eV")
for i, line in enumerate(lines):
if re_ac.search(line) is not None:
break
else:
raise RuntimeError(f"Could not find atomic calculation for {element}{suffix}")
ae_energy = float(re_ae.search(lines[i + 2]).group(1))
return ae_energy
def get_pa_energy_castep(lines, element="C", suffix=":ex"):
"""
get the atomic energy of the pseudo atomic (pa) calculation from .castep output
Parameters
--------
lines : list of str
Castep output for a calculation run.
Can be obtained by split_castep
element : str, default "C"
element name. e.g. "C"
suffix : str, default ":ex"
suffix for the site name e.g. ":ex"
Returns
--------
pa_energy: float
pseudo atomic energy in eV
"""
re_pac = re.compile(f"Pseudo atomic calculation performed for {element}{suffix}")
re_pa = re.compile("Converged in \d+ iterations to a total energy of ([\d\.\-]+) eV")
for i, line in enumerate(lines):
if re_pac.search(line) is not None:
break
else:
raise RuntimeError(f"Could not find pseudo atomic calculation for {element}{suffix}")
pa_energy = float(re_pa.search(lines[i + 2]).group(1))
return pa_energy
def get_energies(filename_gs, filename_ex, element="C", suffix=":ex", gs_split=-1, ex_split=-1):
"""
get energies from .castep outputs
Parameters
--------
filename_gs : str
path to the .castep file of the ground state
filename_ex : str
path to the .castep file of the excited state
element : str, default "C"
element name. e.g. "C"
suffix : str, default ":ex"
suffix for the site name e.g. ":ex"
gs_split : int, default -1
index of the split used for extracting energies from ground state calculation. -1 to latest.
ex_split : int, default -1
index of the split used for extracting energies from excited state calculation. -1 to latest.
Returns
--------
energy_dict: dict
a dictionary wiht str keys of labels and flot values of energies in eV
gs_final: ground state final_energy,
ex_final: excited state final energy,
gs_ae: ground state atomic energy in the all-electron calculation,
ex_ae: excited state atomic energy in the all-electron calculation,
gs_pa: ground state atomic energy in the pseudo-atomic calculation,
ex_pa: excited state atomic energy in the pseudo-atomic calculation,
excitation_energy: excitation energy,
Note
-------
The calculation of excitation energy is based on the following paper:
<NAME>.; <NAME>.; <NAME>.; <NAME>. \
"First-Principles Calculation of Spectral Features, Chemical Shift and Absolute Threshold of ELNES and XANES Using a Plane Wave Pseudopotential Method." \
J. Phys. Condens. Matter 2009, 21 (10), 104204.
"""
lines_gs = split_castep(filename_gs)[gs_split]
lines_ex = split_castep(filename_ex)[ex_split]
energy_dict = {
"gs_final": get_final_energy_castep(lines_gs),
"ex_final": get_final_energy_castep(lines_ex),
"gs_ae": get_ae_energy_castep(lines_gs, element, suffix),
"ex_ae": get_ae_energy_castep(lines_ex, element, suffix),
"gs_pa": get_pa_energy_castep(lines_gs, element, suffix),
"ex_pa": get_pa_energy_castep(lines_ex, element, suffix),
}
excitation_energy = (energy_dict["ex_final"] - energy_dict["gs_final"]) + ((energy_dict["ex_ae"] - energy_dict["ex_pa"]) - (energy_dict["gs_ae"] - energy_dict["gs_pa"]))
energy_dict["excitation_energy"] = excitation_energy
return energy_dict
def get_coords_cell(filename):
"""
extract species and coordinates from .cell file
Parameters
--------
filename : str
path to the .cell file
Returns
--------
coords_list : list
a list of two elements
- a list of species
- a numpy array of coordinations
"""
with open(filename, "r") as f:
while not "%BLOCK POSITIONS_FRAC" in f.readline():
pass
lines = list()
while True:
line = f.readline()
if "%ENDBLOCK POSITIONS_FRAC" in line:
break
lines.append(line)
coords_list = [line.split()[0] for line in lines], np.array([line.split()[1:] for line in lines], dtype=np.float)
return coords_list
def read_bin_data(f, dtype, data_byte, header_byte=4, footer_byte=4):
"""
read data from binary file
This function reads a binary chunk from current position.
Parameters
--------
f : file object
a file object opened in read only mode.
dtype : str
dtype of the binary chunk
data_byte : int
length of the binary chunk to read in byte
header_byte : int, default 4
length of the header before the binary chunk to read in byte
footer_byte : int, default 4
length of the footer after the binary chunk to read in byte
Returns
--------
data : int, str, float, or list
a data converted by struct.unpack
"""
f.seek(header_byte, 1)
data = struct.unpack(dtype, f.read(data_byte))
f.seek(footer_byte, 1)
return data
def read_eels_mat(filename):
"""
extract data from .eels_mat file
Parameters
--------
filename : str
path to the .eels_mat file
Returns
--------
eels_mat_dict : dict
a dictionary of the extracted data
- tot_core_projectors
- max_eigenvalues
- sum_num_kpoints
- num_spins
- core_orbital_species
- core_orbital_ion
- core_orbital_n
- core_orbital_lm
- transition_matrix
"""
params = [
"tot_core_projectors",
"max_eigenvalues",
"sum_num_kpoints",
"num_spins",
]
co = [
"core_orbital_species",
"core_orbital_ion",
"core_orbital_n",
"core_orbital_lm",
]
with open(filename, "rb") as f:
param_chunk = {p: read_bin_data(f, ">i", 4)[0] for p in params}
n_proj = param_chunk["tot_core_projectors"]
if n_proj == 1:
dt_proj = ">i"
else:
dt_proj = f">{n_proj}i"
co_chunk = {p: read_bin_data(f, dt_proj, n_proj * 4) for p in co}
mat = np.array([read_bin_data(f, '>6d', 3 * 8 * 2) for i in range(np.prod([param_chunk[p] for p in params]))])
mat.dtype = complex
eels_mat_dict = dict()
for p in params:
eels_mat_dict[p] = param_chunk[p]
for p in co:
eels_mat_dict[p] = co_chunk[p]
eels_mat_dict["transition_matrix"] = mat.reshape(
eels_mat_dict["sum_num_kpoints"],
eels_mat_dict["num_spins"],
eels_mat_dict["tot_core_projectors"],
eels_mat_dict["max_eigenvalues"],
3,
)
return eels_mat_dict
def read_bands(filename, output_eV=True):
"""
extract data from .bands file
Parameters
--------
filename : str
path to the .bands file
output_eV : bool, default True
whether output energy in eV (True) or hartree (False)
Returns
--------
bands_dict : dict
a dictionary of the extracted data
"""
with open(filename, "rt") as f:
# start reading header
nkpnt = int(f.readline().split()[-1])
nspin = int(f.readline().split()[-1])
nelectrons = list(map(float, f.readline().split()[-nspin:]))
nbands = list(map(int, f.readline().split()[-nspin:]))
efermi = list(map(float, f.readline().split()[-nspin:]))
f.readline()
a = list(map(float, f.readline().split()))
b = list(map(float, f.readline().split()))
c = list(map(float, f.readline().split()))
# finish reading header
nk = list()
kpts = list()
wk = list()
spin = list()
eigenvalues = list()
for _ in range(nkpnt):
line = f.readline().split()
nk.append(int(line[1]))
kpts.append(list(map(float, line[2:5])))
wk.append(float(line[5]))
spin_k = list()
eigenvalues_k = list()
for nb in nbands:
spin_k.append(int(f.readline().split()[-1]))
eigenvalues_k.append(list(map(float, [f.readline() for _ in range(nb)])))
spin.append(spin_k)
eigenvalues.append(eigenvalues_k)
bands_dict = {
"num_kponts": nkpnt,
"num_spins": nspin,
"num_electrons": nelectrons,
"num_eigenvalues": nbands,
"efermi": efermi,
"lattice_vectors": np.array([a, b, c]),
"nk": nk,
"kpoint": kpts,
"kpoint_weights": wk,
"spin": spin,
"eigenvalues": np.array(eigenvalues)
}
if output_eV:
hart2eV = 27.211396132
bands_dict["efermi"] = np.array(bands_dict["efermi"]) * hart2eV
bands_dict["eigenvalues"] = np.array(bands_dict["eigenvalues"]) * hart2eV
return bands_dict
def get_spectrum(calc_dir=".", seed_name="case_elnes", output_eV=True, atomic_unit=False):
"""
get primitive spectral data from a .bands file and a .eels_mat file
Parameters
--------
calc_dir : str, default "."
path to the directory containing .bands and .eels_mat
seed_name : str, default "case_elnes"
seed name of the calculation
output_eV : bool, default True
whether output energy in eV (True) or hartree (False)
atomic_unit : bool, default False
whether output dynamical structure factor in the unit of Bohr radius^2 (True) or angstrom^2 (False).
Returns
--------
spectrum_dict : dict
a dictionary of the spectral data
"""
eels_mat_dict = read_eels_mat(os.path.join(calc_dir, f"{seed_name}.eels_mat"))
en = np.square(np.abs(eels_mat_dict["transition_matrix"]))
if not atomic_unit:
en *= 0.529177210903**2 # Bohr radius^-2 to Angstrom^-2
bands_dict = read_bands(os.path.join(calc_dir, f"{seed_name}.bands"), output_eV)
spectrum_dict = {
"eigenvalues": bands_dict["eigenvalues"],
"efermi": bands_dict["efermi"],
"num_electrons": bands_dict["num_electrons"],
"kpoint_weights": bands_dict["kpoint_weights"],
"num_spins": bands_dict["num_spins"],
"tot_core_projectors": eels_mat_dict["tot_core_projectors"],
"dsf":en
}
return spectrum_dict
def gaussian(x, c, w, s):
"""
gaussian function for smearing
Parameters
--------
x : list or numpy array
1d list of energies
c : float
center position (=mu)
w : float
height scaling factor, weights
s : float
standard deviation of gaussian smearing (=sigma)
Returns
--------
numpy array
numpy array of gaussian distribution
"""
return w / (np.sqrt(2. * np.pi) * s) * np.exp(-((x - c) / s)**2 / 2.)
def get_smeared_spectrum(energies, sigma=0.3, calc_dir=".", seed_name="case_elnes", e_origin="eigen_value", output_eV=True, atomic_unit=False):
"""
get gaussian smeared spectra from a .bands file and a .eels_mat file
Parameters
--------
energies : list or numpy array
1d list of energies
sigma : float, default 0.3
standard deviation of gaussian smearing
calc_dir : str, default "."
path to the directory containing .bands and .eels_mat
seed_name : str, default "case_elnes"
seed name of the calculation
e_origin : str, default "eigen_value"
set energy origin
output_eV : bool, default True
whether output energy in eV (True) or hartree (False)
atomic_unit : bool, default False
whether output dynamical structure factor in the unit of Bohr radius^2 (True) or angstrom^2 (False).
Returns
--------
spectrum : numpy array
numpy array of smeared spectra
Examples
--------
>>> !ls .
case_elnes.bands case_elnes.eels_mat
>>> energies = np.arange(-4.999, 30.002, 0.001) # make an array for energies
>>> sp = get_smeared_spectrum(energies, 0.3) # parse and make spectra
>>> fig, ax = plt.subplots(1)
>>> ax.set_xlabel("Energy (eV)")
>>> ax.set_ylabel("Intensity (arb. u.)")
>>> ax.plot(energies, sp[0, 0], label="x") # plot a spectrum for x component of the 1st core projection
>>> ax.plot(energies, sp[0, 1], label="y") # plot a spectrum for y component of the 1st core projection
>>> ax.plot(energies, sp[0, 2], label="z") # plot a spectrum for z component of the 1st core projection
>>> ax.plot(energies, np.mean(sp[0], axis=0), label="total") # plot a total spectrum of the 1st core projection
"""
spectrum = get_spectrum(calc_dir, seed_name, output_eV, atomic_unit)
if e_origin == "eigen_value":
e_origin_value = np.min(
[
[
ev[int(ne // (2 / spectrum["num_spins"]))]
for ev, ne in zip(ev_k, spectrum["num_electrons"])
]
for ev_k in spectrum["eigenvalues"]
]
)
elif e_origin == "efermi":
e_origin_value = spectrum["efermi"]
sp = [
[
[
[
kw * np.sum(
[
gaussian(energies, en, w, sigma)
for en, w in zip(spectrum["eigenvalues"][i_kp, i_spin] - e_origin_value, spectrum["dsf"][i_kp, i_spin, i_proj, :, i_ra])
if en >= 0.
],
axis=0
)
for i_kp, kw in enumerate(spectrum["kpoint_weights"])
]
for i_spin in range(spectrum["num_spins"])
]
for i_ra in range(3)
]
for i_proj in range(spectrum["tot_core_projectors"])
]
sp = np.sum(np.array(sp), axis=(2, 3))
sp *= 2. / spectrum["num_spins"] # consider spin multiplicity
return sp
|
[
"numpy.abs",
"numpy.array",
"numpy.exp",
"numpy.sqrt",
"os.path.join",
"numpy.prod",
"re.compile"
] |
[((3729, 3794), 're.compile', 're.compile', (['f"""Atomic calculation performed for {element}{suffix}"""'], {}), "(f'Atomic calculation performed for {element}{suffix}')\n", (3739, 3794), False, 'import re\n'), ((3807, 3886), 're.compile', 're.compile', (['"""Converged in \\\\d+ iterations to an ae energy of ([\\\\d\\\\.\\\\-]+) eV"""'], {}), "('Converged in \\\\d+ iterations to an ae energy of ([\\\\d\\\\.\\\\-]+) eV')\n", (3817, 3886), False, 'import re\n'), ((4691, 4763), 're.compile', 're.compile', (['f"""Pseudo atomic calculation performed for {element}{suffix}"""'], {}), "(f'Pseudo atomic calculation performed for {element}{suffix}')\n", (4701, 4763), False, 'import re\n'), ((4776, 4862), 're.compile', 're.compile', (['"""Converged in \\\\d+ iterations to a total energy of ([\\\\d\\\\.\\\\-]+) eV"""'], {}), "(\n 'Converged in \\\\d+ iterations to a total energy of ([\\\\d\\\\.\\\\-]+) eV')\n", (4786, 4862), False, 'import re\n'), ((12561, 12580), 'numpy.array', 'np.array', (['[a, b, c]'], {}), '([a, b, c])\n', (12569, 12580), True, 'import numpy as np\n'), ((12699, 12720), 'numpy.array', 'np.array', (['eigenvalues'], {}), '(eigenvalues)\n', (12707, 12720), True, 'import numpy as np\n'), ((13706, 13753), 'os.path.join', 'os.path.join', (['calc_dir', 'f"""{seed_name}.eels_mat"""'], {}), "(calc_dir, f'{seed_name}.eels_mat')\n", (13718, 13753), False, 'import os\n'), ((13774, 13816), 'numpy.abs', 'np.abs', (["eels_mat_dict['transition_matrix']"], {}), "(eels_mat_dict['transition_matrix'])\n", (13780, 13816), True, 'import numpy as np\n'), ((13934, 13978), 'os.path.join', 'os.path.join', (['calc_dir', 'f"""{seed_name}.bands"""'], {}), "(calc_dir, f'{seed_name}.bands')\n", (13946, 13978), False, 'import os\n'), ((14838, 14871), 'numpy.exp', 'np.exp', (['(-((x - c) / s) ** 2 / 2.0)'], {}), '(-((x - c) / s) ** 2 / 2.0)\n', (14844, 14871), True, 'import numpy as np\n'), ((17856, 17868), 'numpy.array', 'np.array', (['sp'], {}), '(sp)\n', (17864, 17868), True, 'import numpy as np\n'), ((12807, 12837), 'numpy.array', 'np.array', (["bands_dict['efermi']"], {}), "(bands_dict['efermi'])\n", (12815, 12837), True, 'import numpy as np\n'), ((12884, 12919), 'numpy.array', 'np.array', (["bands_dict['eigenvalues']"], {}), "(bands_dict['eigenvalues'])\n", (12892, 12919), True, 'import numpy as np\n'), ((14811, 14831), 'numpy.sqrt', 'np.sqrt', (['(2.0 * np.pi)'], {}), '(2.0 * np.pi)\n', (14818, 14831), True, 'import numpy as np\n'), ((10326, 10367), 'numpy.prod', 'np.prod', (['[param_chunk[p] for p in params]'], {}), '([param_chunk[p] for p in params])\n', (10333, 10367), True, 'import numpy as np\n')]
|
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
import numpy as np
import torch
from PIL import Image
from torchvision import transforms as T
from flash.data.data_utils import labels_from_categorical_csv
from flash.vision import ImageClassificationData
def _dummy_image_loader(filepath):
return torch.rand(3, 64, 64)
def _rand_image():
return Image.fromarray(np.random.randint(0, 255, (64, 64, 3), dtype="uint8"))
def test_from_filepaths(tmpdir):
img_data = ImageClassificationData.from_filepaths(
train_filepaths=["a", "b"],
train_labels=[0, 1],
train_transform=lambda x: x, # make sure transform works
loader=_dummy_image_loader,
batch_size=1,
num_workers=0,
)
data = next(iter(img_data.train_dataloader()))
imgs, labels = data
assert imgs.shape == (1, 3, 64, 64)
assert labels.shape == (1, )
assert img_data.val_dataloader() is None
assert img_data.test_dataloader() is None
img_data = ImageClassificationData.from_filepaths(
train_filepaths=["a", "b"],
train_labels=[0, 1],
train_transform=None,
valid_filepaths=["c", "d"],
valid_labels=[0, 1],
valid_transform=None,
test_filepaths=["e", "f"],
test_labels=[0, 1],
loader=_dummy_image_loader,
batch_size=1,
num_workers=0,
)
data = next(iter(img_data.val_dataloader()))
imgs, labels = data
assert imgs.shape == (1, 3, 64, 64)
assert labels.shape == (1, )
data = next(iter(img_data.test_dataloader()))
imgs, labels = data
assert imgs.shape == (1, 3, 64, 64)
assert labels.shape == (1, )
def test_categorical_csv_labels(tmpdir):
train_dir = Path(tmpdir / "some_dataset")
train_dir.mkdir()
(train_dir / "train").mkdir()
_rand_image().save(train_dir / "train" / "train_1.png")
_rand_image().save(train_dir / "train" / "train_2.png")
(train_dir / "valid").mkdir()
_rand_image().save(train_dir / "valid" / "valid_1.png")
_rand_image().save(train_dir / "valid" / "valid_2.png")
(train_dir / "test").mkdir()
_rand_image().save(train_dir / "test" / "test_1.png")
_rand_image().save(train_dir / "test" / "test_2.png")
train_csv = os.path.join(tmpdir, 'some_dataset', 'train.csv')
text_file = open(train_csv, 'w')
text_file.write(
'my_id,label_a,label_b,label_c\n"train_1.png", 0, 1, 0\n"train_2.png", 0, 0, 1\n"train_2.png", 1, 0, 0\n'
)
text_file.close()
valid_csv = os.path.join(tmpdir, 'some_dataset', 'valid.csv')
text_file = open(valid_csv, 'w')
text_file.write(
'my_id,label_a,label_b,label_c\n"valid_1.png", 0, 1, 0\n"valid_2.png", 0, 0, 1\n"valid_3.png", 1, 0, 0\n'
)
text_file.close()
test_csv = os.path.join(tmpdir, 'some_dataset', 'test.csv')
text_file = open(test_csv, 'w')
text_file.write(
'my_id,label_a,label_b,label_c\n"test_1.png", 0, 1, 0\n"test_2.png", 0, 0, 1\n"test_3.png", 1, 0, 0\n'
)
text_file.close()
def index_col_collate_fn(x):
return os.path.splitext(x)[0]
train_labels = labels_from_categorical_csv(
train_csv, 'my_id', feature_cols=['label_a', 'label_b', 'label_c'], index_col_collate_fn=index_col_collate_fn)
valid_labels = labels_from_categorical_csv(
valid_csv, 'my_id', feature_cols=['label_a', 'label_b', 'label_c'], index_col_collate_fn=index_col_collate_fn)
test_labels = labels_from_categorical_csv(
test_csv, 'my_id', feature_cols=['label_a', 'label_b', 'label_c'], index_col_collate_fn=index_col_collate_fn)
data = ImageClassificationData.from_filepaths(
batch_size=2,
train_filepaths=os.path.join(tmpdir, 'some_dataset', 'train'),
train_labels=train_labels,
valid_filepaths=os.path.join(tmpdir, 'some_dataset', 'valid'),
valid_labels=valid_labels,
test_filepaths=os.path.join(tmpdir, 'some_dataset', 'test'),
test_labels=test_labels,
)
for (x, y) in data.train_dataloader():
assert len(x) == 2
for (x, y) in data.val_dataloader():
assert len(x) == 2
for (x, y) in data.test_dataloader():
assert len(x) == 2
data = ImageClassificationData.from_filepaths(
batch_size=2,
train_filepaths=os.path.join(tmpdir, 'some_dataset', 'train'),
train_labels=train_labels,
valid_split=0.5
)
for (x, y) in data.val_dataloader():
assert len(x) == 1
def test_from_folders(tmpdir):
train_dir = Path(tmpdir / "train")
train_dir.mkdir()
(train_dir / "a").mkdir()
_rand_image().save(train_dir / "a" / "1.png")
_rand_image().save(train_dir / "a" / "2.png")
(train_dir / "b").mkdir()
_rand_image().save(train_dir / "b" / "1.png")
_rand_image().save(train_dir / "b" / "2.png")
img_data = ImageClassificationData.from_folders(
train_dir, train_transform=None, loader=_dummy_image_loader, batch_size=1
)
data = next(iter(img_data.train_dataloader()))
imgs, labels = data
assert imgs.shape == (1, 3, 64, 64)
assert labels.shape == (1, )
assert img_data.val_dataloader() is None
assert img_data.test_dataloader() is None
img_data = ImageClassificationData.from_folders(
train_dir,
train_transform=T.ToTensor(),
valid_folder=train_dir,
valid_transform=T.ToTensor(),
test_folder=train_dir,
batch_size=1,
num_workers=0,
)
data = next(iter(img_data.val_dataloader()))
imgs, labels = data
assert imgs.shape == (1, 3, 64, 64)
assert labels.shape == (1, )
data = next(iter(img_data.test_dataloader()))
imgs, labels = data
assert imgs.shape == (1, 3, 64, 64)
assert labels.shape == (1, )
|
[
"flash.data.data_utils.labels_from_categorical_csv",
"pathlib.Path",
"flash.vision.ImageClassificationData.from_folders",
"numpy.random.randint",
"os.path.splitext",
"torch.rand",
"flash.vision.ImageClassificationData.from_filepaths",
"os.path.join",
"torchvision.transforms.ToTensor"
] |
[((876, 897), 'torch.rand', 'torch.rand', (['(3)', '(64)', '(64)'], {}), '(3, 64, 64)\n', (886, 897), False, 'import torch\n'), ((1051, 1233), 'flash.vision.ImageClassificationData.from_filepaths', 'ImageClassificationData.from_filepaths', ([], {'train_filepaths': "['a', 'b']", 'train_labels': '[0, 1]', 'train_transform': '(lambda x: x)', 'loader': '_dummy_image_loader', 'batch_size': '(1)', 'num_workers': '(0)'}), "(train_filepaths=['a', 'b'],\n train_labels=[0, 1], train_transform=lambda x: x, loader=\n _dummy_image_loader, batch_size=1, num_workers=0)\n", (1089, 1233), False, 'from flash.vision import ImageClassificationData\n'), ((1566, 1867), 'flash.vision.ImageClassificationData.from_filepaths', 'ImageClassificationData.from_filepaths', ([], {'train_filepaths': "['a', 'b']", 'train_labels': '[0, 1]', 'train_transform': 'None', 'valid_filepaths': "['c', 'd']", 'valid_labels': '[0, 1]', 'valid_transform': 'None', 'test_filepaths': "['e', 'f']", 'test_labels': '[0, 1]', 'loader': '_dummy_image_loader', 'batch_size': '(1)', 'num_workers': '(0)'}), "(train_filepaths=['a', 'b'],\n train_labels=[0, 1], train_transform=None, valid_filepaths=['c', 'd'],\n valid_labels=[0, 1], valid_transform=None, test_filepaths=['e', 'f'],\n test_labels=[0, 1], loader=_dummy_image_loader, batch_size=1, num_workers=0\n )\n", (1604, 1867), False, 'from flash.vision import ImageClassificationData\n'), ((2300, 2329), 'pathlib.Path', 'Path', (["(tmpdir / 'some_dataset')"], {}), "(tmpdir / 'some_dataset')\n", (2304, 2329), False, 'from pathlib import Path\n'), ((2829, 2878), 'os.path.join', 'os.path.join', (['tmpdir', '"""some_dataset"""', '"""train.csv"""'], {}), "(tmpdir, 'some_dataset', 'train.csv')\n", (2841, 2878), False, 'import os\n'), ((3096, 3145), 'os.path.join', 'os.path.join', (['tmpdir', '"""some_dataset"""', '"""valid.csv"""'], {}), "(tmpdir, 'some_dataset', 'valid.csv')\n", (3108, 3145), False, 'import os\n'), ((3362, 3410), 'os.path.join', 'os.path.join', (['tmpdir', '"""some_dataset"""', '"""test.csv"""'], {}), "(tmpdir, 'some_dataset', 'test.csv')\n", (3374, 3410), False, 'import os\n'), ((3699, 3841), 'flash.data.data_utils.labels_from_categorical_csv', 'labels_from_categorical_csv', (['train_csv', '"""my_id"""'], {'feature_cols': "['label_a', 'label_b', 'label_c']", 'index_col_collate_fn': 'index_col_collate_fn'}), "(train_csv, 'my_id', feature_cols=['label_a',\n 'label_b', 'label_c'], index_col_collate_fn=index_col_collate_fn)\n", (3726, 3841), False, 'from flash.data.data_utils import labels_from_categorical_csv\n'), ((3866, 4008), 'flash.data.data_utils.labels_from_categorical_csv', 'labels_from_categorical_csv', (['valid_csv', '"""my_id"""'], {'feature_cols': "['label_a', 'label_b', 'label_c']", 'index_col_collate_fn': 'index_col_collate_fn'}), "(valid_csv, 'my_id', feature_cols=['label_a',\n 'label_b', 'label_c'], index_col_collate_fn=index_col_collate_fn)\n", (3893, 4008), False, 'from flash.data.data_utils import labels_from_categorical_csv\n'), ((4032, 4173), 'flash.data.data_utils.labels_from_categorical_csv', 'labels_from_categorical_csv', (['test_csv', '"""my_id"""'], {'feature_cols': "['label_a', 'label_b', 'label_c']", 'index_col_collate_fn': 'index_col_collate_fn'}), "(test_csv, 'my_id', feature_cols=['label_a',\n 'label_b', 'label_c'], index_col_collate_fn=index_col_collate_fn)\n", (4059, 4173), False, 'from flash.data.data_utils import labels_from_categorical_csv\n'), ((5111, 5133), 'pathlib.Path', 'Path', (["(tmpdir / 'train')"], {}), "(tmpdir / 'train')\n", (5115, 5133), False, 'from pathlib import Path\n'), ((5434, 5549), 'flash.vision.ImageClassificationData.from_folders', 'ImageClassificationData.from_folders', (['train_dir'], {'train_transform': 'None', 'loader': '_dummy_image_loader', 'batch_size': '(1)'}), '(train_dir, train_transform=None,\n loader=_dummy_image_loader, batch_size=1)\n', (5470, 5549), False, 'from flash.vision import ImageClassificationData\n'), ((946, 999), 'numpy.random.randint', 'np.random.randint', (['(0)', '(255)', '(64, 64, 3)'], {'dtype': '"""uint8"""'}), "(0, 255, (64, 64, 3), dtype='uint8')\n", (963, 999), True, 'import numpy as np\n'), ((3656, 3675), 'os.path.splitext', 'os.path.splitext', (['x'], {}), '(x)\n', (3672, 3675), False, 'import os\n'), ((4277, 4322), 'os.path.join', 'os.path.join', (['tmpdir', '"""some_dataset"""', '"""train"""'], {}), "(tmpdir, 'some_dataset', 'train')\n", (4289, 4322), False, 'import os\n'), ((4383, 4428), 'os.path.join', 'os.path.join', (['tmpdir', '"""some_dataset"""', '"""valid"""'], {}), "(tmpdir, 'some_dataset', 'valid')\n", (4395, 4428), False, 'import os\n'), ((4488, 4532), 'os.path.join', 'os.path.join', (['tmpdir', '"""some_dataset"""', '"""test"""'], {}), "(tmpdir, 'some_dataset', 'test')\n", (4500, 4532), False, 'import os\n'), ((4881, 4926), 'os.path.join', 'os.path.join', (['tmpdir', '"""some_dataset"""', '"""train"""'], {}), "(tmpdir, 'some_dataset', 'train')\n", (4893, 4926), False, 'import os\n'), ((5897, 5909), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (5907, 5909), True, 'from torchvision import transforms as T\n'), ((5967, 5979), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (5977, 5979), True, 'from torchvision import transforms as T\n')]
|
# -*- coding: utf8 -*-
#
# Module ELEMENT
#
# Part of Nutils: open source numerical utilities for Python. Jointly developed
# by HvZ Computational Engineering, TU/e Multiscale Engineering Fluid Dynamics,
# and others. More info at http://nutils.org <<EMAIL>>. (c) 2014
"""
The transform module.
"""
from __future__ import print_function, division
from . import cache, numeric, core
import numpy
class TransformChain( tuple ):
__slots__ = ()
def slicefrom( self, i ):
return TransformChain( self[i:] )
def sliceto( self, j ):
return TransformChain( self[:j] )
def fromtrans( self, trans ):
# assuming self and trans both canonical
mytrans = self.promote( trans.fromdims )
assert mytrans[:len(trans)] == trans
return mytrans[len(trans):]
@property
def todims( self ):
return self[0].todims
@property
def fromdims( self ):
return self[-1].fromdims
@property
def isflipped( self ):
return sum( trans.isflipped for trans in self ) % 2 == 1
@property
def orientation( self ):
return -1 if self.isflipped else +1
def lookup( self, transforms ):
# to be replaced by bisection soon
headtrans = self
while headtrans:
if headtrans in transforms:
return headtrans
headtrans = headtrans.sliceto(-1)
return None
def split( self, ndims, after=True ):
# split before/after the first occurrence of .fromdims==ndims. For
# after=True (default) the base part represents the coordinate system for
# integration/gradients at the level specified.
i = core.index( trans.fromdims == ndims for trans in self ) + after
return self.sliceto(i), self.slicefrom(i)
def __lshift__( self, other ):
# self << other
assert isinstance( other, TransformChain )
if not self:
return other
if not other:
return self
assert self.fromdims == other.todims
return TransformChain( self + other )
def __rshift__( self, other ):
# self >> other
assert isinstance( other, TransformChain )
return other << self
@property
def flipped( self ):
assert self.todims == self.fromdims+1
return TransformChain( trans.flipped if trans.todims == trans.fromdims+1 else trans for trans in self )
@property
def det( self ):
det = 1
for trans in self:
det *= trans.det
return det
@property
def ext( self ):
ext = numeric.ext( self.linear )
return ext if not self.isflipped else -ext
@property
def offset( self ):
offset = self[-1].offset
for trans in self[-2::-1]:
offset = trans.apply( offset )
return offset
@property
def linear( self ):
linear = numpy.array( 1. )
for trans in self:
linear = numpy.dot( linear, trans.linear ) if linear.ndim and trans.linear.ndim \
else linear * trans.linear
return linear
@property
def invlinear( self ):
invlinear = numpy.array( 1. )
for trans in self:
invlinear = numpy.dot( trans.invlinear, invlinear ) if invlinear.ndim and trans.linear.ndim \
else trans.invlinear * invlinear
return invlinear
def apply( self, points ):
for trans in reversed(self):
points = trans.apply( points )
return points
def solve( self, points ):
return numeric.solve_exact( self.linear, (points - self.offset).T ).T
def __str__( self ):
return ' << '.join( str(trans) for trans in self ) if self else '='
def __repr__( self ):
return '{}( {} )'.format( self.__class__.__name__, self )
@property
def flat( self ):
return self if len(self) == 1 \
else affine( self.linear, self.offset, isflipped=self.isflipped )
@property
def canonical( self ):
# Keep at lowest ndims possible. The reason is that in this form we can do
# lookups of embedded elements.
items = list( self )
for i in range(len(items)-1)[::-1]:
trans1, trans2 = items[i:i+2]
if mayswap( trans1, trans2 ):
trans12 = TransformChain(( trans1, trans2 )).flat
try:
newlinear, newoffset = numeric.solve_exact( trans2.linear, trans12.linear, trans12.offset - trans2.offset )
except numpy.linalg.LinAlgError:
pass
else:
trans21 = TransformChain( (trans2,) + affine( newlinear, newoffset ) )
assert trans21.flat == trans12
items[i:i+2] = trans21
return CanonicalTransformChain( items )
def promote( self, ndims ):
raise Exception( 'promotion only possible from canonical form' )
class CanonicalTransformChain( TransformChain ):
def slicefrom( self, i ):
return CanonicalTransformChain( TransformChain.slicefrom( self, i ) )
def sliceto( self, j ):
return CanonicalTransformChain( TransformChain.sliceto( self, j ) )
def __lshift__( self, other ):
# self << other
joint = TransformChain.__lshift__( self, other )
if self and other and isinstance( other, CanonicalTransformChain ) and not mayswap( self[-1], other[0] ):
joint = CanonicalTransformChain( joint )
return joint
@property
def flipped( self ):
return CanonicalTransformChain( TransformChain.flipped.fget( self ) )
@property
def canonical( self ):
return self
def promote( self, ndims ):
if ndims == self.fromdims:
return self
index = core.index( trans.fromdims == self.fromdims for trans in self )
uptrans = self[index]
if index == len(self)-1 or not mayswap( self[index+1], uptrans ):
A = self.sliceto(index)
B = self.slicefrom(index)
else:
body = list( self[:index] )
for i in range( index+1, len(self) ):
scale = self[i]
if not mayswap( scale, uptrans ):
break
newscale = Scale( scale.linear, uptrans.apply(scale.offset) - scale.linear * uptrans.offset )
body.append( newscale )
else:
i = len(self)+1
assert equivalent( body[index:]+[uptrans], self[index:i] )
A = CanonicalTransformChain( body )
B = CanonicalTransformChain( (uptrans,) + self[i:] )
return A.promote(ndims) << B
mayswap = lambda trans1, trans2: isinstance( trans1, Scale ) and trans1.linear == .5 and trans2.todims == trans2.fromdims + 1 and trans2.fromdims > 0
## TRANSFORM ITEMS
class TransformItem( cache.Immutable ):
def __init__( self, todims, fromdims ):
self.todims = todims
self.fromdims = fromdims
__lt__ = lambda self, other: id(self) < id(other)
__gt__ = lambda self, other: id(self) > id(other)
__le__ = lambda self, other: id(self) <= id(other)
__ge__ = lambda self, other: id(self) >= id(other)
def __repr__( self ):
return '{}( {} )'.format( self.__class__.__name__, self )
class Shift( TransformItem ):
def __init__( self, offset ):
self.linear = self.invlinear = self.det = numpy.array(1.)
self.offset = offset
self.isflipped = False
assert offset.ndim == 1
TransformItem.__init__( self, offset.shape[0], offset.shape[0] )
def apply( self, points ):
return points + self.offset
def __str__( self ):
return '{}+x'.format( numeric.fstr(self.offset) )
class Scale( TransformItem ):
def __init__( self, linear, offset ):
assert linear.ndim == 0 and offset.ndim == 1
self.linear = linear
self.offset = offset
self.isflipped = linear < 0 and len(offset)%2 == 1
TransformItem.__init__( self, offset.shape[0], offset.shape[0] )
def apply( self, points ):
return self.linear * points + self.offset
@property
def det( self ):
return self.linear**self.todims
@property
def invlinear( self ):
return 1 / self.linear
def __str__( self ):
return '{}+{}*x'.format( numeric.fstr(self.offset), numeric.fstr(self.linear) )
class Matrix( TransformItem ):
def __init__( self, linear, offset ):
self.linear = linear
self.offset = offset
assert linear.ndim == 2 and offset.shape == linear.shape[:1]
TransformItem.__init__( self, linear.shape[0], linear.shape[1] )
def apply( self, points ):
assert points.shape[-1] == self.fromdims
return numpy.dot( points, self.linear.T ) + self.offset
def __str__( self ):
return '{}{}{}'.format( '~' if self.isflipped else '', numeric.fstr(self.offset), ''.join( '+{}*x{}'.format( numeric.fstr(v), i ) for i, v in enumerate(self.linear.T) ) )
class Square( Matrix ):
def __init__( self, linear, offset ):
Matrix.__init__( self, linear, offset )
assert self.fromdims == self.todims
@property
def isflipped( self ):
return self.det < 0
@cache.property
def det( self ):
return numeric.det_exact( self.linear )
@cache.property
def invlinear( self ):
return numpy.linalg.inv( self.linear )
class Updim( Matrix ):
def __init__( self, linear, offset, isflipped ):
assert isflipped in (True,False)
self.isflipped = isflipped
Matrix.__init__( self, linear, offset )
assert self.todims > self.fromdims
@property
def flipped( self ):
return Updim( self.linear, self.offset, not self.isflipped )
class VertexTransform( TransformItem ):
def __init__( self, fromdims ):
TransformItem.__init__( self, None, fromdims )
self.isflipped = False
class MapTrans( VertexTransform ):
def __init__( self, coords, vertices ):
self.coords = numpy.asarray(coords)
assert numeric.isintarray( self.coords )
nverts, ndims = coords.shape
assert len(vertices) == nverts
self.vertices = tuple(vertices)
VertexTransform.__init__( self, ndims )
def apply( self, coords ):
assert coords.ndim == 2
coords = numpy.asarray( coords )
indices = map( self.coords.tolist().index, coords.tolist() )
return tuple( self.vertices[n] for n in indices )
def __str__( self ):
return ','.join( str(v) for v in self.vertices )
class RootTrans( VertexTransform ):
def __init__( self, name, shape ):
VertexTransform.__init__( self, len(shape) )
self.I, = numpy.where( shape )
self.w = numpy.take( shape, self.I )
self.name = name
def apply( self, coords ):
coords = numpy.asarray(coords)
assert coords.ndim == 2
if self.I.size:
coords = coords.copy()
coords[:,self.I] %= self.w
return tuple( self.name + str(c) for c in coords.tolist() )
def __str__( self ):
return repr( self.name + '[*]' )
class RootTransEdges( VertexTransform ):
def __init__( self, name, shape ):
VertexTransform.__init__( self, len(shape) )
self.shape = shape
assert isinstance( name, numpy.ndarray )
assert name.shape == (3,)*len(shape)
self.name = name.copy()
def apply( self, coords ):
assert coords.ndim == 2
labels = []
for coord in coords.T.frac.T:
right = (coord[:,1]==1) & (coord[:,0]==self.shape)
left = coord[:,0]==0
where = (1+right)-left
s = self.name[tuple(where)] + '[%s]' % ','.join( str(n) if d == 1 else '%d/%d' % (n,d) for n, d in coord[where==1] )
labels.append( s )
return labels
def __str__( self ):
return repr( ','.join(self.name.flat)+'*' )
## CONSTRUCTORS
def affine( linear, offset, denom=1, isflipped=None ):
r_offset = numpy.asarray( offset, dtype=float ) / denom
r_linear = numpy.asarray( linear, dtype=float ) / denom
n, = r_offset.shape
if r_linear.ndim == 2:
assert r_linear.shape[0] == n
if r_linear.shape[1] != n:
trans = Updim( r_linear, r_offset, isflipped )
elif n == 0:
trans = Shift( r_offset )
elif n == 1 or r_linear[0,-1] == 0 and numpy.all( r_linear == r_linear[0,0] * numpy.eye(n) ):
trans = Scale( r_linear[0,0], r_offset ) if r_linear[0,0] != 1 else Shift( r_offset )
else:
trans = Square( r_linear, r_offset )
else:
assert r_linear.ndim == 0
trans = Scale( r_linear, r_offset ) if r_linear != 1 else Shift( r_offset )
if isflipped is not None:
assert trans.isflipped == isflipped
return CanonicalTransformChain( [trans] )
def simplex( coords, isflipped=None ):
coords = numpy.asarray(coords)
offset = coords[0]
return affine( (coords[1:]-offset).T, offset, isflipped=isflipped )
def roottrans( name, shape ):
return CanonicalTransformChain(( RootTrans( name, shape ), ))
def roottransedges( name, shape ):
return CanonicalTransformChain(( RootTransEdges( name, shape ), ))
def maptrans( coords, vertices ):
return CanonicalTransformChain(( MapTrans( coords, vertices ), ))
def equivalent( trans1, trans2, flipped=False ):
trans1 = TransformChain( trans1 )
trans2 = TransformChain( trans2 )
if trans1 == trans2:
return not flipped
while trans1 and trans2 and trans1[0] == trans2[0]:
trans1 = trans1.slicefrom(1)
trans2 = trans2.slicefrom(1)
return numpy.all( trans1.linear == trans2.linear ) and numpy.all( trans1.offset == trans2.offset ) and trans1.isflipped^trans2.isflipped == flipped
## INSTANCES
identity = CanonicalTransformChain()
def solve( T1, T2 ): # T1 << x == T2
assert isinstance( T1, TransformChain )
assert isinstance( T2, TransformChain )
while T1 and T2 and T1[0] == T2[0]:
T1 = T1.slicefrom(1)
T2 = T2.slicefrom(1)
if not T1:
return T2
# A1 * ( Ax * xi + bx ) + b1 == A2 * xi + b2 => A1 * Ax = A2, A1 * bx + b1 = b2
Ax, bx = numeric.solve_exact( T1.linear, T2.linear, T2.offset - T1.offset )
return affine( Ax, bx )
# vim:shiftwidth=2:softtabstop=2:expandtab:foldmethod=indent:foldnestmax=2
|
[
"numpy.eye",
"numpy.asarray",
"numpy.where",
"numpy.take",
"numpy.linalg.inv",
"numpy.array",
"numpy.dot",
"numpy.all"
] |
[((11918, 11939), 'numpy.asarray', 'numpy.asarray', (['coords'], {}), '(coords)\n', (11931, 11939), False, 'import numpy\n'), ((2660, 2676), 'numpy.array', 'numpy.array', (['(1.0)'], {}), '(1.0)\n', (2671, 2676), False, 'import numpy\n'), ((2898, 2914), 'numpy.array', 'numpy.array', (['(1.0)'], {}), '(1.0)\n', (2909, 2914), False, 'import numpy\n'), ((6770, 6786), 'numpy.array', 'numpy.array', (['(1.0)'], {}), '(1.0)\n', (6781, 6786), False, 'import numpy\n'), ((8627, 8656), 'numpy.linalg.inv', 'numpy.linalg.inv', (['self.linear'], {}), '(self.linear)\n', (8643, 8656), False, 'import numpy\n'), ((9238, 9259), 'numpy.asarray', 'numpy.asarray', (['coords'], {}), '(coords)\n', (9251, 9259), False, 'import numpy\n'), ((9524, 9545), 'numpy.asarray', 'numpy.asarray', (['coords'], {}), '(coords)\n', (9537, 9545), False, 'import numpy\n'), ((9882, 9900), 'numpy.where', 'numpy.where', (['shape'], {}), '(shape)\n', (9893, 9900), False, 'import numpy\n'), ((9916, 9941), 'numpy.take', 'numpy.take', (['shape', 'self.I'], {}), '(shape, self.I)\n', (9926, 9941), False, 'import numpy\n'), ((10008, 10029), 'numpy.asarray', 'numpy.asarray', (['coords'], {}), '(coords)\n', (10021, 10029), False, 'import numpy\n'), ((11077, 11111), 'numpy.asarray', 'numpy.asarray', (['offset'], {'dtype': 'float'}), '(offset, dtype=float)\n', (11090, 11111), False, 'import numpy\n'), ((11135, 11169), 'numpy.asarray', 'numpy.asarray', (['linear'], {'dtype': 'float'}), '(linear, dtype=float)\n', (11148, 11169), False, 'import numpy\n'), ((12631, 12672), 'numpy.all', 'numpy.all', (['(trans1.linear == trans2.linear)'], {}), '(trans1.linear == trans2.linear)\n', (12640, 12672), False, 'import numpy\n'), ((12679, 12720), 'numpy.all', 'numpy.all', (['(trans1.offset == trans2.offset)'], {}), '(trans1.offset == trans2.offset)\n', (12688, 12720), False, 'import numpy\n'), ((8030, 8062), 'numpy.dot', 'numpy.dot', (['points', 'self.linear.T'], {}), '(points, self.linear.T)\n', (8039, 8062), False, 'import numpy\n'), ((2716, 2747), 'numpy.dot', 'numpy.dot', (['linear', 'trans.linear'], {}), '(linear, trans.linear)\n', (2725, 2747), False, 'import numpy\n'), ((2957, 2994), 'numpy.dot', 'numpy.dot', (['trans.invlinear', 'invlinear'], {}), '(trans.invlinear, invlinear)\n', (2966, 2994), False, 'import numpy\n'), ((11476, 11488), 'numpy.eye', 'numpy.eye', (['n'], {}), '(n)\n', (11485, 11488), False, 'import numpy\n')]
|
#!/usr/bin/env python
import argparse
import numpy as np
import pandas as pd
from scipy import linalg
from tqdm import tqdm
import os
import logging
def get_args():
parser = argparse.ArgumentParser(description="calculate splicing scores per gene/cell")
parser.add_argument("--input", help="Name of the input file from rijk_zscore")
parser.add_argument("--svd_type", choices=["normgene","normdonor"], help="Method of calculating matrix before SVD")
parser.add_argument("--grouping_level_2", help="column to group the data by (e.g. ontology, compartment, tissue)", default="ontology")
parser.add_argument("--grouping_level_1", help="subset data by this column before checking for differences (e.g. tissue, compartment)", default="dummy")
parser.add_argument("--outname_pq", help="Name of output file")
parser.add_argument("--outname_tsv", help="Name of output File")
parser.add_argument("--outname_log", help="Name of output File")
args = parser.parse_args()
return args
def main():
args = get_args()
logging.basicConfig(
filename = args.outname_log,
format='%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S')
logging.info("Beginning calculation")
logging.info("Read in parquet file")
df = pd.read_parquet(args.input)
##### PERFORM SVD ZSCORE CALCULATION #####
logging.info("Perform SVD zscore calculation")
letters = ["Start", "End"]
if args.svd_type == "normgene":
zcontrib_col = "zcontrib"
elif args.svd_type == "normdonor":
for let in letters:
# find number of reads per donor (or acceptor) per cell
df["cell_gene_pos" + let] = df["cell_gene"] + df["junc" + let].astype(str)
df["n.g_pos" + let] = df.groupby("cell_gene_pos" + let)["numReads"].transform("sum")
# normalize on a donor/acceptor rather than a gene basis
# TRY OUT NOT SQRT-ING denominator as normalization
df["zcontrib_posnorm" + let] = df["numReads"] * df["nSijk" + let] / df["n.g_pos" + let]
zcontrib_col = "zcontrib_posnorm"
for let in letters:
# replace NANs with zeros
df["zcontrib{}_rep".format(let)] = df[zcontrib_col + let].fillna(0)
# create label for each junction + donor/acceptor
df["str_junc" + let] = df["junc" + let].astype(int).astype(str) + "_" + let
df["cell_gene_pos" + let] = df["cell"] + df["gene"] + df["junc" + let].astype(str)
# get sum of zcontribs for the given cell and splice site
df["summed_zcontrib" + let] = df.groupby("cell_gene_pos" + let)["zcontrib{}_rep".format(let)].transform('sum')
k = 3 # number of components to include
loads = {"f{}".format(i) : {} for i in range(k)}
zs = {"svd_z{}".format(i) : {} for i in range(k)}
logging.info("Iterate over each gene")
for gene, gene_df in tqdm(df.groupby("gene")):
# get zcontrib matrix
gene_mats = []
for let in letters:
gene_mat = gene_df.drop_duplicates("cell_gene_pos" + let).pivot_table(index="cell_gene",columns="str_junc{}".format(let),values="summed_zcontrib" + let,fill_value=0)
gene_mats.append(gene_mat)
gene_mat = gene_mats[0].merge(gene_mats[1],on="cell_gene")
# mean-normalize the rows
gene_mat = gene_mat.subtract(gene_mat.mean(axis=1),axis=0)
# calculate svd
u, s, vh = linalg.svd(gene_mat,check_finite=False,full_matrices=False)
if len(s) >= k:
# calculate new z scores based on svd
new_zs = gene_mat.dot(np.transpose(vh[:k,:]))
# calculate load on each component
load = np.square(s)/sum(np.square(s))
# save new zs and fs in dictionaries to save later
for i in range(k):
loads["f{}".format(i)][gene] = load[i]
zs["svd_z{}".format(i)].update(pd.Series(new_zs[i].values,index=new_zs.index).to_dict())
# save loadings
v_out = pd.DataFrame(vh,columns=gene_mat.columns)
#gene_mat_name = "{}_{}_{}.geneMat".format(gene, args.dataname, args.param_stem)
gene_mat_name = "{}.geneMat".format(gene)
v_out.to_csv(gene_mat_name, index=False, sep = "\t")
for i in range(k):
df["f{}".format(i)] = df["gene"].map(loads["f{}".format(i)])
df["svd_z{}".format(i)] = df["cell_gene"].map(zs["svd_z{}".format(i)])
df["svd_z_sumsq"] = (df[["svd_z{}".format(i) for i in range(k)]]**2).sum(axis=1)
sub_cols = ["cell","gene","scZ","svd_z_sumsq","n.g_Start","n.g_End"] + ["f{}".format(i) for i in range(k)] + ["svd_z{}".format(i) for i in range(k)] #+ velocity_cols
if "ontology" in df.columns:
sub_cols = sub_cols + [args.grouping_level_1, args.grouping_level_2, "ontology"]
logging.info("Write out files")
df.drop_duplicates("cell_gene")[sub_cols].to_csv(args.outname_tsv, index=False, sep="\t")
df.to_parquet(args.outname_pq)
logging.info("Completed")
try:
exit(main())
except Exception:
logging.exception("Exception in main(): ")
exit(1)
|
[
"pandas.DataFrame",
"logging.exception",
"argparse.ArgumentParser",
"logging.basicConfig",
"numpy.square",
"numpy.transpose",
"logging.info",
"scipy.linalg.svd",
"pandas.read_parquet",
"pandas.Series"
] |
[((180, 258), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""calculate splicing scores per gene/cell"""'}), "(description='calculate splicing scores per gene/cell')\n", (203, 258), False, 'import argparse\n'), ((1029, 1184), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': 'args.outname_log', 'format': '"""%(asctime)s %(levelname)-8s %(message)s"""', 'level': 'logging.INFO', 'datefmt': '"""%Y-%m-%d %H:%M:%S"""'}), "(filename=args.outname_log, format=\n '%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt=\n '%Y-%m-%d %H:%M:%S')\n", (1048, 1184), False, 'import logging\n'), ((1198, 1235), 'logging.info', 'logging.info', (['"""Beginning calculation"""'], {}), "('Beginning calculation')\n", (1210, 1235), False, 'import logging\n'), ((1238, 1274), 'logging.info', 'logging.info', (['"""Read in parquet file"""'], {}), "('Read in parquet file')\n", (1250, 1274), False, 'import logging\n'), ((1283, 1310), 'pandas.read_parquet', 'pd.read_parquet', (['args.input'], {}), '(args.input)\n', (1298, 1310), True, 'import pandas as pd\n'), ((1360, 1406), 'logging.info', 'logging.info', (['"""Perform SVD zscore calculation"""'], {}), "('Perform SVD zscore calculation')\n", (1372, 1406), False, 'import logging\n'), ((2739, 2777), 'logging.info', 'logging.info', (['"""Iterate over each gene"""'], {}), "('Iterate over each gene')\n", (2751, 2777), False, 'import logging\n'), ((4621, 4652), 'logging.info', 'logging.info', (['"""Write out files"""'], {}), "('Write out files')\n", (4633, 4652), False, 'import logging\n'), ((4782, 4807), 'logging.info', 'logging.info', (['"""Completed"""'], {}), "('Completed')\n", (4794, 4807), False, 'import logging\n'), ((3304, 3365), 'scipy.linalg.svd', 'linalg.svd', (['gene_mat'], {'check_finite': '(False)', 'full_matrices': '(False)'}), '(gene_mat, check_finite=False, full_matrices=False)\n', (3314, 3365), False, 'from scipy import linalg\n'), ((4853, 4895), 'logging.exception', 'logging.exception', (['"""Exception in main(): """'], {}), "('Exception in main(): ')\n", (4870, 4895), False, 'import logging\n'), ((3841, 3883), 'pandas.DataFrame', 'pd.DataFrame', (['vh'], {'columns': 'gene_mat.columns'}), '(vh, columns=gene_mat.columns)\n', (3853, 3883), True, 'import pandas as pd\n'), ((3461, 3484), 'numpy.transpose', 'np.transpose', (['vh[:k, :]'], {}), '(vh[:k, :])\n', (3473, 3484), True, 'import numpy as np\n'), ((3542, 3554), 'numpy.square', 'np.square', (['s'], {}), '(s)\n', (3551, 3554), True, 'import numpy as np\n'), ((3559, 3571), 'numpy.square', 'np.square', (['s'], {}), '(s)\n', (3568, 3571), True, 'import numpy as np\n'), ((3744, 3791), 'pandas.Series', 'pd.Series', (['new_zs[i].values'], {'index': 'new_zs.index'}), '(new_zs[i].values, index=new_zs.index)\n', (3753, 3791), True, 'import pandas as pd\n')]
|
# -*- coding: utf-8 -*-
import numpy as np
from . import utils
def bias(predicted, reference):
"""
Calculate the bias between PREDICTED and REFERENCE.
B = mean(p) - mean(r)
where p is the predicted values, and r is the reference values.
Note that p & r must have the same number of values.
Input:
PREDICTED : predicted field
REFERENCE : reference field
Output:
B : bias between predicted and reference
Author: <NAME>
Symplectic, LLC
www.thesymplectic.com
<EMAIL>
Created on Dec 9, 2016
"""
# Check that dimensions of predicted and reference fields match
utils.check_arrays(predicted, reference)
# Calculate bias in means
b = np.mean(predicted) - np.mean(reference)
return b
|
[
"numpy.mean"
] |
[((727, 745), 'numpy.mean', 'np.mean', (['predicted'], {}), '(predicted)\n', (734, 745), True, 'import numpy as np\n'), ((748, 766), 'numpy.mean', 'np.mean', (['reference'], {}), '(reference)\n', (755, 766), True, 'import numpy as np\n')]
|
"""Module for base class of Circle and Sphere."""
import numpy as np
from skspatial._functions import _contains_point
from skspatial.objects._base_spatial import _BaseSpatial
from skspatial.objects.point import Point
from skspatial.objects.vector import Vector
from skspatial.typing import array_like
class _BaseSphere(_BaseSpatial):
"""Private parent class for Circle and Sphere."""
def __init__(self, point: array_like, radius: float):
if radius <= 0:
raise ValueError("The radius must be positive.")
self.point = Point(point)
self.radius = radius
self.dimension = self.point.dimension
def __repr__(self) -> str:
name_class = type(self).__name__
repr_point = np.array_repr(self.point)
return f"{name_class}(point={repr_point}, radius={self.radius})"
def distance_point(self, point: array_like) -> np.float64:
"""Return the distance from a point to the circle/sphere."""
distance_to_center = self.point.distance_point(point)
return abs(distance_to_center - self.radius)
def contains_point(self, point: array_like, **kwargs: float) -> bool:
"""Check if the circle/sphere contains a point."""
return _contains_point(self, point, **kwargs)
def project_point(self, point: array_like) -> Point:
"""
Project a point onto the circle or sphere.
Parameters
----------
point : array_like
Input point.
Returns
-------
Point
Point projected onto the circle or sphere.
Raises
------
ValueError
If the input point is the center of the circle or sphere.
Examples
--------
>>> from skspatial.objects import Circle
>>> circle = Circle([0, 0], 1)
>>> circle.project_point([1, 1]).round(3)
Point([0.707, 0.707])
>>> circle.project_point([-6, 3]).round(3)
Point([-0.894, 0.447])
>>> circle.project_point([0, 0])
Traceback (most recent call last):
...
ValueError: The point must not be the center of the circle or sphere.
>>> from skspatial.objects import Sphere
>>> Sphere([0, 0, 0], 2).project_point([1, 2, 3]).round(3)
Point([0.535, 1.069, 1.604])
"""
if self.point.is_equal(point):
raise ValueError("The point must not be the center of the circle or sphere.")
vector_to_point = Vector.from_points(self.point, point)
return self.point + self.radius * vector_to_point.unit()
|
[
"numpy.array_repr",
"skspatial.objects.point.Point",
"skspatial._functions._contains_point",
"skspatial.objects.vector.Vector.from_points"
] |
[((558, 570), 'skspatial.objects.point.Point', 'Point', (['point'], {}), '(point)\n', (563, 570), False, 'from skspatial.objects.point import Point\n'), ((743, 768), 'numpy.array_repr', 'np.array_repr', (['self.point'], {}), '(self.point)\n', (756, 768), True, 'import numpy as np\n'), ((1241, 1279), 'skspatial._functions._contains_point', '_contains_point', (['self', 'point'], {}), '(self, point, **kwargs)\n', (1256, 1279), False, 'from skspatial._functions import _contains_point\n'), ((2502, 2539), 'skspatial.objects.vector.Vector.from_points', 'Vector.from_points', (['self.point', 'point'], {}), '(self.point, point)\n', (2520, 2539), False, 'from skspatial.objects.vector import Vector\n')]
|
import numpy
import openmm
import openmm.app
import openmm.unit
import qm3
import qm3.engines.openmm
import qm3.engines.xtb
import qm3.utils
import qm3.utils.hessian
import qm3.actions.minimize
import sys
import os
cwd = os.path.abspath( os.path.dirname( sys.argv[0] ) ) + os.sep
mol = qm3.molecule()
mol.pdb_read( open( "node.25" ) )
mol.boxl = numpy.array( [ 40.0, 40.0, 40.0 ] )
mol.psf_read( open( cwd + "oxy-cope.psf" ) )
mol.guess_atomic_numbers()
_psf = openmm.app.charmmpsffile.CharmmPsfFile( cwd + "oxy-cope.psf" )
_psf.setBox( mol.boxl[0] * openmm.unit.angstrom,
mol.boxl[1] * openmm.unit.angstrom,
mol.boxl[2] * openmm.unit.angstrom )
_prm = openmm.app.charmmparameterset.CharmmParameterSet( cwd + "oxy-cope.top", cwd + "oxy-cope.prm" )
_sys = _psf.createSystem( _prm,
nonbondedMethod = openmm.app.CutoffPeriodic,
nonbondedCutoff = 16.0 * openmm.unit.angstrom,
switchDistance = 14.0 * openmm.unit.angstrom,
rigidWater = False )
sqm = mol.resn == "COP"
smm = mol.sph_sel( sqm, 14 )
print( sqm.sum(), smm.sum(), end = " " )
smm = numpy.logical_and( smm, numpy.logical_not( sqm ) )
print( smm.sum() )
emm = qm3.engines.openmm.run( _sys, _psf.topology, sel_QM = sqm, platform = "OpenCL" )
eqm = qm3.engines.xtb.run( mol, 0, 0, sel_QM = sqm, sel_MM = smm )
mol.engines["mm"] = emm
mol.engines["qm"] = eqm
mol.set_active( sqm )
log = open( "borra_log.mm", "wt" )
def calc_hess( self: object, step: int ):
eqm.get_func( self )
self.set_active( smm )
self.engines["mm"].update_chrg( self )
self.engines.pop( "qm" )
qm3.actions.minimize.fire( self, gradient_tolerance = 0.5, log_file = log )
log.flush()
self.chrg[sqm] = 0.0
self.engines["mm"].update_chrg( self )
self.engines["qm"] = eqm
self.set_active( sqm )
if( step % 10 == 0 ):
self.hess = qm3.utils.hessian.numerical( self )
qm3.utils.hessian.manage( self, self.hess )
self.get_grad()
else:
self.get_grad()
qm3.utils.hessian.manage( self, self.hess, should_update = True )
return( qm3.utils.hessian.raise_RT( self.hess, qm3.utils.RT_modes( self ) ) )
qm3.actions.minimize.baker( mol,
calc_hess,
gradient_tolerance = 2.0,
step_number = 100,
print_frequency = 1,
follow_mode = 0 )
with open( "saddle.pdb", "wt" ) as f:
mol.pdb_write( f )
val, vec = qm3.utils.hessian.frequencies( mol, mol.hess )
print( val[0:10] )
qm3.utils.hessian.normal_mode( mol, val, vec, 0, afac = 8.0 )
|
[
"qm3.engines.xtb.run",
"qm3.utils.hessian.numerical",
"qm3.utils.hessian.frequencies",
"qm3.utils.RT_modes",
"os.path.dirname",
"numpy.logical_not",
"qm3.molecule",
"qm3.utils.hessian.manage",
"qm3.actions.minimize.baker",
"openmm.app.charmmparameterset.CharmmParameterSet",
"numpy.array",
"openmm.app.charmmpsffile.CharmmPsfFile",
"qm3.engines.openmm.run",
"qm3.utils.hessian.normal_mode",
"qm3.actions.minimize.fire"
] |
[((300, 314), 'qm3.molecule', 'qm3.molecule', ([], {}), '()\n', (312, 314), False, 'import qm3\n'), ((360, 391), 'numpy.array', 'numpy.array', (['[40.0, 40.0, 40.0]'], {}), '([40.0, 40.0, 40.0])\n', (371, 391), False, 'import numpy\n'), ((476, 536), 'openmm.app.charmmpsffile.CharmmPsfFile', 'openmm.app.charmmpsffile.CharmmPsfFile', (["(cwd + 'oxy-cope.psf')"], {}), "(cwd + 'oxy-cope.psf')\n", (514, 536), False, 'import openmm\n'), ((684, 780), 'openmm.app.charmmparameterset.CharmmParameterSet', 'openmm.app.charmmparameterset.CharmmParameterSet', (["(cwd + 'oxy-cope.top')", "(cwd + 'oxy-cope.prm')"], {}), "(cwd + 'oxy-cope.top', cwd +\n 'oxy-cope.prm')\n", (732, 780), False, 'import openmm\n'), ((1164, 1238), 'qm3.engines.openmm.run', 'qm3.engines.openmm.run', (['_sys', '_psf.topology'], {'sel_QM': 'sqm', 'platform': '"""OpenCL"""'}), "(_sys, _psf.topology, sel_QM=sqm, platform='OpenCL')\n", (1186, 1238), False, 'import qm3\n'), ((1251, 1305), 'qm3.engines.xtb.run', 'qm3.engines.xtb.run', (['mol', '(0)', '(0)'], {'sel_QM': 'sqm', 'sel_MM': 'smm'}), '(mol, 0, 0, sel_QM=sqm, sel_MM=smm)\n', (1270, 1305), False, 'import qm3\n'), ((2158, 2279), 'qm3.actions.minimize.baker', 'qm3.actions.minimize.baker', (['mol', 'calc_hess'], {'gradient_tolerance': '(2.0)', 'step_number': '(100)', 'print_frequency': '(1)', 'follow_mode': '(0)'}), '(mol, calc_hess, gradient_tolerance=2.0,\n step_number=100, print_frequency=1, follow_mode=0)\n', (2184, 2279), False, 'import qm3\n'), ((2400, 2444), 'qm3.utils.hessian.frequencies', 'qm3.utils.hessian.frequencies', (['mol', 'mol.hess'], {}), '(mol, mol.hess)\n', (2429, 2444), False, 'import qm3\n'), ((2466, 2523), 'qm3.utils.hessian.normal_mode', 'qm3.utils.hessian.normal_mode', (['mol', 'val', 'vec', '(0)'], {'afac': '(8.0)'}), '(mol, val, vec, 0, afac=8.0)\n', (2495, 2523), False, 'import qm3\n'), ((1111, 1133), 'numpy.logical_not', 'numpy.logical_not', (['sqm'], {}), '(sqm)\n', (1128, 1133), False, 'import numpy\n'), ((1592, 1661), 'qm3.actions.minimize.fire', 'qm3.actions.minimize.fire', (['self'], {'gradient_tolerance': '(0.5)', 'log_file': 'log'}), '(self, gradient_tolerance=0.5, log_file=log)\n', (1617, 1661), False, 'import qm3\n'), ((251, 279), 'os.path.dirname', 'os.path.dirname', (['sys.argv[0]'], {}), '(sys.argv[0])\n', (266, 279), False, 'import os\n'), ((1854, 1887), 'qm3.utils.hessian.numerical', 'qm3.utils.hessian.numerical', (['self'], {}), '(self)\n', (1881, 1887), False, 'import qm3\n'), ((1898, 1939), 'qm3.utils.hessian.manage', 'qm3.utils.hessian.manage', (['self', 'self.hess'], {}), '(self, self.hess)\n', (1922, 1939), False, 'import qm3\n'), ((2008, 2069), 'qm3.utils.hessian.manage', 'qm3.utils.hessian.manage', (['self', 'self.hess'], {'should_update': '(True)'}), '(self, self.hess, should_update=True)\n', (2032, 2069), False, 'import qm3\n'), ((2125, 2149), 'qm3.utils.RT_modes', 'qm3.utils.RT_modes', (['self'], {}), '(self)\n', (2143, 2149), False, 'import qm3\n')]
|
import numpy as np
import tensorflow as tf
from tensorflow.keras import Input, Model
from tensorflow.keras.layers import Dense
units = 4
enc = np.random.rand(4, 16, 32).reshape(4, -1, 32).astype('float32')
dec = np.random.rand(4, 32).reshape(4, 1, 32).astype('float32')
enc_h = Input(shape=(None, 32))
dec_h = Input(shape=(1, 32))
w1 = Dense(units)(enc_h)
w2 = Dense(units)(dec_h)
v = Dense(1)
score = tf.nn.tanh(w1 + w2)
score = v(score)
attention = tf.nn.softmax(score, axis=1)
context = attention * enc_h
context = tf.reduce_sum(context, axis=1)
mdl = Model(inputs=[enc_h, dec_h], outputs=[score, attention, context])
score, attention, context = mdl([enc, dec])
print(f'score shape {score.shape}')
print(f'attention shape {score.shape}')
print(f'context shape {score.shape}')
enc = np.random.rand(4, 8, 32).reshape(4, -1, 32).astype('float32')
score, attention, context = mdl([enc, dec])
print(f'score shape {score.shape}')
print(f'attention shape {score.shape}')
print(f'context shape {score.shape}')
|
[
"tensorflow.nn.softmax",
"tensorflow.reduce_sum",
"tensorflow.nn.tanh",
"tensorflow.keras.layers.Dense",
"tensorflow.keras.Input",
"tensorflow.keras.Model",
"numpy.random.rand"
] |
[((281, 304), 'tensorflow.keras.Input', 'Input', ([], {'shape': '(None, 32)'}), '(shape=(None, 32))\n', (286, 304), False, 'from tensorflow.keras import Input, Model\n'), ((313, 333), 'tensorflow.keras.Input', 'Input', ([], {'shape': '(1, 32)'}), '(shape=(1, 32))\n', (318, 333), False, 'from tensorflow.keras import Input, Model\n'), ((389, 397), 'tensorflow.keras.layers.Dense', 'Dense', (['(1)'], {}), '(1)\n', (394, 397), False, 'from tensorflow.keras.layers import Dense\n'), ((407, 426), 'tensorflow.nn.tanh', 'tf.nn.tanh', (['(w1 + w2)'], {}), '(w1 + w2)\n', (417, 426), True, 'import tensorflow as tf\n'), ((456, 484), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['score'], {'axis': '(1)'}), '(score, axis=1)\n', (469, 484), True, 'import tensorflow as tf\n'), ((523, 553), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['context'], {'axis': '(1)'}), '(context, axis=1)\n', (536, 553), True, 'import tensorflow as tf\n'), ((561, 626), 'tensorflow.keras.Model', 'Model', ([], {'inputs': '[enc_h, dec_h]', 'outputs': '[score, attention, context]'}), '(inputs=[enc_h, dec_h], outputs=[score, attention, context])\n', (566, 626), False, 'from tensorflow.keras import Input, Model\n'), ((340, 352), 'tensorflow.keras.layers.Dense', 'Dense', (['units'], {}), '(units)\n', (345, 352), False, 'from tensorflow.keras.layers import Dense\n'), ((365, 377), 'tensorflow.keras.layers.Dense', 'Dense', (['units'], {}), '(units)\n', (370, 377), False, 'from tensorflow.keras.layers import Dense\n'), ((145, 170), 'numpy.random.rand', 'np.random.rand', (['(4)', '(16)', '(32)'], {}), '(4, 16, 32)\n', (159, 170), True, 'import numpy as np\n'), ((214, 235), 'numpy.random.rand', 'np.random.rand', (['(4)', '(32)'], {}), '(4, 32)\n', (228, 235), True, 'import numpy as np\n'), ((792, 816), 'numpy.random.rand', 'np.random.rand', (['(4)', '(8)', '(32)'], {}), '(4, 8, 32)\n', (806, 816), True, 'import numpy as np\n')]
|
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
import scipy.integrate as integrate
plt.close('all')
# ------ defining constants ----- #
# -- using mks for convenience -- #
c = 2.998e8 # m / s
h = 6.626e-34 # m^s * kg / s
k = 1.31e-23 # J / K
b = 2.898e-3 # m * K
# ------ FUNCTIONS ----- #
# ----- Wien's Law ----- #
def wiens(T):
return b / T # will be in meters
# ---- Planck's Law ---- #
def planck(x,T):
return (2*h*c**2) / (x**5 * (np.exp((h*c)/(x*k*T))-1))
# ---- Integrate over Bandpass ---- #
def integrated_flux(nu,filt,flux):
return integrate.trapz(filt * flux / nu, nu) / integrate.trapz(filt / nu, nu)
# ---------------------- #
# reading in bandpass data
filts = np.loadtxt('UBV_ma06.txt',skiprows=17)
ufilt = [filts[:,0],filts[:,1]] # wavelength in A
bfilt = [filts[:,2],filts[:,3]]
vfilt = [filts[:,4],filts[:,5]]
# -- calculating colors for BB -- #
temp = [10000]
lam = np.arange(1e-9,4e-6,1e-9) # in m
flux = []
for filt in [ufilt,bfilt,vfilt]:
f = interp1d(lam*1e10,planck(lam,temp))
indx = np.arange(len(filt[0]))
indx = indx[filt[0] > 0]
bb_match = f(filt[0][indx])
flux.append(integrated_flux(2.998e18/filt[0][indx],filt[1][indx],bb_match))
flux = np.asarray(flux)
# plotting integrating example
plt.figure(figsize=(9,3))
plt.plot(lam*1e10,planck(lam,temp)/max(planck(lam,temp)),color='k',lw=2.)
plt.text(0.02,0.86,'Blackbody, T: 10$^4$ K',transform=plt.gca().transAxes,fontsize=15)
x = [3600,4350,5470]
nam = ['$U$','$B$','$V$']
count = 0
for filt in [ufilt,bfilt,vfilt]:
indx = np.arange(len(filt[0]))
indx = indx[filt[0] > 0]
plt.plot(filt[0][indx],filt[1][indx]*1.2,color='k')
plt.fill_between(filt[0][indx],filt[1][indx]*1.2,alpha=0.3,label=nam[count])
plt.scatter(x[count],flux[count]/max(planck(lam,temp)),s=200,\
edgecolor='k',color='C%s'%int(count))
count += 1
plt.legend(frameon=False,fontsize=15)
plt.ylim(0.,1.5)
plt.xlim(ufilt[0][0]-100,vfilt[0][-1]+100)
plt.ylabel('flux')
plt.xlabel('wavelength [$\AA$]')
plt.gca().set_yticklabels([])
plt.tight_layout()
plt.savefig('plots-data/hw1_prob2a.pdf',dpi=200)
plt.close('all')
|
[
"matplotlib.pyplot.xlim",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.ylim",
"matplotlib.pyplot.gca",
"matplotlib.pyplot.close",
"numpy.asarray",
"matplotlib.pyplot.legend",
"matplotlib.pyplot.figure",
"numpy.arange",
"numpy.loadtxt",
"numpy.exp",
"scipy.integrate.trapz",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.fill_between",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.tight_layout",
"matplotlib.pyplot.savefig"
] |
[((127, 143), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (136, 143), True, 'import matplotlib.pyplot as plt\n'), ((732, 771), 'numpy.loadtxt', 'np.loadtxt', (['"""UBV_ma06.txt"""'], {'skiprows': '(17)'}), "('UBV_ma06.txt', skiprows=17)\n", (742, 771), True, 'import numpy as np\n'), ((944, 974), 'numpy.arange', 'np.arange', (['(1e-09)', '(4e-06)', '(1e-09)'], {}), '(1e-09, 4e-06, 1e-09)\n', (953, 974), True, 'import numpy as np\n'), ((1234, 1250), 'numpy.asarray', 'np.asarray', (['flux'], {}), '(flux)\n', (1244, 1250), True, 'import numpy as np\n'), ((1284, 1310), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 3)'}), '(figsize=(9, 3))\n', (1294, 1310), True, 'import matplotlib.pyplot as plt\n'), ((1870, 1908), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(False)', 'fontsize': '(15)'}), '(frameon=False, fontsize=15)\n', (1880, 1908), True, 'import matplotlib.pyplot as plt\n'), ((1908, 1926), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0.0)', '(1.5)'], {}), '(0.0, 1.5)\n', (1916, 1926), True, 'import matplotlib.pyplot as plt\n'), ((1926, 1973), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(ufilt[0][0] - 100)', '(vfilt[0][-1] + 100)'], {}), '(ufilt[0][0] - 100, vfilt[0][-1] + 100)\n', (1934, 1973), True, 'import matplotlib.pyplot as plt\n'), ((1969, 1987), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""flux"""'], {}), "('flux')\n", (1979, 1987), True, 'import matplotlib.pyplot as plt\n'), ((1988, 2021), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""wavelength [$\\\\AA$]"""'], {}), "('wavelength [$\\\\AA$]')\n", (1998, 2021), True, 'import matplotlib.pyplot as plt\n'), ((2052, 2070), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2068, 2070), True, 'import matplotlib.pyplot as plt\n'), ((2071, 2120), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""plots-data/hw1_prob2a.pdf"""'], {'dpi': '(200)'}), "('plots-data/hw1_prob2a.pdf', dpi=200)\n", (2082, 2120), True, 'import matplotlib.pyplot as plt\n'), ((2120, 2136), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (2129, 2136), True, 'import matplotlib.pyplot as plt\n'), ((1621, 1676), 'matplotlib.pyplot.plot', 'plt.plot', (['filt[0][indx]', '(filt[1][indx] * 1.2)'], {'color': '"""k"""'}), "(filt[0][indx], filt[1][indx] * 1.2, color='k')\n", (1629, 1676), True, 'import matplotlib.pyplot as plt\n'), ((1674, 1760), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['filt[0][indx]', '(filt[1][indx] * 1.2)'], {'alpha': '(0.3)', 'label': 'nam[count]'}), '(filt[0][indx], filt[1][indx] * 1.2, alpha=0.3, label=nam[\n count])\n', (1690, 1760), True, 'import matplotlib.pyplot as plt\n'), ((597, 634), 'scipy.integrate.trapz', 'integrate.trapz', (['(filt * flux / nu)', 'nu'], {}), '(filt * flux / nu, nu)\n', (612, 634), True, 'import scipy.integrate as integrate\n'), ((637, 667), 'scipy.integrate.trapz', 'integrate.trapz', (['(filt / nu)', 'nu'], {}), '(filt / nu, nu)\n', (652, 667), True, 'import scipy.integrate as integrate\n'), ((2021, 2030), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2028, 2030), True, 'import matplotlib.pyplot as plt\n'), ((1438, 1447), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1445, 1447), True, 'import matplotlib.pyplot as plt\n'), ((486, 513), 'numpy.exp', 'np.exp', (['(h * c / (x * k * T))'], {}), '(h * c / (x * k * T))\n', (492, 513), True, 'import numpy as np\n')]
|
import numpy as np
import matplotlib.pyplot as plt
c = 0.2
g = lambda x: 1 if x > 1.0 else 0
R = 0.005
eta1 = lambda w, rho: -R*g(rho)*np.heaviside(w, 0)
eta2 = lambda w, rho: -R*g(rho)*np.heaviside(w, 0)
fa = lambda a, b, w1: w1*(a - a*b)
fb = lambda a, b, w2: -w2*(b - a*b)
def evolve( T, a0, b0, w1_0, w2_0 ):
h = 0.01
N = int(T/h)
t = np.zeros(N)
a = np.zeros(N)
b = np.zeros(N)
w1 = np.zeros(N)
w2 = np.zeros(N)
t[0] = 0
a[0] = a0
b[0] = b0
w1[0] = w1_0
w2[0] = w2_0
for i in range(N-1):
a[i+1] = a[i] + h*fa( a[i], b[i], w1[i] )
b[i+1] = b[i] + h*fb( a[i], b[i], w2[i] )
w1[i+1] = w1[i] + h*eta1( w1[i],a[i] )
w2[i+1] = w2[i] + h*eta2( w2[i], b[i] )
t[i+1] = t[i] + h
return a, b, w1, w2, t
a0 = 1.0
b0 = 0.1
w1_0 = 0.3
w2_0 = 0.4
a, b, w1, w2, t = evolve( 500, a0, b0, w1_0,w2_0 )
fig, ax = plt.subplots(1, 3)
ax[0].plot( a, b, '.-' )
ax[0].set_xlabel('motivation1')
ax[0].set_ylabel('motivation2')
plt.grid()
ax[1].plot(t, a)
ax[1].plot(t, b)
ax[1].set_xlabel('time')
ax[1].set_ylabel('motivation')
ax[2].plot(w1, w2)
ax[2].set_xlabel('a')
ax[2].set_ylabel('b')
plt.show()
|
[
"numpy.heaviside",
"matplotlib.pyplot.show",
"numpy.zeros",
"matplotlib.pyplot.subplots",
"matplotlib.pyplot.grid"
] |
[((920, 938), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {}), '(1, 3)\n', (932, 938), True, 'import matplotlib.pyplot as plt\n'), ((1029, 1039), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (1037, 1039), True, 'import matplotlib.pyplot as plt\n'), ((1193, 1203), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1201, 1203), True, 'import matplotlib.pyplot as plt\n'), ((359, 370), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (367, 370), True, 'import numpy as np\n'), ((383, 394), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (391, 394), True, 'import numpy as np\n'), ((403, 414), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (411, 414), True, 'import numpy as np\n'), ((424, 435), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (432, 435), True, 'import numpy as np\n'), ((445, 456), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (453, 456), True, 'import numpy as np\n'), ((137, 155), 'numpy.heaviside', 'np.heaviside', (['w', '(0)'], {}), '(w, 0)\n', (149, 155), True, 'import numpy as np\n'), ((188, 206), 'numpy.heaviside', 'np.heaviside', (['w', '(0)'], {}), '(w, 0)\n', (200, 206), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 27 16:12:58 2019
@author: LKK
"""
import numpy as np
from sys import getsizeof
import time
import copy
def dominate (record1, record2) :
result = record1.att - record2.att
if np.all(result>=0) :
return 1 #record dominate target
if np.all(result< 0) :
return 2 #target dominate record
else :
return 0 #incomparable
def BNL_basic (origin_database) :
start_time = time.time()
database = copy.deepcopy(origin_database)
#operating_setting = np.zeros.((database[0].att.shape),dtype='i2') ## 0 for min 1 for max 2 for distinct, basically for min
w_size = 1024 // getsizeof(database[0])
window = []
temp = []
skylines = []
while database :
for record in list(database) :
if not window :
window.append(record)
database.remove(record)
continue
record_dominated = False
for target in list(window) :
if dominate(record, target) == 2 :
database.remove(record)
record_dominated = True
break
elif dominate(record, target) == 1 :
window.remove(target)
continue
elif dominate(record, target) == 0 :
continue
if record_dominated :
continue
if len(window) < w_size :
window.append(record)
else :
temp.append(record)
database.remove(record)
skylines = skylines + window
database = temp
temp.clear()
cost_time = time.time() - start_time
return [cost_time, skylines]
|
[
"copy.deepcopy",
"sys.getsizeof",
"numpy.all",
"time.time"
] |
[((239, 258), 'numpy.all', 'np.all', (['(result >= 0)'], {}), '(result >= 0)\n', (245, 258), True, 'import numpy as np\n'), ((307, 325), 'numpy.all', 'np.all', (['(result < 0)'], {}), '(result < 0)\n', (313, 325), True, 'import numpy as np\n'), ((465, 476), 'time.time', 'time.time', ([], {}), '()\n', (474, 476), False, 'import time\n'), ((492, 522), 'copy.deepcopy', 'copy.deepcopy', (['origin_database'], {}), '(origin_database)\n', (505, 522), False, 'import copy\n'), ((672, 694), 'sys.getsizeof', 'getsizeof', (['database[0]'], {}), '(database[0])\n', (681, 694), False, 'from sys import getsizeof\n'), ((1755, 1766), 'time.time', 'time.time', ([], {}), '()\n', (1764, 1766), False, 'import time\n')]
|
import multiprocessing
import tensorflow as tf
import numpy as np
print("version de tensorflow:", tf.__version__)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
import matplotlib.pyplot as plt
# Los Ejemplos de entrenamiento estan en:
# mnist.train.images
print("Numero de ejemplos de entrenamiento:", mnist.train.images.shape[0])
# El conjunto de validacion es:
# mnist.validation
print("Numero de ejemplos de validacion:", mnist.validation.images.shape[0])
# El conjunto de prueba es:
# mnist.test
print("Numero de ejemplos de prueba:", mnist.test.images.shape[0])
# Cada digito es un vector de dimension 784 .
print("Tamanio de cada digito:", mnist.train.images.shape[1])
# Las etiquetas se encuentran en:
# mnist.train.labels
# mnist.validation.labels
# mnist.test.labels
print("Tamano de cada etiqueta:", mnist.train.labels.shape[1])
# Cada etiqueta es un one-hot-vector,ie. un vector con un solo uno, las demas entradas son cero
# [1,0,0,0,0,0,0,0,0,0] representa el numero 0
# [0,1,0,0,0,0,0,0,0,0] representa el numero 1
# .
# .
# .
# Cada digito se almacena como un vector de 784 dimensiones. Para visualizarlo, primero lo redimensionamos a una imagen de 28x28.
def muestra_digito(x):
"""
x: vector
784 dimensiones
Muestra el vector como una imagen de 28x28
"""
plt.axis('off')
plt.imshow(x.reshape((28, 28)), cmap=plt.cm.gray)
plt.show()
return
def vis_imagen(i, conjunto="train"):
"""
i indice del conjunto especificado
conjunto: cadena
Cualquiera: train, validation, test
Muestra el digito en el indice i y su etiqueta
"""
if(conjunto == "train"):
muestra_digito(mnist.train.images[i, ])
label = np.argwhere(mnist.train.labels[i])[0][0]
elif(conjunto == "test"):
muestra_digito(mnist.test.images[i, ])
label = np.argwhere(mnist.test.labels[i])[0][0]
else:
muestra_digito(mnist.validation.images[i, ])
label = np.argwhere(mnist.validation.labels[i])[0][0]
print("Etiqueta " + str(label))
return
#
# Para ver las imagenes
#
#vis_imagen(0, conjunto="train")
#vis_imagen(132, conjunto="validation")
#vis_imagen(32, conjunto="test")
#vis_imagen(50000, conjunto="train")
#
# RED NEURONAL
#
# Placeholders para los datos de entrenamiento
# En ellos se pasaran despues los datos de entrenamiento (x,y)
# x imagen, y etiqueta
x = tf.placeholder(tf.float32, shape=[None, 784])
y = tf.placeholder(tf.float32, shape=[None, 10])
# Variables del modelo
# Capa 1
W_1 = tf.Variable(tf.truncated_normal(shape=[784, 512], stddev=0.2))
b_1 = tf.Variable(tf.zeros([512]))
# Capa 2 de salida
W_2 = tf.Variable(tf.truncated_normal(shape=[512, 10], stddev=0.2))
b_2 = tf.Variable(tf.zeros([10]))
# Arquitectura de la red neural
def NN(x):
"""
x: matriz
su forma debe ser (m, 784)
regresa la activacion de la capa de salida
matriz de (m, 10)
"""
# Capa Escondida 1.
z_1 = tf.matmul(x, W_1) + b_1 # Combinacion lineal
a_1 = tf.nn.relu(z_1) # Activacion (funcion no lineal)
# Capa 2. Esta es la capa de salida
z_2 = tf.matmul(a_1, W_2) + b_2 # Combinacion lineal
return z_2
# Funcion de costo
y_ = NN(x)
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=y_, labels=y))
# Predicciones
train_pred = tf.nn.softmax(y_) # predicciones en el conjunto de entrenamiento
# Nota: la funcion softmax calcula la probabilidad de cada etiqueta del 0 al 9.
# Para obtener la prediccion necesitamos usar las funcion tf.argmax(y_,1) o su version en python np.argmax(y_,1)
# Asi se elige el digito mas probable para la imagen
# Esto lo hace la funcion precision
y_valid = NN(mnist.validation.images)
# predicciones en el conjunto de validacion
valid_pred = tf.nn.softmax(y_valid)
# Optimizador
opt = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# Sesion e inicializacion de varables
# ###############################
#
# Configuracion para multi corel
#
# ###############################
CPUs = multiprocessing.cpu_count()
config = tf.ConfigProto(device_count={"CPU": CPUs},
inter_op_parallelism_threads=1,
intra_op_parallelism_threads=1)
sess = tf.Session(config=config)
print("CPUs", CPUs)
# ##############################
# sess = tf.Session() # Crea una session
sess.run(tf.global_variables_initializer())
# Precision
def precision(predicciones, etiquetas):
return (100.0 * np.sum(np.argmax(predicciones, 1) == np.argmax(etiquetas, 1))
/ predicciones.shape[0])
# Entrenamiento
pasos = 5000
print("Entrenamiento:")
for i in range(pasos):
batch = mnist.train.next_batch(100)
_, costo, predicciones = sess.run(
[opt, cross_entropy, train_pred], feed_dict={x: batch[0], y: batch[1]})
if (i % 500 == 0):
print("Costo del minibatch hasta el paso %d: %f" % (i, costo))
print("Precision en el conjunto de entrenamiento: %.1f%%" %
precision(predicciones, batch[1]))
print("Precision en el conjunto de validacion: %.1f%%" % precision(
valid_pred.eval(session=sess), mnist.validation.labels))
print("\n")
y_test = NN(mnist.test.images)
test_prediction = tf.nn.softmax(y_test)
print("Precision en el conjunto de PRUEBA: %.1f%%" %
precision(test_prediction.eval(session=sess), mnist.test.labels))
indice = 251
p = tf.argmax(NN(mnist.test.images[indice:indice+1]).eval(session=sess), 1)
print("Prediccion:", sess.run(p)[0])
vis_imagen(indice, conjunto="test")
def remove_transparency(im, bg_colour=(255, 255, 255)):
# Only process if image has transparency
if im.mode in ('RGBA', 'LA') or (im.mode == 'P' and 'transparency' in im.info):
# Need to convert to RGBA if LA format due to a bug in PIL
alpha = im.convert('RGBA').split()[-1]
# Create a new background image of our matt color.
# Must be RGBA because paste requires both images have the same format
bg = Image.new("RGBA", im.size, bg_colour + (255,))
bg.paste(im, mask=alpha)
return bg
else:
return im
#################################
#
# Usa tu propia imagen
#
################################
from PIL import Image
imagen = "numero2.png"
img = Image.open(imagen)
img = remove_transparency(img).convert('L')
if img.size != (28, 28):
img.thumbnail((28, 28), Image.ANTIALIAS)
entrada = np.array(img, dtype=np.float32)
entrada = entrada.reshape((1, 784))
entrada = entrada/255.0
p = tf.argmax(NN(entrada).eval(session=sess), 1)
print("Imagen:{}".format(imagen))
img.show()
print("Prediccion:", sess.run(p)[0])
|
[
"PIL.Image.new",
"numpy.argmax",
"tensorflow.ConfigProto",
"tensorflow.matmul",
"tensorflow.truncated_normal",
"multiprocessing.cpu_count",
"tensorflow.nn.softmax",
"tensorflow.nn.relu",
"tensorflow.nn.softmax_cross_entropy_with_logits",
"tensorflow.placeholder",
"matplotlib.pyplot.show",
"tensorflow.global_variables_initializer",
"tensorflow.Session",
"numpy.argwhere",
"tensorflow.train.GradientDescentOptimizer",
"matplotlib.pyplot.axis",
"PIL.Image.open",
"tensorflow.zeros",
"numpy.array",
"tensorflow.examples.tutorials.mnist.input_data.read_data_sets"
] |
[((183, 236), 'tensorflow.examples.tutorials.mnist.input_data.read_data_sets', 'input_data.read_data_sets', (['"""MNIST_data"""'], {'one_hot': '(True)'}), "('MNIST_data', one_hot=True)\n", (208, 236), False, 'from tensorflow.examples.tutorials.mnist import input_data\n'), ((2504, 2549), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, 784]'}), '(tf.float32, shape=[None, 784])\n', (2518, 2549), True, 'import tensorflow as tf\n'), ((2554, 2598), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, 10]'}), '(tf.float32, shape=[None, 10])\n', (2568, 2598), True, 'import tensorflow as tf\n'), ((3471, 3488), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['y_'], {}), '(y_)\n', (3484, 3488), True, 'import tensorflow as tf\n'), ((3915, 3937), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['y_valid'], {}), '(y_valid)\n', (3928, 3937), True, 'import tensorflow as tf\n'), ((4175, 4202), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (4200, 4202), False, 'import multiprocessing\n'), ((4212, 4322), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'device_count': "{'CPU': CPUs}", 'inter_op_parallelism_threads': '(1)', 'intra_op_parallelism_threads': '(1)'}), "(device_count={'CPU': CPUs}, inter_op_parallelism_threads=1,\n intra_op_parallelism_threads=1)\n", (4226, 4322), True, 'import tensorflow as tf\n'), ((4374, 4399), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (4384, 4399), True, 'import tensorflow as tf\n'), ((5380, 5401), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['y_test'], {}), '(y_test)\n', (5393, 5401), True, 'import tensorflow as tf\n'), ((6420, 6438), 'PIL.Image.open', 'Image.open', (['imagen'], {}), '(imagen)\n', (6430, 6438), False, 'from PIL import Image\n'), ((6565, 6596), 'numpy.array', 'np.array', (['img'], {'dtype': 'np.float32'}), '(img, dtype=np.float32)\n', (6573, 6596), True, 'import numpy as np\n'), ((1408, 1423), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1416, 1423), True, 'import matplotlib.pyplot as plt\n'), ((1482, 1492), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1490, 1492), True, 'import matplotlib.pyplot as plt\n'), ((2651, 2700), 'tensorflow.truncated_normal', 'tf.truncated_normal', ([], {'shape': '[784, 512]', 'stddev': '(0.2)'}), '(shape=[784, 512], stddev=0.2)\n', (2670, 2700), True, 'import tensorflow as tf\n'), ((2720, 2735), 'tensorflow.zeros', 'tf.zeros', (['[512]'], {}), '([512])\n', (2728, 2735), True, 'import tensorflow as tf\n'), ((2775, 2823), 'tensorflow.truncated_normal', 'tf.truncated_normal', ([], {'shape': '[512, 10]', 'stddev': '(0.2)'}), '(shape=[512, 10], stddev=0.2)\n', (2794, 2823), True, 'import tensorflow as tf\n'), ((2843, 2857), 'tensorflow.zeros', 'tf.zeros', (['[10]'], {}), '([10])\n', (2851, 2857), True, 'import tensorflow as tf\n'), ((3146, 3161), 'tensorflow.nn.relu', 'tf.nn.relu', (['z_1'], {}), '(z_1)\n', (3156, 3161), True, 'import tensorflow as tf\n'), ((3379, 3439), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'logits': 'y_', 'labels': 'y'}), '(logits=y_, labels=y)\n', (3418, 3439), True, 'import tensorflow as tf\n'), ((4505, 4538), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (4536, 4538), True, 'import tensorflow as tf\n'), ((3090, 3107), 'tensorflow.matmul', 'tf.matmul', (['x', 'W_1'], {}), '(x, W_1)\n', (3099, 3107), True, 'import tensorflow as tf\n'), ((3247, 3266), 'tensorflow.matmul', 'tf.matmul', (['a_1', 'W_2'], {}), '(a_1, W_2)\n', (3256, 3266), True, 'import tensorflow as tf\n'), ((3960, 3998), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', (['(0.5)'], {}), '(0.5)\n', (3993, 3998), True, 'import tensorflow as tf\n'), ((6146, 6192), 'PIL.Image.new', 'Image.new', (['"""RGBA"""', 'im.size', '(bg_colour + (255,))'], {}), "('RGBA', im.size, bg_colour + (255,))\n", (6155, 6192), False, 'from PIL import Image\n'), ((1825, 1859), 'numpy.argwhere', 'np.argwhere', (['mnist.train.labels[i]'], {}), '(mnist.train.labels[i])\n', (1836, 1859), True, 'import numpy as np\n'), ((1959, 1992), 'numpy.argwhere', 'np.argwhere', (['mnist.test.labels[i]'], {}), '(mnist.test.labels[i])\n', (1970, 1992), True, 'import numpy as np\n'), ((2078, 2117), 'numpy.argwhere', 'np.argwhere', (['mnist.validation.labels[i]'], {}), '(mnist.validation.labels[i])\n', (2089, 2117), True, 'import numpy as np\n'), ((4621, 4647), 'numpy.argmax', 'np.argmax', (['predicciones', '(1)'], {}), '(predicciones, 1)\n', (4630, 4647), True, 'import numpy as np\n'), ((4651, 4674), 'numpy.argmax', 'np.argmax', (['etiquetas', '(1)'], {}), '(etiquetas, 1)\n', (4660, 4674), True, 'import numpy as np\n')]
|
import pickle
from typing import Dict, Union
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score
SklearnClassifierModel = Union[LogisticRegression, DecisionTreeClassifier]
def train_model(
features: pd.DataFrame, target: pd.Series, model: SklearnClassifierModel
) -> SklearnClassifierModel:
model.fit(features, target)
return model
def predict_model(
model: SklearnClassifierModel, features: pd.DataFrame, use_log_trick: bool = True
) -> np.ndarray:
predicts = model.predict(features)
if use_log_trick:
predicts = np.exp(predicts)
return predicts
def evaluate_model(
predicts: np.ndarray, target: pd.Series, use_log_trick: bool = False
) -> Dict[str, float]:
if use_log_trick:
target = np.exp(target)
return {
"accuracy": accuracy_score(target, predicts),
"f1": f1_score(target, predicts),
"roc_auc": roc_auc_score(target, predicts),
}
def serialize_model(model: SklearnClassifierModel, output: str) -> str:
with open(output, "wb") as f:
pickle.dump(model, f)
return output
|
[
"pickle.dump",
"sklearn.metrics.accuracy_score",
"sklearn.metrics.roc_auc_score",
"sklearn.metrics.f1_score",
"numpy.exp"
] |
[((708, 724), 'numpy.exp', 'np.exp', (['predicts'], {}), '(predicts)\n', (714, 724), True, 'import numpy as np\n'), ((902, 916), 'numpy.exp', 'np.exp', (['target'], {}), '(target)\n', (908, 916), True, 'import numpy as np\n'), ((950, 982), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['target', 'predicts'], {}), '(target, predicts)\n', (964, 982), False, 'from sklearn.metrics import accuracy_score, f1_score, roc_auc_score\n'), ((998, 1024), 'sklearn.metrics.f1_score', 'f1_score', (['target', 'predicts'], {}), '(target, predicts)\n', (1006, 1024), False, 'from sklearn.metrics import accuracy_score, f1_score, roc_auc_score\n'), ((1045, 1076), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['target', 'predicts'], {}), '(target, predicts)\n', (1058, 1076), False, 'from sklearn.metrics import accuracy_score, f1_score, roc_auc_score\n'), ((1200, 1221), 'pickle.dump', 'pickle.dump', (['model', 'f'], {}), '(model, f)\n', (1211, 1221), False, 'import pickle\n')]
|
import numpy as np
import matplotlib.pyplot as plt
cfs_to_tafd = 2.29568411*10**-5 * 86400 / 1000
# we'll use the "loadtxt" function from numpy to read the CSV
# the delimiter is a comma (other options might be tab or space)
# we want to skip the header row and the first (0th) column
# In general it's better to use the pandas library for this, which we'll see later
data = np.loadtxt('data/SHA.csv', delimiter=',',
skiprows=1, usecols=[1,2,3,4])
inflow = data[:,0] * cfs_to_tafd # TAF/d
outflow = data[:,1] * cfs_to_tafd # TAF/d
storage = data[:,2] / 1000 # AF to TAF
# first plot: time series of storage
plt.plot(storage)
plt.xlabel('Days since Oct 1 2000')
plt.ylabel('Storage (TAF)')
plt.ylim([0,4500])
plt.show()
# # second plot: time series of inflow and outflow
# plt.plot(inflow)
# plt.plot(outflow)
# plt.xlabel('Days since Oct 1 2000')
# plt.ylabel('Flows (TAF/d)')
# plt.legend(['Inflow', 'Outflow'])
# plt.show()
# # third plot: exceedance plot of inflow and outflow
# T = len(inflow)
# # before log-transforming, replace ~zeros with small values to avoid warning
# inflow[inflow < 0.01] = 0.01
# outflow[outflow < 0.01] = 0.01
# log_inflow = np.log(inflow)
# log_outflow = np.log(outflow)
# plt.plot(np.arange(T)/T, np.sort(log_inflow)[::-1])
# plt.plot(np.arange(T)/T, np.sort(log_outflow)[::-1])
# plt.legend(['Inflow', 'Outflow'])
# plt.ylabel('Log(Q)')
# plt.xlabel('Exceedance')
# plt.show()
# # fourth plot:
# # plot historical storage for folsom, oroville, and shasta
# # on the same graph
# reservoirs = ['FOL', 'ORO', 'SHA']
# for r in reservoirs:
# data = np.loadtxt('data/' + r + '.csv',
# delimiter=',',
# skiprows=1,
# usecols=[1,2,3])
# storage = data[:,2] / 1000 # AF to TAF
# plt.plot(storage, linewidth=2)
# plt.xlabel('Days since Oct 1 2000')
# plt.ylabel('Storage (TAF)')
# plt.legend(reservoirs)
# plt.show()
# optional - save to file
# plt.savefig('whatever.pdf') # or .png, .svg, etc
|
[
"matplotlib.pyplot.show",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.ylim",
"numpy.loadtxt",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xlabel"
] |
[((378, 453), 'numpy.loadtxt', 'np.loadtxt', (['"""data/SHA.csv"""'], {'delimiter': '""","""', 'skiprows': '(1)', 'usecols': '[1, 2, 3, 4]'}), "('data/SHA.csv', delimiter=',', skiprows=1, usecols=[1, 2, 3, 4])\n", (388, 453), True, 'import numpy as np\n'), ((615, 632), 'matplotlib.pyplot.plot', 'plt.plot', (['storage'], {}), '(storage)\n', (623, 632), True, 'import matplotlib.pyplot as plt\n'), ((633, 668), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Days since Oct 1 2000"""'], {}), "('Days since Oct 1 2000')\n", (643, 668), True, 'import matplotlib.pyplot as plt\n'), ((669, 696), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Storage (TAF)"""'], {}), "('Storage (TAF)')\n", (679, 696), True, 'import matplotlib.pyplot as plt\n'), ((697, 716), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0, 4500]'], {}), '([0, 4500])\n', (705, 716), True, 'import matplotlib.pyplot as plt\n'), ((716, 726), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (724, 726), True, 'import matplotlib.pyplot as plt\n')]
|
import numpy as np
from future._greyreconstruct import reconstruction_loop
from skimage.filters._rank_order import rank_order
y, x = np.mgrid[:20:0.5, :20:0.5]
bumps = np.sin(x) + np.sin(y)
h = 0.3
seed = bumps - h
mask = bumps
assert tuple(seed.shape) == tuple(mask.shape)
selem = np.ones([3] * seed.ndim, dtype=bool)
offset = np.array([d // 2 for d in selem.shape])
# Cross out the center of the selem
selem[tuple(slice(d, d + 1) for d in offset)] = False
# Make padding for edges of reconstructed image so we can ignore boundaries
dims = np.zeros(seed.ndim + 1, dtype=int)
dims[1:] = np.array(seed.shape) + (np.array(selem.shape) - 1)
dims[0] = 2
inside_slices = tuple(slice(o, o + s) for o, s in zip(offset, seed.shape))
# Set padded region to minimum image intensity and mask along first axis so
# we can interleave image and mask pixels when sorting.
pad_value = np.min(seed)
images = np.full(dims, pad_value, dtype="float64")
images[(0, *inside_slices)] = seed
images[(1, *inside_slices)] = mask
# Create a list of strides across the array to get the neighbors within
# a flattened array
value_stride = np.array(images.strides[1:]) // images.dtype.itemsize
image_stride = np.int64(images.strides[0] // images.dtype.itemsize)
selem_mgrid = np.mgrid[[slice(-o, d - o) for d, o in zip(selem.shape, offset)]]
selem_offsets = selem_mgrid[:, selem].transpose()
nb_strides = np.array(
[np.sum(value_stride * selem_offset) for selem_offset in selem_offsets],
np.int32,
)
images = images.flatten()
# Erosion goes smallest to largest; dilation goes largest to smallest.
index_sorted = np.argsort(images).astype(np.int32)
index_sorted = index_sorted[::-1]
# Make a linked list of pixels sorted by value. -1 is the list terminator.
prev = np.full(len(images), -1, np.int32)
next_ = np.full(len(images), -1, np.int32)
prev[index_sorted[1:]] = index_sorted[:-1]
next_[index_sorted[:-1]] = index_sorted[1:]
# Cython inner-loop compares the rank of pixel values.
value_rank, value_map = rank_order(images)
start = index_sorted[0]
ranks = np.array(value_rank)
strides = nb_strides
current_idx = np.int64(start)
|
[
"numpy.full",
"skimage.filters._rank_order.rank_order",
"numpy.sum",
"numpy.zeros",
"numpy.ones",
"numpy.argsort",
"numpy.min",
"numpy.sin",
"numpy.array",
"numpy.int64"
] |
[((286, 322), 'numpy.ones', 'np.ones', (['([3] * seed.ndim)'], {'dtype': 'bool'}), '([3] * seed.ndim, dtype=bool)\n', (293, 322), True, 'import numpy as np\n'), ((332, 373), 'numpy.array', 'np.array', (['[(d // 2) for d in selem.shape]'], {}), '([(d // 2) for d in selem.shape])\n', (340, 373), True, 'import numpy as np\n'), ((547, 581), 'numpy.zeros', 'np.zeros', (['(seed.ndim + 1)'], {'dtype': 'int'}), '(seed.ndim + 1, dtype=int)\n', (555, 581), True, 'import numpy as np\n'), ((875, 887), 'numpy.min', 'np.min', (['seed'], {}), '(seed)\n', (881, 887), True, 'import numpy as np\n'), ((898, 939), 'numpy.full', 'np.full', (['dims', 'pad_value'], {'dtype': '"""float64"""'}), "(dims, pad_value, dtype='float64')\n", (905, 939), True, 'import numpy as np\n'), ((1187, 1239), 'numpy.int64', 'np.int64', (['(images.strides[0] // images.dtype.itemsize)'], {}), '(images.strides[0] // images.dtype.itemsize)\n', (1195, 1239), True, 'import numpy as np\n'), ((1998, 2016), 'skimage.filters._rank_order.rank_order', 'rank_order', (['images'], {}), '(images)\n', (2008, 2016), False, 'from skimage.filters._rank_order import rank_order\n'), ((2050, 2070), 'numpy.array', 'np.array', (['value_rank'], {}), '(value_rank)\n', (2058, 2070), True, 'import numpy as np\n'), ((2106, 2121), 'numpy.int64', 'np.int64', (['start'], {}), '(start)\n', (2114, 2121), True, 'import numpy as np\n'), ((170, 179), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (176, 179), True, 'import numpy as np\n'), ((182, 191), 'numpy.sin', 'np.sin', (['y'], {}), '(y)\n', (188, 191), True, 'import numpy as np\n'), ((593, 613), 'numpy.array', 'np.array', (['seed.shape'], {}), '(seed.shape)\n', (601, 613), True, 'import numpy as np\n'), ((1118, 1146), 'numpy.array', 'np.array', (['images.strides[1:]'], {}), '(images.strides[1:])\n', (1126, 1146), True, 'import numpy as np\n'), ((617, 638), 'numpy.array', 'np.array', (['selem.shape'], {}), '(selem.shape)\n', (625, 638), True, 'import numpy as np\n'), ((1398, 1433), 'numpy.sum', 'np.sum', (['(value_stride * selem_offset)'], {}), '(value_stride * selem_offset)\n', (1404, 1433), True, 'import numpy as np\n'), ((1600, 1618), 'numpy.argsort', 'np.argsort', (['images'], {}), '(images)\n', (1610, 1618), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 8 09:24:07 2019
@author: madsa
"""
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
import matplotlib
import pickle
import matplotlib.tri as mtri
path = "Saved/kernel pickles/"
matrix="2_lin_val"
with open(path+matrix, "rb") as pickleFile:
results = pickle.load(pickleFile)
A=results[len(results)-1]
# Make data.
x = results[len(results)-3]
y = results[len(results)-2]
hf = plt.figure()
ha = hf.add_subplot(111, projection='3d')
X, Y = np.meshgrid(x, y) # `plot_surface` expects `x` and `y` data to be 2D
ha.plot_surface(X, Y, A)
plt.show()
# Plot the surface.
#surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
""" linewidth=0, antialiased=False)
triang = mtri.Triangulation(x, y)
fig = plt.figure()
ax = fig.add_subplot(1,1,1, projection='3d')
ax.plot_trisurf(triang, z, cmap='jet')
ax.scatter(x,y,z, marker='.', s=10, c="black", alpha=0.5)
ax.view_init(elev=60, azim=-45)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()"""
"""#%% Load training data
matrix=".npy"
ax.imshow(masked_array, interpolation='nearest', cmap=cmap)
Axes3D.plot_surface(X, Y, Z, *args, **kwargs)
A[A==-1]=np.nan
where_are_NaNs = np.isnan(A)
A[where_are_NaNs] = 100
index=np.unravel_index(A.argmin(), A.shape)
print(matrix+" best result is:", A[index])
print("At index: " + str(index))
dimensions=[]
for i in range(1,len(results)-1):
dimensions.append(results[i])
Variables=[]
for i in range(len(dimensions)):
Variables.append(dimensions[i][index[i]])
print("Variables:", Variables)
print("Lambda:", results[0][index[-1]])
"""
|
[
"matplotlib.pyplot.figure",
"pickle.load",
"matplotlib.pyplot.show",
"numpy.meshgrid"
] |
[((436, 459), 'pickle.load', 'pickle.load', (['pickleFile'], {}), '(pickleFile)\n', (447, 459), False, 'import pickle\n'), ((582, 594), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (592, 594), True, 'import matplotlib.pyplot as plt\n'), ((653, 670), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), '(x, y)\n', (664, 670), True, 'import numpy as np\n'), ((757, 767), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (765, 767), True, 'import matplotlib.pyplot as plt\n')]
|
# Copyright (c) 2014 Evalf
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
from . import config, log, util, warnings
import contextlib, numpy
@contextlib.contextmanager
@util.positional_only('name')
def mplfigure(*args, **kwargs):
'''Matplotlib figure context, convenience function.
Returns a :class:`matplotlib.figure.Figure` object suitable for
`object-oriented plotting`_. Upon exit the result is saved using the
agg-backend in all formats configured via :attr:`nutils.config.imagetype`,
and the resulting filenames written to log.
.. _`object-oriented plotting`: https://matplotlib.org/gallery/api/agg_oo_sgskip.html
Args
----
name : :class:`str`
The filename (without extension) of the resulting figure(s)
**kwargs :
Keyword arguments are passed on unchanged to the constructor of the
:class:`matplotlib.figure.Figure` object.
'''
name, = args
import matplotlib.backends.backend_agg
fig = matplotlib.figure.Figure(**kwargs)
matplotlib.backends.backend_agg.FigureCanvas(fig) # sets reference via fig.set_canvas
with log.context(name):
yield fig
if '.' in name:
names_formats = [(name, name.split('.')[-1])]
else:
warnings.deprecation('`config.imagetype` is deprecated. Please pass a filename with extension, e.g. {!r}.'.format(name+'.png'))
names_formats = [(name+'.'+fmt, fmt) for fmt in config.imagetype.split(',')]
for name, fmt in names_formats:
with log.open(name, 'wb') as f:
fig.savefig(f, format=fmt)
fig.set_canvas(None) # break circular reference
def triplot(name, points, values=None, *, tri=None, hull=None, cmap='jet', clim=None, linewidth=.1, linecolor='k'):
if (tri is None) != (values is None):
raise Exception('tri and values can only be specified jointly')
with mplfigure(name) as fig:
ax = fig.add_subplot(111)
if points.shape[1] == 1:
if tri is not None:
import matplotlib.collections
ax.add_collection(matplotlib.collections.LineCollection(numpy.array([points[:,0], values]).T[tri]))
if hull is not None:
for x in points[hull[:,0],0]:
ax.axvline(x, color=linecolor, linewidth=linewidth)
ax.autoscale(enable=True, axis='x', tight=True)
if clim is None:
ax.autoscale(enable=True, axis='y', tight=False)
else:
ax.set_ylim(clim)
elif points.shape[1] == 2:
ax.set_aspect('equal')
if tri is not None:
im = ax.tripcolor(points[:,0], points[:,1], tri, values, shading='gouraud', cmap=cmap, rasterized=True)
if clim is not None:
im.set_clim(clim)
fig.colorbar(im)
if hull is not None:
import matplotlib.collections
ax.add_collection(matplotlib.collections.LineCollection(points[hull], colors=linecolor, linewidths=linewidth, alpha=1 if tri is None else .5))
ax.autoscale(enable=True, axis='both', tight=True)
else:
raise Exception('invalid spatial dimension: {}'.format(points.shape[1]))
@util.positional_only('name', 'tri', 'x')
def vtk(*args, **kwargs):
'''Export data to a VTK file.
This method provides a simple interface to the `VTK file format`_ with a
number of important restrictions:
* Simplex-only. This makes it possible to define the mesh by a combination
of vertex coordinates and a connectivity table.
* Legacy mode. The newer XML based format is more complex and does not
provide benefits within the constraints set by this method.
* Binary mode. This allows for direct output of binary data, which aids
speed, accuracy and file size.
Beyond the mandatory file name, connectivity table, and vertex coordinates,
any additional data sets can be provided as keyword arguments, where the keys
are the names by which the arrays are stored. The data can be either vertex
or point data, with the distinction made based on the length of the array.
.. _`VTK file format`: https://www.vtk.org/VTK/img/file-formats.pdf
Args
----
name : :class:`str`
Destination file name (without vtk extension).
tri : :class:`int` array
Triangulation.
x : :class:`float` array
Vertex coordinates.
**kwargs :
Cell and/or point data
'''
name, cells, points = args
assert cells.ndim == points.ndim == 2
ndims = points.shape[1]
assert cells.shape[1] == ndims + 1
if ndims == 2:
points = numpy.concatenate([points, numpy.zeros_like(points[:,:1])], axis=1)
celltype = 5 # VTK_TRIANGLE
elif ndims == 3:
celltype = 10 # VTK_TETRA
else:
raise Exception('invalid point dimension: {}'.format(ndims))
vtkdtype = {
numpy.dtype('>i1'): 'char', numpy.dtype('>u1'): 'unsigned_char',
numpy.dtype('>i2'): 'short', numpy.dtype('>u2'): 'unsigned_short',
numpy.dtype('>i4'): 'int', numpy.dtype('>u4'): 'unsigned_int',
numpy.dtype('>f4'): 'float', numpy.dtype('>f8'): 'double'}
vtkndim = {1: 'SCALARS {} {} 1\nLOOKUP_TABLE default\n', 2: 'VECTORS {} {}\n', 3: 'TENSORS {} {}\n'}
bigendian = lambda a: a.astype('>{0.kind}{0.itemsize}'.format(a.dtype))
points = bigendian(points)
if points.dtype not in vtkdtype:
raise Exception('invalid data type for points: {}'.format(points.dtype))
t_cells = numpy.empty((len(cells), ndims+2), dtype='>u4')
t_cells[:,0] = ndims + 1
t_cells[:,1:] = cells
gathered = util.gather((len(array), (name, bigendian(array))) for name, array in kwargs.items())
invalid_length = [name for n, arrays in gathered if n not in (len(points), len(cells)) for name, array in arrays]
if invalid_length:
raise Exception('data length matches neither points nor cells: {}'.format(', '.join(invalid_length)))
invalid_dimension = [name for n, arrays in gathered for name, array in arrays if array.ndim not in vtkndim or any(n>3 for n in array.shape[1:])]
if invalid_dimension:
raise Exception('invalid array dimension: {}'.format(', '.join(invalid_dimension)))
invalid_dtype = [name for n, arrays in gathered for name, array in arrays if array.dtype not in vtkdtype]
if invalid_dtype:
raise Exception('invalid array data type: {}'.format(', '.join(invalid_dtype)))
name_vtk = name + '.vtk'
with log.open(name_vtk, 'wb') as vtk:
vtk.write(b'# vtk DataFile Version 3.0\nvtk output\nBINARY\nDATASET UNSTRUCTURED_GRID\n')
vtk.write('POINTS {} {}\n'.format(len(points), vtkdtype[points.dtype]).encode('ascii'))
vtk.write(points.tobytes())
vtk.write('CELLS {} {}\n'.format(len(t_cells), t_cells.size).encode('ascii'))
vtk.write(t_cells.tobytes())
vtk.write('CELL_TYPES {}\n'.format(len(cells)).encode('ascii'))
vtk.write(numpy.array(celltype, dtype='>u4').repeat(len(cells)).tobytes())
for n, arrays in gathered:
vtk.write('{}_DATA {}\n'.format('POINT' if n == len(points) else 'CELL', n).encode('ascii'))
for name, array in arrays:
vtk.write(vtkndim[array.ndim].format(name, vtkdtype[array.dtype]).encode('ascii'))
vtk.write(numpy.pad(array, [[0,0]] + [[0,3-n] for n in array.shape[1:]], mode='constant').tobytes())
# vim:sw=2:sts=2:et
|
[
"numpy.pad",
"numpy.dtype",
"numpy.array",
"numpy.zeros_like"
] |
[((5611, 5629), 'numpy.dtype', 'numpy.dtype', (['""">i1"""'], {}), "('>i1')\n", (5622, 5629), False, 'import contextlib, numpy\n'), ((5640, 5658), 'numpy.dtype', 'numpy.dtype', (['""">u1"""'], {}), "('>u1')\n", (5651, 5658), False, 'import contextlib, numpy\n'), ((5681, 5699), 'numpy.dtype', 'numpy.dtype', (['""">i2"""'], {}), "('>i2')\n", (5692, 5699), False, 'import contextlib, numpy\n'), ((5710, 5728), 'numpy.dtype', 'numpy.dtype', (['""">u2"""'], {}), "('>u2')\n", (5721, 5728), False, 'import contextlib, numpy\n'), ((5752, 5770), 'numpy.dtype', 'numpy.dtype', (['""">i4"""'], {}), "('>i4')\n", (5763, 5770), False, 'import contextlib, numpy\n'), ((5781, 5799), 'numpy.dtype', 'numpy.dtype', (['""">u4"""'], {}), "('>u4')\n", (5792, 5799), False, 'import contextlib, numpy\n'), ((5821, 5839), 'numpy.dtype', 'numpy.dtype', (['""">f4"""'], {}), "('>f4')\n", (5832, 5839), False, 'import contextlib, numpy\n'), ((5850, 5868), 'numpy.dtype', 'numpy.dtype', (['""">f8"""'], {}), "('>f8')\n", (5861, 5868), False, 'import contextlib, numpy\n'), ((5396, 5427), 'numpy.zeros_like', 'numpy.zeros_like', (['points[:, :1]'], {}), '(points[:, :1])\n', (5412, 5427), False, 'import contextlib, numpy\n'), ((7613, 7647), 'numpy.array', 'numpy.array', (['celltype'], {'dtype': '""">u4"""'}), "(celltype, dtype='>u4')\n", (7624, 7647), False, 'import contextlib, numpy\n'), ((7950, 8038), 'numpy.pad', 'numpy.pad', (['array', '([[0, 0]] + [[0, 3 - n] for n in array.shape[1:]])'], {'mode': '"""constant"""'}), "(array, [[0, 0]] + [[0, 3 - n] for n in array.shape[1:]], mode=\n 'constant')\n", (7959, 8038), False, 'import contextlib, numpy\n'), ((3003, 3038), 'numpy.array', 'numpy.array', (['[points[:, 0], values]'], {}), '([points[:, 0], values])\n', (3014, 3038), False, 'import contextlib, numpy\n')]
|
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @Filename: csvs_to_plots.py
# @Author: <NAME>
# @Time: 8/12/21 10:03
import re
from os import walk
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def main():
path = '../test_unlabeled/'
dataset = 'titanic'
files = next(walk(path), (None, None, []))[2]
acc_df = []
mse_df = []
order_mse = []
order_acc = []
for file in files:
if '.csv' in file:
precision = float(re.findall(r"[-+]?\d*\.\d+|\d+", file)[0])
file = path + file
if 'mse' in file:
order_mse.append(precision)
mse_df.append(pd.read_csv(file))
else:
order_acc.append(precision)
acc_df.append(pd.read_csv(file))
order_mse = list(enumerate(order_mse))
order_acc = list(enumerate(order_acc))
order_mse.sort(key=lambda x: x[1])
order_acc.sort(key=lambda x: x[1])
datasets = np.array(list(mse_df[0]['dataset']))
index = [idx for idx, elem in enumerate(datasets) if dataset in elem][0]
acc_algorithms = np.array([list(df.iloc[index][1:]) for df in
acc_df])
acc_algorithms = np.array([acc_algorithms[x] for x, _ in order_acc])
acc_algorithms = acc_algorithms.astype(float)
mse_algorithms = np.array([list(df.iloc[index][1:]) for df in
mse_df])
mse_algorithms = np.array([mse_algorithms[x] for x, _ in order_mse])
mse_algorithms = mse_algorithms.astype(float)
precision = [x for _, x in order_mse]
algorithms = ['ENN', 'CNN', 'RNN', 'ICF', 'MSS']
for i in range(len(acc_algorithms)):
fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle(f'ACC and MSE for {algorithms[i]}')
ax1.plot(precision, acc_algorithms[:, i])
ax1.set_title('ACC')
ax2.plot(precision, mse_algorithms[:, i])
ax2.set_title('MSE')
file_name = path + algorithms[i] + f'_{dataset}' + '.png'
plt.savefig(file_name)
plt.show()
if __name__ == '__main__':
main()
|
[
"matplotlib.pyplot.show",
"pandas.read_csv",
"os.walk",
"re.findall",
"numpy.array",
"matplotlib.pyplot.subplots",
"matplotlib.pyplot.savefig"
] |
[((1234, 1285), 'numpy.array', 'np.array', (['[acc_algorithms[x] for x, _ in order_acc]'], {}), '([acc_algorithms[x] for x, _ in order_acc])\n', (1242, 1285), True, 'import numpy as np\n'), ((1464, 1515), 'numpy.array', 'np.array', (['[mse_algorithms[x] for x, _ in order_mse]'], {}), '([mse_algorithms[x] for x, _ in order_mse])\n', (1472, 1515), True, 'import numpy as np\n'), ((1729, 1744), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)'], {}), '(2)\n', (1741, 1744), True, 'import matplotlib.pyplot as plt\n'), ((2034, 2056), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file_name'], {}), '(file_name)\n', (2045, 2056), True, 'import matplotlib.pyplot as plt\n'), ((2065, 2075), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2073, 2075), True, 'import matplotlib.pyplot as plt\n'), ((320, 330), 'os.walk', 'walk', (['path'], {}), '(path)\n', (324, 330), False, 'from os import walk\n'), ((504, 545), 're.findall', 're.findall', (['"""[-+]?\\\\d*\\\\.\\\\d+|\\\\d+"""', 'file'], {}), "('[-+]?\\\\d*\\\\.\\\\d+|\\\\d+', file)\n", (514, 545), False, 'import re\n'), ((682, 699), 'pandas.read_csv', 'pd.read_csv', (['file'], {}), '(file)\n', (693, 699), True, 'import pandas as pd\n'), ((793, 810), 'pandas.read_csv', 'pd.read_csv', (['file'], {}), '(file)\n', (804, 810), True, 'import pandas as pd\n')]
|
# -*- coding: utf-8 -*-
"""Trains a convolutional neural network on the MNIST dataset, then attacks it with the FGSM attack."""
from __future__ import absolute_import, division, print_function, unicode_literals
from os.path import abspath
import sys
sys.path.append(abspath('.'))
import keras.backend as k
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Dropout
import numpy as np
from art.attacks.fast_gradient import FastGradientMethod
from art.attacks.deepfool import DeepFool
from art.classifiers import KerasClassifier
from art.utils import load_dataset
# Read MNIST dataset
(x_train, y_train), (x_test, y_test), min_, max_ = load_dataset(str('mnist'))
print(x_train.shape)
# Create Keras convolutional neural network - basic architecture from Keras examples
# Source here: https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
k.set_learning_phase(1)
model = Sequential()
conv1 = Conv2D(32, kernel_size=(2, 2), activation='relu', input_shape=x_train.shape[1:], name="conv1")
model.add(conv1)
conv2 = Conv2D(32, (2, 2), activation='relu', name="conv2")
model.add(conv2)
maxPool = MaxPooling2D(pool_size=(2, 2))
model.add(maxPool)
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
classifier = KerasClassifier((min_, max_), model=model)
classifier.fit(x_train, y_train, nb_epochs=5, batch_size=128)
# Evaluate the classifier on the test set
preds = np.argmax(classifier.predict(x_test), axis=1)
acc = np.sum(preds == np.argmax(y_test, axis=1)) / y_test.shape[0]
print("\nTest accuracy: %.2f%%" % (acc * 100))
# untill here cnn
#
# Craft adversarial samples with FGSM
epsilon = .1 # Maximum perturbation
adv_crafter = FastGradientMethod(classifier)
x_test_adv = adv_crafter.generate(x=x_test, eps=epsilon)
print(x_test_adv.shape)
local_path = "C:\\Users\\alonh\\Documents\\Thesis\\adversarial-robustness-toolbox\\My implementation\\cnn_data\\"
np.save(local_path + "adv_img_list_FGSM.npy", x_test_adv)
print("first")
# reset and restore old variables
model_yaml = model.to_yaml()
with open(local_path + "model.yaml", "w") as yaml_file:
yaml_file.write(model_yaml)
# serialize weights to HDF5
model.save_weights(local_path + "model.h5")
print("third")
|
[
"os.path.abspath",
"numpy.save",
"numpy.argmax",
"keras.layers.Dropout",
"art.classifiers.KerasClassifier",
"keras.layers.Flatten",
"keras.backend.set_learning_phase",
"keras.layers.Dense",
"keras.layers.Conv2D",
"keras.models.Sequential",
"art.attacks.fast_gradient.FastGradientMethod",
"keras.layers.MaxPooling2D"
] |
[((940, 963), 'keras.backend.set_learning_phase', 'k.set_learning_phase', (['(1)'], {}), '(1)\n', (960, 963), True, 'import keras.backend as k\n'), ((973, 985), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (983, 985), False, 'from keras.models import Sequential\n'), ((994, 1093), 'keras.layers.Conv2D', 'Conv2D', (['(32)'], {'kernel_size': '(2, 2)', 'activation': '"""relu"""', 'input_shape': 'x_train.shape[1:]', 'name': '"""conv1"""'}), "(32, kernel_size=(2, 2), activation='relu', input_shape=x_train.shape\n [1:], name='conv1')\n", (1000, 1093), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Dropout\n'), ((1115, 1166), 'keras.layers.Conv2D', 'Conv2D', (['(32)', '(2, 2)'], {'activation': '"""relu"""', 'name': '"""conv2"""'}), "(32, (2, 2), activation='relu', name='conv2')\n", (1121, 1166), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Dropout\n'), ((1195, 1225), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (1207, 1225), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Dropout\n'), ((1503, 1545), 'art.classifiers.KerasClassifier', 'KerasClassifier', (['(min_, max_)'], {'model': 'model'}), '((min_, max_), model=model)\n', (1518, 1545), False, 'from art.classifiers import KerasClassifier\n'), ((1933, 1963), 'art.attacks.fast_gradient.FastGradientMethod', 'FastGradientMethod', (['classifier'], {}), '(classifier)\n', (1951, 1963), False, 'from art.attacks.fast_gradient import FastGradientMethod\n'), ((2160, 2217), 'numpy.save', 'np.save', (["(local_path + 'adv_img_list_FGSM.npy')", 'x_test_adv'], {}), "(local_path + 'adv_img_list_FGSM.npy', x_test_adv)\n", (2167, 2217), True, 'import numpy as np\n'), ((267, 279), 'os.path.abspath', 'abspath', (['"""."""'], {}), "('.')\n", (274, 279), False, 'from os.path import abspath\n'), ((1255, 1268), 'keras.layers.Dropout', 'Dropout', (['(0.25)'], {}), '(0.25)\n', (1262, 1268), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Dropout\n'), ((1280, 1289), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (1287, 1289), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Dropout\n'), ((1301, 1331), 'keras.layers.Dense', 'Dense', (['(1024)'], {'activation': '"""relu"""'}), "(1024, activation='relu')\n", (1306, 1331), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Dropout\n'), ((1343, 1356), 'keras.layers.Dropout', 'Dropout', (['(0.25)'], {}), '(0.25)\n', (1350, 1356), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Dropout\n'), ((1368, 1399), 'keras.layers.Dense', 'Dense', (['(10)'], {'activation': '"""softmax"""'}), "(10, activation='softmax')\n", (1373, 1399), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Dropout\n'), ((1727, 1752), 'numpy.argmax', 'np.argmax', (['y_test'], {'axis': '(1)'}), '(y_test, axis=1)\n', (1736, 1752), True, 'import numpy as np\n')]
|
import numpy as np
import cv2
import matplotlib.pyplot as plt
from moviepy.editor import VideoFileClip
from src.sliding_window import SlidingWindow
from src.lane_line import LaneLine
from src.image_reader import ImageReader
from src.image_plotter import ImagePlotter
from src.camera import Camera
from src.threshold_applier import ThresholdApplier
class LaneLineFinder(object):
"""Detects the lane lines in images or a video stream"""
def __init__(self, threshold_applier, calibrated_camera, region_of_interest, first_frame, windows_cnt=9):
self.threshold_applier = threshold_applier
self.camera = calibrated_camera
self.region_of_interest = region_of_interest
self.height = first_frame.shape[0]
self.width = first_frame.shape[1]
self.windows_cnt = windows_cnt
self.left_lane = None
self.right_lane = None
self.left_wins = []
self.right_wins = []
self._init_lanes(first_frame)
self._sliding_window_frame = None
self._overlay = None
def _init_lanes(self, frame):
thresholds_applied = self.threshold_applier.apply_combined_thresholds(frame)
warped, unwrap_m = self.camera.perspective_transform(thresholds_applied, self.region_of_interest[0], self.region_of_interest[1])
frame_histogram = np.sum(warped[int(self.height / 2):, :], axis=0)
nonzero = warped.nonzero()
left_lane_indexes = np.empty([0], dtype=np.int)
right_lane_indexes = np.empty([0], dtype=np.int)
window_height = int(self.height / self.windows_cnt)
for i in range(self.windows_cnt):
if len(self.left_wins) > 0:
l_x_center = self.left_wins[-1].x
r_x_center = self.right_wins[-1].x
else:
l_x_center = np.argmax(frame_histogram[:self.width // 2])
r_x_center = np.argmax(frame_histogram[self.width // 2:]) + self.width // 2
left_win = SlidingWindow(y_low=self.height - i * window_height,
y_high=self.height - (i + 1) * window_height,
x_center=l_x_center)
right_win = SlidingWindow(y_low=self.height - i * window_height,
y_high=self.height - (i + 1) * window_height,
x_center=r_x_center)
left_lane_indexes = np.append(left_lane_indexes, left_win.nonzero_pixels_indices(nonzero), axis=0)
right_lane_indexes = np.append(right_lane_indexes, right_win.nonzero_pixels_indices(nonzero), axis=0)
self.left_wins.append(left_win)
self.right_wins.append(right_win)
self.left_lane = LaneLine(nonzero[1][left_lane_indexes], nonzero[0][left_lane_indexes],
self.height, self.width)
self.right_lane = LaneLine(nonzero[1][right_lane_indexes], nonzero[0][right_lane_indexes],
self.height, self.width)
def _find_lane_pixels_for_each_window(self, frame, windows):
indices = np.empty([0], dtype=np.int)
nonzero = frame.nonzero()
win_x = None
for win in windows:
indices = np.append(indices, win.nonzero_pixels_indices(nonzero, win_x), axis=0)
win_x = win.x_mean
return (nonzero[1][indices], nonzero[0][indices])
def _lane_overlay(self, image, unwrap_m=None):
overlay = np.zeros_like(image).astype(np.uint8)
points = np.vstack((self.left_lane.generate_points(),
np.flipud(self.right_lane.generate_points())))
cv2.fillPoly(overlay, [points], (0, 255, 0))
if unwrap_m is not None:
overlay = cv2.warpPerspective(overlay, unwrap_m, (image.shape[1], image.shape[0]))
alpha = 0.6
return cv2.addWeighted(image, alpha, overlay, 1 - alpha, 0)
def _info_overlay(self, frame):
if len(frame.shape) == 2:
image = np.dstack((frame, frame, frame))
else:
image = frame
for win in self.left_wins:
vertices = win.vertices()
cv2.rectangle(image, vertices[0], vertices[1], (1.0, 1.0, 0), 2)
for win in self.right_wins:
vertices = win.vertices()
cv2.rectangle(image, vertices[0], vertices[1], (1.0, 1.0, 0), 2)
cv2.polylines(image, [self.left_lane.generate_points()], False, (1.0, 1.0, 0), 2)
cv2.polylines(image, [self.right_lane.generate_points()], False, (1.0, 1.0, 0), 2)
return image * 255
def _radius_of_curvature(self):
radius = int(np.average([self.left_lane.radius_of_curvature(),
self.right_lane.radius_of_curvature()]))
return radius
def _draw_text(self, frame, text, x, y):
cv2.putText(frame, text, (x, y), cv2.FONT_HERSHEY_DUPLEX, 0.8, (255, 255, 255), 2)
def run(self, frame):
thresholds_applied = self.threshold_applier.apply_combined_thresholds(frame)
warped, unwrap_m = self.camera.perspective_transform(thresholds_applied, self.region_of_interest[0], self.region_of_interest[1])
(left_x, left_y) = self._find_lane_pixels_for_each_window(warped, self.left_wins)
self.left_lane.fit_points(left_x, left_y)
(right_x, right_y) = self._find_lane_pixels_for_each_window(warped, self.right_wins)
self.right_lane.fit_points(right_x, right_y)
thresholds_applied = self.threshold_applier.apply_stacked_thresholds(frame)
warped, unwrap_m = self.camera.perspective_transform(thresholds_applied, self.region_of_interest[0], self.region_of_interest[1])
info_overlay = self._info_overlay(warped)
warped, unwrap_m = self.camera.perspective_transform(frame, self.region_of_interest[0], self.region_of_interest[1])
top_overlay = self._lane_overlay(warped)
self._sliding_window_frame = info_overlay
info_overlay = cv2.resize(info_overlay, (0, 0), fx=0.3, fy=0.3)
top_overlay = cv2.resize(top_overlay, (0, 0), fx=0.3, fy=0.3)
self._overlay = top_overlay
frame[:250, :, :] = frame[:250, :, :] * 0.4
(height, width, _) = info_overlay.shape
frame[25:25 + height, 25:25 + width, :] = info_overlay
frame[25:25 + height, 25 + 25 + width:25 + 25 + width + width, :] = top_overlay
text_x = 25 + 25 + width + width + 25
lane_width = self.left_lane.camera_distance() + self.right_lane.camera_distance()
off_center = self.right_lane.camera_distance() - lane_width / 2
self._draw_text(frame, 'Radius of curvature: {} m'.format(self._radius_of_curvature()), text_x, 80)
self._draw_text(frame, 'Distance of center: {:.1f} m'.format(off_center), text_x, 140)
return self._lane_overlay(frame, unwrap_m)
def create_video():
ir = ImageReader(read_mode='RGB')
cc = Camera(ir, None)
cc.calibrate()
ta = ThresholdApplier()
output_video_name = '../output_videos/project_video_result.mp4'
input_video = VideoFileClip("../project_video.mp4")
image = input_video.get_frame(0)
undistorted = cc.undistort(image)
llf = LaneLineFinder(ta, cc, (cc.get_region_of_interest(image)), undistorted)
output_video = input_video.fl_image(llf.run)
output_video.write_videofile(output_video_name, audio=False)
def test_with_images():
ir = ImageReader(read_mode='RGB')
ip = ImagePlotter(images_to_show_count=10)
cc = Camera(ir, ip)
cc.calibrate()
ir.regex = '../test_images/test*.jpg'
ir.set_image_names()
ta = ThresholdApplier()
for image_file in ir.images():
image = image_file.image
ip.add_to_plot(image, image_file.name, 'out', False)
undistorted = cc.undistort(image)
llf = LaneLineFinder(ta, cc, (cc.get_region_of_interest(image)), image)
result = llf.run(undistorted)
# ip.add_to_plot(llf._sliding_window_frame, image_file.name + ' sliding windows', 'out', False)
# ip.add_to_plot(result, image_file.name + 'result', 'out', False)
ip.add_to_plot(llf._overlay, image_file.name + ' overlay', 'out', False)
ip.plot('out', 2)
if __name__ == "__main__":
#test_with_images()
create_video()
|
[
"numpy.dstack",
"src.camera.Camera",
"cv2.warpPerspective",
"numpy.zeros_like",
"cv2.putText",
"moviepy.editor.VideoFileClip",
"numpy.argmax",
"src.threshold_applier.ThresholdApplier",
"src.image_plotter.ImagePlotter",
"numpy.empty",
"src.sliding_window.SlidingWindow",
"cv2.fillPoly",
"src.image_reader.ImageReader",
"cv2.addWeighted",
"cv2.rectangle",
"src.lane_line.LaneLine",
"cv2.resize"
] |
[((6900, 6928), 'src.image_reader.ImageReader', 'ImageReader', ([], {'read_mode': '"""RGB"""'}), "(read_mode='RGB')\n", (6911, 6928), False, 'from src.image_reader import ImageReader\n'), ((6938, 6954), 'src.camera.Camera', 'Camera', (['ir', 'None'], {}), '(ir, None)\n', (6944, 6954), False, 'from src.camera import Camera\n'), ((6983, 7001), 'src.threshold_applier.ThresholdApplier', 'ThresholdApplier', ([], {}), '()\n', (6999, 7001), False, 'from src.threshold_applier import ThresholdApplier\n'), ((7089, 7126), 'moviepy.editor.VideoFileClip', 'VideoFileClip', (['"""../project_video.mp4"""'], {}), "('../project_video.mp4')\n", (7102, 7126), False, 'from moviepy.editor import VideoFileClip\n'), ((7433, 7461), 'src.image_reader.ImageReader', 'ImageReader', ([], {'read_mode': '"""RGB"""'}), "(read_mode='RGB')\n", (7444, 7461), False, 'from src.image_reader import ImageReader\n'), ((7471, 7508), 'src.image_plotter.ImagePlotter', 'ImagePlotter', ([], {'images_to_show_count': '(10)'}), '(images_to_show_count=10)\n', (7483, 7508), False, 'from src.image_plotter import ImagePlotter\n'), ((7518, 7532), 'src.camera.Camera', 'Camera', (['ir', 'ip'], {}), '(ir, ip)\n', (7524, 7532), False, 'from src.camera import Camera\n'), ((7628, 7646), 'src.threshold_applier.ThresholdApplier', 'ThresholdApplier', ([], {}), '()\n', (7644, 7646), False, 'from src.threshold_applier import ThresholdApplier\n'), ((1445, 1472), 'numpy.empty', 'np.empty', (['[0]'], {'dtype': 'np.int'}), '([0], dtype=np.int)\n', (1453, 1472), True, 'import numpy as np\n'), ((1502, 1529), 'numpy.empty', 'np.empty', (['[0]'], {'dtype': 'np.int'}), '([0], dtype=np.int)\n', (1510, 1529), True, 'import numpy as np\n'), ((2739, 2839), 'src.lane_line.LaneLine', 'LaneLine', (['nonzero[1][left_lane_indexes]', 'nonzero[0][left_lane_indexes]', 'self.height', 'self.width'], {}), '(nonzero[1][left_lane_indexes], nonzero[0][left_lane_indexes], self\n .height, self.width)\n', (2747, 2839), False, 'from src.lane_line import LaneLine\n'), ((2895, 2996), 'src.lane_line.LaneLine', 'LaneLine', (['nonzero[1][right_lane_indexes]', 'nonzero[0][right_lane_indexes]', 'self.height', 'self.width'], {}), '(nonzero[1][right_lane_indexes], nonzero[0][right_lane_indexes],\n self.height, self.width)\n', (2903, 2996), False, 'from src.lane_line import LaneLine\n'), ((3112, 3139), 'numpy.empty', 'np.empty', (['[0]'], {'dtype': 'np.int'}), '([0], dtype=np.int)\n', (3120, 3139), True, 'import numpy as np\n'), ((3660, 3704), 'cv2.fillPoly', 'cv2.fillPoly', (['overlay', '[points]', '(0, 255, 0)'], {}), '(overlay, [points], (0, 255, 0))\n', (3672, 3704), False, 'import cv2\n'), ((3870, 3922), 'cv2.addWeighted', 'cv2.addWeighted', (['image', 'alpha', 'overlay', '(1 - alpha)', '(0)'], {}), '(image, alpha, overlay, 1 - alpha, 0)\n', (3885, 3922), False, 'import cv2\n'), ((4858, 4945), 'cv2.putText', 'cv2.putText', (['frame', 'text', '(x, y)', 'cv2.FONT_HERSHEY_DUPLEX', '(0.8)', '(255, 255, 255)', '(2)'], {}), '(frame, text, (x, y), cv2.FONT_HERSHEY_DUPLEX, 0.8, (255, 255, \n 255), 2)\n', (4869, 4945), False, 'import cv2\n'), ((5996, 6044), 'cv2.resize', 'cv2.resize', (['info_overlay', '(0, 0)'], {'fx': '(0.3)', 'fy': '(0.3)'}), '(info_overlay, (0, 0), fx=0.3, fy=0.3)\n', (6006, 6044), False, 'import cv2\n'), ((6067, 6114), 'cv2.resize', 'cv2.resize', (['top_overlay', '(0, 0)'], {'fx': '(0.3)', 'fy': '(0.3)'}), '(top_overlay, (0, 0), fx=0.3, fy=0.3)\n', (6077, 6114), False, 'import cv2\n'), ((1982, 2106), 'src.sliding_window.SlidingWindow', 'SlidingWindow', ([], {'y_low': '(self.height - i * window_height)', 'y_high': '(self.height - (i + 1) * window_height)', 'x_center': 'l_x_center'}), '(y_low=self.height - i * window_height, y_high=self.height - (\n i + 1) * window_height, x_center=l_x_center)\n', (1995, 2106), False, 'from src.sliding_window import SlidingWindow\n'), ((2201, 2325), 'src.sliding_window.SlidingWindow', 'SlidingWindow', ([], {'y_low': '(self.height - i * window_height)', 'y_high': '(self.height - (i + 1) * window_height)', 'x_center': 'r_x_center'}), '(y_low=self.height - i * window_height, y_high=self.height - (\n i + 1) * window_height, x_center=r_x_center)\n', (2214, 2325), False, 'from src.sliding_window import SlidingWindow\n'), ((3761, 3833), 'cv2.warpPerspective', 'cv2.warpPerspective', (['overlay', 'unwrap_m', '(image.shape[1], image.shape[0])'], {}), '(overlay, unwrap_m, (image.shape[1], image.shape[0]))\n', (3780, 3833), False, 'import cv2\n'), ((4014, 4046), 'numpy.dstack', 'np.dstack', (['(frame, frame, frame)'], {}), '((frame, frame, frame))\n', (4023, 4046), True, 'import numpy as np\n'), ((4173, 4237), 'cv2.rectangle', 'cv2.rectangle', (['image', 'vertices[0]', 'vertices[1]', '(1.0, 1.0, 0)', '(2)'], {}), '(image, vertices[0], vertices[1], (1.0, 1.0, 0), 2)\n', (4186, 4237), False, 'import cv2\n'), ((4325, 4389), 'cv2.rectangle', 'cv2.rectangle', (['image', 'vertices[0]', 'vertices[1]', '(1.0, 1.0, 0)', '(2)'], {}), '(image, vertices[0], vertices[1], (1.0, 1.0, 0), 2)\n', (4338, 4389), False, 'import cv2\n'), ((1821, 1865), 'numpy.argmax', 'np.argmax', (['frame_histogram[:self.width // 2]'], {}), '(frame_histogram[:self.width // 2])\n', (1830, 1865), True, 'import numpy as np\n'), ((3477, 3497), 'numpy.zeros_like', 'np.zeros_like', (['image'], {}), '(image)\n', (3490, 3497), True, 'import numpy as np\n'), ((1895, 1939), 'numpy.argmax', 'np.argmax', (['frame_histogram[self.width // 2:]'], {}), '(frame_histogram[self.width // 2:])\n', (1904, 1939), True, 'import numpy as np\n')]
|
import numpy as np
import matplotlib.pyplot as plt
import pickle
# load data
data_folder = "traffic-signs-data/"
training_file = data_folder+"train.p"
validation_file = data_folder+"valid.p"
testing_file = data_folder+"test.p"
with open(training_file, mode='rb') as f:
train = pickle.load(f)
with open(validation_file, mode='rb') as f:
valid = pickle.load(f)
with open(testing_file, mode='rb') as f:
test = pickle.load(f)
X_train, y_train = train['features'], train['labels']
X_valid, y_valid = valid['features'], valid['labels']
X_test, y_test = test['features'], test['labels']
import csv
csv_path = "signnames.csv"
reader = csv.reader(open(csv_path, "r"))
signnames = []
for row in reader:
if "ClassId" in row:
continue
signnames.append(row)
n_train = len(X_train)
n_validation = len(X_valid)
n_test = len(X_test)
image_shape = X_train[0].shape
n_classes = len(signnames)
print("Number of training examples =", n_train)
print("Number of testing examples =", n_test)
print("Number of validating examples =", n_validation)
print("Image data shape =", image_shape)
print("Number of classes =", n_classes)
from pipeline_lib import *
imgs = []
titles = []
for i in range(n_classes):
img_num = np.where(y_valid == i) # return all labels of i class
imgs.append(X_valid[img_num[0][0]])
titles.append(signnames[i][0] + ' ' + signnames[i][1])
show_imgs_together(imgs,titles)
import cv2
for i in range(len(X_train)):
cv2.normalize(X_train[i], X_train[i], 0, 255, norm_type=cv2.NORM_MINMAX)
for i in range(len(X_valid)):
cv2.normalize(X_valid[i], X_valid[i], 0, 255, norm_type=cv2.NORM_MINMAX)
for i in range(len(X_test)):
cv2.normalize(X_test[i], X_test[i], 0, 255, norm_type=cv2.NORM_MINMAX)
imgs = []
titles = []
for i in range(n_classes):
img_num = np.where(y_valid == i) # return all labels of i class
imgs.append(X_valid[img_num[0][0]])
titles.append(signnames[i][0] + ' ' + signnames[i][1])
# show_imgs_together(imgs,titles)
from Dataset import SignDataset
from torch.utils.data import DataLoader
train_dataset = SignDataset(X_train, y_train, n_classes)
test_dataset = SignDataset(X_test, y_test, n_classes)
valid_dataset = SignDataset(X_valid, y_valid, n_classes)
# print(test_dataset.__len__())
print(len(train_dataset))
train_dataloader = DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=10)
test_dataloader = DataLoader(test_dataset, batch_size=128, shuffle=True, num_workers=10)
valid_dataloader = DataLoader(valid_dataset, batch_size=128, shuffle=True, num_workers=10)
print(len(train_dataloader))
from LeNet import LeNet
net = LeNet()
print(net)
# some example https://neurohive.io/ru/tutorial/cnn-na-pytorch/
from torch.nn import CrossEntropyLoss
from torch.optim import SGD
criterion = CrossEntropyLoss()
optimizer = SGD(net.parameters(), lr=0.005, momentum=0.9)
print(criterion)
print(optimizer)
# INIT_LR = 2*1e-3
# BS = 64
# Training
from torch import device
device = device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net.to(device)
NUM_EPOCHS = 10
for epoch in range(NUM_EPOCHS):
net.train()
train_loss = 0
correct, total = 0, 0
correct_test, total_test = 0, 0
train_loss = 0.0
for batch_idx, (inputs, targets) in enumerate(train_dataloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# if batch_idx % 100 == 99: # print every 2000 mini-batches
# print('[%d, %5d] loss: %.3f' %
# (epoch + 1, i + 1, running_loss / 2000))
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_dataloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
_, predicted = outputs.max(1)
total_test += targets.size(0)
correct_test += (predicted == targets).sum().item()
print('Epoch: %d/%d' % (epoch+1,NUM_EPOCHS))
print('Loss: %.3f Acc: %.3f %%' % ((train_loss),(100.*correct/total)))
correct, total = 0,0
print('Accuracy test images: %d %%' % (
100 * correct_test / total_test))
# progress_bar(batch_idx, len(train_dataloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' %
# (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
print("finifh training")
# lets test
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(train_dataloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
print('Accuracy of the network on train images: %d %%' % (
100 * correct / total))
correct, total = 0,0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_dataloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
print('Accuracy of the network on test images: %d %%' % (
100 * correct / total))
correct, total = 0,0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(valid_dataloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
print('Accuracy of the network valid images: %d %%' % (
100 * correct / total))
print(correct)
print(total)
print(net)
|
[
"torch.utils.data.DataLoader",
"torch.nn.CrossEntropyLoss",
"LeNet.LeNet",
"pickle.load",
"numpy.where",
"Dataset.SignDataset",
"cv2.normalize"
] |
[((2092, 2132), 'Dataset.SignDataset', 'SignDataset', (['X_train', 'y_train', 'n_classes'], {}), '(X_train, y_train, n_classes)\n', (2103, 2132), False, 'from Dataset import SignDataset\n'), ((2148, 2186), 'Dataset.SignDataset', 'SignDataset', (['X_test', 'y_test', 'n_classes'], {}), '(X_test, y_test, n_classes)\n', (2159, 2186), False, 'from Dataset import SignDataset\n'), ((2203, 2243), 'Dataset.SignDataset', 'SignDataset', (['X_valid', 'y_valid', 'n_classes'], {}), '(X_valid, y_valid, n_classes)\n', (2214, 2243), False, 'from Dataset import SignDataset\n'), ((2321, 2392), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'batch_size': '(128)', 'shuffle': '(True)', 'num_workers': '(10)'}), '(train_dataset, batch_size=128, shuffle=True, num_workers=10)\n', (2331, 2392), False, 'from torch.utils.data import DataLoader\n'), ((2411, 2481), 'torch.utils.data.DataLoader', 'DataLoader', (['test_dataset'], {'batch_size': '(128)', 'shuffle': '(True)', 'num_workers': '(10)'}), '(test_dataset, batch_size=128, shuffle=True, num_workers=10)\n', (2421, 2481), False, 'from torch.utils.data import DataLoader\n'), ((2501, 2572), 'torch.utils.data.DataLoader', 'DataLoader', (['valid_dataset'], {'batch_size': '(128)', 'shuffle': '(True)', 'num_workers': '(10)'}), '(valid_dataset, batch_size=128, shuffle=True, num_workers=10)\n', (2511, 2572), False, 'from torch.utils.data import DataLoader\n'), ((2633, 2640), 'LeNet.LeNet', 'LeNet', ([], {}), '()\n', (2638, 2640), False, 'from LeNet import LeNet\n'), ((2795, 2813), 'torch.nn.CrossEntropyLoss', 'CrossEntropyLoss', ([], {}), '()\n', (2811, 2813), False, 'from torch.nn import CrossEntropyLoss\n'), ((284, 298), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (295, 298), False, 'import pickle\n'), ((355, 369), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (366, 369), False, 'import pickle\n'), ((422, 436), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (433, 436), False, 'import pickle\n'), ((1233, 1255), 'numpy.where', 'np.where', (['(y_valid == i)'], {}), '(y_valid == i)\n', (1241, 1255), True, 'import numpy as np\n'), ((1466, 1538), 'cv2.normalize', 'cv2.normalize', (['X_train[i]', 'X_train[i]', '(0)', '(255)'], {'norm_type': 'cv2.NORM_MINMAX'}), '(X_train[i], X_train[i], 0, 255, norm_type=cv2.NORM_MINMAX)\n', (1479, 1538), False, 'import cv2\n'), ((1573, 1645), 'cv2.normalize', 'cv2.normalize', (['X_valid[i]', 'X_valid[i]', '(0)', '(255)'], {'norm_type': 'cv2.NORM_MINMAX'}), '(X_valid[i], X_valid[i], 0, 255, norm_type=cv2.NORM_MINMAX)\n', (1586, 1645), False, 'import cv2\n'), ((1679, 1749), 'cv2.normalize', 'cv2.normalize', (['X_test[i]', 'X_test[i]', '(0)', '(255)'], {'norm_type': 'cv2.NORM_MINMAX'}), '(X_test[i], X_test[i], 0, 255, norm_type=cv2.NORM_MINMAX)\n', (1692, 1749), False, 'import cv2\n'), ((1814, 1836), 'numpy.where', 'np.where', (['(y_valid == i)'], {}), '(y_valid == i)\n', (1822, 1836), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""img-grid-processing.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1rrkKK1WGrbCC5TnJSGX8772RCMdavj-L
"""
from google.colab import drive
drive.mount('/content/drive')
import os
import PIL
img_dir = "/content/drive/MyDrive/....."
img_list = os.listdir(img_dir)
img_count = len(img_list)
print('Images: ', img_list)
print('Images Count: ', img_count)
PIL.Image.open("/content/drive/MyDrive/...../00001.jpg")
import numpy as np
import matplotlib.pyplot as plt
w = 35
h = 35
load_img = lambda filename: np.array(PIL.Image.open(f"/content/drive/MyDrive/....../{filename}").resize((100,100)))
_, axes_list = plt.subplots(h, w, figsize=(w, h), gridspec_kw={'wspace':0, 'hspace':0})
for axes in axes_list:
for ax in axes:
ax.axis('off')
img = np.random.choice(img_list)
ax.imshow(load_img(img))
plt.savefig(f"{img_dir}/abcdef.jpg")
|
[
"PIL.Image.open",
"numpy.random.choice",
"google.colab.drive.mount",
"matplotlib.pyplot.subplots",
"os.listdir",
"matplotlib.pyplot.savefig"
] |
[((238, 267), 'google.colab.drive.mount', 'drive.mount', (['"""/content/drive"""'], {}), "('/content/drive')\n", (249, 267), False, 'from google.colab import drive\n'), ((345, 364), 'os.listdir', 'os.listdir', (['img_dir'], {}), '(img_dir)\n', (355, 364), False, 'import os\n'), ((455, 511), 'PIL.Image.open', 'PIL.Image.open', (['"""/content/drive/MyDrive/...../00001.jpg"""'], {}), "('/content/drive/MyDrive/...../00001.jpg')\n", (469, 511), False, 'import PIL\n'), ((713, 787), 'matplotlib.pyplot.subplots', 'plt.subplots', (['h', 'w'], {'figsize': '(w, h)', 'gridspec_kw': "{'wspace': 0, 'hspace': 0}"}), "(h, w, figsize=(w, h), gridspec_kw={'wspace': 0, 'hspace': 0})\n", (725, 787), True, 'import matplotlib.pyplot as plt\n'), ((919, 955), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""{img_dir}/abcdef.jpg"""'], {}), "(f'{img_dir}/abcdef.jpg')\n", (930, 955), True, 'import matplotlib.pyplot as plt\n'), ((857, 883), 'numpy.random.choice', 'np.random.choice', (['img_list'], {}), '(img_list)\n', (873, 883), True, 'import numpy as np\n'), ((618, 677), 'PIL.Image.open', 'PIL.Image.open', (['f"""/content/drive/MyDrive/....../{filename}"""'], {}), "(f'/content/drive/MyDrive/....../{filename}')\n", (632, 677), False, 'import PIL\n')]
|
from typing import Dict
import matplotlib.pyplot as plt
import numpy as np
from IPython.core.display import display
from matplotlib.ticker import FormatStrFormatter, MaxNLocator
from mpl_toolkits.mplot3d import Axes3D
from plotly import offline as plotly, graph_objs as go, tools
PLOT_TYPES = {'random', 'grid', 'exploration', 'exploitation', 'initialisation', 'default', 'user-defined'}
class ChartPlotter:
def __init__(self, plot_types_and_colours: Dict, minimise: bool = False, use_3d_plot: bool = False,
plot_best_scores_on_left: bool = True):
assert PLOT_TYPES <= set(plot_types_and_colours.keys())
self.plot_types_and_colours = plot_types_and_colours
self.minimise = minimise
self.use_3d_plot = use_3d_plot
self.plot_best_scores_on_left = plot_best_scores_on_left
self._2d_plot_column = 1 if plot_best_scores_on_left else 2
self._3d_plot_column = 2 if plot_best_scores_on_left else 1
def start_update(self):
raise NotImplementedError()
def update_display(self):
raise NotImplementedError()
def plot_best_scores(self, iterations, best_scores):
raise NotImplementedError()
def plot_scores_by_type(self, configuration_type: str, colour: str, iterations, scores):
raise NotImplementedError()
def plot_3d_scores_by_type(self, configuration_type: str, colour: str, x_values, y_values, z_values):
raise NotImplementedError()
def plot_3d_surface(self, X, Y, Z):
raise NotImplementedError()
def plot_3d_target(self, target_x, target_y, target_z):
raise NotImplementedError()
class PlotlyChartPlotter(ChartPlotter):
def __init__(self, minimise: bool = None, use_3d_plot: bool = None, plot_best_scores_on_left: bool = None):
plot_types_and_colours = {
'random': 'red',
'grid': 'black',
'exploration': 'orange',
'initialisation': 'orange',
'exploitation': 'blue',
'default': 'cyan',
'user-defined': 'black'
}
super().__init__(plot_types_and_colours, minimise, use_3d_plot, plot_best_scores_on_left)
plotly.init_notebook_mode(connected=True)
self.camera = dict(
# up=dict(x=0, y=0, z=1),
# center=dict(x=0, y=0, z=0),
eye=dict(x=1.5, y=1.5, z=0.8)
)
def start_update(self):
is_3d_left = self.use_3d_plot and not self.plot_best_scores_on_left
is_3d_right = self.use_3d_plot and self.plot_best_scores_on_left
self.fig = tools.make_subplots(rows=1, cols=2, specs=[[{'is_3d': is_3d_left}, {'is_3d': is_3d_right}]],
print_grid=False)
def update_display(self):
plotly.iplot(self.fig, filename='plotly/graphs')
def plot_best_scores(self, iterations, best_scores):
best_score_plot = go.Scatter(
x=iterations,
y=best_scores,
name='Best so far',
mode='lines',
line=dict(
color='green'
)
)
self.add_2d_plot(best_score_plot)
yaxis_config = {'title': 'Score'}
if self.minimise:
yaxis_config['autorange'] = 'reversed'
if all(score >= 0 for score in best_scores):
yaxis_config['type'] = 'log'
self.fig['layout']['yaxis1'].update(yaxis_config)
self.fig['layout']['xaxis1'].update({'title': 'Iterations'})
self.fig['layout']['legend'].update({'x': 0.45, 'y': 1})
def plot_scores_by_type(self, configuration_type: str, colour: str, iterations, scores):
configuration_type_plot = go.Scatter(
x=iterations,
y=scores,
mode='markers',
name=configuration_type,
marker=dict(
color=colour
)
)
self.add_2d_plot(configuration_type_plot)
def add_2d_plot(self, plot):
self.fig.append_trace(plot, 1, self._2d_plot_column)
def add_3d_plot(self, plot):
self.fig.append_trace(plot, 1, self._3d_plot_column)
def plot_3d_scores_by_type(self, configuration_type: str, colour: str, x_values, y_values, z_values):
surface_plot = go.Scatter3d(
x=x_values,
y=y_values,
z=z_values,
mode='markers',
name=configuration_type.capitalize(),
showlegend=False,
marker=dict(
color=colour,
size=4
)
)
flat_plot = go.Scatter3d(
x=x_values,
y=y_values,
z=[0] * len(z_values),
mode='markers',
name=configuration_type.capitalize(),
showlegend=False,
marker=dict(
color=colour,
size=4
)
)
self.add_3d_plot(surface_plot)
self.add_3d_plot(flat_plot)
def plot_3d_surface(self, X, Y, Z):
surface_plot = dict(type='surface', x=X, y=Y, z=Z, colorscale='Jet', opacity=0.5,
showscale=False)
contour_plot = dict(type='surface', x=X, y=Y, z=np.zeros(Z.shape), colorscale='Jet',
surfacecolor=Z, opacity=0.75, showscale=False)
self.add_3d_plot(surface_plot)
self.add_3d_plot(contour_plot)
self.fig['layout']['scene1'].update({'camera': self.camera})
def plot_3d_target(self, target_x, target_y, target_z):
target_score_plot = go.Scatter3d(
x=[target_x],
y=[target_y],
z=[target_z],
mode='markers',
name='Target',
marker=dict(
color='green',
size=6
)
)
self.add_3d_plot(target_score_plot)
class MatPlotLibPlotter(ChartPlotter):
def __init__(self, minimise: bool = None, use_3d_plot: bool = None, plot_best_scores_on_left: bool = None):
plot_types_and_colours = {
'random': 'k',
'grid': 'k',
'exploration': 'm',
'initialisation': 'm',
'exploitation': 'b',
'default': 'c',
'user-defined': 'k'
}
super().__init__(plot_types_and_colours, minimise, use_3d_plot, plot_best_scores_on_left)
def start_update(self):
plt.clf()
self.fig = plt.figure(figsize=(20, 10))
self.ax = self.fig.add_subplot(1, 2, self._2d_plot_column)
def update_display(self):
if self.use_3d_plot:
self.ax3d.legend(loc='upper right', bbox_to_anchor=(0.11, 1))
else:
self.ax.legend()
display(plt.gcf())
plt.close('all')
def plot_best_scores(self, iterations, best_scores):
if self.minimise:
self.ax.invert_yaxis()
self.ax.yaxis.set_major_formatter(FormatStrFormatter('%d'))
if all(score >= 0 for score in best_scores):
self.ax.set_yscale('log')
self.ax.set_ylabel('Score')
self.ax.xaxis.set_major_locator(MaxNLocator(integer=True))
self.ax.set_xlabel('Iterations')
self.ax.plot(best_scores, 'g', label='Best so far')
def plot_scores_by_type(self, configuration_type: str, colour: str, iterations, scores):
self.ax.plot(iterations, scores, 'o' + colour, label=configuration_type)
def plot_3d_scores_by_type(self, configuration_type: str, colour: str, x_values, y_values, z_values):
self.ax3d.scatter(x_values, y_values, z_values, c=colour, marker='o', zorder=10, label=configuration_type)
self.ax3d.scatter(x_values, y_values, 0, c=colour, marker='o', zorder=10)
def plot_3d_surface(self, X, Y, Z):
self.ax3d = self.make_3d_axis()
self.ax3d.view_init(15, 45)
surface_plot = self.ax3d.plot_surface(X, Y, Z, cmap=plt.get_cmap('coolwarm'), zorder=2, rstride=1, cstride=1)
surface_plot.set_alpha(0.25)
self.ax3d.contourf(X, Y, Z, 50, zdir='z', offset=0, cmap=plt.get_cmap('coolwarm'), zorder=1)
def plot_3d_target(self, target_x, target_y, target_z):
self.ax3d.scatter([target_x], [target_y], [target_z], c='g', zorder=5, marker='o', label='Best')
def make_3d_axis(self) -> Axes3D:
return self.fig.add_subplot(1, 2, self._3d_plot_column, projection='3d')
|
[
"plotly.offline.iplot",
"matplotlib.pyplot.get_cmap",
"matplotlib.pyplot.clf",
"matplotlib.pyplot.close",
"matplotlib.ticker.MaxNLocator",
"numpy.zeros",
"matplotlib.pyplot.figure",
"matplotlib.ticker.FormatStrFormatter",
"plotly.tools.make_subplots",
"plotly.offline.init_notebook_mode",
"matplotlib.pyplot.gcf"
] |
[((2187, 2228), 'plotly.offline.init_notebook_mode', 'plotly.init_notebook_mode', ([], {'connected': '(True)'}), '(connected=True)\n', (2212, 2228), True, 'from plotly import offline as plotly, graph_objs as go, tools\n'), ((2586, 2700), 'plotly.tools.make_subplots', 'tools.make_subplots', ([], {'rows': '(1)', 'cols': '(2)', 'specs': "[[{'is_3d': is_3d_left}, {'is_3d': is_3d_right}]]", 'print_grid': '(False)'}), "(rows=1, cols=2, specs=[[{'is_3d': is_3d_left}, {'is_3d':\n is_3d_right}]], print_grid=False)\n", (2605, 2700), False, 'from plotly import offline as plotly, graph_objs as go, tools\n'), ((2775, 2823), 'plotly.offline.iplot', 'plotly.iplot', (['self.fig'], {'filename': '"""plotly/graphs"""'}), "(self.fig, filename='plotly/graphs')\n", (2787, 2823), True, 'from plotly import offline as plotly, graph_objs as go, tools\n'), ((6383, 6392), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (6390, 6392), True, 'import matplotlib.pyplot as plt\n'), ((6412, 6440), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 10)'}), '(figsize=(20, 10))\n', (6422, 6440), True, 'import matplotlib.pyplot as plt\n'), ((6721, 6737), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (6730, 6737), True, 'import matplotlib.pyplot as plt\n'), ((6702, 6711), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (6709, 6711), True, 'import matplotlib.pyplot as plt\n'), ((7106, 7131), 'matplotlib.ticker.MaxNLocator', 'MaxNLocator', ([], {'integer': '(True)'}), '(integer=True)\n', (7117, 7131), False, 'from matplotlib.ticker import FormatStrFormatter, MaxNLocator\n'), ((5196, 5213), 'numpy.zeros', 'np.zeros', (['Z.shape'], {}), '(Z.shape)\n', (5204, 5213), True, 'import numpy as np\n'), ((6903, 6927), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%d"""'], {}), "('%d')\n", (6921, 6927), False, 'from matplotlib.ticker import FormatStrFormatter, MaxNLocator\n'), ((7891, 7915), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""coolwarm"""'], {}), "('coolwarm')\n", (7903, 7915), True, 'import matplotlib.pyplot as plt\n'), ((8051, 8075), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""coolwarm"""'], {}), "('coolwarm')\n", (8063, 8075), True, 'import matplotlib.pyplot as plt\n')]
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
import os
import logging
logging.basicConfig(level=logging.DEBUG)
import sys
#sys.stdout = sys.stderr
# Prevent reaching to maximum recursion depth in `theano.tensor.grad`
#sys.setrecursionlimit(2 ** 20)
import numpy as np
np.random.seed(2 ** 10)
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.regularizers import l2
from tensorflow.keras.callbacks import LearningRateScheduler, ModelCheckpoint
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical
from tensorflow.keras import backend as K
from utils import mk_dir
# ================================================
# DATA CONFIGURATION:
logging.debug("Loading data...")
nb_classes = 10
image_size = 32
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
# convert class vectors to binary class matrices
Y_train = to_categorical(y_train, nb_classes)
Y_test = to_categorical(y_test, nb_classes)
# ================================================
# ================================================
# NETWORK/TRAINING CONFIGURATION:
logging.debug("Loading network/training configuration...")
depth = 28 # table 5 on page 8 indicates best value (4.17) CIFAR-10
k = 10 # 'widen_factor'; table 5 on page 8 indicates best value (4.17) CIFAR-10
dropout_probability = 0 # table 6 on page 10 indicates best value (4.17) CIFAR-10
weight_decay = 0.0005 # page 10: "Used in all experiments"
batch_size = 128 # page 8: "Used in all experiments"
# Regarding nb_epochs, lr_schedule and sgd, see bottom page 10:
nb_epochs = 200
lr_schedule = [60, 120, 160] # epoch_step
def schedule(epoch_idx):
if (epoch_idx + 1) < lr_schedule[0]:
return 0.1
elif (epoch_idx + 1) < lr_schedule[1]:
return 0.02 # lr_decay_ratio = 0.2
elif (epoch_idx + 1) < lr_schedule[2]:
return 0.004
return 0.0008
sgd = SGD(lr=0.1, momentum=0.9, nesterov=True)
# Other config from code; throughtout all layer:
use_bias = False # following functions 'FCinit(model)' and 'DisableBias(model)' in utils.lua
weight_init="he_normal" # follows the 'MSRinit(model)' function in utils.lua
# Keras specific
if K.image_data_format() == "th":
logging.debug("image_dim_ordering = 'th'")
channel_axis = 1
input_shape = (3, image_size, image_size)
else:
logging.debug("image_dim_ordering = 'tf'")
channel_axis = -1
input_shape = (image_size, image_size, 3)
# ================================================
# ================================================
# OUTPUT CONFIGURATION:
print_model_summary = True
save_model = True
save_model_plot = False
MODEL_PATH = os.environ.get('MODEL_PATH', 'models/')
CHECKPOINT_PATH = os.environ.get('CHECKPOINT_PATH', 'checkpoints/')
# ================================================
# Wide residual network http://arxiv.org/abs/1605.07146
def _wide_basic(n_input_plane, n_output_plane, stride):
def f(net):
# format of conv_params:
# [ [nb_col="kernel width", nb_row="kernel height",
# subsample="(stride_vertical,stride_horizontal)",
# border_mode="same" or "valid"] ]
# B(3,3): orignal <<basic>> block
conv_params = [ [3,3,stride,"same"],
[3,3,(1,1),"same"] ]
n_bottleneck_plane = n_output_plane
# Residual block
for i, v in enumerate(conv_params):
if i == 0:
if n_input_plane != n_output_plane:
net = BatchNormalization(axis=channel_axis)(net)
net = Activation("relu")(net)
convs = net
else:
convs = BatchNormalization(axis=channel_axis)(net)
convs = Activation("relu")(convs)
convs = Conv2D(n_bottleneck_plane,
(v[0],v[1]),
strides=v[2],
padding=v[3],
kernel_initializer=weight_init,
kernel_regularizer=l2(weight_decay),
use_bias=use_bias)(convs)
else:
convs = BatchNormalization(axis=channel_axis)(convs)
convs = Activation("relu")(convs)
if dropout_probability > 0:
convs = Dropout(dropout_probability)(convs)
convs = Conv2D(n_bottleneck_plane,
(v[0],v[1]),
strides=v[2],
padding=v[3],
kernel_initializer=weight_init,
kernel_regularizer=l2(weight_decay),
use_bias=use_bias)(convs)
# Shortcut Conntection: identity function or 1x1 convolutional
# (depends on difference between input & output shape - this
# corresponds to whether we are using the first block in each
# group; see _layer() ).
if n_input_plane != n_output_plane:
shortcut = Conv2D(n_output_plane,
(1,1),
strides=stride,
padding="same",
kernel_initializer=weight_init,
kernel_regularizer=l2(weight_decay),
use_bias=use_bias)(net)
else:
shortcut = net
return Add()([convs, shortcut])
return f
# "Stacking Residual Units on the same stage"
def _layer(block, n_input_plane, n_output_plane, count, stride):
def f(net):
net = block(n_input_plane, n_output_plane, stride)(net)
for i in range(2,int(count+1)):
net = block(n_output_plane, n_output_plane, stride=(1,1))(net)
return net
return f
def create_model():
logging.debug("Creating model...")
assert((depth - 4) % 6 == 0)
n = (depth - 4) / 6
inputs = Input(shape=input_shape)
n_stages=[16, 16*k, 32*k, 64*k]
conv1 = Conv2D(n_stages[0],
(3, 3),
strides=1,
padding="same",
kernel_initializer=weight_init,
kernel_regularizer=l2(weight_decay),
use_bias=use_bias)(inputs) # "One conv at the beginning (spatial size: 32x32)"
# Add wide residual blocks
block_fn = _wide_basic
conv2 = _layer(block_fn, n_input_plane=n_stages[0], n_output_plane=n_stages[1], count=n, stride=(1,1))(conv1)# "Stage 1 (spatial size: 32x32)"
conv3 = _layer(block_fn, n_input_plane=n_stages[1], n_output_plane=n_stages[2], count=n, stride=(2,2))(conv2)# "Stage 2 (spatial size: 16x16)"
conv4 = _layer(block_fn, n_input_plane=n_stages[2], n_output_plane=n_stages[3], count=n, stride=(2,2))(conv3)# "Stage 3 (spatial size: 8x8)"
batch_norm = BatchNormalization(axis=channel_axis)(conv4)
relu = Activation("relu")(batch_norm)
# Classifier block
pool = AveragePooling2D(pool_size=(8, 8), strides=(1, 1), padding="same")(relu)
flatten = Flatten()(pool)
predictions = Dense(units=nb_classes, kernel_initializer=weight_init, use_bias=use_bias,
kernel_regularizer=l2(weight_decay), activation="softmax")(flatten)
model = Model(inputs=inputs, outputs=predictions)
return model
if __name__ == '__main__':
model = create_model()
model.compile(optimizer=sgd, loss="categorical_crossentropy", metrics=['accuracy'])
if print_model_summary:
logging.debug("Model summary...")
model.count_params()
model.summary()
if save_model_plot:
logging.debug("Saving model plot...")
mk_dir(MODEL_PATH)
from tensorflow.keras.utils import plot_model
plot_model(model, to_file=os.path.join(MODEL_PATH, 'WRN-{0}-{1}.png'.format(depth, k)), show_shapes=True)
# Data Augmentation based on page 6 (see README for full details)
logging.debug("Creating ImageDataGenerators...")
train_datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True,
zca_whitening=True,
horizontal_flip=True)
train_datagen.fit(X_train, augment=True, rounds=2)
test_datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True,
zca_whitening=True)
test_datagen.fit(X_train)
mk_dir(CHECKPOINT_PATH)
callbacks = [ LearningRateScheduler(schedule=schedule),
ModelCheckpoint(CHECKPOINT_PATH+'/weights.{epoch:02d}-{val_loss:.2f}.hdf5',
monitor='val_loss',
verbose=1,
save_best_only=True,
mode='auto')
]
logging.debug("Running training...")
# fit the model on the batches generated by train_datagen.flow()
model.fit(train_datagen.flow(X_train, Y_train, batch_size=batch_size, shuffle=True),
steps_per_epoch=X_train.shape[0]/batch_size,
epochs=nb_epochs,
validation_data=test_datagen.flow(X_test, Y_test, batch_size=batch_size),
callbacks=callbacks)
if save_model:
logging.debug("Saving model...")
mk_dir(MODEL_PATH)
model.save(os.path.join(MODEL_PATH, 'WRN-{0}-{1}.h5'.format(depth, k)), overwrite=True)
|
[
"tensorflow.keras.preprocessing.image.ImageDataGenerator",
"numpy.random.seed",
"tensorflow.keras.optimizers.SGD",
"tensorflow.keras.callbacks.ModelCheckpoint",
"tensorflow.keras.layers.Flatten",
"tensorflow.keras.regularizers.l2",
"tensorflow.keras.layers.BatchNormalization",
"tensorflow.keras.layers.Activation",
"tensorflow.keras.layers.Input",
"tensorflow.keras.utils.to_categorical",
"tensorflow.keras.layers.AveragePooling2D",
"tensorflow.keras.layers.Dropout",
"tensorflow.keras.models.Model",
"tensorflow.keras.callbacks.LearningRateScheduler",
"utils.mk_dir",
"tensorflow.keras.backend.image_data_format",
"logging.debug",
"logging.basicConfig",
"tensorflow.keras.datasets.cifar10.load_data",
"os.environ.get",
"tensorflow.keras.layers.Add"
] |
[((164, 204), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (183, 204), False, 'import logging\n'), ((364, 387), 'numpy.random.seed', 'np.random.seed', (['(2 ** 10)'], {}), '(2 ** 10)\n', (378, 387), True, 'import numpy as np\n'), ((1034, 1066), 'logging.debug', 'logging.debug', (['"""Loading data..."""'], {}), "('Loading data...')\n", (1047, 1066), False, 'import logging\n'), ((1140, 1159), 'tensorflow.keras.datasets.cifar10.load_data', 'cifar10.load_data', ([], {}), '()\n', (1157, 1159), False, 'from tensorflow.keras.datasets import cifar10\n'), ((1290, 1325), 'tensorflow.keras.utils.to_categorical', 'to_categorical', (['y_train', 'nb_classes'], {}), '(y_train, nb_classes)\n', (1304, 1325), False, 'from tensorflow.keras.utils import to_categorical\n'), ((1335, 1369), 'tensorflow.keras.utils.to_categorical', 'to_categorical', (['y_test', 'nb_classes'], {}), '(y_test, nb_classes)\n', (1349, 1369), False, 'from tensorflow.keras.utils import to_categorical\n'), ((1507, 1565), 'logging.debug', 'logging.debug', (['"""Loading network/training configuration..."""'], {}), "('Loading network/training configuration...')\n", (1520, 1565), False, 'import logging\n'), ((2330, 2370), 'tensorflow.keras.optimizers.SGD', 'SGD', ([], {'lr': '(0.1)', 'momentum': '(0.9)', 'nesterov': '(True)'}), '(lr=0.1, momentum=0.9, nesterov=True)\n', (2333, 2370), False, 'from tensorflow.keras.optimizers import SGD\n'), ((3095, 3134), 'os.environ.get', 'os.environ.get', (['"""MODEL_PATH"""', '"""models/"""'], {}), "('MODEL_PATH', 'models/')\n", (3109, 3134), False, 'import os\n'), ((3153, 3202), 'os.environ.get', 'os.environ.get', (['"""CHECKPOINT_PATH"""', '"""checkpoints/"""'], {}), "('CHECKPOINT_PATH', 'checkpoints/')\n", (3167, 3202), False, 'import os\n'), ((2619, 2640), 'tensorflow.keras.backend.image_data_format', 'K.image_data_format', ([], {}), '()\n', (2638, 2640), True, 'from tensorflow.keras import backend as K\n'), ((2654, 2696), 'logging.debug', 'logging.debug', (['"""image_dim_ordering = \'th\'"""'], {}), '("image_dim_ordering = \'th\'")\n', (2667, 2696), False, 'import logging\n'), ((2774, 2816), 'logging.debug', 'logging.debug', (['"""image_dim_ordering = \'tf\'"""'], {}), '("image_dim_ordering = \'tf\'")\n', (2787, 2816), False, 'import logging\n'), ((6374, 6408), 'logging.debug', 'logging.debug', (['"""Creating model..."""'], {}), "('Creating model...')\n", (6387, 6408), False, 'import logging\n'), ((6489, 6513), 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': 'input_shape'}), '(shape=input_shape)\n', (6494, 6513), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((7873, 7914), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': 'inputs', 'outputs': 'predictions'}), '(inputs=inputs, outputs=predictions)\n', (7878, 7914), False, 'from tensorflow.keras.models import Model\n'), ((8549, 8597), 'logging.debug', 'logging.debug', (['"""Creating ImageDataGenerators..."""'], {}), "('Creating ImageDataGenerators...')\n", (8562, 8597), False, 'import logging\n'), ((8618, 8744), 'tensorflow.keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'featurewise_center': '(True)', 'featurewise_std_normalization': '(True)', 'zca_whitening': '(True)', 'horizontal_flip': '(True)'}), '(featurewise_center=True, featurewise_std_normalization=\n True, zca_whitening=True, horizontal_flip=True)\n', (8636, 8744), False, 'from tensorflow.keras.preprocessing.image import ImageDataGenerator\n'), ((8944, 9048), 'tensorflow.keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'featurewise_center': '(True)', 'featurewise_std_normalization': '(True)', 'zca_whitening': '(True)'}), '(featurewise_center=True, featurewise_std_normalization=\n True, zca_whitening=True)\n', (8962, 9048), False, 'from tensorflow.keras.preprocessing.image import ImageDataGenerator\n'), ((9143, 9166), 'utils.mk_dir', 'mk_dir', (['CHECKPOINT_PATH'], {}), '(CHECKPOINT_PATH)\n', (9149, 9166), False, 'from utils import mk_dir\n'), ((9510, 9546), 'logging.debug', 'logging.debug', (['"""Running training..."""'], {}), "('Running training...')\n", (9523, 9546), False, 'import logging\n'), ((7406, 7443), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {'axis': 'channel_axis'}), '(axis=channel_axis)\n', (7424, 7443), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((7462, 7480), 'tensorflow.keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (7472, 7480), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((7572, 7638), 'tensorflow.keras.layers.AveragePooling2D', 'AveragePooling2D', ([], {'pool_size': '(8, 8)', 'strides': '(1, 1)', 'padding': '"""same"""'}), "(pool_size=(8, 8), strides=(1, 1), padding='same')\n", (7588, 7638), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((7659, 7668), 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (7666, 7668), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((8113, 8146), 'logging.debug', 'logging.debug', (['"""Model summary..."""'], {}), "('Model summary...')\n", (8126, 8146), False, 'import logging\n'), ((8233, 8270), 'logging.debug', 'logging.debug', (['"""Saving model plot..."""'], {}), "('Saving model plot...')\n", (8246, 8270), False, 'import logging\n'), ((8279, 8297), 'utils.mk_dir', 'mk_dir', (['MODEL_PATH'], {}), '(MODEL_PATH)\n', (8285, 8297), False, 'from utils import mk_dir\n'), ((9185, 9225), 'tensorflow.keras.callbacks.LearningRateScheduler', 'LearningRateScheduler', ([], {'schedule': 'schedule'}), '(schedule=schedule)\n', (9206, 9225), False, 'from tensorflow.keras.callbacks import LearningRateScheduler, ModelCheckpoint\n'), ((9245, 9396), 'tensorflow.keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (["(CHECKPOINT_PATH + '/weights.{epoch:02d}-{val_loss:.2f}.hdf5')"], {'monitor': '"""val_loss"""', 'verbose': '(1)', 'save_best_only': '(True)', 'mode': '"""auto"""'}), "(CHECKPOINT_PATH +\n '/weights.{epoch:02d}-{val_loss:.2f}.hdf5', monitor='val_loss', verbose\n =1, save_best_only=True, mode='auto')\n", (9260, 9396), False, 'from tensorflow.keras.callbacks import LearningRateScheduler, ModelCheckpoint\n'), ((9994, 10026), 'logging.debug', 'logging.debug', (['"""Saving model..."""'], {}), "('Saving model...')\n", (10007, 10026), False, 'import logging\n'), ((10035, 10053), 'utils.mk_dir', 'mk_dir', (['MODEL_PATH'], {}), '(MODEL_PATH)\n', (10041, 10053), False, 'from utils import mk_dir\n'), ((5960, 5965), 'tensorflow.keras.layers.Add', 'Add', ([], {}), '()\n', (5963, 5965), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((6773, 6789), 'tensorflow.keras.regularizers.l2', 'l2', (['weight_decay'], {}), '(weight_decay)\n', (6775, 6789), False, 'from tensorflow.keras.regularizers import l2\n'), ((7811, 7827), 'tensorflow.keras.regularizers.l2', 'l2', (['weight_decay'], {}), '(weight_decay)\n', (7813, 7827), False, 'from tensorflow.keras.regularizers import l2\n'), ((4670, 4707), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {'axis': 'channel_axis'}), '(axis=channel_axis)\n', (4688, 4707), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((4739, 4757), 'tensorflow.keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (4749, 4757), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((3977, 4014), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {'axis': 'channel_axis'}), '(axis=channel_axis)\n', (3995, 4014), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((4046, 4064), 'tensorflow.keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (4056, 4064), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((4152, 4189), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {'axis': 'channel_axis'}), '(axis=channel_axis)\n', (4170, 4189), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((4223, 4241), 'tensorflow.keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (4233, 4241), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((4836, 4864), 'tensorflow.keras.layers.Dropout', 'Dropout', (['dropout_probability'], {}), '(dropout_probability)\n', (4843, 4864), False, 'from tensorflow.keras.layers import Conv2D, AveragePooling2D, BatchNormalization, Dropout, Input, Activation, Add, Dense, Flatten\n'), ((5831, 5847), 'tensorflow.keras.regularizers.l2', 'l2', (['weight_decay'], {}), '(weight_decay)\n', (5833, 5847), False, 'from tensorflow.keras.regularizers import l2\n'), ((4552, 4568), 'tensorflow.keras.regularizers.l2', 'l2', (['weight_decay'], {}), '(weight_decay)\n', (4554, 4568), False, 'from tensorflow.keras.regularizers import l2\n'), ((5175, 5191), 'tensorflow.keras.regularizers.l2', 'l2', (['weight_decay'], {}), '(weight_decay)\n', (5177, 5191), False, 'from tensorflow.keras.regularizers import l2\n')]
|
import numpy as np
def _load_embeddings(fn):
return np.load(fn)
a = _load_embeddings('_embs/symptoms-en.npy')
b = _load_embeddings('_output/paraphrase-MiniLM-L6-v2-symptoms-en.npy')
for x, y in zip(a, b):
for n, m in zip(x, y):
if abs(n - m) > 1e-5:
print(abs(n - m))
|
[
"numpy.load"
] |
[((57, 68), 'numpy.load', 'np.load', (['fn'], {}), '(fn)\n', (64, 68), True, 'import numpy as np\n')]
|
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import os
import torch
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms
import torch.nn as nn
import numpy as np
import cv2
import os.path as osp
from glob import glob
from tqdm import tqdm
class NucleusDataset(Dataset):
def __init__(self, root_dir, train=True, transform=None, target_transform=None, mode ="train",
do_reshuffle=True, keys=None,taskname = None,batch_size=16, num_batches=10000000, seed=None):
self.root_dir = root_dir
self.transform = transform
self.target_transform = target_transform
self.train = train
self.taskname = taskname
self.image_names = keys
self.mode = mode
self.data_len = len(self.image_names)
self.batch_size = batch_size
self.num_batches = min((self.data_len // self.batch_size)+10, num_batches)
dataDir = "imagesTr"
maskDir = "masksTr"
suffix =".png"
print("root_dir :",root_dir, " taskname : ",taskname,"self.mode :",self.mode)
print(" path : ",osp.join(self.root_dir, taskname))
if not self._check_task_exists():
raise RuntimeError("Task does not exist")
if self.mode=="train":
#self.image_names = os.listdir(os.path.join(self.root_dir, "train",dataDir))
#print("train image_names :",self.image_names)
self.train_data = []
self.train_labels = []
for image in self.image_names :
train_img = cv2.imread(osp.join(self.root_dir,self.taskname,dataDir,image+suffix))
#print("image path: ",osp.join(self.root_dir,self.taskname,dataDir,image+suffix))
self.train_data.append(train_img)
target_img = np.zeros(train_img.shape[:2], dtype=np.uint8)
target_img_ = cv2.imread(osp.join(self.root_dir,taskname,maskDir,image+suffix),0)
target_img = np.maximum(target_img, target_img_)
self.train_labels.append(target_img)
elif self.mode =="val":
#self.image_names = os.listdir(osp.join(self.root_dir, "test",dataDir))
self.val_data = []
self.val_labels = []
for image in self.image_names:
#print(" Val image_names :",self.image_names)
val_img = cv2.imread(osp.join(self.root_dir,self.taskname,dataDir,image+suffix))
self.val_data.append(val_img)
val_target_img = np.zeros(val_img.shape[:2], dtype=np.uint8)
val_target_img_ = cv2.imread(osp.join(self.root_dir,self.taskname,maskDir,image+suffix),0)
val_target_img = np.maximum(val_target_img, val_target_img_)
self.val_labels.append(val_target_img)
else :
self.test_data = []
self.test_labels = []
for image in self.image_names:
#print(" Test image_names :",self.image_names)
test_img = cv2.imread(osp.join(self.root_dir,taskname,dataDir,image+suffix))
self.test_data.append(test_img)
test_target_img = np.zeros(test_img.shape[:2], dtype=np.uint8)
test_target_img_ = cv2.imread(osp.join(self.root_dir,taskname,maskDir,image+suffix),0)
test_target_img = np.maximum(test_target_img, test_target_img_)
self.test_labels.append(test_target_img)
def __len__(self):
return len(self.image_names)
def __getitem__(self, item):
if self.mode=="train":
image, mask = self.train_data[item], self.train_labels[item]
if self.transform:
image = self.transform(image)
if self.target_transform:
mask = self.target_transform(mask)
return image, mask
elif self.mode=="val":
image, mask = self.val_data[item], self.val_labels[item]
if self.transform:
image = self.transform(image)
if self.target_transform:
mask = self.target_transform(mask)
return image, mask
else:
image, mask = self.test_data[item], self.test_labels[item]
if self.transform:
image = self.transform(image)
if self.target_transform:
mask = self.target_transform(mask)
return image, mask
def _check_exists(self):
return osp.exists(osp.join(self.root_dir, "train")) and osp.exists(osp.join(self.root_dir, "test"))
def _check_task_exists(self):
return osp.exists(osp.join(self.root_dir, self.taskname))
|
[
"numpy.zeros",
"os.path.join",
"numpy.maximum"
] |
[((1154, 1187), 'os.path.join', 'osp.join', (['self.root_dir', 'taskname'], {}), '(self.root_dir, taskname)\n', (1162, 1187), True, 'import os.path as osp\n'), ((4893, 4931), 'os.path.join', 'osp.join', (['self.root_dir', 'self.taskname'], {}), '(self.root_dir, self.taskname)\n', (4901, 4931), True, 'import os.path as osp\n'), ((1894, 1939), 'numpy.zeros', 'np.zeros', (['train_img.shape[:2]'], {'dtype': 'np.uint8'}), '(train_img.shape[:2], dtype=np.uint8)\n', (1902, 1939), True, 'import numpy as np\n'), ((2067, 2102), 'numpy.maximum', 'np.maximum', (['target_img', 'target_img_'], {}), '(target_img, target_img_)\n', (2077, 2102), True, 'import numpy as np\n'), ((4746, 4778), 'os.path.join', 'osp.join', (['self.root_dir', '"""train"""'], {}), "(self.root_dir, 'train')\n", (4754, 4778), True, 'import os.path as osp\n'), ((4795, 4826), 'os.path.join', 'osp.join', (['self.root_dir', '"""test"""'], {}), "(self.root_dir, 'test')\n", (4803, 4826), True, 'import os.path as osp\n'), ((1640, 1703), 'os.path.join', 'osp.join', (['self.root_dir', 'self.taskname', 'dataDir', '(image + suffix)'], {}), '(self.root_dir, self.taskname, dataDir, image + suffix)\n', (1648, 1703), True, 'import os.path as osp\n'), ((1981, 2039), 'os.path.join', 'osp.join', (['self.root_dir', 'taskname', 'maskDir', '(image + suffix)'], {}), '(self.root_dir, taskname, maskDir, image + suffix)\n', (1989, 2039), True, 'import os.path as osp\n'), ((2653, 2696), 'numpy.zeros', 'np.zeros', (['val_img.shape[:2]'], {'dtype': 'np.uint8'}), '(val_img.shape[:2], dtype=np.uint8)\n', (2661, 2696), True, 'import numpy as np\n'), ((2837, 2880), 'numpy.maximum', 'np.maximum', (['val_target_img', 'val_target_img_'], {}), '(val_target_img, val_target_img_)\n', (2847, 2880), True, 'import numpy as np\n'), ((3317, 3361), 'numpy.zeros', 'np.zeros', (['test_img.shape[:2]'], {'dtype': 'np.uint8'}), '(test_img.shape[:2], dtype=np.uint8)\n', (3325, 3361), True, 'import numpy as np\n'), ((3499, 3544), 'numpy.maximum', 'np.maximum', (['test_target_img', 'test_target_img_'], {}), '(test_target_img, test_target_img_)\n', (3509, 3544), True, 'import numpy as np\n'), ((2497, 2560), 'os.path.join', 'osp.join', (['self.root_dir', 'self.taskname', 'dataDir', '(image + suffix)'], {}), '(self.root_dir, self.taskname, dataDir, image + suffix)\n', (2505, 2560), True, 'import os.path as osp\n'), ((2742, 2805), 'os.path.join', 'osp.join', (['self.root_dir', 'self.taskname', 'maskDir', '(image + suffix)'], {}), '(self.root_dir, self.taskname, maskDir, image + suffix)\n', (2750, 2805), True, 'import os.path as osp\n'), ((3163, 3221), 'os.path.join', 'osp.join', (['self.root_dir', 'taskname', 'dataDir', '(image + suffix)'], {}), '(self.root_dir, taskname, dataDir, image + suffix)\n', (3171, 3221), True, 'import os.path as osp\n'), ((3408, 3466), 'os.path.join', 'osp.join', (['self.root_dir', 'taskname', 'maskDir', '(image + suffix)'], {}), '(self.root_dir, taskname, maskDir, image + suffix)\n', (3416, 3466), True, 'import os.path as osp\n')]
|
import argparse
import os
import sys
import time
import traceback
import multiprocessing
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import matplotlib.animation as animation
from collections import OrderedDict
from pynput.keyboard import Listener, Key, KeyCode
#Globals
global g_keyboardStateArray
g_keyboardStateArray = None
global g_keyIndexes
g_keyIndexes = None
global g_inputBufferPath
g_inputBufferPath = None
g_keyArray = [
#lower case letters
KeyCode.from_char("a"), KeyCode.from_char("b"), KeyCode.from_char("c"), KeyCode.from_char("d"), KeyCode.from_char("e"), KeyCode.from_char("f"),
KeyCode.from_char("g"), KeyCode.from_char("h"), KeyCode.from_char("i"), KeyCode.from_char("j"), KeyCode.from_char("k"), KeyCode.from_char("l"),
KeyCode.from_char("m"), KeyCode.from_char("n"), KeyCode.from_char("o"), KeyCode.from_char("p"), KeyCode.from_char("q"), KeyCode.from_char("r"),
KeyCode.from_char("s"), KeyCode.from_char("t"), KeyCode.from_char("u"), KeyCode.from_char("v"), KeyCode.from_char("w"), KeyCode.from_char("x"),
KeyCode.from_char("y"), KeyCode.from_char("z"),
#uppder case letters
KeyCode.from_char("A"), KeyCode.from_char("B"), KeyCode.from_char("C"), KeyCode.from_char("D"), KeyCode.from_char("E"), KeyCode.from_char("F"),
KeyCode.from_char("G"), KeyCode.from_char("H"), KeyCode.from_char("I"), KeyCode.from_char("J"), KeyCode.from_char("K"), KeyCode.from_char("L"),
KeyCode.from_char("M"), KeyCode.from_char("N"), KeyCode.from_char("O"), KeyCode.from_char("P"), KeyCode.from_char("Q"), KeyCode.from_char("R"),
KeyCode.from_char("S"), KeyCode.from_char("T"), KeyCode.from_char("U"), KeyCode.from_char("V"), KeyCode.from_char("W"), KeyCode.from_char("X"),
KeyCode.from_char("Y"), KeyCode.from_char("Z"),
#numbers
KeyCode.from_char("0"), KeyCode.from_char("1"), KeyCode.from_char("2"), KeyCode.from_char("3"), KeyCode.from_char("4"), KeyCode.from_char("5"),
KeyCode.from_char("6"), KeyCode.from_char("7"), KeyCode.from_char("8"), KeyCode.from_char("9"),
#symbols
KeyCode.from_char("!"), KeyCode.from_char("@"), KeyCode.from_char("#"), KeyCode.from_char("$"), KeyCode.from_char("%"), KeyCode.from_char("^"),
KeyCode.from_char("&"), KeyCode.from_char("*"), KeyCode.from_char("("), KeyCode.from_char(")"), KeyCode.from_char("-"), KeyCode.from_char("_"),
KeyCode.from_char("+"), KeyCode.from_char("="), KeyCode.from_char("{"), KeyCode.from_char("["), KeyCode.from_char("}"), KeyCode.from_char("]"),
KeyCode.from_char("|"), KeyCode.from_char("\\"),KeyCode.from_char(";"), KeyCode.from_char(":"), KeyCode.from_char("'"), KeyCode.from_char("\""),
KeyCode.from_char(","), KeyCode.from_char("<"), KeyCode.from_char("."), KeyCode.from_char(">"), KeyCode.from_char("/"), KeyCode.from_char("?"),
KeyCode.from_char("`"), KeyCode.from_char("~"),
#function keys
Key.f1, Key.f2, Key.f3, Key.f4, Key.f5, Key.f6,
Key.f7, Key.f8, Key.f9, Key.f10, Key.f11, Key.f12,
#Arrow keys
Key.up, Key.down, Key.left, Key.right,
#Modifier keys
Key.ctrl, Key.ctrl_r, Key.cmd, Key.cmd_r, Key.alt,
Key.alt_r, Key.num_lock, Key.caps_lock, Key.shift,
Key.shift_r,
#Macro keys
Key.enter, Key.backspace, Key.delete, Key.home, Key.end,
Key.insert, Key.page_up, Key.page_down, Key.esc
]
class COLORS:
DEFAULT = '\033[0m'
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
ERROR = '\033[91m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
def printColor(text, color=COLORS.DEFAULT, resetColor=True):
'''
Prints colored text to the terminal
'''
if (resetColor):
formattedText = "{}{}{}".format(color, text, COLORS.DEFAULT)
print(formattedText)
else:
formattedText = "{}{}".format(color, text)
print(formattedText)
def displayFrameBuffer(displayWidth, displayHeight, frameBufferPath, workDir):
fig = plt.figure()
flatPixelArray = None
flatByteArray = np.fromfile(frameBufferPath, dtype='>B')
flatPixelArray = np.reshape(flatByteArray, (-1, 4))
pixelArray = np.zeros([displayHeight, displayWidth, 3], dtype=np.uint8)
imagePath = os.path.join(workDir, "createdImage.png")
def animate(i):
#Update pixel array with values
flatByteArray = np.fromfile(frameBufferPath, dtype='B')
flatPixelArray = np.reshape(flatByteArray, (-1, 4))
for row in range(0, displayHeight):
for column in range(0, displayWidth):
pixelIndex = row*displayWidth + column
if (len(flatPixelArray) > 0):
try:
pixelArray[row, column] = np.flip(flatPixelArray[pixelIndex][0:-1])
except Exception as e:
pass
else:
break
#Display updated pixel array
img = Image.fromarray(pixelArray)
img.save(imagePath)
img = mpimg.imread(imagePath)
plt.clf()
plt.axis('off')
imgplot = plt.imshow(img)
#time.sleep(0.05)
ani = animation.FuncAnimation(fig, animate, interval=20)
plt.show()
def updateInputBufferFile(filepath, keyboardStateArray):
hexFile = open(filepath, "r+")
iterator = 0
for byteIndex in range(0, len(g_keyboardStateArray)):
byte = g_keyboardStateArray[byteIndex]
fileAddress = 9*int((byteIndex/4)) + 7 - (2*(byteIndex%4)) #hex file is stored as big endian words, so we need to convert each byte index into the appropite file byte address
hexFile.seek(fileAddress, 0)
hexFile.write("{}".format(str(byte)))
iterator += 1
hexFile.close()
def initializeInputBufferFile(filepath, keyboardStateArray):
hexFile = open(filepath, "w")
iterator = 0
for byteIndex in range(0, len(g_keyboardStateArray)):
byte = g_keyboardStateArray[byteIndex]
if (iterator == 4):
hexFile.write("\n")
iterator = 0
hexFile.write("0{}".format(str(byte)))
iterator += 1
hexFile.close()
def onKeyPress(key):
g_keyboardStateArray[g_keyIndexes[key]]= 1
updateInputBufferFile(g_inputBufferPath, g_keyboardStateArray)
def onKeyRelease(key):
g_keyboardStateArray[g_keyIndexes[key]] = 0
updateInputBufferFile(g_inputBufferPath, g_keyboardStateArray)
if __name__ == '__main__':
displayThread = None
listenerThread = None
try:
#Read command line arguments
helpdesc = '''
help yourself
'''
parser = argparse.ArgumentParser(description = helpdesc)
parser.add_argument("-bench", action="store", dest="testbenchPath", help="Filepath to verilog testbench")
parser.add_argument("-prog", action="store", dest="programPath", help="Path to hex program to run, if supported by the testbench")
parser.add_argument("-mem", action="store", dest="memorySize", default="4096", help="Size of main memory to allocate in bytes")
parser.add_argument("-cycles", action="store", dest="maxSimCycles", help="If specified, simulation will end if total cycles exceed this limit")
parser.add_argument("-display", action="store", dest="screenSize", help="If specified, simulation will define and display a frame buffer. Argument format: \"<BUFFER_ADDRESS>,<WIDTH_PIXELS>,<HEIGHT_PIXELS>\"")
parser.add_argument("-input", action="store", dest="inputBufferSize", help="If specified, simulation will define and update a keyboard input buffer. Argument format: \"<BUFFER_ADDRESS>,<BUFFER_SIZE>\"")
parser.add_argument("-dump", action="store_true", dest="dumpValues", help="If specified, will create an vcd dump file from simulation. Required to view waveforms in Gtkwave")
args = parser.parse_args()
testbenchPath = args.testbenchPath
programPath = args.programPath
memorySizeString = args.memorySize
memorySize = None
if ("K" in memorySizeString):
memorySizeString = memorySizeString.replace("K", "")
memorySize = int(memorySizeString) * 2**10
elif ("M" in memorySizeString):
memorySizeString = memorySizeString.replace("M", "")
memorySize = int(memorySizeString) * 2**20
elif ("G" in memorySizeString):
memorySizeString = memorySizeString.replace("G", "")
memorySize = int(memorySizeString) * 2**30
else:
memorySize = int(4 * int(int(memorySizeString) / 4))
maxSimCycles = args.maxSimCycles
dumpValues = args.dumpValues
screenSizeString = args.screenSize
inputBufferSizeString = args.inputBufferSize
if (not testbenchPath):
raise Exception("ERROR: -testbenchPath arg required")
#Create output folders if they do not exist yet
testbenchName = testbenchPath.split(".")[0].split("/")[-1]
if (not os.path.exists("simulation")):
os.mkdir("simulation")
if (not os.path.exists("simulation/{}".format(testbenchName))):
os.mkdir("simulation/{}".format(testbenchName))
if (programPath):
#Program specified. Determine length of program
programFile = open(programPath, "r")
line = " "
lineCount = 0
while(line):
line = programFile.readline()
if (len(line) > 0):
if ("00000000" in line):
break
lineCount += 1
programFile.close()
#Update testbench program inputs
programInputsFile = open("{}_programInputs.v".format(testbenchPath.split(".")[0]), "w")
programInputsFile.write("`define programLength {}\n".format(lineCount))
programInputsFile.write("`define programFilename \"{}\"\n".format(programPath))
programInputsFile.write("`define memorySize {}\n".format(memorySize))
if (maxSimCycles):
programInputsFile.write("`define MAX_CYLCLES {}\n".format(int(maxSimCycles)))
if (screenSizeString):
#Determine frame buffer file path
frameBufferPath = "simulation/{}/frameBuffer.b".format(testbenchName)
#Determine size of frame buffer and frameBufferStart
frameBufferStart, displayWidth, displayHeight = [int(i) for i in screenSizeString.replace(" ","").strip().rstrip().split(",")]
frameBufferSize = displayHeight * displayWidth *4
if (frameBufferSize > memorySize-frameBufferStart):
raise Exception("Allocated memory of {} bytes cannot fit frame buffer of size {}, location {}".format(memorySize, frameBufferSize, frameBufferStart))
#Add defines to program inputs
programInputsFile.write("`define FRAME_BUFFER_ENABLE\n")
programInputsFile.write("`define frameBufferPath \"{}\"\n".format(frameBufferPath))
programInputsFile.write("`define frameBufferSize {}\n".format(frameBufferSize))
programInputsFile.write("`define frameBufferStart {}\n".format(frameBufferStart))
#Initialize frame buffer file
emptyByteArray = bytearray(frameBufferSize)
bufferFile = open(frameBufferPath, "wb")
bufferFile.write(emptyByteArray)
bufferFile.close()
#Initialize display viewer
displayThread = multiprocessing.Process(target=displayFrameBuffer, args=(displayWidth, displayHeight, frameBufferPath, "simulation/{}".format(testbenchName)))
displayThread.start()
if (inputBufferSizeString):
#Determine input buffer file path
inputBufferPath = "simulation/{}/inputBuffer.hex".format(testbenchName)
g_inputBufferPath = inputBufferPath
#Determine size of input buffer and inputBufferStart
inputBufferStart, inputBufferSize = [int(i) for i in inputBufferSizeString.replace(" ","").strip().rstrip().split(",")]
if (inputBufferSize > memorySize-inputBufferStart):
raise Exception("Allocated memory of {} bytes cannot fit frame buffer of size {}, location {}".format(memorySize, inputBufferSize, inputBufferStart))
#Add defines to program inputs
programInputsFile.write("`define INPUT_BUFFER_ENABLE\n")
programInputsFile.write("`define inputBufferPath \"{}\"\n".format(inputBufferPath))
programInputsFile.write("`define inputBufferSize {}\n".format(inputBufferSize))
programInputsFile.write("`define inputBufferStart {}\n".format(inputBufferStart))
#Initialize input buffer file
g_keyIndexes = OrderedDict()
for index in range(0, len(g_keyArray), 1):
g_keyIndexes[g_keyArray[index]] = index
stateArrayLength = len(g_keyIndexes)
if (len(g_keyIndexes)%4):
stateArrayLength += 4 - len(g_keyIndexes)%4
g_keyboardStateArray = np.zeros(stateArrayLength, dtype=np.uint8)
initializeInputBufferFile(inputBufferPath, g_keyboardStateArray)
#Initialize keyboard listener
listenerThread = Listener(on_press=onKeyPress, on_release=onKeyRelease)
listenerThread.start()
programInputsFile.close()
#Compile into vvp with icarus verilog
print("Compiling verilog")
command = "iverilog {} -I rtl -I testbenches -g2005-sv -o simulation/{}/{}.vvp | grep error".format(testbenchPath, testbenchName, testbenchName)
print("+ {}{}".format(command, COLORS.ERROR))
os.system(command)
print(COLORS.DEFAULT)
#Run vvp
dumpFlag = ""
if (dumpValues):
dumpFlag = "-vcd"
print("Running simulation")
startTime = time.time()
command = "vvp simulation/{}/{}.vvp {}".format(testbenchName, testbenchName, dumpFlag)
print("+ {}".format(command))
os.system(command)
endTime = time.time()
print("runtime = {} seconds".format(endTime-startTime))
#Move dump file
if (dumpValues):
command = "mv dump.vcd simulation/{}/{}_dump.vcd".format(testbenchName, testbenchName)
print("+ {}".format(command))
os.system(command)
#Kill display thread
if (displayThread):
time.sleep(2)
displayThread.terminate()
except Exception as e:
printColor(traceback.format_exc(), color=COLORS.ERROR)
if (displayThread):
displayThread.terminate()
|
[
"pynput.keyboard.KeyCode.from_char",
"os.mkdir",
"argparse.ArgumentParser",
"matplotlib.pyplot.clf",
"matplotlib.animation.FuncAnimation",
"matplotlib.pyplot.figure",
"os.path.join",
"matplotlib.pyplot.imshow",
"os.path.exists",
"numpy.reshape",
"traceback.format_exc",
"matplotlib.image.imread",
"matplotlib.pyplot.show",
"pynput.keyboard.Listener",
"os.system",
"time.sleep",
"collections.OrderedDict",
"numpy.flip",
"numpy.fromfile",
"numpy.zeros",
"matplotlib.pyplot.axis",
"time.time",
"PIL.Image.fromarray"
] |
[((517, 539), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""a"""'], {}), "('a')\n", (534, 539), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((541, 563), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""b"""'], {}), "('b')\n", (558, 563), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((565, 587), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""c"""'], {}), "('c')\n", (582, 587), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((589, 611), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""d"""'], {}), "('d')\n", (606, 611), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((613, 635), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""e"""'], {}), "('e')\n", (630, 635), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((637, 659), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""f"""'], {}), "('f')\n", (654, 659), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((662, 684), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""g"""'], {}), "('g')\n", (679, 684), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((686, 708), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""h"""'], {}), "('h')\n", (703, 708), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((710, 732), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""i"""'], {}), "('i')\n", (727, 732), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((734, 756), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""j"""'], {}), "('j')\n", (751, 756), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((758, 780), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""k"""'], {}), "('k')\n", (775, 780), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((782, 804), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""l"""'], {}), "('l')\n", (799, 804), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((807, 829), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""m"""'], {}), "('m')\n", (824, 829), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((831, 853), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""n"""'], {}), "('n')\n", (848, 853), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((855, 877), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""o"""'], {}), "('o')\n", (872, 877), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((879, 901), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""p"""'], {}), "('p')\n", (896, 901), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((903, 925), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""q"""'], {}), "('q')\n", (920, 925), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((927, 949), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""r"""'], {}), "('r')\n", (944, 949), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((952, 974), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""s"""'], {}), "('s')\n", (969, 974), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((976, 998), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""t"""'], {}), "('t')\n", (993, 998), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1000, 1022), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""u"""'], {}), "('u')\n", (1017, 1022), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1024, 1046), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""v"""'], {}), "('v')\n", (1041, 1046), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1048, 1070), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""w"""'], {}), "('w')\n", (1065, 1070), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1072, 1094), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""x"""'], {}), "('x')\n", (1089, 1094), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1097, 1119), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""y"""'], {}), "('y')\n", (1114, 1119), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1121, 1143), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""z"""'], {}), "('z')\n", (1138, 1143), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1167, 1189), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""A"""'], {}), "('A')\n", (1184, 1189), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1191, 1213), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""B"""'], {}), "('B')\n", (1208, 1213), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1215, 1237), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""C"""'], {}), "('C')\n", (1232, 1237), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1239, 1261), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""D"""'], {}), "('D')\n", (1256, 1261), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1263, 1285), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""E"""'], {}), "('E')\n", (1280, 1285), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1287, 1309), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""F"""'], {}), "('F')\n", (1304, 1309), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1312, 1334), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""G"""'], {}), "('G')\n", (1329, 1334), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1336, 1358), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""H"""'], {}), "('H')\n", (1353, 1358), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1360, 1382), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""I"""'], {}), "('I')\n", (1377, 1382), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1384, 1406), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""J"""'], {}), "('J')\n", (1401, 1406), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1408, 1430), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""K"""'], {}), "('K')\n", (1425, 1430), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1432, 1454), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""L"""'], {}), "('L')\n", (1449, 1454), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1457, 1479), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""M"""'], {}), "('M')\n", (1474, 1479), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1481, 1503), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""N"""'], {}), "('N')\n", (1498, 1503), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1505, 1527), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""O"""'], {}), "('O')\n", (1522, 1527), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1529, 1551), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""P"""'], {}), "('P')\n", (1546, 1551), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1553, 1575), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""Q"""'], {}), "('Q')\n", (1570, 1575), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1577, 1599), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""R"""'], {}), "('R')\n", (1594, 1599), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1602, 1624), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""S"""'], {}), "('S')\n", (1619, 1624), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1626, 1648), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""T"""'], {}), "('T')\n", (1643, 1648), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1650, 1672), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""U"""'], {}), "('U')\n", (1667, 1672), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1674, 1696), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""V"""'], {}), "('V')\n", (1691, 1696), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1698, 1720), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""W"""'], {}), "('W')\n", (1715, 1720), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1722, 1744), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""X"""'], {}), "('X')\n", (1739, 1744), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1747, 1769), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""Y"""'], {}), "('Y')\n", (1764, 1769), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1771, 1793), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""Z"""'], {}), "('Z')\n", (1788, 1793), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1805, 1827), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""0"""'], {}), "('0')\n", (1822, 1827), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1829, 1851), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""1"""'], {}), "('1')\n", (1846, 1851), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1853, 1875), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""2"""'], {}), "('2')\n", (1870, 1875), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1877, 1899), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""3"""'], {}), "('3')\n", (1894, 1899), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1901, 1923), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""4"""'], {}), "('4')\n", (1918, 1923), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1925, 1947), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""5"""'], {}), "('5')\n", (1942, 1947), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1950, 1972), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""6"""'], {}), "('6')\n", (1967, 1972), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1974, 1996), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""7"""'], {}), "('7')\n", (1991, 1996), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((1998, 2020), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""8"""'], {}), "('8')\n", (2015, 2020), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2022, 2044), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""9"""'], {}), "('9')\n", (2039, 2044), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2056, 2078), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""!"""'], {}), "('!')\n", (2073, 2078), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2080, 2102), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""@"""'], {}), "('@')\n", (2097, 2102), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2104, 2126), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""#"""'], {}), "('#')\n", (2121, 2126), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2128, 2150), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""$"""'], {}), "('$')\n", (2145, 2150), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2152, 2174), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""%"""'], {}), "('%')\n", (2169, 2174), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2176, 2198), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""^"""'], {}), "('^')\n", (2193, 2198), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2201, 2223), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""&"""'], {}), "('&')\n", (2218, 2223), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2225, 2247), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""*"""'], {}), "('*')\n", (2242, 2247), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2249, 2271), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""("""'], {}), "('(')\n", (2266, 2271), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2273, 2295), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['""")"""'], {}), "(')')\n", (2290, 2295), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2297, 2319), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""-"""'], {}), "('-')\n", (2314, 2319), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2321, 2343), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""_"""'], {}), "('_')\n", (2338, 2343), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2346, 2368), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""+"""'], {}), "('+')\n", (2363, 2368), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2370, 2392), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""="""'], {}), "('=')\n", (2387, 2392), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2394, 2416), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""{"""'], {}), "('{')\n", (2411, 2416), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2418, 2440), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""["""'], {}), "('[')\n", (2435, 2440), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2442, 2464), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""}"""'], {}), "('}')\n", (2459, 2464), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2466, 2488), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""]"""'], {}), "(']')\n", (2483, 2488), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2491, 2513), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""|"""'], {}), "('|')\n", (2508, 2513), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2515, 2538), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""\\\\"""'], {}), "('\\\\')\n", (2532, 2538), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2539, 2561), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['""";"""'], {}), "(';')\n", (2556, 2561), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2563, 2585), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['""":"""'], {}), "(':')\n", (2580, 2585), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2587, 2609), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""\'"""'], {}), '("\'")\n', (2604, 2609), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2611, 2633), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""\\""""'], {}), '(\'"\')\n', (2628, 2633), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2637, 2659), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['""","""'], {}), "(',')\n", (2654, 2659), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2661, 2683), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""<"""'], {}), "('<')\n", (2678, 2683), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2685, 2707), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""."""'], {}), "('.')\n", (2702, 2707), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2709, 2731), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['""">"""'], {}), "('>')\n", (2726, 2731), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2733, 2755), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""/"""'], {}), "('/')\n", (2750, 2755), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2757, 2779), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""?"""'], {}), "('?')\n", (2774, 2779), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2782, 2804), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""`"""'], {}), "('`')\n", (2799, 2804), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((2806, 2828), 'pynput.keyboard.KeyCode.from_char', 'KeyCode.from_char', (['"""~"""'], {}), "('~')\n", (2823, 2828), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((3812, 3824), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3822, 3824), True, 'import matplotlib.pyplot as plt\n'), ((3866, 3906), 'numpy.fromfile', 'np.fromfile', (['frameBufferPath'], {'dtype': '""">B"""'}), "(frameBufferPath, dtype='>B')\n", (3877, 3906), True, 'import numpy as np\n'), ((3925, 3959), 'numpy.reshape', 'np.reshape', (['flatByteArray', '(-1, 4)'], {}), '(flatByteArray, (-1, 4))\n', (3935, 3959), True, 'import numpy as np\n'), ((3975, 4033), 'numpy.zeros', 'np.zeros', (['[displayHeight, displayWidth, 3]'], {'dtype': 'np.uint8'}), '([displayHeight, displayWidth, 3], dtype=np.uint8)\n', (3983, 4033), True, 'import numpy as np\n'), ((4047, 4088), 'os.path.join', 'os.path.join', (['workDir', '"""createdImage.png"""'], {}), "(workDir, 'createdImage.png')\n", (4059, 4088), False, 'import os\n'), ((4766, 4816), 'matplotlib.animation.FuncAnimation', 'animation.FuncAnimation', (['fig', 'animate'], {'interval': '(20)'}), '(fig, animate, interval=20)\n', (4789, 4816), True, 'import matplotlib.animation as animation\n'), ((4818, 4828), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4826, 4828), True, 'import matplotlib.pyplot as plt\n'), ((4159, 4198), 'numpy.fromfile', 'np.fromfile', (['frameBufferPath'], {'dtype': '"""B"""'}), "(frameBufferPath, dtype='B')\n", (4170, 4198), True, 'import numpy as np\n'), ((4218, 4252), 'numpy.reshape', 'np.reshape', (['flatByteArray', '(-1, 4)'], {}), '(flatByteArray, (-1, 4))\n', (4228, 4252), True, 'import numpy as np\n'), ((4594, 4621), 'PIL.Image.fromarray', 'Image.fromarray', (['pixelArray'], {}), '(pixelArray)\n', (4609, 4621), False, 'from PIL import Image\n'), ((4653, 4676), 'matplotlib.image.imread', 'mpimg.imread', (['imagePath'], {}), '(imagePath)\n', (4665, 4676), True, 'import matplotlib.image as mpimg\n'), ((4679, 4688), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (4686, 4688), True, 'import matplotlib.pyplot as plt\n'), ((4691, 4706), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (4699, 4706), True, 'import matplotlib.pyplot as plt\n'), ((4719, 4734), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (4729, 4734), True, 'import matplotlib.pyplot as plt\n'), ((6082, 6127), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'helpdesc'}), '(description=helpdesc)\n', (6105, 6127), False, 'import argparse\n'), ((12335, 12353), 'os.system', 'os.system', (['command'], {}), '(command)\n', (12344, 12353), False, 'import os\n'), ((12491, 12502), 'time.time', 'time.time', ([], {}), '()\n', (12500, 12502), False, 'import time\n'), ((12626, 12644), 'os.system', 'os.system', (['command'], {}), '(command)\n', (12635, 12644), False, 'import os\n'), ((12657, 12668), 'time.time', 'time.time', ([], {}), '()\n', (12666, 12668), False, 'import time\n'), ((8229, 8257), 'os.path.exists', 'os.path.exists', (['"""simulation"""'], {}), "('simulation')\n", (8243, 8257), False, 'import os\n'), ((8263, 8285), 'os.mkdir', 'os.mkdir', (['"""simulation"""'], {}), "('simulation')\n", (8271, 8285), False, 'import os\n'), ((12892, 12910), 'os.system', 'os.system', (['command'], {}), '(command)\n', (12901, 12910), False, 'import os\n'), ((12960, 12973), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (12970, 12973), False, 'import time\n'), ((11527, 11540), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (11538, 11540), False, 'from collections import OrderedDict\n'), ((11787, 11829), 'numpy.zeros', 'np.zeros', (['stateArrayLength'], {'dtype': 'np.uint8'}), '(stateArrayLength, dtype=np.uint8)\n', (11795, 11829), True, 'import numpy as np\n'), ((11955, 12009), 'pynput.keyboard.Listener', 'Listener', ([], {'on_press': 'onKeyPress', 'on_release': 'onKeyRelease'}), '(on_press=onKeyPress, on_release=onKeyRelease)\n', (11963, 12009), False, 'from pynput.keyboard import Listener, Key, KeyCode\n'), ((13041, 13063), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (13061, 13063), False, 'import traceback\n'), ((4452, 4493), 'numpy.flip', 'np.flip', (['flatPixelArray[pixelIndex][0:-1]'], {}), '(flatPixelArray[pixelIndex][0:-1])\n', (4459, 4493), True, 'import numpy as np\n')]
|
from conway import conway
import unittest
import numpy as np
class TestConway(unittest.TestCase):
def test_still(self):
"""2x2 block"""
A = np.zeros((10,10))
A[1:3,1:3] = 1
B = conway(A)
assert (A == B).all()
def test_scillator(self):
"""blinker"""
A = np.zeros((10,10))
A[1:4,1] = 1
B = conway(A)
assert (B[2, 0:3] == 1).all()
B = conway(B)
assert (A == B).all()
def test_evolution(self):
"""test that something changes"""
m, n = 10, 10
A = np.random.random(m*n).reshape((m, n)).round()
B = conway(A)
assert (B != A).any()
if __name__ == '__main__':
unittest.main()
|
[
"unittest.main",
"conway.conway",
"numpy.zeros",
"numpy.random.random"
] |
[((712, 727), 'unittest.main', 'unittest.main', ([], {}), '()\n', (725, 727), False, 'import unittest\n'), ((163, 181), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {}), '((10, 10))\n', (171, 181), True, 'import numpy as np\n'), ((216, 225), 'conway.conway', 'conway', (['A'], {}), '(A)\n', (222, 225), False, 'from conway import conway\n'), ((321, 339), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {}), '((10, 10))\n', (329, 339), True, 'import numpy as np\n'), ((372, 381), 'conway.conway', 'conway', (['A'], {}), '(A)\n', (378, 381), False, 'from conway import conway\n'), ((433, 442), 'conway.conway', 'conway', (['B'], {}), '(B)\n', (439, 442), False, 'from conway import conway\n'), ((638, 647), 'conway.conway', 'conway', (['A'], {}), '(A)\n', (644, 647), False, 'from conway import conway\n'), ((580, 603), 'numpy.random.random', 'np.random.random', (['(m * n)'], {}), '(m * n)\n', (596, 603), True, 'import numpy as np\n')]
|
import numpy as np
import torch
from pruning import RePruning
class RePruningConvDet(RePruning):
def __init__(self, softness, magnitude_threshold, metric_quantile, lr, sample, lb, scale):
super().__init__()
self.masks = {}
self.strength = softness
self.magnitude_threshold = magnitude_threshold
self.metric_quantile = metric_quantile
self.sample = sample
self.lr = lr
self.lb = lb
self.scale = scale
self.metrics = {}
def compute_mask(self, model, acm_g, batch_idx):
with torch.no_grad():
if (batch_idx+1) % self.lb == 0:
self.metrics = {}
for sample in range(self.sample):
for i, (n, p) in enumerate(model.named_parameters()):
if p.grad is not None and (not 'bias' in n) and ('conv' in n or 'features' in n):
if len(p.shape) == 4:
W = p
G = acm_g[n]
W0 = W - self.lr * G
W = W / torch.norm(W)
W0 = W0 / torch.norm(W0)
sz_k = np.random.randint(int(p.shape[0] * self.scale)+1, p.shape[0]+1) #TODO ensure we can reach every filter
sz_j = np.random.randint(int(p.shape[1] * self.scale)+1, p.shape[1]+1)
for key in range(0, p.shape[0]-sz_k, sz_k):
if p.shape[1] == 1:
j = 0
if not "{}:{}:{}:{}:{}".format(n, key, j, sz_k, sz_j) in self.metrics:
norm_w = torch.norm(W[key:key+sz_k, j, :, :])
if norm_w != 0:
norm_w0 = torch.norm(W0[key:key + sz_k, j, :, :])
metric = norm_w / norm_w0
self.metrics["{}:{}:{}:{}:{}".format(n, key, j, sz_k, sz_j)] = metric.item()
else:
self.metrics["{}:{}:{}:{}:{}".format(n, key, j, sz_k, sz_j)] = float('inf')
else:
for j in range(0, p.shape[1]-sz_j, sz_j):
if not "{}:{}:{}:{}:{}".format(n, key, j, sz_k, sz_j) in self.metrics:
norm_w = torch.norm(W[key:key+sz_k, j+sz_j, :, :])
if norm_w != 0:
norm_w0 = torch.norm(W0[key:key + sz_k, j:j + sz_j, :, :])
metric = norm_w / norm_w0
self.metrics["{}:{}:{}:{}:{}".format(n, key, j, sz_k, sz_j)] = metric.item()
else:
self.metrics["{}:{}:{}:{}:{}".format(n, key, j, sz_k, sz_j)] = float('inf')
metric_vals = list(self.metrics.values())
if len(metric_vals) > 0:
metric_threshold = np.quantile(list(self.metrics.values()), self.metric_quantile)
candidates = {}
for key in self.metrics:
if self.metrics[key] <= metric_threshold and not np.isnan(self.metrics[key]) and not self.metrics[key] == float('inf'):
idx = key.split(':')
if idx[0] not in candidates:
candidates[idx[0]] = []
candidates[idx[0]].append(key)
#print(metric_threshold, flush=True)
for n in candidates:
#print(n, model.state_dict()[n].data.shape, len(candidates[n]), flush=True)
mask = torch.ones_like(model.state_dict()[n].data)
for key in candidates[n]:
#print(key, flush=True)
idx = key.split(':')
mask[int(idx[1]):int(idx[1]) + int(idx[3])][int(idx[2]):int(idx[2]) + int(idx[4])] = mask[int(
idx[1]):int(idx[1]) + int(idx[3])][int(idx[2]):int(idx[2]) + int(idx[4])] * 0.0
'''
mask = mask * torch.where(
torch.abs(model.state_dict()[n].data) > self.magnitude_threshold,
torch.ones_like(model.state_dict()[n].data),
torch.zeros_like(model.state_dict()[n].data))
'''
if n in self.masks:
self.masks[n] = self.masks[n] * mask
else:
self.masks[n] = mask
def apply_mask(self, model):
with torch.no_grad():
for i, (n, p) in enumerate(model.named_parameters()):
if p.grad is not None and not 'bias' in n and ('conv' in n or 'features' in n):
if n in self.masks:
p.data = p.data * (self.masks[n] + (torch.ones_like(p.data) - self.masks[n]) * self.strength)
if p.grad.data is not None:
p.grad.data = p.grad.data * self.masks[n]#(self.masks[n] + (torch.ones_like(p.data) - self.masks[n]) * self.strength)
def apply_threshold(self, model):
with torch.no_grad():
for i, (n, p) in enumerate(model.named_parameters()):
if p.grad is not None and not 'bias' in n and ('conv' in n or 'features' in n):
p.data = torch.where(torch.abs(p.data) > self.magnitude_threshold, p.data, torch.zeros_like(p.data))
if p.data.grad is not None: # keep this or not?
p.data.grad = torch.where(torch.abs(p.data.grad) > self.magnitude_threshold, p.data,
torch.zeros_like(p.data.grad))
|
[
"torch.ones_like",
"torch.zeros_like",
"torch.norm",
"numpy.isnan",
"torch.no_grad",
"torch.abs"
] |
[((571, 586), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (584, 586), False, 'import torch\n'), ((5141, 5156), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5154, 5156), False, 'import torch\n'), ((5728, 5743), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5741, 5743), False, 'import torch\n'), ((6002, 6026), 'torch.zeros_like', 'torch.zeros_like', (['p.data'], {}), '(p.data)\n', (6018, 6026), False, 'import torch\n'), ((5948, 5965), 'torch.abs', 'torch.abs', (['p.data'], {}), '(p.data)\n', (5957, 5965), False, 'import torch\n'), ((6255, 6284), 'torch.zeros_like', 'torch.zeros_like', (['p.data.grad'], {}), '(p.data.grad)\n', (6271, 6284), False, 'import torch\n'), ((3607, 3634), 'numpy.isnan', 'np.isnan', (['self.metrics[key]'], {}), '(self.metrics[key])\n', (3615, 3634), True, 'import numpy as np\n'), ((6146, 6168), 'torch.abs', 'torch.abs', (['p.data.grad'], {}), '(p.data.grad)\n', (6155, 6168), False, 'import torch\n'), ((1123, 1136), 'torch.norm', 'torch.norm', (['W'], {}), '(W)\n', (1133, 1136), False, 'import torch\n'), ((1179, 1193), 'torch.norm', 'torch.norm', (['W0'], {}), '(W0)\n', (1189, 1193), False, 'import torch\n'), ((5420, 5443), 'torch.ones_like', 'torch.ones_like', (['p.data'], {}), '(p.data)\n', (5435, 5443), False, 'import torch\n'), ((1781, 1819), 'torch.norm', 'torch.norm', (['W[key:key + sz_k, j, :, :]'], {}), '(W[key:key + sz_k, j, :, :])\n', (1791, 1819), False, 'import torch\n'), ((1936, 1975), 'torch.norm', 'torch.norm', (['W0[key:key + sz_k, j, :, :]'], {}), '(W0[key:key + sz_k, j, :, :])\n', (1946, 1975), False, 'import torch\n'), ((2645, 2690), 'torch.norm', 'torch.norm', (['W[key:key + sz_k, j + sz_j, :, :]'], {}), '(W[key:key + sz_k, j + sz_j, :, :])\n', (2655, 2690), False, 'import torch\n'), ((2813, 2861), 'torch.norm', 'torch.norm', (['W0[key:key + sz_k, j:j + sz_j, :, :]'], {}), '(W0[key:key + sz_k, j:j + sz_j, :, :])\n', (2823, 2861), False, 'import torch\n')]
|
import numpy as np
import pandas as pd
import pytest
from sklearn.model_selection import train_test_split
from mercari.datasets_mx import prepare_vectorizer_1, prepare_vectorizer_2, prepare_vectorizer_3
from mercari.datasets_tf import prepare_vectorizer_1_tf, prepare_vectorizer_2_tf, prepare_vectorizer_3_tf
from mercari.mercari_io import load_train
from mercari.mx_sparse import MXRegression, MXRegressionClf
from mercari.tf_sparse import RegressionHuber, RegressionClf
from mercari.utils import rmsle
@pytest.mark.parametrize('vectorizer', [
prepare_vectorizer_1(),
prepare_vectorizer_2(),
prepare_vectorizer_3(),
prepare_vectorizer_1_tf(),
prepare_vectorizer_2_tf(),
prepare_vectorizer_3_tf(),
])
@pytest.mark.parametrize('model', [
MXRegression(n_epoch=3, loss='huber'),
MXRegression(n_epoch=3, binary_X=True, loss='huber'),
MXRegressionClf(n_epoch=3, n_hidden=(196, 64)),
MXRegressionClf(n_epoch=3, n_hidden=(196, 64), binary_X=True),
RegressionHuber(n_epoch=3),
RegressionHuber(n_epoch=3, binary_X=True),
RegressionClf(n_epoch=3, n_hidden=(196, 64)),
RegressionClf(n_epoch=3, n_hidden=(196, 64), binary_X=True)
])
def test_end_to_end(vectorizer, model):
_test(vectorizer, model, n_rows=None)
@pytest.mark.parametrize('model', [
MXRegression(n_epoch=3, loss='huber'),
MXRegressionClf(n_epoch=3, n_hidden=(196, 64)),
RegressionHuber(n_epoch=3),
RegressionClf(n_epoch=3, n_hidden=(196, 64)),
])
@pytest.mark.parametrize('vectorizer', [
prepare_vectorizer_1(),
prepare_vectorizer_1_tf(),
])
@pytest.mark.parametrize('n_rows', [
None,
'random',
1,
2,
2**10,
2**13 - 1,
2**13,
2**13 + 1,
2**13 + 2**10,
])
def test_random_number_of_rows(vectorizer, model, n_rows):
_test(vectorizer, model, n_rows)
def _test(vectorizer, model, n_rows):
tr = load_train('tests/train_10k.tsv')
tr, va = train_test_split(tr)
te = pd.read_csv('tests/test_10k_corrupted.tsv', sep="\t")
if n_rows is not None:
if n_rows == 'random':
n_rows = np.random.randint(1, te.shape[0])
te = te.sample(n=n_rows)
mat_tr = vectorizer.fit_transform(tr, tr.price)
mat_te = vectorizer.transform(te.copy())
mat_va = vectorizer.transform(va)
model.fit(mat_tr, np.log1p(tr.price))
assert rmsle(np.expm1(model.predict(mat_va)), va.price) < 0.85
te_preds = np.expm1(model.predict(mat_te))
assert te_preds.shape[0] == te.shape[0]
assert np.all(np.isfinite(te_preds))
assert te_preds.min() >= -1, "min price is {}".format(te_preds.min())
assert te_preds.max() <= 3000, "max price is {}".format(te_preds.max())
|
[
"mercari.datasets_tf.prepare_vectorizer_3_tf",
"mercari.mx_sparse.MXRegression",
"mercari.datasets_mx.prepare_vectorizer_2",
"mercari.mercari_io.load_train",
"mercari.datasets_mx.prepare_vectorizer_3",
"mercari.tf_sparse.RegressionClf",
"pandas.read_csv",
"sklearn.model_selection.train_test_split",
"mercari.datasets_mx.prepare_vectorizer_1",
"mercari.datasets_tf.prepare_vectorizer_2_tf",
"numpy.isfinite",
"mercari.tf_sparse.RegressionHuber",
"numpy.random.randint",
"mercari.mx_sparse.MXRegressionClf",
"pytest.mark.parametrize",
"mercari.datasets_tf.prepare_vectorizer_1_tf",
"numpy.log1p"
] |
[((1584, 1708), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""n_rows"""', "[None, 'random', 1, 2, 2 ** 10, 2 ** 13 - 1, 2 ** 13, 2 ** 13 + 1, 2 ** 13 +\n 2 ** 10]"], {}), "('n_rows', [None, 'random', 1, 2, 2 ** 10, 2 ** 13 -\n 1, 2 ** 13, 2 ** 13 + 1, 2 ** 13 + 2 ** 10])\n", (1607, 1708), False, 'import pytest\n'), ((1877, 1910), 'mercari.mercari_io.load_train', 'load_train', (['"""tests/train_10k.tsv"""'], {}), "('tests/train_10k.tsv')\n", (1887, 1910), False, 'from mercari.mercari_io import load_train\n'), ((1924, 1944), 'sklearn.model_selection.train_test_split', 'train_test_split', (['tr'], {}), '(tr)\n', (1940, 1944), False, 'from sklearn.model_selection import train_test_split\n'), ((1954, 2007), 'pandas.read_csv', 'pd.read_csv', (['"""tests/test_10k_corrupted.tsv"""'], {'sep': '"""\t"""'}), "('tests/test_10k_corrupted.tsv', sep='\\t')\n", (1965, 2007), True, 'import pandas as pd\n'), ((552, 574), 'mercari.datasets_mx.prepare_vectorizer_1', 'prepare_vectorizer_1', ([], {}), '()\n', (572, 574), False, 'from mercari.datasets_mx import prepare_vectorizer_1, prepare_vectorizer_2, prepare_vectorizer_3\n'), ((580, 602), 'mercari.datasets_mx.prepare_vectorizer_2', 'prepare_vectorizer_2', ([], {}), '()\n', (600, 602), False, 'from mercari.datasets_mx import prepare_vectorizer_1, prepare_vectorizer_2, prepare_vectorizer_3\n'), ((608, 630), 'mercari.datasets_mx.prepare_vectorizer_3', 'prepare_vectorizer_3', ([], {}), '()\n', (628, 630), False, 'from mercari.datasets_mx import prepare_vectorizer_1, prepare_vectorizer_2, prepare_vectorizer_3\n'), ((636, 661), 'mercari.datasets_tf.prepare_vectorizer_1_tf', 'prepare_vectorizer_1_tf', ([], {}), '()\n', (659, 661), False, 'from mercari.datasets_tf import prepare_vectorizer_1_tf, prepare_vectorizer_2_tf, prepare_vectorizer_3_tf\n'), ((667, 692), 'mercari.datasets_tf.prepare_vectorizer_2_tf', 'prepare_vectorizer_2_tf', ([], {}), '()\n', (690, 692), False, 'from mercari.datasets_tf import prepare_vectorizer_1_tf, prepare_vectorizer_2_tf, prepare_vectorizer_3_tf\n'), ((698, 723), 'mercari.datasets_tf.prepare_vectorizer_3_tf', 'prepare_vectorizer_3_tf', ([], {}), '()\n', (721, 723), False, 'from mercari.datasets_tf import prepare_vectorizer_1_tf, prepare_vectorizer_2_tf, prepare_vectorizer_3_tf\n'), ((768, 805), 'mercari.mx_sparse.MXRegression', 'MXRegression', ([], {'n_epoch': '(3)', 'loss': '"""huber"""'}), "(n_epoch=3, loss='huber')\n", (780, 805), False, 'from mercari.mx_sparse import MXRegression, MXRegressionClf\n'), ((811, 863), 'mercari.mx_sparse.MXRegression', 'MXRegression', ([], {'n_epoch': '(3)', 'binary_X': '(True)', 'loss': '"""huber"""'}), "(n_epoch=3, binary_X=True, loss='huber')\n", (823, 863), False, 'from mercari.mx_sparse import MXRegression, MXRegressionClf\n'), ((869, 915), 'mercari.mx_sparse.MXRegressionClf', 'MXRegressionClf', ([], {'n_epoch': '(3)', 'n_hidden': '(196, 64)'}), '(n_epoch=3, n_hidden=(196, 64))\n', (884, 915), False, 'from mercari.mx_sparse import MXRegression, MXRegressionClf\n'), ((921, 982), 'mercari.mx_sparse.MXRegressionClf', 'MXRegressionClf', ([], {'n_epoch': '(3)', 'n_hidden': '(196, 64)', 'binary_X': '(True)'}), '(n_epoch=3, n_hidden=(196, 64), binary_X=True)\n', (936, 982), False, 'from mercari.mx_sparse import MXRegression, MXRegressionClf\n'), ((988, 1014), 'mercari.tf_sparse.RegressionHuber', 'RegressionHuber', ([], {'n_epoch': '(3)'}), '(n_epoch=3)\n', (1003, 1014), False, 'from mercari.tf_sparse import RegressionHuber, RegressionClf\n'), ((1020, 1061), 'mercari.tf_sparse.RegressionHuber', 'RegressionHuber', ([], {'n_epoch': '(3)', 'binary_X': '(True)'}), '(n_epoch=3, binary_X=True)\n', (1035, 1061), False, 'from mercari.tf_sparse import RegressionHuber, RegressionClf\n'), ((1067, 1111), 'mercari.tf_sparse.RegressionClf', 'RegressionClf', ([], {'n_epoch': '(3)', 'n_hidden': '(196, 64)'}), '(n_epoch=3, n_hidden=(196, 64))\n', (1080, 1111), False, 'from mercari.tf_sparse import RegressionHuber, RegressionClf\n'), ((1117, 1176), 'mercari.tf_sparse.RegressionClf', 'RegressionClf', ([], {'n_epoch': '(3)', 'n_hidden': '(196, 64)', 'binary_X': '(True)'}), '(n_epoch=3, n_hidden=(196, 64), binary_X=True)\n', (1130, 1176), False, 'from mercari.tf_sparse import RegressionHuber, RegressionClf\n'), ((1304, 1341), 'mercari.mx_sparse.MXRegression', 'MXRegression', ([], {'n_epoch': '(3)', 'loss': '"""huber"""'}), "(n_epoch=3, loss='huber')\n", (1316, 1341), False, 'from mercari.mx_sparse import MXRegression, MXRegressionClf\n'), ((1347, 1393), 'mercari.mx_sparse.MXRegressionClf', 'MXRegressionClf', ([], {'n_epoch': '(3)', 'n_hidden': '(196, 64)'}), '(n_epoch=3, n_hidden=(196, 64))\n', (1362, 1393), False, 'from mercari.mx_sparse import MXRegression, MXRegressionClf\n'), ((1399, 1425), 'mercari.tf_sparse.RegressionHuber', 'RegressionHuber', ([], {'n_epoch': '(3)'}), '(n_epoch=3)\n', (1414, 1425), False, 'from mercari.tf_sparse import RegressionHuber, RegressionClf\n'), ((1431, 1475), 'mercari.tf_sparse.RegressionClf', 'RegressionClf', ([], {'n_epoch': '(3)', 'n_hidden': '(196, 64)'}), '(n_epoch=3, n_hidden=(196, 64))\n', (1444, 1475), False, 'from mercari.tf_sparse import RegressionHuber, RegressionClf\n'), ((1525, 1547), 'mercari.datasets_mx.prepare_vectorizer_1', 'prepare_vectorizer_1', ([], {}), '()\n', (1545, 1547), False, 'from mercari.datasets_mx import prepare_vectorizer_1, prepare_vectorizer_2, prepare_vectorizer_3\n'), ((1553, 1578), 'mercari.datasets_tf.prepare_vectorizer_1_tf', 'prepare_vectorizer_1_tf', ([], {}), '()\n', (1576, 1578), False, 'from mercari.datasets_tf import prepare_vectorizer_1_tf, prepare_vectorizer_2_tf, prepare_vectorizer_3_tf\n'), ((2315, 2333), 'numpy.log1p', 'np.log1p', (['tr.price'], {}), '(tr.price)\n', (2323, 2333), True, 'import numpy as np\n'), ((2511, 2532), 'numpy.isfinite', 'np.isfinite', (['te_preds'], {}), '(te_preds)\n', (2522, 2532), True, 'import numpy as np\n'), ((2087, 2120), 'numpy.random.randint', 'np.random.randint', (['(1)', 'te.shape[0]'], {}), '(1, te.shape[0])\n', (2104, 2120), True, 'import numpy as np\n')]
|
import argparse
from source import tools
from config import option
import random
from source import runtime
from source import constants as C
import json
import numpy as np
parser = argparse.ArgumentParser(description="Im2Latex Training Program")
parser.add_argument("-m", "--mode", dest="mode", choices=("train", "test"), default="train", help="游戏模式")
parser.add_argument("-d", "--difficulty", default="hard", help="游戏难度")
parser.add_argument("-n", "--num", default=4, help="创建环境个数")
args = parser.parse_args()
class Player():
def __init__(self):
self.cord = None
def left(self):
self.cord[1] -= 1
def right(self):
self.cord[1] += 1
def up(self):
self.cord[0] -= 1
def down(self):
self.cord[0] += 1
class Target():
def __init__(self):
self.cord = None
self.history = []
self.oppo_dir = {'up': 'down', 'down': 'up', 'left': 'right', 'right': 'left'}
class Game():
def __init__(self, mode=args.mode, difficulty=args.difficulty):
self.mode = mode
self.difficulty = difficulty
self.restart = False
self.init_game()
def init_game(self):
self.setup_env()
self.setup_player()
self.setup_target()
self.setup_runtime()
def setup_runtime(self):
self.runtime.game_info = {'score': 100, 'round': 0, 'mode': self.mode, 'difficulty': self.difficulty}
self.runtime.client_info = runtime.ClientInfo(option.init_score, (10, 10), len(self.maze),
self.runtime.game_info['round'],
self.runtime.maze_info['bonusValue'], 0, self.player.cord,
self.target.cord)
self.client_info = self.runtime.client_info
def setup_env(self):
self.runtime = runtime.RuntimeGlobalInfo()
if self.mode.mode == 'train':
self.runtime.maze_info = tools.get_blind_maze()
else:
with open(option.maze_file_path, 'r') as f:
k = f.readlines()
k = [eval(x.strip('\n')) for x in k]
self.runtime.maze_info = random.choice(k)
self.maze_info = self.runtime.maze_info
self.maze = self.maze_info['maze']
def setup_player(self):
self.player = Player()
self.player.cord = [1, 1]
def setup_target(self):
self.target = Target()
self.target.cord = [int(len(self.maze)-1/2)-1, int(len(self.maze)-1/2)-1]
def player_move(self, type_):
if self.restart:
self.init_game()
self.restart = False
self.client_info.total_steps += 1
current_coordinate = self.player.cord
candidate_cor = None
if type_ == 'left':
candidate_cor = [current_coordinate[0], current_coordinate[1] - 1]
elif type_ == 'right':
candidate_cor = [current_coordinate[0], current_coordinate[1] + 1]
elif type_ == 'up':
candidate_cor = [current_coordinate[0] - 1, current_coordinate[1]]
elif type_ == 'down':
candidate_cor = [current_coordinate[0] + 1, current_coordinate[1]]
elif type_ == 'get':
candidate_cor = current_coordinate
item_type = self.check_move(candidate_cor)
if item_type == 'road':
current_coordinate = candidate_cor
self.runtime.game_info['score'] -= 1
elif item_type == 'coin':
current_coordinate = candidate_cor
self.runtime.game_info['score'] += self.runtime.maze_info['bonusValue']
self.maze[current_coordinate[0]][current_coordinate[1]] = 0
elif item_type == 'brick':
self.runtime.game_info['score'] -= 2
elif item_type == 'boom':
self.runtime.game_info['score'] -= 1000
self.client_info.score = self.runtime.game_info['score']
if self.client_info.score <= 0:
self.client_info.state = -1
self.restart = True
elif current_coordinate == self.target.cord:
self.client_info.state = 1
self.restart = True
self.player.cord = current_coordinate
self.process_neighbours()
self.client_info.player_cord = self.player.cord
self.move_target()
self.client_info.target_cord = self.target.cord
return self.get_client_info()
def check_move(self, candidate):
if self.maze[candidate[0]][candidate[1]] == 0:
return 'road'
elif self.maze[candidate[0]][candidate[1]] == 2:
return 'coin'
elif self.maze[candidate[0]][candidate[1]] == -1:
return 'boom'
elif self.maze[candidate[0]][candidate[1]] == 1:
return 'brick'
def get_local_range(self, range_):
center = self.player.cord
minY = max(center[0] - range_, 0)
maxY = min(center[0] + range_, len(self.maze)-1)
minX = max(center[1] - range_, 0)
maxX = min(center[1] + range_, len(self.maze[0])-1)
return (minX, minY, maxX, maxY)
def process_neighbours(self):
minX, minY, maxX, maxY = self.get_local_range(C.MODAL_RANGE)
for i in range(minX, maxX+1):
for j in range(minY, maxY+1):
symbol = self.maze[j][i]
self.client_info.maze[j][i] = symbol
def get_client_info(self):
return json.dumps(self.runtime.client_info, default=lambda obj: obj.__dict__, sort_keys=True, indent=4)
def get_distance(self, x, y):
return np.sqrt(np.square(x[0]-y[0]) + np.square(x[1]-y[1]))
def move_target(self):
difficulty = self.runtime.game_info['difficulty']
if difficulty == 'simple':
if random.uniform(0, 1) >= 0.8:
return
if self.player.cord == self.target.cord:
return
target_candidate = {'up': [self.target.cord[0] - 1, self.target.cord[1]],
'down': [self.target.cord[0] + 1, self.target.cord[1]],
'left': [self.target.cord[0], self.target.cord[1] - 1],
'right': [self.target.cord[0], self.target.cord[1] + 1]}
direct_cand = []
coor_cand = []
if abs(self.target.cord[0]-self.player.cord[0])>C.MODAL_RANGE or abs(self.target.cord[1]-self.player.cord[1])>C.MODAL_RANGE:
for k,v in target_candidate.items():
if self.maze[v[0]][v[1]] in [0, 2]:
if k in self.target.history[-3:]:
if random.uniform(0,1) > 0.7:
direct_cand.append(k)
coor_cand.append(v)
else:
oppo_dir = self.target.oppo_dir[k]
direct_cand.append(oppo_dir)
coor_cand.append(v)
if coor_cand != []:
choosen_ind = random.randint(0, len(coor_cand)-1)
self.target.cord = coor_cand[choosen_ind]
self.target.history.append(direct_cand[choosen_ind])
else:
self.target.history.append("nothing")
else:
current_distance = self.get_distance(self.target.cord, self.player.cord)
back_cor_cand = []
back_dir_cand = []
for k,v in target_candidate.items():
if self.maze[v[0]][v[1]] in [0, 2]:
candidate_distance = self.get_distance(self.player.cord, v)
if candidate_distance >= current_distance:
direct_cand.append(k)
coor_cand.append(v)
else:
back_dir_cand.append(k)
back_cor_cand.append(v)
if coor_cand == []:
coor_cand = back_cor_cand
direct_cand = back_dir_cand
if coor_cand != []:
choosen_ind = random.randint(0, len(coor_cand) - 1)
self.target.cord = coor_cand[choosen_ind]
self.target.history.append(direct_cand[choosen_ind])
else:
self.target.history.append("nothing")
def step(self, action):
return self.player_move(action)
def showMaze(self, mazeMatrix):
for x, row in enumerate(mazeMatrix):
for y, ele in enumerate(row):
if ele == 2:
print(f'\033[1;32m $ \033[0m', end="")
elif [x, y] in [self.target.cord, self.player.cord]:
print('\033[0;32m' + "^ " + " " + '\033[0m', end="")
elif ele == 1:
print(f'\033[1;47m # \033[0m', end="")
elif ele == 0:
print(f'\033[1;40m * \033[0m', end="")
elif ele == -1:
print(f'\033[1;31;47m O \033[0m', end="")
else:
print(f'\033[1;31;48m 9 \033[0m', end="")
print('')
class Server():
def __init__(self, game_num=args.num):
self.games = [Game(args) for _ in range(game_num)]
def step(self, move_batch:list, verbose=False):
assert len(move_batch) == len(self.games), ValueError(f"Batch size expected {self.games}, but got {len(move_batch)}")
res = []
for ii in range(len(self.games)):
res.append(json.loads(self.games[ii].step(move_batch[ii])))
if verbose:
self.games[ii].showMaze(json.loads(self.games[ii].get_client_info())['maze'])
print(">" * 40)
print()
return res
if __name__ == '__main__':
s = Server(1) # 环境个数
v = False
for i in range(101):
if i >= 99:
v = True
r = s.step(['right'], verbose=v)
if v:
print(r)
|
[
"source.tools.get_blind_maze",
"argparse.ArgumentParser",
"random.uniform",
"numpy.square",
"random.choice",
"source.runtime.RuntimeGlobalInfo",
"json.dumps"
] |
[((183, 247), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Im2Latex Training Program"""'}), "(description='Im2Latex Training Program')\n", (206, 247), False, 'import argparse\n'), ((1888, 1915), 'source.runtime.RuntimeGlobalInfo', 'runtime.RuntimeGlobalInfo', ([], {}), '()\n', (1913, 1915), False, 'from source import runtime\n'), ((5457, 5557), 'json.dumps', 'json.dumps', (['self.runtime.client_info'], {'default': '(lambda obj: obj.__dict__)', 'sort_keys': '(True)', 'indent': '(4)'}), '(self.runtime.client_info, default=lambda obj: obj.__dict__,\n sort_keys=True, indent=4)\n', (5467, 5557), False, 'import json\n'), ((1991, 2013), 'source.tools.get_blind_maze', 'tools.get_blind_maze', ([], {}), '()\n', (2011, 2013), False, 'from source import tools\n'), ((2208, 2224), 'random.choice', 'random.choice', (['k'], {}), '(k)\n', (2221, 2224), False, 'import random\n'), ((5612, 5634), 'numpy.square', 'np.square', (['(x[0] - y[0])'], {}), '(x[0] - y[0])\n', (5621, 5634), True, 'import numpy as np\n'), ((5635, 5657), 'numpy.square', 'np.square', (['(x[1] - y[1])'], {}), '(x[1] - y[1])\n', (5644, 5657), True, 'import numpy as np\n'), ((5793, 5813), 'random.uniform', 'random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (5807, 5813), False, 'import random\n'), ((6611, 6631), 'random.uniform', 'random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (6625, 6631), False, 'import random\n')]
|
import os
import random
import torch
import numpy as np
from time import time
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
from prettytable import PrettyTable
from common.test import test_v2
from common.utils import early_stopping, print_dict
from common.config import parse_args
from common.dataset import CKGData
from common.dataset.build import build_loader
from modules.sampler import KGPolicy
from modules.recommender import MF
def train_one_epoch(
recommender,
sampler,
train_loader,
recommender_optim,
sampler_optim,
adj_matrix,
edge_matrix,
train_data,
cur_epoch,
avg_reward,
):
loss, base_loss, reg_loss = 0, 0, 0
epoch_reward = 0
"""Train one epoch"""
tbar = tqdm(train_loader, ascii=True)
num_batch = len(train_loader)
for batch_data in tbar:
tbar.set_description("Epoch {}".format(cur_epoch))
if torch.cuda.is_available():
batch_data = {k: v.cuda(non_blocking=True) for k, v in batch_data.items()}
"""Train recommender using negtive item provided by sampler"""
recommender_optim.zero_grad()
neg = batch_data["neg_i_id"]
pos = batch_data["pos_i_id"]
users = batch_data["u_id"]
selected_neg_items_list, _ = sampler(batch_data, adj_matrix, edge_matrix)
selected_neg_items = selected_neg_items_list[-1, :]
train_set = train_data[users]
in_train = torch.sum(
selected_neg_items.unsqueeze(1) == train_set.long(), dim=1
).byte()
selected_neg_items[in_train] = neg[in_train]
base_loss_batch, reg_loss_batch = recommender(users, pos, selected_neg_items)
loss_batch = base_loss_batch + reg_loss_batch
loss_batch.backward()
recommender_optim.step()
"""Train sampler network"""
sampler_optim.zero_grad()
selected_neg_items_list, selected_neg_prob_list = sampler(
batch_data, adj_matrix, edge_matrix
)
with torch.no_grad():
reward_batch = recommender.get_reward(users, pos, selected_neg_items_list)
epoch_reward += torch.sum(reward_batch)
reward_batch -= avg_reward
batch_size = reward_batch.size(1)
n = reward_batch.size(0) - 1
R = torch.zeros(batch_size, device=reward_batch.device)
reward = torch.zeros(reward_batch.size(), device=reward_batch.device)
gamma = args_config.gamma
for i, r in enumerate(reward_batch.flip(0)):
R = r + gamma * R
reward[n - i] = R
reinforce_loss = -1 * torch.sum(reward_batch * selected_neg_prob_list)
reinforce_loss.backward()
sampler_optim.step()
"""record loss in an epoch"""
loss += loss_batch
reg_loss += reg_loss_batch
base_loss += base_loss_batch
avg_reward = epoch_reward / num_batch
train_res = PrettyTable()
train_res.field_names = ["Epoch", "Loss", "BPR-Loss", "Regulation", "AVG-Reward"]
train_res.add_row(
[cur_epoch, loss.item(), base_loss.item(), reg_loss.item(), avg_reward.item()]
)
print(train_res)
return loss, base_loss, reg_loss, avg_reward
def save_model(file_name, model, config):
if not os.path.isdir(config.out_dir):
os.mkdir(config.out_dir)
model_file = Path(config.out_dir + file_name)
model_file.touch(exist_ok=True)
print("Saving model...")
torch.save(model.state_dict(), model_file)
def build_sampler_graph(n_nodes, edge_threshold, graph):
adj_matrix = torch.zeros(n_nodes, edge_threshold * 2)
edge_matrix = torch.zeros(n_nodes, edge_threshold)
"""sample neighbors for each node"""
for node in tqdm(graph.nodes, ascii=True, desc="Build sampler matrix"):
neighbors = list(graph.neighbors(node))
if len(neighbors) >= edge_threshold:
sampled_edge = random.sample(neighbors, edge_threshold)
edges = deepcopy(sampled_edge)
else:
neg_id = random.sample(
range(CKG.item_range[0], CKG.item_range[1] + 1),
edge_threshold - len(neighbors),
)
node_id = [node] * (edge_threshold - len(neighbors))
sampled_edge = neighbors + neg_id
edges = neighbors + node_id
"""concatenate sampled edge with random edge"""
sampled_edge += random.sample(
range(CKG.item_range[0], CKG.item_range[1] + 1), edge_threshold
)
adj_matrix[node] = torch.tensor(sampled_edge, dtype=torch.long)
edge_matrix[node] = torch.tensor(edges, dtype=torch.long)
if torch.cuda.is_available():
adj_matrix = adj_matrix.cuda().long()
edge_matrix = edge_matrix.cuda().long()
return adj_matrix, edge_matrix
def build_train_data(train_mat):
num_user = max(train_mat.keys()) + 1
num_true = max([len(i) for i in train_mat.values()])
train_data = torch.zeros(num_user, num_true)
for i in train_mat.keys():
true_list = train_mat[i]
true_list += [-1] * (num_true - len(true_list))
train_data[i] = torch.tensor(true_list, dtype=torch.long)
return train_data
def train(train_loader, test_loader, graph, data_config, args_config):
"""build padded training set"""
train_mat = graph.train_user_dict
train_data = build_train_data(train_mat)
if args_config.pretrain_r:
print(
"\nLoad model from {}".format(
args_config.data_path + args_config.model_path
)
)
paras = torch.load(args_config.data_path + args_config.model_path)
all_embed = torch.cat((paras["user_para"], paras["item_para"]))
data_config["all_embed"] = all_embed
recommender = MF(data_config=data_config, args_config=args_config)
sampler = KGPolicy(recommender, data_config, args_config)
if torch.cuda.is_available():
train_data = train_data.long().cuda()
sampler = sampler.cuda()
recommender = recommender.cuda()
print("\nSet sampler as: {}".format(str(sampler)))
print("Set recommender as: {}\n".format(str(recommender)))
recommender_optimer = torch.optim.Adam(recommender.parameters(), lr=args_config.rlr)
sampler_optimer = torch.optim.Adam(sampler.parameters(), lr=args_config.slr)
loss_loger, pre_loger, rec_loger, ndcg_loger, hit_loger = [], [], [], [], []
stopping_step, cur_best_pre_0, avg_reward = 0, 0.0, 0
t0 = time()
for epoch in range(args_config.epoch):
if epoch % args_config.adj_epoch == 0:
"""sample adjacency matrix"""
adj_matrix, edge_matrix = build_sampler_graph(
data_config["n_nodes"], args_config.edge_threshold, graph.ckg_graph
)
cur_epoch = epoch + 1
loss, base_loss, reg_loss, avg_reward = train_one_epoch(
recommender,
sampler,
train_loader,
recommender_optimer,
sampler_optimer,
adj_matrix,
edge_matrix,
train_data,
cur_epoch,
avg_reward,
)
"""Test"""
if cur_epoch % args_config.show_step == 0:
with torch.no_grad():
ret = test_v2(recommender, args_config.Ks, graph)
loss_loger.append(loss)
rec_loger.append(ret["recall"])
pre_loger.append(ret["precision"])
ndcg_loger.append(ret["ndcg"])
hit_loger.append(ret["hit_ratio"])
print_dict(ret)
cur_best_pre_0, stopping_step, should_stop = early_stopping(
ret["recall"][0],
cur_best_pre_0,
stopping_step,
expected_order="acc",
flag_step=args_config.flag_step,
)
if should_stop:
break
recs = np.array(rec_loger)
pres = np.array(pre_loger)
ndcgs = np.array(ndcg_loger)
hit = np.array(hit_loger)
best_rec_0 = max(recs[:, 0])
idx = list(recs[:, 0]).index(best_rec_0)
final_perf = (
"Best Iter=[%d]@[%.1f]\n recall=[%s] \n precision=[%s] \n hit=[%s] \n ndcg=[%s]"
% (
idx,
time() - t0,
"\t".join(["%.5f" % r for r in recs[idx]]),
"\t".join(["%.5f" % r for r in pres[idx]]),
"\t".join(["%.5f" % r for r in hit[idx]]),
"\t".join(["%.5f" % r for r in ndcgs[idx]]),
)
)
print(final_perf)
if __name__ == "__main__":
"""fix the random seed"""
seed = 2020
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
"""initialize args and dataset"""
args_config = parse_args()
CKG = CKGData(args_config)
"""set the gpu id"""
if torch.cuda.is_available():
torch.cuda.set_device(args_config.gpu_id)
data_config = {
"n_users": CKG.n_users,
"n_items": CKG.n_items,
"n_relations": CKG.n_relations + 2,
"n_entities": CKG.n_entities,
"n_nodes": CKG.entity_range[1] + 1,
"item_range": CKG.item_range,
}
print("\ncopying CKG graph for data_loader.. it might take a few minutes")
graph = deepcopy(CKG)
train_loader, test_loader = build_loader(args_config=args_config, graph=graph)
train(
train_loader=train_loader,
test_loader=test_loader,
graph=CKG,
data_config=data_config,
args_config=args_config,
)
|
[
"os.mkdir",
"numpy.random.seed",
"common.test.test_v2",
"random.sample",
"torch.cat",
"common.dataset.CKGData",
"pathlib.Path",
"prettytable.PrettyTable",
"common.utils.print_dict",
"torch.no_grad",
"common.utils.early_stopping",
"torch.load",
"random.seed",
"torch.zeros",
"torch.cuda.set_device",
"tqdm.tqdm",
"copy.deepcopy",
"torch.manual_seed",
"common.dataset.build.build_loader",
"torch.cuda.is_available",
"torch.sum",
"modules.sampler.KGPolicy",
"modules.recommender.MF",
"os.path.isdir",
"common.config.parse_args",
"time.time",
"numpy.array",
"torch.tensor"
] |
[((761, 791), 'tqdm.tqdm', 'tqdm', (['train_loader'], {'ascii': '(True)'}), '(train_loader, ascii=True)\n', (765, 791), False, 'from tqdm import tqdm\n'), ((2927, 2940), 'prettytable.PrettyTable', 'PrettyTable', ([], {}), '()\n', (2938, 2940), False, 'from prettytable import PrettyTable\n'), ((3351, 3383), 'pathlib.Path', 'Path', (['(config.out_dir + file_name)'], {}), '(config.out_dir + file_name)\n', (3355, 3383), False, 'from pathlib import Path\n'), ((3573, 3613), 'torch.zeros', 'torch.zeros', (['n_nodes', '(edge_threshold * 2)'], {}), '(n_nodes, edge_threshold * 2)\n', (3584, 3613), False, 'import torch\n'), ((3632, 3668), 'torch.zeros', 'torch.zeros', (['n_nodes', 'edge_threshold'], {}), '(n_nodes, edge_threshold)\n', (3643, 3668), False, 'import torch\n'), ((3727, 3785), 'tqdm.tqdm', 'tqdm', (['graph.nodes'], {'ascii': '(True)', 'desc': '"""Build sampler matrix"""'}), "(graph.nodes, ascii=True, desc='Build sampler matrix')\n", (3731, 3785), False, 'from tqdm import tqdm\n'), ((4649, 4674), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4672, 4674), False, 'import torch\n'), ((4957, 4988), 'torch.zeros', 'torch.zeros', (['num_user', 'num_true'], {}), '(num_user, num_true)\n', (4968, 4988), False, 'import torch\n'), ((5779, 5831), 'modules.recommender.MF', 'MF', ([], {'data_config': 'data_config', 'args_config': 'args_config'}), '(data_config=data_config, args_config=args_config)\n', (5781, 5831), False, 'from modules.recommender import MF\n'), ((5846, 5893), 'modules.sampler.KGPolicy', 'KGPolicy', (['recommender', 'data_config', 'args_config'], {}), '(recommender, data_config, args_config)\n', (5854, 5893), False, 'from modules.sampler import KGPolicy\n'), ((5902, 5927), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (5925, 5927), False, 'import torch\n'), ((6496, 6502), 'time.time', 'time', ([], {}), '()\n', (6500, 6502), False, 'from time import time\n'), ((7906, 7925), 'numpy.array', 'np.array', (['rec_loger'], {}), '(rec_loger)\n', (7914, 7925), True, 'import numpy as np\n'), ((7937, 7956), 'numpy.array', 'np.array', (['pre_loger'], {}), '(pre_loger)\n', (7945, 7956), True, 'import numpy as np\n'), ((7969, 7989), 'numpy.array', 'np.array', (['ndcg_loger'], {}), '(ndcg_loger)\n', (7977, 7989), True, 'import numpy as np\n'), ((8000, 8019), 'numpy.array', 'np.array', (['hit_loger'], {}), '(hit_loger)\n', (8008, 8019), True, 'import numpy as np\n'), ((8603, 8620), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (8614, 8620), False, 'import random\n'), ((8625, 8645), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (8639, 8645), True, 'import numpy as np\n'), ((8650, 8673), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (8667, 8673), False, 'import torch\n'), ((8731, 8743), 'common.config.parse_args', 'parse_args', ([], {}), '()\n', (8741, 8743), False, 'from common.config import parse_args\n'), ((8754, 8774), 'common.dataset.CKGData', 'CKGData', (['args_config'], {}), '(args_config)\n', (8761, 8774), False, 'from common.dataset import CKGData\n'), ((8808, 8833), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (8831, 8833), False, 'import torch\n'), ((9232, 9245), 'copy.deepcopy', 'deepcopy', (['CKG'], {}), '(CKG)\n', (9240, 9245), False, 'from copy import deepcopy\n'), ((9278, 9328), 'common.dataset.build.build_loader', 'build_loader', ([], {'args_config': 'args_config', 'graph': 'graph'}), '(args_config=args_config, graph=graph)\n', (9290, 9328), False, 'from common.dataset.build import build_loader\n'), ((926, 951), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (949, 951), False, 'import torch\n'), ((2157, 2180), 'torch.sum', 'torch.sum', (['reward_batch'], {}), '(reward_batch)\n', (2166, 2180), False, 'import torch\n'), ((2308, 2359), 'torch.zeros', 'torch.zeros', (['batch_size'], {'device': 'reward_batch.device'}), '(batch_size, device=reward_batch.device)\n', (2319, 2359), False, 'import torch\n'), ((3269, 3298), 'os.path.isdir', 'os.path.isdir', (['config.out_dir'], {}), '(config.out_dir)\n', (3282, 3298), False, 'import os\n'), ((3308, 3332), 'os.mkdir', 'os.mkdir', (['config.out_dir'], {}), '(config.out_dir)\n', (3316, 3332), False, 'import os\n'), ((4530, 4574), 'torch.tensor', 'torch.tensor', (['sampled_edge'], {'dtype': 'torch.long'}), '(sampled_edge, dtype=torch.long)\n', (4542, 4574), False, 'import torch\n'), ((4603, 4640), 'torch.tensor', 'torch.tensor', (['edges'], {'dtype': 'torch.long'}), '(edges, dtype=torch.long)\n', (4615, 4640), False, 'import torch\n'), ((5134, 5175), 'torch.tensor', 'torch.tensor', (['true_list'], {'dtype': 'torch.long'}), '(true_list, dtype=torch.long)\n', (5146, 5175), False, 'import torch\n'), ((5584, 5642), 'torch.load', 'torch.load', (['(args_config.data_path + args_config.model_path)'], {}), '(args_config.data_path + args_config.model_path)\n', (5594, 5642), False, 'import torch\n'), ((5663, 5714), 'torch.cat', 'torch.cat', (["(paras['user_para'], paras['item_para'])"], {}), "((paras['user_para'], paras['item_para']))\n", (5672, 5714), False, 'import torch\n'), ((8843, 8884), 'torch.cuda.set_device', 'torch.cuda.set_device', (['args_config.gpu_id'], {}), '(args_config.gpu_id)\n', (8864, 8884), False, 'import torch\n'), ((2028, 2043), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2041, 2043), False, 'import torch\n'), ((2618, 2666), 'torch.sum', 'torch.sum', (['(reward_batch * selected_neg_prob_list)'], {}), '(reward_batch * selected_neg_prob_list)\n', (2627, 2666), False, 'import torch\n'), ((3907, 3947), 'random.sample', 'random.sample', (['neighbors', 'edge_threshold'], {}), '(neighbors, edge_threshold)\n', (3920, 3947), False, 'import random\n'), ((3968, 3990), 'copy.deepcopy', 'deepcopy', (['sampled_edge'], {}), '(sampled_edge)\n', (3976, 3990), False, 'from copy import deepcopy\n'), ((7555, 7570), 'common.utils.print_dict', 'print_dict', (['ret'], {}), '(ret)\n', (7565, 7570), False, 'from common.utils import early_stopping, print_dict\n'), ((7629, 7751), 'common.utils.early_stopping', 'early_stopping', (["ret['recall'][0]", 'cur_best_pre_0', 'stopping_step'], {'expected_order': '"""acc"""', 'flag_step': 'args_config.flag_step'}), "(ret['recall'][0], cur_best_pre_0, stopping_step,\n expected_order='acc', flag_step=args_config.flag_step)\n", (7643, 7751), False, 'from common.utils import early_stopping, print_dict\n'), ((7241, 7256), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7254, 7256), False, 'import torch\n'), ((7280, 7323), 'common.test.test_v2', 'test_v2', (['recommender', 'args_config.Ks', 'graph'], {}), '(recommender, args_config.Ks, graph)\n', (7287, 7323), False, 'from common.test import test_v2\n'), ((8249, 8255), 'time.time', 'time', ([], {}), '()\n', (8253, 8255), False, 'from time import time\n')]
|
import numpy as np
import copy
from scipy import optimize
from astropy.stats import median_absolute_deviation
from astropy.table import Column, Table, vstack
from numpy.polynomial import legendre
from scipy import interpolate
from xwavecal.images import Image
from xwavecal.stages import Stage, ApplyCalibration
from xwavecal.utils.wavelength_utils import identify_lines, calc_residuals, restrict, Model, _sigma_clip
from xwavecal.utils.wavelength_utils import estimate_global_scale, normalize_coordinates, pixel_order_as_array
from xwavecal.utils.overlap_utils import flag_bad_overlaps, fit_overlaps, blank_overlap_table, flag_outlier_overlaps
from xwavecal.utils.misc_utils import brute_local_min, find_nearest, minmax
from xwavecal.utils.fiber_utils import lit_wavecal_fibers
import logging
logger = logging.getLogger(__name__)
class WavelengthSolution(object):
"""
Class to evaluate, contain and update the wavelength solution.
Notable attributes:
WavelengthSolution.model gives the current model of the wavelength solution.
WavelengthSolution.model_coefficients gives the coefficients for the current model, in the order
of WavelengthSolution.model.
"""
def __init__(self, model=None, model_coefficients=None, measured_lines: dict = None, reference_lines=None,
m0=30, max_pixel=100, max_order=2, min_order=0, min_pixel=0, overlap_range=(),
grating_eq=True):
if model is None:
model = {1: [0, 1],
2: [0, 1]}
self.max_order = max_order
self.max_pixel = max_pixel
self.min_pixel = min_pixel
self.min_order = min_order
self.model = Model(model)
self.m0 = m0
self.overlap_range = overlap_range
self.model_coefficients = model_coefficients
self.reference_lines = reference_lines
self.grating_eq = grating_eq # True to use a 1/(m0+i) prefactor.
self._measured_lines = None
self.measured_lines = measured_lines
@property
def measured_lines(self):
return self._measured_lines
@measured_lines.setter
def measured_lines(self, lines):
if lines is not None and lines.get('order', None) is not None and lines.get('pixel', None) is not None:
lines['normed_pixel'] = normalize_coordinates(lines['pixel'], max_value=self.max_pixel, min_value=self.min_pixel)
lines['normed_order'] = normalize_coordinates(lines['order'], max_value=self.max_order, min_value=self.min_order)
self._measured_lines = lines
def __call__(self, pixel, order):
"""
:param pixel: ndarray. array (any shape) of pixel coordinates of spectral features.
:param order: ndarray. Same length as pixel. array of order indices of spectral features.
:return: ndarray. array of wavelengths. Same shape as pixel and order.
"""
normed_pixel = normalize_coordinates(pixel, max_value=self.max_pixel, min_value=self.min_pixel)
normed_order = normalize_coordinates(order, max_value=self.max_order, min_value=self.min_order)
return self.wavelength_normed_input(normed_pixel, normed_order, order)
def wavelength_normed_input(self, normed_pixel, normed_order, order, **kwargs):
A, c = self._construct_wavelength_map_matrices(normed_pixel.flatten(), normed_order.flatten(), order.flatten())
wavelengths = self._map_to_wavelength(A, c, self.model_coefficients)
return wavelengths.reshape(normed_pixel.shape)
def update_model(self, new_model, grating_eq=True):
pixel, order = np.meshgrid(np.linspace(self.min_pixel, self.max_pixel, 30),
np.arange(self.min_order, self.max_order + 1))
coords = {'pixel': pixel.flatten(), 'order': order.flatten()}
coords['normed_pixel'] = normalize_coordinates(coords['pixel'], self.max_pixel, self.min_pixel)
coords['normed_order'] = normalize_coordinates(coords['order'], self.max_order, self.min_order)
old_wavelengths = self.wavelength_normed_input(**coords)
self.model = Model(new_model)
self.grating_eq = grating_eq
self.model_coefficients = self.solve(coords, old_wavelengths)
def solve(self, line_coordinates, wavelengths_to_fit, weights=None):
"""
:param weights: array.
A 1d array of weights. E.g. the square root of the inverse variance.
:return: array: best fit coefficients
"""
weights = np.array([1]) if weights is None else weights
A, c = self._construct_wavelength_map_matrices(**line_coordinates)
c += np.array(wavelengths_to_fit).reshape(-1, 1)
model_coefficients, residuals = np.linalg.lstsq(A * weights.reshape(-1, 1),
c * weights.reshape(-1, 1), rcond=None)[:2]
return model_coefficients.flatten()
def solve_from_overlaps(self, overlaps):
if 0 in self.model:
logger.error('Model contains parameters independent of pixel coordinate x. '
'Overlap fit will fail. Do not include 0: [...] terms in '
'the initial wavelength model. The model is {0}'.format(self.model))
raise ValueError('0 in self.model.keys(). Not allowed for overlap fit.')
coordinates = self._format_overlaps(overlaps, pixel_key='pixel', order_key='ref_id')
matched_coordinates = self._format_overlaps(overlaps, pixel_key='matched_pixel', order_key='matched_ref_id')
A1, c1 = self._construct_wavelength_map_matrices(**coordinates)
A2, c2 = self._construct_wavelength_map_matrices(**matched_coordinates)
A, c = A1 - A2, c1 - c2
model_coefficients = np.linalg.lstsq(A, c, rcond=None)[0]
self.model_coefficients = model_coefficients.flatten()
def apply_scale(self, scale):
self.model_coefficients *= scale
def _format_overlaps(self, overlaps, pixel_key='pixel', order_key='ref_id'):
"""
:param overlaps: An astropy table of overlaps with the 'pixel' and 'matched_pixel' columns
giving 1d arrays of pixel points which must map to the same wavelength.
:return: coordinates of overlaps.
"""
orders = (overlaps[order_key].data.reshape(-1, 1) * np.ones_like(overlaps[pixel_key].data)).flatten()
pixels = overlaps[pixel_key].data.flatten()
pixels, orders = pixels[np.isfinite(pixels)], orders[np.isfinite(pixels)]
coordinates = {'normed_pixel': normalize_coordinates(pixels, self.max_pixel, self.min_pixel), 'pixel': pixels,
'normed_order': normalize_coordinates(orders, self.max_order, self.min_order), 'order': orders}
return coordinates
def _construct_wavelength_map_matrices(self, normed_pixel, normed_order, order, **kwargs):
if self.grating_eq:
m_divisor = 1 / np.add(order, self.m0).astype(np.float64)
else:
m_divisor = np.ones_like(normed_pixel, dtype=np.float64)
columns = ()
for xpower in self.model:
for orderpower in self.model[xpower]:
coefficient_array = np.zeros((xpower+1, orderpower+1))
coefficient_array[xpower, orderpower] = 1
columns += (m_divisor * legendre.legval2d(normed_pixel, normed_order, coefficient_array),)
A = np.column_stack(columns)
if (0 not in self.model) or (0 not in self.model[0]):
# we force 0,0 coefficient to 1 for the overlap fit.
c = -1 * m_divisor.reshape(-1, 1)
else:
c = np.zeros_like(normed_pixel, dtype=np.float64).reshape(-1, 1)
return A, c
@staticmethod
def _map_to_wavelength(A, c, coefficients):
if coefficients is None:
return np.ones_like(c.flatten(), dtype=float) * np.nan
return np.dot(A, coefficients).flatten() + (-1) * c.flatten()
class WavelengthStage(Stage):
"""
Base class for all wavelength stages
"""
def __init__(self, runtime_context=None):
super(WavelengthStage, self).__init__(runtime_context=runtime_context)
def do_stage(self, image):
valid_fibers = self._valid_fibers(image)
for fiber in valid_fibers:
image = self.do_stage_fiber(image, fiber)
if len(valid_fibers) < 1:
self.on_no_valid_fibers(image)
return image
def do_stage_fiber(self, image, fiber):
return image
def on_no_valid_fibers(self, image):
self.logger.warning('No fibers found with non None WavelengthSolution objects. Aborting this '
'stage.')
@staticmethod
def _valid_fibers(image):
return [fiber for fiber in lit_wavecal_fibers(image) if
image.wavelength_solution[fiber] is not None]
class Initialize(WavelengthStage):
"""
Stage 1/9 for the wavelength solution
"""
def __init__(self, runtime_context=None):
super(Initialize, self).__init__(runtime_context=runtime_context)
def do_stage_fiber(self, image, fiber):
self.logger.info('Appending blank WavelengthSolution object to image for this fiber. '
'fiber={0}'.format(str(fiber)))
spectrum = image.data_tables[self.runtime_context.main_spectrum_name]
single_fiber_spectrum = spectrum[spectrum['fiber'] == fiber]
image.wavelength_solution[fiber] = WavelengthSolution(model=self.runtime_context.initial_wavelength_model,
m0=self.runtime_context.principle_order_number,
max_order=np.max(single_fiber_spectrum['ref_id']),
min_order=np.min(single_fiber_spectrum['ref_id']),
max_pixel=np.max(single_fiber_spectrum['pixel']),
min_pixel=np.min(single_fiber_spectrum['pixel']))
return image
def on_no_valid_fibers(self, image):
for fiber in lit_wavecal_fibers(image):
image.wavelength_solution[fiber] = None
self.logger.error('Aborting wavelength calibration and setting wavelength solution to None.')
def _valid_fibers(self, image):
if image.data_tables.get(self.runtime_context.main_spectrum_name) is None:
self.logger.error('No main spectrum on image.')
return []
colnames_present = all([key in image.data_tables[self.runtime_context.main_spectrum_name].colnames
for key in ['ref_id', 'fiber']])
if not colnames_present:
self.logger.error('Main spectrum on image is missing ref_id and fiber columns')
return []
return lit_wavecal_fibers(image)
class LoadReferenceLineList(ApplyCalibration):
"""
Stage 2/8 for the wavelength solution
"""
def __init__(self, runtime_context=None):
super(LoadReferenceLineList, self).__init__(runtime_context=runtime_context)
def apply_master_calibration(self, image, reference_list_path):
line_list = np.sort(np.genfromtxt(reference_list_path, usecols=[1]).flatten())
for fiber in [fiber for fiber in lit_wavecal_fibers(image) if
image.wavelength_solution[fiber] is not None]:
image.wavelength_solution[fiber].reference_lines = line_list
image.set_header_val('IDLIST', (reference_list_path, 'ID of the reference line list'))
return image
def get_calibration_filename(self, image):
return self.runtime_context.line_list_path
class FitOverlaps(WavelengthStage):
"""
Stage 3/8 for the wavelength solution
This should run on a blaze corrected calibration spectrum.
"""
def __init__(self, runtime_context=None):
super(FitOverlaps, self).__init__(runtime_context=runtime_context)
def do_stage(self, image):
if image.data_tables.get(self.runtime_context.overlap_table_name, None) is None:
image.data_tables[self.runtime_context.overlap_table_name] = blank_overlap_table(self.runtime_context.max_red_overlap)
image = super(FitOverlaps, self).do_stage(image)
name = self.runtime_context.overlap_table_name
image.data_tables[name] = Table(image.data_tables[name])
return image
def do_stage_fiber(self, image, fiber):
self.logger.info('Fitting overlaps. fiber={0}'.format(str(fiber)))
spectrum = image.data_tables[self.runtime_context.main_spectrum_name]
single_fiber_spectrum = spectrum[spectrum['fiber'] == fiber]
overlaps = fit_overlaps(spec=single_fiber_spectrum,
lines=image.wavelength_solution[fiber].measured_lines,
max_overlap_red=self.runtime_context.max_red_overlap,
max_overlap_blue=self.runtime_context.max_blue_overlap,
linear_scale_range=self.runtime_context.overlap_linear_scale_range,
fiber=fiber,
flux_tol=getattr(self.runtime_context, 'flux_tol', 0.2))
overlaps = flag_bad_overlaps(overlaps, getattr(self.runtime_context, 'min_num_matches', 6))
self.logger.info('{0} overlaps verified. fiber={1}'.format(np.count_nonzero(overlaps['good']), str(fiber)))
overlaps = flag_outlier_overlaps(overlaps)
self.logger.info('{0} overlaps will be used. fiber={1}'.format(np.count_nonzero(overlaps['good']), str(fiber)))
image.data_tables[self.runtime_context.overlap_table_name] = vstack([overlaps,
image.data_tables[self.runtime_context.overlap_table_name]])
if np.count_nonzero(overlaps['good']) < self.runtime_context.min_num_overlaps:
self.logger.error('Less than {0} overlaps verified as good,'
'setting wavelength solution to None.'
' fiber={1}'.format(self.runtime_context.min_num_overlaps, str(fiber)))
image.wavelength_solution[fiber] = None
return image
class SolveFromOverlaps(WavelengthStage):
"""
Stage 4/8. Solves for the coefficients of the wavelength solution from the overlaps.
"""
def __init__(self, runtime_context=None):
super(SolveFromOverlaps, self).__init__(runtime_context=runtime_context)
def do_stage_fiber(self, image, fiber):
image.wavelength_solution[fiber].model = Model(self.runtime_context.initial_wavelength_model)
overlaps = image.data_tables.get(self.runtime_context.overlap_table_name, blank_overlap_table(1))
overlaps = self._prune_overlaps(overlaps, fiber)
self.logger.info('Initializing wavelength solution from overlaps. fiber={0}'.format(str(fiber)))
image.wavelength_solution[fiber].overlap_range = minmax([overlaps['ref_id'], overlaps['matched_ref_id']])
image.wavelength_solution[fiber].solve_from_overlaps(overlaps)
return image
@staticmethod
def _prune_overlaps(overlaps, fiber):
overlaps = overlaps[overlaps['good']]
overlaps = overlaps[overlaps['fiber'] == fiber]
return overlaps
class IdentifyArcEmissionLines(WavelengthStage):
"""
Stage 5/8 for the wavelength solution
"""
def __init__(self, runtime_context=None):
super(IdentifyArcEmissionLines, self).__init__(runtime_context=runtime_context)
self.min_peak_snr = self.runtime_context.min_peak_snr
def do_stage_fiber(self, image, fiber):
spectrum = image.data_tables[self.runtime_context.main_spectrum_name]
single_fiber_spectrum = spectrum[spectrum['fiber'] == fiber]
measured_lines = identify_lines(spectrum=single_fiber_spectrum,
stderr=single_fiber_spectrum['stderr'],
min_snr=self.min_peak_snr,
order_key='ref_id')
image.wavelength_solution[fiber].measured_lines = measured_lines
self.logger.info('{0} emission lines identified from {1} unique '
'diffraction orders. fiber={2}'
''.format(len(measured_lines['pixel']), len(set(measured_lines['order'])), str(fiber)))
return image
class BlazeCorrectArcEmissionLines(WavelengthStage):
def __init__(self, runtime_context=None):
super(BlazeCorrectArcEmissionLines, self).__init__(runtime_context=runtime_context)
def do_stage_fiber(self, image, fiber):
spectrum = image.data_tables.get(self.runtime_context.blaze_corrected_spectrum_name)
lines = image.wavelength_solution[fiber].measured_lines
if spectrum is None:
image.wavelength_solution[fiber].measured_lines['corrected_flux'] = lines['flux']
else:
spectrum = spectrum[spectrum['fiber'] == fiber]
lines['corrected_flux'] = np.zeros_like(lines['flux'], dtype=float)
for spec in spectrum:
flux = interpolate.interp1d(spec['pixel'], spec['flux'], kind='nearest', bounds_error=False, fill_value=0)
in_order = np.where(lines['order'] == spec['ref_id'])
lines['corrected_flux'][in_order] = flux(lines['pixel'][in_order])
image.wavelength_solution[fiber].measured_lines = lines
return image
class IdentifyArcEmissionLinesLowSN(IdentifyArcEmissionLines):
def __init__(self, runtime_context=None):
super(IdentifyArcEmissionLinesLowSN, self).__init__(runtime_context=runtime_context)
self.min_peak_snr = self.runtime_context.overlap_min_peak_snr
class FindGlobalScale(WavelengthStage):
"""
Stage 6/8 for the wavelength solution
"""
def __init__(self, runtime_context=None):
super(FindGlobalScale, self).__init__(runtime_context=runtime_context)
self.step = getattr(self.runtime_context, 'global_scale_spacing', 10)
def do_stage_fiber(self, image, fiber):
scale_guess = estimate_global_scale(detector_range=self.runtime_context.approx_detector_range_angstroms,
n=self.runtime_context.approx_num_orders,
m0=image.wavelength_solution[fiber].m0)
scale = self._find_scale(image.wavelength_solution[fiber], scale_guess, self.runtime_context.global_scale_range,
step=self.step)
image.wavelength_solution[fiber].update_model(self.runtime_context.intermediate_wavelength_model)
image.wavelength_solution[fiber].apply_scale(scale)
self.logger.info('The scale guess was {0:.6e} and the search yielded {1:.6e}. fiber={2}'
''.format(scale_guess, scale, str(fiber)))
if not np.isclose(scale, scale_guess, rtol=2):
self.logger.error('Global scale is more than a factor of two away from initial guess, '
'an error in the wavelength solution for this fiber is likely. fiber={0}'.format(str(fiber)))
return image
@staticmethod
def _find_scale(wcs, scale_guess, rrange=(0.1, 5), step=10):
unscaled_wavelengths = wcs.wavelength_normed_input(**restrict(wcs.measured_lines, *wcs.overlap_range))
args = (unscaled_wavelengths, np.sort(wcs.reference_lines))
scale = optimize.minimize(fun=FindGlobalScale._chi_squared_safe, x0=scale_guess, args=args,
method=brute_local_min, options={'step': step, 'rrange': rrange, 'filtw': 501,
'finish': 'Nelder-Mead'}).x[0]
return scale
@staticmethod
def _chi_squared_safe(scales, unscaled_wavelengths, reference_wavelengths, mem_limit=1E8):
chi2 = np.zeros_like(scales, dtype=np.float32)
step = max(int(len(scales) * len(unscaled_wavelengths)) // int(mem_limit * 8 / 32), 1) # bits / bit_limit
for i in range(step):
chi2[i::step] = FindGlobalScale._chi_squared(scales[i::step], unscaled_wavelengths, reference_wavelengths)
return chi2
@staticmethod
def _chi_squared(scales, unscaled_wavelengths, reference_wavelengths):
wavelengths = np.array(scales).reshape(-1, 1) * unscaled_wavelengths
residuals = calc_residuals(wavelengths.flatten(), reference_wavelengths).reshape(wavelengths.shape)
return np.sum(residuals ** 2, axis=1).flatten()
#return np.sum(np.sort(residuals**2, axis=1)[:, :nmax], axis=1).flatten()
class SolutionRefineInitial(WavelengthStage):
"""
Stage 7/8 for the wavelength solution
"""
def __init__(self, runtime_context=None):
super(SolutionRefineInitial, self).__init__(runtime_context=runtime_context)
self.kappa = getattr(runtime_context, 'initial_mad_clip', 6)
def do_stage_fiber(self, image, fiber):
image.wavelength_solution[fiber].update_model(new_model=self.runtime_context.intermediate_wavelength_model)
image.wavelength_solution[fiber], rsd = self.constrain_solution_over_detector(image.wavelength_solution[fiber],
self.kappa)
mad, std = median_absolute_deviation(rsd), np.std(rsd)
self.logger.info('median absolute deviation is {0} and the standard deviation is {1}.'
' fiber={2}'.format(mad, std, str(fiber)))
self.logger.info('{0} lines within 4.5 median absolute deviations and {1} lines within 4.5 standard deviations'
''.format(np.count_nonzero(np.isclose(rsd, 0, atol=4.5*mad)),
np.count_nonzero(np.isclose(rsd, 0, atol=4.5*std))))
return image
@staticmethod
def constrain_solution_over_detector(wcs, kappa=6):
"""
:param wcs: WavelengthSolution
:param kappa: outliers with residuals exceeding kappa m.a.d. from 0 will not be used to constrain the solution.
:return: (WavelengthSolution, array)
wavelength solution, residuals. Each entry of residuals is the difference in
wavelength between a measured line and its corresponding closest reference line.
"""
reference_lines = np.sort(wcs.reference_lines)
residuals = []
for order_range in SolutionRefineInitial._ranges_to_evaluate(*wcs.overlap_range, wcs.min_order, wcs.max_order):
wcs, residuals = refine_wcs(wcs, wcs.measured_lines, reference_lines,
SolutionRefineInitial._converged_when_max_iter,
SolutionRefineInitial._clip,
kwargs={'sigma': kappa,
'stdfunc': median_absolute_deviation,
'order_range': order_range},
max_iter=5)
return wcs, residuals
@staticmethod
def _converged_when_max_iter(*args, **kwargs):
return False
@staticmethod
def _clip(wcs, lines, reference_lines, sigma=3, stdfunc=np.std, order_range=(), **kwargs):
lines = restrict(lines, *order_range)
residuals = calc_residuals(wcs.wavelength_normed_input(**lines), reference_lines)
lines = _sigma_clip(residuals, lines, sigma=sigma, stdfunc=stdfunc)
return lines
@staticmethod
def _ranges_to_evaluate(low, high, min_order, max_order):
return [(low - i, high + i) for i in range(max(low - min_order, max_order - high) + 1)]
def refine_wcs(wcs, measured_lines, reference_lines, converged, clip_fun, kwargs=None, max_iter=20):
"""
:param wcs: WavelengthSolution
:param reference_lines: array. Wavelengths of reference calibration lines.
:param measured_lines: dict: {'normed_pixel': array, 'normed_order': array}. Coordinates of measured lines.
:param kwargs: keyword arguments to feed to clip_fun and converged.
:param max_iter: the max number of iterations allowed to reach convergence.
:param converged: function which accepts wcs, residuals, last_residuals, measured_lines
and **kwargs and returns True or False. If True, the solve loop will stop.
:param clip_fun: function which accepts residuals, measured_lines, reference_lines and **kwargs and returns
a dict in the same format as measured_lines.
:return: (WavelengthSolution, array)
wavelength solution, residuals. Each entry of residuals is the difference in
wavelength between a measured line and its corresponding closest reference line.
"""
if kwargs is None:
kwargs = {}
residuals, last_residuals = [], np.inf
# note we could evaluate the find_nearest function out here instead of in the loop.
for iteration in range(max_iter):
clipped_lines = clip_fun(wcs, measured_lines, reference_lines, **kwargs)
closest_ref_lines = find_nearest(wcs.wavelength_normed_input(**clipped_lines), array_b=reference_lines)
wcs.model_coefficients = wcs.solve(clipped_lines, closest_ref_lines, clipped_lines.get('weight', None))
residuals = calc_residuals(wcs.wavelength_normed_input(**measured_lines), reference_lines)
if converged(residuals, last_residuals, **kwargs):
break
last_residuals = np.copy(residuals)
return wcs, residuals
class SolutionRefineFinal(WavelengthStage):
"""
Stage 8/8 for the wavelength solution
"""
def __init__(self, runtime_context=None):
super(SolutionRefineFinal, self).__init__(runtime_context=runtime_context)
self.kappa = getattr(runtime_context, 'final_mad_clip', 4)
def do_stage_fiber(self, image, fiber):
image.wavelength_solution[fiber], rsd = self._refine(image.wavelength_solution[fiber],
self.runtime_context.final_wavelength_model, self.kappa)
mad, std = median_absolute_deviation(rsd), np.std(rsd)
self.logger.info('median absolute deviation is {0} and the standard deviation is {1}.'
' fiber={2}'.format(mad, std, str(fiber)))
self.logger.info('{0} lines within 4.5 median absolute deviations and {1} lines within 4.5 standard deviations'
''.format(np.count_nonzero(np.isclose(rsd, 0, atol=4.5*mad)),
np.count_nonzero(np.isclose(rsd, 0, atol=4.5*std))))
return image
@staticmethod
def _refine(wavelength_solution, final_model, kappa=4):
"""
:param wavelength_solution: WavelengthSolution
:param final_model: dict. The model which describes the form of the mapping from pixel and order
to wavelength. See __init__ of WavelengthSolution.
:param kappa: outliers with residuals exceeding kappa m.a.d. from 0 will not be used to constrain the solution.
:return: (WavelengthSolution, array)
wavelength solution, residuals. Each entry of residuals is the difference in
wavelength between a measured line and its corresponding closest reference line.
"""
reference_lines = np.sort(wavelength_solution.reference_lines)
measured_lines = wavelength_solution.measured_lines
residuals = []
for x_degree in final_model:
for i_degree in final_model[x_degree]:
if wavelength_solution.model.is_missing_polynomial_term(x_degree, i_degree):
# This will only refine if the model is missing the term,
# which means this stage does nothing if you want to rerun a model.
new_model = copy.deepcopy(wavelength_solution.model)
new_model.add_polynomial_term(x_degree, i_degree)
wavelength_solution.update_model(new_model=new_model)
wavelength_solution, residuals = refine_wcs(wavelength_solution,
measured_lines, reference_lines,
SolutionRefineFinal._converged,
SolutionRefineFinal._clip,
max_iter=20,
kwargs={'sigma': kappa,
'stdfunc': median_absolute_deviation})
return wavelength_solution, residuals
@staticmethod
def _converged(residuals, last_residuals, **kwargs):
if np.allclose(residuals, last_residuals, atol=1E-3):
return True
return False
@staticmethod
def _clip(wcs, lines, reference_lines, sigma=3, stdfunc=np.std, **kwargs):
residuals = calc_residuals(wcs.wavelength_normed_input(**lines), reference_lines)
lines = _sigma_clip(residuals, lines, sigma=sigma, stdfunc=stdfunc)
return lines
class SolutionRefineOnce(SolutionRefineFinal):
"""
Single iteration of refining the wavelength solution. Useful if more lines have been added
to the line list after final refine.
"""
def __init__(self, runtime_context=None):
super(SolutionRefineOnce, self).__init__(runtime_context=runtime_context)
def do_stage_fiber(self, image, fiber):
image.wavelength_solution[fiber], rsd = refine_wcs(image.wavelength_solution[fiber],
image.wavelength_solution[fiber].measured_lines,
image.wavelength_solution[fiber].reference_lines,
self._converged, self._clip, max_iter=20,
kwargs={'sigma': 4,
'stdfunc': median_absolute_deviation})
mad, std = median_absolute_deviation(rsd), np.std(rsd)
self.logger.info('median absolute deviation is {0} and the standard deviation is {1}.'
' fiber={2}'.format(mad, std, str(fiber)))
self.logger.info('{0} lines within 4.5 median absolute deviations and {1} lines within 4.5 standard deviations'
''.format(np.count_nonzero(np.isclose(rsd, 0, atol=4.5*mad)),
np.count_nonzero(np.isclose(rsd, 0, atol=4.5*std))))
return image
class ApplyToSpectrum(WavelengthStage):
"""
Stage 8/9 for the wavelength solution
"""
def __init__(self, runtime_context=None):
super(ApplyToSpectrum, self).__init__(runtime_context=runtime_context)
def do_stage_fiber(self, image, fiber):
spectrum = image.data_tables[self.runtime_context.main_spectrum_name]
fiber_mask = np.where(spectrum['fiber'] == fiber)
wcs = image.wavelength_solution[fiber]
pixel_coordinates, order_coordinates = pixel_order_as_array(spectrum[fiber_mask])
spectrum['wavelength'][fiber_mask] = wcs(pixel=pixel_coordinates, order=order_coordinates)
spectrum.meta['header'] = {'MODEL': str(wcs.model), 'MCOEFFS': str(list(wcs.model_coefficients))}
image.data_tables[self.runtime_context.main_spectrum_name] = spectrum
return image
class TabulateArcEmissionLines(WavelengthStage):
"""
Optional stage which will create a table of all identified emission lines and their matches
in the reference list. This is saved when the image reduction is completed, under the extension LINES.
"""
def __init__(self, runtime_context=None):
super(TabulateArcEmissionLines, self).__init__(runtime_context=runtime_context)
def do_stage(self, image):
# TODO if wavelength solution fails, then the emission lines are not saved. Make it so that they are
# always saved
valid_fibers = self._valid_fibers(image)
if len(valid_fibers) > 0:
lines = self._format_lines(image, valid_fibers)
for fiber in valid_fibers:
wcs = image.wavelength_solution[fiber]
fib = np.where(lines['fiber'] == fiber)
lines['wavelength'][fib] = wcs(lines['pixel'][fib].data, lines['order'][fib].data)
lines['reference_wavelength'][fib] = find_nearest(lines['wavelength'][fib], wcs.reference_lines)
image.data_tables[self.runtime_context.emission_lines_table_name] = Table(lines)
return image
@staticmethod
def _format_lines(image, fibers):
all_lines = []
for fiber in fibers:
lines = Table(image.wavelength_solution[fiber].measured_lines)
lines.add_column(Column(fiber * np.ones_like(lines['pixel']), dtype=int), name='fiber')
lines.add_column(Column(np.zeros_like(lines['pixel'], dtype=np.float64), unit='angstrom'), name='wavelength')
lines.add_column(Column(np.zeros_like(lines['pixel'], dtype=np.float64), unit='angstrom'), name='reference_wavelength')
lines['reference_wavelength'].description = 'wavelength of the nearest match in the reference line list'
lines['wavelength'].description = 'wavelength of measured line from the calibration frame'
all_lines.append(lines)
return vstack(all_lines)
class IdentifyPrincipleOrderNumber(WavelengthStage):
"""
Stage for identifying the principle order number m0. This should be run between IdentifyArcEmissionLines and
SolveFromOverlaps. This stage is meant to be run once on a batch of stages to find the principle order
number. The principle order number should then be fixed in the config.ini file for your instrument.
"""
def __init__(self, runtime_context=None):
super(IdentifyPrincipleOrderNumber, self).__init__(runtime_context=runtime_context)
self.STAGES_TODO = [SolveFromOverlaps, FindGlobalScale, SolutionRefineInitial, SolutionRefineFinal]
def do_stage_fiber(self, image, fiber):
self.logger.info('Looking for the principle order number between {0} and {1}.'
' fiber={2}'.format(*self.runtime_context.m0_range, str(fiber)))
self.logger.disabled = True
merits, m0_values = self.merit_per_m0(image, fiber, self.runtime_context.m0_range)
self.logger.disabled = False
best_m0, merit = m0_values[np.argmin(merits)], np.min(merits)
if not merit < 1/10 * np.median(merits):
self.logger.warning('A definitive principle order number was not found. Aborting wavelength solution.'
' fiber={0}'.format(str(fiber)))
image.wavelength_solution[fiber] = None
else:
image.wavelength_solution[fiber].m0 = best_m0
self.logger.info('The best principle order number is {0}. fiber={1}'.format(best_m0, str(fiber)))
return image
def merit_per_m0(self, image, fiber, m0_range):
m0_values = np.arange(*m0_range)
merit = []
for m0 in m0_values:
image.wavelength_solution[fiber].m0 = m0
for STAGE in self.STAGES_TODO:
image = STAGE(self.runtime_context).do_stage_fiber(image, fiber)
wcs = image.wavelength_solution[fiber]
if wcs is not None:
merit.append(median_absolute_deviation(calc_residuals(wcs.wavelength_normed_input(**wcs.measured_lines),
wcs.reference_lines)))
return np.array(merit), m0_values
def find_feature_wavelengths(measured_lines, reference_lines, m0_range: tuple, max_pixel, min_pixel=0,
wavelength_models: dict = None, overlap_settings: dict = None, scale_settings: dict = None,
stages_todo: list = None):
"""
A convenience function for any users who want to be able to wavelength calibrate from a list of
spectral feature (measured_lines) pixel and order positions and a reference line list (reference_lines).
This is not used anywhere in xwavecal, nor the included pipeline, except in
xwavecal.tests.test_wavelength.
The measured_lines should be for one fiber only. This function should be looped over fibers to calibrate
many fibers.
This function was designed to be used in Banzai-NRES. It returns the wavelengths of the spectral features
input in measured_lines.
:param measured_lines: dict.
dictionary of ndarrays of pixel and order positions of measured spectral features (e.g. emission lines).
Example:
measured_lines = {'pixel': np.array([1, 2.5, 6.1]), 'order': np.array([1, 1, 2])}
If the principle order number is 52, then these measured_lines represents 3 spectral features,
with (pixel, diffraction order) coordinates of (1, 53), (2.5, 53), (6.1, 54).
respectively. The wavelength solution will calibrate each fiber separately.
:param reference_lines: list or ndarray. List of reference wavelengths in Angstroms
for what features you expect are in measured_lines.
Example:
reference_lines = [5000, 5001, 5002, 5003.1, 6001.2]
:param m0_range: tuple.
The range of integers possible for the principle order number: (low, high). low is an inclusive bound
and high is exclusive.
The principle order number gives the real diffraction order index of the i=0 labelled diffraction order.
See the xwavecal README or Brandt et al. (2019) for more.
:param max_pixel: int. Maximum pixel coordinate on the detector. Used for finding the overlaps. E.g. 4096
:param min_pixel: int. Minimum pixel coordinate on the detector. Used for finding the overlaps. E.g. 0
:param wavelength_models: dict.
Dictionary of models. See the xwavecal README, or wavelength_models below.
:param overlap_settings: dict.
Dictionary of settings for the overlap fitting algorithms.
See the xwavecal README, or overlap_settings below.
:param scale_settings: dict.
Dictionary of settings for the global scale fitting algorithms.
See the xwavecal README, or scale_settings below.
:param stages_todo: list.
list of xwavecal.wavelength.WavelengthSolution stages to run on the input list of measured lines.
If building a new wavelength solution from scratch, then leave the default stages_todo.
:return: measured_line_wavelengths: ndarray. if return_all==False.
measured_line_wavelengths are the wavelengths of the measured_lines under the calibrated model.
measured_line_wavelengths is an array with the same length as measured_lines['pixel']
and measured_lines['order'].
Notes
-----
See xwavecal.tests.test_wavelength.TestOnSyntheticData.test_performance for a use example of this function.
the test can be run from an ipython instance and can provide insight as to how to use this wrapper function.
"""
if stages_todo is None:
stages_todo = [FitOverlaps, IdentifyPrincipleOrderNumber, SolveFromOverlaps,
FindGlobalScale, SolutionRefineInitial, SolutionRefineFinal]
if wavelength_models is None:
wavelength_models = {'initial_wavelength_model': {1: [0, 1, 2], 2: [0, 1, 2]},
'intermediate_wavelength_model': {0: [0, 1, 2], 1: [0, 1, 2], 2: [0, 1, 2]},
'final_wavelength_model': {0: [0, 1, 2, 3, 4, 5],
1: [0, 1, 2, 3, 4, 5],
2: [0, 1, 2, 3, 4, 5],
3: [0, 1, 2, 3, 4, 5],
4: [0]}}
if overlap_settings is None:
# settings relevant to fitting the overlaps.
overlap_settings = {'min_num_overlaps': 5, 'overlap_linear_scale_range': (0.5, 2),
'flux_tol': 0.2, 'max_red_overlap': 1000, 'max_blue_overlap': 2000}
if scale_settings is None:
# settings relevant to finding the global scale.
scale_settings = {'global_scale_range': (0.8, 1.2), 'approx_detector_range_angstroms': 5000,
'approx_num_orders': 67}
# instantiate the context which every WavelengthStage will use.
context = type('context', (), {**wavelength_models, **overlap_settings, **scale_settings,
'm0_range': m0_range, 'main_spectrum_name':
'spectrum', 'overlap_table_name': 'overlap'})
# make dummy spectrum so that FitOverlaps will run.
# TODO: the spectrum is only used in fit_overlaps to get the reference id's etc. It in principle is not
# needed at all. Fix this deeper in the code so that we don't have to make a fake spectrum here.
pixel = np.arange(min_pixel, max_pixel + 1)
orders = np.arange(np.min(measured_lines['order']), np.max(measured_lines['order'])).astype(int)
spectrum_shape = (len(orders), len(pixel))
spectrum = Table({'ref_id': orders, 'fiber': np.ones_like(orders),
'flux': np.zeros(spectrum_shape), 'pixel': pixel * np.ones(spectrum_shape)})
# Initialize the WavelengthSolution
wavelength_solution = WavelengthSolution(model=wavelength_models.get('initial_wavelength_model'),
min_order=np.min(orders), max_order=np.max(orders),
min_pixel=np.min(pixel), max_pixel=np.max(pixel),
measured_lines=measured_lines,
reference_lines=np.sort(reference_lines))
# make a container (e.g. the Image object) for the spectrum and wavelength solution
image = Image(header={'fiber_state': 'none&thar&none'},
wavelength_solution={1: wavelength_solution},
data_tables={context.main_spectrum_name: spectrum})
# run the wavelength calibration stages
for stage in stages_todo:
image = stage(context).do_stage(image)
measured_lines['wavelength'] = np.zeros_like(measured_lines['pixel'], dtype=float)
wavelengths = None
if image.wavelength_solution[1] is not None:
wavelengths = image.wavelength_solution[1](measured_lines['pixel'], measured_lines['order'])
measured_lines['wavelength'] = wavelengths
return measured_lines['wavelength']
|
[
"xwavecal.utils.wavelength_utils.pixel_order_as_array",
"numpy.sum",
"numpy.allclose",
"xwavecal.utils.misc_utils.minmax",
"xwavecal.utils.wavelength_utils._sigma_clip",
"numpy.argmin",
"numpy.ones",
"numpy.isclose",
"numpy.arange",
"scipy.interpolate.interp1d",
"xwavecal.utils.wavelength_utils.restrict",
"scipy.optimize.minimize",
"numpy.zeros_like",
"numpy.copy",
"numpy.std",
"numpy.isfinite",
"numpy.genfromtxt",
"numpy.max",
"numpy.linspace",
"numpy.add",
"xwavecal.utils.overlap_utils.flag_outlier_overlaps",
"xwavecal.utils.overlap_utils.blank_overlap_table",
"xwavecal.images.Image",
"copy.deepcopy",
"numpy.ones_like",
"xwavecal.utils.misc_utils.find_nearest",
"numpy.median",
"xwavecal.utils.fiber_utils.lit_wavecal_fibers",
"numpy.polynomial.legendre.legval2d",
"numpy.sort",
"numpy.min",
"astropy.stats.median_absolute_deviation",
"numpy.dot",
"xwavecal.utils.wavelength_utils.estimate_global_scale",
"xwavecal.utils.wavelength_utils.identify_lines",
"astropy.table.Table",
"numpy.linalg.lstsq",
"numpy.count_nonzero",
"numpy.zeros",
"xwavecal.utils.wavelength_utils.normalize_coordinates",
"astropy.table.vstack",
"numpy.where",
"xwavecal.utils.wavelength_utils.Model",
"numpy.array",
"numpy.column_stack",
"logging.getLogger"
] |
[((806, 833), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (823, 833), False, 'import logging\n'), ((41291, 41326), 'numpy.arange', 'np.arange', (['min_pixel', '(max_pixel + 1)'], {}), '(min_pixel, max_pixel + 1)\n', (41300, 41326), True, 'import numpy as np\n'), ((42242, 42393), 'xwavecal.images.Image', 'Image', ([], {'header': "{'fiber_state': 'none&thar&none'}", 'wavelength_solution': '{(1): wavelength_solution}', 'data_tables': '{context.main_spectrum_name: spectrum}'}), "(header={'fiber_state': 'none&thar&none'}, wavelength_solution={(1):\n wavelength_solution}, data_tables={context.main_spectrum_name: spectrum})\n", (42247, 42393), False, 'from xwavecal.images import Image\n'), ((42580, 42631), 'numpy.zeros_like', 'np.zeros_like', (["measured_lines['pixel']"], {'dtype': 'float'}), "(measured_lines['pixel'], dtype=float)\n", (42593, 42631), True, 'import numpy as np\n'), ((1698, 1710), 'xwavecal.utils.wavelength_utils.Model', 'Model', (['model'], {}), '(model)\n', (1703, 1710), False, 'from xwavecal.utils.wavelength_utils import identify_lines, calc_residuals, restrict, Model, _sigma_clip\n'), ((2932, 3017), 'xwavecal.utils.wavelength_utils.normalize_coordinates', 'normalize_coordinates', (['pixel'], {'max_value': 'self.max_pixel', 'min_value': 'self.min_pixel'}), '(pixel, max_value=self.max_pixel, min_value=self.min_pixel\n )\n', (2953, 3017), False, 'from xwavecal.utils.wavelength_utils import estimate_global_scale, normalize_coordinates, pixel_order_as_array\n'), ((3036, 3121), 'xwavecal.utils.wavelength_utils.normalize_coordinates', 'normalize_coordinates', (['order'], {'max_value': 'self.max_order', 'min_value': 'self.min_order'}), '(order, max_value=self.max_order, min_value=self.min_order\n )\n', (3057, 3121), False, 'from xwavecal.utils.wavelength_utils import estimate_global_scale, normalize_coordinates, pixel_order_as_array\n'), ((3859, 3929), 'xwavecal.utils.wavelength_utils.normalize_coordinates', 'normalize_coordinates', (["coords['pixel']", 'self.max_pixel', 'self.min_pixel'], {}), "(coords['pixel'], self.max_pixel, self.min_pixel)\n", (3880, 3929), False, 'from xwavecal.utils.wavelength_utils import estimate_global_scale, normalize_coordinates, pixel_order_as_array\n'), ((3963, 4033), 'xwavecal.utils.wavelength_utils.normalize_coordinates', 'normalize_coordinates', (["coords['order']", 'self.max_order', 'self.min_order'], {}), "(coords['order'], self.max_order, self.min_order)\n", (3984, 4033), False, 'from xwavecal.utils.wavelength_utils import estimate_global_scale, normalize_coordinates, pixel_order_as_array\n'), ((4120, 4136), 'xwavecal.utils.wavelength_utils.Model', 'Model', (['new_model'], {}), '(new_model)\n', (4125, 4136), False, 'from xwavecal.utils.wavelength_utils import identify_lines, calc_residuals, restrict, Model, _sigma_clip\n'), ((7427, 7451), 'numpy.column_stack', 'np.column_stack', (['columns'], {}), '(columns)\n', (7442, 7451), True, 'import numpy as np\n'), ((10197, 10222), 'xwavecal.utils.fiber_utils.lit_wavecal_fibers', 'lit_wavecal_fibers', (['image'], {}), '(image)\n', (10215, 10222), False, 'from xwavecal.utils.fiber_utils import lit_wavecal_fibers\n'), ((10915, 10940), 'xwavecal.utils.fiber_utils.lit_wavecal_fibers', 'lit_wavecal_fibers', (['image'], {}), '(image)\n', (10933, 10940), False, 'from xwavecal.utils.fiber_utils import lit_wavecal_fibers\n'), ((12442, 12472), 'astropy.table.Table', 'Table', (['image.data_tables[name]'], {}), '(image.data_tables[name])\n', (12447, 12472), False, 'from astropy.table import Column, Table, vstack\n'), ((13551, 13582), 'xwavecal.utils.overlap_utils.flag_outlier_overlaps', 'flag_outlier_overlaps', (['overlaps'], {}), '(overlaps)\n', (13572, 13582), False, 'from xwavecal.utils.overlap_utils import flag_bad_overlaps, fit_overlaps, blank_overlap_table, flag_outlier_overlaps\n'), ((13773, 13851), 'astropy.table.vstack', 'vstack', (['[overlaps, image.data_tables[self.runtime_context.overlap_table_name]]'], {}), '([overlaps, image.data_tables[self.runtime_context.overlap_table_name]])\n', (13779, 13851), False, 'from astropy.table import Column, Table, vstack\n'), ((14677, 14729), 'xwavecal.utils.wavelength_utils.Model', 'Model', (['self.runtime_context.initial_wavelength_model'], {}), '(self.runtime_context.initial_wavelength_model)\n', (14682, 14729), False, 'from xwavecal.utils.wavelength_utils import identify_lines, calc_residuals, restrict, Model, _sigma_clip\n'), ((15055, 15111), 'xwavecal.utils.misc_utils.minmax', 'minmax', (["[overlaps['ref_id'], overlaps['matched_ref_id']]"], {}), "([overlaps['ref_id'], overlaps['matched_ref_id']])\n", (15061, 15111), False, 'from xwavecal.utils.misc_utils import brute_local_min, find_nearest, minmax\n'), ((15913, 16051), 'xwavecal.utils.wavelength_utils.identify_lines', 'identify_lines', ([], {'spectrum': 'single_fiber_spectrum', 'stderr': "single_fiber_spectrum['stderr']", 'min_snr': 'self.min_peak_snr', 'order_key': '"""ref_id"""'}), "(spectrum=single_fiber_spectrum, stderr=single_fiber_spectrum\n ['stderr'], min_snr=self.min_peak_snr, order_key='ref_id')\n", (15927, 16051), False, 'from xwavecal.utils.wavelength_utils import identify_lines, calc_residuals, restrict, Model, _sigma_clip\n'), ((18210, 18392), 'xwavecal.utils.wavelength_utils.estimate_global_scale', 'estimate_global_scale', ([], {'detector_range': 'self.runtime_context.approx_detector_range_angstroms', 'n': 'self.runtime_context.approx_num_orders', 'm0': 'image.wavelength_solution[fiber].m0'}), '(detector_range=self.runtime_context.\n approx_detector_range_angstroms, n=self.runtime_context.\n approx_num_orders, m0=image.wavelength_solution[fiber].m0)\n', (18231, 18392), False, 'from xwavecal.utils.wavelength_utils import estimate_global_scale, normalize_coordinates, pixel_order_as_array\n'), ((19986, 20025), 'numpy.zeros_like', 'np.zeros_like', (['scales'], {'dtype': 'np.float32'}), '(scales, dtype=np.float32)\n', (19999, 20025), True, 'import numpy as np\n'), ((22447, 22475), 'numpy.sort', 'np.sort', (['wcs.reference_lines'], {}), '(wcs.reference_lines)\n', (22454, 22475), True, 'import numpy as np\n'), ((23388, 23417), 'xwavecal.utils.wavelength_utils.restrict', 'restrict', (['lines', '*order_range'], {}), '(lines, *order_range)\n', (23396, 23417), False, 'from xwavecal.utils.wavelength_utils import identify_lines, calc_residuals, restrict, Model, _sigma_clip\n'), ((23524, 23583), 'xwavecal.utils.wavelength_utils._sigma_clip', '_sigma_clip', (['residuals', 'lines'], {'sigma': 'sigma', 'stdfunc': 'stdfunc'}), '(residuals, lines, sigma=sigma, stdfunc=stdfunc)\n', (23535, 23583), False, 'from xwavecal.utils.wavelength_utils import identify_lines, calc_residuals, restrict, Model, _sigma_clip\n'), ((25558, 25576), 'numpy.copy', 'np.copy', (['residuals'], {}), '(residuals)\n', (25565, 25576), True, 'import numpy as np\n'), ((27400, 27444), 'numpy.sort', 'np.sort', (['wavelength_solution.reference_lines'], {}), '(wavelength_solution.reference_lines)\n', (27407, 27444), True, 'import numpy as np\n'), ((28871, 28921), 'numpy.allclose', 'np.allclose', (['residuals', 'last_residuals'], {'atol': '(0.001)'}), '(residuals, last_residuals, atol=0.001)\n', (28882, 28921), True, 'import numpy as np\n'), ((29171, 29230), 'xwavecal.utils.wavelength_utils._sigma_clip', '_sigma_clip', (['residuals', 'lines'], {'sigma': 'sigma', 'stdfunc': 'stdfunc'}), '(residuals, lines, sigma=sigma, stdfunc=stdfunc)\n', (29182, 29230), False, 'from xwavecal.utils.wavelength_utils import identify_lines, calc_residuals, restrict, Model, _sigma_clip\n'), ((31119, 31155), 'numpy.where', 'np.where', (["(spectrum['fiber'] == fiber)"], {}), "(spectrum['fiber'] == fiber)\n", (31127, 31155), True, 'import numpy as np\n'), ((31250, 31292), 'xwavecal.utils.wavelength_utils.pixel_order_as_array', 'pixel_order_as_array', (['spectrum[fiber_mask]'], {}), '(spectrum[fiber_mask])\n', (31270, 31292), False, 'from xwavecal.utils.wavelength_utils import estimate_global_scale, normalize_coordinates, pixel_order_as_array\n'), ((33595, 33612), 'astropy.table.vstack', 'vstack', (['all_lines'], {}), '(all_lines)\n', (33601, 33612), False, 'from astropy.table import Column, Table, vstack\n'), ((35263, 35283), 'numpy.arange', 'np.arange', (['*m0_range'], {}), '(*m0_range)\n', (35272, 35283), True, 'import numpy as np\n'), ((2324, 2418), 'xwavecal.utils.wavelength_utils.normalize_coordinates', 'normalize_coordinates', (["lines['pixel']"], {'max_value': 'self.max_pixel', 'min_value': 'self.min_pixel'}), "(lines['pixel'], max_value=self.max_pixel, min_value=\n self.min_pixel)\n", (2345, 2418), False, 'from xwavecal.utils.wavelength_utils import estimate_global_scale, normalize_coordinates, pixel_order_as_array\n'), ((2450, 2544), 'xwavecal.utils.wavelength_utils.normalize_coordinates', 'normalize_coordinates', (["lines['order']"], {'max_value': 'self.max_order', 'min_value': 'self.min_order'}), "(lines['order'], max_value=self.max_order, min_value=\n self.min_order)\n", (2471, 2544), False, 'from xwavecal.utils.wavelength_utils import estimate_global_scale, normalize_coordinates, pixel_order_as_array\n'), ((3625, 3672), 'numpy.linspace', 'np.linspace', (['self.min_pixel', 'self.max_pixel', '(30)'], {}), '(self.min_pixel, self.max_pixel, 30)\n', (3636, 3672), True, 'import numpy as np\n'), ((3709, 3754), 'numpy.arange', 'np.arange', (['self.min_order', '(self.max_order + 1)'], {}), '(self.min_order, self.max_order + 1)\n', (3718, 3754), True, 'import numpy as np\n'), ((4530, 4543), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (4538, 4543), True, 'import numpy as np\n'), ((5785, 5818), 'numpy.linalg.lstsq', 'np.linalg.lstsq', (['A', 'c'], {'rcond': 'None'}), '(A, c, rcond=None)\n', (5800, 5818), True, 'import numpy as np\n'), ((6571, 6632), 'xwavecal.utils.wavelength_utils.normalize_coordinates', 'normalize_coordinates', (['pixels', 'self.max_pixel', 'self.min_pixel'], {}), '(pixels, self.max_pixel, self.min_pixel)\n', (6592, 6632), False, 'from xwavecal.utils.wavelength_utils import estimate_global_scale, normalize_coordinates, pixel_order_as_array\n'), ((6690, 6751), 'xwavecal.utils.wavelength_utils.normalize_coordinates', 'normalize_coordinates', (['orders', 'self.max_order', 'self.min_order'], {}), '(orders, self.max_order, self.min_order)\n', (6711, 6751), False, 'from xwavecal.utils.wavelength_utils import estimate_global_scale, normalize_coordinates, pixel_order_as_array\n'), ((7029, 7073), 'numpy.ones_like', 'np.ones_like', (['normed_pixel'], {'dtype': 'np.float64'}), '(normed_pixel, dtype=np.float64)\n', (7041, 7073), True, 'import numpy as np\n'), ((12236, 12293), 'xwavecal.utils.overlap_utils.blank_overlap_table', 'blank_overlap_table', (['self.runtime_context.max_red_overlap'], {}), '(self.runtime_context.max_red_overlap)\n', (12255, 12293), False, 'from xwavecal.utils.overlap_utils import flag_bad_overlaps, fit_overlaps, blank_overlap_table, flag_outlier_overlaps\n'), ((13924, 13958), 'numpy.count_nonzero', 'np.count_nonzero', (["overlaps['good']"], {}), "(overlaps['good'])\n", (13940, 13958), True, 'import numpy as np\n'), ((14812, 14834), 'xwavecal.utils.overlap_utils.blank_overlap_table', 'blank_overlap_table', (['(1)'], {}), '(1)\n', (14831, 14834), False, 'from xwavecal.utils.overlap_utils import flag_bad_overlaps, fit_overlaps, blank_overlap_table, flag_outlier_overlaps\n'), ((17125, 17166), 'numpy.zeros_like', 'np.zeros_like', (["lines['flux']"], {'dtype': 'float'}), "(lines['flux'], dtype=float)\n", (17138, 17166), True, 'import numpy as np\n'), ((18982, 19020), 'numpy.isclose', 'np.isclose', (['scale', 'scale_guess'], {'rtol': '(2)'}), '(scale, scale_guess, rtol=2)\n', (18992, 19020), True, 'import numpy as np\n'), ((19495, 19523), 'numpy.sort', 'np.sort', (['wcs.reference_lines'], {}), '(wcs.reference_lines)\n', (19502, 19523), True, 'import numpy as np\n'), ((21432, 21462), 'astropy.stats.median_absolute_deviation', 'median_absolute_deviation', (['rsd'], {}), '(rsd)\n', (21457, 21462), False, 'from astropy.stats import median_absolute_deviation\n'), ((21464, 21475), 'numpy.std', 'np.std', (['rsd'], {}), '(rsd)\n', (21470, 21475), True, 'import numpy as np\n'), ((26181, 26211), 'astropy.stats.median_absolute_deviation', 'median_absolute_deviation', (['rsd'], {}), '(rsd)\n', (26206, 26211), False, 'from astropy.stats import median_absolute_deviation\n'), ((26213, 26224), 'numpy.std', 'np.std', (['rsd'], {}), '(rsd)\n', (26219, 26224), True, 'import numpy as np\n'), ((30242, 30272), 'astropy.stats.median_absolute_deviation', 'median_absolute_deviation', (['rsd'], {}), '(rsd)\n', (30267, 30272), False, 'from astropy.stats import median_absolute_deviation\n'), ((30274, 30285), 'numpy.std', 'np.std', (['rsd'], {}), '(rsd)\n', (30280, 30285), True, 'import numpy as np\n'), ((32752, 32764), 'astropy.table.Table', 'Table', (['lines'], {}), '(lines)\n', (32757, 32764), False, 'from astropy.table import Column, Table, vstack\n'), ((32915, 32969), 'astropy.table.Table', 'Table', (['image.wavelength_solution[fiber].measured_lines'], {}), '(image.wavelength_solution[fiber].measured_lines)\n', (32920, 32969), False, 'from astropy.table import Column, Table, vstack\n'), ((34695, 34709), 'numpy.min', 'np.min', (['merits'], {}), '(merits)\n', (34701, 34709), True, 'import numpy as np\n'), ((35813, 35828), 'numpy.array', 'np.array', (['merit'], {}), '(merit)\n', (35821, 35828), True, 'import numpy as np\n'), ((41524, 41544), 'numpy.ones_like', 'np.ones_like', (['orders'], {}), '(orders)\n', (41536, 41544), True, 'import numpy as np\n'), ((41576, 41600), 'numpy.zeros', 'np.zeros', (['spectrum_shape'], {}), '(spectrum_shape)\n', (41584, 41600), True, 'import numpy as np\n'), ((41842, 41856), 'numpy.min', 'np.min', (['orders'], {}), '(orders)\n', (41848, 41856), True, 'import numpy as np\n'), ((41868, 41882), 'numpy.max', 'np.max', (['orders'], {}), '(orders)\n', (41874, 41882), True, 'import numpy as np\n'), ((41939, 41952), 'numpy.min', 'np.min', (['pixel'], {}), '(pixel)\n', (41945, 41952), True, 'import numpy as np\n'), ((41964, 41977), 'numpy.max', 'np.max', (['pixel'], {}), '(pixel)\n', (41970, 41977), True, 'import numpy as np\n'), ((42116, 42140), 'numpy.sort', 'np.sort', (['reference_lines'], {}), '(reference_lines)\n', (42123, 42140), True, 'import numpy as np\n'), ((4664, 4692), 'numpy.array', 'np.array', (['wavelengths_to_fit'], {}), '(wavelengths_to_fit)\n', (4672, 4692), True, 'import numpy as np\n'), ((6482, 6501), 'numpy.isfinite', 'np.isfinite', (['pixels'], {}), '(pixels)\n', (6493, 6501), True, 'import numpy as np\n'), ((6511, 6530), 'numpy.isfinite', 'np.isfinite', (['pixels'], {}), '(pixels)\n', (6522, 6530), True, 'import numpy as np\n'), ((7215, 7253), 'numpy.zeros', 'np.zeros', (['(xpower + 1, orderpower + 1)'], {}), '((xpower + 1, orderpower + 1))\n', (7223, 7253), True, 'import numpy as np\n'), ((8788, 8813), 'xwavecal.utils.fiber_utils.lit_wavecal_fibers', 'lit_wavecal_fibers', (['image'], {}), '(image)\n', (8806, 8813), False, 'from xwavecal.utils.fiber_utils import lit_wavecal_fibers\n'), ((9735, 9774), 'numpy.max', 'np.max', (["single_fiber_spectrum['ref_id']"], {}), "(single_fiber_spectrum['ref_id'])\n", (9741, 9774), True, 'import numpy as np\n'), ((9848, 9887), 'numpy.min', 'np.min', (["single_fiber_spectrum['ref_id']"], {}), "(single_fiber_spectrum['ref_id'])\n", (9854, 9887), True, 'import numpy as np\n'), ((9961, 9999), 'numpy.max', 'np.max', (["single_fiber_spectrum['pixel']"], {}), "(single_fiber_spectrum['pixel'])\n", (9967, 9999), True, 'import numpy as np\n'), ((10073, 10111), 'numpy.min', 'np.min', (["single_fiber_spectrum['pixel']"], {}), "(single_fiber_spectrum['pixel'])\n", (10079, 10111), True, 'import numpy as np\n'), ((11376, 11401), 'xwavecal.utils.fiber_utils.lit_wavecal_fibers', 'lit_wavecal_fibers', (['image'], {}), '(image)\n', (11394, 11401), False, 'from xwavecal.utils.fiber_utils import lit_wavecal_fibers\n'), ((13483, 13517), 'numpy.count_nonzero', 'np.count_nonzero', (["overlaps['good']"], {}), "(overlaps['good'])\n", (13499, 13517), True, 'import numpy as np\n'), ((13654, 13688), 'numpy.count_nonzero', 'np.count_nonzero', (["overlaps['good']"], {}), "(overlaps['good'])\n", (13670, 13688), True, 'import numpy as np\n'), ((17224, 17327), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (["spec['pixel']", "spec['flux']"], {'kind': '"""nearest"""', 'bounds_error': '(False)', 'fill_value': '(0)'}), "(spec['pixel'], spec['flux'], kind='nearest',\n bounds_error=False, fill_value=0)\n", (17244, 17327), False, 'from scipy import interpolate\n'), ((17351, 17393), 'numpy.where', 'np.where', (["(lines['order'] == spec['ref_id'])"], {}), "(lines['order'] == spec['ref_id'])\n", (17359, 17393), True, 'import numpy as np\n'), ((19407, 19455), 'xwavecal.utils.wavelength_utils.restrict', 'restrict', (['wcs.measured_lines', '*wcs.overlap_range'], {}), '(wcs.measured_lines, *wcs.overlap_range)\n', (19415, 19455), False, 'from xwavecal.utils.wavelength_utils import identify_lines, calc_residuals, restrict, Model, _sigma_clip\n'), ((19541, 19737), 'scipy.optimize.minimize', 'optimize.minimize', ([], {'fun': 'FindGlobalScale._chi_squared_safe', 'x0': 'scale_guess', 'args': 'args', 'method': 'brute_local_min', 'options': "{'step': step, 'rrange': rrange, 'filtw': 501, 'finish': 'Nelder-Mead'}"}), "(fun=FindGlobalScale._chi_squared_safe, x0=scale_guess,\n args=args, method=brute_local_min, options={'step': step, 'rrange':\n rrange, 'filtw': 501, 'finish': 'Nelder-Mead'})\n", (19558, 19737), False, 'from scipy import optimize\n'), ((20604, 20634), 'numpy.sum', 'np.sum', (['(residuals ** 2)'], {'axis': '(1)'}), '(residuals ** 2, axis=1)\n', (20610, 20634), True, 'import numpy as np\n'), ((32425, 32458), 'numpy.where', 'np.where', (["(lines['fiber'] == fiber)"], {}), "(lines['fiber'] == fiber)\n", (32433, 32458), True, 'import numpy as np\n'), ((32611, 32670), 'xwavecal.utils.misc_utils.find_nearest', 'find_nearest', (["lines['wavelength'][fib]", 'wcs.reference_lines'], {}), "(lines['wavelength'][fib], wcs.reference_lines)\n", (32623, 32670), False, 'from xwavecal.utils.misc_utils import brute_local_min, find_nearest, minmax\n'), ((34675, 34692), 'numpy.argmin', 'np.argmin', (['merits'], {}), '(merits)\n', (34684, 34692), True, 'import numpy as np\n'), ((41350, 41381), 'numpy.min', 'np.min', (["measured_lines['order']"], {}), "(measured_lines['order'])\n", (41356, 41381), True, 'import numpy as np\n'), ((41383, 41414), 'numpy.max', 'np.max', (["measured_lines['order']"], {}), "(measured_lines['order'])\n", (41389, 41414), True, 'import numpy as np\n'), ((41619, 41642), 'numpy.ones', 'np.ones', (['spectrum_shape'], {}), '(spectrum_shape)\n', (41626, 41642), True, 'import numpy as np\n'), ((6348, 6386), 'numpy.ones_like', 'np.ones_like', (['overlaps[pixel_key].data'], {}), '(overlaps[pixel_key].data)\n', (6360, 6386), True, 'import numpy as np\n'), ((7655, 7700), 'numpy.zeros_like', 'np.zeros_like', (['normed_pixel'], {'dtype': 'np.float64'}), '(normed_pixel, dtype=np.float64)\n', (7668, 7700), True, 'import numpy as np\n'), ((7918, 7941), 'numpy.dot', 'np.dot', (['A', 'coefficients'], {}), '(A, coefficients)\n', (7924, 7941), True, 'import numpy as np\n'), ((11276, 11323), 'numpy.genfromtxt', 'np.genfromtxt', (['reference_list_path'], {'usecols': '[1]'}), '(reference_list_path, usecols=[1])\n', (11289, 11323), True, 'import numpy as np\n'), ((20426, 20442), 'numpy.array', 'np.array', (['scales'], {}), '(scales)\n', (20434, 20442), True, 'import numpy as np\n'), ((21801, 21835), 'numpy.isclose', 'np.isclose', (['rsd', '(0)'], {'atol': '(4.5 * mad)'}), '(rsd, 0, atol=4.5 * mad)\n', (21811, 21835), True, 'import numpy as np\n'), ((21883, 21917), 'numpy.isclose', 'np.isclose', (['rsd', '(0)'], {'atol': '(4.5 * std)'}), '(rsd, 0, atol=4.5 * std)\n', (21893, 21917), True, 'import numpy as np\n'), ((26550, 26584), 'numpy.isclose', 'np.isclose', (['rsd', '(0)'], {'atol': '(4.5 * mad)'}), '(rsd, 0, atol=4.5 * mad)\n', (26560, 26584), True, 'import numpy as np\n'), ((26632, 26666), 'numpy.isclose', 'np.isclose', (['rsd', '(0)'], {'atol': '(4.5 * std)'}), '(rsd, 0, atol=4.5 * std)\n', (26642, 26666), True, 'import numpy as np\n'), ((27908, 27948), 'copy.deepcopy', 'copy.deepcopy', (['wavelength_solution.model'], {}), '(wavelength_solution.model)\n', (27921, 27948), False, 'import copy\n'), ((30611, 30645), 'numpy.isclose', 'np.isclose', (['rsd', '(0)'], {'atol': '(4.5 * mad)'}), '(rsd, 0, atol=4.5 * mad)\n', (30621, 30645), True, 'import numpy as np\n'), ((30693, 30727), 'numpy.isclose', 'np.isclose', (['rsd', '(0)'], {'atol': '(4.5 * std)'}), '(rsd, 0, atol=4.5 * std)\n', (30703, 30727), True, 'import numpy as np\n'), ((33106, 33153), 'numpy.zeros_like', 'np.zeros_like', (["lines['pixel']"], {'dtype': 'np.float64'}), "(lines['pixel'], dtype=np.float64)\n", (33119, 33153), True, 'import numpy as np\n'), ((33228, 33275), 'numpy.zeros_like', 'np.zeros_like', (["lines['pixel']"], {'dtype': 'np.float64'}), "(lines['pixel'], dtype=np.float64)\n", (33241, 33275), True, 'import numpy as np\n'), ((34741, 34758), 'numpy.median', 'np.median', (['merits'], {}), '(merits)\n', (34750, 34758), True, 'import numpy as np\n'), ((6949, 6971), 'numpy.add', 'np.add', (['order', 'self.m0'], {}), '(order, self.m0)\n', (6955, 6971), True, 'import numpy as np\n'), ((7348, 7412), 'numpy.polynomial.legendre.legval2d', 'legendre.legval2d', (['normed_pixel', 'normed_order', 'coefficient_array'], {}), '(normed_pixel, normed_order, coefficient_array)\n', (7365, 7412), False, 'from numpy.polynomial import legendre\n'), ((33014, 33042), 'numpy.ones_like', 'np.ones_like', (["lines['pixel']"], {}), "(lines['pixel'])\n", (33026, 33042), True, 'import numpy as np\n')]
|
import sys
import numpy as np
from vebio.Utilities import dict_to_yaml, yaml_to_dict
from joblib import dump, load
import matplotlib as mpl
if len(sys.argv) > 1:
params_filename = sys.argv[1]
ve_params = yaml_to_dict(params_filename)
else:
ve_params = {}
font={'family':'Helvetica', 'size':'15'}
mpl.rc('font',**font)
mpl.rc('xtick',labelsize=14)
mpl.rc('ytick',labelsize=14)
dt = 4
our_base = 100.0 # units?
r = 0.75 # what is this parameter?
gas_velocity = 0.08
column_height = 40.
column_diameter = 5.
bubble_diameter = 0.006
rho_g = ve_params['enzymatic_output']['rho_g']
rho_x = ve_params['enzymatic_output']['rho_x']
rho_f = ve_params['enzymatic_output']['rho_f']
# what is the source for this expression?
our_max = our_base * np.exp(-rho_f/100.0) * (r + (1.0-r) * rho_g/(rho_g+rho_x));
T = ve_params['bioreactor_input']['t_final']
# these outputs should show units
print('\nINPUTS')
print('Gas velocity = %.2f' % (gas_velocity))
print('Column height = %.2f' % (column_height))
print('Column diameter = %.2f' % (column_diameter))
print('Bubble diameter = %.4f' % (bubble_diameter))
print('OUR_max = %.2f' % (our_max))
print('t_final = %.1f' % (T))
lb, ub = np.array([0.01, 10., 1., 5., 0.003]), np.array([0.1, 50., 6., 100., 0.008])
X = np.array([[gas_velocity, column_height, column_diameter, our_max, bubble_diameter]])
X = 2.*(X - lb)/(ub - lb) - 1.
W1 = np.load('W1.npy')
idx = T/dt
if (idx%1 == 0):
idx, s = int(idx), -1
else:
idx, s = int(idx+1), idx%1
with open('gp_bub_col.pkl', 'rb') as f_id:
for i in range(idx+1):
gp = load(f_id)
if (s > 0) and (i == idx-1):
f_0 = gp.predict(X@W1, return_std=False)[0]
if (s == -1):
ff = np.power(10., gp.predict(X@W1, return_std=False)[0])
else:
f_1 = gp.predict(X@W1, return_std=False)[0]
ff = np.power(10., f_0*(1-s) + f_1*s)
print('\nFINAL OUTPUTS (at t = %.1f seconds)' % (T))
print('OUR = %.4f' % (ff)) # units???
# Save the outputs into a dictionary
output_dict = {'bioreactor_output': {}}
output_dict['bioreactor_output']['our'] = float(ff)
dict_to_yaml([ve_params, output_dict], params_filename)
|
[
"vebio.Utilities.dict_to_yaml",
"matplotlib.rc",
"numpy.load",
"vebio.Utilities.yaml_to_dict",
"numpy.power",
"numpy.array",
"numpy.exp",
"joblib.load"
] |
[((311, 333), 'matplotlib.rc', 'mpl.rc', (['"""font"""'], {}), "('font', **font)\n", (317, 333), True, 'import matplotlib as mpl\n'), ((333, 362), 'matplotlib.rc', 'mpl.rc', (['"""xtick"""'], {'labelsize': '(14)'}), "('xtick', labelsize=14)\n", (339, 362), True, 'import matplotlib as mpl\n'), ((362, 391), 'matplotlib.rc', 'mpl.rc', (['"""ytick"""'], {'labelsize': '(14)'}), "('ytick', labelsize=14)\n", (368, 391), True, 'import matplotlib as mpl\n'), ((1267, 1355), 'numpy.array', 'np.array', (['[[gas_velocity, column_height, column_diameter, our_max, bubble_diameter]]'], {}), '([[gas_velocity, column_height, column_diameter, our_max,\n bubble_diameter]])\n', (1275, 1355), True, 'import numpy as np\n'), ((1389, 1406), 'numpy.load', 'np.load', (['"""W1.npy"""'], {}), "('W1.npy')\n", (1396, 1406), True, 'import numpy as np\n'), ((2104, 2159), 'vebio.Utilities.dict_to_yaml', 'dict_to_yaml', (['[ve_params, output_dict]', 'params_filename'], {}), '([ve_params, output_dict], params_filename)\n', (2116, 2159), False, 'from vebio.Utilities import dict_to_yaml, yaml_to_dict\n'), ((213, 242), 'vebio.Utilities.yaml_to_dict', 'yaml_to_dict', (['params_filename'], {}), '(params_filename)\n', (225, 242), False, 'from vebio.Utilities import dict_to_yaml, yaml_to_dict\n'), ((1187, 1226), 'numpy.array', 'np.array', (['[0.01, 10.0, 1.0, 5.0, 0.003]'], {}), '([0.01, 10.0, 1.0, 5.0, 0.003])\n', (1195, 1226), True, 'import numpy as np\n'), ((1225, 1265), 'numpy.array', 'np.array', (['[0.1, 50.0, 6.0, 100.0, 0.008]'], {}), '([0.1, 50.0, 6.0, 100.0, 0.008])\n', (1233, 1265), True, 'import numpy as np\n'), ((753, 775), 'numpy.exp', 'np.exp', (['(-rho_f / 100.0)'], {}), '(-rho_f / 100.0)\n', (759, 775), True, 'import numpy as np\n'), ((1583, 1593), 'joblib.load', 'load', (['f_id'], {}), '(f_id)\n', (1587, 1593), False, 'from joblib import dump, load\n'), ((1847, 1886), 'numpy.power', 'np.power', (['(10.0)', '(f_0 * (1 - s) + f_1 * s)'], {}), '(10.0, f_0 * (1 - s) + f_1 * s)\n', (1855, 1886), True, 'import numpy as np\n')]
|
"""
data_curation_functions.py
Extract Kevin's functions for curation of public datasets
Modify them to match Jonathan's curation methods in notebook
01/30/2020
"""
import os
import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib_venn import venn3
import seaborn as sns
import pdb
from atomsci.ddm.utils.struct_utils import base_smiles_from_smiles
import atomsci.ddm.utils.datastore_functions as dsf
#from atomsci.ddm.utils import datastore_functions as dsf
from atomsci.ddm.utils import curate_data as curate
import atomsci.ddm.utils.struct_utils as struct_utils
import atomsci.ddm.utils.curate_data as curate_data, imp
def set_data_root(dir):
'''Set global variables for data directories
Creates paths for DTC and Excape given a root data directory.
Global variables 'data_root' and 'data_dirs'. 'data_root' is the
root data directory. 'data_dirs' is a dictionary that maps 'DTC' and 'Excape'
to directores calcuated from 'data_root'
Args:
dir (str): root data directory containing folds 'dtc' and 'excape'
Returns:
None
'''
global data_root, data_dirs
data_root = dir
#data_dirs = dict(ChEMBL = '%s/ChEMBL' % data_root, DTC = '%s/DTC' % data_root,
# Excape = '%s/Excape' % data_root)
data_dirs = dict(DTC = '%s/dtc' % data_root,
Excape = '%s/excape' % data_root)
log_var_map = {
'IC50': 'pIC50',
'AC50': 'pIC50',
'Solubility': 'logSolubility',
'CL': 'logCL'
}
pub_dsets = dict(
CYP2D6 = dict(IC50='cyp2d6'),
CYP3A4 = dict(IC50='cyp3a4'),
JAK1 = dict(IC50="jak1"),
JAK2 = dict(IC50="jak2"),
JAK3 = dict(IC50="jak3"),
)
# ----------------------------------------------------------------------------------------------------------------------
# Generic functions for all datasets
# ----------------------------------------------------------------------------------------------------------------------
# Note: Functions freq_table and labeled_freq_table have been moved to ddm.utils.curate_data module.
# ----------------------------------------------------------------------------------------------------------------------
def standardize_relations(dset_df, db='DTC'):
""" Standardizes censoring operators
Standardize the censoring operators to =, < or >, and remove any rows whose operators
don't map to a standard one. There is a special case for db='ChEMBL' that strips
the extra "'"s around relationship symbols. Assumes relationship columns are
'Standard Relation' and 'standard_relation' for ChEMBL and DTC respectively.
This function makes the following mappings: ">" to ">", ">=" to ">", "<" to "<",
"<=" to "<", and "=" to "=". All other relations are removed from the DataFrame.
Args:
dset_df (DataFrame): Input DataFrame. Must contain either 'Standard Relation'
or 'standard_relation'
db (str): Source database. Must be either 'DTC' or 'ChEMBL'
Returns:
DataFrame: Dataframe with the standardized relationship sybmols
"""
relation_cols = dict(ChEMBL='Standard Relation', DTC='standard_relation')
rel_col = relation_cols[db]
dset_df[rel_col].fillna('=', inplace=True)
ops = dset_df[rel_col].values
if db == 'ChEMBL':
# Remove annoying quotes around operators
ops = [op.lstrip("'").rstrip("'") for op in ops]
op_dict = {
">": ">",
">=": ">",
"<": "<",
"<=": "<",
"=": "="
}
ops = np.array([op_dict.get(op, "@") for op in ops])
dset_df[rel_col] = ops
dset_df = dset_df[dset_df[rel_col] != "@"]
return dset_df
# ----------------------------------------------------------------------------------------------------------------------
# DTC-specific curation functions
# ----------------------------------------------------------------------------------------------------------------------
def upload_file_dtc_raw_data(dset_name, title, description, tags,
functional_area,
target, target_type, activity, assay_category,file_path,
data_origin='journal', species='human',
force_update=False):
"""Uploads raw DTC data to the datastore
Upload a raw dataset to the datastore from the given DataFrame.
Returns the datastore OID of the uploaded dataset. The dataset is uploaded to the
public bucket and lists https://doi.org/10.1016/j.chembiol.2017.11.009' as the doi.
This also assumes that the id_col is 'compound_id'
Args:
dset_name (str): Name of the dataset. Should not include a file extension.
title (str): title of the file in (human friendly format)
description (str): long text box to describe file (background/use notes)
tags (list): Must be a list of strings.
functional_area (str): The functional area.
target (str): The target.
target_type (str): The target type of the dataset.
activity (str): The activity of the dataset.
assay_category (str): The assay category of the dataset.
file_path (str): The filepath of the dataset.
data_origin (str): The origin of the dataset e.g. journal.
species (str): The species of the dataset e.g. human, rat, dog.
force_update (bool): Overwrite existing datasets in the datastore.
Returns:
str: datastore OID of the uploaded dataset.
"""
bucket = 'public'
filename = '%s.csv' % dset_name
dataset_key = 'dskey_' + filename
kv = { 'file_category': 'experimental',
'activity': activity,
'assay_category':assay_category,
'assay_endpoint' : 'multiple values',
'curation_level': 'raw',
'data_origin' : data_origin,
'functional_area' : functional_area,
'matrix' : 'multiple values',
'journal_doi' : 'https://doi.org/10.1016/j.chembiol.2017.11.009',
'sample_type' : 'in_vitro',
'species' : species,
'target' : target,
'target_type' : target_type,
'id_col' : 'compound_id'
}
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
ds_client = dsf.config_client()
if force_update or not dsf.dataset_key_exists(dataset_key, bucket, ds_client):
#uploaded_file = dsf.upload_df_to_DS(dset_df, bucket, filename=filename, title=title,
# description=description,
# tags=tags, key_values=kv, client=None, dataset_key=dataset_key,
# override_check=True, return_metadata=True)
uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename,
title = title, description=description, tags=tags, key_values=kv, client=None,
dataset_key=dataset_key, override_check=False, return_metadata=True)
print("Uploaded raw dataset with key %s" % dataset_key)
else:
uploaded_file = dsf.retrieve_dataset_by_datasetkey(dataset_key, bucket, ds_client, return_metadata=True)
print("Raw dataset %s is already in datastore, skipping upload." % dataset_key)
raw_dset_oid = uploaded_file['dataset_oid']
return raw_dset_oid
def filter_dtc_data(orig_df,geneNames):
""" Extracts and post processes JAK1, 2, and 3 datasets from DTC
This is specific to the DTC database.
Extract JAK1, 2 and 3 datasets from Drug Target Commons database, filtered for data usability.
filter criteria:
gene_names == JAK1 | JAK2 | JAK3
InChi key not missing
standard_type IC50
units NM
standard_relation mappable to =, < or >
wildtype_or_mutant != 'mutated'
valid SMILES
maps to valid RDKit base SMILES
standard_value not missing
pIC50 > 3
Args:
orig_df (DataFrame): Input DataFrame. Must contain the following columns: gene_names
standard_inchi_key, standard_type, standard_units, standard_value, compound_id,
wildtype_or_mutant.
geneNames (list): A list of gene names to filter out of orig_df e.g. ['JAK1', 'JAK2'].
Returns:
DataFrame: The filtered rows of the orig_df
"""
dset_df = orig_df[orig_df.gene_names.isin(geneNames) &
~(orig_df.standard_inchi_key.isna()) &
(orig_df.standard_type == 'IC50') &
(orig_df.standard_units == 'NM') &
~orig_df.standard_value.isna() &
~orig_df.compound_id.isna() &
(orig_df.wildtype_or_mutant != 'mutated') ]
return dset_df
def ic50topic50(x) :
"""Calculates pIC50 from IC50
Calculates pIC50 from IC50
Args:
x (float): An IC50.
Returns:
float: The pIC50.
"""
print(x)
return -np.log10((x/1000000000.0))
def down_select(df,kv_lst) :
"""Filters rows given a set of values
Given a DataFrame and a list of tuples columns (k) to values (v), this function
filters out all rows where df[k] == v.
Args:
df (DataFrame): An input DataFrame.
kv_list (list): A list of tuples of (column, value)
Returns:
DataFrame: Rows where all df[k] == v
"""
for k,v in kv_lst :
df=df[df[k]==v]
return df
def get_smiles_dtc_data(nm_df,targ_lst,save_smiles_df):
"""Returns SMILES strings from DTC data
nm_df must be a DataFrame from DTC with the following columns: gene_names,
standard_type, standard_value, 'standard_inchi_key', and standard_relation.
This function selects all rows where nm_df['gene_names'] is in targ_lst,
nm_df['standard_type']=='IC50', nm_df['standard_relation']=='=', and
'standard_value' > 0.
Then pIC50 values are calculated and added to the 'PIC50' column, and
smiles strings are merged in from save_smiles_df
Args:
nm_df (DataFrame): Input DataFrame.
targ_lst (list): A list of targets.
save_smiles_df (DataFrame): A DataFrame with the column 'standard_inchi_key'
Returns:
list, list: A list of smiles and a list of inchi keys shared between targets.
"""
save_df={}
for targ in targ_lst :
lst1= [ ('gene_names',targ),('standard_type','IC50'),('standard_relation','=') ]
lst1_tmp= [ ('gene_names',targ),('standard_type','IC50')]
jak1_df=down_select(nm_df,lst1)
jak1_df_tmp=down_select(nm_df,lst1_tmp)
print(targ,"distinct compounds = only",jak1_df['standard_inchi_key'].nunique())
print(targ,"distinct compounds <,>,=",jak1_df_tmp['standard_inchi_key'].nunique())
## we convert to log values so make sure there are no 0 values
save_df[targ]=jak1_df_tmp[jak1_df_tmp['standard_value']>0]
prev_targ=targ_lst[0]
shared_inchi_keys=save_df[prev_targ]['standard_inchi_key']
for it in range(1,len(targ_lst),1) :
curr_targ=targ_lst[it]
df=save_df[curr_targ]
shared_inchi_keys=df[df['standard_inchi_key'].isin(shared_inchi_keys)]['standard_inchi_key']
print("num shared compounds",shared_inchi_keys.nunique())
lst=[]
for targ in targ_lst :
df=save_df[targ]
#print(aurka_df.shape,aurkb_df.shape, shared_inchi_keys.shape)
lst.append(df[df['standard_inchi_key'].isin(shared_inchi_keys)])
shared_df=pd.concat(lst)
# Add pIC50 values
print('Add pIC50 values.')
print(shared_df['standard_value'])
shared_df['PIC50']=shared_df['standard_value'].apply(ic50topic50)
# Merge in SMILES strings
print('Merge in SMILES strings.')
smiles_lst=[]
for targ in targ_lst :
df=save_df[targ]
df['PIC50']=df['standard_value'].apply(ic50topic50)
smiles_df=df.merge(save_smiles_df,on='standard_inchi_key',suffixes=('_'+targ,'_'))
#the file puts the SMILES string in quotes, which need to be removed
smiles_df['smiles']=smiles_df['smiles'].str.replace('"','')
smiles_df['rdkit_smiles']=smiles_df['smiles'].apply(struct_utils.base_smiles_from_smiles)
smiles_df['smiles']=smiles_df['smiles'].str.replace('"','')
print(smiles_df.shape)
print(smiles_df['standard_inchi_key'].nunique())
smiles_lst.append(smiles_df)
return smiles_lst, shared_inchi_keys
def get_smiles_4dtc_data(nm_df,targ_lst,save_smiles_df):
"""Returns SMILES strings from DTC data
nm_df must be a DataFrame from DTC with the following columns: gene_names,
standard_type, standard_value, 'standard_inchi_key', and standard_relation.
This function selects all rows where nm_df['gene_names'] is in targ_lst,
nm_df['standard_type']=='IC50', nm_df['standard_relation']=='=', and
'standard_value' > 0.
Then pIC50 values are calculated and added to the 'PIC50' column, and
smiles strings are merged in from save_smiles_df
Args:
nm_df (DataFrame): Input DataFrame.
targ_lst (list): A list of targets.
save_smiles_df (DataFrame): A DataFrame with the column 'standard_inchi_key'
Returns:
list, list, str: A list of smiles. A list of inchi keys shared between targets.
And a description of the targets
"""
save_df={}
description_str = ""
for targ in targ_lst :
lst1= [ ('gene_names',targ),('standard_type','IC50'),('standard_relation','=') ]
lst1_tmp= [ ('gene_names',targ),('standard_type','IC50')]
jak1_df=down_select(nm_df,lst1)
jak1_df_tmp=down_select(nm_df,lst1_tmp)
print(targ,"distinct compounds = only",jak1_df['standard_inchi_key'].nunique())
print(targ,"distinct compounds <,>,=",jak1_df_tmp['standard_inchi_key'].nunique())
description = '''
# '''+targ+" distinct compounds = only: "+str(jak1_df['standard_inchi_key'].nunique())+'''
# '''+targ+" distinct compounds <,>,=: "+str(jak1_df_tmp['standard_inchi_key'].nunique())
description_str += description
#to ignore censored data
#save_df[targ]=jak1_df
#to include censored data
save_df[targ]=jak1_df_tmp
prev_targ=targ_lst[0]
shared_inchi_keys=save_df[prev_targ]['standard_inchi_key']
for it in range(1,len(targ_lst),1) :
curr_targ=targ_lst[it]
df=save_df[curr_targ]
shared_inchi_keys=df[df['standard_inchi_key'].isin(shared_inchi_keys)]['standard_inchi_key']
print("num shared compounds",shared_inchi_keys.nunique())
lst=[]
for targ in targ_lst :
df=save_df[targ]
#print(aurka_df.shape,aurkb_df.shape, shared_inchi_keys.shape)
lst.append(df[df['standard_inchi_key'].isin(shared_inchi_keys)])
shared_df=pd.concat(lst)
# Add pIC50 values
print('Add pIC50 values.')
shared_df['PIC50']=shared_df['standard_value'].apply(ic50topic50)
# Merge in SMILES strings
print('Merge in SMILES strings.')
smiles_lst=[]
for targ in targ_lst :
df=save_df[targ]
df['PIC50']=df['standard_value'].apply(ic50topic50)
smiles_df=df.merge(save_smiles_df,on='standard_inchi_key',suffixes=('_'+targ,'_'))
#the file puts the SMILES string in quotes, which need to be removed
smiles_df['smiles']=smiles_df['smiles'].str.replace('"','')
smiles_df['rdkit_smiles']=smiles_df['smiles'].apply(struct_utils.base_smiles_from_smiles)
smiles_df['smiles']=smiles_df['smiles'].str.replace('"','')
print("Shape of dataframe:", smiles_df.shape)
print("Number of unique standard_inchi_key:", smiles_df['standard_inchi_key'].nunique())
smiles_lst.append(smiles_df)
return smiles_lst, shared_inchi_keys, description_str
def upload_df_dtc_smiles(dset_name, title, description, tags,
functional_area,
target, target_type, activity, assay_category,smiles_df,orig_fileID,
data_origin='journal', species='human',
force_update=False):
"""Uploads DTC smiles data to the datastore
Upload a raw dataset to the datastore from the given DataFrame.
Returns the datastore OID of the uploaded dataset. The dataset is uploaded to the
public bucket and lists https://doi.org/10.1016/j.chembiol.2017.11.009' as the doi.
This also assumes that the id_col is 'compound_id'
Args:
dset_name (str): Name of the dataset. Should not include a file extension.
title (str): title of the file in (human friendly format)
description (str): long text box to describe file (background/use notes)
tags (list): Must be a list of strings.
functional_area (str): The functional area.
target (str): The target.
target_type (str): The target type of the dataset.
activity (str): The activity of the dataset.
assay_category (str): The assay category of the dataset.
smiles_df (DataFrame): DataFrame containing SMILES to be uploaded.
orig_fileID (str): Source file id used to generate smiles_df.
data_origin (str): The origin of the dataset e.g. journal.
species (str): The species of the dataset e.g. human, rat, dog.
force_update (bool): Overwrite existing datasets in the datastore.
Returns:
str: datastore OID of the uploaded dataset.
"""
bucket = 'public'
filename = '%s_dtc_smiles.csv' % dset_name
dataset_key = 'dskey_' + filename
kv = { 'file_category': 'experimental',
'activity': activity,
'assay_category': assay_category, ## seems like this should be called 'kinase_activity'
'assay_endpoint' : 'pic50',
'curation_level': 'raw',
'data_origin' : data_origin,
'functional_area' : functional_area,
'matrix' : 'multiple values',
'journal_doi' : 'https://doi.org/10.1016/j.chembiol.2017.11.009',
'sample_type' : 'in_vitro',
'species' : species,
'target' : target,
'target_type' : target_type,
'id_col' : 'compound_id',
'source_file_id' : orig_fileID
}
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
ds_client = dsf.config_client()
if force_update or not dsf.dataset_key_exists(dataset_key, bucket, ds_client):
uploaded_file = dsf.upload_df_to_DS(bucket=bucket, filename=filename,df=smiles_df, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
print("Uploaded raw dataset with key %s" % dataset_key)
else:
uploaded_file = dsf.retrieve_dataset_by_datasetkey(dataset_key, bucket, ds_client, return_metadata=True)
print("Raw dataset %s is already in datastore, skipping upload." % dataset_key)
raw_dset_oid = uploaded_file['dataset_oid']
return raw_dset_oid
def atom_curation(targ_lst, smiles_lst, shared_inchi_keys):
"""Apply ATOM standard 'curation' step to "shared_df"
Apply ATOM standard 'curation' step to "shared_df": Average replicate assays,
remove duplicates and drop cases with large variance between replicates.
mleqonly
Args:
targ_lst (list): A list of targets.
smiles_lst (list): A list of DataFrames.
These DataFrames must contain the columns gene_names, standard_type,
standard_relation, standard_inchi_key, PIC50, and rdkit_smiles
shared_inchi_keys (list): A list of inchi keys used in this dataset.
Returns:
list, list:A list of curated DataFrames and a list of the number of compounds
dropped during the curation process for each target.
"""
imp.reload(curate_data)
tolerance=10
column='PIC50'; #'standard_value'
list_bad_duplicates='No'
max_std=1
curated_lst=[]
num_dropped_lst=[]
#print(targ_lst)
#print(smiles_lst)
for it in range(len(targ_lst)) :
data=smiles_lst[it]
data = data[data.standard_relation.str.strip() == '=']
print("gene_names",data.gene_names.unique())
print("standard_type",data.standard_type.unique())
print("standard_relation",data.standard_relation.unique())
print("before",data.shape)
curated_df=curate_data.average_and_remove_duplicates (column, tolerance, list_bad_duplicates, data, max_std, compound_id='standard_inchi_key',smiles_col='rdkit_smiles')
# (Yaru) Remove inf in curated_df
curated_df = curated_df[~curated_df.isin([np.inf]).any(1)]
# (Yaru) Remove nan on rdkit_smiles
curated_df = curated_df.dropna(subset=['rdkit_smiles'])
curated_lst.append(curated_df)
prev_cmpd_cnt=shared_inchi_keys.nunique()
num_dropped=prev_cmpd_cnt-curated_df.shape[0]
num_dropped_lst.append(num_dropped)
print("After",curated_df.shape, "# of dropped compounds",num_dropped)
return curated_lst,num_dropped_lst
def upload_df_dtc_mleqonly(dset_name, title, description, tags,
functional_area,
target, target_type, activity, assay_category,data_df,dtc_smiles_fileID,
data_origin='journal', species='human',
force_update=False):
"""Uploads DTC mleqonly data to the datastore
Upload mleqonly data to the datastore from the given DataFrame. The DataFrame
must contain the column 'rdkit_smiles' and 'VALUE_NUM_mean'. This function is
meant to upload data that has been aggregated using
atomsci.ddm.utils.curate_data.average_and_remove_duplicates.
Returns the datastore OID of the uploaded dataset. The dataset is uploaded to the
public bucket and lists https://doi.org/10.1016/j.chembiol.2017.11.009' as the doi.
This also assumes that the id_col is 'compound_id'.
Args:
dset_name (str): Name of the dataset. Should not include a file extension.
title (str): title of the file in (human friendly format)
description (str): long text box to describe file (background/use notes)
tags (list): Must be a list of strings.
functional_area (str): The functional area.
target (str): The target.
target_type (str): The target type of the dataset.
activity (str): The activity of the dataset.
assay_category (str): The assay category of the dataset.
data_df (DataFrame): DataFrame to be uploaded.
dtc_smiles_fileID (str): Source file id used to generate data_df.
data_origin (str): The origin of the dataset e.g. journal.
species (str): The species of the dataset e.g. human, rat, dog.
force_update (bool): Overwrite existing datasets in the datastore.
Returns:
str: datastore OID of the uploaded dataset.
"""
bucket = 'public'
filename = '%s_dtc_mleqonly.csv' % dset_name
dataset_key = 'dskey_' + filename
kv = { 'file_category': 'experimental',
'activity': activity,
'assay_category': assay_category, ## seems like this should be called 'kinase_activity'
'assay_endpoint' : 'pic50',
'curation_level': 'ml_ready',
'data_origin' : data_origin,
'functional_area' : functional_area,
'matrix' : 'multiple values',
'journal_doi' : 'https://doi.org/10.1016/j.chembiol.2017.11.009',
'sample_type' : 'in_vitro',
'species' : species,
'target' : target,
'target_type' : target_type,
'id_col' : 'compound_id',
'response_col' : 'VALUE_NUM_mean',
'prediction_type' : 'regression',
'smiles_col' : 'rdkit_smiles',
'units' : 'unitless',
'source_file_id' : dtc_smiles_fileID
}
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
ds_client = dsf.config_client()
if force_update or not dsf.dataset_key_exists(dataset_key, bucket, ds_client):
uploaded_file = dsf.upload_df_to_DS(bucket=bucket, filename=filename,df=data_df, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
print("Uploaded raw dataset with key %s" % dataset_key)
else:
uploaded_file = dsf.retrieve_dataset_by_datasetkey(dataset_key, bucket, ds_client, return_metadata=True)
print("Raw dataset %s is already in datastore, skipping upload." % dataset_key)
raw_dset_oid = uploaded_file['dataset_oid']
return raw_dset_oid
def upload_df_dtc_mleqonly_class(dset_name, title, description, tags,
functional_area,
target, target_type, activity, assay_category,data_df,dtc_mleqonly_fileID,
data_origin='journal', species='human',
force_update=False):
"""Uploads DTC mleqonly classification data to the datastore
Upload mleqonly classification data to the datastore from the given DataFrame. The DataFrame
must contain the column 'rdkit_smiles' and 'binary_class'. This function is
meant to upload data that has been aggregated using
atomsci.ddm.utils.curate_data.average_and_remove_duplicates and then thresholded to
make a binary classification dataset.
Returns the datastore OID of the uploaded dataset. The dataset is uploaded to the
public bucket and lists https://doi.org/10.1016/j.chembiol.2017.11.009' as the doi.
This also assumes that the id_col is 'compound_id'.
Args:
dset_name (str): Name of the dataset. Should not include a file extension.
title (str): title of the file in (human friendly format)
description (str): long text box to describe file (background/use notes)
tags (list): Must be a list of strings.
functional_area (str): The functional area.
target (str): The target.
target_type (str): The target type of the dataset.
activity (str): The activity of the dataset.
assay_category (str): The assay category of the dataset.
data_df (DataFrame): DataFrame to be uploaded.
dtc_mleqonly_fileID (str): Source file id used to generate data_df.
data_origin (str): The origin of the dataset e.g. journal.
species (str): The species of the dataset e.g. human, rat, dog.
force_update (bool): Overwrite existing datasets in the datastore.
Returns:
str: datastore OID of the uploaded dataset.
"""
bucket = 'public'
filename = '%s_dtc_mleqonly_class.csv' % dset_name
dataset_key = 'dskey_' + filename
kv = { 'file_category': 'experimental',
'activity': activity,
'assay_category': assay_category, ## seems like this should be called 'kinase_activity'
'assay_endpoint' : 'pic50',
'curation_level': 'ml_ready',
'data_origin' : data_origin,
'functional_area' : functional_area,
'matrix' : 'multiple values',
'journal_doi' : 'https://doi.org/10.1016/j.chembiol.2017.11.009',
'sample_type' : 'in_vitro',
'species' : species,
'target' : target,
'target_type' : target_type,
'id_col' : 'compound_id',
'response_col' : 'binary_class',
'prediction_type' : 'classification',
'num_classes' : 2,
'class_names' : ['inactive','active'],
'smiles_col' : 'rdkit_smiles',
'units' : 'unitless',
'source_file_id' : dtc_mleqonly_fileID
}
ds_client = dsf.config_client()
if force_update or not dsf.dataset_key_exists(dataset_key, bucket, ds_client):
uploaded_file = dsf.upload_df_to_DS(bucket=bucket, filename=filename,df=data_df, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
print("Uploaded raw dataset with key %s" % dataset_key)
else:
uploaded_file = dsf.retrieve_dataset_by_datasetkey(dataset_key, bucket, ds_client, return_metadata=True)
print("Raw dataset %s is already in datastore, skipping upload." % dataset_key)
raw_dset_oid = uploaded_file['dataset_oid']
return raw_dset_oid
def upload_df_dtc_base_smiles_all(dset_name, title, description, tags,
functional_area,
target, target_type, activity, assay_category,data_df,dtc_mleqonly_fileID,
data_origin='journal', species='human',
force_update=False):
"""Uploads DTC base smiles data to the datastore
Uploads base SMILES string for the DTC dataset.
Returns the datastore OID of the uploaded dataset. The dataset is uploaded to the
public bucket and lists https://doi.org/10.1016/j.chembiol.2017.11.009' as the doi.
This also assumes that the id_col is 'compound_id', the response column is set to PIC50,
and the SMILES are assumed to be in 'base_rdkit_smiles'.
Args:
dset_name (str): Name of the dataset. Should not include a file extension.
title (str): title of the file in (human friendly format)
description (str): long text box to describe file (background/use notes)
tags (list): Must be a list of strings.
functional_area (str): The functional area.
target (str): The target.
target_type (str): The target type of the dataset.
activity (str): The activity of the dataset.
assay_category (str): The assay category of the dataset.
data_df (DataFrame): DataFrame to be uploaded.
dtc_mleqonly_fileID (str): Source file id used to generate data_df.
data_origin (str): The origin of the dataset e.g. journal.
species (str): The species of the dataset e.g. human, rat, dog.
force_update (bool): Overwrite existing datasets in the datastore.
Returns:
str: datastore OID of the uploaded dataset.
"""
bucket = 'public'
filename = '%s_dtc_base_smiles_all.csv' % dset_name
dataset_key = 'dskey_' + filename
kv = { 'file_category': 'experimental',
'activity': activity,
'assay_category': assay_category, ## seems like this should be called 'kinase_activity'
'assay_endpoint' : 'pic50',
'curation_level': 'ml_ready',
'data_origin' : data_origin,
'functional_area' : functional_area,
'matrix' : 'multiple values',
'journal_doi' : 'https://doi.org/10.1016/j.chembiol.2017.11.009',
'sample_type' : 'in_vitro',
'species' : species,
'target' : target,
'target_type' : target_type,
'id_col' : 'compound_id',
'response_col' : 'PIC50',
'prediction_type' : 'regression',
'smiles_col' : 'base_rdkit_smiles',
'units' : 'unitless',
'source_file_id' : dtc_mleqonly_fileID
}
ds_client = dsf.config_client()
if force_update or not dsf.dataset_key_exists(dataset_key, bucket, ds_client):
uploaded_file = dsf.upload_df_to_DS(bucket=bucket, filename=filename,df=data_df, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
print("Uploaded raw dataset with key %s" % dataset_key)
else:
uploaded_file = dsf.retrieve_dataset_by_datasetkey(dataset_key, bucket, ds_client, return_metadata=True)
print("Raw dataset %s is already in datastore, skipping upload." % dataset_key)
raw_dset_oid = uploaded_file['dataset_oid']
return raw_dset_oid
def upload_file_dtc_smiles_regr_all(dset_name, title, description, tags,
functional_area,
target, target_type, activity, assay_category,file_path,dtc_smiles_fileID,
smiles_column, data_origin='journal', species='human',
force_update=False):
"""Uploads regression DTC data to the datastore
Uploads regression dataset for DTC dataset.
Returns the datastore OID of the uploaded dataset. The dataset is uploaded to the
public bucket and lists https://doi.org/10.1016/j.chembiol.2017.11.009' as the doi.
This also assumes that the id_col is 'compound_id', the response column is set to PIC50.
Args:
dset_name (str): Name of the dataset. Should not include a file extension.
title (str): title of the file in (human friendly format)
description (str): long text box to describe file (background/use notes)
tags (list): Must be a list of strings.
functional_area (str): The functional area.
target (str): The target.
target_type (str): The target type of the dataset.
activity (str): The activity of the dataset.
assay_category (str): The assay category of the dataset.
data_df (DataFrame): DataFrame to be uploaded.
dtc_smiles_fileID(str): Source file id used to generate data_df.
smiles_column (str): Column containing SMILES.
data_origin (str): The origin of the dataset e.g. journal.
species (str): The species of the dataset e.g. human, rat, dog.
force_update (bool): Overwrite existing datasets in the datastore.
Returns:
str: datastore OID of the uploaded dataset.
"""
bucket = 'public'
filename = '%s_dtc_smiles_regr_all.csv' % dset_name
dataset_key = 'dskey_' + filename
kv = { 'file_category': 'experimental',
'activity': activity,
'assay_category': assay_category, ## seems like this should be called 'kinase_activity'
'assay_endpoint' : 'pic50',
'curation_level': 'ml_ready',
'data_origin' : data_origin,
'functional_area' : functional_area,
'matrix' : 'multiple values',
'journal_doi' : 'https://doi.org/10.1016/j.chembiol.2017.11.009',
'sample_type' : 'in_vitro',
'species' : species,
'target' : target,
'target_type' : target_type,
'id_col' : 'compound_id',
'response_col' : 'PIC50',
'prediction_type' : 'regression',
'smiles_col' : smiles_column,
'units' : 'unitless',
'source_file_id' : dtc_smiles_fileID
}
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
ds_client = dsf.config_client()
if force_update or not dsf.dataset_key_exists(dataset_key, bucket, ds_client):
#uploaded_file = dsf.upload_df_to_DS(bucket=bucket, filename=filename,df=data_df, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
print("Uploaded raw dataset with key %s" % dataset_key)
else:
uploaded_file = dsf.retrieve_dataset_by_datasetkey(dataset_key, bucket, ds_client, return_metadata=True)
print("Raw dataset %s is already in datastore, skipping upload." % dataset_key)
raw_dset_oid = uploaded_file['dataset_oid']
return raw_dset_oid
def upload_df_dtc_smiles_regr_all_class(dset_name, title, description, tags,
functional_area,
target, target_type, activity, assay_category,data_df,dtc_smiles_regr_all_fileID,
smiles_column, data_origin='journal', species='human',
force_update=False):
"""Uploads DTC classification data to the datastore
Uploads binary classiciation data for the DTC dataset. Classnames are assumed to
be 'active' and 'inactive'
Returns the datastore OID of the uploaded dataset. The dataset is uploaded to the
public bucket and lists https://doi.org/10.1016/j.chembiol.2017.11.009' as the doi.
This also assumes that the id_col is 'compound_id', the response column is set to PIC50.
Args:
dset_name (str): Name of the dataset. Should not include a file extension.
title (str): title of the file in (human friendly format)
description (str): long text box to describe file (background/use notes)
tags (list): Must be a list of strings.
functional_area (str): The functional area.
target (str): The target.
target_type (str): The target type of the dataset.
activity (str): The activity of the dataset.
assay_category (str): The assay category of the dataset.
data_df (DataFrame): DataFrame to be uploaded.
dtc_smiles_regr_all_fileID(str): Source file id used to generate data_df.
smiles_column (str): Column containing SMILES.
data_origin (str): The origin of the dataset e.g. journal.
species (str): The species of the dataset e.g. human, rat, dog.
force_update (bool): Overwrite existing datasets in the datastore.
Returns:
str: datastore OID of the uploaded dataset.
"""
bucket = 'public'
filename = '%s_dtc_smiles_regr_all_class.csv' % dset_name
dataset_key = 'dskey_' + filename
kv = { 'file_category': 'experimental',
'activity': activity,
'assay_category': assay_category, ## seems like this should be called 'kinase_activity'
'assay_endpoint' : 'pic50',
'curation_level': 'ml_ready',
'data_origin' : data_origin,
'functional_area' : functional_area,
'matrix' : 'multiple values',
'journal_doi' : 'https://doi.org/10.1016/j.chembiol.2017.11.009',
'sample_type' : 'in_vitro',
'species' : species,
'target' : target,
'target_type' : target_type,
'id_col' : 'compound_id',
'response_col' : 'PIC50',
'prediction_type' : 'classification',
'num_classes' : 2,
'smiles_col' : smiles_column,
'class_names' : ['inactive','active'],
'units' : 'unitless',
'source_file_id' : dtc_smiles_regr_all_fileID
}
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
ds_client = dsf.config_client()
if force_update or not dsf.dataset_key_exists(dataset_key, bucket, ds_client):
uploaded_file = dsf.upload_df_to_DS(bucket=bucket, filename=filename,df=data_df, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
print("Uploaded raw dataset with key %s" % dataset_key)
else:
uploaded_file = dsf.retrieve_dataset_by_datasetkey(dataset_key, bucket, ds_client, return_metadata=True)
print("Raw dataset %s is already in datastore, skipping upload." % dataset_key)
raw_dset_oid = uploaded_file['dataset_oid']
return raw_dset_oid
# ----------------------------------------------------------------------------------------------------------------------
# Excape-specific curation functions
# ----------------------------------------------------------------------------------------------------------------------
def upload_file_excape_raw_data(dset_name, title, description, tags,
functional_area,
target, target_type, activity, assay_category,file_path,
data_origin='journal', species='human',
force_update=False):
"""Uploads raw Excape data to the datastore
Upload a raw dataset to the datastore from the given DataFrame.
Returns the datastore OID of the uploaded dataset. The dataset is uploaded to the
public bucket and lists https://dx.doi.org/10.1186%2Fs13321-017-0203-5 as the doi.
This also assumes that the id_col is 'Original_Entry_ID'
Args:
dset_name (str): Name of the dataset. Should not include a file extension.
title (str): title of the file in (human friendly format)
description (str): long text box to describe file (background/use notes)
tags (list): Must be a list of strings.
functional_area (str): The functional area.
target (str): The target.
target_type (str): The target type of the dataset.
activity (str): The activity of the dataset.
assay_category (str): The assay category of the dataset.
file_path (str): The filepath of the dataset.
data_origin (str): The origin of the dataset e.g. journal.
species (str): The species of the dataset e.g. human, rat, dog.
force_update (bool): Overwrite existing datasets in the datastore.
Returns:
str: datastore OID of the uploaded dataset.
"""
bucket = 'public'
filename = '%s_excape.csv' % dset_name
dataset_key = 'dskey_' + filename
kv = { 'file_category': 'experimental',
'activity': activity,
'assay_category':assay_category,
'assay_endpoint' : 'multiple values',
'curation_level': 'raw',
'data_origin' : data_origin,
'functional_area' : functional_area,
'matrix' : 'multiple values',
'journal_doi' : 'https://dx.doi.org/10.1186%2Fs13321-017-0203-5', # ExCAPE-DB
'sample_type' : 'in_vitro',
'species' : species,
'target' : target,
'target_type' : target_type,
'id_col' : 'Original_Entry_ID'
}
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
ds_client = dsf.config_client()
if force_update or not dsf.dataset_key_exists(dataset_key, bucket, ds_client):
#uploaded_file = dsf.upload_df_to_DS(dset_df, bucket, filename=filename, title=title,
# description=description,
# tags=tags, key_values=kv, client=None, dataset_key=dataset_key,
# override_check=True, return_metadata=True)
uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
print("Uploaded raw dataset with key %s" % dataset_key)
else:
uploaded_file = dsf.retrieve_dataset_by_datasetkey(dataset_key, bucket, ds_client, return_metadata=True)
print("Raw dataset %s is already in datastore, skipping upload." % dataset_key)
raw_dset_oid = uploaded_file['dataset_oid']
return raw_dset_oid
def get_smiles_excape_data(nm_df,targ_lst):
"""Calculate base rdkit smiles
Divides up nm_df based on target and makes one DataFrame for each target.
Rows with NaN pXC50 values are dropped. Base rdkit SMILES are calculated
from the SMILES column using
atomsci.ddm.utils.struct_utils.base_rdkit_smiles_from_smiles. A new column,
'rdkit_smiles, is added to each output DataFrame.
Args:
nm_df (DataFrame): DataFrame for Excape database. Should contain the columns,
pXC50, SMILES, and Ambit_InchiKey
targ_lst (list): A list of targets to filter out of nm_df
Returns:
list, list: A list of DataFrames, one for each target, and a list of
all inchi keys used in the dataset.
"""
# Delete NaN
nm_df = nm_df.dropna(subset=['pXC50'])
# (Yaru) Use nm_df, which has removed nan's
# Don't need to retrieve SMILES, since already in excape file
# No filtering by censored
save_df={}
targ = targ_lst[0]
save_df[targ_lst[0]] = nm_df
print(targ,"distinct compounds = only",nm_df['Ambit_InchiKey'].nunique())
shared_inchi_keys = nm_df['Ambit_InchiKey']
# Merge in SMILES strings
smiles_lst=[]
save_df[targ_lst[0]] = nm_df
for targ in targ_lst :
df=save_df[targ]
smiles_df = df
#df['PIC50']=df['standard_value'].apply(ic50topic50)
#smiles_df=df.merge(save_smiles_df,on='standard_inchi_key',suffixes=('_'+targ,'_'))
#the file puts the SMILES string in quotes, which need to be removed
#smiles_df['smiles']=smiles_df['smiles'].str.replace('"','')
smiles_df['rdkit_smiles']=smiles_df['SMILES'].apply(struct_utils.base_smiles_from_smiles)
#smiles_df['smiles']=smiles_df['smiles'].str.replace('"','')
print(smiles_df.shape)
print(smiles_df['Ambit_InchiKey'].nunique())
smiles_lst.append(smiles_df)
return smiles_lst, shared_inchi_keys
def upload_df_excape_smiles(dset_name, title, description, tags,
functional_area,
target, target_type, activity, assay_category,smiles_df,orig_fileID,
data_origin='journal', species='human',
force_update=False):
"""Uploads Excape SMILES data to the datastore
Upload SMILES to the datastore from the given DataFrame.
Returns the datastore OID of the uploaded dataset. The dataset is uploaded to the
public bucket and lists https://dx.doi.org/10.1186%2Fs13321-017-0203-5 as the doi.
This also assumes that the id_col is 'Original_Entry_ID'
Args:
dset_name (str): Name of the dataset. Should not include a file extension.
title (str): title of the file in (human friendly format)
description (str): long text box to describe file (background/use notes)
tags (list): Must be a list of strings.
functional_area (str): The functional area.
target (str): The target.
target_type (str): The target type of the dataset.
activity (str): The activity of the dataset.
assay_category (str): The assay category of the dataset.
smiles_df (DataFrame): DataFrame containing SMILES to be uploaded.
orig_fileID (str): Source file id used to generate smiles_df.
data_origin (str): The origin of the dataset e.g. journal.
species (str): The species of the dataset e.g. human, rat, dog.
force_update (bool): Overwrite existing datasets in the datastore.
Returns:
str: datastore OID of the uploaded dataset.
"""
bucket = 'public'
#he6: this used to say _dtc_smiles.csv
filename = '%s_excape_smiles.csv' % dset_name
dataset_key = 'dskey_' + filename
kv = { 'file_category': 'experimental',
'activity': activity,
'assay_category': assay_category, ## seems like this should be called 'kinase_activity'
'assay_endpoint' : 'pic50',
'curation_level': 'raw',
'data_origin' : data_origin,
'functional_area' : functional_area,
'matrix' : 'multiple values',
'journal_doi' : 'https://dx.doi.org/10.1186%2Fs13321-017-0203-5', # ExCAPE-DB
'sample_type' : 'in_vitro',
'species' : species,
'target' : target,
'target_type' : target_type,
'id_col' : 'Original_Entry_ID',
'source_file_id' : orig_fileID
}
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
ds_client = dsf.config_client()
if force_update or not dsf.dataset_key_exists(dataset_key, bucket, ds_client):
uploaded_file = dsf.upload_df_to_DS(bucket=bucket, filename=filename,df=smiles_df, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
print("Uploaded raw dataset with key %s" % dataset_key)
else:
uploaded_file = dsf.retrieve_dataset_by_datasetkey(dataset_key, bucket, ds_client, return_metadata=True)
print("Raw dataset %s is already in datastore, skipping upload." % dataset_key)
raw_dset_oid = uploaded_file['dataset_oid']
return raw_dset_oid
def atom_curation_excape(targ_lst, smiles_lst, shared_inchi_keys):
"""Apply ATOM standard 'curation' step
Apply ATOM standard 'curation' step: Average replicate assays,
remove duplicates and drop cases with large variance between replicates.
Rows with NaN values in rdkit_smiles, VALUE_NUM_mean, and pXC50 are dropped
Args:
targ_lst (list): A list of targets.
smiles_lst (list): A of DataFrames.
These DataFrames must contain the columns gene_names, standard_type,
standard_relation, standard_inchi_key, pXC50, and rdkit_smiles
shared_inchi_keys (list): A list of inchi keys used in this dataset.
Returns:
list:A list of curated DataFrames
"""
imp.reload(curate_data)
tolerance=10
column='pXC50'; #'standard_value'
list_bad_duplicates='No'
max_std=1
curated_lst=[]
#print(targ_lst)
#print(smiles_lst)
for it in range(len(targ_lst)) :
data=smiles_lst[it]
#data = data[data.standard_relation.str.strip() == '=']
#print("gene_names",data.gene_names.unique())
#print("standard_type",data.standard_type.unique())
#print("standard_relation",data.standard_relation.unique())
print("before",data.shape)
curated_df=curate_data.average_and_remove_duplicates (column, tolerance, list_bad_duplicates, data, max_std, compound_id='standard_inchi_key',smiles_col='rdkit_smiles')
# (Yaru) Remove inf in curated_df
curated_df = curated_df[~curated_df.isin([np.inf]).any(1)]
# (Yaru) Remove nan on rdkit_smiles
curated_df = curated_df.dropna(subset=['rdkit_smiles'])
curated_df = curated_df.dropna(subset=['VALUE_NUM_mean'])
curated_df = curated_df.dropna(subset=['pXC50'])
# (Kevin)
# Filter criteria:
# pXC50 not missing
# rdkit_smiles not blank
# pXC50 > 3
#dset_df = dset_df[dset_df.pXC50 >= 3.0]
curated_lst.append(curated_df)
prev_cmpd_cnt=shared_inchi_keys.nunique()
num_dropped=prev_cmpd_cnt-curated_df.shape[0]
print("After",curated_df.shape, "# of dropped compounds",num_dropped)
return curated_lst
def upload_df_excape_mleqonly(dset_name, title, description, tags,
functional_area,
target, target_type, activity, assay_category,data_df,smiles_fileID,
data_origin='journal', species='human',
force_update=False):
"""Uploads Excape mleqonly data to the datastore
Upload mleqonly to the datastore from the given DataFrame.
Returns the datastore OID of the uploaded dataset. The dataset is uploaded to the
public bucket and lists https://dx.doi.org/10.1186%2Fs13321-017-0203-5 as the doi.
This also assumes that the id_col is 'Original_Entry_ID', smiles_col is 'rdkit_smiles'
and response_col is 'VALUE_NUM_mean'.
Args:
dset_name (str): Name of the dataset. Should not include a file extension.
title (str): title of the file in (human friendly format)
description (str): long text box to describe file (background/use notes)
tags (list): Must be a list of strings.
functional_area (str): The functional area.
target (str): The target.
target_type (str): The target type of the dataset.
activity (str): The activity of the dataset.
assay_category (str): The assay category of the dataset.
data_df (DataFrame): DataFrame containing SMILES to be uploaded.
smiles_fileID (str): Source file id used to generate data_df.
data_origin (str): The origin of the dataset e.g. journal.
species (str): The species of the dataset e.g. human, rat, dog.
force_update (bool): Overwrite existing datasets in the datastore.
Returns:
str: datastore OID of the uploaded dataset.
"""
bucket = 'public'
#he6: this used to say _dtc_mleqonly.csv
filename = '%s_excape_mleqonly.csv' % dset_name
dataset_key = 'dskey_' + filename
kv = { 'file_category': 'experimental',
'activity': activity,
'assay_category': assay_category, ## seems like this should be called 'kinase_activity'
'assay_endpoint' : 'pic50',
'curation_level': 'ml_ready',
'data_origin' : data_origin,
'functional_area' : functional_area,
'matrix' : 'multiple values',
'journal_doi' : 'https://dx.doi.org/10.1186%2Fs13321-017-0203-5', # ExCAPE-DB
'sample_type' : 'in_vitro',
'species' : species,
'target' : target,
'target_type' : target_type,
'id_col' : 'Original_Entry_ID',
'response_col' : 'VALUE_NUM_mean',
'prediction_type' : 'regression',
'smiles_col' : 'rdkit_smiles',
'units' : 'unitless',
'source_file_id' : smiles_fileID
}
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
ds_client = dsf.config_client()
if force_update or not dsf.dataset_key_exists(dataset_key, bucket, ds_client):
uploaded_file = dsf.upload_df_to_DS(bucket=bucket, filename=filename,df=data_df, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
print("Uploaded raw dataset with key %s" % dataset_key)
else:
uploaded_file = dsf.retrieve_dataset_by_datasetkey(dataset_key, bucket, ds_client, return_metadata=True)
print("Raw dataset %s is already in datastore, skipping upload." % dataset_key)
raw_dset_oid = uploaded_file['dataset_oid']
return raw_dset_oid
def upload_df_excape_mleqonly_class(dset_name, title, description, tags,
functional_area,
target, target_type, activity, assay_category,data_df,mleqonly_fileID,
data_origin='journal', species='human',
force_update=False):
"""Uploads Excape mleqonly classification data to the datastore
data_df contains a binary classification dataset with 'active' and 'incative' classes.
Upload mleqonly classification to the datastore from the given DataFrame.
Returns the datastore OID of the uploaded dataset. The dataset is uploaded to the
public bucket and lists https://dx.doi.org/10.1186%2Fs13321-017-0203-5 as the doi.
This also assumes that the id_col is 'Original_Entry_ID', smiles_col is 'rdkit_smiles'
and response_col is 'binary_class'.
Args:
dset_name (str): Name of the dataset. Should not include a file extension.
title (str): title of the file in (human friendly format)
description (str): long text box to describe file (background/use notes)
tags (list): Must be a list of strings.
functional_area (str): The functional area.
target (str): The target.
target_type (str): The target type of the dataset.
activity (str): The activity of the dataset.
assay_category (str): The assay category of the dataset.
data_df (DataFrame): DataFrame containing SMILES to be uploaded.
mleqonly_fileID (str): Source file id used to generate data_df.
data_origin (str): The origin of the dataset e.g. journal.
species (str): The species of the dataset e.g. human, rat, dog.
force_update (bool): Overwrite existing datasets in the datastore.
Returns:
str: datastore OID of the uploaded dataset.
"""
bucket = 'public'
#he6: this used to say _dtc_mleqonly.csv
filename = '%s_excape_mleqonly_class.csv' % dset_name
dataset_key = 'dskey_' + filename
kv = { 'file_category': 'experimental',
'activity': activity,
'assay_category': assay_category, ## seems like this should be called 'kinase_activity'
'assay_endpoint' : 'pic50',
'curation_level': 'ml_ready',
'data_origin' : data_origin,
'functional_area' : functional_area,
'matrix' : 'multiple values',
'journal_doi' : 'https://dx.doi.org/10.1186%2Fs13321-017-0203-5', # ExCAPE-DB
'sample_type' : 'in_vitro',
'species' : species,
'target' : target,
'target_type' : target_type,
'id_col' : 'compound_id',
'response_col' : 'binary_class',
'prediction_type' : 'classification',
'num_classes' : 2,
'class_names' : ['inactive','active'],
'smiles_col' : 'rdkit_smiles',
'units' : 'unitless',
'source_file_id' : mleqonly_fileID
}
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
ds_client = dsf.config_client()
if force_update or not dsf.dataset_key_exists(dataset_key, bucket, ds_client):
uploaded_file = dsf.upload_df_to_DS(bucket=bucket, filename=filename,df=data_df, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
#uploaded_file = dsf.upload_file_to_DS(bucket=bucket, filepath=file_path, filename=filename, title = title, description=description, tags=tags, key_values=kv, client=None, dataset_key=dataset_key, override_check=False, return_metadata=True)
print("Uploaded raw dataset with key %s" % dataset_key)
else:
uploaded_file = dsf.retrieve_dataset_by_datasetkey(dataset_key, bucket, ds_client, return_metadata=True)
print("Raw dataset %s is already in datastore, skipping upload." % dataset_key)
raw_dset_oid = uploaded_file['dataset_oid']
return raw_dset_oid
|
[
"imp.reload",
"atomsci.ddm.utils.datastore_functions.dataset_key_exists",
"atomsci.ddm.utils.datastore_functions.upload_df_to_DS",
"atomsci.ddm.utils.datastore_functions.retrieve_dataset_by_datasetkey",
"atomsci.ddm.utils.datastore_functions.config_client",
"atomsci.ddm.utils.curate_data.average_and_remove_duplicates",
"atomsci.ddm.utils.datastore_functions.upload_file_to_DS",
"numpy.log10",
"pandas.concat"
] |
[((6452, 6471), 'atomsci.ddm.utils.datastore_functions.config_client', 'dsf.config_client', ([], {}), '()\n', (6469, 6471), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((11650, 11664), 'pandas.concat', 'pd.concat', (['lst'], {}), '(lst)\n', (11659, 11664), True, 'import pandas as pd\n'), ((14964, 14978), 'pandas.concat', 'pd.concat', (['lst'], {}), '(lst)\n', (14973, 14978), True, 'import pandas as pd\n'), ((18625, 18644), 'atomsci.ddm.utils.datastore_functions.config_client', 'dsf.config_client', ([], {}), '()\n', (18642, 18644), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((20383, 20406), 'imp.reload', 'imp.reload', (['curate_data'], {}), '(curate_data)\n', (20393, 20406), False, 'import atomsci.ddm.utils.curate_data as curate_data, imp\n'), ((24637, 24656), 'atomsci.ddm.utils.datastore_functions.config_client', 'dsf.config_client', ([], {}), '()\n', (24654, 24656), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((28558, 28577), 'atomsci.ddm.utils.datastore_functions.config_client', 'dsf.config_client', ([], {}), '()\n', (28575, 28577), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((31940, 31959), 'atomsci.ddm.utils.datastore_functions.config_client', 'dsf.config_client', ([], {}), '()\n', (31957, 31959), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((35557, 35576), 'atomsci.ddm.utils.datastore_functions.config_client', 'dsf.config_client', ([], {}), '()\n', (35574, 35576), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((39610, 39629), 'atomsci.ddm.utils.datastore_functions.config_client', 'dsf.config_client', ([], {}), '()\n', (39627, 39629), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((43347, 43366), 'atomsci.ddm.utils.datastore_functions.config_client', 'dsf.config_client', ([], {}), '()\n', (43364, 43366), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((49100, 49119), 'atomsci.ddm.utils.datastore_functions.config_client', 'dsf.config_client', ([], {}), '()\n', (49117, 49119), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((50787, 50810), 'imp.reload', 'imp.reload', (['curate_data'], {}), '(curate_data)\n', (50797, 50810), False, 'import atomsci.ddm.utils.curate_data as curate_data, imp\n'), ((55183, 55202), 'atomsci.ddm.utils.datastore_functions.config_client', 'dsf.config_client', ([], {}), '()\n', (55200, 55202), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((59312, 59331), 'atomsci.ddm.utils.datastore_functions.config_client', 'dsf.config_client', ([], {}), '()\n', (59329, 59331), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((6925, 7155), 'atomsci.ddm.utils.datastore_functions.upload_file_to_DS', 'dsf.upload_file_to_DS', ([], {'bucket': 'bucket', 'filepath': 'file_path', 'filename': 'filename', 'title': 'title', 'description': 'description', 'tags': 'tags', 'key_values': 'kv', 'client': 'None', 'dataset_key': 'dataset_key', 'override_check': '(False)', 'return_metadata': '(True)'}), '(bucket=bucket, filepath=file_path, filename=filename,\n title=title, description=description, tags=tags, key_values=kv, client=\n None, dataset_key=dataset_key, override_check=False, return_metadata=True)\n', (6946, 7155), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((7272, 7364), 'atomsci.ddm.utils.datastore_functions.retrieve_dataset_by_datasetkey', 'dsf.retrieve_dataset_by_datasetkey', (['dataset_key', 'bucket', 'ds_client'], {'return_metadata': '(True)'}), '(dataset_key, bucket, ds_client,\n return_metadata=True)\n', (7306, 7364), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((9128, 9154), 'numpy.log10', 'np.log10', (['(x / 1000000000.0)'], {}), '(x / 1000000000.0)\n', (9136, 9154), True, 'import numpy as np\n'), ((18752, 18974), 'atomsci.ddm.utils.datastore_functions.upload_df_to_DS', 'dsf.upload_df_to_DS', ([], {'bucket': 'bucket', 'filename': 'filename', 'df': 'smiles_df', 'title': 'title', 'description': 'description', 'tags': 'tags', 'key_values': 'kv', 'client': 'None', 'dataset_key': 'dataset_key', 'override_check': '(False)', 'return_metadata': '(True)'}), '(bucket=bucket, filename=filename, df=smiles_df, title=\n title, description=description, tags=tags, key_values=kv, client=None,\n dataset_key=dataset_key, override_check=False, return_metadata=True)\n', (18771, 18974), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((19323, 19415), 'atomsci.ddm.utils.datastore_functions.retrieve_dataset_by_datasetkey', 'dsf.retrieve_dataset_by_datasetkey', (['dataset_key', 'bucket', 'ds_client'], {'return_metadata': '(True)'}), '(dataset_key, bucket, ds_client,\n return_metadata=True)\n', (19357, 19415), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((20931, 21096), 'atomsci.ddm.utils.curate_data.average_and_remove_duplicates', 'curate_data.average_and_remove_duplicates', (['column', 'tolerance', 'list_bad_duplicates', 'data', 'max_std'], {'compound_id': '"""standard_inchi_key"""', 'smiles_col': '"""rdkit_smiles"""'}), "(column, tolerance,\n list_bad_duplicates, data, max_std, compound_id='standard_inchi_key',\n smiles_col='rdkit_smiles')\n", (20972, 21096), True, 'import atomsci.ddm.utils.curate_data as curate_data, imp\n'), ((24764, 24984), 'atomsci.ddm.utils.datastore_functions.upload_df_to_DS', 'dsf.upload_df_to_DS', ([], {'bucket': 'bucket', 'filename': 'filename', 'df': 'data_df', 'title': 'title', 'description': 'description', 'tags': 'tags', 'key_values': 'kv', 'client': 'None', 'dataset_key': 'dataset_key', 'override_check': '(False)', 'return_metadata': '(True)'}), '(bucket=bucket, filename=filename, df=data_df, title=\n title, description=description, tags=tags, key_values=kv, client=None,\n dataset_key=dataset_key, override_check=False, return_metadata=True)\n', (24783, 24984), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((25334, 25426), 'atomsci.ddm.utils.datastore_functions.retrieve_dataset_by_datasetkey', 'dsf.retrieve_dataset_by_datasetkey', (['dataset_key', 'bucket', 'ds_client'], {'return_metadata': '(True)'}), '(dataset_key, bucket, ds_client,\n return_metadata=True)\n', (25368, 25426), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((28685, 28905), 'atomsci.ddm.utils.datastore_functions.upload_df_to_DS', 'dsf.upload_df_to_DS', ([], {'bucket': 'bucket', 'filename': 'filename', 'df': 'data_df', 'title': 'title', 'description': 'description', 'tags': 'tags', 'key_values': 'kv', 'client': 'None', 'dataset_key': 'dataset_key', 'override_check': '(False)', 'return_metadata': '(True)'}), '(bucket=bucket, filename=filename, df=data_df, title=\n title, description=description, tags=tags, key_values=kv, client=None,\n dataset_key=dataset_key, override_check=False, return_metadata=True)\n', (28704, 28905), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((28997, 29089), 'atomsci.ddm.utils.datastore_functions.retrieve_dataset_by_datasetkey', 'dsf.retrieve_dataset_by_datasetkey', (['dataset_key', 'bucket', 'ds_client'], {'return_metadata': '(True)'}), '(dataset_key, bucket, ds_client,\n return_metadata=True)\n', (29031, 29089), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((32067, 32287), 'atomsci.ddm.utils.datastore_functions.upload_df_to_DS', 'dsf.upload_df_to_DS', ([], {'bucket': 'bucket', 'filename': 'filename', 'df': 'data_df', 'title': 'title', 'description': 'description', 'tags': 'tags', 'key_values': 'kv', 'client': 'None', 'dataset_key': 'dataset_key', 'override_check': '(False)', 'return_metadata': '(True)'}), '(bucket=bucket, filename=filename, df=data_df, title=\n title, description=description, tags=tags, key_values=kv, client=None,\n dataset_key=dataset_key, override_check=False, return_metadata=True)\n', (32086, 32287), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((32379, 32471), 'atomsci.ddm.utils.datastore_functions.retrieve_dataset_by_datasetkey', 'dsf.retrieve_dataset_by_datasetkey', (['dataset_key', 'bucket', 'ds_client'], {'return_metadata': '(True)'}), '(dataset_key, bucket, ds_client,\n return_metadata=True)\n', (32413, 32471), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((35923, 36153), 'atomsci.ddm.utils.datastore_functions.upload_file_to_DS', 'dsf.upload_file_to_DS', ([], {'bucket': 'bucket', 'filepath': 'file_path', 'filename': 'filename', 'title': 'title', 'description': 'description', 'tags': 'tags', 'key_values': 'kv', 'client': 'None', 'dataset_key': 'dataset_key', 'override_check': '(False)', 'return_metadata': '(True)'}), '(bucket=bucket, filepath=file_path, filename=filename,\n title=title, description=description, tags=tags, key_values=kv, client=\n None, dataset_key=dataset_key, override_check=False, return_metadata=True)\n', (35944, 36153), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((36254, 36346), 'atomsci.ddm.utils.datastore_functions.retrieve_dataset_by_datasetkey', 'dsf.retrieve_dataset_by_datasetkey', (['dataset_key', 'bucket', 'ds_client'], {'return_metadata': '(True)'}), '(dataset_key, bucket, ds_client,\n return_metadata=True)\n', (36288, 36346), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((39737, 39957), 'atomsci.ddm.utils.datastore_functions.upload_df_to_DS', 'dsf.upload_df_to_DS', ([], {'bucket': 'bucket', 'filename': 'filename', 'df': 'data_df', 'title': 'title', 'description': 'description', 'tags': 'tags', 'key_values': 'kv', 'client': 'None', 'dataset_key': 'dataset_key', 'override_check': '(False)', 'return_metadata': '(True)'}), '(bucket=bucket, filename=filename, df=data_df, title=\n title, description=description, tags=tags, key_values=kv, client=None,\n dataset_key=dataset_key, override_check=False, return_metadata=True)\n', (39756, 39957), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((40307, 40399), 'atomsci.ddm.utils.datastore_functions.retrieve_dataset_by_datasetkey', 'dsf.retrieve_dataset_by_datasetkey', (['dataset_key', 'bucket', 'ds_client'], {'return_metadata': '(True)'}), '(dataset_key, bucket, ds_client,\n return_metadata=True)\n', (40341, 40399), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((43820, 44050), 'atomsci.ddm.utils.datastore_functions.upload_file_to_DS', 'dsf.upload_file_to_DS', ([], {'bucket': 'bucket', 'filepath': 'file_path', 'filename': 'filename', 'title': 'title', 'description': 'description', 'tags': 'tags', 'key_values': 'kv', 'client': 'None', 'dataset_key': 'dataset_key', 'override_check': '(False)', 'return_metadata': '(True)'}), '(bucket=bucket, filepath=file_path, filename=filename,\n title=title, description=description, tags=tags, key_values=kv, client=\n None, dataset_key=dataset_key, override_check=False, return_metadata=True)\n', (43841, 44050), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((44151, 44243), 'atomsci.ddm.utils.datastore_functions.retrieve_dataset_by_datasetkey', 'dsf.retrieve_dataset_by_datasetkey', (['dataset_key', 'bucket', 'ds_client'], {'return_metadata': '(True)'}), '(dataset_key, bucket, ds_client,\n return_metadata=True)\n', (44185, 44243), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((49227, 49449), 'atomsci.ddm.utils.datastore_functions.upload_df_to_DS', 'dsf.upload_df_to_DS', ([], {'bucket': 'bucket', 'filename': 'filename', 'df': 'smiles_df', 'title': 'title', 'description': 'description', 'tags': 'tags', 'key_values': 'kv', 'client': 'None', 'dataset_key': 'dataset_key', 'override_check': '(False)', 'return_metadata': '(True)'}), '(bucket=bucket, filename=filename, df=smiles_df, title=\n title, description=description, tags=tags, key_values=kv, client=None,\n dataset_key=dataset_key, override_check=False, return_metadata=True)\n', (49246, 49449), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((49798, 49890), 'atomsci.ddm.utils.datastore_functions.retrieve_dataset_by_datasetkey', 'dsf.retrieve_dataset_by_datasetkey', (['dataset_key', 'bucket', 'ds_client'], {'return_metadata': '(True)'}), '(dataset_key, bucket, ds_client,\n return_metadata=True)\n', (49832, 49890), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((51316, 51481), 'atomsci.ddm.utils.curate_data.average_and_remove_duplicates', 'curate_data.average_and_remove_duplicates', (['column', 'tolerance', 'list_bad_duplicates', 'data', 'max_std'], {'compound_id': '"""standard_inchi_key"""', 'smiles_col': '"""rdkit_smiles"""'}), "(column, tolerance,\n list_bad_duplicates, data, max_std, compound_id='standard_inchi_key',\n smiles_col='rdkit_smiles')\n", (51357, 51481), True, 'import atomsci.ddm.utils.curate_data as curate_data, imp\n'), ((55310, 55530), 'atomsci.ddm.utils.datastore_functions.upload_df_to_DS', 'dsf.upload_df_to_DS', ([], {'bucket': 'bucket', 'filename': 'filename', 'df': 'data_df', 'title': 'title', 'description': 'description', 'tags': 'tags', 'key_values': 'kv', 'client': 'None', 'dataset_key': 'dataset_key', 'override_check': '(False)', 'return_metadata': '(True)'}), '(bucket=bucket, filename=filename, df=data_df, title=\n title, description=description, tags=tags, key_values=kv, client=None,\n dataset_key=dataset_key, override_check=False, return_metadata=True)\n', (55329, 55530), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((55880, 55972), 'atomsci.ddm.utils.datastore_functions.retrieve_dataset_by_datasetkey', 'dsf.retrieve_dataset_by_datasetkey', (['dataset_key', 'bucket', 'ds_client'], {'return_metadata': '(True)'}), '(dataset_key, bucket, ds_client,\n return_metadata=True)\n', (55914, 55972), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((59439, 59659), 'atomsci.ddm.utils.datastore_functions.upload_df_to_DS', 'dsf.upload_df_to_DS', ([], {'bucket': 'bucket', 'filename': 'filename', 'df': 'data_df', 'title': 'title', 'description': 'description', 'tags': 'tags', 'key_values': 'kv', 'client': 'None', 'dataset_key': 'dataset_key', 'override_check': '(False)', 'return_metadata': '(True)'}), '(bucket=bucket, filename=filename, df=data_df, title=\n title, description=description, tags=tags, key_values=kv, client=None,\n dataset_key=dataset_key, override_check=False, return_metadata=True)\n', (59458, 59659), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((60009, 60101), 'atomsci.ddm.utils.datastore_functions.retrieve_dataset_by_datasetkey', 'dsf.retrieve_dataset_by_datasetkey', (['dataset_key', 'bucket', 'ds_client'], {'return_metadata': '(True)'}), '(dataset_key, bucket, ds_client,\n return_metadata=True)\n', (60043, 60101), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((6499, 6553), 'atomsci.ddm.utils.datastore_functions.dataset_key_exists', 'dsf.dataset_key_exists', (['dataset_key', 'bucket', 'ds_client'], {}), '(dataset_key, bucket, ds_client)\n', (6521, 6553), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((18672, 18726), 'atomsci.ddm.utils.datastore_functions.dataset_key_exists', 'dsf.dataset_key_exists', (['dataset_key', 'bucket', 'ds_client'], {}), '(dataset_key, bucket, ds_client)\n', (18694, 18726), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((24684, 24738), 'atomsci.ddm.utils.datastore_functions.dataset_key_exists', 'dsf.dataset_key_exists', (['dataset_key', 'bucket', 'ds_client'], {}), '(dataset_key, bucket, ds_client)\n', (24706, 24738), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((28605, 28659), 'atomsci.ddm.utils.datastore_functions.dataset_key_exists', 'dsf.dataset_key_exists', (['dataset_key', 'bucket', 'ds_client'], {}), '(dataset_key, bucket, ds_client)\n', (28627, 28659), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((31987, 32041), 'atomsci.ddm.utils.datastore_functions.dataset_key_exists', 'dsf.dataset_key_exists', (['dataset_key', 'bucket', 'ds_client'], {}), '(dataset_key, bucket, ds_client)\n', (32009, 32041), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((35604, 35658), 'atomsci.ddm.utils.datastore_functions.dataset_key_exists', 'dsf.dataset_key_exists', (['dataset_key', 'bucket', 'ds_client'], {}), '(dataset_key, bucket, ds_client)\n', (35626, 35658), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((39657, 39711), 'atomsci.ddm.utils.datastore_functions.dataset_key_exists', 'dsf.dataset_key_exists', (['dataset_key', 'bucket', 'ds_client'], {}), '(dataset_key, bucket, ds_client)\n', (39679, 39711), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((43394, 43448), 'atomsci.ddm.utils.datastore_functions.dataset_key_exists', 'dsf.dataset_key_exists', (['dataset_key', 'bucket', 'ds_client'], {}), '(dataset_key, bucket, ds_client)\n', (43416, 43448), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((49147, 49201), 'atomsci.ddm.utils.datastore_functions.dataset_key_exists', 'dsf.dataset_key_exists', (['dataset_key', 'bucket', 'ds_client'], {}), '(dataset_key, bucket, ds_client)\n', (49169, 49201), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((55230, 55284), 'atomsci.ddm.utils.datastore_functions.dataset_key_exists', 'dsf.dataset_key_exists', (['dataset_key', 'bucket', 'ds_client'], {}), '(dataset_key, bucket, ds_client)\n', (55252, 55284), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n'), ((59359, 59413), 'atomsci.ddm.utils.datastore_functions.dataset_key_exists', 'dsf.dataset_key_exists', (['dataset_key', 'bucket', 'ds_client'], {}), '(dataset_key, bucket, ds_client)\n', (59381, 59413), True, 'import atomsci.ddm.utils.datastore_functions as dsf\n')]
|
# Licensed under an MIT style license -- see LICENSE.md
import numpy as np
import os
from pesummary.core.file.formats.base_read import (
Read, SingleAnalysisRead, MultiAnalysisRead
)
__author__ = ["<NAME> <<EMAIL>>"]
class SingleAnalysisDefault(SingleAnalysisRead):
"""Class to handle result files which only contain a single analysis
Parameters
----------
path_to_results_file: str
path to the results file you wish to load
Attributes
----------
parameters: list
list of parameters stored in the result file
samples: 2d list
list of samples stored in the result file
samples_dict: dict
dictionary of samples stored in the result file keyed by parameters
input_version: str
version of the result file passed.
extra_kwargs: dict
dictionary of kwargs that were extracted from the result file
injection_parameters: dict
dictionary of injection parameters extracted from the result file
pe_algorithm: str
name of the algorithm used to generate the posterior samples
Methods
-------
to_dat:
save the posterior samples to a .dat file
to_latex_table:
convert the posterior samples to a latex table
generate_latex_macros:
generate a set of latex macros for the stored posterior samples
"""
def __init__(self, *args, _data=None, **kwargs):
super(SingleAnalysisDefault, self).__init__(*args, **kwargs)
if _data is not None:
self.load(None, _data=_data, **kwargs)
class MultiAnalysisDefault(MultiAnalysisRead):
"""Class to handle result files which contain multiple analyses
Parameters
----------
path_to_results_file: str
path to the results file you wish to load
Attributes
----------
parameters: 2d list
list of parameters stored in the result file for each analyses
samples: 2d list
list of samples stored in the result file for each analyses
samples_dict: dict
dictionary of samples stored in the result file keyed by analysis label
input_version: str
version of the result file passed.
extra_kwargs: dict
dictionary of kwargs that were extracted from the result file
injection_parameters: dict
dictionary of injection parameters extracted from the result file
Methods
-------
to_dat:
save the posterior samples to a .dat file
to_latex_table:
convert the posterior samples to a latex table
generate_latex_macros:
generate a set of latex macros for the stored posterior samples
"""
def __init__(self, *args, _data=None, **kwargs):
super(MultiAnalysisDefault, self).__init__(*args, **kwargs)
if _data is not None:
self.load(None, _data=_data, **kwargs)
class Default(object):
"""Class to handle the default loading options.
Attributes
----------
path_to_results_file: str
path to the results file you wish to load
Attributes
----------
parameters: list
list of parameters stored in the result file
samples: 2d list
list of samples stored in the result file
samples_dict: dict
dictionary of samples stored in the result file keyed by parameters
input_version: str
version of the result file passed.
extra_kwargs: dict
dictionary of kwargs that were extracted from the result file
injection_parameters: dict
dictionary of injection parameters extracted from the result file
Methods
-------
to_dat:
save the posterior samples to a .dat file
to_latex_table:
convert the posterior samples to a latex table
generate_latex_macros:
generate a set of latex macros for the stored posterior samples
"""
def load_map(self):
return {
"json": self._grab_data_from_json_file,
"dat": self._grab_data_from_dat_file,
"txt": self._grab_data_from_dat_file,
"csv": self._grab_data_from_csv_file,
"hdf5": self._grab_data_from_hdf5_file,
"h5": self._grab_data_from_hdf5_file,
"hdf": self._grab_data_from_hdf5_file,
"db": self._grab_data_from_sql_database,
"sql": self._grab_data_from_sql_database,
"prior": self._grab_data_from_prior_file,
"npy": self._grab_data_from_numpy_file
}
def __new__(
self, path_to_results_file, _single_default=SingleAnalysisDefault,
_multi_default=MultiAnalysisDefault, **kwargs
):
self.module = "core"
self.extension = Read.extension_from_path(path_to_results_file)
self.load_function = self.load_map(self)[self.extension]
try:
self._load_data = self.load_function(path_to_results_file, **kwargs)
except Exception as e:
raise Exception(
"Failed to read data for file %s because: %s" % (
path_to_results_file, e
)
)
if np.array(self._load_data["parameters"]).ndim > 1:
return _multi_default(
path_to_results_file, _data=self._load_data, **kwargs
)
else:
return _single_default(
path_to_results_file, _data=self._load_data, **kwargs
)
@classmethod
def load_file(cls, path, **kwargs):
if not os.path.isfile(path):
raise FileNotFoundError("%s does not exist" % (path))
return cls(path, **kwargs)
@staticmethod
def _default_injection(parameters):
"""Return a dictionary of nan's for each parameter
Parameters
----------
parameters: tuple/list
list of parameters you wish to have null injections for
"""
return {i: float("nan") for i in parameters}
@staticmethod
def _grab_data_from_dat_file(path, **kwargs):
"""Grab the data stored in a .dat file
"""
from pesummary.core.file.formats.dat import read_dat
parameters, samples = read_dat(path)
return {
"parameters": parameters, "samples": samples,
"injection": Default._default_injection(parameters)
}
@staticmethod
def _grab_data_from_numpy_file(path, **kwargs):
"""Grab the data stored in a .npy file
"""
from pesummary.core.file.formats.numpy import read_numpy
parameters, samples = read_numpy(path)
return {
"parameters": parameters, "samples": samples,
"injection": Default._default_injection(parameters)
}
@staticmethod
def _grab_data_from_csv_file(path, **kwargs):
"""Grab the data stored in a .csv file
"""
from pesummary.core.file.formats.csv import read_csv
parameters, samples = read_csv(path)
return {
"parameters": parameters, "samples": samples,
"injection": Default._default_injection(parameters)
}
@staticmethod
def _grab_data_from_prior_file(path, module="core", **kwargs):
"""Grab the data stored in a .prior file
"""
import importlib
module = importlib.import_module(
"pesummary.{}.file.formats.bilby".format(module)
)
func = getattr(module, "prior_samples_from_file")
samples = func(path, **kwargs)
parameters = samples.parameters
analytic = samples.analytic
return {
"parameters": parameters, "samples": samples.samples.T.tolist(),
"injection": Default._default_injection(parameters),
"analytic": analytic
}
@staticmethod
def _grab_data_from_sql_database(path, **kwargs):
"""Grab the data stored in a sql database
"""
from pesummary.core.file.formats.sql import read_sql
parameters, samples, labels = read_sql(path, **kwargs)
if len(labels) > 1:
injection = {
label: Default._default_injection(parameters[num]) for num, label
in enumerate(labels)
}
else:
injection = Default._default_injection(parameters)
return {
"parameters": parameters, "samples": samples, "injection": injection,
"labels": labels
}
@staticmethod
def _grab_data_from_json_file(path, path_to_samples=None, **kwargs):
"""Grab the data stored in a .json file
"""
from pesummary.core.file.formats.json import read_json
parameters, samples = read_json(path, path_to_samples=path_to_samples)
return {
"parameters": parameters, "samples": samples,
"injection": Default._default_injection(parameters)
}
@staticmethod
def _grab_data_from_hdf5_file(
path, remove_params=[], path_to_samples=None, **kwargs
):
"""Grab the data stored in an hdf5 file
"""
from pesummary.core.file.formats.hdf5 import read_hdf5
parameters, samples = read_hdf5(
path, remove_params=remove_params, path_to_samples=path_to_samples
)
return {
"parameters": parameters, "samples": samples,
"injection": Default._default_injection(parameters)
}
def add_marginalized_parameters_from_config_file(self, config_file):
"""Search the configuration file and add the marginalized parameters
to the list of parameters and samples
Parameters
----------
config_file: str
path to the configuration file
"""
pass
|
[
"pesummary.core.file.formats.csv.read_csv",
"pesummary.core.file.formats.numpy.read_numpy",
"pesummary.core.file.formats.sql.read_sql",
"pesummary.core.file.formats.hdf5.read_hdf5",
"os.path.isfile",
"numpy.array",
"pesummary.core.file.formats.base_read.Read.extension_from_path",
"pesummary.core.file.formats.json.read_json",
"pesummary.core.file.formats.dat.read_dat"
] |
[((4663, 4709), 'pesummary.core.file.formats.base_read.Read.extension_from_path', 'Read.extension_from_path', (['path_to_results_file'], {}), '(path_to_results_file)\n', (4687, 4709), False, 'from pesummary.core.file.formats.base_read import Read, SingleAnalysisRead, MultiAnalysisRead\n'), ((6122, 6136), 'pesummary.core.file.formats.dat.read_dat', 'read_dat', (['path'], {}), '(path)\n', (6130, 6136), False, 'from pesummary.core.file.formats.dat import read_dat\n'), ((6512, 6528), 'pesummary.core.file.formats.numpy.read_numpy', 'read_numpy', (['path'], {}), '(path)\n', (6522, 6528), False, 'from pesummary.core.file.formats.numpy import read_numpy\n'), ((6898, 6912), 'pesummary.core.file.formats.csv.read_csv', 'read_csv', (['path'], {}), '(path)\n', (6906, 6912), False, 'from pesummary.core.file.formats.csv import read_csv\n'), ((7959, 7983), 'pesummary.core.file.formats.sql.read_sql', 'read_sql', (['path'], {}), '(path, **kwargs)\n', (7967, 7983), False, 'from pesummary.core.file.formats.sql import read_sql\n'), ((8632, 8680), 'pesummary.core.file.formats.json.read_json', 'read_json', (['path'], {'path_to_samples': 'path_to_samples'}), '(path, path_to_samples=path_to_samples)\n', (8641, 8680), False, 'from pesummary.core.file.formats.json import read_json\n'), ((9108, 9185), 'pesummary.core.file.formats.hdf5.read_hdf5', 'read_hdf5', (['path'], {'remove_params': 'remove_params', 'path_to_samples': 'path_to_samples'}), '(path, remove_params=remove_params, path_to_samples=path_to_samples)\n', (9117, 9185), False, 'from pesummary.core.file.formats.hdf5 import read_hdf5\n'), ((5458, 5478), 'os.path.isfile', 'os.path.isfile', (['path'], {}), '(path)\n', (5472, 5478), False, 'import os\n'), ((5082, 5121), 'numpy.array', 'np.array', (["self._load_data['parameters']"], {}), "(self._load_data['parameters'])\n", (5090, 5121), True, 'import numpy as np\n')]
|
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import sys, os
sys.path.append(os.path.dirname(os.path.dirname(sys.path[0])))
sys.path.insert(0,'third_party')
sys.path.insert(0,'./')
import torch
import torch.nn as nn
from torch.autograd import Variable
from ext_utils.badja_data import BADJAData
from ext_utils.joint_catalog import SMALJointInfo
import ext_utils.flowlib as flowlib
import matplotlib.pyplot as plt
import numpy as np
import torch
import cv2
import pdb
import soft_renderer as sr
import argparse
import trimesh
from nnutils.geom_utils import obj_to_cam, pinhole_cam, orthographic_cam, render_flow_soft_3
parser = argparse.ArgumentParser(description='BADJA')
parser.add_argument('--testdir', default='',
help='path to test dir')
parser.add_argument('--seqname', default='camel',
help='sequence to test')
parser.add_argument('--type', default='mesh',
help='load mesh data or flow or zero')
parser.add_argument('--cam_type', default='perspective',
help='camera model, orthographic or perspective')
parser.add_argument('--vis', dest='vis', action='store_true',
help='whether to draw visualization')
args = parser.parse_args()
renderer_softflf = sr.SoftRenderer(image_size=256,dist_func='hard' ,aggr_func_alpha='hard',
camera_mode='look_at',perspective=False, aggr_func_rgb='hard',
light_mode='vertex', light_intensity_ambient=1.,light_intensity_directionals=0.)
def process_flow(model, imgL_o,imgR_o, mean_L, mean_R):
testres=1
# for gray input images
if len(imgL_o.shape) == 2:
imgL_o = np.tile(imgL_o[:,:,np.newaxis],(1,1,3))
imgR_o = np.tile(imgR_o[:,:,np.newaxis],(1,1,3))
# resize
maxh = imgL_o.shape[0]*testres
maxw = imgL_o.shape[1]*testres
max_h = int(maxh // 64 * 64)
max_w = int(maxw // 64 * 64)
if max_h < maxh: max_h += 64
if max_w < maxw: max_w += 64
input_size = imgL_o.shape
imgL = cv2.resize(imgL_o,(max_w, max_h))
imgR = cv2.resize(imgR_o,(max_w, max_h))
imgL_noaug = torch.Tensor(imgL/255.)[np.newaxis].float().cuda()
# flip channel, subtract mean
imgL = imgL[:,:,::-1].copy() / 255. - np.asarray(mean_L).mean(0)[np.newaxis,np.newaxis,:]
imgR = imgR[:,:,::-1].copy() / 255. - np.asarray(mean_R).mean(0)[np.newaxis,np.newaxis,:]
imgL = np.transpose(imgL, [2,0,1])[np.newaxis]
imgR = np.transpose(imgR, [2,0,1])[np.newaxis]
# modify module according to inputs
from models.VCN_exp import WarpModule, flow_reg
for i in range(len(model.module.reg_modules)):
model.module.reg_modules[i] = flow_reg([1,max_w//(2**(6-i)), max_h//(2**(6-i))],
ent=getattr(model.module, 'flow_reg%d'%2**(6-i)).ent,\
maxdisp=getattr(model.module, 'flow_reg%d'%2**(6-i)).md,\
fac=getattr(model.module, 'flow_reg%d'%2**(6-i)).fac).cuda()
for i in range(len(model.module.warp_modules)):
model.module.warp_modules[i] = WarpModule([1,max_w//(2**(6-i)), max_h//(2**(6-i))]).cuda()
# get intrinsics
intr_list = [torch.Tensor(inxx).cuda() for inxx in [[1],[1],[1],[1],[1],[0],[0],[1],[0],[0]]]
fl_next = 1
intr_list.append(torch.Tensor([fl_next]).cuda())
disc_aux = [None,None,None,intr_list,imgL_noaug,None]
# forward
imgL = Variable(torch.FloatTensor(imgL).cuda())
imgR = Variable(torch.FloatTensor(imgR).cuda())
with torch.no_grad():
imgLR = torch.cat([imgL,imgR],0)
model.eval()
torch.cuda.synchronize()
start_time = time.time()
rts = model(imgLR, disc_aux)
torch.cuda.synchronize()
ttime = (time.time() - start_time); print('time = %.2f' % (ttime*1000) )
flow, logmid, occ, biseg, objseg = rts
# upsampling
flow = torch.squeeze(flow).data.cpu().numpy()
flow = np.concatenate( [cv2.resize(flow[0],(input_size[1],input_size[0]))[:,:,np.newaxis],
cv2.resize(flow[1],(input_size[1],input_size[0]))[:,:,np.newaxis]],-1)
flow[:,:,0] *= imgL_o.shape[1] / max_w
flow[:,:,1] *= imgL_o.shape[0] / max_h
flow = np.concatenate( (flow, np.ones([flow.shape[0],flow.shape[1],1])),-1)
torch.cuda.empty_cache()
flow = torch.Tensor(flow).cuda()[None]
return flow
def preprocess_image(img,mask,imgsize):
if len(img.shape) == 2:
img = np.repeat(np.expand_dims(img, 2), 3, axis=2)
mask = mask[:,:,:1]
# crop box
indices = np.where(mask>0); xid = indices[1]; yid = indices[0]
center = ( (xid.max()+xid.min())//2, (yid.max()+yid.min())//2)
length = ( (xid.max()-xid.min())//2, (yid.max()-yid.min())//2)
maxlength = int(1.2*max(length))
length = (maxlength,maxlength)
alp = 2*length[0]/float(imgsize)
refpp = np.asarray(center)/(imgsize/2.) - 1
return alp, refpp,center,length[0]
def draw_joints_on_image(rgb_img, joints, visibility, region_colors, marker_types,pred=None,correct=None):
joints = joints[:, ::-1] # OpenCV works in (x, y) rather than (i, j)
disp_img = rgb_img.copy()
i=0
for joint_coord, visible, color, marker_type in zip(joints, visibility, region_colors, marker_types):
if visible:
joint_coord = joint_coord.astype(int)
cv2.circle(disp_img, tuple(joint_coord), radius=3, color=[255,0,0], thickness = 10)
if pred is not None:
if correct[i]:
color=[0,255,0]
else:
color=[0,0,255]
error = np.linalg.norm(joint_coord - pred[i,::-1],2,-1)
cv2.circle(disp_img, tuple(joint_coord), radius=int(error), color=color, thickness = 3)
cv2.line(disp_img, tuple(joint_coord), tuple(pred[i,::-1]),color , thickness = 3)
i+=1
return disp_img
def main():
smal_joint_info = SMALJointInfo()
badja_data = BADJAData(args.seqname)
data_loader = badja_data.get_loader()
print(args.testdir)
# store all the data
all_anno = []
all_mesh = []
all_cam = []
all_fr = []
all_fl = []
#import pdb; pdb.set_trace()
for anno in data_loader:
all_anno.append(anno)
rgb_img, sil_img, joints, visible, name = anno
seqname = name.split('/')[-2]
fr = int(name.split('/')[-1].split('.')[-2])
all_fr.append(fr)
print('%s/%d'%(seqname, fr))
# load mesh data or flow
if args.type=='mesh':
mesh = trimesh.load('%s/pred%d.ply'%(args.testdir, fr),process=False)
all_mesh.append(mesh)
cam = np.loadtxt('%s/cam%d.txt'%(args.testdir,fr))
all_cam.append(cam)
if args.type=='flow':
from models.VCN_exp import VCN
model = VCN([1, 256, 256], md=[int(4*(256/256)),4,4,4,4], fac=1)
model = nn.DataParallel(model, device_ids=[0])
model.cuda()
pretrained_dict = torch.load('/data/gengshay/vcn_weights/robexp.pth',map_location='cpu')
mean_L=pretrained_dict['mean_L']
mean_R=pretrained_dict['mean_R']
model.load_state_dict(pretrained_dict['state_dict'],strict=False)
# store all the results
pck_all = []
for i in range(len(all_anno)):
for j in range(len(all_anno)):
if i!=j:
# evaluate every two-frame
refimg, refsil, refkp, refvis, refname = all_anno[i]
tarimg, tarsil, tarkp, tarvis, tarname = all_anno[j]
print('%s vs %s'%(refname, tarname))
if args.type=='mesh':
refmesh, tarmesh = all_mesh[i], all_mesh[j]
refcam, tarcam = all_cam[i], all_cam[j]
img_size = max(refimg.shape)
renderer_softflf.rasterizer.image_size = img_size
# render flow between mesh 1 and 2
refface = torch.Tensor(refmesh.faces[None]).cuda()
verts = torch.Tensor(np.concatenate([refmesh.vertices[None], tarmesh.vertices[None]],0)).cuda()
Rmat = torch.Tensor(np.concatenate([refcam[None,:3,:3], tarcam[None,:3,:3]], 0)).cuda()
Tmat = torch.Tensor(np.concatenate([refcam[None,:3,3], tarcam[None,:3,3]], 0)).cuda()
ppoint = torch.Tensor(np.concatenate([refcam[None,3,2:], tarcam[None,3,2:]], 0)).cuda()
scale = torch.Tensor(np.concatenate([refcam[None,3,:1], tarcam[None,3,:1]], 0)).cuda()
scale = scale/img_size*2
ppoint = ppoint/img_size * 2 -1
verts_fl = obj_to_cam(verts, Rmat, Tmat[:,None],nmesh=1,n_hypo=1,skin=None)
verts_fl = torch.cat([verts_fl,torch.ones_like(verts_fl[:, :, 0:1])], dim=-1)
verts_pos = verts_fl.clone()
verts_fl = pinhole_cam(verts_fl, ppoint, scale)
flow_fw, bgmask_fw, fgmask_flowf = render_flow_soft_3(renderer_softflf, verts_fl[:1], verts_fl[1:], refface)
flow_fw[bgmask_fw]=0.
flow_fw = torch.cat([flow_fw, torch.zeros_like(flow_fw)[:,:,:,:1]],-1)[:,:refimg.shape[0],:refimg.shape[1]]
elif args.type=='flow':
flow_fw = process_flow(model, refimg, tarimg, mean_L, mean_R)
flow_fw = (flow_fw)/(refimg.shape[0]/2.)
elif args.type=='zero':
flow_fw = torch.zeros(refimg.shape).cuda()[None]
refkpx = torch.Tensor(refkp.astype(float)).cuda()
x0,y0=np.meshgrid(range(refimg.shape[1]),range(refimg.shape[0]))
x0 = torch.Tensor(x0).cuda()
y0 = torch.Tensor(y0).cuda()
idx = ( (flow_fw[:,:,:,:2].norm(2,-1)<1e-6).float().view(1,-1)*1e6+ torch.pow(refkpx[:,0:1]-y0.view(1,-1),2) + torch.pow(refkpx[:,1:2]-x0.view(1,-1),2)).argmin(-1)
samp_flow = flow_fw.view(-1,3)[idx][:,:2]
tarkp_pred = refkpx.clone()
tarkp_pred[:,0] = tarkp_pred[:,0] +(samp_flow[:,1])*refimg.shape[0]/2
tarkp_pred[:,1] = tarkp_pred[:,1] +(samp_flow[:,0])*refimg.shape[1]/2
tarkp_pred = np.asarray(tarkp_pred.cpu())
diff = np.linalg.norm(tarkp_pred - tarkp, 2,-1)
sqarea = np.sqrt((refsil[:,:,0]>0).sum())
correct = diff < sqarea * 0.2
correct = correct[np.logical_and(tarvis, refvis)]
if args.vis:
rgb_vis = draw_joints_on_image(refimg, refkp, refvis, smal_joint_info.joint_colors, smal_joint_info.annotated_markers)
tarimg = draw_joints_on_image(tarimg, tarkp, tarvis, smal_joint_info.joint_colors, smal_joint_info.annotated_markers, pred=tarkp_pred,correct=diff < sqarea * 0.2)
cv2.addWeighted(rgb_vis, 0.5, flowlib.flow_to_image(np.asarray(flow_fw[0].clamp(-1,1).detach().cpu())), 0.5,0.0,rgb_vis)
cv2.imwrite('%s/%05d-%05d-flo.png'%(args.testdir,all_fr[i],all_fr[j]),rgb_vis[:,:,::-1])
cv2.imwrite('%s/%05d-%05d.png'%(args.testdir,all_fr[i],all_fr[j]),tarimg[:,:,::-1])
pck_all.append(correct)
print('PCK %.02f'%(100*np.concatenate(pck_all).astype(float).mean()))
if __name__ == '__main__':
main()
|
[
"torch.cuda.synchronize",
"trimesh.load",
"argparse.ArgumentParser",
"torch.cat",
"numpy.ones",
"numpy.linalg.norm",
"numpy.tile",
"torch.no_grad",
"soft_renderer.SoftRenderer",
"cv2.imwrite",
"ext_utils.joint_catalog.SMALJointInfo",
"os.path.dirname",
"numpy.transpose",
"torch.load",
"torch.FloatTensor",
"torch.squeeze",
"torch.Tensor",
"numpy.loadtxt",
"torch.zeros",
"cv2.resize",
"models.VCN_exp.WarpModule",
"torch.zeros_like",
"numpy.asarray",
"ext_utils.badja_data.BADJAData",
"nnutils.geom_utils.render_flow_soft_3",
"nnutils.geom_utils.pinhole_cam",
"nnutils.geom_utils.obj_to_cam",
"numpy.concatenate",
"torch.ones_like",
"numpy.logical_and",
"sys.path.insert",
"numpy.expand_dims",
"time.time",
"numpy.where",
"torch.cuda.empty_cache",
"torch.nn.DataParallel"
] |
[((669, 702), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""third_party"""'], {}), "(0, 'third_party')\n", (684, 702), False, 'import sys, os\n'), ((702, 726), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""./"""'], {}), "(0, './')\n", (717, 726), False, 'import sys, os\n'), ((1174, 1218), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""BADJA"""'}), "(description='BADJA')\n", (1197, 1218), False, 'import argparse\n'), ((1803, 2036), 'soft_renderer.SoftRenderer', 'sr.SoftRenderer', ([], {'image_size': '(256)', 'dist_func': '"""hard"""', 'aggr_func_alpha': '"""hard"""', 'camera_mode': '"""look_at"""', 'perspective': '(False)', 'aggr_func_rgb': '"""hard"""', 'light_mode': '"""vertex"""', 'light_intensity_ambient': '(1.0)', 'light_intensity_directionals': '(0.0)'}), "(image_size=256, dist_func='hard', aggr_func_alpha='hard',\n camera_mode='look_at', perspective=False, aggr_func_rgb='hard',\n light_mode='vertex', light_intensity_ambient=1.0,\n light_intensity_directionals=0.0)\n", (1818, 2036), True, 'import soft_renderer as sr\n'), ((2553, 2587), 'cv2.resize', 'cv2.resize', (['imgL_o', '(max_w, max_h)'], {}), '(imgL_o, (max_w, max_h))\n', (2563, 2587), False, 'import cv2\n'), ((2598, 2632), 'cv2.resize', 'cv2.resize', (['imgR_o', '(max_w, max_h)'], {}), '(imgR_o, (max_w, max_h))\n', (2608, 2632), False, 'import cv2\n'), ((4815, 4839), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (4837, 4839), False, 'import torch\n'), ((5081, 5099), 'numpy.where', 'np.where', (['(mask > 0)'], {}), '(mask > 0)\n', (5089, 5099), True, 'import numpy as np\n'), ((6463, 6478), 'ext_utils.joint_catalog.SMALJointInfo', 'SMALJointInfo', ([], {}), '()\n', (6476, 6478), False, 'from ext_utils.joint_catalog import SMALJointInfo\n'), ((6496, 6519), 'ext_utils.badja_data.BADJAData', 'BADJAData', (['args.seqname'], {}), '(args.seqname)\n', (6505, 6519), False, 'from ext_utils.badja_data import BADJAData\n'), ((638, 666), 'os.path.dirname', 'os.path.dirname', (['sys.path[0]'], {}), '(sys.path[0])\n', (653, 666), False, 'import sys, os\n'), ((2198, 2242), 'numpy.tile', 'np.tile', (['imgL_o[:, :, np.newaxis]', '(1, 1, 3)'], {}), '(imgL_o[:, :, np.newaxis], (1, 1, 3))\n', (2205, 2242), True, 'import numpy as np\n'), ((2255, 2299), 'numpy.tile', 'np.tile', (['imgR_o[:, :, np.newaxis]', '(1, 1, 3)'], {}), '(imgR_o[:, :, np.newaxis], (1, 1, 3))\n', (2262, 2299), True, 'import numpy as np\n'), ((2934, 2963), 'numpy.transpose', 'np.transpose', (['imgL', '[2, 0, 1]'], {}), '(imgL, [2, 0, 1])\n', (2946, 2963), True, 'import numpy as np\n'), ((2985, 3014), 'numpy.transpose', 'np.transpose', (['imgR', '[2, 0, 1]'], {}), '(imgR, [2, 0, 1])\n', (2997, 3014), True, 'import numpy as np\n'), ((4040, 4055), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4053, 4055), False, 'import torch\n'), ((4073, 4099), 'torch.cat', 'torch.cat', (['[imgL, imgR]', '(0)'], {}), '([imgL, imgR], 0)\n', (4082, 4099), False, 'import torch\n'), ((4127, 4151), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (4149, 4151), False, 'import torch\n'), ((4173, 4184), 'time.time', 'time.time', ([], {}), '()\n', (4182, 4184), False, 'import time\n'), ((4230, 4254), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (4252, 4254), False, 'import torch\n'), ((7446, 7484), 'torch.nn.DataParallel', 'nn.DataParallel', (['model'], {'device_ids': '[0]'}), '(model, device_ids=[0])\n', (7461, 7484), True, 'import torch.nn as nn\n'), ((7532, 7603), 'torch.load', 'torch.load', (['"""/data/gengshay/vcn_weights/robexp.pth"""'], {'map_location': '"""cpu"""'}), "('/data/gengshay/vcn_weights/robexp.pth', map_location='cpu')\n", (7542, 7603), False, 'import torch\n'), ((4272, 4283), 'time.time', 'time.time', ([], {}), '()\n', (4281, 4283), False, 'import time\n'), ((4765, 4807), 'numpy.ones', 'np.ones', (['[flow.shape[0], flow.shape[1], 1]'], {}), '([flow.shape[0], flow.shape[1], 1])\n', (4772, 4807), True, 'import numpy as np\n'), ((4993, 5015), 'numpy.expand_dims', 'np.expand_dims', (['img', '(2)'], {}), '(img, 2)\n', (5007, 5015), True, 'import numpy as np\n'), ((5390, 5408), 'numpy.asarray', 'np.asarray', (['center'], {}), '(center)\n', (5400, 5408), True, 'import numpy as np\n'), ((7093, 7158), 'trimesh.load', 'trimesh.load', (["('%s/pred%d.ply' % (args.testdir, fr))"], {'process': '(False)'}), "('%s/pred%d.ply' % (args.testdir, fr), process=False)\n", (7105, 7158), False, 'import trimesh\n'), ((7208, 7255), 'numpy.loadtxt', 'np.loadtxt', (["('%s/cam%d.txt' % (args.testdir, fr))"], {}), "('%s/cam%d.txt' % (args.testdir, fr))\n", (7218, 7255), True, 'import numpy as np\n'), ((3596, 3657), 'models.VCN_exp.WarpModule', 'WarpModule', (['[1, max_w // 2 ** (6 - i), max_h // 2 ** (6 - i)]'], {}), '([1, max_w // 2 ** (6 - i), max_h // 2 ** (6 - i)])\n', (3606, 3657), False, 'from models.VCN_exp import WarpModule, flow_reg\n'), ((3695, 3713), 'torch.Tensor', 'torch.Tensor', (['inxx'], {}), '(inxx)\n', (3707, 3713), False, 'import torch\n'), ((3813, 3836), 'torch.Tensor', 'torch.Tensor', (['[fl_next]'], {}), '([fl_next])\n', (3825, 3836), False, 'import torch\n'), ((3947, 3970), 'torch.FloatTensor', 'torch.FloatTensor', (['imgL'], {}), '(imgL)\n', (3964, 3970), False, 'import torch\n'), ((3999, 4022), 'torch.FloatTensor', 'torch.FloatTensor', (['imgR'], {}), '(imgR)\n', (4016, 4022), False, 'import torch\n'), ((4479, 4530), 'cv2.resize', 'cv2.resize', (['flow[0]', '(input_size[1], input_size[0])'], {}), '(flow[0], (input_size[1], input_size[0]))\n', (4489, 4530), False, 'import cv2\n'), ((4574, 4625), 'cv2.resize', 'cv2.resize', (['flow[1]', '(input_size[1], input_size[0])'], {}), '(flow[1], (input_size[1], input_size[0]))\n', (4584, 4625), False, 'import cv2\n'), ((4852, 4870), 'torch.Tensor', 'torch.Tensor', (['flow'], {}), '(flow)\n', (4864, 4870), False, 'import torch\n'), ((6144, 6194), 'numpy.linalg.norm', 'np.linalg.norm', (['(joint_coord - pred[i, ::-1])', '(2)', '(-1)'], {}), '(joint_coord - pred[i, ::-1], 2, -1)\n', (6158, 6194), True, 'import numpy as np\n'), ((10931, 10972), 'numpy.linalg.norm', 'np.linalg.norm', (['(tarkp_pred - tarkp)', '(2)', '(-1)'], {}), '(tarkp_pred - tarkp, 2, -1)\n', (10945, 10972), True, 'import numpy as np\n'), ((2777, 2795), 'numpy.asarray', 'np.asarray', (['mean_L'], {}), '(mean_L)\n', (2787, 2795), True, 'import numpy as np\n'), ((2871, 2889), 'numpy.asarray', 'np.asarray', (['mean_R'], {}), '(mean_R)\n', (2881, 2889), True, 'import numpy as np\n'), ((9266, 9334), 'nnutils.geom_utils.obj_to_cam', 'obj_to_cam', (['verts', 'Rmat', 'Tmat[:, None]'], {'nmesh': '(1)', 'n_hypo': '(1)', 'skin': 'None'}), '(verts, Rmat, Tmat[:, None], nmesh=1, n_hypo=1, skin=None)\n', (9276, 9334), False, 'from nnutils.geom_utils import obj_to_cam, pinhole_cam, orthographic_cam, render_flow_soft_3\n'), ((9530, 9566), 'nnutils.geom_utils.pinhole_cam', 'pinhole_cam', (['verts_fl', 'ppoint', 'scale'], {}), '(verts_fl, ppoint, scale)\n', (9541, 9566), False, 'from nnutils.geom_utils import obj_to_cam, pinhole_cam, orthographic_cam, render_flow_soft_3\n'), ((9622, 9695), 'nnutils.geom_utils.render_flow_soft_3', 'render_flow_soft_3', (['renderer_softflf', 'verts_fl[:1]', 'verts_fl[1:]', 'refface'], {}), '(renderer_softflf, verts_fl[:1], verts_fl[1:], refface)\n', (9640, 9695), False, 'from nnutils.geom_utils import obj_to_cam, pinhole_cam, orthographic_cam, render_flow_soft_3\n'), ((11110, 11140), 'numpy.logical_and', 'np.logical_and', (['tarvis', 'refvis'], {}), '(tarvis, refvis)\n', (11124, 11140), True, 'import numpy as np\n'), ((11654, 11753), 'cv2.imwrite', 'cv2.imwrite', (["('%s/%05d-%05d-flo.png' % (args.testdir, all_fr[i], all_fr[j]))", 'rgb_vis[:, :, ::-1]'], {}), "('%s/%05d-%05d-flo.png' % (args.testdir, all_fr[i], all_fr[j]),\n rgb_vis[:, :, ::-1])\n", (11665, 11753), False, 'import cv2\n'), ((11764, 11858), 'cv2.imwrite', 'cv2.imwrite', (["('%s/%05d-%05d.png' % (args.testdir, all_fr[i], all_fr[j]))", 'tarimg[:, :, ::-1]'], {}), "('%s/%05d-%05d.png' % (args.testdir, all_fr[i], all_fr[j]),\n tarimg[:, :, ::-1])\n", (11775, 11858), False, 'import cv2\n'), ((2649, 2675), 'torch.Tensor', 'torch.Tensor', (['(imgL / 255.0)'], {}), '(imgL / 255.0)\n', (2661, 2675), False, 'import torch\n'), ((4412, 4431), 'torch.squeeze', 'torch.squeeze', (['flow'], {}), '(flow)\n', (4425, 4431), False, 'import torch\n'), ((10326, 10342), 'torch.Tensor', 'torch.Tensor', (['x0'], {}), '(x0)\n', (10338, 10342), False, 'import torch\n'), ((10371, 10387), 'torch.Tensor', 'torch.Tensor', (['y0'], {}), '(y0)\n', (10383, 10387), False, 'import torch\n'), ((8548, 8581), 'torch.Tensor', 'torch.Tensor', (['refmesh.faces[None]'], {}), '(refmesh.faces[None])\n', (8560, 8581), False, 'import torch\n'), ((9382, 9418), 'torch.ones_like', 'torch.ones_like', (['verts_fl[:, :, 0:1]'], {}), '(verts_fl[:, :, 0:1])\n', (9397, 9418), False, 'import torch\n'), ((8630, 8697), 'numpy.concatenate', 'np.concatenate', (['[refmesh.vertices[None], tarmesh.vertices[None]]', '(0)'], {}), '([refmesh.vertices[None], tarmesh.vertices[None]], 0)\n', (8644, 8697), True, 'import numpy as np\n'), ((8746, 8809), 'numpy.concatenate', 'np.concatenate', (['[refcam[None, :3, :3], tarcam[None, :3, :3]]', '(0)'], {}), '([refcam[None, :3, :3], tarcam[None, :3, :3]], 0)\n', (8760, 8809), True, 'import numpy as np\n'), ((8855, 8916), 'numpy.concatenate', 'np.concatenate', (['[refcam[None, :3, 3], tarcam[None, :3, 3]]', '(0)'], {}), '([refcam[None, :3, 3], tarcam[None, :3, 3]], 0)\n', (8869, 8916), True, 'import numpy as np\n'), ((8964, 9025), 'numpy.concatenate', 'np.concatenate', (['[refcam[None, 3, 2:], tarcam[None, 3, 2:]]', '(0)'], {}), '([refcam[None, 3, 2:], tarcam[None, 3, 2:]], 0)\n', (8978, 9025), True, 'import numpy as np\n'), ((9072, 9133), 'numpy.concatenate', 'np.concatenate', (['[refcam[None, 3, :1], tarcam[None, 3, :1]]', '(0)'], {}), '([refcam[None, 3, :1], tarcam[None, 3, :1]], 0)\n', (9086, 9133), True, 'import numpy as np\n'), ((11937, 11960), 'numpy.concatenate', 'np.concatenate', (['pck_all'], {}), '(pck_all)\n', (11951, 11960), True, 'import numpy as np\n'), ((9788, 9813), 'torch.zeros_like', 'torch.zeros_like', (['flow_fw'], {}), '(flow_fw)\n', (9804, 9813), False, 'import torch\n'), ((10119, 10144), 'torch.zeros', 'torch.zeros', (['refimg.shape'], {}), '(refimg.shape)\n', (10130, 10144), False, 'import torch\n')]
|
import unittest
import numpy as np
class TestCase(unittest.TestCase):
def test_approx_k(self):
try:
from task import k, U, Sigma, Vt, approx
approx_test = U @ Sigma[:, :k] @ Vt[:k, :]
np.testing.assert_array_equal(approx, approx_test,
'The approximation does not look right.')
except ValueError:
self.fail('You have to use only the first k columns of Sigma and the first k rows of Vt')
|
[
"numpy.testing.assert_array_equal"
] |
[((235, 331), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['approx', 'approx_test', '"""The approximation does not look right."""'], {}), "(approx, approx_test,\n 'The approximation does not look right.')\n", (264, 331), True, 'import numpy as np\n')]
|
import numpy as np
# Adapted from https://github.com/Hakuyume/chainer-ssd
def decode_onnx(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
before_prior = priors[:, :2]
after_prior = priors[:, 2:]
print(priors[0])
print(loc[0])
before_loc = loc[:, :2]
after_loc = loc[:, 2:]
boxes = np.concatenate((
before_prior + before_loc * variances[0] * after_prior,
after_prior * np.exp(after_loc * variances[1])), axis = 1)
boxes[:, :2] -= boxes[:, 2:] / 2
boxes[:, 2:] += boxes[:, :2]
print(boxes[0])
return boxes
def decode_landm_onnx(pre, priors, variances):
"""Decode landm from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
pre (tensor): landm predictions for loc layers,
Shape: [num_priors,10]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded landm predictions
"""
landms = np.concatenate((priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
), axis=1)
return landms
|
[
"numpy.exp",
"numpy.concatenate"
] |
[((1494, 1836), 'numpy.concatenate', 'np.concatenate', (['(priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:], priors[:, :2] +\n pre[:, 2:4] * variances[0] * priors[:, 2:], priors[:, :2] + pre[:, 4:6] *\n variances[0] * priors[:, 2:], priors[:, :2] + pre[:, 6:8] * variances[0\n ] * priors[:, 2:], priors[:, :2] + pre[:, 8:10] * variances[0] * priors\n [:, 2:])'], {'axis': '(1)'}), '((priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:], \n priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:], priors[:, :\n 2] + pre[:, 4:6] * variances[0] * priors[:, 2:], priors[:, :2] + pre[:,\n 6:8] * variances[0] * priors[:, 2:], priors[:, :2] + pre[:, 8:10] *\n variances[0] * priors[:, 2:]), axis=1)\n', (1508, 1836), True, 'import numpy as np\n'), ((845, 877), 'numpy.exp', 'np.exp', (['(after_loc * variances[1])'], {}), '(after_loc * variances[1])\n', (851, 877), True, 'import numpy as np\n')]
|
#-*-coding:utf-8-*-
# date:2020-03-28
# Author: X.L.Eric
# function: image pixel - float (0.~1.)
import cv2 # 加载 OpenCV 库
import numpy as np # 加载 numpy 库
if __name__ == "__main__":
img_h = 480
img_w = 640
img = np.zeros([img_h,img_w], dtype = np.float)
cv2.namedWindow('image_0', 1)
cv2.imshow('image_0', img)
cv2.waitKey(0)
img.fill(0.5)
cv2.namedWindow('image_05', 1)
cv2.imshow('image_05', img)
cv2.waitKey(0)
img.fill(1.)
cv2.namedWindow('image_1', 1)
cv2.imshow('image_1', img)
cv2.waitKey(0)
|
[
"cv2.waitKey",
"cv2.imshow",
"numpy.zeros",
"cv2.namedWindow"
] |
[((224, 264), 'numpy.zeros', 'np.zeros', (['[img_h, img_w]'], {'dtype': 'np.float'}), '([img_h, img_w], dtype=np.float)\n', (232, 264), True, 'import numpy as np\n'), ((271, 300), 'cv2.namedWindow', 'cv2.namedWindow', (['"""image_0"""', '(1)'], {}), "('image_0', 1)\n", (286, 300), False, 'import cv2\n'), ((305, 331), 'cv2.imshow', 'cv2.imshow', (['"""image_0"""', 'img'], {}), "('image_0', img)\n", (315, 331), False, 'import cv2\n'), ((336, 350), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (347, 350), False, 'import cv2\n'), ((374, 404), 'cv2.namedWindow', 'cv2.namedWindow', (['"""image_05"""', '(1)'], {}), "('image_05', 1)\n", (389, 404), False, 'import cv2\n'), ((409, 436), 'cv2.imshow', 'cv2.imshow', (['"""image_05"""', 'img'], {}), "('image_05', img)\n", (419, 436), False, 'import cv2\n'), ((441, 455), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (452, 455), False, 'import cv2\n'), ((478, 507), 'cv2.namedWindow', 'cv2.namedWindow', (['"""image_1"""', '(1)'], {}), "('image_1', 1)\n", (493, 507), False, 'import cv2\n'), ((512, 538), 'cv2.imshow', 'cv2.imshow', (['"""image_1"""', 'img'], {}), "('image_1', img)\n", (522, 538), False, 'import cv2\n'), ((543, 557), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (554, 557), False, 'import cv2\n')]
|
import numpy as np
import matplotlib.pyplot as plt
class House():
def __init__(self, K: float=0.5, C: float=0.3, Qhvac: float=9, hvacON: float=0, occupancy: float=1, Tin_initial: float=30):
self.K = K # thermal conductivity
self.C = C # thermal capacity
self.Tin = Tin_initial # Inside Temperature
self.Qhvac = Qhvac # Cooling capacity
self.hvacON = hvacON # control action = 0 (OFF) or 1 (ON)
self.occupancy = occupancy # 0 (no one in the room) or 1 (somebody in the room)
self.Phvac = Qhvac # Electric power capacity
plt.close()
self.fig, self.ax = plt.subplots(1, 1)
def setup_schedule(self, days: int=1, timestep: int=5, schedule_index: int=2, max_iterations: int=288):
""" define the Tset_schedule, Tout_schedule, the length of schedule, timestep
"""
self.timestep = timestep # keep in minutes here to keep number of minutes for days consistent
self.max_iterations = max_iterations #10 more steps incase we need to use forecast
# randomize
if schedule_index == 1:
self.Tset_schedule = np.full(self.max_iterations, 25)
self.Tout_schedule = np.full(self.max_iterations, 32)
self.occupancy_schedule = np.full(self.max_iterations, 1)
for d in range(days):
a = time_to_index(d, 9)
b = time_to_index(d, 17)
self.Tset_schedule[a:b]= np.random.randint(low=18, high=25)
c = time_to_index(d, 0)
d = time_to_index(d, 24)
self.Tout_schedule[c:d] = np.random.randint(low=28, high=35)
# simpler
if schedule_index == 2:
self.Tset_schedule = np.full(self.max_iterations, 25)
self.Tset_schedule[96:204] = 20
self.Tout_schedule = np.full(self.max_iterations, 32)
self.occupancy_schedule = np.full(self.max_iterations, 1)
self.Tset = self.Tset_schedule[0] # Set Temperature
self.Tout = self.Tout_schedule[0] # Outside temperature
self.Tset1 = self.Tset_schedule[1] # Set Temperature i+1
self.Tset2 = self.Tset_schedule[2] # Set Temperature i+2
self.Tset3 = self.Tset_schedule[3] # Set Temperature i+3
# For plotting only
self.time_to_plot = [0]
self.Tin_to_plot = [self.Tin]
self.Tset_to_plot = [self.Tset]
self.__iter__()
def update_Tout(self, Tout_new):
self.Tout = Tout_new # Update to new outside temperature
def update_Tset(self, Tset_new):
self.Tset = Tset_new # Update to new setpoint temperature
def update_hvacON(self, hvacONnew):
self.hvacON = hvacONnew # update to new hvacON
def update_occupancy(self, occupancy_new):
self.occupancy = occupancy_new # update to new occupancy
def update_Tin(self):
"""Update inside temperation.
Describes the inside temperature evolution as a function of all other variables.
"""
# Note timestep is converted to seconds here, in order to keep units consistent in SI for update.
self.Tin = self.Tin - (self.timestep/60) / self.C * (self.K * (self.Tin - self.Tout) + self.Qhvac * self.hvacON)
self.__next__()
self.Tset_to_plot.append(self.Tset)
self.Tin_to_plot.append(self.Tin)
self.time_to_plot.append(self.iteration * 5)
def get_Power(self):
COP = 3
Power = self.Phvac * self.hvacON * COP
return Power
def show(self):
self.ax.clear()
self.ax.plot(self.time_to_plot, self.Tin_to_plot, label='Tin')
self.ax.plot(self.time_to_plot, self.Tset_to_plot, label='Tset')
self.ax.set_xlabel('Time [min]')
self.ax.set_ylabel(r'Temperature [$^\circ$C]')
plt.legend()
plt.pause(np.finfo(np.float32).eps)
# print the object nicely
def __str__(self):
string_to_print = []
for key in self.__dict__:
string_to_print.append("{key}='{value}'".format(key=key, value=self.__dict__[key]))
return ', '.join(string_to_print)
def __repr__(self):
return self.__str__()
def __iter__(self):
self.iteration = 0
return self
def __next__(self):
if self.iteration <= self.max_iterations - 5:
self.iteration += 1
self.update_Tset(self.Tset_schedule[self.iteration])
self.Tset1 = self.Tset_schedule[self.iteration+1]
self.Tset2 = self.Tset_schedule[self.iteration+2]
self.Tset3 = self.Tset_schedule[self.iteration+3]
self.update_Tout(self.Tout_schedule[self.iteration])
self.update_occupancy(self.occupancy_schedule[self.iteration])
else:
StopIteration
def time_to_index(days, hours, timestep=5):
hours_index = int(hours * 60 / timestep)
days_index = int(days * 24 * 60 / timestep)
return hours_index + days_index
if __name__ == '__main__':
import random
house = House()
for episode in range(2):
house.setup_schedule(days=1,
timestep=5,
schedule_index=2,
max_iterations= 288)
for i in range(288):
house.update_hvacON(random.randint(0, 1))
house.update_Tin()
print('Tin : {}'.format(house.Tin))
house.show()
|
[
"numpy.full",
"random.randint",
"matplotlib.pyplot.close",
"matplotlib.pyplot.legend",
"numpy.finfo",
"numpy.random.randint",
"matplotlib.pyplot.subplots"
] |
[((592, 603), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (601, 603), True, 'import matplotlib.pyplot as plt\n'), ((632, 650), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (644, 650), True, 'import matplotlib.pyplot as plt\n'), ((3837, 3849), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3847, 3849), True, 'import matplotlib.pyplot as plt\n'), ((1137, 1169), 'numpy.full', 'np.full', (['self.max_iterations', '(25)'], {}), '(self.max_iterations, 25)\n', (1144, 1169), True, 'import numpy as np\n'), ((1203, 1235), 'numpy.full', 'np.full', (['self.max_iterations', '(32)'], {}), '(self.max_iterations, 32)\n', (1210, 1235), True, 'import numpy as np\n'), ((1274, 1305), 'numpy.full', 'np.full', (['self.max_iterations', '(1)'], {}), '(self.max_iterations, 1)\n', (1281, 1305), True, 'import numpy as np\n'), ((1738, 1770), 'numpy.full', 'np.full', (['self.max_iterations', '(25)'], {}), '(self.max_iterations, 25)\n', (1745, 1770), True, 'import numpy as np\n'), ((1848, 1880), 'numpy.full', 'np.full', (['self.max_iterations', '(32)'], {}), '(self.max_iterations, 32)\n', (1855, 1880), True, 'import numpy as np\n'), ((1919, 1950), 'numpy.full', 'np.full', (['self.max_iterations', '(1)'], {}), '(self.max_iterations, 1)\n', (1926, 1950), True, 'import numpy as np\n'), ((1462, 1496), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(18)', 'high': '(25)'}), '(low=18, high=25)\n', (1479, 1496), True, 'import numpy as np\n'), ((1620, 1654), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(28)', 'high': '(35)'}), '(low=28, high=35)\n', (1637, 1654), True, 'import numpy as np\n'), ((3868, 3888), 'numpy.finfo', 'np.finfo', (['np.float32'], {}), '(np.float32)\n', (3876, 3888), True, 'import numpy as np\n'), ((5346, 5366), 'random.randint', 'random.randint', (['(0)', '(1)'], {}), '(0, 1)\n', (5360, 5366), False, 'import random\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: <NAME>
"""
#0. SET PARAMETERS
###Path to directory with models (one or several models to be tested)
model_dir = ''
###DIRECTORY WITH IMAGES
#Tumor
base_dir_tu = ''
#Benign
base_dir_norm = ''
###OUTPUT DIRECTORY FOR RESULT FILES
result_dir = ''
###
#1. IMPORT LIBRARIES
from keras.models import load_model
import os
from keras.preprocessing import image
import numpy as np
from PIL import Image, ImageOps
import staintools
from statistics import median
#2. GENERATE LISTS AND NAMES
###GENERATE LIST OF MODELS (if several models are tested)
model_names = sorted(os.listdir(model_dir))
###MODEL PATCH SIZES: define the patch size to use within models
#here for example two models in list, each working with 350px patches
m_p_s_list = [350, 350]
#3. INITIALIZE STAIN NORMALIZER
#Standartization image
st = staintools.read_image('standard_he_stain_small.jpg')
#Inititate Brightness Standardizer
standardizer = staintools.BrightnessStandardizer()
#Inititate StainNormalizer "macenko"
stain_norm = staintools.StainNormalizer(method='macenko')
#Read Hematoxylin/Eosin staining schema from Standartization image
stain_norm.fit(st)
#4. FUNCTIONS
#Implementation of the Strategy C8 (derivates of the main image, s. Methods)
#as a function
#As input: native version of the patch
def gateway_median (patch):
#native version of the patch (base)
base = patch #1
#rotation derivates
r90 = patch.rotate(90) #2
r180 = patch.rotate(180) #3
r270 = patch.rotate(270) #4
#flip/rotation derivates
r90_VF = ImageOps.flip(r90) #5
r270_VF = ImageOps.flip(r270) #6
#flip derivates
VF = ImageOps.flip(base) #7
HF = base.transpose(Image.FLIP_LEFT_RIGHT) #8
#calculate final predictions from predictions of individual derivates
#pred() function refers to the generation of predictions for classes by model 1
#Tumor vs benign tissue
#Median to generate final predictions
pred_stack = np.vstack((pred(base),pred(r90),pred(r180),pred(r270),pred(r90_VF),pred(r270_VF),pred(VF),pred(HF)))
pred_1 = median(pred_stack[0:8,0])
pred_2 = median(pred_stack[0:8,1])
pred_3 = median(pred_stack[0:8,2])
preds_med = np.array([pred_1, pred_2, pred_3])
#returns final predictions
return preds_med
#Function for generation of prediction for single patches (used in C8)
def pred (patch):
#IMAGE TO ARRAY, PREPROCESSING
patch = image.img_to_array(patch)
patch = np.expand_dims(patch, axis = 0)
patch /= 255.
#prediction from model
preds = model.predict(patch)
#return predictions
return preds
#Loop for analysis of patches from validation dataset with "tumor" label
#as function
def processor_tu (m_p_s):
#define work directory
work_dir = base_dir_tu
#define output containers
o_C1 = output_tu_C1
o_C8 = output_tu_C8
#read names from the directory
fnames = sorted(os.listdir(work_dir))
#Analysis loop
for fname in fnames:
filename = os.path.join(work_dir, fname)
im = image.load_img(filename)
#preprocessing of the image
im = im.resize((m_p_s,m_p_s), Image.ANTIALIAS)
im = np.array(im)
#stain normalization
im = standardizer.transform(im)
im = stain_norm.transform(im)
#for eventual further C8 analysis
im_sn = Image.fromarray(im)
im = np.float32(im)
x = image.img_to_array(im)
x = np.expand_dims(x, axis = 0)
x /= 255.
#prediction
preds = model.predict(x)
#pred gland
pr_1 = str(round(preds[0,0],3))
#pred non-gland
pr_2 = str(round(preds[0,1],3))
#pred tumor
pr_3 = str(round(preds[0,2],3))
#Output of C1 (analysis of naative version of the patch)
output = fname + "\t" + pr_1 + "\t" + pr_2 + "\t" + pr_3 + "\n"
#Write down output of C1
results = open (o_C1, "a+")
results.write(output)
results.close()
#Additional analysis using C8 strategy (see Methods) if prediction
#probability for tumor class in the gray zone 0.2-0.5
if preds[0,2] < 0.5:
#Enter C8 pipeline
if preds[0,2] > 0.2:
print(fname, " was misclassified, but trying C8") # feedback
#start C8 analysis (function)
preds_C8 = gateway_median(im_sn)
#Write down results of C8 analysis.
output_C8 = fname + "\t" + str(preds_C8[0]) + "\t" + str(preds_C8[1]) + "\t" + str(preds_C8[2]) + "\n"
results = open (o_C8, "a+")
results.write(output_C8)
results.close()
if preds_C8[2] > 0.5:
print(fname, " was reclassified") #feedback from analysis using C8 strategy
else:
print(fname, " was not reclassified") #feedback from analysis using C8 strategy
else:
print(fname, " was misclassified") #feedback from analysis using C8 strategy
else:
print(fname, " is a tumor") #feedback
#Loop for analysis of patches from validation dataset with "benign" label
#as function
#Analogous to tumor processor above
def processor_norm (m_p_s):
work_dir = base_dir_norm
o_C1 = output_n_C1
o_C8 = output_n_C8
fnames = sorted(os.listdir(work_dir))
for fname in fnames:
filename = os.path.join(work_dir, fname)
im = image.load_img(filename)
im = im.resize((m_p_s,m_p_s), Image.ANTIALIAS)
im = np.array(im)
#stain normalization
im = standardizer.transform(im)
im = stain_norm.transform(im)
#for C8
im_sn = Image.fromarray(im)
im = np.float32(im)
x = image.img_to_array(im)
x = np.expand_dims(x, axis = 0)
x /= 255.
#prediction
preds = model.predict(x)
#pred gland
pr_1 = str(round(preds[0,0],3))
#pred non-gland
pr_2 = str(round(preds[0,1],3))
#pred tumor
pr_3 = str(round(preds[0,2],3))
#Output of C1
output = fname + "\t" + pr_1 + "\t" + pr_2 + "\t" + pr_3 + "\n"
#Write down output of C1
results = open (o_C1, "a+")
results.write(output)
results.close()
if preds[0,2] > 0.5:
#Enter C8 pipeline
if preds[0,0] > 0.2 or preds[0,1] > 0.2:
print(fname, " was misclassified, but trying C8")
#start C8 program
preds_C8 = gateway_median(im_sn)
#Write down results of C8 independent of classification from function output.
output_C8 = fname + "\t" + str(preds_C8[0]) + "\t" + str(preds_C8[1]) + "\t" + str(preds_C8[2]) + "\n"
results = open (o_C8, "a+")
results.write(output_C8)
results.close()
if preds_C8[2] < 0.5:
print(fname, " was reclassified")
else:
print(fname, " was not reclassified")
else:
print(fname, " was misclassified")
else:
print(fname, " is normal")
#MAIN LOOP
i = 0
for model_name in model_names:
#1. Load model from list (one or more)
print("Loading model: ", model_name, " ...")
path_model = os.path.join(model_dir, model_name)
model = load_model(path_model)
#Create path to results file
output_tu_C1 = result_dir + model_name + "__C1__tu.txt"
output_n_C1 = result_dir + model_name + "__C1__norm.txt"
output_tu_C8 = result_dir + model_name + "__C8__tu.txt"
output_n_C8 = result_dir + model_name + "__C8__norm.txt"
#start analysis
processor_tu(m_p_s_list[i])
processor_norm(m_p_s_list[i])
#Increment of i for m_p_s
i = i+1
print("Ready! Going to the next model.") #feedback
|
[
"staintools.BrightnessStandardizer",
"keras.models.load_model",
"statistics.median",
"numpy.float32",
"staintools.StainNormalizer",
"numpy.expand_dims",
"staintools.read_image",
"keras.preprocessing.image.img_to_array",
"keras.preprocessing.image.load_img",
"numpy.array",
"PIL.ImageOps.flip",
"PIL.Image.fromarray",
"os.path.join",
"os.listdir"
] |
[((867, 919), 'staintools.read_image', 'staintools.read_image', (['"""standard_he_stain_small.jpg"""'], {}), "('standard_he_stain_small.jpg')\n", (888, 919), False, 'import staintools\n'), ((970, 1005), 'staintools.BrightnessStandardizer', 'staintools.BrightnessStandardizer', ([], {}), '()\n', (1003, 1005), False, 'import staintools\n'), ((1056, 1100), 'staintools.StainNormalizer', 'staintools.StainNormalizer', ([], {'method': '"""macenko"""'}), "(method='macenko')\n", (1082, 1100), False, 'import staintools\n'), ((624, 645), 'os.listdir', 'os.listdir', (['model_dir'], {}), '(model_dir)\n', (634, 645), False, 'import os\n'), ((1581, 1599), 'PIL.ImageOps.flip', 'ImageOps.flip', (['r90'], {}), '(r90)\n', (1594, 1599), False, 'from PIL import Image, ImageOps\n'), ((1617, 1636), 'PIL.ImageOps.flip', 'ImageOps.flip', (['r270'], {}), '(r270)\n', (1630, 1636), False, 'from PIL import Image, ImageOps\n'), ((1669, 1688), 'PIL.ImageOps.flip', 'ImageOps.flip', (['base'], {}), '(base)\n', (1682, 1688), False, 'from PIL import Image, ImageOps\n'), ((2102, 2128), 'statistics.median', 'median', (['pred_stack[0:8, 0]'], {}), '(pred_stack[0:8, 0])\n', (2108, 2128), False, 'from statistics import median\n'), ((2141, 2167), 'statistics.median', 'median', (['pred_stack[0:8, 1]'], {}), '(pred_stack[0:8, 1])\n', (2147, 2167), False, 'from statistics import median\n'), ((2180, 2206), 'statistics.median', 'median', (['pred_stack[0:8, 2]'], {}), '(pred_stack[0:8, 2])\n', (2186, 2206), False, 'from statistics import median\n'), ((2222, 2256), 'numpy.array', 'np.array', (['[pred_1, pred_2, pred_3]'], {}), '([pred_1, pred_2, pred_3])\n', (2230, 2256), True, 'import numpy as np\n'), ((2447, 2472), 'keras.preprocessing.image.img_to_array', 'image.img_to_array', (['patch'], {}), '(patch)\n', (2465, 2472), False, 'from keras.preprocessing import image\n'), ((2485, 2514), 'numpy.expand_dims', 'np.expand_dims', (['patch'], {'axis': '(0)'}), '(patch, axis=0)\n', (2499, 2514), True, 'import numpy as np\n'), ((7592, 7627), 'os.path.join', 'os.path.join', (['model_dir', 'model_name'], {}), '(model_dir, model_name)\n', (7604, 7627), False, 'import os\n'), ((7640, 7662), 'keras.models.load_model', 'load_model', (['path_model'], {}), '(path_model)\n', (7650, 7662), False, 'from keras.models import load_model\n'), ((2941, 2961), 'os.listdir', 'os.listdir', (['work_dir'], {}), '(work_dir)\n', (2951, 2961), False, 'import os\n'), ((3027, 3056), 'os.path.join', 'os.path.join', (['work_dir', 'fname'], {}), '(work_dir, fname)\n', (3039, 3056), False, 'import os\n'), ((3070, 3094), 'keras.preprocessing.image.load_img', 'image.load_img', (['filename'], {}), '(filename)\n', (3084, 3094), False, 'from keras.preprocessing import image\n'), ((3199, 3211), 'numpy.array', 'np.array', (['im'], {}), '(im)\n', (3207, 3211), True, 'import numpy as np\n'), ((3377, 3396), 'PIL.Image.fromarray', 'Image.fromarray', (['im'], {}), '(im)\n', (3392, 3396), False, 'from PIL import Image, ImageOps\n'), ((3419, 3433), 'numpy.float32', 'np.float32', (['im'], {}), '(im)\n', (3429, 3433), True, 'import numpy as np\n'), ((3446, 3468), 'keras.preprocessing.image.img_to_array', 'image.img_to_array', (['im'], {}), '(im)\n', (3464, 3468), False, 'from keras.preprocessing import image\n'), ((3481, 3506), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (3495, 3506), True, 'import numpy as np\n'), ((5489, 5509), 'os.listdir', 'os.listdir', (['work_dir'], {}), '(work_dir)\n', (5499, 5509), False, 'import os\n'), ((5560, 5589), 'os.path.join', 'os.path.join', (['work_dir', 'fname'], {}), '(work_dir, fname)\n', (5572, 5589), False, 'import os\n'), ((5603, 5627), 'keras.preprocessing.image.load_img', 'image.load_img', (['filename'], {}), '(filename)\n', (5617, 5627), False, 'from keras.preprocessing import image\n'), ((5696, 5708), 'numpy.array', 'np.array', (['im'], {}), '(im)\n', (5704, 5708), True, 'import numpy as np\n'), ((5848, 5867), 'PIL.Image.fromarray', 'Image.fromarray', (['im'], {}), '(im)\n', (5863, 5867), False, 'from PIL import Image, ImageOps\n'), ((5890, 5904), 'numpy.float32', 'np.float32', (['im'], {}), '(im)\n', (5900, 5904), True, 'import numpy as np\n'), ((5917, 5939), 'keras.preprocessing.image.img_to_array', 'image.img_to_array', (['im'], {}), '(im)\n', (5935, 5939), False, 'from keras.preprocessing import image\n'), ((5952, 5977), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (5966, 5977), True, 'import numpy as np\n')]
|
"""Functions to configure energy demand outputs for supply model
"""
import os
import logging
import numpy as np
import pandas as pd
from energy_demand.basic import date_prop, testing_functions, lookup_tables
def constrained_results(
results_constrained,
results_unconstrained_no_heating,
submodels_names,
technologies,
):
"""Prepare results for energy supply model for
constrained model running mode (no heat is provided but
technology specific fuel use).
The results for the supply model are provided aggregated
as follows:
{ "submodel_fueltype_tech": np.array(regions, timesteps)}
Because SMIF only takes results in the
form of {key: np.array(regions, timesteps)}, the key
needs to contain information about submodel, fueltype,
and technology. Also these key must be defined in
the `submodel_model` configuration file.
Arguments
----------
results_constrained : dict
Aggregated results in form
{technology: np.array((sector, region, fueltype, timestep))}
results_unconstrained_no_heating : dict
Aggregated results without heating
{technology: np.array((sector, region, fueltype, timestep))}
submodels_names : list
Names of sectors fur supply model
technologies : dict
Technologies
Returns
-------
supply_results : dict
No technology specific delivery (heat is provided in form of a fueltype)
{submodel_fueltype: np.array((region, intervals))}
Note
-----
For the fuel demand for CHP plants, the co-generated electricity
is not included in the demand model. Additional electricity supply
generated from CHP plants need to be calculated in the supply
model based on the fuel demand for CHP.
For CHP efficiency therefore not the overall efficiency is used
but only the thermal efficiency
"""
supply_results = {}
fueltypes = lookup_tables.basic_lookups()['fueltypes']
# ----------------------------------------
# Add all constrained results (technology specific results)
# Aggregate according to submodel, fueltype, technology, region, timestep
# ----------------------------------------
for submodel_nr, submodel in enumerate(submodels_names):
for tech, fuel_tech in results_constrained.items():
# Technological simplifications because of different technology
# definition and because not all technologies are used in supply model
tech_simplified = model_tech_simplification(tech)
fueltype_str = technologies[tech_simplified].fueltype_str
fueltype_int = technologies[tech_simplified].fueltype_int
key_name = "{}_{}_{}".format(submodel, fueltype_str, tech_simplified)
if key_name not in supply_results:
supply_results[key_name] = fuel_tech[submodel_nr][:, fueltype_int, :]
else:
supply_results[key_name] += fuel_tech[submodel_nr][:, fueltype_int, :]
assert not testing_functions.test_if_minus_value_in_array(results_unconstrained_no_heating)
# ---------------------------------
# Add non_heating for all fueltypes
# ---------------------------------
for submodel_nr, submodel in enumerate(submodels_names):
for fueltype_str, fueltype_int in fueltypes.items():
if fueltype_str == 'heat':
pass #Do not add non_heating demand for fueltype heat
else:
key_name = "{}_{}_{}".format(submodel, fueltype_str, "non_heating")
# Add fuel for all regions for specific fueltype
supply_results[key_name] = results_unconstrained_no_heating[submodel_nr][:, fueltype_int, :]
# --------------------------------------------
# Check whether any entry is smaller than zero
# --------------------------------------------
for key_name, values in supply_results.items():
if testing_functions.test_if_minus_value_in_array(values):
raise Exception("Error d: Negative entry in results {} {}".format(key_name, np.sum(values)))
return supply_results
def unconstrained_results(
results_unconstrained,
submodels_names
):
"""Prepare results for energy supply model for
unconstrained model running mode (heat is provided).
The results for the supply model are provided aggregated
for every submodel, fueltype, region, timestep
Note
-----
Because SMIF only takes results in the
form of {key: np.aray(regions, timesteps)}, the key
needs to contain information about submodel and fueltype
Also these key must be defined in the `submodel_model`
configuration file
Arguments
----------
results_unconstrained : array
Results of unconstrained mode
np.array((sector, regions, fueltype, timestep))
submodels_names : list
Names of sectors for supply model
Returns
-------
supply_results : dict
No technology specific delivery (heat is provided in form of a fueltype)
{submodel_fueltype: np.array((region, intervals))}
"""
supply_results = {}
fueltypes = lookup_tables.basic_lookups()['fueltypes']
for submodel_nr, submodel in enumerate(submodels_names):
for fueltype_str, fueltype_int in fueltypes.items():
# Generate key name (must be defined in `sector_models`)
key_name = "{}_{}".format(submodel, fueltype_str)
# Add fueltype specific demand for all regions
supply_results[key_name] = results_unconstrained[submodel_nr][:, fueltype_int, :]
assert not testing_functions.test_if_minus_value_in_array(supply_results[key_name])
logging.info("... Prepared results for energy supply model in unconstrained mode")
return supply_results
def model_tech_simplification(tech):
"""This function aggregated different technologies
which are not defined in supply model
Arguments
---------
tech : str
Technology
Returns
-------
tech_newly_assigned : str
Technology newly assigned
"""
if tech == 'boiler_condensing_gas':
tech_newly_assigned = 'boiler_gas'
elif tech == 'boiler_condensing_oil':
tech_newly_assigned = 'boiler_oil'
elif tech == 'storage_heater_electricity':
tech_newly_assigned = 'boiler_electricity'
elif tech == 'secondary_heater_electricity':
tech_newly_assigned = 'boiler_electricity'
else:
tech_newly_assigned = tech
if tech != tech_newly_assigned:
logging.debug(
"Assigned new technology '%s' for '%s' to provide for simplified supply output",
tech_newly_assigned, tech)
return tech_newly_assigned
def write_national_results_amman(
path_folder,
results_unconstrained,
regions,
fueltype_str,
fuelype_nr,
year
):
"""Write national results of all fueltypes
Inputs
------
results_unconstrained : array
(submodel, region, fueltype, periods)
"""
logging.info("... writing file for amman")
path = os.path.join(path_folder, "file_AMMAN_{}_{}.csv".format(fueltype_str, year))
# Sum across all sectors
sum_across_submodels = results_unconstrained.sum(axis=0)
# Change ot days
nr_regs = len(regions)
nr_fueltypes = sum_across_submodels.shape[1]
sum_across_regions_days = sum_across_submodels.reshape(nr_regs, nr_fueltypes, 365, 24)
# Iterate over every hour in year
rows = []
for region_nr, region in enumerate(regions):
for day in range(365):
row = {'region': region}
daysum = np.sum(sum_across_regions_days[region_nr][fuelype_nr][day])
row['day'] = day
row['demand_GWh'] = daysum
rows.append(row)
# Create dataframe
col_names = ['region', 'day', 'demand_GWh']
my_df = pd.DataFrame(rows, columns=col_names)
my_df.to_csv(path, index=False) #Index prevents writing index rows
def write_national_results(
path_folder,
results_unconstrained,
enduse_specific_results,
fueltype_str,
fuelype_nr,
year,
submodels_names=['residential', 'service', 'industry']
):
"""Write national results of all fueltypes
Input
------
results_unconstrained : array
(submodel, region, fueltype, periods)
"""
logging.info("... writing file for modassar")
path = os.path.join(path_folder, "file_MODASSAR_{}_{}.csv".format(fueltype_str, year))
# Sum across all regions
sum_across_regions = results_unconstrained.sum(axis=1)
rows = []
for hour in range(8760):
# Get day and hour
day_year, hour_day_year = date_prop.convert_h_to_day_year_and_h(hour)
row = {'year': year, 'hour': hour}
for submodel_nr, submodel in enumerate(submodels_names):
# Total energy demand
ed_submodel_h = sum_across_regions[submodel_nr][fuelype_nr][hour]
# Space heating related demand for sector
if submodel_nr == 0:
space_heating_demand = enduse_specific_results['rs_space_heating'][fuelype_nr][day_year][hour_day_year]
elif submodel_nr == 1:
space_heating_demand = enduse_specific_results['ss_space_heating'][fuelype_nr][day_year][hour_day_year]
else:
space_heating_demand = enduse_specific_results['is_space_heating'][fuelype_nr][day_year][hour_day_year]
ed_submodel_heating_h = space_heating_demand
str_name_heat = "{}_heat".format(submodel)
row[str_name_heat] = ed_submodel_heating_h
# Non-heating related demand
ed_submodel_non_heating_h = ed_submodel_h - space_heating_demand
str_name_non_heat = "{}_non_heat".format(submodel)
row[str_name_non_heat] = ed_submodel_non_heating_h
rows.append(row)
# Create dataframe
col_names = [
'year',
'hour',
'residential_non_heat',
'residential_heat',
'service_non_heat',
'service_heat',
'industry_non_heat',
'industry_heat']
my_df = pd.DataFrame(rows, columns=col_names)
my_df.to_csv(path, index=False) #Index prevents writing index rows
# Plot national results
'''validation_enduses.plot_dataframe_function(
my_df,
x_column_name='hour',
y_column_names=['residential_non_heat', 'service_non_heat', 'industry_non_heat'],
plot_kind='line')'''
|
[
"pandas.DataFrame",
"energy_demand.basic.lookup_tables.basic_lookups",
"logging.debug",
"numpy.sum",
"energy_demand.basic.date_prop.convert_h_to_day_year_and_h",
"energy_demand.basic.testing_functions.test_if_minus_value_in_array",
"logging.info"
] |
[((5766, 5853), 'logging.info', 'logging.info', (['"""... Prepared results for energy supply model in unconstrained mode"""'], {}), "(\n '... Prepared results for energy supply model in unconstrained mode')\n", (5778, 5853), False, 'import logging\n'), ((7133, 7175), 'logging.info', 'logging.info', (['"""... writing file for amman"""'], {}), "('... writing file for amman')\n", (7145, 7175), False, 'import logging\n'), ((7979, 8016), 'pandas.DataFrame', 'pd.DataFrame', (['rows'], {'columns': 'col_names'}), '(rows, columns=col_names)\n', (7991, 8016), True, 'import pandas as pd\n'), ((8490, 8535), 'logging.info', 'logging.info', (['"""... writing file for modassar"""'], {}), "('... writing file for modassar')\n", (8502, 8535), False, 'import logging\n'), ((10285, 10322), 'pandas.DataFrame', 'pd.DataFrame', (['rows'], {'columns': 'col_names'}), '(rows, columns=col_names)\n', (10297, 10322), True, 'import pandas as pd\n'), ((1958, 1987), 'energy_demand.basic.lookup_tables.basic_lookups', 'lookup_tables.basic_lookups', ([], {}), '()\n', (1985, 1987), False, 'from energy_demand.basic import date_prop, testing_functions, lookup_tables\n'), ((3057, 3142), 'energy_demand.basic.testing_functions.test_if_minus_value_in_array', 'testing_functions.test_if_minus_value_in_array', (['results_unconstrained_no_heating'], {}), '(results_unconstrained_no_heating\n )\n', (3103, 3142), False, 'from energy_demand.basic import date_prop, testing_functions, lookup_tables\n'), ((3985, 4039), 'energy_demand.basic.testing_functions.test_if_minus_value_in_array', 'testing_functions.test_if_minus_value_in_array', (['values'], {}), '(values)\n', (4031, 4039), False, 'from energy_demand.basic import date_prop, testing_functions, lookup_tables\n'), ((5212, 5241), 'energy_demand.basic.lookup_tables.basic_lookups', 'lookup_tables.basic_lookups', ([], {}), '()\n', (5239, 5241), False, 'from energy_demand.basic import date_prop, testing_functions, lookup_tables\n'), ((6626, 6757), 'logging.debug', 'logging.debug', (['"""Assigned new technology \'%s\' for \'%s\' to provide for simplified supply output"""', 'tech_newly_assigned', 'tech'], {}), '(\n "Assigned new technology \'%s\' for \'%s\' to provide for simplified supply output"\n , tech_newly_assigned, tech)\n', (6639, 6757), False, 'import logging\n'), ((8823, 8866), 'energy_demand.basic.date_prop.convert_h_to_day_year_and_h', 'date_prop.convert_h_to_day_year_and_h', (['hour'], {}), '(hour)\n', (8860, 8866), False, 'from energy_demand.basic import date_prop, testing_functions, lookup_tables\n'), ((7737, 7796), 'numpy.sum', 'np.sum', (['sum_across_regions_days[region_nr][fuelype_nr][day]'], {}), '(sum_across_regions_days[region_nr][fuelype_nr][day])\n', (7743, 7796), True, 'import numpy as np\n'), ((5688, 5760), 'energy_demand.basic.testing_functions.test_if_minus_value_in_array', 'testing_functions.test_if_minus_value_in_array', (['supply_results[key_name]'], {}), '(supply_results[key_name])\n', (5734, 5760), False, 'from energy_demand.basic import date_prop, testing_functions, lookup_tables\n'), ((4129, 4143), 'numpy.sum', 'np.sum', (['values'], {}), '(values)\n', (4135, 4143), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
######################################################################
# Software License Agreement (BSD License)
#
# Copyright (c) 2017, Rice University
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of the Rice University nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
######################################################################
# Author: <NAME>
# This is a helper program to visualize the output of the KinematicChainBenchmark.cpp.
# Sample usage (when running from the OMPL build directory):
#
# ./bin/demo_KinematicChainBenchmark 10 1
# /path/to/KinematicChainPathPlot.py 10 # produces kinematic_10.pdf
# /path/to/KinematicChainPathPlot.py 10 movie # produces kinematic_10.mp4
from sys import argv, exit
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import PathPatch
from matplotlib.path import Path
from matplotlib import animation, cm, colors
from matplotlib.backends.backend_pdf import PdfPages
fig = plt.figure()
plt.axis('equal')
ax = plt.axes(xlim=(-1, 1), ylim=(-1, 1))
ln, = plt.plot([], [], animated=True)
def getPositions(pose, linkLength, color = 'red'):
angles = np.cumsum(pose)
return PathPatch(Path(
np.insert(linkLength * np.cumsum([np.cos(angles), np.sin(angles)],
axis = 1), 0, 0., axis = 1).T), facecolor='none', edgecolor = color)
def drawEnvironment(env):
ax.clear()
plt.gca().add_patch(env)
def drawPose(index, env, poses, linkLength):
drawEnvironment(env)
if index == -1:
cMap = cm.ScalarMappable(
norm = colors.Normalize(vmin=0, vmax=poses.shape[0] - 1),
cmap = plt.get_cmap('viridis') )
for (i,pose) in enumerate(poses):
plt.gca().add_patch(getPositions(pose, linkLength,
cMap.to_rgba(i)))
else:
plt.gca().add_patch(getPositions(poses[index,:], linkLength))
return ln,
def makeMovie(fname, env, poses, linkLength):
ani = animation.FuncAnimation(plt.gcf(), drawPose,
fargs=(env, poses, linkLength), frames = poses.shape[0],
blit = True)
ani.save(fname, bitrate = 300, fps = 20)
if __name__ == '__main__':
if len(argv) < 2:
print('Usage: %s num_links [movie]' % argv[0])
exit(1)
dims = int(argv[1])
coords = np.loadtxt('environment_%d.dat' % dims)
env = PathPatch(Path(coords), facecolor='none', edgecolor='black')
poses = np.loadtxt('kinematic_path_%d.dat' % dims)
linkLength = 1. / dims
if len(argv) > 2:
makeMovie('kinematic_%d.mp4' % dims, env, poses, linkLength)
else:
drawPose(-1, env, poses, linkLength)
fig = plt.gcf()
fig.savefig('kinematic_%d.pdf' % dims)
|
[
"matplotlib.pyplot.get_cmap",
"matplotlib.pyplot.plot",
"matplotlib.colors.Normalize",
"matplotlib.pyplot.axes",
"matplotlib.pyplot.axis",
"numpy.cumsum",
"matplotlib.pyplot.figure",
"matplotlib.path.Path",
"numpy.sin",
"numpy.loadtxt",
"numpy.cos",
"matplotlib.pyplot.gca",
"matplotlib.pyplot.gcf",
"sys.exit"
] |
[((2421, 2433), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2431, 2433), True, 'import matplotlib.pyplot as plt\n'), ((2434, 2451), 'matplotlib.pyplot.axis', 'plt.axis', (['"""equal"""'], {}), "('equal')\n", (2442, 2451), True, 'import matplotlib.pyplot as plt\n'), ((2457, 2493), 'matplotlib.pyplot.axes', 'plt.axes', ([], {'xlim': '(-1, 1)', 'ylim': '(-1, 1)'}), '(xlim=(-1, 1), ylim=(-1, 1))\n', (2465, 2493), True, 'import matplotlib.pyplot as plt\n'), ((2500, 2531), 'matplotlib.pyplot.plot', 'plt.plot', (['[]', '[]'], {'animated': '(True)'}), '([], [], animated=True)\n', (2508, 2531), True, 'import matplotlib.pyplot as plt\n'), ((2597, 2612), 'numpy.cumsum', 'np.cumsum', (['pose'], {}), '(pose)\n', (2606, 2612), True, 'import numpy as np\n'), ((3737, 3776), 'numpy.loadtxt', 'np.loadtxt', (["('environment_%d.dat' % dims)"], {}), "('environment_%d.dat' % dims)\n", (3747, 3776), True, 'import numpy as np\n'), ((3860, 3902), 'numpy.loadtxt', 'np.loadtxt', (["('kinematic_path_%d.dat' % dims)"], {}), "('kinematic_path_%d.dat' % dims)\n", (3870, 3902), True, 'import numpy as np\n'), ((3426, 3435), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (3433, 3435), True, 'import matplotlib.pyplot as plt\n'), ((3691, 3698), 'sys.exit', 'exit', (['(1)'], {}), '(1)\n', (3695, 3698), False, 'from sys import argv, exit\n'), ((3797, 3809), 'matplotlib.path.Path', 'Path', (['coords'], {}), '(coords)\n', (3801, 3809), False, 'from matplotlib.path import Path\n'), ((4091, 4100), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (4098, 4100), True, 'import matplotlib.pyplot as plt\n'), ((2842, 2851), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2849, 2851), True, 'import matplotlib.pyplot as plt\n'), ((3011, 3060), 'matplotlib.colors.Normalize', 'colors.Normalize', ([], {'vmin': '(0)', 'vmax': '(poses.shape[0] - 1)'}), '(vmin=0, vmax=poses.shape[0] - 1)\n', (3027, 3060), False, 'from matplotlib import animation, cm, colors\n'), ((3081, 3104), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""viridis"""'], {}), "('viridis')\n", (3093, 3104), True, 'import matplotlib.pyplot as plt\n'), ((3264, 3273), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3271, 3273), True, 'import matplotlib.pyplot as plt\n'), ((3161, 3170), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3168, 3170), True, 'import matplotlib.pyplot as plt\n'), ((2682, 2696), 'numpy.cos', 'np.cos', (['angles'], {}), '(angles)\n', (2688, 2696), True, 'import numpy as np\n'), ((2698, 2712), 'numpy.sin', 'np.sin', (['angles'], {}), '(angles)\n', (2704, 2712), True, 'import numpy as np\n')]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.