code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
''' generate evaluation file for Cityscapes. ''' import numpy as np from PIL import Image import utilities.get_default_palette as get_default_palette BINS = [-0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5] def get_mode(arr, num=1): ''' get mode ''' assert num <= 8 hist = np.histogram(arr, bins=BINS) hist = hist[0] cur_max = np.max(hist) label_list = [] ratio = [] for _ in range(num): max_value = np.max(hist) max_index = np.argmax(hist) if max_value > cur_max*0.2: label_list.append(max_index) ratio.append(max_value/cur_max) hist[max_index] = 0 else: break return label_list, ratio def gen_evaluation_file(semantic_mask, instance_mask, confidence_array, instance_mask_path, txt_path, file_name, additive=False, slide_semantic=False, mask_label=None, mask_idx=0, result_path=None): ''' generate evaluation file for cityscapes ''' assert result_path, 'result_path must be specified' result_path = result_path + '/' _ids = np.array(['0', '24', '25', '26', '27', '28', '31', '32', '33']) instance_list = np.unique(instance_mask) refined_instance_mask = np.copy(instance_mask) if slide_semantic: semantic_part_idx = mask_label == (mask_idx + 1) file_op = 'w' ins_prefix = str(mask_idx) if additive: file_op = 'a' with open(result_path + txt_path + file_name + '.txt', file_op) as file: for i in range(instance_list.shape[0]): if instance_list[i] == 0: continue ins_mask = instance_mask == instance_list[i] instance_semantic_label = semantic_mask[ins_mask] instance_semantic_label = instance_semantic_label[instance_semantic_label != 0] if instance_semantic_label.size == 0: continue labels, ratios = get_mode(instance_semantic_label, 4) for label_i, label in enumerate(labels): if label == 0: continue _confidence = confidence_array[i] * ratios[label_i] _id = _ids[label] if slide_semantic: if not np.isin(label, np.arange(9)[semantic_part_idx]): refined_instance_mask[ins_mask] = 0 continue curr_ins = ins_prefix + '_%d_%d.png' % (i, label_i) _result_mask_path = instance_mask_path + file_name + curr_ins _result_mask = ins_mask.astype('uint8') _result_mask_image = Image.fromarray(_result_mask, mode='P') mask_palette = get_default_palette.get_default_palette() _result_mask_image.putpalette(mask_palette) _result_mask_image.save(result_path + _result_mask_path) file.write('.' + _result_mask_path) file.write(' ') file.write(_id) file.write(' ') file.write(str(_confidence)) file.write('\n') return refined_instance_mask
[ "numpy.copy", "numpy.argmax", "utilities.get_default_palette.get_default_palette", "numpy.histogram", "numpy.max", "numpy.array", "numpy.arange", "PIL.Image.fromarray", "numpy.unique" ]
[((292, 320), 'numpy.histogram', 'np.histogram', (['arr'], {'bins': 'BINS'}), '(arr, bins=BINS)\n', (304, 320), True, 'import numpy as np\n'), ((350, 362), 'numpy.max', 'np.max', (['hist'], {}), '(hist)\n', (356, 362), True, 'import numpy as np\n'), ((1057, 1120), 'numpy.array', 'np.array', (["['0', '24', '25', '26', '27', '28', '31', '32', '33']"], {}), "(['0', '24', '25', '26', '27', '28', '31', '32', '33'])\n", (1065, 1120), True, 'import numpy as np\n'), ((1139, 1163), 'numpy.unique', 'np.unique', (['instance_mask'], {}), '(instance_mask)\n', (1148, 1163), True, 'import numpy as np\n'), ((1191, 1213), 'numpy.copy', 'np.copy', (['instance_mask'], {}), '(instance_mask)\n', (1198, 1213), True, 'import numpy as np\n'), ((433, 445), 'numpy.max', 'np.max', (['hist'], {}), '(hist)\n', (439, 445), True, 'import numpy as np\n'), ((462, 477), 'numpy.argmax', 'np.argmax', (['hist'], {}), '(hist)\n', (471, 477), True, 'import numpy as np\n'), ((2400, 2439), 'PIL.Image.fromarray', 'Image.fromarray', (['_result_mask'], {'mode': '"""P"""'}), "(_result_mask, mode='P')\n", (2415, 2439), False, 'from PIL import Image\n'), ((2463, 2504), 'utilities.get_default_palette.get_default_palette', 'get_default_palette.get_default_palette', ([], {}), '()\n', (2502, 2504), True, 'import utilities.get_default_palette as get_default_palette\n'), ((2089, 2101), 'numpy.arange', 'np.arange', (['(9)'], {}), '(9)\n', (2098, 2101), True, 'import numpy as np\n')]
""" Example script to do acquire a composite survey image using stage shift. The script uses the center 50% of the image, shifts the stage by the appropriate amount in x, y directions, and stitches the resulting images together into a larger super image. To use: Run Nion Swift and get a good image Set the defocus value to a large number (positive or negative) such as 500000nm. Ensure that the aperture is circular and centered. Ensure that the aperture is large enough so that the center 50% of the image is exposed through aperture. Decide how many images to acquire by setting the 'size' variable. Decide how to reduce the acquired data by setting the 'reduce' variable. Run the script from command line or PyCharm or another suitable Python interpreter. TODO: SShft.x, SShft.y add rotation; need to fix this in AS2. TODO: The size of the camera output is hardcoded to 1024, 1024. It should read from the camera object. TODO: Update composite image live during acquisition. Requires improvements to nionlib. """ import math import numpy import time import nionlib def acquire_composite_survey_image(size, rotation=0, scale=1, reduce=4, print_fn=None): print_fn = print_fn if print_fn is not None else lambda *args: None document_controller = nionlib.api.application.document_controllers[0] library = nionlib.api.library camera = nionlib.api.get_hardware_source_by_id("nionccd1010", "1") autostem = nionlib.api.get_instrument_by_id("autostem_controller", "1") shift_x_control_name = "SShft.x" shift_y_control_name = "SShft.y" # grab stage original location sx_m = autostem.get_control_output(shift_x_control_name) sy_m = autostem.get_control_output(shift_y_control_name) tv_pixel_angle_rad = autostem.get_control_output("TVPixelAngle") defocus = autostem.get_control_output("C10") print_fn("Acquiring composite survey image...") print_fn("stage starting position (um) ", sx_m * 1e6, sy_m * 1e6) print_fn("pixel angle (rad) ", tv_pixel_angle_rad) print_fn("defocus (nm) ", defocus * 1e9) image_size = 1024, 1024 # TODO: grab this from camera image_dtype = numpy.float32 image_width_m = abs(defocus) * math.sin(tv_pixel_angle_rad * image_size[0]) master_sub_area_size = 512, 512 master_sub_area = (image_size[0]//2 - master_sub_area_size[0]//2, image_size[1]//2 - master_sub_area_size[1]//2), master_sub_area_size reduce = max(1, reduce // (512 / master_sub_area_size[0])) sub_area_shift_m = image_width_m * (master_sub_area[1][0] / image_size[0]) sub_area = (master_sub_area[0][0]//reduce,master_sub_area[0][1]//reduce), (master_sub_area[1][0]//reduce,master_sub_area[1][1]//reduce) print_fn("image width (um) ", image_width_m * 1e6) master_data = numpy.empty((sub_area[1][0] * size[0], sub_area[1][1] * size[1]), image_dtype) print_fn("master size ", master_data.shape) try: for row in range(size[0]): for column in range(size[1]): delta_x_m, delta_y_m = sub_area_shift_m * (column - size[1]//2), sub_area_shift_m * (row - size[0]//2) print_fn("offset (um) ", delta_x_m * 1e6, delta_y_m * 1e6) start = time.time() # when used below, we use the rotation rotated by 180 degrees since we are moving the stage, not the # view. i.e. use -angle and subtract the delta's. rotated_delta_x_m = (math.cos(rotation) * delta_x_m - math.sin(rotation) * delta_y_m) / scale rotated_delta_y_m = (math.sin(rotation) * delta_x_m + math.cos(rotation) * delta_y_m) / scale print_fn("rotated offset (um) ", rotated_delta_x_m * 1e6, rotated_delta_y_m * 1e6) # set both values. be robust, retrying if set_control_output fails. attempts = 0 while attempts < 4: attempts += 1 try: tolerance_factor = 0.02 autostem.set_control_output(shift_x_control_name, sx_m - rotated_delta_x_m, {"confirm": True, "confirm_tolerance_factor": tolerance_factor}) autostem.set_control_output(shift_y_control_name, sy_m - rotated_delta_y_m, {"confirm": True, "confirm_tolerance_factor": tolerance_factor}) except TimeoutError as e: print("Timeout row=", row, " column=", column) continue break print_fn("Time", time.time() - start, " row=", row, " column=", column) supradata = camera.grab_next_to_start()[0] data = supradata.data[master_sub_area[0][0]:master_sub_area[0][0] + master_sub_area[1][0]:reduce, master_sub_area[0][1]:master_sub_area[0][1] + master_sub_area[1][1]:reduce] slice_row = row slice_column = column slice0 = slice(slice_row * sub_area[1][0], (slice_row + 1) * sub_area[1][0]) slice1 = slice(slice_column * sub_area[1][1], (slice_column + 1) * sub_area[1][1]) master_data[slice0, slice1] = data data_item = library.create_data_item_from_data(master_data, "Composite Survey") document_controller.display_data_item(data_item) finally: # restore stage to original location autostem.set_control_output(shift_x_control_name, sx_m) autostem.set_control_output(shift_y_control_name, sy_m) # these measurements are determined by a line made from a feature before a shift to a feature after a # shift. for instance, make a line starting on a feature. then add 100um to SShft.x and measure the # length of the line and the angle. plug those in here. rotation = math.radians(-23) scale = 1.2 acquire_composite_survey_image(size=(5, 5), rotation=rotation, scale=scale, print_fn=print)
[ "nionlib.api.get_instrument_by_id", "math.radians", "numpy.empty", "nionlib.api.get_hardware_source_by_id", "math.sin", "time.time", "math.cos" ]
[((5764, 5781), 'math.radians', 'math.radians', (['(-23)'], {}), '(-23)\n', (5776, 5781), False, 'import math\n'), ((1386, 1443), 'nionlib.api.get_hardware_source_by_id', 'nionlib.api.get_hardware_source_by_id', (['"""nionccd1010"""', '"""1"""'], {}), "('nionccd1010', '1')\n", (1423, 1443), False, 'import nionlib\n'), ((1459, 1519), 'nionlib.api.get_instrument_by_id', 'nionlib.api.get_instrument_by_id', (['"""autostem_controller"""', '"""1"""'], {}), "('autostem_controller', '1')\n", (1491, 1519), False, 'import nionlib\n'), ((2803, 2881), 'numpy.empty', 'numpy.empty', (['(sub_area[1][0] * size[0], sub_area[1][1] * size[1])', 'image_dtype'], {}), '((sub_area[1][0] * size[0], sub_area[1][1] * size[1]), image_dtype)\n', (2814, 2881), False, 'import numpy\n'), ((2223, 2267), 'math.sin', 'math.sin', (['(tv_pixel_angle_rad * image_size[0])'], {}), '(tv_pixel_angle_rad * image_size[0])\n', (2231, 2267), False, 'import math\n'), ((3235, 3246), 'time.time', 'time.time', ([], {}), '()\n', (3244, 3246), False, 'import time\n'), ((4544, 4555), 'time.time', 'time.time', ([], {}), '()\n', (4553, 4555), False, 'import time\n'), ((3467, 3485), 'math.cos', 'math.cos', (['rotation'], {}), '(rotation)\n', (3475, 3485), False, 'import math\n'), ((3500, 3518), 'math.sin', 'math.sin', (['rotation'], {}), '(rotation)\n', (3508, 3518), False, 'import math\n'), ((3577, 3595), 'math.sin', 'math.sin', (['rotation'], {}), '(rotation)\n', (3585, 3595), False, 'import math\n'), ((3610, 3628), 'math.cos', 'math.cos', (['rotation'], {}), '(rotation)\n', (3618, 3628), False, 'import math\n')]
# Author: <NAME> from __future__ import absolute_import from __future__ import division from __future__ import print_function try: import cPickle as pickle except: import pickle import os import active_learners.helper as helper import h5py import numpy as np from active_learners.active_learner import run_ActiveLearner def gen_data(expid, exp, n_data, save_fnm): ''' Generate initial data for a function associated the experiment. Args: expid: ID of the experiment; e.g. 0, 1, 2, ... exp: name of the experiment; e.g. 'pour', 'scoop'. n_data: number of data points to generate. save_fnm: a file name string where the initial data will be saved. ''' print('Generating data...') func = helper.get_func_from_exp(exp) xx, yy = helper.gen_data(func, n_data) pickle.dump((xx, yy), open(save_fnm, 'wb')) def run_exp(expid, exp, method, n_init_data, iters): ''' Run the active learning experiment. Args: expid: ID of the experiment; e.g. 0, 1, 2, ... exp: name of the experiment; e.g. 'pour', 'scoop'. method: learning method, including 'nn_classification': a classification neural network based learning algorithm that queries the input that has the largest output. 'nn_regression': a regression neural network based learning algorithm that queries the input that has the largest output. 'gp_best_prob': a Gaussian process based learning algorithm that queries the input that has the highest probability of having a positive function value. 'gp_lse': a Gaussian process based learning algorithm called straddle algorithm. See <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, "Active learning for identifying function threshold boundaries," in NIPS, 2006. 'random': an algorithm that query uniformly random samples. n_data: number of data points to generate. save_fnm: a file name string where the initial data will be saved. ''' dirnm = 'data/' if not os.path.isdir(dirnm): os.mkdir(dirnm) init_fnm = os.path.join( dirnm, '{}_init_data_{}.pk'.format(exp, expid)) gen_data(expid, exp, n_init_data, init_fnm) initx, inity = pickle.load(open(init_fnm, 'rb')) func = helper.get_func_from_exp(exp) active_learner = helper.get_learner_from_method(method, initx, inity, func) # file name for saving the learning results learn_fnm = os.path.join( dirnm, '{}_{}_{}.pk'.format(exp, method, expid)) # get a context context = helper.gen_context(func) # start running the learner print('Start running the learning experiment...') run_ActiveLearner(active_learner, context, learn_fnm, iters) def sample_exp(expid, exp, method, n_eps, n_timesteps_per_ep): ''' Sample from the learned model. Args: expid: ID of the experiment; e.g. 0, 1, 2, ... exp: name of the experiment; e.g. 'pour', 'scoop'. method: see run_exp. ''' func = helper.get_func_from_exp(exp) xx, yy, c = helper.get_xx_yy(expid, method, exp=exp) active_learner = helper.get_learner_from_method(method, xx, yy, func) active_learner.retrain() # Enable gui func.do_gui = True # while raw_input('Continue? [y/n]') == 'y': all_ims = [] all_actions = [] for i in range(n_eps): print("##### %s: %d ######" % (method, i)) x = active_learner.sample(c) import ipdb ipdb.set_trace() ims, actions = func(x, n_timesteps_per_ep) # func(x) all_ims.append(ims) all_actions.append(actions) return np.array(all_ims), np.array(all_actions) if __name__ == '__main__': exp = 'pour' methods = ['gp_lse']#, 'random'] expid = 0 n_eps = 500 n_timesteps_per_ep = 40 # n_init_data = 10 # iters = 50 save_data = True dataset = h5py.File('/usr/local/google/home/thanard/data/pouring.hdf5', 'w') sim_data = dataset.create_group('sim') sim_data.create_dataset("ims", (n_eps, n_timesteps_per_ep, 64, 64, 3), dtype='f') sim_data.create_dataset("actions", (n_eps, n_timesteps_per_ep, 3), dtype='f') # run_exp(expid, exp, method, n_init_data, iters) i = 0 for method in methods: ims, actions = sample_exp(expid, exp, method, n_eps//len(methods), n_timesteps_per_ep) # import ipdb # ipdb.set_trace() dataset['sim']['ims'][i:i+n_eps//len(methods)] = ims dataset['sim']['actions'][i:i+n_eps//len(methods)] = actions i += n_eps//len(methods)
[ "os.mkdir", "active_learners.active_learner.run_ActiveLearner", "h5py.File", "ipdb.set_trace", "os.path.isdir", "active_learners.helper.get_func_from_exp", "active_learners.helper.get_xx_yy", "numpy.array", "active_learners.helper.gen_data", "active_learners.helper.get_learner_from_method", "active_learners.helper.gen_context" ]
[((758, 787), 'active_learners.helper.get_func_from_exp', 'helper.get_func_from_exp', (['exp'], {}), '(exp)\n', (782, 787), True, 'import active_learners.helper as helper\n'), ((801, 830), 'active_learners.helper.gen_data', 'helper.gen_data', (['func', 'n_data'], {}), '(func, n_data)\n', (816, 830), True, 'import active_learners.helper as helper\n'), ((2464, 2493), 'active_learners.helper.get_func_from_exp', 'helper.get_func_from_exp', (['exp'], {}), '(exp)\n', (2488, 2493), True, 'import active_learners.helper as helper\n'), ((2516, 2574), 'active_learners.helper.get_learner_from_method', 'helper.get_learner_from_method', (['method', 'initx', 'inity', 'func'], {}), '(method, initx, inity, func)\n', (2546, 2574), True, 'import active_learners.helper as helper\n'), ((2750, 2774), 'active_learners.helper.gen_context', 'helper.gen_context', (['func'], {}), '(func)\n', (2768, 2774), True, 'import active_learners.helper as helper\n'), ((2866, 2926), 'active_learners.active_learner.run_ActiveLearner', 'run_ActiveLearner', (['active_learner', 'context', 'learn_fnm', 'iters'], {}), '(active_learner, context, learn_fnm, iters)\n', (2883, 2926), False, 'from active_learners.active_learner import run_ActiveLearner\n'), ((3206, 3235), 'active_learners.helper.get_func_from_exp', 'helper.get_func_from_exp', (['exp'], {}), '(exp)\n', (3230, 3235), True, 'import active_learners.helper as helper\n'), ((3252, 3292), 'active_learners.helper.get_xx_yy', 'helper.get_xx_yy', (['expid', 'method'], {'exp': 'exp'}), '(expid, method, exp=exp)\n', (3268, 3292), True, 'import active_learners.helper as helper\n'), ((3314, 3366), 'active_learners.helper.get_learner_from_method', 'helper.get_learner_from_method', (['method', 'xx', 'yy', 'func'], {}), '(method, xx, yy, func)\n', (3344, 3366), True, 'import active_learners.helper as helper\n'), ((4083, 4149), 'h5py.File', 'h5py.File', (['"""/usr/local/google/home/thanard/data/pouring.hdf5"""', '"""w"""'], {}), "('/usr/local/google/home/thanard/data/pouring.hdf5', 'w')\n", (4092, 4149), False, 'import h5py\n'), ((2215, 2235), 'os.path.isdir', 'os.path.isdir', (['dirnm'], {}), '(dirnm)\n', (2228, 2235), False, 'import os\n'), ((2245, 2260), 'os.mkdir', 'os.mkdir', (['dirnm'], {}), '(dirnm)\n', (2253, 2260), False, 'import os\n'), ((3666, 3682), 'ipdb.set_trace', 'ipdb.set_trace', ([], {}), '()\n', (3680, 3682), False, 'import ipdb\n'), ((3827, 3844), 'numpy.array', 'np.array', (['all_ims'], {}), '(all_ims)\n', (3835, 3844), True, 'import numpy as np\n'), ((3846, 3867), 'numpy.array', 'np.array', (['all_actions'], {}), '(all_actions)\n', (3854, 3867), True, 'import numpy as np\n')]
from timeit import default_timer as timer import numpy as np start = timer() class Link (object): def __init__(self, data, next=None, previous=None): self.data = data self.next = next self.previous = previous class CircularList(object): # Constructor def __init__(self): self.first = None # Insert an element (value) in the list def insert(self, data): new_link = Link(data) if self.first == None: self.first = new_link new_link.next = new_link new_link.previous = new_link else: new_link.next = self.first new_link.previous = self.first.previous self.first.previous.next = new_link self.first.previous = new_link def sum(self): first = self.first current = first.next total = first.data while current != first: total += current.data current = current.next return total # Return a string representation of a Circular List def __str__(self): first = self.first output = '' output += str(first.data) + "\n" current = first.next while current != first: output += str(current.data) + "\n" current = current.next return output input = open("day_6_input.txt", "r") raw = np.array([int(x) for x in input.readline().split(",")]) fish = np.concatenate([[0], np.unique(raw, return_counts=True)[1], [0, 0, 0]]) fishCircle = CircularList() for i in fish: fishCircle.insert(i) readyFish = fishCircle.first tiredFish = readyFish.previous.previous for i in range(256): tiredFish.data += readyFish.data readyFish = readyFish.next tiredFish = tiredFish.next print(fishCircle.sum()) end = timer() print(end-start)
[ "timeit.default_timer", "numpy.unique" ]
[((69, 76), 'timeit.default_timer', 'timer', ([], {}), '()\n', (74, 76), True, 'from timeit import default_timer as timer\n'), ((1808, 1815), 'timeit.default_timer', 'timer', ([], {}), '()\n', (1813, 1815), True, 'from timeit import default_timer as timer\n'), ((1470, 1504), 'numpy.unique', 'np.unique', (['raw'], {'return_counts': '(True)'}), '(raw, return_counts=True)\n', (1479, 1504), True, 'import numpy as np\n')]
import argparse import os import sys import re BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(BASE_DIR) from model import * import indoor3d_util import time import numpy as np import get_instances import project_inst "python inference_online_all.py --path_data a/b/c --path_cls meta/class_or.txt --model_path RUNS/test_indoor --points_sub 128 --points_proj 512 --test_name test_name" parser = argparse.ArgumentParser() parser.add_argument('--path_data', help='folder with train test data') parser.add_argument('--path_cls', help='path to classes txt.') parser.add_argument('--model_path', required=True, help='model checkpoint file path') parser.add_argument('--points_sub', type=int, default=128, help='Point number sub [default: 4096]') parser.add_argument('--points_proj', type=int, default=0, help='Point number proj [default: 4096]') parser.add_argument('--test_name', help='name of the test') parser.add_argument('--down_pred', default = 0, help='downsample prediction') parsed_args = parser.parse_args() path_data = parsed_args.path_data path_cls = parsed_args.path_cls model_path = os.path.join(parsed_args.model_path, "model.ckpt") points_sub = parsed_args.points_sub points_proj = parsed_args.points_proj down_pred = parsed_args.down_pred test_name = parsed_args.test_name dump_path = os.path.join(parsed_args.model_path, "dump_" + test_name) if not os.path.exists(dump_path): os.mkdir(dump_path) classes, labels, label2color = indoor3d_util.get_info_classes(path_cls) num_classes = len(classes) batch_size = 1 gpu_index = 0 block_sub = 0.1 stride_sub = 0.1 block_proj = 0.1 stride_proj = 0.1 minim_points = 37 def evaluate(data, label, xyz_max, sess, ops): is_training = False label = np.squeeze(label) num_batches = data.shape[0] // batch_size pred_label_list =list() for batch_idx in range(num_batches): start_idx = batch_idx * batch_size end_idx = (batch_idx+1) * batch_size feed_dict = {ops['pointclouds_pl']: data[start_idx:end_idx, :, :], ops['labels_pl']: label[start_idx:end_idx], ops['is_training_pl']: is_training} loss_val, pred_val = sess.run([ops['loss'], ops['pred_softmax']], feed_dict=feed_dict) pred_label = np.argmax(pred_val, 2) pred_label = pred_label.reshape(pred_label.shape[0]*pred_label.shape[1],1) pred_label_list.append(pred_label) pred_label_stacked = np.vstack(pred_label_list) data = data.reshape((data.shape[0]*data.shape[1]), data.shape[2]) data = np.delete(data, [0,1,2], 1) data[:, [0,1,2,3,4,5,]] = data[:, [3,4,5,0,1,2]] data[:,0] *= xyz_max[0] data[:,1] *= xyz_max[1] data[:,2] *= xyz_max[2] data[:,3:] *= 255.0 data = data[:pred_label_stacked.shape[0], :] pred_sub = np.hstack([data,pred_label_stacked]) return pred_sub if __name__=='__main__': with tf.device('/gpu:'+str(gpu_index)): pointclouds_pl, labels_pl = placeholder_inputs(batch_size, points_sub) is_training_pl = tf.placeholder(tf.bool, shape=()) # simple model pred = get_model(pointclouds_pl, is_training_pl) loss = get_loss(pred, labels_pl) pred_softmax = tf.nn.softmax(pred) # Add ops to save and restore all the variables. saver = tf.train.Saver() # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = True sess = tf.Session(config=config) # Restore variables from disk. saver.restore(sess, model_path) ops = {'pointclouds_pl': pointclouds_pl, 'labels_pl': labels_pl, 'is_training_pl': is_training_pl, 'pred': pred, 'pred_softmax': pred_softmax, 'loss': loss} times_list = list() while 1: for root, dirs, files in os.walk(path_data): # for each folder for file in enumerate(sorted(files)): # for each file # TODO AL FINAL FINAL LEER DE ROS if re.search("\.(txt)$", file[1]): # if its a txt print("working on: " + str(file[1])) filepath = os.path.join(root, file[1]) data_label_full = np.loadtxt(filepath) # read from txt (not on xyz origin) os.remove(filepath) if data_label_full.shape[0]> 200000: # check pointcloud points, a good PC has ~ 480k points # init times that may not be calculated time_down_pred = 0 time_sub_proj = 0 time_proj = 0 # subsample data_label_full to match ros subscription reduction = 0.1 n_idx_full_sub = int(data_label_full.shape[0] * reduction) idx_full_sub = np.random.choice(data_label_full.shape[0], n_idx_full_sub, replace=False) data_label_full_sub = data_label_full[idx_full_sub, 0:6] start = time.time() xyz_min = np.amin(data_label_full_sub, axis=0)[0:3] # get pointcloud mins data_label_full_sub[:, 0:3] -= xyz_min # move pointcloud to origin end = time.time() time_min = end - start start = time.time() xyz_max = np.amax(data_label_full_sub, axis=0)[0:3] # get pointcloud maxs end = time.time() time_max = end - start start = time.time() data_sub, label_sub = indoor3d_util.room2blocks_plus_normalized_parsed(data_label_full_sub, xyz_max, points_sub, block_size=block_sub, stride=stride_sub, random_sample=False, sample_num=None, sample_aug=1) # subsample PC for evaluation end = time.time() time_sub_eval = end - start start = time.time() with tf.Graph().as_default(): pred_sub = evaluate(data_sub, label_sub, xyz_max, sess, ops) # evaluate PC pred_sub[:, 0:3] += xyz_min # recover PC's original position end = time.time() time_eval = end - start fout_sub = open(os.path.join(dump_path, os.path.basename(filepath)[:-4]+'_pred_sub.obj'), 'w') fout_sub_col = open(os.path.join(dump_path, os.path.basename(filepath)[:-4]+'_pred_sub_col.obj'), 'w') for i in range(pred_sub.shape[0]): fout_sub.write('v %f %f %f %d %d %d %d\n' % (pred_sub[i,0], pred_sub[i,1], pred_sub[i,2], pred_sub[i,3], pred_sub[i,4], pred_sub[i,5], pred_sub[i,6])) for i in range(pred_sub.shape[0]): color = label2color[pred_sub[i,6]] fout_sub_col.write('v %f %f %f %d %d %d %d\n' % (pred_sub[i,0], pred_sub[i,1], pred_sub[i,2], color[0], color[1], color[2], pred_sub[i,6])) if down_pred != 0: # if subsampling of prediciton is wanted start = time.time() down = float(1/(2**down_pred)) # down_pred = 1, to go down 1, down_pred = 2, to go down 2, always staying in te same block stride n_idx_pred_sub_down = int(pred_sub.shape[0] * down) idx_pred_sub_down = np.random.choice(pred_sub.shape[0], n_idx_pred_sub_down, replace=False) pred_sub = pred_sub[idx_pred_sub_down, 0:7] # downsample prediciton end = time.time() time_down_pred = end - start col_inst = { 0: [255, 255, 0], 1: [255, 0, 255], 2: [0, 255, 255], 3: [0, 128, 0], 4: [0, 0, 128], 5: [128, 0, 0], 6: [0, 255, 0], 7: [0, 0, 255], 8: [255, 0, 0], 9: [0, 100, 0], 10: [0, 0, 100], 11: [100, 0, 0], 12: [100, 0, 255], 13: [0, 255, 100], 13: [255, 100, 0] } # init get_instances parameters rad_p = 0.03 rad_v = 0.045 dim = 2 min_p = minim_points start = time.time() instances_noref = get_instances.get_instances(pred_sub, labels, dim, rad_p, dim, rad_v, min_p, ref=False) # get instances no ref end = time.time() time_inst_noref = end - start start = time.time() instances_ref = get_instances.get_instances(pred_sub, labels, dim, rad_p, dim, rad_v, min_p, ref=True) # get instances ref end = time.time() time_inst_ref = end - start fout_inst = open(os.path.join(dump_path, os.path.basename(filepath)[:-4]+'_pred_inst_ref.obj'), 'w') fout_inst_col = open(os.path.join(dump_path, os.path.basename(filepath)[:-4]+'_pred_inst_ref_col.obj'), 'w') for i in range(instances_ref.shape[0]): fout_inst.write('v %f %f %f %d %d %d %d %d\n' % (instances_ref[i,0], instances_ref[i,1], instances_ref[i,2], instances_ref[i,3], instances_ref[i,4], instances_ref[i,5], instances_ref[i,6], instances_ref[i,7])) for i in range(instances_ref.shape[0]): color = col_inst[instances_ref[i,7]] fout_inst_col.write('v %f %f %f %d %d %d %d %d\n' % (instances_ref[i,0], instances_ref[i,1], instances_ref[i,2], color[0], color[1], color[2], instances_ref[i,6], instances_ref[i,7])) if instances_ref is not None: # if instances were found if points_proj != 0: # if projection is wanted # determine projection number of points if block_proj == 0.2: start = 0.3333 # 0.03333 TODO x10 because reduced data_label_full by /10 into data_label_full_sub by = 1024 / points_proj reduction = start / by else: start = 0.5 # 0.05 TODO x10 because reduced data_label_full by /10 into data_label_full_sub by = 512 / points_proj reduction = start / by # TODO USE FULL_SUB SO WE CAN REUSE XYZ MIN MAX start = time.time() n_idx_proj = int(data_label_full_sub.shape[0] * reduction) idx_proj = np.random.choice(data_label_full_sub.shape[0], n_idx_proj, replace=False) data_proj = data_label_full_sub[idx_proj, 0:6] # subsample projection data_proj[:, 0:3] += xyz_min # move projection to original position (data_label_full is on origin) end = time.time() time_sub_proj = end - start start = time.time() projections = project_inst.project_inst(instances_ref, data_proj) end = time.time() time_proj = end - start else: projections = instances_ref if projections is not None: fout_proj = open(os.path.join(dump_path, os.path.basename(filepath)[:-4]+'_projections.obj'), 'w') fout_proj_col = open(os.path.join(dump_path, os.path.basename(filepath)[:-4]+'_projections_col.obj'), 'w') for i in range(projections.shape[0]): fout_proj.write('v %f %f %f %d %d %d %d %d\n' % (projections[i,0], projections[i,1], projections[i,2], projections[i,3], projections[i,4], projections[i,5], projections[i,6], projections[i,7])) for i in range(projections.shape[0]): color = col_inst[projections[i,7]] fout_proj_col.write('v %f %f %f %d %d %d %d %d\n' % (projections[i,0], projections[i,1], projections[i,2], color[0], color[1], color[2], projections[i,6], projections[i,7])) if points_proj != 0: fout_proj = open(os.path.join(dump_path, os.path.basename(filepath)[:-4]+'_base_proj.obj'), 'w') for i in range(data_proj.shape[0]): fout_proj.write('v %f %f %f %d %d %d\n' % (data_proj[i,0], data_proj[i,1], data_proj[i,2], data_proj[i,3], data_proj[i,4], data_proj[i,5])) times = (time_min, time_max, time_sub_eval, time_eval, time_down_pred, time_inst_noref, time_inst_ref, time_sub_proj, time_proj) times_list.append(times) times_mean = np.mean(times_list,axis=0) times_stack = np.vstack(times_list) fout_times = open(os.path.join(dump_path, 'times.txt'), 'w') for i in range(times_stack.shape[0]): fout_times.write('%f %f %f %f %f %f %f %f %f\n' % (times_stack[i,0], times_stack[i,1], times_stack[i,2], times_stack[i,3], times_stack[i,4], times_stack[i,5], times_stack[i,6], times_stack[i,7], times_stack[i,8])) fout_times.write('--------- MEAN ---------\n') fout_times.write(' t_min t_max t_sub_eval t_eval t_down_pred t_inst_noref t_inst_ref t_sub_proj t_proj\n') fout_times.write('%f %f %f %f %f %f %f %f %f\n' % (times_mean[0], times_mean[1], times_mean[2], times_mean[3], times_mean[4], times_mean[5], times_mean[6], times_mean[7], times_mean[8])) fout_times.close() else: print("PC discarted as n_points < 200000")
[ "os.mkdir", "os.remove", "argparse.ArgumentParser", "numpy.amin", "numpy.argmax", "os.walk", "indoor3d_util.get_info_classes", "numpy.mean", "os.path.join", "sys.path.append", "os.path.abspath", "indoor3d_util.room2blocks_plus_normalized_parsed", "os.path.dirname", "os.path.exists", "project_inst.project_inst", "numpy.loadtxt", "numpy.random.choice", "re.search", "os.path.basename", "numpy.hstack", "get_instances.get_instances", "numpy.squeeze", "numpy.delete", "numpy.vstack", "time.time", "numpy.amax" ]
[((112, 137), 'os.path.dirname', 'os.path.dirname', (['BASE_DIR'], {}), '(BASE_DIR)\n', (127, 137), False, 'import os\n'), ((138, 163), 'sys.path.append', 'sys.path.append', (['BASE_DIR'], {}), '(BASE_DIR)\n', (153, 163), False, 'import sys\n'), ((455, 480), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (478, 480), False, 'import argparse\n'), ((1154, 1204), 'os.path.join', 'os.path.join', (['parsed_args.model_path', '"""model.ckpt"""'], {}), "(parsed_args.model_path, 'model.ckpt')\n", (1166, 1204), False, 'import os\n'), ((1359, 1416), 'os.path.join', 'os.path.join', (['parsed_args.model_path', "('dump_' + test_name)"], {}), "(parsed_args.model_path, 'dump_' + test_name)\n", (1371, 1416), False, 'import os\n'), ((1503, 1543), 'indoor3d_util.get_info_classes', 'indoor3d_util.get_info_classes', (['path_cls'], {}), '(path_cls)\n', (1533, 1543), False, 'import indoor3d_util\n'), ((74, 99), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (89, 99), False, 'import os\n'), ((1424, 1449), 'os.path.exists', 'os.path.exists', (['dump_path'], {}), '(dump_path)\n', (1438, 1449), False, 'import os\n'), ((1451, 1470), 'os.mkdir', 'os.mkdir', (['dump_path'], {}), '(dump_path)\n', (1459, 1470), False, 'import os\n'), ((1774, 1791), 'numpy.squeeze', 'np.squeeze', (['label'], {}), '(label)\n', (1784, 1791), True, 'import numpy as np\n'), ((2534, 2560), 'numpy.vstack', 'np.vstack', (['pred_label_list'], {}), '(pred_label_list)\n', (2543, 2560), True, 'import numpy as np\n'), ((2645, 2674), 'numpy.delete', 'np.delete', (['data', '[0, 1, 2]', '(1)'], {}), '(data, [0, 1, 2], 1)\n', (2654, 2674), True, 'import numpy as np\n'), ((2905, 2942), 'numpy.hstack', 'np.hstack', (['[data, pred_label_stacked]'], {}), '([data, pred_label_stacked])\n', (2914, 2942), True, 'import numpy as np\n'), ((2359, 2381), 'numpy.argmax', 'np.argmax', (['pred_val', '(2)'], {}), '(pred_val, 2)\n', (2368, 2381), True, 'import numpy as np\n'), ((4014, 4032), 'os.walk', 'os.walk', (['path_data'], {}), '(path_data)\n', (4021, 4032), False, 'import os\n'), ((4200, 4231), 're.search', 're.search', (['"""\\\\.(txt)$"""', 'file[1]'], {}), "('\\\\.(txt)$', file[1])\n", (4209, 4231), False, 'import re\n'), ((4372, 4399), 'os.path.join', 'os.path.join', (['root', 'file[1]'], {}), '(root, file[1])\n', (4384, 4399), False, 'import os\n'), ((4438, 4458), 'numpy.loadtxt', 'np.loadtxt', (['filepath'], {}), '(filepath)\n', (4448, 4458), True, 'import numpy as np\n'), ((4516, 4535), 'os.remove', 'os.remove', (['filepath'], {}), '(filepath)\n', (4525, 4535), False, 'import os\n'), ((5080, 5153), 'numpy.random.choice', 'np.random.choice', (['data_label_full.shape[0]', 'n_idx_full_sub'], {'replace': '(False)'}), '(data_label_full.shape[0], n_idx_full_sub, replace=False)\n', (5096, 5153), True, 'import numpy as np\n'), ((5269, 5280), 'time.time', 'time.time', ([], {}), '()\n', (5278, 5280), False, 'import time\n'), ((5515, 5526), 'time.time', 'time.time', ([], {}), '()\n', (5524, 5526), False, 'import time\n'), ((5607, 5618), 'time.time', 'time.time', ([], {}), '()\n', (5616, 5618), False, 'import time\n'), ((5747, 5758), 'time.time', 'time.time', ([], {}), '()\n', (5756, 5758), False, 'import time\n'), ((5839, 5850), 'time.time', 'time.time', ([], {}), '()\n', (5848, 5850), False, 'import time\n'), ((5897, 6088), 'indoor3d_util.room2blocks_plus_normalized_parsed', 'indoor3d_util.room2blocks_plus_normalized_parsed', (['data_label_full_sub', 'xyz_max', 'points_sub'], {'block_size': 'block_sub', 'stride': 'stride_sub', 'random_sample': '(False)', 'sample_num': 'None', 'sample_aug': '(1)'}), '(data_label_full_sub,\n xyz_max, points_sub, block_size=block_sub, stride=stride_sub,\n random_sample=False, sample_num=None, sample_aug=1)\n', (5945, 6088), False, 'import indoor3d_util\n'), ((6141, 6152), 'time.time', 'time.time', ([], {}), '()\n', (6150, 6152), False, 'import time\n'), ((6238, 6249), 'time.time', 'time.time', ([], {}), '()\n', (6247, 6249), False, 'import time\n'), ((6561, 6572), 'time.time', 'time.time', ([], {}), '()\n', (6570, 6572), False, 'import time\n'), ((9070, 9081), 'time.time', 'time.time', ([], {}), '()\n', (9079, 9081), False, 'import time\n'), ((9124, 9215), 'get_instances.get_instances', 'get_instances.get_instances', (['pred_sub', 'labels', 'dim', 'rad_p', 'dim', 'rad_v', 'min_p'], {'ref': '(False)'}), '(pred_sub, labels, dim, rad_p, dim, rad_v, min_p,\n ref=False)\n', (9151, 9215), False, 'import get_instances\n'), ((9265, 9276), 'time.time', 'time.time', ([], {}), '()\n', (9274, 9276), False, 'import time\n'), ((9364, 9375), 'time.time', 'time.time', ([], {}), '()\n', (9373, 9375), False, 'import time\n'), ((9416, 9506), 'get_instances.get_instances', 'get_instances.get_instances', (['pred_sub', 'labels', 'dim', 'rad_p', 'dim', 'rad_v', 'min_p'], {'ref': '(True)'}), '(pred_sub, labels, dim, rad_p, dim, rad_v, min_p,\n ref=True)\n', (9443, 9506), False, 'import get_instances\n'), ((9554, 9565), 'time.time', 'time.time', ([], {}), '()\n', (9563, 9565), False, 'import time\n'), ((14137, 14164), 'numpy.mean', 'np.mean', (['times_list'], {'axis': '(0)'}), '(times_list, axis=0)\n', (14144, 14164), True, 'import numpy as np\n'), ((14202, 14223), 'numpy.vstack', 'np.vstack', (['times_list'], {}), '(times_list)\n', (14211, 14223), True, 'import numpy as np\n'), ((5315, 5351), 'numpy.amin', 'np.amin', (['data_label_full_sub'], {'axis': '(0)'}), '(data_label_full_sub, axis=0)\n', (5322, 5351), True, 'import numpy as np\n'), ((5653, 5689), 'numpy.amax', 'np.amax', (['data_label_full_sub'], {'axis': '(0)'}), '(data_label_full_sub, axis=0)\n', (5660, 5689), True, 'import numpy as np\n'), ((7555, 7566), 'time.time', 'time.time', ([], {}), '()\n', (7564, 7566), False, 'import time\n'), ((7872, 7943), 'numpy.random.choice', 'np.random.choice', (['pred_sub.shape[0]', 'n_idx_pred_sub_down'], {'replace': '(False)'}), '(pred_sub.shape[0], n_idx_pred_sub_down, replace=False)\n', (7888, 7943), True, 'import numpy as np\n'), ((8078, 8089), 'time.time', 'time.time', ([], {}), '()\n', (8087, 8089), False, 'import time\n'), ((14267, 14303), 'os.path.join', 'os.path.join', (['dump_path', '"""times.txt"""'], {}), "(dump_path, 'times.txt')\n", (14279, 14303), False, 'import os\n'), ((11547, 11558), 'time.time', 'time.time', ([], {}), '()\n', (11556, 11558), False, 'import time\n'), ((11693, 11766), 'numpy.random.choice', 'np.random.choice', (['data_label_full_sub.shape[0]', 'n_idx_proj'], {'replace': '(False)'}), '(data_label_full_sub.shape[0], n_idx_proj, replace=False)\n', (11709, 11766), True, 'import numpy as np\n'), ((12039, 12050), 'time.time', 'time.time', ([], {}), '()\n', (12048, 12050), False, 'import time\n'), ((12152, 12163), 'time.time', 'time.time', ([], {}), '()\n', (12161, 12163), False, 'import time\n'), ((12210, 12261), 'project_inst.project_inst', 'project_inst.project_inst', (['instances_ref', 'data_proj'], {}), '(instances_ref, data_proj)\n', (12235, 12261), False, 'import project_inst\n'), ((12300, 12311), 'time.time', 'time.time', ([], {}), '()\n', (12309, 12311), False, 'import time\n'), ((6706, 6732), 'os.path.basename', 'os.path.basename', (['filepath'], {}), '(filepath)\n', (6722, 6732), False, 'import os\n'), ((6829, 6855), 'os.path.basename', 'os.path.basename', (['filepath'], {}), '(filepath)\n', (6845, 6855), False, 'import os\n'), ((9684, 9710), 'os.path.basename', 'os.path.basename', (['filepath'], {}), '(filepath)\n', (9700, 9710), False, 'import os\n'), ((9813, 9839), 'os.path.basename', 'os.path.basename', (['filepath'], {}), '(filepath)\n', (9829, 9839), False, 'import os\n'), ((12624, 12650), 'os.path.basename', 'os.path.basename', (['filepath'], {}), '(filepath)\n', (12640, 12650), False, 'import os\n'), ((12759, 12785), 'os.path.basename', 'os.path.basename', (['filepath'], {}), '(filepath)\n', (12775, 12785), False, 'import os\n'), ((13595, 13621), 'os.path.basename', 'os.path.basename', (['filepath'], {}), '(filepath)\n', (13611, 13621), False, 'import os\n')]
"""Module that contains the tools to open and retrieve raster properties and statistics. Classes: ImgManagerError. ImgManager. """ import logging import gettext import numpy as np from osgeo import gdal from controls.imagery_controls.results import WorldFileData class RasterManagerError(Exception): """Exception for RasterManager.""" class RasterManager: """Class to open and retrieve raster properties and statistics. Attributes: conn_params: PGDBConnection instance containing server host, port and database name. cred_params: PGDBCredentials instance containing username and password. logger: Logging object. conn: Connection to database. cursor: Cursor of connection to database. """ def __init__(self, raster=None, logger=None): # internal self._ = gettext.gettext # parameters self.logger = logger or logging.getLogger(__name__) self.raster = raster try: self.dataset = gdal.Open(self.raster) except RuntimeError: msg = '{}'.format(self._('Cannot open image')) self.logger.error(msg, exc_info=True) raise RasterManagerError(msg) self.geo_transform = self.dataset.GetGeoTransform() self.wfd = WorldFileData( pixel_size=[self.geo_transform[1], self.geo_transform[5]], rotation=[self.geo_transform[4], self.geo_transform[2]] ) def get_dataset(self): """Returns the raster dataset. Returns: Raster dataset. Raises: RasterManagerError """ return self.dataset def get_raster_band(self, no_): """Returns a band of the raster dataset. Returns: Raster dataset band no_. Raises: RasterManagerError """ band = None try: band = self.dataset.GetRasterBand(no_) except RuntimeError: msg = '{}'.format(self._('Cannot retrieve raster band')) self.logger.error(msg, exc_info=True) raise RasterManagerError(msg) return band def get_raster_units_per_pixel(self): """Returns the units per pixel (cell size) of the raster. Returns: Two values list with width and height units. Raises: RasterManagerError """ return self.wfd.get_units_per_pixel() def get_raster_bands_len(self): """Returns the number of bands of the raster. Returns: An integer. Raises: RasterManagerError """ bands_len = None try: bands_len = self.dataset.RasterCount except RuntimeError: msg = '{}'.format(self._('Cannot retrieve raster bands len')) self.logger.error(msg, exc_info=True) raise RasterManagerError(msg) return bands_len def get_raster_bands_datatype(self): """Returns the data type of the bands of the raster. Returns: List of integers. Raises: RasterManagerError """ bands_dt = [] try: for r__ in range(self.dataset.RasterCount): band = self.get_raster_band(r__ + 1) bands_dt.append(band.DataType) except RasterManagerError as err: raise err except RuntimeError: msg = '{}'.format(self._('Cannot retrieve raster bands len')) self.logger.error(msg, exc_info=True) raise RasterManagerError(msg) return bands_dt def get_raster_bands_rad_balance(self, deviation): """Returns the statistics for the radiometric balace of the bands of the raster. Returns: List of list of integers. Raises: RasterManagerError """ bands_stats = [] try: for r__ in range(self.dataset.RasterCount): band = self.get_raster_band(r__ + 1) stats = band.GetStatistics(True, True) rmin = stats[0] * (1 + deviation) rmax = stats[1] * (1 - deviation) band_arr = band.ReadAsArray( 0, 0, self.dataset.RasterXSize, self.dataset.RasterYSize ).astype(np.float) cmin = np.count_nonzero(band_arr < rmin) cmax = np.count_nonzero(band_arr > rmax) cval = self.dataset.RasterXSize * self.dataset.RasterYSize bands_stats.append([ stats[0], stats[1], rmin, rmax, cmin, cmax, round(cmin/cval, 6) * 100, round(cmax/cval, 6) * 100 ]) except RasterManagerError as err: raise err except RuntimeError: msg = '{}'.format(self._('Cannot retrieve raster bands len')) self.logger.error(msg, exc_info=True) raise RasterManagerError(msg) return bands_stats def get_raster_bands_nodata(self): """Returns the statistics for no data of the bands of the raster. Returns: List of list of integers. Raises: RasterManagerError """ bands_nodata = [] try: for r__ in range(self.dataset.RasterCount): band = self.get_raster_band(r__ + 1) nodata = band.GetNoDataValue() band_arr = band.ReadAsArray( 0, 0, self.dataset.RasterXSize, self.dataset.RasterYSize ).astype(np.float) cnd = np.count_nonzero(band_arr == nodata) cval = self.dataset.RasterXSize * self.dataset.RasterYSize pnd = round(cnd/cval, 6) bands_nodata.append(pnd*100) except RasterManagerError as err: raise err except RuntimeError: msg = '{}'.format(self._('Cannot retrieve raster bands len')) self.logger.error(msg, exc_info=True) raise RasterManagerError(msg) return bands_nodata
[ "numpy.count_nonzero", "osgeo.gdal.Open", "controls.imagery_controls.results.WorldFileData", "logging.getLogger" ]
[((1198, 1331), 'controls.imagery_controls.results.WorldFileData', 'WorldFileData', ([], {'pixel_size': '[self.geo_transform[1], self.geo_transform[5]]', 'rotation': '[self.geo_transform[4], self.geo_transform[2]]'}), '(pixel_size=[self.geo_transform[1], self.geo_transform[5]],\n rotation=[self.geo_transform[4], self.geo_transform[2]])\n', (1211, 1331), False, 'from controls.imagery_controls.results import WorldFileData\n'), ((863, 890), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (880, 890), False, 'import logging\n'), ((946, 968), 'osgeo.gdal.Open', 'gdal.Open', (['self.raster'], {}), '(self.raster)\n', (955, 968), False, 'from osgeo import gdal\n'), ((3876, 3909), 'numpy.count_nonzero', 'np.count_nonzero', (['(band_arr < rmin)'], {}), '(band_arr < rmin)\n', (3892, 3909), True, 'import numpy as np\n'), ((3925, 3958), 'numpy.count_nonzero', 'np.count_nonzero', (['(band_arr > rmax)'], {}), '(band_arr > rmax)\n', (3941, 3958), True, 'import numpy as np\n'), ((5033, 5069), 'numpy.count_nonzero', 'np.count_nonzero', (['(band_arr == nodata)'], {}), '(band_arr == nodata)\n', (5049, 5069), True, 'import numpy as np\n')]
import numpy as np import pandas as pd from copy import deepcopy as dc import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.cm as cm from tqdm import tqdm_notebook as tqdm import XPyS from .helper_functions import index_of, guess_from_data import XPyS.config as cfg import os from sklearn.decomposition import PCA, NMF from scipy.stats import pearsonr from scipy.interpolate import interp1d from scipy.optimize import curve_fit from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import train_test_split import matplotlib.patches as mpatches import decimal class HellaSpectra: """ Class for holding lots of spectra objects as well as their spectra in matrix and dataframe format. Used for statistical analysis and data exploration. """ def __init__(self,spectra_objects, spectra=None): self.info = [] self.spectra_objects = spectra_objects """ Parameters ---------- spectra_objects: dictionary dictionary of spectra objects. Keys are sample names or any identifier and values are XPyS.spectra.spectra object insances Notes ----- Examples -------- """ def bgsuball(self,subpars): """ Calls bg_sub on all the spectra objects held in self.spectra_objects Parameters ---------- subpars: list list of the background subtraction parameters. See spectra.bg_sub """ for sample in self.spectra_objects.items(): try: sample[1].bg_sub(subpars=subpars) except: print('Could Not bg_sub ',sample[0]) def _get_xnew(self,emin=None,emax=None,step = 0.1): """Get the interpolation positions of the energy Parameters ---------- emin: int,float minimum binding energy value emax: int,float maximum binding energy value step: int, float step between binding energies """ # print('2') ynew = None if self.spectra_type == 'raw': if (emin == None) and (emax != None): # print('2.1') emin, _emax = self._auto_bounds() elif (emin != None) and (emax == None): # print('2.2') _emin, emax = self._auto_bounds() elif (emin == None) and (emax == None): # print('2.3') emin, emax = self._auto_bounds() self._check_bounds(emin,emax) xnew = np.arange(emin, emax, step) elif self.spectra_type == 'sub': # print('2.4') emin,emax = self._auto_bounds() self._check_bounds(emin,emax) xnew = np.arange(emin, emax, step) # round the interpolation Binding Energies off to the thousandth xnew = np.round(xnew,3) return xnew # probably want to make the spacing even given by ev step 0.1 but fuck it for now. # print(emin,emax) # xnew = np.arange(emin, emax+step, step) # d = decimal.Decimal(str(step)).as_tuple().exponent # if d < 0: # xnew = np.round(xnew,-1*d) # print(np.min(xnew),np.max(xnew)) # try: # first = True def _interp_and_build(self,emin=None,emax=None,step = 0.1): """Interpolate the spectra to all have the same binding energies using _get_xnew then build the spectra and the params dataframes. Parameters ---------- emin: int,float minimum binding energy value emax: int,float maximum binding energy value step: int, float step between binding energies """ ynew = None self.energy = self._get_xnew(emin=emin,emax=emax,step = 0.1) df_list = [] df_params_list = [] start_idx = 0 for name,spectra_obj in self.spectra_objects.items(): n_data = len(spectra_obj.__dict__[self.dset[1]]) idx_id = np.arange(start_idx,start_idx+n_data) # Need an index id to perform joins on different dataframes start_idx = start_idx+n_data first = True # Spectra DataFrame for i in range(n_data): f = interp1d(spectra_obj.__dict__[self.dset[0]], spectra_obj.__dict__[self.dset[1]][i],kind = 'cubic') if not first: ynew = np.vstack((ynew,f(self.energy))) else: ynew = f(self.energy) first = False if self.target != None: df_list.append(pd.DataFrame(ynew,index = [[self.target[name]]*n_data,[name]*n_data,idx_id])) else: df_list.append(pd.DataFrame(ynew,index = [[0]*n_data,[name]*n_data,idx_id])) # Parameters DataFrame if hasattr(spectra_obj,'fit_results'): _dd = {key: [spectra_obj.fit_results[i].params.valuesdict()[key] \ for i in range(len(spectra_obj.fit_results))] \ for key in spectra_obj.fit_results[0].params.valuesdict().keys()} if self.target != None: df_params_list.append(pd.DataFrame(_dd,index = [[self.target[name]]*n_data,[name]*n_data,idx_id])) else: df_params_list.append(pd.DataFrame(_dd,index = [[0]*len(spectra_obj.fit_results),[name]*len(spectra_obj.fit_results),idx_id])) df_spectra = pd.concat(df_list) df_spectra.columns = self.energy df_params = pd.concat(df_params_list) # Add names to the indices # if self.target != None: df_spectra.index.set_names(['target', 'name','id'], inplace=True) df_params.index.set_names(['target', 'name','id'], inplace=True) # else: # df_spectra.index.set_names(['id', 'name'], inplace=True) # df_params.index.set_names(['id', 'name'], inplace=True) return df_spectra, df_params def _auto_bounds(self): """Search through the spectra to get bounds for the interpolation since some spectra have different binding energy ranges """ largest_min_value = np.max([np.min(so[1].__dict__[self.dset[0]]) for so in self.spectra_objects.items()]) smallest_max_value = np.min([np.max(so[1].__dict__[self.dset[0]]) for so in self.spectra_objects.items()]) emin = (np.round(100*largest_min_value,2)+1)/100 emax = (np.round(100*smallest_max_value,2)-1)/100 return emin,emax def _check_bounds(self,min_bnd,max_bnd): """check to make sure the bounds are not outside the binding energies of any of the spectra""" check_min = [so[0] for so in self.spectra_objects.items() if not np.min(np.round(so[1].__dict__[self.dset[0]],2)) <= min_bnd <=np.max(np.round(so[1].__dict__[self.dset[0]],2))] check_max = [so[0] for so in self.spectra_objects.items() if not np.min(np.round(so[1].__dict__[self.dset[0]],2)) <= max_bnd <=np.max(np.round(so[1].__dict__[self.dset[0]],2))] if check_min !=[]: raise ValueError('The specified bounds are outside the minimum values for', check_min ) if check_max != []: raise ValueError('The specified bounds are outside the maximum values for', check_max ) def build_dataframes(self,emin=None,emax=None,spectra_type = 'raw',subpars = None,step = 0.1,target = None): """ Build a 2d array of all of the spectra from the spectra objects Parameters ---------- emin: int,float minimum binding energy value emax: int,float maximum binding energy value spectra_type: str Option to interpolate the raw data or backgroudn subtracted data. ('raw' or 'sub') subpars: list list of the background subtraction parameters. See spectra.bg_sub step: int, float step between binding energies target: dict, None Dictionary of the target """ self.spectra_type = spectra_type self.target = target if target != None: if sorted(list(self.spectra_objects.keys())) != sorted(list(self.target.keys())): raise KeyError('There is a spectra object that is not in the target dictionary') if self.spectra_type == 'sub': self.dset = ['esub','isub'] if subpars == None: raise ValueError('You must specify subpars') self.bgsuball(subpars = subpars) elif self.spectra_type == 'raw': self.dset = ['E','I'] self.spectra, self.params = self._interp_and_build(emin = emin, emax = emax,step = step) self._spectra = self.spectra def reset(self): """Reset spectra array and dataframe to initial loaded states""" self.spectra = dc(self._spectra) self.info = [] def normalize(self): """Normalize all of the spectra""" _yN = np.empty(self.spectra.values.shape) for i in range(len(_yN)): _yN[i,:] = self.spectra.values[i,:]/np.trapz(self.spectra.values[i,:]) self.spectra = pd.DataFrame(_yN,columns = self.spectra.columns,index = self.spectra.index) self._update_info('Normalized') def plot_spectra(self,offset = 0,target = None, avg = False): """ Plot all the spectra Parameters ---------- offset: int, float offset each spectra by set amount or stacked display avg: bool Option to plot mean spectra. Default False """ if target == None: spectra_to_plot = self.spectra.values elif target != None: if not target in self.spectra.index.levels[0]: raise ValueError('target not in index') spectra_to_plot = self.spectra.xs(target,level = 'target').values fig, ax = plt.subplots() if not avg: for i in range(len(spectra_to_plot)): ax.plot(self.energy,spectra_to_plot[i,:]+i*offset) if avg: ax.plot(self.energy,spectra_to_plot.mean(axis=0)) ax.set_xlabel('Binding Energy',fontsize = 15) if 'Normalized' in self.info: ax.set_ylabel('Counts/sec (N.U.)',fontsize = 15) else: ax.set_ylabel('Counts/sec',fontsize = 15) def _update_info(self,message): """Update order of operations on the spectra array to keep track processing history""" if self.info != []: if self.info[-1] == message: return else: self.info.append(message) else: self.info.append(message) def peak_tracker(self,peak_pos,energy= None,spectra_matrix=None,plotflag = True,**kws): """ Get the peak positions for all the spectra using guess_from_data() in helper_functions module. Then plot the differences in the peak positions from the peak_pos parameter Parameters ---------- peak_pos: int, float Guess position of the peak. guess_from_data() will search in vicinity for the maximum """ if energy ==None: energy = self.energy if spectra_matrix == None: spectra_matrix = self.spectra.values cen = np.empty(len(spectra_matrix)) amp = np.empty(len(spectra_matrix)) for i in range(len(spectra_matrix)): amp[i],cen[i] = guess_from_data(energy,spectra_matrix[i],peakpos = peak_pos,**kws) self.peaktrack = cen-peak_pos if plotflag: plt.plot(self.peaktrack,'o-') def align_peaks(self,peak_pos,plotflag = True,**kws): """ Align all the peaks. Will search for maximum of peak aroudn peak_pos and then adjust spectra to peak_pos Parameters ---------- peak_pos: int, float Guess position of the peak. guess_from_data() will search in vicinity for the maximum """ spectra_matrix = self.spectra.values cen = np.empty(len(spectra_matrix)) amp = np.empty(len(spectra_matrix)) mv_spec = np.empty([len(spectra_matrix),len(self.energy)]) for i in range(len(spectra_matrix)): amp[i],cen[i] = guess_from_data(self.energy,spectra_matrix[i],peakpos = peak_pos,**kws) mv_ev = np.round(cen[i] - peak_pos,2) mv_pts = np.int(mv_ev*(len(self.energy)/(self.energy[-1] - self.energy[0]))) if mv_pts ==0: mv_spec[i] = spectra_matrix[i] elif mv_pts > 0: mv_spec[i] = np.asarray(list(spectra_matrix[i][mv_pts:]) + [0]*mv_pts) elif mv_pts < 0: mv_spec[i] = np.asarray([0]*np.abs(mv_pts)+list(spectra_matrix[i][:mv_pts])) if plotflag: fig,ax = plt.subplots() for i in range(len(spectra_matrix)): ax.plot(self.energy,mv_spec[i]) ax.set_xlabel('Binding Energy',fontsize = 15) if 'Normalized' in self.info: ax.set_ylabel('Counts/sec (N.U.)',fontsize = 15) else: ax.set_ylabel('Counts/sec',fontsize = 15) plt.axvline(self.energy[index_of(self.energy,peak_pos)]) self.aligned_pos = peak_pos self.spectra = pd.DataFrame(mv_spec,columns = self.spectra.columns,index = self.spectra.index) self._update_info('adjusted to '+str(peak_pos)) def par_histogram(self,pars): """ Create a histogram of the desired input parameters Parameters ---------- pars: list list of strings of the parameters to get histograms of distribution """ def gaussian(x, mean, amplitude, standard_deviation): return amplitude * np.exp( - (x - mean)**2 / (2*standard_deviation ** 2)) fig,ax = plt.subplots(figsize = (12,8)) prefix = ['_'.join(p.split('_')[:-1])+'_' for p in pars] # If the prefix is stored in gui_element_dicts use that color, otherwise create colors if all(elem in list(cfg.element_color.keys()) for elem in prefix): colors = [cfg.element_color[prefix[i]] for i in range(len(pars))] else: colormap = plt.cm.nipy_spectral colors = [colormap(i) for i in np.linspace(0, 1,len(pars))] ax.set_prop_cycle('color', colors) center_stats = {} for par in enumerate(pars): bin_heights, bin_borders, _ = ax.hist(self.params[par[1]].values, bins='auto', label='histogram',color=colors[par[0]]) try: bin_centers = bin_borders[:-1] + np.diff(bin_borders) / 2 center_stats[par[1]], _ = curve_fit(gaussian, bin_centers, bin_heights, p0=[self.params[par[1]].values.mean(), 40, 0.5]) x_interval_for_fit = np.linspace(bin_borders[0]-1, bin_borders[-1]+1, 10000) ax.plot(x_interval_for_fit, gaussian(x_interval_for_fit, *center_stats[par[1]]), label='fit',color=colors[par[0]]) except: print('Gaussian not good for ',par) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(24) ax.legend(pars,fontsize = '16') leg_patches = [] for p in enumerate(pars): leg_patches.append(mpatches.Patch(color=colors[p[0]], label=p[1])) ax.legend(handles=leg_patches,bbox_to_anchor=(1.05, 0.5), loc='upper left',fontsize = 18) return fig, ax ## Using dictionary def make_spectra(self,spectra_model,number): """ Make a bunch of simulated spectra using the parameters in the dataframe as bounds. Useful for training Machine Learning Models Parameters ---------- params: lmfit Parameters object Parameters object to be used to evaluate the model function mod: lmfit Model object Model object to be used to evaluate the parameters pairlist: list of tuples pairlist of prefixes in model object number: int number of spectra to create """ params = spectra_model.pars mod = spectra_model.model pairlist = spectra_model.pairlist spec_train = [] par_train = [] par_train_row = [] pars = [pars for pars in [par for component_pars in [model_component._param_names for model_component in mod.components] \ for par in component_pars if any([p[0] in par for p in pairlist])] if not 'skew' in pars and not 'fraction' in pars] randpar = {par:[] for par in pars} for i in tqdm(range(number)): for par in pars: if ('amplitude' in par) or ('sigma' in par): _randpar = np.min(self.df_params[par].values) + (np.max(self.df_params[par].values)-np.min(self.df_params[par].values))*np.random.rand() randpar[par].append(_randpar) params[par].set(_randpar) if 'center' in par: # if par == 'Nb_52_center': # variation = 0.005 # else: # variation = 0.01 # _randpar = center_stats[par][0] + 0.1*randn() # _randpar = center_stats[par][0] + center_stats[par][2]*randn() _randpar = np.min(self.df_params[par].values) + (np.max(self.df_params[par].values)-np.min(self.df_params[par].values))*np.random.rand() randpar[par].append(_randpar) params[par].set(_randpar) spec_train.append(mod.eval(params = params,x= self.energy)) spec_train = np.asarray(spec_train) return spec_train, randpar # Dimensionality Reduction def pca(self,n_pca = 3): """ Perform Principal Component Analysis on the spectra and plot the principal components Parameters ---------- n_pca: int number of principal components to evaluate """ self.n_pca = n_pca pca = PCA(n_components=self.n_pca) # PCA of raw signal X_r = pca.fit(self.spectra.values) X_tr = pca.fit_transform(self.spectra.values) if self.info != []: print(' '.join(self.info)) print('explained variance ratio: %s' % str(pca.explained_variance_ratio_ *100 ) ) print('cumulative variance: %s' % str(np.cumsum(pca.explained_variance_ratio_ *100) ) ) self.pc_names = ['pc{}'.format(i) for i in range(1,self.n_pca+1)] # Build Dictionary of principal components pc = {self.pc_names[i] : X_tr[:,i] for i in range(len(self.pc_names))} self.pc = pd.DataFrame(pc,index = self.spectra.index) self.pc_vec = X_r.components_ self._plotpcavecs() def _plotpcavecs(self): fig,ax = plt.subplots() for i in range(self.n_pca): ax.plot(self.pc_vec[i,:]) ax.legend(self.pc_names,bbox_to_anchor=(1.05, 1), loc='upper left',fontsize = 18) ax.set_title('Raw Data',fontsize = 18) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(18) def plotpca(self,x = 'pc1',y = 'pc2',z=None): if z is None: self._plot_dimred_2D(x,y,self.pc) else: self._plot_dimred_3D(x,y,z,self.pc) def _plot_dimred_2D(self,x,y,df): """ Plot 2d scatter plot of principal components Parameters ---------- x: str 'pc1','pc2','nmf1','nmf2',...etc dimensionality reduction component to plot on x-axis y: str 'pc1','pc2','nmf1','nmf2',...etc dimensionality reduction component to plot on y-axis """ fig,(ax1,ax2) = plt.subplots(1,2,figsize = (18,6)) sample_names = list(df.index.levels[1]) n_samples=len(sample_names) n_targets = len(df.index.levels[0]) colormap = plt.cm.nipy_spectral colors = [colormap(i) for i in np.linspace(0, 1,n_samples)] colors_targets = [colormap(i) for i in np.linspace(0, 1,n_targets)] ax1.set_prop_cycle('color', colors) ax2.set_prop_cycle('color', colors_targets) # First plot the principal components color coded by sample for sample in sample_names: ax1.plot(df.xs(sample,level = 'name')[x].values,df.xs(sample,level = 'name')[y].values,'o',markersize = 10) # Next plot the principal components color coded by target for target in df.index.levels[0]: # Level 0 is the target level ax2.plot(df.xs(target,level = 'target')[x].values,df.xs(target,level = 'target')[y].values,'o',markersize = 10) if 'pc' in x: title = 'principal Components' elif 'nmf' in x: title = 'Non-Negative Matrix Factorization' for ax in [ax1, ax2]: ax.set_title(title) ax.set_xlabel(x) ax.set_ylabel(y) ax.tick_params('x',labelrotation=80) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +\ ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(20) ax1.legend(list(self.spectra_objects.keys()),bbox_to_anchor=(1.05, 1.2), loc='upper left',fontsize = 18) leg_patches = [] for tar in enumerate(df.index.levels[0]): leg_patches.append(mpatches.Patch(color=colors_targets[tar[0]], label=tar[1])) ax2.legend(handles=leg_patches,bbox_to_anchor=(1.05, 0.5), loc='upper left',fontsize = 18) fig.tight_layout() def _plot_dimred_3D(self,X, Y, Z, df): """ Plot 3d scatter plot of principal components Parameters ---------- x: str 'P1','P2',...etc principal component to plot on x-axis, Default 'P1' y: str 'P1','P2',...etc principal component to plot on y-axis, Default 'P2' z: str 'P1','P2',...etc principal component to plot on z-axis, Default 'P3' """ fig = plt.figure(figsize = (12,5)) ax1 = fig.add_subplot(1, 2, 1, projection='3d') ax2 = fig.add_subplot(1, 2, 2, projection='3d') sample_names = list(df.index.levels[1]) n_samples=len(sample_names) n_targets = len(df.index.levels[0]) colormap = plt.cm.nipy_spectral colors = [colormap(i) for i in np.linspace(0, 1,n_samples)] colors_targets = [colormap(i) for i in np.linspace(0, 1,n_targets)] ax1.set_prop_cycle('color', colors) ax2.set_prop_cycle('color', colors_targets) colormap = plt.cm.nipy_spectral colors = [colormap(i) for i in np.linspace(0, 1,n_samples)] colors_targets = [colormap(i) for i in np.linspace(0, 1,n_targets)] ax1.set_prop_cycle('color', colors) ax2.set_prop_cycle('color', colors_targets) # First plot the principal components color coded by sample for sample in sample_names: ax1.plot(df.xs(sample,level = 'name')[X].values,df.xs(sample,level = 'name')[Y].values,df.xs(sample,level = 'name')[Z].values,'o',markersize = 10) # Next plot the principal components color coded by target for target in df.index.levels[0]: # Level 0 is the target level ax2.plot(df.xs(target,level = 'target')[X].values,df.xs(target,level = 'target')[Y].values,df.xs(target,level = 'target')[Z].values,'o',markersize = 10) for ax in [ax1,ax2]: ax.set_xlabel(X,fontsize = 16) ax.set_ylabel(Y,fontsize = 16) ax.set_zlabel(Z,fontsize = 16) # ax1.legend(list(self.spectra_objects.keys()),bbox_to_anchor=(1.05, 1.2), loc='upper left',fontsize = 18) # leg_patches = [] # for tar in enumerate(self.pc.index.levels[0]): # leg_patches.append(mpatches.Patch(color=colors_targets[tar[0]], label=tar[1])) # ax2.legend(handles=leg_patches,bbox_to_anchor=(1.05, 0.5), loc='upper left',fontsize = 18) fig.tight_layout() def nmf(self,n_nmf = 3,**kws): """ Find Non-Negative Matrix Factorization of spectra Parameters ---------- n_nmf: int number of non-negative matrix components nmf_kws: dict keywords to pass to sklearn.decomposition.NMF """ self.n_nmf = n_nmf if np.any(self.spectra.values < 0): self.spectra.values[np.where(self.spectra.values < 0)] = 0 # Calculate NMF model = NMF(n_components=self.n_nmf, random_state=0, **kws) W = model.fit_transform(self.spectra) self.H = model.components_ if self.info != []: print(' '.join(self.info)) self.nmf_names = ['nmf{}'.format(i) for i in range(1,self.n_nmf+1)] nmf = {self.nmf_names[i] : W[:,i] for i in range(len(self.nmf_names))} self.W = pd.DataFrame(nmf,index = self.spectra.index) self._plotnmfvecs() def _plotnmfvecs(self): fig,ax = plt.subplots() for i in range(self.n_nmf): ax.plot(self.H[i,:]) ax.legend(self.nmf_names,bbox_to_anchor=(1.05, 1), loc='upper left',fontsize = 18) ax.set_title('Raw Data',fontsize = 18) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(18) def plotnmf(self,x = 'nmf1',y = 'nmf2',z=None): if z is None: self._plot_dimred_2D(x,y,self.W) else: self._plot_dimred_3D(x,y,z,self.W) def be_corr(self,pars,plotflag = True): """ Find and plot correlation of a parameter against the Binding Energies for all the spectra Parameters ---------- par: str Parameter to correlate against Binding Energies plotflag: bool Option to plot. Default = True """ if not type(pars) is list: raise TypeError('pars argument must be a list') print(' '.join(self.info)) spec_and_params = self.spectra.join(self.params,how = 'inner') self.BEcorrs = {} for par in pars: self.BEcorrs[par] = {} self.BEcorrs[par]['pmax'] = spec_and_params.corr()[par].iloc[0:self.spectra.values.shape[1]].max() self.BEcorrs[par]['emax'] = spec_and_params.corr()[par].iloc[0:self.spectra.values.shape[1]].idxmax() # print('maximum correlation of',np.round(pmax,3),'at',np.round(emax,2)) if plotflag: fig,axs = plt.subplots(len(self.BEcorrs.keys()),2,figsize = (12,4*len(self.BEcorrs.keys()))) axs = axs.ravel() axi = 0 for par in self.BEcorrs.keys(): axs[axi].plot(self.energy,spec_and_params.corr()[par].iloc[0:self.spectra.values.shape[1]].values) axs[axi].plot(self.BEcorrs[par]['emax'],self.BEcorrs[par]['pmax'],'x',marker = 'x',markersize = 15,mew = 5,color = 'black') axs[axi].set_ylabel('p-value',fontsize = 14) axs[axi].set_xlabel('B.E. (eV)',fontsize = 14) axs[axi].set_title(par,fontsize = 14) axi += 1 t = spec_and_params.corr()[par].iloc[0:self.spectra.values.shape[1]].values sc = axs[axi].scatter(self.energy,self.spectra.values.mean(axis=0),c = t, cmap=cm.bwr, vmin=-1, vmax=1, s=100) specmax_idx = index_of(self.energy,self.BEcorrs[par]['emax']) axs[axi].plot(self.BEcorrs[par]['emax'],self.spectra.values.mean(axis=0)[specmax_idx],marker = 'x',markersize = 15,mew = 5,color = 'black') axs[axi].set_ylabel('Counts/sec',fontsize = 14) axs[axi].set_xlabel('B.E. (eV)',fontsize = 14) fig.colorbar(sc,ax=axs[axi]) axi += 1 fig.tight_layout() return fig, axs def scattercorr(self,Xs,Ys): """ Plots the correllation scatter plots and finds the pearson p-number between the given parameters. Parameters ---------- Xs: list list of parameter names on x-axes Ys: list list of parameter names on y-axes """ fulldf = self.spectra.join(self.params,how = 'inner') if hasattr(self,'pc'): fulldf = fulldf.join(self.pc,how = 'inner') if hasattr(self,'W'): fulldf = fulldf.join(self.W,how = 'inner') fig, axs = plt.subplots(len(Ys),len(Xs),figsize = (4*len(Xs),4*len(Ys))) axs = axs.ravel() ylabels = [] corrmat = np.empty([len(Ys),len(Xs)]) a = 0 for i in range(len(Ys)): j =0 if type(Ys[i]) == float: axs[a].set_ylabel(Ys[i],fontsize = 26) else: axs[a].set_ylabel(Ys[i],fontsize = 26) for j in range(len(Xs)): try: axs[a].plot(fulldf[Xs[j]].values,fulldf[Ys[i]].values,'o') corrmat[i][j], _ = pearsonr(fulldf[Xs[j]].values, fulldf[Ys[i]].values) axs[a].set_title('Pearsons correlation: %.3f' % corrmat[i][j],fontsize = 16) axs[a].set_xlabel(Xs[j],fontsize = 26) axs[a].set_xticklabels('') axs[a].set_yticklabels('') a+=1 except: pass fig.tight_layout() return fig, axs def linfit(self,X,Y,plotflag = True): """ Linear regression of specified entries in self.df Parameters ---------- Xs: list list of x-axes df entries Ys: list list of y-axes df entries """ fulldf = self.spectra.join(self.params,how = 'inner') if hasattr(self,'pc'): fulldf = fulldf.join(self.pc,how = 'inner') if hasattr(self,'W'): fulldf = fulldf.join(self.W,how = 'inner') # We can rewrite the line equation as y = Ap, where A = [[x 1]] and p = [[m], [b]] autofitparlist = [] fig, axs = plt.subplots() lfpars = {} x = np.array(fulldf[X]) y = np.array(fulldf[Y]) A = np.hstack((x.reshape(-1,1), np.ones(len(x)).reshape(-1,1))) lfpars['m'],lfpars['b'] = np.linalg.lstsq(A, y,rcond = None)[0] # m = np.linalg.lstsq(x.reshape(-1,1), y,rcond = None)[0][0] if plotflag == True: axs.plot(x, y,'o') axs.plot(x, lfpars['m']*x+lfpars['b']) axs.set_xlabel(str(Y) + ' vs ' + str(X),fontsize = 14) fig.tight_layout() return lfpars, fig, axs def split_spectra(self,test_size = 0.3): """ Split the spectra data into train and test arrays. Also create a target_array attribute Parameters ---------- test_size: float fraction of data to use to test the Decision boundary. """ self.target_array = self.spectra.index.get_level_values('target').values return train_test_split(self.spectra.values, self.target_array, test_size=test_size) def lda(self,test_size = 0.3): """ Perform Linear Discriminant Analysis on the spectra and plot the principal components Parameters ---------- test_size: float fraction of data to use to test the Decision boundary. """ self.spec_train, self.spec_test, self.target_train, self.target_test = self.split_spectra(test_size = test_size) self.skit_lda = LinearDiscriminantAnalysis() self.lda_trans = self.skit_lda.fit(self.spec_train, self.target_train).transform(self.spectra.values) test_array = self.target_test == self.skit_lda.predict(self.spec_test) test_array = test_array.astype(int) self.lda_correct = test_array.sum()/len(test_array) n_targets = len(self.spectra.index.levels[0]) colormap = plt.cm.nipy_spectral colors_targets = [colormap(i) for i in np.linspace(0, 1,n_targets)] fig,ax = plt.subplots(figsize = (12,8)) for tar in enumerate(self.spectra.index.levels[0]): ax.hist(self.lda_trans[self.target_array==tar[1]], bins='auto', label=tar[1],color = colors_targets[tar[0]]) ax.legend(bbox_to_anchor=(1.05, 0.5), loc='upper left',fontsize = 18) fig.tight_layout()
[ "numpy.abs", "numpy.empty", "sklearn.model_selection.train_test_split", "matplotlib.pyplot.figure", "numpy.arange", "numpy.exp", "scipy.interpolate.interp1d", "matplotlib.patches.Patch", "numpy.round", "pandas.DataFrame", "XPyS.config.element_color.keys", "numpy.cumsum", "numpy.max", "numpy.linspace", "matplotlib.pyplot.subplots", "pandas.concat", "sklearn.decomposition.NMF", "copy.deepcopy", "numpy.trapz", "numpy.asarray", "scipy.stats.pearsonr", "numpy.min", "sklearn.discriminant_analysis.LinearDiscriminantAnalysis", "numpy.linalg.lstsq", "matplotlib.pyplot.plot", "numpy.any", "numpy.where", "sklearn.decomposition.PCA", "numpy.array", "numpy.diff", "numpy.random.rand" ]
[((2976, 2993), 'numpy.round', 'np.round', (['xnew', '(3)'], {}), '(xnew, 3)\n', (2984, 2993), True, 'import numpy as np\n'), ((5682, 5700), 'pandas.concat', 'pd.concat', (['df_list'], {}), '(df_list)\n', (5691, 5700), True, 'import pandas as pd\n'), ((5772, 5797), 'pandas.concat', 'pd.concat', (['df_params_list'], {}), '(df_params_list)\n', (5781, 5797), True, 'import pandas as pd\n'), ((9152, 9169), 'copy.deepcopy', 'dc', (['self._spectra'], {}), '(self._spectra)\n', (9154, 9169), True, 'from copy import deepcopy as dc\n'), ((9276, 9311), 'numpy.empty', 'np.empty', (['self.spectra.values.shape'], {}), '(self.spectra.values.shape)\n', (9284, 9311), True, 'import numpy as np\n'), ((9454, 9527), 'pandas.DataFrame', 'pd.DataFrame', (['_yN'], {'columns': 'self.spectra.columns', 'index': 'self.spectra.index'}), '(_yN, columns=self.spectra.columns, index=self.spectra.index)\n', (9466, 9527), True, 'import pandas as pd\n'), ((10221, 10235), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (10233, 10235), True, 'import matplotlib.pyplot as plt\n'), ((13703, 13780), 'pandas.DataFrame', 'pd.DataFrame', (['mv_spec'], {'columns': 'self.spectra.columns', 'index': 'self.spectra.index'}), '(mv_spec, columns=self.spectra.columns, index=self.spectra.index)\n', (13715, 13780), True, 'import pandas as pd\n'), ((14272, 14301), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(12, 8)'}), '(figsize=(12, 8))\n', (14284, 14301), True, 'import matplotlib.pyplot as plt\n'), ((18255, 18277), 'numpy.asarray', 'np.asarray', (['spec_train'], {}), '(spec_train)\n', (18265, 18277), True, 'import numpy as np\n'), ((18654, 18682), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'self.n_pca'}), '(n_components=self.n_pca)\n', (18657, 18682), False, 'from sklearn.decomposition import PCA, NMF\n'), ((19312, 19354), 'pandas.DataFrame', 'pd.DataFrame', (['pc'], {'index': 'self.spectra.index'}), '(pc, index=self.spectra.index)\n', (19324, 19354), True, 'import pandas as pd\n'), ((19468, 19482), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (19480, 19482), True, 'import matplotlib.pyplot as plt\n'), ((20464, 20499), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(18, 6)'}), '(1, 2, figsize=(18, 6))\n', (20476, 20499), True, 'import matplotlib.pyplot as plt\n'), ((22769, 22796), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 5)'}), '(figsize=(12, 5))\n', (22779, 22796), True, 'import matplotlib.pyplot as plt\n'), ((25125, 25156), 'numpy.any', 'np.any', (['(self.spectra.values < 0)'], {}), '(self.spectra.values < 0)\n', (25131, 25156), True, 'import numpy as np\n'), ((25271, 25322), 'sklearn.decomposition.NMF', 'NMF', ([], {'n_components': 'self.n_nmf', 'random_state': '(0)'}), '(n_components=self.n_nmf, random_state=0, **kws)\n', (25274, 25322), False, 'from sklearn.decomposition import PCA, NMF\n'), ((25647, 25690), 'pandas.DataFrame', 'pd.DataFrame', (['nmf'], {'index': 'self.spectra.index'}), '(nmf, index=self.spectra.index)\n', (25659, 25690), True, 'import pandas as pd\n'), ((25767, 25781), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (25779, 25781), True, 'import matplotlib.pyplot as plt\n'), ((30916, 30930), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (30928, 30930), True, 'import matplotlib.pyplot as plt\n'), ((30965, 30984), 'numpy.array', 'np.array', (['fulldf[X]'], {}), '(fulldf[X])\n', (30973, 30984), True, 'import numpy as np\n'), ((30997, 31016), 'numpy.array', 'np.array', (['fulldf[Y]'], {}), '(fulldf[Y])\n', (31005, 31016), True, 'import numpy as np\n'), ((31877, 31954), 'sklearn.model_selection.train_test_split', 'train_test_split', (['self.spectra.values', 'self.target_array'], {'test_size': 'test_size'}), '(self.spectra.values, self.target_array, test_size=test_size)\n', (31893, 31954), False, 'from sklearn.model_selection import train_test_split\n'), ((32387, 32415), 'sklearn.discriminant_analysis.LinearDiscriminantAnalysis', 'LinearDiscriminantAnalysis', ([], {}), '()\n', (32413, 32415), False, 'from sklearn.discriminant_analysis import LinearDiscriminantAnalysis\n'), ((32900, 32929), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(12, 8)'}), '(figsize=(12, 8))\n', (32912, 32929), True, 'import matplotlib.pyplot as plt\n'), ((2648, 2675), 'numpy.arange', 'np.arange', (['emin', 'emax', 'step'], {}), '(emin, emax, step)\n', (2657, 2675), True, 'import numpy as np\n'), ((4172, 4212), 'numpy.arange', 'np.arange', (['start_idx', '(start_idx + n_data)'], {}), '(start_idx, start_idx + n_data)\n', (4181, 4212), True, 'import numpy as np\n'), ((11942, 11972), 'matplotlib.pyplot.plot', 'plt.plot', (['self.peaktrack', '"""o-"""'], {}), "(self.peaktrack, 'o-')\n", (11950, 11972), True, 'import matplotlib.pyplot as plt\n'), ((12716, 12746), 'numpy.round', 'np.round', (['(cen[i] - peak_pos)', '(2)'], {}), '(cen[i] - peak_pos, 2)\n', (12724, 12746), True, 'import numpy as np\n'), ((13206, 13220), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (13218, 13220), True, 'import matplotlib.pyplot as plt\n'), ((31124, 31157), 'numpy.linalg.lstsq', 'np.linalg.lstsq', (['A', 'y'], {'rcond': 'None'}), '(A, y, rcond=None)\n', (31139, 31157), True, 'import numpy as np\n'), ((2851, 2878), 'numpy.arange', 'np.arange', (['emin', 'emax', 'step'], {}), '(emin, emax, step)\n', (2860, 2878), True, 'import numpy as np\n'), ((4425, 4527), 'scipy.interpolate.interp1d', 'interp1d', (['spectra_obj.__dict__[self.dset[0]]', 'spectra_obj.__dict__[self.dset[1]][i]'], {'kind': '"""cubic"""'}), "(spectra_obj.__dict__[self.dset[0]], spectra_obj.__dict__[self.dset\n [1]][i], kind='cubic')\n", (4433, 4527), False, 'from scipy.interpolate import interp1d\n'), ((6437, 6473), 'numpy.min', 'np.min', (['so[1].__dict__[self.dset[0]]'], {}), '(so[1].__dict__[self.dset[0]])\n', (6443, 6473), True, 'import numpy as np\n'), ((6552, 6588), 'numpy.max', 'np.max', (['so[1].__dict__[self.dset[0]]'], {}), '(so[1].__dict__[self.dset[0]])\n', (6558, 6588), True, 'import numpy as np\n'), ((6647, 6683), 'numpy.round', 'np.round', (['(100 * largest_min_value)', '(2)'], {}), '(100 * largest_min_value, 2)\n', (6655, 6683), True, 'import numpy as np\n'), ((6704, 6741), 'numpy.round', 'np.round', (['(100 * smallest_max_value)', '(2)'], {}), '(100 * smallest_max_value, 2)\n', (6712, 6741), True, 'import numpy as np\n'), ((9395, 9430), 'numpy.trapz', 'np.trapz', (['self.spectra.values[i, :]'], {}), '(self.spectra.values[i, :])\n', (9403, 9430), True, 'import numpy as np\n'), ((14191, 14247), 'numpy.exp', 'np.exp', (['(-(x - mean) ** 2 / (2 * standard_deviation ** 2))'], {}), '(-(x - mean) ** 2 / (2 * standard_deviation ** 2))\n', (14197, 14247), True, 'import numpy as np\n'), ((15269, 15328), 'numpy.linspace', 'np.linspace', (['(bin_borders[0] - 1)', '(bin_borders[-1] + 1)', '(10000)'], {}), '(bin_borders[0] - 1, bin_borders[-1] + 1, 10000)\n', (15280, 15328), True, 'import numpy as np\n'), ((15851, 15897), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': 'colors[p[0]]', 'label': 'p[1]'}), '(color=colors[p[0]], label=p[1])\n', (15865, 15897), True, 'import matplotlib.patches as mpatches\n'), ((20708, 20736), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'n_samples'], {}), '(0, 1, n_samples)\n', (20719, 20736), True, 'import numpy as np\n'), ((20784, 20812), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'n_targets'], {}), '(0, 1, n_targets)\n', (20795, 20812), True, 'import numpy as np\n'), ((22116, 22174), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': 'colors_targets[tar[0]]', 'label': 'tar[1]'}), '(color=colors_targets[tar[0]], label=tar[1])\n', (22130, 22174), True, 'import matplotlib.patches as mpatches\n'), ((23119, 23147), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'n_samples'], {}), '(0, 1, n_samples)\n', (23130, 23147), True, 'import numpy as np\n'), ((23195, 23223), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'n_targets'], {}), '(0, 1, n_targets)\n', (23206, 23223), True, 'import numpy as np\n'), ((23400, 23428), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'n_samples'], {}), '(0, 1, n_samples)\n', (23411, 23428), True, 'import numpy as np\n'), ((23476, 23504), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'n_targets'], {}), '(0, 1, n_targets)\n', (23487, 23504), True, 'import numpy as np\n'), ((25190, 25223), 'numpy.where', 'np.where', (['(self.spectra.values < 0)'], {}), '(self.spectra.values < 0)\n', (25198, 25223), True, 'import numpy as np\n'), ((32853, 32881), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'n_targets'], {}), '(0, 1, n_targets)\n', (32864, 32881), True, 'import numpy as np\n'), ((4779, 4864), 'pandas.DataFrame', 'pd.DataFrame', (['ynew'], {'index': '[[self.target[name]] * n_data, [name] * n_data, idx_id]'}), '(ynew, index=[[self.target[name]] * n_data, [name] * n_data,\n idx_id])\n', (4791, 4864), True, 'import pandas as pd\n'), ((4923, 4988), 'pandas.DataFrame', 'pd.DataFrame', (['ynew'], {'index': '[[0] * n_data, [name] * n_data, idx_id]'}), '(ynew, index=[[0] * n_data, [name] * n_data, idx_id])\n', (4935, 4988), True, 'import pandas as pd\n'), ((19038, 19084), 'numpy.cumsum', 'np.cumsum', (['(pca.explained_variance_ratio_ * 100)'], {}), '(pca.explained_variance_ratio_ * 100)\n', (19047, 19084), True, 'import numpy as np\n'), ((29832, 29884), 'scipy.stats.pearsonr', 'pearsonr', (['fulldf[Xs[j]].values', 'fulldf[Ys[i]].values'], {}), '(fulldf[Xs[j]].values, fulldf[Ys[i]].values)\n', (29840, 29884), False, 'from scipy.stats import pearsonr\n'), ((5401, 5486), 'pandas.DataFrame', 'pd.DataFrame', (['_dd'], {'index': '[[self.target[name]] * n_data, [name] * n_data, idx_id]'}), '(_dd, index=[[self.target[name]] * n_data, [name] * n_data, idx_id]\n )\n', (5413, 5486), True, 'import pandas as pd\n'), ((14493, 14517), 'XPyS.config.element_color.keys', 'cfg.element_color.keys', ([], {}), '()\n', (14515, 14517), True, 'import XPyS.config as cfg\n'), ((15069, 15089), 'numpy.diff', 'np.diff', (['bin_borders'], {}), '(bin_borders)\n', (15076, 15089), True, 'import numpy as np\n'), ((17315, 17349), 'numpy.min', 'np.min', (['self.df_params[par].values'], {}), '(self.df_params[par].values)\n', (17321, 17349), True, 'import numpy as np\n'), ((17921, 17955), 'numpy.min', 'np.min', (['self.df_params[par].values'], {}), '(self.df_params[par].values)\n', (17927, 17955), True, 'import numpy as np\n'), ((7002, 7043), 'numpy.round', 'np.round', (['so[1].__dict__[self.dset[0]]', '(2)'], {}), '(so[1].__dict__[self.dset[0]], 2)\n', (7010, 7043), True, 'import numpy as np\n'), ((7064, 7105), 'numpy.round', 'np.round', (['so[1].__dict__[self.dset[0]]', '(2)'], {}), '(so[1].__dict__[self.dset[0]], 2)\n', (7072, 7105), True, 'import numpy as np\n'), ((7187, 7228), 'numpy.round', 'np.round', (['so[1].__dict__[self.dset[0]]', '(2)'], {}), '(so[1].__dict__[self.dset[0]], 2)\n', (7195, 7228), True, 'import numpy as np\n'), ((7249, 7290), 'numpy.round', 'np.round', (['so[1].__dict__[self.dset[0]]', '(2)'], {}), '(so[1].__dict__[self.dset[0]], 2)\n', (7257, 7290), True, 'import numpy as np\n'), ((17424, 17440), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (17438, 17440), True, 'import numpy as np\n'), ((18030, 18046), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (18044, 18046), True, 'import numpy as np\n'), ((17353, 17387), 'numpy.max', 'np.max', (['self.df_params[par].values'], {}), '(self.df_params[par].values)\n', (17359, 17387), True, 'import numpy as np\n'), ((17388, 17422), 'numpy.min', 'np.min', (['self.df_params[par].values'], {}), '(self.df_params[par].values)\n', (17394, 17422), True, 'import numpy as np\n'), ((17959, 17993), 'numpy.max', 'np.max', (['self.df_params[par].values'], {}), '(self.df_params[par].values)\n', (17965, 17993), True, 'import numpy as np\n'), ((17994, 18028), 'numpy.min', 'np.min', (['self.df_params[par].values'], {}), '(self.df_params[par].values)\n', (18000, 18028), True, 'import numpy as np\n'), ((13114, 13128), 'numpy.abs', 'np.abs', (['mv_pts'], {}), '(mv_pts)\n', (13120, 13128), True, 'import numpy as np\n')]
""" Command line interface to several manipulations of D-WAQ formatted hydrodynamic data. Typical invocation: python -m stompy.model.delft.waq_hydro_editor -h (to get help message). python -m stompy.model.delft.waq_hydro_editor -i path/to/com-foo.hyd -a agg.shp -o output_agg/output Read existing, serial DWAQ hydro, aggregate according to polygons in agg.shp, and write to output_agg/ python -m stompy.model.delft.waq_hydro_editor -i output_agg/com-output.hyd -c Check DWAQ hydro for continuity. Relative errors are typically around 1e-8, which is machine precision for the 32-bit floats that are used. Aggregated, spliced and low-pass hydro can accumulate larger errors, especially in the presence of wetting and drying. python -m stompy.model.delft.waq_hydro_editor -i path/com-input.hyd -l -o output_lp/output Remove tides, write to output_lp. Currently the interval for the lowpass is not exposed on the command line, and the filter is hard-wired to be a Butterworth IIR filter. python -m stompy.model.delft.waq_hydro_editor -m path/to/flowfm.mdu -s -o output_splice/output Splice a multiprocessor run into a single D-WAQ hydro dataset. Note that in the case of an MPI run, the original D-Flow FM mdu file is specified with -m, instead of providing the hyd file. Caveats: * Lowpass loads the entire dataset into RAM, so it cannot handle large or very long simulations as input. * While it should be possible to use this script with DFM output in MapFormat=1 or MapFormat=4, there are some subtle differences. It was originally written for MapFormat=1, and more recently adapted to handle MapFormat=4. * There are some places where the code makes assumptions about undocumented details of the DFM output. It has been developed against rev 53925, which is probably ca. late 2017. """ import logging as log import argparse import numpy as np import matplotlib import os import datetime from . import waq_scenario as waq from . import dflow_model as dfm from ...spatial import wkb2shp # Clean inputs def clean_shapefile(shp_in): """ Break multipolygons into individual polygons. :param shp_in: path to aggregation polygon shapefile. :type shp_in: str :return: either shp_in, unchanged, if there were no changes needed, or writes a new shapefile with suffix -cleaned.shp, which has edits to shp_in. """ geoms=wkb2shp.shp2geom(shp_in) multi_count=0 new_geoms=[] for fi,feat in enumerate(geoms): if feat['geom'].type=='Polygon': new_geoms.append(feat['geom']) else: multi_count+=1 for g in feat['geom'].geoms: new_geoms.append(g) if multi_count: cleaned=shp_in.replace('.shp','-cleaned.shp') assert cleaned!=agg_grid_shp wkb2shp.wkb2shp(cleaned,new_geoms,overwrite=True) return cleaned else: return shp_in def main(args=None): parser=argparse.ArgumentParser(description='Manipulate transport data in D-WAQ format.') one_of=parser.add_mutually_exclusive_group() parser.add_argument("-i", "--hyd", help="Path to hyd file for input", default=None,type=str) parser.add_argument("-m", "--mdu", help="Path to mdu file (for splicing)", default=None,type=str) one_of.add_argument("-a", "--aggregate", help="Path to shapefile definining aggregation polygons",default=None,type=str) one_of.add_argument("-c", "--continuity", help="Check continuity by comparing fluxes and volumes", action='store_true') one_of.add_argument("-l", "--lowpass", help="Low-pass filter", action='store_true') # TODO: splice output should default to mimicing what a serial run would use. one_of.add_argument("-s", "--splice", help="Splice an MPI run into a single DWAQ hydro dataset",action='store_true') parser.add_argument("-o", "--output", help="Path and run name for file output", default="output/output") parser.add_argument("-p", "--pass-parameters",help="Pass parameters through without low-pass filter",action="store_true") parser.add_argument("--keep-cells", help=("When splicing skip regeneration of cells. DFM typically regenerates cells" "on startup, which can introduce inconsistency between the net file and the" "output. By default the same regeneration is applied here, but can be disabled" "with this option"), action='store_true') # these options copied in from another script, here just for reference, and possible consistency # in how arguments are named and described. #parser.add_argument("-g", "--grid",help="Path to DWAQ grid geometry netcdf.",default=None,required=True) #parser.add_argument("-r", "--reference", help="Reference date for DWAQ run (YYYY-MM-DDTHH:MM)", default=None, required=True) #parser.add_argument("-s", "--start", help="Date of start of output (YYYY-MM-DDTTHH:MM)",default=None) #parser.add_argument("-e", "--end", help="Date of end of output (YYYY-MM-DDTHH:MM)",default=None) #parser.add_argument("-d", "--data",help="Input data",nargs='+') #parser.add_argument("-i", "--interval",help="Time step in output, suffix 's' for seconds, 'D' for days", default='1D') args=parser.parse_args(args=args) # Most operations starts with reading the existing hydro: if not args.splice: hydro_orig=waq.HydroFiles(args.hyd) else: # splice code defines the input below hydro_orig=None # Only some actions produce new output hydro_out=None # both specifies that the operation is aggregation, and what the aggregation geometry # is if args.aggregate: # split multipolygons to multiple polygons agg_shp=clean_shapefile(args.aggregate) # create object representing aggregated hydrodynamics # sparse_layers: for z-layer inputs this can be True, in which cases cells are only output for the # layers in which they are above the bed. Usually a bad idea. Parts of DWAQ assume # each 2D cell exists across all layers # agg_boundaries: if True, multiple boundary inputs entering a single aggregated cell will be # merged into a single boundary input. Generally best to keep this as False. hydro_out=waq.HydroAggregator(hydro_in=hydro_orig, agg_shp=agg_shp, sparse_layers=False, agg_boundaries=False) if args.splice: assert args.mdu is not None,"Must specify MDU path" # In theory it's possible to splice MPI and aggregate at the same time. # for simplicity and to avoid nasty bugs, keep those steps separate. # load the DFM run and specify its grid as the agg_shp (this is a short # cut for just using the cells of an existing grid as the aggregation # geometry). model=dfm.DFlowModel.load(args.mdu) run_prefix=model.mdu.name run_dir=model.run_dir dest_grid=model.grid if not args.keep_cells: dest_grid.make_cells_from_edges() hydro_out=waq.HydroMultiAggregator(run_prefix=run_prefix, path=run_dir, agg_shp=dest_grid, agg_boundaries=False) if args.continuity: def err_callback(time_index,summary): log.info("Time index: %d: max volume error: %.3e relative error: %.3e"%( time_index, np.abs(summary['vol_err']).max(), summary['rel_err'].max()) ) hydro_orig.check_volume_conservation_incr(err_callback=err_callback) if args.lowpass: # TO-DO: expose these parameters on the command line hydro_out=waq.FilterAll(original=hydro_orig, filter_type='butter', filter_parameters=(not args.pass_parameters), lp_secs=86400*36./24) # The code to write dwaq hydro is wrapped up in the code to write a dwaq model inp file, # so we pretend to set up a dwaq simulation, even though the goal is just to write # the hydro. if hydro_out is not None: if args.output is not None: out_name=os.path.basename(args.output.replace('.hyd','')) out_path=os.path.dirname(args.output) assert out_path!='',"Must specify a path/name combination, like path/to/name" # Define the subset of timesteps to write out, in this case the # whole run. sec=datetime.timedelta(seconds=1) start_time=hydro_out.time0+hydro_out.t_secs[ 0]*sec stop_time =hydro_out.time0+hydro_out.t_secs[-1]*sec # probably would have been better to just pass name, desc, base_path in here, # rather than using a shell subclass. writer=waq.Scenario(name=out_name, desc=(out_name,"n/a","n/a"), # not used for hydro output hydro=hydro_out, start_time=start_time, stop_time=stop_time, base_path=out_path) # This step is super slow. Watch the output directory for progress. # Takes ~20 hours on HPC for the full wy2013 run. writer.cmd_write_hydro() else: log.info("No output file given -- will not write out results.") if __name__ == '__main__': main()
[ "numpy.abs", "argparse.ArgumentParser", "os.path.dirname", "logging.info", "datetime.timedelta" ]
[((2953, 3039), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Manipulate transport data in D-WAQ format."""'}), "(description=\n 'Manipulate transport data in D-WAQ format.')\n", (2976, 3039), False, 'import argparse\n'), ((8664, 8692), 'os.path.dirname', 'os.path.dirname', (['args.output'], {}), '(args.output)\n', (8679, 8692), False, 'import os\n'), ((8901, 8930), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': '(1)'}), '(seconds=1)\n', (8919, 8930), False, 'import datetime\n'), ((9752, 9815), 'logging.info', 'log.info', (['"""No output file given -- will not write out results."""'], {}), "('No output file given -- will not write out results.')\n", (9760, 9815), True, 'import logging as log\n'), ((7761, 7787), 'numpy.abs', 'np.abs', (["summary['vol_err']"], {}), "(summary['vol_err'])\n", (7767, 7787), True, 'import numpy as np\n')]
import os import time import numpy as np from functools import reduce import torch import torch.nn as nn import torch.nn.functional as F from carle.env import CARLE from carle.mcl import RND2D, AE2D from game_of_carle.agents.agent import Agent class CARLA(Agent): def __init__(self, **kwargs): super(CARLA, self).__init__(**kwargs) self.use_grad = False self.population_size = 4 self.generation = 0 self.episodes = 0 self.max_episodes = 1 self.ca_steps = 8 self.agents = [] self.fitness = [] self.save_path = kwargs["save_path"] if "save_path" in kwargs.keys() else "" self.instances = kwargs["instances"] if "instances" in kwargs.keys() else 1 def initialize_policy(self): self.perceive = nn.Conv2d(1, 9, 3, groups=1, padding=1, stride=1, \ padding_mode="circular", bias=False) self.perceive.weight.requires_grad = False self.perceive.weight.data.fill_(0) for ii in range(9): self.perceive.weight[ii, :, ii//3, ii%3].fill_(1) self.perceive.to(self.my_device) self.cellular_rules = nn.Sequential(nn.Conv2d(9, 32, 1, bias=False),\ nn.ReLU(), nn.Conv2d(32, 1, 1, bias=True), nn.Sigmoid()).to(self.my_device) for param in self.cellular_rules.named_parameters(): param[1].requires_grad = False if "bias" in param[0]: param[1].data.fill_(param[1][0].item() - 0.05) self.hallucinogen = torch.nn.Parameter(torch.rand(1)/10,\ requires_grad=False).to(self.my_device) def hallucinate(self, obs): obs = obs + (1.0 * (torch.rand_like(obs) < self.hallucinogen))\ .float().to(obs.device) obs[obs>1.0] = 1.0 return obs def forward(self, obs): obs = self.hallucinate(obs) for jj in range(self.ca_steps): my_grid = self.perceive(obs) my_grid = self.cellular_rules(my_grid) #alive_mask = (my_grid[:,3:4,:,:] > 0.05).float() #my_grid *= alive_mask off_x = (obs.shape[2] - 64) // 2 off_y = (obs.shape[3] - 64) // 2 action_probabilities = my_grid[:,0:1,off_x:-off_x,off_y:-off_y] action = (action_probabilities > 0.5).float() return action def get_params(self): params = np.array([]) params = np.append(params, self.hallucinogen.cpu().numpy()) for param in self.cellular_rules.named_parameters(): params = np.append(params, param[1].detach().cpu().numpy().ravel()) return params def set_params(self, my_params): param_start = 0 self.hallucinogen = nn.Parameter(torch.Tensor(my_params[0:1]), \ requires_grad=False).to(self.my_device) param_start += 1 for name, param in self.cellular_rules.named_parameters(): param_stop = param_start + reduce(lambda x,y: x*y, param.shape) param[:] = torch.nn.Parameter(torch.tensor(\ my_params[param_start:param_stop].reshape(param.shape), \ requires_grad=self.use_grad), \ requires_grad=self.use_grad).to(param[:].device) param_start = param_stop
[ "torch.nn.ReLU", "torch.nn.Conv2d", "torch.rand_like", "torch.Tensor", "numpy.array", "torch.rand", "functools.reduce", "torch.nn.Sigmoid" ]
[((807, 897), 'torch.nn.Conv2d', 'nn.Conv2d', (['(1)', '(9)', '(3)'], {'groups': '(1)', 'padding': '(1)', 'stride': '(1)', 'padding_mode': '"""circular"""', 'bias': '(False)'}), "(1, 9, 3, groups=1, padding=1, stride=1, padding_mode='circular',\n bias=False)\n", (816, 897), True, 'import torch.nn as nn\n'), ((2482, 2494), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (2490, 2494), True, 'import numpy as np\n'), ((3056, 3095), 'functools.reduce', 'reduce', (['(lambda x, y: x * y)', 'param.shape'], {}), '(lambda x, y: x * y, param.shape)\n', (3062, 3095), False, 'from functools import reduce\n'), ((1187, 1218), 'torch.nn.Conv2d', 'nn.Conv2d', (['(9)', '(32)', '(1)'], {'bias': '(False)'}), '(9, 32, 1, bias=False)\n', (1196, 1218), True, 'import torch.nn as nn\n'), ((1237, 1246), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1244, 1246), True, 'import torch.nn as nn\n'), ((1264, 1294), 'torch.nn.Conv2d', 'nn.Conv2d', (['(32)', '(1)', '(1)'], {'bias': '(True)'}), '(32, 1, 1, bias=True)\n', (1273, 1294), True, 'import torch.nn as nn\n'), ((1312, 1324), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (1322, 1324), True, 'import torch.nn as nn\n'), ((2834, 2862), 'torch.Tensor', 'torch.Tensor', (['my_params[0:1]'], {}), '(my_params[0:1])\n', (2846, 2862), False, 'import torch\n'), ((1597, 1610), 'torch.rand', 'torch.rand', (['(1)'], {}), '(1)\n', (1607, 1610), False, 'import torch\n'), ((1747, 1767), 'torch.rand_like', 'torch.rand_like', (['obs'], {}), '(obs)\n', (1762, 1767), False, 'import torch\n')]
import argparse import os from os.path import join from tempfile import TemporaryDirectory from collections import OrderedDict import numpy as np import torch from sklearn.metrics import confusion_matrix, accuracy_score from torch.utils.data import DataLoader from torchvision import transforms from torchvision.datasets import ImageFolder import torchvision.models as models import torch.nn.functional as F import pytorch_lightning as pl from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint import utils from create_datasets import create_patches_dataset_icdar17, create_pages_dataset_icdar17, \ create_pages_dataset_firemaker, create_patches_dataset_firemaker, create_patches_dataset_iam MODEL_NAMES = sorted( name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name]) ) class WriterID(pl.LightningModule): def __init__(self, hparams): super().__init__() self.hparams = hparams self.dataset = hparams.dataset if self.dataset == 'icdar17': self.num_classes = 720 elif self.dataset == 'firemaker': self.num_classes = 250 else: self.num_classes = 657 self.model = models.__dict__[self.hparams.model](pretrained=hparams.pretrained) # self.avgpool = nn.AdaptiveMaxPool2d((1, 1)) # Changing first layer if hparams.binary: name, layer = list(self.model.named_children())[0] if type(layer) == torch.nn.modules.container.Sequential: layer[0].apply(utils.squeeze_weights) setattr(self.model, name, layer) else: setattr(self.model, name, layer.apply(utils.squeeze_weights)) # Changing last layer name, layer = list(self.model.named_children())[-1] if type(layer) == torch.nn.modules.container.Sequential: utils.change_out_features(layer[-1], classes=self.num_classes) setattr(self.model, name, layer) else: setattr(self.model, name, utils.change_out_features(layer, classes=self.num_classes)) def forward(self, x): x = self.model(x) return x def training_step(self, batch, batch_idx): x, y = batch y_pred = self(x) train_loss = F.cross_entropy(y_pred, y) acc1, acc5, acc10 = self.__accuracy(y_pred, y, topk=(1, 5, 10)) logs = {'train_loss': train_loss} output = OrderedDict({ 'loss': train_loss, 'acc1': acc1, 'acc5': acc5, 'acc10': acc10, 'log': logs }) return output def validation_step(self, batch, batch_idx): x, y = batch y_pred = self(x) val_loss = F.cross_entropy(y_pred, y) y_pred = F.softmax(y_pred, dim=-1) acc1, acc5, acc10 = self.__accuracy(y_pred, y, topk=(1, 5, 10)) output = OrderedDict({ 'val_loss': val_loss, 'val_acc1': acc1, 'val_acc5': acc5, 'val_acc10': acc10, 'y_pred': y_pred, 'y': y, }) return output def validation_epoch_end(self, outputs): logs = {} for metric_name in ["val_loss", "val_acc1", "val_acc5", "val_acc10"]: metric_total = 0 for output in outputs: metric_value = output[metric_name] # reduce manually when using dp if self.trainer.use_dp or self.trainer.use_ddp2: metric_value = torch.mean(metric_value) metric_total += metric_value logs[metric_name] = metric_total / len(outputs) preds = [] targets = [] for output in outputs: y_pred = output['y_pred'] y = output['y'] preds.append(y_pred.cpu()) targets.append(y.cpu()) targets = torch.cat(targets, dim=0) preds = torch.cat(preds, dim=0) class_acc = self.__conf_matrix(preds, targets, self.classes) logs['class_acc'] = 100 * class_acc result = {'log': logs, 'val_loss': logs["val_loss"]} return result def test_step(self, batch, batch_idx): x, y = batch y_pred = self(x) test_loss = F.cross_entropy(y_pred, y) y_pred = F.softmax(y_pred, dim=-1) acc1, acc5, acc10 = self.__accuracy(y_pred, y, topk=(1, 5, 10)) output = OrderedDict({ 'test_loss': test_loss, 'test_acc1': acc1, 'test_acc5': acc5, 'test_acc10': acc10, 'y_pred': y_pred, 'y': y, }) return output def test_epoch_end(self, outputs): logs = {} for metric_name in ["test_loss", "test_acc1", "test_acc5", "test_acc10"]: metric_total = 0 for output in outputs: metric_value = output[metric_name] # reduce manually when using dp if self.trainer.use_dp or self.trainer.use_ddp2: metric_value = torch.mean(metric_value) metric_total += metric_value logs[metric_name] = metric_total / len(outputs) preds = [] targets = [] for output in outputs: y_pred = output['y_pred'] y = output['y'] preds.append(y_pred.cpu()) targets.append(y.cpu()) targets = torch.cat(targets, dim=0) preds = torch.cat(preds, dim=0) class_acc = self.__conf_matrix(preds, targets, self.classes) logs['test_class_acc'] = 100 * class_acc result = {'log': logs, 'test_loss': logs["test_loss"]} return result @classmethod def __conf_matrix(cls, preds, targets, classes, topk=(1,)): with torch.no_grad(): maxk = max(topk) _, pred = preds.topk(maxk, 1, True, True) conf_matrix = confusion_matrix(targets, pred) print(len(conf_matrix)) max_pred = np.argmax(conf_matrix, axis=1) print(len(classes)) class_acc = accuracy_score(np.array(classes)[max_pred], np.array(classes)) return class_acc @classmethod def __accuracy(cls, output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def configure_optimizers(self): # return torch.optim.AdamW(self.parameters(), lr=self.hparams.lr) # return torch.optim.Adam(self.parameters(), lr=self.hparams.lr) return torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9) # optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9) # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min') # return [optimizer], [scheduler] def prepare_data(self): if self.hparams.binary: transform = transforms.Compose([ transforms.Grayscale(num_output_channels=1), transforms.ToTensor() ]) else: if self.dataset == 'icdar17': transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.7993, 0.7404, 0.6438], [0.1168, 0.1198, 0.1186]), # icdar17 norm ]) elif self.dataset == 'firemaker': transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.9706, 0.9706, 0.9706], [0.1448, 0.1448, 0.1448]), # firemaker norm ]) else: transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.9496, 0.9406, 0.9406], [0.1076, 0.1076, 0.1076]), # iam norm ]) self.train_data = ImageFolder(self.hparams.train_path, transform=transform) self.classes = self.train_data.classes self.train_sampler = utils.ImbalancedDatasetSampler(self.train_data) self.val_data = ImageFolder(self.hparams.val_path, transform=transform) self.test_data = ImageFolder(self.hparams.test_path, transform=transform) def train_dataloader(self): return DataLoader(self.train_data, batch_size=self.hparams.batch_size, sampler=self.train_sampler, num_workers=8, pin_memory=True) def val_dataloader(self): return DataLoader(self.val_data, batch_size=self.hparams.batch_size, num_workers=8, pin_memory=True) def test_dataloader(self): return DataLoader(self.test_data, batch_size=self.hparams.batch_size, num_workers=8, pin_memory=True) @staticmethod def add_model_specific_args(parent_parser): parser = argparse.ArgumentParser(parents=[parent_parser]) parser.add_argument('-a', '--model', metavar='MODEL', default='resnet18', choices=MODEL_NAMES, help='model architecture: ' + ' | '.join(MODEL_NAMES) + ' (default: )') parser.add_argument('--epochs', default=20, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--seed', type=int, default=None, help='seed for initializing training. ') parser.add_argument('-b', '--batch-size', default=32, type=int, metavar='N', help='mini-batch size (default: 32), this is the total ' 'batch size of all GPUs on the current node when ' 'using Data Parallel or Distributed Data Parallel') parser.add_argument('--lr', '--learning-rate', default=0.01, type=float, metavar='LR', help='initial learning rate', dest='lr') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model in imagenet') return parser def get_args(): parent_parser = argparse.ArgumentParser(add_help=False) parent_parser.add_argument('--patch-height', default=256, type=int, metavar='H', help='height of the patch') parent_parser.add_argument('--patch-width', default=256, type=int, metavar='W', help='width of the patch') parent_parser.add_argument('--num-patches', default=None, type=int, metavar='N', help='number of patches per image') parent_parser.add_argument('--stride', default=1, type=int, metavar='B', help='factor in which pixels are binarized') parent_parser.add_argument('--split', default=[3, 1, 1], type=int, nargs='+', metavar='S', help='number of images for train (first element), val (second element) and test (third)') parent_parser.add_argument('--binary', dest='binary', action='store_true', help='use binary photos') parent_parser.add_argument('--data-path', metavar='T', type=str, default='/home/punjabi/TFG/datasets/ScriptNet-HistoricalWI-2017-binarized/', help='path to dataset') parent_parser.add_argument('--dataset', metavar='D', type=str, default='icdar17', choices=('icdar17', 'firemaker', 'iam'), help='three datasets: icdar17, firemaker, iam') parent_parser.add_argument('--train-path', metavar='T', type=str, default='/home/punjabi/TFG/datasets/patches-ScriptNet-HistoricalWI-2017-binarized/train', help='path to train dataset') parent_parser.add_argument('--val-path', metavar='V', type=str, default='/home/punjabi/TFG/datasets/patches-ScriptNet-HistoricalWI-2017-binarized/validation', help='path to validation dataset') parent_parser.add_argument('--test-path', metavar='TST', type=str, default='/home/punjabi/TFG/datasets/patches-ScriptNet-HistoricalWI-2017-binarized/test', help='path to test dataset') parent_parser.add_argument('--checkpoint-path', metavar='C', type=str, default=None, help='path to test dataset') parent_parser.add_argument('--temp-path', metavar='TMP', default=os.getcwd(), type=str, help='path to save data temporary') parent_parser.add_argument('--use-temp-dir', dest='use_temp_dir', action='store_true', help='create data on a temporary directory') parent_parser.add_argument('--gpus', type=int, default=2, help='how many gpus') parent_parser.add_argument('--distributed-backend', type=str, default='dp', choices=('dp', 'ddp', 'ddp2'), help='supports three options dp, ddp, ddp2') parent_parser.add_argument('--use-16-bit', dest='use_16_bit', action='store_true', help='if true uses 16 bit precision') parent_parser.add_argument('-t', '--test', dest='test', action='store_true', help='evaluate model on test set') parent_parser.add_argument('--load-checkpoint', dest='load', action='store_true', help='load model and evaluate on test set') parser = WriterID.add_model_specific_args(parent_parser) return parser.parse_args() def main(hparams): if hparams.use_temp_dir: tmp_dir = TemporaryDirectory(dir=hparams.temp_path) if hparams.dataset == 'icdar17': create_patches_dataset_icdar17(hparams.data_path, tmp_dir.name, hparams.patch_height, hparams.patch_height, hparams.num_patches, seed=hparams.seed, binary=hparams.binary, stride=hparams.stride) elif hparams.dataset == 'firemaker': create_patches_dataset_firemaker(hparams.data_path, hparams.test_path, tmp_dir.name, hparams.patch_height, hparams.patch_height, hparams.num_patches, seed=hparams.seed, binary=hparams.binary, stride=hparams.stride) else: create_patches_dataset_iam(hparams.data_path, tmp_dir.name, hparams.patch_height, hparams.patch_height, hparams.num_patches, hparams.seed, hparams.binary, hparams.stride) hparams.train_path = join(tmp_dir.name, 'train') hparams.val_path = join(tmp_dir.name, 'validation') hparams.test_path = join(tmp_dir.name, 'test') model = WriterID(hparams) # Loggers logger = WandbLogger(project='TFG', tags=[hparams.dataset]) logger.watch(model) # Watch gradients pl.seed_everything(hparams.seed) # Callbacks # early_stopping = EarlyStopping('val_loss', patience=30) checkpoint_callback = ModelCheckpoint( filepath=os.getcwd() + '/checkpoints/' + hparams.dataset + '_' + hparams.model + '_{epoch:02d}-{val_loss:.2f}', ) # checkpoint_callback = False trainer = pl.Trainer( nb_sanity_val_steps=0, train_path=hparams.train_path, val_path=hparams.val_path, test_path=hparams.test_path, gpus=hparams.gpus, batch_size=hparams.batch_size, learning_rate=hparams.lr, epochs=hparams.epochs, model=hparams.model, pretrained=hparams.pretrained, logger=logger, checkpoint_callback=checkpoint_callback, # early_stop_callback=early_stopping, distributed_backend=hparams.distributed_backend, deterministic=True if hparams.seed is not None else False, precision=16 if hparams.use_16_bit else 32, max_epochs=15, min_epochs=5, # auto_scale_batch_size='binsearch', # auto_lr_find=True, ) if hparams.test: trainer.fit(model) trainer.test(model) elif hparams.load: model = WriterID.load_from_checkpoint(hparams.checkpoint_path, vars(hparams)) trainer.test(model) else: trainer.fit(model) if hparams.use_temp_dir: tmp_dir.cleanup() if __name__ == '__main__': main(get_args())
[ "pytorch_lightning.Trainer", "pytorch_lightning.seed_everything", "argparse.ArgumentParser", "numpy.argmax", "torch.cat", "torchvision.transforms.Normalize", "torch.no_grad", "os.path.join", "tempfile.TemporaryDirectory", "torch.utils.data.DataLoader", "create_datasets.create_patches_dataset_firemaker", "create_datasets.create_patches_dataset_iam", "torch.mean", "torch.nn.functional.cross_entropy", "torchvision.datasets.ImageFolder", "utils.ImbalancedDatasetSampler", "create_datasets.create_patches_dataset_icdar17", "torchvision.transforms.Grayscale", "utils.change_out_features", "os.getcwd", "torch.nn.functional.softmax", "pytorch_lightning.loggers.WandbLogger", "numpy.array", "collections.OrderedDict", "sklearn.metrics.confusion_matrix", "torchvision.transforms.ToTensor" ]
[((10699, 10738), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'add_help': '(False)'}), '(add_help=False)\n', (10722, 10738), False, 'import argparse\n'), ((15625, 15675), 'pytorch_lightning.loggers.WandbLogger', 'WandbLogger', ([], {'project': '"""TFG"""', 'tags': '[hparams.dataset]'}), "(project='TFG', tags=[hparams.dataset])\n", (15636, 15675), False, 'from pytorch_lightning.loggers import WandbLogger\n'), ((15724, 15756), 'pytorch_lightning.seed_everything', 'pl.seed_everything', (['hparams.seed'], {}), '(hparams.seed)\n', (15742, 15756), True, 'import pytorch_lightning as pl\n'), ((16054, 16595), 'pytorch_lightning.Trainer', 'pl.Trainer', ([], {'nb_sanity_val_steps': '(0)', 'train_path': 'hparams.train_path', 'val_path': 'hparams.val_path', 'test_path': 'hparams.test_path', 'gpus': 'hparams.gpus', 'batch_size': 'hparams.batch_size', 'learning_rate': 'hparams.lr', 'epochs': 'hparams.epochs', 'model': 'hparams.model', 'pretrained': 'hparams.pretrained', 'logger': 'logger', 'checkpoint_callback': 'checkpoint_callback', 'distributed_backend': 'hparams.distributed_backend', 'deterministic': '(True if hparams.seed is not None else False)', 'precision': '(16 if hparams.use_16_bit else 32)', 'max_epochs': '(15)', 'min_epochs': '(5)'}), '(nb_sanity_val_steps=0, train_path=hparams.train_path, val_path=\n hparams.val_path, test_path=hparams.test_path, gpus=hparams.gpus,\n batch_size=hparams.batch_size, learning_rate=hparams.lr, epochs=hparams\n .epochs, model=hparams.model, pretrained=hparams.pretrained, logger=\n logger, checkpoint_callback=checkpoint_callback, distributed_backend=\n hparams.distributed_backend, deterministic=True if hparams.seed is not\n None else False, precision=16 if hparams.use_16_bit else 32, max_epochs\n =15, min_epochs=5)\n', (16064, 16595), True, 'import pytorch_lightning as pl\n'), ((2392, 2418), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['y_pred', 'y'], {}), '(y_pred, y)\n', (2407, 2418), True, 'import torch.nn.functional as F\n'), ((2551, 2645), 'collections.OrderedDict', 'OrderedDict', (["{'loss': train_loss, 'acc1': acc1, 'acc5': acc5, 'acc10': acc10, 'log': logs}"], {}), "({'loss': train_loss, 'acc1': acc1, 'acc5': acc5, 'acc10': acc10,\n 'log': logs})\n", (2562, 2645), False, 'from collections import OrderedDict\n'), ((2850, 2876), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['y_pred', 'y'], {}), '(y_pred, y)\n', (2865, 2876), True, 'import torch.nn.functional as F\n'), ((2894, 2919), 'torch.nn.functional.softmax', 'F.softmax', (['y_pred'], {'dim': '(-1)'}), '(y_pred, dim=-1)\n', (2903, 2919), True, 'import torch.nn.functional as F\n'), ((3011, 3132), 'collections.OrderedDict', 'OrderedDict', (["{'val_loss': val_loss, 'val_acc1': acc1, 'val_acc5': acc5, 'val_acc10':\n acc10, 'y_pred': y_pred, 'y': y}"], {}), "({'val_loss': val_loss, 'val_acc1': acc1, 'val_acc5': acc5,\n 'val_acc10': acc10, 'y_pred': y_pred, 'y': y})\n", (3022, 3132), False, 'from collections import OrderedDict\n'), ((4008, 4033), 'torch.cat', 'torch.cat', (['targets'], {'dim': '(0)'}), '(targets, dim=0)\n', (4017, 4033), False, 'import torch\n'), ((4050, 4073), 'torch.cat', 'torch.cat', (['preds'], {'dim': '(0)'}), '(preds, dim=0)\n', (4059, 4073), False, 'import torch\n'), ((4382, 4408), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['y_pred', 'y'], {}), '(y_pred, y)\n', (4397, 4408), True, 'import torch.nn.functional as F\n'), ((4426, 4451), 'torch.nn.functional.softmax', 'F.softmax', (['y_pred'], {'dim': '(-1)'}), '(y_pred, dim=-1)\n', (4435, 4451), True, 'import torch.nn.functional as F\n'), ((4542, 4668), 'collections.OrderedDict', 'OrderedDict', (["{'test_loss': test_loss, 'test_acc1': acc1, 'test_acc5': acc5, 'test_acc10':\n acc10, 'y_pred': y_pred, 'y': y}"], {}), "({'test_loss': test_loss, 'test_acc1': acc1, 'test_acc5': acc5,\n 'test_acc10': acc10, 'y_pred': y_pred, 'y': y})\n", (4553, 4668), False, 'from collections import OrderedDict\n'), ((5542, 5567), 'torch.cat', 'torch.cat', (['targets'], {'dim': '(0)'}), '(targets, dim=0)\n', (5551, 5567), False, 'import torch\n'), ((5584, 5607), 'torch.cat', 'torch.cat', (['preds'], {'dim': '(0)'}), '(preds, dim=0)\n', (5593, 5607), False, 'import torch\n'), ((8455, 8512), 'torchvision.datasets.ImageFolder', 'ImageFolder', (['self.hparams.train_path'], {'transform': 'transform'}), '(self.hparams.train_path, transform=transform)\n', (8466, 8512), False, 'from torchvision.datasets import ImageFolder\n'), ((8589, 8636), 'utils.ImbalancedDatasetSampler', 'utils.ImbalancedDatasetSampler', (['self.train_data'], {}), '(self.train_data)\n', (8619, 8636), False, 'import utils\n'), ((8662, 8717), 'torchvision.datasets.ImageFolder', 'ImageFolder', (['self.hparams.val_path'], {'transform': 'transform'}), '(self.hparams.val_path, transform=transform)\n', (8673, 8717), False, 'from torchvision.datasets import ImageFolder\n'), ((8743, 8799), 'torchvision.datasets.ImageFolder', 'ImageFolder', (['self.hparams.test_path'], {'transform': 'transform'}), '(self.hparams.test_path, transform=transform)\n', (8754, 8799), False, 'from torchvision.datasets import ImageFolder\n'), ((8848, 8976), 'torch.utils.data.DataLoader', 'DataLoader', (['self.train_data'], {'batch_size': 'self.hparams.batch_size', 'sampler': 'self.train_sampler', 'num_workers': '(8)', 'pin_memory': '(True)'}), '(self.train_data, batch_size=self.hparams.batch_size, sampler=\n self.train_sampler, num_workers=8, pin_memory=True)\n', (8858, 8976), False, 'from torch.utils.data import DataLoader\n'), ((9044, 9141), 'torch.utils.data.DataLoader', 'DataLoader', (['self.val_data'], {'batch_size': 'self.hparams.batch_size', 'num_workers': '(8)', 'pin_memory': '(True)'}), '(self.val_data, batch_size=self.hparams.batch_size, num_workers=8,\n pin_memory=True)\n', (9054, 9141), False, 'from torch.utils.data import DataLoader\n'), ((9185, 9284), 'torch.utils.data.DataLoader', 'DataLoader', (['self.test_data'], {'batch_size': 'self.hparams.batch_size', 'num_workers': '(8)', 'pin_memory': '(True)'}), '(self.test_data, batch_size=self.hparams.batch_size, num_workers=\n 8, pin_memory=True)\n', (9195, 9284), False, 'from torch.utils.data import DataLoader\n'), ((9364, 9412), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'parents': '[parent_parser]'}), '(parents=[parent_parser])\n', (9387, 9412), False, 'import argparse\n'), ((14381, 14422), 'tempfile.TemporaryDirectory', 'TemporaryDirectory', ([], {'dir': 'hparams.temp_path'}), '(dir=hparams.temp_path)\n', (14399, 14422), False, 'from tempfile import TemporaryDirectory\n'), ((15423, 15450), 'os.path.join', 'join', (['tmp_dir.name', '"""train"""'], {}), "(tmp_dir.name, 'train')\n", (15427, 15450), False, 'from os.path import join\n'), ((15478, 15510), 'os.path.join', 'join', (['tmp_dir.name', '"""validation"""'], {}), "(tmp_dir.name, 'validation')\n", (15482, 15510), False, 'from os.path import join\n'), ((15539, 15565), 'os.path.join', 'join', (['tmp_dir.name', '"""test"""'], {}), "(tmp_dir.name, 'test')\n", (15543, 15565), False, 'from os.path import join\n'), ((1987, 2049), 'utils.change_out_features', 'utils.change_out_features', (['layer[-1]'], {'classes': 'self.num_classes'}), '(layer[-1], classes=self.num_classes)\n', (2012, 2049), False, 'import utils\n'), ((5908, 5923), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5921, 5923), False, 'import torch\n'), ((6036, 6067), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['targets', 'pred'], {}), '(targets, pred)\n', (6052, 6067), False, 'from sklearn.metrics import confusion_matrix, accuracy_score\n'), ((6127, 6157), 'numpy.argmax', 'np.argmax', (['conf_matrix'], {'axis': '(1)'}), '(conf_matrix, axis=1)\n', (6136, 6157), True, 'import numpy as np\n'), ((6483, 6498), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6496, 6498), False, 'import torch\n'), ((13195, 13206), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (13204, 13206), False, 'import os\n'), ((14476, 14679), 'create_datasets.create_patches_dataset_icdar17', 'create_patches_dataset_icdar17', (['hparams.data_path', 'tmp_dir.name', 'hparams.patch_height', 'hparams.patch_height', 'hparams.num_patches'], {'seed': 'hparams.seed', 'binary': 'hparams.binary', 'stride': 'hparams.stride'}), '(hparams.data_path, tmp_dir.name, hparams.\n patch_height, hparams.patch_height, hparams.num_patches, seed=hparams.\n seed, binary=hparams.binary, stride=hparams.stride)\n', (14506, 14679), False, 'from create_datasets import create_patches_dataset_icdar17, create_pages_dataset_icdar17, create_pages_dataset_firemaker, create_patches_dataset_firemaker, create_patches_dataset_iam\n'), ((2147, 2205), 'utils.change_out_features', 'utils.change_out_features', (['layer'], {'classes': 'self.num_classes'}), '(layer, classes=self.num_classes)\n', (2172, 2205), False, 'import utils\n'), ((6258, 6275), 'numpy.array', 'np.array', (['classes'], {}), '(classes)\n', (6266, 6275), True, 'import numpy as np\n'), ((14813, 15041), 'create_datasets.create_patches_dataset_firemaker', 'create_patches_dataset_firemaker', (['hparams.data_path', 'hparams.test_path', 'tmp_dir.name', 'hparams.patch_height', 'hparams.patch_height', 'hparams.num_patches'], {'seed': 'hparams.seed', 'binary': 'hparams.binary', 'stride': 'hparams.stride'}), '(hparams.data_path, hparams.test_path,\n tmp_dir.name, hparams.patch_height, hparams.patch_height, hparams.\n num_patches, seed=hparams.seed, binary=hparams.binary, stride=hparams.\n stride)\n', (14845, 15041), False, 'from create_datasets import create_patches_dataset_icdar17, create_pages_dataset_icdar17, create_pages_dataset_firemaker, create_patches_dataset_firemaker, create_patches_dataset_iam\n'), ((15144, 15323), 'create_datasets.create_patches_dataset_iam', 'create_patches_dataset_iam', (['hparams.data_path', 'tmp_dir.name', 'hparams.patch_height', 'hparams.patch_height', 'hparams.num_patches', 'hparams.seed', 'hparams.binary', 'hparams.stride'], {}), '(hparams.data_path, tmp_dir.name, hparams.\n patch_height, hparams.patch_height, hparams.num_patches, hparams.seed,\n hparams.binary, hparams.stride)\n', (15170, 15323), False, 'from create_datasets import create_patches_dataset_icdar17, create_pages_dataset_icdar17, create_pages_dataset_firemaker, create_patches_dataset_firemaker, create_patches_dataset_iam\n'), ((3643, 3667), 'torch.mean', 'torch.mean', (['metric_value'], {}), '(metric_value)\n', (3653, 3667), False, 'import torch\n'), ((5177, 5201), 'torch.mean', 'torch.mean', (['metric_value'], {}), '(metric_value)\n', (5187, 5201), False, 'import torch\n'), ((6229, 6246), 'numpy.array', 'np.array', (['classes'], {}), '(classes)\n', (6237, 6246), True, 'import numpy as np\n'), ((7549, 7592), 'torchvision.transforms.Grayscale', 'transforms.Grayscale', ([], {'num_output_channels': '(1)'}), '(num_output_channels=1)\n', (7569, 7592), False, 'from torchvision import transforms\n'), ((7610, 7631), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (7629, 7631), False, 'from torchvision import transforms\n'), ((7772, 7793), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (7791, 7793), False, 'from torchvision import transforms\n'), ((7815, 7887), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.7993, 0.7404, 0.6438]', '[0.1168, 0.1198, 0.1186]'], {}), '([0.7993, 0.7404, 0.6438], [0.1168, 0.1198, 0.1186])\n', (7835, 7887), False, 'from torchvision import transforms\n'), ((8039, 8060), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (8058, 8060), False, 'from torchvision import transforms\n'), ((8082, 8154), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.9706, 0.9706, 0.9706]', '[0.1448, 0.1448, 0.1448]'], {}), '([0.9706, 0.9706, 0.9706], [0.1448, 0.1448, 0.1448])\n', (8102, 8154), False, 'from torchvision import transforms\n'), ((8280, 8301), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (8299, 8301), False, 'from torchvision import transforms\n'), ((8323, 8395), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.9496, 0.9406, 0.9406]', '[0.1076, 0.1076, 0.1076]'], {}), '([0.9496, 0.9406, 0.9406], [0.1076, 0.1076, 0.1076])\n', (8343, 8395), False, 'from torchvision import transforms\n'), ((15896, 15907), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (15905, 15907), False, 'import os\n')]
import torch.optim as optim # Import optim import torchvision # Import torchvision import h5py # import h5py from torch.utils.data import dataset # import dataset from torch.utils.data import DataLoader # Import Dataloader import torchvision.transforms as transforms # Import Transform import pandas as pd # Import Pnadas import torch # Import Torch import torch.nn as nn # Import NN module from Torch # Import transform module from torchvision from torchvision.transforms import transforms from torch.utils.data import DataLoader # Import dataloader from torch from torch.optim import Adam # import optimizer module from torch from torch.autograd import Variable # Import autograd from torch import numpy as np # Import numpy module import torchvision.datasets as datasets # Import dataset from torch from Attention import PAM_Module # import position attention module # from Attention import CAM_Module # import channel attention module # from Attention import SA_Module # Import Self attention module from torch import optim, cuda # import optimizer and CUDA import random # import random import torch.nn.functional as F # Import nn.functional import time # import time import sys # Import System import os # Import OS from pytorchtools import EarlyStopping from torchvision import models import warnings SEED = 1234 # Initialize seed random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) torch.cuda.manual_seed(SEED) torch.backends.cudnn.deterministic = True device = torch.device('cuda') # Define device type num_classes = 2 # Define Number of classes in_channel = 1 # Define Number of Input Channels learning_rate = 0.0005 # Define Learning rate batch_size = 128 # Define Batch Size EPOCHS = 1000 # Define maximum Number of Epochs FC_Size = 512 SFC_Size = 512 Temp = 3 alpha = 0.7 N_models = 6 num_classes = 2 warnings.filterwarnings("ignore") train_transformations = transforms.Compose([ # Training Transform transforms.Resize([224, 224]), transforms.ToTensor(), transforms.Normalize(mean=[0.485], std=[0.229])]) test_transformations = transforms.Compose([ # Test Transform transforms.Resize([224, 224]), transforms.ToTensor(), transforms.Normalize(mean=[0.485], std=[0.229])]) # train_dataset=LAEData_Train(transform=train_transformations) # Create tensor of training data # Test_Dataset=LAEData_Test(transform=test_transformations)# Create tensor of test dataset train_dataset = datasets.ImageFolder( '/home/AC Collab/COVID/training_set/', transform=train_transformations) #Test_Dataset = datasets.ImageFolder( # '/test_set', transform=transform) # Compute size of training data using (70% As Training and 30% As Validation) train_size = int(0.7 * len(train_dataset)) # Compute size of validation data using (70% As Training and 30% As Validation) test_size = len(train_dataset) - train_size Train_Dataset1, Test_Dataset = torch.utils.data.random_split(train_dataset, [ train_size, test_size]) # Training and Validation Data After (70%-30%)Data Split Train_size = int(0.7 * len(Train_Dataset1)) # Compute size of validation data using (70% As Training and 30% As Validation) valid_size = len(Train_Dataset1) - Train_size Train_Dataset, Valid_Dataset = torch.utils.data.random_split(Train_Dataset1, [ Train_size, valid_size]) # Training and # train_set,test_set=torch.utils.data.random_split(dataset,[6000,2639]) # Labels=pd.read_csv("Devlopment.csv") # Create Training Dataloader train_loader = DataLoader(dataset=Train_Dataset, batch_size=batch_size, shuffle=True) # Create Validation Dataloader valid_loader = DataLoader(dataset=Valid_Dataset, batch_size=batch_size, shuffle=True) # Create Test Dataloader test_loader = DataLoader(dataset=Test_Dataset, batch_size=batch_size, shuffle=False) print("Train ",str(len(train_loader))) print("Valid ",str(len(valid_loader))) print("Test ",str(len(test_loader))) class Teacher(nn.Module): # Subband-1 Network using Pre-Trained Resent-34 def __init__(self): super(Teacher, self).__init__() Pre_Trained_Layers = nn.Sequential( *list(models.resnet50(pretrained=True).children())[:-2]) #Pre_Trained_Layers = list(models.resnet34(pretrained=True).children())[:-4] # Pre_Trained_Layers = models.resnet34(pretrained=True) # Initialize model layers and weights # print(Pre_Trained_Layers) self.features = Pre_Trained_Layers # self.PAM=PAM_Module(2048) # self.CAM=CAM_Module(512) self.features[0] = nn.Conv2d(3, 64, kernel_size=(7, 7), stride=( 2, 2), padding=(3, 3), bias=False) # Set input channels as 2 self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1)) # self.features.Flat=nn.Flatten() # Set output layer as an one output self.fc = nn.Linear(2048, num_classes) def forward(self, image): x1 = self.features(image) # x1=self.PAM(x1) # x2=self.CAM(x1) # x3=x1+x2 x4 = self.avgpool(x1) # x4=x3.view(x3.shape[0],-1) x4 = x4.view(x4.size(0), -1) # x4=torch.flatten(x4) # print(x4.shape) # x4=torch.unsqueeze(x4,-1) # print(x4.shape) x5 = self.fc(x4) return x5 Teacher_Model = Teacher() # print(Teacher_Model) Teacher_Model = Teacher_Model.to(device) Teacher_optimizer = optim.Adam(Teacher_Model.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # Define Loss Function def calculate_accuracy(fx, y): # caluate accuracy preds = fx.max(1, keepdim=True)[1] correct = preds.eq(y.view_as(preds)).sum() acc = correct.float()/preds.shape[0] return acc def train(model, device, iterator, optimizer, criterion): # Define Training Function early_stopping = EarlyStopping(patience=7, verbose=True) #print("Training Starts") epoch_loss = 0 epoch_acc = 0 count = 0 model.train() # call model object for training for (x, y) in iterator: x = x.float() # print(x.type()) x = x.to(device) y = y.to(device) # Transfer label to device optimizer.zero_grad() # Initialize gredients as zeros count = count+1 # print(x.shape) Predicted_Train_Label = model(x) loss = criterion(Predicted_Train_Label, y) # training loss acc = calculate_accuracy(Predicted_Train_Label, y) # training accuracy #print("Training Iteration Number=",count) loss.backward() # backpropogation optimizer.step() # optimize the model weights using an optimizer epoch_loss += loss.item() # sum of training loss epoch_acc += acc.item() # sum of training accuracy return epoch_loss / len(iterator), epoch_acc / len(iterator) def evaluate(model, device, iterator, criterion): # Evaluate Validation accuracy #print("Validation Starts") epoch_loss = 0 epoch_acc = 0 count = 0 model.eval() # call model object for evaluation with torch.no_grad(): # Without computation of gredient for (x, y) in iterator: x = x.float() x = x.to(device) # Transfer data to device y = y.to(device) # Transfer label to device count = count+1 Predicted_Label = model(x) # Predict claa label loss = criterion(Predicted_Label, y) # Compute Loss acc = calculate_accuracy(Predicted_Label, y) # compute Accuracy #print("Validation Iteration Number=",count) epoch_loss += loss.item() # Compute Sum of Loss epoch_acc += acc.item() # Compute Sum of Accuracy return epoch_loss / len(iterator), epoch_acc / len(iterator) # Define Path to save the model # MODEL_SAVE_PATH = os.path.join( # "/home/mani/Desktop/AK/COVID19", 'FB_COVID19_CNN.pt') MODEL_SAVE_PATH = os.path.join( "/home/AC Collab/COVID/Model", 'FB_COVID19_CNN.pt') best_valid_loss = float('inf') # Temp Matrix to Store all model accuracy, loss and time parameters Temp = np.zeros([EPOCHS, 6]) print("CNN Model is in Training Mode") print("---------------------------------------------------------------------------------------------------------------------") early_stopping = EarlyStopping( patience=7, verbose=True) # early Stopping Criteria for epoch in range(EPOCHS): start_time = time.time() # Compute Start Time train_loss, train_acc = train( Teacher_Model, device, train_loader, Teacher_optimizer, criterion) # Call Training Process train_loss = round(train_loss, 2) # Round training loss train_acc = round(train_acc, 2) # Round training accuracy valid_loss, valid_acc = evaluate( Teacher_Model, device, valid_loader, criterion) # Call Validation Process valid_loss = round(valid_loss, 4) # Round validation loss valid_acc = round(valid_acc, 2) # Round accuracy end_time = (time.time()-start_time) # Compute End time end_time = round(end_time, 2) # Round End Time print(" | Epoch=", epoch, " | Training Accuracy=", train_acc*100, " | Validation Accuracy=", valid_acc*100, " | Training Loss=", train_loss, " | Validation_Loss=", valid_loss, "Time Taken(Seconds)=", end_time, "|") print("---------------------------------------------------------------------------------------------------------------------") Temp[epoch, 0] = epoch # Store Epoch Number Temp[epoch, 1] = train_acc # Store Training Accuracy Temp[epoch, 2] = valid_acc # Store Validation Accuracy Temp[epoch, 3] = train_loss # Store Training Loss Temp[epoch, 4] = valid_loss # Store Validation Loss Temp[epoch, 5] = end_time # Store Running Time of One Epoch # call Early Stopping to Prevent Overfitting early_stopping(valid_loss, Teacher_Model) if early_stopping.early_stop: print("Early stopping") break Teacher_Model.load_state_dict(torch.load(MODEL_SAVE_PATH)) np.save('Clean_Model_Training_Parameters', Temp) # Save Temp Array as numpy array Teacher_Model.load_state_dict(torch.load( MODEL_SAVE_PATH)) # load the trained model # Compute Test Accuracy on Unseen Signals test_loss, test_acc = evaluate(Teacher_Model, device, test_loader, criterion) # test_loss=round(test_loss,2)# Round test loss # test_acc=round(test_acc,2) # Round test accuracy print("|Test Loss=", test_loss, "Test Accuracy=", test_acc*100) # print test accuracy
[ "numpy.random.seed", "pytorchtools.EarlyStopping", "torch.device", "torch.no_grad", "os.path.join", "torch.utils.data.DataLoader", "torch.load", "random.seed", "torch.utils.data.random_split", "torch.nn.Linear", "numpy.save", "torch.manual_seed", "torch.nn.Conv2d", "torch.cuda.manual_seed", "torchvision.transforms.transforms.ToTensor", "torchvision.datasets.ImageFolder", "torchvision.models.resnet50", "torch.nn.AdaptiveAvgPool2d", "warnings.filterwarnings", "torch.nn.CrossEntropyLoss", "numpy.zeros", "time.time", "torchvision.transforms.transforms.Normalize", "torchvision.transforms.transforms.Resize" ]
[((1361, 1378), 'random.seed', 'random.seed', (['SEED'], {}), '(SEED)\n', (1372, 1378), False, 'import random\n'), ((1379, 1399), 'numpy.random.seed', 'np.random.seed', (['SEED'], {}), '(SEED)\n', (1393, 1399), True, 'import numpy as np\n'), ((1400, 1423), 'torch.manual_seed', 'torch.manual_seed', (['SEED'], {}), '(SEED)\n', (1417, 1423), False, 'import torch\n'), ((1424, 1452), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['SEED'], {}), '(SEED)\n', (1446, 1452), False, 'import torch\n'), ((1504, 1524), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (1516, 1524), False, 'import torch\n'), ((1858, 1891), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1881, 1891), False, 'import warnings\n'), ((2457, 2554), 'torchvision.datasets.ImageFolder', 'datasets.ImageFolder', (['"""/home/AC Collab/COVID/training_set/"""'], {'transform': 'train_transformations'}), "('/home/AC Collab/COVID/training_set/', transform=\n train_transformations)\n", (2477, 2554), True, 'import torchvision.datasets as datasets\n'), ((2909, 2978), 'torch.utils.data.random_split', 'torch.utils.data.random_split', (['train_dataset', '[train_size, test_size]'], {}), '(train_dataset, [train_size, test_size])\n', (2938, 2978), False, 'import torch\n'), ((3300, 3371), 'torch.utils.data.random_split', 'torch.utils.data.random_split', (['Train_Dataset1', '[Train_size, valid_size]'], {}), '(Train_Dataset1, [Train_size, valid_size])\n', (3329, 3371), False, 'import torch\n'), ((3607, 3677), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'Train_Dataset', 'batch_size': 'batch_size', 'shuffle': '(True)'}), '(dataset=Train_Dataset, batch_size=batch_size, shuffle=True)\n', (3617, 3677), False, 'from torch.utils.data import DataLoader\n'), ((3750, 3820), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'Valid_Dataset', 'batch_size': 'batch_size', 'shuffle': '(True)'}), '(dataset=Valid_Dataset, batch_size=batch_size, shuffle=True)\n', (3760, 3820), False, 'from torch.utils.data import DataLoader\n'), ((3886, 3956), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'Test_Dataset', 'batch_size': 'batch_size', 'shuffle': '(False)'}), '(dataset=Test_Dataset, batch_size=batch_size, shuffle=False)\n', (3896, 3956), False, 'from torch.utils.data import DataLoader\n'), ((5616, 5637), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (5635, 5637), True, 'import torch.nn as nn\n'), ((8027, 8091), 'os.path.join', 'os.path.join', (['"""/home/AC Collab/COVID/Model"""', '"""FB_COVID19_CNN.pt"""'], {}), "('/home/AC Collab/COVID/Model', 'FB_COVID19_CNN.pt')\n", (8039, 8091), False, 'import os\n'), ((8204, 8225), 'numpy.zeros', 'np.zeros', (['[EPOCHS, 6]'], {}), '([EPOCHS, 6])\n', (8212, 8225), True, 'import numpy as np\n'), ((8409, 8448), 'pytorchtools.EarlyStopping', 'EarlyStopping', ([], {'patience': '(7)', 'verbose': '(True)'}), '(patience=7, verbose=True)\n', (8422, 8448), False, 'from pytorchtools import EarlyStopping\n'), ((10111, 10159), 'numpy.save', 'np.save', (['"""Clean_Model_Training_Parameters"""', 'Temp'], {}), "('Clean_Model_Training_Parameters', Temp)\n", (10118, 10159), True, 'import numpy as np\n'), ((5966, 6005), 'pytorchtools.EarlyStopping', 'EarlyStopping', ([], {'patience': '(7)', 'verbose': '(True)'}), '(patience=7, verbose=True)\n', (5979, 6005), False, 'from pytorchtools import EarlyStopping\n'), ((8526, 8537), 'time.time', 'time.time', ([], {}), '()\n', (8535, 8537), False, 'import time\n'), ((10224, 10251), 'torch.load', 'torch.load', (['MODEL_SAVE_PATH'], {}), '(MODEL_SAVE_PATH)\n', (10234, 10251), False, 'import torch\n'), ((1963, 1992), 'torchvision.transforms.transforms.Resize', 'transforms.Resize', (['[224, 224]'], {}), '([224, 224])\n', (1980, 1992), False, 'from torchvision.transforms import transforms\n'), ((1998, 2019), 'torchvision.transforms.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2017, 2019), False, 'from torchvision.transforms import transforms\n'), ((2025, 2072), 'torchvision.transforms.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.485]', 'std': '[0.229]'}), '(mean=[0.485], std=[0.229])\n', (2045, 2072), False, 'from torchvision.transforms import transforms\n'), ((2141, 2170), 'torchvision.transforms.transforms.Resize', 'transforms.Resize', (['[224, 224]'], {}), '([224, 224])\n', (2158, 2170), False, 'from torchvision.transforms import transforms\n'), ((2176, 2197), 'torchvision.transforms.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2195, 2197), False, 'from torchvision.transforms import transforms\n'), ((2203, 2250), 'torchvision.transforms.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.485]', 'std': '[0.229]'}), '(mean=[0.485], std=[0.229])\n', (2223, 2250), False, 'from torchvision.transforms import transforms\n'), ((4715, 4794), 'torch.nn.Conv2d', 'nn.Conv2d', (['(3)', '(64)'], {'kernel_size': '(7, 7)', 'stride': '(2, 2)', 'padding': '(3, 3)', 'bias': '(False)'}), '(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n', (4724, 4794), True, 'import torch.nn as nn\n'), ((4858, 4898), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', ([], {'output_size': '(1, 1)'}), '(output_size=(1, 1))\n', (4878, 4898), True, 'import torch.nn as nn\n'), ((5004, 5032), 'torch.nn.Linear', 'nn.Linear', (['(2048)', 'num_classes'], {}), '(2048, num_classes)\n', (5013, 5032), True, 'import torch.nn as nn\n'), ((7177, 7192), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7190, 7192), False, 'import torch\n'), ((9073, 9084), 'time.time', 'time.time', ([], {}), '()\n', (9082, 9084), False, 'import time\n'), ((10082, 10109), 'torch.load', 'torch.load', (['MODEL_SAVE_PATH'], {}), '(MODEL_SAVE_PATH)\n', (10092, 10109), False, 'import torch\n'), ((4300, 4332), 'torchvision.models.resnet50', 'models.resnet50', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (4315, 4332), False, 'from torchvision import models\n')]
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% import math import numpy as np import matplotlib.pyplot as plt import struct import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data as D import os import multiprocessing as mp os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # %% def loadData(file): try: File = open(file, 'rb') except IOError: print("open error") File.close() return # 读取文件头 label = { 'RECORD_BYTES':0, 'FILE_RECORDS':0, 'LABEL_RECORDS':0, '^IMAGE':0, '^IMAGE_PREFIX':0, ' ROWS':0, ' ROW_BYTES':0, ' LINES':0, } while True: line = File.readline() lbl = line.decode('utf8').replace('\t', '').strip('\n').split("=") if lbl[0] == 'END':# 文件头读完了 break if lbl[0] in label: label[lbl[0]] = int(lbl[1]) # 跳过空行 skip = File.readline() # 线阵数量 lines = label[' LINES'] # 每个像素由32*32个像素取平均构成,坐标取第一个像素的起始点的纬度经度跨越的四分点 height_pixels = 32 width_pixels = 32 height = int(lines/height_pixels) width = int(128/width_pixels) total = height*width skip_lines = lines%height_pixels # 读取经纬度列表,位置直接对应对应点的索引位置 inf = File.readline(67*lines) inf = inf.decode('utf8').replace(' ', '').split("\t")# 整行经纬度表都在这里 pos_lon = np.empty((total))# 经度 pos_lat = np.empty((total))# 维度 # 每个线阵的数据格式:2008-12-04T05:04:01.420Z 0 121.2097 -77.4942 124.8695 -77.4382 for i in range(height): for j in range(width): pos_lon[i*width + j] = float(inf[6*height_pixels*i + 2]) + j*(float(inf[6*height_pixels*i + 4]) - float(inf[6*height_pixels*i + 2]))/width pos_lat[i*width + j] = float(inf[6*height_pixels*i + 3]) # 经纬度表后面有部分补全符号,剔除 skip = File.readline(label[' ROWS']*label[' ROW_BYTES']-67*lines) # 读图像 f = File.read() iim_np = np.empty((total,21))# iim图像记录,total,21个波段连续记录 # print(iim_np)# test # 使用的波段记录 useBand = [i for i in range(11,32)] usepBand = tuple(useBand) fmt = '>' + str(width_pixels) + 'f' offset = 0 skipset = 4*128*lines# 对于不用的波段,全波段跳过一共n条线阵*128*4bytes的大小 # print(skipset) # test for band in range(32):# test if band not in useBand: offset += skipset# 跳过整个波段 continue # for line in range(label[' LINES']): pixel = 0 while pixel < total:# 开始处理4个像素 temp = np.zeros(width) # print(temp) # test for line in range(height_pixels): for unit in range(width): temp[unit] += np.mean(struct.unpack_from(fmt, f, offset)) offset += struct.calcsize(fmt) # # where is nan??? # if np.min(temp) == np.nan or np.max(temp) != np.nan: # print('nan!',offset) # raise NameError for unit in range(width): iim_np[pixel][band - 11] = temp[unit]/32.0 pixel += 1 offset += 4*128*skip_lines# 尾部用不到的线阵 print("load a file finished")# test File.close() # print(np.shape(iim_np)) # # 哪来的nan??? # if np.min(iim_np) == np.nan or np.max(iim_np) != np.nan: # print('nan!') # raise TypeError return total, pos_lon, pos_lat, iim_np # %% def loadFileList(file): files = open(file,'r') f = files.readlines() files.close() return [item.replace('\n','').replace('\r','') for item in f] # %% class Network(nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Network, self).__init__() self.fc = torch.nn.Linear(n_feature, n_hidden) self.out = torch.nn.Linear(n_hidden, n_output) def forward(self, x): x = F.relu(self.fc(x)) x = self.out(x) x = F.sigmoid(x) x = 100*x return x # %% # 初始化模型 filestr='./modelV' network = torch.load(filestr) # %% # 载入2C文件路径 file = 'files400.txt' fileList = loadFileList(file) # fileList = ('/mnt/c/ShareCache/施朱鸣_1800011723/Expe/TrainingSet/CE1_IIM_2C_20081112091027_20081130231727_A/DATA/CE1_BMYK_IIM_SCI_N_20080702001309_20080702021955_2700_A.2C',) # fileList = ('/mnt/c/ShareCache/施朱鸣_1800011723/Expe/TrainingSet/CE1_IIM_2C_20081112091027_20081130231727_A/DATA/CE1_BMYK_IIM_SCI_N_20081202154348_20081202175129_4439_A.2C',) # %% # 初始化图,全局变量! # fig = np.zeros((8,900,1800)) # fig = mp.Array('f', 8*900*1800) # %% iim = np.zeros((21*900*1800)) iim = mp.Array('f',iim) # %% def runs(file): Nnan = 0 Nillegal = 0 Nnum = 0 # global fig # print('what happend') try: total_pixel, position_lon, position_lat, iim_np = loadData(file) # except TypeError: # print('nan in iim of ',file,'error!') # return # except NameError: # print('nan in temp of ',file,'error!') # return except BaseException: print('open file ',file,'error!') return # print(file) # 记录抽取的数据 for band in range(21): for i in range(total_pixel): # fig[band][int(5*position_lat[i])+450][int(5*position_lon[i])+900] = figure[band][i] if math.isnan(iim_np[i][band]):# 跳过nan Nnan += 1 continue elif iim_np[i][band]>1.0001 or iim_np[i][band]<-0.0001: Nillegal += 1 continue else : Nnum += 1 iim[band*900*1800+(int(5*position_lat[i])+450)*1800+int(5*position_lon[i])+900] = iim_np[i][band] # 喂给网络 # spec = torch.FloatTensor(iim_np) # out = network(spec) # figure = out.detach().numpy().T # for band in range(8): # for i in range(total_pixel): # # fig[band][int(5*position_lat[i])+450][int(5*position_lon[i])+900] = figure[band][i] # if math.isnan(figure[band][i]): # Nnan += 1 # continue # else : # Nnum += 1 # fig[band*900*1800+(int(5*position_lat[i])+450) * # 1800+int(5*position_lon[i])+900] = figure[band][i] print(file[-10:-4],'nillegal:',Nillegal,'nan:',Nnan,'num:',Nnum) # %% # 多线程设定发 cores=mp.cpu_count() pool=mp.Pool(processes=cores) # 多线程读写图 pool.map(runs,fileList) # %% print('load data finished') # %% iim = np.array(list(iim)).reshape((21,900*1800)) np.save("nancatch400iim.np",iim) spec = torch.FloatTensor(iim.T) out = network(spec) figure = out.detach().numpy().T fig = figure.reshape(8, 900, 1800) # %% # 把压缩的数组恢复 # fig = np.array(list(fig)).reshape((8, 900, 1800)) # %% [markdown] # 经度划分为1800个密位,维度划分为900个密位,转换公式: # # 经度 lon = int(5*lon) + 900 # # 纬度 lat = int(5*lat) + 450 # %% # %% # # 存取图,避免重复读取大数据 np.save("nancatch400fig.np",fig) # b = np.load("fig.np") # %% # 作图,先作一个维度看看 # plt.imshow(fig[0], cmap ='gray') # plt.imsave('nancatch20.png', fig[0]) # plt.imsave('nancatch20gray.png', fig[0], cmap='gray') # %% for i in range(8): plt.imsave('nancatch400gray'+str(i)+'.png', fig[i], cmap='gray')
[ "math.isnan", "numpy.save", "struct.unpack_from", "multiprocessing.Array", "numpy.empty", "torch.load", "numpy.zeros", "torch.FloatTensor", "struct.calcsize", "torch.nn.Linear", "torch.nn.functional.sigmoid", "multiprocessing.Pool", "multiprocessing.cpu_count" ]
[((4021, 4040), 'torch.load', 'torch.load', (['filestr'], {}), '(filestr)\n', (4031, 4040), False, 'import torch\n'), ((4560, 4585), 'numpy.zeros', 'np.zeros', (['(21 * 900 * 1800)'], {}), '(21 * 900 * 1800)\n', (4568, 4585), True, 'import numpy as np\n'), ((4590, 4608), 'multiprocessing.Array', 'mp.Array', (['"""f"""', 'iim'], {}), "('f', iim)\n", (4598, 4608), True, 'import multiprocessing as mp\n'), ((6298, 6312), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (6310, 6312), True, 'import multiprocessing as mp\n'), ((6318, 6342), 'multiprocessing.Pool', 'mp.Pool', ([], {'processes': 'cores'}), '(processes=cores)\n', (6325, 6342), True, 'import multiprocessing as mp\n'), ((6467, 6500), 'numpy.save', 'np.save', (['"""nancatch400iim.np"""', 'iim'], {}), "('nancatch400iim.np', iim)\n", (6474, 6500), True, 'import numpy as np\n'), ((6508, 6532), 'torch.FloatTensor', 'torch.FloatTensor', (['iim.T'], {}), '(iim.T)\n', (6525, 6532), False, 'import torch\n'), ((6834, 6867), 'numpy.save', 'np.save', (['"""nancatch400fig.np"""', 'fig'], {}), "('nancatch400fig.np', fig)\n", (6841, 6867), True, 'import numpy as np\n'), ((1445, 1460), 'numpy.empty', 'np.empty', (['total'], {}), '(total)\n', (1453, 1460), True, 'import numpy as np\n'), ((1481, 1496), 'numpy.empty', 'np.empty', (['total'], {}), '(total)\n', (1489, 1496), True, 'import numpy as np\n'), ((2008, 2029), 'numpy.empty', 'np.empty', (['(total, 21)'], {}), '((total, 21))\n', (2016, 2029), True, 'import numpy as np\n'), ((3743, 3779), 'torch.nn.Linear', 'torch.nn.Linear', (['n_feature', 'n_hidden'], {}), '(n_feature, n_hidden)\n', (3758, 3779), False, 'import torch\n'), ((3799, 3834), 'torch.nn.Linear', 'torch.nn.Linear', (['n_hidden', 'n_output'], {}), '(n_hidden, n_output)\n', (3814, 3834), False, 'import torch\n'), ((3929, 3941), 'torch.nn.functional.sigmoid', 'F.sigmoid', (['x'], {}), '(x)\n', (3938, 3941), True, 'import torch.nn.functional as F\n'), ((2558, 2573), 'numpy.zeros', 'np.zeros', (['width'], {}), '(width)\n', (2566, 2573), True, 'import numpy as np\n'), ((5274, 5301), 'math.isnan', 'math.isnan', (['iim_np[i][band]'], {}), '(iim_np[i][band])\n', (5284, 5301), False, 'import math\n'), ((2805, 2825), 'struct.calcsize', 'struct.calcsize', (['fmt'], {}), '(fmt)\n', (2820, 2825), False, 'import struct\n'), ((2739, 2773), 'struct.unpack_from', 'struct.unpack_from', (['fmt', 'f', 'offset'], {}), '(fmt, f, offset)\n', (2757, 2773), False, 'import struct\n')]
''' The proposed methoed: DynWalks --------------------------------- scheme=3, # the final version of DynWalks presented and tested in our paper limit=0.1, local_global=0.5 # DynWalks key hyper-parameters # NOTE: limit i.e. $\alpha$, local_global i.e. $\beta$ in our paper num_walks=20, walk_length=80, # random walk hyper-parameters window=10, negative=5, # Skig-Gram hyper-parameters seed=2019, workers=20, # others G0 # graph at previous time step 't-1' G1 # graph at current time step 't' --------------------------------- by <NAME> ''' import time import random import pickle import warnings warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim') import gensim import logging import numpy as np import networkx as nx from .utils import edge_s1_minus_s0, unique_nodes_from_edge_set # =============================================================================================================================== # =========================== CORE1: Overall framework to learn node embeddings in an online manner ============================= # =============================================================================================================================== class DynWalks(object): def __init__(self, G_dynamic, limit, local_global, num_walks, walk_length, window, emb_dim, negative, workers, seed, scheme): self.G_dynamic = G_dynamic.copy() # a series of dynamic graphs self.emb_dim = emb_dim # node emb dimensionarity self.num_walks = num_walks # num of walks start from each node self.walk_length = walk_length # walk length for each walk self.window = window # Skip-Gram parameter self.workers = workers # Skip-Gram parameter self.negative = negative # Skip-Gram parameter self.seed = seed # Skip-Gram parameter self.scheme = scheme self.limit = limit self.local_global = local_global # balancing factor for local changes and global topology self.emb_dicts = [] # emb_dict @ t0, t1, ...; len(self.emb_dicts) == len(self.G_dynamic) self.reservoir = {} # {nodeID: num of affected, ...} def sampling_traning(self): # SGNS and suggested parameters to be tuned: size, window, negative, workers, seed # to tune other parameters, please read https://radimrehurek.com/gensim/models/word2vec.html#gensim.models.word2vec.Word2Vec w2v = gensim.models.Word2Vec(sentences=None, size=self.emb_dim, window=self.window, sg=1, hs=0, negative=self.negative, ns_exponent=0.75, alpha=0.025, min_alpha=0.0001, min_count=1, sample=0.001, iter=4, workers=self.workers, seed=self.seed, corpus_file=None, sorted_vocab=1, batch_words=10000, compute_loss=False, max_vocab_size=None, max_final_vocab=None, trim_rule=None) # w2v constructor, default parameters for t in range(len(self.G_dynamic)): t1 = time.time() if t ==0: # offline ---------------------------- G0 = self.G_dynamic[t] # initial graph sentences = simulate_walks(nx_graph=G0, num_walks=self.num_walks, walk_length=self.walk_length) sentences = [[str(j) for j in i] for i in sentences] w2v.build_vocab(sentences=sentences, update=False) # init traning, so update False w2v.train(sentences=sentences, total_examples=w2v.corpus_count, epochs=w2v.iter) # follow w2v constructor else: # online adapting -------------------- G0 = self.G_dynamic[t-1] # previous graph G1 = self.G_dynamic[t] # current graph node_update_list, self.reservoir = node_selecting_scheme(graph_t0=G0, graph_t1=G1, reservoir_dict=self.reservoir, limit=self.limit, local_global=self.local_global, scheme=self.scheme) # print(node_update_list) # node_update_list_2_txt(node_update_list,'node_update_list.txt') sentences = simulate_walks(nx_graph=G1, num_walks=self.num_walks, walk_length=self.walk_length, affected_nodes=node_update_list) # sentences_2_pkl(sentences,'sentences.pkl') # with open('sentences.pkl', 'rb') as f: # any_object = pickle.load(f) # print(any_object) # exit(0) sentences = [[str(j) for j in i] for i in sentences] w2v.build_vocab(sentences=sentences, update=True) # online update w2v.train(sentences=sentences, total_examples=w2v.corpus_count, epochs=w2v.iter) emb_dict = {} # {nodeID: emb_vector, ...} for node in self.G_dynamic[t].nodes(): emb_dict[node] = w2v.wv[str(node)] self.emb_dicts.append(emb_dict) t2 = time.time() print(f'DynWalks sampling and traning time: {(t2-t1):.2f}s --> {t+1}/{len(self.G_dynamic)}') return self.emb_dicts # To save memory useage, we can delete DynWalks model after training def save_emb(self, path='unnamed_dyn_emb_dicts.pkl'): ''' save # emb_dict @ t0, t1, ... to a file using pickle ''' with open(path, 'wb') as f: pickle.dump(self.emb_dicts, f, protocol=pickle.HIGHEST_PROTOCOL) def load_emb(self, path='unnamed_dyn_emb_dicts.pkl'): ''' load # emb_dict @ t0, t1, ... to a file using pickle ''' with open(path, 'rb') as f: any_object = pickle.load(f) return any_object # ================================================================================================================================ # ======================================= CORE2: online node selecting scheme ==================================================== # ================================================================================================================================ def node_selecting_scheme(graph_t0, graph_t1, reservoir_dict, limit=0.1, local_global=0.5, scheme=3): ''' select nodes to be updated G0: previous graph @ t-1; G1: current graph @ t; reservoir_dict: will be always maintained in ROM limit: fix the number of node --> the percentage of nodes of a network to be updated (exclude new nodes) local_global: # of nodes from recent changes v.s. from random nodes scheme 1: new nodes + most affected nodes scheme 2: new nodes + diverse nodes scheme 3: new nodes + most affected nodes + diverse nodes (the one we presented and tested in our paper) ''' G0 = graph_t0.copy() G1 = graph_t1.copy() edge_add = edge_s1_minus_s0(s1=set(G1.edges()), s0=set(G0.edges())) # one may directly use streaming added edges if possible edge_del = edge_s1_minus_s0(s1=set(G0.edges()), s0=set(G1.edges())) # one may directly use streaming added edges if possible node_affected_by_edge_add = unique_nodes_from_edge_set(edge_add) # unique node_affected_by_edge_del = unique_nodes_from_edge_set(edge_del) # unique node_affected = list(set(node_affected_by_edge_add + node_affected_by_edge_del)) # unique node_add = [node for node in node_affected_by_edge_add if node not in G0.nodes()] node_del = [node for node in node_affected_by_edge_del if node not in G1.nodes()] if len(node_del) !=0: reservoir_key_list = list(reservoir_dict.keys()) for node in node_del: if node in reservoir_key_list: del reservoir_dict[node] # if node being deleted, also delete it from reservoir exist_node_affected = list(set(node_affected) - set(node_add) - set(node_del)) # affected nodes are in both G0 and G1 t1 = time.time() # for fair comparsion, the number of nodes to be updated are the same for schemes 1, 2, 3 num_limit = int(G1.number_of_nodes() * limit) local_limit = int(local_global * num_limit) global_limit = num_limit - local_limit node_update_list = [] # all the nodes to be updated if scheme == 1: print('scheme == 1') most_affected_nodes, reservoir_dict = select_most_affected_nodes(G0, G1, num_limit, reservoir_dict, exist_node_affected) if len(most_affected_nodes) != 0: if len(most_affected_nodes) < num_limit: # for fairness, resample until meets num_limit temp_num = num_limit - len(most_affected_nodes) temp_nodes = list(np.random.choice(most_affected_nodes+node_add, temp_num, replace=True)) most_affected_nodes.extend(temp_nodes) node_update_list = node_add + most_affected_nodes else: print('nothing changed... For fairness, randomly update some as scheme 2 does') all_nodes = [node for node in G1.nodes()] random_nodes = list(np.random.choice(all_nodes, num_limit, replace=False)) node_update_list = node_add + random_nodes if scheme == 2: print('scheme == 2') all_nodes = [node for node in G1.nodes()] random_nodes = list(np.random.choice(all_nodes, num_limit, replace=False)) node_update_list = node_add + random_nodes # node_update_list = ['1','1','1'] #----------------------------------------------------------------------------------------------------------------- # scheme 3: new nodes + most affected nodes + diverse nodes (the one we presented and tested in our paper) #----------------------------------------------------------------------------------------------------------------- if scheme == 3: # trade-off between local recent changes and global topology by 'local_global' (defalt 0.5) print('scheme == 3') most_affected_nodes, reservoir_dict = select_most_affected_nodes(G0, G1, local_limit, reservoir_dict, exist_node_affected) lack = local_limit - len(most_affected_nodes) # if the changes are relatively smaller than local_limit, sample some random nodes for compensation tabu_nodes = set(node_add + most_affected_nodes) other_nodes = list( set(G1.nodes()) - tabu_nodes ) random_nodes = list(np.random.choice(other_nodes, min(global_limit+lack, len(other_nodes)), replace=False)) node_update_list = node_add + most_affected_nodes + random_nodes reservoir_key_list = list(reservoir_dict.keys()) node_update_set = set(node_update_list) # remove repeated nodes due to resample for node in node_update_set: if node in reservoir_key_list: del reservoir_dict[node] # if updated, delete it t2 = time.time() print(f'--> node selecting time; time cost: {(t2-t1):.2f}s') print(f'num_limit {num_limit}, local_limit {local_limit}, global_limit {global_limit}, # nodes updated {len(node_update_list)}') print(f'# nodes added {len(node_add)}, # nodes deleted {len(node_del)}') print(f'# nodes affected {len(node_affected)}, # nodes most affected {len(most_affected_nodes)}, # of random nodes {len(random_nodes)}') print(f'num of nodes in reservoir with accumulated changes but not updated {len(list(reservoir_dict))}') return node_update_list, reservoir_dict # ============================================================================================================================== # ========================================= CORE3: select the most affected nodes ============================================== # ============================================================================================================================== def select_most_affected_nodes(G0, G1, num_limit_return_nodes, reservoir_dict, exist_node_affected): ''' return num_limit_return_nodes to be updated based on the ranking of the accumulated changes w.r.t. their local connectivity ''' most_affected_nodes = [] for node in exist_node_affected: nbrs_set1 = set(nx.neighbors(G=G1, n=node)) nbrs_set0 = set(nx.neighbors(G=G0, n=node)) changes = len( nbrs_set1.union(nbrs_set0) - nbrs_set1.intersection(nbrs_set0) ) if node in reservoir_dict.keys(): reservoir_dict[node] += changes # accumulated changes else: reservoir_dict[node] = changes # newly added changes if len(exist_node_affected) > num_limit_return_nodes: reservoir_dict_score = {} for node in exist_node_affected: reservoir_dict_score[node] = reservoir_dict[node] / G0.degree[node] # worse case O(n) https://docs.scipy.org/doc/numpy/reference/generated/numpy.partition.html # the largest change at num_limit_return_nodes will be returned cutoff_score = np.partition(list(reservoir_dict_score.values()), -num_limit_return_nodes, kind='introselect')[-num_limit_return_nodes] cnt = 0 for node in reservoir_dict_score.keys(): if reservoir_dict_score[node] >= cutoff_score: # fix bug: there might be multiple equal cutoff_score nodes... if cnt == num_limit_return_nodes: # fix bug: we need exactly the number of limit return nodes... break most_affected_nodes.append(node) cnt += 1 else: #NOTE: len(exist_node_affected) <= num_limit_return_nodes most_affected_nodes = exist_node_affected return most_affected_nodes, reservoir_dict # ===================================================================================================================================== # ========================================= CORE4: random walk sampling, and other utils ============================================== # ===================================================================================================================================== def simulate_walks(nx_graph, num_walks, walk_length, restart_prob=None, affected_nodes=None): ''' Repeatedly simulate random walks from each node ''' G = nx_graph walks = [] if affected_nodes == None: # simulate walks on every node in the graph [offline] nodes = list(G.nodes()) else: # simulate walks on affected nodes [online] nodes = list(affected_nodes) ''' multi-processors; use it iff the # of nodes over 20k if restart_prob == None: # naive random walk t1 = time.time() for walk_iter in range(num_walks): random.shuffle(nodes) from itertools import repeat from multiprocessing import Pool, freeze_support with Pool(processes=5) as pool: # results = [pool.apply_async(random_walk, args=(G, node, walk_length)) for node in nodes] # results = [p.get() for p in results] results = pool.starmap(random_walk, zip(repeat(G), nodes, repeat(walk_length))) for result in results: walks.append(result) t2 = time.time() print('all walks',len(walks)) print(f'random walk sampling, time cost: {(t2-t1):.2f}') ''' if restart_prob == None: # naive random walk t1 = time.time() for walk_iter in range(num_walks): random.shuffle(nodes) for node in nodes: walks.append(random_walk(nx_graph=G, start_node=node, walk_length=walk_length)) t2 = time.time() print(f'random walk sampling, time cost: {(t2-t1):.2f}') else: # random walk with restart t1 = time.time() for walk_iter in range(num_walks): random.shuffle(nodes) for node in nodes: walks.append(random_walk_restart(nx_graph=G, start_node=node, walk_length=walk_length, restart_prob=restart_prob)) t2 = time.time() print(f'random walk sampling, time cost: {(t2-t1):.2f}') return walks def random_walk(nx_graph, start_node, walk_length): ''' Simulate a random walk starting from start node ''' G = nx_graph walk = [start_node] while len(walk) < walk_length: cur = walk[-1] cur_nbrs = list(G.neighbors(cur)) if len(cur_nbrs) > 0: walk.append(random.choice(cur_nbrs)) else: break return walk def random_walk_restart(nx_graph, start_node, walk_length, restart_prob): ''' random walk with restart restart if p < restart_prob ''' G = nx_graph walk = [start_node] while len(walk) < walk_length: p = random.uniform(0, 1) if p < restart_prob: cur = walk[0] # restart walk.append(cur) else: cur = walk[-1] cur_nbrs = list(G.neighbors(cur)) if len(cur_nbrs) > 0: walk.append(random.choice(cur_nbrs)) else: break return walk def node_update_list_2_txt(my_list, path): with open(path, 'w') as f: for item in my_list: f.write("%s\n" % item) def sentences_2_pkl(my_list, path): import collections new_list = [] for items in my_list: for item in items: new_list.append(item) c = collections.Counter(new_list) with open(path, 'wb') as f: pickle.dump(c, f, protocol=pickle.HIGHEST_PROTOCOL) def select_most_affected_nodes_nbrs(G1, most_affected_nodes): most_affected_nbrs = [] for node in most_affected_nodes: most_affected_nbrs.extend( list(nx.neighbors(G=G1, n=node)) ) return list(set(most_affected_nbrs))
[ "pickle.dump", "random.uniform", "warnings.filterwarnings", "random.shuffle", "gensim.models.Word2Vec", "random.choice", "time.time", "networkx.neighbors", "pickle.load", "numpy.random.choice", "collections.Counter" ]
[((759, 838), 'warnings.filterwarnings', 'warnings.filterwarnings', ([], {'action': '"""ignore"""', 'category': 'UserWarning', 'module': '"""gensim"""'}), "(action='ignore', category=UserWarning, module='gensim')\n", (782, 838), False, 'import warnings\n'), ((8235, 8246), 'time.time', 'time.time', ([], {}), '()\n', (8244, 8246), False, 'import time\n'), ((11188, 11199), 'time.time', 'time.time', ([], {}), '()\n', (11197, 11199), False, 'import time\n'), ((17944, 17973), 'collections.Counter', 'collections.Counter', (['new_list'], {}), '(new_list)\n', (17963, 17973), False, 'import collections\n'), ((2652, 3042), 'gensim.models.Word2Vec', 'gensim.models.Word2Vec', ([], {'sentences': 'None', 'size': 'self.emb_dim', 'window': 'self.window', 'sg': '(1)', 'hs': '(0)', 'negative': 'self.negative', 'ns_exponent': '(0.75)', 'alpha': '(0.025)', 'min_alpha': '(0.0001)', 'min_count': '(1)', 'sample': '(0.001)', 'iter': '(4)', 'workers': 'self.workers', 'seed': 'self.seed', 'corpus_file': 'None', 'sorted_vocab': '(1)', 'batch_words': '(10000)', 'compute_loss': '(False)', 'max_vocab_size': 'None', 'max_final_vocab': 'None', 'trim_rule': 'None'}), '(sentences=None, size=self.emb_dim, window=self.\n window, sg=1, hs=0, negative=self.negative, ns_exponent=0.75, alpha=\n 0.025, min_alpha=0.0001, min_count=1, sample=0.001, iter=4, workers=\n self.workers, seed=self.seed, corpus_file=None, sorted_vocab=1,\n batch_words=10000, compute_loss=False, max_vocab_size=None,\n max_final_vocab=None, trim_rule=None)\n', (2674, 3042), False, 'import gensim\n'), ((15830, 15841), 'time.time', 'time.time', ([], {}), '()\n', (15839, 15841), False, 'import time\n'), ((16073, 16084), 'time.time', 'time.time', ([], {}), '()\n', (16082, 16084), False, 'import time\n'), ((16205, 16216), 'time.time', 'time.time', ([], {}), '()\n', (16214, 16216), False, 'import time\n'), ((16483, 16494), 'time.time', 'time.time', ([], {}), '()\n', (16492, 16494), False, 'import time\n'), ((17241, 17261), 'random.uniform', 'random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (17255, 17261), False, 'import random\n'), ((18018, 18069), 'pickle.dump', 'pickle.dump', (['c', 'f'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(c, f, protocol=pickle.HIGHEST_PROTOCOL)\n', (18029, 18069), False, 'import pickle\n'), ((3222, 3233), 'time.time', 'time.time', ([], {}), '()\n', (3231, 3233), False, 'import time\n'), ((5279, 5290), 'time.time', 'time.time', ([], {}), '()\n', (5288, 5290), False, 'import time\n'), ((5697, 5761), 'pickle.dump', 'pickle.dump', (['self.emb_dicts', 'f'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(self.emb_dicts, f, protocol=pickle.HIGHEST_PROTOCOL)\n', (5708, 5761), False, 'import pickle\n'), ((5974, 5988), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (5985, 5988), False, 'import pickle\n'), ((9632, 9685), 'numpy.random.choice', 'np.random.choice', (['all_nodes', 'num_limit'], {'replace': '(False)'}), '(all_nodes, num_limit, replace=False)\n', (9648, 9685), True, 'import numpy as np\n'), ((12511, 12537), 'networkx.neighbors', 'nx.neighbors', ([], {'G': 'G1', 'n': 'node'}), '(G=G1, n=node)\n', (12523, 12537), True, 'import networkx as nx\n'), ((12565, 12591), 'networkx.neighbors', 'nx.neighbors', ([], {'G': 'G0', 'n': 'node'}), '(G=G0, n=node)\n', (12577, 12591), True, 'import networkx as nx\n'), ((15902, 15923), 'random.shuffle', 'random.shuffle', (['nodes'], {}), '(nodes)\n', (15916, 15923), False, 'import random\n'), ((16277, 16298), 'random.shuffle', 'random.shuffle', (['nodes'], {}), '(nodes)\n', (16291, 16298), False, 'import random\n'), ((9383, 9436), 'numpy.random.choice', 'np.random.choice', (['all_nodes', 'num_limit'], {'replace': '(False)'}), '(all_nodes, num_limit, replace=False)\n', (9399, 9436), True, 'import numpy as np\n'), ((16912, 16935), 'random.choice', 'random.choice', (['cur_nbrs'], {}), '(cur_nbrs)\n', (16925, 16935), False, 'import random\n'), ((18242, 18268), 'networkx.neighbors', 'nx.neighbors', ([], {'G': 'G1', 'n': 'node'}), '(G=G1, n=node)\n', (18254, 18268), True, 'import networkx as nx\n'), ((8984, 9056), 'numpy.random.choice', 'np.random.choice', (['(most_affected_nodes + node_add)', 'temp_num'], {'replace': '(True)'}), '(most_affected_nodes + node_add, temp_num, replace=True)\n', (9000, 9056), True, 'import numpy as np\n'), ((17528, 17551), 'random.choice', 'random.choice', (['cur_nbrs'], {}), '(cur_nbrs)\n', (17541, 17551), False, 'import random\n')]
#%% import pandas as pd import pickle import numpy as np import matplotlib.pyplot as plt import gensim import sklearn.decomposition import sklearn.manifold from sklearn.neural_network import MLPClassifier #%% #--Read in data D2V_WOstop = gensim.models.Doc2Vec.load(r'..\data\process\D2V_WOstop') df = pd.read_csv(r'..\data\df_cb_main_combined.csv', index_col=0, encoding='utf-8', error_bad_lines=False).dropna(subset=['Review']).drop_duplicates(['Author', 'Game']) df_core = pickle.load(open(r'..\data\process\core_cluster.p', 'rb')) #%% #--Acquire game vecs and separate into core and other games core_idTags = [] core_groups = [] core_vecs = [] other_idTags = [] other_groups = [] other_titles = [] other_vecs = [] for index, row in df.iterrows(): idTag = 'id_' + str(index) vec = D2V_WOstop.docvecs[idTag] title = row['Game'] if row['CoreID'] > 0: group = (df_core[df_core['core_id'] == row['CoreID']])['group_label'].values[0] core_idTags.append(idTag) core_groups.append(group) core_vecs.append(vec) elif row['CoreID'] == 0: other_idTags.append(idTag) other_vecs.append(vec) other_titles.append(title) core_vec = np.array(core_vecs) other_vec = np.array(other_vecs) numOfCluster = len(df_core.group_label.unique()) #%% #--Dimension reduction for visualization #Reduce dimension to 2 by PCA pcaDocs = sklearn.decomposition.PCA(n_components=2).fit(np.vstack((core_vec, other_vec))) reducedPCA = pcaDocs.transform(other_vec) x_other = reducedPCA[:, 0] y_other = reducedPCA[:, 1] #Reduce dimension to 2 by TSNE tsneGames = sklearn.manifold.TSNE(n_components=2).fit_transform(other_vec) x_other_tsne = tsneGames[:, 0] y_other_tsne = tsneGames[:, 1] #%% #--Initialize and train the model clf = MLPClassifier() clf.fit(core_vec, core_groups) #Acquire predicted labels labels = clf.predict(other_vec) labels.shape #Acquire predicted probabilities probs = pd.DataFrame(clf.predict_proba(other_vec)) probs.columns = np.arange(1, 8) #Rename column to conform to the predicted label probs.shape #%% #Save the predicted clusters and scores df_predicted = df.query('CoreID == 0').copy() df_predicted['Predicted'] = labels probs = probs.set_index(df_predicted.index) df_predicted = pd.concat([df_predicted, probs], axis=1) df_predicted.to_csv(r'..\data\output\df_predicted.csv', index=False, encoding='utf-8') #%% #Prepare games to be plotted TARGET = pd.read_csv(r'..\data\target_for_elaborate.csv', encoding='utf-8', header=None)[0].tolist() coor_target = [] coor_target_tsne = [] for game in TARGET: index = other_titles.index(game) coor_target.append(reducedPCA[index]) coor_target_tsne.append(tsneGames[index]) #%% #--Color map for predicted labels #Make color dictionary colordict = { 0: '#d53e4f', 1: '#f46d43', 2: '#fdae61', 3: '#ffffbf', 4: '#abdda4', 5: '#66c2a5', 6: '#3288bd', 7: '#fee08b', 8: '#88ddaa', 9: '#71acbc', 10: '#e6f598', 11: 'chartreuse', 12: 'cornsilk', 13: 'darkcyan', 14: 'darkkhaki', 15: 'forestgreen', 16: 'goldenrod', 17: 'lawngreen', 18: 'lightgray', 19: 'linen', 20: 'mediumorchid', } #Plot by PCA colors_p = [colordict[l] for l in labels] fig = plt.figure(figsize = (10,6)) ax = fig.add_subplot(111) ax.set_frame_on(False) plt.scatter(x_other, y_other, color = colors_p, alpha = 0.5) for i, word in enumerate(TARGET): ax.annotate(word, (coor_target[i][0],coor_target[i][1]), horizontalalignment='center', alpha=0.7) plt.xticks(()) plt.yticks(()) plt.title('All games with color representing predicted cluster\n classification: Neural Nets (MLP)\n k = {}, n = 15,372, projection = PCA'.format(numOfCluster)) plt.savefig(r'..\img\2-3_PCA_' + str(numOfCluster)) plt.show() plt.close() #Plot by tsne colors_p = [colordict[l] for l in labels] fig = plt.figure(figsize = (10,6)) ax = fig.add_subplot(111) ax.set_frame_on(False) plt.scatter(x_other_tsne, y_other_tsne, color = colors_p, alpha = 0.5) for i, word in enumerate(TARGET): ax.annotate(word, (coor_target_tsne[i][0],coor_target_tsne[i][1]), horizontalalignment='center', alpha=0.7) plt.xticks(()) plt.yticks(()) plt.title('All games with color representing predicted cluster\n classification: Neural Nets (MLP) with document vector input\n k = {}, n = 15,372, projection = tsne'.format(numOfCluster)) plt.savefig(r'..\img\2-3_tsne_' + str(numOfCluster)) plt.show() plt.close()
[ "matplotlib.pyplot.show", "gensim.models.Doc2Vec.load", "matplotlib.pyplot.scatter", "matplotlib.pyplot.close", "matplotlib.pyplot.yticks", "pandas.read_csv", "matplotlib.pyplot.figure", "numpy.array", "numpy.arange", "sklearn.neural_network.MLPClassifier", "matplotlib.pyplot.xticks", "pandas.concat", "numpy.vstack" ]
[((241, 300), 'gensim.models.Doc2Vec.load', 'gensim.models.Doc2Vec.load', (['"""..\\\\data\\\\process\\\\D2V_WOstop"""'], {}), "('..\\\\data\\\\process\\\\D2V_WOstop')\n", (267, 300), False, 'import gensim\n'), ((1202, 1221), 'numpy.array', 'np.array', (['core_vecs'], {}), '(core_vecs)\n', (1210, 1221), True, 'import numpy as np\n'), ((1234, 1254), 'numpy.array', 'np.array', (['other_vecs'], {}), '(other_vecs)\n', (1242, 1254), True, 'import numpy as np\n'), ((1786, 1801), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {}), '()\n', (1799, 1801), False, 'from sklearn.neural_network import MLPClassifier\n'), ((2006, 2021), 'numpy.arange', 'np.arange', (['(1)', '(8)'], {}), '(1, 8)\n', (2015, 2021), True, 'import numpy as np\n'), ((2269, 2309), 'pandas.concat', 'pd.concat', (['[df_predicted, probs]'], {'axis': '(1)'}), '([df_predicted, probs], axis=1)\n', (2278, 2309), True, 'import pandas as pd\n'), ((3194, 3221), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (3204, 3221), True, 'import matplotlib.pyplot as plt\n'), ((3272, 3328), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_other', 'y_other'], {'color': 'colors_p', 'alpha': '(0.5)'}), '(x_other, y_other, color=colors_p, alpha=0.5)\n', (3283, 3328), True, 'import matplotlib.pyplot as plt\n'), ((3473, 3487), 'matplotlib.pyplot.xticks', 'plt.xticks', (['()'], {}), '(())\n', (3483, 3487), True, 'import matplotlib.pyplot as plt\n'), ((3488, 3502), 'matplotlib.pyplot.yticks', 'plt.yticks', (['()'], {}), '(())\n', (3498, 3502), True, 'import matplotlib.pyplot as plt\n'), ((3716, 3726), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3724, 3726), True, 'import matplotlib.pyplot as plt\n'), ((3727, 3738), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3736, 3738), True, 'import matplotlib.pyplot as plt\n'), ((3802, 3829), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (3812, 3829), True, 'import matplotlib.pyplot as plt\n'), ((3880, 3946), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_other_tsne', 'y_other_tsne'], {'color': 'colors_p', 'alpha': '(0.5)'}), '(x_other_tsne, y_other_tsne, color=colors_p, alpha=0.5)\n', (3891, 3946), True, 'import matplotlib.pyplot as plt\n'), ((4102, 4116), 'matplotlib.pyplot.xticks', 'plt.xticks', (['()'], {}), '(())\n', (4112, 4116), True, 'import matplotlib.pyplot as plt\n'), ((4117, 4131), 'matplotlib.pyplot.yticks', 'plt.yticks', (['()'], {}), '(())\n', (4127, 4131), True, 'import matplotlib.pyplot as plt\n'), ((4374, 4384), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4382, 4384), True, 'import matplotlib.pyplot as plt\n'), ((4385, 4396), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4394, 4396), True, 'import matplotlib.pyplot as plt\n'), ((1438, 1470), 'numpy.vstack', 'np.vstack', (['(core_vec, other_vec)'], {}), '((core_vec, other_vec))\n', (1447, 1470), True, 'import numpy as np\n'), ((2440, 2525), 'pandas.read_csv', 'pd.read_csv', (['"""..\\\\data\\\\target_for_elaborate.csv"""'], {'encoding': '"""utf-8"""', 'header': 'None'}), "('..\\\\data\\\\target_for_elaborate.csv', encoding='utf-8', header=None\n )\n", (2451, 2525), True, 'import pandas as pd\n'), ((304, 411), 'pandas.read_csv', 'pd.read_csv', (['"""..\\\\data\\\\df_cb_main_combined.csv"""'], {'index_col': '(0)', 'encoding': '"""utf-8"""', 'error_bad_lines': '(False)'}), "('..\\\\data\\\\df_cb_main_combined.csv', index_col=0, encoding=\n 'utf-8', error_bad_lines=False)\n", (315, 411), True, 'import pandas as pd\n')]
from collections import deque import numpy as np import pickle import os import cv2 import inspect import functools from ddpg_curiosity_mc_her import logger try: from mujoco_py import MujocoException except Exception: logger.warn("Mujoco could not be imported.") def convert_episode_to_batch_major(episode): """Converts an episode to have the batch dimension in the major (first) dimension. """ episode_batch = {} for key in episode.keys(): val = np.array(episode[key]).copy() # make inputs batch-major instead of time-major episode_batch[key] = val.swapaxes(0, 1) return episode_batch def store_args(method): """Stores provided method args as instance attributes. """ argspec = inspect.getfullargspec(method) defaults = {} if argspec.defaults is not None: defaults = dict( zip(argspec.args[-len(argspec.defaults):], argspec.defaults)) if argspec.kwonlydefaults is not None: defaults.update(argspec.kwonlydefaults) arg_names = argspec.args[1:] @functools.wraps(method) def wrapper(*positional_args, **keyword_args): self = positional_args[0] # Get default arg values args = defaults.copy() # Add provided arg values for name, value in zip(arg_names, positional_args[1:]): args[name] = value args.update(keyword_args) self.__dict__.update(args) return method(*positional_args, **keyword_args) return wrapper class RolloutWorker: @store_args def __init__(self, policy_fn, agents, dims, logger, make_env, T, use_her, rollout_batch_size=1, compute_Q=False, render=False, history_len=100): """Rollout worker generates experience by interacting with one or many environments. Args: make_env (function): a factory function that creates a new instance of the environment when called policy (object): the policy that is used to act dims (dict of ints): the dimensions for observations (o), goals (g), and actions (u) logger (object): the logger that is used by the rollout worker rollout_batch_size (int): the number of parallel rollouts that should be used exploit (boolean): whether or not to exploit, i.e. to act optimally according to the current policy without any exploration use_target_net (boolean): whether or not to use the target net for rollouts compute_Q (boolean): whether or not to compute the Q values alongside the actions noise_eps (float): scale of the additive Gaussian noise random_eps (float): probability of selecting a completely random action history_len (int): length of history for statistics smoothing render (boolean): whether or not to render the rollouts """ self.envs = [make_env() for _ in range(rollout_batch_size)] assert (np.abs(self.envs[0].action_space.low) == self.envs[0].action_space.high).all() # we assume symmetric actions. self.max_action = self.envs[0].action_space.high logger.info('Scaling actions by {} before executing in env'.format(self.max_action)) assert self.T > 0 self.info_keys = [key.replace('info_', '') for key in dims.keys() if key.startswith('info_')] if self.use_her: self.success_history = deque(maxlen=history_len) self.reward_per_episode_history = deque(maxlen=history_len) self.Q_history = deque(maxlen=history_len) self.n_episodes = 0 self.initial_o = np.empty((self.rollout_batch_size, self.dims['o']), np.float32) # observations if self.use_her: self.g = np.empty((self.rollout_batch_size, self.dims['g']), np.float32) # goals self.initial_ag = np.empty((self.rollout_batch_size, self.dims['g']), np.float32) # achieved goals self.total_reward_this_episode = np.zeros((self.rollout_batch_size,), np.float32) self.reset_all(force_env_resets=True) self.clear_history() self.current_heatmap_prefix = None self.recording = False def reset_rollout(self, i): """Resets the `i`-th rollout environment, re-samples a new goal, and updates the `initial_o` and `g` arrays accordingly. """ obs = self.envs[i].reset() if self.use_her: self.initial_o[i] = obs['observation'] self.initial_ag[i] = obs['achieved_goal'] self.g[i] = obs['desired_goal'] else: self.initial_o[i] = obs self.total_reward_this_episode[i] = 0. def reset_all(self, force_env_resets=False): """Resets all `rollout_batch_size` rollout workers. """ if self.use_her or force_env_resets: for i in range(self.rollout_batch_size): self.reset_rollout(i) for agent in self.agents.values(): agent.reset() def generate_rollouts(self, render_override=False, reset_on_success_overrride=False, heatmap_prefix=None, demo_video_recording_name=None): """Performs `rollout_batch_size` rollouts in parallel for time horizon `T` with the current policy acting on it accordingly. """ if demo_video_recording_name is not None: if not self.recording: # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'XVID') # fourcc = cv2.VideoWriter_fourcc(*'MJPG') # fourcc = cv2.VideoWriter_fourcc(*'MP4V') self.out = cv2.VideoWriter('{}.avi'.format(demo_video_recording_name), fourcc, 24.0, (2560, 1440)) self.recording = False if heatmap_prefix != self.current_heatmap_prefix: write_dir = os.path.join(logger.get_dir(), 'heatmaps') self.envs[0].unwrapped.set_location_record_name(write_dir=write_dir, prefix=heatmap_prefix) self.current_heatmap_prefix = heatmap_prefix self.reset_all(force_env_resets=False) # compute observations o = np.empty((self.rollout_batch_size, self.dims['o']), np.float32) # observations o[:] = self.initial_o if self.use_her: ag = np.empty((self.rollout_batch_size, self.dims['g']), np.float32) # achieved goals ag[:] = self.initial_ag # generate episodes obs, actions, rewards = [], [], [] if self.use_her: achieved_goals, goals, successes = [], [], [] else: dones = [] info_values = [np.empty((self.T, self.rollout_batch_size, self.dims['info_' + key]), np.float32) for key in self.info_keys] Qs = [] for t in range(self.T): policy_output = self.policy_fn( observation=o, goal=self.g if self.use_her else None, compute_Q=self.compute_Q ) if self.compute_Q: u, Q = policy_output Qs.append(Q) else: u = policy_output if u.ndim == 1: # The non-batched case should still have a reasonable shape. u = u.reshape(1, -1) o_new = np.empty((self.rollout_batch_size, self.dims['o'])) rewards_new = np.empty((self.rollout_batch_size, 1)) if self.use_her: ag_new = np.empty((self.rollout_batch_size, self.dims['g'])) success = np.zeros(self.rollout_batch_size) else: dones_new = np.empty((self.rollout_batch_size, 1)) # compute new states and observations for i in range(self.rollout_batch_size): try: curr_o_new, curr_reward_new, curr_done_new, info = self.envs[i].step(u[i] * self.max_action) # if shift_rewards_by_50: # curr_reward_new = curr_reward_new * 50 + 50 # curr_reward_new = curr_reward_new / 1000. # else: # curr_reward_new = curr_reward_new * 50 + 50 rewards_new[i] = curr_reward_new self.total_reward_this_episode[i] += curr_reward_new if self.use_her: if 'is_success' in info: success[i] = info['is_success'] if reset_on_success_overrride and success[i]: # raise Exception('SUCCESS affected rollout behavior') # print("YOU SHOULD ONLY EVER REACH THIS IF CONDUCTING A DEMO") self.reward_per_episode_history.append(self.total_reward_this_episode[i]) self.reset_rollout(i) o_new[i] = curr_o_new['observation'] ag_new[i] = curr_o_new['achieved_goal'] else: o_new[i] = curr_o_new dones_new[i] = curr_done_new if curr_done_new: self.reward_per_episode_history.append(self.total_reward_this_episode[i]) self.reset_rollout(i) for idx, key in enumerate(self.info_keys): info_values[idx][t, i] = info[key] if self.render or render_override: if i == 0: self.envs[0].render() if demo_video_recording_name is not None: frame = self.envs[i].render('rgb_array')[...,::-1] cv2.imshow("recording {}".format(i), frame) key = cv2.waitKey(1) & 0xFF if key == ord('r'): if not self.recording: print("\n\n-------RECORDING---------\n\n") self.recording = True if self.recording: print("rec {}".format(t)) self.out.write(frame) if key == ord('q'): self.out.release() cv2.destroyAllWindows() print('done') exit() except MujocoException as e: return self.generate_rollouts() if np.isnan(o_new).any(): self.logger.warning('NaN caught during rollout generation. Trying again...') self.reset_all(force_env_resets=True) return self.generate_rollouts() obs.append(o.copy()) actions.append(u.copy()) rewards.append(rewards_new.copy()) o[...] = o_new if self.use_her: achieved_goals.append(ag.copy()) successes.append(success.copy()) goals.append(self.g.copy()) ag[...] = ag_new else: dones.append(dones_new.copy()) obs.append(o.copy()) self.initial_o[:] = o if self.use_her: achieved_goals.append(ag.copy()) episode = {'o': obs, 'u': actions} episode['r'] = rewards if self.use_her: episode['g'] = goals episode['ag'] = achieved_goals else: episode['t'] = dones # print("goals shape: {}".format(np.shape( episode['g']))) # print("obs shape: {}".format(np.shape(episode['o']))) # print("ag shape: {}".format(np.shape(episode['ag']))) for key, value in zip(self.info_keys, info_values): episode['info_{}'.format(key)] = value # stats if self.use_her: successful = np.array(successes)[-1, :] assert successful.shape == (self.rollout_batch_size,) success_rate = np.mean(successful) self.success_history.append(success_rate) self.reward_per_episode_history.append(self.total_reward_this_episode[i]) if self.compute_Q: self.Q_history.append(np.mean(Qs)) self.n_episodes += self.rollout_batch_size # print("goals shape: {}".format(np.shape( episode['g']))) # print("obs shape: {}".format(np.shape(episode['o']))) # print("ag shape: {}".format(np.shape(episode['ag']))) return convert_episode_to_batch_major(episode) def clear_history(self): """Clears all histories that are used for statistics """ if self.use_her: self.success_history.clear() self.reward_per_episode_history.clear() self.Q_history.clear() def flush_env_location_records(self): self.envs[0].unwrapped.flush_location_record() def current_success_rate(self): return np.mean(self.success_history) def current_mean_reward_per_episode(self): return np.mean(self.reward_per_episode_history) def current_score(self): if self.use_her: return self.current_success_rate() else: return self.current_mean_reward_per_episode() def current_mean_Q(self): return np.mean(self.Q_history) def save_policy(self, path): """Pickles the current policy for later inspection. """ with open(path, 'wb') as f: pickle.dump(self.agents, f) def logs(self, prefix='worker'): """Generates a dictionary that contains all collected statistics. """ logs = [] if self.use_her: logs += [('success_rate', np.mean(self.success_history))] logs += [('reward_per_episode', np.mean(self.reward_per_episode_history))] if self.compute_Q: logs += [('mean_Q', np.mean(self.Q_history))] logs += [('episode', self.n_episodes)] if prefix is not '' and not prefix.endswith('/'): return [(prefix + '/' + key, val) for key, val in logs] else: return logs def seed(self, seed): """Seeds each environment with a distinct seed derived from the passed in global seed. """ for idx, env in enumerate(self.envs): env.seed(seed + 1000 * idx) def close(self): for env in self.envs: env.close()
[ "pickle.dump", "numpy.abs", "inspect.getfullargspec", "cv2.VideoWriter_fourcc", "cv2.waitKey", "numpy.empty", "numpy.zeros", "numpy.isnan", "numpy.mean", "numpy.array", "ddpg_curiosity_mc_her.logger.get_dir", "functools.wraps", "ddpg_curiosity_mc_her.logger.warn", "cv2.destroyAllWindows", "collections.deque" ]
[((755, 785), 'inspect.getfullargspec', 'inspect.getfullargspec', (['method'], {}), '(method)\n', (777, 785), False, 'import inspect\n'), ((1070, 1093), 'functools.wraps', 'functools.wraps', (['method'], {}), '(method)\n', (1085, 1093), False, 'import functools\n'), ((229, 273), 'ddpg_curiosity_mc_her.logger.warn', 'logger.warn', (['"""Mujoco could not be imported."""'], {}), "('Mujoco could not be imported.')\n", (240, 273), False, 'from ddpg_curiosity_mc_her import logger\n'), ((3524, 3549), 'collections.deque', 'deque', ([], {'maxlen': 'history_len'}), '(maxlen=history_len)\n', (3529, 3549), False, 'from collections import deque\n'), ((3576, 3601), 'collections.deque', 'deque', ([], {'maxlen': 'history_len'}), '(maxlen=history_len)\n', (3581, 3601), False, 'from collections import deque\n'), ((3656, 3719), 'numpy.empty', 'np.empty', (["(self.rollout_batch_size, self.dims['o'])", 'np.float32'], {}), "((self.rollout_batch_size, self.dims['o']), np.float32)\n", (3664, 3719), True, 'import numpy as np\n'), ((4008, 4056), 'numpy.zeros', 'np.zeros', (['(self.rollout_batch_size,)', 'np.float32'], {}), '((self.rollout_batch_size,), np.float32)\n', (4016, 4056), True, 'import numpy as np\n'), ((6209, 6272), 'numpy.empty', 'np.empty', (["(self.rollout_batch_size, self.dims['o'])", 'np.float32'], {}), "((self.rollout_batch_size, self.dims['o']), np.float32)\n", (6217, 6272), True, 'import numpy as np\n'), ((13148, 13177), 'numpy.mean', 'np.mean', (['self.success_history'], {}), '(self.success_history)\n', (13155, 13177), True, 'import numpy as np\n'), ((13241, 13281), 'numpy.mean', 'np.mean', (['self.reward_per_episode_history'], {}), '(self.reward_per_episode_history)\n', (13248, 13281), True, 'import numpy as np\n'), ((13502, 13525), 'numpy.mean', 'np.mean', (['self.Q_history'], {}), '(self.Q_history)\n', (13509, 13525), True, 'import numpy as np\n'), ((3456, 3481), 'collections.deque', 'deque', ([], {'maxlen': 'history_len'}), '(maxlen=history_len)\n', (3461, 3481), False, 'from collections import deque\n'), ((3782, 3845), 'numpy.empty', 'np.empty', (["(self.rollout_batch_size, self.dims['g'])", 'np.float32'], {}), "((self.rollout_batch_size, self.dims['g']), np.float32)\n", (3790, 3845), True, 'import numpy as np\n'), ((3885, 3948), 'numpy.empty', 'np.empty', (["(self.rollout_batch_size, self.dims['g'])", 'np.float32'], {}), "((self.rollout_batch_size, self.dims['g']), np.float32)\n", (3893, 3948), True, 'import numpy as np\n'), ((6362, 6425), 'numpy.empty', 'np.empty', (["(self.rollout_batch_size, self.dims['g'])", 'np.float32'], {}), "((self.rollout_batch_size, self.dims['g']), np.float32)\n", (6370, 6425), True, 'import numpy as np\n'), ((6696, 6782), 'numpy.empty', 'np.empty', (["(self.T, self.rollout_batch_size, self.dims['info_' + key])", 'np.float32'], {}), "((self.T, self.rollout_batch_size, self.dims['info_' + key]), np.\n float32)\n", (6704, 6782), True, 'import numpy as np\n'), ((7353, 7404), 'numpy.empty', 'np.empty', (["(self.rollout_batch_size, self.dims['o'])"], {}), "((self.rollout_batch_size, self.dims['o']))\n", (7361, 7404), True, 'import numpy as np\n'), ((7431, 7469), 'numpy.empty', 'np.empty', (['(self.rollout_batch_size, 1)'], {}), '((self.rollout_batch_size, 1))\n', (7439, 7469), True, 'import numpy as np\n'), ((12213, 12232), 'numpy.mean', 'np.mean', (['successful'], {}), '(successful)\n', (12220, 12232), True, 'import numpy as np\n'), ((13680, 13707), 'pickle.dump', 'pickle.dump', (['self.agents', 'f'], {}), '(self.agents, f)\n', (13691, 13707), False, 'import pickle\n'), ((488, 510), 'numpy.array', 'np.array', (['episode[key]'], {}), '(episode[key])\n', (496, 510), True, 'import numpy as np\n'), ((5525, 5556), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'XVID'"], {}), "(*'XVID')\n", (5547, 5556), False, 'import cv2\n'), ((5926, 5942), 'ddpg_curiosity_mc_her.logger.get_dir', 'logger.get_dir', ([], {}), '()\n', (5940, 5942), False, 'from ddpg_curiosity_mc_her import logger\n'), ((7524, 7575), 'numpy.empty', 'np.empty', (["(self.rollout_batch_size, self.dims['g'])"], {}), "((self.rollout_batch_size, self.dims['g']))\n", (7532, 7575), True, 'import numpy as np\n'), ((7602, 7635), 'numpy.zeros', 'np.zeros', (['self.rollout_batch_size'], {}), '(self.rollout_batch_size)\n', (7610, 7635), True, 'import numpy as np\n'), ((7682, 7720), 'numpy.empty', 'np.empty', (['(self.rollout_batch_size, 1)'], {}), '((self.rollout_batch_size, 1))\n', (7690, 7720), True, 'import numpy as np\n'), ((12093, 12112), 'numpy.array', 'np.array', (['successes'], {}), '(successes)\n', (12101, 12112), True, 'import numpy as np\n'), ((12434, 12445), 'numpy.mean', 'np.mean', (['Qs'], {}), '(Qs)\n', (12441, 12445), True, 'import numpy as np\n'), ((13985, 14025), 'numpy.mean', 'np.mean', (['self.reward_per_episode_history'], {}), '(self.reward_per_episode_history)\n', (13992, 14025), True, 'import numpy as np\n'), ((3005, 3042), 'numpy.abs', 'np.abs', (['self.envs[0].action_space.low'], {}), '(self.envs[0].action_space.low)\n', (3011, 3042), True, 'import numpy as np\n'), ((10731, 10746), 'numpy.isnan', 'np.isnan', (['o_new'], {}), '(o_new)\n', (10739, 10746), True, 'import numpy as np\n'), ((13913, 13942), 'numpy.mean', 'np.mean', (['self.success_history'], {}), '(self.success_history)\n', (13920, 13942), True, 'import numpy as np\n'), ((14088, 14111), 'numpy.mean', 'np.mean', (['self.Q_history'], {}), '(self.Q_history)\n', (14095, 14111), True, 'import numpy as np\n'), ((9908, 9922), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (9919, 9922), False, 'import cv2\n'), ((10500, 10523), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (10521, 10523), False, 'import cv2\n')]
import matplotlib.pyplot as plt import numpy as np import random as r import time from drawnow import * recipe = ["225 g flour", "90 g sugar", "1 egg", "60 g butter", "100 ml milk", "1/2 package of yeast", "225 g flour", "90 g sugar", "1 egg", "60 g butter", "225 g flour", "90 g sugar", "1 egg", "60 g butter", "100 ml milk"] data = [277, 250, 267, 213, 274, 297]#[225, 90, 50, 60, 100, 5] def gen_rand(): global data data=[] for i in range(15): data.append(r.randint(50,300)) def plotme(): print(data) #plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal")) wedges, texts = plt.pie(data, wedgeprops=dict(width=0.5), startangle=-40) bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72) kw = dict(arrowprops=dict(arrowstyle="-"), bbox=bbox_props, zorder=0, va="center") for i, p in enumerate(wedges): ang = (p.theta2 - p.theta1)/2. + p.theta1 y = np.sin(np.deg2rad(ang)) x = np.cos(np.deg2rad(ang)) horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))] connectionstyle = "angle,angleA=0,angleB={}".format(ang) kw["arrowprops"].update({"connectionstyle": connectionstyle}) plt.annotate(recipe[i], xy=(x, y), xytext=(np.sign(x),y), horizontalalignment=horizontalalignment, **kw) plt.title("Matplotlib bakery: A donut") #plt.legend() #plt.show() def plotme_easy(): print(data) #fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal")) wedges, texts = plt.pie(data, wedgeprops=dict(width=0.5), startangle=-40, labels=recipe) #bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72) #kw = dict(arrowprops=dict(arrowstyle="-"), # bbox=bbox_props, zorder=0, va="center") #for i, p in enumerate(wedges): #ang = (p.theta2 - p.theta1)/2. + p.theta1 #y = np.sin(np.deg2rad(ang)) #x = np.cos(np.deg2rad(ang)) #horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))] #connectionstyle = "angle,angleA=0,angleB={}".format(ang) #kw["arrowprops"].update({"connectionstyle": connectionstyle}) #plt.annotate(recipe[i], xy=(x, y), xytext=(np.sign(x),y) # horizontalalignment=horizontalalignment, **kw) plt.title("Matplotlib bakery: A donut") #plt.legend() #plt.show() def main(): while True: gen_rand() drawnow(plotme_easy) time.sleep(1) main()
[ "matplotlib.pyplot.title", "random.randint", "numpy.deg2rad", "time.sleep", "numpy.sign" ]
[((1502, 1541), 'matplotlib.pyplot.title', 'plt.title', (['"""Matplotlib bakery: A donut"""'], {}), "('Matplotlib bakery: A donut')\n", (1511, 1541), True, 'import matplotlib.pyplot as plt\n'), ((2475, 2514), 'matplotlib.pyplot.title', 'plt.title', (['"""Matplotlib bakery: A donut"""'], {}), "('Matplotlib bakery: A donut')\n", (2484, 2514), True, 'import matplotlib.pyplot as plt\n'), ((2634, 2647), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (2644, 2647), False, 'import time\n'), ((624, 642), 'random.randint', 'r.randint', (['(50)', '(300)'], {}), '(50, 300)\n', (633, 642), True, 'import random as r\n'), ((1105, 1120), 'numpy.deg2rad', 'np.deg2rad', (['ang'], {}), '(ang)\n', (1115, 1120), True, 'import numpy as np\n'), ((1141, 1156), 'numpy.deg2rad', 'np.deg2rad', (['ang'], {}), '(ang)\n', (1151, 1156), True, 'import numpy as np\n'), ((1217, 1227), 'numpy.sign', 'np.sign', (['x'], {}), '(x)\n', (1224, 1227), True, 'import numpy as np\n'), ((1416, 1426), 'numpy.sign', 'np.sign', (['x'], {}), '(x)\n', (1423, 1426), True, 'import numpy as np\n')]
# This example demonstrates how to regrid between a UGRID Mesh and a Grid. # The data files can be retrieved from the ESMF data repository by uncommenting the # following block of code: # # import os # DD = os.path.join(os.getcwd(), "examples/data") # if not os.path.isdir(DD): # os.makedirs(DD) # from ESMF.util.cache_data import cache_data_file # cache_data_file(os.path.join(DD, "ll1deg_grid.nc")) # cache_data_file(os.path.join(DD, "ne30np4-t2UGRID_nodual.nc")) # cache_data_file(os.path.join(DD, "aggregAtlanticESTOFS.nc")) import ESMF import numpy def plot_error(field1, field2, uninitval): try: import matplotlib import matplotlib.pyplot as plt except: raise ImportError("matplotlib is not available on this machine") colormap = "gist_stern" lons = field2.grid.get_coords(0) lats = field2.grid.get_coords(1) fig = plt.figure(1, (15, 6)) fig.suptitle('ESMPy Regridding', fontsize=14, fontweight='bold') ax = fig.add_subplot(1, 2, 1) solution = numpy.copy(field2.data) solution[numpy.where(field2.data == uninitval)] = 0 im = ax.imshow(solution, vmin=numpy.min(solution), vmax=numpy.max(solution), cmap=colormap, aspect='auto', extent=[numpy.min(lons), numpy.max(lons), numpy.min(lats), numpy.max(lats)]) ax.set_xlabel("Longitude") ax.set_ylabel("Latitude") ax.set_title("Regrid Solution") relerr = numpy.abs(field2.data - field1.data)/numpy.abs(field1.data) relerr[numpy.where(field2.data == uninitval)] = 0 ax = fig.add_subplot(1, 2, 2) im1 = ax.imshow(relerr, vmin=numpy.min(relerr), vmax=numpy.max(relerr), cmap=colormap, aspect='auto', extent=[numpy.min(lons), numpy.max(lons), numpy.min(lats), numpy.max(lats)]) ax.set_xlabel("Longitude") ax.set_ylabel("Latitude") ax.set_title("Relative Error") fig.subplots_adjust(right=0.8) cbar_ax = fig.add_axes([0.9, 0.1, 0.01, 0.8]) fig.colorbar(im1, cax=cbar_ax) plt.show() def plot_field(field2, uninitval): try: import matplotlib import matplotlib.pyplot as plt except: raise ImportError("matplotlib is not available on this machine") colormap = "gist_stern" lons = field2.grid.get_coords(0) lats = field2.grid.get_coords(1) fig = plt.figure(1, (15, 6)) fig.suptitle('ESMPy Regridding', fontsize=14, fontweight='bold') solution = numpy.copy(field2.data) solution[numpy.where(field2.data == uninitval)] = 0 im = plt.imshow(solution, vmin=numpy.min(solution), vmax=numpy.max(solution), cmap=colormap, aspect='auto', extent=[numpy.min(lons), numpy.max(lons), numpy.min(lats), numpy.max(lats)]) ax = plt.gca() ax.set_xlabel("Longitude") ax.set_ylabel("Latitude") ax.set_title("Regrid Solution") fig.subplots_adjust(right=0.8) cbar_ax = fig.add_axes([0.9, 0.1, 0.01, 0.8]) fig.colorbar(im, cax=cbar_ax) plt.show() # This call enables debug logging # esmpy = ESMF.Manager(debug=True) # these are for a new test using opendap, dataset has periodic failures.. # meshfile = "http://coastalmodeldev.data.noaa.gov/thredds/dodsC/aggregAtlanticESTOFS" meshfile = "examples/data/aggregAtlanticESTOFS.nc" mesh = ESMF.Mesh(filename=meshfile, filetype=ESMF.FileFormat.UGRID, meshname='adcirc_mesh') # Create a global latlon grid from a SCRIP formatted file gridfile = "examples/data/ll1deg_grid.nc" grid = ESMF.Grid(filename=gridfile, filetype=ESMF.FileFormat.SCRIP, add_corner_stagger=True, is_sphere=True) # create a field on the element locations of the source mesh srcfield = ESMF.Field(mesh, name='srcfield', meshloc=ESMF.MeshLoc.NODE) # create a field on the centers of the destination grid dstfield = ESMF.Field(grid, name='dstfield', staggerloc=ESMF.StaggerLoc.CENTER) xctfield = ESMF.Field(grid, name='xctfield', staggerloc=ESMF.StaggerLoc.CENTER) # initialize the fields [lon,lat] = [0, 1] srcgridXCoord = srcfield.grid.get_coords(lon, meshloc=ESMF.MeshLoc.NODE) srcgridYCoord = srcfield.grid.get_coords(lat, meshloc=ESMF.MeshLoc.NODE) srcfield.data[...] = 2.0 + numpy.cos(numpy.radians(srcgridYCoord)[...])**2 * \ numpy.cos(2.0*numpy.radians(srcgridXCoord)[...]) dstgridXCoord = xctfield.grid.get_coords(lon, ESMF.StaggerLoc.CENTER) dstgridYCoord = xctfield.grid.get_coords(lat, ESMF.StaggerLoc.CENTER) xctfield.data[...] = 2.0 + numpy.cos(numpy.radians(dstgridYCoord)[...])**2 * \ numpy.cos(2.0*numpy.radians(dstgridXCoord)[...]) uninitval = 1e20 dstfield.data[...] = uninitval # create an object to regrid data from the source to the destination field regrid = ESMF.Regrid(srcfield, dstfield, regrid_method=ESMF.RegridMethod.BILINEAR, unmapped_action=ESMF.UnmappedAction.IGNORE) # do the regridding from source to destination field dstfield = regrid(srcfield, dstfield, zero_region=ESMF.Region.SELECT) # output the results from one processor only if ESMF.local_pet() is 0: print ("ESMPy UGRID to LatLon Regridding Example") # plot_error(xctfield, dstfield, uninitval=uninitval) # # now read some real data and give it a whirl # try: # import netCDF4 as nc # # f = nc.Dataset('http://coastalmodeldev.data.noaa.gov/thredds/dodsC/aggregAtlanticESTOFS') # f = nc.Dataset("examples/data/aggregAtlanticESTOFS.nc") # zeta = f.variables["zeta"] # srcfield.data[...] = zeta[0] # f.close() # except: # raise ImportError("netCDF4 is not available on this machine") # This call fails due to ESMF limitation that time be the file's unlimited dimension # srcfield.data[...] = srcfield.read(meshfile, "zeta") # dstfield.data[...] = uninitval # # create an object to regrid data from the source to the destination field # regrid = ESMF.Regrid(srcfield, dstfield, # regrid_method=ESMF.RegridMethod.BILINEAR, # unmapped_action=ESMF.UnmappedAction.IGNORE) # # # do the regridding from source to destination field # dstfield = regrid(srcfield, dstfield, zero_region=ESMF.Region.SELECT) # # plot_field(dstfield, uninitval=uninitval)
[ "numpy.radians", "matplotlib.pyplot.show", "numpy.abs", "numpy.copy", "matplotlib.pyplot.gca", "ESMF.Field", "ESMF.Regrid", "matplotlib.pyplot.figure", "numpy.where", "ESMF.Grid", "numpy.min", "numpy.max", "ESMF.Mesh", "ESMF.local_pet" ]
[((3391, 3480), 'ESMF.Mesh', 'ESMF.Mesh', ([], {'filename': 'meshfile', 'filetype': 'ESMF.FileFormat.UGRID', 'meshname': '"""adcirc_mesh"""'}), "(filename=meshfile, filetype=ESMF.FileFormat.UGRID, meshname=\n 'adcirc_mesh')\n", (3400, 3480), False, 'import ESMF\n'), ((3584, 3689), 'ESMF.Grid', 'ESMF.Grid', ([], {'filename': 'gridfile', 'filetype': 'ESMF.FileFormat.SCRIP', 'add_corner_stagger': '(True)', 'is_sphere': '(True)'}), '(filename=gridfile, filetype=ESMF.FileFormat.SCRIP,\n add_corner_stagger=True, is_sphere=True)\n', (3593, 3689), False, 'import ESMF\n'), ((3776, 3836), 'ESMF.Field', 'ESMF.Field', (['mesh'], {'name': '"""srcfield"""', 'meshloc': 'ESMF.MeshLoc.NODE'}), "(mesh, name='srcfield', meshloc=ESMF.MeshLoc.NODE)\n", (3786, 3836), False, 'import ESMF\n'), ((3905, 3973), 'ESMF.Field', 'ESMF.Field', (['grid'], {'name': '"""dstfield"""', 'staggerloc': 'ESMF.StaggerLoc.CENTER'}), "(grid, name='dstfield', staggerloc=ESMF.StaggerLoc.CENTER)\n", (3915, 3973), False, 'import ESMF\n'), ((3985, 4053), 'ESMF.Field', 'ESMF.Field', (['grid'], {'name': '"""xctfield"""', 'staggerloc': 'ESMF.StaggerLoc.CENTER'}), "(grid, name='xctfield', staggerloc=ESMF.StaggerLoc.CENTER)\n", (3995, 4053), False, 'import ESMF\n'), ((4830, 4951), 'ESMF.Regrid', 'ESMF.Regrid', (['srcfield', 'dstfield'], {'regrid_method': 'ESMF.RegridMethod.BILINEAR', 'unmapped_action': 'ESMF.UnmappedAction.IGNORE'}), '(srcfield, dstfield, regrid_method=ESMF.RegridMethod.BILINEAR,\n unmapped_action=ESMF.UnmappedAction.IGNORE)\n', (4841, 4951), False, 'import ESMF\n'), ((878, 900), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)', '(15, 6)'], {}), '(1, (15, 6))\n', (888, 900), True, 'import matplotlib.pyplot as plt\n'), ((1020, 1043), 'numpy.copy', 'numpy.copy', (['field2.data'], {}), '(field2.data)\n', (1030, 1043), False, 'import numpy\n'), ((2085, 2095), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2093, 2095), True, 'import matplotlib.pyplot as plt\n'), ((2407, 2429), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)', '(15, 6)'], {}), '(1, (15, 6))\n', (2417, 2429), True, 'import matplotlib.pyplot as plt\n'), ((2515, 2538), 'numpy.copy', 'numpy.copy', (['field2.data'], {}), '(field2.data)\n', (2525, 2538), False, 'import numpy\n'), ((2858, 2867), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2865, 2867), True, 'import matplotlib.pyplot as plt\n'), ((3090, 3100), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3098, 3100), True, 'import matplotlib.pyplot as plt\n'), ((5163, 5179), 'ESMF.local_pet', 'ESMF.local_pet', ([], {}), '()\n', (5177, 5179), False, 'import ESMF\n'), ((1057, 1094), 'numpy.where', 'numpy.where', (['(field2.data == uninitval)'], {}), '(field2.data == uninitval)\n', (1068, 1094), False, 'import numpy\n'), ((1464, 1500), 'numpy.abs', 'numpy.abs', (['(field2.data - field1.data)'], {}), '(field2.data - field1.data)\n', (1473, 1500), False, 'import numpy\n'), ((1501, 1523), 'numpy.abs', 'numpy.abs', (['field1.data'], {}), '(field1.data)\n', (1510, 1523), False, 'import numpy\n'), ((1535, 1572), 'numpy.where', 'numpy.where', (['(field2.data == uninitval)'], {}), '(field2.data == uninitval)\n', (1546, 1572), False, 'import numpy\n'), ((2552, 2589), 'numpy.where', 'numpy.where', (['(field2.data == uninitval)'], {}), '(field2.data == uninitval)\n', (2563, 2589), False, 'import numpy\n'), ((1134, 1153), 'numpy.min', 'numpy.min', (['solution'], {}), '(solution)\n', (1143, 1153), False, 'import numpy\n'), ((1179, 1198), 'numpy.max', 'numpy.max', (['solution'], {}), '(solution)\n', (1188, 1198), False, 'import numpy\n'), ((1645, 1662), 'numpy.min', 'numpy.min', (['relerr'], {}), '(relerr)\n', (1654, 1662), False, 'import numpy\n'), ((1689, 1706), 'numpy.max', 'numpy.max', (['relerr'], {}), '(relerr)\n', (1698, 1706), False, 'import numpy\n'), ((2630, 2649), 'numpy.min', 'numpy.min', (['solution'], {}), '(solution)\n', (2639, 2649), False, 'import numpy\n'), ((2675, 2694), 'numpy.max', 'numpy.max', (['solution'], {}), '(solution)\n', (2684, 2694), False, 'import numpy\n'), ((1257, 1272), 'numpy.min', 'numpy.min', (['lons'], {}), '(lons)\n', (1266, 1272), False, 'import numpy\n'), ((1274, 1289), 'numpy.max', 'numpy.max', (['lons'], {}), '(lons)\n', (1283, 1289), False, 'import numpy\n'), ((1318, 1333), 'numpy.min', 'numpy.min', (['lats'], {}), '(lats)\n', (1327, 1333), False, 'import numpy\n'), ((1335, 1350), 'numpy.max', 'numpy.max', (['lats'], {}), '(lats)\n', (1344, 1350), False, 'import numpy\n'), ((1766, 1781), 'numpy.min', 'numpy.min', (['lons'], {}), '(lons)\n', (1775, 1781), False, 'import numpy\n'), ((1783, 1798), 'numpy.max', 'numpy.max', (['lons'], {}), '(lons)\n', (1792, 1798), False, 'import numpy\n'), ((1828, 1843), 'numpy.min', 'numpy.min', (['lats'], {}), '(lats)\n', (1837, 1843), False, 'import numpy\n'), ((1845, 1860), 'numpy.max', 'numpy.max', (['lats'], {}), '(lats)\n', (1854, 1860), False, 'import numpy\n'), ((2753, 2768), 'numpy.min', 'numpy.min', (['lons'], {}), '(lons)\n', (2762, 2768), False, 'import numpy\n'), ((2770, 2785), 'numpy.max', 'numpy.max', (['lons'], {}), '(lons)\n', (2779, 2785), False, 'import numpy\n'), ((2814, 2829), 'numpy.min', 'numpy.min', (['lats'], {}), '(lats)\n', (2823, 2829), False, 'import numpy\n'), ((2831, 2846), 'numpy.max', 'numpy.max', (['lats'], {}), '(lats)\n', (2840, 2846), False, 'import numpy\n'), ((4282, 4310), 'numpy.radians', 'numpy.radians', (['srcgridYCoord'], {}), '(srcgridYCoord)\n', (4295, 4310), False, 'import numpy\n'), ((4365, 4393), 'numpy.radians', 'numpy.radians', (['srcgridXCoord'], {}), '(srcgridXCoord)\n', (4378, 4393), False, 'import numpy\n'), ((4578, 4606), 'numpy.radians', 'numpy.radians', (['dstgridYCoord'], {}), '(dstgridYCoord)\n', (4591, 4606), False, 'import numpy\n'), ((4661, 4689), 'numpy.radians', 'numpy.radians', (['dstgridXCoord'], {}), '(dstgridXCoord)\n', (4674, 4689), False, 'import numpy\n')]
from __future__ import print_function import tensorflow as tf from functools import partial import os from os import listdir from os.path import isfile, join import shutil import sys from glob import glob import math import json import logging import numpy as np from PIL import Image from datetime import datetime from tensorflow.core.framework import summary_pb2 def make_summary(name, val): return summary_pb2.Summary(value=[summary_pb2.Summary.Value(tag=name, simple_value=val)]) def summary_stats(name,tensor,collections=None,hist=False): collections=collections or [tf.GraphKeys.SUMMARIES] ave=tf.reduce_mean(tensor) std=tf.sqrt(tf.reduce_mean(tf.square(ave-tensor))) tf.summary.scalar(name+'_ave',ave,collections) tf.summary.scalar(name+'_std',std,collections) if hist: tf.summary.histogram(name+'_hist',tensor,collections) def prepare_dirs_and_logger(config): if config.load_path: strip_lp=config.load_path.strip('./') if strip_lp.startswith(config.log_dir): config.model_dir = config.load_path else: if config.load_path.startswith(config.dataset): config.model_name = config.load_path else: config.model_name = "{}_{}".format(config.dataset, config.load_path) else:#new model config.model_name = "{}_{}".format(config.dataset, get_time()) if config.descrip: config.model_name+='_'+config.descrip if not hasattr(config, 'model_dir'): config.model_dir = os.path.join(config.log_dir, config.model_name) config.data_path = os.path.join(config.data_dir, config.dataset) if not config.load_path: config.log_code_dir=os.path.join(config.model_dir,'code') for path in [config.log_dir, config.data_dir, config.model_dir]: if not os.path.exists(path): os.makedirs(path) #Copy python code in directory into model_dir/code for future reference: #All python files in this directory are copied. code_dir=os.path.dirname(os.path.realpath(sys.argv[0])) ##additionally, all python files in these directories are also copied. Also symlinks are copied. The idea is to allow easier model loading in the future allowed_dirs=['causal_controller','causal_began','causal_dcgan','figure_scripts'] #ignore copy of all non-*.py except for these directories #If you make another folder you want copied, you have to add it here ignore_these=partial(ignore_except,allowed_dirs=allowed_dirs) shutil.copytree(code_dir,config.log_code_dir,symlinks=True,ignore=ignore_these) # model_files = [f for f in listdir(code_dir) if isfile(join(code_dir, f))] # for f in model_files: # if f.endswith('.py'): # shutil.copy2(f,config.log_code_dir) def ignore_except(src,contents,allowed_dirs): files=filter(os.path.isfile,contents) dirs=filter(os.path.isdir,contents) ignored_files=[f for f in files if not f.endswith('.py')] ignored_dirs=[d for d in dirs if not d in allowed_dirs] return ignored_files+ignored_dirs def get_time(): return datetime.now().strftime("%m%d_%H%M%S") def save_configs(config,cc_config,dcgan_config,began_config): model_dir=config.model_dir print("[*] MODEL dir: %s" % model_dir) save_config(config) save_config(cc_config,'cc_params.json',model_dir) save_config(dcgan_config,'dcgan_params.json',model_dir) save_config(began_config,'began_params.json',model_dir) def save_config(config,name="params.json",where=None): where=where or config.model_dir param_path = os.path.join(where, name) print("[*] PARAM path: %s" % param_path) with open(param_path, 'w') as fp: json.dump(config.__dict__, fp, indent=4, sort_keys=True) def get_available_gpus(): from tensorflow.python.client import device_lib local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos if x.device_type=='GPU'] def distribute_input_data(data_loader,num_gpu): ''' data_loader is a dictionary of tensors that are fed into our model This function takes that dictionary of n*batch_size dimension tensors and breaks it up into n dictionaries with the same key of tensors with dimension batch_size. One is given to each gpu ''' if num_gpu==0: return {'/cpu:0':data_loader} gpus=get_available_gpus() if num_gpu > len(gpus): raise ValueError('number of gpus specified={}, more than gpus available={}'.format(num_gpu,len(gpus))) gpus=gpus[:num_gpu] data_by_gpu={g:{} for g in gpus} for key,value in data_loader.items(): spl_vals=tf.split(value,num_gpu) for gpu,val in zip(gpus,spl_vals): data_by_gpu[gpu][key]=val return data_by_gpu def rank(array): return len(array.shape) def make_grid(tensor, nrow=8, padding=2, normalize=False, scale_each=False): """Code based on https://github.com/pytorch/vision/blob/master/torchvision/utils.py minor improvement, row/col was reversed""" nmaps = tensor.shape[0] ymaps = min(nrow, nmaps) xmaps = int(math.ceil(float(nmaps) / ymaps)) height, width = int(tensor.shape[1] + padding), int(tensor.shape[2] + padding) grid = np.zeros([height * ymaps + 1 + padding // 2, width * xmaps + 1 + padding // 2, 3], dtype=np.uint8) k = 0 for y in range(ymaps): for x in range(xmaps): if k >= nmaps: break h, h_width = y * height + 1 + padding // 2, height - padding w, w_width = x * width + 1 + padding // 2, width - padding grid[h:h+h_width, w:w+w_width] = tensor[k] k = k + 1 return grid def save_image(tensor, filename, nrow=8, padding=2, normalize=False, scale_each=False): ndarr = make_grid(tensor, nrow=nrow, padding=padding, normalize=normalize, scale_each=scale_each) im = Image.fromarray(ndarr) im.save(filename)
[ "functools.partial", "json.dump", "os.makedirs", "tensorflow.summary.scalar", "os.path.realpath", "numpy.zeros", "tensorflow.reduce_mean", "datetime.datetime.now", "tensorflow.core.framework.summary_pb2.Summary.Value", "os.path.exists", "tensorflow.python.client.device_lib.list_local_devices", "tensorflow.summary.histogram", "tensorflow.square", "PIL.Image.fromarray", "shutil.copytree", "tensorflow.split", "os.path.join" ]
[((616, 638), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['tensor'], {}), '(tensor)\n', (630, 638), True, 'import tensorflow as tf\n'), ((698, 748), 'tensorflow.summary.scalar', 'tf.summary.scalar', (["(name + '_ave')", 'ave', 'collections'], {}), "(name + '_ave', ave, collections)\n", (715, 748), True, 'import tensorflow as tf\n'), ((749, 799), 'tensorflow.summary.scalar', 'tf.summary.scalar', (["(name + '_std')", 'std', 'collections'], {}), "(name + '_std', std, collections)\n", (766, 799), True, 'import tensorflow as tf\n'), ((1617, 1662), 'os.path.join', 'os.path.join', (['config.data_dir', 'config.dataset'], {}), '(config.data_dir, config.dataset)\n', (1629, 1662), False, 'import os\n'), ((3691, 3716), 'os.path.join', 'os.path.join', (['where', 'name'], {}), '(where, name)\n', (3703, 3716), False, 'import os\n'), ((3972, 4003), 'tensorflow.python.client.device_lib.list_local_devices', 'device_lib.list_local_devices', ([], {}), '()\n', (4001, 4003), False, 'from tensorflow.python.client import device_lib\n'), ((5366, 5468), 'numpy.zeros', 'np.zeros', (['[height * ymaps + 1 + padding // 2, width * xmaps + 1 + padding // 2, 3]'], {'dtype': 'np.uint8'}), '([height * ymaps + 1 + padding // 2, width * xmaps + 1 + padding //\n 2, 3], dtype=np.uint8)\n', (5374, 5468), True, 'import numpy as np\n'), ((6063, 6085), 'PIL.Image.fromarray', 'Image.fromarray', (['ndarr'], {}), '(ndarr)\n', (6078, 6085), False, 'from PIL import Image\n'), ((817, 874), 'tensorflow.summary.histogram', 'tf.summary.histogram', (["(name + '_hist')", 'tensor', 'collections'], {}), "(name + '_hist', tensor, collections)\n", (837, 874), True, 'import tensorflow as tf\n'), ((1546, 1593), 'os.path.join', 'os.path.join', (['config.log_dir', 'config.model_name'], {}), '(config.log_dir, config.model_name)\n', (1558, 1593), False, 'import os\n'), ((1722, 1760), 'os.path.join', 'os.path.join', (['config.model_dir', '"""code"""'], {}), "(config.model_dir, 'code')\n", (1734, 1760), False, 'import os\n'), ((2548, 2597), 'functools.partial', 'partial', (['ignore_except'], {'allowed_dirs': 'allowed_dirs'}), '(ignore_except, allowed_dirs=allowed_dirs)\n', (2555, 2597), False, 'from functools import partial\n'), ((2605, 2692), 'shutil.copytree', 'shutil.copytree', (['code_dir', 'config.log_code_dir'], {'symlinks': '(True)', 'ignore': 'ignore_these'}), '(code_dir, config.log_code_dir, symlinks=True, ignore=\n ignore_these)\n', (2620, 2692), False, 'import shutil\n'), ((3810, 3866), 'json.dump', 'json.dump', (['config.__dict__', 'fp'], {'indent': '(4)', 'sort_keys': '(True)'}), '(config.__dict__, fp, indent=4, sort_keys=True)\n', (3819, 3866), False, 'import json\n'), ((4763, 4787), 'tensorflow.split', 'tf.split', (['value', 'num_gpu'], {}), '(value, num_gpu)\n', (4771, 4787), True, 'import tensorflow as tf\n'), ((670, 693), 'tensorflow.square', 'tf.square', (['(ave - tensor)'], {}), '(ave - tensor)\n', (679, 693), True, 'import tensorflow as tf\n'), ((2100, 2129), 'os.path.realpath', 'os.path.realpath', (['sys.argv[0]'], {}), '(sys.argv[0])\n', (2116, 2129), False, 'import os\n'), ((3207, 3221), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3219, 3221), False, 'from datetime import datetime\n'), ((435, 488), 'tensorflow.core.framework.summary_pb2.Summary.Value', 'summary_pb2.Summary.Value', ([], {'tag': 'name', 'simple_value': 'val'}), '(tag=name, simple_value=val)\n', (460, 488), False, 'from tensorflow.core.framework import summary_pb2\n'), ((1873, 1893), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (1887, 1893), False, 'import os\n'), ((1911, 1928), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (1922, 1928), False, 'import os\n')]
""" This module contains functions that return a new, single point in a given parameter space. In general, these functions are not used to return multi-dimensional arrays. These functions are intended to be called only a few times. """ import numpy from mystic import math def uniform(lower_bounds, upper_bounds): """ Returns a new, single point via uniform distribution. Parameters ---------- lower_bounds : list List of ``float`` that are lower bounds. List is indexed by parameter. upper_bounds : list List of ``float`` that are upper bounds. List is indexed by parameter. Returns ------- pts : numpy.array An array with new point. """ ndim = len(lower_bounds) pts = numpy.zeros(ndim) for j in range(ndim): lb = lower_bounds[j] ub = upper_bounds[j] pts[j] = numpy.random.uniform(lb, ub) return pts def tolerance(lower_bounds, upper_bounds, data=None): """ Returns a new, single point some tolerence away from existing points. Parameters ---------- lower_bounds : list List of ``float`` that are lower bounds. List is indexed by parameter. upper_bounds : list List of ``float`` that are upper bounds. List is indexed by parameter. data : {None, list} List of tuples. Each tuple is a list of ``float`` that are previous data points. Returns ------- pts : numpy.array An array with new point. """ rtol = None dist = None n_new_pts = 1 data = [] if data == None else data if len(data) == 0: return uniform(lower_bounds, upper_bounds) pts = math.fillpts(lower_bounds, upper_bounds, n_new_pts, data, rtol, dist) return pts[0] def linspace(lower_bounds, upper_bounds, step=0, nsteps=1): """ Returns a new, single point linearlly-spaced ``i`` from the lower boundary. Parameters ---------- lower_bounds : list List of ``float`` that are lower bounds. List is indexed by parameter. upper_bounds : list List of ``float`` that are upper bounds. List is indexed by parameter. step : int Index to select. nsteps : int Total number of steps. Returns ------- pts : numpy.array An array with new point. """ ndim = len(lower_bounds) pts = numpy.zeros(ndim) for j in range(ndim): step_size = (upper_bounds[j] - lower_bounds[j]) / (nsteps) pts[j] = step * step_size + lower_bounds[j] + 0.5 * step_size return pts def midpoint(lower_bounds, upper_bounds): """ Returns a new, single point at the center. Parameters ---------- lower_bounds : list List of ``float`` that are lower bounds. List is indexed by parameter. upper_bounds : list List of ``float`` that are upper bounds. List is indexed by parameter. Returns ------- pts : numpy.array An array with new point. """ ndim = len(lower_bounds) pts = numpy.zeros(ndim) for j in range(ndim): lb = lower_bounds[j] ub = upper_bounds[j] pts[j] = (ub - lb) / 2.0 + lb return pts # dict of sampling methods sampling_methods = { "linspace" : linspace, "tolerance" : tolerance, "uniform" : uniform, }
[ "mystic.math.fillpts", "numpy.random.uniform", "numpy.zeros" ]
[((742, 759), 'numpy.zeros', 'numpy.zeros', (['ndim'], {}), '(ndim)\n', (753, 759), False, 'import numpy\n'), ((1658, 1727), 'mystic.math.fillpts', 'math.fillpts', (['lower_bounds', 'upper_bounds', 'n_new_pts', 'data', 'rtol', 'dist'], {}), '(lower_bounds, upper_bounds, n_new_pts, data, rtol, dist)\n', (1670, 1727), False, 'from mystic import math\n'), ((2347, 2364), 'numpy.zeros', 'numpy.zeros', (['ndim'], {}), '(ndim)\n', (2358, 2364), False, 'import numpy\n'), ((3001, 3018), 'numpy.zeros', 'numpy.zeros', (['ndim'], {}), '(ndim)\n', (3012, 3018), False, 'import numpy\n'), ((861, 889), 'numpy.random.uniform', 'numpy.random.uniform', (['lb', 'ub'], {}), '(lb, ub)\n', (881, 889), False, 'import numpy\n')]
import plot_line import numpy as np import reader import render_figure class PlotAltitude(plot_line.LinePlot): def __init__(self, fig_cluster, fig_name, fig): self.fig = fig self.fig_name = fig_name self.fig_cluster = fig_cluster self.config = self.get_config() self.index_alt = self.get_column_index("altitude") self.index_gps_alt = self.get_column_index("altitude_gps") self.alt_x = self.alt_y = np.array([]) self.gps_alt_x = self.gps_alt_y = np.array([]) self.ax = self.fig.add_subplot(*self.config["dimensions"]) def set_fig_color(self,curr_value): pass def set_up(self): """Sets title , x and y label, initializes the x and y limits """ self.h_alt, = self.ax.plot(self.alt_x, lw=3 , label="Altitude") self.h_gps_alt, = self.ax.plot(self.gps_alt_x, lw=3 , label="GPS Altitude") self.ax.legend(bbox_to_anchor=(1.05, 1), loc='lower center', borderaxespad=0.) self.ax.set_ylim(0,100) self.ax.set_xlim(0,100) self.ax.title.set_text(self.config["title"]) self.ax.set_xlabel(self.config["x_label"]) self.ax.set_ylabel(self.config["y_label"]) def read_data(self,data_array): """Read data and appends em to dataset. Arguments: data_array {list} -- array with data from a row """ value_type = self.config['value_type'] try: curr_value_alt = data_array[self.index_alt] curr_value_gps_alt = data_array[self.index_gps_alt] except: curr_value_alt = np.nan curr_value_gps_alt = np.nan value_type = self.str_to_command(value_type) if str(curr_value_alt).strip() == 'None': curr_value_alt = np.nan else: curr_value_alt = value_type(curr_value_alt) if str(curr_value_gps_alt).strip() == 'None': curr_value_gps_alt = np.nan else: curr_value_gps_alt = value_type(curr_value_gps_alt) # TODO: Read time and not log id time = int(data_array[0]) self.alt_x = np.append(self.alt_x,time) self.alt_y = np.append(self.alt_y,curr_value_alt) self.gps_alt_x = np.append(self.gps_alt_x,time) self.gps_alt_y = np.append(self.gps_alt_y,curr_value_gps_alt) if(len(self.alt_x) > self.config["limit"]): #delete old values self.alt_x = np.delete(self.alt_x, 0) self.alt_y = np.delete(self.alt_y, 0) self.gps_alt_x = np.delete(self.gps_alt_x, 0) self.gps_alt_y = np.delete(self.gps_alt_y, 0) def set_data(self): if(len(self.alt_x) > 0): self.ax.set_xlim(self.alt_x[0] -1 , self.alt_x[-1] +1) min_y = np.nanmin(np.array([np.nanmin(self.alt_y), np.nanmin(self.gps_alt_y)])) if not np.isnan(min_y): max_y = np.nanmax(np.array([np.nanmax(self.alt_y), np.nanmax(self.gps_alt_y)])) self.ax.set_ylim(min_y - 10, max_y + 10) self.h_alt.set_ydata(self.alt_y) self.h_alt.set_xdata(self.alt_x) self.h_gps_alt.set_ydata(self.gps_alt_y) self.h_gps_alt.set_xdata(self.gps_alt_x) if __name__ == '__main__': render_figure.RenderFigure("altitudes",PlotAltitude).start()
[ "numpy.nanmax", "numpy.isnan", "numpy.nanmin", "numpy.append", "numpy.array", "numpy.delete", "render_figure.RenderFigure" ]
[((461, 473), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (469, 473), True, 'import numpy as np\n'), ((516, 528), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (524, 528), True, 'import numpy as np\n'), ((2201, 2228), 'numpy.append', 'np.append', (['self.alt_x', 'time'], {}), '(self.alt_x, time)\n', (2210, 2228), True, 'import numpy as np\n'), ((2249, 2286), 'numpy.append', 'np.append', (['self.alt_y', 'curr_value_alt'], {}), '(self.alt_y, curr_value_alt)\n', (2258, 2286), True, 'import numpy as np\n'), ((2312, 2343), 'numpy.append', 'np.append', (['self.gps_alt_x', 'time'], {}), '(self.gps_alt_x, time)\n', (2321, 2343), True, 'import numpy as np\n'), ((2368, 2413), 'numpy.append', 'np.append', (['self.gps_alt_y', 'curr_value_gps_alt'], {}), '(self.gps_alt_y, curr_value_gps_alt)\n', (2377, 2413), True, 'import numpy as np\n'), ((2522, 2546), 'numpy.delete', 'np.delete', (['self.alt_x', '(0)'], {}), '(self.alt_x, 0)\n', (2531, 2546), True, 'import numpy as np\n'), ((2572, 2596), 'numpy.delete', 'np.delete', (['self.alt_y', '(0)'], {}), '(self.alt_y, 0)\n', (2581, 2596), True, 'import numpy as np\n'), ((2627, 2655), 'numpy.delete', 'np.delete', (['self.gps_alt_x', '(0)'], {}), '(self.gps_alt_x, 0)\n', (2636, 2655), True, 'import numpy as np\n'), ((2685, 2713), 'numpy.delete', 'np.delete', (['self.gps_alt_y', '(0)'], {}), '(self.gps_alt_y, 0)\n', (2694, 2713), True, 'import numpy as np\n'), ((3414, 3467), 'render_figure.RenderFigure', 'render_figure.RenderFigure', (['"""altitudes"""', 'PlotAltitude'], {}), "('altitudes', PlotAltitude)\n", (3440, 3467), False, 'import render_figure\n'), ((2981, 2996), 'numpy.isnan', 'np.isnan', (['min_y'], {}), '(min_y)\n', (2989, 2996), True, 'import numpy as np\n'), ((2897, 2918), 'numpy.nanmin', 'np.nanmin', (['self.alt_y'], {}), '(self.alt_y)\n', (2906, 2918), True, 'import numpy as np\n'), ((2920, 2945), 'numpy.nanmin', 'np.nanmin', (['self.gps_alt_y'], {}), '(self.gps_alt_y)\n', (2929, 2945), True, 'import numpy as np\n'), ((3042, 3063), 'numpy.nanmax', 'np.nanmax', (['self.alt_y'], {}), '(self.alt_y)\n', (3051, 3063), True, 'import numpy as np\n'), ((3065, 3090), 'numpy.nanmax', 'np.nanmax', (['self.gps_alt_y'], {}), '(self.gps_alt_y)\n', (3074, 3090), True, 'import numpy as np\n')]
# Copyright 2019, The Jelly Bean World Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """Collection of JBW environments for OpenAI gym.""" from __future__ import absolute_import, division, print_function import numpy as np try: from gym.envs.registration import register modules_loaded = True except: modules_loaded = False from .agent import Agent from .direction import RelativeDirection from .item import * from .simulator import * from .visualizer import MapVisualizer, pi def make_config(): # specify the item types items = [] items.append(Item("banana", [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1, 0, 0, 0], [0, 0, 0, 0], False, 0.0, intensity_fn=IntensityFunction.CONSTANT, intensity_fn_args=[-5.3], interaction_fns=[ [InteractionFunction.PIECEWISE_BOX, 10.0, 200.0, 0.0, -6.0], # parameters for interaction between item 0 and item 0 [InteractionFunction.PIECEWISE_BOX, 200.0, 0.0, -6.0, -6.0], # parameters for interaction between item 0 and item 1 [InteractionFunction.PIECEWISE_BOX, 10.0, 200.0, 2.0, -100.0], # parameters for interaction between item 0 and item 2 [InteractionFunction.ZERO] # parameters for interaction between item 0 and item 3 ])) items.append(Item("onion", [1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0, 1, 0, 0], [0, 0, 0, 0], False, 0.0, intensity_fn=IntensityFunction.CONSTANT, intensity_fn_args=[-5.0], interaction_fns=[ [InteractionFunction.PIECEWISE_BOX, 200.0, 0.0, -6.0, -6.0], # parameters for interaction between item 1 and item 0 [InteractionFunction.ZERO], # parameters for interaction between item 1 and item 1 [InteractionFunction.PIECEWISE_BOX, 200.0, 0.0, -100.0, -100.0], # parameters for interaction between item 1 and item 2 [InteractionFunction.ZERO] # parameters for interaction between item 1 and item 3 ])) items.append(Item("jellybean", [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0, 0, 0, 0], [0, 0, 0, 0], False, 0.0, intensity_fn=IntensityFunction.CONSTANT, intensity_fn_args=[-5.3], interaction_fns=[ [InteractionFunction.PIECEWISE_BOX, 10.0, 200.0, 2.0, -100.0], # parameters for interaction between item 2 and item 0 [InteractionFunction.PIECEWISE_BOX, 200.0, 0.0, -100.0, -100.0], # parameters for interaction between item 2 and item 1 [InteractionFunction.PIECEWISE_BOX, 10.0, 200.0, 0.0, -6.0], # parameters for interaction between item 2 and item 2 [InteractionFunction.ZERO] # parameters for interaction between item 2 and item 3 ])) items.append(Item("wall", [0.0, 0.0, 0.0], [0.5, 0.5, 0.5], [0, 0, 0, 1], [0, 0, 0, 0], True, 0.0, intensity_fn=IntensityFunction.CONSTANT, intensity_fn_args=[0.0], interaction_fns=[ [InteractionFunction.ZERO], # parameters for interaction between item 3 and item 0 [InteractionFunction.ZERO], # parameters for interaction between item 3 and item 1 [InteractionFunction.ZERO], # parameters for interaction between item 3 and item 2 [InteractionFunction.CROSS, 10.0, 15.0, 20.0, -200.0, -20.0, 1.0] # parameters for interaction between item 3 and item 3 ])) # construct the simulator configuration return SimulatorConfig(max_steps_per_movement=1, vision_range=5, allowed_movement_directions=[ActionPolicy.ALLOWED, ActionPolicy.DISALLOWED, ActionPolicy.DISALLOWED, ActionPolicy.DISALLOWED], allowed_turn_directions=[ActionPolicy.DISALLOWED, ActionPolicy.DISALLOWED, ActionPolicy.ALLOWED, ActionPolicy.ALLOWED], no_op_allowed=False, patch_size=32, mcmc_num_iter=4000, items=items, agent_color=[0.0, 0.0, 1.0], agent_field_of_view=2*pi, collision_policy=MovementConflictPolicy.FIRST_COME_FIRST_SERVED, decay_param=0.4, diffusion_param=0.14, deleted_item_lifetime=2000) def make_v1_config(): """ This config file matches the config """ # specify the item types items = [] # ANOTHER discrepancy in paper. Paper lists interaction with wall, whereas Configurations.swift # lists interaction with tree. Maybe it's a wrong index? Maybe the paper is listed incorrectly? items.append(Item("banana", [1.92, 1.76, 0.40], [0.96, 0.88, 0.20], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], False, 0.0, intensity_fn=IntensityFunction.CONSTANT, intensity_fn_args=[1.5], interaction_fns=[ [InteractionFunction.PIECEWISE_BOX, 10.0, 100.0, 0.0, -6.0], [InteractionFunction.ZERO], [InteractionFunction.PIECEWISE_BOX, 10.0, 100.0, 2.0, -100.0], [InteractionFunction.ZERO], [InteractionFunction.PIECEWISE_BOX, 50.0, 100.0, -100.0, -100.0], [InteractionFunction.ZERO] ])) # Onion has a discrepancy in intensity - in the paper it's listed as +1.5. items.append(Item("onion", [0.68, 0.01, 0.99], [0.68, 0.01, 0.99], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], False, 0.0, intensity_fn=IntensityFunction.CONSTANT, intensity_fn_args=[-3.0], interaction_fns=[ [InteractionFunction.ZERO], [InteractionFunction.ZERO], [InteractionFunction.ZERO], [InteractionFunction.ZERO], [InteractionFunction.ZERO], [InteractionFunction.ZERO] ])) items.append(Item("jellybean", [1.64, 0.54, 0.40], [0.82, 0.27, 0.20], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], False, 0.0, intensity_fn=IntensityFunction.CONSTANT, intensity_fn_args=[1.5], interaction_fns=[ [InteractionFunction.PIECEWISE_BOX, 10.0, 100.0, 2.0, -100.0], [InteractionFunction.ZERO], [InteractionFunction.PIECEWISE_BOX, 10.0, 100.0, 0.0, -6.0], [InteractionFunction.ZERO], [InteractionFunction.PIECEWISE_BOX, 50.0, 100.0, -100.0, -100.0], [InteractionFunction.ZERO] ])) items.append(Item("wall", [0.0, 0.0, 0.0], [0.20, 0.47, 0.67], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0], True, 0.0, intensity_fn=IntensityFunction.CONSTANT, intensity_fn_args=[-12.0], interaction_fns=[ [InteractionFunction.ZERO], [InteractionFunction.ZERO], [InteractionFunction.ZERO], [InteractionFunction.CROSS, 20.0, 40.0, 8.0, -1000.0, -1000.0, -1.0], [InteractionFunction.ZERO], [InteractionFunction.ZERO] ])) items.append(Item("tree", [0.00, 0.47, 0.06], [0.00, 0.47, 0.06], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0], False, 0.0, intensity_fn=IntensityFunction.CONSTANT, intensity_fn_args=[2.0], interaction_fns=[ [InteractionFunction.ZERO], [InteractionFunction.ZERO], [InteractionFunction.ZERO], [InteractionFunction.ZERO], [InteractionFunction.PIECEWISE_BOX, 100.0, 500.0, 0.0, -0.1], [InteractionFunction.ZERO] ])) items.append(Item("truffle", [8.40, 4.80, 2.60], [0.42, 0.24, 0.13], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], False, 0.0, intensity_fn=IntensityFunction.CONSTANT, intensity_fn_args=[0.0], interaction_fns=[ [InteractionFunction.ZERO], # parameters for interaction between item 3 and item 0 [InteractionFunction.ZERO], # parameters for interaction between item 3 and item 1 [InteractionFunction.ZERO], # parameters for interaction between item 3 and item 2 [InteractionFunction.ZERO], # parameters for interaction between item 3 and item 2 [InteractionFunction.PIECEWISE_BOX, 4.0, 200.0, 2.0, 0.0], [InteractionFunction.PIECEWISE_BOX, 30.0, 1000.0, -0.3, -1.0], ])) # construct the simulator configuration return SimulatorConfig(max_steps_per_movement=1, vision_range=5, allowed_movement_directions=[ActionPolicy.ALLOWED, ActionPolicy.DISALLOWED, ActionPolicy.DISALLOWED, ActionPolicy.DISALLOWED], allowed_turn_directions=[ActionPolicy.DISALLOWED, ActionPolicy.DISALLOWED, ActionPolicy.ALLOWED, ActionPolicy.ALLOWED], no_op_allowed=False, patch_size=32, mcmc_num_iter=4000, items=items, agent_color=[0.0, 0.0, 1.0], agent_field_of_view=2*pi, collision_policy=MovementConflictPolicy.FIRST_COME_FIRST_SERVED, decay_param=0.4, diffusion_param=0.14, deleted_item_lifetime=2000) def case1_reward_fn(prev_items, items): """ Reference for item indicies: 0 - Banana: 0 reward 1 - Onion: -1 reward for every one collected 2 - JellyBean: +1 reward for every one collected 3 - Wall: 0 reward, cannot collect 4 - Tree: 0 reward, cannot collect 5 - Truffle: 0 reward """ reward_array = np.array([0, -1, 1, 0, 0, 0]) diff = items - prev_items return (diff * reward_array).sum().astype(np.float32) if modules_loaded: # Construct the simulator configuration. sim_config = make_config() # Create a reward function. reward_fn = lambda prev_items, items: len(items) - len(prev_items) register( id='JBW-v0', entry_point='jbw.environment:JBWEnv', kwargs={ 'sim_config': sim_config, 'reward_fn': reward_fn, 'render': False}) register( id='JBW-render-v0', entry_point='jbw.environment:JBWEnv', kwargs={ 'sim_config': sim_config, 'reward_fn': reward_fn, 'render': True}) sim_v1_config = make_v1_config() register( id='JBW-v1', entry_point='jbw.environment:JBWEnv', kwargs={ 'sim_config': sim_v1_config, 'reward_fn': case1_reward_fn, 'render': False}) register( id='JBW-render-v1', entry_point='jbw.environment:JBWEnv', kwargs={ 'sim_config': sim_v1_config, 'reward_fn': case1_reward_fn, 'render': True})
[ "numpy.array", "gym.envs.registration.register" ]
[((10444, 10473), 'numpy.array', 'np.array', (['[0, -1, 1, 0, 0, 0]'], {}), '([0, -1, 1, 0, 0, 0])\n', (10452, 10473), True, 'import numpy as np\n'), ((10758, 10898), 'gym.envs.registration.register', 'register', ([], {'id': '"""JBW-v0"""', 'entry_point': '"""jbw.environment:JBWEnv"""', 'kwargs': "{'sim_config': sim_config, 'reward_fn': reward_fn, 'render': False}"}), "(id='JBW-v0', entry_point='jbw.environment:JBWEnv', kwargs={\n 'sim_config': sim_config, 'reward_fn': reward_fn, 'render': False})\n", (10766, 10898), False, 'from gym.envs.registration import register\n'), ((10941, 11087), 'gym.envs.registration.register', 'register', ([], {'id': '"""JBW-render-v0"""', 'entry_point': '"""jbw.environment:JBWEnv"""', 'kwargs': "{'sim_config': sim_config, 'reward_fn': reward_fn, 'render': True}"}), "(id='JBW-render-v0', entry_point='jbw.environment:JBWEnv', kwargs={\n 'sim_config': sim_config, 'reward_fn': reward_fn, 'render': True})\n", (10949, 11087), False, 'from gym.envs.registration import register\n'), ((11166, 11320), 'gym.envs.registration.register', 'register', ([], {'id': '"""JBW-v1"""', 'entry_point': '"""jbw.environment:JBWEnv"""', 'kwargs': "{'sim_config': sim_v1_config, 'reward_fn': case1_reward_fn, 'render': False}"}), "(id='JBW-v1', entry_point='jbw.environment:JBWEnv', kwargs={\n 'sim_config': sim_v1_config, 'reward_fn': case1_reward_fn, 'render': False}\n )\n", (11174, 11320), False, 'from gym.envs.registration import register\n'), ((11364, 11519), 'gym.envs.registration.register', 'register', ([], {'id': '"""JBW-render-v1"""', 'entry_point': '"""jbw.environment:JBWEnv"""', 'kwargs': "{'sim_config': sim_v1_config, 'reward_fn': case1_reward_fn, 'render': True}"}), "(id='JBW-render-v1', entry_point='jbw.environment:JBWEnv', kwargs={\n 'sim_config': sim_v1_config, 'reward_fn': case1_reward_fn, 'render': True})\n", (11372, 11519), False, 'from gym.envs.registration import register\n')]
# Copyright 2020 Standard Cyborg # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import numpy as np from scsdk import scsdk_native as scsdk from PIL import Image # This script demonstrates a bunch of the different node types in a SceneGraph root = scsdk.Node() root.name = "root" # geometry node, that repsents a geometry that is a single triangle. child1 = scsdk.GeometryNode() child1.name = "triangle1" child1.geometry.positions = np.array([ [0,0,0], [1,0,0], [0,1,0] ]) child1.geometry.normals = np.array([ [0,0,1], [0,0,1], [0,0,1] ]) child1.geometry.colors = np.array([ [1,0,0], [1,0,0], [0,1,0] ]) child1.geometry.faces = np.array([ [0,1,2] ]) child1.transform = np.array([ [1,0,0,-3.0], [0,1,0,0], [0,0,1,0]]) root.appendChild(child1) # geometry node, that repsents a geometry that is a point cloud. # since no faces are specified, it is considered a point cloud. pointcloud = scsdk.GeometryNode() pointcloud.name = "point cloud" N = 20 positions = np.zeros((N * N, 3)) colors = np.zeros((N * N, 3)) for y in range(N): for x in range(N): positions[y * N + x] = [float(x) / N, float(y) / N, 0.0] colors[y * N + x] = [float(x) / N, float(y) / N, 0.0] pointcloud.geometry.positions = positions pointcloud.geometry.colors = colors pointcloud.transform = np.array([ [1,0,0,2.99], [0,1,0,0.19], [0,0,1,0.39]]) root.appendChild(pointcloud) # This node contains a RGBA image. child3 = scsdk.ColorImageNode() child3.name = "example image" child3.colorImage = scsdk.ColorImage(width=2, height=2, rgba=np.array([ [0.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0], [0.3, 0.9, 0.6, 1.0]])) child3.transform = np.array([ [1,0,0,-2.0], [0,1,0,2.6], [0,0,1,0.01]]) root.appendChild(child3) # This shows a geometry with a texture applied. texturedGeo = scsdk.GeometryNode() texturedGeo.name = "texturedGeo" texturedGeo.geometry.positions = np.array([ [0,0,0], [1,0,0], [0,1,0] ]) # remember to add normals, or it will crash! texturedGeo.geometry.normals = np.array([ [0,0,1], [0,0,1], [0,0,1] ]) texturedGeo.geometry.texCoords = np.array([ [0,0], [1,0], [0,1] ]) # texture coordinates are necessary for textured geometries. texturedGeo.geometry.faces = np.array([ [0,1,2] ]) texturedGeo.transform = np.array([ [1,0,0,-3.0], [0,1,0,5], [0,0,1,0]]) RES = 16 rgba = np.zeros((RES * RES, 4)) # create the texture. for i in range(RES * RES): t = float(i) / float(RES * RES) rgba[i, 0] = 0.3 + 0.5 * t rgba[i, 1] = 0.8 - 0.7 *t rgba[i, 2] = 1.0 * t rgba[i, 3] = 1.0 texturedGeo.geometry.texture = scsdk.ColorImage(width=RES, height=RES, rgba=rgba) root.appendChild(texturedGeo) # A depth image, is an image with depth value stored for every pixel. depthImageNode = scsdk.DepthImageNode() depthImageNode.name = "example depth image" depthImageNode.transform = np.array([ [1,0,0,0.31], [0,1,0,-2.51], [0,0,1,-0.29]]) RES = 16 depth = np.zeros((RES * RES)) for i in range(RES * RES): depth[i] = float(i) / float(RES * RES) depthImageNode.depthImage = scsdk.DepthImage(width=RES, height=RES, depth=depth) root.appendChild(depthImageNode) # Load a png, and put it in a ColorImageNode chickenImageNode = scsdk.ColorImageNode() chickenImageNode.name = "chicken.png" chickenImageNode.transform = np.array([ [1,0,0,-5.0], [0,1,0,0.32], [0,0,1,0.09]]) im = Image.open("chicken.png") rgba = np.zeros((im.size[1] * im.size[0], 4)) data = list(im.getdata()) for i in range(len(data)): rgba[i, 0] = pow(data[i][0] / 255.0, 2.2) rgba[i, 1] = pow(data[i][1] / 255.0, 2.2) rgba[i, 2] = pow(data[i][2] / 255.0, 2.2) rgba[i, 3] = 1.0 chickenImageNode.colorImage = scsdk.ColorImage(width=im.size[0], height=im.size[1], rgba=rgba) root.appendChild(chickenImageNode) # A polyline node, is a bunch of lines connected, specified by a list of points. polylineNode = scsdk.PolylineNode() polylineNode.name = "polyline" polylineNode.polyline.positions = np.array([ [0,0,0], [1,0,0], [0,1,0], [0,1,1], [1,1,1] ]) polylineNode.transform = np.array([ [1,0,0,+3.0], [0,1,0,1], [0,0,1,1]]) polylineNode.material.objectColor = np.array([0.0,0.0,1.0]) polylineNode.material.materialModel = scsdk.MaterialModel.Unlit root.appendChild(polylineNode) # print the SceneGraph. def printSceneGraph(node, indent): typee = "node" output = indent + node.name misc = "" if node.isGeometryNode(): typee = "geometry" misc = misc + "vertexCount: " + str(node.geometry.positions.shape[0]) + ", " misc = misc + "faceCount: " + str( node.geometry.faces.shape[0]) elif node.isColorImageNode(): typee = "colorImage" misc = misc + "size: " + str(node.colorImage.width) + "x" + str(node.colorImage.height) elif node.isDepthImageNode(): typee = "depthImage" misc = misc + "size: " + str(node.depthImage.width) + "x" + str(node.depthImage.height) elif node.isPolylineNode(): typee = "polyline" misc = misc + "vertexCount: " + str(node.polyline.positions.shape[0]) output = output + ", type: " + typee + ", misc: " + misc print(output) for childNode in node.children(): printSceneGraph(childNode, indent + " ") # write SceneGraph scsdk.WriteSceneGraphToGltf(root, "./node_types.gltf") # now read it, and print the SceneGraph with open("./node_types.gltf", 'r') as file: data = file.read().replace('\n', '') readRoot = scsdk.ReadSceneGraphFromGltf(data)[0] printSceneGraph(readRoot, "")
[ "scsdk.scsdk_native.Node", "scsdk.scsdk_native.DepthImageNode", "scsdk.scsdk_native.ColorImageNode", "scsdk.scsdk_native.DepthImage", "scsdk.scsdk_native.GeometryNode", "scsdk.scsdk_native.WriteSceneGraphToGltf", "numpy.zeros", "scsdk.scsdk_native.ColorImage", "PIL.Image.open", "numpy.array", "scsdk.scsdk_native.ReadSceneGraphFromGltf", "scsdk.scsdk_native.PolylineNode" ]
[((764, 776), 'scsdk.scsdk_native.Node', 'scsdk.Node', ([], {}), '()\n', (774, 776), True, 'from scsdk import scsdk_native as scsdk\n'), ((876, 896), 'scsdk.scsdk_native.GeometryNode', 'scsdk.GeometryNode', ([], {}), '()\n', (894, 896), True, 'from scsdk import scsdk_native as scsdk\n'), ((951, 994), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 0], [0, 1, 0]]'], {}), '([[0, 0, 0], [1, 0, 0], [0, 1, 0]])\n', (959, 994), True, 'import numpy as np\n'), ((1017, 1060), 'numpy.array', 'np.array', (['[[0, 0, 1], [0, 0, 1], [0, 0, 1]]'], {}), '([[0, 0, 1], [0, 0, 1], [0, 0, 1]])\n', (1025, 1060), True, 'import numpy as np\n'), ((1082, 1125), 'numpy.array', 'np.array', (['[[1, 0, 0], [1, 0, 0], [0, 1, 0]]'], {}), '([[1, 0, 0], [1, 0, 0], [0, 1, 0]])\n', (1090, 1125), True, 'import numpy as np\n'), ((1146, 1167), 'numpy.array', 'np.array', (['[[0, 1, 2]]'], {}), '([[0, 1, 2]])\n', (1154, 1167), True, 'import numpy as np\n'), ((1187, 1242), 'numpy.array', 'np.array', (['[[1, 0, 0, -3.0], [0, 1, 0, 0], [0, 0, 1, 0]]'], {}), '([[1, 0, 0, -3.0], [0, 1, 0, 0], [0, 0, 1, 0]])\n', (1195, 1242), True, 'import numpy as np\n'), ((1502, 1522), 'scsdk.scsdk_native.GeometryNode', 'scsdk.GeometryNode', ([], {}), '()\n', (1520, 1522), True, 'from scsdk import scsdk_native as scsdk\n'), ((1574, 1594), 'numpy.zeros', 'np.zeros', (['(N * N, 3)'], {}), '((N * N, 3))\n', (1582, 1594), True, 'import numpy as np\n'), ((1604, 1624), 'numpy.zeros', 'np.zeros', (['(N * N, 3)'], {}), '((N * N, 3))\n', (1612, 1624), True, 'import numpy as np\n'), ((1895, 1956), 'numpy.array', 'np.array', (['[[1, 0, 0, 2.99], [0, 1, 0, 0.19], [0, 0, 1, 0.39]]'], {}), '([[1, 0, 0, 2.99], [0, 1, 0, 0.19], [0, 0, 1, 0.39]])\n', (1903, 1956), True, 'import numpy as np\n'), ((2121, 2143), 'scsdk.scsdk_native.ColorImageNode', 'scsdk.ColorImageNode', ([], {}), '()\n', (2141, 2143), True, 'from scsdk import scsdk_native as scsdk\n'), ((2420, 2480), 'numpy.array', 'np.array', (['[[1, 0, 0, -2.0], [0, 1, 0, 2.6], [0, 0, 1, 0.01]]'], {}), '([[1, 0, 0, -2.0], [0, 1, 0, 2.6], [0, 0, 1, 0.01]])\n', (2428, 2480), True, 'import numpy as np\n'), ((2658, 2678), 'scsdk.scsdk_native.GeometryNode', 'scsdk.GeometryNode', ([], {}), '()\n', (2676, 2678), True, 'from scsdk import scsdk_native as scsdk\n'), ((2745, 2788), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 0], [0, 1, 0]]'], {}), '([[0, 0, 0], [1, 0, 0], [0, 1, 0]])\n', (2753, 2788), True, 'import numpy as np\n'), ((2861, 2904), 'numpy.array', 'np.array', (['[[0, 0, 1], [0, 0, 1], [0, 0, 1]]'], {}), '([[0, 0, 1], [0, 0, 1], [0, 0, 1]])\n', (2869, 2904), True, 'import numpy as np\n'), ((2934, 2968), 'numpy.array', 'np.array', (['[[0, 0], [1, 0], [0, 1]]'], {}), '([[0, 0], [1, 0], [0, 1]])\n', (2942, 2968), True, 'import numpy as np\n'), ((3058, 3079), 'numpy.array', 'np.array', (['[[0, 1, 2]]'], {}), '([[0, 1, 2]])\n', (3066, 3079), True, 'import numpy as np\n'), ((3104, 3159), 'numpy.array', 'np.array', (['[[1, 0, 0, -3.0], [0, 1, 0, 5], [0, 0, 1, 0]]'], {}), '([[1, 0, 0, -3.0], [0, 1, 0, 5], [0, 0, 1, 0]])\n', (3112, 3159), True, 'import numpy as np\n'), ((3266, 3290), 'numpy.zeros', 'np.zeros', (['(RES * RES, 4)'], {}), '((RES * RES, 4))\n', (3274, 3290), True, 'import numpy as np\n'), ((3518, 3568), 'scsdk.scsdk_native.ColorImage', 'scsdk.ColorImage', ([], {'width': 'RES', 'height': 'RES', 'rgba': 'rgba'}), '(width=RES, height=RES, rgba=rgba)\n', (3534, 3568), True, 'from scsdk import scsdk_native as scsdk\n'), ((3689, 3711), 'scsdk.scsdk_native.DepthImageNode', 'scsdk.DepthImageNode', ([], {}), '()\n', (3709, 3711), True, 'from scsdk import scsdk_native as scsdk\n'), ((3783, 3846), 'numpy.array', 'np.array', (['[[1, 0, 0, 0.31], [0, 1, 0, -2.51], [0, 0, 1, -0.29]]'], {}), '([[1, 0, 0, 0.31], [0, 1, 0, -2.51], [0, 0, 1, -0.29]])\n', (3791, 3846), True, 'import numpy as np\n'), ((3953, 3972), 'numpy.zeros', 'np.zeros', (['(RES * RES)'], {}), '(RES * RES)\n', (3961, 3972), True, 'import numpy as np\n'), ((4079, 4131), 'scsdk.scsdk_native.DepthImage', 'scsdk.DepthImage', ([], {'width': 'RES', 'height': 'RES', 'depth': 'depth'}), '(width=RES, height=RES, depth=depth)\n', (4095, 4131), True, 'from scsdk import scsdk_native as scsdk\n'), ((4232, 4254), 'scsdk.scsdk_native.ColorImageNode', 'scsdk.ColorImageNode', ([], {}), '()\n', (4252, 4254), True, 'from scsdk import scsdk_native as scsdk\n'), ((4322, 4383), 'numpy.array', 'np.array', (['[[1, 0, 0, -5.0], [0, 1, 0, 0.32], [0, 0, 1, 0.09]]'], {}), '([[1, 0, 0, -5.0], [0, 1, 0, 0.32], [0, 0, 1, 0.09]])\n', (4330, 4383), True, 'import numpy as np\n'), ((4511, 4536), 'PIL.Image.open', 'Image.open', (['"""chicken.png"""'], {}), "('chicken.png')\n", (4521, 4536), False, 'from PIL import Image\n'), ((4545, 4583), 'numpy.zeros', 'np.zeros', (['(im.size[1] * im.size[0], 4)'], {}), '((im.size[1] * im.size[0], 4))\n', (4553, 4583), True, 'import numpy as np\n'), ((4832, 4896), 'scsdk.scsdk_native.ColorImage', 'scsdk.ColorImage', ([], {'width': 'im.size[0]', 'height': 'im.size[1]', 'rgba': 'rgba'}), '(width=im.size[0], height=im.size[1], rgba=rgba)\n', (4848, 4896), True, 'from scsdk import scsdk_native as scsdk\n'), ((5032, 5052), 'scsdk.scsdk_native.PolylineNode', 'scsdk.PolylineNode', ([], {}), '()\n', (5050, 5052), True, 'from scsdk import scsdk_native as scsdk\n'), ((5118, 5183), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 1, 1], [1, 1, 1]]'], {}), '([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 1, 1], [1, 1, 1]])\n', (5126, 5183), True, 'import numpy as np\n'), ((5202, 5257), 'numpy.array', 'np.array', (['[[1, 0, 0, +3.0], [0, 1, 0, 1], [0, 0, 1, 1]]'], {}), '([[1, 0, 0, +3.0], [0, 1, 0, 1], [0, 0, 1, 1]])\n', (5210, 5257), True, 'import numpy as np\n'), ((5384, 5409), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 1.0])\n', (5392, 5409), True, 'import numpy as np\n'), ((6505, 6559), 'scsdk.scsdk_native.WriteSceneGraphToGltf', 'scsdk.WriteSceneGraphToGltf', (['root', '"""./node_types.gltf"""'], {}), "(root, './node_types.gltf')\n", (6532, 6559), True, 'from scsdk import scsdk_native as scsdk\n'), ((6699, 6733), 'scsdk.scsdk_native.ReadSceneGraphFromGltf', 'scsdk.ReadSceneGraphFromGltf', (['data'], {}), '(data)\n', (6727, 6733), True, 'from scsdk import scsdk_native as scsdk\n'), ((2235, 2337), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0], [0.3, \n 0.9, 0.6, 1.0]]'], {}), '([[0.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0],\n [0.3, 0.9, 0.6, 1.0]])\n', (2243, 2337), True, 'import numpy as np\n')]
""" Copyright (c) <2018> YoongiKim See the file license.txt for copying permission. """ import tensorflow as tf import random import os import numpy as np # import matplotlib.pyplot as plt import cv2 from tensorflow.examples.tutorials.mnist import input_data tf.set_random_seed(777) # reproducibility # This path is for ppo.py, this path won't work in the test.py CHECK_POINT_DIR = './RiderEnvironment/mnist_model_custom' TRAIN_DATA_DIR = './RiderEnvironment/score_train_data' def allfiles(path): names = [] for root, dirs, files in os.walk(path): for file in files: names.append(file.split('.')[0]) return names def to_binary(img): retval, threshold = cv2.threshold(img, 127, 1, cv2.THRESH_BINARY) return np.array(threshold) if __name__ == "__main__": x = [] y = [] for i in range(10): path = "{}/{}".format(TRAIN_DATA_DIR, i) names = allfiles(path) for name in names: img = cv2.imread("{}/{}/{}.png".format(TRAIN_DATA_DIR, i, name), cv2.IMREAD_GRAYSCALE) img = to_binary(img) x.append(img.reshape(784)) y_one_hot = np.zeros(10) y_one_hot[i] = 1 y.append(y_one_hot) print(np.shape(x)) print(np.shape(y)) # hyper parameters learning_rate = 0.0001 training_epochs = 1001 batch_size = 100 # dropout (keep_prob) rate 0.7~0.5 on training, but should be 1 for testing keep_prob = tf.placeholder(tf.float32) # input place holders X = tf.placeholder(tf.float32, [None, 784]) X_img = tf.reshape(X, [-1, 28, 28, 1]) # img 28x28x1 (black/white) Y = tf.placeholder(tf.float32, [None, 10]) # L1 ImgIn shape=(?, 28, 28, 1) W1 = tf.Variable(tf.random_normal([3, 3, 1, 32], stddev=0.01)) # Conv -> (?, 28, 28, 32) # Pool -> (?, 14, 14, 32) L1 = tf.nn.conv2d(X_img, W1, strides=[1, 1, 1, 1], padding='SAME') L1 = tf.nn.relu(L1) L1 = tf.nn.max_pool(L1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') L1 = tf.nn.dropout(L1, keep_prob=keep_prob) ''' Tensor("Conv2D:0", shape=(?, 28, 28, 32), dtype=float32) Tensor("Relu:0", shape=(?, 28, 28, 32), dtype=float32) Tensor("MaxPool:0", shape=(?, 14, 14, 32), dtype=float32) Tensor("dropout/mul:0", shape=(?, 14, 14, 32), dtype=float32) ''' # L2 ImgIn shape=(?, 14, 14, 32) W2 = tf.Variable(tf.random_normal([3, 3, 32, 64], stddev=0.01)) # Conv ->(?, 14, 14, 64) # Pool ->(?, 7, 7, 64) L2 = tf.nn.conv2d(L1, W2, strides=[1, 1, 1, 1], padding='SAME') L2 = tf.nn.relu(L2) L2 = tf.nn.max_pool(L2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') L2 = tf.nn.dropout(L2, keep_prob=keep_prob) ''' Tensor("Conv2D_1:0", shape=(?, 14, 14, 64), dtype=float32) Tensor("Relu_1:0", shape=(?, 14, 14, 64), dtype=float32) Tensor("MaxPool_1:0", shape=(?, 7, 7, 64), dtype=float32) Tensor("dropout_1/mul:0", shape=(?, 7, 7, 64), dtype=float32) ''' # L3 ImgIn shape=(?, 7, 7, 64) W3 = tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.01)) # Conv ->(?, 7, 7, 128) # Pool ->(?, 4, 4, 128) # Reshape ->(?, 4 * 4 * 128) # Flatten them for FC L3 = tf.nn.conv2d(L2, W3, strides=[1, 1, 1, 1], padding='SAME') L3 = tf.nn.relu(L3) L3 = tf.nn.max_pool(L3, ksize=[1, 2, 2, 1], strides=[ 1, 2, 2, 1], padding='SAME') L3 = tf.nn.dropout(L3, keep_prob=keep_prob) L3 = tf.reshape(L3, [-1, 128 * 4 * 4]) ''' Tensor("Conv2D_2:0", shape=(?, 7, 7, 128), dtype=float32) Tensor("Relu_2:0", shape=(?, 7, 7, 128), dtype=float32) Tensor("MaxPool_2:0", shape=(?, 4, 4, 128), dtype=float32) Tensor("dropout_2/mul:0", shape=(?, 4, 4, 128), dtype=float32) Tensor("Reshape_1:0", shape=(?, 2048), dtype=float32) ''' # L4 FC 4x4x128 inputs -> 625 outputs W4 = tf.get_variable("W4", shape=[128 * 4 * 4, 625], initializer=tf.contrib.layers.xavier_initializer()) b4 = tf.Variable(tf.random_normal([625])) L4 = tf.nn.relu(tf.matmul(L3, W4) + b4) L4 = tf.nn.dropout(L4, keep_prob=keep_prob) ''' Tensor("Relu_3:0", shape=(?, 625), dtype=float32) Tensor("dropout_3/mul:0", shape=(?, 625), dtype=float32) ''' # L5 Final FC 625 inputs -> 10 outputs W5 = tf.get_variable("W5", shape=[625, 10], initializer=tf.contrib.layers.xavier_initializer()) b5 = tf.Variable(tf.random_normal([10])) hypothesis = tf.matmul(L4, W5) + b5 ''' Tensor("add_1:0", shape=(?, 10), dtype=float32) ''' # define cost/loss & optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2( logits=hypothesis, labels=Y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) last_epoch = tf.Variable(0, name='last_epoch') # initialize #config = tf.ConfigProto(device_count = {'GPU': 0}) sess = tf.Session() sess.run(tf.global_variables_initializer()) # Saver and Restore saver = tf.train.Saver() checkpoint = tf.train.get_checkpoint_state(CHECK_POINT_DIR) if checkpoint and checkpoint.model_checkpoint_path: try: saver.restore(sess, checkpoint.model_checkpoint_path) print("Successfully loaded:", checkpoint.model_checkpoint_path) except: print("Error on loading old network weights") else: print("Could not find old network weights") start_from = sess.run(last_epoch) if __name__ == "__main__": # train my model print('Start learning from:', start_from) for epoch in range(training_epochs): c, _, = sess.run([cost, optimizer], feed_dict={X: x, Y: y, keep_prob: 0.7}) if(epoch % 100 == 0): print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(c)) if(epoch % 1000 == 0): print("Saving network...") sess.run(last_epoch.assign(epoch + 1)) if not os.path.exists(CHECK_POINT_DIR): os.makedirs(CHECK_POINT_DIR) saver.save(sess, CHECK_POINT_DIR + "/model", global_step=i) print('Learning Finished!') def mnist_predict(image): x = image.reshape(1, 784) return sess.run(tf.argmax(hypothesis, 1), feed_dict={X: x, keep_prob: 1})[0]
[ "tensorflow.contrib.layers.xavier_initializer", "tensorflow.reshape", "os.walk", "numpy.shape", "tensorflow.matmul", "tensorflow.Variable", "tensorflow.nn.conv2d", "tensorflow.nn.relu", "os.path.exists", "tensorflow.set_random_seed", "tensorflow.nn.softmax_cross_entropy_with_logits_v2", "tensorflow.placeholder", "tensorflow.train.get_checkpoint_state", "tensorflow.train.Saver", "tensorflow.global_variables_initializer", "tensorflow.Session", "tensorflow.nn.max_pool", "tensorflow.random_normal", "os.makedirs", "tensorflow.argmax", "cv2.threshold", "numpy.zeros", "numpy.array", "tensorflow.train.AdamOptimizer", "tensorflow.nn.dropout" ]
[((264, 287), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['(777)'], {}), '(777)\n', (282, 287), True, 'import tensorflow as tf\n'), ((1447, 1473), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (1461, 1473), True, 'import tensorflow as tf\n'), ((1501, 1540), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, 784]'], {}), '(tf.float32, [None, 784])\n', (1515, 1540), True, 'import tensorflow as tf\n'), ((1549, 1579), 'tensorflow.reshape', 'tf.reshape', (['X', '[-1, 28, 28, 1]'], {}), '(X, [-1, 28, 28, 1])\n', (1559, 1579), True, 'import tensorflow as tf\n'), ((1614, 1652), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, 10]'], {}), '(tf.float32, [None, 10])\n', (1628, 1652), True, 'import tensorflow as tf\n'), ((1820, 1881), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['X_img', 'W1'], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(X_img, W1, strides=[1, 1, 1, 1], padding='SAME')\n", (1832, 1881), True, 'import tensorflow as tf\n'), ((1887, 1901), 'tensorflow.nn.relu', 'tf.nn.relu', (['L1'], {}), '(L1)\n', (1897, 1901), True, 'import tensorflow as tf\n'), ((1907, 1983), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['L1'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""'}), "(L1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')\n", (1921, 1983), True, 'import tensorflow as tf\n'), ((2009, 2047), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['L1'], {'keep_prob': 'keep_prob'}), '(L1, keep_prob=keep_prob)\n', (2022, 2047), True, 'import tensorflow as tf\n'), ((2455, 2513), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['L1', 'W2'], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(L1, W2, strides=[1, 1, 1, 1], padding='SAME')\n", (2467, 2513), True, 'import tensorflow as tf\n'), ((2519, 2533), 'tensorflow.nn.relu', 'tf.nn.relu', (['L2'], {}), '(L2)\n', (2529, 2533), True, 'import tensorflow as tf\n'), ((2539, 2615), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['L2'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""'}), "(L2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')\n", (2553, 2615), True, 'import tensorflow as tf\n'), ((2641, 2679), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['L2'], {'keep_prob': 'keep_prob'}), '(L2, keep_prob=keep_prob)\n', (2654, 2679), True, 'import tensorflow as tf\n'), ((3146, 3204), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['L2', 'W3'], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(L2, W3, strides=[1, 1, 1, 1], padding='SAME')\n", (3158, 3204), True, 'import tensorflow as tf\n'), ((3210, 3224), 'tensorflow.nn.relu', 'tf.nn.relu', (['L3'], {}), '(L3)\n', (3220, 3224), True, 'import tensorflow as tf\n'), ((3230, 3306), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['L3'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""'}), "(L3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')\n", (3244, 3306), True, 'import tensorflow as tf\n'), ((3333, 3371), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['L3'], {'keep_prob': 'keep_prob'}), '(L3, keep_prob=keep_prob)\n', (3346, 3371), True, 'import tensorflow as tf\n'), ((3377, 3410), 'tensorflow.reshape', 'tf.reshape', (['L3', '[-1, 128 * 4 * 4]'], {}), '(L3, [-1, 128 * 4 * 4])\n', (3387, 3410), True, 'import tensorflow as tf\n'), ((3961, 3999), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['L4'], {'keep_prob': 'keep_prob'}), '(L4, keep_prob=keep_prob)\n', (3974, 3999), True, 'import tensorflow as tf\n'), ((4630, 4663), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'name': '"""last_epoch"""'}), "(0, name='last_epoch')\n", (4641, 4663), True, 'import tensorflow as tf\n'), ((4737, 4749), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (4747, 4749), True, 'import tensorflow as tf\n'), ((4823, 4839), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (4837, 4839), True, 'import tensorflow as tf\n'), ((4853, 4899), 'tensorflow.train.get_checkpoint_state', 'tf.train.get_checkpoint_state', (['CHECK_POINT_DIR'], {}), '(CHECK_POINT_DIR)\n', (4882, 4899), True, 'import tensorflow as tf\n'), ((549, 562), 'os.walk', 'os.walk', (['path'], {}), '(path)\n', (556, 562), False, 'import os\n'), ((699, 744), 'cv2.threshold', 'cv2.threshold', (['img', '(127)', '(1)', 'cv2.THRESH_BINARY'], {}), '(img, 127, 1, cv2.THRESH_BINARY)\n', (712, 744), False, 'import cv2\n'), ((756, 775), 'numpy.array', 'np.array', (['threshold'], {}), '(threshold)\n', (764, 775), True, 'import numpy as np\n'), ((1703, 1747), 'tensorflow.random_normal', 'tf.random_normal', (['[3, 3, 1, 32]'], {'stddev': '(0.01)'}), '([3, 3, 1, 32], stddev=0.01)\n', (1719, 1747), True, 'import tensorflow as tf\n'), ((2339, 2384), 'tensorflow.random_normal', 'tf.random_normal', (['[3, 3, 32, 64]'], {'stddev': '(0.01)'}), '([3, 3, 32, 64], stddev=0.01)\n', (2355, 2384), True, 'import tensorflow as tf\n'), ((2973, 3019), 'tensorflow.random_normal', 'tf.random_normal', (['[3, 3, 64, 128]'], {'stddev': '(0.01)'}), '([3, 3, 64, 128], stddev=0.01)\n', (2989, 3019), True, 'import tensorflow as tf\n'), ((3891, 3914), 'tensorflow.random_normal', 'tf.random_normal', (['[625]'], {}), '([625])\n', (3907, 3914), True, 'import tensorflow as tf\n'), ((4289, 4311), 'tensorflow.random_normal', 'tf.random_normal', (['[10]'], {}), '([10])\n', (4305, 4311), True, 'import tensorflow as tf\n'), ((4326, 4343), 'tensorflow.matmul', 'tf.matmul', (['L4', 'W5'], {}), '(L4, W5)\n', (4335, 4343), True, 'import tensorflow as tf\n'), ((4459, 4530), 'tensorflow.nn.softmax_cross_entropy_with_logits_v2', 'tf.nn.softmax_cross_entropy_with_logits_v2', ([], {'logits': 'hypothesis', 'labels': 'Y'}), '(logits=hypothesis, labels=Y)\n', (4501, 4530), True, 'import tensorflow as tf\n'), ((4759, 4792), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (4790, 4792), True, 'import tensorflow as tf\n'), ((1238, 1249), 'numpy.shape', 'np.shape', (['x'], {}), '(x)\n', (1246, 1249), True, 'import numpy as np\n'), ((1261, 1272), 'numpy.shape', 'np.shape', (['y'], {}), '(y)\n', (1269, 1272), True, 'import numpy as np\n'), ((3834, 3872), 'tensorflow.contrib.layers.xavier_initializer', 'tf.contrib.layers.xavier_initializer', ([], {}), '()\n', (3870, 3872), True, 'import tensorflow as tf\n'), ((3932, 3949), 'tensorflow.matmul', 'tf.matmul', (['L3', 'W4'], {}), '(L3, W4)\n', (3941, 3949), True, 'import tensorflow as tf\n'), ((4232, 4270), 'tensorflow.contrib.layers.xavier_initializer', 'tf.contrib.layers.xavier_initializer', ([], {}), '()\n', (4268, 4270), True, 'import tensorflow as tf\n'), ((4549, 4600), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (4571, 4600), True, 'import tensorflow as tf\n'), ((1153, 1165), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (1161, 1165), True, 'import numpy as np\n'), ((5984, 6008), 'tensorflow.argmax', 'tf.argmax', (['hypothesis', '(1)'], {}), '(hypothesis, 1)\n', (5993, 6008), True, 'import tensorflow as tf\n'), ((5724, 5755), 'os.path.exists', 'os.path.exists', (['CHECK_POINT_DIR'], {}), '(CHECK_POINT_DIR)\n', (5738, 5755), False, 'import os\n'), ((5773, 5801), 'os.makedirs', 'os.makedirs', (['CHECK_POINT_DIR'], {}), '(CHECK_POINT_DIR)\n', (5784, 5801), False, 'import os\n')]
from all_net_def import * import os import numpy as np import torch from torch import nn from torch.utils.data import Dataset, DataLoader import t1_audio_process np.set_printoptions(threshold=np.inf) class AudioDataset_test(Dataset): def __init__(self, csv_file, transform=None): self.data = np.load(csv_file) self.transform = transform def __len__(self): return len(self.data) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() data = np.reshape(self.data[idx, 0:], (4, 40, 1)) data = torch.tensor(data) data = data.type(torch.FloatTensor) return data def test_rcnet(model, test_iter, device): result = [] model.eval() for X in test_iter: X = X.to(device) output = model(X) _, preds = torch.max(output, 1) obj = preds[0].item() result.append(obj) return result def main(test_pth='./dataset/task1/test'): batch_size = 1 # load model model = torch.load('t1_cnn.pth') data_name = 't1_test_feats.npy' t1_audio_process.test() test_dataset = AudioDataset_test(data_name) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') result_list = test_rcnet(model, test_dataloader, device) # 返回所有判断结果的list # 制成字典 result_dict = {} counter = 0 for file_name in os.listdir(test_pth): # 测试集各音频文件名 result_dict.update({file_name: result_list[counter]}) counter += 1 return result_dict if __name__ == '__main__': main()
[ "t1_audio_process.test", "numpy.set_printoptions", "numpy.load", "torch.utils.data.DataLoader", "torch.load", "torch.max", "numpy.reshape", "torch.cuda.is_available", "torch.is_tensor", "os.listdir", "torch.tensor" ]
[((163, 200), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'np.inf'}), '(threshold=np.inf)\n', (182, 200), True, 'import numpy as np\n'), ((1029, 1053), 'torch.load', 'torch.load', (['"""t1_cnn.pth"""'], {}), "('t1_cnn.pth')\n", (1039, 1053), False, 'import torch\n'), ((1095, 1118), 't1_audio_process.test', 't1_audio_process.test', ([], {}), '()\n', (1116, 1118), False, 'import t1_audio_process\n'), ((1190, 1252), 'torch.utils.data.DataLoader', 'DataLoader', (['test_dataset'], {'batch_size': 'batch_size', 'shuffle': '(False)'}), '(test_dataset, batch_size=batch_size, shuffle=False)\n', (1200, 1252), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((1475, 1495), 'os.listdir', 'os.listdir', (['test_pth'], {}), '(test_pth)\n', (1485, 1495), False, 'import os\n'), ((307, 324), 'numpy.load', 'np.load', (['csv_file'], {}), '(csv_file)\n', (314, 324), True, 'import numpy as np\n'), ((458, 478), 'torch.is_tensor', 'torch.is_tensor', (['idx'], {}), '(idx)\n', (473, 478), False, 'import torch\n'), ((527, 569), 'numpy.reshape', 'np.reshape', (['self.data[idx, 0:]', '(4, 40, 1)'], {}), '(self.data[idx, 0:], (4, 40, 1))\n', (537, 569), True, 'import numpy as np\n'), ((585, 603), 'torch.tensor', 'torch.tensor', (['data'], {}), '(data)\n', (597, 603), False, 'import torch\n'), ((840, 860), 'torch.max', 'torch.max', (['output', '(1)'], {}), '(output, 1)\n', (849, 860), False, 'import torch\n'), ((1289, 1314), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1312, 1314), False, 'import torch\n')]
""" Usage: load_pretrained_word_embeddings [--glove=GLOVE_FN] """ from docopt import docopt import numpy as np from word_index import Word_index import logging logging.basicConfig(level = logging.DEBUG) import sys sys.path.append("./common") from symbols import UNK_INDEX, UNK_SYMBOL, UNK_VALUE from keras.layers import Embedding, SpatialDropout1D, Lambda, Multiply, RepeatVector, Reshape from keras import backend as K from keras_bert import load_trained_model_from_checkpoint import codecs import tokenization as bert_tokenization class BertEmb: ''' provide the same interface as Glove ''' def __init__(self, bert_config_path, bert_checkpoint_path, bert_dict_path): self.bert_config_path = bert_config_path self.bert_checkpoint_path = bert_checkpoint_path logging.debug('loading bert from {} ...'.format(bert_config_path)) self.model = load_trained_model_from_checkpoint( bert_config_path, bert_checkpoint_path) self._load_vocab(bert_dict_path) logging.debug('done!') self.tokenizer = bert_tokenization.FullTokenizer( vocab_file=bert_dict_path, do_lower_case=True) self.unk_count = 0 self.total_count = 0 self.unk_words = {} # word -> count def _load_vocab(self, bert_dict_path): self.word_index = {} # bert has [UNK] so we don't need define it with codecs.open(bert_dict_path, 'r', 'utf8') as reader: for line in reader: token = line.strip() self.word_index[token] = len(self.word_index) def tokenize(self, tokens): ''' tokenize token sequence using bert tokenizer ''' bert_tokens = [] bert_mask = [] # the last token of the original token is 1, others are 0 for orig_token in tokens: new_tokens = self.tokenizer.tokenize(orig_token) bert_tokens.extend(new_tokens) bert_mask.extend([0] * (len(new_tokens) - 1)) bert_mask.append(1) return bert_tokens, bert_mask def get_word_index(self, word, lower=True): if lower: word = word.lower() if word not in self.word_index: self.unk_count += 1 if word not in self.unk_words: self.unk_words[word] = 0 self.unk_words[word] += 1 self.total_count += 1 return self.word_index[word] \ if (word in self.word_index) else self.word_index['[UNK]'] def get_keras_embedding(self, dropout=0, trainable=False, **kwargs): # TODO: trainable is not used def crop(dimension, start, end): # Crops (or slices) a Tensor on a given dimension from start to end # example : to crop tensor x[:, :, 5:10] # call slice(2, 5, 10) as you want to crop on the second dimension def func(x): if dimension == 0: return x[start: end] if dimension == 1: return x[:, start: end] if dimension == 2: return x[:, :, start: end] if dimension == 3: return x[:, :, :, start: end] if dimension == 4: return x[:, :, :, :, start: end] return Lambda(func) def emb(x): self.bert_output = crop(1, 1, -1)(self.model(x)) return SpatialDropout1D(dropout)(self.bert_output) return emb #return lambda x: SpatialDropout1D(dropout)(crop(1, 1, -1)(self.model(x))) def get_transformed_embedding(self, input_length, dropout=0): def emb(x): if not hasattr(self, 'bert_output'): raise Exception('must run bert first') cast_to_float32 = Lambda(lambda x: K.cast(x, 'float32')) x = Multiply()([self.bert_output, cast_to_float32(Reshape((input_length, 1), input_shape=(input_length,))(x))]) mean_layer = Lambda(lambda x: K.mean(x, axis=1), output_shape=lambda in_shape: (in_shape[0],) + in_shape[2:]) x = mean_layer(x) x = RepeatVector(input_length)(x) #x = SpatialDropout1D(dropout)(x) return x return emb class Glove: """ Stores pretrained word embeddings for GloVe, and outputs a Keras Embeddings layer. """ def __init__(self, fn, dim = None): """ Load a GloVe pretrained embeddings model. fn - Filename from which to load the embeddings dim - Dimension of expected word embeddings, used as verficiation, None avoids this check. """ self.fn = fn self.dim = dim logging.debug("Loading GloVe embeddings from: {} ...".format(self.fn)) self._load(self.fn) logging.debug("Done!") self.unk_count = 0 self.total_count = 0 self.unk_words = {} # word -> count def _load(self, fn): """ Load glove embedding from a given filename """ self.word_index = {UNK_SYMBOL : UNK_INDEX} emb = [] for line in open(fn): values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') if self.dim: assert(len(coefs) == self.dim) else: self.dim = len(coefs) # Record mapping from word to index self.word_index[word] = len(emb) + 1 emb.append(coefs) # Add UNK at the first index in the table self.emb = np.array([UNK_VALUE(self.dim)] + emb) # Set the vobabulary size self.vocab_size = len(self.emb) def tokenize(self, tokens): mask = [1] * len(tokens) new_tokens = [token.lower() for token in tokens] return new_tokens, mask def get_word_index(self, word, lower = True): """ Get the index of a given word (int). If word doesnt exists, returns UNK. lower - controls whether the word should be lowered before checking map """ if lower: word = word.lower() if word not in self.word_index: self.unk_count += 1 if word not in self.unk_words: self.unk_words[word] = 0 self.unk_words[word] += 1 self.total_count += 1 return self.word_index[word] \ if (word in self.word_index) else UNK_INDEX def get_embedding_matrix(self): """ Return an embedding matrix for use in a Keras Embeddding layer https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html word_index - Maps words in the dictionary to their index (one-hot encoding) """ return self.emb def get_keras_embedding(self, **args): """ Get a Keras Embedding layer, loading this embedding as pretrained weights The additional arguments given to this function are passed to the Keras Embbeding constructor. """ dp = 0 # no drop out if 'dropout' in args: dp = args['dropout'] del args['dropout'] emb = Embedding(self.vocab_size,self.dim, weights = [self.get_embedding_matrix()], **args) return lambda x: SpatialDropout1D(dp)(emb(x)) ''' return Embedding(self.vocab_size, self.dim, weights = [self.get_embedding_matrix()], **args) ''' if __name__ == "__main__": args = docopt(__doc__) if args["--glove"] is not None: glove_fn = args["--glove"] g = Glove(glove_fn) emb = g.get_keras_embedding() else: logging.info(__doc__) exit
[ "sys.path.append", "logging.debug", "keras_bert.load_trained_model_from_checkpoint", "logging.basicConfig", "docopt.docopt", "codecs.open", "tokenization.FullTokenizer", "numpy.asarray", "keras.layers.SpatialDropout1D", "logging.info", "keras.layers.Lambda", "keras.backend.mean", "symbols.UNK_VALUE", "keras.layers.Reshape", "keras.layers.RepeatVector", "keras.backend.cast", "keras.layers.Multiply" ]
[((165, 205), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (184, 205), False, 'import logging\n'), ((219, 246), 'sys.path.append', 'sys.path.append', (['"""./common"""'], {}), "('./common')\n", (234, 246), False, 'import sys\n'), ((7553, 7568), 'docopt.docopt', 'docopt', (['__doc__'], {}), '(__doc__)\n', (7559, 7568), False, 'from docopt import docopt\n'), ((893, 967), 'keras_bert.load_trained_model_from_checkpoint', 'load_trained_model_from_checkpoint', (['bert_config_path', 'bert_checkpoint_path'], {}), '(bert_config_path, bert_checkpoint_path)\n', (927, 967), False, 'from keras_bert import load_trained_model_from_checkpoint\n'), ((1030, 1052), 'logging.debug', 'logging.debug', (['"""done!"""'], {}), "('done!')\n", (1043, 1052), False, 'import logging\n'), ((1078, 1156), 'tokenization.FullTokenizer', 'bert_tokenization.FullTokenizer', ([], {'vocab_file': 'bert_dict_path', 'do_lower_case': '(True)'}), '(vocab_file=bert_dict_path, do_lower_case=True)\n', (1109, 1156), True, 'import tokenization as bert_tokenization\n'), ((4807, 4829), 'logging.debug', 'logging.debug', (['"""Done!"""'], {}), "('Done!')\n", (4820, 4829), False, 'import logging\n'), ((7724, 7745), 'logging.info', 'logging.info', (['__doc__'], {}), '(__doc__)\n', (7736, 7745), False, 'import logging\n'), ((1400, 1440), 'codecs.open', 'codecs.open', (['bert_dict_path', '"""r"""', '"""utf8"""'], {}), "(bert_dict_path, 'r', 'utf8')\n", (1411, 1440), False, 'import codecs\n'), ((3317, 3329), 'keras.layers.Lambda', 'Lambda', (['func'], {}), '(func)\n', (3323, 3329), False, 'from keras.layers import Embedding, SpatialDropout1D, Lambda, Multiply, RepeatVector, Reshape\n'), ((5212, 5251), 'numpy.asarray', 'np.asarray', (['values[1:]'], {'dtype': '"""float32"""'}), "(values[1:], dtype='float32')\n", (5222, 5251), True, 'import numpy as np\n'), ((3430, 3455), 'keras.layers.SpatialDropout1D', 'SpatialDropout1D', (['dropout'], {}), '(dropout)\n', (3446, 3455), False, 'from keras.layers import Embedding, SpatialDropout1D, Lambda, Multiply, RepeatVector, Reshape\n'), ((3852, 3862), 'keras.layers.Multiply', 'Multiply', ([], {}), '()\n', (3860, 3862), False, 'from keras.layers import Embedding, SpatialDropout1D, Lambda, Multiply, RepeatVector, Reshape\n'), ((4128, 4154), 'keras.layers.RepeatVector', 'RepeatVector', (['input_length'], {}), '(input_length)\n', (4140, 4154), False, 'from keras.layers import Embedding, SpatialDropout1D, Lambda, Multiply, RepeatVector, Reshape\n'), ((7285, 7305), 'keras.layers.SpatialDropout1D', 'SpatialDropout1D', (['dp'], {}), '(dp)\n', (7301, 7305), False, 'from keras.layers import Embedding, SpatialDropout1D, Lambda, Multiply, RepeatVector, Reshape\n'), ((3814, 3834), 'keras.backend.cast', 'K.cast', (['x', '"""float32"""'], {}), "(x, 'float32')\n", (3820, 3834), True, 'from keras import backend as K\n'), ((4002, 4019), 'keras.backend.mean', 'K.mean', (['x'], {'axis': '(1)'}), '(x, axis=1)\n', (4008, 4019), True, 'from keras import backend as K\n'), ((5588, 5607), 'symbols.UNK_VALUE', 'UNK_VALUE', (['self.dim'], {}), '(self.dim)\n', (5597, 5607), False, 'from symbols import UNK_INDEX, UNK_SYMBOL, UNK_VALUE\n'), ((3898, 3953), 'keras.layers.Reshape', 'Reshape', (['(input_length, 1)'], {'input_shape': '(input_length,)'}), '((input_length, 1), input_shape=(input_length,))\n', (3905, 3953), False, 'from keras.layers import Embedding, SpatialDropout1D, Lambda, Multiply, RepeatVector, Reshape\n')]
from sensors.sensor import Sensor from matplotlib import pyplot as plt from PIL import Image import numpy as np import pygame import io class OverviewSensor(Sensor): def __init__(self, **kwargs): super(OverviewSensor, self).__init__(**kwargs) self.name = 'overview' def get_sensory_input(self, env): height = env.height width = env.width data = pygame.image.tostring(env.screen, 'RGB') pil_image = Image.frombytes('RGB', (width, height), data) image = np.asarray(pil_image.convert('RGB')) if self.display: self.update_display(env, image) env.agent.state[self.name] = image return image def update_display(self, env, image): # Since what this sensor sees is the overview of the 2D environment, it be already displayed if not env.display: height = env.height width = env.width if self.figure is None: self.matrix = np.zeros((height, width, 3)) plt.figure() self.figure = plt.imshow(self.matrix, interpolation=None) plt.show(block=False) self.matrix = image / 255 self.figure.set_data(self.matrix) plt.draw() def shape(self, env): return env.width, env.height, 3
[ "matplotlib.pyplot.show", "matplotlib.pyplot.imshow", "numpy.zeros", "pygame.image.tostring", "matplotlib.pyplot.draw", "matplotlib.pyplot.figure", "PIL.Image.frombytes" ]
[((398, 438), 'pygame.image.tostring', 'pygame.image.tostring', (['env.screen', '"""RGB"""'], {}), "(env.screen, 'RGB')\n", (419, 438), False, 'import pygame\n'), ((459, 504), 'PIL.Image.frombytes', 'Image.frombytes', (['"""RGB"""', '(width, height)', 'data'], {}), "('RGB', (width, height), data)\n", (474, 504), False, 'from PIL import Image\n'), ((1263, 1273), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (1271, 1273), True, 'from matplotlib import pyplot as plt\n'), ((996, 1024), 'numpy.zeros', 'np.zeros', (['(height, width, 3)'], {}), '((height, width, 3))\n', (1004, 1024), True, 'import numpy as np\n'), ((1041, 1053), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1051, 1053), True, 'from matplotlib import pyplot as plt\n'), ((1084, 1127), 'matplotlib.pyplot.imshow', 'plt.imshow', (['self.matrix'], {'interpolation': 'None'}), '(self.matrix, interpolation=None)\n', (1094, 1127), True, 'from matplotlib import pyplot as plt\n'), ((1144, 1165), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (1152, 1165), True, 'from matplotlib import pyplot as plt\n')]
import numpy as np from matplotlib import pyplot as plt from ..Xfit.MCMC_straight_line import mcmc_sl from ..Xfit.fit_basic import fit_basic from ..Xfit.FitPoissonGamma import fit_pg from ..Xplot.niceplot import niceplot from matplotlib.offsetbox import AnchoredText from matplotlib import ticker from ..misc.running_mean import running_mean from ..misc.resample import resample from matplotlib.colors import LogNorm from matplotlib import ticker def rebin_array(arr, maxlen=500): """rebin array and reduce its length to maxlen for generating plots """ l = arr.shape if l[0] > maxlen: arr = arr[:-(l[0]%maxlen)] arr = arr.reshape(maxlen, -1, *l[1:]) arr = arr.mean(1) return arr def plot_contrast_vs_images(x, y, ax, label=None, marker='o', color='b', ind_avr=False, alpha=0.5): """ """ ax.plot(x, y, ms=3, label=label, linestyle='', marker=marker, color=color, alpha=alpha) ax.set_xlabel('image number') ax.set_ylabel(r'$\beta$') if ind_avr: arrow(x.max(), y.mean(), ax, color) return True def plot_contrast_histogram(x, ax, label=None, color='b', ind_avr=False): """ """ ax.hist(x, bins=100, density=True, histtype='step', label=label, color=color,) ax.set_xlabel(r'$\beta$') ax.set_ylabel(r'$P(\beta)$') if ind_avr: xx = np.ones(2)*x.mean() h = np.histogram(x, bins=100, density=True) de = np.diff(h[1][:2])/2 e = h[1][:-1] + de ymax = h[0][np.argmin(np.abs(xx[0]-h[1]+0.5*np.mean(np.diff(h[1]))))] yy = np.array([0,ymax]) ax.plot(xx,yy,'--', color=color) return True def plot_contrast_running_average(x, y, dy, ax, label=None, marker='o', color='b', ind_avr=False, alpha=0.5): """ """ ax.errorbar(x, y, dy, ms=3, label=label, fmt=marker, color=color, alpha=alpha) ax.set_xlabel('image number') ax.set_ylabel(r'$\beta$ (run. avr.)') return True def plot_kbar_vs_images(x, y, ax, label=None, marker='o', color='b', npix=False, ind_avr=False, alpha=0.5): """ """ if npix: y = y * npix ylab = r'$k_{tot}$' else: ylab = r'$\langle k\rangle$' ax.plot(x, y, label=label, linestyle='', markersize=3, marker=marker, color=color, alpha=alpha) ax.set_xlabel('image number') ax.set_ylabel(ylab) ax.set_yscale('log') if ind_avr: arrow(x.max(), y.mean(), ax, color) return True def plot_poisson_gamma(x, y, dy, ax, label=None, marker='o', color='b', ind_avr=False): """ """ ax.errorbar(x, y, yerr=dy, label=label, ms=3, ls='', marker=marker, color=color) ax.set_xlabel('k') ax.set_ylabel(r'$P(k)$') ax.set_yscale('log') return True def plot_contrast_kbar_correlation(x, y, ax, label=None, cmap='inferno', npix=False, ind_avr=False, alpha=0.5): """ """ if npix: x = x * npix xlab = r'$k_{tot}$' else: xlab = r'$\langle k\rangle$' ax.hist2d(x, y, bins=50, density=True, norm=LogNorm(), cmap=cmap, label=label, alpha=alpha) ax.set_xlabel(xlab) ax.set_ylabel(r'$\beta$') return True def plot_contrast_vs_kbar(x, y, ax, label=None, marker='o', color='b', npix=False, ind_avr=False, alpha=0.5): """ """ if npix: x = x * npix xlab = r'$k_{tot}$' else: xlab = r'$\langle k\rangle$' ax.plot(x, y, linestyle='', marker=marker, markersize=2, color=color, label=label, alpha=alpha) ax.set_xlabel(xlab) ax.set_ylabel(r'$\beta$') return True def plot_prob_vs_kbar(x, y, ax, probk, label=None, marker='o', color='b', npix=False, ind_avr=False, alpha=0.5): """ """ if npix: x = x * npix y = y * npix xlab = r'$k_{tot}$' ylab = r'n(%d)' % probk else: ylab = r'P(%d)' % probk xlab = r'$\langle k\rangle$' ax.plot(x, y, linestyle='', marker=marker, markersize=2, color=color, label=label, alpha=alpha) ax.set_xlabel(xlab) ax.set_ylabel(ylab) return True def arrow(x, y, ax, color): c1 = (x,y) c2 = (x*1.1,y) arprp = dict(arrowstyle="-|>", connectionstyle='arc3', color=color,) ax.annotate("", xy=c1, xycoords='data', xytext=c2, textcoords='data', arrowprops=arprp) def plot_quicklook(obj, plot, idx, nq, ax=None, c0=0, ratio=0, maxlen=500, format_ticks=False, ind_avr=True, lfs=10, total_counts=False, return_respfnc=False, probk=2, fit_pg=True, alpha=0.5, **kwargs): """Plot quick overview of speckle contrast, mean photon counts and Probability Distribution """ contrast = obj.contrast[0][idx] prob = obj.prob[0][idx][1:,1:] for i,j in enumerate(nq): ci = i + c0*len(nq) # index for colors and markers color = obj.colors[ci] marker = obj.markers[idx%len(obj.markers)] if total_counts: npix = obj.Xana.setup['gproi'][j] else: npix = False if i == 0: labstr = 't_exp: {:.2e}s'.format(obj.t_exposure[idx]) else: labstr = None b = contrast[j,ratio+1] xv_b = np.where(~b.mask)[0] x_b = rebin_array(xv_b, maxlen) br = rebin_array(b[xv_b], maxlen) bt = running_mean(b[xv_b]) bt = rebin_array(bt, maxlen) kb = contrast[j,0] xv_kb = np.where(~kb.mask)[0] kb = rebin_array(kb[xv_b], maxlen) p = prob[j,probk+1][xv_b] pp = np.mean(prob[j,1:],-1) ind = np.where(pp)[0] dpp = np.std(prob[j,1:],-1) k = np.arange(pp.size) if plot == 'bvi': labmean = '%.2f' % br.mean() plot_contrast_vs_images(x_b, br, ax, labmean, marker, color, ind_avr, alpha) elif plot == 'pbb': plot_contrast_histogram(b[~b.mask], ax, labstr, color, ind_avr) elif plot == 'brvi': plot_contrast_running_average(x_b, bt[:,0], bt[:,1], ax, labstr, marker, color, alpha) elif plot == 'kbvi': labmean = '%.3g' % kb.mean() plot_kbar_vs_images(x_b, kb, ax, labmean, marker, color, npix, ind_avr, alpha) elif plot == 'bvkb': plot_contrast_vs_kbar(kb, br, ax, labstr, marker, color, npix, alpha) elif plot == 'pbk': plot_poisson_gamma(k[ind], pp[ind], dpp[ind], ax, labstr, marker, color) # if fit_pg: # pb_pg = np.hstack((np.zeros(k[ind].size))) # fitpg() elif plot == 'pkvkb': plot_prob_vs_kbar(kb, p, ax, probk, labstr, marker, color, npix, alpha) if ind_avr: ax.legend(loc='best') niceplot(ax, autoscale=True, grid=False, lfs=lfs) # def plot_poisson_gamma(obj, idx, nq, dofit=True): # """Show the photon statistics by plotting the Poisson-Gamma distribution # """ # if data == 'original' or self.corrFuncRescaled is None: # corrFunc = list(self.corrFunc) # elif data == 'rescaled': # corrFunc = list(self.corrFuncRescaled) # else: # raise ValueError('No usable correlation data defined.') # if nq is None: # pass # elif type(nq) == int: # self.nq = np.arange(nq) # else: # self.nq = nq # if color_mode == 0: # color_multiplier, color_repeater = self.nq.size, len(corrFunc) # elif color_mode == 1: # color_multiplier, color_repeater = self.nq.size*len(corrFunc), 1 # self.update_colors(cmap, color_multiplier, color_repeater) # self.update_markers( len(corrFunc), change_marker) # self.g2plotl = [[]] * len(corrFunc) # self.pars = [[]] * len(corrFunc) # self.fit_result = [[[] for i in range(self.nq.size)]] * len(corrFunc) # possible bug: will cause # # wrong references # ci = 0 # for j, (cfi, dcfi) in enumerate(corrFunc): # rates = np.zeros((self.nq.size, 3*nmodes+3, 2)) # ti = cfi[1:,0] # for i,qi in enumerate(self.nq): # if i == 0: # cf_id = self.db_id[j] # else: # cf_id = None # res = fitg2(ti, cfi[1:,qi+1], err=dcfi[1:,qi+1], qv=self.Xana.setup['qv'][qi], # ax=ax, color=self.colors[ci], dofit=True, # marker=self.markers[j%len(self.markers)], cf_id=cf_id, # modes=nmodes, **kwargs) # self.fit_result[j][i] = res[2:4] # self.g2plotl[j].append(list(itertools.chain.from_iterable(res[4]))) # if dofit: # if i == 0: # db_tmp = self.init_pars(list(res[2].params.keys())) # entry = [cfi[0,qi+1], *res[0].flatten(), *res[1]] # db_tmp.loc[i] = entry # else: # db_tmp = 0 # ci += 1 # self.pars[j] = db_tmp # plt.tight_layout() # for j,ei in zip(tind,extf[tind]): # nn = np.ceil(len(roi_list)/2) # f, ax = plt.subplots(int(nn), 2, figsize=(9,nn*4)) # f.suptitle('exposure time = {:.2g}s'.format(ei)) # ax = ax.ravel() # for l,roii in enumerate(roi_list): # kv, kb, dkb, pba, dpba = selectdata(xsvs, ei, t_int=ext, dxsvs=xsvs_err, roi_idx=roii, **psel) # out = fpg.fitpg_iterative(kb, pba, kv, pberr=1/pba, **pfit) # M[roii,0,:] = qv[roii] # M[roii,j+1,:3] = (out[0],out[1],np.mean(out[2])) # plotpoissongamma(out[2], pba, kv, out[0], dkb, dpba*0, out[1], # confint=(1/np.mean(cnorm[roii+2,np.where(cnorm[0,1:]==ei)]),), # q=qv[roii], ax=ax[l], cmap='Set1',**pfit) # if doplot: # plt.tight_layout()
[ "numpy.std", "numpy.ones", "numpy.histogram", "numpy.mean", "numpy.array", "numpy.arange", "numpy.diff", "matplotlib.colors.LogNorm", "numpy.where" ]
[((1376, 1415), 'numpy.histogram', 'np.histogram', (['x'], {'bins': '(100)', 'density': '(True)'}), '(x, bins=100, density=True)\n', (1388, 1415), True, 'import numpy as np\n'), ((1567, 1586), 'numpy.array', 'np.array', (['[0, ymax]'], {}), '([0, ymax])\n', (1575, 1586), True, 'import numpy as np\n'), ((5477, 5501), 'numpy.mean', 'np.mean', (['prob[j, 1:]', '(-1)'], {}), '(prob[j, 1:], -1)\n', (5484, 5501), True, 'import numpy as np\n'), ((5544, 5567), 'numpy.std', 'np.std', (['prob[j, 1:]', '(-1)'], {}), '(prob[j, 1:], -1)\n', (5550, 5567), True, 'import numpy as np\n'), ((5578, 5596), 'numpy.arange', 'np.arange', (['pp.size'], {}), '(pp.size)\n', (5587, 5596), True, 'import numpy as np\n'), ((1344, 1354), 'numpy.ones', 'np.ones', (['(2)'], {}), '(2)\n', (1351, 1354), True, 'import numpy as np\n'), ((1429, 1446), 'numpy.diff', 'np.diff', (['h[1][:2]'], {}), '(h[1][:2])\n', (1436, 1446), True, 'import numpy as np\n'), ((3007, 3016), 'matplotlib.colors.LogNorm', 'LogNorm', ([], {}), '()\n', (3014, 3016), False, 'from matplotlib.colors import LogNorm\n'), ((5144, 5161), 'numpy.where', 'np.where', (['(~b.mask)'], {}), '(~b.mask)\n', (5152, 5161), True, 'import numpy as np\n'), ((5364, 5382), 'numpy.where', 'np.where', (['(~kb.mask)'], {}), '(~kb.mask)\n', (5372, 5382), True, 'import numpy as np\n'), ((5514, 5526), 'numpy.where', 'np.where', (['pp'], {}), '(pp)\n', (5522, 5526), True, 'import numpy as np\n'), ((1536, 1549), 'numpy.diff', 'np.diff', (['h[1]'], {}), '(h[1])\n', (1543, 1549), True, 'import numpy as np\n')]
from typing import Optional import numpy as np from xarray import Dataset from .api import create_genotype_call_dataset from .utils import split_array_chunks def simulate_genotype_call_dataset( n_variant: int, n_sample: int, n_ploidy: int = 2, n_allele: int = 2, n_contig: int = 1, seed: Optional[int] = None, ) -> Dataset: """Simulate genotype calls and variant/sample data. Note that the data simulated by this function has no biological interpretation and that summary statistics or other methods applied to it will produce meaningless results. This function is primarily a convenience on generating `Dataset` containers so quantities of interest should be overwritten, where appropriate, within the context of a more specific application. Parameters ---------- n_variant : int Number of variants to simulate n_sample : int Number of samples to simulate n_ploidy : int Number of chromosome copies in each sample n_allele: int Number of alleles to simulate n_contig : int, optional Number of contigs to partition variants with, controlling values in `variant_contig`. Values will all be 0 by default with `n_contig` == 1. seed : int, optional Seed for random number generation Returns ------- Dataset Dataset from `sgkit.create_genotype_call_dataset`. """ rs = np.random.RandomState(seed=seed) call_genotype = rs.randint( 0, n_allele, size=(n_variant, n_sample, n_ploidy), dtype=np.int8 ) contig_size = split_array_chunks(n_variant, n_contig) contig = np.repeat(np.arange(n_contig), contig_size) contig_names = np.unique(contig) position = np.concatenate([np.arange(contig_size[i]) for i in range(n_contig)]) assert position.size == contig.size alleles = rs.choice(["A", "C", "G", "T"], size=(n_variant, n_allele)).astype("S") sample_id = np.array([f"S{i}" for i in range(n_sample)]) return create_genotype_call_dataset( variant_contig_names=list(contig_names), variant_contig=contig, variant_position=position, variant_alleles=alleles, sample_id=sample_id, call_genotype=call_genotype, )
[ "numpy.unique", "numpy.arange", "numpy.random.RandomState" ]
[((1451, 1483), 'numpy.random.RandomState', 'np.random.RandomState', ([], {'seed': 'seed'}), '(seed=seed)\n', (1472, 1483), True, 'import numpy as np\n'), ((1729, 1746), 'numpy.unique', 'np.unique', (['contig'], {}), '(contig)\n', (1738, 1746), True, 'import numpy as np\n'), ((1676, 1695), 'numpy.arange', 'np.arange', (['n_contig'], {}), '(n_contig)\n', (1685, 1695), True, 'import numpy as np\n'), ((1778, 1803), 'numpy.arange', 'np.arange', (['contig_size[i]'], {}), '(contig_size[i])\n', (1787, 1803), True, 'import numpy as np\n')]
import numpy as np import input_data from sklearn.utils import shuffle np.random.seed(9999) mnist = input_data.read_data_sets('../MNIST_data', one_hot=True) X_train = mnist.train.images t_train = mnist.train.labels X_test = mnist.test.images t_test = mnist.test.labels X_train, t_train = shuffle(X_train, t_train) # Model W1 = np.random.randn(784, 100) * 0.01 W2 = np.random.randn(100, 10) * 0.01 def softmax(x): ex = np.exp(x - np.max(x, axis=1)[:, None]) return ex / ex.sum(axis=1)[:, None] def NLL(z, t): return -np.mean(np.sum(t*np.log(softmax(z) + eps), axis=1)) m = 200 # mb size alpha = 0.001 rho1 = 0.9 # Decay for F rho2 = 0.999 # Momentum s1 = np.zeros_like(W1) r1 = np.zeros_like(W1) s2 = np.zeros_like(W2) r2 = np.zeros_like(W2) eps = 1e-8 # Visualization stuffs losses = [] # Training for i in range(1, 5000): X_mb, t_mb = mnist.train.next_batch(m) t_mb_idx = t_mb.argmax(axis=1) # Forward a = X_mb @ W1 h = np.maximum(a, 0) z = h @ W2 loss = NLL(z, t_mb) # Loss if (i-1) % 100 == 0: print(f'Iter-{i}; Loss: {loss:.3f}') losses.append(loss if i == 1 else 0.99*losses[-1] + 0.01*loss) m = z.shape[0] # Gradients dz = softmax(z) dz[range(dz.shape[0]), t_mb_idx] -= 1 # m*10 dz /= m dW2 = h.T @ dz # 100*10 dh = dz @ W2.T # m*100 dh[a < 0] = 0 # ReLU dW1 = X_mb.T @ dh # 784*100 # Moments s1 = rho1*s1 + (1-rho1)*dW1 r1 = rho2*r1 + (1-rho2)*(dW1*dW1) s2 = rho1*s2 + (1-rho1)*dW2 r2 = rho2*r2 + (1-rho2)*(dW2*dW2) # r = rho2*r + (1-rho2)*(m*g*g) # Corresponds to diagonal approx. of FIM # Bias correction s1_ = s1/(1-rho1**i) r1_ = r1/(1-rho2**i) s2_ = s2/(1-rho1**i) r2_ = r2/(1-rho2**i) # Step delta1 = s1_ / (np.sqrt(r1_) + eps) delta2 = s2_ / (np.sqrt(r2_) + eps) # delta = s_ / (r_ + eps) # Inverse of diagonal FIM # W = W - alpha * g # SGD update W1 = W1 - alpha * delta1 W2 = W2 - alpha * delta2 y = softmax(np.maximum(X_test @ W1, 0) @ W2).argmax(axis=1) acc = np.mean(y == t_test.argmax(axis=1)) print(f'Accuracy: {acc:.3f}') np.save('adam_losses.npy', losses)
[ "input_data.read_data_sets", "numpy.save", "numpy.zeros_like", "numpy.random.seed", "numpy.maximum", "numpy.random.randn", "numpy.max", "sklearn.utils.shuffle", "numpy.sqrt" ]
[((73, 93), 'numpy.random.seed', 'np.random.seed', (['(9999)'], {}), '(9999)\n', (87, 93), True, 'import numpy as np\n'), ((103, 159), 'input_data.read_data_sets', 'input_data.read_data_sets', (['"""../MNIST_data"""'], {'one_hot': '(True)'}), "('../MNIST_data', one_hot=True)\n", (128, 159), False, 'import input_data\n'), ((294, 319), 'sklearn.utils.shuffle', 'shuffle', (['X_train', 't_train'], {}), '(X_train, t_train)\n', (301, 319), False, 'from sklearn.utils import shuffle\n'), ((682, 699), 'numpy.zeros_like', 'np.zeros_like', (['W1'], {}), '(W1)\n', (695, 699), True, 'import numpy as np\n'), ((705, 722), 'numpy.zeros_like', 'np.zeros_like', (['W1'], {}), '(W1)\n', (718, 722), True, 'import numpy as np\n'), ((728, 745), 'numpy.zeros_like', 'np.zeros_like', (['W2'], {}), '(W2)\n', (741, 745), True, 'import numpy as np\n'), ((751, 768), 'numpy.zeros_like', 'np.zeros_like', (['W2'], {}), '(W2)\n', (764, 768), True, 'import numpy as np\n'), ((2151, 2185), 'numpy.save', 'np.save', (['"""adam_losses.npy"""', 'losses'], {}), "('adam_losses.npy', losses)\n", (2158, 2185), True, 'import numpy as np\n'), ((334, 359), 'numpy.random.randn', 'np.random.randn', (['(784)', '(100)'], {}), '(784, 100)\n', (349, 359), True, 'import numpy as np\n'), ((372, 396), 'numpy.random.randn', 'np.random.randn', (['(100)', '(10)'], {}), '(100, 10)\n', (387, 396), True, 'import numpy as np\n'), ((972, 988), 'numpy.maximum', 'np.maximum', (['a', '(0)'], {}), '(a, 0)\n', (982, 988), True, 'import numpy as np\n'), ((1802, 1814), 'numpy.sqrt', 'np.sqrt', (['r1_'], {}), '(r1_)\n', (1809, 1814), True, 'import numpy as np\n'), ((1842, 1854), 'numpy.sqrt', 'np.sqrt', (['r2_'], {}), '(r2_)\n', (1849, 1854), True, 'import numpy as np\n'), ((442, 459), 'numpy.max', 'np.max', (['x'], {'axis': '(1)'}), '(x, axis=1)\n', (448, 459), True, 'import numpy as np\n'), ((2030, 2056), 'numpy.maximum', 'np.maximum', (['(X_test @ W1)', '(0)'], {}), '(X_test @ W1, 0)\n', (2040, 2056), True, 'import numpy as np\n')]
import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from koala import graph_color, plotting from koala import graph_color def rotate(vector, angle): rm = np.array([ [np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)] ]) return rm @ vector def create_peterson_graph(): """ Returns a peterson graph, one of the simplest (but non-planar) cubic graphs that is not three-colorable. Returns: vertices: np.array shape (nvertices, ndim) - A list of the positions of all the vertices that make up the graph adjacency: np.array shape (nedges, 2) - A list of all edges in the graph, containing the indices of connected vertices """ points_outer = np.tile(np.array([0, 0.45]), (5, 1)) points_inner = np.tile(np.array([0, 0.27]), (5, 1)) angles = np.linspace(0, 2*np.pi, 5, endpoint=False) for n, a in enumerate(angles): points_outer[n, :] = rotate(points_outer[n, :], a) points_inner[n, :] = rotate(points_inner[n, :], a) vertices = np.concatenate((points_outer, points_inner)) vertices += 0.5 outer_ring_adj = np.concatenate((np.arange(0, 5), np.roll( np.arange(0, 5), -1))).reshape((-1, 2), order='F') between_ring_adj = np.concatenate((np.arange(0, 5), np.arange(5, 10))).reshape((-1, 2), order='F') inner_ring_adj = np.concatenate((np.arange(5, 10), np.roll( np.arange(5, 10), -2))).reshape((-1, 2), order='F') adjacency = np.concatenate( (outer_ring_adj, between_ring_adj, inner_ring_adj)) return vertices, adjacency def create_tutte_graph(): """ Returns a tutte graph, a cubic graph with no Hamiltonian cycle, but is three-colorable. Returns: vertices: np.array shape (nvertices, ndim) - A list of the positions of all the vertices that make up the graph adjacency: np.array shape (nedges, 2) - A list of all edges in the graph, containing the indices of connected vertices """ vertices = np.array([ [0.518, 0.586], [0.294, 0.986], [0.504, 0.99], [0.69, 0.99], [0.998, 0.616], [0.872, 0.374], [0.746, 0.152], [0.024, 0.558], [0.17, 0.382], [0.334, 0.15], [0.454, 0.54], [0.518, 0.67], [0.592, 0.53], [0.35, 0.548], [0.436, 0.484], [0.342, 0.502], [0.296, 0.478], [0.336, 0.418], [0.408, 0.404], [0.332, 0.93], [0.214, 0.502], [0.138, 0.558], [0.226, 0.43], [0.282, 0.38], [0.368, 0.272], [0.394, 0.822], [0.464, 0.732], [0.638, 0.894], [0.55, 0.734], [0.696, 0.274], [0.62, 0.482], [0.658, 0.55], [0.768, 0.568], [0.906, 0.6], [0.508, 0.774], [0.674, 0.5], [0.508, 0.83], [0.728, 0.482], [0.424, 0.864], [0.556, 0.894], [0.414, 0.922], [0.506, 0.934], [0.784, 0.506], [0.842, 0.482], [0.76, 0.376], [0.824, 0.412] ]) avg_pos = np.sum(vertices, axis = 0)/vertices.shape[0] vertices -= avg_pos - np.array([0.5,0.5]) adjacency = np.array([ [1 , 11], [1 , 12], [1 , 13], [2 , 3], [2 , 8], [2 , 20], [3 , 4], [3 , 42], [4 , 5], [4 , 28], [ 5 , 6], [ 5 , 34], [ 6 , 7], [ 6 , 46], [ 7 , 10], [ 7 , 30], [ 8 , 9], [ 8 , 22], [ 9 , 10], [ 9 , 23], [ 10 , 25], [ 11 , 14], [ 11 , 15], [ 12 , 27], [ 12 , 29], [ 13 , 31], [ 13 , 32], [ 14 , 16], [ 14 , 22], [ 15 , 16], [ 15 , 19], [ 16 , 17], [ 17 , 18], [ 17 , 21], [ 18 , 19], [ 18 , 24], [ 19 , 25], [ 20 , 26], [ 20 , 41], [ 21 , 22], [ 21 , 23], [ 23 , 24], [ 24 , 25], [ 26 , 27], [ 26 , 39], [ 27 , 35], [ 28 , 29], [ 28 , 40], [ 29 , 35], [ 30 , 31], [ 30 , 45], [ 31 , 36], [ 32 , 33], [ 32 , 36], [ 33 , 34], [ 33 , 43], [ 34 , 44], [ 35 , 37], [ 36 , 38], [ 37 , 39], [ 37 , 40], [ 38 , 43], [ 38 , 45], [ 39 , 41], [ 40 , 42], [ 41 , 42], [ 43 , 44], [ 44 , 46], [ 45 , 46] ]) adjacency -= 1 return vertices, adjacency vertices, adjacency = create_tutte_graph() #plotting.plot_lattice(vertices, adjacency, adjacency_crossing= np.zeros(adjacency.shape)) #plt.show() out = graph_color.edge_color(adjacency, 3) color_dict = {0: 'r', 1: 'y', 2: 'b'} edgecolors = np.array([color_dict[c] for c in out]) plotting.plot_lattice(vertices, adjacency, adjacency_crossing=np.zeros(adjacency.shape), edge_colors=edgecolors) plt.show()
[ "matplotlib.pyplot.show", "numpy.sum", "numpy.zeros", "numpy.sin", "numpy.array", "numpy.arange", "numpy.linspace", "koala.graph_color.edge_color", "numpy.cos", "numpy.concatenate" ]
[((4982, 5018), 'koala.graph_color.edge_color', 'graph_color.edge_color', (['adjacency', '(3)'], {}), '(adjacency, 3)\n', (5004, 5018), False, 'from koala import graph_color\n'), ((5070, 5108), 'numpy.array', 'np.array', (['[color_dict[c] for c in out]'], {}), '([color_dict[c] for c in out])\n', (5078, 5108), True, 'import numpy as np\n'), ((5222, 5232), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5230, 5232), True, 'from matplotlib import pyplot as plt\n'), ((878, 922), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(5)'], {'endpoint': '(False)'}), '(0, 2 * np.pi, 5, endpoint=False)\n', (889, 922), True, 'import numpy as np\n'), ((1090, 1134), 'numpy.concatenate', 'np.concatenate', (['(points_outer, points_inner)'], {}), '((points_outer, points_inner))\n', (1104, 1134), True, 'import numpy as np\n'), ((1560, 1626), 'numpy.concatenate', 'np.concatenate', (['(outer_ring_adj, between_ring_adj, inner_ring_adj)'], {}), '((outer_ring_adj, between_ring_adj, inner_ring_adj))\n', (1574, 1626), True, 'import numpy as np\n'), ((2081, 2855), 'numpy.array', 'np.array', (['[[0.518, 0.586], [0.294, 0.986], [0.504, 0.99], [0.69, 0.99], [0.998, 0.616\n ], [0.872, 0.374], [0.746, 0.152], [0.024, 0.558], [0.17, 0.382], [\n 0.334, 0.15], [0.454, 0.54], [0.518, 0.67], [0.592, 0.53], [0.35, 0.548\n ], [0.436, 0.484], [0.342, 0.502], [0.296, 0.478], [0.336, 0.418], [\n 0.408, 0.404], [0.332, 0.93], [0.214, 0.502], [0.138, 0.558], [0.226, \n 0.43], [0.282, 0.38], [0.368, 0.272], [0.394, 0.822], [0.464, 0.732], [\n 0.638, 0.894], [0.55, 0.734], [0.696, 0.274], [0.62, 0.482], [0.658, \n 0.55], [0.768, 0.568], [0.906, 0.6], [0.508, 0.774], [0.674, 0.5], [\n 0.508, 0.83], [0.728, 0.482], [0.424, 0.864], [0.556, 0.894], [0.414, \n 0.922], [0.506, 0.934], [0.784, 0.506], [0.842, 0.482], [0.76, 0.376],\n [0.824, 0.412]]'], {}), '([[0.518, 0.586], [0.294, 0.986], [0.504, 0.99], [0.69, 0.99], [\n 0.998, 0.616], [0.872, 0.374], [0.746, 0.152], [0.024, 0.558], [0.17, \n 0.382], [0.334, 0.15], [0.454, 0.54], [0.518, 0.67], [0.592, 0.53], [\n 0.35, 0.548], [0.436, 0.484], [0.342, 0.502], [0.296, 0.478], [0.336, \n 0.418], [0.408, 0.404], [0.332, 0.93], [0.214, 0.502], [0.138, 0.558],\n [0.226, 0.43], [0.282, 0.38], [0.368, 0.272], [0.394, 0.822], [0.464, \n 0.732], [0.638, 0.894], [0.55, 0.734], [0.696, 0.274], [0.62, 0.482], [\n 0.658, 0.55], [0.768, 0.568], [0.906, 0.6], [0.508, 0.774], [0.674, 0.5\n ], [0.508, 0.83], [0.728, 0.482], [0.424, 0.864], [0.556, 0.894], [\n 0.414, 0.922], [0.506, 0.934], [0.784, 0.506], [0.842, 0.482], [0.76, \n 0.376], [0.824, 0.412]])\n', (2089, 2855), True, 'import numpy as np\n'), ((3348, 4065), 'numpy.array', 'np.array', (['[[1, 11], [1, 12], [1, 13], [2, 3], [2, 8], [2, 20], [3, 4], [3, 42], [4, 5\n ], [4, 28], [5, 6], [5, 34], [6, 7], [6, 46], [7, 10], [7, 30], [8, 9],\n [8, 22], [9, 10], [9, 23], [10, 25], [11, 14], [11, 15], [12, 27], [12,\n 29], [13, 31], [13, 32], [14, 16], [14, 22], [15, 16], [15, 19], [16, \n 17], [17, 18], [17, 21], [18, 19], [18, 24], [19, 25], [20, 26], [20, \n 41], [21, 22], [21, 23], [23, 24], [24, 25], [26, 27], [26, 39], [27, \n 35], [28, 29], [28, 40], [29, 35], [30, 31], [30, 45], [31, 36], [32, \n 33], [32, 36], [33, 34], [33, 43], [34, 44], [35, 37], [36, 38], [37, \n 39], [37, 40], [38, 43], [38, 45], [39, 41], [40, 42], [41, 42], [43, \n 44], [44, 46], [45, 46]]'], {}), '([[1, 11], [1, 12], [1, 13], [2, 3], [2, 8], [2, 20], [3, 4], [3, \n 42], [4, 5], [4, 28], [5, 6], [5, 34], [6, 7], [6, 46], [7, 10], [7, 30\n ], [8, 9], [8, 22], [9, 10], [9, 23], [10, 25], [11, 14], [11, 15], [12,\n 27], [12, 29], [13, 31], [13, 32], [14, 16], [14, 22], [15, 16], [15, \n 19], [16, 17], [17, 18], [17, 21], [18, 19], [18, 24], [19, 25], [20, \n 26], [20, 41], [21, 22], [21, 23], [23, 24], [24, 25], [26, 27], [26, \n 39], [27, 35], [28, 29], [28, 40], [29, 35], [30, 31], [30, 45], [31, \n 36], [32, 33], [32, 36], [33, 34], [33, 43], [34, 44], [35, 37], [36, \n 38], [37, 39], [37, 40], [38, 43], [38, 45], [39, 41], [40, 42], [41, \n 42], [43, 44], [44, 46], [45, 46]])\n', (3356, 4065), True, 'import numpy as np\n'), ((779, 798), 'numpy.array', 'np.array', (['[0, 0.45]'], {}), '([0, 0.45])\n', (787, 798), True, 'import numpy as np\n'), ((835, 854), 'numpy.array', 'np.array', (['[0, 0.27]'], {}), '([0, 0.27])\n', (843, 854), True, 'import numpy as np\n'), ((3240, 3264), 'numpy.sum', 'np.sum', (['vertices'], {'axis': '(0)'}), '(vertices, axis=0)\n', (3246, 3264), True, 'import numpy as np\n'), ((3311, 3331), 'numpy.array', 'np.array', (['[0.5, 0.5]'], {}), '([0.5, 0.5])\n', (3319, 3331), True, 'import numpy as np\n'), ((5171, 5196), 'numpy.zeros', 'np.zeros', (['adjacency.shape'], {}), '(adjacency.shape)\n', (5179, 5196), True, 'import numpy as np\n'), ((232, 245), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (238, 245), True, 'import numpy as np\n'), ((273, 286), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (279, 286), True, 'import numpy as np\n'), ((288, 301), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (294, 301), True, 'import numpy as np\n'), ((248, 261), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (254, 261), True, 'import numpy as np\n'), ((1193, 1208), 'numpy.arange', 'np.arange', (['(0)', '(5)'], {}), '(0, 5)\n', (1202, 1208), True, 'import numpy as np\n'), ((1317, 1332), 'numpy.arange', 'np.arange', (['(0)', '(5)'], {}), '(0, 5)\n', (1326, 1332), True, 'import numpy as np\n'), ((1372, 1388), 'numpy.arange', 'np.arange', (['(5)', '(10)'], {}), '(5, 10)\n', (1381, 1388), True, 'import numpy as np\n'), ((1456, 1472), 'numpy.arange', 'np.arange', (['(5)', '(10)'], {}), '(5, 10)\n', (1465, 1472), True, 'import numpy as np\n'), ((1227, 1242), 'numpy.arange', 'np.arange', (['(0)', '(5)'], {}), '(0, 5)\n', (1236, 1242), True, 'import numpy as np\n'), ((1491, 1507), 'numpy.arange', 'np.arange', (['(5)', '(10)'], {}), '(5, 10)\n', (1500, 1507), True, 'import numpy as np\n')]
from __future__ import print_function, absolute_import, division, unicode_literals # Requirements: import numpy as np, glob, os, sys #from scipy import misc import imageio import tensorflow as tf import pdb from spit.utils import one_hot_encoded sys.dont_write_bytecode = True def load_linear_pngs(instr, data_type, label_dict, debug=False, single_copy=False, spit_path=os.getenv('SPIT_DATA'), subset=None, images_only=False): """ Load PNGs Parameters ---------- instr : str Name of instrument, e.g. 'Kast' data_type : str Training type, e.g. 'train', 'valid' label_dict : dict Sets label values single_copy : bool, optional Only grab one copy (with flips) of each image subset : int, optional Only grab a subset of the full list, i.e. the number of files provided by this parameter images_only : bool, optional Return only the images? Returns ---------- dset: a Tensorflow Dataset Object containing the images and labels as numpy arrays one_hot: a Tensorflow one-hot encoded array for the label values """ image_data = {} # Define the image locations data_locations = [] for itype in ['flat', 'arc', 'bias','standard','science']: if single_copy: data_locations.append(spit_path+'/'+instr+'/PNG/{:s}/{:s}/0_*png'.format(data_type, itype)) else: data_locations.append(spit_path+'/'+instr+'/PNG/{:s}/{:s}/*png'.format(data_type, itype)) ''' if data_type == "train_data": load_batch_size = 504 data_locations = [ \ spit_path+"viktor_astroimage/linear_datasets/bias_train/*", \ spit_path+"viktor_astroimage/linear_datasets/science_train/*", \ spit_path+"viktor_astroimage/linear_datasets/standard_train/*", \ spit_path+"viktor_astroimage/linear_datasets/arc_train/*", \ spit_path+"viktor_astroimage/linear_datasets/flat_train/*", \ spit_path+"viktor_astroimage/linear_datasets/bias_validation/*", \ spit_path+"viktor_astroimage/linear_datasets/science_validation/*", \ spit_path+"viktor_astroimage/linear_datasets/standard_validation/*", \ img_path+"viktor_astroimage/linear_datasets/arc_validation/*", \ img_path+"viktor_astroimage/linear_datasets/flat_validation/*", \ img_path+"viktor_astroimage/linear_datasets/bias_test/*", \ img_path+"viktor_astroimage/linear_datasets/science_test/*", \ img_path+"viktor_astroimage/linear_datasets/science_enforced/*", \ img_path+"viktor_astroimage/linear_datasets/standard_test/*", \ img_path+"viktor_astroimage/linear_datasets/arc_test/*", \ img_path+"viktor_astroimage/linear_datasets/flat_test/*"] elif data_type == "kast_test_data": print("Loading the test data..") load_batch_size = 160 data_locations = [ \ img_path+"viktor_astroimage/linear_datasets/real_bias_test/*", \ img_path+"viktor_astroimage/linear_datasets/real_science_test/*", \ img_path+"viktor_astroimage/linear_datasets/real_standard_test/*", \ img_path+"viktor_astroimage/linear_datasets/real_arc_test/*", \ img_path+"viktor_astroimage/linear_datasets/real_flat_test/*"] ''' # Construct the dict arrays raw_data = [] labels = [] filenames = [] for index, location in enumerate(data_locations): images = glob.glob(location) images.sort() # So that the ordering is the same each time image_array = [] image_labels = [] image_filenames = [] for kk, image_file in enumerate(images): if debug and (kk == 10): break if subset is not None: if kk == subset: break # load image image_data = imageio.imread(image_file, pilmode='L') #padded_image = image_data.flatten() #image_array.append(padded_image) image_array.append(image_data) # get image's type using long logic, could make faster if "bias" in image_file: image_label = label_dict['bias_label'] elif "science" in image_file: image_label = label_dict['science_label'] elif "standard" in image_file: image_label = label_dict['standard_label'] elif "arc" in image_file: image_label = label_dict['arc_label'] elif "flat" in image_file: image_label = label_dict['flat_label'] else: pdb.set_trace() image_labels.append(image_label) image_filenames.append(image_file) raw_data = raw_data + image_array labels = labels + image_labels filenames = filenames + image_filenames print("Loaded!") # Get the raw images. raw_images = np.array(raw_data) ishape = list(raw_images.shape) raw_images = raw_images.reshape(ishape+[1]) assert len(raw_images.shape) == 4 # Get the class-numbers for each image. Convert to numpy-array. lbl_array = np.array(labels) # might change cls to cls_nums cuz cls means something different if images_only: return raw_images, lbl_array # cls needs to be one-hot! # raise IOError dset = tf.data.Dataset.from_tensor_slices((raw_images, lbl_array)) one_hot = tf.one_hot(indices=lbl_array, depth=len(label_dict), dtype=float) return dset, one_hot, \ filenames ''' def load_all_data(): data_locations = [ \ "images/bias/linear*", \ "images/science/linear*", \ "images/standard/linear*", \ "images/arc/linear*", \ "images/flat/linear*"] raw_data = [] labels = [] filenames = [] for index, location in enumerate(data_locations): images = glob.glob(location) image_array = [] image_labels = [] image_filenames = [] for image_file in images: image_data = misc.imread(image_file, mode='L') padded_image = image_data.flatten() image_array.append(padded_image) image_labels.append(index) image_filenames.append(image_file) raw_data = raw_data + image_array labels = labels + image_labels filenames = filenames + image_filenames data_locations = [ \ "/soe/vjankov/scratchdisk/viktor_astroimage/histequ_datasets/bias_train_histequ/*", \ "/soe/vjankov/scratchdisk/viktor_astroimage/histequ_datasets/science_train_histequ/*", \ "/soe/vjankov/scratchdisk/viktor_astroimage/histequ_datasets/standard_train_histequ/*", \ "/soe/vjankov/scratchdisk/viktor_astroimage/histequ_datasets/arc_train_histequ/*", \ "/soe/vjankov/scratchdisk/viktor_astroimage/histequ_datasets/flat_train_histequ/*"] for index, location in enumerate(data_locations): images = glob.glob(location) image_array = [] image_labels = [] image_filenames = [] for image_file in images: image_data = misc.imread(image_file, mode='L') padded_image = image_data.flatten() image_array.append(padded_image) image_labels.append(index) image_filenames.append(image_file) raw_data = raw_data + image_array labels = labels + image_labels filenames = filenames + image_filenames data_locations = [ \ "/soe/vjankov/scratchdisk/viktor_astroimage/histequ_datasets/bias_test_histequ/*", \ "/soe/vjankov/scratchdisk/viktor_astroimage/histequ_datasets/science_test_histequ/*", \ "/soe/vjankov/scratchdisk/viktor_astroimage/histequ_datasets/standard_test_histequ/*", \ "/soe/vjankov/scratchdisk/viktor_astroimage/histequ_datasets/arc_test_histequ/*", \ "/soe/vjankov/scratchdisk/viktor_astroimage/histequ_datasets/flat_test_histequ/*"] for index, location in enumerate(data_locations): images = glob.glob(location) image_array = [] image_filenames = [] for image_file in images: image_data = misc.imread(image_file, mode='L') padded_image = image_data.flatten() image_array.append(padded_image) image_labels.append(index) image_filenames.append(image_file) raw_data = raw_data + image_array labels = labels + image_labels filenames = filenames + image_filenames # Get the raw images. raw_images = np.array(raw_data) # Get the class-numbers for each image. Convert to numpy-array. cls = np.array(labels) return raw_images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes), filenames ''' ''' def load_images_arr(image_file, outfile=None): """ Convert an input FITS file into 4 flattened arrays having flipped it around Parameters ---------- image_file : str Name of the FITS file Returns ------- images_array : ndarray nimgs (4) x flattened image """ #v1, server = get_viewer_and_server() #set_viewer_prefs(v1) # Paths basename = os.path.basename(image_file) names = basename.split(".") file_root = names[0] # Load FITS image = spit_io.read_fits(image_file) # Pre-process zimage = spit_pre.process_image(image) # PNG? if outfile is not None: spit_io.write_array_to_png(zimage, outfile) return images_array def load_data_cropped200x600(data_type, img_path='/soe/vjankov/scratchdisk/'): image_data = {} """ a) Load the data from the filenames stored in the data_locations b) Add 0 padding to each image. The padding is 2112 pixels width and height The 2112 is the widest pixel form the dataset c) Add labels for each image based on the folder they are coming form This is the label names and values Bias = 0 Science = 1 Arc = 2 Flat = 3 d) Construct a dictionary with the following properties: raw_data = the flattened 2112 np array with raw pixel values labels = the corresponding labels for each data element filename = the corresponding filename """ # Define the image locations if data_type == "train_data": load_batch_size = 5400 data_locations = [ \ img_path + "viktor_astroimage/bias_train/*", \ img_path + "viktor_astroimage/science_train/*", \ img_path + "viktor_astroimage/standard_train/*", \ img_path + "viktor_astroimage/arc_train/*", \ img_path + "viktor_astroimage/flat_train/*"] elif data_type == "test_data": load_batch_size = 1650 data_locations = [ \ img_path + "viktor_astroimage/bias_test/*", \ img_path + "viktor_astroimage/science_test/*", \ img_path + "viktor_astroimage/standard_test/*", \ img_path + "viktor_astroimage/arc_test/*", \ img_path + "viktor_astroimage/flat_test/*"] elif data_type == "validation_data": load_batch_size = 1350 data_locations = [ \ img_path + "viktor_astroimage/bias_validation/*", \ img_path + "viktor_astroimage/science_validation/*", \ img_path + "viktor_astroimage/standard_validation/*", \ img_path + "viktor_astroimage/arc_validation/*", \ img_path + "viktor_astroimage/flat_validation/*"] # Construct the dict arrays raw_data = [] labels = [] filenames = [] for index, location in enumerate(data_locations): images = glob.glob(location) image_array = [] image_labels = [] image_filenames = [] for image_file in images: hdulist = fits.open(image_file) image_data = hdulist[0].data padded_image = image_data.flatten() image_array.append(padded_image) image_labels.append(index) image_filenames.append(image_file) """ while len(image_array) < load_batch_size: image_array = image_array + image_array image_labels = image_labels + image_labels image_filenames = image_filenames + image_filenames raw_data = raw_data + image_array[:load_batch_size] labels = labels + image_labels[:load_batch_size] filenames = filenames + image_filenames[:load_batch_size] """ raw_data = raw_data + image_array labels = labels + image_labels filenames = filenames + image_filenames # Get the raw images. raw_images = np.array(raw_data) # Get the class-numbers for each image. Convert to numpy-array. cls = np.array(labels) return raw_images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes), filenames '''
[ "imageio.imread", "tensorflow.data.Dataset.from_tensor_slices", "numpy.array", "pdb.set_trace", "glob.glob", "os.getenv" ]
[((398, 420), 'os.getenv', 'os.getenv', (['"""SPIT_DATA"""'], {}), "('SPIT_DATA')\n", (407, 420), False, 'import numpy as np, glob, os, sys\n'), ((5059, 5077), 'numpy.array', 'np.array', (['raw_data'], {}), '(raw_data)\n', (5067, 5077), True, 'import numpy as np, glob, os, sys\n'), ((5285, 5301), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (5293, 5301), True, 'import numpy as np, glob, os, sys\n'), ((5488, 5547), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(raw_images, lbl_array)'], {}), '((raw_images, lbl_array))\n', (5522, 5547), True, 'import tensorflow as tf\n'), ((3577, 3596), 'glob.glob', 'glob.glob', (['location'], {}), '(location)\n', (3586, 3596), False, 'import numpy as np, glob, os, sys\n'), ((3996, 4035), 'imageio.imread', 'imageio.imread', (['image_file'], {'pilmode': '"""L"""'}), "(image_file, pilmode='L')\n", (4010, 4035), False, 'import imageio\n'), ((4755, 4770), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (4768, 4770), False, 'import pdb\n')]
# -*- coding: utf-8 -*- """ Created on Thu Dec 19 19:33:17 2019 @author: Mysia """ import numpy as np def nnloss(x,t,dzdy): instanceWeights=np.ones(len(x)) res=x-t if(dzdy==0): y = (1/2) * instanceWeights * np.power(res,2) else: y = res return y
[ "numpy.power" ]
[((251, 267), 'numpy.power', 'np.power', (['res', '(2)'], {}), '(res, 2)\n', (259, 267), True, 'import numpy as np\n')]
import numpy as np import torch from torch.autograd import Variable def data_generator(T, mem_length, b_size): """ Generate data for the copying memory task :param T: The total blank time length :param mem_length: The length of the memory to be recalled :param b_size: The batch size :return: Input and target data tensor """ seq = torch.from_numpy(np.random.randint(1, 9, size=(b_size, mem_length))).float() zeros = torch.zeros((b_size, T)) marker = 9 * torch.ones((b_size, mem_length + 1)) placeholders = torch.zeros((b_size, mem_length)) X = torch.cat((seq, zeros[:, :-1], marker), 1) Y = torch.cat((placeholders, zeros, seq), 1).long() return X, Y class CopyMemory(torch.utils.data.TensorDataset): # TODO: Documentation def __init__( self, partition: str, seq_length: int, **kwargs, ): memory_size = kwargs["memory_size"] blank_length = seq_length # total_seq_length = blank_length + ( # 2 * memory_size # ) # Total size of sequence is blank space + 2 times the size of the string to memorize. if partition == "train": dataset_size = 10000 X, Y = data_generator(blank_length, memory_size, dataset_size) elif partition == "test": dataset_size = 1000 X, Y = data_generator(blank_length, memory_size, dataset_size) else: raise NotImplementedError( "The dataset partition {} does not exist".format(partition) ) super(CopyMemory, self).__init__(X, Y)
[ "torch.zeros", "torch.ones", "numpy.random.randint", "torch.cat" ]
[((455, 479), 'torch.zeros', 'torch.zeros', (['(b_size, T)'], {}), '((b_size, T))\n', (466, 479), False, 'import torch\n'), ((553, 586), 'torch.zeros', 'torch.zeros', (['(b_size, mem_length)'], {}), '((b_size, mem_length))\n', (564, 586), False, 'import torch\n'), ((596, 638), 'torch.cat', 'torch.cat', (['(seq, zeros[:, :-1], marker)', '(1)'], {}), '((seq, zeros[:, :-1], marker), 1)\n', (605, 638), False, 'import torch\n'), ((497, 533), 'torch.ones', 'torch.ones', (['(b_size, mem_length + 1)'], {}), '((b_size, mem_length + 1))\n', (507, 533), False, 'import torch\n'), ((647, 687), 'torch.cat', 'torch.cat', (['(placeholders, zeros, seq)', '(1)'], {}), '((placeholders, zeros, seq), 1)\n', (656, 687), False, 'import torch\n'), ((383, 433), 'numpy.random.randint', 'np.random.randint', (['(1)', '(9)'], {'size': '(b_size, mem_length)'}), '(1, 9, size=(b_size, mem_length))\n', (400, 433), True, 'import numpy as np\n')]
import numpy as np x = np.array([1., 2.]) x /= np.sqrt(np.sum(x**2 ,axis=-1))[..., np.newaxis] print(x) print(x[0]+x[1])
[ "numpy.array", "numpy.sum" ]
[((24, 44), 'numpy.array', 'np.array', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (32, 44), True, 'import numpy as np\n'), ((56, 79), 'numpy.sum', 'np.sum', (['(x ** 2)'], {'axis': '(-1)'}), '(x ** 2, axis=-1)\n', (62, 79), True, 'import numpy as np\n')]
from classify_utils import setup_args, setup, get_basemodel, get_data, get_logger, setup_args_preprocessing, setup_args_getE from util import Logger import argparse import torch import numpy as np from statsmodels.stats.proportion import proportion_confint import scipy.stats as sps from collections import Counter import sys from datetime import datetime import time import torchvision.transforms.functional as TF import PIL, PIL.Image import multiprocessing as mp import os import geometrictools as gt parser = argparse.ArgumentParser() parser = setup_args(parser) parser = setup_args_preprocessing(parser) parser = setup_args_getE(parser) parser.add_argument('--betaSplit', type=int, default=-1, help='split beta in chunks for error bounding; higher numbers make the error computation faster; lower numbers more precise; -1 diables it and considers all errors together') args = parser.parse_args() setup(args) model = get_basemodel(args) data = get_data(args) logger = get_logger(args, __file__) print(args, file=logger) print("index", "err", file=logger, flush=True) for idx, d in enumerate(data): print() img, label = d if args.resize > 0: img = TF.resize(img, args.resize) img = TF.center_crop(img, args.resize) img = np.array(img) if len(img.shape) == 2: img = np.expand_dims(img, -1) assert(img.dtype == np.uint8) img = img.astype(dtype=np.float32)/255.0 if args.transformation == 'rot': betas = np.random.normal(0, args.sigma_gamma, (1, args.nrBetas)) elif args.transformation == 'trans': betas = np.random.normal(0, args.sigma_gamma, (2, args.nrBetas)) k = 0 errs, gamma = [], np.array([0] * betas.shape[0]) s = args.betaSplit if args.betaSplit > 0 else args.nrBetas while len(errs) < args.nrBetas: errs_, gamma_ = gt.getE(image=img, transformation=args.transformation, targetE=args.target_err, stopE=args.stop_err, gamma0=args.gamma0, gamma1=args.gamma1, betas=betas[:, k*s:(k+1)*s], invertT=False, resizePostTransform=args.resize_post_transform, centerCropPostTranform=args.center_crop_post_transform, filterSigma=args.filter_sigma, filterSize=args.filter_size, radiusDecrease=args.radiusDecrease, initialSplits=args.initial_splits, batchSize=args.gt_batch_size, threads=args.threads, gpu=args.use_cuda, debug=args.debug, doInt=args.intErr, refinements=args.refinements, timeout=120) errs.extend(errs_) for err in errs: print(idx+args.Nstart, err, file=logger, flush=True)
[ "classify_utils.get_data", "classify_utils.get_logger", "torchvision.transforms.functional.center_crop", "classify_utils.setup_args_getE", "argparse.ArgumentParser", "classify_utils.setup_args", "torchvision.transforms.functional.resize", "numpy.expand_dims", "classify_utils.setup_args_preprocessing", "geometrictools.getE", "classify_utils.setup", "numpy.array", "classify_utils.get_basemodel", "numpy.random.normal" ]
[((516, 541), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (539, 541), False, 'import argparse\n'), ((551, 569), 'classify_utils.setup_args', 'setup_args', (['parser'], {}), '(parser)\n', (561, 569), False, 'from classify_utils import setup_args, setup, get_basemodel, get_data, get_logger, setup_args_preprocessing, setup_args_getE\n'), ((579, 611), 'classify_utils.setup_args_preprocessing', 'setup_args_preprocessing', (['parser'], {}), '(parser)\n', (603, 611), False, 'from classify_utils import setup_args, setup, get_basemodel, get_data, get_logger, setup_args_preprocessing, setup_args_getE\n'), ((621, 644), 'classify_utils.setup_args_getE', 'setup_args_getE', (['parser'], {}), '(parser)\n', (636, 644), False, 'from classify_utils import setup_args, setup, get_basemodel, get_data, get_logger, setup_args_preprocessing, setup_args_getE\n'), ((904, 915), 'classify_utils.setup', 'setup', (['args'], {}), '(args)\n', (909, 915), False, 'from classify_utils import setup_args, setup, get_basemodel, get_data, get_logger, setup_args_preprocessing, setup_args_getE\n'), ((924, 943), 'classify_utils.get_basemodel', 'get_basemodel', (['args'], {}), '(args)\n', (937, 943), False, 'from classify_utils import setup_args, setup, get_basemodel, get_data, get_logger, setup_args_preprocessing, setup_args_getE\n'), ((951, 965), 'classify_utils.get_data', 'get_data', (['args'], {}), '(args)\n', (959, 965), False, 'from classify_utils import setup_args, setup, get_basemodel, get_data, get_logger, setup_args_preprocessing, setup_args_getE\n'), ((975, 1001), 'classify_utils.get_logger', 'get_logger', (['args', '__file__'], {}), '(args, __file__)\n', (985, 1001), False, 'from classify_utils import setup_args, setup, get_basemodel, get_data, get_logger, setup_args_preprocessing, setup_args_getE\n'), ((1270, 1283), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (1278, 1283), True, 'import numpy as np\n'), ((1176, 1203), 'torchvision.transforms.functional.resize', 'TF.resize', (['img', 'args.resize'], {}), '(img, args.resize)\n', (1185, 1203), True, 'import torchvision.transforms.functional as TF\n'), ((1218, 1250), 'torchvision.transforms.functional.center_crop', 'TF.center_crop', (['img', 'args.resize'], {}), '(img, args.resize)\n', (1232, 1250), True, 'import torchvision.transforms.functional as TF\n'), ((1329, 1352), 'numpy.expand_dims', 'np.expand_dims', (['img', '(-1)'], {}), '(img, -1)\n', (1343, 1352), True, 'import numpy as np\n'), ((1495, 1551), 'numpy.random.normal', 'np.random.normal', (['(0)', 'args.sigma_gamma', '(1, args.nrBetas)'], {}), '(0, args.sigma_gamma, (1, args.nrBetas))\n', (1511, 1551), True, 'import numpy as np\n'), ((1698, 1728), 'numpy.array', 'np.array', (['([0] * betas.shape[0])'], {}), '([0] * betas.shape[0])\n', (1706, 1728), True, 'import numpy as np\n'), ((1852, 2466), 'geometrictools.getE', 'gt.getE', ([], {'image': 'img', 'transformation': 'args.transformation', 'targetE': 'args.target_err', 'stopE': 'args.stop_err', 'gamma0': 'args.gamma0', 'gamma1': 'args.gamma1', 'betas': 'betas[:, k * s:(k + 1) * s]', 'invertT': '(False)', 'resizePostTransform': 'args.resize_post_transform', 'centerCropPostTranform': 'args.center_crop_post_transform', 'filterSigma': 'args.filter_sigma', 'filterSize': 'args.filter_size', 'radiusDecrease': 'args.radiusDecrease', 'initialSplits': 'args.initial_splits', 'batchSize': 'args.gt_batch_size', 'threads': 'args.threads', 'gpu': 'args.use_cuda', 'debug': 'args.debug', 'doInt': 'args.intErr', 'refinements': 'args.refinements', 'timeout': '(120)'}), '(image=img, transformation=args.transformation, targetE=args.\n target_err, stopE=args.stop_err, gamma0=args.gamma0, gamma1=args.gamma1,\n betas=betas[:, k * s:(k + 1) * s], invertT=False, resizePostTransform=\n args.resize_post_transform, centerCropPostTranform=args.\n center_crop_post_transform, filterSigma=args.filter_sigma, filterSize=\n args.filter_size, radiusDecrease=args.radiusDecrease, initialSplits=\n args.initial_splits, batchSize=args.gt_batch_size, threads=args.threads,\n gpu=args.use_cuda, debug=args.debug, doInt=args.intErr, refinements=\n args.refinements, timeout=120)\n', (1859, 2466), True, 'import geometrictools as gt\n'), ((1609, 1665), 'numpy.random.normal', 'np.random.normal', (['(0)', 'args.sigma_gamma', '(2, args.nrBetas)'], {}), '(0, args.sigma_gamma, (2, args.nrBetas))\n', (1625, 1665), True, 'import numpy as np\n')]
''' Created on 2018年3月28日 @author: <NAME> ''' import numpy as np import Lib.RFLib as RFLib def kernalTransfrom(dataMatrix, vector, kTup): if kTup[0] == "lin": return vector * dataMatrix.transpose() elif kTup[0] == "rbf": delta = dataMatrix - vector K = np.matrix(np.diag(delta * delta.transpose()), dtype=np.float) K = np.exp(K / (-2 * kTup[1] ** 2)) return K else: raise NameError("Kernal Name Error") class osStruct: def __init__(self, dataMatIn, classlabels, C , toler, kTup): self.dataMatrix = np.matrix(dataMatIn, dtype=np.float) self.labelMatrix = np.matrix(classlabels, dtype=np.float).transpose() self.C = C self.toler = toler self.m = self.dataMatrix.shape[0] self.b = 0 self.alphas = np.matrix(np.zeros((self.m, 1)), dtype=np.float) self.eCache = np.matrix(np.zeros((self.m, 2)), dtype=np.float) self.K = np.matrix(np.zeros((self.m, self.m)), dtype=np.float) for i in range(self.m): self.K[i] = kernalTransfrom(self.dataMatrix, self.dataMatrix[i, :], kTup) def selectJRand(i, m): j = i while j == i: j = np.random.randint(0, m, 1)[0] return j def clipAlpha(alpha, L, H): if alpha >= H: return H elif alpha <= L: return L else: return alpha def calEi(obj, i): fxi = float(np.multiply(obj.alphas, obj.labelMatrix).transpose() * \ obj.K[:, i]) + obj.b Ek = fxi - obj.labelMatrix[i, 0] return float(Ek) def updateEi(obj, i): Ei = calEi(obj, i) obj.eCache[i] = [1, Ei] def selectJIndex(obj, i, Ei): maxJ = -1 maxdelta = -1 Ek = -1 obj.eCache[i] = [1, Ei] vaildEiList = np.nonzero(obj.eCache[:, 0].A)[0] if len(vaildEiList) > 1: for j in vaildEiList: if j == i: continue Ej = calEi(obj, j) delta = np.abs(Ei - Ej) if delta > maxdelta: maxdelta = delta maxJ = j Ek = Ej else: maxJ = selectJRand(i, obj.m) Ek = calEi(obj, maxJ) return Ek, maxJ def innerLoop(obj, i): Ei = calEi(obj, i) if (obj.labelMatrix[i, 0] * Ei < -obj.toler and obj.alphas[i, 0] < obj.C) or \ (obj.labelMatrix[i, 0] * Ei > obj.toler and obj.alphas[i, 0] > 0): Ej, j = selectJIndex(obj, i, Ei) alphaIold = obj.alphas[i, 0].copy() alphaJold = obj.alphas[j, 0].copy() if obj.labelMatrix[i, 0] == obj.labelMatrix[j, 0]: L = max(0, obj.alphas[i, 0] + obj.alphas[j, 0] - obj.C) H = min(obj.C , obj.alphas[i, 0] + obj.alphas[j, 0]) else: L = max(0, obj.alphas[j, 0] - obj.alphas[i, 0]) H = min(obj.C, obj.C - obj.alphas[i, 0] + obj.alphas[j, 0]) if L == H: return 0 eta = obj.K[i, i] + obj.K[j, j] - 2 * obj.K[i, j] if eta <= 0: return 0 obj.alphas[j, 0] += obj.labelMatrix[j, 0] * (Ei - Ej) / eta obj.alphas[j, 0] = clipAlpha(obj.alphas[j, 0], L, H) updateEi(obj, j) if np.abs(obj.alphas[j, 0] - alphaJold) < 0.00001: return 0 obj.alphas[i, 0] += obj.labelMatrix[i, 0] * obj.labelMatrix[j, 0] * (alphaJold - obj.alphas[j, 0]) updateEi(obj, i) b1 = -Ei - obj.labelMatrix[i, 0] * obj.K[i, i] * (obj.alphas[i, 0] - alphaIold) \ - obj.labelMatrix[j, 0] * obj.K[i, j] * (obj.alphas[j, 0] - alphaJold) + obj.b b2 = -Ej - obj.labelMatrix[i, 0] * obj.K[i, j] * (obj.alphas[i, 0] - alphaIold) \ - obj.labelMatrix[j, 0] * obj.K[j, j] * (obj.alphas[j, 0] - alphaJold) + obj.b if obj.alphas[i, 0] > 0 and obj.alphas[i, 0] < obj.C: obj.b = b1 elif obj.alphas[j, 0] > 0 and obj.alphas[j, 0] < obj.C: obj.b = b2 else: obj.b = (b1 + b2) / 2.0 return 1 else: return 0 def realSMO(trainSet, trainLabels, C, toler, kTup=('lin', 1.3), maxIter=40): obj = osStruct(trainSet, trainLabels, C, toler, kTup) entrySet = True iterNum = 0 alphapairschanged = 0 while (iterNum < maxIter) and (alphapairschanged > 0 or entrySet): print(iterNum) alphapairschanged = 0 if entrySet: for i in range(obj.m): alphapairschanged += innerLoop(obj, i) if i % 100 == 0: print("full set loop, iter: %d, alphapairschanged: %d, iterNum: %d" % (i, alphapairschanged, iterNum)) iterNum += 1 else: vaildalphsaList = np.nonzero((obj.alphas.A > 0) * (obj.alphas.A < C))[0] for i in vaildalphsaList: alphapairschanged += innerLoop(obj, i) if i % 100 == 0: print("non-bound set loop, iter: %d, alphapairschanged: %d, iterNum: %d" % (i, alphapairschanged, iterNum)) iterNum += 1 if entrySet: entrySet = False elif alphapairschanged == 0: entrySet = True print("iter num: %d" % (iterNum)) return obj.alphas, obj.b def getSupportVectorandSupportLabel(trainSet, trainLabel, alphas): vaildalphaList = np.nonzero(alphas.A)[0] dataMatrix = np.matrix(trainSet, dtype=np.float) labelMatrix = np.matrix(trainLabel, dtype=np.float).transpose() sv = dataMatrix[vaildalphaList]#得到支持向量 svl = labelMatrix[vaildalphaList] return sv, svl def predictLabel(data, sv, svl, alphas, b, kTup): kernal = kernalTransfrom(sv, np.matrix(data, dtype=np.float), kTup).transpose() fxi = np.multiply(svl.T, alphas[alphas != 0]) * kernal + b return np.sign(float(fxi))
[ "numpy.matrix", "numpy.abs", "numpy.multiply", "numpy.zeros", "numpy.nonzero", "numpy.random.randint", "numpy.exp" ]
[((5294, 5329), 'numpy.matrix', 'np.matrix', (['trainSet'], {'dtype': 'np.float'}), '(trainSet, dtype=np.float)\n', (5303, 5329), True, 'import numpy as np\n'), ((573, 609), 'numpy.matrix', 'np.matrix', (['dataMatIn'], {'dtype': 'np.float'}), '(dataMatIn, dtype=np.float)\n', (582, 609), True, 'import numpy as np\n'), ((1750, 1780), 'numpy.nonzero', 'np.nonzero', (['obj.eCache[:, 0].A'], {}), '(obj.eCache[:, 0].A)\n', (1760, 1780), True, 'import numpy as np\n'), ((5253, 5273), 'numpy.nonzero', 'np.nonzero', (['alphas.A'], {}), '(alphas.A)\n', (5263, 5273), True, 'import numpy as np\n'), ((361, 392), 'numpy.exp', 'np.exp', (['(K / (-2 * kTup[1] ** 2))'], {}), '(K / (-2 * kTup[1] ** 2))\n', (367, 392), True, 'import numpy as np\n'), ((827, 848), 'numpy.zeros', 'np.zeros', (['(self.m, 1)'], {}), '((self.m, 1))\n', (835, 848), True, 'import numpy as np\n'), ((898, 919), 'numpy.zeros', 'np.zeros', (['(self.m, 2)'], {}), '((self.m, 2))\n', (906, 919), True, 'import numpy as np\n'), ((964, 990), 'numpy.zeros', 'np.zeros', (['(self.m, self.m)'], {}), '((self.m, self.m))\n', (972, 990), True, 'import numpy as np\n'), ((1190, 1216), 'numpy.random.randint', 'np.random.randint', (['(0)', 'm', '(1)'], {}), '(0, m, 1)\n', (1207, 1216), True, 'import numpy as np\n'), ((1942, 1957), 'numpy.abs', 'np.abs', (['(Ei - Ej)'], {}), '(Ei - Ej)\n', (1948, 1957), True, 'import numpy as np\n'), ((3151, 3187), 'numpy.abs', 'np.abs', (['(obj.alphas[j, 0] - alphaJold)'], {}), '(obj.alphas[j, 0] - alphaJold)\n', (3157, 3187), True, 'import numpy as np\n'), ((5348, 5385), 'numpy.matrix', 'np.matrix', (['trainLabel'], {'dtype': 'np.float'}), '(trainLabel, dtype=np.float)\n', (5357, 5385), True, 'import numpy as np\n'), ((5643, 5682), 'numpy.multiply', 'np.multiply', (['svl.T', 'alphas[alphas != 0]'], {}), '(svl.T, alphas[alphas != 0])\n', (5654, 5682), True, 'import numpy as np\n'), ((637, 675), 'numpy.matrix', 'np.matrix', (['classlabels'], {'dtype': 'np.float'}), '(classlabels, dtype=np.float)\n', (646, 675), True, 'import numpy as np\n'), ((4640, 4691), 'numpy.nonzero', 'np.nonzero', (['((obj.alphas.A > 0) * (obj.alphas.A < C))'], {}), '((obj.alphas.A > 0) * (obj.alphas.A < C))\n', (4650, 4691), True, 'import numpy as np\n'), ((5582, 5613), 'numpy.matrix', 'np.matrix', (['data'], {'dtype': 'np.float'}), '(data, dtype=np.float)\n', (5591, 5613), True, 'import numpy as np\n'), ((1403, 1443), 'numpy.multiply', 'np.multiply', (['obj.alphas', 'obj.labelMatrix'], {}), '(obj.alphas, obj.labelMatrix)\n', (1414, 1443), True, 'import numpy as np\n')]
import os import copy import pandas as pd import numpy as np import random from sklearn.preprocessing import StandardScaler # from imblearn.over_sampling import SMOTE from sklearn.decomposition import PCA from sklearn.metrics import mean_squared_error as mse import matplotlib.pyplot as plt from evaluation import heatmap, annotate_heatmap """ @relation vowel @attribute TT integer [0, 1] @attribute SpeakerNumber integer [0, 14] @attribute Sex integer [0, 1] @attribute F0 real [-5.211, -0.941] @attribute F1 real [-1.274, 5.074] @attribute F2 real [-2.487, 1.431] @attribute F3 real [-1.409, 2.377] @attribute F4 real [-2.127, 1.831] @attribute F5 real [-0.836, 2.327] @attribute F6 real [-1.537, 1.403] @attribute F7 real [-1.293, 2.039] @attribute F8 real [-1.613, 1.309] @attribute F9 real [-1.68, 1.396] @attribute Class {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, unlabeled} @inputs TT, SpeakerNumber, Sex, F0, F1, F2, F3, F4, F5, F6, F7, F8, F9 @outputs Class """ class VowelDataset: def __init__(self, data_dir, is_train=True, num_fold=10, label_percent=100, is_norm=False): assert os.path.isdir(data_dir) if is_train == True: suffix = 'trs' elif is_train == False: suffix = 'tst' else: raise ValueError('Not Implemented.') self.feat_list = [] self.label_list = [] self.orig_label_list = [] for i in range(num_fold): idx = i + 1 file_dir = os.path.join(data_dir, 'vowel', 'vowel-{}-{}{}.dat'.format(num_fold, idx, suffix)) feat, label = self._parse_data(file_dir) orig_label = copy.deepcopy(label) if is_norm: feat = self._norm_data(feat) if is_train: num_labeled = int(label_percent / 100 * feat.shape[0]) - 1 label[num_labeled:] = -1. self.feat_list.append(feat) self.label_list.append(label) self.orig_label_list.append(orig_label) def _parse_data(self, file_dir): # TODO: need nicer method, hard code now df = pd.read_table(file_dir) df0 = df.iloc[17:,0] df00 = df0.tolist() data = [] for i in range(len(df00)): data.append([]) l = df00[i].split(',') for j in range(len(l)): data[i].append(float(l[j])) feature_all = np.array(data)[:, :-1] label_all = np.array(data)[:,-1] return feature_all, label_all def _norm_data(self, feat): # TODO return feat def _preprocessing(self): '''data preprocessing''' '''standardize''' def standardscalar(X): standardScaler = StandardScaler() standardScaler.fit(X) return standardScaler.transform(X) '''PCA''' def PCA_Data(X, n=5): pca = PCA(n_components=n) pca.fit(X) X_reduction = pca.transform(X) return X_reduction # '''Smote''' # def smote(X, y): # sm = SMOTE(random_state=42) # return sm.fit_resample(X, y) if __name__ == '__main__': dataset_tst = VowelDataset(data_dir='data/SSC_20labeled', is_train=False) feat_all = [] for i in range(10): feat_all.extend(dataset_tst.feat_list[i]) feat_all = np.stack(feat_all, axis=0) attr_list = ['TT', 'SpeakerID', 'Sex', 'F0', 'F1', 'F2', 'F3', 'F4', 'F5', 'F6', 'F7', 'F8', 'F9',] Pearson_mat = np.corrcoef(feat_all.T) fig, ax = plt.subplots() im, cbar = heatmap(Pearson_mat, attr_list, attr_list, ax=ax, cmap="YlGn",) # texts = annotate_heatmap(im, valfmt="{x:.1f} t") fig.tight_layout() fig.savefig('pearson_mat.pdf')
[ "numpy.stack", "copy.deepcopy", "sklearn.preprocessing.StandardScaler", "os.path.isdir", "numpy.corrcoef", "pandas.read_table", "numpy.array", "sklearn.decomposition.PCA", "evaluation.heatmap", "matplotlib.pyplot.subplots" ]
[((3364, 3390), 'numpy.stack', 'np.stack', (['feat_all'], {'axis': '(0)'}), '(feat_all, axis=0)\n', (3372, 3390), True, 'import numpy as np\n'), ((3719, 3742), 'numpy.corrcoef', 'np.corrcoef', (['feat_all.T'], {}), '(feat_all.T)\n', (3730, 3742), True, 'import numpy as np\n'), ((3757, 3771), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3769, 3771), True, 'import matplotlib.pyplot as plt\n'), ((3788, 3850), 'evaluation.heatmap', 'heatmap', (['Pearson_mat', 'attr_list', 'attr_list'], {'ax': 'ax', 'cmap': '"""YlGn"""'}), "(Pearson_mat, attr_list, attr_list, ax=ax, cmap='YlGn')\n", (3795, 3850), False, 'from evaluation import heatmap, annotate_heatmap\n'), ((1099, 1122), 'os.path.isdir', 'os.path.isdir', (['data_dir'], {}), '(data_dir)\n', (1112, 1122), False, 'import os\n'), ((2103, 2126), 'pandas.read_table', 'pd.read_table', (['file_dir'], {}), '(file_dir)\n', (2116, 2126), True, 'import pandas as pd\n'), ((1636, 1656), 'copy.deepcopy', 'copy.deepcopy', (['label'], {}), '(label)\n', (1649, 1656), False, 'import copy\n'), ((2402, 2416), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (2410, 2416), True, 'import numpy as np\n'), ((2445, 2459), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (2453, 2459), True, 'import numpy as np\n'), ((2728, 2744), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (2742, 2744), False, 'from sklearn.preprocessing import StandardScaler\n'), ((2893, 2912), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'n'}), '(n_components=n)\n', (2896, 2912), False, 'from sklearn.decomposition import PCA\n')]
import numpy as np import cv2 from skimage.feature import hog class FeatureExtractor(): def __init__(self, config): self.conf = config def calc_hog_features(self, img): hog_features = [] for channel in range(img.shape[2]): winSize = (img.shape[0], img.shape[1]) blockSize = (winSize[0] // self.conf['cell_per_block'], winSize[1] // self.conf['cell_per_block']) blockStride = (blockSize[0] // 2, blockSize[1] // 2) pix_per_cell = (self.conf['pix_per_cell'], self.conf['pix_per_cell']) USE_OPENCV = False if USE_OPENCV: hog_descr = cv2.HOGDescriptor(_winSize=winSize, _blockSize=blockSize, _blockStride=blockStride, _cellSize=pix_per_cell, _nbins=self.conf['orient'], _signedGradient=False) features = hog_descr.compute(img[:,:,channel]) else: pix_per_cell = self.conf['pix_per_cell'] cell_per_block = self.conf['cell_per_block'] features = hog(img[:,:,channel], orientations=self.conf['orient'], pixels_per_cell=(pix_per_cell, pix_per_cell), cells_per_block=(cell_per_block, cell_per_block), block_norm= 'L2-Hys', transform_sqrt=False, visualise=False, feature_vector=True) hog_features.append(features) hog_features = np.ravel(hog_features) return hog_features # Define a function to compute binned color features def calc_spatial_features(self, img, size=(32, 32)): # Use cv2.resize().ravel() to create the feature vector features = cv2.resize(img, size).ravel() # Return the feature vector return features # Define a function to compute color histogram features def calc_color_features(self, img, nbins=32, bins_range=(0, 255)): # Compute the histogram of the color channels separately channel1_hist = np.histogram(img[:,:,0], bins=nbins, range=bins_range) channel2_hist = np.histogram(img[:,:,1], bins=nbins, range=bins_range) channel3_hist = np.histogram(img[:,:,2], bins=nbins, range=bins_range) #print('Max {} {} {}'.format(channel1_hist[0],channel2_hist[0],channel3_hist[0])) # Concatenate the histograms into a single feature vector hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0])) # Return the individual histograms, bin_centers and feature vector return hist_features def calc_features(self, img): features = [] # spatial features if self.conf['spatial_feat']: spatial_features = self.calc_spatial_features(img, size=self.conf['spatial_size']) features.append(spatial_features) # color histogram features if self.conf['hist_feat']: # Apply color_hist() hist_features = self.calc_color_features(img, nbins=self.conf['hist_bins']) features.append(hist_features) # hog features if self.conf['hog_feat']: # Call get_hog_features() with vis=False, feature_vec=True hog_features = self.calc_hog_features(img) # Append the new feature vector to the features list features.append(hog_features) features = np.concatenate(features) return features
[ "cv2.resize", "numpy.ravel", "skimage.feature.hog", "numpy.histogram", "cv2.HOGDescriptor", "numpy.concatenate" ]
[((1537, 1559), 'numpy.ravel', 'np.ravel', (['hog_features'], {}), '(hog_features)\n', (1545, 1559), True, 'import numpy as np\n'), ((2102, 2158), 'numpy.histogram', 'np.histogram', (['img[:, :, 0]'], {'bins': 'nbins', 'range': 'bins_range'}), '(img[:, :, 0], bins=nbins, range=bins_range)\n', (2114, 2158), True, 'import numpy as np\n'), ((2181, 2237), 'numpy.histogram', 'np.histogram', (['img[:, :, 1]'], {'bins': 'nbins', 'range': 'bins_range'}), '(img[:, :, 1], bins=nbins, range=bins_range)\n', (2193, 2237), True, 'import numpy as np\n'), ((2260, 2316), 'numpy.histogram', 'np.histogram', (['img[:, :, 2]'], {'bins': 'nbins', 'range': 'bins_range'}), '(img[:, :, 2], bins=nbins, range=bins_range)\n', (2272, 2316), True, 'import numpy as np\n'), ((2497, 2567), 'numpy.concatenate', 'np.concatenate', (['(channel1_hist[0], channel2_hist[0], channel3_hist[0])'], {}), '((channel1_hist[0], channel2_hist[0], channel3_hist[0]))\n', (2511, 2567), True, 'import numpy as np\n'), ((3482, 3506), 'numpy.concatenate', 'np.concatenate', (['features'], {}), '(features)\n', (3496, 3506), True, 'import numpy as np\n'), ((699, 866), 'cv2.HOGDescriptor', 'cv2.HOGDescriptor', ([], {'_winSize': 'winSize', '_blockSize': 'blockSize', '_blockStride': 'blockStride', '_cellSize': 'pix_per_cell', '_nbins': "self.conf['orient']", '_signedGradient': '(False)'}), "(_winSize=winSize, _blockSize=blockSize, _blockStride=\n blockStride, _cellSize=pix_per_cell, _nbins=self.conf['orient'],\n _signedGradient=False)\n", (716, 866), False, 'import cv2\n'), ((1101, 1349), 'skimage.feature.hog', 'hog', (['img[:, :, channel]'], {'orientations': "self.conf['orient']", 'pixels_per_cell': '(pix_per_cell, pix_per_cell)', 'cells_per_block': '(cell_per_block, cell_per_block)', 'block_norm': '"""L2-Hys"""', 'transform_sqrt': '(False)', 'visualise': '(False)', 'feature_vector': '(True)'}), "(img[:, :, channel], orientations=self.conf['orient'], pixels_per_cell=(\n pix_per_cell, pix_per_cell), cells_per_block=(cell_per_block,\n cell_per_block), block_norm='L2-Hys', transform_sqrt=False, visualise=\n False, feature_vector=True)\n", (1104, 1349), False, 'from skimage.feature import hog\n'), ((1789, 1810), 'cv2.resize', 'cv2.resize', (['img', 'size'], {}), '(img, size)\n', (1799, 1810), False, 'import cv2\n')]
import warnings from typing import Dict, List, Union import numpy as np import pandas as pd from loguru import logger from sklearn.ensemble import RandomForestClassifier from sklearn.exceptions import ConvergenceWarning from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score, matthews_corrcoef, roc_auc_score from sklearn.model_selection import KFold from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from . import utils from .patient_data import BOOL_FEATS_LIST, NUM_FEATS_LIST, TARGET_NAME, PatientData # noinspection PyPep8Naming class EnsembleModel: """ This class represents a dynamic ensemble model as average of probability predictions of the following models: [LogisticRegression, DecisionTreeClassifier, RandomForestClassifier, MLPClassifier] """ NUM_MODELS = 4 def __init__(self): self.num_folds = None self.seed = None self.predict_threshold = None self.scaler = None self.models: List[ Union[ LogisticRegression, DecisionTreeClassifier, RandomForestClassifier, MLPClassifier, ] ] = [] self._trained = False def train( self, data_path: str, num_folds: int = 5, seed: int = 72, ) -> Dict[str, float]: """ Trains a simple ensemble model of [LogisticRegression, DecisionTreeClassifier, RandomForestClassifier, MLPClassifier] classifiers. Average of models probability predictions is used as an ensemble. :param data_path: path to the training file :param num_folds: number of folds to be trained in the cross-validation setting :param seed: random state initialization seed :return: Dict of s """ logger.info(f"Training Ensemble Model ...") self.num_folds = num_folds self.seed = seed self.predict_threshold = None self.scaler = None self.models = [] self._trained = False # ---------------------------- # LOADING AND PROCESSING DATA # ---------------------------- df = pd.read_csv(data_path) logger.info(f"Dataset shape: {df.shape}") X, y = self.preprocess_training_data(df=df) logger.info(f"Target distribution:") utils.log_multiple_string_obj(df.groupby(TARGET_NAME).size()) """ Setting predict threshold. Ideally, it should be optimized based on Out of Fold predictions. For simplicity target ration is used. """ self.predict_threshold = y.sum() / y.shape[0] # ----------------------- # TRAINING K-FOLD MODELS # ----------------------- oof_predictions = np.zeros((X.shape[0], self.NUM_MODELS), dtype=np.float32) kf = KFold(n_splits=self.num_folds, shuffle=True, random_state=self.seed) for fold_inx, (trn_inx, val_inx) in enumerate(kf.split(y, y)): logger.info(f"Training {fold_inx + 1} fold ...") trn_X = X[trn_inx] val_X = X[val_inx] trn_y = y[trn_inx] val_y = y[val_inx] # Initializing and training models for the current fold fold_models = [ LogisticRegression(random_state=self.seed), DecisionTreeClassifier(random_state=self.seed), RandomForestClassifier(random_state=self.seed), MLPClassifier(random_state=self.seed), ] for model_inx, model in enumerate(fold_models): with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=ConvergenceWarning) model = model.fit(X=trn_X, y=trn_y) val_y_prob = model.predict_proba(X=val_X)[:, 1] val_y_pred = val_y_prob >= self.predict_threshold logger.info( f"Fold {fold_inx + 1}, {model.__class__.__name__}: " f"MCC={matthews_corrcoef(y_true=val_y, y_pred=val_y_pred):.4f}, " f"F1={f1_score(y_true=val_y, y_pred=val_y_pred):.4f}, " f"ROC_AUC={roc_auc_score(y_true=val_y, y_score=val_y_prob):.4f}" ) oof_predictions[val_inx, model_inx] = val_y_prob self.models.append(model) # Computing Out of Fold validation metrics y_prob = oof_predictions.mean(axis=-1) y_pred = y_prob >= self.predict_threshold oof_mcc_score = matthews_corrcoef(y_true=y, y_pred=y_pred) oof_f1_score = f1_score(y_true=y, y_pred=y_pred) oof_roc_auc_score = roc_auc_score(y_true=y, y_score=y_prob) logger.info("######") logger.info( f"Out of Fold, EnsembleModel, " f"MCC={oof_mcc_score:.4f}, " f"F1={oof_f1_score:.4f}, " f"ROC_AUC={oof_roc_auc_score:.4f}" ) logger.info("######") self._trained = True return { "MCC": oof_mcc_score, "F1": oof_f1_score, "ROC_AUC": oof_roc_auc_score, } def preprocess_training_data(self, df: pd.DataFrame) -> (np.ndarray, np.ndarray): """ Preprocesses training data with the following steps: - Drops any rows that don't have a target value - Fills nulls of numerical features with the average value - Fills nulls of boolean features with the most common value - Scales numerical features via StandardScaler :param df: Training data in the Pandas DataFrame format :return: Features and target numpy arrays ready to be used for training """ # ------------------- # PROCESS TARGET COL # ------------------- target_na = df[TARGET_NAME].isna() num_target_na = target_na.sum() if num_target_na > 0: logger.warning( f"Target column {TARGET_NAME} has {num_target_na} missing values. " f"Excluding rows with missing values from training." ) df = df.loc[~target_na].reset_index(drop=True) df[TARGET_NAME] = df[TARGET_NAME].astype(float) # ------------------------ # PROCESS NUMERICAL FEATS # ------------------------ for col_name in NUM_FEATS_LIST: num_na = df[col_name].isna().sum() if num_na > 0: logger.warning( f"Column {col_name} has {num_na} missing values. " f"Replacing them with average value." ) df[col_name].fillna(value=df[col_name].mean(), inplace=True) df[col_name] = df[col_name].astype(float) # ---------------------- # PROCESS BOOLEAN FEATS # ---------------------- for col_name in BOOL_FEATS_LIST: num_na = df[col_name].isna().sum() if num_na > 0: logger.warning( f"Column {col_name} has {num_na} missing values. " f"Replacing them with the most common value." ) df[col_name].fillna(value=df[col_name].value_counts()[0], inplace=True) df[col_name] = df[col_name].astype(dtype=float) # ---------------------- # CONSTRUCT X,y MATRICES # ---------------------- X = df[NUM_FEATS_LIST + BOOL_FEATS_LIST].values y = df[TARGET_NAME].values # ---------------------- # SCALING FEATURES # ---------------------- """ Fitting Standard Scaler. Ideally, it should be done within each validation fold, but for simplicity fitting it on the whole dataset here. Tree-based methods don't really require this scaling, but it won't harm their performance. """ self.scaler = StandardScaler() X[:, : len(NUM_FEATS_LIST)] = self.scaler.fit_transform( X[:, : len(NUM_FEATS_LIST)] ) return X, y def data2feat_vector(self, data: PatientData) -> np.ndarray: """ Converts PatientData into feature vector suitable for model prediction :param data: patient data :return: patient feature vector in numpy format of shape (1, num_features) """ feat_vector = [] for feat_name in NUM_FEATS_LIST: feat_vector.append(float(data[feat_name])) for feat_name in BOOL_FEATS_LIST: feat_vector.append(float(data[feat_name])) feat_vector = np.asarray(feat_vector)[np.newaxis, :] feat_vector[:, : len(NUM_FEATS_LIST)] = self.scaler.transform( feat_vector[:, : len(NUM_FEATS_LIST)] ) return feat_vector def predict(self, data: PatientData) -> (float, bool): """ Makes ensemble model prediction on a new PatientData Throws ValueError if models isn't trained yet. :param data: patient data :return: Death Event probability and prediction """ if not self._trained: raise ValueError("Model isn't trained yet. Please, train model first.") probs = np.empty(shape=len(self.models), dtype=np.float32) feat_vector = self.data2feat_vector(data=data) for model_inx, model in enumerate(self.models): probs[model_inx] = model.predict_proba(X=feat_vector)[0, 1] prob = probs.mean() pred = prob >= self.predict_threshold return prob, pred
[ "sklearn.ensemble.RandomForestClassifier", "sklearn.preprocessing.StandardScaler", "warnings.filterwarnings", "pandas.read_csv", "numpy.asarray", "loguru.logger.warning", "numpy.zeros", "sklearn.model_selection.KFold", "sklearn.metrics.roc_auc_score", "sklearn.tree.DecisionTreeClassifier", "loguru.logger.info", "sklearn.metrics.f1_score", "sklearn.metrics.matthews_corrcoef", "sklearn.linear_model.LogisticRegression", "warnings.catch_warnings", "sklearn.neural_network.MLPClassifier" ]
[((1938, 1981), 'loguru.logger.info', 'logger.info', (['f"""Training Ensemble Model ..."""'], {}), "(f'Training Ensemble Model ...')\n", (1949, 1981), False, 'from loguru import logger\n'), ((2292, 2314), 'pandas.read_csv', 'pd.read_csv', (['data_path'], {}), '(data_path)\n', (2303, 2314), True, 'import pandas as pd\n'), ((2323, 2364), 'loguru.logger.info', 'logger.info', (['f"""Dataset shape: {df.shape}"""'], {}), "(f'Dataset shape: {df.shape}')\n", (2334, 2364), False, 'from loguru import logger\n'), ((2427, 2463), 'loguru.logger.info', 'logger.info', (['f"""Target distribution:"""'], {}), "(f'Target distribution:')\n", (2438, 2463), False, 'from loguru import logger\n'), ((2889, 2946), 'numpy.zeros', 'np.zeros', (['(X.shape[0], self.NUM_MODELS)'], {'dtype': 'np.float32'}), '((X.shape[0], self.NUM_MODELS), dtype=np.float32)\n', (2897, 2946), True, 'import numpy as np\n'), ((2960, 3028), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'self.num_folds', 'shuffle': '(True)', 'random_state': 'self.seed'}), '(n_splits=self.num_folds, shuffle=True, random_state=self.seed)\n', (2965, 3028), False, 'from sklearn.model_selection import KFold\n'), ((4666, 4708), 'sklearn.metrics.matthews_corrcoef', 'matthews_corrcoef', ([], {'y_true': 'y', 'y_pred': 'y_pred'}), '(y_true=y, y_pred=y_pred)\n', (4683, 4708), False, 'from sklearn.metrics import f1_score, matthews_corrcoef, roc_auc_score\n'), ((4732, 4765), 'sklearn.metrics.f1_score', 'f1_score', ([], {'y_true': 'y', 'y_pred': 'y_pred'}), '(y_true=y, y_pred=y_pred)\n', (4740, 4765), False, 'from sklearn.metrics import f1_score, matthews_corrcoef, roc_auc_score\n'), ((4794, 4833), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', ([], {'y_true': 'y', 'y_score': 'y_prob'}), '(y_true=y, y_score=y_prob)\n', (4807, 4833), False, 'from sklearn.metrics import f1_score, matthews_corrcoef, roc_auc_score\n'), ((4842, 4863), 'loguru.logger.info', 'logger.info', (['"""######"""'], {}), "('######')\n", (4853, 4863), False, 'from loguru import logger\n'), ((4872, 5005), 'loguru.logger.info', 'logger.info', (['f"""Out of Fold, EnsembleModel, MCC={oof_mcc_score:.4f}, F1={oof_f1_score:.4f}, ROC_AUC={oof_roc_auc_score:.4f}"""'], {}), "(\n f'Out of Fold, EnsembleModel, MCC={oof_mcc_score:.4f}, F1={oof_f1_score:.4f}, ROC_AUC={oof_roc_auc_score:.4f}'\n )\n", (4883, 5005), False, 'from loguru import logger\n'), ((5074, 5095), 'loguru.logger.info', 'logger.info', (['"""######"""'], {}), "('######')\n", (5085, 5095), False, 'from loguru import logger\n'), ((8026, 8042), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (8040, 8042), False, 'from sklearn.preprocessing import StandardScaler\n'), ((3112, 3160), 'loguru.logger.info', 'logger.info', (['f"""Training {fold_inx + 1} fold ..."""'], {}), "(f'Training {fold_inx + 1} fold ...')\n", (3123, 3160), False, 'from loguru import logger\n'), ((6055, 6197), 'loguru.logger.warning', 'logger.warning', (['f"""Target column {TARGET_NAME} has {num_target_na} missing values. Excluding rows with missing values from training."""'], {}), "(\n f'Target column {TARGET_NAME} has {num_target_na} missing values. Excluding rows with missing values from training.'\n )\n", (6069, 6197), False, 'from loguru import logger\n'), ((8708, 8731), 'numpy.asarray', 'np.asarray', (['feat_vector'], {}), '(feat_vector)\n', (8718, 8731), True, 'import numpy as np\n'), ((3399, 3441), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': 'self.seed'}), '(random_state=self.seed)\n', (3417, 3441), False, 'from sklearn.linear_model import LogisticRegression\n'), ((3459, 3505), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'random_state': 'self.seed'}), '(random_state=self.seed)\n', (3481, 3505), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((3523, 3569), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'random_state': 'self.seed'}), '(random_state=self.seed)\n', (3545, 3569), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((3587, 3624), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {'random_state': 'self.seed'}), '(random_state=self.seed)\n', (3600, 3624), False, 'from sklearn.neural_network import MLPClassifier\n'), ((6588, 6698), 'loguru.logger.warning', 'logger.warning', (['f"""Column {col_name} has {num_na} missing values. Replacing them with average value."""'], {}), "(\n f'Column {col_name} has {num_na} missing values. Replacing them with average value.'\n )\n", (6602, 6698), False, 'from loguru import logger\n'), ((7113, 7231), 'loguru.logger.warning', 'logger.warning', (['f"""Column {col_name} has {num_na} missing values. Replacing them with the most common value."""'], {}), "(\n f'Column {col_name} has {num_na} missing values. Replacing them with the most common value.'\n )\n", (7127, 7231), False, 'from loguru import logger\n'), ((3721, 3746), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (3744, 3746), False, 'import warnings\n'), ((3768, 3830), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'ConvergenceWarning'}), "('ignore', category=ConvergenceWarning)\n", (3791, 3830), False, 'import warnings\n'), ((4147, 4197), 'sklearn.metrics.matthews_corrcoef', 'matthews_corrcoef', ([], {'y_true': 'val_y', 'y_pred': 'val_y_pred'}), '(y_true=val_y, y_pred=val_y_pred)\n', (4164, 4197), False, 'from sklearn.metrics import f1_score, matthews_corrcoef, roc_auc_score\n'), ((4232, 4273), 'sklearn.metrics.f1_score', 'f1_score', ([], {'y_true': 'val_y', 'y_pred': 'val_y_pred'}), '(y_true=val_y, y_pred=val_y_pred)\n', (4240, 4273), False, 'from sklearn.metrics import f1_score, matthews_corrcoef, roc_auc_score\n'), ((4313, 4360), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', ([], {'y_true': 'val_y', 'y_score': 'val_y_prob'}), '(y_true=val_y, y_score=val_y_prob)\n', (4326, 4360), False, 'from sklearn.metrics import f1_score, matthews_corrcoef, roc_auc_score\n')]
import random from pathlib import Path from typing import Iterator import numpy as np import torch.utils.data from torch import nn from torch.utils.data.dataset import T_co from torch.nn import functional as F class RandomShiftsAug(nn.Module): def __init__(self, pad): super().__init__() self.pad = pad def forward(self, x): n, c, h, w = x.size() assert h == w padding = tuple([self.pad] * 4) x = F.pad(x, padding, 'replicate') eps = 1.0 / (h + 2 * self.pad) arange = torch.linspace(-1.0 + eps, 1.0 - eps, h + 2 * self.pad, device=x.device, dtype=x.dtype)[:h] arange = arange.unsqueeze(0).repeat(h, 1).unsqueeze(2) base_grid = torch.cat([arange, arange.transpose(1, 0)], dim=2) base_grid = base_grid.unsqueeze(0).repeat(n, 1, 1, 1) shift = torch.randint(0, 2 * self.pad + 1, size=(n, 1, 1, 2), device=x.device, dtype=x.dtype) shift *= 2.0 / (h + 2 * self.pad) grid = base_grid + shift return F.grid_sample(x, grid, padding_mode='zeros', align_corners=False) class CTVideoDataset(torch.utils.data.IterableDataset): def __init__(self, root, episode_len, cam_ids, same_video=False): self._root = Path(root) self._files = list(self._root.iterdir()) self._episode_len = episode_len self._same_video = same_video self._cam_ids = cam_ids def _sample(self): if len(self._cam_ids) > 1: cam1, cam2 = random.sample(self._cam_ids, k=2) else: cam1, cam2 = 0, 0 videos1, videos2 = random.choices(self._files, k=2) video1 = np.load(videos1)[cam1, :self._episode_len] video2 = np.load(videos1 if self._same_video else videos2)[cam2, :self._episode_len] video1 = video1.transpose(0, 3, 1, 2).copy() video2 = video2.transpose(0, 3, 1, 2).copy() return video1, video2 def __iter__(self) -> Iterator[T_co]: while True: yield self._sample() class ViRLVideoDataset(torch.utils.data.IterableDataset): def __init__(self, root, episode_len, cam_ids): self._root = Path(root) self._num_classes = len(list(self._root.iterdir())) self._files = [] for c in range(self._num_classes): class_dir = self._root / str(c) self._files.append(list(class_dir.iterdir())) self._episode_len = episode_len self._cam_ids = cam_ids def _sample(self): if len(self._cam_ids) > 1: cam1, cam2, cam3 = random.sample(self._cam_ids, k=3) else: cam1, cam2, cam3 = 0, 0, 0 classes = list(range(self._num_classes)) class_1 = random.choice(classes) classes.remove(class_1) class_2 = random.choice(classes) video_i, video_p = random.choices(self._files[class_1], k=2) video_n = random.choice(self._files[class_2]) video_i = np.load(video_i)[cam1, :self._episode_len] video_p = np.load(video_p)[cam2, :self._episode_len] video_n = np.load(video_n)[cam3, :self._episode_len] video_i = video_i.transpose(0, 3, 1, 2).copy() video_p = video_p.transpose(0, 3, 1, 2).copy() video_n = video_n.transpose(0, 3, 1, 2).copy() return video_i, video_p, video_n @staticmethod def augment(video_i: torch.Tensor, video_p: torch.Tensor, video_n: torch.Tensor): # video_i, video_p, video_n = ViRLVideoDataset.augment_images(video_i, video_p, video_n) # video_i, video_p, video_n = ViRLVideoDataset.add_noise(video_i, video_p, video_n) video_i, video_p, video_n = ViRLVideoDataset.random_shuffle(video_i, video_p, video_n) video_i, video_p, video_n = ViRLVideoDataset.random_sequence_cropping(video_i, video_p, video_n) return video_i, video_p, video_n @staticmethod def augment_images(video_i: torch.Tensor, video_p: torch.Tensor, video_n: torch.Tensor): aug = RandomShiftsAug(pad=8) T = video_i.shape[0] video_1, video_2, video_3 = [], [], [] for t in range(T): frame_1, frame_2, frame_3 = video_i[t], video_p[t], video_n[t] frame_1, frame_2, frame_3 = aug(frame_1), aug(frame_2), aug(frame_3) video_1.append(frame_1) video_2.append(frame_2) video_3.append(frame_3) video_1 = torch.stack(video_1) video_2 = torch.stack(video_2) video_3 = torch.stack(video_3) return video_1, video_2, video_3 @staticmethod def add_noise(video_i: torch.Tensor, video_p: torch.Tensor, video_n: torch.Tensor, mean=128., std=0.02): video_1 = video_i + torch.normal(mean, std, video_i.shape, device=video_i.device) video_2 = video_p + torch.normal(mean, std, video_p.shape, device=video_p.device) video_3 = video_n + torch.normal(mean, std, video_n.shape, device=video_n.device) video_1 = torch.clip(video_1, 0., 255.) video_2 = torch.clip(video_2, 0., 255.) video_3 = torch.clip(video_3, 0., 255.) return video_1, video_2, video_3 @staticmethod def random_shuffle(video_i: torch.Tensor, video_p: torch.Tensor, video_n: torch.Tensor, p=0.5): shuffle = np.random.rand() > p if shuffle: indx = torch.randperm(video_i.shape[0]) video_i = video_i[indx] video_p = video_p[indx] video_n = video_n[indx] return video_i, video_p, video_n @staticmethod def random_sequence_cropping(video_i: torch.Tensor, video_p: torch.Tensor, video_n: torch.Tensor): T = video_i.shape[0] base = sum(list(range(T))) p_list = [(T - i)/base for i in range(T)] video_1, video_2, video_3 = [], [], [] for i in range(T): keep = np.random.rand() > p_list[i] if keep: video_1.append(video_i[i]) video_2.append(video_p[i]) video_3.append(video_n[i]) video_1 = torch.stack(video_1) video_2 = torch.stack(video_2) video_3 = torch.stack(video_3) return video_1, video_2, video_3 def __iter__(self) -> Iterator[T_co]: while True: yield self._sample()
[ "numpy.load", "torch.nn.functional.grid_sample", "random.sample", "random.choices", "random.choice", "pathlib.Path", "numpy.random.rand", "torch.nn.functional.pad" ]
[((457, 487), 'torch.nn.functional.pad', 'F.pad', (['x', 'padding', '"""replicate"""'], {}), "(x, padding, 'replicate')\n", (462, 487), True, 'from torch.nn import functional as F\n'), ((1274, 1339), 'torch.nn.functional.grid_sample', 'F.grid_sample', (['x', 'grid'], {'padding_mode': '"""zeros"""', 'align_corners': '(False)'}), "(x, grid, padding_mode='zeros', align_corners=False)\n", (1287, 1339), True, 'from torch.nn import functional as F\n'), ((1576, 1586), 'pathlib.Path', 'Path', (['root'], {}), '(root)\n', (1580, 1586), False, 'from pathlib import Path\n'), ((1937, 1969), 'random.choices', 'random.choices', (['self._files'], {'k': '(2)'}), '(self._files, k=2)\n', (1951, 1969), False, 'import random\n'), ((2491, 2501), 'pathlib.Path', 'Path', (['root'], {}), '(root)\n', (2495, 2501), False, 'from pathlib import Path\n'), ((3052, 3074), 'random.choice', 'random.choice', (['classes'], {}), '(classes)\n', (3065, 3074), False, 'import random\n'), ((3125, 3147), 'random.choice', 'random.choice', (['classes'], {}), '(classes)\n', (3138, 3147), False, 'import random\n'), ((3176, 3217), 'random.choices', 'random.choices', (['self._files[class_1]'], {'k': '(2)'}), '(self._files[class_1], k=2)\n', (3190, 3217), False, 'import random\n'), ((3236, 3271), 'random.choice', 'random.choice', (['self._files[class_2]'], {}), '(self._files[class_2])\n', (3249, 3271), False, 'import random\n'), ((1831, 1864), 'random.sample', 'random.sample', (['self._cam_ids'], {'k': '(2)'}), '(self._cam_ids, k=2)\n', (1844, 1864), False, 'import random\n'), ((1988, 2004), 'numpy.load', 'np.load', (['videos1'], {}), '(videos1)\n', (1995, 2004), True, 'import numpy as np\n'), ((2048, 2097), 'numpy.load', 'np.load', (['(videos1 if self._same_video else videos2)'], {}), '(videos1 if self._same_video else videos2)\n', (2055, 2097), True, 'import numpy as np\n'), ((2896, 2929), 'random.sample', 'random.sample', (['self._cam_ids'], {'k': '(3)'}), '(self._cam_ids, k=3)\n', (2909, 2929), False, 'import random\n'), ((3291, 3307), 'numpy.load', 'np.load', (['video_i'], {}), '(video_i)\n', (3298, 3307), True, 'import numpy as np\n'), ((3352, 3368), 'numpy.load', 'np.load', (['video_p'], {}), '(video_p)\n', (3359, 3368), True, 'import numpy as np\n'), ((3413, 3429), 'numpy.load', 'np.load', (['video_n'], {}), '(video_n)\n', (3420, 3429), True, 'import numpy as np\n'), ((5595, 5611), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (5609, 5611), True, 'import numpy as np\n'), ((6167, 6183), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (6181, 6183), True, 'import numpy as np\n')]
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # author: <NAME> (<EMAIL>) import tensorflow as tf import os import json import numpy as np from collections import namedtuple np_type_to_tf_type = {np.int8: tf.int8, np.int16: tf.int16, np.int32: tf.int32} def get_categorical_feature_type(size): types = (np.int8, np.int16, np.int32) for numpy_type in types: if size < np.iinfo(numpy_type).max: return numpy_type raise RuntimeError( f'Categorical feature of size {size} is too large for defined types' ) def create_reader(filename, bytes_per_batch): fd = os.open(filename, os.O_RDONLY) file_len = os.fstat(fd).st_size os.close(fd) num_batches = int(file_len / bytes_per_batch) file_len_patched = num_batches * bytes_per_batch footer_bytes = file_len - file_len_patched reader = tf.data.FixedLengthRecordDataset( filenames=[filename], record_bytes=bytes_per_batch, footer_bytes=footer_bytes ) return reader, num_batches DatasetMetadata = namedtuple( 'DatasetMetadata', ['num_numerical_features', 'categorical_cardinalities'] ) class DummyDataset: def __init__( self, batch_size, num_numerical_features, num_categorical_features, num_batches ): self.num_batches = num_batches self.num_numerical_features = num_numerical_features self.num_categorical_features = num_categorical_features self.batch_size = batch_size def __len__(self): return self.num_batches def __iter__(self): return self def __next__(self): with tf.device('/GPU:0'): factor = tf.random.uniform( shape=[1], minval=0, maxval=1, dtype=tf.int32 ) if self.num_numerical_features > 0: numerical = tf.ones( shape=[self.batch_size, self.num_numerical_features], dtype=tf.float16 ) numerical = numerical * tf.cast(factor, tf.float16) else: numerical = None categorical = [] for _ in range(self.num_categorical_features): f = tf.ones(shape=[self.batch_size, 1], dtype=tf.int32) f = f * factor categorical.append(f) labels = tf.ones(shape=[self.batch_size, 1], dtype=tf.int8) labels = labels * tf.cast(factor, tf.int8) return (numerical, categorical), labels def get_next(self): return self.__next__() def op(self): return self @staticmethod def get_metadata(FLAGS): cardinalities = [int(d) for d in FLAGS.synthetic_dataset_cardinalities] metadata = DatasetMetadata( num_numerical_features=FLAGS.num_numerical_features, categorical_cardinalities=cardinalities ) return metadata class TfRawBinaryDataset: """Dataset for reading labels, numerical and categorical features from a set of binary files. Internally uses TensorFlow's FixedLengthRecordDataset and decode_raw for best performance. Args: data_path (str): Full path to split binary file of dataset. It must contain numerical.bin, label.bin and cat_0 ~ cat_25.bin batch_size (int): numerical_features(boolean): Number of numerical features to load, default=0 (don't load any) categorical_features (list or None): categorical features used by the rank (IDs of the features) prefetch_depth (int): How many samples to prefetch. Default 10. """ def __init__( self, data_path, batch_size=1, numerical_features=0, categorical_features=None, prefetch_depth=10 ): self._batch_size = batch_size self._data_path = data_path self._prefetch_depth = prefetch_depth self._numerical_features = numerical_features self._categorical_ids = categorical_features self._initialize_label_reader() self._initialize_numerical_reader() self._initialize_categorical_reader() @classmethod def get_metadata(cls, path, num_numerical_features): with open(os.path.join(path, 'model_size.json'), 'r') as f: global_table_sizes = json.load(f) global_table_sizes = list(global_table_sizes.values()) global_table_sizes = [s + 1 for s in global_table_sizes] metadata = DatasetMetadata( num_numerical_features=num_numerical_features, categorical_cardinalities=global_table_sizes ) return metadata def __len__(self): return self.num_batches def _initialize_label_reader(self): bytes_per_sample = np.dtype(np.bool).itemsize label_filename = os.path.join(self._data_path, f'label.bin') self._label, self.num_batches = create_reader( label_filename, bytes_per_sample * self._batch_size ) def _initialize_numerical_reader(self): bytes_per_sample = self._numerical_features * np.dtype( np.float16 ).itemsize if self._numerical_features > 0: num_filename = os.path.join(self._data_path, 'numerical.bin') self._numerical, batches = create_reader( num_filename, bytes_per_sample * self._batch_size ) if batches != self.num_batches: raise ValueError( f'Size mismatch. Expected: {self.num_batches}, got: {batches}' ) else: self._numerical = tuple() def _load_feature_sizes(self): sizes_path = os.path.join(self._data_path, '../model_size.json') with open(sizes_path) as f: all_table_sizes = json.load(f) all_table_sizes = list(all_table_sizes.values()) all_table_sizes = [s + 1 for s in all_table_sizes] self._categorical_sizes = [ all_table_sizes[cat_id] for cat_id in self._categorical_ids ] def _initialize_categorical_reader(self): self._load_feature_sizes() categorical_types = [ get_categorical_feature_type(size) for size in self._categorical_sizes ] self._categorical = [] for cat_id, cat_type in zip(self._categorical_ids, categorical_types): path = os.path.join(self._data_path, f'cat_{cat_id}.bin') bytes_per_sample = np.dtype(cat_type).itemsize reader, batches = create_reader( path, bytes_per_sample * self._batch_size ) if batches != self.num_batches: raise ValueError( f'Size mismatch. Expected: {self.num_batches}, got: {batches}' ) self._categorical.append(reader) self._categorical = tuple(self._categorical) # memorize for decoding self._categorical_types = [ np_type_to_tf_type[np_type] for np_type in categorical_types ] self._categorical_types_numpy = categorical_types def op(self): pipeline = tf.data.Dataset.zip( (self._label, self._numerical, self._categorical) ) pipeline = pipeline.map( self.decode_batch, num_parallel_calls=tf.data.AUTOTUNE ) pipeline = pipeline.batch(batch_size=1) pipeline = pipeline.apply( tf.data.experimental.prefetch_to_device(f'/gpu:0') ) pipeline = pipeline.unbatch() return pipeline @tf.function def decode_batch(self, labels, numerical_features, categorical_features): #labels, numerical_features, categorical_features = batch labels = tf.io.decode_raw(labels, out_type=tf.int8) if self._numerical_features > 0: numerical_features = tf.io.decode_raw( numerical_features, out_type=tf.float16 ) numerical_features = tf.reshape( numerical_features, shape=[-1, self._numerical_features] ) if self._categorical_ids: temp = [] for dtype, feature in zip(self._categorical_types, categorical_features): feature = tf.io.decode_raw(feature, out_type=dtype) feature = tf.cast(feature, dtype=tf.int32) feature = tf.expand_dims(feature, axis=1) temp.append(feature) categorical_features = tf.concat(temp, axis=1) return (numerical_features, categorical_features), labels
[ "tensorflow.reshape", "numpy.iinfo", "os.close", "os.path.join", "tensorflow.random.uniform", "tensorflow.concat", "tensorflow.io.decode_raw", "tensorflow.cast", "tensorflow.data.FixedLengthRecordDataset", "tensorflow.ones", "os.open", "tensorflow.data.Dataset.zip", "os.fstat", "tensorflow.expand_dims", "tensorflow.data.experimental.prefetch_to_device", "json.load", "tensorflow.device", "numpy.dtype", "collections.namedtuple" ]
[((1613, 1703), 'collections.namedtuple', 'namedtuple', (['"""DatasetMetadata"""', "['num_numerical_features', 'categorical_cardinalities']"], {}), "('DatasetMetadata', ['num_numerical_features',\n 'categorical_cardinalities'])\n", (1623, 1703), False, 'from collections import namedtuple\n'), ((1172, 1202), 'os.open', 'os.open', (['filename', 'os.O_RDONLY'], {}), '(filename, os.O_RDONLY)\n', (1179, 1202), False, 'import os\n'), ((1243, 1255), 'os.close', 'os.close', (['fd'], {}), '(fd)\n', (1251, 1255), False, 'import os\n'), ((1420, 1536), 'tensorflow.data.FixedLengthRecordDataset', 'tf.data.FixedLengthRecordDataset', ([], {'filenames': '[filename]', 'record_bytes': 'bytes_per_batch', 'footer_bytes': 'footer_bytes'}), '(filenames=[filename], record_bytes=\n bytes_per_batch, footer_bytes=footer_bytes)\n', (1452, 1536), True, 'import tensorflow as tf\n'), ((1218, 1230), 'os.fstat', 'os.fstat', (['fd'], {}), '(fd)\n', (1226, 1230), False, 'import os\n'), ((5387, 5430), 'os.path.join', 'os.path.join', (['self._data_path', 'f"""label.bin"""'], {}), "(self._data_path, f'label.bin')\n", (5399, 5430), False, 'import os\n'), ((6250, 6301), 'os.path.join', 'os.path.join', (['self._data_path', '"""../model_size.json"""'], {}), "(self._data_path, '../model_size.json')\n", (6262, 6301), False, 'import os\n'), ((7717, 7787), 'tensorflow.data.Dataset.zip', 'tf.data.Dataset.zip', (['(self._label, self._numerical, self._categorical)'], {}), '((self._label, self._numerical, self._categorical))\n', (7736, 7787), True, 'import tensorflow as tf\n'), ((8317, 8359), 'tensorflow.io.decode_raw', 'tf.io.decode_raw', (['labels'], {'out_type': 'tf.int8'}), '(labels, out_type=tf.int8)\n', (8333, 8359), True, 'import tensorflow as tf\n'), ((2191, 2210), 'tensorflow.device', 'tf.device', (['"""/GPU:0"""'], {}), "('/GPU:0')\n", (2200, 2210), True, 'import tensorflow as tf\n'), ((2233, 2297), 'tensorflow.random.uniform', 'tf.random.uniform', ([], {'shape': '[1]', 'minval': '(0)', 'maxval': '(1)', 'dtype': 'tf.int32'}), '(shape=[1], minval=0, maxval=1, dtype=tf.int32)\n', (2250, 2297), True, 'import tensorflow as tf\n'), ((2913, 2963), 'tensorflow.ones', 'tf.ones', ([], {'shape': '[self.batch_size, 1]', 'dtype': 'tf.int8'}), '(shape=[self.batch_size, 1], dtype=tf.int8)\n', (2920, 2963), True, 'import tensorflow as tf\n'), ((4882, 4894), 'json.load', 'json.load', (['f'], {}), '(f)\n', (4891, 4894), False, 'import json\n'), ((5335, 5352), 'numpy.dtype', 'np.dtype', (['np.bool'], {}), '(np.bool)\n', (5343, 5352), True, 'import numpy as np\n'), ((5780, 5826), 'os.path.join', 'os.path.join', (['self._data_path', '"""numerical.bin"""'], {}), "(self._data_path, 'numerical.bin')\n", (5792, 5826), False, 'import os\n'), ((6368, 6380), 'json.load', 'json.load', (['f'], {}), '(f)\n', (6377, 6380), False, 'import json\n'), ((6963, 7013), 'os.path.join', 'os.path.join', (['self._data_path', 'f"""cat_{cat_id}.bin"""'], {}), "(self._data_path, f'cat_{cat_id}.bin')\n", (6975, 7013), False, 'import os\n'), ((8015, 8065), 'tensorflow.data.experimental.prefetch_to_device', 'tf.data.experimental.prefetch_to_device', (['f"""/gpu:0"""'], {}), "(f'/gpu:0')\n", (8054, 8065), True, 'import tensorflow as tf\n'), ((8434, 8491), 'tensorflow.io.decode_raw', 'tf.io.decode_raw', (['numerical_features'], {'out_type': 'tf.float16'}), '(numerical_features, out_type=tf.float16)\n', (8450, 8491), True, 'import tensorflow as tf\n'), ((8555, 8623), 'tensorflow.reshape', 'tf.reshape', (['numerical_features'], {'shape': '[-1, self._numerical_features]'}), '(numerical_features, shape=[-1, self._numerical_features])\n', (8565, 8623), True, 'import tensorflow as tf\n'), ((9092, 9115), 'tensorflow.concat', 'tf.concat', (['temp'], {'axis': '(1)'}), '(temp, axis=1)\n', (9101, 9115), True, 'import tensorflow as tf\n'), ((951, 971), 'numpy.iinfo', 'np.iinfo', (['numpy_type'], {}), '(numpy_type)\n', (959, 971), True, 'import numpy as np\n'), ((2404, 2483), 'tensorflow.ones', 'tf.ones', ([], {'shape': '[self.batch_size, self.num_numerical_features]', 'dtype': 'tf.float16'}), '(shape=[self.batch_size, self.num_numerical_features], dtype=tf.float16)\n', (2411, 2483), True, 'import tensorflow as tf\n'), ((2770, 2821), 'tensorflow.ones', 'tf.ones', ([], {'shape': '[self.batch_size, 1]', 'dtype': 'tf.int32'}), '(shape=[self.batch_size, 1], dtype=tf.int32)\n', (2777, 2821), True, 'import tensorflow as tf\n'), ((2994, 3018), 'tensorflow.cast', 'tf.cast', (['factor', 'tf.int8'], {}), '(factor, tf.int8)\n', (3001, 3018), True, 'import tensorflow as tf\n'), ((4799, 4836), 'os.path.join', 'os.path.join', (['path', '"""model_size.json"""'], {}), "(path, 'model_size.json')\n", (4811, 4836), False, 'import os\n'), ((5659, 5679), 'numpy.dtype', 'np.dtype', (['np.float16'], {}), '(np.float16)\n', (5667, 5679), True, 'import numpy as np\n'), ((7045, 7063), 'numpy.dtype', 'np.dtype', (['cat_type'], {}), '(cat_type)\n', (7053, 7063), True, 'import numpy as np\n'), ((8861, 8902), 'tensorflow.io.decode_raw', 'tf.io.decode_raw', (['feature'], {'out_type': 'dtype'}), '(feature, out_type=dtype)\n', (8877, 8902), True, 'import tensorflow as tf\n'), ((8929, 8961), 'tensorflow.cast', 'tf.cast', (['feature'], {'dtype': 'tf.int32'}), '(feature, dtype=tf.int32)\n', (8936, 8961), True, 'import tensorflow as tf\n'), ((8988, 9019), 'tensorflow.expand_dims', 'tf.expand_dims', (['feature'], {'axis': '(1)'}), '(feature, axis=1)\n', (9002, 9019), True, 'import tensorflow as tf\n'), ((2582, 2609), 'tensorflow.cast', 'tf.cast', (['factor', 'tf.float16'], {}), '(factor, tf.float16)\n', (2589, 2609), True, 'import tensorflow as tf\n')]
import os import sys sys.path.append("./") sys.path.append("../") sys.path.append("create_plots/") import datetime as dt import pandas as pd import numpy as np import matplotlib as mpl from matplotlib.dates import num2date import matplotlib.pyplot as plt from scipy.stats import beta import pickle import pydarn from pysolar.solar import get_altitude import utils import rad_fov ################################################ # Inputs date and radar name ################################################ Rad, Dn = "cvw", dt.datetime(2012,1,2) LFS = "LFS/LFS_clustering_superdarn_data/" gmm = True a_name = "dbscan" rads = [Rad] dates = [Dn] remove_file = False maxGate = None gate = 7 sza_thresh, wid = {"is":85., "gs":105.}, 1. bin_thick = 1. tag = False scale = 1. def get_data_pkl(rad, dn, conn): local_file = "../data/%s_%s_scans.pickle"%(rad, dn.strftime("%Y-%m-%d")) #utils.from_remote_FS(conn, local_file, LFS) with open(local_file, "rb") as f: pkl = pickle.load(f) dates, elvs = [], [] for d, e in zip(pkl["time"], pkl["elv"]): dates.extend(num2date(d)) elvs.extend(e) ox = pd.DataFrame() ox["date"], ox["elevation"] = dates, elvs return ox def get_sza(row, lats, lons): print(num2date(row.time), row.bmnum) lat, lon = lats[int(row["bmnum"]), int(row["slist"])],\ lons[int(row["bmnum"]), int(row["slist"])] dn = num2date(row["time"]) d = dn.replace(tzinfo=dt.timezone.utc) sza = 90.-get_altitude(lat, lon, d) return sza def calculate_total_uncertainity(_is, _gs): def calc_prob(m, l, th, low=True): h, be = np.histogram(m, bins=l, density=True) bc = np.diff(be) idx = be[1:] < th if low else be[1:] > th edges = (be[1:])[be[1:] < th] if low else (be[1:])[be[1:] > th] pr = np.sum(h[idx]*bc[idx]) height = h[idx] #return pr, h, be[1:], bc return pr, height, edges, bc L = len(np.unique(_is.sza)) if len(np.unique(_is.sza)) > len(np.unique(_gs.sza)) else len(np.unique(_gs.sza)) L = int(L/bin_thick) pr_a, h_a, be_a, bc = calc_prob(_is.sza.tolist(), L, sza_thresh["is"], low=True) pr_b, h_b, be_b, _ = calc_prob(_gs.sza.tolist(), L, sza_thresh["gs"], low=False) out = [] for pa, pb, b in zip(h_a, h_b, bc): if pa < pb: out.append(pa*b) else: out.append(pb*b) #prb = np.round(np.sum(out), 3) prb = np.round(pr_a+pr_b, 3) print("Total Uncertainty:", prb) fig = plt.figure(figsize=(4, 4), dpi=100) mpl.rcParams.update({"font.size": 10}) ax = fig.add_subplot(111) ax.hist(_is.sza.tolist(), bins=L, histtype="step", color="red", density=True, alpha=0.5, label="IS") ax.hist(_gs.sza.tolist(), bins=L, histtype="step", color="blue", density=True, alpha=0.5, label="GS") ax.fill_between(be_a, y1=np.zeros(len(be_a)), y2=h_a, color="r", alpha=0.3, step="pre") ax.fill_between(be_b, y1=np.zeros(len(be_b)), y2=h_b, color="b", alpha=0.3, step="pre") #ax.fill_between(be_a, y1=np.zeros(len(be_a)), y2=out, color="violet", alpha=0.3, step="pre") ax.legend(loc=1) ax.axvline(sza_thresh["is"], color="r", ls="--", lw=0.6) ax.axvline(sza_thresh["gs"], color="b", ls="--", lw=0.6) ax.set_xlabel(r"SZA, $\chi$ ($^o$)") ax.set_ylabel("Density of IS, GS") ax.text(0.99, 1.03, r"$\theta$~ %.2f"%prb, ha="right", va="center", transform=ax.transAxes) ax.text(0.01, 1.03, rads[0].upper()+", %s"%dates[0].strftime("%Y-%m-%d"), ha="left", va="center", transform=ax.transAxes) png = "create_plots/images/detection_%s_%s.png"%(Rad, Dn.strftime("%Y%m%d")) ax.set_ylim(0,.1) if tag: png = png.replace(".png", ".missing.png") fig.savefig(png, bbox_inches="tight") return prb def calculate_uq_elv(_is, _gs): L = len(np.unique(_is.elv)) if len(np.unique(_is.elv)) > len(np.unique(_gs.elv)) else len(np.unique(_gs.elv)) L = int(L/5) #pr_a, h_a, be_a, bc = calc_prob(_is.elv.tolist(), L, sza_thresh["is"], low=True) #pr_b, h_b, be_b, _ = calc_prob(_gs.elv.tolist(), L, sza_thresh["gs"], low=False) #out = [] #for pa, pb, b in zip(h_a, h_b, bc): # if pa < pb: out.append(pa*b) # else: out.append(pb*b) #prb = np.round(np.sum(out), 3) #prb = np.round(pr_a+pr_b, 3) #print("Total Uncertainty:", prb) fig = plt.figure(figsize=(4, 7), dpi=100) mpl.rcParams.update({"font.size": 10}) ax = fig.add_subplot(211) ax.set_xlabel(r"AoA, $\alpha$ ($^o$)") ax.set_ylabel("Gate Location (IS)") ax.hist2d(_is.elv.tolist(), _is.slist.tolist(), bins=(20,20), cmap=plt.cm.Greys, norm=mpl.colors.LogNorm())#, histtype="step", color="red", density=True, alpha=0.5, label="IS") ax = fig.add_subplot(212) ax.set_xlabel(r"AoA, $\alpha$ ($^o$)") ax.set_ylabel("Gate Location (GS)") ax.hist2d(_gs.elv.tolist(), _gs.slist.tolist(), bins=(20,20), cmap=plt.cm.Greys, norm=mpl.colors.LogNorm())#, histtype="step", color="blue", density=True, alpha=0.5, label="GS") #ax.fill_between(be_a, y1=np.zeros(len(be_a)), y2=h_a, color="r", alpha=0.3, step="pre") #ax.fill_between(be_b, y1=np.zeros(len(be_b)), y2=h_b, color="b", alpha=0.3, step="pre") #ax.fill_between(be_a, y1=np.zeros(len(be_a)), y2=out, color="violet", alpha=0.3, step="pre") #ax.legend(loc=1) #ax.axvline(sza_thresh["is"], color="r", ls="--", lw=0.6) #ax.axvline(sza_thresh["gs"], color="b", ls="--", lw=0.6) ax.set_xlabel(r"AoA, $\alpha$ ($^o$)") ax.set_ylabel("Gate Location") #ax.text(0.99, 1.03, r"$\theta$~ %.2f"%prb, ha="right", va="center", transform=ax.transAxes) #ax.text(0.01, 1.03, rads[0].upper()+", %s"%dates[0].strftime("%Y-%m-%d"), ha="left", va="center", transform=ax.transAxes) png = "create_plots/images/uq_%s_%s.png"%(Rad, Dn.strftime("%Y%m%d")) #ax.set_ylim(0,.1) if tag: png = png.replace(".png", ".missing.png") fig.savefig(png, bbox_inches="tight") return pubfile = utils.get_pubfile() conn = utils.get_session(key_filename=pubfile) if gmm: fname = "../outputs/figures_for_papers/{rad}.{a_name}.gmm.{dn}.csv" else: fname = "../outputs/figures_for_papers/{rad}.{a_name}.{dn}.csv" if tag: fname = fname.replace(".csv", ".missing.csv") for rad, dn in zip(rads, dates): ox = get_data_pkl(rad, dn, conn) floc = fname.format(rad=rad, a_name=a_name, dn=dn.strftime("%Y%m%d")) if not os.path.exists(floc): utils.fetch_file(conn, floc, LFS) X = pd.read_csv(floc) hdw = pydarn.read_hdw_file(rad) egate = hdw.gates if not maxGate else maxGate rfov = rad_fov.CalcFov(hdw=hdw, ngates=egate) if "sza" not in X.columns: X["sza"] = X.apply(lambda r: get_sza(r, rfov.latFull, rfov.lonFull), axis=1) X.to_csv(floc) X = utils._run_riberio_threshold_on_rad(X) X["elv"] = ox.elevation print(X.head()) conn.close() if remove_file: os.system("rm -rf ../outputs/cluster_tags/*") X.sza = (np.array(X.sza)/wid).astype(int)*wid X = X[X.slist > gate] X = X[["sza", "ribiero_gflg", "elv", "slist"]] _is, _gs = X[X.ribiero_gflg==0], X[X.ribiero_gflg==1] #Pr_ab = calculate_total_uncertainity(_is, _gs) calculate_uq_elv(_is, _gs)
[ "numpy.sum", "pandas.read_csv", "utils.fetch_file", "matplotlib.pyplot.figure", "pickle.load", "numpy.histogram", "matplotlib.colors.LogNorm", "numpy.round", "utils._run_riberio_threshold_on_rad", "utils.get_session", "numpy.unique", "sys.path.append", "pandas.DataFrame", "matplotlib.rcParams.update", "matplotlib.dates.num2date", "os.path.exists", "pysolar.solar.get_altitude", "rad_fov.CalcFov", "pydarn.read_hdw_file", "os.system", "datetime.datetime", "utils.get_pubfile", "numpy.diff", "numpy.array" ]
[((21, 42), 'sys.path.append', 'sys.path.append', (['"""./"""'], {}), "('./')\n", (36, 42), False, 'import sys\n'), ((43, 65), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (58, 65), False, 'import sys\n'), ((66, 98), 'sys.path.append', 'sys.path.append', (['"""create_plots/"""'], {}), "('create_plots/')\n", (81, 98), False, 'import sys\n'), ((5954, 5973), 'utils.get_pubfile', 'utils.get_pubfile', ([], {}), '()\n', (5971, 5973), False, 'import utils\n'), ((5981, 6020), 'utils.get_session', 'utils.get_session', ([], {'key_filename': 'pubfile'}), '(key_filename=pubfile)\n', (5998, 6020), False, 'import utils\n'), ((525, 548), 'datetime.datetime', 'dt.datetime', (['(2012)', '(1)', '(2)'], {}), '(2012, 1, 2)\n', (536, 548), True, 'import datetime as dt\n'), ((1128, 1142), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1140, 1142), True, 'import pandas as pd\n'), ((1407, 1428), 'matplotlib.dates.num2date', 'num2date', (["row['time']"], {}), "(row['time'])\n", (1415, 1428), False, 'from matplotlib.dates import num2date\n'), ((2429, 2453), 'numpy.round', 'np.round', (['(pr_a + pr_b)', '(3)'], {}), '(pr_a + pr_b, 3)\n', (2437, 2453), True, 'import numpy as np\n'), ((2499, 2534), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(4, 4)', 'dpi': '(100)'}), '(figsize=(4, 4), dpi=100)\n', (2509, 2534), True, 'import matplotlib.pyplot as plt\n'), ((2539, 2577), 'matplotlib.rcParams.update', 'mpl.rcParams.update', (["{'font.size': 10}"], {}), "({'font.size': 10})\n", (2558, 2577), True, 'import matplotlib as mpl\n'), ((4339, 4374), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(4, 7)', 'dpi': '(100)'}), '(figsize=(4, 7), dpi=100)\n', (4349, 4374), True, 'import matplotlib.pyplot as plt\n'), ((4379, 4417), 'matplotlib.rcParams.update', 'mpl.rcParams.update', (["{'font.size': 10}"], {}), "({'font.size': 10})\n", (4398, 4417), True, 'import matplotlib as mpl\n'), ((6456, 6473), 'pandas.read_csv', 'pd.read_csv', (['floc'], {}), '(floc)\n', (6467, 6473), True, 'import pandas as pd\n'), ((6484, 6509), 'pydarn.read_hdw_file', 'pydarn.read_hdw_file', (['rad'], {}), '(rad)\n', (6504, 6509), False, 'import pydarn\n'), ((6571, 6609), 'rad_fov.CalcFov', 'rad_fov.CalcFov', ([], {'hdw': 'hdw', 'ngates': 'egate'}), '(hdw=hdw, ngates=egate)\n', (6586, 6609), False, 'import rad_fov\n'), ((6758, 6796), 'utils._run_riberio_threshold_on_rad', 'utils._run_riberio_threshold_on_rad', (['X'], {}), '(X)\n', (6793, 6796), False, 'import utils\n'), ((6874, 6919), 'os.system', 'os.system', (['"""rm -rf ../outputs/cluster_tags/*"""'], {}), "('rm -rf ../outputs/cluster_tags/*')\n", (6883, 6919), False, 'import os\n'), ((976, 990), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (987, 990), False, 'import pickle\n'), ((1244, 1262), 'matplotlib.dates.num2date', 'num2date', (['row.time'], {}), '(row.time)\n', (1252, 1262), False, 'from matplotlib.dates import num2date\n'), ((1486, 1511), 'pysolar.solar.get_altitude', 'get_altitude', (['lat', 'lon', 'd'], {}), '(lat, lon, d)\n', (1498, 1511), False, 'from pysolar.solar import get_altitude\n'), ((1632, 1669), 'numpy.histogram', 'np.histogram', (['m'], {'bins': 'l', 'density': '(True)'}), '(m, bins=l, density=True)\n', (1644, 1669), True, 'import numpy as np\n'), ((1683, 1694), 'numpy.diff', 'np.diff', (['be'], {}), '(be)\n', (1690, 1694), True, 'import numpy as np\n'), ((1830, 1854), 'numpy.sum', 'np.sum', (['(h[idx] * bc[idx])'], {}), '(h[idx] * bc[idx])\n', (1836, 1854), True, 'import numpy as np\n'), ((6392, 6412), 'os.path.exists', 'os.path.exists', (['floc'], {}), '(floc)\n', (6406, 6412), False, 'import os\n'), ((6414, 6447), 'utils.fetch_file', 'utils.fetch_file', (['conn', 'floc', 'LFS'], {}), '(conn, floc, LFS)\n', (6430, 6447), False, 'import utils\n'), ((1083, 1094), 'matplotlib.dates.num2date', 'num2date', (['d'], {}), '(d)\n', (1091, 1094), False, 'from matplotlib.dates import num2date\n'), ((1965, 1983), 'numpy.unique', 'np.unique', (['_is.sza'], {}), '(_is.sza)\n', (1974, 1983), True, 'import numpy as np\n'), ((2047, 2065), 'numpy.unique', 'np.unique', (['_gs.sza'], {}), '(_gs.sza)\n', (2056, 2065), True, 'import numpy as np\n'), ((3805, 3823), 'numpy.unique', 'np.unique', (['_is.elv'], {}), '(_is.elv)\n', (3814, 3823), True, 'import numpy as np\n'), ((3887, 3905), 'numpy.unique', 'np.unique', (['_gs.elv'], {}), '(_gs.elv)\n', (3896, 3905), True, 'import numpy as np\n'), ((4621, 4641), 'matplotlib.colors.LogNorm', 'mpl.colors.LogNorm', ([], {}), '()\n', (4639, 4641), True, 'import matplotlib as mpl\n'), ((4915, 4935), 'matplotlib.colors.LogNorm', 'mpl.colors.LogNorm', ([], {}), '()\n', (4933, 4935), True, 'import matplotlib as mpl\n'), ((1992, 2010), 'numpy.unique', 'np.unique', (['_is.sza'], {}), '(_is.sza)\n', (2001, 2010), True, 'import numpy as np\n'), ((2018, 2036), 'numpy.unique', 'np.unique', (['_gs.sza'], {}), '(_gs.sza)\n', (2027, 2036), True, 'import numpy as np\n'), ((3832, 3850), 'numpy.unique', 'np.unique', (['_is.elv'], {}), '(_is.elv)\n', (3841, 3850), True, 'import numpy as np\n'), ((3858, 3876), 'numpy.unique', 'np.unique', (['_gs.elv'], {}), '(_gs.elv)\n', (3867, 3876), True, 'import numpy as np\n'), ((6930, 6945), 'numpy.array', 'np.array', (['X.sza'], {}), '(X.sza)\n', (6938, 6945), True, 'import numpy as np\n')]
"""Unit tests for code in shared.py. Copyright by <NAME> Released under the MIT license - see LICENSE file for details """ from unittest import TestCase import numpy as np import proset.shared as shared from test.test_set_manager import REFERENCE, PROTOTYPES, FEATURE_WEIGHTS # pylint: disable=wrong-import-order FEATURE_NAMES = ["feature_1", "feature_2"] # pylint: disable=missing-function-docstring, protected-access, too-many-public-methods class TestShared(TestCase): """Unit tests for functions in shared.py. """ def test_check_classifier_target_fail_1(self): message = "" try: shared.check_classifier_target(np.array([[0, 1]])) except ValueError as ex: message = ex.args[0] self.assertEqual(message, "Parameter target must be a 1D array.") def test_check_classifier_target_fail_2(self): message = "" try: shared.check_classifier_target(np.array([0.0, 1.0])) except TypeError as ex: message = ex.args[0] self.assertEqual(message, "Parameter target must be an integer array.") def test_check_classifier_target_fail_3(self): message = "" try: shared.check_classifier_target(np.array([0, 2])) except ValueError as ex: message = ex.args[0] self.assertEqual( message, "Parameter target must encode classes as integers from 0 to K - 1 and every class must be present." ) @staticmethod def test_check_classifier_target_1(): result = shared.check_classifier_target(np.array([0, 1, 1, 0, 2])) np.testing.assert_allclose(result, np.array([2, 2, 1])) @staticmethod def test_find_changes_1(): result = shared.find_changes(np.array([0, 0, 1, 1, 1, 2])) np.testing.assert_allclose(result, np.array([0, 2, 5])) @staticmethod def test_quick_compute_similarity_1(): scaled_reference = REFERENCE * FEATURE_WEIGHTS scaled_prototypes = PROTOTYPES * FEATURE_WEIGHTS similarity = shared.quick_compute_similarity( scaled_reference=scaled_reference, scaled_prototypes=scaled_prototypes, ssq_reference=np.sum(scaled_reference ** 2.0, axis=1), ssq_prototypes=np.sum(scaled_prototypes ** 2.0, axis=1) ) reference_similarity = np.zeros((REFERENCE.shape[0], PROTOTYPES.shape[0]), dtype=float) for i in range(REFERENCE.shape[0]): for j in range(PROTOTYPES.shape[0]): reference_similarity[i, j] = np.exp( -0.5 * np.sum(((REFERENCE[i] - PROTOTYPES[j]) * FEATURE_WEIGHTS) ** 2.0) ) np.testing.assert_allclose(similarity, reference_similarity) def test_check_feature_names_fail_1(self): message = "" try: shared.check_feature_names(num_features=1.0, feature_names=None, active_features=None) except TypeError as ex: message = ex.args[0] self.assertEqual(message, "Parameter num_features must be integer.") def test_check_feature_names_fail_2(self): message = "" try: shared.check_feature_names(num_features=0, feature_names=None, active_features=None) except ValueError as ex: message = ex.args[0] self.assertEqual(message, "Parameter num_features must be positive.") def test_check_feature_names_fail_3(self): message = "" try: shared.check_feature_names(num_features=1, feature_names=FEATURE_NAMES, active_features=None) except ValueError as ex: message = ex.args[0] self.assertEqual(message, "Parameter feature_names must have one element per feature if not None.") def test_check_feature_names_fail_4(self): message = "" try: shared.check_feature_names(num_features=2, feature_names=None, active_features=np.array([[0, 1]])) except ValueError as ex: message = ex.args[0] self.assertEqual(message, "Parameter active_features must be a 1D array.") def test_check_feature_names_fail_5(self): message = "" try: shared.check_feature_names(num_features=2, feature_names=None, active_features=np.array([0.0, 1.0])) except TypeError as ex: message = ex.args[0] self.assertEqual(message, "Parameter active_features must be an integer array.") def test_check_feature_names_fail_6(self): message = "" try: shared.check_feature_names(num_features=2, feature_names=None, active_features=np.array([-1, 0])) except ValueError as ex: message = ex.args[0] self.assertEqual( message, "Parameter active_features must contain non-negative numbers less than the total number of features." ) def test_check_feature_names_fail_7(self): message = "" try: shared.check_feature_names(num_features=2, feature_names=None, active_features=np.array([0, 2])) except ValueError as ex: message = ex.args[0] self.assertEqual( message, "Parameter active_features must contain non-negative numbers less than the total number of features." ) def test_check_feature_names_1(self): result = shared.check_feature_names(num_features=2, feature_names=FEATURE_NAMES, active_features=None) self.assertEqual(result, FEATURE_NAMES) self.assertFalse(result is FEATURE_NAMES) # ensure result is a copy and not a reference to the original input def test_check_feature_names_2(self): result = shared.check_feature_names(num_features=2, feature_names=None, active_features=None) self.assertEqual(result, ["X0", "X1"]) def test_check_feature_names_3(self): result = shared.check_feature_names(num_features=2, feature_names=FEATURE_NAMES, active_features=np.array([1])) self.assertEqual(result, [FEATURE_NAMES[1]]) def test_check_feature_names_4(self): result = shared.check_feature_names(num_features=2, feature_names=None, active_features=np.array([1])) self.assertEqual(result, ["X1"]) def test_check_scale_offset_fail_1(self): message = "" try: shared.check_scale_offset(num_features=2.0, scale=None, offset=None) except TypeError as ex: message = ex.args[0] self.assertEqual(message, "Parameter num_features must be integer.") def test_check_scale_offset_fail_2(self): message = "" try: shared.check_scale_offset(num_features=0, scale=None, offset=None) except ValueError as ex: message = ex.args[0] self.assertEqual(message, "Parameter num_features must be positive.") def test_check_scale_offset_fail_3(self): message = "" try: shared.check_scale_offset(num_features=2, scale=np.array([[0.5, 2.0]]), offset=None) except ValueError as ex: message = ex.args[0] self.assertEqual(message, "Parameter scale must be a 1D array.") def test_check_scale_offset_fail_4(self): message = "" try: shared.check_scale_offset(num_features=3, scale=np.array([0.5, 2.0]), offset=None) except ValueError as ex: message = ex.args[0] self.assertEqual(message, "Parameter scale must have one element per feature.") def test_check_scale_offset_fail_5(self): message = "" try: shared.check_scale_offset(num_features=2, scale=np.array([0.0, 2.0]), offset=None) except ValueError as ex: message = ex.args[0] self.assertEqual(message, "Parameter scale must have strictly positive elements.") def test_check_scale_offset_fail_6(self): message = "" try: shared.check_scale_offset(num_features=2, scale=np.array([0.5, 2.0]), offset=np.array([[-1.0, 1.0]])) except ValueError as ex: message = ex.args[0] self.assertEqual(message, "Parameter offset must be a 1D array.") def test_check_scale_offset_fail_7(self): message = "" try: shared.check_scale_offset(num_features=3, scale=np.array([0.5, 2.0, 1.0]), offset=np.array([-1.0, 1.0])) except ValueError as ex: message = ex.args[0] self.assertEqual(message, "Parameter offset must have one element per feature.") def test_check_scale_offset_1(self): scale_in = np.array([0.5, 2.0]) offset_in = np.array([-1.0, 1.0]) scale_out, offset_out = shared.check_scale_offset(num_features=2, scale=scale_in, offset=offset_in) np.testing.assert_array_equal(scale_out, scale_in) np.testing.assert_array_equal(offset_out, offset_in) self.assertFalse(scale_out is scale_in) # ensure result is a copy and not a reference to the original input self.assertFalse(offset_out is offset_in) @staticmethod def test_check_scale_offset_2(): scale_out, offset_out = shared.check_scale_offset(num_features=2, scale=None, offset=None) np.testing.assert_array_equal(scale_out, np.ones(2, dtype=float)) np.testing.assert_array_equal(offset_out, np.zeros(2, dtype=float))
[ "proset.shared.check_scale_offset", "numpy.sum", "numpy.testing.assert_array_equal", "numpy.zeros", "numpy.ones", "numpy.array", "numpy.testing.assert_allclose", "proset.shared.check_feature_names" ]
[((2439, 2503), 'numpy.zeros', 'np.zeros', (['(REFERENCE.shape[0], PROTOTYPES.shape[0])'], {'dtype': 'float'}), '((REFERENCE.shape[0], PROTOTYPES.shape[0]), dtype=float)\n', (2447, 2503), True, 'import numpy as np\n'), ((2775, 2835), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['similarity', 'reference_similarity'], {}), '(similarity, reference_similarity)\n', (2801, 2835), True, 'import numpy as np\n'), ((5517, 5614), 'proset.shared.check_feature_names', 'shared.check_feature_names', ([], {'num_features': '(2)', 'feature_names': 'FEATURE_NAMES', 'active_features': 'None'}), '(num_features=2, feature_names=FEATURE_NAMES,\n active_features=None)\n', (5543, 5614), True, 'import proset.shared as shared\n'), ((5843, 5931), 'proset.shared.check_feature_names', 'shared.check_feature_names', ([], {'num_features': '(2)', 'feature_names': 'None', 'active_features': 'None'}), '(num_features=2, feature_names=None,\n active_features=None)\n', (5869, 5931), True, 'import proset.shared as shared\n'), ((8791, 8811), 'numpy.array', 'np.array', (['[0.5, 2.0]'], {}), '([0.5, 2.0])\n', (8799, 8811), True, 'import numpy as np\n'), ((8833, 8854), 'numpy.array', 'np.array', (['[-1.0, 1.0]'], {}), '([-1.0, 1.0])\n', (8841, 8854), True, 'import numpy as np\n'), ((8888, 8963), 'proset.shared.check_scale_offset', 'shared.check_scale_offset', ([], {'num_features': '(2)', 'scale': 'scale_in', 'offset': 'offset_in'}), '(num_features=2, scale=scale_in, offset=offset_in)\n', (8913, 8963), True, 'import proset.shared as shared\n'), ((8973, 9023), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['scale_out', 'scale_in'], {}), '(scale_out, scale_in)\n', (9002, 9023), True, 'import numpy as np\n'), ((9033, 9085), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['offset_out', 'offset_in'], {}), '(offset_out, offset_in)\n', (9062, 9085), True, 'import numpy as np\n'), ((9347, 9413), 'proset.shared.check_scale_offset', 'shared.check_scale_offset', ([], {'num_features': '(2)', 'scale': 'None', 'offset': 'None'}), '(num_features=2, scale=None, offset=None)\n', (9372, 9413), True, 'import proset.shared as shared\n'), ((1649, 1674), 'numpy.array', 'np.array', (['[0, 1, 1, 0, 2]'], {}), '([0, 1, 1, 0, 2])\n', (1657, 1674), True, 'import numpy as np\n'), ((1720, 1739), 'numpy.array', 'np.array', (['[2, 2, 1]'], {}), '([2, 2, 1])\n', (1728, 1739), True, 'import numpy as np\n'), ((1832, 1860), 'numpy.array', 'np.array', (['[0, 0, 1, 1, 1, 2]'], {}), '([0, 0, 1, 1, 1, 2])\n', (1840, 1860), True, 'import numpy as np\n'), ((1906, 1925), 'numpy.array', 'np.array', (['[0, 2, 5]'], {}), '([0, 2, 5])\n', (1914, 1925), True, 'import numpy as np\n'), ((2935, 3025), 'proset.shared.check_feature_names', 'shared.check_feature_names', ([], {'num_features': '(1.0)', 'feature_names': 'None', 'active_features': 'None'}), '(num_features=1.0, feature_names=None,\n active_features=None)\n', (2961, 3025), True, 'import proset.shared as shared\n'), ((3266, 3354), 'proset.shared.check_feature_names', 'shared.check_feature_names', ([], {'num_features': '(0)', 'feature_names': 'None', 'active_features': 'None'}), '(num_features=0, feature_names=None,\n active_features=None)\n', (3292, 3354), True, 'import proset.shared as shared\n'), ((3597, 3694), 'proset.shared.check_feature_names', 'shared.check_feature_names', ([], {'num_features': '(1)', 'feature_names': 'FEATURE_NAMES', 'active_features': 'None'}), '(num_features=1, feature_names=FEATURE_NAMES,\n active_features=None)\n', (3623, 3694), True, 'import proset.shared as shared\n'), ((6493, 6561), 'proset.shared.check_scale_offset', 'shared.check_scale_offset', ([], {'num_features': '(2.0)', 'scale': 'None', 'offset': 'None'}), '(num_features=2.0, scale=None, offset=None)\n', (6518, 6561), True, 'import proset.shared as shared\n'), ((6805, 6871), 'proset.shared.check_scale_offset', 'shared.check_scale_offset', ([], {'num_features': '(0)', 'scale': 'None', 'offset': 'None'}), '(num_features=0, scale=None, offset=None)\n', (6830, 6871), True, 'import proset.shared as shared\n'), ((9464, 9487), 'numpy.ones', 'np.ones', (['(2)'], {'dtype': 'float'}), '(2, dtype=float)\n', (9471, 9487), True, 'import numpy as np\n'), ((9540, 9564), 'numpy.zeros', 'np.zeros', (['(2)'], {'dtype': 'float'}), '(2, dtype=float)\n', (9548, 9564), True, 'import numpy as np\n'), ((689, 707), 'numpy.array', 'np.array', (['[[0, 1]]'], {}), '([[0, 1]])\n', (697, 707), True, 'import numpy as np\n'), ((986, 1006), 'numpy.array', 'np.array', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (994, 1006), True, 'import numpy as np\n'), ((1290, 1306), 'numpy.array', 'np.array', (['[0, 2]'], {}), '([0, 2])\n', (1298, 1306), True, 'import numpy as np\n'), ((2286, 2325), 'numpy.sum', 'np.sum', (['(scaled_reference ** 2.0)'], {'axis': '(1)'}), '(scaled_reference ** 2.0, axis=1)\n', (2292, 2325), True, 'import numpy as np\n'), ((2355, 2395), 'numpy.sum', 'np.sum', (['(scaled_prototypes ** 2.0)'], {'axis': '(1)'}), '(scaled_prototypes ** 2.0, axis=1)\n', (2361, 2395), True, 'import numpy as np\n'), ((6127, 6140), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (6135, 6140), True, 'import numpy as np\n'), ((6338, 6351), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (6346, 6351), True, 'import numpy as np\n'), ((4046, 4064), 'numpy.array', 'np.array', (['[[0, 1]]'], {}), '([[0, 1]])\n', (4054, 4064), True, 'import numpy as np\n'), ((4396, 4416), 'numpy.array', 'np.array', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (4404, 4416), True, 'import numpy as np\n'), ((4753, 4770), 'numpy.array', 'np.array', (['[-1, 0]'], {}), '([-1, 0])\n', (4761, 4770), True, 'import numpy as np\n'), ((5193, 5209), 'numpy.array', 'np.array', (['[0, 2]'], {}), '([0, 2])\n', (5201, 5209), True, 'import numpy as np\n'), ((7165, 7187), 'numpy.array', 'np.array', (['[[0.5, 2.0]]'], {}), '([[0.5, 2.0]])\n', (7173, 7187), True, 'import numpy as np\n'), ((7490, 7510), 'numpy.array', 'np.array', (['[0.5, 2.0]'], {}), '([0.5, 2.0])\n', (7498, 7510), True, 'import numpy as np\n'), ((7828, 7848), 'numpy.array', 'np.array', (['[0.0, 2.0]'], {}), '([0.0, 2.0])\n', (7836, 7848), True, 'import numpy as np\n'), ((8169, 8189), 'numpy.array', 'np.array', (['[0.5, 2.0]'], {}), '([0.5, 2.0])\n', (8177, 8189), True, 'import numpy as np\n'), ((8198, 8221), 'numpy.array', 'np.array', (['[[-1.0, 1.0]]'], {}), '([[-1.0, 1.0]])\n', (8206, 8221), True, 'import numpy as np\n'), ((8512, 8537), 'numpy.array', 'np.array', (['[0.5, 2.0, 1.0]'], {}), '([0.5, 2.0, 1.0])\n', (8520, 8537), True, 'import numpy as np\n'), ((8546, 8567), 'numpy.array', 'np.array', (['[-1.0, 1.0]'], {}), '([-1.0, 1.0])\n', (8554, 8567), True, 'import numpy as np\n'), ((2681, 2746), 'numpy.sum', 'np.sum', (['(((REFERENCE[i] - PROTOTYPES[j]) * FEATURE_WEIGHTS) ** 2.0)'], {}), '(((REFERENCE[i] - PROTOTYPES[j]) * FEATURE_WEIGHTS) ** 2.0)\n', (2687, 2746), True, 'import numpy as np\n')]
import os import time import h5py import numpy as np from annotypes import Anno, add_call_types from scanpointgenerator import Point from malcolm.core import APartName, Part, PartRegistrar from malcolm.modules import builtin, scanning from ..util import interesting_pattern, make_gaussian_blob with Anno("Width of detector image"): AWidth = int with Anno("Height of detector image"): AHeight = int # Datasets where we will write our data DATA_PATH = "/entry/data" SUM_PATH = "/entry/sum" UID_PATH = "/entry/uid" SET_PATH = "/entry/%s_set" # How often we flush in seconds FLUSH_PERIOD = 1 class FileWritePart(Part): """Minimal interface demonstrating a file writing detector part""" def __init__(self, name: APartName, width: AWidth, height: AHeight) -> None: super().__init__(name) # Store input arguments self._width = width self._height = height # The detector image we will modify for each image (0..255 range) self._blob = make_gaussian_blob(width, height) * 255 # The hdf file we will write self._hdf: h5py.File = None # Configure args and progress info self._exposure = 0.0 self._generator: scanning.hooks.AGenerator = None self._completed_steps = 0 self._steps_to_do = 0 # How much to offset uid value from generator point self._uid_offset = 0 def setup(self, registrar: PartRegistrar) -> None: super().setup(registrar) # Hooks registrar.hook(scanning.hooks.ConfigureHook, self.on_configure) registrar.hook( (scanning.hooks.PostRunArmedHook, scanning.hooks.SeekHook), self.on_seek ) registrar.hook(scanning.hooks.RunHook, self.on_run) registrar.hook( (scanning.hooks.AbortHook, builtin.hooks.ResetHook), self.on_reset ) # Tell the controller to expose some extra configure parameters registrar.report(scanning.hooks.ConfigureHook.create_info(self.on_configure)) # Allow CamelCase as these parameters will be serialized # noinspection PyPep8Naming @add_call_types def on_configure( self, completed_steps: scanning.hooks.ACompletedSteps, steps_to_do: scanning.hooks.AStepsToDo, generator: scanning.hooks.AGenerator, fileDir: scanning.hooks.AFileDir, exposure: scanning.hooks.AExposure = 0.0, formatName: scanning.hooks.AFormatName = "det", fileTemplate: scanning.hooks.AFileTemplate = "%s.h5", ) -> scanning.hooks.UInfos: """On `ConfigureHook` create HDF file with datasets""" # Store args self._completed_steps = completed_steps self._steps_to_do = steps_to_do self._generator = generator self._uid_offset = 0 self._exposure = exposure # Work out where to write the file filename = fileTemplate % formatName filepath = os.path.join(fileDir, filename) # Make the HDF file self._hdf = self._create_hdf(filepath) # Tell everyone what we're going to make infos = list(self._create_infos(formatName, filename)) return infos # For docs: Before run @add_call_types def on_run(self, context: scanning.hooks.AContext) -> None: """On `RunHook` record where to next take data""" # Start time so everything is relative end_of_exposure = time.time() + self._exposure last_flush = end_of_exposure assert self.registrar, "Part has no registrar" for i in range( self._completed_steps, self._completed_steps + self._steps_to_do ): # Get the point we are meant to be scanning point = self._generator.get_point(i) # Simulate waiting for an exposure and writing the data wait_time = end_of_exposure - time.time() context.sleep(wait_time) self.log.debug(f"Writing data for point {i}") self._write_data(point, i) # Flush the datasets if it is time to if time.time() - last_flush > FLUSH_PERIOD: last_flush = time.time() self._flush_datasets() # Schedule the end of the next exposure end_of_exposure += point.duration # Update the point as being complete self.registrar.report(scanning.infos.RunProgressInfo(i + 1)) # Do one last flush and then we're done self._flush_datasets() @add_call_types def on_seek( self, completed_steps: scanning.hooks.ACompletedSteps, steps_to_do: scanning.hooks.AStepsToDo, ) -> None: """On `SeekHook`, `PostRunArmedHook` record where to next take data""" # Skip the uid so it is guaranteed to be unique self._uid_offset += self._completed_steps + self._steps_to_do - completed_steps self._completed_steps = completed_steps self._steps_to_do = steps_to_do @add_call_types def on_reset(self) -> None: """On `AbortHook`, `ResetHook` close HDF file if it exists""" if self._hdf: self._hdf.close() self._hdf = None def _create_infos(self, detector_name, filename): # Main dataset yield scanning.infos.DatasetProducedInfo( name="%s.data" % detector_name, filename=filename, type=scanning.util.DatasetType.PRIMARY, rank=len(self._generator.shape) + 2, path=DATA_PATH, uniqueid=UID_PATH, ) # Sum yield scanning.infos.DatasetProducedInfo( name="%s.sum" % detector_name, filename=filename, type=scanning.util.DatasetType.SECONDARY, rank=len(self._generator.shape) + 2, path=SUM_PATH, uniqueid=UID_PATH, ) # Add an axis for each setpoint for dim in self._generator.axes: yield scanning.infos.DatasetProducedInfo( name="%s.value_set" % dim, filename=filename, type=scanning.util.DatasetType.POSITION_SET, rank=1, path=SET_PATH % dim, uniqueid="", ) def _create_hdf(self, filepath: str) -> h5py.File: # The generator tells us what dimensions our scan should be. The dataset # will grow, so start off with the smallest we need initial_shape = tuple(1 for _ in self._generator.shape) # Open the file with the latest libver so SWMR works hdf = h5py.File(filepath, "w", libver="latest") # Write the datasets # The detector dataset containing the simulated data hdf.create_dataset( DATA_PATH, dtype=np.uint8, shape=initial_shape + (self._height, self._width), maxshape=self._generator.shape + (self._height, self._width), ) # Make the scalar datasets for path, dtype in {UID_PATH: np.int32, SUM_PATH: np.float64}.items(): hdf.create_dataset( path, dtype=dtype, shape=initial_shape + (1, 1), maxshape=self._generator.shape + (1, 1), ) # Make the setpoint dataset for d in self._generator.dimensions: for axis in d.axes: # Make a data set for the axes, holding an array holding # floating point data, for each point specified in the generator ds = hdf.create_dataset(SET_PATH % axis, data=d.get_positions(axis)) ds.attrs["units"] = self._generator.units[axis] # Datasets made, we can switch to SWMR mode now hdf.swmr_mode = True return hdf def _write_data(self, point: Point, step: int) -> None: point_needs_shape = tuple(x + 1 for x in point.indexes) + (1, 1) # Resize the datasets so they fit for path in (DATA_PATH, SUM_PATH, UID_PATH): ds = self._hdf[path] expand_to = tuple(max(*z) for z in zip(point_needs_shape, ds.shape)) ds.resize(expand_to) # Write the detector data, multiply by exposure / duration to allow us # to make dimmer images by reducint exposure relative to other detectors intensity = interesting_pattern(point) * self._exposure / point.duration detector_data = (self._blob * intensity).astype(np.uint8) index = tuple(point.indexes) self._hdf[DATA_PATH][index] = detector_data self._hdf[SUM_PATH][index] = np.sum(detector_data) self._hdf[UID_PATH][index] = step + self._uid_offset + 1 def _flush_datasets(self): # Note that UID comes last so anyone monitoring knows the data is there for path in (DATA_PATH, SUM_PATH, UID_PATH): self._hdf[path].flush()
[ "h5py.File", "malcolm.modules.scanning.infos.RunProgressInfo", "numpy.sum", "annotypes.Anno", "time.time", "malcolm.modules.scanning.hooks.ConfigureHook.create_info", "malcolm.modules.scanning.infos.DatasetProducedInfo", "os.path.join" ]
[((303, 334), 'annotypes.Anno', 'Anno', (['"""Width of detector image"""'], {}), "('Width of detector image')\n", (307, 334), False, 'from annotypes import Anno, add_call_types\n'), ((358, 390), 'annotypes.Anno', 'Anno', (['"""Height of detector image"""'], {}), "('Height of detector image')\n", (362, 390), False, 'from annotypes import Anno, add_call_types\n'), ((2945, 2976), 'os.path.join', 'os.path.join', (['fileDir', 'filename'], {}), '(fileDir, filename)\n', (2957, 2976), False, 'import os\n'), ((6590, 6631), 'h5py.File', 'h5py.File', (['filepath', '"""w"""'], {'libver': '"""latest"""'}), "(filepath, 'w', libver='latest')\n", (6599, 6631), False, 'import h5py\n'), ((8591, 8612), 'numpy.sum', 'np.sum', (['detector_data'], {}), '(detector_data)\n', (8597, 8612), True, 'import numpy as np\n'), ((1963, 2022), 'malcolm.modules.scanning.hooks.ConfigureHook.create_info', 'scanning.hooks.ConfigureHook.create_info', (['self.on_configure'], {}), '(self.on_configure)\n', (2003, 2022), False, 'from malcolm.modules import builtin, scanning\n'), ((3428, 3439), 'time.time', 'time.time', ([], {}), '()\n', (3437, 3439), False, 'import time\n'), ((3876, 3887), 'time.time', 'time.time', ([], {}), '()\n', (3885, 3887), False, 'import time\n'), ((4157, 4168), 'time.time', 'time.time', ([], {}), '()\n', (4166, 4168), False, 'import time\n'), ((4389, 4426), 'malcolm.modules.scanning.infos.RunProgressInfo', 'scanning.infos.RunProgressInfo', (['(i + 1)'], {}), '(i + 1)\n', (4419, 4426), False, 'from malcolm.modules import builtin, scanning\n'), ((5975, 6152), 'malcolm.modules.scanning.infos.DatasetProducedInfo', 'scanning.infos.DatasetProducedInfo', ([], {'name': "('%s.value_set' % dim)", 'filename': 'filename', 'type': 'scanning.util.DatasetType.POSITION_SET', 'rank': '(1)', 'path': '(SET_PATH % dim)', 'uniqueid': '""""""'}), "(name='%s.value_set' % dim, filename=\n filename, type=scanning.util.DatasetType.POSITION_SET, rank=1, path=\n SET_PATH % dim, uniqueid='')\n", (6009, 6152), False, 'from malcolm.modules import builtin, scanning\n'), ((4087, 4098), 'time.time', 'time.time', ([], {}), '()\n', (4096, 4098), False, 'import time\n')]
from skfuzzy import control as ctrl import skfuzzy as fuzz import numpy as np from fuzzy_utils import create_universes_membership_functions class VehicleRules: def __init__(self, show_sim_result=None): prox, over, spat = create_universes_membership_functions() self.__show_sim_result = show_sim_result self.__proximity = prox self.__overlap = over self.__spatial_relationships = spat self.__create_universes_of_discourse() self.__create_membership_functions() self.__create_cycle_rules() self.__create_passenger_rules() self.__create_personal_rules() def __create_universes_of_discourse(self): self.__cycle_interaction = ctrl.Consequent(universe=np.arange(-0.1, 1.1, 0.1), label='cycle_interaction') self.__passenger_interaction = ctrl.Consequent(universe=np.arange(-0.1, 1.1, 0.1), label='passenger_interaction') self.__personal_interaction = ctrl.Consequent(universe=np.arange(-0.1, 1.1, 0.1), label='personal_interaction') def __create_membership_functions(self): self.__cycle_interaction['Riding'] = fuzz.trimf(self.__cycle_interaction.universe, [0.4, 0.7, 1.0]) self.__cycle_interaction['Not Riding'] = fuzz.trimf(self.__cycle_interaction.universe, [0.0, 0.3, 0.6]) self.__passenger_interaction['Riding'] = fuzz.trimf(self.__passenger_interaction.universe, [0.4, 0.7, 1.0]) self.__passenger_interaction['Not Riding'] = fuzz.trimf(self.__passenger_interaction.universe, [0.0, 0.3, 0.6]) self.__personal_interaction['Driving'] = fuzz.trimf(self.__personal_interaction.universe, [0.4, 0.7, 1.0]) self.__personal_interaction['Not Driving'] = fuzz.trimf(self.__personal_interaction.universe, [0.0, 0.3, 0.6]) def __create_cycle_rules(self): # IF overlap AND very close AND above THEN riding self.__riding_rule1 = ctrl.Rule(self.__overlap['Overlap'] & self.__proximity['Very Close'] & (self.__spatial_relationships['Above Left'] | self.__spatial_relationships['Above'] | self.__spatial_relationships['Above Right'] | self.__spatial_relationships['Left'] | self.__spatial_relationships['Right1'] | self.__spatial_relationships['Right2']), self.__cycle_interaction['Riding']) # IF overlap AND very close AND not above THEN not riding self.__not_riding_rule1 = ctrl.Rule(self.__overlap['Overlap'] & self.__proximity['Very Close'] & (self.__spatial_relationships['Below Right'] | self.__spatial_relationships['Below'] | self.__spatial_relationships['Below Left']), self.__cycle_interaction['Not Riding']) # IF overlap AND close OR medium OR far OR very far THEN not riding self.__not_riding_rule2 = ctrl.Rule(self.__overlap['Overlap'] & (self.__proximity['Close'] | self.__proximity['Medium'] | self.__proximity['Far'] | self.__proximity['Very Far']), self.__cycle_interaction['Not Riding']) # IF no overlap THEN not riding self.__not_riding_rule3 = ctrl.Rule(self.__overlap['No Overlap'], self.__cycle_interaction['Not Riding']) self.__riding_ctrl = ctrl.ControlSystem([self.__riding_rule1, self.__not_riding_rule1, self.__not_riding_rule2, self.__not_riding_rule3]) self.__riding_sim = ctrl.ControlSystemSimulation(self.__riding_ctrl, flush_after_run=100) def __create_passenger_rules(self): # IF overlap AND very close THEN riding self.__riding_in_rule1 = ctrl.Rule(self.__overlap['Overlap'] & self.__proximity['Very Close'], self.__passenger_interaction['Riding']) # IF overlap AND close OR medium OR far OR very far THEN not riding self.__not_riding_in_rule1 = ctrl.Rule(self.__overlap['Overlap'] & (self.__proximity['Close'] | self.__proximity['Medium'] | self.__proximity['Far'] | self.__proximity['Very Far']), self.__passenger_interaction['Not Riding']) # IF no overlap THEN not riding self.__not_riding_in_rule2 = ctrl.Rule(self.__overlap['No Overlap'], self.__passenger_interaction['Not Riding']) self.__passenger_ctrl = ctrl.ControlSystem([self.__riding_in_rule1, self.__not_riding_in_rule1, self.__not_riding_in_rule2]) self.__passenger_sim = ctrl.ControlSystemSimulation(self.__passenger_ctrl, flush_after_run=100) def __create_personal_rules(self): # IF overlap AND very close THEN driving self.__driving_rule1 = ctrl.Rule(self.__overlap['Overlap'] & self.__proximity['Very Close'] & (self.__spatial_relationships['Right1'] | self.__spatial_relationships['Right2'] | self.__spatial_relationships['Above Right'] | self.__spatial_relationships['Above'] | self.__spatial_relationships['Above Left'] | self.__spatial_relationships['Left']), self.__personal_interaction['Driving']) # IF overlap AND close OR medium OR far OR very far THEN not driving self.__not_driving_rule1 = ctrl.Rule(self.__overlap['Overlap'] & (self.__proximity['Close'] | self.__proximity['Medium'] | self.__proximity['Far'] | self.__proximity['Very Far']), self.__personal_interaction['Not Driving']) # IF no overlap THEN not driving self.__not_driving_rule2 = ctrl.Rule(self.__overlap['No Overlap'], self.__personal_interaction['Not Driving']) # IF overlap AND very close AND below(s) THEN not driving self.__not_driving_rule3 = ctrl.Rule(self.__overlap['Overlap'] & self.__proximity['Very Close'] & (self.__spatial_relationships['Below Left'] | self.__spatial_relationships['Below'] | self.__spatial_relationships['Below Right']), self.__personal_interaction['Not Driving']) self.__personal_ctrl = ctrl.ControlSystem([self.__driving_rule1, self.__not_driving_rule1, self.__not_driving_rule2, self.__not_driving_rule3]) self.__personal_sim = ctrl.ControlSystemSimulation(self.__personal_ctrl, flush_after_run=100) def compute_cycle_interaction(self, giou, iou, sr_angle): self.__riding_sim.input['overlap'] = iou self.__riding_sim.input['proximity'] = giou self.__riding_sim.input['spatial_relationships'] = sr_angle self.__riding_sim.compute() if self.__show_sim_result: self.__cycle_interaction.view(sim=self.__riding_sim) riding_result = self.__riding_sim.output['cycle_interaction'] riding = fuzz.interp_membership(self.__cycle_interaction.universe, self.__cycle_interaction['Riding'].mf, riding_result) not_riding = fuzz.interp_membership(self.__cycle_interaction.universe, self.__cycle_interaction['Not Riding'].mf, riding_result) membership = {'Riding': riding, 'Not Riding': not_riding} ret_label = max(membership, key=membership.get) if ret_label == 'Not Riding': return None else: return ret_label def compute_passenger_interaction(self, giou, iou, sr_angle): self.__passenger_sim.input['overlap'] = iou self.__passenger_sim.input['proximity'] = giou self.__passenger_sim.compute() if self.__show_sim_result: self.__passenger_interaction.view(sim=self.__passenger_sim) riding_result = self.__passenger_sim.output['passenger_interaction'] riding = fuzz.interp_membership(self.__passenger_interaction.universe, self.__passenger_interaction['Riding'].mf, riding_result) not_riding = fuzz.interp_membership(self.__passenger_interaction.universe, self.__passenger_interaction['Not Riding'].mf, riding_result) membership = {'Riding': riding, 'Not Riding': not_riding} ret_label = max(membership, key=membership.get) if ret_label == 'Not Riding': return None else: return ret_label def compute_personal_interaction(self, giou, iou, sr_angle): self.__personal_sim.input['overlap'] = iou self.__personal_sim.input['proximity'] = giou self.__personal_sim.input['spatial_relationships'] = sr_angle self.__personal_sim.compute() if self.__show_sim_result: self.__personal_interaction.view(sim=self.__personal_sim) driving_result = self.__personal_sim.output['personal_interaction'] driving = fuzz.interp_membership(self.__personal_interaction.universe, self.__personal_interaction['Driving'].mf, driving_result) not_driving = fuzz.interp_membership(self.__personal_interaction.universe, self.__personal_interaction['Not Driving'].mf, driving_result) membership = {'Driving': driving, 'Not Driving': not_driving} ret_label = max(membership, key=membership.get) if ret_label == 'Not Driving': return None else: return ret_label def compute_interaction(self, label, dom_cat, sub_cat, giou, iou, sr_angle): if label == 'motorcycle' or label == 'bicycle' or label == 'motorbike': res_label = self.compute_cycle_interaction(giou, iou, sr_angle) return res_label if dom_cat == 'passenger': res_label = self.compute_passenger_interaction(giou, iou, sr_angle) return res_label if dom_cat == 'personal': res_label = self.compute_personal_interaction(giou, iou, sr_angle) return res_label
[ "skfuzzy.control.ControlSystemSimulation", "skfuzzy.trimf", "fuzzy_utils.create_universes_membership_functions", "skfuzzy.control.Rule", "numpy.arange", "skfuzzy.control.ControlSystem", "skfuzzy.interp_membership" ]
[((235, 274), 'fuzzy_utils.create_universes_membership_functions', 'create_universes_membership_functions', ([], {}), '()\n', (272, 274), False, 'from fuzzy_utils import create_universes_membership_functions\n'), ((1241, 1303), 'skfuzzy.trimf', 'fuzz.trimf', (['self.__cycle_interaction.universe', '[0.4, 0.7, 1.0]'], {}), '(self.__cycle_interaction.universe, [0.4, 0.7, 1.0])\n', (1251, 1303), True, 'import skfuzzy as fuzz\n'), ((1353, 1415), 'skfuzzy.trimf', 'fuzz.trimf', (['self.__cycle_interaction.universe', '[0.0, 0.3, 0.6]'], {}), '(self.__cycle_interaction.universe, [0.0, 0.3, 0.6])\n', (1363, 1415), True, 'import skfuzzy as fuzz\n'), ((1465, 1531), 'skfuzzy.trimf', 'fuzz.trimf', (['self.__passenger_interaction.universe', '[0.4, 0.7, 1.0]'], {}), '(self.__passenger_interaction.universe, [0.4, 0.7, 1.0])\n', (1475, 1531), True, 'import skfuzzy as fuzz\n'), ((1585, 1651), 'skfuzzy.trimf', 'fuzz.trimf', (['self.__passenger_interaction.universe', '[0.0, 0.3, 0.6]'], {}), '(self.__passenger_interaction.universe, [0.0, 0.3, 0.6])\n', (1595, 1651), True, 'import skfuzzy as fuzz\n'), ((1701, 1766), 'skfuzzy.trimf', 'fuzz.trimf', (['self.__personal_interaction.universe', '[0.4, 0.7, 1.0]'], {}), '(self.__personal_interaction.universe, [0.4, 0.7, 1.0])\n', (1711, 1766), True, 'import skfuzzy as fuzz\n'), ((1820, 1885), 'skfuzzy.trimf', 'fuzz.trimf', (['self.__personal_interaction.universe', '[0.0, 0.3, 0.6]'], {}), '(self.__personal_interaction.universe, [0.0, 0.3, 0.6])\n', (1830, 1885), True, 'import skfuzzy as fuzz\n'), ((2011, 2395), 'skfuzzy.control.Rule', 'ctrl.Rule', (["(self.__overlap['Overlap'] & self.__proximity['Very Close'] & (self.\n __spatial_relationships['Above Left'] | self.__spatial_relationships[\n 'Above'] | self.__spatial_relationships['Above Right'] | self.\n __spatial_relationships['Left'] | self.__spatial_relationships['Right1'\n ] | self.__spatial_relationships['Right2']))", "self.__cycle_interaction['Riding']"], {}), "(self.__overlap['Overlap'] & self.__proximity['Very Close'] & (\n self.__spatial_relationships['Above Left'] | self.\n __spatial_relationships['Above'] | self.__spatial_relationships[\n 'Above Right'] | self.__spatial_relationships['Left'] | self.\n __spatial_relationships['Right1'] | self.__spatial_relationships[\n 'Right2']), self.__cycle_interaction['Riding'])\n", (2020, 2395), True, 'from skfuzzy import control as ctrl\n'), ((2757, 3014), 'skfuzzy.control.Rule', 'ctrl.Rule', (["(self.__overlap['Overlap'] & self.__proximity['Very Close'] & (self.\n __spatial_relationships['Below Right'] | self.__spatial_relationships[\n 'Below'] | self.__spatial_relationships['Below Left']))", "self.__cycle_interaction['Not Riding']"], {}), "(self.__overlap['Overlap'] & self.__proximity['Very Close'] & (\n self.__spatial_relationships['Below Right'] | self.\n __spatial_relationships['Below'] | self.__spatial_relationships[\n 'Below Left']), self.__cycle_interaction['Not Riding'])\n", (2766, 3014), True, 'from skfuzzy import control as ctrl\n'), ((3289, 3491), 'skfuzzy.control.Rule', 'ctrl.Rule', (["(self.__overlap['Overlap'] & (self.__proximity['Close'] | self.__proximity[\n 'Medium'] | self.__proximity['Far'] | self.__proximity['Very Far']))", "self.__cycle_interaction['Not Riding']"], {}), "(self.__overlap['Overlap'] & (self.__proximity['Close'] | self.\n __proximity['Medium'] | self.__proximity['Far'] | self.__proximity[\n 'Very Far']), self.__cycle_interaction['Not Riding'])\n", (3298, 3491), True, 'from skfuzzy import control as ctrl\n'), ((3690, 3769), 'skfuzzy.control.Rule', 'ctrl.Rule', (["self.__overlap['No Overlap']", "self.__cycle_interaction['Not Riding']"], {}), "(self.__overlap['No Overlap'], self.__cycle_interaction['Not Riding'])\n", (3699, 3769), True, 'from skfuzzy import control as ctrl\n'), ((3800, 3921), 'skfuzzy.control.ControlSystem', 'ctrl.ControlSystem', (['[self.__riding_rule1, self.__not_riding_rule1, self.__not_riding_rule2,\n self.__not_riding_rule3]'], {}), '([self.__riding_rule1, self.__not_riding_rule1, self.\n __not_riding_rule2, self.__not_riding_rule3])\n', (3818, 3921), True, 'from skfuzzy import control as ctrl\n'), ((3994, 4063), 'skfuzzy.control.ControlSystemSimulation', 'ctrl.ControlSystemSimulation', (['self.__riding_ctrl'], {'flush_after_run': '(100)'}), '(self.__riding_ctrl, flush_after_run=100)\n', (4022, 4063), True, 'from skfuzzy import control as ctrl\n'), ((4186, 4300), 'skfuzzy.control.Rule', 'ctrl.Rule', (["(self.__overlap['Overlap'] & self.__proximity['Very Close'])", "self.__passenger_interaction['Riding']"], {}), "(self.__overlap['Overlap'] & self.__proximity['Very Close'], self.\n __passenger_interaction['Riding'])\n", (4195, 4300), True, 'from skfuzzy import control as ctrl\n'), ((4452, 4658), 'skfuzzy.control.Rule', 'ctrl.Rule', (["(self.__overlap['Overlap'] & (self.__proximity['Close'] | self.__proximity[\n 'Medium'] | self.__proximity['Far'] | self.__proximity['Very Far']))", "self.__passenger_interaction['Not Riding']"], {}), "(self.__overlap['Overlap'] & (self.__proximity['Close'] | self.\n __proximity['Medium'] | self.__proximity['Far'] | self.__proximity[\n 'Very Far']), self.__passenger_interaction['Not Riding'])\n", (4461, 4658), True, 'from skfuzzy import control as ctrl\n'), ((4868, 4956), 'skfuzzy.control.Rule', 'ctrl.Rule', (["self.__overlap['No Overlap']", "self.__passenger_interaction['Not Riding']"], {}), "(self.__overlap['No Overlap'], self.__passenger_interaction[\n 'Not Riding'])\n", (4877, 4956), True, 'from skfuzzy import control as ctrl\n'), ((5032, 5136), 'skfuzzy.control.ControlSystem', 'ctrl.ControlSystem', (['[self.__riding_in_rule1, self.__not_riding_in_rule1, self.__not_riding_in_rule2\n ]'], {}), '([self.__riding_in_rule1, self.__not_riding_in_rule1,\n self.__not_riding_in_rule2])\n', (5050, 5136), True, 'from skfuzzy import control as ctrl\n'), ((5216, 5288), 'skfuzzy.control.ControlSystemSimulation', 'ctrl.ControlSystemSimulation', (['self.__passenger_ctrl'], {'flush_after_run': '(100)'}), '(self.__passenger_ctrl, flush_after_run=100)\n', (5244, 5288), True, 'from skfuzzy import control as ctrl\n'), ((5409, 5797), 'skfuzzy.control.Rule', 'ctrl.Rule', (["(self.__overlap['Overlap'] & self.__proximity['Very Close'] & (self.\n __spatial_relationships['Right1'] | self.__spatial_relationships[\n 'Right2'] | self.__spatial_relationships['Above Right'] | self.\n __spatial_relationships['Above'] | self.__spatial_relationships[\n 'Above Left'] | self.__spatial_relationships['Left']))", "self.__personal_interaction['Driving']"], {}), "(self.__overlap['Overlap'] & self.__proximity['Very Close'] & (\n self.__spatial_relationships['Right1'] | self.__spatial_relationships[\n 'Right2'] | self.__spatial_relationships['Above Right'] | self.\n __spatial_relationships['Above'] | self.__spatial_relationships[\n 'Above Left'] | self.__spatial_relationships['Left']), self.\n __personal_interaction['Driving'])\n", (5418, 5797), True, 'from skfuzzy import control as ctrl\n'), ((6177, 6383), 'skfuzzy.control.Rule', 'ctrl.Rule', (["(self.__overlap['Overlap'] & (self.__proximity['Close'] | self.__proximity[\n 'Medium'] | self.__proximity['Far'] | self.__proximity['Very Far']))", "self.__personal_interaction['Not Driving']"], {}), "(self.__overlap['Overlap'] & (self.__proximity['Close'] | self.\n __proximity['Medium'] | self.__proximity['Far'] | self.__proximity[\n 'Very Far']), self.__personal_interaction['Not Driving'])\n", (6186, 6383), True, 'from skfuzzy import control as ctrl\n'), ((6586, 6674), 'skfuzzy.control.Rule', 'ctrl.Rule', (["self.__overlap['No Overlap']", "self.__personal_interaction['Not Driving']"], {}), "(self.__overlap['No Overlap'], self.__personal_interaction[\n 'Not Driving'])\n", (6595, 6674), True, 'from skfuzzy import control as ctrl\n'), ((6772, 7033), 'skfuzzy.control.Rule', 'ctrl.Rule', (["(self.__overlap['Overlap'] & self.__proximity['Very Close'] & (self.\n __spatial_relationships['Below Left'] | self.__spatial_relationships[\n 'Below'] | self.__spatial_relationships['Below Right']))", "self.__personal_interaction['Not Driving']"], {}), "(self.__overlap['Overlap'] & self.__proximity['Very Close'] & (\n self.__spatial_relationships['Below Left'] | self.\n __spatial_relationships['Below'] | self.__spatial_relationships[\n 'Below Right']), self.__personal_interaction['Not Driving'])\n", (6781, 7033), True, 'from skfuzzy import control as ctrl\n'), ((7233, 7358), 'skfuzzy.control.ControlSystem', 'ctrl.ControlSystem', (['[self.__driving_rule1, self.__not_driving_rule1, self.__not_driving_rule2,\n self.__not_driving_rule3]'], {}), '([self.__driving_rule1, self.__not_driving_rule1, self.\n __not_driving_rule2, self.__not_driving_rule3])\n', (7251, 7358), True, 'from skfuzzy import control as ctrl\n'), ((7435, 7506), 'skfuzzy.control.ControlSystemSimulation', 'ctrl.ControlSystemSimulation', (['self.__personal_ctrl'], {'flush_after_run': '(100)'}), '(self.__personal_ctrl, flush_after_run=100)\n', (7463, 7506), True, 'from skfuzzy import control as ctrl\n'), ((7962, 8078), 'skfuzzy.interp_membership', 'fuzz.interp_membership', (['self.__cycle_interaction.universe', "self.__cycle_interaction['Riding'].mf", 'riding_result'], {}), "(self.__cycle_interaction.universe, self.\n __cycle_interaction['Riding'].mf, riding_result)\n", (7984, 8078), True, 'import skfuzzy as fuzz\n'), ((8135, 8255), 'skfuzzy.interp_membership', 'fuzz.interp_membership', (['self.__cycle_interaction.universe', "self.__cycle_interaction['Not Riding'].mf", 'riding_result'], {}), "(self.__cycle_interaction.universe, self.\n __cycle_interaction['Not Riding'].mf, riding_result)\n", (8157, 8255), True, 'import skfuzzy as fuzz\n'), ((8936, 9060), 'skfuzzy.interp_membership', 'fuzz.interp_membership', (['self.__passenger_interaction.universe', "self.__passenger_interaction['Riding'].mf", 'riding_result'], {}), "(self.__passenger_interaction.universe, self.\n __passenger_interaction['Riding'].mf, riding_result)\n", (8958, 9060), True, 'import skfuzzy as fuzz\n'), ((9117, 9245), 'skfuzzy.interp_membership', 'fuzz.interp_membership', (['self.__passenger_interaction.universe', "self.__passenger_interaction['Not Riding'].mf", 'riding_result'], {}), "(self.__passenger_interaction.universe, self.\n __passenger_interaction['Not Riding'].mf, riding_result)\n", (9139, 9245), True, 'import skfuzzy as fuzz\n'), ((9990, 10114), 'skfuzzy.interp_membership', 'fuzz.interp_membership', (['self.__personal_interaction.universe', "self.__personal_interaction['Driving'].mf", 'driving_result'], {}), "(self.__personal_interaction.universe, self.\n __personal_interaction['Driving'].mf, driving_result)\n", (10012, 10114), True, 'import skfuzzy as fuzz\n'), ((10173, 10301), 'skfuzzy.interp_membership', 'fuzz.interp_membership', (['self.__personal_interaction.universe', "self.__personal_interaction['Not Driving'].mf", 'driving_result'], {}), "(self.__personal_interaction.universe, self.\n __personal_interaction['Not Driving'].mf, driving_result)\n", (10195, 10301), True, 'import skfuzzy as fuzz\n'), ((745, 770), 'numpy.arange', 'np.arange', (['(-0.1)', '(1.1)', '(0.1)'], {}), '(-0.1, 1.1, 0.1)\n', (754, 770), True, 'import numpy as np\n'), ((863, 888), 'numpy.arange', 'np.arange', (['(-0.1)', '(1.1)', '(0.1)'], {}), '(-0.1, 1.1, 0.1)\n', (872, 888), True, 'import numpy as np\n'), ((1039, 1064), 'numpy.arange', 'np.arange', (['(-0.1)', '(1.1)', '(0.1)'], {}), '(-0.1, 1.1, 0.1)\n', (1048, 1064), True, 'import numpy as np\n')]
import pandas as pd import numpy as np import json import subprocess df = pd.read_csv('ingr.csv', encoding='latin-1') df_new = df.groupby('recipe_id')['ingredients'].apply(list).reset_index(name='ingredients') ingredients = df_new['ingredients'].to_numpy() parsed_ingr = [] for ingr in ingredients: with open('tmp/parser-input.txt', 'w') as f: f.write('\n'.join(ingr)) with open('tmp/parser-output.txt', 'w') as f: bash_cmd = "python bin/parse-ingredients.py tmp/parser-input.txt" process = subprocess.check_call(bash_cmd.split(), stdout=f) with open('tmp/parser-output.json', 'w') as f: bash_cmd = "python bin/convert-to-json.py tmp/parser-output.txt" process = subprocess.check_call(bash_cmd.split(), stdout=f) with open('tmp/parser-output.json', 'r') as f: pingr = json.load(f) parsed_ingr.append(pingr) np.savetxt('parsed_ingredients', parsed_ingr, delimiter=',')
[ "pandas.read_csv", "numpy.savetxt", "json.load" ]
[((75, 118), 'pandas.read_csv', 'pd.read_csv', (['"""ingr.csv"""'], {'encoding': '"""latin-1"""'}), "('ingr.csv', encoding='latin-1')\n", (86, 118), True, 'import pandas as pd\n'), ((887, 947), 'numpy.savetxt', 'np.savetxt', (['"""parsed_ingredients"""', 'parsed_ingr'], {'delimiter': '""","""'}), "('parsed_ingredients', parsed_ingr, delimiter=',')\n", (897, 947), True, 'import numpy as np\n'), ((835, 847), 'json.load', 'json.load', (['f'], {}), '(f)\n', (844, 847), False, 'import json\n')]
""" Epsilon Greedy. """ from typing import Union, Dict, Iterator, NamedTuple from numpy import random from .deterministic import DeterministicPolicy from .exploration_schedules import get_schedule as get_epsilon_schedule class EpsilonGreedyOutput(NamedTuple): """ The output of the epsilon greedy policy. """ action: int q_value: float full: object class EpsilonGreedyPolicy(object): """ Epsilon greedy policy. Takes an estimator and an epsilon greedy schedule to imbue an epsilon greedy policy. """ def __init__(self, estimator, epsilon: Union[Dict, Iterator]): self.policy = DeterministicPolicy(estimator) self.epsilon = epsilon def get_action(self, state, action_space): """ Selects an action based on an epsilon greedy strategy. Returns the Q-value and the epsilon greedy action. """ pi = self.policy.get_action(state) try: epsilon = next(self.epsilon) except TypeError: self.epsilon = get_epsilon_schedule(**self.epsilon) epsilon = next(self.epsilon) if epsilon < random.uniform(): pi = EpsilonGreedyOutput(action=pi.action, q_value=pi.q_value, full=pi.full) return pi pi = EpsilonGreedyOutput(action=action_space.sample(), q_value=0, full={}) return pi def get_estimator(self): return self.policy.get_estimator() def set_estimator(self, estimator): self.policy.set_estimator(estimator) def __call__(self, state, action_space): return self.get_action(state, action_space) def __str__(self): return f'{self.__class__.__name__}(id={self.policy})' def __repr__(self): obj_id = hex(id(self)) name = self.__str__() return f'{name} @ {obj_id}'
[ "numpy.random.uniform" ]
[((1141, 1157), 'numpy.random.uniform', 'random.uniform', ([], {}), '()\n', (1155, 1157), False, 'from numpy import random\n')]
# coding: utf-8 # In[1]: from pynq import Overlay, allocate import numpy as np # In[2]: bitfile = "stream_axi_stream_fifo_ipxact.bit" overlay = Overlay(bitfile) overlay.ip_dict.keys() # In[3]: dma = overlay.axi_dma_0 blinkled = overlay.blinkled_0 # In[4]: reduce_size = 8 read_size = 1024 write_size = read_size // reduce_size src = allocate(shape=(read_size,), dtype=np.int32) dst = allocate(shape=(write_size,), dtype=np.int32) bias = allocate(shape=(write_size,), dtype=np.int32) bias_addr = bias.physical_address # In[5]: src[:] = np.arange(read_size, dtype=np.int32) dst[:] = np.zeros([write_size], dtype=np.int32) bias[:] = np.ones([write_size], dtype=np.int32) print(dst[-16:]) # In[6]: dma.sendchannel.transfer(src) dma.recvchannel.transfer(dst) # read_size, write_size, reduce_size, offset blinkled.write(2 * 4, read_size) blinkled.write(3 * 4, write_size) blinkled.write(4 * 4, reduce_size) blinkled.write(5 * 4, bias_addr) # start blinkled.write(0 * 4, 1) # busy wait while True: busy = blinkled.read(1 * 4) if not busy: break # In[7]: print(dst[-16:]) # In[8]: expected = np.sum(np.multiply(src, src).reshape([-1, reduce_size]), axis=-1) + bias print(expected[-16:]) # In[9]: diff_sum = np.sum(expected - dst) print(diff_sum)
[ "pynq.Overlay", "numpy.sum", "numpy.multiply", "numpy.zeros", "numpy.ones", "numpy.arange", "pynq.allocate" ]
[((152, 168), 'pynq.Overlay', 'Overlay', (['bitfile'], {}), '(bitfile)\n', (159, 168), False, 'from pynq import Overlay, allocate\n'), ((350, 394), 'pynq.allocate', 'allocate', ([], {'shape': '(read_size,)', 'dtype': 'np.int32'}), '(shape=(read_size,), dtype=np.int32)\n', (358, 394), False, 'from pynq import Overlay, allocate\n'), ((401, 446), 'pynq.allocate', 'allocate', ([], {'shape': '(write_size,)', 'dtype': 'np.int32'}), '(shape=(write_size,), dtype=np.int32)\n', (409, 446), False, 'from pynq import Overlay, allocate\n'), ((454, 499), 'pynq.allocate', 'allocate', ([], {'shape': '(write_size,)', 'dtype': 'np.int32'}), '(shape=(write_size,), dtype=np.int32)\n', (462, 499), False, 'from pynq import Overlay, allocate\n'), ((557, 593), 'numpy.arange', 'np.arange', (['read_size'], {'dtype': 'np.int32'}), '(read_size, dtype=np.int32)\n', (566, 593), True, 'import numpy as np\n'), ((603, 641), 'numpy.zeros', 'np.zeros', (['[write_size]'], {'dtype': 'np.int32'}), '([write_size], dtype=np.int32)\n', (611, 641), True, 'import numpy as np\n'), ((652, 689), 'numpy.ones', 'np.ones', (['[write_size]'], {'dtype': 'np.int32'}), '([write_size], dtype=np.int32)\n', (659, 689), True, 'import numpy as np\n'), ((1256, 1278), 'numpy.sum', 'np.sum', (['(expected - dst)'], {}), '(expected - dst)\n', (1262, 1278), True, 'import numpy as np\n'), ((1144, 1165), 'numpy.multiply', 'np.multiply', (['src', 'src'], {}), '(src, src)\n', (1155, 1165), True, 'import numpy as np\n')]
import os import cv2 import numpy as np import matplotlib.pyplot as plt from keras.utils.np_utils import to_categorical from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout from keras.models import Sequential from tensorflow.python.keras.utils.vis_utils import plot_model from sklearn.model_selection import train_test_split def load_images(image_directory): image_file_list = [] # 지정한 디렉토리내 파일 추출 image_file_name_list = os.listdir(image_directory) print(f"대상 이미지 파일수:{len(image_file_name_list)}") for image_file_name in image_file_name_list: # 이미지 파일 경로 image_file_path = os.path.join(image_directory, image_file_name) print(f"이미지 파일 경로:{image_file_path}") # 이미지 읽기 image = cv2.imread(image_file_path) if image is None: print(f"이미지 파일[{image_file_name}]을 읽을 수 없습니다.") continue image_file_list.append((image_file_name, image)) print(f"읽은 이미지 수:{len(image_file_list)}") return image_file_list def labeling_images(image_file_list): x_data = [] y_data = [] for idx, (file_name, image) in enumerate(image_file_list): # 이미지를 BGR 형식에서 RGB 형식으로 변환 # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 이미지 배열(RGB 이미지) x_data.append(image) # 레이블 배열(파일명의 앞 2글자를 레이블로 이용) label = int(file_name[0:2]) print(f"레이블:{label:02} 이미지 파일명:{file_name}") if label != 0: # 00 : True label = 1 # 99 : False y_data = np.append(y_data, label).reshape(idx+1, 1) x_data = np.array(x_data) print(f"레이블링 이미지 수:{len(x_data)}") return (x_data, y_data) def delete_dir(dir_path, is_delete_top_dir=True): for root, dirs, files in os.walk(dir_path, topdown=False): for name in files: os.remove(os.path.join(root, name)) for name in dirs: os.rmdir(os.path.join(root, name)) if is_delete_top_dir: os.rmdir(dir_path) RETURN_SUCCESS = 0 RETURN_FAILURE = -1 # Outoput Model Only OUTPUT_MODEL_ONLY = False # Test Image Directory # TEST_IMAGE_DIR = "./dataset/test" # # Train Image Directory # TRAIN_IMAGE_DIR = "./dataset/training" # resize data 전체를 돌려봅시다!! RESIZE_IMAGE_DIR = "./dataset/grass_output" # Output Model Directory OUTPUT_MODEL_DIR = "./dataset/model" # Output Model File Name OUTPUT_MODEL_FILE = "model_relu.h5" # Output Plot File Name OUTPUT_PLOT_FILE = "model_relu.png" def main(): print("===================================================================") print("Keras를 이용한 모델 학습 ") print("지정한 이미지 파일을 학습하는 모델 생성") print("===================================================================") # 디렉토리 작성 if not os.path.isdir(OUTPUT_MODEL_DIR): os.mkdir(OUTPUT_MODEL_DIR) # 디렉토리 내 파일 삭제 delete_dir(OUTPUT_MODEL_DIR, False) num_classes = 200*200 #카테고리 갯수 batch_size = 32 epochs = 10 # 학습용 이미지 파일 읽기 resize_file_list = load_images(RESIZE_IMAGE_DIR) # 학습용 이미지 파일 레이블 처리 x, y = labeling_images(resize_file_list) #파일명- 시작하는 두 숫자가 레이블 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42) # plt.imshow(x_train[0]) # plt.show() # print(y_train[0]) # # 테스트용 이미지 파일 읽기 # test_file_list = load_images(TEST_IMAGE_DIR) # # 테스트용 이미지 파일의 레이블 처리 # x_test, y_test = labeling_images(test_file_list) # plt.imshow(x_test[0]) # plt.show() # print(y_test[0]) # 이미지와 레이블의 배열 확인: 2차원 배열 print("x_train.shape:", x_train.shape) print("y_train.shape:", y_train.shape) print("x_test.shape:", x_test.shape) print("y_test.shape:", y_test.shape) # 분류 레이블의 1-hot encoding처리(선형 분류를 쉽게 하기 위해) y_train = to_categorical(y_train, num_classes) y_test = to_categorical(y_test, num_classes) # 이미지와 레이블의 배열 차수 확인 -> 2차원 print("x_train.shape:", x_train.shape) print("y_train.shape:", y_train.shape) print("x_test.shape:", x_test.shape) print("y_test.shape:", y_test.shape) # 모델 정의 model = Sequential() #CNN-1 model.add(Conv2D( input_shape=(200,200,3), filters=32, kernel_size=(3,3), strides=(1,1), padding="same", activation='relu', )) model.add(MaxPooling2D(pool_size=(2, 2))) #cnn-2 model.add(Conv2D( filters=32, kernel_size=(3,3), strides=(1,1), padding="same", activation='relu', )) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.01)) #cnn-3 model.add(Conv2D( filters=64, kernel_size=(3,3), strides=(1,1), padding="same", activation='relu', )) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.01)) # fully-connected model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dense(40000, activation='sigmoid')) model.summary() #compile model.compile(optimizer='adam', loss = 'categorical_crossentropy', #'categorical_crossentropy' metrics= ['accuracy'], ) plot_file_path = os.path.join(OUTPUT_MODEL_DIR, OUTPUT_PLOT_FILE) plot_model(model, to_file=plot_file_path, show_shapes=True) # 모델 시각화 if OUTPUT_MODEL_ONLY: #FALSE #학습 model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs) else: #학습 + 그래프 (학습했던 결과 history에 보관했다가 나중에 그래프 그림) history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test),verbose=1) test_loss, test_acc = model.evaluate(x_train, y_train,batch_size=batch_size,verbose=0) print(f"validation loss:{test_loss}") print(f"validation accuracy:{test_acc}") #acc(정확도), loss(손실) 그래프 plt.plot(history.history['accuracy'], label = "accuracy", ls='-', marker="o") plt.plot(history.history['val_accuracy'], label = "val_accuracy", ls='-', marker="x") plt.title("model accuracy") plt.xlabel("Epoch") plt.ylabel("Accuracy") plt.legend(loc="best") plt.show() #손실 그래프 plt.plot(history.history['loss'], label='loss', ls='-',marker="o") plt.plot(history.history['val_loss'], label='val_loss', ls='-',marker="x") plt.title("model loss") plt.xlabel("Epoch") plt.ylabel("Loss") plt.legend(loc="best") plt.show() # 모델 저장 model_file_path = os.path.join(OUTPUT_MODEL_DIR, OUTPUT_MODEL_FILE) model.save(model_file_path) return RETURN_SUCCESS if __name__ == "__main__": main()
[ "matplotlib.pyplot.title", "os.mkdir", "sklearn.model_selection.train_test_split", "os.walk", "tensorflow.python.keras.utils.vis_utils.plot_model", "os.path.join", "keras.layers.Flatten", "numpy.append", "keras.utils.np_utils.to_categorical", "keras.layers.MaxPooling2D", "matplotlib.pyplot.show", "keras.layers.Dropout", "matplotlib.pyplot.legend", "keras.layers.Conv2D", "os.rmdir", "matplotlib.pyplot.ylabel", "os.listdir", "matplotlib.pyplot.plot", "os.path.isdir", "cv2.imread", "keras.layers.Dense", "numpy.array", "keras.models.Sequential", "matplotlib.pyplot.xlabel" ]
[((453, 480), 'os.listdir', 'os.listdir', (['image_directory'], {}), '(image_directory)\n', (463, 480), False, 'import os\n'), ((1572, 1588), 'numpy.array', 'np.array', (['x_data'], {}), '(x_data)\n', (1580, 1588), True, 'import numpy as np\n'), ((1736, 1768), 'os.walk', 'os.walk', (['dir_path'], {'topdown': '(False)'}), '(dir_path, topdown=False)\n', (1743, 1768), False, 'import os\n'), ((3110, 3164), 'sklearn.model_selection.train_test_split', 'train_test_split', (['x', 'y'], {'test_size': '(0.3)', 'random_state': '(42)'}), '(x, y, test_size=0.3, random_state=42)\n', (3126, 3164), False, 'from sklearn.model_selection import train_test_split\n'), ((3725, 3761), 'keras.utils.np_utils.to_categorical', 'to_categorical', (['y_train', 'num_classes'], {}), '(y_train, num_classes)\n', (3739, 3761), False, 'from keras.utils.np_utils import to_categorical\n'), ((3775, 3810), 'keras.utils.np_utils.to_categorical', 'to_categorical', (['y_test', 'num_classes'], {}), '(y_test, num_classes)\n', (3789, 3810), False, 'from keras.utils.np_utils import to_categorical\n'), ((4037, 4049), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (4047, 4049), False, 'from keras.models import Sequential\n'), ((5143, 5191), 'os.path.join', 'os.path.join', (['OUTPUT_MODEL_DIR', 'OUTPUT_PLOT_FILE'], {}), '(OUTPUT_MODEL_DIR, OUTPUT_PLOT_FILE)\n', (5155, 5191), False, 'import os\n'), ((5196, 5255), 'tensorflow.python.keras.utils.vis_utils.plot_model', 'plot_model', (['model'], {'to_file': 'plot_file_path', 'show_shapes': '(True)'}), '(model, to_file=plot_file_path, show_shapes=True)\n', (5206, 5255), False, 'from tensorflow.python.keras.utils.vis_utils import plot_model\n'), ((6518, 6567), 'os.path.join', 'os.path.join', (['OUTPUT_MODEL_DIR', 'OUTPUT_MODEL_FILE'], {}), '(OUTPUT_MODEL_DIR, OUTPUT_MODEL_FILE)\n', (6530, 6567), False, 'import os\n'), ((629, 675), 'os.path.join', 'os.path.join', (['image_directory', 'image_file_name'], {}), '(image_directory, image_file_name)\n', (641, 675), False, 'import os\n'), ((755, 782), 'cv2.imread', 'cv2.imread', (['image_file_path'], {}), '(image_file_path)\n', (765, 782), False, 'import cv2\n'), ((1952, 1970), 'os.rmdir', 'os.rmdir', (['dir_path'], {}), '(dir_path)\n', (1960, 1970), False, 'import os\n'), ((2705, 2736), 'os.path.isdir', 'os.path.isdir', (['OUTPUT_MODEL_DIR'], {}), '(OUTPUT_MODEL_DIR)\n', (2718, 2736), False, 'import os\n'), ((2746, 2772), 'os.mkdir', 'os.mkdir', (['OUTPUT_MODEL_DIR'], {}), '(OUTPUT_MODEL_DIR)\n', (2754, 2772), False, 'import os\n'), ((4075, 4196), 'keras.layers.Conv2D', 'Conv2D', ([], {'input_shape': '(200, 200, 3)', 'filters': '(32)', 'kernel_size': '(3, 3)', 'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(input_shape=(200, 200, 3), filters=32, kernel_size=(3, 3), strides=(\n 1, 1), padding='same', activation='relu')\n", (4081, 4196), False, 'from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout\n'), ((4258, 4288), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (4270, 4288), False, 'from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout\n'), ((4315, 4408), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(32)', 'kernel_size': '(3, 3)', 'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=32, kernel_size=(3, 3), strides=(1, 1), padding='same',\n activation='relu')\n", (4321, 4408), False, 'from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout\n'), ((4465, 4495), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (4477, 4495), False, 'from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout\n'), ((4511, 4524), 'keras.layers.Dropout', 'Dropout', (['(0.01)'], {}), '(0.01)\n', (4518, 4524), False, 'from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout\n'), ((4551, 4644), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(64)', 'kernel_size': '(3, 3)', 'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same',\n activation='relu')\n", (4557, 4644), False, 'from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout\n'), ((4701, 4731), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (4713, 4731), False, 'from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout\n'), ((4747, 4760), 'keras.layers.Dropout', 'Dropout', (['(0.01)'], {}), '(0.01)\n', (4754, 4760), False, 'from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout\n'), ((4798, 4807), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (4805, 4807), False, 'from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout\n'), ((4823, 4852), 'keras.layers.Dense', 'Dense', (['(512)'], {'activation': '"""relu"""'}), "(512, activation='relu')\n", (4828, 4852), False, 'from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout\n'), ((4868, 4897), 'keras.layers.Dense', 'Dense', (['(128)'], {'activation': '"""relu"""'}), "(128, activation='relu')\n", (4873, 4897), False, 'from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout\n'), ((4913, 4947), 'keras.layers.Dense', 'Dense', (['(40000)'], {'activation': '"""sigmoid"""'}), "(40000, activation='sigmoid')\n", (4918, 4947), False, 'from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D, Dropout\n'), ((5855, 5930), 'matplotlib.pyplot.plot', 'plt.plot', (["history.history['accuracy']"], {'label': '"""accuracy"""', 'ls': '"""-"""', 'marker': '"""o"""'}), "(history.history['accuracy'], label='accuracy', ls='-', marker='o')\n", (5863, 5930), True, 'import matplotlib.pyplot as plt\n'), ((5941, 6028), 'matplotlib.pyplot.plot', 'plt.plot', (["history.history['val_accuracy']"], {'label': '"""val_accuracy"""', 'ls': '"""-"""', 'marker': '"""x"""'}), "(history.history['val_accuracy'], label='val_accuracy', ls='-',\n marker='x')\n", (5949, 6028), True, 'import matplotlib.pyplot as plt\n'), ((6035, 6062), 'matplotlib.pyplot.title', 'plt.title', (['"""model accuracy"""'], {}), "('model accuracy')\n", (6044, 6062), True, 'import matplotlib.pyplot as plt\n'), ((6071, 6090), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch"""'], {}), "('Epoch')\n", (6081, 6090), True, 'import matplotlib.pyplot as plt\n'), ((6099, 6121), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Accuracy"""'], {}), "('Accuracy')\n", (6109, 6121), True, 'import matplotlib.pyplot as plt\n'), ((6130, 6152), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (6140, 6152), True, 'import matplotlib.pyplot as plt\n'), ((6161, 6171), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6169, 6171), True, 'import matplotlib.pyplot as plt\n'), ((6197, 6264), 'matplotlib.pyplot.plot', 'plt.plot', (["history.history['loss']"], {'label': '"""loss"""', 'ls': '"""-"""', 'marker': '"""o"""'}), "(history.history['loss'], label='loss', ls='-', marker='o')\n", (6205, 6264), True, 'import matplotlib.pyplot as plt\n'), ((6272, 6347), 'matplotlib.pyplot.plot', 'plt.plot', (["history.history['val_loss']"], {'label': '"""val_loss"""', 'ls': '"""-"""', 'marker': '"""x"""'}), "(history.history['val_loss'], label='val_loss', ls='-', marker='x')\n", (6280, 6347), True, 'import matplotlib.pyplot as plt\n'), ((6355, 6378), 'matplotlib.pyplot.title', 'plt.title', (['"""model loss"""'], {}), "('model loss')\n", (6364, 6378), True, 'import matplotlib.pyplot as plt\n'), ((6387, 6406), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch"""'], {}), "('Epoch')\n", (6397, 6406), True, 'import matplotlib.pyplot as plt\n'), ((6415, 6433), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (6425, 6433), True, 'import matplotlib.pyplot as plt\n'), ((6442, 6464), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (6452, 6464), True, 'import matplotlib.pyplot as plt\n'), ((6473, 6483), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6481, 6483), True, 'import matplotlib.pyplot as plt\n'), ((1516, 1540), 'numpy.append', 'np.append', (['y_data', 'label'], {}), '(y_data, label)\n', (1525, 1540), True, 'import numpy as np\n'), ((1819, 1843), 'os.path.join', 'os.path.join', (['root', 'name'], {}), '(root, name)\n', (1831, 1843), False, 'import os\n'), ((1892, 1916), 'os.path.join', 'os.path.join', (['root', 'name'], {}), '(root, name)\n', (1904, 1916), False, 'import os\n')]
""" Convenience functions for the construction of spatial weights based on contiguity and distance criteria. """ __author__ = "<NAME> <<EMAIL>> " import pysal from Contiguity import buildContiguity, Queen, Rook from Distance import knnW, Kernel, DistanceBand from util import get_ids, get_points_array_from_shapefile, min_threshold_distance import numpy as np __all__ = ['queen_from_shapefile', 'rook_from_shapefile', 'knnW_from_array', 'knnW_from_shapefile', 'threshold_binaryW_from_array', 'threshold_binaryW_from_shapefile', 'threshold_continuousW_from_array', 'threshold_continuousW_from_shapefile', 'kernelW', 'kernelW_from_shapefile', 'adaptive_kernelW', 'adaptive_kernelW_from_shapefile', 'min_threshold_dist_from_shapefile', 'build_lattice_shapefile'] def queen_from_shapefile(shapefile, idVariable=None, sparse=False): """ Queen contiguity weights from a polygon shapefile. Parameters ---------- shapefile : string name of polygon shapefile including suffix. idVariable : string name of a column in the shapefile's DBF to use for ids. sparse : boolean If True return WSP instance If False return W instance Returns ------- w : W instance of spatial weights Examples -------- >>> wq=queen_from_shapefile(pysal.examples.get_path("columbus.shp")) >>> "%.3f"%wq.pct_nonzero '9.829' >>> wq=queen_from_shapefile(pysal.examples.get_path("columbus.shp"),"POLYID") >>> "%.3f"%wq.pct_nonzero '9.829' >>> wq=queen_from_shapefile(pysal.examples.get_path("columbus.shp"), sparse=True) >>> pct_sp = wq.sparse.nnz *1. / wq.n**2 >>> "%.3f"%pct_sp '0.098' Notes ----- Queen contiguity defines as neighbors any pair of polygons that share at least one vertex in their polygon definitions. See Also -------- :class:`pysal.weights.W` """ w = Queen.from_shapefile(shapefile, idVariable=idVariable) if sparse: w = pysal.weights.WSP(w.sparse, id_order=w.id_order) return w def rook_from_shapefile(shapefile, idVariable=None, sparse=False): """ Rook contiguity weights from a polygon shapefile. Parameters ---------- shapefile : string name of polygon shapefile including suffix. idVariable: string name of a column in the shapefile's DBF to use for ids sparse : boolean If True return WSP instance If False return W instance Returns ------- w : W instance of spatial weights Examples -------- >>> wr=rook_from_shapefile(pysal.examples.get_path("columbus.shp"), "POLYID") >>> "%.3f"%wr.pct_nonzero '8.330' >>> wr=rook_from_shapefile(pysal.examples.get_path("columbus.shp"), sparse=True) >>> pct_sp = wr.sparse.nnz *1. / wr.n**2 >>> "%.3f"%pct_sp '0.083' Notes ----- Rook contiguity defines as neighbors any pair of polygons that share a common edge in their polygon definitions. See Also -------- :class:`pysal.weights.W` """ w = Rook.from_shapefile(shapefile, idVariable=idVariable) if sparse: w = pysal.weights.WSP(w.sparse, id_order=w.id_order) return w def spw_from_gal(galfile): """ Sparse scipy matrix for w from a gal file. Parameters ---------- galfile : string name of gal file including suffix Returns ------- spw : sparse_matrix scipy sparse matrix in CSR format ids : array identifiers for rows/cols of spw Examples -------- >>> spw = pysal.weights.user.spw_from_gal(pysal.examples.get_path("sids2.gal")) >>> spw.sparse.nnz 462 """ return pysal.open(galfile, 'r').read(sparse=True) # Distance based weights def knnW_from_array(array, k=2, p=2, ids=None, radius=None): """ Nearest neighbor weights from a numpy array. Parameters ---------- data : array (n,m) attribute data, n observations on m attributes k : int number of nearest neighbors p : float Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance ids : list identifiers to attach to each observation radius : float If supplied arc_distances will be calculated based on the given radius. p will be ignored. Returns ------- w : W instance; Weights object with binary weights. Examples -------- >>> import numpy as np >>> x,y=np.indices((5,5)) >>> x.shape=(25,1) >>> y.shape=(25,1) >>> data=np.hstack([x,y]) >>> wnn2=knnW_from_array(data,k=2) >>> wnn4=knnW_from_array(data,k=4) >>> set([1, 5, 6, 2]) == set(wnn4.neighbors[0]) True >>> set([0, 1, 10, 6]) == set(wnn4.neighbors[5]) True >>> set([1, 5]) == set(wnn2.neighbors[0]) True >>> set([0,6]) == set(wnn2.neighbors[5]) True >>> "%.2f"%wnn2.pct_nonzero '8.00' >>> wnn4.pct_nonzero 16.0 >>> wnn4=knnW_from_array(data,k=4) >>> set([ 1,5,6,2]) == set(wnn4.neighbors[0]) True Notes ----- Ties between neighbors of equal distance are arbitrarily broken. See Also -------- :class:`pysal.weights.W` """ if radius is not None: kdtree = pysal.cg.KDTree(array, distance_metric='Arc', radius=radius) else: kdtree = pysal.cg.KDTree(array) return knnW(kdtree, k=k, p=p, ids=ids) def knnW_from_shapefile(shapefile, k=2, p=2, idVariable=None, radius=None): """ Nearest neighbor weights from a shapefile. Parameters ---------- shapefile : string shapefile name with shp suffix k : int number of nearest neighbors p : float Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance idVariable : string name of a column in the shapefile's DBF to use for ids radius : float If supplied arc_distances will be calculated based on the given radius. p will be ignored. Returns ------- w : W instance; Weights object with binary weights Examples -------- Polygon shapefile >>> wc=knnW_from_shapefile(pysal.examples.get_path("columbus.shp")) >>> "%.4f"%wc.pct_nonzero '4.0816' >>> set([2,1]) == set(wc.neighbors[0]) True >>> wc3=pysal.knnW_from_shapefile(pysal.examples.get_path("columbus.shp"),k=3) >>> set(wc3.neighbors[0]) == set([2,1,3]) True >>> set(wc3.neighbors[2]) == set([4,3,0]) True 1 offset rather than 0 offset >>> wc3_1=knnW_from_shapefile(pysal.examples.get_path("columbus.shp"),k=3,idVariable="POLYID") >>> set([4,3,2]) == set(wc3_1.neighbors[1]) True >>> wc3_1.weights[2] [1.0, 1.0, 1.0] >>> set([4,1,8]) == set(wc3_1.neighbors[2]) True Point shapefile >>> w=knnW_from_shapefile(pysal.examples.get_path("juvenile.shp")) >>> w.pct_nonzero 1.1904761904761905 >>> w1=knnW_from_shapefile(pysal.examples.get_path("juvenile.shp"),k=1) >>> "%.3f"%w1.pct_nonzero '0.595' >>> Notes ----- Supports polygon or point shapefiles. For polygon shapefiles, distance is based on polygon centroids. Distances are defined using coordinates in shapefile which are assumed to be projected and not geographical coordinates. Ties between neighbors of equal distance are arbitrarily broken. See Also -------- :class:`pysal.weights.W` """ data = get_points_array_from_shapefile(shapefile) if radius is not None: kdtree = pysal.cg.KDTree(data, distance_metric='Arc', radius=radius) else: kdtree = pysal.cg.KDTree(data) if idVariable: ids = get_ids(shapefile, idVariable) return knnW(kdtree, k=k, p=p, ids=ids) return knnW(kdtree, k=k, p=p) def threshold_binaryW_from_array(array, threshold, p=2, radius=None): """ Binary weights based on a distance threshold. Parameters ---------- array : array (n,m) attribute data, n observations on m attributes threshold : float distance band p : float Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance radius : float If supplied arc_distances will be calculated based on the given radius. p will be ignored. Returns ------- w : W instance Weights object with binary weights Examples -------- >>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)] >>> wcheck = pysal.W({0: [1, 3], 1: [0, 3, ], 2: [], 3: [1, 0], 4: [5], 5: [4]}) WARNING: there is one disconnected observation (no neighbors) Island id: [2] >>> w=threshold_binaryW_from_array(points,threshold=11.2) WARNING: there is one disconnected observation (no neighbors) Island id: [2] >>> pysal.weights.util.neighbor_equality(w, wcheck) True >>> """ if radius is not None: array = pysal.cg.KDTree(array, distance_metric='Arc', radius=radius) return DistanceBand(array, threshold=threshold, p=p) def threshold_binaryW_from_shapefile(shapefile, threshold, p=2, idVariable=None, radius=None): """ Threshold distance based binary weights from a shapefile. Parameters ---------- shapefile : string shapefile name with shp suffix threshold : float distance band p : float Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance idVariable : string name of a column in the shapefile's DBF to use for ids radius : float If supplied arc_distances will be calculated based on the given radius. p will be ignored. Returns ------- w : W instance Weights object with binary weights Examples -------- >>> w = threshold_binaryW_from_shapefile(pysal.examples.get_path("columbus.shp"),0.62,idVariable="POLYID") >>> w.weights[1] [1, 1] Notes ----- Supports polygon or point shapefiles. For polygon shapefiles, distance is based on polygon centroids. Distances are defined using coordinates in shapefile which are assumed to be projected and not geographical coordinates. """ data = get_points_array_from_shapefile(shapefile) if radius is not None: data = pysal.cg.KDTree(data, distance_metric='Arc', radius=radius) if idVariable: ids = get_ids(shapefile, idVariable) w = DistanceBand(data, threshold=threshold, p=p) w.remap_ids(ids) return w return threshold_binaryW_from_array(data, threshold, p=p) def threshold_continuousW_from_array(array, threshold, p=2, alpha=-1, radius=None): """ Continuous weights based on a distance threshold. Parameters ---------- array : array (n,m) attribute data, n observations on m attributes threshold : float distance band p : float Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance alpha : float distance decay parameter for weight (default -1.0) if alpha is positive the weights will not decline with distance. radius : If supplied arc_distances will be calculated based on the given radius. p will be ignored. Returns ------- w : W instance; Weights object with continuous weights. Examples -------- inverse distance weights >>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)] >>> wid=threshold_continuousW_from_array(points,11.2) WARNING: there is one disconnected observation (no neighbors) Island id: [2] >>> wid.weights[0] [0.10000000000000001, 0.089442719099991588] gravity weights >>> wid2=threshold_continuousW_from_array(points,11.2,alpha=-2.0) WARNING: there is one disconnected observation (no neighbors) Island id: [2] >>> wid2.weights[0] [0.01, 0.0079999999999999984] """ if radius is not None: array = pysal.cg.KDTree(array, distance_metric='Arc', radius=radius) w = DistanceBand( array, threshold=threshold, p=p, alpha=alpha, binary=False) return w def threshold_continuousW_from_shapefile(shapefile, threshold, p=2, alpha=-1, idVariable=None, radius=None): """ Threshold distance based continuous weights from a shapefile. Parameters ---------- shapefile : string shapefile name with shp suffix threshold : float distance band p : float Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance alpha : float distance decay parameter for weight (default -1.0) if alpha is positive the weights will not decline with distance. idVariable : string name of a column in the shapefile's DBF to use for ids radius : float If supplied arc_distances will be calculated based on the given radius. p will be ignored. Returns ------- w : W instance; Weights object with continuous weights. Examples -------- >>> w = threshold_continuousW_from_shapefile(pysal.examples.get_path("columbus.shp"),0.62,idVariable="POLYID") >>> w.weights[1] [1.6702346893743334, 1.7250729841938093] Notes ----- Supports polygon or point shapefiles. For polygon shapefiles, distance is based on polygon centroids. Distances are defined using coordinates in shapefile which are assumed to be projected and not geographical coordinates. """ data = get_points_array_from_shapefile(shapefile) if radius is not None: data = pysal.cg.KDTree(data, distance_metric='Arc', radius=radius) if idVariable: ids = get_ids(shapefile, idVariable) w = DistanceBand(data, threshold=threshold, p=p, alpha=alpha, binary=False) w.remap_ids(ids) else: w = threshold_continuousW_from_array(data, threshold, p=p, alpha=alpha) w.set_shapefile(shapefile,idVariable) return w # Kernel Weights def kernelW(points, k=2, function='triangular', fixed=True, radius=None, diagonal=False): """ Kernel based weights. Parameters ---------- points : array (n,k) n observations on k characteristics used to measure distances between the n objects k : int the number of nearest neighbors to use for determining bandwidth. Bandwidth taken as :math:`h_i=max(dknn) \\forall i` where :math:`dknn` is a vector of k-nearest neighbor distances (the distance to the kth nearest neighbor for each observation). function : {'triangular','uniform','quadratic','epanechnikov','quartic','bisquare','gaussian'} .. math:: z_{i,j} = d_{i,j}/h_i triangular .. math:: K(z) = (1 - |z|) \ if |z| \le 1 uniform .. math:: K(z) = |z| \ if |z| \le 1 quadratic .. math:: K(z) = (3/4)(1-z^2) \ if |z| \le 1 epanechnikov .. math:: K(z) = (1-z^2) \ if |z| \le 1 quartic .. math:: K(z) = (15/16)(1-z^2)^2 \ if |z| \le 1 bisquare .. math:: K(z) = (1-z^2)^2 \ if |z| \le 1 gaussian .. math:: K(z) = (2\pi)^{(-1/2)} exp(-z^2 / 2) fixed : boolean If true then :math:`h_i=h \\forall i`. If false then bandwidth is adaptive across observations. radius : float If supplied arc_distances will be calculated based on the given radius. p will be ignored. diagonal : boolean If true, set diagonal weights = 1.0, if false ( default) diagonal weights are set to value according to kernel function. Returns ------- w : W instance of spatial weights Examples -------- >>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)] >>> kw=kernelW(points) >>> kw.weights[0] [1.0, 0.500000049999995, 0.4409830615267465] >>> kw.neighbors[0] [0, 1, 3] >>> kw.bandwidth array([[ 20.000002], [ 20.000002], [ 20.000002], [ 20.000002], [ 20.000002], [ 20.000002]]) use different k >>> kw=kernelW(points,k=3) >>> kw.neighbors[0] [0, 1, 3, 4] >>> kw.bandwidth array([[ 22.36068201], [ 22.36068201], [ 22.36068201], [ 22.36068201], [ 22.36068201], [ 22.36068201]]) Diagonals to 1.0 >>> kq = kernelW(points,function='gaussian') >>> kq.weights {0: [0.3989422804014327, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 0.3989422804014327, 0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.2419707487162134, 0.3989422804014327, 0.31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 0.3989422804014327, 0.3011374490937829, 0.26575287272131043], 4: [0.31069657591175387, 0.31069657591175387, 0.3011374490937829, 0.3989422804014327, 0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 0.3989422804014327]} >>> kqd = kernelW(points, function='gaussian', diagonal=True) >>> kqd.weights {0: [1.0, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 1.0, 0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.2419707487162134, 1.0, 0.31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 1.0, 0.3011374490937829, 0.26575287272131043], 4: [0.31069657591175387, 0.31069657591175387, 0.3011374490937829, 1.0, 0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 1.0]} """ if radius is not None: points = pysal.cg.KDTree(points, distance_metric='Arc', radius=radius) return Kernel(points, function=function, k=k, fixed=fixed, diagonal=diagonal) def kernelW_from_shapefile(shapefile, k=2, function='triangular', idVariable=None, fixed=True, radius=None, diagonal=False): """ Kernel based weights. Parameters ---------- shapefile : string shapefile name with shp suffix k : int the number of nearest neighbors to use for determining bandwidth. Bandwidth taken as :math:`h_i=max(dknn) \\forall i` where :math:`dknn` is a vector of k-nearest neighbor distances (the distance to the kth nearest neighbor for each observation). function : {'triangular','uniform','quadratic','epanechnikov', 'quartic','bisquare','gaussian'} .. math:: z_{i,j} = d_{i,j}/h_i triangular .. math:: K(z) = (1 - |z|) \ if |z| \le 1 uniform .. math:: K(z) = |z| \ if |z| \le 1 quadratic .. math:: K(z) = (3/4)(1-z^2) \ if |z| \le 1 epanechnikov .. math:: K(z) = (1-z^2) \ if |z| \le 1 quartic .. math:: K(z) = (15/16)(1-z^2)^2 \ if |z| \le 1 bisquare .. math:: K(z) = (1-z^2)^2 \ if |z| \le 1 gaussian .. math:: K(z) = (2\pi)^{(-1/2)} exp(-z^2 / 2) idVariable : string name of a column in the shapefile's DBF to use for ids fixed : binary If true then :math:`h_i=h \\forall i`. If false then bandwidth is adaptive across observations. radius : float If supplied arc_distances will be calculated based on the given radius. p will be ignored. diagonal : boolean If true, set diagonal weights = 1.0, if false ( default) diagonal weights are set to value according to kernel function. Returns ------- w : W instance of spatial weights Examples -------- >>> kw = pysal.kernelW_from_shapefile(pysal.examples.get_path("columbus.shp"),idVariable='POLYID', function = 'gaussian') >>> kwd = pysal.kernelW_from_shapefile(pysal.examples.get_path("columbus.shp"),idVariable='POLYID', function = 'gaussian', diagonal = True) >>> set(kw.neighbors[1]) == set([4, 2, 3, 1]) True >>> set(kwd.neighbors[1]) == set([4, 2, 3, 1]) True >>> >>> set(kw.weights[1]) == set( [0.2436835517263174, 0.29090631630909874, 0.29671172124745776, 0.3989422804014327]) True >>> set(kwd.weights[1]) == set( [0.2436835517263174, 0.29090631630909874, 0.29671172124745776, 1.0]) True Notes ----- Supports polygon or point shapefiles. For polygon shapefiles, distance is based on polygon centroids. Distances are defined using coordinates in shapefile which are assumed to be projected and not geographical coordinates. """ points = get_points_array_from_shapefile(shapefile) if radius is not None: points = pysal.cg.KDTree(points, distance_metric='Arc', radius=radius) if idVariable: ids = get_ids(shapefile, idVariable) return Kernel(points, function=function, k=k, ids=ids, fixed=fixed, diagonal = diagonal) return kernelW(points, k=k, function=function, fixed=fixed, diagonal=diagonal) def adaptive_kernelW(points, bandwidths=None, k=2, function='triangular', radius=None, diagonal=False): """ Kernel weights with adaptive bandwidths. Parameters ---------- points : array (n,k) n observations on k characteristics used to measure distances between the n objects bandwidths : float or array-like (optional) the bandwidth :math:`h_i` for the kernel. if no bandwidth is specified k is used to determine the adaptive bandwidth k : int the number of nearest neighbors to use for determining bandwidth. For fixed bandwidth, :math:`h_i=max(dknn) \\forall i` where :math:`dknn` is a vector of k-nearest neighbor distances (the distance to the kth nearest neighbor for each observation). For adaptive bandwidths, :math:`h_i=dknn_i` function : {'triangular','uniform','quadratic','quartic','gaussian'} kernel function defined as follows with .. math:: z_{i,j} = d_{i,j}/h_i triangular .. math:: K(z) = (1 - |z|) \ if |z| \le 1 uniform .. math:: K(z) = |z| \ if |z| \le 1 quadratic .. math:: K(z) = (3/4)(1-z^2) \ if |z| \le 1 quartic .. math:: K(z) = (15/16)(1-z^2)^2 \ if |z| \le 1 gaussian .. math:: K(z) = (2\pi)^{(-1/2)} exp(-z^2 / 2) radius : float If supplied arc_distances will be calculated based on the given radius. p will be ignored. diagonal : boolean If true, set diagonal weights = 1.0, if false ( default) diagonal weights are set to value according to kernel function. Returns ------- w : W instance of spatial weights Examples -------- User specified bandwidths >>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)] >>> bw=[25.0,15.0,25.0,16.0,14.5,25.0] >>> kwa=adaptive_kernelW(points,bandwidths=bw) >>> kwa.weights[0] [1.0, 0.6, 0.552786404500042, 0.10557280900008403] >>> kwa.neighbors[0] [0, 1, 3, 4] >>> kwa.bandwidth array([[ 25. ], [ 15. ], [ 25. ], [ 16. ], [ 14.5], [ 25. ]]) Endogenous adaptive bandwidths >>> kwea=adaptive_kernelW(points) >>> kwea.weights[0] [1.0, 0.10557289844279438, 9.99999900663795e-08] >>> kwea.neighbors[0] [0, 1, 3] >>> kwea.bandwidth array([[ 11.18034101], [ 11.18034101], [ 20.000002 ], [ 11.18034101], [ 14.14213704], [ 18.02775818]]) Endogenous adaptive bandwidths with Gaussian kernel >>> kweag=adaptive_kernelW(points,function='gaussian') >>> kweag.weights[0] [0.3989422804014327, 0.2674190291577696, 0.2419707487162134] >>> kweag.bandwidth array([[ 11.18034101], [ 11.18034101], [ 20.000002 ], [ 11.18034101], [ 14.14213704], [ 18.02775818]]) with diagonal >>> kweag = pysal.adaptive_kernelW(points, function='gaussian') >>> kweagd = pysal.adaptive_kernelW(points, function='gaussian', diagonal=True) >>> kweag.neighbors[0] [0, 1, 3] >>> kweagd.neighbors[0] [0, 1, 3] >>> kweag.weights[0] [0.3989422804014327, 0.2674190291577696, 0.2419707487162134] >>> kweagd.weights[0] [1.0, 0.2674190291577696, 0.2419707487162134] """ if radius is not None: points = pysal.cg.KDTree(points, distance_metric='Arc', radius=radius) return Kernel(points, bandwidth=bandwidths, fixed=False, k=k, function=function, diagonal=diagonal) def adaptive_kernelW_from_shapefile(shapefile, bandwidths=None, k=2, function='triangular', idVariable=None, radius=None, diagonal = False): """ Kernel weights with adaptive bandwidths. Parameters ---------- shapefile : string shapefile name with shp suffix bandwidths : float or array-like (optional) the bandwidth :math:`h_i` for the kernel. if no bandwidth is specified k is used to determine the adaptive bandwidth k : int the number of nearest neighbors to use for determining bandwidth. For fixed bandwidth, :math:`h_i=max(dknn) \\forall i` where :math:`dknn` is a vector of k-nearest neighbor distances (the distance to the kth nearest neighbor for each observation). For adaptive bandwidths, :math:`h_i=dknn_i` function : {'triangular','uniform','quadratic','quartic','gaussian'} kernel function defined as follows with .. math:: z_{i,j} = d_{i,j}/h_i triangular .. math:: K(z) = (1 - |z|) \ if |z| \le 1 uniform .. math:: K(z) = |z| \ if |z| \le 1 quadratic .. math:: K(z) = (3/4)(1-z^2) \ if |z| \le 1 quartic .. math:: K(z) = (15/16)(1-z^2)^2 \ if |z| \le 1 gaussian .. math:: K(z) = (2\pi)^{(-1/2)} exp(-z^2 / 2) idVariable : string name of a column in the shapefile's DBF to use for ids radius : float If supplied arc_distances will be calculated based on the given radius. p will be ignored. diagonal : boolean If true, set diagonal weights = 1.0, if false ( default) diagonal weights are set to value according to kernel function. Returns ------- w : W instance of spatial weights Examples -------- >>> kwa = pysal.adaptive_kernelW_from_shapefile(pysal.examples.get_path("columbus.shp"), function='gaussian') >>> kwad = pysal.adaptive_kernelW_from_shapefile(pysal.examples.get_path("columbus.shp"), function='gaussian', diagonal=True) >>> kwa.neighbors[0] [0, 2, 1] >>> kwad.neighbors[0] [0, 2, 1] >>> kwa.weights[0] [0.3989422804014327, 0.24966013701844503, 0.2419707487162134] >>> kwad.weights[0] [1.0, 0.24966013701844503, 0.2419707487162134] Notes ----- Supports polygon or point shapefiles. For polygon shapefiles, distance is based on polygon centroids. Distances are defined using coordinates in shapefile which are assumed to be projected and not geographical coordinates. """ points = get_points_array_from_shapefile(shapefile) if radius is not None: points = pysal.cg.KDTree(points, distance_metric='Arc', radius=radius) if idVariable: ids = get_ids(shapefile, idVariable) return Kernel(points, bandwidth=bandwidths, fixed=False, k=k, function=function, ids=ids, diagonal=diagonal) return adaptive_kernelW(points, bandwidths=bandwidths, k=k, function=function, diagonal=diagonal) def min_threshold_dist_from_shapefile(shapefile, radius=None, p=2): """ Kernel weights with adaptive bandwidths. Parameters ---------- shapefile : string shapefile name with shp suffix. radius : float If supplied arc_distances will be calculated based on the given radius. p will be ignored. p : float Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance Returns ------- d : float Maximum nearest neighbor distance between the n observations. Examples -------- >>> md = min_threshold_dist_from_shapefile(pysal.examples.get_path("columbus.shp")) >>> md 0.61886415807685413 >>> min_threshold_dist_from_shapefile(pysal.examples.get_path("stl_hom.shp"), pysal.cg.sphere.RADIUS_EARTH_MILES) 31.846942936393717 Notes ----- Supports polygon or point shapefiles. For polygon shapefiles, distance is based on polygon centroids. Distances are defined using coordinates in shapefile which are assumed to be projected and not geographical coordinates. """ points = get_points_array_from_shapefile(shapefile) if radius is not None: kdt = pysal.cg.kdtree.Arc_KDTree(points, radius=radius) nn = kdt.query(kdt.data, k=2) nnd = nn[0].max(axis=0)[1] return nnd return min_threshold_distance(points, p) def build_lattice_shapefile(nrows, ncols, outFileName): """ Build a lattice shapefile with nrows rows and ncols cols. Parameters ---------- nrows : int Number of rows ncols : int Number of cols outFileName : str shapefile name with shp suffix Returns ------- None """ if not outFileName.endswith('.shp'): raise ValueError("outFileName must end with .shp") o = pysal.open(outFileName, 'w') dbf_name = outFileName.split(".")[0] + ".dbf" d = pysal.open(dbf_name, 'w') d.header = [ 'ID' ] d.field_spec = [ ('N', 8, 0) ] c = 0 for i in xrange(nrows): for j in xrange(ncols): ll = i, j ul = i, j + 1 ur = i + 1, j + 1 lr = i + 1, j o.write(pysal.cg.Polygon([ll, ul, ur, lr, ll])) d.write([c]) c += 1 d.close() o.close() def _test(): import doctest # the following line could be used to define an alternative to the '<BLANKLINE>' flag #doctest.BLANKLINE_MARKER = 'something better than <BLANKLINE>' start_suppress = np.get_printoptions()['suppress'] np.set_printoptions(suppress=True) doctest.testmod() np.set_printoptions(suppress=start_suppress) if __name__ == '__main__': _test()
[ "numpy.set_printoptions", "pysal.cg.kdtree.Arc_KDTree", "Contiguity.Queen.from_shapefile", "pysal.open", "util.get_ids", "Distance.knnW", "Distance.Kernel", "pysal.weights.WSP", "pysal.cg.KDTree", "Distance.DistanceBand", "Contiguity.Rook.from_shapefile", "util.min_threshold_distance", "util.get_points_array_from_shapefile", "pysal.cg.Polygon", "doctest.testmod", "numpy.get_printoptions" ]
[((2032, 2086), 'Contiguity.Queen.from_shapefile', 'Queen.from_shapefile', (['shapefile'], {'idVariable': 'idVariable'}), '(shapefile, idVariable=idVariable)\n', (2052, 2086), False, 'from Contiguity import buildContiguity, Queen, Rook\n'), ((3247, 3300), 'Contiguity.Rook.from_shapefile', 'Rook.from_shapefile', (['shapefile'], {'idVariable': 'idVariable'}), '(shapefile, idVariable=idVariable)\n', (3266, 3300), False, 'from Contiguity import buildContiguity, Queen, Rook\n'), ((5809, 5840), 'Distance.knnW', 'knnW', (['kdtree'], {'k': 'k', 'p': 'p', 'ids': 'ids'}), '(kdtree, k=k, p=p, ids=ids)\n', (5813, 5840), False, 'from Distance import knnW, Kernel, DistanceBand\n'), ((8067, 8109), 'util.get_points_array_from_shapefile', 'get_points_array_from_shapefile', (['shapefile'], {}), '(shapefile)\n', (8098, 8109), False, 'from util import get_ids, get_points_array_from_shapefile, min_threshold_distance\n'), ((8386, 8408), 'Distance.knnW', 'knnW', (['kdtree'], {'k': 'k', 'p': 'p'}), '(kdtree, k=k, p=p)\n', (8390, 8408), False, 'from Distance import knnW, Kernel, DistanceBand\n'), ((9819, 9864), 'Distance.DistanceBand', 'DistanceBand', (['array'], {'threshold': 'threshold', 'p': 'p'}), '(array, threshold=threshold, p=p)\n', (9831, 9864), False, 'from Distance import knnW, Kernel, DistanceBand\n'), ((11199, 11241), 'util.get_points_array_from_shapefile', 'get_points_array_from_shapefile', (['shapefile'], {}), '(shapefile)\n', (11230, 11241), False, 'from util import get_ids, get_points_array_from_shapefile, min_threshold_distance\n'), ((13279, 13351), 'Distance.DistanceBand', 'DistanceBand', (['array'], {'threshold': 'threshold', 'p': 'p', 'alpha': 'alpha', 'binary': '(False)'}), '(array, threshold=threshold, p=p, alpha=alpha, binary=False)\n', (13291, 13351), False, 'from Distance import knnW, Kernel, DistanceBand\n'), ((14987, 15029), 'util.get_points_array_from_shapefile', 'get_points_array_from_shapefile', (['shapefile'], {}), '(shapefile)\n', (15018, 15029), False, 'from util import get_ids, get_points_array_from_shapefile, min_threshold_distance\n'), ((19689, 19759), 'Distance.Kernel', 'Kernel', (['points'], {'function': 'function', 'k': 'k', 'fixed': 'fixed', 'diagonal': 'diagonal'}), '(points, function=function, k=k, fixed=fixed, diagonal=diagonal)\n', (19695, 19759), False, 'from Distance import knnW, Kernel, DistanceBand\n'), ((23043, 23085), 'util.get_points_array_from_shapefile', 'get_points_array_from_shapefile', (['shapefile'], {}), '(shapefile)\n', (23074, 23085), False, 'from util import get_ids, get_points_array_from_shapefile, min_threshold_distance\n'), ((27507, 27603), 'Distance.Kernel', 'Kernel', (['points'], {'bandwidth': 'bandwidths', 'fixed': '(False)', 'k': 'k', 'function': 'function', 'diagonal': 'diagonal'}), '(points, bandwidth=bandwidths, fixed=False, k=k, function=function,\n diagonal=diagonal)\n', (27513, 27603), False, 'from Distance import knnW, Kernel, DistanceBand\n'), ((30745, 30787), 'util.get_points_array_from_shapefile', 'get_points_array_from_shapefile', (['shapefile'], {}), '(shapefile)\n', (30776, 30787), False, 'from util import get_ids, get_points_array_from_shapefile, min_threshold_distance\n'), ((32492, 32534), 'util.get_points_array_from_shapefile', 'get_points_array_from_shapefile', (['shapefile'], {}), '(shapefile)\n', (32523, 32534), False, 'from util import get_ids, get_points_array_from_shapefile, min_threshold_distance\n'), ((32729, 32762), 'util.min_threshold_distance', 'min_threshold_distance', (['points', 'p'], {}), '(points, p)\n', (32751, 32762), False, 'from util import get_ids, get_points_array_from_shapefile, min_threshold_distance\n'), ((33255, 33283), 'pysal.open', 'pysal.open', (['outFileName', '"""w"""'], {}), "(outFileName, 'w')\n", (33265, 33283), False, 'import pysal\n'), ((33342, 33367), 'pysal.open', 'pysal.open', (['dbf_name', '"""w"""'], {}), "(dbf_name, 'w')\n", (33352, 33367), False, 'import pysal\n'), ((33983, 34017), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)'}), '(suppress=True)\n', (34002, 34017), True, 'import numpy as np\n'), ((34022, 34039), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (34037, 34039), False, 'import doctest\n'), ((34044, 34088), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': 'start_suppress'}), '(suppress=start_suppress)\n', (34063, 34088), True, 'import numpy as np\n'), ((2114, 2162), 'pysal.weights.WSP', 'pysal.weights.WSP', (['w.sparse'], {'id_order': 'w.id_order'}), '(w.sparse, id_order=w.id_order)\n', (2131, 2162), False, 'import pysal\n'), ((3328, 3376), 'pysal.weights.WSP', 'pysal.weights.WSP', (['w.sparse'], {'id_order': 'w.id_order'}), '(w.sparse, id_order=w.id_order)\n', (3345, 3376), False, 'import pysal\n'), ((5687, 5747), 'pysal.cg.KDTree', 'pysal.cg.KDTree', (['array'], {'distance_metric': '"""Arc"""', 'radius': 'radius'}), "(array, distance_metric='Arc', radius=radius)\n", (5702, 5747), False, 'import pysal\n'), ((5775, 5797), 'pysal.cg.KDTree', 'pysal.cg.KDTree', (['array'], {}), '(array)\n', (5790, 5797), False, 'import pysal\n'), ((8155, 8214), 'pysal.cg.KDTree', 'pysal.cg.KDTree', (['data'], {'distance_metric': '"""Arc"""', 'radius': 'radius'}), "(data, distance_metric='Arc', radius=radius)\n", (8170, 8214), False, 'import pysal\n'), ((8242, 8263), 'pysal.cg.KDTree', 'pysal.cg.KDTree', (['data'], {}), '(data)\n', (8257, 8263), False, 'import pysal\n'), ((8297, 8327), 'util.get_ids', 'get_ids', (['shapefile', 'idVariable'], {}), '(shapefile, idVariable)\n', (8304, 8327), False, 'from util import get_ids, get_points_array_from_shapefile, min_threshold_distance\n'), ((8343, 8374), 'Distance.knnW', 'knnW', (['kdtree'], {'k': 'k', 'p': 'p', 'ids': 'ids'}), '(kdtree, k=k, p=p, ids=ids)\n', (8347, 8374), False, 'from Distance import knnW, Kernel, DistanceBand\n'), ((9747, 9807), 'pysal.cg.KDTree', 'pysal.cg.KDTree', (['array'], {'distance_metric': '"""Arc"""', 'radius': 'radius'}), "(array, distance_metric='Arc', radius=radius)\n", (9762, 9807), False, 'import pysal\n'), ((11284, 11343), 'pysal.cg.KDTree', 'pysal.cg.KDTree', (['data'], {'distance_metric': '"""Arc"""', 'radius': 'radius'}), "(data, distance_metric='Arc', radius=radius)\n", (11299, 11343), False, 'import pysal\n'), ((11377, 11407), 'util.get_ids', 'get_ids', (['shapefile', 'idVariable'], {}), '(shapefile, idVariable)\n', (11384, 11407), False, 'from util import get_ids, get_points_array_from_shapefile, min_threshold_distance\n'), ((11420, 11464), 'Distance.DistanceBand', 'DistanceBand', (['data'], {'threshold': 'threshold', 'p': 'p'}), '(data, threshold=threshold, p=p)\n', (11432, 11464), False, 'from Distance import knnW, Kernel, DistanceBand\n'), ((13210, 13270), 'pysal.cg.KDTree', 'pysal.cg.KDTree', (['array'], {'distance_metric': '"""Arc"""', 'radius': 'radius'}), "(array, distance_metric='Arc', radius=radius)\n", (13225, 13270), False, 'import pysal\n'), ((15072, 15131), 'pysal.cg.KDTree', 'pysal.cg.KDTree', (['data'], {'distance_metric': '"""Arc"""', 'radius': 'radius'}), "(data, distance_metric='Arc', radius=radius)\n", (15087, 15131), False, 'import pysal\n'), ((15165, 15195), 'util.get_ids', 'get_ids', (['shapefile', 'idVariable'], {}), '(shapefile, idVariable)\n', (15172, 15195), False, 'from util import get_ids, get_points_array_from_shapefile, min_threshold_distance\n'), ((15208, 15279), 'Distance.DistanceBand', 'DistanceBand', (['data'], {'threshold': 'threshold', 'p': 'p', 'alpha': 'alpha', 'binary': '(False)'}), '(data, threshold=threshold, p=p, alpha=alpha, binary=False)\n', (15220, 15279), False, 'from Distance import knnW, Kernel, DistanceBand\n'), ((19616, 19677), 'pysal.cg.KDTree', 'pysal.cg.KDTree', (['points'], {'distance_metric': '"""Arc"""', 'radius': 'radius'}), "(points, distance_metric='Arc', radius=radius)\n", (19631, 19677), False, 'import pysal\n'), ((23130, 23191), 'pysal.cg.KDTree', 'pysal.cg.KDTree', (['points'], {'distance_metric': '"""Arc"""', 'radius': 'radius'}), "(points, distance_metric='Arc', radius=radius)\n", (23145, 23191), False, 'import pysal\n'), ((23225, 23255), 'util.get_ids', 'get_ids', (['shapefile', 'idVariable'], {}), '(shapefile, idVariable)\n', (23232, 23255), False, 'from util import get_ids, get_points_array_from_shapefile, min_threshold_distance\n'), ((23271, 23350), 'Distance.Kernel', 'Kernel', (['points'], {'function': 'function', 'k': 'k', 'ids': 'ids', 'fixed': 'fixed', 'diagonal': 'diagonal'}), '(points, function=function, k=k, ids=ids, fixed=fixed, diagonal=diagonal)\n', (23277, 23350), False, 'from Distance import knnW, Kernel, DistanceBand\n'), ((27434, 27495), 'pysal.cg.KDTree', 'pysal.cg.KDTree', (['points'], {'distance_metric': '"""Arc"""', 'radius': 'radius'}), "(points, distance_metric='Arc', radius=radius)\n", (27449, 27495), False, 'import pysal\n'), ((30832, 30893), 'pysal.cg.KDTree', 'pysal.cg.KDTree', (['points'], {'distance_metric': '"""Arc"""', 'radius': 'radius'}), "(points, distance_metric='Arc', radius=radius)\n", (30847, 30893), False, 'import pysal\n'), ((30927, 30957), 'util.get_ids', 'get_ids', (['shapefile', 'idVariable'], {}), '(shapefile, idVariable)\n', (30934, 30957), False, 'from util import get_ids, get_points_array_from_shapefile, min_threshold_distance\n'), ((30973, 31078), 'Distance.Kernel', 'Kernel', (['points'], {'bandwidth': 'bandwidths', 'fixed': '(False)', 'k': 'k', 'function': 'function', 'ids': 'ids', 'diagonal': 'diagonal'}), '(points, bandwidth=bandwidths, fixed=False, k=k, function=function,\n ids=ids, diagonal=diagonal)\n', (30979, 31078), False, 'from Distance import knnW, Kernel, DistanceBand\n'), ((32576, 32625), 'pysal.cg.kdtree.Arc_KDTree', 'pysal.cg.kdtree.Arc_KDTree', (['points'], {'radius': 'radius'}), '(points, radius=radius)\n', (32602, 32625), False, 'import pysal\n'), ((33945, 33966), 'numpy.get_printoptions', 'np.get_printoptions', ([], {}), '()\n', (33964, 33966), True, 'import numpy as np\n'), ((3914, 3938), 'pysal.open', 'pysal.open', (['galfile', '"""r"""'], {}), "(galfile, 'r')\n", (3924, 3938), False, 'import pysal\n'), ((33621, 33659), 'pysal.cg.Polygon', 'pysal.cg.Polygon', (['[ll, ul, ur, lr, ll]'], {}), '([ll, ul, ur, lr, ll])\n', (33637, 33659), False, 'import pysal\n')]
#!/usr/bin/env python # coding: utf-8 import argparse import os import random import matplotlib.pyplot as plt import numpy as np import torch import tqdm from l5kit.configs import load_config_data from l5kit.dataset import AgentDataset from l5kit.geometry import transform_points from l5kit.visualization import ( PREDICTED_POINTS_COLOR, TARGET_POINTS_COLOR, draw_trajectory, ) from torch.utils.data import DataLoader import lyft_loss import lyft_utils import run_lyft_mpred CFG_PATH = "./agent_motion_config.yaml" VIS_SELECTED_FRAMES = (99,) def visualize_prediction( model, data_loader: DataLoader, rasterizer: AgentDataset, args: argparse.Namespace, device, save_name: str = "agent_train_feature", ) -> None: model.eval() model.to(device) os.makedirs(args.output_dir, exist_ok=True) with torch.no_grad(): dataiter = tqdm.tqdm(data_loader) for i, data in enumerate(dataiter): image = data["image"].to(device) pred, confidences = model(image) losses = lyft_loss.pytorch_neg_multi_log_likelihood_batch( data["target_positions"].to(device), pred, confidences, data["target_availabilities"].to(device), is_reduce=False, ) # model output losses = losses.cpu().numpy().squeeze() pred = pred.cpu().numpy() confidences = confidences.cpu().numpy() # meta data images = image.cpu().numpy() raster_from_agents = data["raster_from_agent"].numpy() timestamps = data["timestamp"].numpy() track_ids = data["track_id"].numpy() # target data target_availabilities = data["target_availabilities"].numpy() target_positions = data["target_positions"].numpy() # ploting for ba_ind in range(len(pred)): _, axarr = plt.subplots(1, 4, figsize=(5 * 4, 5)) # input image im = images[ba_ind].transpose(1, 2, 0) im = rasterizer.to_rgb(im) # plotting ground truth im_gt = im.copy() target_positions_pixels = transform_points( target_positions[ba_ind], raster_from_agents[ba_ind], ) draw_trajectory(im_gt, target_positions_pixels, TARGET_POINTS_COLOR) axarr[0].imshow(im_gt[::-1]) axarr[0].set_title( "ground truth/pink, loss:{:>3.1f}".format(losses[ba_ind]) ) # plotting prediction of each mode mode_inds = np.argsort(confidences[ba_ind])[::-1] for p in range(1, 4): im_pred = im.copy() mode_ind = mode_inds[p - 1] pred_positions_pixels = transform_points( pred[ba_ind][mode_ind], raster_from_agents[ba_ind], ) draw_trajectory( im_pred, pred_positions_pixels[target_availabilities[ba_ind] > 0], PREDICTED_POINTS_COLOR, ) axarr[p].imshow(im_pred[::-1]) axarr[p].set_title( "mode:{}, confidence:{:>3.2f}/cyan".format( p, confidences[ba_ind][mode_ind] ) ) # save path save_path = os.path.join( args.output_dir, f"{timestamps[ba_ind]}_{track_ids[ba_ind]}.png", ) plt.savefig(save_path) plt.show() def main(cfg: dict, args: argparse.Namespace) -> None: # set random seeds SEED = 42 os.environ["PYTHONHASHSEED"] = str(SEED) # set Python random seed random.seed(SEED) # set NumPy random seed np.random.seed(SEED) os.environ["CUDA_VISIBLE_DEVICES"] = args.visible_gpus # ===== Configure LYFT dataset # mypy error due to pl.DataModule.transfer_batch_to_device mpred_dm = run_lyft_mpred.LyftMpredDatamodule( # type: ignore[abstract] args.l5kit_data_folder, cfg, batch_size=args.batch_size, num_workers=args.num_workers, downsample_train=args.downsample_train, is_test=False, is_debug=args.is_debug, ) mpred_dm.prepare_data() mpred_dm.setup() val_datalader = mpred_dm.val_dataloader() rasterizer = mpred_dm.rasterizer print("load from: ", args.ckpt_path) model = run_lyft_mpred.LitModel.load_from_checkpoint(args.ckpt_path, cfg=cfg) device = torch.device("cuda") visualize_prediction(model, val_datalader, rasterizer, args, device) if __name__ == "__main__": cfg = load_config_data(CFG_PATH) parser = argparse.ArgumentParser( description="Visualize lyft motion prediction", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--l5kit_data_folder", default="/your/dataset/path", type=str, help="root directory path for lyft motion prediction dataset", ) parser.add_argument( "--num_modes", type=int, default=3, help="number of the modes on each prediction", ) parser.add_argument("--batch_size", type=int, default=220, help="batch size") parser.add_argument( "--downsample_train", action="store_true", help="using only 4 frames from each scene, the loss converge is \ much faster than using all data, but it will get larger loss", ) parser.add_argument( "--ckpt_path", type=str, default="./model.pth", help="path for model checkpoint at test mode", ) parser.add_argument( "--visible_gpus", type=str, default="0", help="Select gpu ids with comma separated format", ) parser.add_argument( "--num_workers", default="16", type=int, help="number of cpus for DataLoader", ) parser.add_argument("--is_debug", action="store_true", help="debug mode") parser.add_argument( "--output_dir", type=str, default="./prediction_images", help="directory for visualized images", ) args = parser.parse_args() if args.is_debug: DEBUG = True print("\t ---- DEBUG RUN ---- ") cfg["train_data_loader"]["key"] = "scenes/sample.zarr" cfg["val_data_loader"]["key"] = "scenes/sample.zarr" args.batch_size = 16 else: DEBUG = False print("\t ---- NORMAL RUN ---- ") lyft_utils.print_argparse_arguments(args) main(cfg, args)
[ "l5kit.geometry.transform_points", "l5kit.visualization.draw_trajectory", "tqdm.tqdm", "l5kit.configs.load_config_data", "numpy.random.seed", "os.makedirs", "argparse.ArgumentParser", "lyft_utils.print_argparse_arguments", "os.path.join", "matplotlib.pyplot.show", "run_lyft_mpred.LitModel.load_from_checkpoint", "numpy.argsort", "random.seed", "run_lyft_mpred.LyftMpredDatamodule", "torch.device", "torch.no_grad", "matplotlib.pyplot.subplots", "matplotlib.pyplot.savefig" ]
[((796, 839), 'os.makedirs', 'os.makedirs', (['args.output_dir'], {'exist_ok': '(True)'}), '(args.output_dir, exist_ok=True)\n', (807, 839), False, 'import os\n'), ((4008, 4025), 'random.seed', 'random.seed', (['SEED'], {}), '(SEED)\n', (4019, 4025), False, 'import random\n'), ((4058, 4078), 'numpy.random.seed', 'np.random.seed', (['SEED'], {}), '(SEED)\n', (4072, 4078), True, 'import numpy as np\n'), ((4253, 4463), 'run_lyft_mpred.LyftMpredDatamodule', 'run_lyft_mpred.LyftMpredDatamodule', (['args.l5kit_data_folder', 'cfg'], {'batch_size': 'args.batch_size', 'num_workers': 'args.num_workers', 'downsample_train': 'args.downsample_train', 'is_test': '(False)', 'is_debug': 'args.is_debug'}), '(args.l5kit_data_folder, cfg, batch_size=\n args.batch_size, num_workers=args.num_workers, downsample_train=args.\n downsample_train, is_test=False, is_debug=args.is_debug)\n', (4287, 4463), False, 'import run_lyft_mpred\n'), ((4729, 4798), 'run_lyft_mpred.LitModel.load_from_checkpoint', 'run_lyft_mpred.LitModel.load_from_checkpoint', (['args.ckpt_path'], {'cfg': 'cfg'}), '(args.ckpt_path, cfg=cfg)\n', (4773, 4798), False, 'import run_lyft_mpred\n'), ((4812, 4832), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (4824, 4832), False, 'import torch\n'), ((4945, 4971), 'l5kit.configs.load_config_data', 'load_config_data', (['CFG_PATH'], {}), '(CFG_PATH)\n', (4961, 4971), False, 'from l5kit.configs import load_config_data\n'), ((4986, 5117), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Visualize lyft motion prediction"""', 'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), "(description='Visualize lyft motion prediction',\n formatter_class=argparse.ArgumentDefaultsHelpFormatter)\n", (5009, 5117), False, 'import argparse\n'), ((6822, 6863), 'lyft_utils.print_argparse_arguments', 'lyft_utils.print_argparse_arguments', (['args'], {}), '(args)\n', (6857, 6863), False, 'import lyft_utils\n'), ((850, 865), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (863, 865), False, 'import torch\n'), ((886, 908), 'tqdm.tqdm', 'tqdm.tqdm', (['data_loader'], {}), '(data_loader)\n', (895, 908), False, 'import tqdm\n'), ((1984, 2022), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(4)'], {'figsize': '(5 * 4, 5)'}), '(1, 4, figsize=(5 * 4, 5))\n', (1996, 2022), True, 'import matplotlib.pyplot as plt\n'), ((2267, 2337), 'l5kit.geometry.transform_points', 'transform_points', (['target_positions[ba_ind]', 'raster_from_agents[ba_ind]'], {}), '(target_positions[ba_ind], raster_from_agents[ba_ind])\n', (2283, 2337), False, 'from l5kit.geometry import transform_points\n'), ((2413, 2481), 'l5kit.visualization.draw_trajectory', 'draw_trajectory', (['im_gt', 'target_positions_pixels', 'TARGET_POINTS_COLOR'], {}), '(im_gt, target_positions_pixels, TARGET_POINTS_COLOR)\n', (2428, 2481), False, 'from l5kit.visualization import PREDICTED_POINTS_COLOR, TARGET_POINTS_COLOR, draw_trajectory\n'), ((3632, 3710), 'os.path.join', 'os.path.join', (['args.output_dir', 'f"""{timestamps[ba_ind]}_{track_ids[ba_ind]}.png"""'], {}), "(args.output_dir, f'{timestamps[ba_ind]}_{track_ids[ba_ind]}.png')\n", (3644, 3710), False, 'import os\n'), ((3786, 3808), 'matplotlib.pyplot.savefig', 'plt.savefig', (['save_path'], {}), '(save_path)\n', (3797, 3808), True, 'import matplotlib.pyplot as plt\n'), ((3825, 3835), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3833, 3835), True, 'import matplotlib.pyplot as plt\n'), ((2738, 2769), 'numpy.argsort', 'np.argsort', (['confidences[ba_ind]'], {}), '(confidences[ba_ind])\n', (2748, 2769), True, 'import numpy as np\n'), ((2946, 3014), 'l5kit.geometry.transform_points', 'transform_points', (['pred[ba_ind][mode_ind]', 'raster_from_agents[ba_ind]'], {}), '(pred[ba_ind][mode_ind], raster_from_agents[ba_ind])\n', (2962, 3014), False, 'from l5kit.geometry import transform_points\n'), ((3106, 3217), 'l5kit.visualization.draw_trajectory', 'draw_trajectory', (['im_pred', 'pred_positions_pixels[target_availabilities[ba_ind] > 0]', 'PREDICTED_POINTS_COLOR'], {}), '(im_pred, pred_positions_pixels[target_availabilities[ba_ind\n ] > 0], PREDICTED_POINTS_COLOR)\n', (3121, 3217), False, 'from l5kit.visualization import PREDICTED_POINTS_COLOR, TARGET_POINTS_COLOR, draw_trajectory\n')]
import cv2 as cv import numpy as np # 分水岭算法 def watershed_image(): print(src.shape) blurred = cv.pyrMeanShiftFiltering(src, 10, 100) # 利用边缘滤波,去除噪点 # gray\binary image 灰度二值图像 gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY) ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU) cv.imshow("binary_image", binary) # morphology operation 形态学操作 kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3)) #结构元素 mb = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel, iterations=2) #连续两次开操作 sure_bg = cv.dilate(mb, kernel, iterations=3) cv.imshow("mor_opt", sure_bg) # distance transform 对上面的mb进行距离变换 dist = cv.distanceTransform(mb, cv.DIST_L2, 3) dist_output = cv.normalize(dist, 0, 1.0, cv.NORM_MINMAX) cv.imshow("distance", dist_output * 70) ret, surface = cv.threshold(dist, dist.max() * 0.6, 255, cv.THRESH_BINARY) cv.imshow("surface-bin", surface) surface_fg = np.uint8(surface) unknown = cv.subtract(sure_bg, surface_fg) ret, markers = cv.connectedComponents(surface_fg) print(ret) # watershed transfrom 分水岭变换 markers += 1 markers[unknown == 255] = 0 markers = cv.watershed(src, markers=markers) src[markers == -1] = [0, 0, 255] cv.imshow("result", src) src = cv.imread('F:00.jpg') #cv.namedWindow('input_image', cv.WINDOW_AUTOSIZE) cv.imshow("0", src) watershed_image() cv.waitKey(0) cv.destroyAllWindows()
[ "numpy.uint8", "cv2.subtract", "cv2.dilate", "cv2.waitKey", "cv2.destroyAllWindows", "cv2.cvtColor", "cv2.threshold", "cv2.getStructuringElement", "cv2.morphologyEx", "cv2.watershed", "cv2.connectedComponents", "cv2.imread", "cv2.pyrMeanShiftFiltering", "cv2.normalize", "cv2.imshow", "cv2.distanceTransform" ]
[((1338, 1359), 'cv2.imread', 'cv.imread', (['"""F:00.jpg"""'], {}), "('F:00.jpg')\n", (1347, 1359), True, 'import cv2 as cv\n'), ((1413, 1432), 'cv2.imshow', 'cv.imshow', (['"""0"""', 'src'], {}), "('0', src)\n", (1422, 1432), True, 'import cv2 as cv\n'), ((1453, 1466), 'cv2.waitKey', 'cv.waitKey', (['(0)'], {}), '(0)\n', (1463, 1466), True, 'import cv2 as cv\n'), ((1468, 1490), 'cv2.destroyAllWindows', 'cv.destroyAllWindows', ([], {}), '()\n', (1488, 1490), True, 'import cv2 as cv\n'), ((111, 149), 'cv2.pyrMeanShiftFiltering', 'cv.pyrMeanShiftFiltering', (['src', '(10)', '(100)'], {}), '(src, 10, 100)\n', (135, 149), True, 'import cv2 as cv\n'), ((211, 250), 'cv2.cvtColor', 'cv.cvtColor', (['blurred', 'cv.COLOR_BGR2GRAY'], {}), '(blurred, cv.COLOR_BGR2GRAY)\n', (222, 250), True, 'import cv2 as cv\n'), ((270, 331), 'cv2.threshold', 'cv.threshold', (['gray', '(0)', '(255)', '(cv.THRESH_BINARY | cv.THRESH_OTSU)'], {}), '(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)\n', (282, 331), True, 'import cv2 as cv\n'), ((337, 370), 'cv2.imshow', 'cv.imshow', (['"""binary_image"""', 'binary'], {}), "('binary_image', binary)\n", (346, 370), True, 'import cv2 as cv\n'), ((422, 469), 'cv2.getStructuringElement', 'cv.getStructuringElement', (['cv.MORPH_RECT', '(3, 3)'], {}), '(cv.MORPH_RECT, (3, 3))\n', (446, 469), True, 'import cv2 as cv\n'), ((488, 548), 'cv2.morphologyEx', 'cv.morphologyEx', (['binary', 'cv.MORPH_OPEN', 'kernel'], {'iterations': '(2)'}), '(binary, cv.MORPH_OPEN, kernel, iterations=2)\n', (503, 548), True, 'import cv2 as cv\n'), ((574, 609), 'cv2.dilate', 'cv.dilate', (['mb', 'kernel'], {'iterations': '(3)'}), '(mb, kernel, iterations=3)\n', (583, 609), True, 'import cv2 as cv\n'), ((615, 644), 'cv2.imshow', 'cv.imshow', (['"""mor_opt"""', 'sure_bg'], {}), "('mor_opt', sure_bg)\n", (624, 644), True, 'import cv2 as cv\n'), ((698, 737), 'cv2.distanceTransform', 'cv.distanceTransform', (['mb', 'cv.DIST_L2', '(3)'], {}), '(mb, cv.DIST_L2, 3)\n', (718, 737), True, 'import cv2 as cv\n'), ((757, 799), 'cv2.normalize', 'cv.normalize', (['dist', '(0)', '(1.0)', 'cv.NORM_MINMAX'], {}), '(dist, 0, 1.0, cv.NORM_MINMAX)\n', (769, 799), True, 'import cv2 as cv\n'), ((805, 844), 'cv2.imshow', 'cv.imshow', (['"""distance"""', '(dist_output * 70)'], {}), "('distance', dist_output * 70)\n", (814, 844), True, 'import cv2 as cv\n'), ((932, 965), 'cv2.imshow', 'cv.imshow', (['"""surface-bin"""', 'surface'], {}), "('surface-bin', surface)\n", (941, 965), True, 'import cv2 as cv\n'), ((986, 1003), 'numpy.uint8', 'np.uint8', (['surface'], {}), '(surface)\n', (994, 1003), True, 'import numpy as np\n'), ((1019, 1051), 'cv2.subtract', 'cv.subtract', (['sure_bg', 'surface_fg'], {}), '(sure_bg, surface_fg)\n', (1030, 1051), True, 'import cv2 as cv\n'), ((1072, 1106), 'cv2.connectedComponents', 'cv.connectedComponents', (['surface_fg'], {}), '(surface_fg)\n', (1094, 1106), True, 'import cv2 as cv\n'), ((1224, 1258), 'cv2.watershed', 'cv.watershed', (['src'], {'markers': 'markers'}), '(src, markers=markers)\n', (1236, 1258), True, 'import cv2 as cv\n'), ((1302, 1326), 'cv2.imshow', 'cv.imshow', (['"""result"""', 'src'], {}), "('result', src)\n", (1311, 1326), True, 'import cv2 as cv\n')]
#################################################################### # Copyright (c) 2019 <NAME> # # # # This source code is licensed under the MIT license found in the # # LICENSE file in the root directory of this source tree. # #################################################################### import PyDelFEM2 as dfm2 import PyDelFEM2.gl.glfw import numpy, math def height_map(): A0 = numpy.zeros((16,32)) for iy in range(A0.shape[0]): for ix in range(A0.shape[1]): A0[iy,ix] = 5*math.sin(ix*0.4)*math.cos(iy*0.6) + 5 msh = dfm2.Mesh() msh.set_grid([A0.shape[1],A0.shape[0]]) msh.np_pos = numpy.hstack((msh.np_pos,A0.reshape((-1,1)))) axis = dfm2.gl.AxisXYZ(32) print("hight_map") dfm2.gl.glfw.winDraw3d([msh,axis],(400,400)) print("edge_quad_mesh") msh_edge = msh.mesh_edge() dfm2.gl.glfw.winDraw3d([msh_edge,axis]) def edge_tri(): msh = dfm2.Mesh() msh.read("../test_inputs/bunny_2k.ply") msh_edge = msh.mesh_edge() dfm2.gl.glfw.winDraw3d([msh_edge,msh.aabb3()]) def edge_quad_hex(): grid = dfm2.VoxelGrid() grid.add(0, 0, 0) grid.add(1, 0, 0) grid.add(1, 1, 0) msh = grid.mesh_hex() msh = msh.subdiv() msh_edge = msh.mesh_edge() dfm2.gl.glfw.winDraw3d([msh_edge]) msh = grid.mesh_quad() msh = msh.subdiv() msh_edge = msh.mesh_edge() dfm2.gl.glfw.winDraw3d([msh_edge]) def primitive(): msh = dfm2.Mesh() msh.set_cylinder(1.0,1.0, 16, 4) dfm2.gl.glfw.winDraw3d([msh]) msh.set_sphere(1.0,16, 32) dfm2.gl.glfw.winDraw3d([msh]) msh.set_icosahedron() dfm2.gl.glfw.winDraw3d([msh]) msh.set_geopoly() dfm2.gl.glfw.winDraw3d([msh]) msh.set_torus(2,1) dfm2.gl.glfw.winDraw3d([msh]) def read_file(): msh = dfm2.Mesh() msh.read("../test_inputs/A.obj") dfm2.gl.glfw.winDraw3d([msh,msh.aabb3(),dfm2.gl.AxisXYZ()]) msh.rotate([3.1415*0.5, 0.0, 0.0]) dfm2.gl.glfw.winDraw3d([msh, msh.aabb3(), dfm2.gl.AxisXYZ()]) msh.translate([1, 1.0, 0.0], 1.0) dfm2.gl.glfw.winDraw3d([msh, msh.aabb3(), dfm2.gl.AxisXYZ()]) msh.read("../test_inputs/bunny_2k.ply") dfm2.gl.glfw.winDraw3d([msh,msh.aabb3()]) msh.read("../test_inputs/bunny_1k.obj") dfm2.gl.glfw.winDraw3d([msh,msh.aabb3()]) if __name__ == "__main__": read_file() height_map() edge_tri() edge_quad_hex() primitive()
[ "PyDelFEM2.Mesh", "numpy.zeros", "PyDelFEM2.VoxelGrid", "math.sin", "PyDelFEM2.gl.glfw.winDraw3d", "math.cos", "PyDelFEM2.gl.AxisXYZ" ]
[((501, 522), 'numpy.zeros', 'numpy.zeros', (['(16, 32)'], {}), '((16, 32))\n', (512, 522), False, 'import numpy, math\n'), ((655, 666), 'PyDelFEM2.Mesh', 'dfm2.Mesh', ([], {}), '()\n', (664, 666), True, 'import PyDelFEM2 as dfm2\n'), ((779, 798), 'PyDelFEM2.gl.AxisXYZ', 'dfm2.gl.AxisXYZ', (['(32)'], {}), '(32)\n', (794, 798), True, 'import PyDelFEM2 as dfm2\n'), ((822, 869), 'PyDelFEM2.gl.glfw.winDraw3d', 'dfm2.gl.glfw.winDraw3d', (['[msh, axis]', '(400, 400)'], {}), '([msh, axis], (400, 400))\n', (844, 869), True, 'import PyDelFEM2 as dfm2\n'), ((925, 965), 'PyDelFEM2.gl.glfw.winDraw3d', 'dfm2.gl.glfw.winDraw3d', (['[msh_edge, axis]'], {}), '([msh_edge, axis])\n', (947, 965), True, 'import PyDelFEM2 as dfm2\n'), ((991, 1002), 'PyDelFEM2.Mesh', 'dfm2.Mesh', ([], {}), '()\n', (1000, 1002), True, 'import PyDelFEM2 as dfm2\n'), ((1155, 1171), 'PyDelFEM2.VoxelGrid', 'dfm2.VoxelGrid', ([], {}), '()\n', (1169, 1171), True, 'import PyDelFEM2 as dfm2\n'), ((1308, 1342), 'PyDelFEM2.gl.glfw.winDraw3d', 'dfm2.gl.glfw.winDraw3d', (['[msh_edge]'], {}), '([msh_edge])\n', (1330, 1342), True, 'import PyDelFEM2 as dfm2\n'), ((1421, 1455), 'PyDelFEM2.gl.glfw.winDraw3d', 'dfm2.gl.glfw.winDraw3d', (['[msh_edge]'], {}), '([msh_edge])\n', (1443, 1455), True, 'import PyDelFEM2 as dfm2\n'), ((1482, 1493), 'PyDelFEM2.Mesh', 'dfm2.Mesh', ([], {}), '()\n', (1491, 1493), True, 'import PyDelFEM2 as dfm2\n'), ((1531, 1560), 'PyDelFEM2.gl.glfw.winDraw3d', 'dfm2.gl.glfw.winDraw3d', (['[msh]'], {}), '([msh])\n', (1553, 1560), True, 'import PyDelFEM2 as dfm2\n'), ((1593, 1622), 'PyDelFEM2.gl.glfw.winDraw3d', 'dfm2.gl.glfw.winDraw3d', (['[msh]'], {}), '([msh])\n', (1615, 1622), True, 'import PyDelFEM2 as dfm2\n'), ((1650, 1679), 'PyDelFEM2.gl.glfw.winDraw3d', 'dfm2.gl.glfw.winDraw3d', (['[msh]'], {}), '([msh])\n', (1672, 1679), True, 'import PyDelFEM2 as dfm2\n'), ((1703, 1732), 'PyDelFEM2.gl.glfw.winDraw3d', 'dfm2.gl.glfw.winDraw3d', (['[msh]'], {}), '([msh])\n', (1725, 1732), True, 'import PyDelFEM2 as dfm2\n'), ((1757, 1786), 'PyDelFEM2.gl.glfw.winDraw3d', 'dfm2.gl.glfw.winDraw3d', (['[msh]'], {}), '([msh])\n', (1779, 1786), True, 'import PyDelFEM2 as dfm2\n'), ((1814, 1825), 'PyDelFEM2.Mesh', 'dfm2.Mesh', ([], {}), '()\n', (1823, 1825), True, 'import PyDelFEM2 as dfm2\n'), ((1904, 1921), 'PyDelFEM2.gl.AxisXYZ', 'dfm2.gl.AxisXYZ', ([], {}), '()\n', (1919, 1921), True, 'import PyDelFEM2 as dfm2\n'), ((2006, 2023), 'PyDelFEM2.gl.AxisXYZ', 'dfm2.gl.AxisXYZ', ([], {}), '()\n', (2021, 2023), True, 'import PyDelFEM2 as dfm2\n'), ((2107, 2124), 'PyDelFEM2.gl.AxisXYZ', 'dfm2.gl.AxisXYZ', ([], {}), '()\n', (2122, 2124), True, 'import PyDelFEM2 as dfm2\n'), ((625, 643), 'math.cos', 'math.cos', (['(iy * 0.6)'], {}), '(iy * 0.6)\n', (633, 643), False, 'import numpy, math\n'), ((608, 626), 'math.sin', 'math.sin', (['(ix * 0.4)'], {}), '(ix * 0.4)\n', (616, 626), False, 'import numpy, math\n')]
import os import h5py import numpy as np def copy_file_struct(f, hmap, fo): """ Iteratively copy a HDF5 file structure to a new file Arguments: -f : File from which to copy [OPEN HDF5 file handle] -hmap : Current file object of interest to copy from -fo : File to copy structure to [OPEN HDF5 file handle] """ # First, see if object is a group if type(hmap) == h5py._hl.group.Group: name = hmap.name.encode("ascii") # Copy attributes associated with group atts = f[name].attrs.keys() if len(atts) > 0: group = fo.create_group(name) for v in atts: group.attrs[v] = f[name].attrs[v] # Now deal with subgroups and datasets for w in hmap: if type(f[name][w]) == h5py._hl.group.Group: atts = f[name][w].attrs.keys() if len(atts) > 0: group = fo.create_group("{0}/{1}".format(name, w)) for v in atts: group.attrs[v] = f[name][w].attrs[v] copy_file_struct(f, f[name][w], fo) elif type(f[name][w]) == h5py._hl.dataset.Dataset: tmp = np.zeros(f[name][w][:].shape, dtype=f[name][w][:].dtype) tmp[:] = f[name][w][:] dset = fo.create_dataset( "{0}/{1}".format(name.decode("utf-8"), w), data=tmp, dtype=f[name][w][:].dtype, ) del tmp atts = f[name][w].attrs.keys() if len(atts) > 0: for v in atts: dset.attrs[v] = f[name][w].attrs[v] # Otherwise deal with the dataset elif type(hmap) == h5py._hl.dataset.Dataset: name = hmap.name.encode("ascii") tmp = np.zeros(f[name][:].shape, dtype=f[name][:].dtype) tmp[:] = f[name][:] dset = fo.create_dataset(name.decode("utf-8"), data=tmp, dtype=f[name][:].dtype) atts = f[name].attrs.keys() if len(atts) > 0: for v in atts: dset.attrs[v] = f[name].attrs[v] del tmp return def merge_outputs(outputs): """ Merge all outputs from different processors into one file Arguments: -outputs : Search term for output files of interest [STRING] """ print(" > Merging {0}*".format(outputs), flush=True) # Find outputs of interest files = [] for y in os.listdir("output/"): if y.startswith(outputs): files.append("output/{0}".format(y)) files.sort() # Create output file flib = "output/{0}.hdf5".format(outputs) outf = h5py.File(flib, "w") # Loop over files of interest, iteratively copying data to consolidated output file for y in files: if y == flib: continue print(" -{0}".format(y), flush=True) f = h5py.File(y, "r") fk = sorted(f.keys()) for z in fk: print(" --> {0}".format(z), flush=True) copy_file_struct(f, f[z], outf) f.close() os.remove(y) outf.close() del files, flib return
[ "h5py.File", "numpy.zeros", "os.listdir", "os.remove" ]
[((2497, 2518), 'os.listdir', 'os.listdir', (['"""output/"""'], {}), "('output/')\n", (2507, 2518), False, 'import os\n'), ((2702, 2722), 'h5py.File', 'h5py.File', (['flib', '"""w"""'], {}), "(flib, 'w')\n", (2711, 2722), False, 'import h5py\n'), ((2933, 2950), 'h5py.File', 'h5py.File', (['y', '"""r"""'], {}), "(y, 'r')\n", (2942, 2950), False, 'import h5py\n'), ((3125, 3137), 'os.remove', 'os.remove', (['y'], {}), '(y)\n', (3134, 3137), False, 'import os\n'), ((1856, 1906), 'numpy.zeros', 'np.zeros', (['f[name][:].shape'], {'dtype': 'f[name][:].dtype'}), '(f[name][:].shape, dtype=f[name][:].dtype)\n', (1864, 1906), True, 'import numpy as np\n'), ((1218, 1274), 'numpy.zeros', 'np.zeros', (['f[name][w][:].shape'], {'dtype': 'f[name][w][:].dtype'}), '(f[name][w][:].shape, dtype=f[name][w][:].dtype)\n', (1226, 1274), True, 'import numpy as np\n')]
import numpy as np from ..orbit import calcNhat def test_calcNhat_normalized(): state_vectors = np.array([ [1.0, 0.0, 0.0, 0.0, 0.002, 0.000], [1.0, 0.0, 1.0, 0.0, 0.002, 0.000], [1.0, 0.0, 1.0, 0.0, 0.000, 0.002] ]) n_hat = calcNhat(state_vectors) n_hat_norm = np.linalg.norm(n_hat, axis=1) # Each vector should have magnitude of 1.0 np.testing.assert_equal(np.ones(len(n_hat)), n_hat_norm) return def test_calcNhat_orientation(): state_vectors = np.array([ [1.0, 0.0, 0.0, 0.0, 0.002, 0.000], [1.0, 0.0, 1.0, 0.0, 0.002, 0.000], [1.0, 0.0, 1.0, 0.0, 0.000, 0.002] ]) n_hat = calcNhat(state_vectors) # First orbit lies in the x-y plane and so should have a unit # vector normal equivalent to the z-axis np.testing.assert_equal(np.array([0., 0., 1.0]), n_hat[0]) # Second orbit lies in a plane inclined 45 degrees from the x-y plane, intersecting # the x-y plane along the y-axis. np.testing.assert_equal(np.array([-np.sqrt(2)/2, 0.0, np.sqrt(2)/2]), n_hat[1]) # Third orbit lies in a plane inclined 90 degrees from the x-y plane, intersecting # the x-y plane along the x-axis. np.testing.assert_equal(np.array([0.0, -1.0, 0]), n_hat[2]) return
[ "numpy.linalg.norm", "numpy.array", "numpy.sqrt" ]
[((102, 219), 'numpy.array', 'np.array', (['[[1.0, 0.0, 0.0, 0.0, 0.002, 0.0], [1.0, 0.0, 1.0, 0.0, 0.002, 0.0], [1.0, \n 0.0, 1.0, 0.0, 0.0, 0.002]]'], {}), '([[1.0, 0.0, 0.0, 0.0, 0.002, 0.0], [1.0, 0.0, 1.0, 0.0, 0.002, 0.0\n ], [1.0, 0.0, 1.0, 0.0, 0.0, 0.002]])\n', (110, 219), True, 'import numpy as np\n'), ((304, 333), 'numpy.linalg.norm', 'np.linalg.norm', (['n_hat'], {'axis': '(1)'}), '(n_hat, axis=1)\n', (318, 333), True, 'import numpy as np\n'), ((508, 625), 'numpy.array', 'np.array', (['[[1.0, 0.0, 0.0, 0.0, 0.002, 0.0], [1.0, 0.0, 1.0, 0.0, 0.002, 0.0], [1.0, \n 0.0, 1.0, 0.0, 0.0, 0.002]]'], {}), '([[1.0, 0.0, 0.0, 0.0, 0.002, 0.0], [1.0, 0.0, 1.0, 0.0, 0.002, 0.0\n ], [1.0, 0.0, 1.0, 0.0, 0.0, 0.002]])\n', (516, 625), True, 'import numpy as np\n'), ((833, 858), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 1.0])\n', (841, 858), True, 'import numpy as np\n'), ((1233, 1257), 'numpy.array', 'np.array', (['[0.0, -1.0, 0]'], {}), '([0.0, -1.0, 0])\n', (1241, 1257), True, 'import numpy as np\n'), ((1053, 1063), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (1060, 1063), True, 'import numpy as np\n'), ((1034, 1044), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (1041, 1044), True, 'import numpy as np\n')]
import numpy as np import os import copy import torch import random import utils as du from torch.utils.data import Dataset class SliceDataset(Dataset): def __init__(self, data_path, dataset='kits', task='tumor', series_index=None, train=True): super(SliceDataset, self).__init__() assert dataset in ['lits', 'kits'] assert task in ['organ', 'tumor'] self.load_path = data_path self.series_index = series_index self.task = task self.train = train self.dataset = dataset self.tumor_slices = np.load(os.path.join(data_path, '%s_%s_slices.npy' % (dataset, task))) def rotate(self, img, mask, k=None): if k is None: k = random.choice([0, 1, 2, 3]) img = np.rot90(img, k, (-2, -1)) mask = np.rot90(mask, k, (-2, -1)) return img, mask def flip(self, img, mask, flip=None): if flip is None: a, b = random.choice([1, -1]), random.choice([1, -1]) else: a, b = flip if img.ndim == 2: img = img[::a, ::b] elif img.ndim == 3: img = img[:, ::a, ::b] mask = mask[::a, ::b] return img, mask def __len__(self): return len(self.tumor_slices) def __getitem__(self, item): # Data loading f_name = self.tumor_slices[item] case = f_name.split('_')[0] npz = np.load(os.path.join(self.load_path, f_name), allow_pickle=True) ct = npz.get('ct') mask = npz.get('mask') # Preprocess if self.task == 'organ': mask[mask > 0] = 1 elif self.task == 'tumor': mask = mask >> 1 mask[mask > 0] = 1 if self.dataset == 'lits': ct = du.window_standardize(ct, -60, 140) elif self.dataset == 'kits': ct = du.window_standardize(ct, -200, 300) if self.train: ct, mask = self.flip(ct, mask) ct, mask = self.rotate(ct, mask) # one-hot img0 = copy.deepcopy(mask) img0 += 1 img0[img0 != 1] = 0 mask = np.stack((img0, mask), axis=0) mask[mask > 0] = 1 # To tensor & cut to 384 ct = torch.from_numpy(du.cut_384(ct.copy())).unsqueeze(0).float() mask = torch.from_numpy(du.cut_384(mask.copy())).float() return ct, mask, case
[ "numpy.stack", "copy.deepcopy", "utils.window_standardize", "random.choice", "numpy.rot90", "os.path.join" ]
[((761, 787), 'numpy.rot90', 'np.rot90', (['img', 'k', '(-2, -1)'], {}), '(img, k, (-2, -1))\n', (769, 787), True, 'import numpy as np\n'), ((803, 830), 'numpy.rot90', 'np.rot90', (['mask', 'k', '(-2, -1)'], {}), '(mask, k, (-2, -1))\n', (811, 830), True, 'import numpy as np\n'), ((2046, 2065), 'copy.deepcopy', 'copy.deepcopy', (['mask'], {}), '(mask)\n', (2059, 2065), False, 'import copy\n'), ((2127, 2157), 'numpy.stack', 'np.stack', (['(img0, mask)'], {'axis': '(0)'}), '((img0, mask), axis=0)\n', (2135, 2157), True, 'import numpy as np\n'), ((576, 637), 'os.path.join', 'os.path.join', (['data_path', "('%s_%s_slices.npy' % (dataset, task))"], {}), "(data_path, '%s_%s_slices.npy' % (dataset, task))\n", (588, 637), False, 'import os\n'), ((719, 746), 'random.choice', 'random.choice', (['[0, 1, 2, 3]'], {}), '([0, 1, 2, 3])\n', (732, 746), False, 'import random\n'), ((1424, 1460), 'os.path.join', 'os.path.join', (['self.load_path', 'f_name'], {}), '(self.load_path, f_name)\n', (1436, 1460), False, 'import os\n'), ((1773, 1808), 'utils.window_standardize', 'du.window_standardize', (['ct', '(-60)', '(140)'], {}), '(ct, -60, 140)\n', (1794, 1808), True, 'import utils as du\n'), ((944, 966), 'random.choice', 'random.choice', (['[1, -1]'], {}), '([1, -1])\n', (957, 966), False, 'import random\n'), ((968, 990), 'random.choice', 'random.choice', (['[1, -1]'], {}), '([1, -1])\n', (981, 990), False, 'import random\n'), ((1863, 1899), 'utils.window_standardize', 'du.window_standardize', (['ct', '(-200)', '(300)'], {}), '(ct, -200, 300)\n', (1884, 1899), True, 'import utils as du\n')]
from PyAstronomy.pyaC import pyaErrors as PE from PyAstronomy.pyaC import invertIndexSelection import numpy as np def intep(x, y, xinter, boundsError=True, fillValue=None): """ The INTEP interpolation algorithm The INTEP interpolation algorithm is described by Hill 1982, PDAO 16, 67 ("Intep - an Effective Interpolation Subroutine"). The implementation at hand is based on the FORTRAN code stated therein. The aim of the algorithm is to imitate the curve "an experienced scientist" would draw through a given set of points. Parameters ---------- x : array Independent values. y : array Dependent values. xinter : array Values at which to interpolate the tabulated data given by `x` and `y`. boundsError : boolean, optional If True, an exception will be raised if values need to be extrapolated beyond the limits of the given tabulated data. Values beyond the limits are simply replaced with the closest valid value available, which might not be a good approximation. Set this flag to False suppress the exception. fillValue : float, optional If given (i.e., not None), this value will be used to represent values outside of the given bounds. Note that `boundsError` must be set False for this to have an effect. For instance, use np.NaN. Returns ------- Interpolated values : array Interpolated values at the locations specified by `xinter`. """ # Check whether x-array is sorted if not np.all((x[1:] - x[0:-1]) > 0.0): raise(PE.PyAValError("The array of independent values (`x`) is not sorted in (strictly) " + \ "ascending order, but it needs to be.", \ solution=["Sort the arrays `x` (and `y` accordingly), e.g., using numpy.argsort.", \ "Check whether there are duplicate values in `x`."])) # Create result array result = np.zeros(len(xinter)) # Treat extrapolation points ilow = np.where(xinter < min(x))[0] if fillValue is None: # Use first point beyond limit result[ilow] = y[0] else: result[ilow] = fillValue iup = np.where(xinter > max(x))[0] if fillValue is None: # Use last point beyond limit result[iup] = y[-1] else: result[iup] = fillValue # No extrapolation (noepo) noepo = invertIndexSelection(xinter, np.concatenate((ilow, iup))) if (len(noepo) < len(xinter)) and boundsError: raise(PE.PyAValError("There are " + str(len(xinter) - len(noepo)) + " points, which need to be extrapolated. " + \ "Attention: Extrapolation is simply done by using the closest valid value.", \ solution=["Use only interpolation points (`xinter`) within the valid range.", "Set the `boundsError` flag to False (will suppress this exception)."])) # Loop over all indices of xinter, which were # not already subject to extrapolation. for i in noepo: xp = xinter[i] # Index of the first entry in x larger (or equal) than # `val` infl = np.where(x >= xp)[0][0] infl -= 1 lp1 = 1.0/(x[infl] - x[infl+1]) lp2 = -lp1 if infl <= 0: # Special treatment for first point fp1 = (y[1] -y[0]) / (x[1] - x[0]) else: fp1 = (y[infl+1] - y[infl-1]) / (x[infl+1] - x[infl-1]) if infl >= (len(x) - 2): # Special treatment for last points fp2 = (y[-1] - y[-2]) / (x[-1] - x[-2]) else: fp2 = (y[infl+2] - y[infl]) / (x[infl+2] - x[infl]) xpi1 = xp - x[infl+1] xpi = xp - x[infl] l1 = xpi1 * lp1 l2 = xpi * lp2 result[i] = y[infl]*(1. - 2.*lp1*xpi)*l1**2 + \ y[infl+1]*(1. - 2.*lp2*xpi1)*l2**2 + \ fp2*xpi1*l2**2 + fp1*xpi*l1**2 return result
[ "numpy.where", "PyAstronomy.pyaC.pyaErrors.PyAValError", "numpy.concatenate", "numpy.all" ]
[((1638, 1667), 'numpy.all', 'np.all', (['(x[1:] - x[0:-1] > 0.0)'], {}), '(x[1:] - x[0:-1] > 0.0)\n', (1644, 1667), True, 'import numpy as np\n'), ((1681, 1960), 'PyAstronomy.pyaC.pyaErrors.PyAValError', 'PE.PyAValError', (["('The array of independent values (`x`) is not sorted in (strictly) ' +\n 'ascending order, but it needs to be.')"], {'solution': "['Sort the arrays `x` (and `y` accordingly), e.g., using numpy.argsort.',\n 'Check whether there are duplicate values in `x`.']"}), "(\n 'The array of independent values (`x`) is not sorted in (strictly) ' +\n 'ascending order, but it needs to be.', solution=[\n 'Sort the arrays `x` (and `y` accordingly), e.g., using numpy.argsort.',\n 'Check whether there are duplicate values in `x`.'])\n", (1695, 1960), True, 'from PyAstronomy.pyaC import pyaErrors as PE\n'), ((2480, 2507), 'numpy.concatenate', 'np.concatenate', (['(ilow, iup)'], {}), '((ilow, iup))\n', (2494, 2507), True, 'import numpy as np\n'), ((3162, 3179), 'numpy.where', 'np.where', (['(x >= xp)'], {}), '(x >= xp)\n', (3170, 3179), True, 'import numpy as np\n')]
import numpy as np import math var = 2 n_eq = 3 n_un = 2 weights = np.array([[2, 3], [3, -5]]) outputs = np.array([4, 7]) def eqnfit(chromosome, weights, outputs): ''' Equation 1: ''' print(weights.shape) print(outputs.shape) output_model = np.dot(weights, np.array(chromosome)) print(output_model) error = np.sum(np.power(output_model - outputs, 2)) if error == 0: error = 1 return 1 / error def value(chromosome, weights): return np.dot(weights, np.array(chromosome))
[ "numpy.power", "numpy.array" ]
[((70, 97), 'numpy.array', 'np.array', (['[[2, 3], [3, -5]]'], {}), '([[2, 3], [3, -5]])\n', (78, 97), True, 'import numpy as np\n'), ((108, 124), 'numpy.array', 'np.array', (['[4, 7]'], {}), '([4, 7])\n', (116, 124), True, 'import numpy as np\n'), ((288, 308), 'numpy.array', 'np.array', (['chromosome'], {}), '(chromosome)\n', (296, 308), True, 'import numpy as np\n'), ((354, 389), 'numpy.power', 'np.power', (['(output_model - outputs)', '(2)'], {}), '(output_model - outputs, 2)\n', (362, 389), True, 'import numpy as np\n'), ((513, 533), 'numpy.array', 'np.array', (['chromosome'], {}), '(chromosome)\n', (521, 533), True, 'import numpy as np\n')]
# Copyright (c) 2021 Graphcore Ltd. All rights reserved. import popart import pytest import numpy as np # `import test_util` requires adding to sys.path import sys from pathlib import Path sys.path.append(str(Path(__file__).resolve().parent.parent)) import test_util as tu @tu.requires_ipu_model def test_2_restores_for_1_stash(): """ The model: IPU0, PS0 w0 ---. IPU1, PS1 IPU0, PS2 IPU0, PS2 in0 --- Matmul --- x0 -- Sqrt --- x1 -- Add -- x2 -- IdLoss -- out \ / ---------------------------------- \ Transpose (for MatmulGrad) -- ... IPU0, PS4 Important feature: in0 is consumed by three ops on the same VirtualGraph, but all on different PipelineStages. The pipeline transform handles this by adding two Restore ops. """ np.random.seed(2) bps = 5 dshape = [1, 4, 4] in0_data = np.random.rand(bps, *dshape).astype(np.float32) w0_data = np.random.rand(*dshape).astype(np.float32) def runModel(pipeline, recompute): builder = popart.Builder() in0 = builder.addInputTensor("FLOAT", dshape) w0 = builder.addInitializedInputTensor(w0_data) with builder.virtualGraph(0), builder.pipelineStage(0): x = builder.aiOnnx.matmul([in0, w0]) with builder.virtualGraph(1), builder.pipelineStage(1): x = builder.aiOnnx.sqrt([x]) with builder.virtualGraph(0), builder.pipelineStage(2): x = builder.aiOnnx.add([in0, x]) loss = builder.aiGraphcore.identityloss([x]) opts = popart.SessionOptions() opts.virtualGraphMode = popart.VirtualGraphMode.Manual opts.enablePipelining = pipeline opts.enableGradientAccumulation = True opts.accumulationFactor = bps if recompute == True: opts.autoRecomputation = popart.RecomputationType.Pipeline session = popart.TrainingSession( deviceInfo=tu.create_test_device(numIpus=2), dataFlow=popart.DataFlow(1, [loss, w0], popart.AnchorReturnType("Final")), fnModel=builder.getModelProto(), loss=loss, optimizer=popart.ConstSGD(0.1), userOptions=opts) session.prepareDevice() session.weightsFromHost() anchors = session.initAnchorArrays() stepio = popart.PyStepIO({in0: in0_data}, anchors) session.run(stepio) return anchors[w0] ref_weights = runModel(pipeline=False, recompute=False) pipelined_weights = runModel(pipeline=True, recompute=False) pipelined_recomp_weights = runModel(pipeline=True, recompute=True) print("Ref :", ref_weights) print("Pipelined :", pipelined_weights) print("Pipelined, recomp:", pipelined_recomp_weights) # Verify that the final weights are the same for pipelined vs non-pipelined assert np.allclose(ref_weights, pipelined_weights) assert np.allclose(ref_weights, pipelined_recomp_weights) @tu.requires_ipu_model def test_2_restores_for_1_stash_not_supported_with_recomp(): """ The model: IPU0, PS0 IPU0, PS0 w0 ---. IPU1, PS1 IPU0, PS2 IPU0, PS2 in0 -- Nop - x0 - Matmul --- x0 -- Sqrt --- x1 -- Add -- x2 -- IdLoss -- out \ / --------------------------------- \ Transpose (for MatmulGrad) -- ... IPU0, PS4 As in the above test except that there is now an Op (Nop) between in0 and x0 - the tensor that is by Ops on three different PipelineStages. When in popart.RecomputationType.Pipeline mode, in0 is still the stashed tensor. But in order to compute x0's consumers, we would require two recompute fragments: - Restore in0 in PS2, recompute x0 for Add's consumption - Restore in0 in PS4, recompute x0 Transpose's consumption Supporting recomputation of a tenosr in >1 fragment is to do in T30014. For now we raise an exception """ bps = 5 dshape = [1, 4, 4] w0_data = np.random.rand(*dshape).astype(np.float32) builder = popart.Builder() in0 = builder.addInputTensor("FLOAT", dshape) w0 = builder.addInitializedInputTensor(w0_data) with builder.virtualGraph(0), builder.pipelineStage(0): in0 = builder.aiGraphcore.nop([in0]) x = builder.aiOnnx.matmul([in0, w0]) with builder.virtualGraph(1), builder.pipelineStage(1): x = builder.aiOnnx.sqrt([x]) with builder.virtualGraph(0), builder.pipelineStage(2): x = builder.aiOnnx.add([in0, x]) loss = builder.aiGraphcore.identityloss([x]) opts = popart.SessionOptions() opts.virtualGraphMode = popart.VirtualGraphMode.Manual opts.enablePipelining = True opts.autoRecomputation = popart.RecomputationType.Pipeline with pytest.raises(popart.popart_exception) as e_info: session = popart.TrainingSession( deviceInfo=tu.create_test_device(numIpus=2), dataFlow=popart.DataFlow(bps, [loss, w0], popart.AnchorReturnType("Final")), fnModel=builder.getModelProto(), loss=loss, optimizer=popart.ConstSGD(0.1), userOptions=opts) assert e_info.value.args[0].find( "To-stash Tensor '" + in0 + "' must be restored for recomputation of a descendent that is not a direct consumer on more than 1 PipelineStage, but this is currently not supported" )
[ "popart.ConstSGD", "numpy.random.seed", "numpy.allclose", "popart.Builder", "popart.AnchorReturnType", "pytest.raises", "test_util.create_test_device", "pathlib.Path", "popart.PyStepIO", "numpy.random.rand", "popart.SessionOptions" ]
[((887, 904), 'numpy.random.seed', 'np.random.seed', (['(2)'], {}), '(2)\n', (901, 904), True, 'import numpy as np\n'), ((2993, 3036), 'numpy.allclose', 'np.allclose', (['ref_weights', 'pipelined_weights'], {}), '(ref_weights, pipelined_weights)\n', (3004, 3036), True, 'import numpy as np\n'), ((3048, 3098), 'numpy.allclose', 'np.allclose', (['ref_weights', 'pipelined_recomp_weights'], {}), '(ref_weights, pipelined_recomp_weights)\n', (3059, 3098), True, 'import numpy as np\n'), ((4303, 4319), 'popart.Builder', 'popart.Builder', ([], {}), '()\n', (4317, 4319), False, 'import popart\n'), ((4835, 4858), 'popart.SessionOptions', 'popart.SessionOptions', ([], {}), '()\n', (4856, 4858), False, 'import popart\n'), ((1118, 1134), 'popart.Builder', 'popart.Builder', ([], {}), '()\n', (1132, 1134), False, 'import popart\n'), ((1645, 1668), 'popart.SessionOptions', 'popart.SessionOptions', ([], {}), '()\n', (1666, 1668), False, 'import popart\n'), ((2454, 2495), 'popart.PyStepIO', 'popart.PyStepIO', (['{in0: in0_data}', 'anchors'], {}), '({in0: in0_data}, anchors)\n', (2469, 2495), False, 'import popart\n'), ((5024, 5062), 'pytest.raises', 'pytest.raises', (['popart.popart_exception'], {}), '(popart.popart_exception)\n', (5037, 5062), False, 'import pytest\n'), ((955, 983), 'numpy.random.rand', 'np.random.rand', (['bps', '*dshape'], {}), '(bps, *dshape)\n', (969, 983), True, 'import numpy as np\n'), ((1017, 1040), 'numpy.random.rand', 'np.random.rand', (['*dshape'], {}), '(*dshape)\n', (1031, 1040), True, 'import numpy as np\n'), ((4245, 4268), 'numpy.random.rand', 'np.random.rand', (['*dshape'], {}), '(*dshape)\n', (4259, 4268), True, 'import numpy as np\n'), ((2025, 2057), 'test_util.create_test_device', 'tu.create_test_device', ([], {'numIpus': '(2)'}), '(numIpus=2)\n', (2046, 2057), True, 'import test_util as tu\n'), ((2273, 2293), 'popart.ConstSGD', 'popart.ConstSGD', (['(0.1)'], {}), '(0.1)\n', (2288, 2293), False, 'import popart\n'), ((5139, 5171), 'test_util.create_test_device', 'tu.create_test_device', ([], {'numIpus': '(2)'}), '(numIpus=2)\n', (5160, 5171), True, 'import test_util as tu\n'), ((5389, 5409), 'popart.ConstSGD', 'popart.ConstSGD', (['(0.1)'], {}), '(0.1)\n', (5404, 5409), False, 'import popart\n'), ((2148, 2180), 'popart.AnchorReturnType', 'popart.AnchorReturnType', (['"""Final"""'], {}), "('Final')\n", (2171, 2180), False, 'import popart\n'), ((5264, 5296), 'popart.AnchorReturnType', 'popart.AnchorReturnType', (['"""Final"""'], {}), "('Final')\n", (5287, 5296), False, 'import popart\n'), ((210, 224), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (214, 224), False, 'from pathlib import Path\n')]
""" Module for guiding Arc/Sky line tracing .. _numpy.ndarray: https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html """ import os import copy import inspect import numpy as np from astropy.io import fits from pypeit import msgs from pypeit import masterframe from pypeit import ginga from pypeit.core import arc from pypeit.core import tracewave, pixels from pypeit.par import pypeitpar from pypeit.spectrographs.util import load_spectrograph class WaveTilts(masterframe.MasterFrame): """ Class to guide slit/order tracing Args: msarc (ndarray): Arc image tslits_dict (dict): dict from TraceSlits class (e.g. slitpix) spectrograph (:obj:`pypeit.spectrographs.spectrograph.Spectrograph`): Spectrograph object par (:class:`pypeit.par.pypeitpar.WaveTiltsPar`): The parameters used to fuss with the tilts wavepar (:class:`pypeit.par.pypeitpar.WaveSolutionPar`): The parameters used for the wavelength solution det (int): Detector index master_key (:obj:`str`, optional): The string identifier for the instrument configuration. See :class:`pypeit.masterframe.MasterFrame`. master_dir (:obj:`str`, optional): Path to master frames. reuse_masters (:obj:`bool`, optional): Load master files from disk, if possible. qa_path (:obj:`str`, optional): Directory for QA output. msbpm (`numpy.ndarray`_, optional): Bad pixel mask. If not provided, a dummy array with no masking is generated. Attributes: frametype : str Hard-coded to 'tilts' steps : list mask : ndarray, bool True = Ignore this slit all_trcdict : list of dict All trace dict's tilts : ndarray Tilts for a single slit/order all_ttilts : list of tuples Tuple of tilts ndarray's final_tilts : ndarray Final tilts image """ # Frametype is a class attribute master_type = 'Tilts' def __init__(self, msarc, tslits_dict, spectrograph, par, wavepar, det=1, master_key=None, master_dir=None, reuse_masters=False, qa_path=None, msbpm=None): self.spectrograph = spectrograph self.par = par self.wavepar = wavepar # MasterFrame masterframe.MasterFrame.__init__(self, self.master_type, master_dir=master_dir, master_key=master_key, reuse_masters=reuse_masters) self.msarc = msarc self.tslits_dict = tslits_dict self.msbpm = msbpm self.det = det self.qa_path = qa_path # -------------------------------------------------------------- # TODO: Build another base class that does these things for both # WaveTilts and WaveCalib? # Get the non-linear count level self.nonlinear_counts = 1e10 if self.spectrograph is None \ else self.spectrograph.nonlinear_counts(det=self.det) # Set the slitmask and slit boundary related attributes that the # code needs for execution. This also deals with arcimages that # have a different binning then the trace images used to defined # the slits if self.tslits_dict is not None and self.msarc is not None: self.slitmask_science = pixels.tslits2mask(self.tslits_dict) inmask = (self.msbpm == 0) if self.msbpm is not None \ else np.ones_like(self.slitmask_science, dtype=bool) self.shape_science = self.slitmask_science.shape self.shape_arc = self.msarc.shape self.nslits = self.tslits_dict['slit_left'].shape[1] self.slit_left = arc.resize_slits2arc(self.shape_arc, self.shape_science, self.tslits_dict['slit_left']) self.slit_righ = arc.resize_slits2arc(self.shape_arc, self.shape_science, self.tslits_dict['slit_righ']) self.slitcen = arc.resize_slits2arc(self.shape_arc, self.shape_science, self.tslits_dict['slitcen']) self.slitmask = arc.resize_mask2arc(self.shape_arc, self.slitmask_science) self.inmask = (arc.resize_mask2arc(self.shape_arc, inmask)) & (self.msarc < self.nonlinear_counts) else: self.slitmask_science = None self.shape_science = None self.shape_arc = None self.nslits = 0 self.slit_left = None self.slit_righ = None self.slitcen = None self.slitmask = None self.inmask = None # -------------------------------------------------------------- # Key Internals self.mask = None self.all_trace_dict = [None]*self.nslits self.tilts = None # 2D fits are stored as a dictionary rather than list because we will jsonify the dict self.all_fit_dict = [None]*self.nslits self.steps = [] # Main outputs self.final_tilts = None self.fit_dict = None self.trace_dict = None def extract_arcs(self, slitcen, slitmask, msarc, inmask): """ Extract the arcs down each slit/order Wrapper to arc.get_censpec() Args: slitcen (ndarray): Image for tracing slitmask (ndarray): msarc (ndarray): inmask (ndarray): Returns: ndarray, ndarray: Extracted arcs """ arccen, arc_maskslit = arc.get_censpec(slitcen, slitmask, msarc, inmask=inmask, nonlinear_counts=self.nonlinear_counts) # Step self.steps.append(inspect.stack()[0][3]) return arccen, arc_maskslit def find_lines(self, arcspec, slit_cen, slit, debug=False): """ Find the lines for tracing Wrapper to tracewave.tilts_find_lines() Args: arcspec: slit_cen: slit (int): debug: Returns: ndarray, ndarray: Spectral, spatial positions of lines to trace """ if self.par['idsonly'] is not None: # Put in some hook here for getting the lines out of the # wave calib for i.e. LRIS ghosts. only_these_lines = None pass else: only_these_lines = None tracethresh = self._parse_param(self.par, 'tracethresh', slit) lines_spec, lines_spat \ = tracewave.tilts_find_lines(arcspec, slit_cen, tracethresh=tracethresh, sig_neigh=self.par['sig_neigh'], nfwhm_neigh=self.par['nfwhm_neigh'], only_these_lines=only_these_lines, fwhm=self.wavepar['fwhm'], nonlinear_counts=self.nonlinear_counts, debug_peaks=False, debug_lines=debug) self.steps.append(inspect.stack()[0][3]) return lines_spec, lines_spat def fit_tilts(self, trc_tilt_dict, thismask, slit_cen, spat_order, spec_order, slit, show_QA=False, doqa=True, debug=False): """ Fit the tilts Args: trc_tilt_dict (dict): Contains information from tilt tracing slit_cen (ndarray): (nspec,) Central trace for this slit spat_order (int): Order of the 2d polynomial fit for the spatial direction spec_order (int): Order of the 2d polytnomial fit for the spectral direction slit (int): integer index for the slit in question Optional Args: show_QA: bool, default = False show the QA instead of writing it out to the outfile doqa: bool, default = True Construct the QA plot debug: bool, default = False Show additional plots useful for debugging. Returns: (tilts, coeffs) tilts: ndarray (nspec, nspat) tilts image coeff: ndarray (spat_order + 1, spec_order+1) Array containing the coefficients for the 2d legendre polynomial fit """ # Now perform a fit to the tilts tilt_fit_dict, trc_tilt_dict_out \ = tracewave.fit_tilts(trc_tilt_dict, thismask, slit_cen, spat_order=spat_order, spec_order=spec_order,maxdev=self.par['maxdev2d'], sigrej=self.par['sigrej2d'], func2d=self.par['func2d'], doqa=doqa, master_key=self.master_key, slit=slit, show_QA=show_QA, out_dir=self.qa_path, debug=debug) # Evaluate the fit #tilts = tracewave.fit2tilts((tilt_fit_dict['nspec'], tilt_fit_dict['nspat']), slit_cen, # tilt_fit_dict['coeff2'], tilt_fit_dict['func']) # Populate the fit dict, and update the all_trace_dict self.all_fit_dict[slit] = copy.deepcopy(tilt_fit_dict) self.all_trace_dict[slit] = copy.deepcopy(trc_tilt_dict_out) self.steps.append(inspect.stack()[0][3]) return tilt_fit_dict['coeff2'] def trace_tilts(self, arcimg, lines_spec, lines_spat, thismask, slit_cen): """ Trace the tilts Args: arcimg (`numpy.ndarray`_): Arc image. Shape is (nspec, nspat). lines_spec (`numpy.ndarray`_): Array containing the spectral pixel location of each line found for this slit. Shape is (nlines,). lines_spat (`numpy.ndarray`_): Array containing the spatial pixel location of each line, which is the slitcen evaluate at the spectral position position of the line stored in lines_spec. Shape is (nlines,). thismask (`numpy.ndarray`_): Image indicating which pixels lie on the slit in equation. True = on the slit. False = not on slit. Shape is (nspec, nspat) with dtype=bool. slit_cen (:obj:`int`): Integer index indicating the slit in question. Returns: dict: Dictionary containing information on the traced tilts required to fit the filts. """ trace_dict = tracewave.trace_tilts(arcimg, lines_spec, lines_spat, thismask, slit_cen, inmask=self.inmask, fwhm=self.wavepar['fwhm'], spat_order=self.par['spat_order'], maxdev_tracefit=self.par['maxdev_tracefit'], sigrej_trace=self.par['sigrej_trace']) # Return self.steps.append(inspect.stack()[0][3]) return trace_dict def run(self, maskslits=None, doqa=True, debug=False, show=False): """ Main driver for tracing arc lines Code flow:: 1. Extract an arc spectrum down the center of each slit/order 2. Loop on slits/orders i. Trace and fit the arc lines (This is done twice, once with trace_crude as the tracing crutch, then again with a PCA model fit as the crutch). ii. Repeat trace. iii. 2D Fit to the offset from slitcen iv. Save Keyword Args: maskslits (`numpy.ndarray`_, optional): Boolean array to ignore slits. doqa (bool): debug (bool): show (bool): Returns: dict, ndarray: Tilts dict and maskslits array """ if maskslits is None: maskslits = np.zeros(self.nslits, dtype=bool) # Extract the arc spectra for all slits self.arccen, self.arc_maskslit = self.extract_arcs(self.slitcen, self.slitmask, self.msarc, self.inmask) # maskslit self.mask = maskslits & (self.arc_maskslit==1) gdslits = np.where(np.invert(self.mask))[0] # Final tilts image self.final_tilts = np.zeros(self.shape_science,dtype=float) max_spat_dim = (np.asarray(self.par['spat_order']) + 1).max() max_spec_dim = (np.asarray(self.par['spec_order']) + 1).max() self.coeffs = np.zeros((max_spec_dim, max_spat_dim,self.nslits)) self.spat_order = np.zeros(self.nslits, dtype=int) self.spec_order = np.zeros(self.nslits, dtype=int) # TODO sort out show methods for debugging #if show: # viewer,ch = ginga.show_image(self.msarc*(self.slitmask > -1),chname='tilts') # Loop on all slits for slit in gdslits: msgs.info('Computing tilts for slit {:d}/{:d}'.format(slit,self.nslits-1)) # Identify lines for tracing tilts msgs.info('Finding lines for tilt analysis') self.lines_spec, self.lines_spat = self.find_lines(self.arccen[:,slit], self.slitcen[:,slit], slit, debug=debug) if self.lines_spec is None: self.mask[slit] = True maskslits[slit] = True continue thismask = self.slitmask == slit # Trace msgs.info('Trace the tilts') self.trace_dict = self.trace_tilts(self.msarc, self.lines_spec, self.lines_spat, thismask, self.slitcen[:,slit]) #if show: # ginga.show_tilts(viewer, ch, self.trace_dict) self.spat_order[slit] = self._parse_param(self.par, 'spat_order', slit) self.spec_order[slit] = self._parse_param(self.par, 'spec_order', slit) # 2D model of the tilts, includes construction of QA coeff_out = self.fit_tilts(self.trace_dict, thismask, self.slitcen[:,slit], self.spat_order[slit], self.spec_order[slit], slit, doqa=doqa, show_QA=show, debug=show) self.coeffs[0:self.spec_order[slit]+1, 0:self.spat_order[slit]+1 , slit] = coeff_out # Tilts are created with the size of the original slitmask, # which corresonds to the same binning as the science # images, trace images, and pixelflats etc. self.tilts = tracewave.fit2tilts(self.slitmask_science.shape, coeff_out, self.par['func2d']) # Save to final image thismask_science = self.slitmask_science == slit self.final_tilts[thismask_science] = self.tilts[thismask_science] self.tilts_dict = {'tilts':self.final_tilts, 'coeffs':self.coeffs, 'slitcen':self.slitcen, 'func2d':self.par['func2d'], 'nslit':self.nslits, 'spat_order':self.spat_order, 'spec_order':self.spec_order} return self.tilts_dict, maskslits def save(self, outfile=None, overwrite=True): """ Save the wavelength tilts data to a master frame Args: outfile (:obj:`str`, optional): Name for the output file. Defaults to :attr:`file_path`. overwrite (:obj:`bool`, optional): Overwrite any existing file. """ _outfile = self.file_path if outfile is None else outfile # Check if it exists if os.path.exists(_outfile) and not overwrite: msgs.warn('Master file exists: {0}'.format(_outfile) + msgs.newline() + 'Set overwrite=True to overwrite it.') return # Log msgs.info('Saving master frame to {0}'.format(_outfile)) # Build the header hdr = fits.Header() # - Set the master frame type hdr['FRAMETYP'] = (self.master_type, 'PypeIt: Master calibration frame type') # - List the completed steps hdr['STEPS'] = (','.join(self.steps), 'Completed reduction steps') # - Tilts metadata hdr['FUNC2D'] = self.tilts_dict['func2d'] hdr['NSLIT'] = self.tilts_dict['nslit'] # Write the fits file fits.HDUList([fits.PrimaryHDU(header=hdr), fits.ImageHDU(data=self.tilts_dict['tilts'], name='TILTS'), fits.ImageHDU(data=self.tilts_dict['coeffs'], name='COEFFS'), fits.ImageHDU(data=self.tilts_dict['slitcen'], name='SLITCEN'), fits.ImageHDU(data=self.tilts_dict['spat_order'], name='SPAT_ORDER'), fits.ImageHDU(data=self.tilts_dict['spec_order'], name='SPEC_ORDER') ]).writeto(_outfile, overwrite=True) def load(self, ifile=None, return_header=False): """ Load the tilts data. This is largely a wrapper for :func:`pypeit.wavetilts.WaveTilts.load_from_file`. Args: ifile (:obj:`str`, optional): Name of the master frame file. Defaults to :attr:`file_path`. return_header (:obj:`bool`, optional): Return the header. Returns: Returns the tilts dictionary. If return_header is true, the primary header is also returned. If nothing is loaded, either because :attr:`reuse_masters` is `False` or the file does not exist, everything is returned as None (one per expected return object). """ # Format the input and set the tuple for an empty return _ifile = self.file_path if ifile is None else ifile empty_return = (None, None) if return_header else None if not self.reuse_masters: # User does not want to load masters msgs.warn('PypeIt will not reuse masters!') return empty_return if not os.path.isfile(_ifile): # Master file doesn't exist msgs.warn('No Master {0} frame found: {1}'.format(self.master_type, self.file_path)) return empty_return # Read and return msgs.info('Loading Master {0} frame: {1}'.format(self.master_type, _ifile)) return self.load_from_file(_ifile, return_header=return_header) @staticmethod def load_from_file(filename, return_header=False): """ Load the tilts data, without the benefit of the rest of the class. Args: ifile (:obj:`str`, optional): Name of the master frame file. Defaults to :attr:`file_path`. return_header (:obj:`bool`, optional): Return the header, which will include the TraceImage metadata if available. Returns: Returns the tilts dictionary. If return_header is true, the primary header is also returned. If nothing is loaded, either because :attr:`reuse_masters` is `False` or the file does not exist, everything is returned as None (one per expected return object). """ # Check it exists if not os.path.isfile(filename): msgs.error('File does not exist: {0}'.format(filename)) # Open the file hdu = fits.open(filename) # Metadata tilts_dict = {} keys = ['func2d', 'nslit'] for k in keys: tilts_dict[k] = hdu[0].header[k.upper()] # Data extensions keys = ['tilts', 'coeffs', 'slitcen', 'spat_order', 'spec_order'] for k in keys: tilts_dict[k] = hdu[k.upper()].data return (tilts_dict, hdu[0].header) if return_header else tilts_dict def _parse_param(self, par, key, slit): """ Grab a parameter for a given slit Args: par (ParSet): key (str): slit (int): Returns: object: Value of the parameter """ param_in = par[key] if isinstance(param_in, (float, int)): param = param_in elif isinstance(param_in, (list, np.ndarray)): param = param_in[slit] else: raise ValueError('Invalid input for parameter {:s}'.format(key)) return param def show(self, attr, slit=None, display='ginga', cname=None): """ Display an image or spectrum in TraceSlits Parameters ---------- attr : str 'fweight' -- Show the msarc image and the tilts traced by fweight 'model' -- Show the msarc image and the poylynomial model fits to the individual arc lines that were traced by fweight. 'arcmodel -- This illustrates the global final 2-d model fit to the indivdiaul models of each traced fweight arc line tilts evaluated at the location of the specific arclines that wered use for the fit. 'final_tilts' -- Show the final 2-d tilt model for all the slits that were fit. slit : int, optional -- The slit to plot. This needs to be an integer between 1 and nslit display : str (optional) 'ginga' -- Display to an RC Ginga """ viewer, ch = ginga.show_image(self.arcimg*(self.slitmask == slit), chname='Tilts') ginga.show_tilts(viewer, ch, self.trace_dict, sedges=(self.tslits_dict['slit_left'][:,slit], self.tslits_dict['slit_righ'][:,slit]), points=True, clear_canvas=True) def __repr__(self): # Generate sets string txt = '<{:s}: '.format(self.__class__.__name__) if len(self.steps) > 0: txt+= ' steps: [' for step in self.steps: txt += '{:s}, '.format(step) txt = txt[:-2]+']' # Trim the trailing comma txt += '>' return txt
[ "numpy.invert", "astropy.io.fits.PrimaryHDU", "pypeit.core.tracewave.fit2tilts", "os.path.isfile", "astropy.io.fits.Header", "pypeit.msgs.warn", "pypeit.core.pixels.tslits2mask", "pypeit.core.arc.get_censpec", "pypeit.msgs.info", "astropy.io.fits.ImageHDU", "pypeit.core.arc.resize_mask2arc", "pypeit.core.tracewave.tilts_find_lines", "pypeit.ginga.show_image", "os.path.exists", "pypeit.core.tracewave.trace_tilts", "copy.deepcopy", "numpy.ones_like", "numpy.asarray", "pypeit.core.tracewave.fit_tilts", "astropy.io.fits.open", "pypeit.ginga.show_tilts", "pypeit.masterframe.MasterFrame.__init__", "numpy.zeros", "pypeit.msgs.newline", "inspect.stack", "pypeit.core.arc.resize_slits2arc" ]
[((2420, 2556), 'pypeit.masterframe.MasterFrame.__init__', 'masterframe.MasterFrame.__init__', (['self', 'self.master_type'], {'master_dir': 'master_dir', 'master_key': 'master_key', 'reuse_masters': 'reuse_masters'}), '(self, self.master_type, master_dir=\n master_dir, master_key=master_key, reuse_masters=reuse_masters)\n', (2452, 2556), False, 'from pypeit import masterframe\n'), ((5603, 5704), 'pypeit.core.arc.get_censpec', 'arc.get_censpec', (['slitcen', 'slitmask', 'msarc'], {'inmask': 'inmask', 'nonlinear_counts': 'self.nonlinear_counts'}), '(slitcen, slitmask, msarc, inmask=inmask, nonlinear_counts=\n self.nonlinear_counts)\n', (5618, 5704), False, 'from pypeit.core import arc\n'), ((6603, 6900), 'pypeit.core.tracewave.tilts_find_lines', 'tracewave.tilts_find_lines', (['arcspec', 'slit_cen'], {'tracethresh': 'tracethresh', 'sig_neigh': "self.par['sig_neigh']", 'nfwhm_neigh': "self.par['nfwhm_neigh']", 'only_these_lines': 'only_these_lines', 'fwhm': "self.wavepar['fwhm']", 'nonlinear_counts': 'self.nonlinear_counts', 'debug_peaks': '(False)', 'debug_lines': 'debug'}), "(arcspec, slit_cen, tracethresh=tracethresh,\n sig_neigh=self.par['sig_neigh'], nfwhm_neigh=self.par['nfwhm_neigh'],\n only_these_lines=only_these_lines, fwhm=self.wavepar['fwhm'],\n nonlinear_counts=self.nonlinear_counts, debug_peaks=False, debug_lines=\n debug)\n", (6629, 6900), False, 'from pypeit.core import tracewave, pixels\n'), ((8506, 8812), 'pypeit.core.tracewave.fit_tilts', 'tracewave.fit_tilts', (['trc_tilt_dict', 'thismask', 'slit_cen'], {'spat_order': 'spat_order', 'spec_order': 'spec_order', 'maxdev': "self.par['maxdev2d']", 'sigrej': "self.par['sigrej2d']", 'func2d': "self.par['func2d']", 'doqa': 'doqa', 'master_key': 'self.master_key', 'slit': 'slit', 'show_QA': 'show_QA', 'out_dir': 'self.qa_path', 'debug': 'debug'}), "(trc_tilt_dict, thismask, slit_cen, spat_order=\n spat_order, spec_order=spec_order, maxdev=self.par['maxdev2d'], sigrej=\n self.par['sigrej2d'], func2d=self.par['func2d'], doqa=doqa, master_key=\n self.master_key, slit=slit, show_QA=show_QA, out_dir=self.qa_path,\n debug=debug)\n", (8525, 8812), False, 'from pypeit.core import tracewave, pixels\n'), ((9253, 9281), 'copy.deepcopy', 'copy.deepcopy', (['tilt_fit_dict'], {}), '(tilt_fit_dict)\n', (9266, 9281), False, 'import copy\n'), ((9318, 9350), 'copy.deepcopy', 'copy.deepcopy', (['trc_tilt_dict_out'], {}), '(trc_tilt_dict_out)\n', (9331, 9350), False, 'import copy\n'), ((10595, 10847), 'pypeit.core.tracewave.trace_tilts', 'tracewave.trace_tilts', (['arcimg', 'lines_spec', 'lines_spat', 'thismask', 'slit_cen'], {'inmask': 'self.inmask', 'fwhm': "self.wavepar['fwhm']", 'spat_order': "self.par['spat_order']", 'maxdev_tracefit': "self.par['maxdev_tracefit']", 'sigrej_trace': "self.par['sigrej_trace']"}), "(arcimg, lines_spec, lines_spat, thismask, slit_cen,\n inmask=self.inmask, fwhm=self.wavepar['fwhm'], spat_order=self.par[\n 'spat_order'], maxdev_tracefit=self.par['maxdev_tracefit'],\n sigrej_trace=self.par['sigrej_trace'])\n", (10616, 10847), False, 'from pypeit.core import tracewave, pixels\n'), ((12454, 12495), 'numpy.zeros', 'np.zeros', (['self.shape_science'], {'dtype': 'float'}), '(self.shape_science, dtype=float)\n', (12462, 12495), True, 'import numpy as np\n'), ((12657, 12708), 'numpy.zeros', 'np.zeros', (['(max_spec_dim, max_spat_dim, self.nslits)'], {}), '((max_spec_dim, max_spat_dim, self.nslits))\n', (12665, 12708), True, 'import numpy as np\n'), ((12734, 12766), 'numpy.zeros', 'np.zeros', (['self.nslits'], {'dtype': 'int'}), '(self.nslits, dtype=int)\n', (12742, 12766), True, 'import numpy as np\n'), ((12793, 12825), 'numpy.zeros', 'np.zeros', (['self.nslits'], {'dtype': 'int'}), '(self.nslits, dtype=int)\n', (12801, 12825), True, 'import numpy as np\n'), ((16086, 16099), 'astropy.io.fits.Header', 'fits.Header', ([], {}), '()\n', (16097, 16099), False, 'from astropy.io import fits\n'), ((19568, 19587), 'astropy.io.fits.open', 'fits.open', (['filename'], {}), '(filename)\n', (19577, 19587), False, 'from astropy.io import fits\n'), ((21534, 21605), 'pypeit.ginga.show_image', 'ginga.show_image', (['(self.arcimg * (self.slitmask == slit))'], {'chname': '"""Tilts"""'}), "(self.arcimg * (self.slitmask == slit), chname='Tilts')\n", (21550, 21605), False, 'from pypeit import ginga\n'), ((21612, 21788), 'pypeit.ginga.show_tilts', 'ginga.show_tilts', (['viewer', 'ch', 'self.trace_dict'], {'sedges': "(self.tslits_dict['slit_left'][:, slit], self.tslits_dict['slit_righ'][:, slit]\n )", 'points': '(True)', 'clear_canvas': '(True)'}), "(viewer, ch, self.trace_dict, sedges=(self.tslits_dict[\n 'slit_left'][:, slit], self.tslits_dict['slit_righ'][:, slit]), points=\n True, clear_canvas=True)\n", (21628, 21788), False, 'from pypeit import ginga\n'), ((3466, 3502), 'pypeit.core.pixels.tslits2mask', 'pixels.tslits2mask', (['self.tslits_dict'], {}), '(self.tslits_dict)\n', (3484, 3502), False, 'from pypeit.core import tracewave, pixels\n'), ((3864, 3956), 'pypeit.core.arc.resize_slits2arc', 'arc.resize_slits2arc', (['self.shape_arc', 'self.shape_science', "self.tslits_dict['slit_left']"], {}), "(self.shape_arc, self.shape_science, self.tslits_dict[\n 'slit_left'])\n", (3884, 3956), False, 'from pypeit.core import arc\n'), ((3981, 4073), 'pypeit.core.arc.resize_slits2arc', 'arc.resize_slits2arc', (['self.shape_arc', 'self.shape_science', "self.tslits_dict['slit_righ']"], {}), "(self.shape_arc, self.shape_science, self.tslits_dict[\n 'slit_righ'])\n", (4001, 4073), False, 'from pypeit.core import arc\n'), ((4098, 4188), 'pypeit.core.arc.resize_slits2arc', 'arc.resize_slits2arc', (['self.shape_arc', 'self.shape_science', "self.tslits_dict['slitcen']"], {}), "(self.shape_arc, self.shape_science, self.tslits_dict[\n 'slitcen'])\n", (4118, 4188), False, 'from pypeit.core import arc\n'), ((4213, 4271), 'pypeit.core.arc.resize_mask2arc', 'arc.resize_mask2arc', (['self.shape_arc', 'self.slitmask_science'], {}), '(self.shape_arc, self.slitmask_science)\n', (4232, 4271), False, 'from pypeit.core import arc\n'), ((12016, 12049), 'numpy.zeros', 'np.zeros', (['self.nslits'], {'dtype': 'bool'}), '(self.nslits, dtype=bool)\n', (12024, 12049), True, 'import numpy as np\n'), ((13190, 13234), 'pypeit.msgs.info', 'msgs.info', (['"""Finding lines for tilt analysis"""'], {}), "('Finding lines for tilt analysis')\n", (13199, 13234), False, 'from pypeit import msgs\n'), ((13581, 13609), 'pypeit.msgs.info', 'msgs.info', (['"""Trace the tilts"""'], {}), "('Trace the tilts')\n", (13590, 13609), False, 'from pypeit import msgs\n'), ((14673, 14752), 'pypeit.core.tracewave.fit2tilts', 'tracewave.fit2tilts', (['self.slitmask_science.shape', 'coeff_out', "self.par['func2d']"], {}), "(self.slitmask_science.shape, coeff_out, self.par['func2d'])\n", (14692, 14752), False, 'from pypeit.core import tracewave, pixels\n'), ((15756, 15780), 'os.path.exists', 'os.path.exists', (['_outfile'], {}), '(_outfile)\n', (15770, 15780), False, 'import os\n'), ((18099, 18142), 'pypeit.msgs.warn', 'msgs.warn', (['"""PypeIt will not reuse masters!"""'], {}), "('PypeIt will not reuse masters!')\n", (18108, 18142), False, 'from pypeit import msgs\n'), ((18191, 18213), 'os.path.isfile', 'os.path.isfile', (['_ifile'], {}), '(_ifile)\n', (18205, 18213), False, 'import os\n'), ((19436, 19460), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (19450, 19460), False, 'import os\n'), ((3615, 3662), 'numpy.ones_like', 'np.ones_like', (['self.slitmask_science'], {'dtype': 'bool'}), '(self.slitmask_science, dtype=bool)\n', (3627, 3662), True, 'import numpy as np\n'), ((4299, 4342), 'pypeit.core.arc.resize_mask2arc', 'arc.resize_mask2arc', (['self.shape_arc', 'inmask'], {}), '(self.shape_arc, inmask)\n', (4318, 4342), False, 'from pypeit.core import arc\n'), ((12373, 12393), 'numpy.invert', 'np.invert', (['self.mask'], {}), '(self.mask)\n', (12382, 12393), True, 'import numpy as np\n'), ((5788, 5803), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (5801, 5803), False, 'import inspect\n'), ((7181, 7196), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (7194, 7196), False, 'import inspect\n'), ((9378, 9393), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (9391, 9393), False, 'import inspect\n'), ((11051, 11066), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (11064, 11066), False, 'import inspect\n'), ((12519, 12553), 'numpy.asarray', 'np.asarray', (["self.par['spat_order']"], {}), "(self.par['spat_order'])\n", (12529, 12553), True, 'import numpy as np\n'), ((12589, 12623), 'numpy.asarray', 'np.asarray', (["self.par['spec_order']"], {}), "(self.par['spec_order'])\n", (12599, 12623), True, 'import numpy as np\n'), ((15867, 15881), 'pypeit.msgs.newline', 'msgs.newline', ([], {}), '()\n', (15879, 15881), False, 'from pypeit import msgs\n'), ((16521, 16548), 'astropy.io.fits.PrimaryHDU', 'fits.PrimaryHDU', ([], {'header': 'hdr'}), '(header=hdr)\n', (16536, 16548), False, 'from astropy.io import fits\n'), ((16572, 16630), 'astropy.io.fits.ImageHDU', 'fits.ImageHDU', ([], {'data': "self.tilts_dict['tilts']", 'name': '"""TILTS"""'}), "(data=self.tilts_dict['tilts'], name='TILTS')\n", (16585, 16630), False, 'from astropy.io import fits\n'), ((16654, 16714), 'astropy.io.fits.ImageHDU', 'fits.ImageHDU', ([], {'data': "self.tilts_dict['coeffs']", 'name': '"""COEFFS"""'}), "(data=self.tilts_dict['coeffs'], name='COEFFS')\n", (16667, 16714), False, 'from astropy.io import fits\n'), ((16738, 16800), 'astropy.io.fits.ImageHDU', 'fits.ImageHDU', ([], {'data': "self.tilts_dict['slitcen']", 'name': '"""SLITCEN"""'}), "(data=self.tilts_dict['slitcen'], name='SLITCEN')\n", (16751, 16800), False, 'from astropy.io import fits\n'), ((16824, 16892), 'astropy.io.fits.ImageHDU', 'fits.ImageHDU', ([], {'data': "self.tilts_dict['spat_order']", 'name': '"""SPAT_ORDER"""'}), "(data=self.tilts_dict['spat_order'], name='SPAT_ORDER')\n", (16837, 16892), False, 'from astropy.io import fits\n'), ((16916, 16984), 'astropy.io.fits.ImageHDU', 'fits.ImageHDU', ([], {'data': "self.tilts_dict['spec_order']", 'name': '"""SPEC_ORDER"""'}), "(data=self.tilts_dict['spec_order'], name='SPEC_ORDER')\n", (16929, 16984), False, 'from astropy.io import fits\n')]
## @package libgsidem2el 地理院標高タイルから標高値を取得するライブラリ # @brief 地理院標高タイルから標高値を取得するライブラリ # 地図の種類はDEM5A,DEM5B,DEM10B,DEMGMの4種類が選択可能 https://maps.gsi.go.jp/help/pdf/demapi.pdf参照 # zoom levelは,DEM5A,B:15, DEM10B:0-14, DEMGM:0-8 # getELメソッドで取得,DEM5AB,10Bは[m],DEMGMは[cm]の標高値を返す. # それぞれの地図の対象範囲外は'outside'を返す # 水面等により欠測の場合は,'e'を返す(地理院タイルの使用). # 一度読み込んだタイルはクラスの変数demdfに保存.近接するデータの取得が高速化される反面,大領域を一度に処理する場合はメモリを消費する. # @author computational-sediment-hyd https://github.com/computational-sediment-hyd # @date 2018/12/19 # @version version 0.1.0 import numpy as np import pandas as pd import urllib.request ## 地理院標高タイルから標高値を取得するライブラリ # @brief class libgsidem2el: def __init__(self, dem:'DEM5A, DEM5B, DEM10B, DEMGM' = 'DEM5A'): self.demdf = {} # https://maps.gsi.go.jp/development/ichiran.html#dem kind = {'DEM5A':'dem5a', 'DEM5B':'dem5b', 'DEM10B':'dem', 'DEMGM':'demgm' } self.url = "https://cyberjapandata.gsi.go.jp/xyz/" + kind[dem] + "/" # get Elevation from tile layer def getEL(self, lon, lat, zoom=15): # change lon,lat to pixel coordinate z = zoom L = 85.05112878 x = 2**(z+7)*(lon/180.0+1.0) y = 2**(z+7)/np.pi*(-np.arctanh(np.sin(np.pi/180.0*lat)) + np.arctanh(np.sin(np.pi/180.0*L))) # set tile number Xt, Yt = int(x//256), int(y//256) # set pixle number per tile Xp, Yp = int(x%256), int(y%256) key = str(Xt) + '-' + str(Yt) url = self.url + str(z) + "/" + str(Xt) + "/" + str(Yt) + ".txt" if key in self.demdf: df = self.demdf[key] return df.iloc[Yp, Xp] else: # add url error works req = urllib.request.Request(urllib) try: df = pd.read_csv(url, header=None) self.demdf[key] = df return df.iloc[Yp, Xp] except urllib.error.HTTPError as error: return 'outside' except urllib.error.URLError as error: return 'outside' def __del__(self): del self.demdf
[ "pandas.read_csv", "numpy.sin" ]
[((1769, 1798), 'pandas.read_csv', 'pd.read_csv', (['url'], {'header': 'None'}), '(url, header=None)\n', (1780, 1798), True, 'import pandas as pd\n'), ((1251, 1276), 'numpy.sin', 'np.sin', (['(np.pi / 180.0 * L)'], {}), '(np.pi / 180.0 * L)\n', (1257, 1276), True, 'import numpy as np\n'), ((1213, 1240), 'numpy.sin', 'np.sin', (['(np.pi / 180.0 * lat)'], {}), '(np.pi / 180.0 * lat)\n', (1219, 1240), True, 'import numpy as np\n')]
import pandas as pd import numpy as np import os import keras from sklearn.model_selection import train_test_split from keras.models import load_model, Sequential model = Sequential() model_path = os.path.join(os.getcwd(),'convmodel.h5') model = load_model(model_path) test_data = pd.read_csv('test.csv').astype('float32') test_data /= 255 test_data = test_data.as_matrix() test_data = test_data.reshape(test_data.shape[0],28,28,1) results = model.predict(test_data) results = np.argmax(results,axis=1) df = pd.DataFrame(results) df.index+=1 df.columns=['Label'] df.to_csv('results.csv', header=True)
[ "keras.models.load_model", "pandas.DataFrame", "numpy.argmax", "os.getcwd", "pandas.read_csv", "keras.models.Sequential" ]
[((171, 183), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (181, 183), False, 'from keras.models import load_model, Sequential\n'), ((246, 268), 'keras.models.load_model', 'load_model', (['model_path'], {}), '(model_path)\n', (256, 268), False, 'from keras.models import load_model, Sequential\n'), ((477, 503), 'numpy.argmax', 'np.argmax', (['results'], {'axis': '(1)'}), '(results, axis=1)\n', (486, 503), True, 'import numpy as np\n'), ((508, 529), 'pandas.DataFrame', 'pd.DataFrame', (['results'], {}), '(results)\n', (520, 529), True, 'import pandas as pd\n'), ((210, 221), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (219, 221), False, 'import os\n'), ((281, 304), 'pandas.read_csv', 'pd.read_csv', (['"""test.csv"""'], {}), "('test.csv')\n", (292, 304), True, 'import pandas as pd\n')]
import sys import cv2 import numpy as np from .detect_reso_chart import detect_reso_chart from .compute_mtf import compute_mtf def reso_meas(images, verbose=False): """ measure the resolution from multiple photos of resolution test chart STEP1: Extract edge images from photos. STEP2: Estimate MTF from edge images STEP3: Merge the detected MTFs and return Args: images ([numpy.array]): Photo of resolution test chart verbose (bool, optional): Defaults to False. Return: (touple): x and y coordinates of MTF curve ([numpy.array]): output images """ mtf_list = [] for img in images: edge = detect_reso_chart(img, verbose) mtf = compute_mtf(edge, verbose) mtf_list.append(mtf) """ try: edge = detect_reso_chart(img, verbose) mtf = compute_mtf(edge, verbose=False) print(f"mtf: {mtf}") mtf_list.append(mtf) except: continue """ if len(mtf_list) == 0: sys.exit("[ERROR]: no valid image for resolution measurement!") mtf_x = mtf_list[0][0] mtf_y = mtf_list[0][1] if len( mtf_list) == 1 else np.mean([mtf[1] for mtf in mtf_list], axis=0) return (mtf_x, mtf_y), [] if __name__ == "__main__": mocked_urls = [ 'test_chart/reso_test_chart.png' ] mocked_imgs = [] for url in mocked_urls: mocked_imgs.append(cv2.imread(url, 0)) mtf, output_imgs = reso_meas(mocked_imgs, verbose=True) print(mtf)
[ "cv2.imread", "numpy.mean", "sys.exit" ]
[((1063, 1126), 'sys.exit', 'sys.exit', (['"""[ERROR]: no valid image for resolution measurement!"""'], {}), "('[ERROR]: no valid image for resolution measurement!')\n", (1071, 1126), False, 'import sys\n'), ((1218, 1263), 'numpy.mean', 'np.mean', (['[mtf[1] for mtf in mtf_list]'], {'axis': '(0)'}), '([mtf[1] for mtf in mtf_list], axis=0)\n', (1225, 1263), True, 'import numpy as np\n'), ((1468, 1486), 'cv2.imread', 'cv2.imread', (['url', '(0)'], {}), '(url, 0)\n', (1478, 1486), False, 'import cv2\n')]
# test_model.py import numpy as np import cv2 import time import os from grabscreen import grab_screen from directkeys import PressKey, ReleaseKey, DirectionKey as dk from alexnet import alexnet from getkeys import key_check cwd = os.getcwd() for file_name in os.listdir(cwd): if file_name.startswith('Osori-SelfDrivingWithGTA5'): MODEL_NAME = file_name.split('.model')[0] + '.model' print('{} is selected'.format(MODEL_NAME)) break t_time = 0.1 def straight(): PressKey(dk.W) ReleaseKey(dk.A) ReleaseKey(dk.D) def left(): ReleaseKey(dk.D) PressKey(dk.W) PressKey(dk.A) time.sleep(t_time) ReleaseKey(dk.A) def right(): ReleaseKey(dk.A) PressKey(dk.W) PressKey(dk.D) time.sleep(t_time) ReleaseKey(dk.D) WIDTH = 160 HEIGHT = 120 LEARNING_RATE = 0.001 model = alexnet(WIDTH, HEIGHT, LEARNING_RATE) model.load(MODEL_NAME) def main(): last_time = time.time() for i in list(range(4))[::-1]: print(i + 1) time.sleep(1) paused = False while True: if not paused: # 800x600 windowed mode # screen = np.array(ImageGrab.grab(bbox=(0,40,800,640))) screen = grab_screen(region=(0, 40, 800, 640)) print('loop took {} seconds'.format(time.time() - last_time)) last_time = time.time() screen = cv2.cvtColor(screen, cv2.COLOR_BGR2GRAY) input_screen = cv2.resize(screen, (160, 120)) cv2.imshow('screen', screen) if cv2.waitKey(25) & 0xFF == ord('q'): cv2.destroyAllWindows() break prediction = model.predict([input_screen.reshape(160, 120, 1)])[0] print(prediction) dir = np.argmax(prediction) if prediction[1] > 0.2: straight() elif prediction[0] > prediction[2]: left() else: right() keys = key_check() # p pauses game and can get annoying. if 'T' in keys: if paused: paused = False else: paused = True ReleaseKey(dk.A) ReleaseKey(dk.W) ReleaseKey(dk.D) time.sleep(1) main()
[ "alexnet.alexnet", "numpy.argmax", "os.getcwd", "cv2.cvtColor", "cv2.destroyAllWindows", "cv2.waitKey", "directkeys.ReleaseKey", "time.sleep", "directkeys.PressKey", "time.time", "grabscreen.grab_screen", "getkeys.key_check", "cv2.imshow", "os.listdir", "cv2.resize" ]
[((234, 245), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (243, 245), False, 'import os\n'), ((263, 278), 'os.listdir', 'os.listdir', (['cwd'], {}), '(cwd)\n', (273, 278), False, 'import os\n'), ((849, 886), 'alexnet.alexnet', 'alexnet', (['WIDTH', 'HEIGHT', 'LEARNING_RATE'], {}), '(WIDTH, HEIGHT, LEARNING_RATE)\n', (856, 886), False, 'from alexnet import alexnet\n'), ((500, 514), 'directkeys.PressKey', 'PressKey', (['dk.W'], {}), '(dk.W)\n', (508, 514), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((519, 535), 'directkeys.ReleaseKey', 'ReleaseKey', (['dk.A'], {}), '(dk.A)\n', (529, 535), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((540, 556), 'directkeys.ReleaseKey', 'ReleaseKey', (['dk.D'], {}), '(dk.D)\n', (550, 556), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((575, 591), 'directkeys.ReleaseKey', 'ReleaseKey', (['dk.D'], {}), '(dk.D)\n', (585, 591), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((596, 610), 'directkeys.PressKey', 'PressKey', (['dk.W'], {}), '(dk.W)\n', (604, 610), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((615, 629), 'directkeys.PressKey', 'PressKey', (['dk.A'], {}), '(dk.A)\n', (623, 629), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((634, 652), 'time.sleep', 'time.sleep', (['t_time'], {}), '(t_time)\n', (644, 652), False, 'import time\n'), ((657, 673), 'directkeys.ReleaseKey', 'ReleaseKey', (['dk.A'], {}), '(dk.A)\n', (667, 673), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((693, 709), 'directkeys.ReleaseKey', 'ReleaseKey', (['dk.A'], {}), '(dk.A)\n', (703, 709), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((714, 728), 'directkeys.PressKey', 'PressKey', (['dk.W'], {}), '(dk.W)\n', (722, 728), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((733, 747), 'directkeys.PressKey', 'PressKey', (['dk.D'], {}), '(dk.D)\n', (741, 747), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((752, 770), 'time.sleep', 'time.sleep', (['t_time'], {}), '(t_time)\n', (762, 770), False, 'import time\n'), ((775, 791), 'directkeys.ReleaseKey', 'ReleaseKey', (['dk.D'], {}), '(dk.D)\n', (785, 791), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((940, 951), 'time.time', 'time.time', ([], {}), '()\n', (949, 951), False, 'import time\n'), ((1016, 1029), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1026, 1029), False, 'import time\n'), ((1982, 1993), 'getkeys.key_check', 'key_check', ([], {}), '()\n', (1991, 1993), False, 'from getkeys import key_check\n'), ((1216, 1253), 'grabscreen.grab_screen', 'grab_screen', ([], {'region': '(0, 40, 800, 640)'}), '(region=(0, 40, 800, 640))\n', (1227, 1253), False, 'from grabscreen import grab_screen\n'), ((1352, 1363), 'time.time', 'time.time', ([], {}), '()\n', (1361, 1363), False, 'import time\n'), ((1385, 1425), 'cv2.cvtColor', 'cv2.cvtColor', (['screen', 'cv2.COLOR_BGR2GRAY'], {}), '(screen, cv2.COLOR_BGR2GRAY)\n', (1397, 1425), False, 'import cv2\n'), ((1453, 1483), 'cv2.resize', 'cv2.resize', (['screen', '(160, 120)'], {}), '(screen, (160, 120))\n', (1463, 1483), False, 'import cv2\n'), ((1497, 1525), 'cv2.imshow', 'cv2.imshow', (['"""screen"""', 'screen'], {}), "('screen', screen)\n", (1507, 1525), False, 'import cv2\n'), ((1768, 1789), 'numpy.argmax', 'np.argmax', (['prediction'], {}), '(prediction)\n', (1777, 1789), True, 'import numpy as np\n'), ((2278, 2291), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (2288, 2291), False, 'import time\n'), ((1593, 1616), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1614, 1616), False, 'import cv2\n'), ((2182, 2198), 'directkeys.ReleaseKey', 'ReleaseKey', (['dk.A'], {}), '(dk.A)\n', (2192, 2198), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((2215, 2231), 'directkeys.ReleaseKey', 'ReleaseKey', (['dk.W'], {}), '(dk.W)\n', (2225, 2231), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((2248, 2264), 'directkeys.ReleaseKey', 'ReleaseKey', (['dk.D'], {}), '(dk.D)\n', (2258, 2264), False, 'from directkeys import PressKey, ReleaseKey, DirectionKey as dk\n'), ((1541, 1556), 'cv2.waitKey', 'cv2.waitKey', (['(25)'], {}), '(25)\n', (1552, 1556), False, 'import cv2\n'), ((1302, 1313), 'time.time', 'time.time', ([], {}), '()\n', (1311, 1313), False, 'import time\n')]
import cv2 import time import imutils import argparse import numpy as np import logging from imutils.video import FPS from imutils.video import VideoStream logging.basicConfig(level=logging.INFO, format='%(asctime)s :: %(levelname)s :: %(message)s') #Constructing Argument Parse to input from Command Line ap = argparse.ArgumentParser() ap.add_argument("-p", "--prototxt", help = 'Path to prototxt', default = 'object/model/SSD_MobileNet_prototxt.txt') ap.add_argument("-m", "--model", help = 'Path to model weights', default = 'object/model/SSD_MobileNet.caffemodel') ap.add_argument("-c", "--confidence", type = float, default = 0.7) args = vars(ap.parse_args()) #Initialize Objects and corresponding colors which the model can detect labels = ["background", "aeroplane", "bicycle", "bird", "boat","bottle", "bus", "car", "cat", "chair", "cow", "diningtable","dog", "horse", "motorbike", "person", "pottedplant", "sheep","sofa", "train", "tvmonitor"] colors = np.random.uniform(0, 255, size=(len(labels), 3)) #Loading Caffe Model print('[Status] Loading Model...') nn = cv2.dnn.readNetFromCaffe(args['prototxt'], args['model']) #Initialize Video Stream print('[Status] Starting Video Stream...') vs = VideoStream(src=0, framerate=120, resolution=(1280,720)).start() time.sleep(2.0) fps = FPS().start() #Loop Video Stream while True: #Resize Frame to 400 pixels frame = vs.read() frame = imutils.resize(frame, width=1280) (h, w) = frame.shape[:2] #Converting Frame to Blob blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 0.007843, (300, 300), 127.5) #Passing Blob through network to detect and predict nn.setInput(blob) detections = nn.forward() #Loop over the detections for i in np.arange(0, detections.shape[2]): #Extracting the confidence of predictions confidence = detections[0, 0, i, 2] #Filtering out weak predictions if confidence > args["confidence"]: #Extracting the index of the labels from the detection #Computing the (x,y) - coordinates of the bounding box idx = int(detections[0, 0, i, 1]) #Extracting bounding box coordinates box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") #Drawing the prediction and bounding box label = "{}: {:.2f}%".format(labels[idx], confidence * 100) cv2.rectangle(frame, (startX, startY), (endX, endY), colors[idx], 2) y = startY - 15 if startY - 15 > 15 else startY + 15 cv2.putText(frame, label, (startX, y),cv2.FONT_HERSHEY_SIMPLEX, 0.5, colors[idx], 2) cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break fps.update() fps.stop() print("[Info] Elapsed time: {:.2f}".format(fps.elapsed())) print("[Info] Approximate FPS: {:.2f}".format(fps.fps())) cv2.destroyAllWindows() vs.stop()
[ "imutils.video.VideoStream", "imutils.video.FPS", "cv2.putText", "argparse.ArgumentParser", "logging.basicConfig", "cv2.waitKey", "cv2.imshow", "time.sleep", "cv2.rectangle", "numpy.arange", "numpy.array", "cv2.dnn.readNetFromCaffe", "imutils.resize", "cv2.destroyAllWindows", "cv2.resize" ]
[((166, 264), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': '"""%(asctime)s :: %(levelname)s :: %(message)s"""'}), "(level=logging.INFO, format=\n '%(asctime)s :: %(levelname)s :: %(message)s')\n", (185, 264), False, 'import logging\n'), ((346, 371), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (369, 371), False, 'import argparse\n'), ((1127, 1184), 'cv2.dnn.readNetFromCaffe', 'cv2.dnn.readNetFromCaffe', (["args['prototxt']", "args['model']"], {}), "(args['prototxt'], args['model'])\n", (1151, 1184), False, 'import cv2\n'), ((1329, 1344), 'time.sleep', 'time.sleep', (['(2.0)'], {}), '(2.0)\n', (1339, 1344), False, 'import time\n'), ((3083, 3106), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3104, 3106), False, 'import cv2\n'), ((1472, 1505), 'imutils.resize', 'imutils.resize', (['frame'], {'width': '(1280)'}), '(frame, width=1280)\n', (1486, 1505), False, 'import imutils\n'), ((1832, 1865), 'numpy.arange', 'np.arange', (['(0)', 'detections.shape[2]'], {}), '(0, detections.shape[2])\n', (1841, 1865), True, 'import numpy as np\n'), ((2818, 2844), 'cv2.imshow', 'cv2.imshow', (['"""Frame"""', 'frame'], {}), "('Frame', frame)\n", (2828, 2844), False, 'import cv2\n'), ((1263, 1320), 'imutils.video.VideoStream', 'VideoStream', ([], {'src': '(0)', 'framerate': '(120)', 'resolution': '(1280, 720)'}), '(src=0, framerate=120, resolution=(1280, 720))\n', (1274, 1320), False, 'from imutils.video import VideoStream\n'), ((1352, 1357), 'imutils.video.FPS', 'FPS', ([], {}), '()\n', (1355, 1357), False, 'from imutils.video import FPS\n'), ((1603, 1632), 'cv2.resize', 'cv2.resize', (['frame', '(300, 300)'], {}), '(frame, (300, 300))\n', (1613, 1632), False, 'import cv2\n'), ((2856, 2870), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (2867, 2870), False, 'import cv2\n'), ((2576, 2644), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(startX, startY)', '(endX, endY)', 'colors[idx]', '(2)'], {}), '(frame, (startX, startY), (endX, endY), colors[idx], 2)\n', (2589, 2644), False, 'import cv2\n'), ((2726, 2815), 'cv2.putText', 'cv2.putText', (['frame', 'label', '(startX, y)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.5)', 'colors[idx]', '(2)'], {}), '(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5,\n colors[idx], 2)\n', (2737, 2815), False, 'import cv2\n'), ((2349, 2371), 'numpy.array', 'np.array', (['[w, h, w, h]'], {}), '([w, h, w, h])\n', (2357, 2371), True, 'import numpy as np\n')]
import cv2 import glob import h5py import imageio import numpy as np import os import matplotlib.pylab as plt from keras.datasets import mnist from keras.preprocessing.image import ImageDataGenerator from keras.utils import np_utils def normalization(X): return X / 127.5 - 1 def inverse_normalization(X): return np.round((X + 1.) / 2. * 255.).astype('uint8') def load_mnist(image_data_format): (X_train, y_train), (X_test, y_test) = mnist.load_data() if image_data_format == "channels_first": X_train = X_train.reshape(X_train.shape[0], 1, 28, 28) X_test = X_test.reshape(X_test.shape[0], 1, 28, 28) else: X_train = X_train.reshape(X_train.shape[0], 28, 28, 1) X_test = X_test.reshape(X_test.shape[0], 28, 28, 1) X_train = X_train.astype("float32") X_test = X_test.astype("float32") X_train = normalization(X_train) X_test = normalization(X_test) nb_classes = len(np.unique(np.hstack((y_train, y_test)))) Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) print(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape) return X_train, Y_train, X_test, Y_test def load_celebA(img_dim, image_data_format): with h5py.File("../../data/processed/CelebA_%s_data.h5" % img_dim, "r") as hf: X_real_train = hf["data"][:].astype(np.float32) X_real_train = normalization(X_real_train) if image_data_format == "channels_last": X_real_train = X_real_train.transpose(0, 2, 3, 1) return X_real_train def gen_batch(X, batch_size): while True: idx = np.random.choice(X.shape[0], batch_size, replace=False) yield X[idx] def data_generator_from_dir(data_dir, target_size, batch_size): # data_gen args print("Loading data from", data_dir) # Check if number of files in data_dir is a multiple of batch_size number_of_images = sum([len(files) for r, d, files in os.walk(data_dir)]) if number_of_images % batch_size != 0: raise ValueError("ERROR: # of images in " + str(data_dir) + " found by keras.ImageDataGenerator is not a multiple of the batch_size ( " + str(batch_size) + " )!\nFound " + str(number_of_images) + " images. Add " + str(batch_size - number_of_images % batch_size) + " more image(s), or delete " + str(number_of_images % batch_size) + " image(s).") # datagens data_generator_args = dict(preprocessing_function=normalization) image_datagen = ImageDataGenerator(**data_generator_args) # Image generators image_data_generator = image_datagen.flow_from_directory(data_dir, target_size=target_size, batch_size=batch_size, class_mode=None, seed=29) if len(image_data_generator) == 0: raise ValueError("ERROR: # of images found by keras.ImageDataGenerator is 0!\nPlease save the images in the data_dir into at least one modre directory, preferably into classes. Given data_dir:", data_dir) return image_data_generator def sample_noise(noise_scale, batch_size, noise_dim): return np.random.normal(scale=noise_scale, size=(batch_size, noise_dim[0])) def sample_cat(batch_size, cat_dim): y = np.zeros((batch_size, cat_dim[0]), dtype="float32") random_y = np.random.randint(0, cat_dim[0], size=batch_size) y[np.arange(batch_size), random_y] = 1 return y def get_disc_batch(X_real_batch, generator_model, batch_counter, batch_size, cat_dim, cont_dim, noise_dim, noise_scale=0.5, label_smoothing=False, label_flipping=0): # Create X_disc: alternatively only generated or real images if batch_counter % 2 == 0: # Pass noise to the generator y_cat = sample_cat(batch_size, cat_dim) y_cont = sample_noise(noise_scale, batch_size, cont_dim) noise_input = sample_noise(noise_scale, batch_size, noise_dim) # Produce an output X_disc = generator_model.predict([y_cat, y_cont, noise_input],batch_size=batch_size) y_disc = np.zeros((X_disc.shape[0], 2), dtype=np.uint8) y_disc[:, 0] = 1 if label_flipping > 0: p = np.random.binomial(1, label_flipping) if p > 0: y_disc[:, [0, 1]] = y_disc[:, [1, 0]] else: X_disc = X_real_batch y_cat = sample_cat(batch_size, cat_dim) y_cont = sample_noise(noise_scale, batch_size, cont_dim) y_disc = np.zeros((X_disc.shape[0], 2), dtype=np.uint8) if label_smoothing: y_disc[:, 1] = np.random.uniform(low=0.9, high=1, size=y_disc.shape[0]) else: y_disc[:, 1] = 1 if label_flipping > 0: p = np.random.binomial(1, label_flipping) if p > 0: y_disc[:, [0, 1]] = y_disc[:, [1, 0]] # Repeat y_cont to accomodate for keras" loss function conventions y_cont = np.expand_dims(y_cont, 1) y_cont = np.repeat(y_cont, 2, axis=1) return X_disc, y_disc, y_cat, y_cont def get_gen_batch(batch_size, cat_dim, cont_dim, noise_dim, noise_scale=0.5): X_gen = sample_noise(noise_scale, batch_size, noise_dim) y_gen = np.zeros((X_gen.shape[0], 2), dtype=np.uint8) y_gen[:, 1] = 1 y_cat = sample_cat(batch_size, cat_dim) y_cont = sample_noise(noise_scale, batch_size, cont_dim) # Repeat y_cont to accomodate for keras" loss function conventions y_cont_target = np.expand_dims(y_cont, 1) y_cont_target = np.repeat(y_cont_target, 2, axis=1) return X_gen, y_gen, y_cat, y_cont, y_cont_target def plot_losses(disc_total_losses, disc_log_losses, disc_cat_losses, disc_cont_losses, gen_total_losses, gen_log_losses, gen_cat_losses, gen_cont_losses, model_name, init_epoch=0): epochs = np.arange(len(disc_total_losses)) + init_epoch fig = plt.figure() plt.plot(epochs, disc_total_losses, linewidth=2, label='disc_total_loss') plt.plot(epochs, disc_log_losses, linewidth=1, label='disc_log_loss') plt.plot(epochs, disc_cat_losses, linewidth=1, label='disc_cat_loss') plt.plot(epochs, disc_cont_losses, linewidth=1, label='disc_cont_loss') plt.plot(epochs, gen_total_losses, linewidth=2, label='gen_total_loss') plt.plot(epochs, gen_log_losses, linewidth=1, label='gen_log_loss') plt.plot(epochs, gen_cat_losses, linewidth=1, label='gen_cat_loss') plt.plot(epochs, gen_cont_losses, linewidth=1, label='gen_cont_loss') plt.legend() plt.title("Losses") plt.xlabel("Epochs") plt.savefig(os.path.join("../../figures", model_name, model_name + "_losses.png"), bbox_inches='tight') plt.clf() plt.close() def plot_generated_batch(X_real, generator_model, epoch_number, batch_size, cat_dim, cont_dim, noise_dim, image_data_format, model_name, noise_scale=0.5, suffix='training', MAX_FRAMES_PER_GIF=100): # Generate images y_cat = sample_cat(batch_size, cat_dim) y_cont = sample_noise(noise_scale, batch_size, cont_dim) noise_input = sample_noise(noise_scale, batch_size, noise_dim) # Produce an output X_gen = generator_model.predict([y_cat, y_cont, noise_input],batch_size=batch_size) X_real = inverse_normalization(X_real) X_gen = inverse_normalization(X_gen) Xg = X_gen[:8] Xr = X_real[:8] if image_data_format == "channels_last": X = np.concatenate((Xg, Xr), axis=0) list_rows = [] for i in range(int(X.shape[0] / 4)): Xr = np.concatenate([X[k] for k in range(4 * i, 4 * (i + 1))], axis=1) list_rows.append(Xr) Xr = np.concatenate(list_rows, axis=0) if image_data_format == "channels_first": X = np.concatenate((Xg, Xr), axis=0) list_rows = [] for i in range(int(X.shape[0] / 4)): Xr = np.concatenate([X[k] for k in range(4 * i, 4 * (i + 1))], axis=2) list_rows.append(Xr) Xr = np.concatenate(list_rows, axis=1) Xr = Xr.transpose(1,2,0) # Make iter text text_image = cv2.putText(np.zeros((32, Xr.shape[1], Xr.shape[2])), 'iter %s' % str(epoch_number), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 255, 255), 1, cv2.LINE_AA).astype('uint8') image = np.vstack((text_image, Xr)) # if Xr.shape[-1] == 1: # plt.imshow(Xr[:, :, 0], cmap="gray") # else: # plt.imshow(Xr) # plt.axis('off') # plt.savefig(os.path.join("../../figures", model_name, "current_batch.png"), bbox_inches='tight') # plt.clf() # plt.close() imageio.imsave(os.path.join("../../figures", model_name, model_name + "_current_batch_%s.png" % suffix), image) # Make gif gif_frames = [] # Read old gif frames try: gif_frames_reader = imageio.get_reader(os.path.join("../../figures", model_name, model_name + "_%s.gif" % suffix)) for frame in gif_frames_reader: gif_frames.append(frame[:, :, :3]) except: pass # Append new frame im = cv2.putText(np.concatenate((np.zeros((32, Xg[0].shape[1], Xg[0].shape[2])), Xg[0]), axis=0), 'iter %s' % str(epoch_number), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 255, 255), 1, cv2.LINE_AA).astype('uint8') gif_frames.append(im) # If frames exceeds, save as different file if len(gif_frames) > MAX_FRAMES_PER_GIF: print("Splitting the GIF...") gif_frames_00 = gif_frames[:MAX_FRAMES_PER_GIF] num_of_gifs_already_saved = len(glob.glob(os.path.join("../../figures", model_name, model_name + "_%s_*.gif" % suffix))) print("Saving", os.path.join("../../figures", model_name, model_name + "_%s_%03d.gif" % (suffix, num_of_gifs_already_saved))) imageio.mimsave(os.path.join("../../figures", model_name, model_name + "_%s_%03d.gif" % (suffix, num_of_gifs_already_saved)), gif_frames_00) gif_frames = gif_frames[MAX_FRAMES_PER_GIF:] # Save gif print("Saving", os.path.join("../../figures", model_name, model_name + "_%s.gif" % suffix)) imageio.mimsave(os.path.join("../../figures", model_name, model_name + "_%s.gif" % suffix), gif_frames)
[ "keras.preprocessing.image.ImageDataGenerator", "os.walk", "numpy.random.randint", "numpy.arange", "numpy.random.normal", "matplotlib.pylab.close", "matplotlib.pylab.title", "os.path.join", "numpy.round", "matplotlib.pylab.figure", "matplotlib.pylab.legend", "keras.utils.np_utils.to_categorical", "numpy.random.choice", "numpy.repeat", "h5py.File", "numpy.random.binomial", "matplotlib.pylab.clf", "numpy.hstack", "matplotlib.pylab.plot", "matplotlib.pylab.xlabel", "numpy.vstack", "numpy.concatenate", "numpy.random.uniform", "keras.datasets.mnist.load_data", "numpy.zeros", "numpy.expand_dims" ]
[((455, 472), 'keras.datasets.mnist.load_data', 'mnist.load_data', ([], {}), '()\n', (470, 472), False, 'from keras.datasets import mnist\n'), ((1006, 1050), 'keras.utils.np_utils.to_categorical', 'np_utils.to_categorical', (['y_train', 'nb_classes'], {}), '(y_train, nb_classes)\n', (1029, 1050), False, 'from keras.utils import np_utils\n'), ((1064, 1107), 'keras.utils.np_utils.to_categorical', 'np_utils.to_categorical', (['y_test', 'nb_classes'], {}), '(y_test, nb_classes)\n', (1087, 1107), False, 'from keras.utils import np_utils\n'), ((2522, 2563), 'keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {}), '(**data_generator_args)\n', (2540, 2563), False, 'from keras.preprocessing.image import ImageDataGenerator\n'), ((3087, 3155), 'numpy.random.normal', 'np.random.normal', ([], {'scale': 'noise_scale', 'size': '(batch_size, noise_dim[0])'}), '(scale=noise_scale, size=(batch_size, noise_dim[0]))\n', (3103, 3155), True, 'import numpy as np\n'), ((3204, 3255), 'numpy.zeros', 'np.zeros', (['(batch_size, cat_dim[0])'], {'dtype': '"""float32"""'}), "((batch_size, cat_dim[0]), dtype='float32')\n", (3212, 3255), True, 'import numpy as np\n'), ((3271, 3320), 'numpy.random.randint', 'np.random.randint', (['(0)', 'cat_dim[0]'], {'size': 'batch_size'}), '(0, cat_dim[0], size=batch_size)\n', (3288, 3320), True, 'import numpy as np\n'), ((4876, 4901), 'numpy.expand_dims', 'np.expand_dims', (['y_cont', '(1)'], {}), '(y_cont, 1)\n', (4890, 4901), True, 'import numpy as np\n'), ((4915, 4943), 'numpy.repeat', 'np.repeat', (['y_cont', '(2)'], {'axis': '(1)'}), '(y_cont, 2, axis=1)\n', (4924, 4943), True, 'import numpy as np\n'), ((5140, 5185), 'numpy.zeros', 'np.zeros', (['(X_gen.shape[0], 2)'], {'dtype': 'np.uint8'}), '((X_gen.shape[0], 2), dtype=np.uint8)\n', (5148, 5185), True, 'import numpy as np\n'), ((5404, 5429), 'numpy.expand_dims', 'np.expand_dims', (['y_cont', '(1)'], {}), '(y_cont, 1)\n', (5418, 5429), True, 'import numpy as np\n'), ((5450, 5485), 'numpy.repeat', 'np.repeat', (['y_cont_target', '(2)'], {'axis': '(1)'}), '(y_cont_target, 2, axis=1)\n', (5459, 5485), True, 'import numpy as np\n'), ((5826, 5838), 'matplotlib.pylab.figure', 'plt.figure', ([], {}), '()\n', (5836, 5838), True, 'import matplotlib.pylab as plt\n'), ((5843, 5916), 'matplotlib.pylab.plot', 'plt.plot', (['epochs', 'disc_total_losses'], {'linewidth': '(2)', 'label': '"""disc_total_loss"""'}), "(epochs, disc_total_losses, linewidth=2, label='disc_total_loss')\n", (5851, 5916), True, 'import matplotlib.pylab as plt\n'), ((5921, 5990), 'matplotlib.pylab.plot', 'plt.plot', (['epochs', 'disc_log_losses'], {'linewidth': '(1)', 'label': '"""disc_log_loss"""'}), "(epochs, disc_log_losses, linewidth=1, label='disc_log_loss')\n", (5929, 5990), True, 'import matplotlib.pylab as plt\n'), ((5995, 6064), 'matplotlib.pylab.plot', 'plt.plot', (['epochs', 'disc_cat_losses'], {'linewidth': '(1)', 'label': '"""disc_cat_loss"""'}), "(epochs, disc_cat_losses, linewidth=1, label='disc_cat_loss')\n", (6003, 6064), True, 'import matplotlib.pylab as plt\n'), ((6069, 6140), 'matplotlib.pylab.plot', 'plt.plot', (['epochs', 'disc_cont_losses'], {'linewidth': '(1)', 'label': '"""disc_cont_loss"""'}), "(epochs, disc_cont_losses, linewidth=1, label='disc_cont_loss')\n", (6077, 6140), True, 'import matplotlib.pylab as plt\n'), ((6145, 6216), 'matplotlib.pylab.plot', 'plt.plot', (['epochs', 'gen_total_losses'], {'linewidth': '(2)', 'label': '"""gen_total_loss"""'}), "(epochs, gen_total_losses, linewidth=2, label='gen_total_loss')\n", (6153, 6216), True, 'import matplotlib.pylab as plt\n'), ((6221, 6288), 'matplotlib.pylab.plot', 'plt.plot', (['epochs', 'gen_log_losses'], {'linewidth': '(1)', 'label': '"""gen_log_loss"""'}), "(epochs, gen_log_losses, linewidth=1, label='gen_log_loss')\n", (6229, 6288), True, 'import matplotlib.pylab as plt\n'), ((6293, 6360), 'matplotlib.pylab.plot', 'plt.plot', (['epochs', 'gen_cat_losses'], {'linewidth': '(1)', 'label': '"""gen_cat_loss"""'}), "(epochs, gen_cat_losses, linewidth=1, label='gen_cat_loss')\n", (6301, 6360), True, 'import matplotlib.pylab as plt\n'), ((6365, 6434), 'matplotlib.pylab.plot', 'plt.plot', (['epochs', 'gen_cont_losses'], {'linewidth': '(1)', 'label': '"""gen_cont_loss"""'}), "(epochs, gen_cont_losses, linewidth=1, label='gen_cont_loss')\n", (6373, 6434), True, 'import matplotlib.pylab as plt\n'), ((6439, 6451), 'matplotlib.pylab.legend', 'plt.legend', ([], {}), '()\n', (6449, 6451), True, 'import matplotlib.pylab as plt\n'), ((6456, 6475), 'matplotlib.pylab.title', 'plt.title', (['"""Losses"""'], {}), "('Losses')\n", (6465, 6475), True, 'import matplotlib.pylab as plt\n'), ((6480, 6500), 'matplotlib.pylab.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (6490, 6500), True, 'import matplotlib.pylab as plt\n'), ((6613, 6622), 'matplotlib.pylab.clf', 'plt.clf', ([], {}), '()\n', (6620, 6622), True, 'import matplotlib.pylab as plt\n'), ((6627, 6638), 'matplotlib.pylab.close', 'plt.close', ([], {}), '()\n', (6636, 6638), True, 'import matplotlib.pylab as plt\n'), ((8281, 8308), 'numpy.vstack', 'np.vstack', (['(text_image, Xr)'], {}), '((text_image, Xr))\n', (8290, 8308), True, 'import numpy as np\n'), ((1279, 1345), 'h5py.File', 'h5py.File', (["('../../data/processed/CelebA_%s_data.h5' % img_dim)", '"""r"""'], {}), "('../../data/processed/CelebA_%s_data.h5' % img_dim, 'r')\n", (1288, 1345), False, 'import h5py\n'), ((1665, 1720), 'numpy.random.choice', 'np.random.choice', (['X.shape[0]', 'batch_size'], {'replace': '(False)'}), '(X.shape[0], batch_size, replace=False)\n', (1681, 1720), True, 'import numpy as np\n'), ((4022, 4068), 'numpy.zeros', 'np.zeros', (['(X_disc.shape[0], 2)'], {'dtype': 'np.uint8'}), '((X_disc.shape[0], 2), dtype=np.uint8)\n', (4030, 4068), True, 'import numpy as np\n'), ((4427, 4473), 'numpy.zeros', 'np.zeros', (['(X_disc.shape[0], 2)'], {'dtype': 'np.uint8'}), '((X_disc.shape[0], 2), dtype=np.uint8)\n', (4435, 4473), True, 'import numpy as np\n'), ((6517, 6586), 'os.path.join', 'os.path.join', (['"""../../figures"""', 'model_name', "(model_name + '_losses.png')"], {}), "('../../figures', model_name, model_name + '_losses.png')\n", (6529, 6586), False, 'import os\n'), ((7404, 7436), 'numpy.concatenate', 'np.concatenate', (['(Xg, Xr)'], {'axis': '(0)'}), '((Xg, Xr), axis=0)\n', (7418, 7436), True, 'import numpy as np\n'), ((7635, 7668), 'numpy.concatenate', 'np.concatenate', (['list_rows'], {'axis': '(0)'}), '(list_rows, axis=0)\n', (7649, 7668), True, 'import numpy as np\n'), ((7728, 7760), 'numpy.concatenate', 'np.concatenate', (['(Xg, Xr)'], {'axis': '(0)'}), '((Xg, Xr), axis=0)\n', (7742, 7760), True, 'import numpy as np\n'), ((7959, 7992), 'numpy.concatenate', 'np.concatenate', (['list_rows'], {'axis': '(1)'}), '(list_rows, axis=1)\n', (7973, 7992), True, 'import numpy as np\n'), ((8601, 8694), 'os.path.join', 'os.path.join', (['"""../../figures"""', 'model_name', "(model_name + '_current_batch_%s.png' % suffix)"], {}), "('../../figures', model_name, model_name + \n '_current_batch_%s.png' % suffix)\n", (8613, 8694), False, 'import os\n'), ((9987, 10061), 'os.path.join', 'os.path.join', (['"""../../figures"""', 'model_name', "(model_name + '_%s.gif' % suffix)"], {}), "('../../figures', model_name, model_name + '_%s.gif' % suffix)\n", (9999, 10061), False, 'import os\n'), ((10083, 10157), 'os.path.join', 'os.path.join', (['"""../../figures"""', 'model_name', "(model_name + '_%s.gif' % suffix)"], {}), "('../../figures', model_name, model_name + '_%s.gif' % suffix)\n", (10095, 10157), False, 'import os\n'), ((327, 360), 'numpy.round', 'np.round', (['((X + 1.0) / 2.0 * 255.0)'], {}), '((X + 1.0) / 2.0 * 255.0)\n', (335, 360), True, 'import numpy as np\n'), ((960, 988), 'numpy.hstack', 'np.hstack', (['(y_train, y_test)'], {}), '((y_train, y_test))\n', (969, 988), True, 'import numpy as np\n'), ((3327, 3348), 'numpy.arange', 'np.arange', (['batch_size'], {}), '(batch_size)\n', (3336, 3348), True, 'import numpy as np\n'), ((4142, 4179), 'numpy.random.binomial', 'np.random.binomial', (['(1)', 'label_flipping'], {}), '(1, label_flipping)\n', (4160, 4179), True, 'import numpy as np\n'), ((4529, 4585), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0.9)', 'high': '(1)', 'size': 'y_disc.shape[0]'}), '(low=0.9, high=1, size=y_disc.shape[0])\n', (4546, 4585), True, 'import numpy as np\n'), ((4677, 4714), 'numpy.random.binomial', 'np.random.binomial', (['(1)', 'label_flipping'], {}), '(1, label_flipping)\n', (4695, 4714), True, 'import numpy as np\n'), ((8817, 8891), 'os.path.join', 'os.path.join', (['"""../../figures"""', 'model_name', "(model_name + '_%s.gif' % suffix)"], {}), "('../../figures', model_name, model_name + '_%s.gif' % suffix)\n", (8829, 8891), False, 'import os\n'), ((9639, 9752), 'os.path.join', 'os.path.join', (['"""../../figures"""', 'model_name', "(model_name + '_%s_%03d.gif' % (suffix, num_of_gifs_already_saved))"], {}), "('../../figures', model_name, model_name + '_%s_%03d.gif' % (\n suffix, num_of_gifs_already_saved))\n", (9651, 9752), False, 'import os\n'), ((9773, 9886), 'os.path.join', 'os.path.join', (['"""../../figures"""', 'model_name', "(model_name + '_%s_%03d.gif' % (suffix, num_of_gifs_already_saved))"], {}), "('../../figures', model_name, model_name + '_%s_%03d.gif' % (\n suffix, num_of_gifs_already_saved))\n", (9785, 9886), False, 'import os\n'), ((2000, 2017), 'os.walk', 'os.walk', (['data_dir'], {}), '(data_dir)\n', (2007, 2017), False, 'import os\n'), ((8077, 8117), 'numpy.zeros', 'np.zeros', (['(32, Xr.shape[1], Xr.shape[2])'], {}), '((32, Xr.shape[1], Xr.shape[2]))\n', (8085, 8117), True, 'import numpy as np\n'), ((9536, 9612), 'os.path.join', 'os.path.join', (['"""../../figures"""', 'model_name', "(model_name + '_%s_*.gif' % suffix)"], {}), "('../../figures', model_name, model_name + '_%s_*.gif' % suffix)\n", (9548, 9612), False, 'import os\n'), ((9066, 9112), 'numpy.zeros', 'np.zeros', (['(32, Xg[0].shape[1], Xg[0].shape[2])'], {}), '((32, Xg[0].shape[1], Xg[0].shape[2]))\n', (9074, 9112), True, 'import numpy as np\n')]
__author__ = '<NAME>' import pymc import numpy as np from simtk.unit import kilojoules_per_mole import torsionfit.database.qmdatabase as TorsionScan import torsionfit.parameters as par import warnings from torsionfit.utils import logger class TorsionFitModel(object): """pymc model This model only allows a phase angle of 0 but allows force constants to flip signs. If the sign is negative, the phase angle will be 180. Attributes: ---------- pymc_parameters: dict() of pymc parameters parameters_to_optimize: list of tuples (dihedrals to optimize) fags: list of TorsionScanSet for fragments platform: OpenMM platform to use for potential energy calculations """ def __init__(self, param, frags, stream=None, platform=None, param_to_opt=None, rj=False, sample_n5=False, continuous_phase=False, sample_phase=False, init_random=True): """ Parameters ---------- param : Parmed CharmmParameterSet frags : list of torsionfit.QMDataBase stream : str Path to CHARMM stream file. Default None. platform : openmm.Platform Default None. param_to_opt : list of tuples of torsions. Default None. rj : bool If True, will use reversible jump to sample Fourier terms. If False, will sample all Ks. Default False sample_n5 : bool If True, will also sample n=5. Default False eliminate_phase : bool If True, will not sample phase. Instead, Ks will be able to take on negative values. Default True. If True, make sure continuous_phase is also False. continuous_phase : bool If True, will allow phases to take on any value between 0-180. If False, phase will be a discrete and only sample 0 or 180 init_random: bool Randomize starting condition. Default is True. If false, will resort to whatever value is in the parameter set. tau: float hyperparameter on Gaussian prior on K Returns ------- pymc model """ if type(frags) != list: frags = [frags] self.pymc_parameters = dict() self.frags = frags self.platform = platform self.rj = rj self.sample_n5 = sample_n5 self.continuous_phase = continuous_phase self.sample_phase = sample_phase if param_to_opt: self.parameters_to_optimize = param_to_opt else: self.parameters_to_optimize = TorsionScan.to_optimize(param, stream) # Check that options are reasonable if not sample_phase and continuous_phase: warnings.warn("You can't eliminate phase but have continuous phase. Changing continuous phase to False") self.continuous_phase = False # set all phases to 0 if eliminate phase is True if not self.sample_phase: par.set_phase_0(self.parameters_to_optimize, param) multiplicities = [1, 2, 3, 4, 6] if self.sample_n5: multiplicities = [1, 2, 3, 4, 5, 6] multiplicity_bitstrings = dict() # offset for frag in self.frags: name = '%s_offset' % frag.topology._residues[0] offset = pymc.Uniform(name, lower=-50, upper=50, value=0) self.pymc_parameters[name] = offset # self.pymc_parameters['log_sigma_k'] = pymc.Uniform('log_sigma_k', lower=-4.6052, upper=3.453, value=np.log(0.01)) # self.pymc_parameters['sigma_k'] = pymc.Lambda('sigma_k', # lambda log_sigma_k=self.pymc_parameters['log_sigma_k']: np.exp( # log_sigma_k)) # self.pymc_parameters['precision_k'] = pymc.Lambda('precision_k', # lambda log_sigma_k=self.pymc_parameters['log_sigma_k']: np.exp( # -2 * log_sigma_k)) for p in self.parameters_to_optimize: torsion_name = p[0] + '_' + p[1] + '_' + p[2] + '_' + p[3] self.pymc_parameters['log_sigma_k_{}'.format(torsion_name)] = pymc.Uniform('log_sigma_k_{}'.format(torsion_name), lower=-4.6052, upper=3.453, value=np.log(0.01)) self.pymc_parameters['sigma_k_{}'.format(torsion_name)] = pymc.Lambda('sigma_k_{}'.format(torsion_name), lambda log_sigma_k=self.pymc_parameters['log_sigma_k_{}'.format(torsion_name)]: np.exp( log_sigma_k)) self.pymc_parameters['precision_k_{}'.format(torsion_name)] = pymc.Lambda('precision_k_{}'.format(torsion_name), lambda log_sigma_k=self.pymc_parameters['log_sigma_k_{}'.format(torsion_name)]: np.exp( -2 * log_sigma_k)) if torsion_name not in multiplicity_bitstrings.keys(): multiplicity_bitstrings[torsion_name] = 0 for m in multiplicities: name = p[0] + '_' + p[1] + '_' + p[2] + '_' + p[3] + '_' + str(m) + '_K' if not self.sample_phase: k = pymc.Normal(name, mu=0, tau=self.pymc_parameters['precision_k_{}'.format(torsion_name)], value=0) else: k = pymc.Uniform(name, lower=0, upper=20, value=0) for i in range(len(param.dihedral_types[p])): if param.dihedral_types[p][i].per == m: multiplicity_bitstrings[torsion_name] += 2 ** (m - 1) if not self.sample_phase: k = pymc.Normal(name, mu=0, tau=self.pymc_parameters['precision_k_{}'.format(torsion_name)], value=param.dihedral_types[p][i].phi_k) else: k = pymc.Uniform(name, lower=0, upper=20, value=param.dihedral_types[p][i].phi_k) break self.pymc_parameters[name] = k if self.sample_phase: name = p[0] + '_' + p[1] + '_' + p[2] + '_' + p[3] + '_' + str(m) + '_Phase' for i in range(len(param.dihedral_types[p])): if param.dihedral_types[p][i].per == m: if self.continuous_phase: phase = pymc.Uniform(name, lower=0, upper=180.0, value=param.dihedral_types[p][i].phase) else: if param.dihedral_types[p][i].phase == 0: phase = pymc.DiscreteUniform(name, lower=0, upper=1, value=0) break if param.dihedral_types[p][i].phase == 180.0: phase = pymc.DiscreteUniform(name, lower=0, upper=1, value=1) break else: if self.continuous_phase: phase = pymc.Uniform(name, lower=0, upper=180.0, value=0) else: phase = pymc.DiscreteUniform(name, lower=0, upper=1, value=0) self.pymc_parameters[name] = phase if self.rj: for torsion_name in multiplicity_bitstrings.keys(): name = torsion_name + '_multiplicity_bitstring' bitstring = pymc.DiscreteUniform(name, lower=0, upper=63, value=multiplicity_bitstrings[torsion_name]) self.pymc_parameters[name] = bitstring if init_random: # randomize initial value for parameter in self.pymc_parameters: if type(self.pymc_parameters[parameter]) != pymc.CommonDeterministics.Lambda: # and parameter[:11] != 'log_sigma_k': self.pymc_parameters[parameter].random() logger().info('initial value for {} is {}'.format(parameter, self.pymc_parameters[parameter].value)) self.pymc_parameters['log_sigma'] = pymc.Uniform('log_sigma', lower=-10, upper=3, value=np.log(0.01)) self.pymc_parameters['sigma'] = pymc.Lambda('sigma', lambda log_sigma=self.pymc_parameters['log_sigma']: np.exp( log_sigma)) self.pymc_parameters['precision'] = pymc.Lambda('precision', lambda log_sigma=self.pymc_parameters['log_sigma']: np.exp( -2 * log_sigma)) # add missing multiplicity terms to parameterSet so that the system has the same number of parameters par.add_missing(self.parameters_to_optimize, param, sample_n5=self.sample_n5) @pymc.deterministic def mm_energy(pymc_parameters=self.pymc_parameters, param=param): mm = np.ndarray(0) par.update_param_from_sample(self.parameters_to_optimize, param, model=self, rj=self.rj, phase=self.sample_phase, n_5=self.sample_n5, continuous=self.continuous_phase, model_type='openmm') for mol in self.frags: mol.compute_energy(param, offset=self.pymc_parameters['%s_offset' % mol.topology._residues[0]], platform=self.platform) mm = np.append(mm, mol.mm_energy / kilojoules_per_mole) return mm size = sum([len(i.qm_energy) for i in self.frags]) qm_energy = np.ndarray(0) for i in range(len(frags)): qm_energy = np.append(qm_energy, frags[i].qm_energy) #diff_energy = np.ndarray(0) #for i in range(len(frags)): # diff_energy = np.append(diff_energy, frags[i].delta_energy) self.pymc_parameters['mm_energy'] = mm_energy self.pymc_parameters['qm_fit'] = pymc.Normal('qm_fit', mu=self.pymc_parameters['mm_energy'], tau=self.pymc_parameters['precision'], size=size, observed=True, value=qm_energy)
[ "torsionfit.parameters.set_phase_0", "numpy.log", "pymc.Uniform", "torsionfit.utils.logger", "torsionfit.parameters.add_missing", "torsionfit.parameters.update_param_from_sample", "numpy.append", "numpy.exp", "pymc.Normal", "warnings.warn", "torsionfit.database.qmdatabase.to_optimize", "pymc.DiscreteUniform", "numpy.ndarray" ]
[((8975, 9052), 'torsionfit.parameters.add_missing', 'par.add_missing', (['self.parameters_to_optimize', 'param'], {'sample_n5': 'self.sample_n5'}), '(self.parameters_to_optimize, param, sample_n5=self.sample_n5)\n', (8990, 9052), True, 'import torsionfit.parameters as par\n'), ((9850, 9863), 'numpy.ndarray', 'np.ndarray', (['(0)'], {}), '(0)\n', (9860, 9863), True, 'import numpy as np\n'), ((10208, 10354), 'pymc.Normal', 'pymc.Normal', (['"""qm_fit"""'], {'mu': "self.pymc_parameters['mm_energy']", 'tau': "self.pymc_parameters['precision']", 'size': 'size', 'observed': '(True)', 'value': 'qm_energy'}), "('qm_fit', mu=self.pymc_parameters['mm_energy'], tau=self.\n pymc_parameters['precision'], size=size, observed=True, value=qm_energy)\n", (10219, 10354), False, 'import pymc\n'), ((2579, 2617), 'torsionfit.database.qmdatabase.to_optimize', 'TorsionScan.to_optimize', (['param', 'stream'], {}), '(param, stream)\n', (2602, 2617), True, 'import torsionfit.database.qmdatabase as TorsionScan\n'), ((2725, 2839), 'warnings.warn', 'warnings.warn', (['"""You can\'t eliminate phase but have continuous phase. Changing continuous phase to False"""'], {}), '(\n "You can\'t eliminate phase but have continuous phase. Changing continuous phase to False"\n )\n', (2738, 2839), False, 'import warnings\n'), ((2976, 3027), 'torsionfit.parameters.set_phase_0', 'par.set_phase_0', (['self.parameters_to_optimize', 'param'], {}), '(self.parameters_to_optimize, param)\n', (2991, 3027), True, 'import torsionfit.parameters as par\n'), ((3317, 3365), 'pymc.Uniform', 'pymc.Uniform', (['name'], {'lower': '(-50)', 'upper': '(50)', 'value': '(0)'}), '(name, lower=-50, upper=50, value=0)\n', (3329, 3365), False, 'import pymc\n'), ((9173, 9186), 'numpy.ndarray', 'np.ndarray', (['(0)'], {}), '(0)\n', (9183, 9186), True, 'import numpy as np\n'), ((9199, 9396), 'torsionfit.parameters.update_param_from_sample', 'par.update_param_from_sample', (['self.parameters_to_optimize', 'param'], {'model': 'self', 'rj': 'self.rj', 'phase': 'self.sample_phase', 'n_5': 'self.sample_n5', 'continuous': 'self.continuous_phase', 'model_type': '"""openmm"""'}), "(self.parameters_to_optimize, param, model=self,\n rj=self.rj, phase=self.sample_phase, n_5=self.sample_n5, continuous=\n self.continuous_phase, model_type='openmm')\n", (9227, 9396), True, 'import torsionfit.parameters as par\n'), ((9925, 9965), 'numpy.append', 'np.append', (['qm_energy', 'frags[i].qm_energy'], {}), '(qm_energy, frags[i].qm_energy)\n', (9934, 9965), True, 'import numpy as np\n'), ((7666, 7761), 'pymc.DiscreteUniform', 'pymc.DiscreteUniform', (['name'], {'lower': '(0)', 'upper': '(63)', 'value': 'multiplicity_bitstrings[torsion_name]'}), '(name, lower=0, upper=63, value=multiplicity_bitstrings\n [torsion_name])\n', (7686, 7761), False, 'import pymc\n'), ((8339, 8351), 'numpy.log', 'np.log', (['(0.01)'], {}), '(0.01)\n', (8345, 8351), True, 'import numpy as np\n'), ((8518, 8535), 'numpy.exp', 'np.exp', (['log_sigma'], {}), '(log_sigma)\n', (8524, 8535), True, 'import numpy as np\n'), ((8771, 8793), 'numpy.exp', 'np.exp', (['(-2 * log_sigma)'], {}), '(-2 * log_sigma)\n', (8777, 8793), True, 'import numpy as np\n'), ((9697, 9747), 'numpy.append', 'np.append', (['mm', '(mol.mm_energy / kilojoules_per_mole)'], {}), '(mm, mol.mm_energy / kilojoules_per_mole)\n', (9706, 9747), True, 'import numpy as np\n'), ((4351, 4363), 'numpy.log', 'np.log', (['(0.01)'], {}), '(0.01)\n', (4357, 4363), True, 'import numpy as np\n'), ((4614, 4633), 'numpy.exp', 'np.exp', (['log_sigma_k'], {}), '(log_sigma_k)\n', (4620, 4633), True, 'import numpy as np\n'), ((4951, 4975), 'numpy.exp', 'np.exp', (['(-2 * log_sigma_k)'], {}), '(-2 * log_sigma_k)\n', (4957, 4975), True, 'import numpy as np\n'), ((5502, 5548), 'pymc.Uniform', 'pymc.Uniform', (['name'], {'lower': '(0)', 'upper': '(20)', 'value': '(0)'}), '(name, lower=0, upper=20, value=0)\n', (5514, 5548), False, 'import pymc\n'), ((6067, 6144), 'pymc.Uniform', 'pymc.Uniform', (['name'], {'lower': '(0)', 'upper': '(20)', 'value': 'param.dihedral_types[p][i].phi_k'}), '(name, lower=0, upper=20, value=param.dihedral_types[p][i].phi_k)\n', (6079, 6144), False, 'import pymc\n'), ((8140, 8148), 'torsionfit.utils.logger', 'logger', ([], {}), '()\n', (8146, 8148), False, 'from torsionfit.utils import logger\n'), ((6583, 6668), 'pymc.Uniform', 'pymc.Uniform', (['name'], {'lower': '(0)', 'upper': '(180.0)', 'value': 'param.dihedral_types[p][i].phase'}), '(name, lower=0, upper=180.0, value=param.dihedral_types[p][i].phase\n )\n', (6595, 6668), False, 'import pymc\n'), ((7255, 7304), 'pymc.Uniform', 'pymc.Uniform', (['name'], {'lower': '(0)', 'upper': '(180.0)', 'value': '(0)'}), '(name, lower=0, upper=180.0, value=0)\n', (7267, 7304), False, 'import pymc\n'), ((7379, 7432), 'pymc.DiscreteUniform', 'pymc.DiscreteUniform', (['name'], {'lower': '(0)', 'upper': '(1)', 'value': '(0)'}), '(name, lower=0, upper=1, value=0)\n', (7399, 7432), False, 'import pymc\n'), ((6816, 6869), 'pymc.DiscreteUniform', 'pymc.DiscreteUniform', (['name'], {'lower': '(0)', 'upper': '(1)', 'value': '(0)'}), '(name, lower=0, upper=1, value=0)\n', (6836, 6869), False, 'import pymc\n'), ((7035, 7088), 'pymc.DiscreteUniform', 'pymc.DiscreteUniform', (['name'], {'lower': '(0)', 'upper': '(1)', 'value': '(1)'}), '(name, lower=0, upper=1, value=1)\n', (7055, 7088), False, 'import pymc\n')]
from numpy import random from RandomGenerator.randomDecimal import random_decimal def random_decimal_seeded(start, end, seed): state = random.get_state() random.seed(seed) try: rand_decimal_seeded = random_decimal(start, end) return rand_decimal_seeded finally: random.set_state(state)
[ "numpy.random.get_state", "RandomGenerator.randomDecimal.random_decimal", "numpy.random.seed", "numpy.random.set_state" ]
[((141, 159), 'numpy.random.get_state', 'random.get_state', ([], {}), '()\n', (157, 159), False, 'from numpy import random\n'), ((164, 181), 'numpy.random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (175, 181), False, 'from numpy import random\n'), ((221, 247), 'RandomGenerator.randomDecimal.random_decimal', 'random_decimal', (['start', 'end'], {}), '(start, end)\n', (235, 247), False, 'from RandomGenerator.randomDecimal import random_decimal\n'), ((304, 327), 'numpy.random.set_state', 'random.set_state', (['state'], {}), '(state)\n', (320, 327), False, 'from numpy import random\n')]
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the OLTR project which notice below and in LICENSE in the root directory of this source tree. Copyright (c) 2019, <NAME> All rights reserved. """ import torch import torch.nn as nn import numpy as np import torch.nn.functional as F class CrossEntropyLoss(nn.Module): def __init__(self, cls_num_list=None, reweight_CE=False): super().__init__() if reweight_CE: idx = 1 # condition could be put in order to set idx betas = [0, 0.9999] effective_num = 1.0 - np.power(betas[idx], cls_num_list) per_cls_weights = (1.0 - betas[idx]) / np.array(effective_num) per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list) self.per_cls_weights = torch.tensor(per_cls_weights, dtype=torch.float, requires_grad=False) else: self.per_cls_weights = None def to(self, device): super().to(device) if self.per_cls_weights is not None: self.per_cls_weights = self.per_cls_weights.to(device) return self def forward(self, output_logits, target): # output is logits return F.cross_entropy(output_logits, target, weight=self.per_cls_weights) def create_loss (cls_num_list=None, reweight_CE=False): print('Loading Softmax Loss.') return CrossEntropyLoss(cls_num_list, reweight_CE).cuda()
[ "numpy.sum", "numpy.power", "torch.nn.functional.cross_entropy", "numpy.array", "torch.tensor" ]
[((1370, 1437), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['output_logits', 'target'], {'weight': 'self.per_cls_weights'}), '(output_logits, target, weight=self.per_cls_weights)\n', (1385, 1437), True, 'import torch.nn.functional as F\n'), ((977, 1046), 'torch.tensor', 'torch.tensor', (['per_cls_weights'], {'dtype': 'torch.float', 'requires_grad': '(False)'}), '(per_cls_weights, dtype=torch.float, requires_grad=False)\n', (989, 1046), False, 'import torch\n'), ((740, 774), 'numpy.power', 'np.power', (['betas[idx]', 'cls_num_list'], {}), '(betas[idx], cls_num_list)\n', (748, 774), True, 'import numpy as np\n'), ((826, 849), 'numpy.array', 'np.array', (['effective_num'], {}), '(effective_num)\n', (834, 849), True, 'import numpy as np\n'), ((898, 921), 'numpy.sum', 'np.sum', (['per_cls_weights'], {}), '(per_cls_weights)\n', (904, 921), True, 'import numpy as np\n')]
# -------------- # Importing header files import numpy as np # Path of the file has been stored in variable called 'path' data = np.genfromtxt(path, delimiter = ",", skip_header = 1) #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Code starts here census = np.concatenate((data, new_record)) print(census) # -------------- #Code starts here age = census[:,0] print(age) max_age = np.max(age) print(max_age) min_age = np.min(age) print(min_age) age_mean = np.mean(age) print(age_mean) age_std = np.std(age) print(age_std) # -------------- #Code starts here race_0 = census[census[:,2] == 0] race_1 = census[census[:,2] == 1] race_2 = census[census[:,2] == 2] race_3 = census[census[:,2] == 3] race_4 = census[census[:,2] == 4] len_0 = len(race_0) len_1 = len(race_1) len_2 = len(race_2) len_3 = len(race_3) len_4 = len(race_4) minimum = min(len_0,len_1,len_2,len_3,len_4) if len_0 == minimum: minority_race = 0 elif len_1 == minimum: minority_race = 1 elif len_2 == minimum: minority_race = 2 elif len_3 == minimum: minority_race = 3 else: minority_race = 4 print(minority_race) # -------------- #Code starts here senior_citizens = census[census[:,0] > 60] working_hours_sum = sum(senior_citizens[:,6]) senior_citizens_len = len(senior_citizens) avg_working_hours = working_hours_sum / senior_citizens_len print(avg_working_hours) # -------------- #Code starts here high = census[census[:,1] > 10] low = census[census[:,1] <= 10] avg_pay_high = np.mean(high[:,7]) avg_pay_low = np.mean(low[:,7]) print(avg_pay_high) print(avg_pay_low)
[ "numpy.std", "numpy.genfromtxt", "numpy.max", "numpy.mean", "numpy.min", "numpy.concatenate" ]
[((134, 183), 'numpy.genfromtxt', 'np.genfromtxt', (['path'], {'delimiter': '""","""', 'skip_header': '(1)'}), "(path, delimiter=',', skip_header=1)\n", (147, 183), True, 'import numpy as np\n'), ((279, 313), 'numpy.concatenate', 'np.concatenate', (['(data, new_record)'], {}), '((data, new_record))\n', (293, 313), True, 'import numpy as np\n'), ((410, 421), 'numpy.max', 'np.max', (['age'], {}), '(age)\n', (416, 421), True, 'import numpy as np\n'), ((449, 460), 'numpy.min', 'np.min', (['age'], {}), '(age)\n', (455, 460), True, 'import numpy as np\n'), ((489, 501), 'numpy.mean', 'np.mean', (['age'], {}), '(age)\n', (496, 501), True, 'import numpy as np\n'), ((530, 541), 'numpy.std', 'np.std', (['age'], {}), '(age)\n', (536, 541), True, 'import numpy as np\n'), ((1573, 1592), 'numpy.mean', 'np.mean', (['high[:, 7]'], {}), '(high[:, 7])\n', (1580, 1592), True, 'import numpy as np\n'), ((1607, 1625), 'numpy.mean', 'np.mean', (['low[:, 7]'], {}), '(low[:, 7])\n', (1614, 1625), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np test_arr = [[np.zeros(shape=(2, 2), dtype="float32"), 0], [np.ones(shape=(2, 2), dtype="float32"), 1]] def input_gen(): for i in range(len(test_arr)): label = test_arr[i][1] features = test_arr[i][0] yield label, features dataset = tf.data.Dataset.from_generator(input_gen, output_types=(tf.int64, tf.float32)).batch(1) iterator = dataset.make_initializable_iterator() x, y = iterator.get_next() print(x, y)
[ "tensorflow.data.Dataset.from_generator", "numpy.zeros", "numpy.ones" ]
[((57, 96), 'numpy.zeros', 'np.zeros', ([], {'shape': '(2, 2)', 'dtype': '"""float32"""'}), "(shape=(2, 2), dtype='float32')\n", (65, 96), True, 'import numpy as np\n'), ((103, 141), 'numpy.ones', 'np.ones', ([], {'shape': '(2, 2)', 'dtype': '"""float32"""'}), "(shape=(2, 2), dtype='float32')\n", (110, 141), True, 'import numpy as np\n'), ((308, 386), 'tensorflow.data.Dataset.from_generator', 'tf.data.Dataset.from_generator', (['input_gen'], {'output_types': '(tf.int64, tf.float32)'}), '(input_gen, output_types=(tf.int64, tf.float32))\n', (338, 386), True, 'import tensorflow as tf\n')]
""" Tools for gapfilling missing data. Gapfill functions that can be applied are called from the gapfunctions module. """ import pandas as pd import numpy as np from datetime import datetime from sawyer import gapfunctions as gfuncs import sawyer.plots as dpl import sawyer.io as sio import sawyer.dtools as tools from IPython.core.debugger import set_trace class GapfillSource: """ Class to make gapfilling data accessible """ def __init__(self, dlevel, gapconfs): """ Initialize GapfillSource object. """ # Get a list of all sources in the gapfill.yaml file (exclude items # without external sources like interp and fillna) sourcelist = [gapconfs[k]['sources'].keys() for k in gapconfs.keys() if 'sources' in gapconfs[k]] sourcelist = [item for sublist in sourcelist for item in sublist] self.sourcelist = set(sourcelist) for i in self.sourcelist: files = sio.get_file_list(sio.get_datadir(i, datalevel=dlevel)) if len(files) < 1: raise ValueError('Data from logger {0} and level {1} is not available to gapfill!'.format(i, dlevel)) if not self.sourcelist: print('Gapfilling configuration contains no external sources...') else: # Load dataframes for all external sources into a dictionary self.sources = {} self.externalsource = True for s in self.sourcelist: if s in sio.sy.loggers: # Check if datalogger is in project self.sources[s], _ = sio.get_latest_df(s, dlevel, optmatch='masked') else: # Eventually check for other sources... raise ValueError('Source not configured for gapfilling!') def get_source_list(self, colnum, gapconf, targetidx): """ Get data from requested source. """ sources = gapconf['sources'] source_list = [] source_df = pd.DataFrame(index=targetidx) # Multi-source fills send a >1 list of dataframes to gffunc if len(sources) > 1: # For each source for i, sname in enumerate(sources.keys()): sourcecols = sources[sname] filldf = self.sources[sname].loc[:,sourcecols[colnum]] filldf.name = sname + '_' + filldf.name source_list.append(source_df.join(filldf)) # Single source fills send a one dataframe list to gffunc else: sname = list(sources.keys())[0] sourcecol = sources[sname][colnum] filldf = self.sources[sname].loc[:,sourcecol] source_list.append(source_df.join(filldf)) # The source data can be trimmed, which could be useful for linear # fits. if 'start_fit' in gapconf and 'end_fit' in gapconf: stf = gapconf['start_fit'] if stf is None: stf = source_df.index.min() enf = gapconf['end_fit'] if enf is None: enf = datetime.now() # Get the index range to be trimmed idxrange = np.logical_and(source_df.index >= stf, source_df.index <= enf) for i, f in enumerate(source_list): source_list[i] = source_list[i].loc[idxrange,:] return source_list def get_gffunction(gapconf): """ Get the gapfilling function and arguments """ args = (); kwargs = {} if 'gf_function' in gapconf: outfunc = getattr(gfuncs, gapconf['gf_function']) if 'gf_kwargs' in gapconf and gapconf['gf_kwargs'] is not None: kwargs = gapconf['gf_kwargs'] else: outfunc = getattr(gffunctions, 'substitution') return [outfunc, kwargs] def validate_gf_conf(gapconf, gapcolumns): # Make a gapconf to validate vgapconf = gapconf.copy() for c, conf in vgapconf.items(): conf['filltype'] = 'self' # Validate conf key (non-zero) assert c not in (0, '0') # Check for required keys required_keys = ('gf_function', 'gap_cols', 'start_fill', 'end_fill') assert all (k in conf for k in required_keys) # First - copy gapfilling df column names into conf if requested if conf['gap_cols']=='all': conf['gap_cols'] = gapcolumns # Check if gap_cols could be expanded expand_gfcols = not all([c in gapcolumns for c in conf['gap_cols']]) # External source(s) required to gapfill? # Are they present and same length? if conf['gf_function'] in gfuncs.require_src: assert ('sources' in conf.keys() and len(conf['sources']) > 0) sources_columns = [conf['sources'][k] for k in conf['sources'].keys()] sourcelen = len(sources_columns[0]) assert all(len(l) == sourcelen for l in sources_columns) # A bunch of stuff to expand or fill in columns for gapfilling # For one source fills (same source/column fills all gap_cols) if sourcelen==1 and len(conf['gap_cols'])==1 and not expand_gfcols: conf['filltype'] = 'one2one' elif sourcelen==1 and len(conf['gap_cols'])==1 and expand_gfcols: conf['filltype'] = 'one2many' test = [any(s in var for s in conf['gap_cols']) for var in gapcolumns] conf['gap_cols'] = gapcolumns[test] elif sourcelen==1 and len(conf['gap_cols'])>1 and not expand_gfcols: conf['filltype'] = 'one2many' elif sourcelen==1 and len(conf['gap_cols'])>1 and expand_gfcols: conf['filltype'] = 'one2many' test = [any(s in var for s in conf['gap_cols']) for var in gapcolumns] conf['gap_cols'] = gapcolumns[test] # For many-source fills, gap_cols must be same length elif (sourcelen > 1 and sourcelen==len(conf['gap_cols']) and not expand_gfcols): conf['filltype'] = 'many2many' elif (sourcelen > 1 and sourcelen!=len(conf['gap_cols']) and not expand_gfcols): raise ValueError('The number of source and gapfill columns in ' 'the configuration file do not match') elif (sourcelen > 1 and sourcelen==len(conf['gap_cols']) and expand_gfcols): raise ValueError('Some of the gapfill columns are incorrect in ' 'the configuration file.') else: raise ValueError('Unspecified error') # If no sources required, just expand gap_cols if needed else: # Or find dataframe columns matching those in qa_flags conf['gap_cols'] = tools.regex_colnames( gapcolumns, conf['gap_cols']) # Copy modified configuration into vgaconf vgapconf[c] = conf return vgapconf def apply_gapfilling(df_in, dlevel, gapconf, plot=False): """ Apply gapfilling to a dataframe. The incoming dataframe (df) is copied and gaps are filled according to the function and parameters in gapconf. These changes are recorded in the logical array (df_isfilled) Args: df : input dataframe (a qa_masked dataframe for a logger) gapconf : dict from the logger's gapfill.yaml in sawyer_config plot : if True, make diagnostic plots for gapfilled column in df Returns: Three pandas dataframes with identical dimensions to the input df df_new : dataframe with any gaps filled using methods in gapconf df_isfilled : logical dataframe indicating filling (True = filled) """ # Make a copy to be a gapfilled dataframe and a boolean array df = df_in.copy() df_isfilled = pd.DataFrame(False, index=df.index, columns=df.columns) # Get gapfilling sources object gfsource = GapfillSource(dlevel, gapconf) # Loop through gapconf for k, conf in gapconf.items(): # Get the start and end fill dates st = conf['start_fill'] if st is None: st = df.index.min() en = conf['end_fill'] if en is None: en = datetime.now() # Get the index range to be filled fillidx = np.logical_and(df.index >= st, df.index <= en) # Get the gapfilling function and arguments gffunc, gf_kwargs = get_gffunction(conf) print('Fill gap {0}, using {1}.'.format(k, gffunc)) # Now loop through for c, col in enumerate(conf['gap_cols']): print('Fill column {0}'.format(col)) gf_sources = [] to_fill = df[col] # Source data must be sent to gffunc, and it must be adjusted # by methods in the gfsource depending on filltype if conf['filltype'] == 'one2one' or conf['filltype'] == 'one2many': gf_sources = gfsource.get_source_list(0, conf, to_fill.index) elif conf['filltype'] == 'many2many': gf_sources = gfsource.get_source_list(c, conf, to_fill.index) # Run the gapfilling function df[col], gf_bool = gffunc(to_fill, fillidx, *gf_sources, **gf_kwargs) df_isfilled[col] = np.logical_or(gf_bool, df_isfilled[col]) # Plot if requested if plot: import matplotlib.pyplot as plt fig, ax = plt.subplots(1,1) dpl.gf_var_tsplot(ax, col, df_in, df) plt.show() # Rewrite df_flag column names df_isfilled.columns = df_isfilled.columns + '_f' return df, df_isfilled def fill_logger(lname, dlevel, plot=False): """ Get a gapfilled dataframe for the given logger and a boolean dataframe indicating what data is filled. Args: lname (string): datalogger name dlevel (string): data level to gapfill plot (bool): if set, make a plot of the gapfilling Returns: df_gf : gapfilled dataframe df_isfilled : boolean dataframe indicating what values are filled filedate : datetime object indicating last date of data collection """ # Get most recent qa masked data file for logger df, filedate = sio.get_latest_df(lname, dlevel, optmatch='masked') # Get gapfilling configuration gapconf = sio.read_yaml_conf(lname, 'gapfill') # Validate gapconf gapconfv = validate_gf_conf(gapconf, df.columns) # Fill gaps df_gf, df_isfilled = apply_gapfilling(df, dlevel, gapconfv, plot=plot) return df_gf, df_isfilled, filedate
[ "pandas.DataFrame", "matplotlib.pyplot.show", "numpy.logical_and", "sawyer.dtools.regex_colnames", "matplotlib.pyplot.subplots", "sawyer.io.get_datadir", "sawyer.io.read_yaml_conf", "numpy.logical_or", "sawyer.plots.gf_var_tsplot", "sawyer.io.get_latest_df", "datetime.datetime.now" ]
[((7957, 8012), 'pandas.DataFrame', 'pd.DataFrame', (['(False)'], {'index': 'df.index', 'columns': 'df.columns'}), '(False, index=df.index, columns=df.columns)\n', (7969, 8012), True, 'import pandas as pd\n'), ((10443, 10494), 'sawyer.io.get_latest_df', 'sio.get_latest_df', (['lname', 'dlevel'], {'optmatch': '"""masked"""'}), "(lname, dlevel, optmatch='masked')\n", (10460, 10494), True, 'import sawyer.io as sio\n'), ((10544, 10580), 'sawyer.io.read_yaml_conf', 'sio.read_yaml_conf', (['lname', '"""gapfill"""'], {}), "(lname, 'gapfill')\n", (10562, 10580), True, 'import sawyer.io as sio\n'), ((2036, 2065), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'targetidx'}), '(index=targetidx)\n', (2048, 2065), True, 'import pandas as pd\n'), ((8442, 8488), 'numpy.logical_and', 'np.logical_and', (['(df.index >= st)', '(df.index <= en)'], {}), '(df.index >= st, df.index <= en)\n', (8456, 8488), True, 'import numpy as np\n'), ((3198, 3260), 'numpy.logical_and', 'np.logical_and', (['(source_df.index >= stf)', '(source_df.index <= enf)'], {}), '(source_df.index >= stf, source_df.index <= enf)\n', (3212, 3260), True, 'import numpy as np\n'), ((6917, 6967), 'sawyer.dtools.regex_colnames', 'tools.regex_colnames', (['gapcolumns', "conf['gap_cols']"], {}), "(gapcolumns, conf['gap_cols'])\n", (6937, 6967), True, 'import sawyer.dtools as tools\n'), ((8366, 8380), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (8378, 8380), False, 'from datetime import datetime\n'), ((9452, 9492), 'numpy.logical_or', 'np.logical_or', (['gf_bool', 'df_isfilled[col]'], {}), '(gf_bool, df_isfilled[col])\n', (9465, 9492), True, 'import numpy as np\n'), ((997, 1033), 'sawyer.io.get_datadir', 'sio.get_datadir', (['i'], {'datalevel': 'dlevel'}), '(i, datalevel=dlevel)\n', (1012, 1033), True, 'import sawyer.io as sio\n'), ((3112, 3126), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3124, 3126), False, 'from datetime import datetime\n'), ((9617, 9635), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (9629, 9635), True, 'import matplotlib.pyplot as plt\n'), ((9651, 9688), 'sawyer.plots.gf_var_tsplot', 'dpl.gf_var_tsplot', (['ax', 'col', 'df_in', 'df'], {}), '(ax, col, df_in, df)\n', (9668, 9688), True, 'import sawyer.plots as dpl\n'), ((9705, 9715), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9713, 9715), True, 'import matplotlib.pyplot as plt\n'), ((1614, 1661), 'sawyer.io.get_latest_df', 'sio.get_latest_df', (['s', 'dlevel'], {'optmatch': '"""masked"""'}), "(s, dlevel, optmatch='masked')\n", (1631, 1661), True, 'import sawyer.io as sio\n')]
from car_utils import get_rotation, get_car_can_path, get_points_rotated from street_view import ImageWgsHandler import sys import time import threading from argparse import ArgumentParser import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import cv2 from car_utils import OFFSET_STEERING, WHEEL_STEER_RATIO loopBool = True orientation, offset_x, offset_y = 0., 0., 0. fig_gps, fig_path = None, None ax_gps, ax_path = None, None base_coord = None gps_split = None speed_split, steer_split = None, None loaded = False interval_idx = -1 steering_offset, steering_ratio = None, None factor = 1. def closeLooping(): global loopBool loopBool = False def looping(): global loopBool, loaded global orientation, offset_x, offset_y global fig_gps, fig_path global ax_gps, ax_path global base_coord global gps_split global speed_split, steer_split global interval_idx global steering_offset, steering_ratio g_out_fld = export_info["g_out_fld"] for idx, (tp_start, tp_end) in enumerate(cut_intervals): if idx < start_idx: continue print(f"{idx} - {tp_start} : {tp_end}") interval_idx = idx tp_start += tp_reference tp_end += tp_reference rideID = export_info["rideIDs"][idx] camera_base_path = os.path.join(g_out_fld, rideID[:16]) camera_path = f"{camera_base_path}-{0}.mov" if os.path.isfile(camera_path): vid = cv2.VideoCapture(camera_path) no_frames = vid.get(cv2.CAP_PROP_FRAME_COUNT) ret, frame = vid.read() cv2.imshow("First frame", frame) cv2.waitKey(1) vid.set(cv2.CAP_PROP_POS_FRAMES, no_frames-2) ret, frame = vid.read() cv2.imshow("Last frame", frame) cv2.waitKey(3) vid.set(cv2.CAP_PROP_POS_FRAMES, int(no_frames/3)) ret, frame = vid.read() cv2.imshow("Frame 1/3", frame) cv2.waitKey(3) vid.set(cv2.CAP_PROP_POS_FRAMES, int(no_frames/3*2)) ret, frame = vid.read() cv2.imshow("Frame 2/3", frame) cv2.waitKey(3) phone_split = phone[(phone.tp >= tp_start) & (phone.tp < tp_end)] steer_split = steer[(steer.tp >= tp_start) & (steer.tp < tp_end)] speed_split = speed[(speed.tp >= tp_start) & (speed.tp < tp_end)] gps_split = gps_unique[(gps_unique.tp >= tp_start) & (gps_unique.tp < tp_end)] if prev_annotation is None or idx not in prev_annotation_idx: steering_offset = OFFSET_STEERING steering_ratio = WHEEL_STEER_RATIO print(len(speed_split)) print(len(steer_split)) can_coord = get_car_can_path(speed_split.copy(), steer_split.copy()) guess_orientation = np.random.uniform(0, 360) guess_offest_x = np.random.uniform(-4, 4) guess_offest_y = np.random.uniform(-4, 4) if len(gps_split) > 0: new_points, new_gps_unique, result = get_rotation(can_coord.copy(), gps_split.copy(), guess_orientation=guess_orientation, guess_offest_x=guess_offest_x, guess_offest_y=guess_offest_y, simple=False) orientation, offset_x, offset_y = result.x offset_x += gps_split.iloc[0].easting offset_y += gps_split.iloc[0].northing else: print("ERROR: No GPS Points (will random guess)") orientation = guess_orientation # offset_x, offset_y # Previous offset closest_gps = gps_unique.iloc[(gps_unique.tp - tp_start).values.argmin()] offset_x = closest_gps.easting offset_y = closest_gps.northing else: prev = prev_annotation[prev_annotation.interval_idx == idx].iloc[0] orientation = prev.orientation steering_offset = prev.steering_offset steering_ratio = prev.wheel_steer_ratio if use_px_coord: offset_px_row, offset_px_col = prev.offset_px_row, prev.offset_px_col offset_x, offset_y = map_viewer.get_wgs_coord(offset_px_row, offset_px_col) offset_x, offset_y = offset_x[0], offset_y[0] else: offset_x, offset_y = prev.offset_x, prev.offset_y can_coord = get_car_can_path(speed_split.copy(), steer_split.copy(), steering_offset=steering_offset, wheel_steer_ratio=steering_ratio) base_coord = can_coord[["coord_x", "coord_y"]].values loaded = True print("Adjust ...") while loopBool == True: time.sleep(1) print("Go to next map...") loaded = False loopBool = True print("Stop!!") def looping_pre(): # this is new thread = threading.Thread(target=looping, args=()) # thread.daemon=True #might or might not be needed thread.start() if __name__ == "__main__": arg_parser = ArgumentParser() arg_parser = ArgumentParser(description='.') arg_parser.add_argument('dataset', help='Path to dataset folder.') arg_parser.add_argument('export_info', help='Path to export_info file.') arg_parser.add_argument('--map', default="util_data/high_res_full_UPB_hybrid.jpg", help='Map.') arg_parser.add_argument('--start-idx', default=0, type=int, help='interval start idx.') arg_parser.add_argument('--prev-annotation', default=None, type=str, help='Previous annotation csv file.') arg_parser.add_argument('--use-px-coord', default=False, type=bool, help='Use conversion from px to coord from ' 'csv file.') arg = arg_parser.parse_args() start_idx = arg.start_idx exp = arg.dataset prev_annotation = arg.prev_annotation use_px_coord = arg.use_px_coord prev_annotation_idx = [] # Load data export_info = np.load(arg.export_info).item() phone = pd.read_pickle("{}/phone.log.pkl".format(exp)) steer = pd.read_csv("{}/steer.csv".format(exp)) speed = pd.read_csv("{}/speed.csv".format(exp)) map_viewer = ImageWgsHandler(arg.map) if prev_annotation: prev_annotation = pd.read_csv(prev_annotation) prev_annotation_idx = prev_annotation.interval_idx.values gps_unique = phone.groupby(['loc_tp']).head(1).copy() fig, ax = map_viewer.plot_wgs_coord(gps_unique.easting.values, gps_unique.northing.values) ax.set_title(f"{exp} full dataset") cut_intervals = export_info["cut_intervals"] tp_reference = export_info["tp_reference"] fig_path, ax_path = plt.subplots() fig_gps, ax_gps = plt.subplots() looping_pre() convert_method = 1 while not loaded: time.sleep(0.1) ax_gps.clear() map_viewer.plot_wgs_coord(gps_split.easting.values, gps_split.northing.values, ax=ax_gps) fig_gps.canvas.draw() plt.draw() solver_path = f"{os.path.splitext(arg.export_info)[0]}_{int(time.time()%10000)}.csv" print(f"Writing solutions to: {solver_path}") solver = open(solver_path, "a") solver.write(f"interval_idx,start,end,orientation,offset_x,offset_y," f"offset_px_row,offset_px_col,steering_offset,wheel_steer_ratio" f"\n") def press(event): global orientation, offset_x, offset_y, fig_path, ax_path, base_coord, gps_split, loaded global interval_idx global convert_method global steering_offset, steering_ratio global speed_split, steer_split global factor load_next, save_conf = False, False redo_can_path = False sys.stdout.flush() if event.key == 'up': offset_y += 0.1 * factor elif event.key == 'down': offset_y -= 0.1 * factor elif event.key == 'right': offset_x += 0.1 * factor elif event.key == 'left': offset_x -= 0.1 * factor elif event.key == ',': orientation -= 0.30 * factor elif event.key == '.': orientation += 0.30 * factor elif event.key == 'u': redo_can_path = True steering_offset += 0.10 * factor elif event.key == 'i': redo_can_path = True steering_offset -= 0.10 * factor elif event.key == 'o': redo_can_path = True steering_ratio += 0.05 * factor elif event.key == 'p': redo_can_path = True steering_ratio -= 0.05 * factor elif event.key == '-': redo_can_path = True factor *= 0.1 print(f"New factor: {factor}") elif event.key == '+': redo_can_path = True factor *= 10. print(f"New factor: {factor}") elif event.key == 'c': convert_method = int(not convert_method) elif event.key == 'n': load_next = True save_conf = True elif event.key == 'm': print(f"This {interval_idx} - {orientation},{offset_x},{offset_y},{steering_offset},{steering_ratio}") elif event.key == 'x': print(f"skip interval: {interval_idx}") save_conf = False load_next = True elif event.key == 'e': plt.close("all") cv2.destroyAllWindows() exit(0) if redo_can_path: can_coord = get_car_can_path(speed_split.copy(), steer_split.copy(), steering_offset=steering_offset, wheel_steer_ratio=steering_ratio) base_coord = can_coord[["coord_x", "coord_y"]].values if load_next: loaded = False if save_conf: # Save final configuration print(f"Done {interval_idx} - {orientation},{offset_x},{offset_y},{steering_offset},{steering_ratio}") st, end = cut_intervals[interval_idx] st += tp_reference end += tp_reference px_row, px_col = map_viewer.get_image_coord([offset_x], [offset_y]) solver.write(f"{interval_idx},{st},{end},{orientation},{offset_x},{offset_y}," f"{px_row[0]},{px_col[0]},{steering_offset},{steering_ratio}\n") solver.flush() closeLooping() while not loaded: time.sleep(0.1) print("Draw gps small") ax_gps.clear() map_viewer.plot_wgs_coord(gps_split.easting.values, gps_split.northing.values, ax=ax_gps, convert_method=convert_method) fig_gps.canvas.draw() plt.draw() steering_offset = OFFSET_STEERING steering_ratio = WHEEL_STEER_RATIO new_points = get_points_rotated(base_coord, orientation, offset_x, offset_y) # if fig_path is not None: ax_path.clear() map_viewer.plot_wgs_coord(new_points[:, 0], new_points[:, 1], ax=ax_path, convert_method=convert_method) map_viewer.plot_wgs_coord(gps_split.easting.values, gps_split.northing.values, ax=ax_path, show_image=False, c="b", convert_method=convert_method) plt.draw() fig_path.canvas.mpl_connect('key_press_event', press) plt.show() plt.pause(0.0001)
[ "numpy.load", "argparse.ArgumentParser", "pandas.read_csv", "car_utils.get_points_rotated", "os.path.isfile", "sys.stdout.flush", "cv2.imshow", "os.path.join", "matplotlib.pyplot.close", "matplotlib.pyplot.draw", "cv2.destroyAllWindows", "matplotlib.pyplot.pause", "matplotlib.pyplot.subplots", "threading.Thread", "matplotlib.pyplot.show", "cv2.waitKey", "time.sleep", "numpy.random.uniform", "time.time", "cv2.VideoCapture", "street_view.ImageWgsHandler", "os.path.splitext" ]
[((5159, 5200), 'threading.Thread', 'threading.Thread', ([], {'target': 'looping', 'args': '()'}), '(target=looping, args=())\n', (5175, 5200), False, 'import threading\n'), ((5323, 5339), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (5337, 5339), False, 'from argparse import ArgumentParser\n'), ((5357, 5388), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""."""'}), "(description='.')\n", (5371, 5388), False, 'from argparse import ArgumentParser\n'), ((6487, 6511), 'street_view.ImageWgsHandler', 'ImageWgsHandler', (['arg.map'], {}), '(arg.map)\n', (6502, 6511), False, 'from street_view import ImageWgsHandler\n'), ((6975, 6989), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (6987, 6989), True, 'import matplotlib.pyplot as plt\n'), ((7012, 7026), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (7024, 7026), True, 'import matplotlib.pyplot as plt\n'), ((7289, 7299), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (7297, 7299), True, 'import matplotlib.pyplot as plt\n'), ((11712, 11722), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11720, 11722), True, 'import matplotlib.pyplot as plt\n'), ((11727, 11744), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.0001)'], {}), '(0.0001)\n', (11736, 11744), True, 'import matplotlib.pyplot as plt\n'), ((1344, 1380), 'os.path.join', 'os.path.join', (['g_out_fld', 'rideID[:16]'], {}), '(g_out_fld, rideID[:16])\n', (1356, 1380), False, 'import os\n'), ((1445, 1472), 'os.path.isfile', 'os.path.isfile', (['camera_path'], {}), '(camera_path)\n', (1459, 1472), False, 'import os\n'), ((6563, 6591), 'pandas.read_csv', 'pd.read_csv', (['prev_annotation'], {}), '(prev_annotation)\n', (6574, 6591), True, 'import pandas as pd\n'), ((7100, 7115), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (7110, 7115), False, 'import time\n'), ((8029, 8047), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (8045, 8047), False, 'import sys\n'), ((11201, 11264), 'car_utils.get_points_rotated', 'get_points_rotated', (['base_coord', 'orientation', 'offset_x', 'offset_y'], {}), '(base_coord, orientation, offset_x, offset_y)\n', (11219, 11264), False, 'from car_utils import get_rotation, get_car_can_path, get_points_rotated\n'), ((11637, 11647), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (11645, 11647), True, 'import matplotlib.pyplot as plt\n'), ((1492, 1521), 'cv2.VideoCapture', 'cv2.VideoCapture', (['camera_path'], {}), '(camera_path)\n', (1508, 1521), False, 'import cv2\n'), ((1629, 1661), 'cv2.imshow', 'cv2.imshow', (['"""First frame"""', 'frame'], {}), "('First frame', frame)\n", (1639, 1661), False, 'import cv2\n'), ((1674, 1688), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1685, 1688), False, 'import cv2\n'), ((1796, 1827), 'cv2.imshow', 'cv2.imshow', (['"""Last frame"""', 'frame'], {}), "('Last frame', frame)\n", (1806, 1827), False, 'import cv2\n'), ((1840, 1854), 'cv2.waitKey', 'cv2.waitKey', (['(3)'], {}), '(3)\n', (1851, 1854), False, 'import cv2\n'), ((1967, 1997), 'cv2.imshow', 'cv2.imshow', (['"""Frame 1/3"""', 'frame'], {}), "('Frame 1/3', frame)\n", (1977, 1997), False, 'import cv2\n'), ((2010, 2024), 'cv2.waitKey', 'cv2.waitKey', (['(3)'], {}), '(3)\n', (2021, 2024), False, 'import cv2\n'), ((2139, 2169), 'cv2.imshow', 'cv2.imshow', (['"""Frame 2/3"""', 'frame'], {}), "('Frame 2/3', frame)\n", (2149, 2169), False, 'import cv2\n'), ((2182, 2196), 'cv2.waitKey', 'cv2.waitKey', (['(3)'], {}), '(3)\n', (2193, 2196), False, 'import cv2\n'), ((2858, 2883), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(360)'], {}), '(0, 360)\n', (2875, 2883), True, 'import numpy as np\n'), ((2913, 2937), 'numpy.random.uniform', 'np.random.uniform', (['(-4)', '(4)'], {}), '(-4, 4)\n', (2930, 2937), True, 'import numpy as np\n'), ((2967, 2991), 'numpy.random.uniform', 'np.random.uniform', (['(-4)', '(4)'], {}), '(-4, 4)\n', (2984, 2991), True, 'import numpy as np\n'), ((4992, 5005), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (5002, 5005), False, 'import time\n'), ((6275, 6299), 'numpy.load', 'np.load', (['arg.export_info'], {}), '(arg.export_info)\n', (6282, 6299), True, 'import numpy as np\n'), ((11074, 11084), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (11082, 11084), True, 'import matplotlib.pyplot as plt\n'), ((7322, 7355), 'os.path.splitext', 'os.path.splitext', (['arg.export_info'], {}), '(arg.export_info)\n', (7338, 7355), False, 'import os\n'), ((10777, 10792), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (10787, 10792), False, 'import time\n'), ((7365, 7376), 'time.time', 'time.time', ([], {}), '()\n', (7374, 7376), False, 'import time\n'), ((9677, 9693), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (9686, 9693), True, 'import matplotlib.pyplot as plt\n'), ((9706, 9729), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (9727, 9729), False, 'import cv2\n')]
#! /bin/env python """ Examples -------- Create a grid of length 2 in the x direction, and 3 in the y direction. >>> (x, y) = np.meshgrid ([1., 2., 4., 8.], [1., 2., 3.]) >>> g = Structured(y.flatten(), x.flatten(), [3, 4]) >>> g.get_point_count() 12 >>> g.get_cell_count() 6 >>> g.get_x() array([ 1., 2., 4., 8., 1., 2., 4., 8., 1., 2., 4., 8.]) >>> g.get_y() array([ 1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.]) >>> g.get_shape() array([3, 4]) Create a grid of length 2 in the i direction, and 3 in the j direction. >>> (x, y) = np.meshgrid ([1., 2., 4., 8.], [1., 2., 3.]) >>> g = Structured (y.flatten (), x.flatten (), (3, 4), indexing='ij') >>> g.get_x() array([ 1., 2., 4., 8., 1., 2., 4., 8., 1., 2., 4., 8.]) >>> g.get_y() array([ 1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.]) >>> g.get_shape() array([3, 4]) >>> g.get_offset() array([ 4, 8, 12, 16, 20, 24]) >>> g.get_connectivity() array([ 0, 1, 5, 4, 1, 2, 6, 5, 2, 3, 7, 6, 4, 5, 9, 8, 5, 6, 10, 9, 6, 7, 11, 10]) **Structured grid of points** The same grid as the previous example but without any cells - just points. >>> (x, y) = np.meshgrid ([1., 2., 4., 8.], [1., 2., 3.]) >>> g = StructuredPoints (y.flatten (), x.flatten (), (3, 4), indexing='ij', set_connectivity=True) >>> g.get_x() array([ 1., 2., 4., 8., 1., 2., 4., 8., 1., 2., 4., 8.]) >>> g.get_y() array([ 1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.]) >>> g.get_shape() array([3, 4]) The number of points are the same, but the number of cells is now 0. >>> g.get_point_count() 12 >>> g.get_cell_count() 0 The offset runs from 1 up to (and including) the number of points. >>> all (g.get_offset ()==np.arange (1, g.get_point_count ()+1)) True The connectivity runs from 0 to one less than the number of points. >>> all (g.get_connectivity ()==np.arange (g.get_point_count ())) True **1D Grid of line segments** >>> g = Structured([-1, 2, 3, 6], (4, )) >>> g.get_x() array([-1., 2., 3., 6.]) >>> g.get_y() Traceback (most recent call last): ... IndexError: Dimension out of bounds >>> g.get_shape() array([4]) >>> g.get_offset() array([2, 4, 6]) >>> g.get_connectivity() array([0, 1, 1, 2, 2, 3]) **3D Grid of cubes** >>> x = [0, 1, 0, 1, 0, 1, 0, 1] >>> y = [0, 0, 1, 1, 0, 0, 1, 1] >>> z = [0, 0, 0, 0, 1, 1, 1, 1] >>> g = Structured(z, y, x, (2, 2, 2)) >>> g.get_x() array([ 0., 1., 0., 1., 0., 1., 0., 1.]) >>> g.get_y() array([ 0., 0., 1., 1., 0., 0., 1., 1.]) >>> g.get_z() array([ 0., 0., 0., 0., 1., 1., 1., 1.]) >>> g.get_connectivity() array([0, 1, 3, 2, 4, 5, 7, 6]) >>> g.get_offset() array([8]) >>> g = Structured(x, y, z, (2, 2, 2), ordering='ccw') >>> g.get_connectivity() array([1, 0, 2, 3, 5, 4, 6, 7]) """ import warnings import numpy as np from pymt.grids.connectivity import get_connectivity from pymt.grids.utils import get_default_coordinate_names, get_default_coordinate_units from .unstructured import Unstructured, UnstructuredPoints class StructuredPoints(UnstructuredPoints): def __init__(self, *args, **kwds): """StructuredPoints(x0 [, x1 [, x2]], shape)""" (coordinates, shape) = (args[:-1], args[-1]) if len(coordinates) < 1 or len(coordinates) > 3: raise ValueError("number of dimensions must be between 1 and 3") kwds.setdefault("set_connectivity", True) indexing = kwds.pop("indexing", "xy") if indexing != "ij": warnings.warn("only ij indexing is supported", RuntimeWarning) indexing = "ij" coordinate_names = kwds.pop( "coordinate_names", get_default_coordinate_names(len(coordinates)) ) coordinate_units = kwds.pop( "units", get_default_coordinate_units(len(coordinates)) ) self._shape = np.array(shape, dtype=int) kwds["units"] = coordinate_units kwds["coordinate_names"] = coordinate_names super().__init__(*coordinates, **kwds) def get_shape(self, remove_singleton=False): """The shape of the structured grid with the given indexing. Use remove_singleton=False to include singleton dimensions. """ shape = self._shape.copy() if remove_singleton: shape = shape[shape > 1] return shape def get_coordinate_units(self, i): return super().get_coordinate_units(i) def get_coordinate_name(self, i): return super().get_coordinate_name(i) def get_coordinate(self, i): return super().get_coordinate(i) def get_point_coordinates(self, *args, **kwds): return super().get_point_coordinates(*args, **kwds) class Structured(StructuredPoints, Unstructured): """Create a structured rectilinear grid. Parameters ---------- x: ndarray 1-D array of x-coordinates of nodes. y: ndarray 1-D array of y-coordinates of nodes. shape: tuple of int Shape of the grid. indexing: {'xy', 'ij'}, optional Cartesian('xy', default) or matrix('ij') indexing of output. Returns ------- Structured An instance of a Structured grid. """ def __init__(self, *args, **kwds): kwds.setdefault("indexing", "xy") kwds.setdefault("set_connectivity", True) ordering = kwds.pop("ordering", "cw") if ordering not in ["cw", "ccw"]: raise TypeError("ordering not understood (valid choices are 'cw' or 'ccw')") shape = args[-1] if kwds["set_connectivity"]: (c, o) = get_connectivity(shape, ordering=ordering, with_offsets=True) self._set_connectivity(c, o) kwds["set_connectivity"] = False super().__init__(*args, **kwds) if __name__ == "__main__": import doctest doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
[ "warnings.warn", "pymt.grids.connectivity.get_connectivity", "numpy.array", "doctest.testmod" ]
[((5855, 5912), 'doctest.testmod', 'doctest.testmod', ([], {'optionflags': 'doctest.NORMALIZE_WHITESPACE'}), '(optionflags=doctest.NORMALIZE_WHITESPACE)\n', (5870, 5912), False, 'import doctest\n'), ((3872, 3898), 'numpy.array', 'np.array', (['shape'], {'dtype': 'int'}), '(shape, dtype=int)\n', (3880, 3898), True, 'import numpy as np\n'), ((3516, 3578), 'warnings.warn', 'warnings.warn', (['"""only ij indexing is supported"""', 'RuntimeWarning'], {}), "('only ij indexing is supported', RuntimeWarning)\n", (3529, 3578), False, 'import warnings\n'), ((5613, 5674), 'pymt.grids.connectivity.get_connectivity', 'get_connectivity', (['shape'], {'ordering': 'ordering', 'with_offsets': '(True)'}), '(shape, ordering=ordering, with_offsets=True)\n', (5629, 5674), False, 'from pymt.grids.connectivity import get_connectivity\n')]
# -*- coding: utf-8 -*- """ Thresholds Functions This file helps to calculate useful statistics to further choose thresholds Created on Fri May 15 12:47:14 2020 Authors: <NAME> (<EMAIL>) <NAME> (<EMAIL>) """ import numpy as np import pandas as pd from trackintel.geogr.distances import haversine_dist # Local files import help_functions as hlp def stydiffstat(dataNameList, SELECT_RANGE, dateStart, dateEnd): """ Return the place name of input places Parameters ---------- dataNameList : list - list of strings of all participant id with shared data SELECT_RANGE: var - flag to define if select certain period dateStart: str - the start date of the period if selecting certain period dateEnd: str - the end date of the period if selecting certain period Returns ------- staythredstat: useful statistics to semi-automatically choose thresholds """ ddiff_max = [] ddiff_min = [] ddiff_mean = [] ddiff_median = [] ddiff_quar = [] tdiff_max = [] tdiff_min = [] tdiff_mean = [] tdiff_median = [] tdiff_quar = [] for dataName in dataNameList: dataPathLocs,dataPathTrips = hlp.getDataPaths(dataName) if SELECT_RANGE: dataPathLocs,dataPathTrips = hlp.selectRange(dataPathLocs, dataPathTrips, dateStart, dateEnd) locs, locsgdf = hlp.parseLocs(dataPathLocs) locs['d_diff'] = np.append(haversine_dist(locs.longitudeE7[1:], locs.latitudeE7[1:], locs.longitudeE7[:-1], locs.latitudeE7[:-1]),0) accuracy_threshold = np.quantile(locs['d_diff'], .95) locs['t_diff'] = np.append((locs.index[1:]-locs.index[:-1]).total_seconds(),0) maxi = max(locs['d_diff']) ddiff_max.append(maxi) mini = min(locs['d_diff']) ddiff_min.append(mini) meani = np.mean(locs['d_diff']) ddiff_mean.append(meani) mediani = np.median(locs['d_diff']) ddiff_median.append(mediani) quari = np.quantile(locs['d_diff'], .25) ddiff_quar.append(quari) maxi = max(locs['t_diff']) tdiff_max.append(maxi) mini = min(locs['t_diff']) tdiff_min.append(mini) meani = np.mean(locs['t_diff']) tdiff_mean.append(meani) mediani = np.median(locs['t_diff']) tdiff_median.append(mediani) quari = np.quantile(locs['t_diff'], .25) tdiff_quar.append(quari) ddiff_max = np.array(ddiff_max) ddiff_max = np.transpose(ddiff_max) ddiff_min = np.array(ddiff_min) ddiff_min = np.transpose(ddiff_min) ddiff_mean = np.array(ddiff_mean) ddiff_mean = np.transpose(ddiff_mean) ddiff_median = np.array(ddiff_median) ddiff_median = np.transpose(ddiff_median) ddiff_quar = np.array(ddiff_quar) ddiff_quar = np.transpose(ddiff_quar) tdiff_max = np.array(tdiff_max) tdiff_max = np.transpose(tdiff_max) tdiff_min = np.array(tdiff_min) tdiff_min = np.transpose(tdiff_min) tdiff_mean = np.array(tdiff_mean) tdiff_mean = np.transpose(tdiff_mean) tdiff_median = np.array(tdiff_median) tdiff_median = np.transpose(tdiff_median) tdiff_quar = np.array(tdiff_quar) tdiff_quar = np.transpose(tdiff_quar) thredstat = {'dataName': np.array(dataNameList), 'dist_max': ddiff_max, 'dist_min': ddiff_min, 'dist_range': ddiff_max-ddiff_min, 'dist_mean': ddiff_mean, 'dist_median': ddiff_median, 'dist_quarter': ddiff_quar, 'time_max': tdiff_max, 'time_min': tdiff_min, 'time_range': tdiff_max-tdiff_min, 'time_mean': tdiff_mean, 'time_median': tdiff_median, 'time_quarter': tdiff_quar} staythredstat = pd.DataFrame(thredstat) return staythredstat
[ "pandas.DataFrame", "numpy.quantile", "numpy.median", "help_functions.getDataPaths", "help_functions.selectRange", "numpy.transpose", "trackintel.geogr.distances.haversine_dist", "numpy.mean", "numpy.array", "help_functions.parseLocs" ]
[((2554, 2573), 'numpy.array', 'np.array', (['ddiff_max'], {}), '(ddiff_max)\n', (2562, 2573), True, 'import numpy as np\n'), ((2590, 2613), 'numpy.transpose', 'np.transpose', (['ddiff_max'], {}), '(ddiff_max)\n', (2602, 2613), True, 'import numpy as np\n'), ((2630, 2649), 'numpy.array', 'np.array', (['ddiff_min'], {}), '(ddiff_min)\n', (2638, 2649), True, 'import numpy as np\n'), ((2666, 2689), 'numpy.transpose', 'np.transpose', (['ddiff_min'], {}), '(ddiff_min)\n', (2678, 2689), True, 'import numpy as np\n'), ((2707, 2727), 'numpy.array', 'np.array', (['ddiff_mean'], {}), '(ddiff_mean)\n', (2715, 2727), True, 'import numpy as np\n'), ((2745, 2769), 'numpy.transpose', 'np.transpose', (['ddiff_mean'], {}), '(ddiff_mean)\n', (2757, 2769), True, 'import numpy as np\n'), ((2789, 2811), 'numpy.array', 'np.array', (['ddiff_median'], {}), '(ddiff_median)\n', (2797, 2811), True, 'import numpy as np\n'), ((2831, 2857), 'numpy.transpose', 'np.transpose', (['ddiff_median'], {}), '(ddiff_median)\n', (2843, 2857), True, 'import numpy as np\n'), ((2875, 2895), 'numpy.array', 'np.array', (['ddiff_quar'], {}), '(ddiff_quar)\n', (2883, 2895), True, 'import numpy as np\n'), ((2913, 2937), 'numpy.transpose', 'np.transpose', (['ddiff_quar'], {}), '(ddiff_quar)\n', (2925, 2937), True, 'import numpy as np\n'), ((2959, 2978), 'numpy.array', 'np.array', (['tdiff_max'], {}), '(tdiff_max)\n', (2967, 2978), True, 'import numpy as np\n'), ((2995, 3018), 'numpy.transpose', 'np.transpose', (['tdiff_max'], {}), '(tdiff_max)\n', (3007, 3018), True, 'import numpy as np\n'), ((3035, 3054), 'numpy.array', 'np.array', (['tdiff_min'], {}), '(tdiff_min)\n', (3043, 3054), True, 'import numpy as np\n'), ((3071, 3094), 'numpy.transpose', 'np.transpose', (['tdiff_min'], {}), '(tdiff_min)\n', (3083, 3094), True, 'import numpy as np\n'), ((3112, 3132), 'numpy.array', 'np.array', (['tdiff_mean'], {}), '(tdiff_mean)\n', (3120, 3132), True, 'import numpy as np\n'), ((3150, 3174), 'numpy.transpose', 'np.transpose', (['tdiff_mean'], {}), '(tdiff_mean)\n', (3162, 3174), True, 'import numpy as np\n'), ((3194, 3216), 'numpy.array', 'np.array', (['tdiff_median'], {}), '(tdiff_median)\n', (3202, 3216), True, 'import numpy as np\n'), ((3236, 3262), 'numpy.transpose', 'np.transpose', (['tdiff_median'], {}), '(tdiff_median)\n', (3248, 3262), True, 'import numpy as np\n'), ((3280, 3300), 'numpy.array', 'np.array', (['tdiff_quar'], {}), '(tdiff_quar)\n', (3288, 3300), True, 'import numpy as np\n'), ((3318, 3342), 'numpy.transpose', 'np.transpose', (['tdiff_quar'], {}), '(tdiff_quar)\n', (3330, 3342), True, 'import numpy as np\n'), ((3952, 3975), 'pandas.DataFrame', 'pd.DataFrame', (['thredstat'], {}), '(thredstat)\n', (3964, 3975), True, 'import pandas as pd\n'), ((1231, 1257), 'help_functions.getDataPaths', 'hlp.getDataPaths', (['dataName'], {}), '(dataName)\n', (1247, 1257), True, 'import help_functions as hlp\n'), ((1435, 1462), 'help_functions.parseLocs', 'hlp.parseLocs', (['dataPathLocs'], {}), '(dataPathLocs)\n', (1448, 1462), True, 'import help_functions as hlp\n'), ((1642, 1675), 'numpy.quantile', 'np.quantile', (["locs['d_diff']", '(0.95)'], {}), "(locs['d_diff'], 0.95)\n", (1653, 1675), True, 'import numpy as np\n'), ((1932, 1955), 'numpy.mean', 'np.mean', (["locs['d_diff']"], {}), "(locs['d_diff'])\n", (1939, 1955), True, 'import numpy as np\n'), ((2007, 2032), 'numpy.median', 'np.median', (["locs['d_diff']"], {}), "(locs['d_diff'])\n", (2016, 2032), True, 'import numpy as np\n'), ((2086, 2119), 'numpy.quantile', 'np.quantile', (["locs['d_diff']", '(0.25)'], {}), "(locs['d_diff'], 0.25)\n", (2097, 2119), True, 'import numpy as np\n'), ((2309, 2332), 'numpy.mean', 'np.mean', (["locs['t_diff']"], {}), "(locs['t_diff'])\n", (2316, 2332), True, 'import numpy as np\n'), ((2384, 2409), 'numpy.median', 'np.median', (["locs['t_diff']"], {}), "(locs['t_diff'])\n", (2393, 2409), True, 'import numpy as np\n'), ((2463, 2496), 'numpy.quantile', 'np.quantile', (["locs['t_diff']", '(0.25)'], {}), "(locs['t_diff'], 0.25)\n", (2474, 2496), True, 'import numpy as np\n'), ((3377, 3399), 'numpy.array', 'np.array', (['dataNameList'], {}), '(dataNameList)\n', (3385, 3399), True, 'import numpy as np\n'), ((1337, 1401), 'help_functions.selectRange', 'hlp.selectRange', (['dataPathLocs', 'dataPathTrips', 'dateStart', 'dateEnd'], {}), '(dataPathLocs, dataPathTrips, dateStart, dateEnd)\n', (1352, 1401), True, 'import help_functions as hlp\n'), ((1507, 1614), 'trackintel.geogr.distances.haversine_dist', 'haversine_dist', (['locs.longitudeE7[1:]', 'locs.latitudeE7[1:]', 'locs.longitudeE7[:-1]', 'locs.latitudeE7[:-1]'], {}), '(locs.longitudeE7[1:], locs.latitudeE7[1:], locs.longitudeE7[\n :-1], locs.latitudeE7[:-1])\n', (1521, 1614), False, 'from trackintel.geogr.distances import haversine_dist\n')]
# Copyright 2013 <NAME> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from SimpleGP import GP import numpy as np class TestEval(object): def __init__(self): x = np.linspace(-10, 10, 100) pol = np.array([0.2, -0.3, 0.2]) X = np.vstack((x**2, x, np.ones(x.shape[0]))) y = (X.T * pol).sum(axis=1) x = x[:, np.newaxis] self._gp = GP(fname_best=None).train(x, y) self._gp.create_population() self._cons = 1.2 self._gp._p_constants[0][0] = self._cons self._nfunc = self._gp._nop.shape[0] self._nvar = self._nfunc + self._gp._x.shape[1] def test_sum(self): self._gp._p[0] = np.array([0, self._nfunc, self._nvar], dtype=np.int) y = self._gp._x.flatten() + self._cons yh = self._gp.eval(0) assert np.fabs(y - yh).sum() == 0 def test_subtract(self): self._gp._p[0] = np.array([1, self._nfunc, self._nvar], dtype=np.int) y = self._gp._x.flatten() - self._cons yh = self._gp.eval(0) assert np.fabs(y - yh).sum() == 0 def test_multiply(self): self._gp._p[0] = np.array([2, self._nfunc, self._nvar], dtype=np.int) y = self._gp._x.flatten() * self._cons yh = self._gp.eval(0) assert np.fabs(y - yh).sum() == 0
[ "SimpleGP.GP", "numpy.ones", "numpy.fabs", "numpy.array", "numpy.linspace" ]
[((672, 697), 'numpy.linspace', 'np.linspace', (['(-10)', '(10)', '(100)'], {}), '(-10, 10, 100)\n', (683, 697), True, 'import numpy as np\n'), ((712, 738), 'numpy.array', 'np.array', (['[0.2, -0.3, 0.2]'], {}), '([0.2, -0.3, 0.2])\n', (720, 738), True, 'import numpy as np\n'), ((1171, 1223), 'numpy.array', 'np.array', (['[0, self._nfunc, self._nvar]'], {'dtype': 'np.int'}), '([0, self._nfunc, self._nvar], dtype=np.int)\n', (1179, 1223), True, 'import numpy as np\n'), ((1398, 1450), 'numpy.array', 'np.array', (['[1, self._nfunc, self._nvar]'], {'dtype': 'np.int'}), '([1, self._nfunc, self._nvar], dtype=np.int)\n', (1406, 1450), True, 'import numpy as np\n'), ((1625, 1677), 'numpy.array', 'np.array', (['[2, self._nfunc, self._nvar]'], {'dtype': 'np.int'}), '([2, self._nfunc, self._nvar], dtype=np.int)\n', (1633, 1677), True, 'import numpy as np\n'), ((771, 790), 'numpy.ones', 'np.ones', (['x.shape[0]'], {}), '(x.shape[0])\n', (778, 790), True, 'import numpy as np\n'), ((877, 896), 'SimpleGP.GP', 'GP', ([], {'fname_best': 'None'}), '(fname_best=None)\n', (879, 896), False, 'from SimpleGP import GP\n'), ((1316, 1331), 'numpy.fabs', 'np.fabs', (['(y - yh)'], {}), '(y - yh)\n', (1323, 1331), True, 'import numpy as np\n'), ((1543, 1558), 'numpy.fabs', 'np.fabs', (['(y - yh)'], {}), '(y - yh)\n', (1550, 1558), True, 'import numpy as np\n'), ((1770, 1785), 'numpy.fabs', 'np.fabs', (['(y - yh)'], {}), '(y - yh)\n', (1777, 1785), True, 'import numpy as np\n')]
import motionTools import numpy as np import os print("Loading Simulator Motion Files") simMotion_1 = np.genfromtxt("data/MotionCondition_1.csv", delimiter = ",", skip_header = 1) simMotion_2 = np.genfromtxt("data/MotionCondition_2.csv", delimiter = ",", skip_header = 1) # Changing time to seconds instead of DUECA time simMotion_1[:,0] = (simMotion_1[:,0] - simMotion_1[0,0]) * 0.0001 simMotion_2[:,0] = (simMotion_2[:,0] - simMotion_2[0,0]) * 0.0001 print("Loading Head Motion Files") headMotions_1 = [] headMotions_2 = [] for filename in os.listdir("filtered_data"): #if "MC1" in filename: #headMotions_1.append(np.genfromtxt("filtered_data/" + filename, delimiter = ",")) #print(filename) if "MC1" in filename: if "01" in filename: headMotions_1.append(np.genfromtxt("filtered_data/" + filename, delimiter = ",")) print(filename) headMotionSystems = [] print("Initializing all experiments") max_rotation = 0 for i, headMotion in enumerate(headMotions_1): headMotion[:,0] = (headMotion[:,0] - headMotion[0,0]) * 0.0001 # Synchronising # It was found the subjects 3 to 10 had to be synchronized by changing the time by 0.02s if (i >= 2 and i <= 9): headMotion[:,0] += 0.02 # Initializes model headMotionSystems.append(motionTools.headMotionSystem(simMotion_1, headMotion, (i + 1, 1), [[0.75,4.0,0.0]] * 6)) for i, headMotion in enumerate(headMotions_2): headMotion[:,0] = (headMotion[:,0] - headMotion[0,0]) * 0.0001 # Synchronising if ((i >= 1 and i <= 4) or i in [8, 10]): headMotion[:,0] += 0.02 # Initializes model headMotionSystems.append(motionTools.headMotionSystem(simMotion_2, headMotion, (i + 1, 2), [[1.0,3.0,-0.55]] * 6)) print("Solving all experiments") for i, system in enumerate(headMotionSystems): print("solving:", i) system.solve()
[ "os.listdir", "motionTools.headMotionSystem", "numpy.genfromtxt" ]
[((108, 181), 'numpy.genfromtxt', 'np.genfromtxt', (['"""data/MotionCondition_1.csv"""'], {'delimiter': '""","""', 'skip_header': '(1)'}), "('data/MotionCondition_1.csv', delimiter=',', skip_header=1)\n", (121, 181), True, 'import numpy as np\n'), ((201, 274), 'numpy.genfromtxt', 'np.genfromtxt', (['"""data/MotionCondition_2.csv"""'], {'delimiter': '""","""', 'skip_header': '(1)'}), "('data/MotionCondition_2.csv', delimiter=',', skip_header=1)\n", (214, 274), True, 'import numpy as np\n'), ((564, 591), 'os.listdir', 'os.listdir', (['"""filtered_data"""'], {}), "('filtered_data')\n", (574, 591), False, 'import os\n'), ((1359, 1453), 'motionTools.headMotionSystem', 'motionTools.headMotionSystem', (['simMotion_1', 'headMotion', '(i + 1, 1)', '([[0.75, 4.0, 0.0]] * 6)'], {}), '(simMotion_1, headMotion, (i + 1, 1), [[0.75, \n 4.0, 0.0]] * 6)\n', (1387, 1453), False, 'import motionTools\n'), ((1722, 1817), 'motionTools.headMotionSystem', 'motionTools.headMotionSystem', (['simMotion_2', 'headMotion', '(i + 1, 2)', '([[1.0, 3.0, -0.55]] * 6)'], {}), '(simMotion_2, headMotion, (i + 1, 2), [[1.0, \n 3.0, -0.55]] * 6)\n', (1750, 1817), False, 'import motionTools\n'), ((832, 889), 'numpy.genfromtxt', 'np.genfromtxt', (["('filtered_data/' + filename)"], {'delimiter': '""","""'}), "('filtered_data/' + filename, delimiter=',')\n", (845, 889), True, 'import numpy as np\n')]
try: from plotting import hd_hist except ImportError: from utilities.plotting import hd_hist from sklearn.externals import joblib import numpy as np etbins = np.linspace(20.0, 400.0, num=100) etabins = np.linspace(-4.0, 4.0, num=100) mbins = np.linspace(0.0, 200.0, num=100) ktbins = np.linspace(0.0, 100000.0, num=100) sig_data = joblib.load('../data/signal_data_gpd.p') bkg_data = joblib.load('../data/background_data_gpd.p') sig_data = sig_data[:2000] bkg_data = bkg_data[:2000] sig_eta = [e[0] for e in sig_data] sig_et = [e[1] for e in sig_data] sig_m = [e[2] for e in sig_data] sig_kt = [e[3] for e in sig_data] bkg_eta = [e[0] for e in bkg_data] bkg_et = [e[1] for e in bkg_data] bkg_m = [e[2] for e in bkg_data] bkg_kt = [e[3] for e in bkg_data] hd_hist([sig_et, bkg_et], 'plots_gpd/et_comp_gpd.pdf' , [20.0, 400.0], [0.0, 600.0] , "$E_{T}$ GeV", "Events", etbins , ['signal', 'background']) hd_hist([sig_eta, bkg_eta], 'plots_gpd/eta_comp_gpd.pdf' , [-4.0, 4.0], [0.0, 100.0] , "$\eta$", "Events", etabins , ['signal', 'background']) hd_hist([sig_m, bkg_m], 'plots_gpd/m_comp_gpd.pdf' , [0.0, 100.0], [0.0, 600.0] , "Mass [GeV]", "Events", mbins , ['signal', 'background']) hd_hist([sig_kt, bkg_kt], 'plots_gpd/kt_comp_gpd.pdf' , [0.0, 100000.0], [0.0, 1000.0] , "$K_{T}$", "Events", ktbins , ['signal', 'background'])
[ "utilities.plotting.hd_hist", "numpy.linspace", "sklearn.externals.joblib.load" ]
[((167, 200), 'numpy.linspace', 'np.linspace', (['(20.0)', '(400.0)'], {'num': '(100)'}), '(20.0, 400.0, num=100)\n', (178, 200), True, 'import numpy as np\n'), ((211, 242), 'numpy.linspace', 'np.linspace', (['(-4.0)', '(4.0)'], {'num': '(100)'}), '(-4.0, 4.0, num=100)\n', (222, 242), True, 'import numpy as np\n'), ((251, 283), 'numpy.linspace', 'np.linspace', (['(0.0)', '(200.0)'], {'num': '(100)'}), '(0.0, 200.0, num=100)\n', (262, 283), True, 'import numpy as np\n'), ((293, 328), 'numpy.linspace', 'np.linspace', (['(0.0)', '(100000.0)'], {'num': '(100)'}), '(0.0, 100000.0, num=100)\n', (304, 328), True, 'import numpy as np\n'), ((341, 381), 'sklearn.externals.joblib.load', 'joblib.load', (['"""../data/signal_data_gpd.p"""'], {}), "('../data/signal_data_gpd.p')\n", (352, 381), False, 'from sklearn.externals import joblib\n'), ((393, 437), 'sklearn.externals.joblib.load', 'joblib.load', (['"""../data/background_data_gpd.p"""'], {}), "('../data/background_data_gpd.p')\n", (404, 437), False, 'from sklearn.externals import joblib\n'), ((766, 912), 'utilities.plotting.hd_hist', 'hd_hist', (['[sig_et, bkg_et]', '"""plots_gpd/et_comp_gpd.pdf"""', '[20.0, 400.0]', '[0.0, 600.0]', '"""$E_{T}$ GeV"""', '"""Events"""', 'etbins', "['signal', 'background']"], {}), "([sig_et, bkg_et], 'plots_gpd/et_comp_gpd.pdf', [20.0, 400.0], [0.0,\n 600.0], '$E_{T}$ GeV', 'Events', etbins, ['signal', 'background'])\n", (773, 912), False, 'from utilities.plotting import hd_hist\n'), ((937, 1081), 'utilities.plotting.hd_hist', 'hd_hist', (['[sig_eta, bkg_eta]', '"""plots_gpd/eta_comp_gpd.pdf"""', '[-4.0, 4.0]', '[0.0, 100.0]', '"""$\\\\eta$"""', '"""Events"""', 'etabins', "['signal', 'background']"], {}), "([sig_eta, bkg_eta], 'plots_gpd/eta_comp_gpd.pdf', [-4.0, 4.0], [0.0,\n 100.0], '$\\\\eta$', 'Events', etabins, ['signal', 'background'])\n", (944, 1081), False, 'from utilities.plotting import hd_hist\n'), ((1105, 1246), 'utilities.plotting.hd_hist', 'hd_hist', (['[sig_m, bkg_m]', '"""plots_gpd/m_comp_gpd.pdf"""', '[0.0, 100.0]', '[0.0, 600.0]', '"""Mass [GeV]"""', '"""Events"""', 'mbins', "['signal', 'background']"], {}), "([sig_m, bkg_m], 'plots_gpd/m_comp_gpd.pdf', [0.0, 100.0], [0.0, \n 600.0], 'Mass [GeV]', 'Events', mbins, ['signal', 'background'])\n", (1112, 1246), False, 'from utilities.plotting import hd_hist\n'), ((1270, 1416), 'utilities.plotting.hd_hist', 'hd_hist', (['[sig_kt, bkg_kt]', '"""plots_gpd/kt_comp_gpd.pdf"""', '[0.0, 100000.0]', '[0.0, 1000.0]', '"""$K_{T}$"""', '"""Events"""', 'ktbins', "['signal', 'background']"], {}), "([sig_kt, bkg_kt], 'plots_gpd/kt_comp_gpd.pdf', [0.0, 100000.0], [\n 0.0, 1000.0], '$K_{T}$', 'Events', ktbins, ['signal', 'background'])\n", (1277, 1416), False, 'from utilities.plotting import hd_hist\n')]
from sklearn.model_selection import train_test_split import numpy as np import matplotlib.pyplot as plt def sigmoid(x): return 1.0/(1 + np.exp(-x)) def sigmoid_derivative(x): return x * (1.0 - x) class NeuralNetwork: def __init__(self, x, y, epoch, typeofweightinitialise = "random"): self.input = x if(typeofweightinitialise=='random'): self.weights1 = np.random.rand(self.input.shape[1], 4) self.weights2 = np.random.rand(4, 1) elif(typeofweightinitialise=='ones'): self.weights1 = np.ones((trainsamples.shape[1], 4)) self.weights2 = np.ones((4, 1)) elif(typeofweightinitialise=='zeros'): self.weights1 = np.zeros((trainsamples.shape[1], 4)) self.weights2 = np.zeros((4, 1)) self.typeofweightinitialise = typeofweightinitialise self.y = y self.output = np.zeros(self.y.shape) self.epoch=epoch self.losslist = [] def feedforward(self, inputvalue): self.layer1 = sigmoid(np.dot(inputvalue, self.weights1)) self.output = sigmoid(np.dot(self.layer1, self.weights2)) def backprop(self): # application of the chain rule to find derivative of the loss function with respect to weights2 and weights1 d_weights2 = np.dot( self.layer1.T, (2*(self.y - self.output) * sigmoid_derivative(self.output))) d_weights1 = np.dot(self.input.T, (np.dot(2*(self.y - self.output) * sigmoid_derivative( self.output), self.weights2.T) * sigmoid_derivative(self.layer1))) # update the weights with the derivative (slope) of the loss function self.weights1 += d_weights1 self.weights2 += d_weights2 def train(self,showgraph=True): for i in range(self.epoch): nn.feedforward(self.input) nn.backprop() self.losslist.append(self.calculateLoss()) if(showgraph): plt.plot(range(self.epoch), self.losslist , c="red", label="Loss") plt.legend() plt.title("Initialisation of weights is : {}".format(self.typeofweightinitialise)) plt.show() def calculateLoss(self): loss = 0 for i in range(len(self.input)): nn.feedforward(self.input[i]) loss += (nn.output - self.y[i])**2 print('Loss is ', loss) return loss def accuracy(self, pred, true): c = 0 for i in range(true.shape[0]): if(pred[i] == true[i]): c += 1 return c def calculateAccuracy(self, predictedout, actualout): acc = self.accuracy(np.round(predictedout), actualout) acc = acc/actualout.shape[0] return acc def test(self, testx, testy): self.feedforward(testx) print(self.calculateAccuracy(self.output, testy)) if __name__ == "__main__": def create_data(samplesize, mu1, cov1, mu2, cov2): class_zeros = np.random.multivariate_normal(mu1, cov1, samplesize) class_ones = np.random.multivariate_normal(mu2, cov2, samplesize) return class_zeros, class_ones # Creating Data........................... samplesize = 50 mu1 = np.array([2, 3]) mu2 = np.array([0, 0]) cov1 = np.array([[10, 0.01], [0.01, 10]]) cov2 = np.array([[1, 0], [0, 3]]) class0y = np.zeros(samplesize) class1y = np.ones(samplesize) class_zeros, class_ones = create_data(samplesize, mu1, cov1, mu2, cov2) plt.scatter(class_zeros.T[0], class_zeros.T[1], c="orange", label="Class0") plt.scatter(class_ones.T[0], class_ones.T[1], c="blue", label="Class1") plt.legend() plt.show() # Splitting data into train and test............................ # and randomizing class0trainsample, class0testsample, class0ytrain, class0ytest = train_test_split( class_zeros, class0y, test_size=0.2, random_state=0) class1trainsample, class1testsample, class1ytrain, class1ytest, = train_test_split( class_ones, class1y, test_size=0.2, random_state=0) trainsamples = np.concatenate((class0trainsample, class1trainsample)) trainyclassification = np.concatenate((class0ytrain, class1ytrain)) testsamples = np.concatenate((class0testsample, class1testsample)) testyclassification = np.concatenate((class0ytest, class1ytest)) train_data = list(zip(trainsamples, trainyclassification)) np.random.shuffle(train_data) trainsamples, trainyclassification = zip(*train_data) test_data = list(zip(testsamples, testyclassification)) np.random.shuffle(test_data) testsamples, testyclassification = zip(*test_data) trainsamples = np.array(trainsamples) trainyclassification = np.c_[trainyclassification].T testsamples = np.array(testsamples) testyclassification = np.c_[testyclassification].T ones = np.ones((trainsamples.shape[0],trainsamples.shape[1]+1)) ones[:,:-1] = trainsamples trainsamples = ones ones = np.ones((testsamples.shape[0],testsamples.shape[1]+1)) ones[:,:-1] = testsamples testsamples = ones epoch = 500 ### All weights are zero nn = NeuralNetwork(trainsamples, trainyclassification, epoch,'zeros') nn.train() nn.test( testsamples, testyclassification) nn.test( trainsamples,trainyclassification) ### All weights are ones nn = NeuralNetwork(trainsamples, trainyclassification, epoch,'ones') nn.train() nn.test( testsamples, testyclassification) nn.test( trainsamples,trainyclassification) ### Random Weights nn = NeuralNetwork(trainsamples, trainyclassification, epoch) nn.train() nn.test( testsamples, testyclassification) nn.test( trainsamples,trainyclassification)
[ "matplotlib.pyplot.show", "numpy.random.shuffle", "matplotlib.pyplot.scatter", "matplotlib.pyplot.legend", "sklearn.model_selection.train_test_split", "numpy.zeros", "numpy.ones", "numpy.array", "numpy.random.multivariate_normal", "numpy.exp", "numpy.random.rand", "numpy.dot", "numpy.round", "numpy.concatenate" ]
[((3232, 3248), 'numpy.array', 'np.array', (['[2, 3]'], {}), '([2, 3])\n', (3240, 3248), True, 'import numpy as np\n'), ((3259, 3275), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (3267, 3275), True, 'import numpy as np\n'), ((3287, 3321), 'numpy.array', 'np.array', (['[[10, 0.01], [0.01, 10]]'], {}), '([[10, 0.01], [0.01, 10]])\n', (3295, 3321), True, 'import numpy as np\n'), ((3333, 3359), 'numpy.array', 'np.array', (['[[1, 0], [0, 3]]'], {}), '([[1, 0], [0, 3]])\n', (3341, 3359), True, 'import numpy as np\n'), ((3379, 3399), 'numpy.zeros', 'np.zeros', (['samplesize'], {}), '(samplesize)\n', (3387, 3399), True, 'import numpy as np\n'), ((3414, 3433), 'numpy.ones', 'np.ones', (['samplesize'], {}), '(samplesize)\n', (3421, 3433), True, 'import numpy as np\n'), ((3514, 3589), 'matplotlib.pyplot.scatter', 'plt.scatter', (['class_zeros.T[0]', 'class_zeros.T[1]'], {'c': '"""orange"""', 'label': '"""Class0"""'}), "(class_zeros.T[0], class_zeros.T[1], c='orange', label='Class0')\n", (3525, 3589), True, 'import matplotlib.pyplot as plt\n'), ((3594, 3665), 'matplotlib.pyplot.scatter', 'plt.scatter', (['class_ones.T[0]', 'class_ones.T[1]'], {'c': '"""blue"""', 'label': '"""Class1"""'}), "(class_ones.T[0], class_ones.T[1], c='blue', label='Class1')\n", (3605, 3665), True, 'import matplotlib.pyplot as plt\n'), ((3670, 3682), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3680, 3682), True, 'import matplotlib.pyplot as plt\n'), ((3687, 3697), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3695, 3697), True, 'import matplotlib.pyplot as plt\n'), ((3859, 3928), 'sklearn.model_selection.train_test_split', 'train_test_split', (['class_zeros', 'class0y'], {'test_size': '(0.2)', 'random_state': '(0)'}), '(class_zeros, class0y, test_size=0.2, random_state=0)\n', (3875, 3928), False, 'from sklearn.model_selection import train_test_split\n'), ((4008, 4076), 'sklearn.model_selection.train_test_split', 'train_test_split', (['class_ones', 'class1y'], {'test_size': '(0.2)', 'random_state': '(0)'}), '(class_ones, class1y, test_size=0.2, random_state=0)\n', (4024, 4076), False, 'from sklearn.model_selection import train_test_split\n'), ((4106, 4160), 'numpy.concatenate', 'np.concatenate', (['(class0trainsample, class1trainsample)'], {}), '((class0trainsample, class1trainsample))\n', (4120, 4160), True, 'import numpy as np\n'), ((4188, 4232), 'numpy.concatenate', 'np.concatenate', (['(class0ytrain, class1ytrain)'], {}), '((class0ytrain, class1ytrain))\n', (4202, 4232), True, 'import numpy as np\n'), ((4251, 4303), 'numpy.concatenate', 'np.concatenate', (['(class0testsample, class1testsample)'], {}), '((class0testsample, class1testsample))\n', (4265, 4303), True, 'import numpy as np\n'), ((4330, 4372), 'numpy.concatenate', 'np.concatenate', (['(class0ytest, class1ytest)'], {}), '((class0ytest, class1ytest))\n', (4344, 4372), True, 'import numpy as np\n'), ((4440, 4469), 'numpy.random.shuffle', 'np.random.shuffle', (['train_data'], {}), '(train_data)\n', (4457, 4469), True, 'import numpy as np\n'), ((4592, 4620), 'numpy.random.shuffle', 'np.random.shuffle', (['test_data'], {}), '(test_data)\n', (4609, 4620), True, 'import numpy as np\n'), ((4696, 4718), 'numpy.array', 'np.array', (['trainsamples'], {}), '(trainsamples)\n', (4704, 4718), True, 'import numpy as np\n'), ((4794, 4815), 'numpy.array', 'np.array', (['testsamples'], {}), '(testsamples)\n', (4802, 4815), True, 'import numpy as np\n'), ((4887, 4946), 'numpy.ones', 'np.ones', (['(trainsamples.shape[0], trainsamples.shape[1] + 1)'], {}), '((trainsamples.shape[0], trainsamples.shape[1] + 1))\n', (4894, 4946), True, 'import numpy as np\n'), ((5011, 5068), 'numpy.ones', 'np.ones', (['(testsamples.shape[0], testsamples.shape[1] + 1)'], {}), '((testsamples.shape[0], testsamples.shape[1] + 1))\n', (5018, 5068), True, 'import numpy as np\n'), ((901, 923), 'numpy.zeros', 'np.zeros', (['self.y.shape'], {}), '(self.y.shape)\n', (909, 923), True, 'import numpy as np\n'), ((2988, 3040), 'numpy.random.multivariate_normal', 'np.random.multivariate_normal', (['mu1', 'cov1', 'samplesize'], {}), '(mu1, cov1, samplesize)\n', (3017, 3040), True, 'import numpy as np\n'), ((3062, 3114), 'numpy.random.multivariate_normal', 'np.random.multivariate_normal', (['mu2', 'cov2', 'samplesize'], {}), '(mu2, cov2, samplesize)\n', (3091, 3114), True, 'import numpy as np\n'), ((142, 152), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (148, 152), True, 'import numpy as np\n'), ((400, 438), 'numpy.random.rand', 'np.random.rand', (['self.input.shape[1]', '(4)'], {}), '(self.input.shape[1], 4)\n', (414, 438), True, 'import numpy as np\n'), ((467, 487), 'numpy.random.rand', 'np.random.rand', (['(4)', '(1)'], {}), '(4, 1)\n', (481, 487), True, 'import numpy as np\n'), ((1045, 1078), 'numpy.dot', 'np.dot', (['inputvalue', 'self.weights1'], {}), '(inputvalue, self.weights1)\n', (1051, 1078), True, 'import numpy as np\n'), ((1110, 1144), 'numpy.dot', 'np.dot', (['self.layer1', 'self.weights2'], {}), '(self.layer1, self.weights2)\n', (1116, 1144), True, 'import numpy as np\n'), ((2052, 2064), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2062, 2064), True, 'import matplotlib.pyplot as plt\n'), ((2172, 2182), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2180, 2182), True, 'import matplotlib.pyplot as plt\n'), ((2666, 2688), 'numpy.round', 'np.round', (['predictedout'], {}), '(predictedout)\n', (2674, 2688), True, 'import numpy as np\n'), ((562, 597), 'numpy.ones', 'np.ones', (['(trainsamples.shape[1], 4)'], {}), '((trainsamples.shape[1], 4))\n', (569, 597), True, 'import numpy as np\n'), ((626, 641), 'numpy.ones', 'np.ones', (['(4, 1)'], {}), '((4, 1))\n', (633, 641), True, 'import numpy as np\n'), ((717, 753), 'numpy.zeros', 'np.zeros', (['(trainsamples.shape[1], 4)'], {}), '((trainsamples.shape[1], 4))\n', (725, 753), True, 'import numpy as np\n'), ((782, 798), 'numpy.zeros', 'np.zeros', (['(4, 1)'], {}), '((4, 1))\n', (790, 798), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ahp.utils This module contains the common functions and methods used by other modules in the class. """ import numpy as np def normalize_priorities(criteria_pr, global_pr): """Normalize the priorities received from the lower layer. This function performs a Global Prioritization at the current node. Args: criteria_pr (list(list(float))): The priorities of all the alternatives/sub-criteria. global_pr (list(float)): The global priorities of all criteria. Returns: Normalized priorities """ return np.dot(global_pr, criteria_pr)
[ "numpy.dot" ]
[((584, 614), 'numpy.dot', 'np.dot', (['global_pr', 'criteria_pr'], {}), '(global_pr, criteria_pr)\n', (590, 614), True, 'import numpy as np\n')]
""" Custom preprocessing transformation functions for video/sequential frame MRI data from the UK Biobank """ import numpy as np from skimage.exposure import rescale_intensity from torchvision.transforms import Lambda class NullTransform(Lambda): """ Create a null transformation. This is to be used when a given augmentation is not selected in the config so that it simply returns the input. """ def __init__(self): """ Instantiate lambda x: x. Params ------ None """ super(NullTransform, self).__init__(lambda x: x) class FrameSelectionStd(object): """ Select subset of MRI frames based on pixel variance Assumes NUM_FRAMES X WIDTH X HEIGHT tensors TODO: Setup for 3 channel images """ def __init__(self, n_frames=15, channel=1, epsilon=0.05): """ :param n_frames: :param channel: :param epsilon: """ self.n_frames = n_frames self.channel = channel self.epsilon = epsilon def std_by_frame(self, seq, normalize=True): """ Compute standard deviation by frame :param seq: :param normalize: :return: """ # z-score transform frames z = (seq - np.mean(seq)) / np.std(seq) if normalize else seq # standard deviation per frame std = [np.std(z[i]) for i in range(seq.shape[0])] return [v - min(std) for v in std] def select_frames(self, seq, epsilon=0.05): """ Select a contiguous subset of frames based on each frame's overall pixel standard deviation. Determine cut points based on the first set of inflection points. P2 /\ / \ __/ \__/\____ P1 P3 :param seq: :param epsilon: :return: """ std = self.std_by_frame(seq) # threshold SD std = [v if v > epsilon else 0 for v in std] # find inflection points signs = [np.sign(std[i + 1] - std[i]) for i in range(len(std) - 1)] # skip if first point is no slope or negative inf_pnts = [] if signs[0] <= 0 else [0] for i in range(1, len(signs)): if signs[i] != signs[i - 1]: inf_pnts.append(i) if len(inf_pnts) < 3: raise ValueError("No inflection points found") return (inf_pnts[0], inf_pnts[2]) def __call__(self, sample): # x,y = sample # i,j = self.select_frames(x, self.epsilon) if (self.n_frames == 30): return sample i, j = self.select_frames(sample, self.epsilon) j = i + self.n_frames # return (x[i:j,...], y) return sample[i:j,...] class FrameSelectionVar(): """ Frame selector class. Select the N best frames from a series to use for classification. In this case, the N best frames are the "brightest" sequential frames. The frames with the most variance between dark and light pixels, centered around the brightest frame (frame with most variance). Nowing how the frames are structured (with a lot of noise), we konw that the best frames are where the noise dies down and the consentration is on the aortic valve. Therefore, with pixel intensities around the valve going up and intensities away from the valve go down, we get our largest variance in pixels with these frames. """ def __init__(self, n_frames=6): """ Class initialization function. Params ------ None """ self.N = n_frames def __call__(self, seq): """ Select the BEST frames from the given series. Params ------ npy_series : np.array - numpy array of the series of DICOM images. Return ------ list - list of the most best (sequential) frames """ if (self.N == seq.shape[0]): return seq # Otherwise find correct frames to output var = [fr.var() for fr in seq] varDict = dict((i, fr.var()) for i, fr in enumerate(seq)) frameIndx = [np.argmax(var)] low_, high_ = frameIndx[-1]-1, frameIndx[-1]+1 if (self.N > 1): for i in range(self.N-1): if (low_ >= 0 and high_ <= len(seq)-1): if (varDict[low_] > varDict[high_]): frameIndx.append(low_) low_ = sorted(frameIndx)[0] - 1 high_ = sorted(frameIndx)[-1] + 1 else: frameIndx.append(high_) low_ = sorted(frameIndx)[0] - 1 high_ = sorted(frameIndx)[-1] + 1 elif (low_ == -1): frameIndx.append(high_) low_ = sorted(frameIndx)[0] - 1 high_ = sorted(frameIndx)[-1] + 1 else: frameIndx.append(low_) low_ = sorted(frameIndx)[0] - 1 high_ = sorted(frameIndx)[-1] + 1 return seq[sorted(frameIndx)] class RescaleIntensity(): """Rescale pixel values of a DICOM Series so that they span low-high.""" def __init__(self, out_range=(0.0,255.0)): """ Class initialization function. Params ------ None """ self.out_range = out_range def __call__(self, series): """ Execute normalization for the given series. Params ------ seris : np.array - DICOM Series as an np.array Return ------ np.array - new normalized series """ return np.array( [rescale_intensity(1.0*frame, out_range=self.out_range) for frame in series]) class GammaCorrection(): """Enhance Gray Scale Levels of a DICOM Series frame.""" def __init__(self, gamma=2.0, intensity=255.0): """ Class initialization function. Params ------ gamma : float - gamma correction amount """ assert isinstance(gamma, (int, float)) self.gamma = gamma self.intensity = intensity def __call__(self, series): """ Execute gamma correction for the entire series. Params ------ series : np.array - DICOM Series of images as an np.array Return ------ np.array - new gamma corrected series """ return np.array([self.intensity*(1.0*frame/frame.max())**self.gamma for frame in series]) class StdNormalize(object): """Standard Deviation Normalization mu = 0, std = 1.0.""" def __call__(self, series): """ Execute std normalization for each individual image in the series. Params ------ series : np.array - series of images Return ------ stdNorm series - standard normalized series """ stdSeries = [] for img in series: stdSeries.append((img - img.mean())/img.std()) return np.array(stdSeries)
[ "numpy.argmax", "numpy.std", "skimage.exposure.rescale_intensity", "numpy.mean", "numpy.array", "numpy.sign" ]
[((7264, 7283), 'numpy.array', 'np.array', (['stdSeries'], {}), '(stdSeries)\n', (7272, 7283), True, 'import numpy as np\n'), ((1393, 1405), 'numpy.std', 'np.std', (['z[i]'], {}), '(z[i])\n', (1399, 1405), True, 'import numpy as np\n'), ((2050, 2078), 'numpy.sign', 'np.sign', (['(std[i + 1] - std[i])'], {}), '(std[i + 1] - std[i])\n', (2057, 2078), True, 'import numpy as np\n'), ((4214, 4228), 'numpy.argmax', 'np.argmax', (['var'], {}), '(var)\n', (4223, 4228), True, 'import numpy as np\n'), ((1305, 1316), 'numpy.std', 'np.std', (['seq'], {}), '(seq)\n', (1311, 1316), True, 'import numpy as np\n'), ((5833, 5889), 'skimage.exposure.rescale_intensity', 'rescale_intensity', (['(1.0 * frame)'], {'out_range': 'self.out_range'}), '(1.0 * frame, out_range=self.out_range)\n', (5850, 5889), False, 'from skimage.exposure import rescale_intensity\n'), ((1289, 1301), 'numpy.mean', 'np.mean', (['seq'], {}), '(seq)\n', (1296, 1301), True, 'import numpy as np\n')]
# Copyright <NAME> S.A. 2019 import numpy as np import cv2 from shapely.geometry import Point, Polygon from shapely.ops import cascaded_union from sklearn.cluster import KMeans, DBSCAN from .Config import OCRConfig from .utils import DebugUtils, sort_box class TextBinarizer: def __init__(self, config=None): if config is None: config = OCRConfig() self.config = config self.debugger = DebugUtils() self.debugger.set_debug(self.config.debug) self.do_visualisation = self.config.debug if (256 % config.binarization_rgb_bin_size) != 0: raise Exception("RGB bin size should divide 256 into an integer number of bins. Given: {}". format(config.binarization_rgb_bin_size)) self.dbscan_eps = config.binarization_dbscan_eps self.rgb_bin_size = config.binarization_rgb_bin_size self.dbscan_min_sample_frac = config.binarization_dbscan_min_sample_frac self.roi_x_padding = config.binarization_roi_x_padding self.roi_y_padding = config.binarization_roi_y_padding def binarize(self, image, detections): self.debugger.log("binarize: ", len(detections)) h, w = image.shape[:2] scale = np.sqrt(750*750/(h*w)) self.debugger.log("--> scale: ", w, h, scale) if scale > 1: scale = 1 else: image = cv2.resize(image, None, fx=scale, fy=scale) h, w = image.shape[:2] binarized = np.ones((h, w), np.uint8) * 255 refined_text_boxes = [] self.do_visualisation = self.config.debug for _, box, confidence in detections: if scale < 1: box = (box.astype("float") * scale).astype("int") _x, _y, _w, _h = cv2.boundingRect(box) _x -= int(_w*self.roi_x_padding) _w = int(_w*(1 + 2*self.roi_x_padding)) _y -= int(_h*self.roi_y_padding) _h = int(_h*(1 + 2*self.roi_y_padding)) if _x < 0: _x = 0 if _x+_w > w: _w = w - _x if _y < 0: _y = 0 if _y+_h > h: _h = h - _y if _w <= 0 or _h <= 0: continue roi = image[_y:_y+_h, _x:_x+_w] binary_roi, text_box = self._binarize_roi(box.astype("int") - [_x, _y], roi) if text_box is not None: binarized[_y:_y+_h, _x:_x+_w] = np.bitwise_and(binarized[_y:_y+_h, _x:_x+_w], binary_roi) refined_text_boxes += [text_box+(_x, _y)] refined_text_boxes = self.refine_text_boxes(refined_text_boxes) if scale < 1: refined_text_boxes = (np.array(refined_text_boxes).astype("float") / scale).astype("int") binarized = cv2.resize(binarized, None, fx=1./scale, fy=1./scale) _, binarized = cv2.threshold(binarized, 127, 255, cv2.THRESH_BINARY) return binarized, refined_text_boxes def _binarize_roi(self, box, roi): _h, _w = roi.shape[:2] binarized_roi = np.ones((_h, _w), np.uint8)*255 binarized_layers = [] layer_components = [] # Preselection for layer, cluster in self._get_affinity_layers(box, roi): binarized_layer = np.zeros_like(binarized_roi) labels, stats, centroids = self.get_connected_components(layer, cluster) components = np.zeros((_h, _w, 3)) selected_labels = [] for label, stat in enumerate(stats): left = stat[cv2.CC_STAT_LEFT] top = stat[cv2.CC_STAT_TOP] width = stat[cv2.CC_STAT_WIDTH] height = stat[cv2.CC_STAT_HEIGHT] right = left + width - 1 bottom = top + height - 1 is_good = self._select_good_char_box((_w, _h), (left, top, width, height), (labels == label), debug_mode=self.config.debug) if self.config.debug: is_good, reason = is_good cv2.rectangle(components, (left, top), (right, bottom), (0, 255, 255), 1, cv2.LINE_AA) if reason == 1: continue cv2.rectangle(components, (left, top), (right, bottom), (0, 0, 255), 1, cv2.LINE_AA) if reason == 2: continue cv2.rectangle(components, (left, top), (right, bottom), (0, 255, 0), 1, cv2.LINE_AA) if reason == 3: continue cv2.rectangle(components, (left, top), (right, bottom), (0, 125, 255), 1, cv2.LINE_AA) if reason == 4: continue cv2.rectangle(components, (left, top), (right, bottom), (0, 255, 125), 1, cv2.LINE_AA) if reason == 5: continue cv2.rectangle(components, (left, top), (right, bottom), (255, 0, 0), 1, cv2.LINE_AA) if not is_good: continue selected_labels += [label] layer_box = np.array([(0, 0), (0, _h), (_w, _h), (_w, 0)]) stubs = [] isolated_points = [] stubs_image = np.zeros((_h, _w, 3), np.uint8) words = [] words_image = np.zeros((_h, _w, 3), np.uint8) layer_components += [[labels, stats, centroids, selected_labels, binarized_layer, components, layer, cluster, layer_box, stubs, isolated_points, stubs_image, words, words_image]] # Reduce Noise for component in layer_components: self.reduce_noise(component) if self.config.debug: stats = component[1] pre_selected_labels = component[3] components = component[5] for label in pre_selected_labels: stat = stats[label] left = stat[cv2.CC_STAT_LEFT] top = stat[cv2.CC_STAT_TOP] width = stat[cv2.CC_STAT_WIDTH] height = stat[cv2.CC_STAT_HEIGHT] right = left + width - 1 bottom = top + height - 1 cv2.rectangle(components, (left, top), (right, bottom), (255, 0, 255), 1, cv2.LINE_AA) # Find Stubs best_layer_index = None best_layer_overlap = 0 best_layer_char_count = 999 for i_component, component in enumerate(layer_components): self.find_stubs(component, _w, _h) stubs = component[9] best_stub_index, best_overlap = self.get_best_stub(component, box) best_char_count = len(stubs[best_stub_index][2]) if best_stub_index >= 0 else 999 if best_overlap > 1.5 * best_layer_overlap: is_better = True elif best_overlap < best_layer_overlap / 1.5: is_better = False else: if best_layer_char_count < best_char_count: is_better = False else: is_better = True if is_better: best_layer_index = i_component best_layer_overlap = best_overlap best_layer_char_count = best_char_count stats = component[1] isolated_points = component[10] stubs_canvas = component[11] words = [stubs[best_stub_index]] if best_stub_index >= 0 else [] component[12] = words words_canvas = component[13] if self.config.debug: colors = [ (0, 0, 255), (0, 255, 0), (255, 0, 0), (255, 255, 0), (255, 0, 255), (0, 255, 255), (0, 127, 255), (0, 255, 127), (127, 0, 255), (255, 0, 127), (127, 255, 0), (255, 127, 0), (0, 0, 125), (0, 125, 0), (125, 0, 0), (255, 255, 255) ] for label in isolated_points: stat = stats[label] left = stat[cv2.CC_STAT_LEFT] top = stat[cv2.CC_STAT_TOP] width = stat[cv2.CC_STAT_WIDTH] height = stat[cv2.CC_STAT_HEIGHT] right = left + width - 1 bottom = top + height - 1 center = (left + width/2, top + height/2) cv2.circle(stubs_canvas, (int(center[0]), int(center[1])), 3, (127, 127, 127), -1) cv2.rectangle(stubs_canvas, (left, top), (right, bottom), (127, 127, 127), 1) cv2.circle(words_canvas, (int(center[0]), int(center[1])), 3, (127, 127, 127), -1) cv2.rectangle(words_canvas, (left, top), (right, bottom), (127, 127, 127), 1) for ic, line in enumerate(stubs): a, b, stub = line color = colors[ic % len(colors)] for label in stub: stat = stats[label] left = stat[cv2.CC_STAT_LEFT] top = stat[cv2.CC_STAT_TOP] width = stat[cv2.CC_STAT_WIDTH] height = stat[cv2.CC_STAT_HEIGHT] right = left + width - 1 bottom = top + height - 1 center = (left + width/2, top + height/2) cv2.circle(stubs_canvas, (int(center[0]), int(center[1])), 3, color, -1) cv2.rectangle(stubs_canvas, (left, top), (right, bottom), color, 1) x0 = int(stats[stub[0]][cv2.CC_STAT_LEFT]) x1 = int(stats[stub[-1]][cv2.CC_STAT_LEFT] + stats[stub[-1]][cv2.CC_STAT_WIDTH]) y0 = int(a*x0 + b) y1 = int(a*x1 + b) cv2.line(stubs_canvas, (x0, y0), (x1, y1), color, 1, cv2.LINE_AA) for ic, line in enumerate(words): a, b, stub = line color = colors[ic % len(colors)] for label in stub: stat = stats[label] left = stat[cv2.CC_STAT_LEFT] top = stat[cv2.CC_STAT_TOP] width = stat[cv2.CC_STAT_WIDTH] height = stat[cv2.CC_STAT_HEIGHT] right = left + width - 1 bottom = top + height - 1 center = (left + width/2, top + height/2) cv2.circle(words_canvas, (int(center[0]), int(center[1])), 3, color, -1) cv2.rectangle(words_canvas, (left, top), (right, bottom), color, 1) x0 = int(stats[stub[0]][cv2.CC_STAT_LEFT]) x1 = int(stats[stub[-1]][cv2.CC_STAT_LEFT] + stats[stub[-1]][cv2.CC_STAT_WIDTH]) y0 = int(a*x0 + b) y1 = int(a*x1 + b) cv2.line(words_canvas, (x0, y0), (x1, y1), color, 1, cv2.LINE_AA) if best_layer_index is not None: best_layer_component = layer_components[best_layer_index] best_layer_stats = best_layer_component[1] for i_component, component in enumerate(layer_components): selected_labels = [] for a, b, word in component[12]: for label in word: selected_labels += [label] if i_component == best_layer_index: component[3] = selected_labels continue stats = component[1] good_labels = [] for label in selected_labels: stat = stats[label] left = stat[cv2.CC_STAT_LEFT] top = stat[cv2.CC_STAT_TOP] width = stat[cv2.CC_STAT_WIDTH] height = stat[cv2.CC_STAT_HEIGHT] right = left + width - 1 bottom = top + height - 1 area = width * height should_break = False for good_label in best_layer_component[3]: good_stat = best_layer_stats[good_label] good_left = good_stat[cv2.CC_STAT_LEFT] good_top = good_stat[cv2.CC_STAT_TOP] good_width = good_stat[cv2.CC_STAT_WIDTH] good_height = good_stat[cv2.CC_STAT_HEIGHT] good_right = good_left + good_width - 1 good_bottom = good_top + good_height - 1 good_area = good_width * good_height overlap_area = ((min(right, good_right) - max(left, good_left)) * (min(bottom, good_bottom) - max(top, good_top))) overlap = overlap_area / (area + good_area - overlap_area) if 0.5 < overlap < 1.5: good_labels += selected_labels should_break = True break if should_break: break component[3] = good_labels text_box = [] for component in layer_components: stats = component[1] centroids = component[2] good_labels = component[3] for label in good_labels: stat = stats[label] centroid = centroids[label] width = stat[cv2.CC_STAT_WIDTH] height = stat[cv2.CC_STAT_HEIGHT] l_box = [[centroid[0], centroid[1]+height/2], [centroid[0], centroid[1]-height/2], [centroid[0]+width/2, centroid[1]], [centroid[0]-width/2, centroid[1]]] text_box += l_box if len(text_box) > 0: text_box = cv2.boxPoints(cv2.minAreaRect(np.array(text_box).astype(np.int32))) else: text_box = box # Restore punctuation expanded_text_box = [] box_center = np.mean(text_box, axis=0) for p in text_box: cx = box_center[0] cy = box_center[1] px = 1.2 * (p[0] - cx) + cx py = 1.2 * (p[1] - cy) + cy expanded_text_box += [(px, py)] expanded_text_box = np.array(expanded_text_box) text_box = [] for component in layer_components: stats = component[1] centroids = component[2] isolated_points = component[10] selected_labels = component[3] for label in isolated_points: if Point(centroids[label]).within(Polygon(expanded_text_box)): selected_labels += [label] for label in selected_labels: stat = stats[label] centroid = centroids[label] width = stat[cv2.CC_STAT_WIDTH] height = stat[cv2.CC_STAT_HEIGHT] l_box = [[centroid[0], centroid[1] + height / 2], [centroid[0], centroid[1] - height / 2], [centroid[0] + width / 2, centroid[1]], [centroid[0] - width / 2, centroid[1]]] text_box += l_box component[3] = selected_labels if len(text_box) > 0: text_box = cv2.boxPoints(cv2.minAreaRect(np.array(text_box).astype(np.int32))) else: text_box = box expanded_text_box = [] box_center = np.mean(text_box, axis=0) for p in text_box: cx = box_center[0] cy = box_center[1] px = 1.05 * (p[0] - cx) + cx py = 1.05 * (p[1] - cy) + cy expanded_text_box += [(px, py)] text_box = np.array(expanded_text_box) for component in layer_components: labels = component[0] good_labels = component[3] binarized_layer = component[4] components = component[5] layer = component[6] cluster = component[7] stubs = component[11] words = component[13] for label in good_labels: binarized_layer[labels == label] = 255 binarized_layers += [binarized_layer] if self.do_visualisation: cv2.imshow("roi", roi) cv2.imshow("layer", layer) cv2.imshow("cluster", cluster) cv2.imshow("labels", cv2.applyColorMap((labels*255/labels.max()).astype(np.uint8), cv2.COLORMAP_JET)) cv2.imshow("components", components) cv2.imshow("stubs", stubs) cv2.imshow("words", words) cv2.imshow("binarized_layer", binarized_layer) cv2.imshow("binarized_roi", binarized_roi) key = cv2.waitKey(0) if key & 0xff == ord('q'): break if key & 0xff == ord('s'): self.do_visualisation = False break cv2.destroyWindow("roi") cv2.destroyWindow("layer") cv2.destroyWindow("cluster") cv2.destroyWindow("labels") cv2.destroyWindow("components") cv2.destroyWindow("stubs") cv2.destroyWindow("words") cv2.destroyWindow("binarized_layer") cv2.destroyWindow("binarized_roi") for binarized_layer in binarized_layers: binarized_roi = np.bitwise_and(binarized_roi, np.bitwise_not(binarized_layer)) return binarized_roi, text_box def _select_good_char_box(self, roi_size, box, bin_layer, debug_mode=False): _w, _h = roi_size left, top, width, height = box min_size = 0.05 * (_h if _h < _w else _w) if width < min_size and height < min_size: return (False, 1) if debug_mode else False if width > 0.5 * _w or (height > 0.9 * _h and width > 0.3 * _w): return (False, 2) if debug_mode else False aspect_ratio = width / height if aspect_ratio < 1. / 15 or aspect_ratio > 15: return (False, 3) if debug_mode else False n_white = np.count_nonzero(bin_layer) if n_white / (width*height) < 0.1: return (False, 4) if debug_mode else False if n_white / (width*height) > 0.95 and width > _h: return (False, 5) if debug_mode else False return (True, 0) if debug_mode else True def _get_affinity_layers(self, box, roi): _h, _w = roi.shape[:2] box_mask = np.zeros((_h, _w, 3), np.uint8) cv2.fillPoly(box_mask, [box], (255, 255, 255)) bins = int(256 / self.rgb_bin_size) hist, _ = np.histogramdd(np.bitwise_and(box_mask, roi).reshape(-1, 3), (bins, bins, bins), ((0, 256), (0, 256), (0, 256))) X = [] weights = [] for i in range(bins): for j in range(bins): for k in range(bins): if hist[i, j, k] != 0: X += [(i, j, k)] weights += [hist[i, j, k]] X = np.array(X) weights = np.array(weights) Xw = X * np.hstack((weights.reshape(-1, 1), weights.reshape(-1, 1), weights.reshape(-1, 1))) dbscan = DBSCAN(eps=self.dbscan_eps, min_samples=np.sum(weights) * self.dbscan_min_sample_frac) dbscan.fit(X, sample_weight=weights) clusters = [] for label in np.unique(dbscan.labels_): cluster_indices = dbscan.labels_ == label clusters += [np.sum(Xw[cluster_indices], axis=0) / np.sum(weights[cluster_indices])] clusters = np.array(clusters) * 256 / bins kmeans = KMeans(n_clusters=len(clusters)) kmeans.cluster_centers_ = clusters labels = kmeans.predict(roi.reshape(-1, 3)).reshape(_h, _w) for label in np.unique(labels): layer = np.zeros((_h, _w), np.uint8) cluster = np.zeros_like(roi) layer[labels == label] = 255 cluster[labels == label] = roi[labels == label] n_white = cv2.countNonZero(np.bitwise_and(box_mask[:, :, 0], layer)) n_all = cv2.contourArea(box) if n_white > n_all / 2: layer = np.bitwise_not(layer) yield layer, cluster def get_connected_components(self, layer, cluster): kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(layer, cv2.MORPH_OPEN, kernel, iterations=2) sure_bg = cv2.dilate(opening, kernel, iterations=3) dist_transform = cv2.distanceTransform(layer, cv2.DIST_L2, 5) dist_transform = (dist_transform * 255 / dist_transform.max()).astype(np.uint8) # _, sure_fg = cv2.threshold(dist_transform, 0.1 * dist_transform.max(), 255, 0) _h, _w = layer.shape[:2] ath_block_size = int(_h/8)*2+1 sure_fg = cv2.adaptiveThreshold(dist_transform, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, ath_block_size, 0) sure_fg = np.uint8(sure_fg) unknown = cv2.subtract(sure_bg, sure_fg) _, markers = cv2.connectedComponents(sure_fg) markers = markers + 1 markers[unknown == 255] = 0 labels = cv2.watershed(cluster, markers) labels[labels == -1] = 0 labels[layer == 0] = 0 stats = [] centroids = [] for i_label, label in enumerate(np.sort(np.unique(labels))): i, j = np.where(labels == label) top, left, bottom, right = i.min(), j.min(), i.max(), j.max() m = cv2.moments( (labels == label).astype(np.uint8)) x = int(m["m10"] / m["m00"]) y = int(m["m01"] / m["m00"]) stats += [{ cv2.CC_STAT_LEFT: left, cv2.CC_STAT_TOP: top, cv2.CC_STAT_WIDTH: right - left + 1, cv2.CC_STAT_HEIGHT: bottom - top + 1, }] centroids += [[x, y]] labels[labels == label] = i_label if self.do_visualisation: cv2.imshow("layer", layer) cv2.imshow("cluster", cluster) cv2.imshow("dist_transform", dist_transform) cv2.imshow("sure_fg", sure_fg) cv2.imshow("markers", cv2.applyColorMap((labels * 255 / labels.max()).astype(np.uint8), cv2.COLORMAP_JET)) key = cv2.waitKey(0) if key & 0xff == ord('q'): self.do_visualisation = False cv2.destroyWindow("layer") cv2.destroyWindow("cluster") cv2.destroyWindow("dist_transform") cv2.destroyWindow("sure_fg") cv2.destroyWindow("markers") return labels, stats, centroids def reduce_noise(self, component): stats = component[1] preselected_labels = component[3] selected_labels = [] for label in preselected_labels: stat = stats[label] left = stat[cv2.CC_STAT_LEFT] top = stat[cv2.CC_STAT_TOP] width = stat[cv2.CC_STAT_WIDTH] height = stat[cv2.CC_STAT_HEIGHT] right = left + width - 1 bottom = top + height - 1 n_overlaps = 0 is_contained = False for j_label in preselected_labels: if j_label == label: continue j_stat = stats[j_label] j_left = j_stat[cv2.CC_STAT_LEFT] j_top = j_stat[cv2.CC_STAT_TOP] j_width = j_stat[cv2.CC_STAT_WIDTH] j_height = j_stat[cv2.CC_STAT_HEIGHT] j_right = j_left + j_width - 1 j_bottom = j_top + j_height - 1 if j_right < left or j_left > right or j_top > bottom or j_bottom < top: continue overlap = ((min(right, j_right) - max(left, j_left) + 1) * (min(bottom, j_bottom) - max(top, j_top) + 1)) if overlap <= 0: continue max_overlap = min((width * height), (j_width * j_height)) if overlap / max_overlap > 0.25: n_overlaps += 1 if overlap / max_overlap > 0.95 and (j_width * j_height) > (width * height): is_contained = True if n_overlaps > 4 or is_contained: continue selected_labels += [label] component[3] = selected_labels def find_stubs(self, component, _w, _h): roi_center = np.array((_w / 2, _h / 2)) stats = component[1] centers = [(stat[cv2.CC_STAT_LEFT] + stat[cv2.CC_STAT_WIDTH]/2, stat[cv2.CC_STAT_TOP] + stat[cv2.CC_STAT_HEIGHT]/2) for stat in stats] pre_selected_labels = component[3] distances = [] for label in pre_selected_labels: center = centers[label] distance = np.linalg.norm(center - roi_center) distances += [distance] sorted_labels = [pre_selected_labels[idx] for idx in np.argsort(np.array(distances))] if 0 < len(sorted_labels) < 3: stub = sorted_labels points_to_fit = np.array([centers[label] for label in stub]) a, b = self.fit_line_to_points(points_to_fit) component[9] = [(a, b, stub)] component[10] = [] return tolerance = _h / 5 stub_candidates = [] isolated_points = [] points = [label for label in sorted_labels] rejected = [] while len(points) > 0: seed = points.pop(0) stub = [seed] unused = [] while len(points) > 0: point = points.pop(0) if len(stub) < 2: stub += [point] else: points_to_fit = np.array([centers[label] for label in stub]) line = np.polyfit(points_to_fit[:, 0], points_to_fit[:, 1], 1) a, b = line[0], line[1] residual = self.distance_to_line(centers[point], (a, b)) height = stats[point][cv2.CC_STAT_HEIGHT] point_tolerance = max(tolerance, height / 2) if residual < point_tolerance: stub += [point] points += rejected + unused rejected = [] unused = [] else: unused += [point] if len(stub) == 2: points = [seed] + unused rejected += [stub.pop()] elif len(stub) == 1: isolated_points += [seed] points = unused + rejected rejected = [] else: points_to_fit = np.array([centers[label] for label in stub]) line = np.polyfit(points_to_fit[:, 0], points_to_fit[:, 1], 1) a, b = line[0], line[1] stub_candidates += [(a, b, stub)] points = rejected + unused rejected = [] component[9] = [(a, b, [stub[idx] for idx in np.argsort([centers[point][0] for point in stub])]) for a, b, stub in stub_candidates] component[10] = isolated_points def get_best_stub(self, component, box): stats = component[1] stubs = component[9] box_poly = Polygon(box) best_stub_index = -1 best_overlap = 0 for index, (a, b, stub) in enumerate(stubs): in_box_area = 0 for label in stub: stat = stats[label] top = stat[cv2.CC_STAT_TOP] left = stat[cv2.CC_STAT_LEFT] width = stat[cv2.CC_STAT_WIDTH] height = stat[cv2.CC_STAT_HEIGHT] bottom = top + height - 1 right = left + width - 1 label_poly = Polygon([[left, top], [left, bottom], [right, bottom], [right, top]]) in_box_area += label_poly.intersection(box_poly).area if in_box_area > best_overlap: best_stub_index = index best_overlap = in_box_area return best_stub_index, best_overlap def find_words(self, component): stats = component[1] stubs = component[9] isolated_points = component[10] centers = [(stat[cv2.CC_STAT_LEFT] + stat[cv2.CC_STAT_WIDTH]/2, stat[cv2.CC_STAT_TOP] + stat[cv2.CC_STAT_HEIGHT]/2) for stat in stats] words = [] for a, b, stub in stubs: heights = [] widths = [] gaps = [] for i, label in enumerate(stub): stat = stats[label] left = stat[cv2.CC_STAT_LEFT] width = stat[cv2.CC_STAT_WIDTH] height = stat[cv2.CC_STAT_HEIGHT] i_next = i+1 if (i+1) < len(stub) else -1 widths += [width] heights += [height] if i_next >= 0: next_left = stats[stub[i_next]][cv2.CC_STAT_LEFT] gaps += [next_left - left - width] median_width = np.median(widths) median_gap = np.median(gaps) if median_gap < 0: isolated_points += stub continue if median_gap > median_width * 2: isolated_points += stub continue max_gap = min(median_width, max(median_width/4, 2*median_gap)) large_gaps = np.where(gaps > max_gap)[0] break_indices = [0] + [index+1 for index in large_gaps] + [len(stub)] for start, end in zip(break_indices[:-1], break_indices[1:]): word = stub[start:end] word_points = np.array([centers[point] for point in word]) word_line = np.polyfit(word_points[:, 0], word_points[:, 1], 1) word_a, word_b = word_line[0], word_line[1] words += [(word_a, word_b, word)] component[12] = words def distance_to_line(self, P, line): a, b = line v = np.array([1, a]) v = v / np.linalg.norm(v) beta = np.array([0, b]) H = np.dot(v, (P - beta)) * v + beta residual = np.linalg.norm(P - H) return residual def get_stub_mean_residuals(self, a, b, points): if len(points) <= 2: return 0 residuals = np.array([self.distance_to_line(point, (a, b)) for point in points]) mean = np.mean(residuals) return mean def fit_line_to_points(self, points_to_fit): if len(points_to_fit) == 0: return 0, 0 if len(points_to_fit) == 1: return 0, points_to_fit[0][1] if len(points_to_fit) == 2: x1, y1 = points_to_fit[0][0], points_to_fit[0][1] x2, y2 = points_to_fit[1][0], points_to_fit[1][1] if x1 == x2: x1 = x2 - np.finfo(np.float32).eps a = (y2 - y1) / (x2 - x1) b = y1 - a * x1 return a, b line = np.polyfit(points_to_fit[:, 0], points_to_fit[:, 1], 1) a, b = line[0], line[1] return a, b def refine_text_boxes(self, text_boxes, overlap_threshold=0.1): if len(text_boxes) == 0: return [] attempt_merge = True sel_boxes = [box for box in text_boxes] while attempt_merge: attempt_merge = False boxes = np.array(sel_boxes) if boxes.dtype.kind == "i": boxes = boxes.astype("float") p1 = boxes[:, 0] p2 = boxes[:, 1] p3 = boxes[:, 2] p4 = boxes[:, 3] polygons = [Polygon([ip1, ip2, ip3, ip4]) for ip1, ip2, ip3, ip4 in zip(p1, p2, p3, p4)] areas = np.array([p.area for p in polygons]) indices = np.argsort(-areas) pick = [] sel_boxes = [] while len(indices) > 0: last = len(indices) - 1 i = indices[last] pick.append(i) polygon = polygons[i] overlaps = np.array([polygon.intersection(polygons[other]).area for other in indices[:last]]) overlaps = overlaps / areas[indices[:last]] group = np.concatenate(([last], np.where(overlaps > overlap_threshold)[0])) group_box = cascaded_union([polygons[indices[ig]] for ig in group]).minimum_rotated_rectangle sel_boxes += [sort_box(group_box.exterior.coords[:-1])] indices = np.delete(indices, group) if len(group) > 1: attempt_merge = True sel_boxes = np.array(sel_boxes).astype("int") self.debugger.log("refined: ", np.array(text_boxes).shape, sel_boxes.shape) return sel_boxes
[ "numpy.sum", "numpy.polyfit", "numpy.ones", "cv2.adaptiveThreshold", "cv2.fillPoly", "numpy.argsort", "numpy.mean", "numpy.linalg.norm", "cv2.rectangle", "cv2.imshow", "numpy.unique", "cv2.line", "cv2.contourArea", "cv2.subtract", "numpy.zeros_like", "shapely.geometry.Point", "shapely.geometry.Polygon", "cv2.dilate", "cv2.connectedComponents", "numpy.finfo", "cv2.boundingRect", "cv2.resize", "numpy.uint8", "shapely.ops.cascaded_union", "cv2.waitKey", "cv2.morphologyEx", "numpy.median", "numpy.bitwise_not", "numpy.dot", "cv2.distanceTransform", "numpy.delete", "numpy.count_nonzero", "cv2.threshold", "numpy.zeros", "cv2.watershed", "numpy.where", "numpy.array", "numpy.bitwise_and", "cv2.destroyWindow", "numpy.sqrt" ]
[((1257, 1285), 'numpy.sqrt', 'np.sqrt', (['(750 * 750 / (h * w))'], {}), '(750 * 750 / (h * w))\n', (1264, 1285), True, 'import numpy as np\n'), ((14615, 14640), 'numpy.mean', 'np.mean', (['text_box'], {'axis': '(0)'}), '(text_box, axis=0)\n', (14622, 14640), True, 'import numpy as np\n'), ((14882, 14909), 'numpy.array', 'np.array', (['expanded_text_box'], {}), '(expanded_text_box)\n', (14890, 14909), True, 'import numpy as np\n'), ((16078, 16103), 'numpy.mean', 'np.mean', (['text_box'], {'axis': '(0)'}), '(text_box, axis=0)\n', (16085, 16103), True, 'import numpy as np\n'), ((16338, 16365), 'numpy.array', 'np.array', (['expanded_text_box'], {}), '(expanded_text_box)\n', (16346, 16365), True, 'import numpy as np\n'), ((18811, 18838), 'numpy.count_nonzero', 'np.count_nonzero', (['bin_layer'], {}), '(bin_layer)\n', (18827, 18838), True, 'import numpy as np\n'), ((19198, 19229), 'numpy.zeros', 'np.zeros', (['(_h, _w, 3)', 'np.uint8'], {}), '((_h, _w, 3), np.uint8)\n', (19206, 19229), True, 'import numpy as np\n'), ((19238, 19284), 'cv2.fillPoly', 'cv2.fillPoly', (['box_mask', '[box]', '(255, 255, 255)'], {}), '(box_mask, [box], (255, 255, 255))\n', (19250, 19284), False, 'import cv2\n'), ((19779, 19790), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (19787, 19790), True, 'import numpy as np\n'), ((19809, 19826), 'numpy.array', 'np.array', (['weights'], {}), '(weights)\n', (19817, 19826), True, 'import numpy as np\n'), ((20176, 20201), 'numpy.unique', 'np.unique', (['dbscan.labels_'], {}), '(dbscan.labels_)\n', (20185, 20201), True, 'import numpy as np\n'), ((20612, 20629), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (20621, 20629), True, 'import numpy as np\n'), ((21135, 21160), 'numpy.ones', 'np.ones', (['(3, 3)', 'np.uint8'], {}), '((3, 3), np.uint8)\n', (21142, 21160), True, 'import numpy as np\n'), ((21179, 21240), 'cv2.morphologyEx', 'cv2.morphologyEx', (['layer', 'cv2.MORPH_OPEN', 'kernel'], {'iterations': '(2)'}), '(layer, cv2.MORPH_OPEN, kernel, iterations=2)\n', (21195, 21240), False, 'import cv2\n'), ((21259, 21300), 'cv2.dilate', 'cv2.dilate', (['opening', 'kernel'], {'iterations': '(3)'}), '(opening, kernel, iterations=3)\n', (21269, 21300), False, 'import cv2\n'), ((21326, 21370), 'cv2.distanceTransform', 'cv2.distanceTransform', (['layer', 'cv2.DIST_L2', '(5)'], {}), '(layer, cv2.DIST_L2, 5)\n', (21347, 21370), False, 'import cv2\n'), ((21638, 21751), 'cv2.adaptiveThreshold', 'cv2.adaptiveThreshold', (['dist_transform', '(255)', 'cv2.ADAPTIVE_THRESH_MEAN_C', 'cv2.THRESH_BINARY', 'ath_block_size', '(0)'], {}), '(dist_transform, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.\n THRESH_BINARY, ath_block_size, 0)\n', (21659, 21751), False, 'import cv2\n'), ((21805, 21822), 'numpy.uint8', 'np.uint8', (['sure_fg'], {}), '(sure_fg)\n', (21813, 21822), True, 'import numpy as np\n'), ((21841, 21871), 'cv2.subtract', 'cv2.subtract', (['sure_bg', 'sure_fg'], {}), '(sure_bg, sure_fg)\n', (21853, 21871), False, 'import cv2\n'), ((21893, 21925), 'cv2.connectedComponents', 'cv2.connectedComponents', (['sure_fg'], {}), '(sure_fg)\n', (21916, 21925), False, 'import cv2\n'), ((22009, 22040), 'cv2.watershed', 'cv2.watershed', (['cluster', 'markers'], {}), '(cluster, markers)\n', (22022, 22040), False, 'import cv2\n'), ((25311, 25337), 'numpy.array', 'np.array', (['(_w / 2, _h / 2)'], {}), '((_w / 2, _h / 2))\n', (25319, 25337), True, 'import numpy as np\n'), ((28247, 28259), 'shapely.geometry.Polygon', 'Polygon', (['box'], {}), '(box)\n', (28254, 28259), False, 'from shapely.geometry import Point, Polygon\n'), ((31140, 31156), 'numpy.array', 'np.array', (['[1, a]'], {}), '([1, a])\n', (31148, 31156), True, 'import numpy as np\n'), ((31206, 31222), 'numpy.array', 'np.array', (['[0, b]'], {}), '([0, b])\n', (31214, 31222), True, 'import numpy as np\n'), ((31287, 31308), 'numpy.linalg.norm', 'np.linalg.norm', (['(P - H)'], {}), '(P - H)\n', (31301, 31308), True, 'import numpy as np\n'), ((31544, 31562), 'numpy.mean', 'np.mean', (['residuals'], {}), '(residuals)\n', (31551, 31562), True, 'import numpy as np\n'), ((32113, 32168), 'numpy.polyfit', 'np.polyfit', (['points_to_fit[:, 0]', 'points_to_fit[:, 1]', '(1)'], {}), '(points_to_fit[:, 0], points_to_fit[:, 1], 1)\n', (32123, 32168), True, 'import numpy as np\n'), ((1412, 1455), 'cv2.resize', 'cv2.resize', (['image', 'None'], {'fx': 'scale', 'fy': 'scale'}), '(image, None, fx=scale, fy=scale)\n', (1422, 1455), False, 'import cv2\n'), ((1512, 1537), 'numpy.ones', 'np.ones', (['(h, w)', 'np.uint8'], {}), '((h, w), np.uint8)\n', (1519, 1537), True, 'import numpy as np\n'), ((1796, 1817), 'cv2.boundingRect', 'cv2.boundingRect', (['box'], {}), '(box)\n', (1812, 1817), False, 'import cv2\n'), ((2828, 2887), 'cv2.resize', 'cv2.resize', (['binarized', 'None'], {'fx': '(1.0 / scale)', 'fy': '(1.0 / scale)'}), '(binarized, None, fx=1.0 / scale, fy=1.0 / scale)\n', (2838, 2887), False, 'import cv2\n'), ((2909, 2962), 'cv2.threshold', 'cv2.threshold', (['binarized', '(127)', '(255)', 'cv2.THRESH_BINARY'], {}), '(binarized, 127, 255, cv2.THRESH_BINARY)\n', (2922, 2962), False, 'import cv2\n'), ((3106, 3133), 'numpy.ones', 'np.ones', (['(_h, _w)', 'np.uint8'], {}), '((_h, _w), np.uint8)\n', (3113, 3133), True, 'import numpy as np\n'), ((3321, 3349), 'numpy.zeros_like', 'np.zeros_like', (['binarized_roi'], {}), '(binarized_roi)\n', (3334, 3349), True, 'import numpy as np\n'), ((3460, 3481), 'numpy.zeros', 'np.zeros', (['(_h, _w, 3)'], {}), '((_h, _w, 3))\n', (3468, 3481), True, 'import numpy as np\n'), ((5228, 5274), 'numpy.array', 'np.array', (['[(0, 0), (0, _h), (_w, _h), (_w, 0)]'], {}), '([(0, 0), (0, _h), (_w, _h), (_w, 0)])\n', (5236, 5274), True, 'import numpy as np\n'), ((5357, 5388), 'numpy.zeros', 'np.zeros', (['(_h, _w, 3)', 'np.uint8'], {}), '((_h, _w, 3), np.uint8)\n', (5365, 5388), True, 'import numpy as np\n'), ((5438, 5469), 'numpy.zeros', 'np.zeros', (['(_h, _w, 3)', 'np.uint8'], {}), '((_h, _w, 3), np.uint8)\n', (5446, 5469), True, 'import numpy as np\n'), ((20651, 20679), 'numpy.zeros', 'np.zeros', (['(_h, _w)', 'np.uint8'], {}), '((_h, _w), np.uint8)\n', (20659, 20679), True, 'import numpy as np\n'), ((20702, 20720), 'numpy.zeros_like', 'np.zeros_like', (['roi'], {}), '(roi)\n', (20715, 20720), True, 'import numpy as np\n'), ((20923, 20943), 'cv2.contourArea', 'cv2.contourArea', (['box'], {}), '(box)\n', (20938, 20943), False, 'import cv2\n'), ((22236, 22261), 'numpy.where', 'np.where', (['(labels == label)'], {}), '(labels == label)\n', (22244, 22261), True, 'import numpy as np\n'), ((22835, 22861), 'cv2.imshow', 'cv2.imshow', (['"""layer"""', 'layer'], {}), "('layer', layer)\n", (22845, 22861), False, 'import cv2\n'), ((22874, 22904), 'cv2.imshow', 'cv2.imshow', (['"""cluster"""', 'cluster'], {}), "('cluster', cluster)\n", (22884, 22904), False, 'import cv2\n'), ((22917, 22961), 'cv2.imshow', 'cv2.imshow', (['"""dist_transform"""', 'dist_transform'], {}), "('dist_transform', dist_transform)\n", (22927, 22961), False, 'import cv2\n'), ((22974, 23004), 'cv2.imshow', 'cv2.imshow', (['"""sure_fg"""', 'sure_fg'], {}), "('sure_fg', sure_fg)\n", (22984, 23004), False, 'import cv2\n'), ((23143, 23157), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (23154, 23157), False, 'import cv2\n'), ((23256, 23282), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""layer"""'], {}), "('layer')\n", (23273, 23282), False, 'import cv2\n'), ((23295, 23323), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""cluster"""'], {}), "('cluster')\n", (23312, 23323), False, 'import cv2\n'), ((23336, 23371), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""dist_transform"""'], {}), "('dist_transform')\n", (23353, 23371), False, 'import cv2\n'), ((23384, 23412), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""sure_fg"""'], {}), "('sure_fg')\n", (23401, 23412), False, 'import cv2\n'), ((23425, 23453), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""markers"""'], {}), "('markers')\n", (23442, 23453), False, 'import cv2\n'), ((25719, 25754), 'numpy.linalg.norm', 'np.linalg.norm', (['(center - roi_center)'], {}), '(center - roi_center)\n', (25733, 25754), True, 'import numpy as np\n'), ((25987, 26031), 'numpy.array', 'np.array', (['[centers[label] for label in stub]'], {}), '([centers[label] for label in stub])\n', (25995, 26031), True, 'import numpy as np\n'), ((30176, 30193), 'numpy.median', 'np.median', (['widths'], {}), '(widths)\n', (30185, 30193), True, 'import numpy as np\n'), ((30219, 30234), 'numpy.median', 'np.median', (['gaps'], {}), '(gaps)\n', (30228, 30234), True, 'import numpy as np\n'), ((31173, 31190), 'numpy.linalg.norm', 'np.linalg.norm', (['v'], {}), '(v)\n', (31187, 31190), True, 'import numpy as np\n'), ((32510, 32529), 'numpy.array', 'np.array', (['sel_boxes'], {}), '(sel_boxes)\n', (32518, 32529), True, 'import numpy as np\n'), ((32855, 32891), 'numpy.array', 'np.array', (['[p.area for p in polygons]'], {}), '([p.area for p in polygons])\n', (32863, 32891), True, 'import numpy as np\n'), ((32914, 32932), 'numpy.argsort', 'np.argsort', (['(-areas)'], {}), '(-areas)\n', (32924, 32932), True, 'import numpy as np\n'), ((2490, 2551), 'numpy.bitwise_and', 'np.bitwise_and', (['binarized[_y:_y + _h, _x:_x + _w]', 'binary_roi'], {}), '(binarized[_y:_y + _h, _x:_x + _w], binary_roi)\n', (2504, 2551), True, 'import numpy as np\n'), ((16901, 16923), 'cv2.imshow', 'cv2.imshow', (['"""roi"""', 'roi'], {}), "('roi', roi)\n", (16911, 16923), False, 'import cv2\n'), ((16940, 16966), 'cv2.imshow', 'cv2.imshow', (['"""layer"""', 'layer'], {}), "('layer', layer)\n", (16950, 16966), False, 'import cv2\n'), ((16983, 17013), 'cv2.imshow', 'cv2.imshow', (['"""cluster"""', 'cluster'], {}), "('cluster', cluster)\n", (16993, 17013), False, 'import cv2\n'), ((17148, 17184), 'cv2.imshow', 'cv2.imshow', (['"""components"""', 'components'], {}), "('components', components)\n", (17158, 17184), False, 'import cv2\n'), ((17201, 17227), 'cv2.imshow', 'cv2.imshow', (['"""stubs"""', 'stubs'], {}), "('stubs', stubs)\n", (17211, 17227), False, 'import cv2\n'), ((17244, 17270), 'cv2.imshow', 'cv2.imshow', (['"""words"""', 'words'], {}), "('words', words)\n", (17254, 17270), False, 'import cv2\n'), ((17287, 17333), 'cv2.imshow', 'cv2.imshow', (['"""binarized_layer"""', 'binarized_layer'], {}), "('binarized_layer', binarized_layer)\n", (17297, 17333), False, 'import cv2\n'), ((17350, 17392), 'cv2.imshow', 'cv2.imshow', (['"""binarized_roi"""', 'binarized_roi'], {}), "('binarized_roi', binarized_roi)\n", (17360, 17392), False, 'import cv2\n'), ((17416, 17430), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (17427, 17430), False, 'import cv2\n'), ((17636, 17660), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""roi"""'], {}), "('roi')\n", (17653, 17660), False, 'import cv2\n'), ((17677, 17703), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""layer"""'], {}), "('layer')\n", (17694, 17703), False, 'import cv2\n'), ((17720, 17748), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""cluster"""'], {}), "('cluster')\n", (17737, 17748), False, 'import cv2\n'), ((17765, 17792), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""labels"""'], {}), "('labels')\n", (17782, 17792), False, 'import cv2\n'), ((17809, 17840), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""components"""'], {}), "('components')\n", (17826, 17840), False, 'import cv2\n'), ((17857, 17883), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""stubs"""'], {}), "('stubs')\n", (17874, 17883), False, 'import cv2\n'), ((17900, 17926), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""words"""'], {}), "('words')\n", (17917, 17926), False, 'import cv2\n'), ((17943, 17979), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""binarized_layer"""'], {}), "('binarized_layer')\n", (17960, 17979), False, 'import cv2\n'), ((17996, 18030), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""binarized_roi"""'], {}), "('binarized_roi')\n", (18013, 18030), False, 'import cv2\n'), ((18139, 18170), 'numpy.bitwise_not', 'np.bitwise_not', (['binarized_layer'], {}), '(binarized_layer)\n', (18153, 18170), True, 'import numpy as np\n'), ((20398, 20416), 'numpy.array', 'np.array', (['clusters'], {}), '(clusters)\n', (20406, 20416), True, 'import numpy as np\n'), ((20861, 20901), 'numpy.bitwise_and', 'np.bitwise_and', (['box_mask[:, :, 0]', 'layer'], {}), '(box_mask[:, :, 0], layer)\n', (20875, 20901), True, 'import numpy as np\n'), ((21004, 21025), 'numpy.bitwise_not', 'np.bitwise_not', (['layer'], {}), '(layer)\n', (21018, 21025), True, 'import numpy as np\n'), ((22196, 22213), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (22205, 22213), True, 'import numpy as np\n'), ((28763, 28832), 'shapely.geometry.Polygon', 'Polygon', (['[[left, top], [left, bottom], [right, bottom], [right, top]]'], {}), '([[left, top], [left, bottom], [right, bottom], [right, top]])\n', (28770, 28832), False, 'from shapely.geometry import Point, Polygon\n'), ((30545, 30569), 'numpy.where', 'np.where', (['(gaps > max_gap)'], {}), '(gaps > max_gap)\n', (30553, 30569), True, 'import numpy as np\n'), ((30798, 30842), 'numpy.array', 'np.array', (['[centers[point] for point in word]'], {}), '([centers[point] for point in word])\n', (30806, 30842), True, 'import numpy as np\n'), ((30871, 30922), 'numpy.polyfit', 'np.polyfit', (['word_points[:, 0]', 'word_points[:, 1]', '(1)'], {}), '(word_points[:, 0], word_points[:, 1], 1)\n', (30881, 30922), True, 'import numpy as np\n'), ((31235, 31254), 'numpy.dot', 'np.dot', (['v', '(P - beta)'], {}), '(v, P - beta)\n', (31241, 31254), True, 'import numpy as np\n'), ((32758, 32787), 'shapely.geometry.Polygon', 'Polygon', (['[ip1, ip2, ip3, ip4]'], {}), '([ip1, ip2, ip3, ip4])\n', (32765, 32787), False, 'from shapely.geometry import Point, Polygon\n'), ((33635, 33660), 'numpy.delete', 'np.delete', (['indices', 'group'], {}), '(indices, group)\n', (33644, 33660), True, 'import numpy as np\n'), ((33759, 33778), 'numpy.array', 'np.array', (['sel_boxes'], {}), '(sel_boxes)\n', (33767, 33778), True, 'import numpy as np\n'), ((33833, 33853), 'numpy.array', 'np.array', (['text_boxes'], {}), '(text_boxes)\n', (33841, 33853), True, 'import numpy as np\n'), ((4136, 4226), 'cv2.rectangle', 'cv2.rectangle', (['components', '(left, top)', '(right, bottom)', '(0, 255, 255)', '(1)', 'cv2.LINE_AA'], {}), '(components, (left, top), (right, bottom), (0, 255, 255), 1,\n cv2.LINE_AA)\n', (4149, 4226), False, 'import cv2\n'), ((4312, 4401), 'cv2.rectangle', 'cv2.rectangle', (['components', '(left, top)', '(right, bottom)', '(0, 0, 255)', '(1)', 'cv2.LINE_AA'], {}), '(components, (left, top), (right, bottom), (0, 0, 255), 1, cv2\n .LINE_AA)\n', (4325, 4401), False, 'import cv2\n'), ((4486, 4575), 'cv2.rectangle', 'cv2.rectangle', (['components', '(left, top)', '(right, bottom)', '(0, 255, 0)', '(1)', 'cv2.LINE_AA'], {}), '(components, (left, top), (right, bottom), (0, 255, 0), 1, cv2\n .LINE_AA)\n', (4499, 4575), False, 'import cv2\n'), ((4660, 4750), 'cv2.rectangle', 'cv2.rectangle', (['components', '(left, top)', '(right, bottom)', '(0, 125, 255)', '(1)', 'cv2.LINE_AA'], {}), '(components, (left, top), (right, bottom), (0, 125, 255), 1,\n cv2.LINE_AA)\n', (4673, 4750), False, 'import cv2\n'), ((4836, 4926), 'cv2.rectangle', 'cv2.rectangle', (['components', '(left, top)', '(right, bottom)', '(0, 255, 125)', '(1)', 'cv2.LINE_AA'], {}), '(components, (left, top), (right, bottom), (0, 255, 125), 1,\n cv2.LINE_AA)\n', (4849, 4926), False, 'import cv2\n'), ((5012, 5101), 'cv2.rectangle', 'cv2.rectangle', (['components', '(left, top)', '(right, bottom)', '(255, 0, 0)', '(1)', 'cv2.LINE_AA'], {}), '(components, (left, top), (right, bottom), (255, 0, 0), 1, cv2\n .LINE_AA)\n', (5025, 5101), False, 'import cv2\n'), ((6409, 6499), 'cv2.rectangle', 'cv2.rectangle', (['components', '(left, top)', '(right, bottom)', '(255, 0, 255)', '(1)', 'cv2.LINE_AA'], {}), '(components, (left, top), (right, bottom), (255, 0, 255), 1,\n cv2.LINE_AA)\n', (6422, 6499), False, 'import cv2\n'), ((8941, 9018), 'cv2.rectangle', 'cv2.rectangle', (['stubs_canvas', '(left, top)', '(right, bottom)', '(127, 127, 127)', '(1)'], {}), '(stubs_canvas, (left, top), (right, bottom), (127, 127, 127), 1)\n', (8954, 9018), False, 'import cv2\n'), ((9142, 9219), 'cv2.rectangle', 'cv2.rectangle', (['words_canvas', '(left, top)', '(right, bottom)', '(127, 127, 127)', '(1)'], {}), '(words_canvas, (left, top), (right, bottom), (127, 127, 127), 1)\n', (9155, 9219), False, 'import cv2\n'), ((10282, 10347), 'cv2.line', 'cv2.line', (['stubs_canvas', '(x0, y0)', '(x1, y1)', 'color', '(1)', 'cv2.LINE_AA'], {}), '(stubs_canvas, (x0, y0), (x1, y1), color, 1, cv2.LINE_AA)\n', (10290, 10347), False, 'import cv2\n'), ((11410, 11475), 'cv2.line', 'cv2.line', (['words_canvas', '(x0, y0)', '(x1, y1)', 'color', '(1)', 'cv2.LINE_AA'], {}), '(words_canvas, (x0, y0), (x1, y1), color, 1, cv2.LINE_AA)\n', (11418, 11475), False, 'import cv2\n'), ((15226, 15252), 'shapely.geometry.Polygon', 'Polygon', (['expanded_text_box'], {}), '(expanded_text_box)\n', (15233, 15252), False, 'from shapely.geometry import Point, Polygon\n'), ((19363, 19392), 'numpy.bitwise_and', 'np.bitwise_and', (['box_mask', 'roi'], {}), '(box_mask, roi)\n', (19377, 19392), True, 'import numpy as np\n'), ((20041, 20056), 'numpy.sum', 'np.sum', (['weights'], {}), '(weights)\n', (20047, 20056), True, 'import numpy as np\n'), ((20282, 20317), 'numpy.sum', 'np.sum', (['Xw[cluster_indices]'], {'axis': '(0)'}), '(Xw[cluster_indices], axis=0)\n', (20288, 20317), True, 'import numpy as np\n'), ((20345, 20377), 'numpy.sum', 'np.sum', (['weights[cluster_indices]'], {}), '(weights[cluster_indices])\n', (20351, 20377), True, 'import numpy as np\n'), ((25865, 25884), 'numpy.array', 'np.array', (['distances'], {}), '(distances)\n', (25873, 25884), True, 'import numpy as np\n'), ((26657, 26701), 'numpy.array', 'np.array', (['[centers[label] for label in stub]'], {}), '([centers[label] for label in stub])\n', (26665, 26701), True, 'import numpy as np\n'), ((26729, 26784), 'numpy.polyfit', 'np.polyfit', (['points_to_fit[:, 0]', 'points_to_fit[:, 1]', '(1)'], {}), '(points_to_fit[:, 0], points_to_fit[:, 1], 1)\n', (26739, 26784), True, 'import numpy as np\n'), ((27631, 27675), 'numpy.array', 'np.array', (['[centers[label] for label in stub]'], {}), '([centers[label] for label in stub])\n', (27639, 27675), True, 'import numpy as np\n'), ((27699, 27754), 'numpy.polyfit', 'np.polyfit', (['points_to_fit[:, 0]', 'points_to_fit[:, 1]', '(1)'], {}), '(points_to_fit[:, 0], points_to_fit[:, 1], 1)\n', (27709, 27754), True, 'import numpy as np\n'), ((33454, 33509), 'shapely.ops.cascaded_union', 'cascaded_union', (['[polygons[indices[ig]] for ig in group]'], {}), '([polygons[indices[ig]] for ig in group])\n', (33468, 33509), False, 'from shapely.ops import cascaded_union\n'), ((9952, 10019), 'cv2.rectangle', 'cv2.rectangle', (['stubs_canvas', '(left, top)', '(right, bottom)', 'color', '(1)'], {}), '(stubs_canvas, (left, top), (right, bottom), color, 1)\n', (9965, 10019), False, 'import cv2\n'), ((11080, 11147), 'cv2.rectangle', 'cv2.rectangle', (['words_canvas', '(left, top)', '(right, bottom)', 'color', '(1)'], {}), '(words_canvas, (left, top), (right, bottom), color, 1)\n', (11093, 11147), False, 'import cv2\n'), ((15195, 15218), 'shapely.geometry.Point', 'Point', (['centroids[label]'], {}), '(centroids[label])\n', (15200, 15218), False, 'from shapely.geometry import Point, Polygon\n'), ((27972, 28021), 'numpy.argsort', 'np.argsort', (['[centers[point][0] for point in stub]'], {}), '([centers[point][0] for point in stub])\n', (27982, 28021), True, 'import numpy as np\n'), ((31983, 32003), 'numpy.finfo', 'np.finfo', (['np.float32'], {}), '(np.float32)\n', (31991, 32003), True, 'import numpy as np\n'), ((14453, 14471), 'numpy.array', 'np.array', (['text_box'], {}), '(text_box)\n', (14461, 14471), True, 'import numpy as np\n'), ((15946, 15964), 'numpy.array', 'np.array', (['text_box'], {}), '(text_box)\n', (15954, 15964), True, 'import numpy as np\n'), ((33382, 33420), 'numpy.where', 'np.where', (['(overlaps > overlap_threshold)'], {}), '(overlaps > overlap_threshold)\n', (33390, 33420), True, 'import numpy as np\n'), ((2736, 2764), 'numpy.array', 'np.array', (['refined_text_boxes'], {}), '(refined_text_boxes)\n', (2744, 2764), True, 'import numpy as np\n')]
import os from collections import defaultdict import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy import stats DISTRIBUTIONS = { 'exp' : "Exponential", 'N': "Normal" } def plot_cdf(groupings, name): conf = name.split('-') reservoir_size = conf[0] distribution = DISTRIBUTIONS[conf[1]] parameters = conf[2:] fig, ax = plt.subplots() xmin = 1000000 xmax = -1 for grouping in groupings: cdf = grouping['cdf'] x = cdf.lowerlimit + np.linspace(0, cdf.binsize * cdf.cumcount.size, cdf.cumcount.size) xmin = min(x.min(), xmin) xmax = max(x.max(), xmax) ax.plot(x, np.divide(cdf.cumcount, grouping['bincount']), label="Algorithm %s" % grouping['sampler']) ax.set(xlabel='x', ylabel='P(X ≤ x)', title=f'{distribution}({parameters}), Reservoir size = {reservoir_size}') ax.set_ylim([0, 1.5]) ax.set_xlim([xmin, xmax]) ax.grid() ax.legend() fig.savefig(f'{name}.png') cdfs = defaultdict(list) for file in os.listdir('../gen'): key = file[2:].strip('.csv') conf = file.strip('.csv').split('-') algorithm = conf[0] reservoir_size = conf[1] distribution = conf[2] parameters = conf[3:] absolute = os.path.abspath(f'../gen/{file}') df = pd.read_csv(absolute) samples = df.to_numpy() cdf = stats.cumfreq(samples, numbins=df.size) cdfs[key].append({ 'cdf': cdf, 'dist': DISTRIBUTIONS[distribution], 'reservoir_size': reservoir_size, 'params': parameters, 'sampler': algorithm, 'bincount': df.size }) for name in cdfs.keys(): plot_cdf(cdfs[name], name)
[ "scipy.stats.cumfreq", "os.path.abspath", "numpy.divide", "pandas.read_csv", "collections.defaultdict", "numpy.linspace", "matplotlib.pyplot.subplots", "os.listdir" ]
[((1004, 1021), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (1015, 1021), False, 'from collections import defaultdict\n'), ((1034, 1054), 'os.listdir', 'os.listdir', (['"""../gen"""'], {}), "('../gen')\n", (1044, 1054), False, 'import os\n'), ((379, 393), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (391, 393), True, 'import matplotlib.pyplot as plt\n'), ((1251, 1284), 'os.path.abspath', 'os.path.abspath', (['f"""../gen/{file}"""'], {}), "(f'../gen/{file}')\n", (1266, 1284), False, 'import os\n'), ((1294, 1315), 'pandas.read_csv', 'pd.read_csv', (['absolute'], {}), '(absolute)\n', (1305, 1315), True, 'import pandas as pd\n'), ((1354, 1393), 'scipy.stats.cumfreq', 'stats.cumfreq', (['samples'], {'numbins': 'df.size'}), '(samples, numbins=df.size)\n', (1367, 1393), False, 'from scipy import stats\n'), ((517, 583), 'numpy.linspace', 'np.linspace', (['(0)', '(cdf.binsize * cdf.cumcount.size)', 'cdf.cumcount.size'], {}), '(0, cdf.binsize * cdf.cumcount.size, cdf.cumcount.size)\n', (528, 583), True, 'import numpy as np\n'), ((671, 716), 'numpy.divide', 'np.divide', (['cdf.cumcount', "grouping['bincount']"], {}), "(cdf.cumcount, grouping['bincount'])\n", (680, 716), True, 'import numpy as np\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import copy from functools import reduce from hypothesis import assume, given, settings import hypothesis.strategies as st from functools import partial import unittest from caffe2.python import core, workspace, tt_core, dyndep import caffe2.python.hypothesis_test_util as hu from caffe2.proto.caffe2_pb2 import TensorProto dyndep.InitOpsLibrary('@/caffe2/caffe2/fb/optimizers:sgd_simd_ops') def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) def tanh(x): return 2.0 * sigmoid(2.0 * x) - 1 def lstm_unit(cell_t_m_1, gates, seq_lengths, timestep): D = cell_t_m_1.shape[2] G = gates.shape[2] N = gates.shape[1] t = (timestep[0].reshape(1, 1) * np.ones(shape=(N, D))).astype(np.int32) assert t.shape == (N, D) seq_lengths = (np.ones(shape=(N, D)) * seq_lengths.reshape(N, 1)).astype(np.int32) assert seq_lengths.shape == (N, D) assert G == 4 * D # Resize to avoid broadcasting inconsistencies with NumPy gates = gates.reshape(N, 4, D) cell_t_m_1 = cell_t_m_1.reshape(N, D) i_t = gates[:, 0, :].reshape(N, D) f_t = gates[:, 1, :].reshape(N, D) o_t = gates[:, 2, :].reshape(N, D) g_t = gates[:, 3, :].reshape(N, D) i_t = sigmoid(i_t) f_t = sigmoid(f_t) o_t = sigmoid(o_t) g_t = tanh(g_t) valid = (seq_lengths < t).astype(np.int32) assert valid.shape == (N, D) cell_t = ((f_t * cell_t_m_1) + (i_t * g_t)) * (valid) + \ (1 - valid) * cell_t_m_1 assert cell_t.shape == (N, D) hidden_t = (o_t * tanh(cell_t)) * valid hidden_t = hidden_t.reshape(1, N, D) cell_t = cell_t.reshape(1, N, D) return hidden_t, cell_t @st.composite def _tensor_and_prefix(draw, dtype, elements, min_dim=1, max_dim=4, **kwargs): dims_ = draw( st.lists(hu.dims(**kwargs), min_size=min_dim, max_size=max_dim)) extra_ = draw( st.lists(hu.dims(**kwargs), min_size=min_dim, max_size=max_dim)) return (draw(hu.arrays(dims_ + extra_, dtype, elements)), draw(hu.arrays(extra_, dtype, elements))) _NUMPY_TYPE_TO_ENUM = { np.float32: core.DataType.FLOAT, np.int32: core.DataType.INT32, np.bool: core.DataType.BOOL, np.uint8: core.DataType.UINT8, np.int8: core.DataType.INT8, np.uint16: core.DataType.UINT16, np.int16: core.DataType.INT16, np.int64: core.DataType.INT64, np.float64: core.DataType.DOUBLE, } def _dtypes(): return st.sampled_from([np.int32, np.int64, np.float32, np.float64]) def _test_binary(name, ref, filter_=None, gcs=hu.gcs, test_gradient=False, allow_inplace=False, dtypes=_dtypes): @given( inputs=dtypes().flatmap( lambda dtype: hu.tensors( n=2, dtype=dtype, elements=hu.elements_of_type(dtype, filter_=filter_))), out=st.sampled_from(('Y', 'X1', 'X2') if allow_inplace else ('Y',)), **gcs) @settings(max_examples=3, timeout=100) def test_binary(self, inputs, out, gc, dc): op = core.CreateOperator(name, ["X1", "X2"], [out]) X1, X2 = inputs self.assertDeviceChecks(dc, op, [X1, X2], [0]) # We only do gradient check with float32 types. if test_gradient and X1.dtype == np.float32: self.assertGradientChecks(gc, op, [X1, X2], 0, [0]) self.assertReferenceChecks(gc, op, [X1, X2], ref) return test_binary def _test_binary_broadcast(name, ref, filter_=None, gcs=hu.gcs, allow_inplace=False, dtypes=_dtypes): @given( inputs=dtypes().flatmap(lambda dtype: _tensor_and_prefix( dtype=dtype, elements=hu.elements_of_type(dtype, filter_=filter_))), in_place=(st.booleans() if allow_inplace else st.just(False)), **gcs) @settings(max_examples=3, timeout=100) def test_binary_broadcast(self, inputs, in_place, gc, dc): op = core.CreateOperator( name, ["X1", "X2"], ["X1" if in_place else "Y"], broadcast=1) X1, X2 = inputs self.assertDeviceChecks(dc, op, [X1, X2], [0]) def cast_ref(x, y): return (np.array(ref(x, y)[0], dtype=x.dtype), ) # gradient not implemented yet # self.assertGradientChecks(gc, op, [X1, X2], 0, [0]) self.assertReferenceChecks(gc, op, [X1, X2], cast_ref) return test_binary_broadcast class TestOperators(hu.HypothesisTestCase): def test_comparison_ops(self): ops = {"LT": lambda x1, x2: [x1 < x2], "LE": lambda x1, x2: [x1 <= x2], "GT": lambda x1, x2: [x1 > x2], "GE": lambda x1, x2: [x1 >= x2]} for name, ref in ops.items(): _test_binary(name, ref, gcs=hu.gcs_cpu_only)(self) _test_binary_broadcast(name, ref, gcs=hu.gcs_cpu_only)(self) @given(inputs=hu.tensors(n=2), in_place=st.booleans(), **hu.gcs) def test_sum(self, inputs, in_place, gc, dc): op = core.CreateOperator("Sum", ["X1", "X2"], ["Y" if not in_place else "X1"]) X1, X2 = inputs self.assertDeviceChecks(dc, op, [X1, X2], [0]) self.assertGradientChecks(gc, op, [X1, X2], 0, [0]) def test_add(self): def ref(x, y): return (x + y, ) _test_binary("Add", ref, test_gradient=True)(self) _test_binary_broadcast("Add", ref)(self) def test_sub(self): def ref(x, y): return (x - y, ) # TODO(jiayq): enable gradient test when implemented. _test_binary("Sub", ref, test_gradient=True)(self) _test_binary_broadcast("Sub", ref)(self) def test_mul(self): def ref(x, y): return (x * y, ) _test_binary("Mul", ref, test_gradient=True)(self) _test_binary_broadcast("Mul", ref)(self) def test_div(self): def ref(x, y): return (x / y, ) def non_zero(x): return abs(x) > 10e-5 def div_dtypes(): return st.sampled_from([np.float32, np.float64]) _test_binary( "Div", ref, filter_=non_zero, test_gradient=True, dtypes=div_dtypes, gcs=hu.gcs_cpu_only )(self) _test_binary( "Div", ref, filter_=non_zero, test_gradient=False, dtypes=div_dtypes )(self) _test_binary_broadcast( "Div", ref, filter_=non_zero, dtypes=div_dtypes)(self) @given(X=hu.tensor(), in_place=st.booleans(), **hu.gcs) def test_negative(self, X, in_place, gc, dc): op = core.CreateOperator("Negative", ["X"], ["Y" if not in_place else "X"]) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) @given(X=hu.tensor(), **hu.gcs) def test_relu(self, X, gc, dc): op = core.CreateOperator("Relu", ["X"], ["Y"]) # go away from the origin point to avoid kink problems X += 0.02 * np.sign(X) X[X == 0.0] += 0.02 self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) @given(X=hu.tensor(), **hu.gcs) def test_averaged_loss(self, X, gc, dc): op = core.CreateOperator("AveragedLoss", ["X"], ["loss"]) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) @given( device_options=st.lists( min_size=2, max_size=4, elements=st.sampled_from(hu.expanded_device_options)), set_seed=st.booleans()) def test_random_seed_behaviour(self, device_options, set_seed): # Assume we are always operating on CUDA or CPU, since RNG is # inconsistent between CPU and GPU. device_options = copy.deepcopy(device_options) assume(len({do.device_type for do in device_options}) == 1) if set_seed: for do in device_options: do.random_seed = 1000 def run(do): op = core.CreateOperator( "XavierFill", [], ["Y"], device_option=do, shape=[2]) workspace.RunOperatorOnce(op) return workspace.FetchBlob("Y") ys = [run(do) for do in device_options] for y in ys[1:]: if set_seed: np.testing.assert_array_equal(ys[0], y) else: with self.assertRaises(AssertionError): np.testing.assert_array_equal(ys[0], y) @given(axis=st.integers(min_value=1, max_value=4), num_output=st.integers(min_value=4, max_value=8), **hu.gcs) def test_fully_connected_axis(self, axis, num_output, gc, dc): np.random.seed(1) X = np.random.randn(1, 2, 3, 2, 1).astype(np.float32) def prod(xs): p = 1 for x in xs: p *= x return p K = prod(list(X.shape)[axis:]) N = num_output W = np.random.randn(N, K).astype(np.float32) b = np.random.randn(N).astype(np.float32) op = core.CreateOperator( "FC", ["X", "W", "b"], ["Y"], axis=axis) for name, param in [("X", X), ("W", W), ("b", b)]: workspace.FeedBlob(name, param) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob("Y") self.assertEqual(list(Y.shape), list(X.shape)[:axis] + [N]) inputs = [X, W, b] self.assertDeviceChecks(dc, op, inputs, [0]) for param, _ in enumerate(inputs): self.assertGradientChecks(gc, op, inputs, param, [0]) @unittest.skipIf(not workspace.has_gpu_support, "Skipping test due to no gpu present.") @given(hidden_size=st.integers(min_value=1, max_value=3), num_layers=st.integers(min_value=1, max_value=3), bidirectional=st.booleans(), rnn_mode=st.sampled_from(["gru", "lstm"]), input_mode=st.sampled_from(["linear"]), dropout=st.floats(min_value=0.0, max_value=0.0), T=st.integers(min_value=1, max_value=4), N=st.integers(min_value=1, max_value=4), D=st.integers(min_value=1, max_value=4)) def test_recurrent(self, hidden_size, num_layers, bidirectional, rnn_mode, input_mode, dropout, T, N, D): init_op = core.CreateOperator( "RecurrentInit", ["INPUT"], ["WEIGHT", "DROPOUT_STATES"], hidden_size=hidden_size, bidirectional=bidirectional, rnn_mode=rnn_mode, dropout=dropout, input_mode=input_mode, num_layers=num_layers, device_option=hu.gpu_do, engine="CUDNN") op = core.CreateOperator( "Recurrent", ["INPUT", "HIDDEN_INPUT", "CELL_INPUT", "WEIGHT"], ["OUTPUT", "HIDDEN_OUTPUT", "CELL_OUTPUT", "RNN_SCRATCH", "DROPOUT_STATES"], hidden_size=hidden_size, bidirectional=bidirectional, rnn_mode=rnn_mode, dropout=dropout, input_mode=input_mode, num_layers=num_layers, engine="CUDNN") num_directions = 2 if bidirectional else 1 X = np.random.randn(T, N, D).astype(np.float32) workspace.FeedBlob("INPUT", X, device_option=hu.gpu_do) workspace.RunOperatorOnce(init_op) W = workspace.FetchBlob("WEIGHT") H = np.random.randn( hidden_size, N, num_layers * num_directions).astype( np.float32) C = np.random.randn( hidden_size, N, num_layers * num_directions).astype( np.float32) if rnn_mode == "lstm" else \ np.empty((1,)).astype(np.float32) # unused in GRU inputs = [X, H, C, W] input_idxs = [i for (i, _) in enumerate(inputs)] \ if rnn_mode == "lstm" else [0, 1, 3] # ignore C for input_idx in input_idxs: self.assertGradientChecks( hu.gpu_do, op, inputs, input_idx, [0, 1, 2]) @given(ndim=st.integers(1, 4), axis=st.integers(0, 3), num_inputs=st.integers(2, 4), **hu.gcs) def test_depth_concat(self, ndim, axis, num_inputs, gc, dc): if (axis >= ndim): return input_names = ['X0', 'X1', 'X2', 'X3'][:num_inputs] shape = [2, 3, 5, 7][:ndim] individual_dims = [11, 13, 17, 19][:num_inputs] inputs = [] for i in range(num_inputs): # Sets a unique dim and create the input. shape[axis] = individual_dims[i] inputs.append(np.random.rand(*shape).astype(np.float32)) op = core.CreateOperator("Concat", input_names, ["Y", "Y_dims"], axis=axis) self.assertDeviceChecks(dc, op, inputs, [0]) for i in range(num_inputs): self.assertGradientChecks(gc, op, inputs, i, [0]) @given(num_inputs=st.integers(2, 4), order=st.sampled_from([("NCHW", 1), ("NHWC", 3)]), **hu.gcs) def test_depth_concat_with_order(self, num_inputs, order, gc, dc): input_names = ['X0', 'X1', 'X2', 'X3'][:num_inputs] shape = [2, 3, 5, 7] individual_dims = [11, 13, 17, 19][:num_inputs] inputs = [] for i in range(num_inputs): # Sets a unique dim and create the input. shape[order[1]] = individual_dims[i] inputs.append(np.random.rand(*shape).astype(np.float32)) op = core.CreateOperator("Concat", input_names, ["Y", "Y_dims"], order=order[0]) self.assertDeviceChecks(dc, op, inputs, [0]) for i in range(num_inputs): self.assertGradientChecks(gc, op, inputs, i, [0]) # CUDNN does NOT support different padding values and we skip it @given(stride_h=st.integers(1, 3), stride_w=st.integers(1, 3), pad_t=st.integers(0, 3), pad_l=st.integers(0, 3), pad_b=st.integers(0, 3), pad_r=st.integers(0, 3), kernel=st.integers(3, 5), size=st.integers(8, 8), input_channels=st.integers(1, 3), output_channels=st.integers(1, 3), batch_size=st.integers(1, 3), order=st.sampled_from(["NCHW", "NHWC"]), engine=st.sampled_from([""]), **hu.gcs) @settings(max_examples=2, timeout=100) def test_convolution_separate_stride_pad_gradients(self, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r, kernel, size, input_channels, output_channels, batch_size, order, engine, gc, dc): assume(stride_h <= kernel) assume(stride_w <= kernel) op = core.CreateOperator( "Conv", ["X", "w", "b"], ["Y"], stride_h=stride_h, stride_w=stride_w, pad_t=pad_t, pad_l=pad_l, pad_b=pad_b, pad_r=pad_r, kernel=kernel, order=order, engine=engine, ) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) - 0.5 w = np.random.rand( output_channels, kernel, kernel, input_channels).astype(np.float32)\ - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 if order == "NCHW": X = X.transpose((0, 3, 1, 2)) w = w.transpose((0, 3, 1, 2)) self.assertDeviceChecks(dc, op, [X, w, b], [0]) for i in range(3): self.assertGradientChecks(gc, op, [X, w, b], i, [0]) # CUDNN does NOT support different padding values and we skip it @given(stride_h=st.integers(1, 3), stride_w=st.integers(1, 3), pad_t=st.integers(0, 3), pad_l=st.integers(0, 3), pad_b=st.integers(0, 3), pad_r=st.integers(0, 3), kernel=st.integers(1, 5), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(1, 3), engine=st.sampled_from([""]), **hu.gcs) def test_convolution_separate_stride_pad_layout(self, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r, kernel, size, input_channels, output_channels, batch_size, engine, gc, dc): assume(stride_h <= kernel) assume(stride_w <= kernel) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) - 0.5 w = np.random.rand( output_channels, kernel, kernel, input_channels).astype(np.float32)\ - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 outputs = {} for order in ["NCHW", "NHWC"]: op = core.CreateOperator( "Conv", ["X", "w", "b"], ["Y"], stride_h=stride_h, stride_w=stride_w, kernel=kernel, pad_t=pad_t, pad_l=pad_l, pad_b=pad_b, pad_r=pad_r, order=order, engine=engine, device_option=gc, ) if order == "NCHW": X_f = X.transpose((0, 3, 1, 2)) w_f = w.transpose((0, 3, 1, 2)) else: X_f = X w_f = w workspace.FeedBlob("X", X_f, device_option=gc) workspace.FeedBlob("w", w_f, device_option=gc) workspace.FeedBlob("b", b, device_option=gc) workspace.RunOperatorOnce(op) outputs[order] = workspace.FetchBlob("Y") np.testing.assert_allclose( outputs["NCHW"], outputs["NHWC"].transpose((0, 3, 1, 2)), atol=1e-4, rtol=1e-4) @given(stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(1, 3), order=st.sampled_from(["NCHW", "NHWC"]), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(max_examples=2, timeout=100) def test_convolution_gradients(self, stride, pad, kernel, size, input_channels, output_channels, batch_size, order, engine, gc, dc): assume(stride <= kernel) op = core.CreateOperator( "Conv", ["X", "w", "b"], ["Y"], stride=stride, kernel=kernel, pad=pad, order=order, engine=engine, ) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) - 0.5 w = np.random.rand( output_channels, kernel, kernel, input_channels).astype(np.float32)\ - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 if order == "NCHW": X = X.transpose((0, 3, 1, 2)) w = w.transpose((0, 3, 1, 2)) self.assertDeviceChecks(dc, op, [X, w, b], [0]) for i in range(3): self.assertGradientChecks(gc, op, [X, w, b], i, [0]) @given(stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(1, 3), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_convolution_layout(self, stride, pad, kernel, size, input_channels, output_channels, batch_size, engine, gc, dc): assume(stride <= kernel) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) - 0.5 w = np.random.rand( output_channels, kernel, kernel, input_channels).astype(np.float32)\ - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 outputs = {} for order in ["NCHW", "NHWC"]: op = core.CreateOperator( "Conv", ["X", "w", "b"], ["Y"], stride=stride, kernel=kernel, pad=pad, order=order, engine=engine, device_option=gc, ) if order == "NCHW": X_f = X.transpose((0, 3, 1, 2)) w_f = w.transpose((0, 3, 1, 2)) else: X_f = X w_f = w workspace.FeedBlob("X", X_f, device_option=gc) workspace.FeedBlob("w", w_f, device_option=gc) workspace.FeedBlob("b", b, device_option=gc) workspace.RunOperatorOnce(op) outputs[order] = workspace.FetchBlob("Y") np.testing.assert_allclose( outputs["NCHW"], outputs["NHWC"].transpose((0, 3, 1, 2)), atol=1e-4, rtol=1e-4) @given(num_workers=st.integers(1, 4), net_type=st.sampled_from( ["simple", "dag"] + (["async_dag"] if workspace.has_gpu_support else [])), do=st.sampled_from(hu.device_options), engine=st.sampled_from(["CUDNN", ""])) def test_convolution_sync(self, net_type, num_workers, do, engine): from caffe2.python.cnn import CNNModelHelper m = CNNModelHelper() n = 1 d = 2 depth = 3 iters = 5 h = 5 w = 5 workspace.ResetWorkspace() np.random.seed(1701) # Build a binary tree of conv layers, summing at each node. for i in reversed(range(depth)): for j in range(2 ** i): bottom_1 = "{}_{}".format(i + 1, 2 * j) bottom_2 = "{}_{}".format(i + 1, 2 * j + 1) mid_1 = "{}_{}_m".format(i + 1, 2 * j) mid_2 = "{}_{}_m".format(i + 1, 2 * j + 1) top = "{}_{}".format(i, j) w1, b1, w2, b2 = np.random.randn(4).tolist() m.Conv( bottom_1, mid_1, dim_in=d, dim_out=d, kernel=3, weight_init=m.ConstantInit(w1), bias_init=m.ConstantInit(b1), cudnn_state=np.random.randint(0, 3), stride=1, pad=1, deterministic=1, engine=engine) m.Conv( bottom_2, mid_2, dim_in=d, dim_out=d, kernel=3, stride=1, pad=1, weight_init=m.ConstantInit(w2), bias_init=m.ConstantInit(b2), deterministic=1, cudnn_state=np.random.randint(0, 3), engine=engine) m.net.Sum([mid_1, mid_2], top) m.net.Flatten(["0_0"], ["0_0_flat"]) m.net.SquaredL2Distance(["0_0_flat", "label"], "xent") m.net.AveragedLoss("xent", "loss") input_to_grad = m.AddGradientOperators(["loss"]) m.Proto().device_option.CopyFrom(do) m.param_init_net.Proto().device_option.CopyFrom(do) m.Proto().type = net_type m.Proto().num_workers = num_workers workspace.RunNetOnce(m.param_init_net) def run(): import numpy as np np.random.seed(1701) input_blobs = ["{}_{}".format(depth, j) for j in range(2 ** depth)] for input_blob in input_blobs: workspace.FeedBlob( input_blob, np.random.randn(n, d, h, w).astype(np.float32), device_option=do) workspace.FeedBlob( "label", np.random.randn(n, d * h * w).astype(np.float32), device_option=do) workspace.RunNetOnce(m.net) gradients = [ workspace.FetchBlob(str(input_to_grad[input_blob])) for input_blob in input_blobs] return gradients outputs = [run() for _ in range(iters)] for output in outputs[1:]: np.testing.assert_array_equal(outputs[0], output) np.testing.assert_allclose( np.sum(np.square(output)), 1763719461732352.0, rtol=1e-5) @given(stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), adj=st.integers(0, 2), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(1, 3), order=st.sampled_from(["NCHW", "NHWC"]), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(max_examples=2, timeout=100) def test_convolution_transpose_gradients(self, stride, pad, kernel, adj, size, input_channels, output_channels, batch_size, order, engine, gc, dc): assume(stride <= kernel) assume(adj < stride) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) - 0.5 w = np.random.rand( input_channels, kernel, kernel, output_channels)\ .astype(np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 op = core.CreateOperator( "ConvTranspose", ["X", "w", "b"], ["Y"], stride=stride, kernel=kernel, pad=pad, adj=adj, order=order, engine=engine, ) if order == "NCHW": X = X.transpose((0, 3, 1, 2)) w = w.transpose((0, 3, 1, 2)) self.assertDeviceChecks(dc, op, [X, w, b], [0]) for i in range(3): self.assertGradientChecks(gc, op, [X, w, b], i, [0]) @given(stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), adj=st.integers(0, 2), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(1, 3), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_convolution_transpose_layout(self, stride, pad, kernel, adj, size, input_channels, output_channels, batch_size, engine, gc, dc): assume(stride <= kernel) assume(adj < stride) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) - 0.5 w = np.random.rand( input_channels, kernel, kernel, output_channels)\ .astype(np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 outputs = {} for order in ["NCHW", "NHWC"]: op = core.CreateOperator( "ConvTranspose", ["X", "w", "b"], ["Y"], stride=stride, kernel=kernel, pad=pad, adj=adj, order=order, engine=engine, device_option=gc, ) if order == "NCHW": X_f = X.transpose((0, 3, 1, 2)) w_f = w.transpose((0, 3, 1, 2)) else: X_f = X w_f = w workspace.FeedBlob("X", X_f, device_option=gc) workspace.FeedBlob("w", w_f, device_option=gc) workspace.FeedBlob("b", b, device_option=gc) workspace.RunOperatorOnce(op) outputs[order] = workspace.FetchBlob("Y") output_size = (size - 1) * stride + kernel + adj - 2 * pad self.assertEqual( outputs["NCHW"].shape, (batch_size, output_channels, output_size, output_size)) np.testing.assert_allclose( outputs["NCHW"], outputs["NHWC"].transpose((0, 3, 1, 2)), atol=1e-4, rtol=1e-4) @given(dtype=st.sampled_from([np.float32, np.float64, np.int32, np.bool])) def test_print(self, dtype): data = np.random.permutation(6).astype(dtype) workspace.FeedBlob("data", data) op = core.CreateOperator("Print", "data", []) self.assertTrue(workspace.RunOperatorOnce(op)) @given(inputs=hu.tensors(n=3), in_place=st.booleans(), beta1=st.floats(min_value=0.1, max_value=0.9), beta2=st.floats(min_value=0.1, max_value=0.9), lr=st.floats(min_value=0.1, max_value=0.9), iters=st.integers(min_value=1, max_value=10000), epsilon=st.floats(min_value=1e-5, max_value=1e-2), **hu.gcs) def test_adam_sgd(self, inputs, in_place, beta1, beta2, lr, iters, epsilon, gc, dc): grad, m1, m2 = inputs m2 += np.abs(m2) + 0.01 lr = np.asarray([lr], dtype=np.float32) iters = np.asarray([iters], dtype=np.int32) op = core.CreateOperator( "Adam", ["grad", "m1", "m2", "lr", "iters"], ["grad" if in_place else "grad_o", "m1" if in_place else "m1_o", "m2" if in_place else "m2_o"], beta1=beta1, beta2=beta2, epsilon=epsilon, device_option=gc) input_device_options = {"iters": hu.cpu_do} self.assertDeviceChecks( dc, op, [grad, m1, m2, lr, iters], [0], input_device_options) # Reference def adam(grad, m1, m2, lr, iters): lr = lr[0] iters = iters[0] t = iters + 1 corrected_local_rate = lr * np.sqrt(1. - np.power(beta2, t)) / \ (1. - np.power(beta1, t)) m1_o = (beta1 * m1) + (1. - beta1) * grad m2_o = (beta2 * m2) + (1. - beta2) * np.square(grad) grad_o = corrected_local_rate * m1_o / \ (np.sqrt(m2_o) + epsilon) return (grad_o, m1_o, m2_o) self.assertReferenceChecks(gc, op, [grad, m1, m2, lr, iters], adam, input_device_options) @given(inputs=hu.tensors(n=2), in_place=st.booleans(), momentum=st.floats(min_value=0.1, max_value=0.9), nesterov=st.booleans(), lr=st.floats(min_value=0.1, max_value=0.9), **hu.gcs) def test_momentum_sgd( self, inputs, in_place, momentum, nesterov, lr, gc, dc): grad, m = inputs lr = np.asarray([lr], dtype=np.float32) op = core.CreateOperator( "MomentumSGD", ["grad", "m", "lr"], ["grad" if in_place else "grad_o", "m" if in_place else "m_o"], momentum=momentum, nesterov=int(nesterov), device_option=gc) self.assertDeviceChecks( dc, op, [grad, m, lr], [0]) # Reference def momentum_sgd(grad, m, lr): lr = lr[0] if not nesterov: adjusted_gradient = lr * grad + momentum * m return (adjusted_gradient, adjusted_gradient) else: m_new = momentum * m + lr * grad return ((1 + momentum) * m_new - momentum * m, m_new) self.assertReferenceChecks(gc, op, [grad, m, lr], momentum_sgd) @given(inputs=hu.tensors(n=3), in_place=st.booleans(), decay=st.floats(min_value=0.1, max_value=0.9), momentum=st.floats(min_value=0.1, max_value=0.9), lr=st.floats(min_value=0.1, max_value=0.9), epsilon=st.floats(min_value=1e-5, max_value=1e-2), **hu.gcs) def test_rmsprop_sgd(self, inputs, in_place, decay, momentum, lr, epsilon, gc, dc): grad, ms, mom = inputs ms = np.abs(ms) + 0.01 lr = np.asarray([lr], dtype=np.float32) op = core.CreateOperator( "RmsProp", ["grad", "ms", "mom", "lr"], ["grad" if in_place else "grad_o", "ms" if in_place else "ms_o", "mom" if in_place else "mom_o"], momentum=momentum, decay=decay, epsilon=epsilon, device_option=gc) self.assertDeviceChecks(dc, op, [grad, ms, mom, lr], [0]) def rmsprop(grad, ms, mom, lr): lr = lr[0] ms_o = ms + (1. - decay) * (np.square(grad) - ms) mom_o = momentum * mom + lr * grad / np.sqrt(epsilon + ms_o) grad_o = mom_o return (grad_o, ms_o, mom_o) self.assertReferenceChecks(gc, op, [grad, ms, mom, lr], rmsprop) @staticmethod def _dense_adagrad(epsilon, grad, h, lr): lr = lr[0] h_o = h + np.square(grad) grad_o = lr * grad / (np.sqrt(h_o) + epsilon) return (grad_o, h_o) @given(inputs=hu.tensors(n=2), in_place=st.booleans(), lr=st.floats(min_value=0.1, max_value=0.9), epsilon=st.floats(min_value=1e-5, max_value=1e-2), **hu.gcs) def test_adagrad_sgd(self, inputs, in_place, lr, epsilon, gc, dc): grad, h = inputs h = np.abs(h) + 0.01 lr = np.asarray([lr], dtype=np.float32) op = core.CreateOperator( "Adagrad", ["grad", "h", "lr"], ["grad" if in_place else "grad_o", "h" if in_place else "h_o"], epsilon=epsilon, device_option=gc) self.assertDeviceChecks(dc, op, [grad, h, lr], [0]) self.assertReferenceChecks(gc, op, [grad, h, lr], partial(self._dense_adagrad, epsilon)) @given(inputs=hu.tensors(n=2), lr=st.floats(min_value=0.1, max_value=0.9), epsilon=st.floats(min_value=1e-5, max_value=1e-2), **hu.gcs_cpu_only) def test_sparse_adagrad_sgd(self, inputs, lr, epsilon, gc, dc): grad, h = inputs indices = np.arange(h.shape[0]) indices = indices[indices % 2 == 0] grad = grad[indices] h = np.abs(h) lr = np.asarray([lr], dtype=np.float32) op = core.CreateOperator( "SparseAdagrad", ["indices", "grad", "h", "lr"], ["grad", "h"], epsilon=epsilon, device_option=gc) self.assertDeviceChecks( dc, op, [indices, grad, h, lr], [0]) def adagrad(i, grad, h, lr): sg, sh = self._dense_adagrad(epsilon, grad, h[i], lr) h[i] = sh return (sg, h) self.assertReferenceChecks(gc, op, [indices, grad, h, lr], adagrad) # Reference @staticmethod def _dense_ftrl(alpha, beta, lambda1, lambda2, w, nz, g): n = np.take(nz, 0, axis=-1) z = np.take(nz, 1, axis=-1) # python port of Sigrid's implementation g2 = g * g sigma = (np.sqrt(n + g2) - np.sqrt(n)) / alpha z += g - sigma * w n += g2 w = (np.sign(z) * lambda1 - z) / ( (beta + np.sqrt(n)) / alpha + lambda2) w[np.abs(z) <= lambda1] = 0 return (w, np.stack([n, z], axis=-1)) @given(inputs=hu.tensors(n=4), in_place=st.booleans(), alpha=st.floats(min_value=0.01, max_value=0.1), beta=st.floats(min_value=0.1, max_value=0.9), lambda1=st.floats(min_value=0.001, max_value=0.1), lambda2=st.floats(min_value=0.001, max_value=0.1), engine=st.sampled_from([None, "SIMD"]), **hu.gcs_cpu_only) def test_ftrl_sgd(self, inputs, in_place, alpha, beta, lambda1, lambda2, engine, gc, dc): var, n, z, grad = inputs n = np.abs(n) nz = np.stack([n, z], axis=-1) op = core.CreateOperator( "Ftrl", ["var", "nz", "grad"], ["var" if in_place else "var_o", "nz" if in_place else "nz_o"], alpha=alpha, beta=beta, lambda1=lambda1, lambda2=lambda2, engine=engine, device_option=gc) self.assertDeviceChecks( dc, op, [var, nz, grad], [0]) self.assertReferenceChecks( gc, op, [var, nz, grad], partial(self._dense_ftrl, alpha, beta, lambda1, lambda2)) @given(inputs=hu.tensors(n=4), alpha=st.floats(min_value=0.01, max_value=0.1), beta=st.floats(min_value=0.1, max_value=0.9), lambda1=st.floats(min_value=0.001, max_value=0.1), lambda2=st.floats(min_value=0.001, max_value=0.1), engine=st.sampled_from([None, "SIMD"]), **hu.gcs_cpu_only) def test_sparse_ftrl_sgd(self, inputs, alpha, beta, lambda1, lambda2, engine, gc, dc): var, n, z, grad = inputs # generate fake subset manually because hypothesis is too complicated :) indices = np.arange(var.shape[0]) indices = indices[indices % 2 == 0] grad = grad[indices] n = np.abs(n) nz = np.stack([n, z], axis=-1) op = core.CreateOperator( "SparseFtrl", ["var", "nz", "indices", "grad"], ["var", "nz"], alpha=alpha, beta=beta, lambda1=lambda1, lambda2=lambda2, engine=engine, device_option=gc) self.assertDeviceChecks( dc, op, [var, nz, indices, grad], [0]) # Reference def ftrl(w, nz, i, g): sw, snz = self._dense_ftrl(alpha, beta, lambda1, lambda2, w[i], nz[i], g) w[i] = sw nz[i] = snz return (w, nz) self.assertReferenceChecks(gc, op, [var, nz, indices, grad], ftrl) @given(input=hu.tensor(max_value=20, max_dim=1, dtype=np.int32, elements=st.integers(min_value=0, max_value=10)), with_remapping=st.booleans(), **hu.gcs_cpu_only) def test_unique(self, input, with_remapping, gc, dc): op = core.CreateOperator( "Unique", ["input"], ["unique"] + (["remapping"] if with_remapping else []), device_option=gc) self.assertDeviceChecks(dc, op, [input], [0]) # Validator def unique_valid(input, unique, remapping=None): self.assertEqual(unique.size, len(set(input))) self.assertEqual(sorted(unique), sorted(set(input))) if with_remapping: self.assertEqual(remapping.shape, input.shape) remapped = [unique[remapping[i]] for i in range(len(input))] np.testing.assert_array_equal(remapped, input) self.assertValidationChecks(gc, op, [input], unique_valid) @given(prediction=hu.arrays(dims=[10, 3], elements=st.floats(allow_nan=False, allow_infinity=False, min_value=0, max_value=1)), labels=hu.arrays(dims=[10], dtype=np.int32, elements=st.integers(min_value=0, max_value=3 - 1)), **hu.gcs) def test_accuracy(self, prediction, labels, gc, dc): op = core.CreateOperator( "Accuracy", ["prediction", "labels"], ["accuracy"] ) def op_ref(prediction, labels): N = prediction.shape[0] correct = 0 max_ids = np.argmax(prediction, axis=1) for i in range(0, N): if max_ids[i] == labels[i]: correct += 1 accuracy = correct / N return (accuracy,) self.assertReferenceChecks( device_option=gc, op=op, inputs=[prediction, labels], reference=op_ref) @given(target_probabilities=hu.arrays( dims=[10], elements=st.floats(allow_nan=False, allow_infinity=False, min_value=0.01, max_value=1)), **hu.gcs) def test_perplexity(self, target_probabilities, gc, dc): op = core.CreateOperator( "Perplexity", ["target_probabilities"], ["perplexity"] ) def op_ref(target_probabilities): N = target_probabilities.shape[0] perplexities = np.power(target_probabilities, -1.0 / N) perplexity = reduce(lambda x, y: x * y, perplexities) return (perplexity,) self.assertReferenceChecks( device_option=gc, op=op, inputs=[target_probabilities], reference=op_ref) @given(lengths=st.lists(st.integers(min_value=0, max_value=10), min_size=0, max_size=10), **hu.gcs_cpu_only) def test_lengths_to_segment_ids(self, lengths, gc, dc): op = core.CreateOperator( "LengthsToSegmentIds", ["lengths"], ["segment_ids"]) def op_ref(lengths): sids = [] for i, l in enumerate(lengths): sids.extend(l * [i]) return (np.array(sids, dtype=int), ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[np.array(lengths, dtype=int)], reference=op_ref) @given(prediction=hu.arrays(dims=[10, 3], elements=st.floats(allow_nan=False, allow_infinity=False, min_value=0, max_value=1)), labels=hu.arrays(dims=[10], dtype=np.int32, elements=st.integers(min_value=0, max_value=3 - 1)), **hu.gcs) def test_multi_class_accuracy(self, prediction, labels, gc, dc): op = core.CreateOperator( "MultiClassAccuracy", ["prediction", "labels"], ["accuracies", "amounts"] ) def op_ref(prediction, labels): N = prediction.shape[0] D = prediction.shape[1] accuracies = np.empty(D, dtype=float) accuracies.fill(0) amounts = np.empty(D, dtype=int) amounts.fill(0) max_ids = np.argmax(prediction, axis=1) for i in range(0, N): max_id = max_ids[i] label_id = labels[i] if max_id == label_id: accuracies[label_id] += 1 amounts[label_id] += 1 for i in range(0, D): amount = amounts[i] if amount: accuracies[i] /= amount return (accuracies, amounts,) self.assertReferenceChecks( device_option=gc, op=op, inputs=[prediction, labels], reference=op_ref) @given(lengths=st.lists(st.integers(min_value=0, max_value=10), min_size=0, max_size=10), **hu.gcs_cpu_only) def test_segment_ids_to_lengths(self, lengths, gc, dc): op = core.CreateOperator( "SegmentIdsToLengths", ["segment_ids"], ["lengths"]) def lengths_to_ids(lengths): sids = [] for i, l in enumerate(lengths): sids.extend(l * [i]) return sids segment_ids = lengths_to_ids(lengths) def ids_to_lengths(ids): ids_length = len(ids) if ids_length == 0: return (np.array([], dtype=int),) lengths = [] # segment id starts with 0 prev_id = -1 tmp_length = 0 for idx in range(ids_length): cur_id = ids[idx] if cur_id != prev_id: if idx != 0: lengths.append(tmp_length) while prev_id + 1 != cur_id: lengths.append(0) prev_id += 1 prev_id = cur_id tmp_length = 0 tmp_length += 1 lengths.append(tmp_length) return (np.array(lengths, dtype=int),) self.assertReferenceChecks( device_option=gc, op=op, inputs=[np.array(segment_ids, dtype=int)], reference=ids_to_lengths) @given(input_tensor=hu.arrays( dims=[10], elements=st.floats(allow_nan=False, allow_infinity=False)), **hu.gcs) def test_exp(self, input_tensor, gc, dc): op = core.CreateOperator( "Exp", ["input"], ["output"] ) def exp_ref(input_tensor): return (np.exp(input_tensor),) self.assertReferenceChecks( device_option=gc, op=op, inputs=[input_tensor], reference=exp_ref) @given(num_threads=st.integers(1, 10), # noqa num_elements=st.integers(1, 100), capacity=st.integers(1, 5), num_blobs=st.integers(1, 3), do=st.sampled_from(hu.device_options)) def test_blobs_queue_threading(self, num_threads, num_elements, capacity, num_blobs, do): """ - Construct matrices of size N x D - Start K threads - Push all N rows into the queue of capacity C - Pull all N rows out of the queue. - Verify that the output matrices are permutation of the rows of the original matrices. """ import threading import Queue op = core.CreateOperator( "CreateBlobsQueue", [], ["queue"], capacity=capacity, num_blobs=num_blobs, device_option=do) workspace.RunOperatorOnce(op) xs = [np.random.randn(num_elements, 5).astype(np.float32) for _ in range(num_blobs)] q = Queue.Queue() for i in range(num_elements): q.put([x[i] for x in xs]) def enqueue(t): while True: feed_blobs = ["x_{}_{}".format(i, t) for i in range(num_blobs)] op = core.CreateOperator( "EnqueueBlobs", ["queue"] + feed_blobs, feed_blobs, device_option=do) try: elems = q.get_nowait() for elem, feed_blob in zip(elems, feed_blobs): workspace.FeedBlob(feed_blob, elem, device_option=do) workspace.RunOperatorOnce(op) except Queue.Empty: return # Create all blobs before racing on multiple threads # (blob creation is not threadsafe) for t in range(num_threads): for i in range(num_blobs): workspace.CreateBlob("x_{}_{}".format(i, t)) threads = [threading.Thread(target=enqueue, args=(t,)) for t in range(num_threads)] for thread in threads: thread.start() for n in range(num_elements): dequeue_blobs = ["y_{}_{}".format(i, n) for i in range(num_blobs)] op = core.CreateOperator( "DequeueBlobs", ["queue"], dequeue_blobs, device_option=do) workspace.RunOperatorOnce(op) for thread in threads: thread.join() op = core.CreateOperator("CloseBlobsQueue", ["queue"], []) workspace.RunOperatorOnce(op) ys = [np.vstack([workspace.FetchBlob("y_{}_{}".format(i, n)) for n in range(num_elements)]) for i in range(num_blobs)] for i in range(num_blobs): self.assertEqual(ys[i].shape, xs[i].shape) for j in range(num_elements): # Verify that the rows of the returned blob are a # permutation. The order may be different due to # different threads racing. self.assertTrue( any(np.array_equal(xs[i][j], ys[i][k]) for k in range(num_elements))) @given(num_producers=st.integers(1, 10), num_consumers=st.integers(1, 10), capacity=st.integers(1, 5), num_blobs=st.integers(1, 3), do=st.sampled_from(hu.device_options)) def test_safe_blobs_queue(self, num_producers, num_consumers, capacity, num_blobs, do): init_net = core.Net('init_net') queue = init_net.CreateBlobsQueue( [], 1, capacity=capacity, num_blobs=num_blobs) producer_steps = [] truth = 0 for i in range(num_producers): name = 'producer_%d' % i net = core.Net(name) blobs = [net.ConstantFill([], 1, value=1.0, run_once=False) for times in range(num_blobs)] status = net.NextName() net.SafeEnqueueBlobs([queue] + blobs, blobs + [status]) count = (i + 1) * 10 step = core.execution_step(name, net, num_iter=count) truth += count producer_steps.append(step) producer_exit_net = core.Net('producer_exit_net') producer_exit_net.CloseBlobsQueue([queue], 0) producer_step = core.execution_step('producer', [ core.execution_step( 'producers', producer_steps, concurrent_substeps=True), core.execution_step('producer_exit', producer_exit_net)] ) consumer_steps = [] counters = [] const_1 = init_net.ConstantFill([], 1, value=1.0) for i in range(num_consumers): name = 'consumer_%d' % i net1 = core.Net(name) blobs = net1.SafeDequeueBlobs([queue], num_blobs + 1) status = blobs[-1] net2 = core.Net(name + '_counter') counter = init_net.ConstantFill([], 1, value=0.0) counters.append(counter) net2.Add([counter, const_1], counter) consumer_steps.append(core.execution_step( name, [net1, net2], should_stop_blob=status)) consumer_step = core.execution_step( 'consumer', consumer_steps, concurrent_substeps=True) init_step = core.execution_step('init', init_net) worker_step = core.execution_step( 'worker', [consumer_step, producer_step], concurrent_substeps=True) plan = core.Plan('test') plan.AddStep(init_step) plan.AddStep(worker_step) core.workspace.RunPlan(plan) v = 0 for counter in counters: v += core.workspace.FetchBlob(str(counter)).tolist() self.assertEqual(v, truth) @given( data=hu.tensor(), **hu.gcs_cpu_only) def test_squeeze_expand_dims(self, data, gc, dc): dims = [0] if len(data.shape) > 2: dims.append(2) op = core.CreateOperator( "ExpandDims", ["data"], ["expanded"], dims=dims) def expand_dims_ref(data, *args, **kw): inc_dims = list(set(dims)) inc_dims.sort() r = data for dim in inc_dims: r = np.expand_dims(r, axis=dim) return (r, ) def squeeze_ref(data, *args, **kw): dec_dims = list(set(dims)) dec_dims.sort(reverse=True) r = data for dim in dec_dims: r = np.squeeze(r, axis=dim) return (r, ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[data], reference=expand_dims_ref, output_to_grad='expanded', grad_reference=squeeze_ref) @given(**hu.gcs_cpu_only) def test_tt_layer(self, gc, dc): seed = 1234 np.random.seed(seed) inp_sizes = [2, 2, 2, 2] out_sizes = [2, 2, 2, 2] tt_ranks = [1, 3, 3, 3, 1] op = core.CreateOperator( "TT", ["X", "b", "cores"], ["Y"], inp_sizes=inp_sizes, out_sizes=out_sizes, tt_ranks=tt_ranks, ) X = np.expand_dims( np.random.rand(16).astype(np.float32), axis=0) b = np.array([0] * 16).astype(np.float32) cores = tt_core.init_tt_cores(inp_sizes, out_sizes, tt_ranks) workspace.FeedBlob("X", X) workspace.FeedBlob("b", b) workspace.FeedBlob("cores", cores) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob("Y") Y = Y.reshape([16]) golden = np.array([-9.51763490e-07, -1.28442286e-06, -2.86281141e-07, 2.28865644e-07, -1.96180017e-06, -1.78920531e-06, 9.31094666e-07, -2.04273989e-07, 1.70017107e-06, 1.64845711e-06, -1.06099132e-06, -4.69111137e-07, 6.57552358e-08, -1.28942040e-08, -2.29114004e-07, -1.04262714e-06]) # This golden array is dependent on the specified inp_sizes, out_sizes, # tt_ranks, and seed. Changing these will cause the test to fail. self.assertAlmostEqual(np.linalg.norm(golden - Y), 0, delta=1e-12) @given(num_workers=st.integers(1, 10), net_type=st.sampled_from( ["simple", "dag"] + (["async_dag"] if workspace.has_gpu_support else [])), do=st.sampled_from(hu.device_options)) def test_dag_net_forking(self, net_type, num_workers, do): from caffe2.python.cnn import CNNModelHelper m = CNNModelHelper() n = 10 d = 2 depth = 2 iters = 5 np.random.seed(1701) # Build a binary tree of FC layers, summing at each node. for i in reversed(range(depth)): for j in range(2 ** i): bottom_1 = "{}_{}".format(i + 1, 2 * j) bottom_2 = "{}_{}".format(i + 1, 2 * j + 1) mid_1 = "{}_{}_m".format(i + 1, 2 * j) mid_2 = "{}_{}_m".format(i + 1, 2 * j + 1) top = "{}_{}".format(i, j) m.FC( bottom_1, mid_1, dim_in=d, dim_out=d, weight_init=m.ConstantInit(np.random.randn()), bias_init=m.ConstantInit(np.random.randn())) m.FC( bottom_2, mid_2, dim_in=d, dim_out=d, weight_init=m.ConstantInit(np.random.randn()), bias_init=m.ConstantInit(np.random.randn())) m.net.Sum([mid_1, mid_2], top) m.net.SquaredL2Distance(["0_0", "label"], "xent") m.net.AveragedLoss("xent", "loss") input_to_grad = m.AddGradientOperators(["loss"]) m.Proto().device_option.CopyFrom(do) m.param_init_net.Proto().device_option.CopyFrom(do) m.Proto().type = net_type m.Proto().num_workers = num_workers workspace.RunNetOnce(m.param_init_net) print(str(m.Proto())) def run(): import numpy as np np.random.seed(1701) input_blobs = ["{}_{}".format(depth, j) for j in range(2 ** depth)] for input_blob in input_blobs: workspace.FeedBlob( input_blob, np.random.randn(n, d).astype(np.float32), device_option=do) workspace.FeedBlob( "label", np.random.randn(n, d).astype(np.float32), device_option=do) workspace.RunNetOnce(m.net) gradients = [ workspace.FetchBlob(str(input_to_grad[input_blob])) for input_blob in input_blobs] return gradients outputs = [run() for _ in range(iters)] for output in outputs[1:]: np.testing.assert_array_equal(outputs[0], output) self.assertAlmostEqual(np.sum(np.square(output)), 91.81752, delta=1e-2) @given(input=hu.tensor(min_dim=2, max_dim=6, dtype=np.int32, elements=st.integers(min_value=0, max_value=2**32 - 1)), slice_dim=st.integers(), a=st.integers(), b=st.integers(), **hu.gcs_cpu_only) def test_slice(self, input, slice_dim, a, b, gc, dc): slice_dim %= len(input.shape) a %= input.shape[slice_dim] b %= input.shape[slice_dim] + 1 start_vec = np.zeros(len(input.shape), dtype=np.int32) end_vec = np.ones(len(input.shape), dtype=np.int32) * -1 start_vec[slice_dim] = min(a, b) end_vec[slice_dim] = max(a, b) op = core.CreateOperator( "Slice", ["input", "start", "end"], ["output"]) def slice_ref(x, s, e): if len(s.shape) == 0: return x slc = [slice(si, None if ei == -1 else ei) for si, ei in zip(s, e)] return (x[slc], ) self.assertReferenceChecks(gc, op, [input, start_vec, end_vec], slice_ref) @given(data=hu.tensor(), **hu.gcs_cpu_only) def test_shape(self, data, gc, dc): op = core.CreateOperator("Shape", ["data"], ["shape"]) self.assertReferenceChecks(gc, op, [data], lambda x: (x.shape, )) @given(data=hu.tensor(), **hu.gcs_cpu_only) def test_has_elements(self, data, gc, dc): op = core.CreateOperator("HasElements", ["data"], ["has_elements"]) self.assertReferenceChecks(gc, op, [data], lambda x: (len(x) > 0, )) op = core.CreateOperator("IsEmpty", ["data"], ["is_empty"]) self.assertReferenceChecks(gc, op, [data], lambda x: (len(x) == 0, )) @given(initial_iters=st.integers(0, 100), max_iters=st.integers(0, 100)) def test_should_stop_as_criteria_net_execution_step( self, initial_iters, max_iters): net = core.Net("net") net.Iter(["iter"], ["iter"]) workspace.FeedBlob( "iter", np.asarray([initial_iters]).astype(np.int32)) workspace.FeedBlob( "num_iters", np.asarray([max_iters]).astype(np.int32)) criteria_net = core.Net("criteria") criteria_net.GE(["iter", "num_iters"], ["stop"]) criteria_net.Proto().external_output.extend(["stop"]) plan = core.Plan('plan') plan.AddStep(core.execution_step( 'step', [criteria_net, net], should_stop_blob=core.BlobReference("stop"))) workspace.RunPlan(plan) iters = workspace.FetchBlob("iter") self.assertEqual(iters.dtype, np.int32) self.assertEqual(iters[0], max(initial_iters, max_iters)) def test_disabled_execution_step(self): def createNets(i, disabled): should_stop = 'should_stop_{}'.format(i) output = 'output_{}'.format(i) # init content and stop signal init = core.Net("init_{}".format(i)) init.ConstantFill( [], [output], shape=[1], value=0.0 ) init.Cast([output], [should_stop], to='bool') # decide if disabled or not criterion = core.Net("criterion_{}".format(i)) tmp = criterion.ConstantFill( [], shape=[1], value=1.0 if disabled else 0.0 ) criterion.Cast([tmp], [should_stop], to='bool') criterion.Proto().external_output.extend([should_stop]) # the body net is just to turn a 0 blob to 1 net = core.Net("net_{}".format(i)) net.ConstantFill( [], [output], shape=[1], value=1.0 ) # always end the loop ender = core.Net("ender_{}".format(i)) tmp = ender.ConstantFill( [], shape=[1], value=1.0 ) ender.Cast([tmp], [should_stop], to='bool') ender.Proto().external_output.extend([should_stop]) return [init, criterion, net, ender] nets = [createNets(1, False), createNets(2, True), createNets(3, False)] steps = [ core.execution_step( 'step_1', nets[0], should_stop_blob=core.BlobReference('should_stop_1')), core.execution_step( 'step_2', nets[1], should_stop_blob=core.BlobReference('should_stop_2')), core.execution_step('step_3', nets[2]) ] expected = [1.0, 0.0, 1.0] plan = core.Plan('plan') plan.AddStep(core.execution_step('all_steps', steps, num_iter=3)) workspace.RunPlan(plan) for i, net in enumerate(nets): self.assertEqual( workspace.FetchBlob('output_{}'.format(i + 1))[0], expected[i]) @given(initial_iters=st.integers(0, 100), num_iters=st.integers(0, 100)) def test_iter_count_with_execution_step(self, initial_iters, num_iters): net = core.Net("net") net.Iter(["iter"], ["iter"]) workspace.FeedBlob( "iter", np.asarray([initial_iters]).astype(np.int32)) step = core.ExecutionStep("step", [net]) step.SetIter(num_iters) plan = core.Plan("plan") plan.AddStep(step) workspace.RunPlan(plan) iters = workspace.FetchBlob("iter") self.assertEqual(iters.dtype, np.int32) self.assertEqual(iters[0], initial_iters + num_iters) @given(a=hu.tensor(), src=st.sampled_from(_NUMPY_TYPE_TO_ENUM.keys()), dst=st.sampled_from(_NUMPY_TYPE_TO_ENUM.keys()), use_name=st.booleans(), **hu.gcs) def test_cast(self, a, src, dst, use_name, gc, dc): a = a.astype(src) # Casting from a float type outside the range of the integral # type is UB. ftypes = [np.float32, np.float64] if src in ftypes and dst not in ftypes and dst is not np.bool: info = np.iinfo(dst) a = np.clip(a, info.min, info.max) def ref(data): return [data.astype(dst)] to = _NUMPY_TYPE_TO_ENUM[dst] if use_name: to = TensorProto.DataType.Name(to).lower() op = core.CreateOperator('Cast', ["X"], ["Y"], to=to) self.assertDeviceChecks(dc, op, [a], [0]) out, = self.assertReferenceChecks(gc, op, [a], ref) self.assertEqual(dst, out.dtype) @given(n=st.integers(1, 10), d=st.integers(1, 10), t=st.integers(1, 10), **hu.gcs) def test_lstm_unit_recurrent_network(self, n, d, t, dc, gc): op = core.CreateOperator( "LSTMUnit", ["cell_t-1", "gates_t", "seq_lengths", "timestep"], ["hidden_t", "cell_t"]) cell_t_m_1 = np.random.randn(1, n, d).astype(np.float32) gates = np.random.randn(1, n, 4 * d).astype(np.float32) seq_lengths = np.random.randint(0, t, size=(n,)).astype(np.int32) timestep = np.random.randint(0, t, size=(1,)).astype(np.int32) inputs = [cell_t_m_1, gates, seq_lengths, timestep] input_device_options = {"timestep": hu.cpu_do} self.assertDeviceChecks( dc, op, inputs, [0], input_device_options=input_device_options) self.assertReferenceChecks( gc, op, inputs, lstm_unit, input_device_options=input_device_options) for i in range(2): self.assertGradientChecks( gc, op, inputs, i, [0, 1], input_device_options=input_device_options) @given(n=st.integers(1, 5), c=st.integers(1, 5), h=st.integers(1, 5), w=st.integers(1, 5), pad=st.integers(0, 2), block_size=st.integers(2, 3), **hu.gcs) def test_space_to_batch(self, n, c, h, w, pad, block_size, gc, dc): assume((h + 2 * pad) % block_size == 0) assume((w + 2 * pad) % block_size == 0) X = np.random.randn(n, c, h, w).astype(np.float32) op = core.CreateOperator("SpaceToBatch", ["X"], ["Y"], pad=pad, block_size=block_size) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) @given(n=st.integers(1, 5), c=st.integers(1, 5), h=st.integers(1, 5), w=st.integers(1, 5), pad=st.integers(0, 2), block_size=st.integers(2, 3), **hu.gcs) def test_batch_to_space(self, n, c, h, w, pad, block_size, gc, dc): assume((h + 2 * pad) % block_size == 0) assume((w + 2 * pad) % block_size == 0) X = np.random.randn( n * block_size * block_size, c, (h + 2 * pad) / block_size, (w + 2 * pad) / block_size).astype(np.float32) op = core.CreateOperator("BatchToSpace", ["X"], ["Y"], pad=pad, block_size=block_size) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) @given(X=hu.tensor(), in_place=st.booleans(), scale=st.floats(min_value=-2.0, max_value=2.0), **hu.gcs) def test_scale(self, X, in_place, scale, gc, dc): op = core.CreateOperator( "Scale", ["X"], ["Y" if not in_place else "X"], scale=scale) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) @given(X=_dtypes().flatmap(lambda dtype: hu.tensor(dtype=dtype)), seed=st.integers(min_value=0, max_value=65536), null_axes=st.booleans(), **hu.gcs) def test_transpose(self, X, seed, null_axes, gc, dc): if null_axes: axes = None op = core.CreateOperator("Transpose", "input", "output") else: np.random.seed(int(seed)) axes = [int(v) for v in list(np.random.permutation(X.ndim))] op = core.CreateOperator( "Transpose", "input", "output", axes=axes) def transpose_ref(x, axes): return (np.transpose(x, axes),) self.assertReferenceChecks(gc, op, [X, axes], transpose_ref) if X.dtype != np.int32 and X.dtype != np.int64: self.assertGradientChecks(gc, op, [X], 0, [0]) @given(s=st.text()) def test_string_serde(self, s): s = s.encode('ascii', 'ignore') workspace.FeedBlob("a", s) serialized = workspace.SerializeBlob("a") workspace.DeserializeBlob("b", serialized) self.assertEqual(s, workspace.FetchBlob("a")) self.assertEqual(s, workspace.FetchBlob("b")) @given(n=st.integers(1, 3), dim=st.integers(4, 16), **hu.gcs_cpu_only) def test_distances(self, n, dim, gc, dc): X = np.random.uniform(-1, 1, (n, dim)).astype(np.float32) Y = np.random.uniform(-1, 1, (n, dim)).astype(np.float32) workspace.FeedBlob("X", X) workspace.FeedBlob("Y", Y) def check_grad(op): self.assertGradientChecks(gc, op, [X, Y], 0, [0], stepsize=1e-2, threshold=1e-2) self.assertGradientChecks(gc, op, [X, Y], 1, [0], stepsize=1e-2, threshold=1e-2) l2_op = core.CreateOperator("SquaredL2Distance", ["X", "Y"], ["l2_dist"]) workspace.RunOperatorOnce(l2_op) np.testing.assert_allclose(workspace.FetchBlob("l2_dist"), np.square(X - Y).sum(axis=1) * 0.5, rtol=1e-4, atol=1e-4) check_grad(l2_op) dot_op = core.CreateOperator("DotProduct", ["X", "Y"], ["dot"]) workspace.RunOperatorOnce(dot_op) np.testing.assert_allclose(workspace.FetchBlob("dot"), np.multiply(X, Y).sum(axis=1), rtol=1e-4, atol=1e-4) check_grad(dot_op) kEps = 1e-12 cos_op = core.CreateOperator("CosineSimilarity", ["X", "Y"], ["cos"]) workspace.RunOperatorOnce(cos_op) cos = np.divide(np.multiply(X, Y).sum(axis=1), np.multiply(np.linalg.norm(X, axis=1) + kEps, np.linalg.norm(Y, axis=1) + kEps)) np.testing.assert_allclose(workspace.FetchBlob("cos"), cos, rtol=1e-4, atol=1e-4) check_grad(cos_op)
[ "caffe2.python.core.Net", "numpy.random.seed", "numpy.abs", "numpy.array_equal", "numpy.argmax", "numpy.empty", "caffe2.python.core.BlobReference", "numpy.iinfo", "numpy.clip", "numpy.ones", "hypothesis.settings", "numpy.random.randint", "numpy.arange", "hypothesis.given", "numpy.exp", "numpy.linalg.norm", "caffe2.python.hypothesis_test_util.elements_of_type", "caffe2.python.hypothesis_test_util.dims", "unittest.skipIf", "numpy.multiply", "caffe2.python.core.workspace.RunPlan", "caffe2.python.core.ExecutionStep", "caffe2.python.core.Plan", "numpy.random.randn", "caffe2.python.workspace.FeedBlob", "Queue.Queue", "caffe2.python.workspace.RunNetOnce", "caffe2.python.core.execution_step", "hypothesis.strategies.sampled_from", "caffe2.python.workspace.RunOperatorOnce", "numpy.power", "numpy.transpose", "numpy.random.rand", "hypothesis.strategies.booleans", "hypothesis.strategies.text", "hypothesis.strategies.integers", "hypothesis.assume", "numpy.stack", "functools.partial", "copy.deepcopy", "caffe2.python.hypothesis_test_util.tensor", "caffe2.python.tt_core.init_tt_cores", "threading.Thread", "caffe2.python.dyndep.InitOpsLibrary", "caffe2.python.hypothesis_test_util.tensors", "numpy.asarray", "caffe2.python.workspace.SerializeBlob", "numpy.testing.assert_array_equal", "numpy.square", "caffe2.python.workspace.ResetWorkspace", "numpy.random.permutation", "numpy.squeeze", "hypothesis.strategies.floats", "caffe2.python.workspace.FetchBlob", "numpy.random.uniform", "caffe2.python.workspace.RunPlan", "caffe2.proto.caffe2_pb2.TensorProto.DataType.Name", "caffe2.python.workspace.DeserializeBlob", "numpy.expand_dims", "numpy.sign", "hypothesis.strategies.just", "caffe2.python.cnn.CNNModelHelper", "caffe2.python.core.CreateOperator", "numpy.take", "numpy.array", "caffe2.python.hypothesis_test_util.arrays", "functools.reduce", "numpy.sqrt" ]
[((456, 523), 'caffe2.python.dyndep.InitOpsLibrary', 'dyndep.InitOpsLibrary', (['"""@/caffe2/caffe2/fb/optimizers:sgd_simd_ops"""'], {}), "('@/caffe2/caffe2/fb/optimizers:sgd_simd_ops')\n", (477, 523), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((2548, 2609), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (['[np.int32, np.int64, np.float32, np.float64]'], {}), '([np.int32, np.int64, np.float32, np.float64])\n', (2563, 2609), True, 'import hypothesis.strategies as st\n'), ((3028, 3065), 'hypothesis.settings', 'settings', ([], {'max_examples': '(3)', 'timeout': '(100)'}), '(max_examples=3, timeout=100)\n', (3036, 3065), False, 'from hypothesis import assume, given, settings\n'), ((3901, 3938), 'hypothesis.settings', 'settings', ([], {'max_examples': '(3)', 'timeout': '(100)'}), '(max_examples=3, timeout=100)\n', (3909, 3938), False, 'from hypothesis import assume, given, settings\n'), ((9740, 9830), 'unittest.skipIf', 'unittest.skipIf', (['(not workspace.has_gpu_support)', '"""Skipping test due to no gpu present."""'], {}), "(not workspace.has_gpu_support,\n 'Skipping test due to no gpu present.')\n", (9755, 9830), False, 'import unittest\n'), ((14545, 14582), 'hypothesis.settings', 'settings', ([], {'max_examples': '(2)', 'timeout': '(100)'}), '(max_examples=2, timeout=100)\n', (14553, 14582), False, 'from hypothesis import assume, given, settings\n'), ((18999, 19036), 'hypothesis.settings', 'settings', ([], {'max_examples': '(2)', 'timeout': '(100)'}), '(max_examples=2, timeout=100)\n', (19007, 19036), False, 'from hypothesis import assume, given, settings\n'), ((25827, 25864), 'hypothesis.settings', 'settings', ([], {'max_examples': '(2)', 'timeout': '(100)'}), '(max_examples=2, timeout=100)\n', (25835, 25864), False, 'from hypothesis import assume, given, settings\n'), ((53710, 53734), 'hypothesis.given', 'given', ([], {}), '(**hu.gcs_cpu_only)\n', (53715, 53734), False, 'from hypothesis import assume, given, settings\n'), ((3127, 3173), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['name', "['X1', 'X2']", '[out]'], {}), "(name, ['X1', 'X2'], [out])\n", (3146, 3173), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((4015, 4100), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['name', "['X1', 'X2']", "['X1' if in_place else 'Y']"], {'broadcast': '(1)'}), "(name, ['X1', 'X2'], ['X1' if in_place else 'Y'],\n broadcast=1)\n", (4034, 4100), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((5056, 5129), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Sum"""', "['X1', 'X2']", "['Y' if not in_place else 'X1']"], {}), "('Sum', ['X1', 'X2'], ['Y' if not in_place else 'X1'])\n", (5075, 5129), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((6657, 6727), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Negative"""', "['X']", "['Y' if not in_place else 'X']"], {}), "('Negative', ['X'], ['Y' if not in_place else 'X'])\n", (6676, 6727), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((6952, 6993), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Relu"""', "['X']", "['Y']"], {}), "('Relu', ['X'], ['Y'])\n", (6971, 6993), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((7316, 7368), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""AveragedLoss"""', "['X']", "['loss']"], {}), "('AveragedLoss', ['X'], ['loss'])\n", (7335, 7368), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((7874, 7903), 'copy.deepcopy', 'copy.deepcopy', (['device_options'], {}), '(device_options)\n', (7887, 7903), False, 'import copy\n'), ((8818, 8835), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (8832, 8835), True, 'import numpy as np\n'), ((9188, 9248), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""FC"""', "['X', 'W', 'b']", "['Y']"], {'axis': 'axis'}), "('FC', ['X', 'W', 'b'], ['Y'], axis=axis)\n", (9207, 9248), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((9409, 9438), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (9434, 9438), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((9451, 9475), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""Y"""'], {}), "('Y')\n", (9470, 9475), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((10483, 10751), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""RecurrentInit"""', "['INPUT']", "['WEIGHT', 'DROPOUT_STATES']"], {'hidden_size': 'hidden_size', 'bidirectional': 'bidirectional', 'rnn_mode': 'rnn_mode', 'dropout': 'dropout', 'input_mode': 'input_mode', 'num_layers': 'num_layers', 'device_option': 'hu.gpu_do', 'engine': '"""CUDNN"""'}), "('RecurrentInit', ['INPUT'], ['WEIGHT', 'DROPOUT_STATES'\n ], hidden_size=hidden_size, bidirectional=bidirectional, rnn_mode=\n rnn_mode, dropout=dropout, input_mode=input_mode, num_layers=num_layers,\n device_option=hu.gpu_do, engine='CUDNN')\n", (10502, 10751), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((10885, 11214), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Recurrent"""', "['INPUT', 'HIDDEN_INPUT', 'CELL_INPUT', 'WEIGHT']", "['OUTPUT', 'HIDDEN_OUTPUT', 'CELL_OUTPUT', 'RNN_SCRATCH', 'DROPOUT_STATES']"], {'hidden_size': 'hidden_size', 'bidirectional': 'bidirectional', 'rnn_mode': 'rnn_mode', 'dropout': 'dropout', 'input_mode': 'input_mode', 'num_layers': 'num_layers', 'engine': '"""CUDNN"""'}), "('Recurrent', ['INPUT', 'HIDDEN_INPUT', 'CELL_INPUT',\n 'WEIGHT'], ['OUTPUT', 'HIDDEN_OUTPUT', 'CELL_OUTPUT', 'RNN_SCRATCH',\n 'DROPOUT_STATES'], hidden_size=hidden_size, bidirectional=bidirectional,\n rnn_mode=rnn_mode, dropout=dropout, input_mode=input_mode, num_layers=\n num_layers, engine='CUDNN')\n", (10904, 11214), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((11447, 11502), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""INPUT"""', 'X'], {'device_option': 'hu.gpu_do'}), "('INPUT', X, device_option=hu.gpu_do)\n", (11465, 11502), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((11511, 11545), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['init_op'], {}), '(init_op)\n', (11536, 11545), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((11558, 11587), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""WEIGHT"""'], {}), "('WEIGHT')\n", (11577, 11587), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((12833, 12903), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Concat"""', 'input_names', "['Y', 'Y_dims']"], {'axis': 'axis'}), "('Concat', input_names, ['Y', 'Y_dims'], axis=axis)\n", (12852, 12903), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((13670, 13745), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Concat"""', 'input_names', "['Y', 'Y_dims']"], {'order': 'order[0]'}), "('Concat', input_names, ['Y', 'Y_dims'], order=order[0])\n", (13689, 13745), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((15113, 15139), 'hypothesis.assume', 'assume', (['(stride_h <= kernel)'], {}), '(stride_h <= kernel)\n', (15119, 15139), False, 'from hypothesis import assume, given, settings\n'), ((15148, 15174), 'hypothesis.assume', 'assume', (['(stride_w <= kernel)'], {}), '(stride_w <= kernel)\n', (15154, 15174), False, 'from hypothesis import assume, given, settings\n'), ((15188, 15380), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Conv"""', "['X', 'w', 'b']", "['Y']"], {'stride_h': 'stride_h', 'stride_w': 'stride_w', 'pad_t': 'pad_t', 'pad_l': 'pad_l', 'pad_b': 'pad_b', 'pad_r': 'pad_r', 'kernel': 'kernel', 'order': 'order', 'engine': 'engine'}), "('Conv', ['X', 'w', 'b'], ['Y'], stride_h=stride_h,\n stride_w=stride_w, pad_t=pad_t, pad_l=pad_l, pad_b=pad_b, pad_r=pad_r,\n kernel=kernel, order=order, engine=engine)\n", (15207, 15380), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((17099, 17125), 'hypothesis.assume', 'assume', (['(stride_h <= kernel)'], {}), '(stride_h <= kernel)\n', (17105, 17125), False, 'from hypothesis import assume, given, settings\n'), ((17134, 17160), 'hypothesis.assume', 'assume', (['(stride_w <= kernel)'], {}), '(stride_w <= kernel)\n', (17140, 17160), False, 'from hypothesis import assume, given, settings\n'), ((19252, 19276), 'hypothesis.assume', 'assume', (['(stride <= kernel)'], {}), '(stride <= kernel)\n', (19258, 19276), False, 'from hypothesis import assume, given, settings\n'), ((19290, 19413), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Conv"""', "['X', 'w', 'b']", "['Y']"], {'stride': 'stride', 'kernel': 'kernel', 'pad': 'pad', 'order': 'order', 'engine': 'engine'}), "('Conv', ['X', 'w', 'b'], ['Y'], stride=stride, kernel=\n kernel, pad=pad, order=order, engine=engine)\n", (19309, 19413), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((20614, 20638), 'hypothesis.assume', 'assume', (['(stride <= kernel)'], {}), '(stride <= kernel)\n', (20620, 20638), False, 'from hypothesis import assume, given, settings\n'), ((22364, 22380), 'caffe2.python.cnn.CNNModelHelper', 'CNNModelHelper', ([], {}), '()\n', (22378, 22380), False, 'from caffe2.python.cnn import CNNModelHelper\n'), ((22481, 22507), 'caffe2.python.workspace.ResetWorkspace', 'workspace.ResetWorkspace', ([], {}), '()\n', (22505, 22507), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((22517, 22537), 'numpy.random.seed', 'np.random.seed', (['(1701)'], {}), '(1701)\n', (22531, 22537), True, 'import numpy as np\n'), ((24304, 24342), 'caffe2.python.workspace.RunNetOnce', 'workspace.RunNetOnce', (['m.param_init_net'], {}), '(m.param_init_net)\n', (24324, 24342), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((26160, 26184), 'hypothesis.assume', 'assume', (['(stride <= kernel)'], {}), '(stride <= kernel)\n', (26166, 26184), False, 'from hypothesis import assume, given, settings\n'), ((26193, 26213), 'hypothesis.assume', 'assume', (['(adj < stride)'], {}), '(adj < stride)\n', (26199, 26213), False, 'from hypothesis import assume, given, settings\n'), ((26529, 26669), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""ConvTranspose"""', "['X', 'w', 'b']", "['Y']"], {'stride': 'stride', 'kernel': 'kernel', 'pad': 'pad', 'adj': 'adj', 'order': 'order', 'engine': 'engine'}), "('ConvTranspose', ['X', 'w', 'b'], ['Y'], stride=stride,\n kernel=kernel, pad=pad, adj=adj, order=order, engine=engine)\n", (26548, 26669), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((27693, 27717), 'hypothesis.assume', 'assume', (['(stride <= kernel)'], {}), '(stride <= kernel)\n', (27699, 27717), False, 'from hypothesis import assume, given, settings\n'), ((27726, 27746), 'hypothesis.assume', 'assume', (['(adj < stride)'], {}), '(adj < stride)\n', (27732, 27746), False, 'from hypothesis import assume, given, settings\n'), ((29457, 29489), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""data"""', 'data'], {}), "('data', data)\n", (29475, 29489), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((29503, 29543), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Print"""', '"""data"""', '[]'], {}), "('Print', 'data', [])\n", (29522, 29543), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((30170, 30204), 'numpy.asarray', 'np.asarray', (['[lr]'], {'dtype': 'np.float32'}), '([lr], dtype=np.float32)\n', (30180, 30204), True, 'import numpy as np\n'), ((30221, 30256), 'numpy.asarray', 'np.asarray', (['[iters]'], {'dtype': 'np.int32'}), '([iters], dtype=np.int32)\n', (30231, 30256), True, 'import numpy as np\n'), ((30270, 30499), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Adam"""', "['grad', 'm1', 'm2', 'lr', 'iters']", "['grad' if in_place else 'grad_o', 'm1' if in_place else 'm1_o', 'm2' if\n in_place else 'm2_o']"], {'beta1': 'beta1', 'beta2': 'beta2', 'epsilon': 'epsilon', 'device_option': 'gc'}), "('Adam', ['grad', 'm1', 'm2', 'lr', 'iters'], ['grad' if\n in_place else 'grad_o', 'm1' if in_place else 'm1_o', 'm2' if in_place else\n 'm2_o'], beta1=beta1, beta2=beta2, epsilon=epsilon, device_option=gc)\n", (30289, 30499), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((31766, 31800), 'numpy.asarray', 'np.asarray', (['[lr]'], {'dtype': 'np.float32'}), '([lr], dtype=np.float32)\n', (31776, 31800), True, 'import numpy as np\n'), ((33115, 33149), 'numpy.asarray', 'np.asarray', (['[lr]'], {'dtype': 'np.float32'}), '([lr], dtype=np.float32)\n', (33125, 33149), True, 'import numpy as np\n'), ((33163, 33400), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""RmsProp"""', "['grad', 'ms', 'mom', 'lr']", "['grad' if in_place else 'grad_o', 'ms' if in_place else 'ms_o', 'mom' if\n in_place else 'mom_o']"], {'momentum': 'momentum', 'decay': 'decay', 'epsilon': 'epsilon', 'device_option': 'gc'}), "('RmsProp', ['grad', 'ms', 'mom', 'lr'], ['grad' if\n in_place else 'grad_o', 'ms' if in_place else 'ms_o', 'mom' if in_place\n else 'mom_o'], momentum=momentum, decay=decay, epsilon=epsilon,\n device_option=gc)\n", (33182, 33400), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((34442, 34476), 'numpy.asarray', 'np.asarray', (['[lr]'], {'dtype': 'np.float32'}), '([lr], dtype=np.float32)\n', (34452, 34476), True, 'import numpy as np\n'), ((34490, 34644), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Adagrad"""', "['grad', 'h', 'lr']", "['grad' if in_place else 'grad_o', 'h' if in_place else 'h_o']"], {'epsilon': 'epsilon', 'device_option': 'gc'}), "('Adagrad', ['grad', 'h', 'lr'], ['grad' if in_place else\n 'grad_o', 'h' if in_place else 'h_o'], epsilon=epsilon, device_option=gc)\n", (34509, 34644), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((35222, 35243), 'numpy.arange', 'np.arange', (['h.shape[0]'], {}), '(h.shape[0])\n', (35231, 35243), True, 'import numpy as np\n'), ((35329, 35338), 'numpy.abs', 'np.abs', (['h'], {}), '(h)\n', (35335, 35338), True, 'import numpy as np\n'), ((35352, 35386), 'numpy.asarray', 'np.asarray', (['[lr]'], {'dtype': 'np.float32'}), '([lr], dtype=np.float32)\n', (35362, 35386), True, 'import numpy as np\n'), ((35400, 35523), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""SparseAdagrad"""', "['indices', 'grad', 'h', 'lr']", "['grad', 'h']"], {'epsilon': 'epsilon', 'device_option': 'gc'}), "('SparseAdagrad', ['indices', 'grad', 'h', 'lr'], [\n 'grad', 'h'], epsilon=epsilon, device_option=gc)\n", (35419, 35523), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((36001, 36024), 'numpy.take', 'np.take', (['nz', '(0)'], {'axis': '(-1)'}), '(nz, 0, axis=-1)\n', (36008, 36024), True, 'import numpy as np\n'), ((36037, 36060), 'numpy.take', 'np.take', (['nz', '(1)'], {'axis': '(-1)'}), '(nz, 1, axis=-1)\n', (36044, 36060), True, 'import numpy as np\n'), ((36956, 36965), 'numpy.abs', 'np.abs', (['n'], {}), '(n)\n', (36962, 36965), True, 'import numpy as np\n'), ((36979, 37004), 'numpy.stack', 'np.stack', (['[n, z]'], {'axis': '(-1)'}), '([n, z], axis=-1)\n', (36987, 37004), True, 'import numpy as np\n'), ((37018, 37232), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Ftrl"""', "['var', 'nz', 'grad']", "['var' if in_place else 'var_o', 'nz' if in_place else 'nz_o']"], {'alpha': 'alpha', 'beta': 'beta', 'lambda1': 'lambda1', 'lambda2': 'lambda2', 'engine': 'engine', 'device_option': 'gc'}), "('Ftrl', ['var', 'nz', 'grad'], ['var' if in_place else\n 'var_o', 'nz' if in_place else 'nz_o'], alpha=alpha, beta=beta, lambda1\n =lambda1, lambda2=lambda2, engine=engine, device_option=gc)\n", (37037, 37232), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((38138, 38161), 'numpy.arange', 'np.arange', (['var.shape[0]'], {}), '(var.shape[0])\n', (38147, 38161), True, 'import numpy as np\n'), ((38247, 38256), 'numpy.abs', 'np.abs', (['n'], {}), '(n)\n', (38253, 38256), True, 'import numpy as np\n'), ((38270, 38295), 'numpy.stack', 'np.stack', (['[n, z]'], {'axis': '(-1)'}), '([n, z], axis=-1)\n', (38278, 38295), True, 'import numpy as np\n'), ((38309, 38491), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""SparseFtrl"""', "['var', 'nz', 'indices', 'grad']", "['var', 'nz']"], {'alpha': 'alpha', 'beta': 'beta', 'lambda1': 'lambda1', 'lambda2': 'lambda2', 'engine': 'engine', 'device_option': 'gc'}), "('SparseFtrl', ['var', 'nz', 'indices', 'grad'], ['var',\n 'nz'], alpha=alpha, beta=beta, lambda1=lambda1, lambda2=lambda2, engine\n =engine, device_option=gc)\n", (38328, 38491), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((39308, 39426), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Unique"""', "['input']", "(['unique'] + (['remapping'] if with_remapping else []))"], {'device_option': 'gc'}), "('Unique', ['input'], ['unique'] + (['remapping'] if\n with_remapping else []), device_option=gc)\n", (39327, 39426), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((40653, 40724), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Accuracy"""', "['prediction', 'labels']", "['accuracy']"], {}), "('Accuracy', ['prediction', 'labels'], ['accuracy'])\n", (40672, 40724), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((41619, 41694), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Perplexity"""', "['target_probabilities']", "['perplexity']"], {}), "('Perplexity', ['target_probabilities'], ['perplexity'])\n", (41638, 41694), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((42410, 42482), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""LengthsToSegmentIds"""', "['lengths']", "['segment_ids']"], {}), "('LengthsToSegmentIds', ['lengths'], ['segment_ids'])\n", (42429, 42482), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((43504, 43603), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""MultiClassAccuracy"""', "['prediction', 'labels']", "['accuracies', 'amounts']"], {}), "('MultiClassAccuracy', ['prediction', 'labels'], [\n 'accuracies', 'amounts'])\n", (43523, 43603), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((44789, 44861), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""SegmentIdsToLengths"""', "['segment_ids']", "['lengths']"], {}), "('SegmentIdsToLengths', ['segment_ids'], ['lengths'])\n", (44808, 44861), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((46310, 46359), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Exp"""', "['input']", "['output']"], {}), "('Exp', ['input'], ['output'])\n", (46329, 46359), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((47349, 47465), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""CreateBlobsQueue"""', '[]', "['queue']"], {'capacity': 'capacity', 'num_blobs': 'num_blobs', 'device_option': 'do'}), "('CreateBlobsQueue', [], ['queue'], capacity=capacity,\n num_blobs=num_blobs, device_option=do)\n", (47368, 47465), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((47543, 47572), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (47568, 47572), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((47693, 47706), 'Queue.Queue', 'Queue.Queue', ([], {}), '()\n', (47704, 47706), False, 'import Queue\n'), ((49231, 49284), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""CloseBlobsQueue"""', "['queue']", '[]'], {}), "('CloseBlobsQueue', ['queue'], [])\n", (49250, 49284), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((49293, 49322), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (49318, 49322), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((50304, 50324), 'caffe2.python.core.Net', 'core.Net', (['"""init_net"""'], {}), "('init_net')\n", (50312, 50324), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((51004, 51033), 'caffe2.python.core.Net', 'core.Net', (['"""producer_exit_net"""'], {}), "('producer_exit_net')\n", (51012, 51033), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((51984, 52057), 'caffe2.python.core.execution_step', 'core.execution_step', (['"""consumer"""', 'consumer_steps'], {'concurrent_substeps': '(True)'}), "('consumer', consumer_steps, concurrent_substeps=True)\n", (52003, 52057), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((52092, 52129), 'caffe2.python.core.execution_step', 'core.execution_step', (['"""init"""', 'init_net'], {}), "('init', init_net)\n", (52111, 52129), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((52152, 52243), 'caffe2.python.core.execution_step', 'core.execution_step', (['"""worker"""', '[consumer_step, producer_step]'], {'concurrent_substeps': '(True)'}), "('worker', [consumer_step, producer_step],\n concurrent_substeps=True)\n", (52171, 52243), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((52269, 52286), 'caffe2.python.core.Plan', 'core.Plan', (['"""test"""'], {}), "('test')\n", (52278, 52286), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((52362, 52390), 'caffe2.python.core.workspace.RunPlan', 'core.workspace.RunPlan', (['plan'], {}), '(plan)\n', (52384, 52390), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((52765, 52833), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""ExpandDims"""', "['data']", "['expanded']"], {'dims': 'dims'}), "('ExpandDims', ['data'], ['expanded'], dims=dims)\n", (52784, 52833), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((53800, 53820), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (53814, 53820), True, 'import numpy as np\n'), ((53937, 54055), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""TT"""', "['X', 'b', 'cores']", "['Y']"], {'inp_sizes': 'inp_sizes', 'out_sizes': 'out_sizes', 'tt_ranks': 'tt_ranks'}), "('TT', ['X', 'b', 'cores'], ['Y'], inp_sizes=inp_sizes,\n out_sizes=out_sizes, tt_ranks=tt_ranks)\n", (53956, 54055), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((54289, 54342), 'caffe2.python.tt_core.init_tt_cores', 'tt_core.init_tt_cores', (['inp_sizes', 'out_sizes', 'tt_ranks'], {}), '(inp_sizes, out_sizes, tt_ranks)\n', (54310, 54342), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((54352, 54378), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""X"""', 'X'], {}), "('X', X)\n", (54370, 54378), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((54387, 54413), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""b"""', 'b'], {}), "('b', b)\n", (54405, 54413), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((54422, 54456), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""cores"""', 'cores'], {}), "('cores', cores)\n", (54440, 54456), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((54465, 54494), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (54490, 54494), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((54508, 54532), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""Y"""'], {}), "('Y')\n", (54527, 54532), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((54579, 54868), 'numpy.array', 'np.array', (['[-9.5176349e-07, -1.28442286e-06, -2.86281141e-07, 2.28865644e-07, -\n 1.96180017e-06, -1.78920531e-06, 9.31094666e-07, -2.04273989e-07, \n 1.70017107e-06, 1.64845711e-06, -1.06099132e-06, -4.69111137e-07, \n 6.57552358e-08, -1.2894204e-08, -2.29114004e-07, -1.04262714e-06]'], {}), '([-9.5176349e-07, -1.28442286e-06, -2.86281141e-07, 2.28865644e-07,\n -1.96180017e-06, -1.78920531e-06, 9.31094666e-07, -2.04273989e-07, \n 1.70017107e-06, 1.64845711e-06, -1.06099132e-06, -4.69111137e-07, \n 6.57552358e-08, -1.2894204e-08, -2.29114004e-07, -1.04262714e-06])\n', (54587, 54868), True, 'import numpy as np\n'), ((55640, 55656), 'caffe2.python.cnn.CNNModelHelper', 'CNNModelHelper', ([], {}), '()\n', (55654, 55656), False, 'from caffe2.python.cnn import CNNModelHelper\n'), ((55730, 55750), 'numpy.random.seed', 'np.random.seed', (['(1701)'], {}), '(1701)\n', (55744, 55750), True, 'import numpy as np\n'), ((57029, 57067), 'caffe2.python.workspace.RunNetOnce', 'workspace.RunNetOnce', (['m.param_init_net'], {}), '(m.param_init_net)\n', (57049, 57067), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((58827, 58894), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Slice"""', "['input', 'start', 'end']", "['output']"], {}), "('Slice', ['input', 'start', 'end'], ['output'])\n", (58846, 58894), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((59355, 59404), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Shape"""', "['data']", "['shape']"], {}), "('Shape', ['data'], ['shape'])\n", (59374, 59404), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((59588, 59650), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""HasElements"""', "['data']", "['has_elements']"], {}), "('HasElements', ['data'], ['has_elements'])\n", (59607, 59650), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((59742, 59796), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""IsEmpty"""', "['data']", "['is_empty']"], {}), "('IsEmpty', ['data'], ['is_empty'])\n", (59761, 59796), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((60080, 60095), 'caffe2.python.core.Net', 'core.Net', (['"""net"""'], {}), "('net')\n", (60088, 60095), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((60345, 60365), 'caffe2.python.core.Net', 'core.Net', (['"""criteria"""'], {}), "('criteria')\n", (60353, 60365), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((60501, 60518), 'caffe2.python.core.Plan', 'core.Plan', (['"""plan"""'], {}), "('plan')\n", (60510, 60518), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((60668, 60691), 'caffe2.python.workspace.RunPlan', 'workspace.RunPlan', (['plan'], {}), '(plan)\n', (60685, 60691), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((60708, 60735), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""iter"""'], {}), "('iter')\n", (60727, 60735), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((62852, 62869), 'caffe2.python.core.Plan', 'core.Plan', (['"""plan"""'], {}), "('plan')\n", (62861, 62869), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((62952, 62975), 'caffe2.python.workspace.RunPlan', 'workspace.RunPlan', (['plan'], {}), '(plan)\n', (62969, 62975), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((63322, 63337), 'caffe2.python.core.Net', 'core.Net', (['"""net"""'], {}), "('net')\n", (63330, 63337), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((63485, 63518), 'caffe2.python.core.ExecutionStep', 'core.ExecutionStep', (['"""step"""', '[net]'], {}), "('step', [net])\n", (63503, 63518), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((63567, 63584), 'caffe2.python.core.Plan', 'core.Plan', (['"""plan"""'], {}), "('plan')\n", (63576, 63584), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((63620, 63643), 'caffe2.python.workspace.RunPlan', 'workspace.RunPlan', (['plan'], {}), '(plan)\n', (63637, 63643), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((63660, 63687), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""iter"""'], {}), "('iter')\n", (63679, 63687), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((64559, 64607), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Cast"""', "['X']", "['Y']"], {'to': 'to'}), "('Cast', ['X'], ['Y'], to=to)\n", (64578, 64607), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((64958, 65069), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""LSTMUnit"""', "['cell_t-1', 'gates_t', 'seq_lengths', 'timestep']", "['hidden_t', 'cell_t']"], {}), "('LSTMUnit', ['cell_t-1', 'gates_t', 'seq_lengths',\n 'timestep'], ['hidden_t', 'cell_t'])\n", (64977, 65069), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((66216, 66255), 'hypothesis.assume', 'assume', (['((h + 2 * pad) % block_size == 0)'], {}), '((h + 2 * pad) % block_size == 0)\n', (66222, 66255), False, 'from hypothesis import assume, given, settings\n'), ((66264, 66303), 'hypothesis.assume', 'assume', (['((w + 2 * pad) % block_size == 0)'], {}), '((w + 2 * pad) % block_size == 0)\n', (66270, 66303), False, 'from hypothesis import assume, given, settings\n'), ((66376, 66462), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""SpaceToBatch"""', "['X']", "['Y']"], {'pad': 'pad', 'block_size': 'block_size'}), "('SpaceToBatch', ['X'], ['Y'], pad=pad, block_size=\n block_size)\n", (66395, 66462), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((66901, 66940), 'hypothesis.assume', 'assume', (['((h + 2 * pad) % block_size == 0)'], {}), '((h + 2 * pad) % block_size == 0)\n', (66907, 66940), False, 'from hypothesis import assume, given, settings\n'), ((66949, 66988), 'hypothesis.assume', 'assume', (['((w + 2 * pad) % block_size == 0)'], {}), '((w + 2 * pad) % block_size == 0)\n', (66955, 66988), False, 'from hypothesis import assume, given, settings\n'), ((67186, 67272), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""BatchToSpace"""', "['X']", "['Y']"], {'pad': 'pad', 'block_size': 'block_size'}), "('BatchToSpace', ['X'], ['Y'], pad=pad, block_size=\n block_size)\n", (67205, 67272), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((67616, 67701), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Scale"""', "['X']", "['Y' if not in_place else 'X']"], {'scale': 'scale'}), "('Scale', ['X'], ['Y' if not in_place else 'X'], scale=scale\n )\n", (67635, 67701), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((68819, 68845), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""a"""', 's'], {}), "('a', s)\n", (68837, 68845), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((68867, 68895), 'caffe2.python.workspace.SerializeBlob', 'workspace.SerializeBlob', (['"""a"""'], {}), "('a')\n", (68890, 68895), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((68904, 68946), 'caffe2.python.workspace.DeserializeBlob', 'workspace.DeserializeBlob', (['"""b"""', 'serialized'], {}), "('b', serialized)\n", (68929, 68946), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((69339, 69365), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""X"""', 'X'], {}), "('X', X)\n", (69357, 69365), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((69374, 69400), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""Y"""', 'Y'], {}), "('Y', Y)\n", (69392, 69400), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((69709, 69774), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""SquaredL2Distance"""', "['X', 'Y']", "['l2_dist']"], {}), "('SquaredL2Distance', ['X', 'Y'], ['l2_dist'])\n", (69728, 69774), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((69819, 69851), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['l2_op'], {}), '(l2_op)\n', (69844, 69851), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((70091, 70145), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""DotProduct"""', "['X', 'Y']", "['dot']"], {}), "('DotProduct', ['X', 'Y'], ['dot'])\n", (70110, 70145), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((70154, 70187), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['dot_op'], {}), '(dot_op)\n', (70179, 70187), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((70440, 70500), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""CosineSimilarity"""', "['X', 'Y']", "['cos']"], {}), "('CosineSimilarity', ['X', 'Y'], ['cos'])\n", (70459, 70500), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((70509, 70542), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['cos_op'], {}), '(cos_op)\n', (70534, 70542), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((566, 576), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (572, 576), True, 'import numpy as np\n'), ((1910, 1927), 'caffe2.python.hypothesis_test_util.dims', 'hu.dims', ([], {}), '(**kwargs)\n', (1917, 1927), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((2002, 2019), 'caffe2.python.hypothesis_test_util.dims', 'hu.dims', ([], {}), '(**kwargs)\n', (2009, 2019), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((2075, 2117), 'caffe2.python.hypothesis_test_util.arrays', 'hu.arrays', (['(dims_ + extra_)', 'dtype', 'elements'], {}), '(dims_ + extra_, dtype, elements)\n', (2084, 2117), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((2137, 2171), 'caffe2.python.hypothesis_test_util.arrays', 'hu.arrays', (['extra_', 'dtype', 'elements'], {}), '(extra_, dtype, elements)\n', (2146, 2171), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((2943, 3006), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["(('Y', 'X1', 'X2') if allow_inplace else ('Y',))"], {}), "(('Y', 'X1', 'X2') if allow_inplace else ('Y',))\n", (2958, 3006), True, 'import hypothesis.strategies as st\n'), ((4942, 4957), 'caffe2.python.hypothesis_test_util.tensors', 'hu.tensors', ([], {'n': '(2)'}), '(n=2)\n', (4952, 4957), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((4968, 4981), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (4979, 4981), True, 'import hypothesis.strategies as st\n'), ((6109, 6150), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (['[np.float32, np.float64]'], {}), '([np.float32, np.float64])\n', (6124, 6150), True, 'import hypothesis.strategies as st\n'), ((6547, 6558), 'caffe2.python.hypothesis_test_util.tensor', 'hu.tensor', ([], {}), '()\n', (6556, 6558), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((6569, 6582), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (6580, 6582), True, 'import hypothesis.strategies as st\n'), ((7077, 7087), 'numpy.sign', 'np.sign', (['X'], {}), '(X)\n', (7084, 7087), True, 'import numpy as np\n'), ((6880, 6891), 'caffe2.python.hypothesis_test_util.tensor', 'hu.tensor', ([], {}), '()\n', (6889, 6891), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((7235, 7246), 'caffe2.python.hypothesis_test_util.tensor', 'hu.tensor', ([], {}), '()\n', (7244, 7246), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((8108, 8181), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""XavierFill"""', '[]', "['Y']"], {'device_option': 'do', 'shape': '[2]'}), "('XavierFill', [], ['Y'], device_option=do, shape=[2])\n", (8127, 8181), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((8243, 8272), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (8268, 8272), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((8292, 8316), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""Y"""'], {}), "('Y')\n", (8311, 8316), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((7652, 7665), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (7663, 7665), True, 'import hypothesis.strategies as st\n'), ((9369, 9400), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['name', 'param'], {}), '(name, param)\n', (9387, 9400), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((8622, 8659), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(1)', 'max_value': '(4)'}), '(min_value=1, max_value=4)\n', (8633, 8659), True, 'import hypothesis.strategies as st\n'), ((8683, 8720), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(4)', 'max_value': '(8)'}), '(min_value=4, max_value=8)\n', (8694, 8720), True, 'import hypothesis.strategies as st\n'), ((9871, 9908), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(1)', 'max_value': '(3)'}), '(min_value=1, max_value=3)\n', (9882, 9908), True, 'import hypothesis.strategies as st\n'), ((9932, 9969), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(1)', 'max_value': '(3)'}), '(min_value=1, max_value=3)\n', (9943, 9969), True, 'import hypothesis.strategies as st\n'), ((9996, 10009), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (10007, 10009), True, 'import hypothesis.strategies as st\n'), ((10031, 10063), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["['gru', 'lstm']"], {}), "(['gru', 'lstm'])\n", (10046, 10063), True, 'import hypothesis.strategies as st\n'), ((10087, 10114), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["['linear']"], {}), "(['linear'])\n", (10102, 10114), True, 'import hypothesis.strategies as st\n'), ((10135, 10174), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.0)', 'max_value': '(0.0)'}), '(min_value=0.0, max_value=0.0)\n', (10144, 10174), True, 'import hypothesis.strategies as st\n'), ((10189, 10226), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(1)', 'max_value': '(4)'}), '(min_value=1, max_value=4)\n', (10200, 10226), True, 'import hypothesis.strategies as st\n'), ((10241, 10278), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(1)', 'max_value': '(4)'}), '(min_value=1, max_value=4)\n', (10252, 10278), True, 'import hypothesis.strategies as st\n'), ((10293, 10330), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(1)', 'max_value': '(4)'}), '(min_value=1, max_value=4)\n', (10304, 10330), True, 'import hypothesis.strategies as st\n'), ((12228, 12245), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(4)'], {}), '(1, 4)\n', (12239, 12245), True, 'import hypothesis.strategies as st\n'), ((12263, 12280), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (12274, 12280), True, 'import hypothesis.strategies as st\n'), ((12304, 12321), 'hypothesis.strategies.integers', 'st.integers', (['(2)', '(4)'], {}), '(2, 4)\n', (12315, 12321), True, 'import hypothesis.strategies as st\n'), ((13111, 13128), 'hypothesis.strategies.integers', 'st.integers', (['(2)', '(4)'], {}), '(2, 4)\n', (13122, 13128), True, 'import hypothesis.strategies as st\n'), ((13147, 13190), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["[('NCHW', 1), ('NHWC', 3)]"], {}), "([('NCHW', 1), ('NHWC', 3)])\n", (13162, 13190), True, 'import hypothesis.strategies as st\n'), ((14020, 14037), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (14031, 14037), True, 'import hypothesis.strategies as st\n'), ((14059, 14076), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (14070, 14076), True, 'import hypothesis.strategies as st\n'), ((14095, 14112), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (14106, 14112), True, 'import hypothesis.strategies as st\n'), ((14131, 14148), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (14142, 14148), True, 'import hypothesis.strategies as st\n'), ((14167, 14184), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (14178, 14184), True, 'import hypothesis.strategies as st\n'), ((14203, 14220), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (14214, 14220), True, 'import hypothesis.strategies as st\n'), ((14240, 14257), 'hypothesis.strategies.integers', 'st.integers', (['(3)', '(5)'], {}), '(3, 5)\n', (14251, 14257), True, 'import hypothesis.strategies as st\n'), ((14275, 14292), 'hypothesis.strategies.integers', 'st.integers', (['(8)', '(8)'], {}), '(8, 8)\n', (14286, 14292), True, 'import hypothesis.strategies as st\n'), ((14320, 14337), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (14331, 14337), True, 'import hypothesis.strategies as st\n'), ((14366, 14383), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (14377, 14383), True, 'import hypothesis.strategies as st\n'), ((14407, 14424), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (14418, 14424), True, 'import hypothesis.strategies as st\n'), ((14443, 14476), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["['NCHW', 'NHWC']"], {}), "(['NCHW', 'NHWC'])\n", (14458, 14476), True, 'import hypothesis.strategies as st\n'), ((14496, 14517), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["['']"], {}), "([''])\n", (14511, 14517), True, 'import hypothesis.strategies as st\n'), ((17539, 17749), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Conv"""', "['X', 'w', 'b']", "['Y']"], {'stride_h': 'stride_h', 'stride_w': 'stride_w', 'kernel': 'kernel', 'pad_t': 'pad_t', 'pad_l': 'pad_l', 'pad_b': 'pad_b', 'pad_r': 'pad_r', 'order': 'order', 'engine': 'engine', 'device_option': 'gc'}), "('Conv', ['X', 'w', 'b'], ['Y'], stride_h=stride_h,\n stride_w=stride_w, kernel=kernel, pad_t=pad_t, pad_l=pad_l, pad_b=pad_b,\n pad_r=pad_r, order=order, engine=engine, device_option=gc)\n", (17558, 17749), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((18171, 18217), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""X"""', 'X_f'], {'device_option': 'gc'}), "('X', X_f, device_option=gc)\n", (18189, 18217), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((18230, 18276), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""w"""', 'w_f'], {'device_option': 'gc'}), "('w', w_f, device_option=gc)\n", (18248, 18276), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((18289, 18333), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""b"""', 'b'], {'device_option': 'gc'}), "('b', b, device_option=gc)\n", (18307, 18333), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((18346, 18375), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (18371, 18375), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((18405, 18429), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""Y"""'], {}), "('Y')\n", (18424, 18429), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((16180, 16197), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (16191, 16197), True, 'import hypothesis.strategies as st\n'), ((16220, 16237), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (16231, 16237), True, 'import hypothesis.strategies as st\n'), ((16257, 16274), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (16268, 16274), True, 'import hypothesis.strategies as st\n'), ((16294, 16311), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (16305, 16311), True, 'import hypothesis.strategies as st\n'), ((16331, 16348), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (16342, 16348), True, 'import hypothesis.strategies as st\n'), ((16368, 16385), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (16379, 16385), True, 'import hypothesis.strategies as st\n'), ((16406, 16423), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (16417, 16423), True, 'import hypothesis.strategies as st\n'), ((16442, 16460), 'hypothesis.strategies.integers', 'st.integers', (['(7)', '(10)'], {}), '(7, 10)\n', (16453, 16460), True, 'import hypothesis.strategies as st\n'), ((16489, 16506), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(8)'], {}), '(1, 8)\n', (16500, 16506), True, 'import hypothesis.strategies as st\n'), ((16536, 16553), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(8)'], {}), '(1, 8)\n', (16547, 16553), True, 'import hypothesis.strategies as st\n'), ((16578, 16595), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (16589, 16595), True, 'import hypothesis.strategies as st\n'), ((16616, 16637), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["['']"], {}), "([''])\n", (16631, 16637), True, 'import hypothesis.strategies as st\n'), ((18613, 18630), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (18624, 18630), True, 'import hypothesis.strategies as st\n'), ((18647, 18664), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (18658, 18664), True, 'import hypothesis.strategies as st\n'), ((18684, 18701), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (18695, 18701), True, 'import hypothesis.strategies as st\n'), ((18719, 18737), 'hypothesis.strategies.integers', 'st.integers', (['(7)', '(10)'], {}), '(7, 10)\n', (18730, 18737), True, 'import hypothesis.strategies as st\n'), ((18765, 18782), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(8)'], {}), '(1, 8)\n', (18776, 18782), True, 'import hypothesis.strategies as st\n'), ((18811, 18828), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(8)'], {}), '(1, 8)\n', (18822, 18828), True, 'import hypothesis.strategies as st\n'), ((18852, 18869), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (18863, 18869), True, 'import hypothesis.strategies as st\n'), ((18888, 18921), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["['NCHW', 'NHWC']"], {}), "(['NCHW', 'NHWC'])\n", (18903, 18921), True, 'import hypothesis.strategies as st\n'), ((18941, 18971), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["['', 'CUDNN']"], {}), "(['', 'CUDNN'])\n", (18956, 18971), True, 'import hypothesis.strategies as st\n'), ((21017, 21158), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Conv"""', "['X', 'w', 'b']", "['Y']"], {'stride': 'stride', 'kernel': 'kernel', 'pad': 'pad', 'order': 'order', 'engine': 'engine', 'device_option': 'gc'}), "('Conv', ['X', 'w', 'b'], ['Y'], stride=stride, kernel=\n kernel, pad=pad, order=order, engine=engine, device_option=gc)\n", (21036, 21158), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((21519, 21565), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""X"""', 'X_f'], {'device_option': 'gc'}), "('X', X_f, device_option=gc)\n", (21537, 21565), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((21578, 21624), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""w"""', 'w_f'], {'device_option': 'gc'}), "('w', w_f, device_option=gc)\n", (21596, 21624), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((21637, 21681), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""b"""', 'b'], {'device_option': 'gc'}), "('b', b, device_option=gc)\n", (21655, 21681), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((21694, 21723), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (21719, 21723), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((21753, 21777), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""Y"""'], {}), "('Y')\n", (21772, 21777), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((20097, 20114), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (20108, 20114), True, 'import hypothesis.strategies as st\n'), ((20131, 20148), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (20142, 20148), True, 'import hypothesis.strategies as st\n'), ((20168, 20185), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (20179, 20185), True, 'import hypothesis.strategies as st\n'), ((20203, 20221), 'hypothesis.strategies.integers', 'st.integers', (['(7)', '(10)'], {}), '(7, 10)\n', (20214, 20221), True, 'import hypothesis.strategies as st\n'), ((20249, 20266), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(8)'], {}), '(1, 8)\n', (20260, 20266), True, 'import hypothesis.strategies as st\n'), ((20295, 20312), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(8)'], {}), '(1, 8)\n', (20306, 20312), True, 'import hypothesis.strategies as st\n'), ((20336, 20353), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (20347, 20353), True, 'import hypothesis.strategies as st\n'), ((20373, 20403), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["['', 'CUDNN']"], {}), "(['', 'CUDNN'])\n", (20388, 20403), True, 'import hypothesis.strategies as st\n'), ((24406, 24426), 'numpy.random.seed', 'np.random.seed', (['(1701)'], {}), '(1701)\n', (24420, 24426), True, 'import numpy as np\n'), ((24909, 24936), 'caffe2.python.workspace.RunNetOnce', 'workspace.RunNetOnce', (['m.net'], {}), '(m.net)\n', (24929, 24936), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((25203, 25252), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['outputs[0]', 'output'], {}), '(outputs[0], output)\n', (25232, 25252), True, 'import numpy as np\n'), ((21966, 21983), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(4)'], {}), '(1, 4)\n', (21977, 21983), True, 'import hypothesis.strategies as st\n'), ((22005, 22099), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["(['simple', 'dag'] + (['async_dag'] if workspace.has_gpu_support else []))"], {}), "(['simple', 'dag'] + (['async_dag'] if workspace.\n has_gpu_support else []))\n", (22020, 22099), True, 'import hypothesis.strategies as st\n'), ((22141, 22175), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (['hu.device_options'], {}), '(hu.device_options)\n', (22156, 22175), True, 'import hypothesis.strategies as st\n'), ((22195, 22225), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["['CUDNN', '']"], {}), "(['CUDNN', ''])\n", (22210, 22225), True, 'import hypothesis.strategies as st\n'), ((25418, 25435), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (25429, 25435), True, 'import hypothesis.strategies as st\n'), ((25452, 25469), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (25463, 25469), True, 'import hypothesis.strategies as st\n'), ((25489, 25506), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (25500, 25506), True, 'import hypothesis.strategies as st\n'), ((25523, 25540), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(2)'], {}), '(0, 2)\n', (25534, 25540), True, 'import hypothesis.strategies as st\n'), ((25558, 25576), 'hypothesis.strategies.integers', 'st.integers', (['(7)', '(10)'], {}), '(7, 10)\n', (25569, 25576), True, 'import hypothesis.strategies as st\n'), ((25604, 25621), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(8)'], {}), '(1, 8)\n', (25615, 25621), True, 'import hypothesis.strategies as st\n'), ((25650, 25667), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(8)'], {}), '(1, 8)\n', (25661, 25667), True, 'import hypothesis.strategies as st\n'), ((25691, 25708), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (25702, 25708), True, 'import hypothesis.strategies as st\n'), ((25727, 25760), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["['NCHW', 'NHWC']"], {}), "(['NCHW', 'NHWC'])\n", (25742, 25760), True, 'import hypothesis.strategies as st\n'), ((25780, 25810), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["['', 'CUDNN']"], {}), "(['', 'CUDNN'])\n", (25795, 25810), True, 'import hypothesis.strategies as st\n'), ((28126, 28288), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""ConvTranspose"""', "['X', 'w', 'b']", "['Y']"], {'stride': 'stride', 'kernel': 'kernel', 'pad': 'pad', 'adj': 'adj', 'order': 'order', 'engine': 'engine', 'device_option': 'gc'}), "('ConvTranspose', ['X', 'w', 'b'], ['Y'], stride=stride,\n kernel=kernel, pad=pad, adj=adj, order=order, engine=engine,\n device_option=gc)\n", (28145, 28288), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((28662, 28708), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""X"""', 'X_f'], {'device_option': 'gc'}), "('X', X_f, device_option=gc)\n", (28680, 28708), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((28721, 28767), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""w"""', 'w_f'], {'device_option': 'gc'}), "('w', w_f, device_option=gc)\n", (28739, 28767), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((28780, 28824), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['"""b"""', 'b'], {'device_option': 'gc'}), "('b', b, device_option=gc)\n", (28798, 28824), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((28837, 28866), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (28862, 28866), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((28896, 28920), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""Y"""'], {}), "('Y')\n", (28915, 28920), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((27065, 27082), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (27076, 27082), True, 'import hypothesis.strategies as st\n'), ((27099, 27116), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(3)'], {}), '(0, 3)\n', (27110, 27116), True, 'import hypothesis.strategies as st\n'), ((27136, 27153), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (27147, 27153), True, 'import hypothesis.strategies as st\n'), ((27170, 27187), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(2)'], {}), '(0, 2)\n', (27181, 27187), True, 'import hypothesis.strategies as st\n'), ((27205, 27223), 'hypothesis.strategies.integers', 'st.integers', (['(7)', '(10)'], {}), '(7, 10)\n', (27216, 27223), True, 'import hypothesis.strategies as st\n'), ((27251, 27268), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(8)'], {}), '(1, 8)\n', (27262, 27268), True, 'import hypothesis.strategies as st\n'), ((27297, 27314), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(8)'], {}), '(1, 8)\n', (27308, 27314), True, 'import hypothesis.strategies as st\n'), ((27338, 27355), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (27349, 27355), True, 'import hypothesis.strategies as st\n'), ((27375, 27405), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["['', 'CUDNN']"], {}), "(['', 'CUDNN'])\n", (27390, 27405), True, 'import hypothesis.strategies as st\n'), ((29568, 29597), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (29593, 29597), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((29300, 29360), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (['[np.float32, np.float64, np.int32, np.bool]'], {}), '([np.float32, np.float64, np.int32, np.bool])\n', (29315, 29360), True, 'import hypothesis.strategies as st\n'), ((30139, 30149), 'numpy.abs', 'np.abs', (['m2'], {}), '(m2)\n', (30145, 30149), True, 'import numpy as np\n'), ((29618, 29633), 'caffe2.python.hypothesis_test_util.tensors', 'hu.tensors', ([], {'n': '(3)'}), '(n=3)\n', (29628, 29633), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((29655, 29668), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (29666, 29668), True, 'import hypothesis.strategies as st\n'), ((29687, 29726), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.1)', 'max_value': '(0.9)'}), '(min_value=0.1, max_value=0.9)\n', (29696, 29726), True, 'import hypothesis.strategies as st\n'), ((29745, 29784), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.1)', 'max_value': '(0.9)'}), '(min_value=0.1, max_value=0.9)\n', (29754, 29784), True, 'import hypothesis.strategies as st\n'), ((29800, 29839), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.1)', 'max_value': '(0.9)'}), '(min_value=0.1, max_value=0.9)\n', (29809, 29839), True, 'import hypothesis.strategies as st\n'), ((29858, 29899), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(1)', 'max_value': '(10000)'}), '(min_value=1, max_value=10000)\n', (29869, 29899), True, 'import hypothesis.strategies as st\n'), ((29920, 29962), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(1e-05)', 'max_value': '(0.01)'}), '(min_value=1e-05, max_value=0.01)\n', (29929, 29962), True, 'import hypothesis.strategies as st\n'), ((31408, 31423), 'caffe2.python.hypothesis_test_util.tensors', 'hu.tensors', ([], {'n': '(2)'}), '(n=2)\n', (31418, 31423), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((31445, 31458), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (31456, 31458), True, 'import hypothesis.strategies as st\n'), ((31480, 31519), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.1)', 'max_value': '(0.9)'}), '(min_value=0.1, max_value=0.9)\n', (31489, 31519), True, 'import hypothesis.strategies as st\n'), ((31541, 31554), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (31552, 31554), True, 'import hypothesis.strategies as st\n'), ((31570, 31609), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.1)', 'max_value': '(0.9)'}), '(min_value=0.1, max_value=0.9)\n', (31579, 31609), True, 'import hypothesis.strategies as st\n'), ((33084, 33094), 'numpy.abs', 'np.abs', (['ms'], {}), '(ms)\n', (33090, 33094), True, 'import numpy as np\n'), ((32618, 32633), 'caffe2.python.hypothesis_test_util.tensors', 'hu.tensors', ([], {'n': '(3)'}), '(n=3)\n', (32628, 32633), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((32655, 32668), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (32666, 32668), True, 'import hypothesis.strategies as st\n'), ((32687, 32726), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.1)', 'max_value': '(0.9)'}), '(min_value=0.1, max_value=0.9)\n', (32696, 32726), True, 'import hypothesis.strategies as st\n'), ((32748, 32787), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.1)', 'max_value': '(0.9)'}), '(min_value=0.1, max_value=0.9)\n', (32757, 32787), True, 'import hypothesis.strategies as st\n'), ((32803, 32842), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.1)', 'max_value': '(0.9)'}), '(min_value=0.1, max_value=0.9)\n', (32812, 32842), True, 'import hypothesis.strategies as st\n'), ((32863, 32905), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(1e-05)', 'max_value': '(0.01)'}), '(min_value=1e-05, max_value=0.01)\n', (32872, 32905), True, 'import hypothesis.strategies as st\n'), ((33971, 33986), 'numpy.square', 'np.square', (['grad'], {}), '(grad)\n', (33980, 33986), True, 'import numpy as np\n'), ((34412, 34421), 'numpy.abs', 'np.abs', (['h'], {}), '(h)\n', (34418, 34421), True, 'import numpy as np\n'), ((34857, 34894), 'functools.partial', 'partial', (['self._dense_adagrad', 'epsilon'], {}), '(self._dense_adagrad, epsilon)\n', (34864, 34894), False, 'from functools import partial\n'), ((34089, 34104), 'caffe2.python.hypothesis_test_util.tensors', 'hu.tensors', ([], {'n': '(2)'}), '(n=2)\n', (34099, 34104), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((34126, 34139), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (34137, 34139), True, 'import hypothesis.strategies as st\n'), ((34155, 34194), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.1)', 'max_value': '(0.9)'}), '(min_value=0.1, max_value=0.9)\n', (34164, 34194), True, 'import hypothesis.strategies as st\n'), ((34215, 34257), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(1e-05)', 'max_value': '(0.01)'}), '(min_value=1e-05, max_value=0.01)\n', (34224, 34257), True, 'import hypothesis.strategies as st\n'), ((34915, 34930), 'caffe2.python.hypothesis_test_util.tensors', 'hu.tensors', ([], {'n': '(2)'}), '(n=2)\n', (34925, 34930), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((34946, 34985), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.1)', 'max_value': '(0.9)'}), '(min_value=0.1, max_value=0.9)\n', (34955, 34985), True, 'import hypothesis.strategies as st\n'), ((35006, 35048), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(1e-05)', 'max_value': '(0.01)'}), '(min_value=1e-05, max_value=0.01)\n', (35015, 35048), True, 'import hypothesis.strategies as st\n'), ((36376, 36401), 'numpy.stack', 'np.stack', (['[n, z]'], {'axis': '(-1)'}), '([n, z], axis=-1)\n', (36384, 36401), True, 'import numpy as np\n'), ((37471, 37527), 'functools.partial', 'partial', (['self._dense_ftrl', 'alpha', 'beta', 'lambda1', 'lambda2'], {}), '(self._dense_ftrl, alpha, beta, lambda1, lambda2)\n', (37478, 37527), False, 'from functools import partial\n'), ((36422, 36437), 'caffe2.python.hypothesis_test_util.tensors', 'hu.tensors', ([], {'n': '(4)'}), '(n=4)\n', (36432, 36437), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((36459, 36472), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (36470, 36472), True, 'import hypothesis.strategies as st\n'), ((36491, 36531), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.01)', 'max_value': '(0.1)'}), '(min_value=0.01, max_value=0.1)\n', (36500, 36531), True, 'import hypothesis.strategies as st\n'), ((36549, 36588), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.1)', 'max_value': '(0.9)'}), '(min_value=0.1, max_value=0.9)\n', (36558, 36588), True, 'import hypothesis.strategies as st\n'), ((36609, 36650), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.001)', 'max_value': '(0.1)'}), '(min_value=0.001, max_value=0.1)\n', (36618, 36650), True, 'import hypothesis.strategies as st\n'), ((36671, 36712), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.001)', 'max_value': '(0.1)'}), '(min_value=0.001, max_value=0.1)\n', (36680, 36712), True, 'import hypothesis.strategies as st\n'), ((36732, 36763), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["[None, 'SIMD']"], {}), "([None, 'SIMD'])\n", (36747, 36763), True, 'import hypothesis.strategies as st\n'), ((37548, 37563), 'caffe2.python.hypothesis_test_util.tensors', 'hu.tensors', ([], {'n': '(4)'}), '(n=4)\n', (37558, 37563), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((37582, 37622), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.01)', 'max_value': '(0.1)'}), '(min_value=0.01, max_value=0.1)\n', (37591, 37622), True, 'import hypothesis.strategies as st\n'), ((37640, 37679), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.1)', 'max_value': '(0.9)'}), '(min_value=0.1, max_value=0.9)\n', (37649, 37679), True, 'import hypothesis.strategies as st\n'), ((37700, 37741), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.001)', 'max_value': '(0.1)'}), '(min_value=0.001, max_value=0.1)\n', (37709, 37741), True, 'import hypothesis.strategies as st\n'), ((37762, 37803), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(0.001)', 'max_value': '(0.1)'}), '(min_value=0.001, max_value=0.1)\n', (37771, 37803), True, 'import hypothesis.strategies as st\n'), ((37823, 37854), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["[None, 'SIMD']"], {}), "([None, 'SIMD'])\n", (37838, 37854), True, 'import hypothesis.strategies as st\n'), ((39192, 39205), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (39203, 39205), True, 'import hypothesis.strategies as st\n'), ((40894, 40923), 'numpy.argmax', 'np.argmax', (['prediction'], {'axis': '(1)'}), '(prediction, axis=1)\n', (40903, 40923), True, 'import numpy as np\n'), ((41857, 41897), 'numpy.power', 'np.power', (['target_probabilities', '(-1.0 / N)'], {}), '(target_probabilities, -1.0 / N)\n', (41865, 41897), True, 'import numpy as np\n'), ((41923, 41963), 'functools.reduce', 'reduce', (['(lambda x, y: x * y)', 'perplexities'], {}), '(lambda x, y: x * y, perplexities)\n', (41929, 41963), False, 'from functools import reduce\n'), ((43783, 43807), 'numpy.empty', 'np.empty', (['D'], {'dtype': 'float'}), '(D, dtype=float)\n', (43791, 43807), True, 'import numpy as np\n'), ((43861, 43883), 'numpy.empty', 'np.empty', (['D'], {'dtype': 'int'}), '(D, dtype=int)\n', (43869, 43883), True, 'import numpy as np\n'), ((43934, 43963), 'numpy.argmax', 'np.argmax', (['prediction'], {'axis': '(1)'}), '(prediction, axis=1)\n', (43943, 43963), True, 'import numpy as np\n'), ((48689, 48732), 'threading.Thread', 'threading.Thread', ([], {'target': 'enqueue', 'args': '(t,)'}), '(target=enqueue, args=(t,))\n', (48705, 48732), False, 'import threading\n'), ((48974, 49053), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""DequeueBlobs"""', "['queue']", 'dequeue_blobs'], {'device_option': 'do'}), "('DequeueBlobs', ['queue'], dequeue_blobs, device_option=do)\n", (48993, 49053), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((49131, 49160), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (49156, 49160), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((46661, 46679), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(10)'], {}), '(1, 10)\n', (46672, 46679), True, 'import hypothesis.strategies as st\n'), ((46713, 46732), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(100)'], {}), '(1, 100)\n', (46724, 46732), True, 'import hypothesis.strategies as st\n'), ((46754, 46771), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (46765, 46771), True, 'import hypothesis.strategies as st\n'), ((46794, 46811), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (46805, 46811), True, 'import hypothesis.strategies as st\n'), ((46827, 46861), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (['hu.device_options'], {}), '(hu.device_options)\n', (46842, 46861), True, 'import hypothesis.strategies as st\n'), ((50567, 50581), 'caffe2.python.core.Net', 'core.Net', (['name'], {}), '(name)\n', (50575, 50581), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((50862, 50908), 'caffe2.python.core.execution_step', 'core.execution_step', (['name', 'net'], {'num_iter': 'count'}), '(name, net, num_iter=count)\n', (50881, 50908), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((51534, 51548), 'caffe2.python.core.Net', 'core.Net', (['name'], {}), '(name)\n', (51542, 51548), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((51666, 51693), 'caffe2.python.core.Net', 'core.Net', (["(name + '_counter')"], {}), "(name + '_counter')\n", (51674, 51693), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((49969, 49987), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(10)'], {}), '(1, 10)\n', (49980, 49987), True, 'import hypothesis.strategies as st\n'), ((50014, 50032), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(10)'], {}), '(1, 10)\n', (50025, 50032), True, 'import hypothesis.strategies as st\n'), ((50054, 50071), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (50065, 50071), True, 'import hypothesis.strategies as st\n'), ((50094, 50111), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (50105, 50111), True, 'import hypothesis.strategies as st\n'), ((50127, 50161), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (['hu.device_options'], {}), '(hu.device_options)\n', (50142, 50161), True, 'import hypothesis.strategies as st\n'), ((52564, 52575), 'caffe2.python.hypothesis_test_util.tensor', 'hu.tensor', ([], {}), '()\n', (52573, 52575), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((55232, 55258), 'numpy.linalg.norm', 'np.linalg.norm', (['(golden - Y)'], {}), '(golden - Y)\n', (55246, 55258), True, 'import numpy as np\n'), ((57162, 57182), 'numpy.random.seed', 'np.random.seed', (['(1701)'], {}), '(1701)\n', (57176, 57182), True, 'import numpy as np\n'), ((57651, 57678), 'caffe2.python.workspace.RunNetOnce', 'workspace.RunNetOnce', (['m.net'], {}), '(m.net)\n', (57671, 57678), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((57945, 57994), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['outputs[0]', 'output'], {}), '(outputs[0], output)\n', (57974, 57994), True, 'import numpy as np\n'), ((55300, 55318), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(10)'], {}), '(1, 10)\n', (55311, 55318), True, 'import hypothesis.strategies as st\n'), ((55340, 55434), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (["(['simple', 'dag'] + (['async_dag'] if workspace.has_gpu_support else []))"], {}), "(['simple', 'dag'] + (['async_dag'] if workspace.\n has_gpu_support else []))\n", (55355, 55434), True, 'import hypothesis.strategies as st\n'), ((55476, 55510), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (['hu.device_options'], {}), '(hu.device_options)\n', (55491, 55510), True, 'import hypothesis.strategies as st\n'), ((58333, 58346), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (58344, 58346), True, 'import hypothesis.strategies as st\n'), ((58361, 58374), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (58372, 58374), True, 'import hypothesis.strategies as st\n'), ((58389, 58402), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (58400, 58402), True, 'import hypothesis.strategies as st\n'), ((59270, 59281), 'caffe2.python.hypothesis_test_util.tensor', 'hu.tensor', ([], {}), '()\n', (59279, 59281), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((59496, 59507), 'caffe2.python.hypothesis_test_util.tensor', 'hu.tensor', ([], {}), '()\n', (59505, 59507), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((59901, 59920), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(100)'], {}), '(0, 100)\n', (59912, 59920), True, 'import hypothesis.strategies as st\n'), ((59943, 59962), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(100)'], {}), '(0, 100)\n', (59954, 59962), True, 'import hypothesis.strategies as st\n'), ((62752, 62790), 'caffe2.python.core.execution_step', 'core.execution_step', (['"""step_3"""', 'nets[2]'], {}), "('step_3', nets[2])\n", (62771, 62790), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((62891, 62942), 'caffe2.python.core.execution_step', 'core.execution_step', (['"""all_steps"""', 'steps'], {'num_iter': '(3)'}), "('all_steps', steps, num_iter=3)\n", (62910, 62942), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((63168, 63187), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(100)'], {}), '(0, 100)\n', (63179, 63187), True, 'import hypothesis.strategies as st\n'), ((63210, 63229), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(100)'], {}), '(0, 100)\n', (63221, 63229), True, 'import hypothesis.strategies as st\n'), ((64308, 64321), 'numpy.iinfo', 'np.iinfo', (['dst'], {}), '(dst)\n', (64316, 64321), True, 'import numpy as np\n'), ((64338, 64368), 'numpy.clip', 'np.clip', (['a', 'info.min', 'info.max'], {}), '(a, info.min, info.max)\n', (64345, 64368), True, 'import numpy as np\n'), ((63812, 63823), 'caffe2.python.hypothesis_test_util.tensor', 'hu.tensor', ([], {}), '()\n', (63821, 63823), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((63965, 63978), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (63976, 63978), True, 'import hypothesis.strategies as st\n'), ((64773, 64791), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(10)'], {}), '(1, 10)\n', (64784, 64791), True, 'import hypothesis.strategies as st\n'), ((64806, 64824), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(10)'], {}), '(1, 10)\n', (64817, 64824), True, 'import hypothesis.strategies as st\n'), ((64839, 64857), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(10)'], {}), '(1, 10)\n', (64850, 64857), True, 'import hypothesis.strategies as st\n'), ((65925, 65942), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (65936, 65942), True, 'import hypothesis.strategies as st\n'), ((65957, 65974), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (65968, 65974), True, 'import hypothesis.strategies as st\n'), ((65989, 66006), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (66000, 66006), True, 'import hypothesis.strategies as st\n'), ((66021, 66038), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (66032, 66038), True, 'import hypothesis.strategies as st\n'), ((66055, 66072), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(2)'], {}), '(0, 2)\n', (66066, 66072), True, 'import hypothesis.strategies as st\n'), ((66096, 66113), 'hypothesis.strategies.integers', 'st.integers', (['(2)', '(3)'], {}), '(2, 3)\n', (66107, 66113), True, 'import hypothesis.strategies as st\n'), ((66610, 66627), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (66621, 66627), True, 'import hypothesis.strategies as st\n'), ((66642, 66659), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (66653, 66659), True, 'import hypothesis.strategies as st\n'), ((66674, 66691), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (66685, 66691), True, 'import hypothesis.strategies as st\n'), ((66706, 66723), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (66717, 66723), True, 'import hypothesis.strategies as st\n'), ((66740, 66757), 'hypothesis.strategies.integers', 'st.integers', (['(0)', '(2)'], {}), '(0, 2)\n', (66751, 66757), True, 'import hypothesis.strategies as st\n'), ((66781, 66798), 'hypothesis.strategies.integers', 'st.integers', (['(2)', '(3)'], {}), '(2, 3)\n', (66792, 66798), True, 'import hypothesis.strategies as st\n'), ((67421, 67432), 'caffe2.python.hypothesis_test_util.tensor', 'hu.tensor', ([], {}), '()\n', (67430, 67432), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((67454, 67467), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (67465, 67467), True, 'import hypothesis.strategies as st\n'), ((67486, 67526), 'hypothesis.strategies.floats', 'st.floats', ([], {'min_value': '(-2.0)', 'max_value': '(2.0)'}), '(min_value=-2.0, max_value=2.0)\n', (67495, 67526), True, 'import hypothesis.strategies as st\n'), ((68135, 68186), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Transpose"""', '"""input"""', '"""output"""'], {}), "('Transpose', 'input', 'output')\n", (68154, 68186), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((68329, 68391), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Transpose"""', '"""input"""', '"""output"""'], {'axes': 'axes'}), "('Transpose', 'input', 'output', axes=axes)\n", (68348, 68391), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((67914, 67955), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(0)', 'max_value': '(65536)'}), '(min_value=0, max_value=65536)\n', (67925, 67955), True, 'import hypothesis.strategies as st\n'), ((67978, 67991), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (67989, 67991), True, 'import hypothesis.strategies as st\n'), ((68975, 68999), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""a"""'], {}), "('a')\n", (68994, 68999), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((69029, 69053), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""b"""'], {}), "('b')\n", (69048, 69053), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((68724, 68733), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (68731, 68733), True, 'import hypothesis.strategies as st\n'), ((69887, 69917), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""l2_dist"""'], {}), "('l2_dist')\n", (69906, 69917), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((70223, 70249), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""dot"""'], {}), "('dot')\n", (70242, 70249), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((70774, 70800), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['"""cos"""'], {}), "('cos')\n", (70793, 70800), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((69069, 69086), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(3)'], {}), '(1, 3)\n', (69080, 69086), True, 'import hypothesis.strategies as st\n'), ((69103, 69121), 'hypothesis.strategies.integers', 'st.integers', (['(4)', '(16)'], {}), '(4, 16)\n', (69114, 69121), True, 'import hypothesis.strategies as st\n'), ((801, 822), 'numpy.ones', 'np.ones', ([], {'shape': '(N, D)'}), '(shape=(N, D))\n', (808, 822), True, 'import numpy as np\n'), ((889, 910), 'numpy.ones', 'np.ones', ([], {'shape': '(N, D)'}), '(shape=(N, D))\n', (896, 910), True, 'import numpy as np\n'), ((3828, 3841), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (3839, 3841), True, 'import hypothesis.strategies as st\n'), ((3864, 3878), 'hypothesis.strategies.just', 'st.just', (['(False)'], {}), '(False)\n', (3871, 3878), True, 'import hypothesis.strategies as st\n'), ((8431, 8470), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['ys[0]', 'y'], {}), '(ys[0], y)\n', (8460, 8470), True, 'import numpy as np\n'), ((8848, 8878), 'numpy.random.randn', 'np.random.randn', (['(1)', '(2)', '(3)', '(2)', '(1)'], {}), '(1, 2, 3, 2, 1)\n', (8863, 8878), True, 'import numpy as np\n'), ((9083, 9104), 'numpy.random.randn', 'np.random.randn', (['N', 'K'], {}), '(N, K)\n', (9098, 9104), True, 'import numpy as np\n'), ((9136, 9154), 'numpy.random.randn', 'np.random.randn', (['N'], {}), '(N)\n', (9151, 9154), True, 'import numpy as np\n'), ((11395, 11419), 'numpy.random.randn', 'np.random.randn', (['T', 'N', 'D'], {}), '(T, N, D)\n', (11410, 11419), True, 'import numpy as np\n'), ((11600, 11660), 'numpy.random.randn', 'np.random.randn', (['hidden_size', 'N', '(num_layers * num_directions)'], {}), '(hidden_size, N, num_layers * num_directions)\n', (11615, 11660), True, 'import numpy as np\n'), ((29410, 29434), 'numpy.random.permutation', 'np.random.permutation', (['(6)'], {}), '(6)\n', (29431, 29434), True, 'import numpy as np\n'), ((34017, 34029), 'numpy.sqrt', 'np.sqrt', (['h_o'], {}), '(h_o)\n', (34024, 34029), True, 'import numpy as np\n'), ((36146, 36161), 'numpy.sqrt', 'np.sqrt', (['(n + g2)'], {}), '(n + g2)\n', (36153, 36161), True, 'import numpy as np\n'), ((36164, 36174), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (36171, 36174), True, 'import numpy as np\n'), ((36331, 36340), 'numpy.abs', 'np.abs', (['z'], {}), '(z)\n', (36337, 36340), True, 'import numpy as np\n'), ((39915, 39961), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['remapped', 'input'], {}), '(remapped, input)\n', (39944, 39961), True, 'import numpy as np\n'), ((42673, 42698), 'numpy.array', 'np.array', (['sids'], {'dtype': 'int'}), '(sids, dtype=int)\n', (42681, 42698), True, 'import numpy as np\n'), ((42185, 42223), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(0)', 'max_value': '(10)'}), '(min_value=0, max_value=10)\n', (42196, 42223), True, 'import hypothesis.strategies as st\n'), ((45867, 45895), 'numpy.array', 'np.array', (['lengths'], {'dtype': 'int'}), '(lengths, dtype=int)\n', (45875, 45895), True, 'import numpy as np\n'), ((44564, 44602), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(0)', 'max_value': '(10)'}), '(min_value=0, max_value=10)\n', (44575, 44602), True, 'import hypothesis.strategies as st\n'), ((46462, 46482), 'numpy.exp', 'np.exp', (['input_tensor'], {}), '(input_tensor)\n', (46468, 46482), True, 'import numpy as np\n'), ((47933, 48026), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""EnqueueBlobs"""', "(['queue'] + feed_blobs)", 'feed_blobs'], {'device_option': 'do'}), "('EnqueueBlobs', ['queue'] + feed_blobs, feed_blobs,\n device_option=do)\n", (47952, 48026), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((51158, 51232), 'caffe2.python.core.execution_step', 'core.execution_step', (['"""producers"""', 'producer_steps'], {'concurrent_substeps': '(True)'}), "('producers', producer_steps, concurrent_substeps=True)\n", (51177, 51232), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((51263, 51318), 'caffe2.python.core.execution_step', 'core.execution_step', (['"""producer_exit"""', 'producer_exit_net'], {}), "('producer_exit', producer_exit_net)\n", (51282, 51318), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((51877, 51941), 'caffe2.python.core.execution_step', 'core.execution_step', (['name', '[net1, net2]'], {'should_stop_blob': 'status'}), '(name, [net1, net2], should_stop_blob=status)\n', (51896, 51941), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((53113, 53140), 'numpy.expand_dims', 'np.expand_dims', (['r'], {'axis': 'dim'}), '(r, axis=dim)\n', (53127, 53140), True, 'import numpy as np\n'), ((53392, 53415), 'numpy.squeeze', 'np.squeeze', (['r'], {'axis': 'dim'}), '(r, axis=dim)\n', (53402, 53415), True, 'import numpy as np\n'), ((54235, 54253), 'numpy.array', 'np.array', (['([0] * 16)'], {}), '([0] * 16)\n', (54243, 54253), True, 'import numpy as np\n'), ((65124, 65148), 'numpy.random.randn', 'np.random.randn', (['(1)', 'n', 'd'], {}), '(1, n, d)\n', (65139, 65148), True, 'import numpy as np\n'), ((65184, 65212), 'numpy.random.randn', 'np.random.randn', (['(1)', 'n', '(4 * d)'], {}), '(1, n, 4 * d)\n', (65199, 65212), True, 'import numpy as np\n'), ((65254, 65288), 'numpy.random.randint', 'np.random.randint', (['(0)', 't'], {'size': '(n,)'}), '(0, t, size=(n,))\n', (65271, 65288), True, 'import numpy as np\n'), ((65325, 65359), 'numpy.random.randint', 'np.random.randint', (['(0)', 't'], {'size': '(1,)'}), '(0, t, size=(1,))\n', (65342, 65359), True, 'import numpy as np\n'), ((66316, 66343), 'numpy.random.randn', 'np.random.randn', (['n', 'c', 'h', 'w'], {}), '(n, c, h, w)\n', (66331, 66343), True, 'import numpy as np\n'), ((67001, 67108), 'numpy.random.randn', 'np.random.randn', (['(n * block_size * block_size)', 'c', '((h + 2 * pad) / block_size)', '((w + 2 * pad) / block_size)'], {}), '(n * block_size * block_size, c, (h + 2 * pad) / block_size,\n (w + 2 * pad) / block_size)\n', (67016, 67108), True, 'import numpy as np\n'), ((68466, 68487), 'numpy.transpose', 'np.transpose', (['x', 'axes'], {}), '(x, axes)\n', (68478, 68487), True, 'import numpy as np\n'), ((69211, 69245), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(1)', '(n, dim)'], {}), '(-1, 1, (n, dim))\n', (69228, 69245), True, 'import numpy as np\n'), ((69277, 69311), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(1)', '(n, dim)'], {}), '(-1, 1, (n, dim))\n', (69294, 69311), True, 'import numpy as np\n'), ((8565, 8604), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['ys[0]', 'y'], {}), '(ys[0], y)\n', (8594, 8604), True, 'import numpy as np\n'), ((7589, 7632), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (['hu.expanded_device_options'], {}), '(hu.expanded_device_options)\n', (7604, 7632), True, 'import hypothesis.strategies as st\n'), ((11722, 11782), 'numpy.random.randn', 'np.random.randn', (['hidden_size', 'N', '(num_layers * num_directions)'], {}), '(hidden_size, N, num_layers * num_directions)\n', (11737, 11782), True, 'import numpy as np\n'), ((11873, 11887), 'numpy.empty', 'np.empty', (['(1,)'], {}), '((1,))\n', (11881, 11887), True, 'import numpy as np\n'), ((15540, 15594), 'numpy.random.rand', 'np.random.rand', (['batch_size', 'size', 'size', 'input_channels'], {}), '(batch_size, size, size, input_channels)\n', (15554, 15594), True, 'import numpy as np\n'), ((15645, 15708), 'numpy.random.rand', 'np.random.rand', (['output_channels', 'kernel', 'kernel', 'input_channels'], {}), '(output_channels, kernel, kernel, input_channels)\n', (15659, 15708), True, 'import numpy as np\n'), ((15772, 15803), 'numpy.random.rand', 'np.random.rand', (['output_channels'], {}), '(output_channels)\n', (15786, 15803), True, 'import numpy as np\n'), ((17173, 17227), 'numpy.random.rand', 'np.random.rand', (['batch_size', 'size', 'size', 'input_channels'], {}), '(batch_size, size, size, input_channels)\n', (17187, 17227), True, 'import numpy as np\n'), ((17278, 17341), 'numpy.random.rand', 'np.random.rand', (['output_channels', 'kernel', 'kernel', 'input_channels'], {}), '(output_channels, kernel, kernel, input_channels)\n', (17292, 17341), True, 'import numpy as np\n'), ((17405, 17436), 'numpy.random.rand', 'np.random.rand', (['output_channels'], {}), '(output_channels)\n', (17419, 17436), True, 'import numpy as np\n'), ((19528, 19582), 'numpy.random.rand', 'np.random.rand', (['batch_size', 'size', 'size', 'input_channels'], {}), '(batch_size, size, size, input_channels)\n', (19542, 19582), True, 'import numpy as np\n'), ((19633, 19696), 'numpy.random.rand', 'np.random.rand', (['output_channels', 'kernel', 'kernel', 'input_channels'], {}), '(output_channels, kernel, kernel, input_channels)\n', (19647, 19696), True, 'import numpy as np\n'), ((19760, 19791), 'numpy.random.rand', 'np.random.rand', (['output_channels'], {}), '(output_channels)\n', (19774, 19791), True, 'import numpy as np\n'), ((20651, 20705), 'numpy.random.rand', 'np.random.rand', (['batch_size', 'size', 'size', 'input_channels'], {}), '(batch_size, size, size, input_channels)\n', (20665, 20705), True, 'import numpy as np\n'), ((20756, 20819), 'numpy.random.rand', 'np.random.rand', (['output_channels', 'kernel', 'kernel', 'input_channels'], {}), '(output_channels, kernel, kernel, input_channels)\n', (20770, 20819), True, 'import numpy as np\n'), ((20883, 20914), 'numpy.random.rand', 'np.random.rand', (['output_channels'], {}), '(output_channels)\n', (20897, 20914), True, 'import numpy as np\n'), ((25316, 25333), 'numpy.square', 'np.square', (['output'], {}), '(output)\n', (25325, 25333), True, 'import numpy as np\n'), ((26226, 26280), 'numpy.random.rand', 'np.random.rand', (['batch_size', 'size', 'size', 'input_channels'], {}), '(batch_size, size, size, input_channels)\n', (26240, 26280), True, 'import numpy as np\n'), ((26331, 26394), 'numpy.random.rand', 'np.random.rand', (['input_channels', 'kernel', 'kernel', 'output_channels'], {}), '(input_channels, kernel, kernel, output_channels)\n', (26345, 26394), True, 'import numpy as np\n'), ((26459, 26490), 'numpy.random.rand', 'np.random.rand', (['output_channels'], {}), '(output_channels)\n', (26473, 26490), True, 'import numpy as np\n'), ((27759, 27813), 'numpy.random.rand', 'np.random.rand', (['batch_size', 'size', 'size', 'input_channels'], {}), '(batch_size, size, size, input_channels)\n', (27773, 27813), True, 'import numpy as np\n'), ((27864, 27927), 'numpy.random.rand', 'np.random.rand', (['input_channels', 'kernel', 'kernel', 'output_channels'], {}), '(input_channels, kernel, kernel, output_channels)\n', (27878, 27927), True, 'import numpy as np\n'), ((27992, 28023), 'numpy.random.rand', 'np.random.rand', (['output_channels'], {}), '(output_channels)\n', (28006, 28023), True, 'import numpy as np\n'), ((30979, 30997), 'numpy.power', 'np.power', (['beta1', 't'], {}), '(beta1, t)\n', (30987, 30997), True, 'import numpy as np\n'), ((31103, 31118), 'numpy.square', 'np.square', (['grad'], {}), '(grad)\n', (31112, 31118), True, 'import numpy as np\n'), ((31189, 31202), 'numpy.sqrt', 'np.sqrt', (['m2_o'], {}), '(m2_o)\n', (31196, 31202), True, 'import numpy as np\n'), ((33704, 33727), 'numpy.sqrt', 'np.sqrt', (['(epsilon + ms_o)'], {}), '(epsilon + ms_o)\n', (33711, 33727), True, 'import numpy as np\n'), ((36240, 36250), 'numpy.sign', 'np.sign', (['z'], {}), '(z)\n', (36247, 36250), True, 'import numpy as np\n'), ((39125, 39163), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(0)', 'max_value': '(10)'}), '(min_value=0, max_value=10)\n', (39136, 39163), True, 'import hypothesis.strategies as st\n'), ((40118, 40192), 'hypothesis.strategies.floats', 'st.floats', ([], {'allow_nan': '(False)', 'allow_infinity': '(False)', 'min_value': '(0)', 'max_value': '(1)'}), '(allow_nan=False, allow_infinity=False, min_value=0, max_value=1)\n', (40127, 40192), True, 'import hypothesis.strategies as st\n'), ((40468, 40509), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(0)', 'max_value': '(3 - 1)'}), '(min_value=0, max_value=3 - 1)\n', (40479, 40509), True, 'import hypothesis.strategies as st\n'), ((41330, 41407), 'hypothesis.strategies.floats', 'st.floats', ([], {'allow_nan': '(False)', 'allow_infinity': '(False)', 'min_value': '(0.01)', 'max_value': '(1)'}), '(allow_nan=False, allow_infinity=False, min_value=0.01, max_value=1)\n', (41339, 41407), True, 'import hypothesis.strategies as st\n'), ((42808, 42836), 'numpy.array', 'np.array', (['lengths'], {'dtype': 'int'}), '(lengths, dtype=int)\n', (42816, 42836), True, 'import numpy as np\n'), ((42957, 43031), 'hypothesis.strategies.floats', 'st.floats', ([], {'allow_nan': '(False)', 'allow_infinity': '(False)', 'min_value': '(0)', 'max_value': '(1)'}), '(allow_nan=False, allow_infinity=False, min_value=0, max_value=1)\n', (42966, 43031), True, 'import hypothesis.strategies as st\n'), ((43307, 43348), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(0)', 'max_value': '(3 - 1)'}), '(min_value=0, max_value=3 - 1)\n', (43318, 43348), True, 'import hypothesis.strategies as st\n'), ((45235, 45258), 'numpy.array', 'np.array', (['[]'], {'dtype': 'int'}), '([], dtype=int)\n', (45243, 45258), True, 'import numpy as np\n'), ((46004, 46036), 'numpy.array', 'np.array', (['segment_ids'], {'dtype': 'int'}), '(segment_ids, dtype=int)\n', (46012, 46036), True, 'import numpy as np\n'), ((46141, 46189), 'hypothesis.strategies.floats', 'st.floats', ([], {'allow_nan': '(False)', 'allow_infinity': '(False)'}), '(allow_nan=False, allow_infinity=False)\n', (46150, 46189), True, 'import hypothesis.strategies as st\n'), ((47588, 47620), 'numpy.random.randn', 'np.random.randn', (['num_elements', '(5)'], {}), '(num_elements, 5)\n', (47603, 47620), True, 'import numpy as np\n'), ((48333, 48362), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (48358, 48362), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((54176, 54194), 'numpy.random.rand', 'np.random.rand', (['(16)'], {}), '(16)\n', (54190, 54194), True, 'import numpy as np\n'), ((58037, 58054), 'numpy.square', 'np.square', (['output'], {}), '(output)\n', (58046, 58054), True, 'import numpy as np\n'), ((58216, 58263), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(0)', 'max_value': '(2 ** 32 - 1)'}), '(min_value=0, max_value=2 ** 32 - 1)\n', (58227, 58263), True, 'import hypothesis.strategies as st\n'), ((60181, 60208), 'numpy.asarray', 'np.asarray', (['[initial_iters]'], {}), '([initial_iters])\n', (60191, 60208), True, 'import numpy as np\n'), ((60280, 60303), 'numpy.asarray', 'np.asarray', (['[max_iters]'], {}), '([max_iters])\n', (60290, 60303), True, 'import numpy as np\n'), ((60631, 60657), 'caffe2.python.core.BlobReference', 'core.BlobReference', (['"""stop"""'], {}), "('stop')\n", (60649, 60657), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((62563, 62598), 'caffe2.python.core.BlobReference', 'core.BlobReference', (['"""should_stop_1"""'], {}), "('should_stop_1')\n", (62581, 62598), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((62702, 62737), 'caffe2.python.core.BlobReference', 'core.BlobReference', (['"""should_stop_2"""'], {}), "('should_stop_2')\n", (62720, 62737), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((63423, 63450), 'numpy.asarray', 'np.asarray', (['[initial_iters]'], {}), '([initial_iters])\n', (63433, 63450), True, 'import numpy as np\n'), ((64508, 64537), 'caffe2.proto.caffe2_pb2.TensorProto.DataType.Name', 'TensorProto.DataType.Name', (['to'], {}), '(to)\n', (64533, 64537), False, 'from caffe2.proto.caffe2_pb2 import TensorProto\n'), ((67873, 67895), 'caffe2.python.hypothesis_test_util.tensor', 'hu.tensor', ([], {'dtype': 'dtype'}), '(dtype=dtype)\n', (67882, 67895), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((70286, 70303), 'numpy.multiply', 'np.multiply', (['X', 'Y'], {}), '(X, Y)\n', (70297, 70303), True, 'import numpy as np\n'), ((70567, 70584), 'numpy.multiply', 'np.multiply', (['X', 'Y'], {}), '(X, Y)\n', (70578, 70584), True, 'import numpy as np\n'), ((70634, 70659), 'numpy.linalg.norm', 'np.linalg.norm', (['X'], {'axis': '(1)'}), '(X, axis=1)\n', (70648, 70659), True, 'import numpy as np\n'), ((70704, 70729), 'numpy.linalg.norm', 'np.linalg.norm', (['Y'], {'axis': '(1)'}), '(Y, axis=1)\n', (70718, 70729), True, 'import numpy as np\n'), ((12777, 12799), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (12791, 12799), True, 'import numpy as np\n'), ((13614, 13636), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (13628, 13636), True, 'import numpy as np\n'), ((22989, 23007), 'numpy.random.randn', 'np.random.randn', (['(4)'], {}), '(4)\n', (23004, 23007), True, 'import numpy as np\n'), ((23283, 23306), 'numpy.random.randint', 'np.random.randint', (['(0)', '(3)'], {}), '(0, 3)\n', (23300, 23306), True, 'import numpy as np\n'), ((23797, 23820), 'numpy.random.randint', 'np.random.randint', (['(0)', '(3)'], {}), '(0, 3)\n', (23814, 23820), True, 'import numpy as np\n'), ((33633, 33648), 'numpy.square', 'np.square', (['grad'], {}), '(grad)\n', (33642, 33648), True, 'import numpy as np\n'), ((36290, 36300), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (36297, 36300), True, 'import numpy as np\n'), ((48259, 48312), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['feed_blob', 'elem'], {'device_option': 'do'}), '(feed_blob, elem, device_option=do)\n', (48277, 48312), False, 'from caffe2.python import core, workspace, tt_core, dyndep\n'), ((68280, 68309), 'numpy.random.permutation', 'np.random.permutation', (['X.ndim'], {}), '(X.ndim)\n', (68301, 68309), True, 'import numpy as np\n'), ((69954, 69970), 'numpy.square', 'np.square', (['(X - Y)'], {}), '(X - Y)\n', (69963, 69970), True, 'import numpy as np\n'), ((2884, 2927), 'caffe2.python.hypothesis_test_util.elements_of_type', 'hu.elements_of_type', (['dtype'], {'filter_': 'filter_'}), '(dtype, filter_=filter_)\n', (2903, 2927), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((3763, 3806), 'caffe2.python.hypothesis_test_util.elements_of_type', 'hu.elements_of_type', (['dtype'], {'filter_': 'filter_'}), '(dtype, filter_=filter_)\n', (3782, 3806), True, 'import caffe2.python.hypothesis_test_util as hu\n'), ((24638, 24665), 'numpy.random.randn', 'np.random.randn', (['n', 'd', 'h', 'w'], {}), '(n, d, h, w)\n', (24653, 24665), True, 'import numpy as np\n'), ((24809, 24838), 'numpy.random.randn', 'np.random.randn', (['n', '(d * h * w)'], {}), '(n, d * h * w)\n', (24824, 24838), True, 'import numpy as np\n'), ((30933, 30951), 'numpy.power', 'np.power', (['beta2', 't'], {}), '(beta2, t)\n', (30941, 30951), True, 'import numpy as np\n'), ((49853, 49887), 'numpy.array_equal', 'np.array_equal', (['xs[i][j]', 'ys[i][k]'], {}), '(xs[i][j], ys[i][k])\n', (49867, 49887), True, 'import numpy as np\n'), ((56314, 56331), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (56329, 56331), True, 'import numpy as np\n'), ((56379, 56396), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (56394, 56396), True, 'import numpy as np\n'), ((56546, 56563), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (56561, 56563), True, 'import numpy as np\n'), ((56611, 56628), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (56626, 56628), True, 'import numpy as np\n'), ((57394, 57415), 'numpy.random.randn', 'np.random.randn', (['n', 'd'], {}), '(n, d)\n', (57409, 57415), True, 'import numpy as np\n'), ((57559, 57580), 'numpy.random.randn', 'np.random.randn', (['n', 'd'], {}), '(n, d)\n', (57574, 57580), True, 'import numpy as np\n')]
from typing import Optional import numpy as np from sklearn.decomposition import KernelPCA, PCA from sklearn.impute import SimpleImputer from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, PolynomialFeatures, StandardScaler from fedot.core.operations.evaluation.operation_implementations. \ implementation_interfaces import DataOperationImplementation, EncodedInvariantImplementation class ComponentAnalysisImplementation(DataOperationImplementation): """ Class for applying PCA and kernel PCA models form sklearn :param params: optional, dictionary with the arguments """ def __init__(self, **params: Optional[dict]): super().__init__() self.pca = None self.params = None self.amount_of_features = None def fit(self, input_data): """ The method trains the PCA model :param input_data: data with features, target and ids for PCA training :return pca: trained PCA model (optional output) """ self.amount_of_features = np.array(input_data.features).shape[1] if self.amount_of_features > 1: self.check_and_correct_params() self.pca.fit(input_data.features) return self.pca def transform(self, input_data, is_fit_chain_stage: Optional[bool]): """ Method for transformation tabular data using PCA :param input_data: data with features, target and ids for PCA applying :param is_fit_chain_stage: is this fit or predict stage for chain :return input_data: data with transformed features attribute """ if self.amount_of_features > 1: transformed_features = self.pca.transform(input_data.features) else: transformed_features = input_data.features # Update features output_data = self._convert_to_output(input_data, transformed_features) return output_data def check_and_correct_params(self) -> None: """ Method check if amount of features in data enough for n_components parameter in PCA or not. And if not enough - fixes it """ current_parameters = self.pca.get_params() if type(current_parameters['n_components']) == int: if current_parameters['n_components'] > self.amount_of_features: current_parameters['n_components'] = self.amount_of_features self.pca.set_params(**current_parameters) self.params = current_parameters def get_params(self): return self.pca.get_params() class PCAImplementation(ComponentAnalysisImplementation): """ Class for applying PCA from sklearn :param params: optional, dictionary with the hyperparameters """ def __init__(self, **params: Optional[dict]): super().__init__() if not params: # Default parameters self.pca = PCA(svd_solver='full', n_components='mle') else: self.pca = PCA(**params) self.params = params self.amount_of_features = None class KernelPCAImplementation(ComponentAnalysisImplementation): """ Class for applying kernel PCA from sklearn :param params: optional, dictionary with the hyperparameters """ def __init__(self, **params: Optional[dict]): super().__init__() if not params: # Default parameters self.pca = KernelPCA() else: self.pca = KernelPCA(**params) self.params = params class OneHotEncodingImplementation(DataOperationImplementation): """ Class for automatic categorical data detection and one hot encoding """ def __init__(self, **params: Optional[dict]): super().__init__() if not params: # Default parameters self.encoder = OneHotEncoder() else: self.encoder = OneHotEncoder(**params) self.categorical_ids = None self.non_categorical_ids = None def fit(self, input_data): """ Method for fit encoder with automatic determination of categorical features :param input_data: data with features, target and ids for encoder training :return encoder: trained encoder (optional output) """ features = input_data.features categorical_ids, non_categorical_ids = self.str_columns_check(features) # Indices of columns with categorical and non-categorical features self.categorical_ids = categorical_ids self.non_categorical_ids = non_categorical_ids if len(categorical_ids) == 0: pass else: categorical_features = np.array(features[:, categorical_ids]) self.encoder.fit(categorical_features) return self.encoder def transform(self, input_data, is_fit_chain_stage: Optional[bool]): """ The method that transforms the categorical features in the original dataset, but does not affect the rest features :param input_data: data with features, target and ids for transformation :param is_fit_chain_stage: is this fit or predict stage for chain :return output_data: output data with transformed features table """ features = input_data.features if len(self.categorical_ids) == 0: # If there are no categorical features in the table transformed_features = features else: # If categorical features are exists transformed_features = self._make_new_table(features) # Update features output_data = self._convert_to_output(input_data, transformed_features) return output_data def _make_new_table(self, features): """ The method creates a table based on categorical and real features :param features: tabular data for processing :return transformed_features: transformed features table """ categorical_features = np.array(features[:, self.categorical_ids]) transformed_categorical = self.encoder.transform(categorical_features).toarray() # If there are non-categorical features in the data if len(self.non_categorical_ids) == 0: transformed_features = transformed_categorical else: # Stack transformed categorical and non-categorical data non_categorical_features = np.array(features[:, self.non_categorical_ids]) frames = (non_categorical_features, transformed_categorical) transformed_features = np.hstack(frames) return transformed_features def get_params(self): return self.encoder.get_params() @staticmethod def str_columns_check(features): """ Method for checking which columns contain categorical (text) data :param features: tabular data for check :return categorical_ids: indices of categorical columns in table :return non_categorical_ids: indices of non categorical columns in table """ source_shape = features.shape columns_amount = source_shape[1] if len(source_shape) > 1 else 1 categorical_ids = [] non_categorical_ids = [] # For every column in table make check for first element for column_id in range(0, columns_amount): column = features[:, column_id] if columns_amount > 1 else features if type(column[0]) == str: categorical_ids.append(column_id) else: non_categorical_ids.append(column_id) return categorical_ids, non_categorical_ids class PolyFeaturesImplementation(EncodedInvariantImplementation): """ Class for application of PolynomialFeatures operation on data, where only not encoded features (were not converted from categorical using OneHot encoding) are used :param params: optional, dictionary with the arguments """ def __init__(self, **params: Optional[dict]): super().__init__() if not params: # Default parameters self.operation = PolynomialFeatures(include_bias=False) else: # Checking the appropriate params are using or not poly_params = {k: params[k] for k in ['degree', 'interaction_only']} self.operation = PolynomialFeatures(include_bias=False, **poly_params) self.params = params def get_params(self): return self.operation.get_params() class ScalingImplementation(EncodedInvariantImplementation): """ Class for application of Scaling operation on data, where only not encoded features (were not converted from categorical using OneHot encoding) are used :param params: optional, dictionary with the arguments """ def __init__(self, **params: Optional[dict]): super().__init__() if not params: # Default parameters self.operation = StandardScaler() else: self.operation = StandardScaler(**params) self.params = params def get_params(self): return self.operation.get_params() class NormalizationImplementation(EncodedInvariantImplementation): """ Class for application of MinMax normalization operation on data, where only not encoded features (were not converted from categorical using OneHot encoding) are used :param params: optional, dictionary with the arguments """ def __init__(self, **params: Optional[dict]): super().__init__() if not params: # Default parameters self.operation = MinMaxScaler() else: self.operation = MinMaxScaler(**params) self.params = params def get_params(self): return self.operation.get_params() class ImputationImplementation(DataOperationImplementation): """ Class for applying imputation on tabular data :param params: optional, dictionary with the arguments """ def __init__(self, **params: Optional[dict]): super().__init__() if not params: # Default parameters self.imputer = SimpleImputer() else: self.imputer = SimpleImputer(**params) self.params = params def fit(self, input_data): """ The method trains SimpleImputer :param input_data: data with features :return imputer: trained SimpleImputer model """ self.imputer.fit(input_data.features) return self.imputer def transform(self, input_data, is_fit_chain_stage: Optional[bool] = None): """ Method for transformation tabular data using SimpleImputer :param input_data: data with features :param is_fit_chain_stage: is this fit or predict stage for chain :return input_data: data with transformed features attribute """ transformed_features = self.imputer.transform(input_data.features) # Update features output_data = self._convert_to_output(input_data, transformed_features) return output_data def get_params(self): return self.imputer.get_params()
[ "sklearn.impute.SimpleImputer", "sklearn.preprocessing.StandardScaler", "sklearn.preprocessing.MinMaxScaler", "sklearn.preprocessing.OneHotEncoder", "numpy.hstack", "sklearn.preprocessing.PolynomialFeatures", "numpy.array", "sklearn.decomposition.PCA", "sklearn.decomposition.KernelPCA" ]
[((6063, 6106), 'numpy.array', 'np.array', (['features[:, self.categorical_ids]'], {}), '(features[:, self.categorical_ids])\n', (6071, 6106), True, 'import numpy as np\n'), ((2937, 2979), 'sklearn.decomposition.PCA', 'PCA', ([], {'svd_solver': '"""full"""', 'n_components': '"""mle"""'}), "(svd_solver='full', n_components='mle')\n", (2940, 2979), False, 'from sklearn.decomposition import KernelPCA, PCA\n'), ((3017, 3030), 'sklearn.decomposition.PCA', 'PCA', ([], {}), '(**params)\n', (3020, 3030), False, 'from sklearn.decomposition import KernelPCA, PCA\n'), ((3447, 3458), 'sklearn.decomposition.KernelPCA', 'KernelPCA', ([], {}), '()\n', (3456, 3458), False, 'from sklearn.decomposition import KernelPCA, PCA\n'), ((3496, 3515), 'sklearn.decomposition.KernelPCA', 'KernelPCA', ([], {}), '(**params)\n', (3505, 3515), False, 'from sklearn.decomposition import KernelPCA, PCA\n'), ((3853, 3868), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {}), '()\n', (3866, 3868), False, 'from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, PolynomialFeatures, StandardScaler\n'), ((3910, 3933), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {}), '(**params)\n', (3923, 3933), False, 'from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, PolynomialFeatures, StandardScaler\n'), ((4695, 4733), 'numpy.array', 'np.array', (['features[:, categorical_ids]'], {}), '(features[:, categorical_ids])\n', (4703, 4733), True, 'import numpy as np\n'), ((6485, 6532), 'numpy.array', 'np.array', (['features[:, self.non_categorical_ids]'], {}), '(features[:, self.non_categorical_ids])\n', (6493, 6532), True, 'import numpy as np\n'), ((6641, 6658), 'numpy.hstack', 'np.hstack', (['frames'], {}), '(frames)\n', (6650, 6658), True, 'import numpy as np\n'), ((8184, 8222), 'sklearn.preprocessing.PolynomialFeatures', 'PolynomialFeatures', ([], {'include_bias': '(False)'}), '(include_bias=False)\n', (8202, 8222), False, 'from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, PolynomialFeatures, StandardScaler\n'), ((8437, 8490), 'sklearn.preprocessing.PolynomialFeatures', 'PolynomialFeatures', ([], {'include_bias': '(False)'}), '(include_bias=False, **poly_params)\n', (8455, 8490), False, 'from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, PolynomialFeatures, StandardScaler\n'), ((9101, 9117), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (9115, 9117), False, 'from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, PolynomialFeatures, StandardScaler\n'), ((9161, 9185), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '(**params)\n', (9175, 9185), False, 'from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, PolynomialFeatures, StandardScaler\n'), ((9767, 9781), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '()\n', (9779, 9781), False, 'from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, PolynomialFeatures, StandardScaler\n'), ((9825, 9847), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '(**params)\n', (9837, 9847), False, 'from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, PolynomialFeatures, StandardScaler\n'), ((10293, 10308), 'sklearn.impute.SimpleImputer', 'SimpleImputer', ([], {}), '()\n', (10306, 10308), False, 'from sklearn.impute import SimpleImputer\n'), ((10350, 10373), 'sklearn.impute.SimpleImputer', 'SimpleImputer', ([], {}), '(**params)\n', (10363, 10373), False, 'from sklearn.impute import SimpleImputer\n'), ((1040, 1069), 'numpy.array', 'np.array', (['input_data.features'], {}), '(input_data.features)\n', (1048, 1069), True, 'import numpy as np\n')]
from astropy.io import fits import pandas as pd import numpy as np import glob import os class ExternalFile: """ Read in external files and turn them into numpy arrays to work with pyRT_DISORT functions""" def __init__(self, file_path, header_lines=0, text1d=True): """ Parameters ---------- file_path: str The absolute path to the file header_lines: int, optional The number of header lines to skip. Only used for plain text input text1d: bool, optional Denote if the data are 1D or 2D. Only used for plain text input """ self.file_path = file_path self.header_lines = header_lines self.text1d = text1d self.__check_inputs() self.__trim_file_path() self.filename = self.__get_filename() self.extension = self.__get_extension() self.array = self.__read_in_file() def __check_inputs(self): assert isinstance(self.file_path, str), 'file_path must be a string' assert isinstance(self.header_lines, int), 'header_lines must be an int' assert isinstance(self.text1d, bool), 'text1d needs to be a boolean' def __trim_file_path(self): self.file_path = self.file_path.strip() def __get_filename(self): return self.file_path.split('.')[0] def __get_extension(self): return self.file_path.split('.')[-1] def __read_in_file(self): if self.extension == 'npy': return self.__read_npy_file() elif self.extension == 'csv': return self.__csv_to_npy() elif self.extension == 'fits': return self.__read_fits_file() elif self.extension in ['txt', 'dat', 'coef', 'phsfn']: if self.text1d: return self.__1dtext_to_npy() else: return self.__2dtext_to_npy() else: print('Unsure how to handle that extension... please use .npy, .csv, .fits, .txt, .dat, .coef, .phsfn') return None def __read_npy_file(self): return np.load(self.file_path) def __csv_to_npy(self): return pd.read_csv(self.file_path).to_numpy() def __read_fits_file(self): return fits.open(self.file_path) def __get_absolute_path(self, new_filename): if new_filename.strip()[-1] == '/': raise SystemExit('You provided a path but not a filename...') # assume it's a relative path if '/' not in new_filename: stripped_filename = self.__strip_extensions(new_filename) split_paths = self.file_path.split('/') split_paths[-1] = stripped_filename return '/'.join(split_paths) # assume it's an absolute path else: return new_filename @staticmethod def __strip_extensions(filename): return filename.split('.')[0] def __1dtext_to_npy(self): coeff = [] f = open(self.file_path) lines = f.readlines()[self.header_lines:] for line in lines: a = np.fromstring(line.strip(), sep=' ') coeff.append(a) # This unravels a list and stores it as an array return np.array([co for all_coeff in coeff for co in all_coeff]) def __2dtext_to_npy(self): return np.genfromtxt(self.file_path, skip_header=self.header_lines, filling_values=np.nan) def save_as_npy(self, new_filename=''): """ Save the input file as a numpy array Parameters ---------- new_filename: str The filename for the newly created file. Can be an absolute path; otherwise makes a file in the same location as the data file. Returns ------- None Examples -------- >>> folder = '/path/to/my/data/' >>> file = 'folder' + 'myDataFile.csv' >>> f = ExternalFiles(file) >>> f.save_as_npy(new_filename='myBetterNamedDataFile') >>> folder = '/path/to/my/data/' >>> file = 'folder' + 'myDataFile.txt' >>> f = ExternalFiles(file) >>> f.save_as_npy(new_filename='/absolute/path/to/my/new/file/fileName') """ assert isinstance(new_filename, str), 'new_filename must be a string' absolute_path = self.__get_absolute_path(new_filename) np.save(absolute_path, self.array) def save_as_csv(self, new_filename, headers): """ Save the input file in .csv format Parameters ---------- new_filename: str The filename for the newly created file. Can be an absolute path; otherwise makes a file in the same location as the data file. headers: list A list of strings of each of the column names Returns ------- None """ if (dims := np.ndim(self.array)) > 2: print('You\'re trying to save a {}D array in 2D format... consult a string theorist.'.format(dims)) return absolute_path = self.__get_absolute_path(new_filename) pd.DataFrame(self.array).to_csv('{}.csv'.format(absolute_path), header=headers, index=False) class MultipleExternalFiles: """ Get the absolute paths of files matching a given pattern""" def __init__(self, pattern, path): """ Parameters ---------- pattern: str A regex pattern to match path: str The location of files to match the pattern to """ self.pattern = pattern self.path = path self.files = self.__get_files() def __check_inputs(self): assert isinstance(self.pattern, str), 'pattern must a string' assert isinstance(self.path, str), 'path must be a string' def __get_files(self): absolute_path = os.path.join(self.path, self.pattern) return sorted(glob.glob(absolute_path))
[ "pandas.DataFrame", "numpy.load", "numpy.save", "pandas.read_csv", "numpy.ndim", "numpy.genfromtxt", "numpy.array", "astropy.io.fits.open", "glob.glob", "os.path.join" ]
[((2099, 2122), 'numpy.load', 'np.load', (['self.file_path'], {}), '(self.file_path)\n', (2106, 2122), True, 'import numpy as np\n'), ((2254, 2279), 'astropy.io.fits.open', 'fits.open', (['self.file_path'], {}), '(self.file_path)\n', (2263, 2279), False, 'from astropy.io import fits\n'), ((3229, 3286), 'numpy.array', 'np.array', (['[co for all_coeff in coeff for co in all_coeff]'], {}), '([co for all_coeff in coeff for co in all_coeff])\n', (3237, 3286), True, 'import numpy as np\n'), ((3334, 3422), 'numpy.genfromtxt', 'np.genfromtxt', (['self.file_path'], {'skip_header': 'self.header_lines', 'filling_values': 'np.nan'}), '(self.file_path, skip_header=self.header_lines, filling_values\n =np.nan)\n', (3347, 3422), True, 'import numpy as np\n'), ((4366, 4400), 'numpy.save', 'np.save', (['absolute_path', 'self.array'], {}), '(absolute_path, self.array)\n', (4373, 4400), True, 'import numpy as np\n'), ((5845, 5882), 'os.path.join', 'os.path.join', (['self.path', 'self.pattern'], {}), '(self.path, self.pattern)\n', (5857, 5882), False, 'import os\n'), ((5905, 5929), 'glob.glob', 'glob.glob', (['absolute_path'], {}), '(absolute_path)\n', (5914, 5929), False, 'import glob\n'), ((2167, 2194), 'pandas.read_csv', 'pd.read_csv', (['self.file_path'], {}), '(self.file_path)\n', (2178, 2194), True, 'import pandas as pd\n'), ((4874, 4893), 'numpy.ndim', 'np.ndim', (['self.array'], {}), '(self.array)\n', (4881, 4893), True, 'import numpy as np\n'), ((5102, 5126), 'pandas.DataFrame', 'pd.DataFrame', (['self.array'], {}), '(self.array)\n', (5114, 5126), True, 'import pandas as pd\n')]
#!/usr/bin/env python import os from argparse import ArgumentParser from os import listdir from time import time import h5py import numpy as np import tensorflow as tf import tensorflow.contrib.slim.python.slim.nets.vgg as vgg from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from tqdm import tqdm parser = ArgumentParser() parser.add_argument("-image_dir", help="Path to the directory containing the images") parser.add_argument("-output_dir", help="ResNet features output directory where the features metadata will be stored") parser.add_argument("-model_ckpt", default="data/vgg.ckpt", help="Path to the VGG-16 Net model checkpoint") def get_splits(image_dir): dirs = [name for name in os.listdir(image_dir) if os.path.isdir(os.path.join(image_dir, name))] if not dirs: return ['train', 'val', 'test'] return dirs def extract_features( images_placeholder, image_dir, split, ft_output, network_ckpt, out_dir): with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: saver = tf.train.Saver() saver.restore(sess, network_ckpt) img_list = listdir(image_dir) print("Load dataset -> set: {}".format(split)) no_images = len(img_list) ############################ # CREATE FEATURES ############################ print("Start computing image features...") filepath = os.path.join(out_dir, "{}_features.h5".format(split)) with h5py.File(filepath, 'w') as f: ft_shape = [int(dim) for dim in ft_output.get_shape()[1:]] ft_dataset = f.create_dataset('features', shape=[no_images] + ft_shape, dtype=np.float32) idx2img = f.create_dataset('idx2img', shape=[no_images], dtype=h5py.special_dtype(vlen=str)) for i in tqdm(range(len(img_list))): image_filepath = os.path.join(image_dir, img_list[i]) image_tensor = Image.open(image_filepath).convert('RGB') feat = sess.run(ft_output, feed_dict={images_placeholder: np.expand_dims(image_tensor, 0)}) # Store dataset ft_dataset[i] = feat image_id = img_list[i][:img_list[i].index(".")] idx2img[i] = image_id print("Finished dumping file: {}".format(filepath)) print("Done!") def main(args): start = time() print('Start') splits = get_splits(args.image_dir) img_size = 224 # TF graph creation images_placeholder = tf.placeholder(tf.float32, [None, None, None, 3], name='image') proc_image_op = tf.image.resize_image_with_crop_or_pad( images_placeholder, target_height=224, target_width=224 ) _, end_points = vgg.vgg_16(proc_image_op, is_training=False, dropout_keep_prob=1.0) ft_name = os.path.join("vgg_16", "fc8") ft_output = end_points[ft_name] #### for split in splits: extract_features( images_placeholder=images_placeholder, image_dir=os.path.join(args.image_dir, split), ft_output=ft_output, out_dir=args.output_dir, split=split, network_ckpt=args.model_ckpt) print('Image Features extracted.') print('Time taken: ', time() - start) if __name__ == '__main__': args = parser.parse_args() main(args)
[ "h5py.File", "argparse.ArgumentParser", "tensorflow.train.Saver", "h5py.special_dtype", "tensorflow.contrib.slim.python.slim.nets.vgg.vgg_16", "numpy.expand_dims", "time.time", "PIL.Image.open", "tensorflow.placeholder", "tensorflow.ConfigProto", "tensorflow.image.resize_image_with_crop_or_pad", "os.path.join", "os.listdir" ]
[((332, 348), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (346, 348), False, 'from argparse import ArgumentParser\n'), ((2429, 2435), 'time.time', 'time', ([], {}), '()\n', (2433, 2435), False, 'from time import time\n'), ((2564, 2627), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, None, None, 3]'], {'name': '"""image"""'}), "(tf.float32, [None, None, None, 3], name='image')\n", (2578, 2627), True, 'import tensorflow as tf\n'), ((2648, 2748), 'tensorflow.image.resize_image_with_crop_or_pad', 'tf.image.resize_image_with_crop_or_pad', (['images_placeholder'], {'target_height': '(224)', 'target_width': '(224)'}), '(images_placeholder, target_height=\n 224, target_width=224)\n', (2686, 2748), True, 'import tensorflow as tf\n'), ((2794, 2861), 'tensorflow.contrib.slim.python.slim.nets.vgg.vgg_16', 'vgg.vgg_16', (['proc_image_op'], {'is_training': '(False)', 'dropout_keep_prob': '(1.0)'}), '(proc_image_op, is_training=False, dropout_keep_prob=1.0)\n', (2804, 2861), True, 'import tensorflow.contrib.slim.python.slim.nets.vgg as vgg\n'), ((2876, 2905), 'os.path.join', 'os.path.join', (['"""vgg_16"""', '"""fc8"""'], {}), "('vgg_16', 'fc8')\n", (2888, 2905), False, 'import os\n'), ((1108, 1124), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (1122, 1124), True, 'import tensorflow as tf\n'), ((1186, 1204), 'os.listdir', 'listdir', (['image_dir'], {}), '(image_dir)\n', (1193, 1204), False, 'from os import listdir\n'), ((721, 742), 'os.listdir', 'os.listdir', (['image_dir'], {}), '(image_dir)\n', (731, 742), False, 'import os\n'), ((1535, 1559), 'h5py.File', 'h5py.File', (['filepath', '"""w"""'], {}), "(filepath, 'w')\n", (1544, 1559), False, 'import h5py\n'), ((3316, 3322), 'time.time', 'time', ([], {}), '()\n', (3320, 3322), False, 'from time import time\n'), ((760, 789), 'os.path.join', 'os.path.join', (['image_dir', 'name'], {}), '(image_dir, name)\n', (772, 789), False, 'import os\n'), ((1040, 1081), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)'}), '(allow_soft_placement=True)\n', (1054, 1081), True, 'import tensorflow as tf\n'), ((1927, 1963), 'os.path.join', 'os.path.join', (['image_dir', 'img_list[i]'], {}), '(image_dir, img_list[i])\n', (1939, 1963), False, 'import os\n'), ((3076, 3111), 'os.path.join', 'os.path.join', (['args.image_dir', 'split'], {}), '(args.image_dir, split)\n', (3088, 3111), False, 'import os\n'), ((1814, 1842), 'h5py.special_dtype', 'h5py.special_dtype', ([], {'vlen': 'str'}), '(vlen=str)\n', (1832, 1842), False, 'import h5py\n'), ((1995, 2021), 'PIL.Image.open', 'Image.open', (['image_filepath'], {}), '(image_filepath)\n', (2005, 2021), False, 'from PIL import Image, ImageFile\n'), ((2111, 2142), 'numpy.expand_dims', 'np.expand_dims', (['image_tensor', '(0)'], {}), '(image_tensor, 0)\n', (2125, 2142), True, 'import numpy as np\n')]
import networkx as nx import numpy as np from scipy.linalg import fractional_matrix_power, inv import tensorlayerx as tlx from sklearn.preprocessing import MinMaxScaler import scipy.sparse as sp def preprocess_features(features): """Row-normalize feature matrix and convert to tuple representation""" rowsum = np.array(features.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) features = r_mat_inv.dot(features) return tlx.convert_to_tensor(features) def compute_ppr(graph: nx.Graph, alpha=0.2, self_loop=True): a = nx.convert_matrix.to_numpy_array(graph, dtype=np.float32) if self_loop: a = a + np.eye(a.shape[0], dtype=np.float32) # A^ = A + I_n d = np.diag(np.sum(a, 1)) # D^ = Sigma A^_ii dinv = fractional_matrix_power(d, -0.5) # D^(-1/2) at = np.matmul(np.matmul(dinv, a), dinv) # A~ = D^(-1/2) x A^ x D^(-1/2) return alpha * inv((np.eye(a.shape[0], dtype=np.float32) - (1 - alpha) * at)) # a(I_n-(1-a)A~)^-1 def process_dataset(name, graph, epsilon): feat = graph.x label = graph.y train_mask = graph.train_mask val_mask = graph.val_mask test_mask = graph.test_mask train_idx = np.nonzero(train_mask)[0] val_idx = np.nonzero(val_mask)[0] test_idx = np.nonzero(test_mask)[0] src, dst = graph.edge_index.numpy() nx_g = nx.DiGraph() nx_g.add_nodes_from(range(graph.num_nodes)) for e, (u, v) in enumerate(zip(src, dst)): nx_g.add_edge(u, v, id=e) print('computing ppr') diff_adj = compute_ppr(nx_g, 0.2) print('computing end') if name == 'citeseer': print('additional processing') feat = preprocess_features(tlx.convert_to_numpy(feat)) diff_adj[diff_adj < epsilon] = 0 scaler = MinMaxScaler() scaler.fit(diff_adj) diff_adj = scaler.transform(diff_adj) diff_edges = np.nonzero(diff_adj) diff_weight = diff_adj[diff_edges] coo = sp.coo_matrix((diff_weight, np.array([diff_edges[0], diff_edges[1]])), shape=(feat.shape[0], feat.shape[0])) return np.array(coo.todense()), feat, label, train_idx, val_idx, test_idx
[ "scipy.sparse.diags", "numpy.sum", "numpy.power", "tensorlayerx.convert_to_numpy", "scipy.linalg.fractional_matrix_power", "sklearn.preprocessing.MinMaxScaler", "numpy.isinf", "tensorlayerx.convert_to_tensor", "numpy.nonzero", "networkx.convert_matrix.to_numpy_array", "numpy.array", "numpy.matmul", "numpy.eye", "networkx.DiGraph" ]
[((436, 451), 'scipy.sparse.diags', 'sp.diags', (['r_inv'], {}), '(r_inv)\n', (444, 451), True, 'import scipy.sparse as sp\n'), ((502, 533), 'tensorlayerx.convert_to_tensor', 'tlx.convert_to_tensor', (['features'], {}), '(features)\n', (523, 533), True, 'import tensorlayerx as tlx\n'), ((605, 662), 'networkx.convert_matrix.to_numpy_array', 'nx.convert_matrix.to_numpy_array', (['graph'], {'dtype': 'np.float32'}), '(graph, dtype=np.float32)\n', (637, 662), True, 'import networkx as nx\n'), ((811, 843), 'scipy.linalg.fractional_matrix_power', 'fractional_matrix_power', (['d', '(-0.5)'], {}), '(d, -0.5)\n', (834, 843), False, 'from scipy.linalg import fractional_matrix_power, inv\n'), ((1392, 1404), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (1402, 1404), True, 'import networkx as nx\n'), ((1921, 1941), 'numpy.nonzero', 'np.nonzero', (['diff_adj'], {}), '(diff_adj)\n', (1931, 1941), True, 'import numpy as np\n'), ((398, 413), 'numpy.isinf', 'np.isinf', (['r_inv'], {}), '(r_inv)\n', (406, 413), True, 'import numpy as np\n'), ((766, 778), 'numpy.sum', 'np.sum', (['a', '(1)'], {}), '(a, 1)\n', (772, 778), True, 'import numpy as np\n'), ((875, 893), 'numpy.matmul', 'np.matmul', (['dinv', 'a'], {}), '(dinv, a)\n', (884, 893), True, 'import numpy as np\n'), ((1236, 1258), 'numpy.nonzero', 'np.nonzero', (['train_mask'], {}), '(train_mask)\n', (1246, 1258), True, 'import numpy as np\n'), ((1276, 1296), 'numpy.nonzero', 'np.nonzero', (['val_mask'], {}), '(val_mask)\n', (1286, 1296), True, 'import numpy as np\n'), ((1315, 1336), 'numpy.nonzero', 'np.nonzero', (['test_mask'], {}), '(test_mask)\n', (1325, 1336), True, 'import numpy as np\n'), ((1813, 1827), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '()\n', (1825, 1827), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((357, 377), 'numpy.power', 'np.power', (['rowsum', '(-1)'], {}), '(rowsum, -1)\n', (365, 377), True, 'import numpy as np\n'), ((697, 733), 'numpy.eye', 'np.eye', (['a.shape[0]'], {'dtype': 'np.float32'}), '(a.shape[0], dtype=np.float32)\n', (703, 733), True, 'import numpy as np\n'), ((1727, 1753), 'tensorlayerx.convert_to_numpy', 'tlx.convert_to_numpy', (['feat'], {}), '(feat)\n', (1747, 1753), True, 'import tensorlayerx as tlx\n'), ((2019, 2059), 'numpy.array', 'np.array', (['[diff_edges[0], diff_edges[1]]'], {}), '([diff_edges[0], diff_edges[1]])\n', (2027, 2059), True, 'import numpy as np\n'), ((958, 994), 'numpy.eye', 'np.eye', (['a.shape[0]'], {'dtype': 'np.float32'}), '(a.shape[0], dtype=np.float32)\n', (964, 994), True, 'import numpy as np\n')]
from typing import List, Optional import os import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as mpc import matplotlib.cm as cm from matplotlib import rc from matplotlib import colors from matplotlib.ticker import MaxNLocator from matplotlib.colors import BoundaryNorm import numpy as np import pandas as pd from mpl_toolkits.axes_grid1 import make_axes_locatable from string import ascii_lowercase from math import floor from helper_funcs import convert2rgb, get_tab_colors import data_tools as dt def plot_metric(data_paths:List[str], metric:str, lower_bound:Optional[str] = None, upper_bound:Optional[str] = None, normalize:bool = False, labels:Optional[List[str]] = None): """Plots a metric evolution from the given data_paths. Since metrics require an evaluation of the forward model, the last iteration must be discarded (only parameters available). Args: - data_paths: List of diagnostic data paths from which to draw the metrics. - metric: Name of the metric to be plotted. - lower_bound: If given, shades the area between the metric and this lower bound metric from the same dataset. - upper_bound: If given, shades the area between the metric and this upper bound metric from the same dataset. - normalize: If True, normalizes the metric with respect to the metric at t=0. """ tab_colors = get_tab_colors() fig = plt.figure(metric) max_t = 0 for (i, data_path) in enumerate(data_paths): shading = convert2rgb(tab_colors[i], 0.4) var = dt.ncFetch(data_path, 'metrics', metric)[:-1] if normalize: den = var[0] var = var/den else: den = 1. if labels is not None: label = labels[i] else: label = (data_path).split('_')[-1] t = dt.ncFetch(data_path, 'metrics', 'iteration')[:-1] max_t = max(max_t, t[-1]) plt.plot(t, var, color=tab_colors[i], label = label) if lower_bound is not None: low = dt.ncFetch(data_path, 'metrics', lower_bound)[:-1]/den plt.fill_between(t, var, low, color=shading) if upper_bound is not None: upp = dt.ncFetch(data_path, 'metrics', upper_bound)[:-1]/den plt.fill_between(t, var, upp, color=shading) plt.ylabel(metric) plt.xlabel('Iteration') plt.xlim(0, max_t) ax = fig.gca() ax.xaxis.set_major_locator(MaxNLocator(integer=True)) plt.legend(frameon=False) plt.tight_layout() plt.savefig(metric+'.pdf', format='pdf') return def plot_epoch_avg_metric(data_paths:List[str], metric:str, lower_bound:Optional[str] = None, upper_bound:Optional[str] = None, normalize:bool = False, labels:Optional[List[str]] = None): """Plots an epoch-averaged metric evolution from the given data_paths. Since metrics require an evaluation of the forward model, the last iteration must be discarded (only parameters available). Args: - data_paths: List of diagnostic data paths from which to draw the metrics. - metric: Name of the metric to be plotted. - lower_bound: If given, shades the area between the metric and this lower bound metric from the same dataset. - upper_bound: If given, shades the area between the metric and this upper bound metric from the same dataset. - normalize: If True, normalizes the metric with respect to the metric at t=0. """ tab_colors = get_tab_colors() fig = plt.figure(metric+' per epoch') for (i, data_path) in enumerate(data_paths): shading = convert2rgb(tab_colors[i], 0.4) batch_size = dt.ncFetchDim(data_path, 'reference', 'batch_size') config_num = dt.ncFetchDim(data_path, 'reference', 'config') iter_per_epoch = int(config_num/batch_size) # Should be read from file var = dt.ncFetch(data_path, 'metrics', metric)[:-1] var = iter_to_epochs(var, iter_per_epoch) epoch = np.arange(len(var)) if normalize: den = var[0] var = var/den else: den = 1. if labels is not None: label = labels[i] else: label = (data_path).split('_')[-1] plt.plot(epoch, var, color=tab_colors[i], label = label) if lower_bound is not None: low = dt.ncFetch(data_path, 'metrics', lower_bound)[:-1] low = iter_to_epochs(low, iter_per_epoch)/den plt.fill_between(epoch, var, low, color=shading) if upper_bound is not None: upp = dt.ncFetch(data_path, 'metrics', upper_bound)[:-1] upp = iter_to_epochs(upp, iter_per_epoch)/den plt.fill_between(epoch, var, upp, color=shading) plt.ylabel(metric) plt.xlabel('Epoch') ax = fig.gca() ax.xaxis.set_major_locator(MaxNLocator(integer=True)) plt.legend(frameon=False) plt.savefig(metric+'_per_epoch.pdf', format='pdf') return def iter_to_epochs(var:np.ndarray, iter_per_epoch:int) -> np.ndarray: """Converts an iteration-dependent array to an epoch-dependent array through averaging. The operation ignores any remainder iterations of unfinished training epochs. Args: - var: Array with iterations as a dimension. - iter_per_epoch: Number of iterations per epoch. """ # Set epochs as rows var = np.reshape( var[:len(var) - len(var)%iter_per_epoch], (-1, iter_per_epoch)) # Average metric per epoch var = np.mean(var, axis=1) return var def plot_y_full(data_path:str, var_names:Optional[List[str]] = None): """Plots vertical profiles from `y_full` for each variable and configuration. Args: - data_path: Diagnostic data path from which to draw the metrics. - var_names: List of variable names for each configuration, assuming they are constant across configurations. """ config_names = dt.ncFetch(data_path, 'reference', 'config_name') config_dz = dt.ncFetch(data_path, 'reference', 'config_dz') y_full = dt.ncFetch(data_path, 'reference', 'y_full') var_dof = dt.ncFetch(data_path, 'reference', 'var_dof') num_vars = dt.ncFetch(data_path, 'reference', 'num_vars') tab_colors = get_tab_colors() # Loop over configs idx_y_full = 0 for (c, (num_var, dof, config_name, dz)) in enumerate( zip(num_vars, var_dof, config_names, config_dz)): for v in range(int(num_var)): if var_names is not None: var_name = var_names[v] else: var_name = str(v) title = 'y_full_'+config_name+'_var_'+var_name plt.figure(title) profile = y_full[idx_y_full:idx_y_full+int(dof)] z = dz*range(int(dof)) plt.plot(profile, z, color=tab_colors[c]) # Decorate plot plt.ylabel(r'$z$ (m)') plt.xlabel(var_name) delta_profile = max(profile) - min(profile) plt.xlim(min(profile) - 0.1*delta_profile, max(profile) + 0.1*delta_profile) plt.ylim(0, 3000) plt.tight_layout() # Save plot and update index plt.savefig(title+'.pdf', format='pdf') idx_y_full += int(dof) return def plot_prior_post_ref(data_path:str, var_names:Optional[List[str]] = None, validation:bool =True): """Plots vertical profiles of the reference/truth, best initial particle and best final particle for each variable and configuration. Args: - data_path: Diagnostic data path from which to draw the metrics. - var_names: List of variable names for each configuration, assuming they are constant across configurations. """ if validation: num_vars = dt.ncFetch(data_path, 'reference', 'num_vars_val') var_dof = dt.ncFetch(data_path, 'reference', 'var_dof_val') y_full = dt.ncFetch(data_path, 'reference', 'y_full_val') config_dz = dt.ncFetch(data_path, 'reference', 'config_dz_val') config_names = dt.ncFetch(data_path, 'reference', 'config_name_val') norm_factor = dt.ncFetch(data_path, 'reference', 'norm_factor_val') # Last forward model evals are empty g_full = dt.ncFetch(data_path, 'particle_diags', 'val_g_full')[:-1, :, :] mse_full = dt.ncFetch(data_path, 'particle_diags', 'val_mse_full')[:-1, :] else: num_vars = dt.ncFetch(data_path, 'reference', 'num_vars') var_dof = dt.ncFetch(data_path, 'reference', 'var_dof') y_full = dt.ncFetch(data_path, 'reference', 'y_full') config_dz = dt.ncFetch(data_path, 'reference', 'config_dz') config_names = dt.ncFetch(data_path, 'reference', 'config_name') norm_factor = dt.ncFetch(data_path, 'reference', 'norm_factor') # Last forward model evals are empty g_full = dt.ncFetch(data_path, 'particle_diags', 'g_full')[:-1, :, :] mse_full = dt.ncFetch(data_path, 'particle_diags', 'mse_full')[:-1, :] print("Shape of mse_full is", np.shape(mse_full)) print("Shape of g_full is", np.shape(g_full)) best_particle = np.argmin(mse_full, axis = 1) print("Shape of best_particle is", np.shape(best_particle)) tab_colors = get_tab_colors() # Loop over configs idx_y_full = 0 for (c, (num_var, dof, config_name, dz)) in enumerate( zip(num_vars, var_dof, config_names, config_dz)): for v in range(int(num_var)): if var_names is not None: var_name = var_names[v] else: var_name = str(v) title = 'y_full_'+config_name+'_var_'+var_name plt.figure(title) ref_profile = y_full[idx_y_full:idx_y_full+int(dof)]*np.sqrt(norm_factor[v, c]) prior_profile = g_full[0, idx_y_full:idx_y_full+int(dof), best_particle[0]]*np.sqrt(norm_factor[v, c]) post_profile = g_full[-1, idx_y_full:idx_y_full+int(dof), best_particle[-1]]*np.sqrt(norm_factor[v, c]) z = dz*range(int(dof)) plt.plot(ref_profile, z, color='0.2', label='LES') plt.plot(prior_profile, z, color='tab:orange', label='Prior') plt.plot(post_profile, z, color='tab:green', label='Posterior') # Decorate plot plt.ylabel(r'$z$ (m)') plt.xlabel(var_name) delta_profile = max(ref_profile) - min(ref_profile) plt.xlim(min(ref_profile) - 0.1*delta_profile, max(ref_profile) + 0.1*delta_profile) plt.ylim(0, 3000) plt.legend(frameon=False) plt.ticklabel_format(axis="x", style="sci", scilimits=(-2, 4)) plt.tight_layout() # Save plot and update index plt.savefig(title+'.pdf', format='pdf') idx_y_full += int(dof) return def plot_cov_spectrum(data_paths:List[str]): """Plots vertical profiles from `y_full` for each variable and configuration. Args: - data_path: Diagnostic data path from which to draw the metrics. - var_names: List of variable names for each configuration, assuming they are constant across configurations. """ tab_colors = get_tab_colors() for data_path in data_paths: gamma_full = dt.ncFetch(data_path, 'reference', 'Gamma_full') gamma = dt.ncFetch(data_path, 'reference', 'Gamma') eig_full, _ = np.linalg.eig(gamma_full) eig_full = sorted(eig_full, reverse=True) eig = sorted(np.diagonal(gamma), reverse=True) title = 'spectrum_'+os.path.basename(data_path) plt.figure(title) plt.plot(range(len(eig_full)), eig_full, color='tab:orange') plt.plot(range(len(eig)), eig, color='tab:green') plt.yscale('log') # Decorate plot plt.ylabel(r'Eigenvalue') plt.xlabel(r'Mode') plt.ylim(min(eig_full), 1.05*max(eig)) plt.xlim(0, len(eig_full)) plt.tight_layout() # Save plot and update index plt.savefig(title+'.pdf', format='pdf') return def plot_modes(data_path:str, num_modes:int = 5, same_plot:bool = False): """Plots leading `num_modes` of each ReferenceModel in the data_path diagnostics. Args: - data_path: Diagnostic data path from which to draw the modes. - num_modes: Modes to plot from each ReferenceModel. - same_plot: Whether to plot modes in the same figure or different ones. """ config_names = dt.ncFetch(data_path, 'reference', 'config_name') d_csum = np.cumsum(dt.ncFetch(data_path, 'reference', 'config_pca_dim')) d_csum = np.insert(d_csum, 0, 0) var_dof = dt.ncFetch(data_path, 'reference', 'var_dof') num_vars = dt.ncFetch(data_path, 'reference', 'num_vars') config_dofsum = np.cumsum(np.multiply(num_vars, var_dof)) config_dofsum = np.insert(config_dofsum, 0, 0) P_pca = dt.ncFetch(data_path, 'reference', 'P_pca') tab_colors = get_tab_colors() # Loop over configs for (c, (config_dofs, d_cs, config_name)) in enumerate( zip(config_dofsum, d_csum, config_names)): # PCA matrix for this configuration modes = P_pca[d_cs:d_csum[c+1], config_dofs:config_dofsum[c+1]] # Number of principal modes max_modes = d_csum[c+1] - d_cs if same_plot: title = 'modes_'+config_name plt.figure(title) for m in range(min(num_modes, max_modes)): if not same_plot: title = 'mode_'+str(m)+'_'+config_name plt.figure(title) # Leading eigenvectors are last in julia eig(), so reverse order mode = modes[max_modes - 1 - m, :] plt.plot(range(len(mode)), mode, color=tab_colors[m], label='Mode'+str(m)) # Decorate plot plt.ylabel(r'Magnitude') plt.xlabel(r'Degree of Freedom') plt.legend(frameon=False) plt.tight_layout() # Save plot and update index if not same_plot: plt.savefig(title+'.pdf', format='pdf') if same_plot: plt.savefig(title+'.pdf', format='pdf') return def plot_eigval_zero_crossings(data_path:str, normalize:bool = False): """Plots scatterplot of eigenvalue magnitude with the number of zero-crossings of the corresponding eigenmode, for each ReferenceModel. Args: - data_path: Diagnostic data path from which to draw the metrics. - normalize: Whether to normalize eigenvalues by the maximum eigenvalue in the ReferenceModel. """ config_names = dt.ncFetch(data_path, 'reference', 'config_name') d_csum = np.cumsum(dt.ncFetch(data_path, 'reference', 'config_pca_dim')) d_csum = np.insert(d_csum, 0, 0) gamma = dt.ncFetch(data_path, 'reference', 'Gamma') var_dof = dt.ncFetch(data_path, 'reference', 'var_dof') num_vars = dt.ncFetch(data_path, 'reference', 'num_vars') config_dofsum = np.cumsum(np.multiply(num_vars, var_dof)) config_dofsum = np.insert(config_dofsum, 0, 0) P_pca = dt.ncFetch(data_path, 'reference', 'P_pca') tab_colors = get_tab_colors() title = 'zero_crossings' if normalize: title = title+'_normalized' plt.figure(title) # Loop over configs for (c, (config_dofs, d_cs, config_name)) in enumerate( zip(config_dofsum, d_csum, config_names)): # PCA matrix for this configuration modes = P_pca[d_cs:d_csum[c+1], config_dofs:config_dofsum[c+1]] # Number of principal modes max_modes = d_csum[c+1] - d_cs zero_crossing_num = np.zeros(max_modes) for m in range(max_modes): # Leading eigenvectors are last in julia eig(), so reverse order mode = modes[max_modes - 1 - m, :] zero_crossings = np.where(np.diff(np.sign(mode)))[0] zero_crossing_num[m] = len(zero_crossings) # Get eigenvalues and order them eigvals_ = np.array(sorted(np.diagonal(gamma[d_cs:d_csum[c+1], d_cs:d_csum[c+1]]), reverse=True)) if normalize: den = eigvals_[0] else: den = 1.0 plt.plot(zero_crossing_num, eigvals_/den, color=tab_colors[c], label=config_name) plt.yscale('log') # Decorate plot plt.xlabel(r'Zero crossings') plt.ylabel(r'Eigenvalue') plt.legend(frameon=False) plt.tight_layout() # Save plot and update index plt.savefig(title+'.pdf', format='pdf') return def plot_parameter_evol(data_paths:List[str]): """Plots the parameter evolution from the given data_paths. The plotted results are the parameter means in physical (constrained) space, with shading bounds defined by the marginal standard deviation of each parameter. The extreme values of the bounds are the transformed parameter values 1 standard deviation from the mean in unconstrained space. These bounds are not representative of parameter uncertainty when using the Ensemble Kalman Inversion, but they are representative of the parameter sensitivities in the case of Unscented Kalman Inversion. Args: - data_paths: List of diagnostic data paths from which to draw the parameter evolutions. """ tab_colors = get_tab_colors() # Fetch parameter and covariance evolutions param_evolutions = [] param_low_evolutions = [] param_upp_evolutions = [] for data_path in data_paths: phi_mean = dt.ncFetch(data_path, 'ensemble_diags', 'phi_mean') phi_low = dt.ncFetch(data_path, 'ensemble_diags', 'phi_low_unc') phi_upp = dt.ncFetch(data_path, 'ensemble_diags', 'phi_upp_unc') param_evolutions.append(phi_mean) param_low_evolutions.append(phi_low) param_upp_evolutions.append(phi_upp) params = dt.ncFetch(data_path, 'particle_diags', 'param') for (i, param) in enumerate(params): title = "Parameter "+str(param) fig = plt.figure(title) max_t = 0 for c, (param_evol, low_evol, upp_evol, data_path) in enumerate(zip(param_evolutions, param_low_evolutions, param_upp_evolutions, data_paths)): shading = convert2rgb(tab_colors[c], 0.4) t = dt.ncFetch(data_path, 'ensemble_diags', 'iteration') max_t = max(t[-1], max_t) mean_val = param_evol[:, i] lower_bound = low_evol[:, i] upper_bound = upp_evol[:, i] plt.plot(t, mean_val, color=tab_colors[c]) plt.fill_between(t, mean_val, lower_bound, color=shading) plt.fill_between(t, mean_val, upper_bound, color=shading) label = (data_path).split('_')[-1] plt.xlabel(r'Iteration') plt.ylabel(param) plt.xlim(0, max_t) ax = fig.gca() ax.xaxis.set_major_locator(MaxNLocator(integer=True)) plt.legend(frameon=False) plt.savefig(title+'.pdf', format='pdf') return
[ "matplotlib.pyplot.yscale", "numpy.argmin", "numpy.shape", "matplotlib.pyplot.figure", "numpy.mean", "matplotlib.pyplot.fill_between", "matplotlib.pyplot.tight_layout", "numpy.multiply", "matplotlib.ticker.MaxNLocator", "helper_funcs.get_tab_colors", "numpy.insert", "numpy.linalg.eig", "numpy.diagonal", "matplotlib.pyplot.ylim", "os.path.basename", "matplotlib.pyplot.legend", "data_tools.ncFetchDim", "matplotlib.pyplot.ticklabel_format", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlim", "matplotlib.pyplot.plot", "helper_funcs.convert2rgb", "numpy.zeros", "data_tools.ncFetch", "numpy.sign", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((1411, 1427), 'helper_funcs.get_tab_colors', 'get_tab_colors', ([], {}), '()\n', (1425, 1427), False, 'from helper_funcs import convert2rgb, get_tab_colors\n'), ((1438, 1456), 'matplotlib.pyplot.figure', 'plt.figure', (['metric'], {}), '(metric)\n', (1448, 1456), True, 'import matplotlib.pyplot as plt\n'), ((2354, 2372), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['metric'], {}), '(metric)\n', (2364, 2372), True, 'import matplotlib.pyplot as plt\n'), ((2377, 2400), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Iteration"""'], {}), "('Iteration')\n", (2387, 2400), True, 'import matplotlib.pyplot as plt\n'), ((2405, 2423), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', 'max_t'], {}), '(0, max_t)\n', (2413, 2423), True, 'import matplotlib.pyplot as plt\n'), ((2505, 2530), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(False)'}), '(frameon=False)\n', (2515, 2530), True, 'import matplotlib.pyplot as plt\n'), ((2535, 2553), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2551, 2553), True, 'import matplotlib.pyplot as plt\n'), ((2558, 2600), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(metric + '.pdf')"], {'format': '"""pdf"""'}), "(metric + '.pdf', format='pdf')\n", (2569, 2600), True, 'import matplotlib.pyplot as plt\n'), ((3521, 3537), 'helper_funcs.get_tab_colors', 'get_tab_colors', ([], {}), '()\n', (3535, 3537), False, 'from helper_funcs import convert2rgb, get_tab_colors\n'), ((3548, 3581), 'matplotlib.pyplot.figure', 'plt.figure', (["(metric + ' per epoch')"], {}), "(metric + ' per epoch')\n", (3558, 3581), True, 'import matplotlib.pyplot as plt\n'), ((5563, 5583), 'numpy.mean', 'np.mean', (['var'], {'axis': '(1)'}), '(var, axis=1)\n', (5570, 5583), True, 'import numpy as np\n'), ((5992, 6041), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""config_name"""'], {}), "(data_path, 'reference', 'config_name')\n", (6002, 6041), True, 'import data_tools as dt\n'), ((6058, 6105), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""config_dz"""'], {}), "(data_path, 'reference', 'config_dz')\n", (6068, 6105), True, 'import data_tools as dt\n'), ((6119, 6163), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""y_full"""'], {}), "(data_path, 'reference', 'y_full')\n", (6129, 6163), True, 'import data_tools as dt\n'), ((6178, 6223), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""var_dof"""'], {}), "(data_path, 'reference', 'var_dof')\n", (6188, 6223), True, 'import data_tools as dt\n'), ((6239, 6285), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""num_vars"""'], {}), "(data_path, 'reference', 'num_vars')\n", (6249, 6285), True, 'import data_tools as dt\n'), ((6303, 6319), 'helper_funcs.get_tab_colors', 'get_tab_colors', ([], {}), '()\n', (6317, 6319), False, 'from helper_funcs import convert2rgb, get_tab_colors\n'), ((9209, 9236), 'numpy.argmin', 'np.argmin', (['mse_full'], {'axis': '(1)'}), '(mse_full, axis=1)\n', (9218, 9236), True, 'import numpy as np\n'), ((9320, 9336), 'helper_funcs.get_tab_colors', 'get_tab_colors', ([], {}), '()\n', (9334, 9336), False, 'from helper_funcs import convert2rgb, get_tab_colors\n'), ((11281, 11297), 'helper_funcs.get_tab_colors', 'get_tab_colors', ([], {}), '()\n', (11295, 11297), False, 'from helper_funcs import convert2rgb, get_tab_colors\n'), ((12548, 12597), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""config_name"""'], {}), "(data_path, 'reference', 'config_name')\n", (12558, 12597), True, 'import data_tools as dt\n'), ((12688, 12711), 'numpy.insert', 'np.insert', (['d_csum', '(0)', '(0)'], {}), '(d_csum, 0, 0)\n', (12697, 12711), True, 'import numpy as np\n'), ((12726, 12771), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""var_dof"""'], {}), "(data_path, 'reference', 'var_dof')\n", (12736, 12771), True, 'import data_tools as dt\n'), ((12787, 12833), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""num_vars"""'], {}), "(data_path, 'reference', 'num_vars')\n", (12797, 12833), True, 'import data_tools as dt\n'), ((12916, 12946), 'numpy.insert', 'np.insert', (['config_dofsum', '(0)', '(0)'], {}), '(config_dofsum, 0, 0)\n', (12925, 12946), True, 'import numpy as np\n'), ((12959, 13002), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""P_pca"""'], {}), "(data_path, 'reference', 'P_pca')\n", (12969, 13002), True, 'import data_tools as dt\n'), ((13020, 13036), 'helper_funcs.get_tab_colors', 'get_tab_colors', ([], {}), '()\n', (13034, 13036), False, 'from helper_funcs import convert2rgb, get_tab_colors\n'), ((14671, 14720), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""config_name"""'], {}), "(data_path, 'reference', 'config_name')\n", (14681, 14720), True, 'import data_tools as dt\n'), ((14811, 14834), 'numpy.insert', 'np.insert', (['d_csum', '(0)', '(0)'], {}), '(d_csum, 0, 0)\n', (14820, 14834), True, 'import numpy as np\n'), ((14847, 14890), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""Gamma"""'], {}), "(data_path, 'reference', 'Gamma')\n", (14857, 14890), True, 'import data_tools as dt\n'), ((14905, 14950), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""var_dof"""'], {}), "(data_path, 'reference', 'var_dof')\n", (14915, 14950), True, 'import data_tools as dt\n'), ((14966, 15012), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""num_vars"""'], {}), "(data_path, 'reference', 'num_vars')\n", (14976, 15012), True, 'import data_tools as dt\n'), ((15095, 15125), 'numpy.insert', 'np.insert', (['config_dofsum', '(0)', '(0)'], {}), '(config_dofsum, 0, 0)\n', (15104, 15125), True, 'import numpy as np\n'), ((15138, 15181), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""P_pca"""'], {}), "(data_path, 'reference', 'P_pca')\n", (15148, 15181), True, 'import data_tools as dt\n'), ((15199, 15215), 'helper_funcs.get_tab_colors', 'get_tab_colors', ([], {}), '()\n', (15213, 15215), False, 'from helper_funcs import convert2rgb, get_tab_colors\n'), ((15303, 15320), 'matplotlib.pyplot.figure', 'plt.figure', (['title'], {}), '(title)\n', (15313, 15320), True, 'import matplotlib.pyplot as plt\n'), ((17370, 17386), 'helper_funcs.get_tab_colors', 'get_tab_colors', ([], {}), '()\n', (17384, 17386), False, 'from helper_funcs import convert2rgb, get_tab_colors\n'), ((17917, 17965), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""particle_diags"""', '"""param"""'], {}), "(data_path, 'particle_diags', 'param')\n", (17927, 17965), True, 'import data_tools as dt\n'), ((1538, 1569), 'helper_funcs.convert2rgb', 'convert2rgb', (['tab_colors[i]', '(0.4)'], {}), '(tab_colors[i], 0.4)\n', (1549, 1569), False, 'from helper_funcs import convert2rgb, get_tab_colors\n'), ((1965, 2015), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'var'], {'color': 'tab_colors[i]', 'label': 'label'}), '(t, var, color=tab_colors[i], label=label)\n', (1973, 2015), True, 'import matplotlib.pyplot as plt\n'), ((2474, 2499), 'matplotlib.ticker.MaxNLocator', 'MaxNLocator', ([], {'integer': '(True)'}), '(integer=True)\n', (2485, 2499), False, 'from matplotlib.ticker import MaxNLocator\n'), ((3647, 3678), 'helper_funcs.convert2rgb', 'convert2rgb', (['tab_colors[i]', '(0.4)'], {}), '(tab_colors[i], 0.4)\n', (3658, 3678), False, 'from helper_funcs import convert2rgb, get_tab_colors\n'), ((3700, 3751), 'data_tools.ncFetchDim', 'dt.ncFetchDim', (['data_path', '"""reference"""', '"""batch_size"""'], {}), "(data_path, 'reference', 'batch_size')\n", (3713, 3751), True, 'import data_tools as dt\n'), ((3773, 3820), 'data_tools.ncFetchDim', 'dt.ncFetchDim', (['data_path', '"""reference"""', '"""config"""'], {}), "(data_path, 'reference', 'config')\n", (3786, 3820), True, 'import data_tools as dt\n'), ((4284, 4338), 'matplotlib.pyplot.plot', 'plt.plot', (['epoch', 'var'], {'color': 'tab_colors[i]', 'label': 'label'}), '(epoch, var, color=tab_colors[i], label=label)\n', (4292, 4338), True, 'import matplotlib.pyplot as plt\n'), ((4797, 4815), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['metric'], {}), '(metric)\n', (4807, 4815), True, 'import matplotlib.pyplot as plt\n'), ((4824, 4843), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch"""'], {}), "('Epoch')\n", (4834, 4843), True, 'import matplotlib.pyplot as plt\n'), ((4937, 4962), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(False)'}), '(frameon=False)\n', (4947, 4962), True, 'import matplotlib.pyplot as plt\n'), ((4971, 5023), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(metric + '_per_epoch.pdf')"], {'format': '"""pdf"""'}), "(metric + '_per_epoch.pdf', format='pdf')\n", (4982, 5023), True, 'import matplotlib.pyplot as plt\n'), ((7847, 7897), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""num_vars_val"""'], {}), "(data_path, 'reference', 'num_vars_val')\n", (7857, 7897), True, 'import data_tools as dt\n'), ((7916, 7965), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""var_dof_val"""'], {}), "(data_path, 'reference', 'var_dof_val')\n", (7926, 7965), True, 'import data_tools as dt\n'), ((7983, 8031), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""y_full_val"""'], {}), "(data_path, 'reference', 'y_full_val')\n", (7993, 8031), True, 'import data_tools as dt\n'), ((8052, 8103), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""config_dz_val"""'], {}), "(data_path, 'reference', 'config_dz_val')\n", (8062, 8103), True, 'import data_tools as dt\n'), ((8127, 8180), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""config_name_val"""'], {}), "(data_path, 'reference', 'config_name_val')\n", (8137, 8180), True, 'import data_tools as dt\n'), ((8203, 8256), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""norm_factor_val"""'], {}), "(data_path, 'reference', 'norm_factor_val')\n", (8213, 8256), True, 'import data_tools as dt\n'), ((8496, 8542), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""num_vars"""'], {}), "(data_path, 'reference', 'num_vars')\n", (8506, 8542), True, 'import data_tools as dt\n'), ((8561, 8606), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""var_dof"""'], {}), "(data_path, 'reference', 'var_dof')\n", (8571, 8606), True, 'import data_tools as dt\n'), ((8624, 8668), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""y_full"""'], {}), "(data_path, 'reference', 'y_full')\n", (8634, 8668), True, 'import data_tools as dt\n'), ((8689, 8736), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""config_dz"""'], {}), "(data_path, 'reference', 'config_dz')\n", (8699, 8736), True, 'import data_tools as dt\n'), ((8760, 8809), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""config_name"""'], {}), "(data_path, 'reference', 'config_name')\n", (8770, 8809), True, 'import data_tools as dt\n'), ((8832, 8881), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""norm_factor"""'], {}), "(data_path, 'reference', 'norm_factor')\n", (8842, 8881), True, 'import data_tools as dt\n'), ((9119, 9137), 'numpy.shape', 'np.shape', (['mse_full'], {}), '(mse_full)\n', (9127, 9137), True, 'import numpy as np\n'), ((9171, 9187), 'numpy.shape', 'np.shape', (['g_full'], {}), '(g_full)\n', (9179, 9187), True, 'import numpy as np\n'), ((9278, 9301), 'numpy.shape', 'np.shape', (['best_particle'], {}), '(best_particle)\n', (9286, 9301), True, 'import numpy as np\n'), ((11352, 11400), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""Gamma_full"""'], {}), "(data_path, 'reference', 'Gamma_full')\n", (11362, 11400), True, 'import data_tools as dt\n'), ((11417, 11460), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""Gamma"""'], {}), "(data_path, 'reference', 'Gamma')\n", (11427, 11460), True, 'import data_tools as dt\n'), ((11483, 11508), 'numpy.linalg.eig', 'np.linalg.eig', (['gamma_full'], {}), '(gamma_full)\n', (11496, 11508), True, 'import numpy as np\n'), ((11678, 11695), 'matplotlib.pyplot.figure', 'plt.figure', (['title'], {}), '(title)\n', (11688, 11695), True, 'import matplotlib.pyplot as plt\n'), ((11831, 11848), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (11841, 11848), True, 'import matplotlib.pyplot as plt\n'), ((11881, 11905), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Eigenvalue"""'], {}), "('Eigenvalue')\n", (11891, 11905), True, 'import matplotlib.pyplot as plt\n'), ((11915, 11933), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Mode"""'], {}), "('Mode')\n", (11925, 11933), True, 'import matplotlib.pyplot as plt\n'), ((12025, 12043), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (12041, 12043), True, 'import matplotlib.pyplot as plt\n'), ((12089, 12130), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(title + '.pdf')"], {'format': '"""pdf"""'}), "(title + '.pdf', format='pdf')\n", (12100, 12130), True, 'import matplotlib.pyplot as plt\n'), ((12621, 12673), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""config_pca_dim"""'], {}), "(data_path, 'reference', 'config_pca_dim')\n", (12631, 12673), True, 'import data_tools as dt\n'), ((12864, 12894), 'numpy.multiply', 'np.multiply', (['num_vars', 'var_dof'], {}), '(num_vars, var_dof)\n', (12875, 12894), True, 'import numpy as np\n'), ((14744, 14796), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""reference"""', '"""config_pca_dim"""'], {}), "(data_path, 'reference', 'config_pca_dim')\n", (14754, 14796), True, 'import data_tools as dt\n'), ((15043, 15073), 'numpy.multiply', 'np.multiply', (['num_vars', 'var_dof'], {}), '(num_vars, var_dof)\n', (15054, 15073), True, 'import numpy as np\n'), ((15679, 15698), 'numpy.zeros', 'np.zeros', (['max_modes'], {}), '(max_modes)\n', (15687, 15698), True, 'import numpy as np\n'), ((16233, 16321), 'matplotlib.pyplot.plot', 'plt.plot', (['zero_crossing_num', '(eigvals_ / den)'], {'color': 'tab_colors[c]', 'label': 'config_name'}), '(zero_crossing_num, eigvals_ / den, color=tab_colors[c], label=\n config_name)\n', (16241, 16321), True, 'import matplotlib.pyplot as plt\n'), ((16323, 16340), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (16333, 16340), True, 'import matplotlib.pyplot as plt\n'), ((16373, 16401), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Zero crossings"""'], {}), "('Zero crossings')\n", (16383, 16401), True, 'import matplotlib.pyplot as plt\n'), ((16411, 16435), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Eigenvalue"""'], {}), "('Eigenvalue')\n", (16421, 16435), True, 'import matplotlib.pyplot as plt\n'), ((16445, 16470), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(False)'}), '(frameon=False)\n', (16455, 16470), True, 'import matplotlib.pyplot as plt\n'), ((16479, 16497), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (16495, 16497), True, 'import matplotlib.pyplot as plt\n'), ((16543, 16584), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(title + '.pdf')"], {'format': '"""pdf"""'}), "(title + '.pdf', format='pdf')\n", (16554, 16584), True, 'import matplotlib.pyplot as plt\n'), ((17574, 17625), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""ensemble_diags"""', '"""phi_mean"""'], {}), "(data_path, 'ensemble_diags', 'phi_mean')\n", (17584, 17625), True, 'import data_tools as dt\n'), ((17644, 17698), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""ensemble_diags"""', '"""phi_low_unc"""'], {}), "(data_path, 'ensemble_diags', 'phi_low_unc')\n", (17654, 17698), True, 'import data_tools as dt\n'), ((17717, 17771), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""ensemble_diags"""', '"""phi_upp_unc"""'], {}), "(data_path, 'ensemble_diags', 'phi_upp_unc')\n", (17727, 17771), True, 'import data_tools as dt\n'), ((18061, 18078), 'matplotlib.pyplot.figure', 'plt.figure', (['title'], {}), '(title)\n', (18071, 18078), True, 'import matplotlib.pyplot as plt\n'), ((18798, 18821), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Iteration"""'], {}), "('Iteration')\n", (18808, 18821), True, 'import matplotlib.pyplot as plt\n'), ((18831, 18848), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['param'], {}), '(param)\n', (18841, 18848), True, 'import matplotlib.pyplot as plt\n'), ((18857, 18875), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', 'max_t'], {}), '(0, max_t)\n', (18865, 18875), True, 'import matplotlib.pyplot as plt\n'), ((18969, 18994), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(False)'}), '(frameon=False)\n', (18979, 18994), True, 'import matplotlib.pyplot as plt\n'), ((19003, 19044), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(title + '.pdf')"], {'format': '"""pdf"""'}), "(title + '.pdf', format='pdf')\n", (19014, 19044), True, 'import matplotlib.pyplot as plt\n'), ((1584, 1624), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""metrics"""', 'metric'], {}), "(data_path, 'metrics', metric)\n", (1594, 1624), True, 'import data_tools as dt\n'), ((1872, 1917), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""metrics"""', '"""iteration"""'], {}), "(data_path, 'metrics', 'iteration')\n", (1882, 1917), True, 'import data_tools as dt\n'), ((2139, 2183), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['t', 'var', 'low'], {'color': 'shading'}), '(t, var, low, color=shading)\n', (2155, 2183), True, 'import matplotlib.pyplot as plt\n'), ((2305, 2349), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['t', 'var', 'upp'], {'color': 'shading'}), '(t, var, upp, color=shading)\n', (2321, 2349), True, 'import matplotlib.pyplot as plt\n'), ((3914, 3954), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""metrics"""', 'metric'], {}), "(data_path, 'metrics', metric)\n", (3924, 3954), True, 'import data_tools as dt\n'), ((4516, 4564), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['epoch', 'var', 'low'], {'color': 'shading'}), '(epoch, var, low, color=shading)\n', (4532, 4564), True, 'import matplotlib.pyplot as plt\n'), ((4740, 4788), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['epoch', 'var', 'upp'], {'color': 'shading'}), '(epoch, var, upp, color=shading)\n', (4756, 4788), True, 'import matplotlib.pyplot as plt\n'), ((4902, 4927), 'matplotlib.ticker.MaxNLocator', 'MaxNLocator', ([], {'integer': '(True)'}), '(integer=True)\n', (4913, 4927), False, 'from matplotlib.ticker import MaxNLocator\n'), ((6723, 6740), 'matplotlib.pyplot.figure', 'plt.figure', (['title'], {}), '(title)\n', (6733, 6740), True, 'import matplotlib.pyplot as plt\n'), ((6849, 6890), 'matplotlib.pyplot.plot', 'plt.plot', (['profile', 'z'], {'color': 'tab_colors[c]'}), '(profile, z, color=tab_colors[c])\n', (6857, 6890), True, 'import matplotlib.pyplot as plt\n'), ((6931, 6952), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$z$ (m)"""'], {}), "('$z$ (m)')\n", (6941, 6952), True, 'import matplotlib.pyplot as plt\n'), ((6966, 6986), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['var_name'], {}), '(var_name)\n', (6976, 6986), True, 'import matplotlib.pyplot as plt\n'), ((7160, 7177), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(3000)'], {}), '(0, 3000)\n', (7168, 7177), True, 'import matplotlib.pyplot as plt\n'), ((7190, 7208), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (7206, 7208), True, 'import matplotlib.pyplot as plt\n'), ((7262, 7303), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(title + '.pdf')"], {'format': '"""pdf"""'}), "(title + '.pdf', format='pdf')\n", (7273, 7303), True, 'import matplotlib.pyplot as plt\n'), ((8319, 8372), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""particle_diags"""', '"""val_g_full"""'], {}), "(data_path, 'particle_diags', 'val_g_full')\n", (8329, 8372), True, 'import data_tools as dt\n'), ((8403, 8458), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""particle_diags"""', '"""val_mse_full"""'], {}), "(data_path, 'particle_diags', 'val_mse_full')\n", (8413, 8458), True, 'import data_tools as dt\n'), ((8944, 8993), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""particle_diags"""', '"""g_full"""'], {}), "(data_path, 'particle_diags', 'g_full')\n", (8954, 8993), True, 'import data_tools as dt\n'), ((9024, 9075), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""particle_diags"""', '"""mse_full"""'], {}), "(data_path, 'particle_diags', 'mse_full')\n", (9034, 9075), True, 'import data_tools as dt\n'), ((9740, 9757), 'matplotlib.pyplot.figure', 'plt.figure', (['title'], {}), '(title)\n', (9750, 9757), True, 'import matplotlib.pyplot as plt\n'), ((10128, 10178), 'matplotlib.pyplot.plot', 'plt.plot', (['ref_profile', 'z'], {'color': '"""0.2"""', 'label': '"""LES"""'}), "(ref_profile, z, color='0.2', label='LES')\n", (10136, 10178), True, 'import matplotlib.pyplot as plt\n'), ((10191, 10252), 'matplotlib.pyplot.plot', 'plt.plot', (['prior_profile', 'z'], {'color': '"""tab:orange"""', 'label': '"""Prior"""'}), "(prior_profile, z, color='tab:orange', label='Prior')\n", (10199, 10252), True, 'import matplotlib.pyplot as plt\n'), ((10265, 10328), 'matplotlib.pyplot.plot', 'plt.plot', (['post_profile', 'z'], {'color': '"""tab:green"""', 'label': '"""Posterior"""'}), "(post_profile, z, color='tab:green', label='Posterior')\n", (10273, 10328), True, 'import matplotlib.pyplot as plt\n'), ((10369, 10390), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$z$ (m)"""'], {}), "('$z$ (m)')\n", (10379, 10390), True, 'import matplotlib.pyplot as plt\n'), ((10404, 10424), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['var_name'], {}), '(var_name)\n', (10414, 10424), True, 'import matplotlib.pyplot as plt\n'), ((10614, 10631), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(3000)'], {}), '(0, 3000)\n', (10622, 10631), True, 'import matplotlib.pyplot as plt\n'), ((10644, 10669), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(False)'}), '(frameon=False)\n', (10654, 10669), True, 'import matplotlib.pyplot as plt\n'), ((10682, 10744), 'matplotlib.pyplot.ticklabel_format', 'plt.ticklabel_format', ([], {'axis': '"""x"""', 'style': '"""sci"""', 'scilimits': '(-2, 4)'}), "(axis='x', style='sci', scilimits=(-2, 4))\n", (10702, 10744), True, 'import matplotlib.pyplot as plt\n'), ((10757, 10775), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (10773, 10775), True, 'import matplotlib.pyplot as plt\n'), ((10829, 10870), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(title + '.pdf')"], {'format': '"""pdf"""'}), "(title + '.pdf', format='pdf')\n", (10840, 10870), True, 'import matplotlib.pyplot as plt\n'), ((11580, 11598), 'numpy.diagonal', 'np.diagonal', (['gamma'], {}), '(gamma)\n', (11591, 11598), True, 'import numpy as np\n'), ((11642, 11669), 'os.path.basename', 'os.path.basename', (['data_path'], {}), '(data_path)\n', (11658, 11669), False, 'import os\n'), ((13442, 13459), 'matplotlib.pyplot.figure', 'plt.figure', (['title'], {}), '(title)\n', (13452, 13459), True, 'import matplotlib.pyplot as plt\n'), ((13881, 13904), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Magnitude"""'], {}), "('Magnitude')\n", (13891, 13904), True, 'import matplotlib.pyplot as plt\n'), ((13918, 13949), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Degree of Freedom"""'], {}), "('Degree of Freedom')\n", (13928, 13949), True, 'import matplotlib.pyplot as plt\n'), ((13963, 13988), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(False)'}), '(frameon=False)\n', (13973, 13988), True, 'import matplotlib.pyplot as plt\n'), ((14001, 14019), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (14017, 14019), True, 'import matplotlib.pyplot as plt\n'), ((14181, 14222), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(title + '.pdf')"], {'format': '"""pdf"""'}), "(title + '.pdf', format='pdf')\n", (14192, 14222), True, 'import matplotlib.pyplot as plt\n'), ((18287, 18318), 'helper_funcs.convert2rgb', 'convert2rgb', (['tab_colors[c]', '(0.4)'], {}), '(tab_colors[c], 0.4)\n', (18298, 18318), False, 'from helper_funcs import convert2rgb, get_tab_colors\n'), ((18335, 18387), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""ensemble_diags"""', '"""iteration"""'], {}), "(data_path, 'ensemble_diags', 'iteration')\n", (18345, 18387), True, 'import data_tools as dt\n'), ((18560, 18602), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'mean_val'], {'color': 'tab_colors[c]'}), '(t, mean_val, color=tab_colors[c])\n', (18568, 18602), True, 'import matplotlib.pyplot as plt\n'), ((18615, 18672), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['t', 'mean_val', 'lower_bound'], {'color': 'shading'}), '(t, mean_val, lower_bound, color=shading)\n', (18631, 18672), True, 'import matplotlib.pyplot as plt\n'), ((18685, 18742), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['t', 'mean_val', 'upper_bound'], {'color': 'shading'}), '(t, mean_val, upper_bound, color=shading)\n', (18701, 18742), True, 'import matplotlib.pyplot as plt\n'), ((18934, 18959), 'matplotlib.ticker.MaxNLocator', 'MaxNLocator', ([], {'integer': '(True)'}), '(integer=True)\n', (18945, 18959), False, 'from matplotlib.ticker import MaxNLocator\n'), ((4395, 4440), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""metrics"""', 'lower_bound'], {}), "(data_path, 'metrics', lower_bound)\n", (4405, 4440), True, 'import data_tools as dt\n'), ((4619, 4664), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""metrics"""', 'upper_bound'], {}), "(data_path, 'metrics', upper_bound)\n", (4629, 4664), True, 'import data_tools as dt\n'), ((9823, 9849), 'numpy.sqrt', 'np.sqrt', (['norm_factor[v, c]'], {}), '(norm_factor[v, c])\n', (9830, 9849), True, 'import numpy as np\n'), ((9938, 9964), 'numpy.sqrt', 'np.sqrt', (['norm_factor[v, c]'], {}), '(norm_factor[v, c])\n', (9945, 9964), True, 'import numpy as np\n'), ((10054, 10080), 'numpy.sqrt', 'np.sqrt', (['norm_factor[v, c]'], {}), '(norm_factor[v, c])\n', (10061, 10080), True, 'import numpy as np\n'), ((13612, 13629), 'matplotlib.pyplot.figure', 'plt.figure', (['title'], {}), '(title)\n', (13622, 13629), True, 'import matplotlib.pyplot as plt\n'), ((14107, 14148), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(title + '.pdf')"], {'format': '"""pdf"""'}), "(title + '.pdf', format='pdf')\n", (14118, 14148), True, 'import matplotlib.pyplot as plt\n'), ((16054, 16112), 'numpy.diagonal', 'np.diagonal', (['gamma[d_cs:d_csum[c + 1], d_cs:d_csum[c + 1]]'], {}), '(gamma[d_cs:d_csum[c + 1], d_cs:d_csum[c + 1]])\n', (16065, 16112), True, 'import numpy as np\n'), ((2072, 2117), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""metrics"""', 'lower_bound'], {}), "(data_path, 'metrics', lower_bound)\n", (2082, 2117), True, 'import data_tools as dt\n'), ((2238, 2283), 'data_tools.ncFetch', 'dt.ncFetch', (['data_path', '"""metrics"""', 'upper_bound'], {}), "(data_path, 'metrics', upper_bound)\n", (2248, 2283), True, 'import data_tools as dt\n'), ((15904, 15917), 'numpy.sign', 'np.sign', (['mode'], {}), '(mode)\n', (15911, 15917), True, 'import numpy as np\n')]
import numpy as np import pandas as pd import biclust_comp.analysis.accuracy as acc import biclust_comp.analysis.accuracy_utils as acc_utils import biclust_comp.analysis.enrichment as enrich def get_results_with_num_unique(error_df_file): error_df = pd.read_csv(error_df_file) unique_factors_df = get_unique_factors_df(error_df) unique_pathways_df = enrich.get_number_unique_pathways(error_df_file) results_with_fac = error_df.merge(unique_factors_df, how='left', on='method_dataset_run_id') results_with_fac_path = results_with_fac.merge(unique_pathways_df, on='method_dataset_run_id', how='left') return results_with_fac_path def get_unique_factors_df(error_df): unique_factors_dicts = [] thresholds = np.arange(0.2*100, 1.05*100, 0.05*100) / 100 for mdr in error_df[error_df['run_complete']]['method_dataset_run_id'].unique(): unique_factors, jaccard = get_unique_biclusters_thresholds(mdr, thresholds) unique_factors_dicts.append(unique_factors) unique_factors_df = pd.DataFrame(unique_factors_dicts) return unique_factors_df def get_unique_biclusters_thresholds(method_dataset_run_id, sim_thresholds): K, X, B = acc_utils.read_result_binary_best_threshold(f"results/{method_dataset_run_id}") intersect, union = acc.calc_overlaps(X, B, X, B) jaccard = intersect/union similarity_matrix = jaccard.copy() similarity_matrix_reduced = similarity_matrix np.fill_diagonal(similarity_matrix, 0) indices = np.array(range(K)) unique_factors = {"method_dataset_run_id": method_dataset_run_id} for sim_threshold in sorted(list(sim_thresholds), reverse=True): indices = reduce_to_sim_threshold(similarity_matrix, indices, sim_threshold) unique_factors[f"unique_factors_{sim_threshold}"] = len(indices) return unique_factors, jaccard def reduce_to_sim_threshold(similarity_matrix, current_indices, sim_threshold): indices = current_indices.copy() similarity_matrix_reduced = similarity_matrix[np.ix_(indices, indices)] while similarity_matrix_reduced.max() > sim_threshold: max_similarities = similarity_matrix_reduced.max(axis=1) is_max = np.where(max_similarities == similarity_matrix_reduced.max())[0] print("Maximum", is_max) keep = is_max[0] discard = is_max[1:] print(discard) indices = np.delete(indices, discard) similarity_matrix_reduced = similarity_matrix[np.ix_(indices, indices)] print(indices) return indices
[ "pandas.DataFrame", "numpy.fill_diagonal", "pandas.read_csv", "numpy.ix_", "biclust_comp.analysis.enrichment.get_number_unique_pathways", "biclust_comp.analysis.accuracy.calc_overlaps", "biclust_comp.analysis.accuracy_utils.read_result_binary_best_threshold", "numpy.arange", "numpy.delete" ]
[((256, 282), 'pandas.read_csv', 'pd.read_csv', (['error_df_file'], {}), '(error_df_file)\n', (267, 282), True, 'import pandas as pd\n'), ((364, 412), 'biclust_comp.analysis.enrichment.get_number_unique_pathways', 'enrich.get_number_unique_pathways', (['error_df_file'], {}), '(error_df_file)\n', (397, 412), True, 'import biclust_comp.analysis.enrichment as enrich\n'), ((1030, 1064), 'pandas.DataFrame', 'pd.DataFrame', (['unique_factors_dicts'], {}), '(unique_factors_dicts)\n', (1042, 1064), True, 'import pandas as pd\n'), ((1186, 1265), 'biclust_comp.analysis.accuracy_utils.read_result_binary_best_threshold', 'acc_utils.read_result_binary_best_threshold', (['f"""results/{method_dataset_run_id}"""'], {}), "(f'results/{method_dataset_run_id}')\n", (1229, 1265), True, 'import biclust_comp.analysis.accuracy_utils as acc_utils\n'), ((1289, 1318), 'biclust_comp.analysis.accuracy.calc_overlaps', 'acc.calc_overlaps', (['X', 'B', 'X', 'B'], {}), '(X, B, X, B)\n', (1306, 1318), True, 'import biclust_comp.analysis.accuracy as acc\n'), ((1443, 1481), 'numpy.fill_diagonal', 'np.fill_diagonal', (['similarity_matrix', '(0)'], {}), '(similarity_matrix, 0)\n', (1459, 1481), True, 'import numpy as np\n'), ((740, 784), 'numpy.arange', 'np.arange', (['(0.2 * 100)', '(1.05 * 100)', '(0.05 * 100)'], {}), '(0.2 * 100, 1.05 * 100, 0.05 * 100)\n', (749, 784), True, 'import numpy as np\n'), ((2018, 2042), 'numpy.ix_', 'np.ix_', (['indices', 'indices'], {}), '(indices, indices)\n', (2024, 2042), True, 'import numpy as np\n'), ((2379, 2406), 'numpy.delete', 'np.delete', (['indices', 'discard'], {}), '(indices, discard)\n', (2388, 2406), True, 'import numpy as np\n'), ((2461, 2485), 'numpy.ix_', 'np.ix_', (['indices', 'indices'], {}), '(indices, indices)\n', (2467, 2485), True, 'import numpy as np\n')]
import prata import time import timeit import numpy as np import sys import random import string B = 1 KB = 1000 MB = 1000000 END = [] def getString(s): #''.join(random.choice(string.ascii_letters) for x in range(int(real))) real = 1 if (s-49) < 1 else s-49 return "1"*real TIMES = 5 SLEEP = 2 NUMBER = 1 def printStats(stats, title, size, u = True): f = open("pythonThrouput.txt","a") stats = [round((x)/NUMBER,5) for x in stats] kilo = size#/1000 bytes = "B" if u: if kilo > 1000: kilo /= 1000 bytes = "KB" if kilo > 1000: kilo /= 1000 bytes = "MB" mbs = [round(kilo/(i),5) for i in stats] f.write(title + '\n') f.write("###################\n") f.write("Min: {}s\n".format(stats[0])) f.write("Min {}/s: {}\n".format(bytes,mbs[0])) f.write("Median: {}s\n".format(stats[1])) f.write("Median {}/s: {}\n".format(bytes,mbs[1])) f.write("Max: {}s\n".format(stats[2])) f.write("Max {}/s: {}\n".format(bytes,mbs[2])) f.write("Average: {}s\n".format(stats[3])) f.write("Average {}/s: {}\n".format(bytes,mbs[3])) f.write("###################\n\n") else: END.append([kilo,stats[3]]) f.close() def getStats(times): return [np.min(times), np.median(times), np.max(times), np.average(times)] f = open("pythonThrouput.txt","w") f.close() m = prata.connect("127.0.0.1",25565) m.host() m.createChannel(25566, "test", "FIFO", 500) SIZE = (1*B) testListen=''' p.publish("test",STRING) t = s.listen("test") ''' obj = getString(SIZE) setupTestListen = """ STRING = \""""+obj+"""\" import prata m = prata.connect(\"127.0.0.1\",25565) s = m.subscriber() p = m.publisher() s.connect(\"test\") p.connect(\"test\") """ printStats(getStats(timeit.Timer(stmt=testListen,setup=setupTestListen).repeat(number=NUMBER,repeat=TIMES)),"Round Trip 50 bytes", sys.getsizeof(obj)) SIZE = (1*KB) testListen=''' p.publish("test",STRING) t = s.listen("test") ''' obj = getString(SIZE) setupTestListen = """ STRING = \""""+obj+"""\" import prata m = prata.connect(\"127.0.0.1\",25565) s = m.subscriber() p = m.publisher() s.connect(\"test\") p.connect(\"test\") """ printStats(getStats(timeit.Timer(stmt=testListen,setup=setupTestListen).repeat(number=NUMBER,repeat=TIMES)),"Round Trip 1 KiloByte", sys.getsizeof(obj)) SIZE = (1*MB) testListen=''' p.publish("test",STRING) t = s.listen("test") ''' obj = getString(SIZE) setupTestListen = """ STRING = \""""+obj+"""\" import prata m = prata.connect(\"127.0.0.1\",25565) s = m.subscriber() p = m.publisher() s.connect(\"test\") p.connect(\"test\") """ printStats(getStats(timeit.Timer(stmt=testListen,setup=setupTestListen).repeat(number=NUMBER,repeat=TIMES)),"Round Trip 1 MegaByte", sys.getsizeof(obj)) SIZE = (35*MB) testListen=''' p.publish("test",STRING) t = s.listen("test") ''' obj = getString(SIZE) setupTestListen = """ STRING = \""""+obj+"""\" import prata m = prata.connect(\"127.0.0.1\",25565) s = m.subscriber() p = m.publisher() s.connect(\"test\") p.connect(\"test\") """ printStats(getStats(timeit.Timer(stmt=testListen,setup=setupTestListen).repeat(number=NUMBER,repeat=TIMES)),"Round Trip 35 MegaBytes", sys.getsizeof(obj)) def largegroup(): for i in range(1,10001): SIZE = i*100 testListen=''' p.publish("test",STRING) t = s.listen("test") ''' obj = getString(SIZE) setupTestListen = """ STRING = \""""+obj+"""\" import prata m = prata.connect(\"127.0.0.1\",25565) s = m.subscriber() p = m.publisher() s.connect(\"test\") p.connect(\"test\") """ printStats(getStats(timeit.Timer(stmt=testListen,setup=setupTestListen).repeat(number=1,repeat=2)),"Round Trip {} Bytes".format(SIZE), sys.getsizeof(obj),False) time.sleep(.1) def manyGroup(): for i in range(1,1001): R = random.randint(1,10) SIZE = i*100 testListen=''' for i in range('''+str(R)+'''): p.publish("test",STRING) for i in range('''+str(R)+'''): t = s.listen("test") ''' obj = getString(SIZE) setupTestListen = """ STRING = \""""+obj+"""\" import prata m = prata.connect(\"127.0.0.1\",25565) s = m.subscriber() p = m.publisher() s.connect(\"test\") p.connect(\"test\") """ printStats(getStats(timeit.Timer(stmt=testListen,setup=setupTestListen).repeat(number=1,repeat=2)),"".format(SIZE), sys.getsizeof(obj),False) END[-1].append(R) time.sleep(.1) manyGroup() f = open("many.csv","w") f.write("Bytes,Time(s),Iterations,Total Throughput, Singular Throughput\n") for e in END: f.write(str(e[0])) f.write(", ") f.write(str(e[1])) f.write(", ") f.write(str(e[2])) f.write(", ") f.write(str(e[0]/e[1])) f.write(", ") f.write(str((e[0]/e[1])*e[2])) f.write("\n") f.close() m.terminate()
[ "numpy.average", "random.randint", "numpy.median", "timeit.Timer", "time.sleep", "numpy.max", "numpy.min", "sys.getsizeof", "prata.connect" ]
[((1454, 1487), 'prata.connect', 'prata.connect', (['"""127.0.0.1"""', '(25565)'], {}), "('127.0.0.1', 25565)\n", (1467, 1487), False, 'import prata\n'), ((1955, 1973), 'sys.getsizeof', 'sys.getsizeof', (['obj'], {}), '(obj)\n', (1968, 1973), False, 'import sys\n'), ((2396, 2414), 'sys.getsizeof', 'sys.getsizeof', (['obj'], {}), '(obj)\n', (2409, 2414), False, 'import sys\n'), ((2837, 2855), 'sys.getsizeof', 'sys.getsizeof', (['obj'], {}), '(obj)\n', (2850, 2855), False, 'import sys\n'), ((3281, 3299), 'sys.getsizeof', 'sys.getsizeof', (['obj'], {}), '(obj)\n', (3294, 3299), False, 'import sys\n'), ((1336, 1349), 'numpy.min', 'np.min', (['times'], {}), '(times)\n', (1342, 1349), True, 'import numpy as np\n'), ((1351, 1367), 'numpy.median', 'np.median', (['times'], {}), '(times)\n', (1360, 1367), True, 'import numpy as np\n'), ((1369, 1382), 'numpy.max', 'np.max', (['times'], {}), '(times)\n', (1375, 1382), True, 'import numpy as np\n'), ((1384, 1401), 'numpy.average', 'np.average', (['times'], {}), '(times)\n', (1394, 1401), True, 'import numpy as np\n'), ((3865, 3880), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (3875, 3880), False, 'import time\n'), ((3948, 3969), 'random.randint', 'random.randint', (['(1)', '(10)'], {}), '(1, 10)\n', (3962, 3969), False, 'import random\n'), ((4593, 4608), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (4603, 4608), False, 'import time\n'), ((3831, 3849), 'sys.getsizeof', 'sys.getsizeof', (['obj'], {}), '(obj)\n', (3844, 3849), False, 'import sys\n'), ((4525, 4543), 'sys.getsizeof', 'sys.getsizeof', (['obj'], {}), '(obj)\n', (4538, 4543), False, 'import sys\n'), ((1843, 1895), 'timeit.Timer', 'timeit.Timer', ([], {'stmt': 'testListen', 'setup': 'setupTestListen'}), '(stmt=testListen, setup=setupTestListen)\n', (1855, 1895), False, 'import timeit\n'), ((2283, 2335), 'timeit.Timer', 'timeit.Timer', ([], {'stmt': 'testListen', 'setup': 'setupTestListen'}), '(stmt=testListen, setup=setupTestListen)\n', (2295, 2335), False, 'import timeit\n'), ((2724, 2776), 'timeit.Timer', 'timeit.Timer', ([], {'stmt': 'testListen', 'setup': 'setupTestListen'}), '(stmt=testListen, setup=setupTestListen)\n', (2736, 2776), False, 'import timeit\n'), ((3166, 3218), 'timeit.Timer', 'timeit.Timer', ([], {'stmt': 'testListen', 'setup': 'setupTestListen'}), '(stmt=testListen, setup=setupTestListen)\n', (3178, 3218), False, 'import timeit\n'), ((3716, 3768), 'timeit.Timer', 'timeit.Timer', ([], {'stmt': 'testListen', 'setup': 'setupTestListen'}), '(stmt=testListen, setup=setupTestListen)\n', (3728, 3768), False, 'import timeit\n'), ((4429, 4481), 'timeit.Timer', 'timeit.Timer', ([], {'stmt': 'testListen', 'setup': 'setupTestListen'}), '(stmt=testListen, setup=setupTestListen)\n', (4441, 4481), False, 'import timeit\n')]
import numpy as np """ these are altitudes hard-coded into the old version of NCAR GLOW. """ def glowalt() -> np.ndarray: # z = range(80,110+1,1) z = np.arange(30.0, 110 + 1.0, 1.0) z = np.append(z, [111.5, 113.0, 114.5, 116.0]) z = np.append(z, np.arange(118, 150 + 2, 2.0)) z = np.append(z, np.arange(153, 168 + 3, 3.0)) z = np.append(z, np.arange(172, 180 + 4, 4.0)) z = np.append(z, np.arange(185, 205 + 5, 5)) z = np.append(z, np.arange(211, 223 + 6, 6)) z = np.append(z, np.arange(230, 244 + 7, 7)) z = np.append(z, np.arange(252, 300 + 8, 8)) z = np.append(z, np.arange(309, 345 + 9, 9)) z = np.append(z, np.arange(355, 395 + 10, 10)) z = np.append(z, np.arange(406, 428 + 11, 11)) z = np.append(z, [440.0, 453, 467, 482, 498, 515, 533, 551]) z = np.append(z, np.arange(570, 950 + 20, 20)) return z
[ "numpy.append", "numpy.arange" ]
[((161, 192), 'numpy.arange', 'np.arange', (['(30.0)', '(110 + 1.0)', '(1.0)'], {}), '(30.0, 110 + 1.0, 1.0)\n', (170, 192), True, 'import numpy as np\n'), ((201, 243), 'numpy.append', 'np.append', (['z', '[111.5, 113.0, 114.5, 116.0]'], {}), '(z, [111.5, 113.0, 114.5, 116.0])\n', (210, 243), True, 'import numpy as np\n'), ((752, 808), 'numpy.append', 'np.append', (['z', '[440.0, 453, 467, 482, 498, 515, 533, 551]'], {}), '(z, [440.0, 453, 467, 482, 498, 515, 533, 551])\n', (761, 808), True, 'import numpy as np\n'), ((265, 293), 'numpy.arange', 'np.arange', (['(118)', '(150 + 2)', '(2.0)'], {}), '(118, 150 + 2, 2.0)\n', (274, 293), True, 'import numpy as np\n'), ((316, 344), 'numpy.arange', 'np.arange', (['(153)', '(168 + 3)', '(3.0)'], {}), '(153, 168 + 3, 3.0)\n', (325, 344), True, 'import numpy as np\n'), ((367, 395), 'numpy.arange', 'np.arange', (['(172)', '(180 + 4)', '(4.0)'], {}), '(172, 180 + 4, 4.0)\n', (376, 395), True, 'import numpy as np\n'), ((418, 444), 'numpy.arange', 'np.arange', (['(185)', '(205 + 5)', '(5)'], {}), '(185, 205 + 5, 5)\n', (427, 444), True, 'import numpy as np\n'), ((467, 493), 'numpy.arange', 'np.arange', (['(211)', '(223 + 6)', '(6)'], {}), '(211, 223 + 6, 6)\n', (476, 493), True, 'import numpy as np\n'), ((516, 542), 'numpy.arange', 'np.arange', (['(230)', '(244 + 7)', '(7)'], {}), '(230, 244 + 7, 7)\n', (525, 542), True, 'import numpy as np\n'), ((565, 591), 'numpy.arange', 'np.arange', (['(252)', '(300 + 8)', '(8)'], {}), '(252, 300 + 8, 8)\n', (574, 591), True, 'import numpy as np\n'), ((614, 640), 'numpy.arange', 'np.arange', (['(309)', '(345 + 9)', '(9)'], {}), '(309, 345 + 9, 9)\n', (623, 640), True, 'import numpy as np\n'), ((663, 691), 'numpy.arange', 'np.arange', (['(355)', '(395 + 10)', '(10)'], {}), '(355, 395 + 10, 10)\n', (672, 691), True, 'import numpy as np\n'), ((714, 742), 'numpy.arange', 'np.arange', (['(406)', '(428 + 11)', '(11)'], {}), '(406, 428 + 11, 11)\n', (723, 742), True, 'import numpy as np\n'), ((830, 858), 'numpy.arange', 'np.arange', (['(570)', '(950 + 20)', '(20)'], {}), '(570, 950 + 20, 20)\n', (839, 858), True, 'import numpy as np\n')]
from typing import Union, Tuple import multiaug import numpy as np import scipy.ndimage from multiaug.augmenters import meta def _generate_bool_sequence(num: int, random_state: int) -> list: return [random_state.choice([True, False], 1)[0] for _ in range(num)] def _merge_bool_sequences(proposed: list, mask: list) -> list: return [x and y for x, y in zip(proposed, mask)] def _validate_angle(angle: Union[int, float]): assert (angle >= 0 and angle <= 360), "Angle not within valid range [0, 360], received {}".format(angle) class Rotate3d(meta.Augmenter): ''' Apply random rotation to 3D images. Parameters ---------- angle : int or float or list The maximum angle by which to rotate the image. * If 'int' or 'float' then use the angle specified for all axes. * If 'list' then must be of format [angle_x, angle_y, angle_z]. axes : list Flags for the x, y, z axes that determine which axes the image can be rotated about. * If 'True' then axis can be rotated about * If 'False' then axis cannot be rotated about interpolation : str Interpolation method to use. * If 'nearest' then use nearest interpolation. ''' def __init__(self, angle: Union[int, float, list], axes: Tuple[bool, bool, bool] = [True, True, True], interpolation: str = 'nearest'): super(Rotate3d, self).__init__() if isinstance(angle, list): assert len(angle) == 3, "Please specify rotation angle for x, y and z dimensions, only {} angles provided".format(len(angle)) self.x_max, self.y_max, self.z_max = angle elif isinstance(angle, float) or isinstance(angle, int): self.x_max = self.y_max = self.z_max = angle else: raise NotImplementedError("Angle must either be a list of length 3 or a single number, not {}".format(angle)) _validate_angle(self.x_max) _validate_angle(self.y_max) _validate_angle(self.z_max) self.interpolation = interpolation self.active_axes = axes if sum(self.active_axes) == 0: raise RuntimeError("All axes have been deactivated, please activate atleast one axes for augmentation to take place") def apply(self, images: np.ndarray, row_ids: list) -> np.ndarray: ''' Apply transformations to an entire batch. Parameters ---------- images : np.ndarray Image batch of shape N x H x W x D. row_ids : list Indices of rows to rotate. Returns ------- np.ndarray Batch of rotated images. ''' rotated_images = [] for image in images[row_ids]: rotated_images.append(self.apply_to_sample(image)) return np.array(rotated_images) def apply_to_sample(self, image: np.ndarray) -> np.ndarray: ''' Apply transformation to a single image. Randomly samples one or more active axes and applies a random rotation about that axes. Parameters ---------- image : np.ndarray Image to transform. Returns ------- np.ndarray Rotated image. ''' which_axes = _generate_bool_sequence(3, self.random_state) which_axes = _merge_bool_sequences(which_axes, self.active_axes) while sum(which_axes) == 0: # at least rotate around one axes which_axes = _generate_bool_sequence(3, self.random_state) which_axes = _merge_bool_sequences(which_axes, self.active_axes) img = image.copy() # z-axis if which_axes[2]: angle = self.random_state.uniform(-self.z_max, self.z_max) img = scipy.ndimage.interpolation.rotate(img, angle, mode=self.interpolation, axes=(0, 1), reshape=False) # y-axis if which_axes[1]: angle = self.random_state.uniform(-self.y_max, self.y_max) img = scipy.ndimage.interpolation.rotate(img, angle, mode=self.interpolation, axes=(0, 2), reshape=False) # x-axis if which_axes[0]: angle = self.random_state.uniform(-self.x_max, self.x_max) img = scipy.ndimage.interpolation.rotate(img, angle, mode=self.interpolation, axes=(1, 2), reshape=False) return img
[ "numpy.array" ]
[((2833, 2857), 'numpy.array', 'np.array', (['rotated_images'], {}), '(rotated_images)\n', (2841, 2857), True, 'import numpy as np\n')]
"""Took all this from https://github.com/MadryLab/implementation-matters""" import gym import numpy as np class RunningStat: def __init__(self): self.n = 0 self.m = 0 self.s = 0 def add(self, v): self.n += 1 if self.n == 1: self.m = v else: old_m = self.m self.m = self.m + (v - self.m) / self.n self.s = self.s + (v - old_m) * (v - self.m) @property def mean(self): return self.m @property def var(self): return self.s / (self.n - 1) if self.n > 1 else self.m**2 @property def std(self): return np.sqrt(self.var) def __repr__(self): return f"Running stat with count: {self.n}, mean: {self.mean:.4f}, variance: {self.var:.4f}" class DiscountedReturnStdEstimator: def __init__(self, discount): self.discount = discount self.reset() def __call__(self, x): self.ret = self.ret * self.discount + x self.rs.add(self.ret) return self.rs.std def reset(self): self.rs = RunningStat() self.ret = 0 class RewardNormalizationWrapper(gym.Wrapper): def __init__(self, env, discount): super().__init__(env) self.estimator = DiscountedReturnStdEstimator(discount) def step(self, action): obs, rew, done, info = self.env.step(action) info["rew_norm_g"] = self.estimator(rew) return obs, rew, done, info def reset(self): self.estimator.reset() return self.env.reset()
[ "numpy.sqrt" ]
[((655, 672), 'numpy.sqrt', 'np.sqrt', (['self.var'], {}), '(self.var)\n', (662, 672), True, 'import numpy as np\n')]
import os import random import numpy as np import torch from torch import nn import torch.nn.functional as F import torchvision.transforms as T import torchvision from torchvision import datasets, transforms # from stylegan_model import Generator, Encoder # from view_generator import VGGLoss from functools import partial import matplotlib.pyplot as plt from pathlib import Path import argparse import pickle from utils import toggle_grad, image2tensor, tensor2image, imshow, imsave, Config, fix_seed from einops import rearrange import pdb st = pdb.set_trace class ResNetWrapper(nn.Module): def __init__( self, model, ): super().__init__() self.model = model def forward(self, x): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.model.avgpool(x) return x class SimCLRWrapper(nn.Module): def __init__( self, model, ): super().__init__() self.model = model def forward(self, x): r = self.model.backbone(x) z = self.model.projector(r) return z def encode(vqgan, x): h = vqgan.encoder(x) z = vqgan.quant_conv(h) z_q, _, [_, _, indices] = vqgan.quantize(z) return z_q, z, indices def decode(vqgan, z_q): quant = vqgan.post_quant_conv(z_q) x = vqgan.decoder(quant) return x def decode_z(vqgan, z): z_q, _, info = vqgan.quantize(z) quant = vqgan.post_quant_conv(z_q) x = vqgan.decoder(quant) return x def decode_fn(vqgan, z, indices=None): z_q, loss, [_, _, inds] = vqgan.quantize(z) zq = vqgan.quantize.embedding(inds) zq = rearrange(zq, '(b h w) c -> b c h w', b = z_q.shape[0], h=z_q.shape[2], w=z_q.shape[3]) quant = vqgan.post_quant_conv(zq) x = vqgan.decoder(quant) return x # def decode_fn(vqgan, z_q, indices=None): # quant = vqgan.post_quant_conv(z_q) # x = vqgan.decoder(quant) # return x if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--seed', type=int, default=0) parser.add_argument('--batch_size', type=int, default=4) parser.add_argument('--image_size', type=int, default=256) parser.add_argument('--iters', type=int, default=4000) parser.add_argument('--lr', type=float, default=0.01) parser.add_argument('--optimizer', type=str, default='adam', choices=['adam', 'sgd', 'lbfgs']) parser.add_argument('--beta1', type=float, default=0.5) parser.add_argument('--beta2', type=float, default=0.999) parser.add_argument('--log_root', type=str, default='logs_gen') parser.add_argument('--name', type=str, default='test') parser.add_argument('--data_root', type=str, default='../data') parser.add_argument('--load_model', type=str, default='simclr') parser.add_argument('--eps1', type=float, default=0.5) parser.add_argument('--eps2', type=float, default=1) parser.add_argument('--init_noise_scale', type=float, default=0.001) parser.add_argument('--p', type=int, default=2) parser.add_argument('--n', type=int, default=1) parser.add_argument('--save_every', type=int, default=100) parser.add_argument('--lam2', type=float, default=0, help='weight of distance regularization') parser.add_argument('--no_proj', action='store_true') parser.add_argument('--objective', type=str, default='norm', choices=['norm', 'cosine']) parser.add_argument('--loss_type', type=str, default='l2', choices=['l2', 'l1', 'hinge']) parser.add_argument('--method', type=str, default='gd', choices=['gd', 'fgsm', 'vat']) parser.add_argument('--eval', action='store_true') parser.add_argument('--clamp', action='store_true') parser.add_argument('--which_decode', type=str, default='from_z', choices=['from_z', 'from_zq']) parser.add_argument('--optimize_dict', action='store_true') args = parser.parse_args() fix_seed(args.seed) name = args.name log_root = Path(args.log_root) log_dir = log_root / name os.makedirs(log_dir, exist_ok=True) USE_HTML = True log_web_dir = log_dir / 'web' webpage = None if USE_HTML: import utils_html webpage = utils_html.initialize_webpage(log_web_dir, 'ViewMaker: ' + args.name + f'{args.which_decode}', resume=False) device = 'cuda' image_size = args.image_size tol = 1e-5 image_size = 256 args.clamp = True vqgan_config_path = '/research/cbim/medical/lh599/code/DALLE/pretrained/vqgan.1024.config.yml' vqgan_model_path = '/research/cbim/medical/lh599/code/DALLE/pretrained/vqgan.1024.model.ckpt' from taming.models.vqgan import VQModel from omegaconf import OmegaConf config = OmegaConf.load(vqgan_config_path) config.model.params['ddconfig']['resolution'] = image_size vqgan = VQModel(**config.model.params) state = torch.load(vqgan_model_path, map_location='cpu')['state_dict'] vqgan.load_state_dict(state, strict=True) # NOTE: set False if resoluton is changed # Define SimCLR encoder if args.no_proj: exit(0) if args.objective == 'norm': normalize = lambda x: x elif args.objective == 'cosine': normalize = partial(F.normalize, dim=1) prefix = 'noproj' from resnet import resnet18 model = resnet18(pretrained=False, num_classes=10) checkpoint = torch.load('../pretrained/simclr-cifar10-resnet18-800ep-1.pth') state_dict = checkpoint['state_dict'] for k in list(state_dict.keys()): if k.startswith('encoder.'): if k.startswith('encoder') and not k.startswith('encoder.fc'): # remove prefix state_dict[k[len("encoder."):]] = state_dict[k] del state_dict[k] log = model.load_state_dict(state_dict, strict=True) # assert log.missing_keys == ['fc.weight', 'fc.bias'] # model = ResNetWrapper(model).to(device) model.to(device) else: # from simclr.main import SimCLR from models import SimCLR normalize = partial(F.normalize, dim=1) prefix = 'proj' args_simclr = Config(rotation=0) model = SimCLR(args_simclr).to(device) saved_dict = torch.load('../pretrained/simclr-imagenet-resnet50-300ep.pth') model.backbone.load_state_dict(saved_dict['backbone']) model.projector.load_state_dict(saved_dict['projector']) # model.load_state_dict(saved_dict['model'], strict=True) model = SimCLRWrapper(model) model.eval() batch_size = args.batch_size transform = transforms.Compose([ transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) image_cache = 'I256_256.pkl' if not os.path.exists(image_cache): # dataset = torchvision.datasets.ImageFolder(root='/research/cbim/medical/lh599/data/ILSVRC2012/train', transform=transform) dataset = torchvision.datasets.ImageFolder(root='/research/cbim/medical/lh599/data/ImageNet100/train', transform=transform) loader = iter(torch.utils.data.DataLoader(dataset=dataset, batch_size=256, shuffle=True)) imgs, _ = next(loader) with open(image_cache, 'wb') as f: pickle.dump(imgs, f) else: with open(image_cache, 'rb') as f: imgs = pickle.load(f) imgs = imgs[:batch_size].to(device) vqgan = vqgan.to(device) with torch.no_grad(): z0_q, z0, ind0 = encode(vqgan, imgs) imgs_gen = decode(vqgan, z0_q) # NOTE: z and z_q are of shape [b, 256, 16, 16] imgs_real = torch.cat([img for img in imgs], dim=1) imgs_fakes = torch.cat([img_gen for img_gen in imgs_gen], dim=1) imsave(log_dir / f'rec.png', tensor2image(torch.cat([imgs_real, imgs_fakes], dim=2))) # input transform encoder_input_transform = T.Compose( [ T.Resize(224), # TODO: is this backpropable? -> yes T.Normalize([-1, -1, -1], [2, 2, 2]), # to [0, 1] T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) eps1 = args.eps1 eps2 = args.eps2 p = args.p n = args.n # z = z0_q.detach().clone() z = z0_q z = z.repeat_interleave(n, dim=0) z_noise = args.init_noise_scale * torch.randn_like(z) # [b*n, L, D] z_noise[::n, ...] = 0 # make sure the first one is accurate z = z + z_noise imgs_rep = imgs.repeat_interleave(n, dim=0) # decode_fn = decode_z # TODO: test out different decode # if args.which_decode == 'from_z': # decode_fn = decode_z # elif args.which_decode == 'from_zq': # decode_fn = decode imgs_rec = imgs_gen.detach() if args.clamp: imgs_rec = torch.clamp(imgs_rec, -1, 1) imgs_recon = imgs_fakes imgs_blank = torch.ones_like(imgs_recon)[:,:,:8] # z.requires_grad = True if args.optimizer == 'adam': optimizer = torch.optim.Adam(vqgan.quantize.embedding.parameters(), lr=args.lr) elif args.optimizer == 'sgd': optimizer = torch.optim.SGD([z], lr=args.lr) elif args.optimizer == 'lbfgs': optimizer = torch.optim.LBFGS([z], max_iter=500) # TODO: max_iter toggle_grad(model, False) # toggle_grad(vqgan, False) h_img = model(encoder_input_transform(imgs_rec).repeat_interleave(n, dim=0)) # start from the reconstructed images h_img = normalize(h_img.squeeze()).detach() losses = [] print('generating views...') done = False for step in range(args.iters): imgs_gen = decode_fn(vqgan, z, ind0) if args.clamp: imgs_gen = torch.clamp(imgs_gen, -1, 1) h_gen = model(encoder_input_transform(imgs_gen)) h_gen = normalize(h_gen.squeeze()) pdist = torch.cdist(h_gen.view(batch_size, n, -1), h_gen.view(batch_size, n, -1), p=p) pdist = pdist * n / (n-1) loss_reg = torch.mean(F.relu(eps2 - torch.mean(pdist.view(batch_size*n, n), dim=1))) if args.loss_type == 'l2': if args.objective == 'norm': diff = torch.norm(h_gen - h_img, dim=1, p=p) - eps1 elif args.objective == 'cosine': diff = torch.sum(h_gen * h_img, dim=1) - eps1 loss = torch.mean(diff ** 2) + args.lam2 * loss_reg elif args.loss_type == 'hinge': if args.objective == 'norm': diff = F.relu(eps1 - torch.norm(h_gen - h_img, dim=1, p=p)) elif args.objective == 'cosine': diff = F.relu(torch.sum(h_gen * h_img, dim=1) - eps1) loss = torch.mean(diff) + args.lam2 * loss_reg if args.method == 'gd': if loss.item() > tol: optimizer.zero_grad() loss.backward() optimizer.step() else: done = True elif args.method == 'fgsm': optimizer.zero_grad() loss.backward() z_delta = z.grad.data.sign() z = z - args.lr * z_delta done = True if args.objective == 'norm': losses.append(torch.norm(h_gen - h_img, dim=1, p=p).mean().item()) elif args.objective == 'cosine': losses.append(torch.sum(h_gen * h_img, dim=1).mean().item()) if done or step == 0 or step == args.iters - 1 or (step + 1) % args.save_every == 0: imgs_gen = decode_fn(vqgan, z) if args.clamp: imgs_gen = torch.clamp(imgs_gen, -1, 1) h_gen = model(encoder_input_transform(imgs_gen)) h_gen = normalize(h_gen.squeeze()) if args.objective == 'norm': print(f'step: {step+1}, loss: {loss.item()}, norm: {torch.norm(h_gen - h_img, dim=1, p=p).mean().item()}, pdist: {pdist.mean().item()}') elif args.objective == 'cosine': print(f'step: {step+1}, loss: {loss.item()}, cos: {torch.sum(h_gen * h_img, dim=1).mean().item()}, pdist: {pdist.mean().item()}') # st() # imsave(log_dir / 'debug_clamp.png', tensor2image(torch.cat([xx for xx in torch.clamp(imgs_gen[32:40,...], -1, 1)], dim=2))) imgs_gen = imgs_gen.view(batch_size, n, 3, image_size, image_size) imgs_fakes = [] imgs_diffs = [] for j in range(n): imgs_fakes.append(torch.cat([img_gen for img_gen in imgs_gen[:,j,...]], dim=1)) img_diff = torch.cat([img_gen for img_gen in imgs_gen[:,j,...] - imgs_rec], dim=1) imgs_diffs.append((img_diff - img_diff.min()) / (img_diff.max() - img_diff.min()) * 2 - 1) imsave(log_dir / f'view_{step+1:04d}.png', tensor2image(torch.cat([imgs_real, imgs_recon, imgs_blank] + imgs_fakes, dim=2))) imsave(log_dir / f'diff_{step+1:04d}.png', tensor2image(torch.cat([imgs_real, imgs_recon, imgs_blank] + imgs_diffs, dim=2))) image_tensor = torch.cat([imgs_real, imgs_recon, imgs_blank] + imgs_fakes, dim=2) if USE_HTML: if args.objective == 'norm': header = f'step: {step+1}, loss: {loss.item()}, norm: {torch.norm(h_gen - h_img, dim=1, p=p).mean().item()}, pdist: {pdist.mean().item()}' elif args.objective == 'cosine': header = f'step: {step+1}, loss: {loss.item()}, cos: {torch.sum(h_gen * h_img, dim=1).mean().item()}, pdist: {pdist.mean().item()}' webpage.add_header(header) utils_html.save_grid( webpage=webpage, tensor=[(image_tensor + 1) / 2], caption=[f'real recon | views x {n}'], name=f'{step+1:04d}', nrow=[1], width=768, ) if done: print(f"loss is {loss.item()}!") if args.objective == 'norm': print(torch.norm(h_gen - h_img, dim=1, p=p).mean().item(), pdist.mean().item()) elif args.objective == 'cosine': print(torch.sum(h_gen * h_img, dim=1).mean().item(), pdist.mean().item()) break losses = np.array(losses) plt.plot(losses) plt.xlabel('steps') if args.objective == 'norm': plt.ylabel(f'L{p}') elif args.objective == 'cosine': plt.ylabel(f'cos') plt.savefig(log_dir / f'loss_plot.png')
[ "pickle.dump", "argparse.ArgumentParser", "torch.cat", "pathlib.Path", "pickle.load", "torchvision.transforms.Normalize", "torch.no_grad", "torch.utils.data.DataLoader", "utils_html.save_grid", "torch.load", "os.path.exists", "resnet.resnet18", "torchvision.transforms.CenterCrop", "utils.fix_seed", "torch.mean", "functools.partial", "utils.Config", "torch.randn_like", "torch.optim.SGD", "torch.norm", "torchvision.datasets.ImageFolder", "torch.clamp", "einops.rearrange", "matplotlib.pyplot.ylabel", "torch.sum", "utils_html.initialize_webpage", "taming.models.vqgan.VQModel", "torchvision.transforms.Resize", "torch.ones_like", "models.SimCLR", "os.makedirs", "matplotlib.pyplot.plot", "omegaconf.OmegaConf.load", "numpy.array", "utils.toggle_grad", "matplotlib.pyplot.xlabel", "torch.optim.LBFGS", "matplotlib.pyplot.savefig", "torchvision.transforms.ToTensor" ]
[((1837, 1927), 'einops.rearrange', 'rearrange', (['zq', '"""(b h w) c -> b c h w"""'], {'b': 'z_q.shape[0]', 'h': 'z_q.shape[2]', 'w': 'z_q.shape[3]'}), "(zq, '(b h w) c -> b c h w', b=z_q.shape[0], h=z_q.shape[2], w=z_q\n .shape[3])\n", (1846, 1927), False, 'from einops import rearrange\n'), ((2176, 2201), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2199, 2201), False, 'import argparse\n'), ((4087, 4106), 'utils.fix_seed', 'fix_seed', (['args.seed'], {}), '(args.seed)\n', (4095, 4106), False, 'from utils import toggle_grad, image2tensor, tensor2image, imshow, imsave, Config, fix_seed\n'), ((4144, 4163), 'pathlib.Path', 'Path', (['args.log_root'], {}), '(args.log_root)\n', (4148, 4163), False, 'from pathlib import Path\n'), ((4198, 4233), 'os.makedirs', 'os.makedirs', (['log_dir'], {'exist_ok': '(True)'}), '(log_dir, exist_ok=True)\n', (4209, 4233), False, 'import os\n'), ((4886, 4919), 'omegaconf.OmegaConf.load', 'OmegaConf.load', (['vqgan_config_path'], {}), '(vqgan_config_path)\n', (4900, 4919), False, 'from omegaconf import OmegaConf\n'), ((4995, 5025), 'taming.models.vqgan.VQModel', 'VQModel', ([], {}), '(**config.model.params)\n', (5002, 5025), False, 'from taming.models.vqgan import VQModel\n'), ((7848, 7887), 'torch.cat', 'torch.cat', (['[img for img in imgs]'], {'dim': '(1)'}), '([img for img in imgs], dim=1)\n', (7857, 7887), False, 'import torch\n'), ((7905, 7956), 'torch.cat', 'torch.cat', (['[img_gen for img_gen in imgs_gen]'], {'dim': '(1)'}), '([img_gen for img_gen in imgs_gen], dim=1)\n', (7914, 7956), False, 'import torch\n'), ((9452, 9477), 'utils.toggle_grad', 'toggle_grad', (['model', '(False)'], {}), '(model, False)\n', (9463, 9477), False, 'from utils import toggle_grad, image2tensor, tensor2image, imshow, imsave, Config, fix_seed\n'), ((14391, 14407), 'numpy.array', 'np.array', (['losses'], {}), '(losses)\n', (14399, 14407), True, 'import numpy as np\n'), ((14413, 14429), 'matplotlib.pyplot.plot', 'plt.plot', (['losses'], {}), '(losses)\n', (14421, 14429), True, 'import matplotlib.pyplot as plt\n'), ((14434, 14453), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""steps"""'], {}), "('steps')\n", (14444, 14453), True, 'import matplotlib.pyplot as plt\n'), ((14583, 14622), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(log_dir / f'loss_plot.png')"], {}), "(log_dir / f'loss_plot.png')\n", (14594, 14622), True, 'import matplotlib.pyplot as plt\n'), ((4369, 4481), 'utils_html.initialize_webpage', 'utils_html.initialize_webpage', (['log_web_dir', "('ViewMaker: ' + args.name + f'{args.which_decode}')"], {'resume': '(False)'}), "(log_web_dir, 'ViewMaker: ' + args.name +\n f'{args.which_decode}', resume=False)\n", (4398, 4481), False, 'import utils_html\n'), ((5038, 5086), 'torch.load', 'torch.load', (['vqgan_model_path'], {'map_location': '"""cpu"""'}), "(vqgan_model_path, map_location='cpu')\n", (5048, 5086), False, 'import torch\n'), ((5500, 5542), 'resnet.resnet18', 'resnet18', ([], {'pretrained': '(False)', 'num_classes': '(10)'}), '(pretrained=False, num_classes=10)\n', (5508, 5542), False, 'from resnet import resnet18\n'), ((5564, 5627), 'torch.load', 'torch.load', (['"""../pretrained/simclr-cifar10-resnet18-800ep-1.pth"""'], {}), "('../pretrained/simclr-cifar10-resnet18-800ep-1.pth')\n", (5574, 5627), False, 'import torch\n'), ((6273, 6300), 'functools.partial', 'partial', (['F.normalize'], {'dim': '(1)'}), '(F.normalize, dim=1)\n', (6280, 6300), False, 'from functools import partial\n'), ((6347, 6365), 'utils.Config', 'Config', ([], {'rotation': '(0)'}), '(rotation=0)\n', (6353, 6365), False, 'from utils import toggle_grad, image2tensor, tensor2image, imshow, imsave, Config, fix_seed\n'), ((6434, 6496), 'torch.load', 'torch.load', (['"""../pretrained/simclr-imagenet-resnet50-300ep.pth"""'], {}), "('../pretrained/simclr-imagenet-resnet50-300ep.pth')\n", (6444, 6496), False, 'import torch\n'), ((7013, 7040), 'os.path.exists', 'os.path.exists', (['image_cache'], {}), '(image_cache)\n', (7027, 7040), False, 'import os\n'), ((7193, 7311), 'torchvision.datasets.ImageFolder', 'torchvision.datasets.ImageFolder', ([], {'root': '"""/research/cbim/medical/lh599/data/ImageNet100/train"""', 'transform': 'transform'}), "(root=\n '/research/cbim/medical/lh599/data/ImageNet100/train', transform=transform)\n", (7225, 7311), False, 'import torchvision\n'), ((7678, 7693), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7691, 7693), False, 'import torch\n'), ((8541, 8560), 'torch.randn_like', 'torch.randn_like', (['z'], {}), '(z)\n', (8557, 8560), False, 'import torch\n'), ((8988, 9016), 'torch.clamp', 'torch.clamp', (['imgs_rec', '(-1)', '(1)'], {}), '(imgs_rec, -1, 1)\n', (8999, 9016), False, 'import torch\n'), ((9062, 9089), 'torch.ones_like', 'torch.ones_like', (['imgs_recon'], {}), '(imgs_recon)\n', (9077, 9089), False, 'import torch\n'), ((14495, 14514), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['f"""L{p}"""'], {}), "(f'L{p}')\n", (14505, 14514), True, 'import matplotlib.pyplot as plt\n'), ((6831, 6864), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', (['image_size'], {}), '(image_size)\n', (6852, 6864), False, 'from torchvision import datasets, transforms\n'), ((6874, 6895), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (6893, 6895), False, 'from torchvision import datasets, transforms\n'), ((6905, 6959), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.5, 0.5, 0.5)', '(0.5, 0.5, 0.5)'], {}), '((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n', (6925, 6959), False, 'from torchvision import datasets, transforms\n'), ((7329, 7403), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', ([], {'dataset': 'dataset', 'batch_size': '(256)', 'shuffle': '(True)'}), '(dataset=dataset, batch_size=256, shuffle=True)\n', (7356, 7403), False, 'import torch\n'), ((7491, 7511), 'pickle.dump', 'pickle.dump', (['imgs', 'f'], {}), '(imgs, f)\n', (7502, 7511), False, 'import pickle\n'), ((7584, 7598), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (7595, 7598), False, 'import pickle\n'), ((8003, 8044), 'torch.cat', 'torch.cat', (['[imgs_real, imgs_fakes]'], {'dim': '(2)'}), '([imgs_real, imgs_fakes], dim=2)\n', (8012, 8044), False, 'import torch\n'), ((8133, 8146), 'torchvision.transforms.Resize', 'T.Resize', (['(224)'], {}), '(224)\n', (8141, 8146), True, 'import torchvision.transforms as T\n'), ((8198, 8234), 'torchvision.transforms.Normalize', 'T.Normalize', (['[-1, -1, -1]', '[2, 2, 2]'], {}), '([-1, -1, -1], [2, 2, 2])\n', (8209, 8234), True, 'import torchvision.transforms as T\n'), ((8261, 8327), 'torchvision.transforms.Normalize', 'T.Normalize', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n', (8272, 8327), True, 'import torchvision.transforms as T\n'), ((9303, 9335), 'torch.optim.SGD', 'torch.optim.SGD', (['[z]'], {'lr': 'args.lr'}), '([z], lr=args.lr)\n', (9318, 9335), False, 'import torch\n'), ((9872, 9900), 'torch.clamp', 'torch.clamp', (['imgs_gen', '(-1)', '(1)'], {}), '(imgs_gen, -1, 1)\n', (9883, 9900), False, 'import torch\n'), ((13168, 13234), 'torch.cat', 'torch.cat', (['([imgs_real, imgs_recon, imgs_blank] + imgs_fakes)'], {'dim': '(2)'}), '([imgs_real, imgs_recon, imgs_blank] + imgs_fakes, dim=2)\n', (13177, 13234), False, 'import torch\n'), ((14560, 14578), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['f"""cos"""'], {}), "(f'cos')\n", (14570, 14578), True, 'import matplotlib.pyplot as plt\n'), ((5394, 5421), 'functools.partial', 'partial', (['F.normalize'], {'dim': '(1)'}), '(F.normalize, dim=1)\n', (5401, 5421), False, 'from functools import partial\n'), ((6382, 6401), 'models.SimCLR', 'SimCLR', (['args_simclr'], {}), '(args_simclr)\n', (6388, 6401), False, 'from models import SimCLR\n'), ((9392, 9428), 'torch.optim.LBFGS', 'torch.optim.LBFGS', (['[z]'], {'max_iter': '(500)'}), '([z], max_iter=500)\n', (9409, 9428), False, 'import torch\n'), ((10495, 10516), 'torch.mean', 'torch.mean', (['(diff ** 2)'], {}), '(diff ** 2)\n', (10505, 10516), False, 'import torch\n'), ((11718, 11746), 'torch.clamp', 'torch.clamp', (['imgs_gen', '(-1)', '(1)'], {}), '(imgs_gen, -1, 1)\n', (11729, 11746), False, 'import torch\n'), ((12688, 12761), 'torch.cat', 'torch.cat', (['[img_gen for img_gen in imgs_gen[:, j, ...] - imgs_rec]'], {'dim': '(1)'}), '([img_gen for img_gen in imgs_gen[:, j, ...] - imgs_rec], dim=1)\n', (12697, 12761), False, 'import torch\n'), ((13724, 13886), 'utils_html.save_grid', 'utils_html.save_grid', ([], {'webpage': 'webpage', 'tensor': '[(image_tensor + 1) / 2]', 'caption': "[f'real recon | views x {n}']", 'name': 'f"""{step + 1:04d}"""', 'nrow': '[1]', 'width': '(768)'}), "(webpage=webpage, tensor=[(image_tensor + 1) / 2],\n caption=[f'real recon | views x {n}'], name=f'{step + 1:04d}', nrow=[1],\n width=768)\n", (13744, 13886), False, 'import utils_html\n'), ((10324, 10361), 'torch.norm', 'torch.norm', (['(h_gen - h_img)'], {'dim': '(1)', 'p': 'p'}), '(h_gen - h_img, dim=1, p=p)\n', (10334, 10361), False, 'import torch\n'), ((10831, 10847), 'torch.mean', 'torch.mean', (['diff'], {}), '(diff)\n', (10841, 10847), False, 'import torch\n'), ((12599, 12661), 'torch.cat', 'torch.cat', (['[img_gen for img_gen in imgs_gen[:, j, ...]]'], {'dim': '(1)'}), '([img_gen for img_gen in imgs_gen[:, j, ...]], dim=1)\n', (12608, 12661), False, 'import torch\n'), ((12935, 13001), 'torch.cat', 'torch.cat', (['([imgs_real, imgs_recon, imgs_blank] + imgs_fakes)'], {'dim': '(2)'}), '([imgs_real, imgs_recon, imgs_blank] + imgs_fakes, dim=2)\n', (12944, 13001), False, 'import torch\n'), ((13072, 13138), 'torch.cat', 'torch.cat', (['([imgs_real, imgs_recon, imgs_blank] + imgs_diffs)'], {'dim': '(2)'}), '([imgs_real, imgs_recon, imgs_blank] + imgs_diffs, dim=2)\n', (13081, 13138), False, 'import torch\n'), ((10437, 10468), 'torch.sum', 'torch.sum', (['(h_gen * h_img)'], {'dim': '(1)'}), '(h_gen * h_img, dim=1)\n', (10446, 10468), False, 'import torch\n'), ((10658, 10695), 'torch.norm', 'torch.norm', (['(h_gen - h_img)'], {'dim': '(1)', 'p': 'p'}), '(h_gen - h_img, dim=1, p=p)\n', (10668, 10695), False, 'import torch\n'), ((10772, 10803), 'torch.sum', 'torch.sum', (['(h_gen * h_img)'], {'dim': '(1)'}), '(h_gen * h_img, dim=1)\n', (10781, 10803), False, 'import torch\n'), ((11360, 11397), 'torch.norm', 'torch.norm', (['(h_gen - h_img)'], {'dim': '(1)', 'p': 'p'}), '(h_gen - h_img, dim=1, p=p)\n', (11370, 11397), False, 'import torch\n'), ((11480, 11511), 'torch.sum', 'torch.sum', (['(h_gen * h_img)'], {'dim': '(1)'}), '(h_gen * h_img, dim=1)\n', (11489, 11511), False, 'import torch\n'), ((14150, 14187), 'torch.norm', 'torch.norm', (['(h_gen - h_img)'], {'dim': '(1)', 'p': 'p'}), '(h_gen - h_img, dim=1, p=p)\n', (14160, 14187), False, 'import torch\n'), ((14291, 14322), 'torch.sum', 'torch.sum', (['(h_gen * h_img)'], {'dim': '(1)'}), '(h_gen * h_img, dim=1)\n', (14300, 14322), False, 'import torch\n'), ((11965, 12002), 'torch.norm', 'torch.norm', (['(h_gen - h_img)'], {'dim': '(1)', 'p': 'p'}), '(h_gen - h_img, dim=1, p=p)\n', (11975, 12002), False, 'import torch\n'), ((13380, 13417), 'torch.norm', 'torch.norm', (['(h_gen - h_img)'], {'dim': '(1)', 'p': 'p'}), '(h_gen - h_img, dim=1, p=p)\n', (13390, 13417), False, 'import torch\n'), ((12162, 12193), 'torch.sum', 'torch.sum', (['(h_gen * h_img)'], {'dim': '(1)'}), '(h_gen * h_img, dim=1)\n', (12171, 12193), False, 'import torch\n'), ((13587, 13618), 'torch.sum', 'torch.sum', (['(h_gen * h_img)'], {'dim': '(1)'}), '(h_gen * h_img, dim=1)\n', (13596, 13618), False, 'import torch\n')]
import os.path as osp import logging import time import argparse from collections import OrderedDict import torch import numpy as np import options.options as option import utils.util as util from data.util import bgr2ycbcr from data import create_dataset, create_dataloader from models import create_model import matplotlib.pyplot as plot from torchvision import utils as utils import cv2 import os def rgb2gray(rgb): return np.dot(rgb[..., :3], [0.299, 0.587, 0.114]) # 分别对应通道 R G B def displayFeature(feature, savepath, image, image_name): # plot.axis('off') feat_permute = feature.permute(1, 0, 2, 3).cpu() if not os.path.exists(savepath+'/'+str(image_name)): os.mkdir(savepath+'/'+str(image_name)) for i in range(64): # grid = utils.make_grid(feat_permute.cpu(), nrow=16, normalize=True, padding=10) grid = feat_permute[i, :, :, :] grid = grid.numpy().transpose((1, 2, 0))[:, :, 0] # display_grid = np.zeros(grid.shape) display_grid = (grid - np.min(grid)) / (np.max(grid) - np.min(grid))*255 display_grid = display_grid.astype(np.uint8) # cv2.normalize(grid, display_grid, 0, 255, cv2.NORM_MINMAX) # display_grid = ((grid[:, :, 0] + 1)/2)*255 heatmap = cv2.applyColorMap(display_grid, cv2.COLORMAP_JET) # heatmap = cv2.applyColorMap(display_grid, 2) cv2.imwrite(savepath+'/'+str(image_name)+'/feature'+str(i)+'.png', heatmap) # util.save_img(heatmap, savepath+'/'+str(image_name)+'/feature'+str(i)+'.png') # print(savepath+'/'+str(image_name)+'/feature'+str(i)+'.png') # fig = plot.gcf() # # 去除图像周围的白边 # height, width = display_grid.shape # # 如果dpi=300,那么图像大小=height*width # fig.set_size_inches(width / 100.0 / 3.0, height / 100.0 / 3.0) # plot.gca().xaxis.set_major_locator(plot.NullLocator()) # plot.gca().yaxis.set_major_locator(plot.NullLocator()) # plot.subplots_adjust(top=1, bottom=0, left=0, right=1, hspace=0, wspace=0) # plot.margins(0, 0) # # plot.imshow(display_grid, cmap='jet') # # plot.colorbar() # # plot.savefig(savepath+'/'+str(image_name)+'/'+'feature'+str(i)+'.png', dpi=300) # util.save_img(display_grid, savepath+'feature'+str(i)+'.png') # merge_image = heatmap_overlay(image, display_grid) # plot.imshow(merge_image, cmap='jet') # plot.savefig(savepath+'/'+str(image_name)+'/'+'merger'+str(i)+'.png', dpi=300) def heatmap_overlay(image,heatmap): # 灰度化heatmap heatmap = heatmap.astype(np.uint8) # 热力图伪彩色 # heatmap_color = cv2.applyColorMap(heatmap_g, cv2.COLORMAP_JET) # overlay热力图 merge_img = image.copy() # heatmap_img = heatmap_color.copy() overlay = image.copy() alpha = 0.3 # 设置覆盖图片的透明度 # cv2.rectangle(overlay, (0, 0), (merge_img.shape[1], merge_img.shape[0]), (0, 0, 0), -1) # 设置蓝色为热度图基本色 # cv2.addWeighted(overlay, alpha, merge_img, 1-alpha, 0) # 将背景热度图覆盖到原图 cv2.addWeighted(merge_img, alpha, heatmap, 1-alpha, 0) # 将热度图覆盖到原图 return merge_img #### options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, required=True, help='Path to options YMAL file.') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt) util.mkdirs( (path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) #### Create test dataset and dataloader test_loaders = [] for phase, dataset_opt in sorted(opt['datasets'].items()): test_set = create_dataset(dataset_opt) test_loader = create_dataloader(test_set, dataset_opt) logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set))) test_loaders.append(test_loader) model = create_model(opt) for test_loader in test_loaders: if opt['model'] == 'srgan' or opt['model'] =='sr': test_set_name = test_loader.dataset.opt['name'] logger.info('\nTesting [{:s}]...'.format(test_set_name)) test_start_time = time.time() dataset_dir = osp.join(opt['path']['results_root'], test_set_name) util.mkdir(dataset_dir) test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] test_results['psnr_y'] = [] test_results['ssim_y'] = [] for data in test_loader: need_GT = False if test_loader.dataset.opt['dataroot_GT'] is None else True model.feed_data(data, need_GT=need_GT) img_path = data['GT_path'][0] if need_GT else data['LQ_path'][0] img_name = osp.splitext(osp.basename(img_path))[0] model.test() visuals = model.get_current_visuals(need_GT=need_GT) # sr_img = util.tensor2img(visuals['rlt']) # uint8 # LQ_img = util.tensor2img(visuals['LQ']) sr_img = util.tensor2img(torch.div(torch.add(visuals['rlt'], 1), 2)) LQ_img = util.tensor2img(torch.div(torch.add(visuals['LQ'], 1), 2)) # sr_img = cv2.resize(sr_img, (136, 96), interpolation=cv2.INTER_CUBIC) # save images suffix = opt['suffix'] if suffix: save_img_path = osp.join(dataset_dir, img_name + suffix + '.png') else: save_img_path = osp.join(dataset_dir, img_name + '.png') # LQ_path = osp.join(dataset_dir, img_name +'_LQ'+ '.png') # print(LQ_path) # util.save_img(LQ_img, LQ_path) # calculate PSNR and SSIM if need_GT: # gt_img = util.tensor2img(visuals['GT']) gt_img = util.tensor2img(torch.div(torch.add(visuals['GT'], 1), 2)) # uint8 sr_img, gt_img = util.crop_border([sr_img[:, :], gt_img[:, :]], 0) #GC # sr_img, gt_img = util.crop_border([sr_img[:, :], gt_img[:, 4:132]], 0) #EC # sr_img, gt_img = util.crop_border([sr_img[:, :], gt_img[:, 10:138]], 0) util.save_img(sr_img, save_img_path) psnr = util.calculate_psnr(sr_img, gt_img) ssim = util.calculate_ssim(sr_img, gt_img) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) # if gt_img.shape[2] == 3: # RGB image if gt_img.ndim == 3: # RGB image sr_img_y = bgr2ycbcr(sr_img / 255., only_y=True) gt_img_y = bgr2ycbcr(gt_img / 255., only_y=True) psnr_y = util.calculate_psnr(sr_img_y * 255, gt_img_y * 255) ssim_y = util.calculate_ssim(sr_img_y * 255, gt_img_y * 255) test_results['psnr_y'].append(psnr_y) test_results['ssim_y'].append(ssim_y) logger.info( '{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}; PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}.'. format(img_name, psnr, ssim, psnr_y, ssim_y)) else: logger.info('{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}.'.format(img_name, psnr, ssim)) else: logger.info(img_name) if need_GT: # metrics # Average PSNR/SSIM results ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) # 计算方差 std_psnr = np.std(test_results['psnr']) std_ssim = np.std(test_results['ssim']) logger.info( '----Average PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n'.format( test_set_name, ave_psnr, ave_ssim)) logger.info( '----Std PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n'.format( test_set_name, std_psnr, std_ssim)) if test_results['psnr_y'] and test_results['ssim_y']: ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y']) ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y']) logger.info( '----Y channel, average PSNR/SSIM----\n\tPSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}\n'. format(ave_psnr_y, ave_ssim_y)) elif opt['model'] == 'srgan_joint': test_set_name = test_loader.dataset.opt['name'] logger.info('\nTesting [{:s}]...'.format(test_set_name)) test_start_time = time.time() G1_dataset_dir = osp.join(opt['path']['results_root'], test_set_name, 'G1') G2_dataset_dir = osp.join(opt['path']['results_root'], test_set_name, 'G2') util.mkdir(G1_dataset_dir) util.mkdir(G2_dataset_dir) g1_test_results = OrderedDict() g2_test_results = OrderedDict() g1_test_results['psnr'] = [] g1_test_results['ssim'] = [] g1_test_results['psnr_y'] = [] g1_test_results['ssim_y'] = [] g2_test_results['psnr'] = [] g2_test_results['ssim'] = [] g2_test_results['psnr_y'] = [] g2_test_results['ssim_y'] = [] for data in test_loader: need_GT = False if test_loader.dataset.opt['dataroot_GT'] is None else True model.feed_data(data, need_GT=need_GT) img_path = data['GT_path'][0] if need_GT else data['LQ_path'][0] img_name = osp.splitext(osp.basename(img_path))[0] model.test() visuals = model.get_current_visuals(need_GT=need_GT) # sr_img = util.tensor2img(visuals['rlt']) # uint8 G1_img = util.tensor2img(torch.div(torch.add(visuals['rlt'], 1), 2)) G2_img = util.tensor2img(torch.div(torch.add(visuals['rlt_2'], 1), 2)) # uint8 # G2_img = cv2.imread('/media/omnisky/ubuntu/zxz/model/mmsr/val/20191206/val_set14/G2/' + img_name+'.png') # G2_img = G2_img[:, :, 0] #特征可视化 # displayFeature(visuals['GAB_inpaint'].view(1, 64, 48, 69), # savepath='/media/omnisky/7D37935326D33C41/zxz/model/mmsr/val/feature/inpaint', # image_name=img_name, # image=G1_img) # displayFeature(visuals['GAB_sr'].view(1, 64, 48, 69), # savepath='/media/omnisky/7D37935326D33C41/zxz/model/mmsr/val/feature/sr', # image_name=img_name, # image=G1_img) # displayFeature(visuals['fea3'].view(1, 64, 48, 69), # savepath='/media/omnisky/7D37935326D33C41/zxz/model/mmsr/val/feature/fea3', # image_name=img_name, # image=G1_img) # displayFeature(visuals['fea5'].view(1, 64, 48, 69), # savepath='/media/omnisky/7D37935326D33C41/zxz/model/mmsr/val/feature/fea5', # image_name=img_name, # image=G1_img) # displayFeature(visuals['fea7'].view(1, 64, 48, 69), # savepath='/media/omnisky/7D37935326D33C41/zxz/model/mmsr/val/feature/fea7', # image_name=img_name, # image=G1_img) # save images suffix = opt['suffix'] if suffix: G1_save_img_path = osp.join(G1_dataset_dir, img_name + suffix + '.png') G2_save_img_path = osp.join(G2_dataset_dir, img_name + suffix + '.png') else: G1_save_img_path = osp.join(G1_dataset_dir, img_name + '.png') G2_save_img_path = osp.join(G2_dataset_dir, img_name + '.png') util.save_img(G1_img, G1_save_img_path) util.save_img(G2_img, G2_save_img_path) # calculate PSNR and SSIM # if need_GT: # # gt_img = util.tensor2img(visuals['GT']) # LRgt_img = util.tensor2img(torch.div(torch.add(visuals['LR'], 1), 2)) # uint8 # HRgt_img = util.tensor2img(torch.div(torch.add(visuals['GT'], 1), 2)) # uint8 # # G1_img, LRgt_img = util.crop_border([G1_img, LRgt_img], 0) # G2_img, HRgt_img = util.crop_border([G2_img[:, :], HRgt_img[:, :]], 0) # util.save_img(G1_img, G1_save_img_path) # util.save_img(G2_img, G2_save_img_path) # g1_psnr = util.calculate_psnr(G1_img, LRgt_img) # g1_ssim = util.calculate_ssim(G1_img, LRgt_img) # g2_psnr = util.calculate_psnr(G2_img, HRgt_img) # g2_ssim = util.calculate_ssim(G2_img, HRgt_img) # g1_test_results['psnr'].append(g1_psnr) # g1_test_results['ssim'].append(g1_ssim) # g2_test_results['psnr'].append(g2_psnr) # g2_test_results['ssim'].append(g2_ssim) # # if gt_img.shape[2] == 3: # RGB image # if LRgt_img.ndim == 3: # RGB image # sr_img_y = bgr2ycbcr(sr_img / 255., only_y=True) # gt_img_y = bgr2ycbcr(gt_img / 255., only_y=True) # # psnr_y = util.calculate_psnr(sr_img_y * 255, gt_img_y * 255) # ssim_y = util.calculate_ssim(sr_img_y * 255, gt_img_y * 255) # test_results['psnr_y'].append(psnr_y) # test_results['ssim_y'].append(ssim_y) # logger.info( # 'RGB:{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}; PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}.'. # format(img_name, psnr, ssim, psnr_y, ssim_y)) # else: # logger.info('{:20s} - G1 - PSNR: {:.6f} dB; SSIM: {:.6f}.'.format(img_name, g1_psnr, g1_ssim)) # logger.info('{:20s} - G2 - PSNR: {:.6f} dB; SSIM: {:.6f}.'.format(img_name, g2_psnr, g2_ssim)) # else: # logger.info(img_name) # # if need_GT: # metrics # # Average PSNR/SSIM results # g1_ave_psnr = sum(g1_test_results['psnr']) / len(g1_test_results['psnr']) # g1_ave_ssim = sum(g1_test_results['ssim']) / len(g1_test_results['ssim']) # g2_ave_psnr = sum(g2_test_results['psnr']) / len(g2_test_results['psnr']) # g2_ave_ssim = sum(g2_test_results['ssim']) / len(g2_test_results['ssim']) # # 计算方差 # g1_std_psnr = np.std(g1_test_results['psnr']) # g1_std_ssim = np.std(g1_test_results['ssim']) # g2_std_psnr = np.std(g2_test_results['psnr']) # g2_std_ssim = np.std(g2_test_results['ssim']) # logger.info('------------------G1-----------------') # logger.info( # '----Average PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n'.format( # test_set_name, g1_ave_psnr, g1_ave_ssim)) # logger.info( # '----Std PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n'.format( # test_set_name, g1_std_psnr, g1_std_ssim)) # logger.info('------------------G2-----------------') # logger.info( # '----Average PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n'.format( # test_set_name, g2_ave_psnr, g2_ave_ssim)) # logger.info( # '----Std PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n'.format( # test_set_name, g2_std_psnr, g2_std_ssim)) # # if test_results['psnr_y'] and test_results['ssim_y']: # # ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y']) # # ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y']) # # logger.info( # # '----Y channel, average PSNR/SSIM----\n\tPSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}\n'. # # format(ave_psnr_y, ave_ssim_y))
[ "utils.util.crop_border", "argparse.ArgumentParser", "models.create_model", "utils.util.mkdir", "os.path.join", "utils.util.calculate_psnr", "numpy.std", "utils.util.save_img", "numpy.max", "utils.util.setup_logger", "data.create_dataloader", "os.path.basename", "cv2.addWeighted", "numpy.min", "cv2.applyColorMap", "numpy.dot", "options.options.dict_to_nonedict", "data.util.bgr2ycbcr", "data.create_dataset", "torch.add", "time.time", "collections.OrderedDict", "options.options.dict2str", "utils.util.calculate_ssim", "logging.getLogger" ]
[((3130, 3155), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3153, 3155), False, 'import argparse\n'), ((3310, 3338), 'options.options.dict_to_nonedict', 'option.dict_to_nonedict', (['opt'], {}), '(opt)\n', (3333, 3338), True, 'import options.options as option\n'), ((3496, 3615), 'utils.util.setup_logger', 'util.setup_logger', (['"""base"""', "opt['path']['log']", "('test_' + opt['name'])"], {'level': 'logging.INFO', 'screen': '(True)', 'tofile': '(True)'}), "('base', opt['path']['log'], 'test_' + opt['name'], level=\n logging.INFO, screen=True, tofile=True)\n", (3513, 3615), True, 'import utils.util as util\n'), ((3638, 3663), 'logging.getLogger', 'logging.getLogger', (['"""base"""'], {}), "('base')\n", (3655, 3663), False, 'import logging\n'), ((4064, 4081), 'models.create_model', 'create_model', (['opt'], {}), '(opt)\n', (4076, 4081), False, 'from models import create_model\n'), ((430, 473), 'numpy.dot', 'np.dot', (['rgb[..., :3]', '[0.299, 0.587, 0.114]'], {}), '(rgb[..., :3], [0.299, 0.587, 0.114])\n', (436, 473), True, 'import numpy as np\n'), ((3020, 3076), 'cv2.addWeighted', 'cv2.addWeighted', (['merge_img', 'alpha', 'heatmap', '(1 - alpha)', '(0)'], {}), '(merge_img, alpha, heatmap, 1 - alpha, 0)\n', (3035, 3076), False, 'import cv2\n'), ((3676, 3696), 'options.options.dict2str', 'option.dict2str', (['opt'], {}), '(opt)\n', (3691, 3696), True, 'import options.options as option\n'), ((3831, 3858), 'data.create_dataset', 'create_dataset', (['dataset_opt'], {}), '(dataset_opt)\n', (3845, 3858), False, 'from data import create_dataset, create_dataloader\n'), ((3877, 3917), 'data.create_dataloader', 'create_dataloader', (['test_set', 'dataset_opt'], {}), '(test_set, dataset_opt)\n', (3894, 3917), False, 'from data import create_dataset, create_dataloader\n'), ((1260, 1309), 'cv2.applyColorMap', 'cv2.applyColorMap', (['display_grid', 'cv2.COLORMAP_JET'], {}), '(display_grid, cv2.COLORMAP_JET)\n', (1277, 1309), False, 'import cv2\n'), ((4317, 4328), 'time.time', 'time.time', ([], {}), '()\n', (4326, 4328), False, 'import time\n'), ((4351, 4403), 'os.path.join', 'osp.join', (["opt['path']['results_root']", 'test_set_name'], {}), "(opt['path']['results_root'], test_set_name)\n", (4359, 4403), True, 'import os.path as osp\n'), ((4412, 4435), 'utils.util.mkdir', 'util.mkdir', (['dataset_dir'], {}), '(dataset_dir)\n', (4422, 4435), True, 'import utils.util as util\n'), ((4460, 4473), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (4471, 4473), False, 'from collections import OrderedDict\n'), ((7752, 7780), 'numpy.std', 'np.std', (["test_results['psnr']"], {}), "(test_results['psnr'])\n", (7758, 7780), True, 'import numpy as np\n'), ((7804, 7832), 'numpy.std', 'np.std', (["test_results['ssim']"], {}), "(test_results['ssim'])\n", (7810, 7832), True, 'import numpy as np\n'), ((8803, 8814), 'time.time', 'time.time', ([], {}), '()\n', (8812, 8814), False, 'import time\n'), ((8840, 8898), 'os.path.join', 'osp.join', (["opt['path']['results_root']", 'test_set_name', '"""G1"""'], {}), "(opt['path']['results_root'], test_set_name, 'G1')\n", (8848, 8898), True, 'import os.path as osp\n'), ((8924, 8982), 'os.path.join', 'osp.join', (["opt['path']['results_root']", 'test_set_name', '"""G2"""'], {}), "(opt['path']['results_root'], test_set_name, 'G2')\n", (8932, 8982), True, 'import os.path as osp\n'), ((8991, 9017), 'utils.util.mkdir', 'util.mkdir', (['G1_dataset_dir'], {}), '(G1_dataset_dir)\n', (9001, 9017), True, 'import utils.util as util\n'), ((9026, 9052), 'utils.util.mkdir', 'util.mkdir', (['G2_dataset_dir'], {}), '(G2_dataset_dir)\n', (9036, 9052), True, 'import utils.util as util\n'), ((9080, 9093), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (9091, 9093), False, 'from collections import OrderedDict\n'), ((9120, 9133), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (9131, 9133), False, 'from collections import OrderedDict\n'), ((5498, 5547), 'os.path.join', 'osp.join', (['dataset_dir', "(img_name + suffix + '.png')"], {}), "(dataset_dir, img_name + suffix + '.png')\n", (5506, 5547), True, 'import os.path as osp\n'), ((5598, 5638), 'os.path.join', 'osp.join', (['dataset_dir', "(img_name + '.png')"], {}), "(dataset_dir, img_name + '.png')\n", (5606, 5638), True, 'import os.path as osp\n'), ((6032, 6081), 'utils.util.crop_border', 'util.crop_border', (['[sr_img[:, :], gt_img[:, :]]', '(0)'], {}), '([sr_img[:, :], gt_img[:, :]], 0)\n', (6048, 6081), True, 'import utils.util as util\n'), ((6317, 6353), 'utils.util.save_img', 'util.save_img', (['sr_img', 'save_img_path'], {}), '(sr_img, save_img_path)\n', (6330, 6353), True, 'import utils.util as util\n'), ((6378, 6413), 'utils.util.calculate_psnr', 'util.calculate_psnr', (['sr_img', 'gt_img'], {}), '(sr_img, gt_img)\n', (6397, 6413), True, 'import utils.util as util\n'), ((6437, 6472), 'utils.util.calculate_ssim', 'util.calculate_ssim', (['sr_img', 'gt_img'], {}), '(sr_img, gt_img)\n', (6456, 6472), True, 'import utils.util as util\n'), ((12040, 12079), 'utils.util.save_img', 'util.save_img', (['G1_img', 'G1_save_img_path'], {}), '(G1_img, G1_save_img_path)\n', (12053, 12079), True, 'import utils.util as util\n'), ((12092, 12131), 'utils.util.save_img', 'util.save_img', (['G2_img', 'G2_save_img_path'], {}), '(G2_img, G2_save_img_path)\n', (12105, 12131), True, 'import utils.util as util\n'), ((1017, 1029), 'numpy.min', 'np.min', (['grid'], {}), '(grid)\n', (1023, 1029), True, 'import numpy as np\n'), ((1034, 1046), 'numpy.max', 'np.max', (['grid'], {}), '(grid)\n', (1040, 1046), True, 'import numpy as np\n'), ((1049, 1061), 'numpy.min', 'np.min', (['grid'], {}), '(grid)\n', (1055, 1061), True, 'import numpy as np\n'), ((4900, 4922), 'os.path.basename', 'osp.basename', (['img_path'], {}), '(img_path)\n', (4912, 4922), True, 'import os.path as osp\n'), ((5184, 5212), 'torch.add', 'torch.add', (["visuals['rlt']", '(1)'], {}), "(visuals['rlt'], 1)\n", (5193, 5212), False, 'import torch\n'), ((5265, 5292), 'torch.add', 'torch.add', (["visuals['LQ']", '(1)'], {}), "(visuals['LQ'], 1)\n", (5274, 5292), False, 'import torch\n'), ((6711, 6749), 'data.util.bgr2ycbcr', 'bgr2ycbcr', (['(sr_img / 255.0)'], {'only_y': '(True)'}), '(sr_img / 255.0, only_y=True)\n', (6720, 6749), False, 'from data.util import bgr2ycbcr\n'), ((6780, 6818), 'data.util.bgr2ycbcr', 'bgr2ycbcr', (['(gt_img / 255.0)'], {'only_y': '(True)'}), '(gt_img / 255.0, only_y=True)\n', (6789, 6818), False, 'from data.util import bgr2ycbcr\n'), ((6848, 6899), 'utils.util.calculate_psnr', 'util.calculate_psnr', (['(sr_img_y * 255)', '(gt_img_y * 255)'], {}), '(sr_img_y * 255, gt_img_y * 255)\n', (6867, 6899), True, 'import utils.util as util\n'), ((6929, 6980), 'utils.util.calculate_ssim', 'util.calculate_ssim', (['(sr_img_y * 255)', '(gt_img_y * 255)'], {}), '(sr_img_y * 255, gt_img_y * 255)\n', (6948, 6980), True, 'import utils.util as util\n'), ((11710, 11762), 'os.path.join', 'osp.join', (['G1_dataset_dir', "(img_name + suffix + '.png')"], {}), "(G1_dataset_dir, img_name + suffix + '.png')\n", (11718, 11762), True, 'import os.path as osp\n'), ((11798, 11850), 'os.path.join', 'osp.join', (['G2_dataset_dir', "(img_name + suffix + '.png')"], {}), "(G2_dataset_dir, img_name + suffix + '.png')\n", (11806, 11850), True, 'import os.path as osp\n'), ((11904, 11947), 'os.path.join', 'osp.join', (['G1_dataset_dir', "(img_name + '.png')"], {}), "(G1_dataset_dir, img_name + '.png')\n", (11912, 11947), True, 'import os.path as osp\n'), ((11983, 12026), 'os.path.join', 'osp.join', (['G2_dataset_dir', "(img_name + '.png')"], {}), "(G2_dataset_dir, img_name + '.png')\n", (11991, 12026), True, 'import os.path as osp\n'), ((5956, 5983), 'torch.add', 'torch.add', (["visuals['GT']", '(1)'], {}), "(visuals['GT'], 1)\n", (5965, 5983), False, 'import torch\n'), ((9725, 9747), 'os.path.basename', 'osp.basename', (['img_path'], {}), '(img_path)\n', (9737, 9747), True, 'import os.path as osp\n'), ((9955, 9983), 'torch.add', 'torch.add', (["visuals['rlt']", '(1)'], {}), "(visuals['rlt'], 1)\n", (9964, 9983), False, 'import torch\n'), ((10036, 10066), 'torch.add', 'torch.add', (["visuals['rlt_2']", '(1)'], {}), "(visuals['rlt_2'], 1)\n", (10045, 10066), False, 'import torch\n')]
""" Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np def space_to_batch_infer(node): """ https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/space-to-batch """ input_shape = node.in_node(0).shape if input_shape is None: return if len(node.in_nodes()) != 3: return if node.in_node(1).value is None or node.in_node(2).value is None: return block_size = node.in_node(1).value pad = node.in_node(2).value if np.any(np.array(block_size.shape) != 2) or np.any(np.array(pad.shape) != 2): # TODO REWRITE!!! return height_pad = pad[0][0] + input_shape[1] + pad[0][1] width_pad = pad[1][0] + input_shape[2] + pad[1][1] output_shape = [input_shape[0] * block_size[0] * block_size[1], int(height_pad / block_size[0]), int(width_pad / block_size[1]), input_shape[3]] node.out_node().shape = np.array(output_shape) def batch_to_space_infer(node): """ https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/space-to-batch """ input_shape = node.in_node(0).shape if input_shape is None: return if len(node.in_nodes()) != 3: return if node.in_node(1).value is None or node.in_node(2).value is None: return block_size = node.in_node(1).value crop = node.in_node(2).value if np.any(np.array(block_size.shape) != 2) or np.any(np.array(crop.shape) != 2): # TODO REWRITE!!! return hp = block_size[0] * input_shape[1] wp = block_size[1] * input_shape[2] height = hp - crop[0][0] - crop[0][1] width = wp - crop[1][0] - crop[1][1] batch = int(input_shape[0] / (block_size[0] * block_size[1])) output_shape = [batch, height, width, input_shape[3]] node.out_node().shape = np.array(output_shape)
[ "numpy.array" ]
[((1451, 1473), 'numpy.array', 'np.array', (['output_shape'], {}), '(output_shape)\n', (1459, 1473), True, 'import numpy as np\n'), ((2334, 2356), 'numpy.array', 'np.array', (['output_shape'], {}), '(output_shape)\n', (2342, 2356), True, 'import numpy as np\n'), ((1037, 1063), 'numpy.array', 'np.array', (['block_size.shape'], {}), '(block_size.shape)\n', (1045, 1063), True, 'import numpy as np\n'), ((1080, 1099), 'numpy.array', 'np.array', (['pad.shape'], {}), '(pad.shape)\n', (1088, 1099), True, 'import numpy as np\n'), ((1911, 1937), 'numpy.array', 'np.array', (['block_size.shape'], {}), '(block_size.shape)\n', (1919, 1937), True, 'import numpy as np\n'), ((1954, 1974), 'numpy.array', 'np.array', (['crop.shape'], {}), '(crop.shape)\n', (1962, 1974), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np import pandas as pd from wordcloud import WordCloud, STOPWORDS # Lists, dicts, and sorting l = [3, 5, 6, 1, -6] d = {'a': 9, 'b': 2, 'c': 5, 'd': 3} sl = sorted(l) sorted(d) sorted(d.values()) sorted(d.items()) print(l[:2]) # Capturing standard output # Call this program in cmd/terminal and do: python program_name.py > captured_std_output.txt print("Here's some text.") # Enumerate() for i, x in enumerate([1, 2, 3, 4, 5]): print("The index of {} is {}".format(x, i)) # # Inelegant, don't do: # i = 0 # for x in [1,2,3,4,5]: # print("The index of {} is {}".format(x, i)) # i += 1 # Plots X = range(-5, 6) # this actually ranges from -5 to 4 Y = [pow(x, 2) for x in X] # Label the axes: plt.xlabel('Integers') plt.ylabel('f(x)') # Control the scale of the Y-axis plt.ylim([0, 30]) plt.plot(X, Y, label="X-squared") plt.show() plt.savefig('figures/parabola1.png') # Add a second plot Y2 = [pow(x, 3) for x in X] plt.plot(X, Y2, 'o-', color='fuchsia', label="X-cubed") # 'o-', '--' plt.legend() plt.savefig('figures/cube.png') # Activity: Plot 4 different polynomial functions! # https://github.com/olzama/Ling471/blob/gh-pages/assignments/activity_plots.py # Bars numbers = np.random.rand(10, 4) # print(numbers) # Let's use pandas visualization tools: df = pd.DataFrame(numbers, columns=['a', 'b', 'c', 'd']) print(df) df.plot.bar().get_figure().savefig('figures/bars.png') df.plot.barh().get_figure().savefig('figures/hbars.png') df.plot.bar(stacked=True).get_figure().savefig('figures/stacked-bars.png') # Pie chart df = pd.DataFrame({'mass': [0.330, 4.87, 5.97], 'radius': [2439.7, 6051.8, 6378.1]}, index=['Mercury', 'Venus', 'Earth']) df.plot.pie(y='mass').get_figure().savefig('figures/pie.png') fig = plt.figure() subplots = df.plot.pie(subplots=True, figsize=(11, 6)) # Subplots will contain an object that has a savefig() function at index [0]: subplots[0].get_figure().savefig('figures/pie1.png') # Text # Back to matplotlib: plt.cla() # Clear plot plt.clf() imdb = pd.read_csv('../datasets/my_imdb.csv') text = imdb['review'][0] print(text) wordcloud = WordCloud(width=3000, height=2000, random_state=1, background_color='blue', collocations=False, stopwords=STOPWORDS).generate(text) plt.imshow(wordcloud) plt.axis("off") plt.savefig('figures/wordcloud.png')
[ "pandas.DataFrame", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.ylim", "matplotlib.pyplot.clf", "pandas.read_csv", "matplotlib.pyplot.legend", "matplotlib.pyplot.imshow", "wordcloud.WordCloud", "matplotlib.pyplot.axis", "matplotlib.pyplot.figure", "matplotlib.pyplot.cla", "numpy.random.rand", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((760, 782), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Integers"""'], {}), "('Integers')\n", (770, 782), True, 'import matplotlib.pyplot as plt\n'), ((783, 801), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""f(x)"""'], {}), "('f(x)')\n", (793, 801), True, 'import matplotlib.pyplot as plt\n'), ((836, 853), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0, 30]'], {}), '([0, 30])\n', (844, 853), True, 'import matplotlib.pyplot as plt\n'), ((854, 887), 'matplotlib.pyplot.plot', 'plt.plot', (['X', 'Y'], {'label': '"""X-squared"""'}), "(X, Y, label='X-squared')\n", (862, 887), True, 'import matplotlib.pyplot as plt\n'), ((888, 898), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (896, 898), True, 'import matplotlib.pyplot as plt\n'), ((899, 935), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""figures/parabola1.png"""'], {}), "('figures/parabola1.png')\n", (910, 935), True, 'import matplotlib.pyplot as plt\n'), ((985, 1040), 'matplotlib.pyplot.plot', 'plt.plot', (['X', 'Y2', '"""o-"""'], {'color': '"""fuchsia"""', 'label': '"""X-cubed"""'}), "(X, Y2, 'o-', color='fuchsia', label='X-cubed')\n", (993, 1040), True, 'import matplotlib.pyplot as plt\n'), ((1055, 1067), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1065, 1067), True, 'import matplotlib.pyplot as plt\n'), ((1068, 1099), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""figures/cube.png"""'], {}), "('figures/cube.png')\n", (1079, 1099), True, 'import matplotlib.pyplot as plt\n'), ((1252, 1273), 'numpy.random.rand', 'np.random.rand', (['(10)', '(4)'], {}), '(10, 4)\n', (1266, 1273), True, 'import numpy as np\n'), ((1336, 1387), 'pandas.DataFrame', 'pd.DataFrame', (['numbers'], {'columns': "['a', 'b', 'c', 'd']"}), "(numbers, columns=['a', 'b', 'c', 'd'])\n", (1348, 1387), True, 'import pandas as pd\n'), ((1603, 1723), 'pandas.DataFrame', 'pd.DataFrame', (["{'mass': [0.33, 4.87, 5.97], 'radius': [2439.7, 6051.8, 6378.1]}"], {'index': "['Mercury', 'Venus', 'Earth']"}), "({'mass': [0.33, 4.87, 5.97], 'radius': [2439.7, 6051.8, 6378.1\n ]}, index=['Mercury', 'Venus', 'Earth'])\n", (1615, 1723), True, 'import pandas as pd\n'), ((1825, 1837), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1835, 1837), True, 'import matplotlib.pyplot as plt\n'), ((2054, 2063), 'matplotlib.pyplot.cla', 'plt.cla', ([], {}), '()\n', (2061, 2063), True, 'import matplotlib.pyplot as plt\n'), ((2078, 2087), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (2085, 2087), True, 'import matplotlib.pyplot as plt\n'), ((2095, 2133), 'pandas.read_csv', 'pd.read_csv', (['"""../datasets/my_imdb.csv"""'], {}), "('../datasets/my_imdb.csv')\n", (2106, 2133), True, 'import pandas as pd\n'), ((2337, 2358), 'matplotlib.pyplot.imshow', 'plt.imshow', (['wordcloud'], {}), '(wordcloud)\n', (2347, 2358), True, 'import matplotlib.pyplot as plt\n'), ((2359, 2374), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (2367, 2374), True, 'import matplotlib.pyplot as plt\n'), ((2375, 2411), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""figures/wordcloud.png"""'], {}), "('figures/wordcloud.png')\n", (2386, 2411), True, 'import matplotlib.pyplot as plt\n'), ((2183, 2303), 'wordcloud.WordCloud', 'WordCloud', ([], {'width': '(3000)', 'height': '(2000)', 'random_state': '(1)', 'background_color': '"""blue"""', 'collocations': '(False)', 'stopwords': 'STOPWORDS'}), "(width=3000, height=2000, random_state=1, background_color='blue',\n collocations=False, stopwords=STOPWORDS)\n", (2192, 2303), False, 'from wordcloud import WordCloud, STOPWORDS\n')]
# Copyright 2021 Adobe # All Rights Reserved. # NOTICE: Adobe permits you to use, modify, and distribute this file in # accordance with the terms of the Adobe license agreement accompanying # it. ''' >> python -m unittest unit_test.TestSingle_operator ''' from skimage import io import time import beacon_aug as BA # from beacon_aug.generator.operator_generator import DEFAULT_LIBRARIES import numpy as np import unittest from datetime import timedelta from hypothesis import given, settings, strategies as st from hypothesis.extra.numpy import arrays class TestSingle_operator(unittest.TestCase): # @given(image=arrays(np.float32, st.tuples(*[st.integers(1, 500), st.integers(1, 500), st.just(3)])), # limit=st.tuples(*[st.integers(-128, 0), st.integers(1, 128)])) def testSingle_operator(self): image = io.imread("../data/example.png") limit = (-128, 128) print("\n" + "="*5 + " Unit test 1: Single augmentation operator " + "="*5 + "\n") for library in BA.Rotate().avail_libraries: aug_pipeline = BA.Rotate(p=1, limit=limit, library=library) augmented_image1 = aug_pipeline(image=image)['image'].copy() augmented_image2 = aug_pipeline(image=image)['image'].copy() # self.assertNotEqual(image, augmented_image1) assert not np.array_equal( image, augmented_image1), "Failed to generate augmentation different to input" # self.assertNotEqual(augmented_image1, augmented_image2) assert not np.array_equal( augmented_image1, augmented_image2), "Failed to generate different augmentation results when calling " if __name__ == "__main__": unittest.main()
[ "unittest.main", "beacon_aug.Rotate", "numpy.array_equal", "skimage.io.imread" ]
[((1719, 1734), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1732, 1734), False, 'import unittest\n'), ((838, 870), 'skimage.io.imread', 'io.imread', (['"""../data/example.png"""'], {}), "('../data/example.png')\n", (847, 870), False, 'from skimage import io\n'), ((1014, 1025), 'beacon_aug.Rotate', 'BA.Rotate', ([], {}), '()\n', (1023, 1025), True, 'import beacon_aug as BA\n'), ((1070, 1114), 'beacon_aug.Rotate', 'BA.Rotate', ([], {'p': '(1)', 'limit': 'limit', 'library': 'library'}), '(p=1, limit=limit, library=library)\n', (1079, 1114), True, 'import beacon_aug as BA\n'), ((1345, 1384), 'numpy.array_equal', 'np.array_equal', (['image', 'augmented_image1'], {}), '(image, augmented_image1)\n', (1359, 1384), True, 'import numpy as np\n'), ((1551, 1601), 'numpy.array_equal', 'np.array_equal', (['augmented_image1', 'augmented_image2'], {}), '(augmented_image1, augmented_image2)\n', (1565, 1601), True, 'import numpy as np\n')]
""" Copyright 2017 Neural Networks and Deep Learning lab, MIPT Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from deeppavlov.core.models.component import Component from deeppavlov.core.common.registry import register import numpy as np @register('mask') class Mask(Component): def __init__(self, *args, **kwargs): pass @staticmethod def __call__(tokens_batch, **kwargs): """Takes batch of tokens and returns the masks of corresponding length""" batch_size = len(tokens_batch) max_len = max(len(utt) for utt in tokens_batch) mask = np.zeros([batch_size, max_len], dtype=np.float32) for n, utterance in enumerate(tokens_batch): mask[n, :len(utterance)] = 1 return mask
[ "numpy.zeros", "deeppavlov.core.common.registry.register" ]
[((723, 739), 'deeppavlov.core.common.registry.register', 'register', (['"""mask"""'], {}), "('mask')\n", (731, 739), False, 'from deeppavlov.core.common.registry import register\n'), ((1070, 1119), 'numpy.zeros', 'np.zeros', (['[batch_size, max_len]'], {'dtype': 'np.float32'}), '([batch_size, max_len], dtype=np.float32)\n', (1078, 1119), True, 'import numpy as np\n')]